WorldWideScience

Sample records for leptin receptor activity

  1. Creating leptin-like biofunctions by active immunization against chicken leptin receptor in growing chickens.

    Science.gov (United States)

    Lei, M M; Wu, S Q; Shao, X B; Li, X W; Chen, Z; Ying, S J; Shi, Z D

    2015-01-01

    In this study, immunization against chicken leptin receptor (cLEPR) extracellular domain (ECD) was applied to investigate leptin regulation and LEPR biofunction in growing chicken pullets. A recombinant protein (cLEPR ECD) based on the cLEPR complemenary DNA sequence corresponding to the 582nd to 796th amino acid residues of cLEPR mature peptide was prepared and used as antigen. Immunization against cLEPR ECD in growing chickens increased anti-cLEPR ECD antibody titers in blood, enhanced proportions of phosphorylated janus kinase 2 (JAK2) and served as signal transducer and activator of transcription 3 (STAT3) protein in liver tissue. Chicken live weight gain and abdominal fat mass were significantly decreased (P chickens. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Acute up-regulation of the rat brain somatostatin receptor-effector system by leptin is related to activation of insulin signaling and may counteract central leptin actions.

    Science.gov (United States)

    Perianes-Cachero, A; Burgos-Ramos, E; Puebla-Jiménez, L; Canelles, S; Frago, L M; Hervás-Aguilar, A; de Frutos, S; Toledo-Lobo, M V; Mela, V; Viveros, M P; Argente, J; Chowen, J A; Arilla-Ferreiro, E; Barrios, V

    2013-11-12

    Leptin and somatostatin (SRIF) have opposite effects on food seeking and ingestive behaviors, functions partially regulated by the frontoparietal cortex and hippocampus. Although it is known that the acute suppression of food intake mediated by leptin decreases with time, the counter-regulatory mechanisms remain unclear. Our aims were to analyze the effect of acute central leptin infusion on the SRIF receptor-effector system in these areas and the implication of related intracellular signaling mechanisms in this response. We studied 20 adult male Wister rats including controls and those treated intracerebroventricularly with a single dose of 5 μg of leptin and sacrificed 1 or 6h later. Density of SRIF receptors was unchanged at 1h, whereas leptin increased the density of SRIF receptors at 6h, which was correlated with an elevated capacity of SRIF to inhibit forskolin-stimulated adenylyl cyclase activity in both areas. The functional capacity of SRIF receptors was unaltered as cell membrane levels of αi1 and αi2 subunits of G inhibitory proteins were unaffected in both brain areas. The increased density of SRIF receptors was due to enhanced SRIF receptor subtype 2 (sst2) protein levels that correlated with higher mRNA levels for this receptor. These changes in sst2 mRNA levels were concomitant with increased activation of the insulin signaling, c-Jun and cyclic AMP response element-binding protein (CREB); however, activation of signal transducer and activator of transcription 3 was reduced in the cortex and unchanged in the hippocampus and suppressor of cytokine signaling 3 remained unchanged in these areas. In addition, the leptin antagonist L39A/D40A/F41A blocked the leptin-induced changes in SRIF receptors, leptin signaling and CREB activation. In conclusion, increased activation of insulin signaling after leptin infusion is related to acute up-regulation of the SRIF receptor-effector system that may antagonize short-term leptin actions in the rat brain

  3. The anti-tumor activity of a neutralizing nanobody targeting leptin receptor in a mouse model of melanoma.

    Directory of Open Access Journals (Sweden)

    Travis McMurphy

    Full Text Available Environmental and genetic activation of a brain-adipocyte axis inhibits cancer progression. Leptin is the primary peripheral mediator of this anticancer effect in a mouse model of melanoma. In this study we assessed the effect of a leptin receptor antagonist on melanoma progression. Local administration of a neutralizing nanobody targeting the leptin receptor at low dose adjacent to tumor decreased tumor mass with no effects on body weight or food intake. In contrast, systemic administration of the nanobody failed to suppress tumor growth. Daily intraperitoneal injection of high-dose nanobody led to weight gain, hyperphagia, increased adiposity, hyperleptinemia, and hyperinsulinemia, and central effects mimicking leptin deficiency. The blockade of central actions of leptin by systemic delivery of nanobody may compromise its anticancer effect, underscoring the need to develop peripherally acting leptin antagonists coupled with efficient cancer-targeting delivery.

  4. The anti-tumor activity of a neutralizing nanobody targeting leptin receptor in a mouse model of melanoma.

    Science.gov (United States)

    McMurphy, Travis; Xiao, Run; Magee, Daniel; Slater, Andrew; Zabeau, Lennart; Tavernier, Jan; Cao, Lei

    2014-01-01

    Environmental and genetic activation of a brain-adipocyte axis inhibits cancer progression. Leptin is the primary peripheral mediator of this anticancer effect in a mouse model of melanoma. In this study we assessed the effect of a leptin receptor antagonist on melanoma progression. Local administration of a neutralizing nanobody targeting the leptin receptor at low dose adjacent to tumor decreased tumor mass with no effects on body weight or food intake. In contrast, systemic administration of the nanobody failed to suppress tumor growth. Daily intraperitoneal injection of high-dose nanobody led to weight gain, hyperphagia, increased adiposity, hyperleptinemia, and hyperinsulinemia, and central effects mimicking leptin deficiency. The blockade of central actions of leptin by systemic delivery of nanobody may compromise its anticancer effect, underscoring the need to develop peripherally acting leptin antagonists coupled with efficient cancer-targeting delivery.

  5. Leptin, Leptin Soluble Receptor, and the Free Leptin Index following a Diet and Physical Activity Lifestyle Intervention in Obese Males and Females

    Directory of Open Access Journals (Sweden)

    Jeffrey E. Herrick

    2016-01-01

    Full Text Available Leptin (LEP is associated with appetite regulation and metabolism. Concentration is linear with adiposity, suggesting LEP resistance. LEP circulates freely and bound with its soluble receptor (sOB-r; the ratio is the free leptin index (FLI, an index of leptin resistance; lower FLI suggests reduced biological action. Purpose. The aim was to determine the effect of changes in adipose tissue distribution on LEP, sOB-r, and FLI following 6 months (6 M of a diet/exercise weight loss program (WLP. In addition, we aim to identify predictors of the FLI. Methods. 6 M WLP consisted of diet/lifestyle interventions following ADA guidelines. Body composition was assessed by DXA. LEP and sOB-r analysis were done via ELISA. Results. 10 adults completed the WLP. Significant reductions were seen in total fat percentage (% fat, nontrunk fat, (NTF, and trunk fat (TF from base to 3 m and 6 M (p≤0.05. The FLI were reduced at 3 M and 6 M for males and 6 M for females. Total body fat and body weight predicted the FLI in both sexes. Conclusions. LEP and FLI reductions following 6 M of WLP were achieved independent of sOB-r changes. We also demonstrate that the FLI can be predicted noninvasively through total fat mass and body weight in kilograms.

  6. Gene Expression of Leptin and Long Leptin Receptor Isoform in Endometriosis: A Case-Control Study

    Directory of Open Access Journals (Sweden)

    Andrea Prestes Nácul

    2013-01-01

    Full Text Available In this study, leptin/BMI ratio in serum and peritoneal fluid and gene expression of leptin and long form leptin receptor (OB-RL were assessed in eutopic and ectopic endometria of women with endometriosis and controls. Increased serum leptin/BMI ratio was found in endometriosis patients. Leptin and OB-RL gene expression was significantly higher in ectopic versus eutopic endometrium of patients and controls. A positive, significant correlation was observed between leptin and OB-RL transcripts in ectopic endometria and also in eutopic endometria in endometriosis and control groups. A negative and significant correlation was found between OB-RL mRNA expression and peritoneal fluid leptin/BMI ratio only in endometriosis. These data suggest that, through a modulatory interaction with its active receptor, leptin might play a role in the development of endometrial implants.

  7. Relationship between peripheral leptin receptor and leptin in obese subjects

    International Nuclear Information System (INIS)

    Sun Junjiang; Du Tongxin; Wang Zizheng; Wang Shukui; Huang Min

    2002-01-01

    Objective: To investigate the relationship between leptin resistance and leptin receptor in obese subjects. Methods: Forty-four individuals undergoing surgery, exclusive of diabetic mellitus, chronic inflammatory and malignant diseases, were divided into 3 groups according to the body mass index (BMI), normal controls (n=15), weight excess (n=14), and obesity group (n=15). Fasting serum leptin were detected via ELISA kits, leptin receptor (Bmax) in peripheral adipose tissues was detected by radioligand assay. Results: Serum leptin levels were higher significantly in weight excess and obesity cases groups (10.3±4.45 and 13.2±3.26 vs 5.51±3.23 μg/L, both P<0.05, respectively) compared with normal control group, suggesting the existence of leptin resistance, while the leptin receptor of the weight excess and obese groups decreased significantly than that of normal control group (36.9 ± 5.89 and 24.3 ± 3.95 vs 76.5 ± 35.3 fmol/mg protein, both P<0.01, respectively), there was no statistical differences for Kd value among three groups. Also, there was a negative correlation between BMI and leptin receptor (r=-0.613, P<0.05), and no significant correlation was found between serum leptin and peripheral leptin receptor. Conclusion: The result suggested that there was expression of leptin receptor in peripheral adipose tissues and low level of leptin receptor expression may contribute to the development of leptin resistance and obesity

  8. Adiponectin, Leptin, and Leptin Receptor in Obese Patients with Type 2 Diabetes Treated with Insulin Detemir

    Directory of Open Access Journals (Sweden)

    Paweł Olczyk

    2017-07-01

    Full Text Available The aim of the present study is to quantitatively assess the expression of selected regulatory molecules, such as leptin, leptin receptor, and adiponectin in the blood of obese patients with type 2 diabetes both before treatment and after six months of pharmacological therapy with the long-lasting insulin analogue, insulin detemir. A significant decrease in the analysed regulatory molecules, i.e., leptin receptor and adiponectin, was found in blood plasma of the patients with untreated type 2 diabetes. These changes were accompanied by an increase in plasma leptin concentrations. Insulin treatment resulted in the normalization of plasma leptin receptor and adiponectin concentrations. The circulating leptin level did not change following anti-diabetic therapy with insulin detemir. Gender was a significant factor modifying the circulating level of all the analysed regulatory active compounds. Bioinformatic analysis was performed using Matlab with the Signal Processing Toolbox. The conducted discriminant analysis revealed that the leptin receptor, Δw(19, and adiponectin, Δw(21, were the parameters undergoing the most significant quantitative changes during the six-month therapy with insulin detemir. The conducted examinations indicated the contribution of adipocytokines—the biologically-active mediators of systemic metabolism, such as leptin and adiponectin in the pathomechanism of disorders being the basis for obesity which leads to development of insulin resistance, which, in turn, results in the occurrence of type 2 diabetes.

  9. Leptin, soluble leptin receptor, and free leptin index in patients with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Elena N. Smirnova

    2017-06-01

    Full Text Available Aim. To assess the levels of leptin, its soluble receptor, and index of the formation of free leptin in metabolic syndrome (MS. Materials and methods. The study included 110 individuals with obesity and overweight. The group 1 consisted of 70 patients with MS (IDF, 2005, the average body mass index (BMI 38.4 ± 4.4 kg/m2, aged 48.2 ± 2.4 years, with arterial hypertension (AH 1–2 degree, without regular antihypertensive therapy. Group 2 – "healthy" obesity accounted for 40 patients aged 38.4 ± 6.2 years, BMI 36.0 ± 5.5 kg/m2 without hypertension and metabolic disorders. Group 3 consisted of 30 healthy persons, BMI 27.1 ± 1.3 kg/m2. All patients were evaluated for insulin, HOMA index, leptin, leptin receptor, leptin free index (calculated as the ratio of leptin (ng/ml to the leptin receptor (ng/ml, multiplied by 100. Results: In patients with MS as compared to other two groups there were higher levels of HOMA IR index, leptin and free leptin index. Values of leptin receptor in groups 1 and 2 did not differ significantly and were lower than in healthy persons. The free leptin index was significantly higher in MS group relative to the group 2 and 15 times higher than in the healthy individuals. Free leptin index correlated with values of BMI (R = 0.32; p = 0.02, blood pressure (R = 0.3; p = 0.04, uric acid (R = 0.27; p = 0.04, triglycerides (R = 0.42; p = 0.02, index HOMA-IR (R = 0.45; p = 0.02. Conclusions: Reduction of soluble leptin receptor, depending on the degree of abdominal obesity, may cause progression of leptin resistance in patients with MS. The levels of leptin and soluble leptin receptor appears to have dramatical gender differences. Calculation of free leptin index should be used for the objective evaluation of leptin resistance, regardless of gender, degree of obesity, and other metabolic parameters.

  10. Discovery of the elusive leptin in birds: identification of several 'missing links' in the evolution of leptin and its receptor.

    Directory of Open Access Journals (Sweden)

    Jeremy W Prokop

    Full Text Available Leptin is a pleiotropic protein best known for regulation of appetite and fat storage in mammals. While many leptin orthologs have been identified among vertebrates, an authentic leptin in birds has remained elusive and controversial. Here we identify leptin sequence from the Peregrine falcon, Falco peregrinus (pfleptin, and identify sequences from two other birds (mallard and zebra finch, and 'missing' vertebrates (elephant shark, alligator, Indian python, Chinese soft-shelled turtle, and coelacanth. The pattern of genes surrounding leptin (snd1, rbm28 is syntenic between the falcon and mammalian genomes. Phylogenetic analysis of all known leptin protein sequences improves our understanding of leptin's evolution. Structural modeling of leptin orthologs highlights a highly conserved hydrophobic core in the four-helix cytokine packing domain. A docked model of leptin with the leptin receptor for Peregrine falcon reveals several conserved amino acids important for the interaction and possible coevolution of leptin with its receptor. We also show for the first time, an authentic avian leptin sequence that activates the JAK-STAT signaling pathway. These newly identified sequences, structures, and tools for avian leptin and its receptor will allow elucidation of the function of these proteins in feral and domestic birds.

  11. SH2-B promotes insulin receptor substrate 1 (IRS1)- and IRS2-mediated activation of the phosphatidylinositol 3-kinase pathway in response to leptin.

    Science.gov (United States)

    Duan, Chaojun; Li, Minghua; Rui, Liangyou

    2004-10-15

    Leptin regulates energy homeostasis primarily by binding and activating its long form receptor (LRb). Deficiency of either leptin or LRb causes morbid obesity. Leptin stimulates LRb-associated JAK2, thus initiating multiple pathways including the Stat3 and phosphatidylinositol (PI) 3-kinase pathways that mediate leptin biological actions. Here we report that SH2-B, a JAK2-interacting protein, promotes activation of the PI 3-kinase pathway by recruiting insulin receptor substrate 1 (IRS1) and IRS2 in response to leptin. SH2-B directly bound, via its PH and SH2 domain, to both IRS1 and IRS2 both in vitro and in intact cells and mediated formation of a JAK2/SH2-B/IRS1 or IRS2 tertiary complex. Consequently, SH2-B dramatically enhanced leptin-stimulated tyrosine phosphorylation of IRS1 and IRS2 in HEK293 cells stably expressing LRb, thus promoting association of IRS1 and IRS2 with the p85 regulatory subunit of PI 3-kinase and phosphorylation and activation of Akt. SH2-B mutants with lower affinity for IRS1 and IRS2 exhibited reduced ability to promote association of JAK2 with IRS1, tyrosine phosphorylation of IRS1, and association of IRS1 with p85 in response to leptin. Moreover, deletion of the SH2-B gene impaired leptin-stimulated tyrosine phosphorylation of endogenous IRS1 in mouse embryonic fibroblasts (MEF), which was reversed by reintroduction of SH2-B. Similarly, SH2-B promoted growth hormone-stimulated tyrosine phosphorylation of IRS1 in both HEK293 and MEF cells. Our data suggest that SH2-B is a novel mediator of the PI 3-kinase pathway in response to leptin or other hormones and cytokines that activate JAK2.

  12. The Gln223Arg polymorphism of the leptin receptor in Pima Indians: influence on energy expenditure, physical activity and lipid metabolism

    DEFF Research Database (Denmark)

    Stefan, N; Vozarova, B; Del Parigi, A

    2002-01-01

    Leptin regulates body weight by its receptor-mediated anorectic, thermogenic and antisteatotic effects. Recently, lower leptin binding to the soluble form of the leptin receptor (LEPR) was shown in carriers of the Arg223-encoding allele of the Gln223Arg polymorphism of the LEPR. To investigate wh...

  13. Leptin Increases Striatal Dopamine D2 Receptor Binding in Leptin-Deficient Obese (ob/ob) Mice

    Energy Technology Data Exchange (ETDEWEB)

    Pfaffly, J.; Michaelides, M.; Wang, G-J.; Pessin, J.E.; Volkow, N.D.; Thanos, P.K.

    2010-06-01

    Peripheral and central leptin administration have been shown to mediate central dopamine (DA) signaling. Leptin-receptor deficient rodents show decreased DA D2 receptor (D2R) binding in striatum and unique DA profiles compared to controls. Leptin-deficient mice show increased DA activity in reward-related brain regions. The objective of this study was to examine whether basal D2R-binding differences contribute to the phenotypic behaviors of leptin-deficient ob/ob mice, and whether D2R binding is altered in response to peripheral leptin treatment in these mice. Leptin decreased body weight, food intake, and plasma insulin concentration in ob/ob mice but not in wild-type mice. Basal striatal D2R binding (measured with autoradiography [{sup 3}H] spiperone) did not differ between ob/ob and wild-type mice but the response to leptin did. In wild-type mice, leptin decreased striatal D2R binding, whereas, in ob/ob mice, leptin increased D2R binding. Our findings provide further evidence that leptin modulates D2R expression in striatum and that these effects are genotype/phenotype dependent.

  14. Polymorphism in leptin receptor gene was associated with obesity in ...

    African Journals Online (AJOL)

    The mutation in leptin receptor (LEPR) gene causes splicing abnormality that resulted in truncated receptor, aberrant signal transduction, leptin resistance, and obesity. This study aims to determine the association of LEPR gene polymorphisms, rs1137100 and rs1137101, on phenotype and leptin level between obese and ...

  15. Presence and distribution of leptin and leptin receptor in the canine gallbladder.

    Science.gov (United States)

    Lee, Sungin; Lee, Aeri; Kweon, Oh-Kyeong; Kim, Wan Hee

    2016-09-01

    The hormone leptin is produced by mature adipocytes and plays an important role in regulating food intake and energy metabolism through its interaction with the leptin receptor. In addition to roles in obesity and obesity-related diseases, leptin has been reported to affect the components and secretion of bile in leptin-deficient mice. Furthermore, gallbladder diseases such as cholelithiasis are known to be associated with serum leptin concentrations in humans. We hypothesized that the canine gallbladder is a source of leptin and that the leptin receptor may be localized in the gallbladder, where it plays a role in regulating the function of this organ. The aim of this study was to demonstrate the presence and expression patterns of leptin and its receptors in normal canine gallbladders using reverse transcriptase-PCR (RT-PCR) and immunohistochemistry. Clinically normal gallbladder tissue samples were obtained from four healthy beagle dogs with similar body condition scores. RT-PCR and sequencing of the amplified PCR products revealed the presence of leptin mRNA and its receptors in the gallbladder. Immunohistochemical investigations demonstrated the expression of leptin and its receptors in the luminal single columnar and tubuloalveolar glandular epithelial cells. In conclusion, the results of this study demonstrated the presence of leptin and its receptors in the gallbladders of dogs. Leptin and its receptor were both localized throughout the cytoplasm of luminal and glandular epithelial cells. These results suggested that the gallbladder is not only a source of leptin, but also a target of leptin though autocrine/paracrine mechanisms. The results of this study could increase the understanding of both the normal physiological functions of the gallbladder and the pathophysiological mechanisms of gallbladder diseases characterized by leptin system dysfunction. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  16. Genetic Variation in the Leptin Receptor Gene, Leptin, and Weight Gain in Young Dutch Adults

    NARCIS (Netherlands)

    Rossum, van C.T.M.; Hoebee, B.; Baak, van M.A.; Mars, M.; Saris, W.H.M.; Seidell, J.C.

    2003-01-01

    Objective: To investigate the association between leptin levels, polymorphisms in the leptin receptor (LEPR) gene, and weight gain. Research Methods and Procedures: From two large prospective cohorts in The Netherlands (n = 17, 500), we compared the baseline leptin of 259 subjects who had gained an

  17. Leptin responsiveness to energy restriction: genetic variation in the leptin receptor gene

    NARCIS (Netherlands)

    Mars, M.; Rossum, van C.T.M.; Graaf, de C.; Hoebee, B.; Groot, de C.P.G.M.; Kok, F.J.

    2004-01-01

    Serum leptin concentrations are an important afferent signal in energy balance homeostasis. It has been speculated that the leptin responsiveness to energy restriction is affected by the functionality of the leptin receptor. The purpose of this analysis was to explore the effect of polymorphisms in

  18. [Serum leptin levels and soluble leptin receptors in female patients with anorexia nervosa].

    Science.gov (United States)

    Jiskra, J; Haluzík, M; Svobodová, J; Haluzíková, D; Nedvídková, J; Parízková, J; Kotrlíková, E

    2000-10-25

    Leptin action in peripheral tissues is enabled by an interaction with specific transmembrane receptors. Several of leptin receptor isoforms were identified, including soluble leptin receptor isoform structurally identical to extracellular domain of the the long leptin receptor isoform. The soluble receptor isoform is released to the circulation and acts probably as leptin-binding factor. The aim of our study was to measure serum concentrations of the soluble leptin receptor in patients with anorexia nervosa and in the control group of healthy women. Relationships of soluble leptin receptor levels to body mass index (BMI), body fat content, serum leptin, TNF-alpha and insulin levels were also studied. 16 patients with anorexia nervosa and 16 age-matched lean healthy women were included into the study. All of the subjects were measured and weighed, the body fat content was estimated from the skinfold thickness measurement. The blood for the determination of leptin, soluble leptin receptor and other hormonal parameters was obtained from all subjects after the overnight fasting. BMI, body fat content, serum leptin and insulin levels in patients with anorexia nervosa were significantly lower than in the control group (BMI: 14.98 +/- 2.32 vs. 22.21 +/- 2.48, p anorexia nervosa were significantly higher compared the to control group (24.67 +/- 8.3 U.ml-1 vs. 15.71 +/- 2.79 U.ml-1, p anorexia nervosa were significantly higher in comparison with the healthy subjects. Except of the negative correlation between serum soluble leptin receptor levels and BMI no statistically significant relationships between serum soluble leptin receptor and the rest of parameters studied were found.

  19. Effects of high fat diet, ovariectomy, and physical activity on leptin receptor expression in rat brain and white fat tissue.

    Science.gov (United States)

    Blažetić, Senka; Labak, Irena; Viljetić, Barbara; Balog, Marta; Vari, Sandor G; Krivošíková, Zora; Gajdoš, Martin; Kramárová, Patrícia; Kebis, Anton; Vuković, Rosemary; Puljak, Livia; Has-Schön, Elizabeta; Heffer, Marija

    2014-06-01

    To evaluate in a rat animal model whether ovariectomy, high fat diet (HFD), and physical activity in the form of running affect leptin receptor (Ob-R) distribution in the brain and white fat tissue compared to sham (Sh) surgery, standard diet (StD), and sedentary conditions. The study included 48 female laboratory Wistar rats (4 weeks old). Following eight weeks of feeding with standard or HFD, rats were subjected to either OVX or Sh surgery. After surgery, all animals continued StD or HFD for the next 10 weeks. During these 10 weeks, ovariectomy and Sh groups were subjected to physical activity or sedentary conditions. Free-floating immunohistochemistry and Western blot methods were carried out to detect Ob-R in the brain and adipose tissue. StD-ovariectomy-sedentary group had a greater number of Ob-R positive neurons in lateral hypothalamic nuclei than StD-Sh-sedentary group. There was no difference in Ob-R positive neurons in arcuatus nuclei between all groups. Ob-R distribution in the barrel cortex was higher in HFD group than in StD group. Ob-R presence in perirenal and subcutaneous fat was decreased in StD-ovariectomy group. HFD and ovariectomy increased Ob-R distribution in lateral hypothalamic nuclei, but there was no effect on arcuatus nuclei. Our results are first to suggest that HFD, ovariectomy, and physical activity affect Ob-R distribution in the barrel cortex, which might be correlated with the role of Ob-R in election of food in rats.

  20. Lipoprotein receptor LRP1 regulates leptin signaling and energy homeostasis in the adult central nervous system.

    Science.gov (United States)

    Liu, Qiang; Zhang, Juan; Zerbinatti, Celina; Zhan, Yan; Kolber, Benedict J; Herz, Joachim; Muglia, Louis J; Bu, Guojun

    2011-01-11

    Obesity is a growing epidemic characterized by excess fat storage in adipocytes. Although lipoprotein receptors play important roles in lipid uptake, their role in controlling food intake and obesity is not known. Here we show that the lipoprotein receptor LRP1 regulates leptin signaling and energy homeostasis. Conditional deletion of the Lrp1 gene in the brain resulted in an obese phenotype characterized by increased food intake, decreased energy consumption, and decreased leptin signaling. LRP1 directly binds to leptin and the leptin receptor complex and is required for leptin receptor phosphorylation and Stat3 activation. We further showed that deletion of the Lrp1 gene specifically in the hypothalamus by Cre lentivirus injection is sufficient to trigger accelerated weight gain. Together, our results demonstrate that the lipoprotein receptor LRP1, which is critical in lipid metabolism, also regulates food intake and energy homeostasis in the adult central nervous system.

  1. Lipoprotein receptor LRP1 regulates leptin signaling and energy homeostasis in the adult central nervous system.

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    2011-01-01

    Full Text Available Obesity is a growing epidemic characterized by excess fat storage in adipocytes. Although lipoprotein receptors play important roles in lipid uptake, their role in controlling food intake and obesity is not known. Here we show that the lipoprotein receptor LRP1 regulates leptin signaling and energy homeostasis. Conditional deletion of the Lrp1 gene in the brain resulted in an obese phenotype characterized by increased food intake, decreased energy consumption, and decreased leptin signaling. LRP1 directly binds to leptin and the leptin receptor complex and is required for leptin receptor phosphorylation and Stat3 activation. We further showed that deletion of the Lrp1 gene specifically in the hypothalamus by Cre lentivirus injection is sufficient to trigger accelerated weight gain. Together, our results demonstrate that the lipoprotein receptor LRP1, which is critical in lipid metabolism, also regulates food intake and energy homeostasis in the adult central nervous system.

  2. Genetic variation in the leptin receptor gene, leptin, and weight gain in young Dutch adults.

    Science.gov (United States)

    van Rossum, Caroline T M; Hoebee, Barbara; van Baak, Marleen A; Mars, Monica; Saris, Wim H M; Seidell, Jacob C

    2003-03-01

    To investigate the association between leptin levels, polymorphisms in the leptin receptor (LEPR) gene, and weight gain. From two large prospective cohorts in The Netherlands (n = 17,500), we compared the baseline leptin of 259 subjects who had gained an average of 12.6 kg (range 5.5 to 33 kg) with 277 subjects who kept stable weight (range -2.6 to 3.1 kg) after a mean follow-up of 6.8 years. Three polymorphisms in the LEPR gene (Lys109Arg, Gln223Arg, and Lys656Asn) were determined. Weight gainers had significantly higher baseline leptin levels than those who kept stable weight (odds ratio = 1.27, 95% confidence interval 1.1 to 1.5, per SD increase in log(e)-transformed leptin). Weight gainers with the Arg109 or the Arg223 alleles had higher leptin levels compared with the noncarriers of these alleles. Only among men, the association between leptin and weight gain tended to be stronger among those with an Arg223 allele compared with those without this mutation. Relatively high leptin levels predict weight gain, suggesting that leptin resistance plays a role in the development of obesity in the general population. Higher leptin levels for those with a Lys109Arg or Gln223Arg mutation (or a linked other marker) may imply that these subjects have a modified functional leptin receptor. However, the role of these mutations on weight gain is limited.

  3. Sweet taste receptor serves to activate glucose- and leptin-responsive neurons in the hypothalamic arcuate nucleus and participates in glucose responsiveness.

    Directory of Open Access Journals (Sweden)

    Daisuke Kohno

    2016-11-01

    Full Text Available The hypothalamic feeding center plays an important role in energy homeostasis. In the feeding center, whole-body energy signals including hormones and nutrients are sensed, processed, and integrated. As a result, food intake and energy expenditure are regulated. Two types of glucose-sensing neurons exist in the hypothalamic arcuate nucleus (ARC: glucose-excited neurons and glucose-inhibited neurons. While some molecules are known to be related to glucose sensing in the hypothalamus, the mechanism underlying glucose sensing in the hypothalamus are not fully understood. The sweet taste receptor is a heterodimer of taste type 1 receptor 2 (T1R2 and taste type 1 receptor 3 (T1R3 and senses sweet tastes. T1R2 and T1R3 receptors are distributed in multiple organs including the tongue, pancreas, adipose tissue, and hypothalamus. However, the role of sweet taste receptors in the ARC remains to be clarified. To examine the role of sweet taste receptors in the ARC, cytosolic Ca2+ concentration ([Ca2+]i in isolated single ARC neurons were measured using Fura-2 fluorescent imaging. An artificial sweetener, sucralose at 10-5 M-10-2 M dose dependently increased [Ca2+]i in 12-16% of ARC neurons. The sucralose-induced [Ca2+]i increase was suppressed by a sweet taste receptor inhibitor, gurmarin. The sucralose-induced [Ca2+]i increase was inhibited under an extracellular Ca2+-free condition and in the presence of an L-type Ca2+ channel blocker, nitrendipine. Sucralose-responding neurons were activated by high-concentration of glucose. This response to glucose was markedly suppressed by gurmarin. More than half of sucralose-responding neurons were activated by leptin but not ghrelin. Percentage of proopiomelanocortin (POMC neurons among sucralose-responding neurons and sweet taste receptor expressing neurons were low, suggesting that majority of sucralose-responding neurons are non-POMC neurons. These data suggest that sweet taste receptor-mediated cellular

  4. Role of GABA Release From Leptin Receptor-Expressing Neurons in Body Weight Regulation

    Science.gov (United States)

    Xu, Yuanzhong; O'Brien, William G.; Lee, Cheng-Chi; Myers, Martin G.

    2012-01-01

    It is well established that leptin regulates energy balance largely through isoform B leptin receptor-expressing neurons (LepR neurons) in the brain and that leptin activates one subset of LepR neurons (leptin-excited neurons) while inhibiting the other (leptin-inhibited neurons). However, the neurotransmitters released from LepR neurons that mediate leptin action in the brain are not well understood. Previous results demonstrate that leptin mainly acts on γ-aminobutyric acid (GABA)ergic neurons to reduce body weight, and that leptin activates proopiomelanocortin neuron activity by reducing GABA release onto these neurons, suggesting a body weight-promoting role for GABA released from leptin-inhibited neurons. To directly examine the role of GABA release from LepR neurons in body weight regulation, mice with disruption of GABA release specifically from LepR neurons were generated by deletion of vesicular GABA transporter in LepR neurons. Interestingly, these mice developed mild obesity on chow diet and were sensitive to diet-induced obesity, which were associated with higher food intake and lower energy expenditure. Moreover, these mice showed blunted responses in both food intake and body weight to acute leptin administration. These results demonstrate that GABA plays an important role in mediating leptin action. In combination with the previous studies that leptin reduces GABA release onto proopiomelanocortin neurons through leptin-inhibited neurons and that disruption of GABA release from agouti gene-related protein neurons, one subset of LepR-inhibited neurons, leads to a lean phenotype, our results suggest that, under our experimental conditions, GABA release from leptin-excited neuron dominates over leptin-inhibited ones. PMID:22334723

  5. Sweet Taste Receptor Serves to Activate Glucose- and Leptin-Responsive Neurons in the Hypothalamic Arcuate Nucleus and Participates in Glucose Responsiveness.

    Science.gov (United States)

    Kohno, Daisuke; Koike, Miho; Ninomiya, Yuzo; Kojima, Itaru; Kitamura, Tadahiro; Yada, Toshihiko

    2016-01-01

    The hypothalamic feeding center plays an important role in energy homeostasis. In the feeding center, whole-body energy signals including hormones and nutrients are sensed, processed, and integrated. As a result, food intake and energy expenditure are regulated. Two types of glucose-sensing neurons exist in the hypothalamic arcuate nucleus (ARC): glucose-excited neurons and glucose-inhibited neurons. While some molecules are known to be related to glucose sensing in the hypothalamus, the mechanisms underlying glucose sensing in the hypothalamus are not fully understood. The sweet taste receptor is a heterodimer of taste type 1 receptor 2 (T1R2) and taste type 1 receptor 3 (T1R3) and senses sweet tastes. T1R2 and T1R3 are distributed in multiple organs including the tongue, pancreas, adipose tissue, and hypothalamus. However, the role of sweet taste receptors in the ARC remains to be clarified. To examine the role of sweet taste receptors in the ARC, cytosolic Ca 2+ concentration ([Ca 2+ ] i ) in isolated single ARC neurons were measured using Fura-2 fluorescent imaging. An artificial sweetener, sucralose at 10 -5 -10 -2 M dose dependently increased [Ca 2+ ] i in 12-16% of ARC neurons. The sucralose-induced [Ca 2+ ] i increase was suppressed by a sweet taste receptor inhibitor, gurmarin. The sucralose-induced [Ca 2+ ] i increase was inhibited under an extracellular Ca 2+ -free condition and in the presence of an L-type Ca 2+ channel blocker, nitrendipine. Sucralose-responding neurons were activated by high-concentration of glucose. This response to glucose was markedly suppressed by gurmarin. More than half of sucralose-responding neurons were activated by leptin but not ghrelin. Percentages of proopiomelanocortin (POMC) neurons among sucralose-responding neurons and sweet taste receptor expressing neurons were low, suggesting that majority of sucralose-responding neurons are non-POMC neurons. These data suggest that sweet taste receptor-mediated cellular activation

  6. Leptin reverses corticosterone-induced inhibition of neural stem cell proliferation through activating the NR2B subunits of NMDA receptors

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Wen-Zhu [Anesthesia and Operation Center, Hainan Branch of Chinese PLA General Hospital, Hainan 572013 (China); Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing 100853 (China); Miao, Yu-Liang [Department of Anesthesiology, PLA No. 306 Hospital, Beijing 100101 (China); Guo, Wen-Zhi [Department of Anesthesiology, Beijing Military General Hospital of Chinese People’s Liberation Army, Beijing 100700 (China); Wu, Wei, E-mail: wwzwgk@163.com [Department of Head and Neck Surgery of Otolaryngology, PLA No. 306 Hospital, Beijing 100101 (China); Li, Bao-Wei [Department of Head and Neck Surgery of Otolaryngology, PLA No. 306 Hospital, Beijing 100101 (China); An, Li-Na [Department of Anesthesiology, Armed Police General Hospital, Beijing 100039 (China); Fang, Wei-Wu [Department of Anesthesiology, PLA No. 306 Hospital, Beijing 100101 (China); Mi, Wei-Dong, E-mail: elite2005gg@163.com [Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing 100853 (China)

    2014-04-25

    Highlights: • Leptin promotes the proliferation of neural stem cells isolated from embryonic mouse hippocampus. • Leptin reverses corticosterone-induced inhibition of neural stem cell proliferation. • The effects of leptin are partially mediated by upregulating NR2B subunits. - Abstract: Corticosterone inhibits the proliferation of hippocampal neural stem cells (NSCs). The removal of corticosterone-induced inhibition of NSCs proliferation has been reported to contribute to neural regeneration. Leptin has been shown to regulate brain development, improve angiogenesis, and promote neural regeneration; however, its effects on corticosterone-induced inhibition of NSCs proliferation remain unclear. Here we reported that leptin significantly promoted the proliferation of hippocampal NSCs in a concentration-dependent pattern. Also, leptin efficiently reversed the inhibition of NSCs proliferation induced by corticosterone. Interestingly, pre-treatment with non-specific NMDA antagonist MK-801, specific NR2B antagonist Ro 25-6981, or small interfering RNA (siRNA) targeting NR2B, significantly blocked the effect of leptin on corticosterone-induced inhibition of NSCs proliferation. Furthermore, corticosterone significantly reduced the protein expression of NR2B, whereas pre-treatment with leptin greatly reversed the attenuation of NR2B expression caused by corticosterone in cultured hippocampal NSCs. Our findings demonstrate that leptin reverses the corticosterone-induced inhibition of NSCs proliferation. This process is, at least partially mediated by increased expression of NR2B subunits of NMDA receptors.

  7. Sheep oocyte expresses leptin and functional leptin receptor mRNA

    Directory of Open Access Journals (Sweden)

    Seyyed Jalil Taheri

    2016-09-01

    Conclusions: The result of present study reveals that leptin and its functional receptor (Ob-Rb mRNA are expressed in sheep oocyte and further studies should investigate the role(s of leptin on sheep oocyte physiology and embryo development.

  8. Hypoxic Living and Exercise Training Alter Adipose Tissue Leptin/Leptin Receptor in Rats

    Directory of Open Access Journals (Sweden)

    Yingli Lu

    2016-11-01

    Full Text Available Background: Hypobaric hypoxia results in weight loss in obese individuals, and exercise training is advocated for the treatment of obesity and its related metabolic dysfunctions. The purpose of this study was to investigate the effects of hypoxic living and exercise training on obesity and adipose tissue leptin/leptin receptor in dietary-induced obese rats. Methods: One hundred and thirty high-fat diet fed Sprague-Dawley rats were assigned into one of the following groups (n=10 each: control, sedentary hypoxic living for 1 to 4 weeks (SH1, SH2, SH3, and SH4, living and exercise training in normoxic conditions for 1 to 4 weeks (TN1, TN2, TN3, and TN4, and living and exercise training in hypoxic conditions for 1 to 4 weeks (TN1, TN2, TN3, and TN4. Epididymal adipose tissue expression levels of leptin and leptin receptor were determined. Results: Compared to hypoxic living and living and exercise training in normoxic conditions, living and exercise training in hypoxic conditions for 3-4 weeks resulted in lower Lee index (P<0.05 to P<0.01, and higher expression of leptin and leptin receptor (P<0.05 to P<0.01 in adipose tissue. Conclusion: In a rodent model of altitude training, living and exercise training in hypoxic conditions resulted in greater alterations in obesity and adipose tissue leptin/leptin receptor than hypoxic living alone and living and exercise training in normoxic conditions.

  9. Leptin receptor in peripheral adipose tissues of obese subjects

    International Nuclear Information System (INIS)

    Du Tongxin; Sun Junjiang; Wang Zizheng; Wang Shukui; Fu Lei; Han Liu

    2002-01-01

    Objective: To investigate the relationship between leptin receptor and obesity by studying the leptin receptor density B max and dissociation constant K d in peripheral adipose tissue in subjects with different body weight mass (BMI). Methods: Leptin receptor density B max and K d were assayed via radioligand method in 71 cases, including 32 classified as obese, 19 over-weight and 20 normal control. Results: With the escalating of BMI, the leptin receptor density significantly decreased in obese and over-weight group compared with that in normal control (both P d values were of no differences among all three groups suggesting no correlation between the binding ability of leptin to its receptor and BMI. A negative correlation between BMI and B max (r=-0.76, P<0.01) displayed after all. Conclusion: Leptin receptor density correlates with the BMI in obese cases and it suggests that the down-regulation of leptin receptor may contribute to the occurrence of leptin resistance and obesity after-wards

  10. Leptin as well as Free Leptin Receptor Is Associated with Polycystic Ovary Syndrome in Young Women

    Science.gov (United States)

    Rizk, Nasser M.; Sharif, Elham

    2015-01-01

    Background and Aim. Leptin has two forms in the circulation: free and bound forms. The soluble leptin receptor (sOB-R) circulates in the blood and can bind to leptin. The aim of this study is to assess the concentrations of the leptin and the sOB-R in PCOS and its relation to adiposity, insulin resistance, and androgens. Methods. A cross-sectional study included 78 female students aged 17–25 years. Fasting serum leptin and sOB-R concentrations were measured. The anthropometric variables and the hormonal profile such as insulin, female and male sex hormones, and prolactin were assessed. Results. In PCOS, leptin level (ng/ml) and free leptin index (FLI) increased significantly while sOB-R (ng/ml) significantly decreased compared to control subjects. In age-matched subjects, obese PCOS had increased leptin level in ng/ml (median level with interquartile levels) of 45.67 (41.98–48.04) and decreased sOB-R in ng/ml 11.47 (7.59–16.44) compared to lean PCOS 16.97 (10.60–45.55) for leptin and 16.62 (11.61–17.96) for sOB-R with p values 0.013 and 0.042, respectively. However, body mass index (BMI) is significantly correlated with leptin and s-OBR, while no significant correlations with parameters of insulin resistance were detected. Conclusion. PCOS is associated with hyperleptinemia and increased free leptin index. Decreased sOB-R could be a compensatory mechanism for the defective action of leptin. PMID:26180527

  11. Leptin as well as Free Leptin Receptor Is Associated with Polycystic Ovary Syndrome in Young Women

    Directory of Open Access Journals (Sweden)

    Nasser M. Rizk

    2015-01-01

    Full Text Available Background and Aim. Leptin has two forms in the circulation: free and bound forms. The soluble leptin receptor (sOB-R circulates in the blood and can bind to leptin. The aim of this study is to assess the concentrations of the leptin and the sOB-R in PCOS and its relation to adiposity, insulin resistance, and androgens. Methods. A cross-sectional study included 78 female students aged 17–25 years. Fasting serum leptin and sOB-R concentrations were measured. The anthropometric variables and the hormonal profile such as insulin, female and male sex hormones, and prolactin were assessed. Results. In PCOS, leptin level (ng/ml and free leptin index (FLI increased significantly while sOB-R (ng/ml significantly decreased compared to control subjects. In age-matched subjects, obese PCOS had increased leptin level in ng/ml (median level with interquartile levels of 45.67 (41.98–48.04 and decreased sOB-R in ng/ml 11.47 (7.59–16.44 compared to lean PCOS 16.97 (10.60–45.55 for leptin and 16.62 (11.61–17.96 for sOB-R with p values 0.013 and 0.042, respectively. However, body mass index (BMI is significantly correlated with leptin and s-OBR, while no significant correlations with parameters of insulin resistance were detected. Conclusion. PCOS is associated with hyperleptinemia and increased free leptin index. Decreased sOB-R could be a compensatory mechanism for the defective action of leptin.

  12. Phocid seal leptin: tertiary structure and hydrophobic receptor binding site preservation during distinct leptin gene evolution.

    Directory of Open Access Journals (Sweden)

    John A Hammond

    Full Text Available The cytokine hormone leptin is a key signalling molecule in many pathways that control physiological functions. Although leptin demonstrates structural conservation in mammals, there is evidence of positive selection in primates, lagomorphs and chiropterans. We previously reported that the leptin genes of the grey and harbour seals (phocids have significantly diverged from other mammals. Therefore we further investigated the diversification of leptin in phocids, other marine mammals and terrestrial taxa by sequencing the leptin genes of representative species. Phylogenetic reconstruction revealed that leptin diversification was pronounced within the phocid seals with a high dN/dS ratio of 2.8, indicating positive selection. We found significant evidence of positive selection along the branch leading to the phocids, within the phocid clade, but not over the dataset as a whole. Structural predictions indicate that the individual residues under selection are away from the leptin receptor (LEPR binding site. Predictions of the surface electrostatic potential indicate that phocid seal leptin is notably different to other mammalian leptins, including the otariids. Cloning the grey seal leptin binding domain of LEPR confirmed that this was structurally conserved. These data, viewed in toto, support a hypothesis that phocid leptin divergence is unlikely to have arisen by random mutation. Based upon these phylogenetic and structural assessments, and considering the comparative physiology and varying life histories among species, we postulate that the unique phocid diving behaviour has produced this selection pressure. The Phocidae includes some of the deepest diving species, yet have the least modified lung structure to cope with pressure and volume changes experienced at depth. Therefore, greater surfactant production is required to facilitate rapid lung re-inflation upon surfacing, while maintaining patent airways. We suggest that this additional

  13. Increased leptin/leptin receptor pathway affects systemic and airway inflammation in COPD former smokers

    Directory of Open Access Journals (Sweden)

    Bruno A

    2011-05-01

    Full Text Available Andreina Bruno1, Marinella Alessi2, Simona Soresi2, Anna Bonanno1, Loredana Riccobono1, Angela Marina Montalbano1, Giusy Daniela Albano1, Mark Gjomarkaj1, Mirella Profita11Institute of Biomedicine and Molecular Immunology, Italian National Research Council, Palermo, Italy; 2Dipartimento Biomedico di Biomedicina Interna e Specialistica, University Palermo, ItalyBackground: Leptin, a hormone produced mainly by adipose tissue, regulates food intake and energy expenditure. It is involved in inflammatory diseases such as chronic obstructive pulmonary disease (COPD and its deficiency is associated with increased susceptibility to the infection. The leptin receptor is expressed in the lung and in the neutrophils.Methods: We measured the levels of leptin, tumor necrosis factor alpha (TNF-a and soluble form of intercellular adhesion molecule-1 (sICAM-1 in sputum and plasma from 27 smoker and former smoker patients with stable COPD using ELISA methods. Further we analyzed leptin and its receptor expression in sputum cells from 16 COPD patients using immunocytochemistry.Results: In plasma of COPD patients, leptin was inversely correlated with TNF-a and positively correlated with the patient weight, whereas the levels of sICAM-1 were positively correlated with TNF-a. In sputum of COPD patients leptin levels were correlated with forced expiratory volume in 1 second/forced vitality capacity. Additionally, increased levels of sputum leptin and TNF-a were observed in COPD former smokers rather than smokers. Further the expression of leptin receptor in sputum neutrophils was significantly higher in COPD former smokers than in smokers, and the expression of leptin and its receptor was positively correlated in neutrophils of COPD former smokers.Conclusion: Our findings suggest a role of leptin in the local and systemic inflammation of COPD and, taking into account the involvement of neutrophils in this inflammatory disease, describe a novel aspect of the leptin/leptin

  14. Control of blood pressure, appetite, and glucose by leptin in mice lacking leptin receptors in proopiomelanocortin neurons.

    Science.gov (United States)

    do Carmo, Jussara M; da Silva, Alexandre A; Cai, Zhengwei; Lin, Shuying; Dubinion, John H; Hall, John E

    2011-05-01

    Although the central nervous system melanocortin system is an important regulator of energy balance, the role of proopiomelanocortin (POMC) neurons in mediating the chronic effects of leptin on appetite, blood pressure, and glucose regulation is unknown. Using Cre/loxP technology we tested whether leptin receptor deletion in POMC neurons (LepR(flox/flox)/POMC-Cre mice) attenuates the chronic effects of leptin to increase mean arterial pressure (MAP), enhance glucose use and oxygen consumption, and reduce appetite. LepR(flox/flox)/POMC-Cre, wild-type, LepR(flox/flox), and POMC-Cre mice were instrumented for MAP and heart rate measurement by telemetry and venous catheters for infusions. LepR(flox/flox)/POMC-Cre mice were heavier, hyperglycemic, hyperinsulinemic, and hyperleptinemic compared with wild-type, LepR(flox/flox), and POMC-Cre mice. Despite exhibiting features of metabolic syndrome, LepR(flox/flox)/POMC-Cre mice had normal MAP and heart rate compared with LepR(flox/flox) but lower MAP and heart rate compared with wild-type mice. After a 5-day control period, leptin was infused (2 μg/kg per minute, IV) for 7 days. In control mice, leptin increased MAP by ≈5 mm Hg despite decreasing food intake by ≈35%. In contrast, leptin infusion in LepR(flox/flox)/POMC-Cre mice reduced MAP by ≈3 mm Hg and food intake by ≈28%. Leptin significantly decreased insulin and glucose levels in control mice but not in LepR(flox/flox)/POMC-Cre mice. Leptin increased oxygen consumption in LepR(flox/flox)/POMC-Cre and wild-type mice. Activation of POMC neurons is necessary for the chronic effects of leptin to raise MAP and reduce insulin and glucose levels, whereas leptin receptors in other areas of the brain other than POMC neurons appear to play a key role in mediating the chronic effects of leptin on appetite and oxygen consumption.

  15. Circulating Ghrelin, Leptin, and Soluble Leptin Receptor Concentrations and Cardiometabolic Risk Factors in a Community-Based Sample

    OpenAIRE

    Ingelsson, Erik; Larson, Martin G.; Yin, Xiaoyan; Wang, Thomas J.; Meigs, James B.; Lipinska, Izabella; Benjamin, Emelia J.; Keaney, John F.; Vasan, Ramachandran S.

    2008-01-01

    Context: The conjoint effects and relative importance of ghrelin, leptin, and soluble leptin receptor (sOB-R), adipokines involved in appetite control and energy expenditure in mediating cardiometabolic risk, is unknown.

  16. Leptin responsiveness to energy restriction: genetic variation in the leptin receptor gene.

    Science.gov (United States)

    Mars, Monica; van Rossum, Caroline T M; de Graaf, Cees; Hoebee, Barbara; De Groot, Lisette C P G M; Kok, Frans J

    2004-03-01

    Serum leptin concentrations are an important afferent signal in energy balance homeostasis. It has been speculated that the leptin responsiveness to energy restriction is affected by the functionality of the leptin receptor. The purpose of this analysis was to explore the effect of polymorphisms in the LEPR gene on the acute decline in leptin after 4 days of 65% energy restriction. Leptin concentrations of the study group (n = 44; all men) declined by 2.3 +/- 1.5 micro g/L [-39.4% (95% confidence interval: -43.6 to -34.9)]. Leptin responses did not statistically differ between noncarriers and carriers of three mutant variants of the polymorphisms: Lys109/Lys109 (-41.4%) vs. Arg109/+ (-37.0%) (p = 0.33); Gln223/Gln223 (-41.5%) vs. Arg223/+ (-37.8%) (p = 0.40); Lys656/Lys656 (-39.5%) vs. Asn656/+ (-39.3%) (p = 0.96). No effect of the assessed polymorphisms in the LEPR gene on the acute decline in leptin after energy restriction was observed. Power calculations are provided for future studies on the leptin responsiveness to energy restriction.

  17. High fat diet blunts the effects of leptin on ventilation and on carotid body activity.

    Science.gov (United States)

    Ribeiro, Maria J; Sacramento, Joana F; Gallego-Martin, Teresa; Olea, Elena; Melo, Bernardete F; Guarino, Maria P; Yubero, Sara; Obeso, Ana; Conde, Silvia V

    2017-12-22

    Leptin plays a role in the control of breathing, acting mainly on central nervous system; however, leptin receptors have been recently shown to be expressed in the carotid body (CB), and this finding suggests a physiological role for leptin in the regulation of CB function. Leptin increases minute ventilation in both basal and hypoxic conditions in rats. It increases the frequency of carotid sinus nerve discharge in basal conditions, as well as the release of adenosine from the CB. However, in a metabolic syndrome animal model, the effects of leptin in ventilatory control, carotid sinus nerve activity and adenosine release by the CB are blunted. Although leptin may be involved in triggering CB overactivation in initial stages of obesity and dysmetabolism, resistance to leptin signalling and blunting of responses develops in metabolic syndrome animal models. Leptin plays a role in the control of breathing, acting mainly on central nervous system structures. Leptin receptors are expressed in the carotid body (CB) and this finding has been associated with a putative physiological role of leptin in the regulation of CB function. Since, the CBs are implicated in energy metabolism, here we tested the effects of different concentrations of leptin administration on ventilatory parameters and on carotid sinus nerve (CSN) activity in control and high-fat (HF) diet fed rats, in order to clarify the role of leptin in ventilation control in metabolic disease states. We also investigated the expression of leptin receptors and the neurotransmitters involved in leptin signalling in the CBs. We found that in non-disease conditions, leptin increases minute ventilation in both basal and hypoxic conditions. However, in the HF model, the effect of leptin in ventilatory control is blunted. We also observed that HF rats display an increased frequency of CSN discharge in basal conditions that is not altered by leptin, in contrast to what is observed in control animals. Leptin did not

  18. Kinetics of leptin binding to the Q223R leptin receptor.

    Directory of Open Access Journals (Sweden)

    Hans Verkerke

    Full Text Available Studies in human populations and mouse models of disease have linked the common leptin receptor Q223R mutation to obesity, multiple forms of cancer, adverse drug reactions, and susceptibility to enteric and respiratory infections. Contradictory results cast doubt on the phenotypic consequences of this variant. We set out to determine whether the Q223R substitution affects leptin binding kinetics using surface plasmon resonance (SPR, a technique that allows sensitive real-time monitoring of protein-protein interactions. We measured the binding and dissociation rate constants for leptin to the extracellular domain of WT and Q223R murine leptin receptors expressed as Fc-fusion proteins and found that the mutant receptor does not significantly differ in kinetics of leptin binding from the WT leptin receptor. (WT: ka 1.76×106±0.193×106 M-1 s-1, kd 1.21×10-4±0.707×10-4 s-1, KD 6.47×10-11±3.30×10-11 M; Q223R: ka 1.75×106±0.0245×106 M-1 s-1, kd 1.47×10-4±0.0505×10-4 s-1, KD 8.43×10-11±0.407×10-11 M. Our results support earlier findings that differences in affinity and kinetics of leptin binding are unlikely to explain mechanistically the phenotypes that have been linked to this common genetic variant. Future studies will seek to elucidate the mechanism by which this mutation influences susceptibility to metabolic, infectious, and malignant pathologies.

  19. Influence of the metabolic syndrome on leptin and leptin receptor in breast cancer.

    Science.gov (United States)

    Carroll, Paul A; Healy, Laura; Lysaght, Joanne; Boyle, Terry; Reynolds, John V; Kennedy, M John; Pidgeon, Graham; Connolly, Elizabeth M

    2011-08-01

    Obesity and its associated metabolic syndrome (MetS) are recognized risk factors for breast cancer. The molecular basis for this association remains largely unknown. Adipokines, in particular leptin and adiponectin, are thought to form part of the mechanism linking obesity with cancer through their altered expression/production either systemically (endocrine pathway) or locally (paracrine/autocrine pathway). Using quantitative PCR, mRNA expression of adiponectin (AdipoQ) and leptin (Ob) in mammary adipose tissue (MAT), intratumoral leptin and associated ligand receptors (ObR, AdipoR1, and AdipoR2) was examined in 77 patients with complete anthropomorphic and serological data. Expression of Ob in MAT, and ObR in matched tumor tissue was significantly higher in patients with MetS compared to obese only or normal weight cancer patients (P < 0.005). There was no difference in intratumoral leptin adiponectin or its ligand receptors in the same groups. Individual features of MetS correlated with Ob and ObR expression, but not obesity markers (BMI, waist circumference). mRNA expression of leptin (Ob) and ObR, in adipose tissue and matched tumor samples, respectively, appear to be associated with obesity status in breast cancer. Increasing insulin resistance is a predominant feature of this higher Ob/ObR expression observed. These novel data indicate that the MetS may be an amenable risk factor for breast cancer. Copyright © 2011 Wiley-Liss, Inc.

  20. Influence of serum leptin levels and Q223R leptin receptor polymorphism on clinical characteristic of patients with rheumatoid arthritis from Western Mexico.

    Science.gov (United States)

    Angel-Chávez, Luis I; Ruelas-Cinco, Elizabeth; Hernández-Bello, Jorge; Castro, Elena; Vázquez-Villamar, Mirna; Parra-Rojas, Isela; Brennan-Bourdon, L Michele; Muñoz-Barrios, Salvador; Guerrero-Velázquez, Celia; Muñoz-Valle, José Francisco

    2018-04-01

    The aim of the present study was to evaluate the possible association between the Q223R Leptin receptor (LEPR) polymorphism (A>G; rs1137101) and leptin levels in patients with rheumatoid arthritis (RA) from Western Mexico. A cross-sectional study was performed with 70 RA patients and 74 controls subject (CS). Disease activity was evaluated using DAS28 score, the Q223R LEPR polymorphism was determined by the Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) and serum leptin levels, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP) and rheumatoid factor (RF) were quantified. RA patients had significant high serum leptin levels compared with CS; leptin levels correlated strongly with body composition measures, but not with inflammatory markers, disease evolution, and activity. The genotype and allele frequencies of the Q223R LEPR polymorphism were not associated with RA. Similarly, leptin levels did not differ between Q223R LEPR genotypes. The LEPR Q223R polymorphism was not associated with RA risk in patients from Mexican population, even though high levels of serum leptin were present and these could explain the low weight observed in RA patients when they were compared to control subjects. However, the serum leptin levels did not correlate with inflammatory markers, severity and disease evolution.

  1. Analysis of changes of serum leptin, C-peptide levels and peripheral fat tissue leptin receptor expression in obesity

    International Nuclear Information System (INIS)

    Du Tongxin; Sun Junjiang; Wang Shukui; Fu Lei

    2002-01-01

    Objective: To explore the mechanism of obesity and obesity accompanied type two diabetes mellitus by investigating changes of serum leptin, C-peptide (C-P) levels and leptin receptor expression in peripheral adipose tissues. Methods: Peripheral leptin receptor density was measured via radio-ligand binding method, serum leptin and C - P levels were measured via radioimmunoassay in 91 cases (38 in obesity group, 23 in over weight, and 30 in normal controls). Results: With the increase of body mass index (BMI), the peripheral leptin receptor density of the over weight and obese cases decreased and was mash less than that of normal cases (both p<0.01, respectively). There was no statistical differences for Kd value among the three groups, suggesting no associated change between the binding ability of leptin receptor to its ligand. There was a negative correlation between BMI and leptin receptor density (r = -0.70, p < 0.01). The serum leptin and C-P levels in weight excess and obese subjects with type two DM were both increased, but significantly higher in obese group than those in weight excess group (p < 0.01). The increase of C-P was much marked than that of leptin. Serum C-P level was positively correlated with BMI. Conclusion: Changes of serum leptin, C-P levels and peripheral leptin receptor expression in cases with simple obesity and obesity accompanied with type two DM were related closely with BMI. Type 2 DM in obese subjects was related with leptin resistance and insulin resistance

  2. Genetic variants of estrogen beta and leptin receptors may cause gynecomastia in adolescent.

    Science.gov (United States)

    Eren, Erdal; Edgunlu, Tuba; Korkmaz, Huseyin Anil; Cakir, Esra Deniz Papatya; Demir, Korcan; Cetin, Esin Sakalli; Celik, Sevim Karakas

    2014-05-15

    Gynecomastia is a benign breast enlargement in males that affects approximately one-third of adolescents. The exact mechanism is not fully understood; however, it has been proposed that estrogen receptors and aromatase enzyme activity may play important roles in the pathogenesis of gynecomastia. While many studies have reported that aromatase enzyme (CYP19) gene polymorphism is associated with gynecomastia, only one study has shown a relationship between estrogen receptor (ER) alpha and beta gene polymorphism and gynecomastia. Thus, the aim of this study was to evaluate the relationships between CYP19 (rs2414096), ER alpha (rs2234693), ER beta (rs4986938), leptin (rs7799039), and leptin receptor (rs1137101) gene polymorphisms and gynecomastia. This study included 107 male adolescents with gynecomastia and 97 controls. Total serum testosterone (T) and estradiol (E2) levels were measured, and DNA was extracted from whole blood using the PCR-RFLP technique. The polymorphic distributions of CYP19, ER alpha, ER beta, leptin and leptin receptor genes were compared. The median E2 level was 12.41 (5.00-65.40) pg/ml in the control group and 16.86 (2.58-78.47) pg/ml in the study group (pgynecomastia and leptin receptor rs1137101 (p=0.002) and ER beta receptor rs4986938 gene polymorphisms (p=0.002). According to our results, increased E2 level and ER beta gene rs4986938 polymorphism might explain why some adolescents have gynecomastia. Leptin receptor gene rs1137101 polymorphism might affect susceptibility to gynecomastia. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Leptin induces CYP1B1 expression in MCF-7 cells through ligand-independent activation of the ERα pathway

    Energy Technology Data Exchange (ETDEWEB)

    Khanal, Tilak; Kim, Hyung Gyun; Do, Minh Truong; Choi, Jae Ho; Won, Seong Su [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Kang, Wonku [College of Pharmacy, Yeungnam University, Gyeongsan (Korea, Republic of); Chung, Young Chul [Department of Food Science and Culinary, International University of Korea, Jinju (Korea, Republic of); Jeong, Tae Cheon, E-mail: taecheon@ynu.ac.kr [College of Pharmacy, Yeungnam University, Gyeongsan (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2014-05-15

    Leptin, a hormone with multiple biological actions, is produced predominantly by adipose tissue. Among its functions, leptin can stimulate tumour cell growth. Oestrogen receptor α (ERα), which plays an essential role in breast cancer development, can be transcriptionally activated in a ligand-independent manner. In this study, we investigated the effect of leptin on CYP1B1 expression and its mechanism in breast cancer cells. Leptin induced CYP1B1 protein, messenger RNA expression and promoter activity in ERα-positive MCF-7 cells but not in ERα-negative MDA-MB-231 cells. Additionally, leptin increased 4-hydroxyoestradiol in MCF-7 cells. Also, ERα knockdown by siRNA significantly blocked the induction of CYP1B1 expression by leptin, indicating that leptin induced CYP1B1 expression via an ERα-dependent mechanism. Transient transfection with CYP1B1 deletion promoter constructs revealed that the oestrogen response element (ERE) plays important role in the up-regulation of CYP1B1 by leptin. Furthermore, leptin stimulated phosphorylation of ERα at serine residues 118 and 167 and increased ERE-luciferase activity, indicating that leptin induced CYP1B1 expression by ERα activation. Finally, we found that leptin activated ERK and Akt signalling pathways, which are upstream kinases related to ERα phosphorylation induced by leptin. Taken together, our results indicate that leptin-induced CYP1B1 expression is mediated by ligand-independent activation of the ERα pathway as a result of the activation of ERK and Akt in MCF-7 cells. - Highlights: • Leptin increased 4-hydroxyoestradiol in MCF-7 breast cancer cells. • Leptin activated ERK and Akt kinases related to ERα phosphorylation. • Leptin induces phosphorylation of ERα at serine residues 118 and 167. • Leptin induces ERE-luciferase activity.

  4. Deficiency of leptin receptor in myeloid cells disrupts hypothalamic metabolic circuits and causes body weight increase

    Directory of Open Access Journals (Sweden)

    Yuanqing Gao

    2018-01-01

    Conclusions: Myeloid cell leptin receptor deficient mice partially replicate the db/db phenotype. Leptin signaling in hypothalamic microglia is important for microglial function and a correct formation of the hypothalamic neuronal circuit regulating metabolism.

  5. Severe energy deficit upregulates leptin receptors, leptin signaling, and PTP1B in human skeletal muscle.

    Science.gov (United States)

    Perez-Suarez, Ismael; Ponce-González, Jesús Gustavo; de La Calle-Herrero, Jaime; Losa-Reyna, Jose; Martin-Rincon, Marcos; Morales-Alamo, David; Santana, Alfredo; Holmberg, Hans-Christer; Calbet, Jose A L

    2017-11-01

    In obesity, leptin receptors (OBR) and leptin signaling in skeletal muscle are downregulated. To determine whether OBR and leptin signaling are upregulated with a severe energy deficit, 15 overweight men were assessed before the intervention (PRE), after 4 days of caloric restriction (3.2 kcal·kg body wt -1 ·day -1 ) in combination with prolonged exercise (CRE; 8 h walking + 45 min single-arm cranking/day) to induce an energy deficit of ~5,500 kcal/day, and following 3 days of control diet (isoenergetic) and reduced exercise (CD). During CRE, the diet consisted solely of whey protein ( n = 8) or sucrose ( n = 7; 0.8 g·kg body wt -1 ·day -1 ). Muscle biopsies were obtained from the exercised and the nonexercised deltoid muscles and from the vastus lateralis. From PRE to CRE, serum glucose, insulin, and leptin were reduced. OBR expression was augmented in all examined muscles associated with increased maximal fat oxidation. Compared with PRE, after CD, phospho-Tyr 1141 OBR, phospho-Tyr 985 OBR, JAK2, and phospho-Tyr 1007/1008 JAK2 protein expression were increased in all muscles, whereas STAT3 and phospho-Tyr 705 STAT3 were increased only in the arms. The expression of protein tyrosine phosphatase 1B (PTP1B) in skeletal muscle was increased by 18 and 45% after CRE and CD, respectively ( P < 0.05). Suppressor of cytokine signaling 3 (SOCS3) tended to increase in the legs and decrease in the arm muscles (ANOVA interaction: P < 0.05). Myosin heavy chain I isoform was associated with OBR protein expression ( r  = -0.75), phospho-Tyr 985 OBR ( r  = 0.88), and phospho-Tyr 705 STAT3/STAT3 ( r = 0.74). In summary, despite increased PTP1B expression, skeletal muscle OBR and signaling are upregulated by a severe energy deficit with greater response in the arm than in the legs likely due to SOCS3 upregulation in the leg muscles. NEW & NOTEWORTHY This study shows that the skeletal muscle leptin receptors and their corresponding signaling cascade are upregulated in

  6. Leptin, its receptor and aromatase expression in deep infiltrating endometriosis.

    Science.gov (United States)

    Gonçalves, Helder F; Zendron, Carolina; Cavalcante, Fernanda S; Aiceles, Verônica; Oliveira, Marco Aurélio P; Manaia, Jorge Henrique M; Babinski, Márcio A; Ramos, Cristiane F

    2015-08-05

    The aim of this study was to evaluate the leptin levels in the serum and peritoneal fluid (PF) and the protein expression in three different peritoneal ectopic implants in patients who underwent surgery for deep infiltrating endometriosis. All patients had been treated at the Department of Gynecology of the Pedro Ernesto University Hospital, Rio de Janeiro. The study group consisted of 15 patients who underwent surgery for adnexal masses and infertility, while the control group consisted of ten women who underwent surgery for tubal ligation. Peritoneal fluid and samples tissues were collected during surgery. Serum samples were obtained before anesthesia. In this study, the leptin levels in the serum and peritoneal fluid (PF) were evaluated by ELISA. The protein expression of leptin and its receptors (ObR) and aromatase enzyme were evaluated by Western blot analysis of the intestine, uterosacral ligament and vaginal septum in the ectopic implants. The t-test and one-way ANOVA with Holm-Sìdak post-test were used, and p endometriosis = 19.2 ng/mL ± 1.84, p endometriosis = 7.71 ng/mL ± 0.59, p = 0.18). Comparing women with and without ovarian implants, the leptin levels in both the serum and PF were significantly higher in women without ovarian implants (serum: with ovarian implant = 15.85 ± 1.99; without ovarian implant = 23.14 ± 2.60; ng/mL, p = 0.04; PF: with ovarian implant = 4.28 ± 1.30; without ovarian implant = 11.18 ± 2.98;ng/mL, p = 0.048). The leptin, ObR and aromatase protein expression levels were increased in lesions in the vaginal septum and were decreased in the intestine lesions. This study reports several interesting associations between the leptin levels in serum, peritoneal fluid, and tissue samples and the localization of the ectopic endometrium. Although this study does not provide a clear picture of the role of leptin in the development and progression of peritoneal implants

  7. VMAT2-mediated neurotransmission from midbrain leptin receptor neurons in feeding regulation

    Science.gov (United States)

    Leptin receptors (LepRs) expressed in the midbrain contribute to the action of leptin on feeding regulation. The midbrain neurons release a variety of neurotransmitters including dopamine (DA), glutamate and GABA. However, which neurotransmitter mediates midbrain leptin action on feeding remains unc...

  8. Early childhood BMI trajectories in monogenic obesity due to leptin, leptin receptor, and melanocortin 4 receptor deficiency.

    Science.gov (United States)

    Kohlsdorf, Katja; Nunziata, Adriana; Funcke, Jan-Bernd; Brandt, Stephanie; von Schnurbein, Julia; Vollbach, Heike; Lennerz, Belinda; Fritsch, Maria; Greber-Platzer, Susanne; Fröhlich-Reiterer, Elke; Luedeke, Manuel; Borck, Guntram; Debatin, Klaus-Michael; Fischer-Posovszky, Pamela; Wabitsch, Martin

    2018-02-27

    To evaluate whether early childhood body mass index (BMI) is an appropriate indicator for monogenic obesity. A cohort of n = 21 children living in Germany or Austria with monogenic obesity due to congenital leptin deficiency (group LEP, n = 6), leptin receptor deficiency (group LEPR, n = 6) and primarily heterozygous MC4 receptor deficiency (group MC4R, n = 9) was analyzed. A control group (CTRL) was defined that consisted of n = 22 obese adolescents with no mutation in the above mentioned genes. Early childhood (0-5 years) BMI trajectories were compared between the groups at selected time points. The LEP and LEPR group showed a tremendous increase in BMI during the first 2 years of life with all patients displaying a BMI >27 kg/m 2 (27.2-38.4 kg/m 2 ) and %BMI P95 (percentage of the 95th percentile BMI for age and sex) >140% (144.8-198.6%) at the age of 2 years and a BMI > 33 kg/m 2 (33.3-45.9 kg/m 2 ) and %BMI P95  > 184% (184.1-212.6%) at the age of 5 years. The MC4R and CTRL groups had a later onset of obesity with significantly lower BMI values at both time points (p BMI trajectories in this pediatric cohort with monogenic obesity we suggest that BMI values >27.0 kg/m 2 or %BMI P95  > 140% at the age of 2 years and BMI values >33.0 kg/m 2 or %BMI P95  > 184% at the age of 5 years may be useful cut points to identify children who should undergo genetic screening for monogenic obesity due to functionally relevant mutations in the leptin gene or leptin receptor gene.

  9. Leptin receptor 170 kDa (OB-R170) protein expression is reduced in obese human skeletal muscle: a potential mechanism of leptin resistance

    DEFF Research Database (Denmark)

    Fuentes, T; Ara, I; Guadalupe-Grau, A

    2010-01-01

    To examine whether obesity-associated leptin resistance could be due to down-regulation of leptin receptors (OB-Rs) and/or up-regulation of suppressor of cytokine signalling 3 (SOCS3) and protein tyrosine phosphatase 1B (PTP1B) in skeletal muscle, which blunt janus kinase 2-dependent leptin...

  10. Enhancement of Bovine oocyte maturation by leptin is accompanied by an upregulation in mRNA expression of leptin receptor isoforms in cumulus cells

    NARCIS (Netherlands)

    van Tol, Helena T A; van Eerdenburg, Frank J C M; Colenbrander, Ben; Roelen, Bernard A J

    In this study, the mechanisms of supposed leptin action on oocyte maturation were examined. Expression of leptin mRNA, as determined with RT-PCR, was present in oocytes but not in cumulus cells. The long isoform of the leptin receptor (ObR-L) was expressed exclusively in cumulus cells after 7 and 23

  11. The features of leptin and its receptor expression in metastatic cutaneous melanoma

    Directory of Open Access Journals (Sweden)

    A. A. Lushnikova

    2015-01-01

    Full Text Available Leptin is a multifunctional hormone with the activity of cytokines, which regulates critical signaling pathways that can induce cell proliferation, invasion, angiogenesis and tumor growth. Leptin plays an important role in the regulation of metabolism, energy exchange, functions of the neuro-endocrine system, including the pituitary, hypothalamus, adrenals, and immune system functions. Recently, some evidences have been appeared concerning the role of leptin in induction of chronic inflammatory processes, autoimmune pathologies, type 2 diabetes and cancer. An elevated blood level of the hormone is considered as a risk factor for different neoplasm developmentObjective. Analysis of the hormone leptin (Lep, the long and short isoforms of its receptor (LepR1 and LepR2 expression in blood, tumor cells and normal skin fibroblasts in the patients with metastatic cutaneous melanoma (CM with various clinico-pathological characteristics for prognostic assessment.Materials and methods. 15 patients with metastatic CM (10 women and 5 men, aged 22 to 67 years with body mass from normal to obese have been studied. The expression of Lep / LepR in the patient and donor blood sera, tumor and normal skin fibroblasts were determined using enzyme-linked immunosorbent assay (ELISA and RT PCR using total RNAs isolated from pairs of tumor samples and normal tissue.Results. Average level of leptin in the blood of CM patients and in tumor cells exceeds the normal one. Concentration of lepin in female CM patients was higher than in male patients. The expression level of Lep and LepR1 genes (but not LepR2 in tumor cells was relatively higher than in normal skin fibroblasts of these patients, and above the level of GAPDH gene expression. In the female patients with overweight (body mass index = 25,00–29,99 kg/m2 there was a trend to higher concentrations of leptin in the blood in comparison of the patients with normal body mass and leptin level in the sera of male CM

  12. Interaction between leptin and leptin receptor in gastric carcinoma: Gene ontology analysis Interacción entre la leptina y su receptor en el carcinoma gástrico: análisis de ontología genética

    Directory of Open Access Journals (Sweden)

    V. Wiwanitkit

    2007-04-01

    Full Text Available Gastric carcinoma is a rare but important malignancy. The link between leptin, a cytokine that is elevated in obese individuals, and cancer development has been proposed. It is noted that leptin and its receptor may play a positive role in the progression in gastric cancer. However, the exact mechanism resulting form the interaction between leptin and leptin receptor has never been clarified. Here, the author used a new gene ontology technology to predict the molecular function and biological process due to the interaction between leptin and leptin receptor. Comparing to leptin and leptin receptor, the leptin-leptin receptor poses the same function and biological process as leptin receptor. This can confirm that leptin receptor has a significant suppressive effect on the expression of leptin. Loss of hormone activity and disturbance of normal cell signaling pathway of leptin can be seen. Blocking of receptor might be rational therapeutic strategy.El carcinoma gástrico es un cáncer muy poco frecuente pero importante. Se ha postulado que la leptina, una citocina que aparece elevada en las personas obesas, está relacionada con el cáncer. Se sabe que la leptina y su receptor pueden desempeñar un papel positivo en la progresión del cáncer gástrico. Sin embargo, nunca se ha dilucidado el mecanismo exacto al que daría lugar la interacción entre la leptina y el receptor de leptina. Aquí, el autor empleó una nueva tecnología de ontología genética para predecir la función molecular y el proceso biológico resultantes de la interacción entre la leptina y su receptor. Frente a la leptina y su receptor, el compuesto leptina-receptor realiza la misma función y el mismo proceso biológico que el receptor de leptina. Esto puede confirmar que el receptor de leptina ejerce un importante efecto supresor sobre la expresión de leptina. Pueden observarse una pérdida de actividad hormonal y la alteración de la vía normal de señalización celular

  13. Relationship between expression of leptin receptors mRNA in breast tissue, plasma leptin level in breast cancer patients with obesity and clinical pathologic data

    International Nuclear Information System (INIS)

    Li Chunrui; Liu Wenli; Sun Hanying; Zhou Jianfeng

    2007-01-01

    In order to investigate the expression of leptin receptors mRNA in breast tissue and plasma leptin levels in breast cancer patients with obesity and their relationship with clinical pathologic data, 124 subjects who were either obesity or had suffered from breast benign disease with obesity, or breast cancer with obesity were entered into this study. The levels of plasma leptin in all subjects were determined and leptin receptors mRNA expression levels were measured by RT-PCR in breast tissue of breast cancer patients with obesity and breast benign disease with obesity. The results showed that plasma leptin levels in breast cancer patients with obesity were significantly higher than those in breast benign disease with obesity and obesity patients alone (P<0.05). The expression of the leptin receptor long form [-Lep-R(L)-] mRNA and the leptin receptor short form [-Lep-R(S)-] mRNA in breast tissue of breast cancer patients with obesity were significantly higher than that in breast tissue of breast benign disease patients with obesity (P<0.05). The plasma leptin level had remarkable positive correlation with the expressions of the Lep-R(L) mRNA and the Lep-R(S) mRNA. The plasma leptin level and leptin receptors mRNA expression levels in patients were not correlated with the axillary node metastasis, menopause, the TNM stage or pathological type. Therefore, leptin may have a promoting effect on the carcinogenesis of breast cancer. (authors)

  14. Circulating ghrelin, leptin, and soluble leptin receptor concentrations and cardiometabolic risk factors in a community-based sample.

    Science.gov (United States)

    Ingelsson, Erik; Larson, Martin G; Yin, Xiaoyan; Wang, Thomas J; Meigs, James B; Lipinska, Izabella; Benjamin, Emelia J; Keaney, John F; Vasan, Ramachandran S

    2008-08-01

    The conjoint effects and relative importance of ghrelin, leptin, and soluble leptin receptor (sOB-R), adipokines involved in appetite control and energy expenditure in mediating cardiometabolic risk, is unknown. The objective of the study was to study the cross-sectional relations of these adipokines to cardiometabolic risk factors in a community-based sample. We measured circulating ghrelin, leptin, and sOB-R in 362 participants (mean age 45 yr; 54% women) of the Framingham Third Generation Cohort. Body mass index, waist circumference (WC), blood pressure, lipid measures, fasting glucose, smoking, and metabolic syndrome (MetS) were measured. Ghrelin and leptin concentrations were significantly higher in women (P risk.

  15. Imbalance in leptin-adiponectin levels and leptin receptor expression as chief contributors to triple negative breast cancer progression in Northeast India.

    Science.gov (United States)

    Sultana, Rizwana; Kataki, Amal Ch; Borthakur, Bibhuti Bhusan; Basumatary, Tarun K; Bose, Sujoy

    2017-07-20

    Triple-Negative breast cancer (TNBC), accounts for a large percentage of breast cancer cases in India including Northeast India. TNBC has an unclear molecular aetiology and hence limited targeted therapies. Human breast is comprised of glandular, ductal, connective, and adipose tissues. Adipose tissue is composed of adipocytes. The adipocytes apart from being energy storage depots, are also active sources of adipocytokines and/or adipokines. The role of adipokines in breast cancer including TNBC has been sporadically documented. Two adipokines in particular, leptin and adiponectin, have come to be recognized for their influence on breast cancer risk and tumour biology. Therefore, the aim of this study was to understand the association of differential expression of critical adipokines and associated cellular mechanism in the susceptibility and severity of TNBC in northeast Indian population. We collected 68 TNBC and 63 controls cases and examined for serum leptin and adiponectin levels using enzyme linked immunosorbent assay (ELISA). Leptin Receptor (Ob-R) mRNA expression was determined by real-time polymerase chain reaction (RT-PCR) assay. Differential Ob-R mRNA expression and correlation with cancer stem cell (CSC) markers was evaluated, and correlated with severity. The serum leptin levels were significantly associated with TNBC severity, while the adiponectin levels were comparative. The serum leptin levels correlated inversely with the adiponetin levels. Serum leptin levels were unaffected with difference in parity. The difference in leptin levels in pre and post menopausal cases were found to be statistically non-significant. Higher leptin levels were also found to be associated obesity, mortality and recurrence. Obesity was found to be a factor for TNBC pathogenesis and severity. Increased Ob-R mRNA expression was associated with TNBC, significantly with TNBC severity, and was significantly higher in obese patients with higher grade TNBC cases. The Ob-R gene

  16. Leptin Receptor Deficiency is Associated With Upregulation of Cannabinoid 1 Receptors in Limbic Brain Regions

    Science.gov (United States)

    THANOS, PANAYOTIS K.; RAMALHETE, ROBERTO C.; MICHAELIDES, MICHAEL; PIYIS, YIANNI K.; WANG, GENE-JACK; VOLKOW, NORA D.

    2009-01-01

    Leptin receptor dysfunction results in overeating and obesity. Leptin regulates hypothalamic signaling that underlies the motivation to hyperphagia, but the interaction between leptin and cannabinoid signaling is poorly understood. We evaluated the role of cannabinoid 1 receptors (CB1R) in overeating and the effects of food deprivation on CB1R in the brain. One-month-old Zucker rats were divided into unrestricted and restricted (fed 70% of unrestricted rats) diet groups and maintained until adulthood (4 months). Levels of relative binding sites of CB1R (CB1R binding levels) were assessed using [3H] SR141716A in vitro autoradiography. These levels were higher (except cerebellum and hypothalamus) at 4 months than at 1 month of age. One month CB1R binding levels for most brain regions did not differ between Ob and Lean (Le) rats (except in frontal and cingulate cortices in Le and in the hypothalamus in Ob). Four month Ob rats had higher CB1R binding levels than Le in most brain regions and food restriction was associated with higher CB1R levels in all brain regions in Ob, but not in Le rats. CB1R binding levels increased between adolescence and young adulthood which we believe was influenced by leptin and food availability. The high levels of CB1R in Ob rats suggest that leptin's inhibition of food-intake is in part mediated by downregulation of CB1R and that leptin interferes with CB1R upregulation under food-deprivation conditions. These results are consistent with prior findings showing increased levels of endogenous cannabinoids in the Ob rats corroborating the regulation of cannabinoid signaling by leptin. PMID:18563836

  17. Leptin rapidly activates PPARs in C2C12 muscle cells

    International Nuclear Information System (INIS)

    Bendinelli, Paola; Piccoletti, Roberta; Maroni, Paola

    2005-01-01

    Experimental evidence suggests that leptin operates on the tissues, including skeletal muscle, also by modulating gene expression. Using electrophoretic mobility shift assays, we have shown that physiological doses of leptin promptly increase the binding of C2C12 cell nuclear extracts to peroxisome proliferator-activated receptor (PPAR) response elements in oligonucleotide probes and that all three PPAR isoforms participate in DNA-binding complexes. We pre-treated C2C12 cells with AACOCF 3 , a specific inhibitor of cytosolic phospholipase A 2 (cPLA 2 ), an enzyme that supplies ligands to PPARs, and found that it abrogates leptin-induced PPAR DNA-binding activity. Leptin treatment significantly increased cPLA 2 activity, evaluated as the release of [ 3 H]arachidonic acid from pre-labelled C2C12 cells, as well as phosphorylation. Further, using MEK1 inhibitor PD-98059 we showed that leptin activates cPLA 2 through ERK induction. These results support a direct effect of leptin on skeletal muscle cells, and suggest that the hormone may modulate muscle transcription also by precocious activation of PPARs through ERK-cPLA 2 pathway

  18. Limited impact on glucose homeostasis of leptin receptor deletion from insulin- or proglucagon-expressing cells

    Directory of Open Access Journals (Sweden)

    Helen Soedling

    2015-09-01

    Conclusions/interpretation: The use here of a highly selective Cre recombinase indicates that leptin signalling plays a relatively minor, age- and sex-dependent role in the control of β cell function in the mouse. No in vivo role for leptin receptors on α cells, nor in other proglucagon-expressing cells, was detected in this study.

  19. Preferential effects of leptin on CD4 T cells in central and peripheral immune system are critically linked to the expression of leptin receptor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, So Yong; Lim, Ju Hyun [Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746 (Korea, Republic of); Choi, Sung Won [Department of Molecular Biology, School of Arts and Sciences (S.W.C), Cornell University, Ithaca, NY 18450 (United States); Kim, Miyoung; Kim, Seong-Tae [Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746 (Korea, Republic of); Kim, Min-Seon; Cho, You Sook [Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-600 (Korea, Republic of); Chun, Eunyoung, E-mail: chun.eunyoung@gmail.com [Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746 (Korea, Republic of); Lee, Ki-Young, E-mail: thylee@med.skku.ac.kr [Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746 (Korea, Republic of)

    2010-04-09

    Leptin can enhance thymopoiesis and modulate the T-cell immune response. However, it remains controversial whether these effects correlate with the expression of leptin receptor, ObR. We herein addressed this issue by using in vivo animal models and in vitro culture systems. Leptin treatment in both ob/ob mice and normal young mice induced increases of CD4 SP thymocytes in thymus and CD4 T cells in the periphery. Interestingly, expression of the long form ObR was significantly restricted to DN, DP and CD4 SP, but not CD8 SP thymocytes. Moreover, in the reaggregated DP thymocyte cultures with leptin plus TSCs, leptin profoundly induced differentiation of CD4 SP but not CD8 SP thymocytes, suggesting that the effects of leptin on thymocyte differentiation might be closely related to the expression of leptin receptor in developing thymocytes. Surprisingly, ObR expression was markedly higher in peripheral CD4 T cells than that in CD8 T cells. Furthermore, leptin treatment with or without IL-2 and PHA had preferential effects on cell proliferation of CD4 T cells compared to that of CD8 T cells. Collectively, these data provide evidence that the effects of leptin on differentiation and proliferation of CD4 T cells might be closely related to the expression of leptin receptor.

  20. Preferential effects of leptin on CD4 T cells in central and peripheral immune system are critically linked to the expression of leptin receptor

    International Nuclear Information System (INIS)

    Kim, So Yong; Lim, Ju Hyun; Choi, Sung Won; Kim, Miyoung; Kim, Seong-Tae; Kim, Min-Seon; Cho, You Sook; Chun, Eunyoung; Lee, Ki-Young

    2010-01-01

    Leptin can enhance thymopoiesis and modulate the T-cell immune response. However, it remains controversial whether these effects correlate with the expression of leptin receptor, ObR. We herein addressed this issue by using in vivo animal models and in vitro culture systems. Leptin treatment in both ob/ob mice and normal young mice induced increases of CD4 SP thymocytes in thymus and CD4 T cells in the periphery. Interestingly, expression of the long form ObR was significantly restricted to DN, DP and CD4 SP, but not CD8 SP thymocytes. Moreover, in the reaggregated DP thymocyte cultures with leptin plus TSCs, leptin profoundly induced differentiation of CD4 SP but not CD8 SP thymocytes, suggesting that the effects of leptin on thymocyte differentiation might be closely related to the expression of leptin receptor in developing thymocytes. Surprisingly, ObR expression was markedly higher in peripheral CD4 T cells than that in CD8 T cells. Furthermore, leptin treatment with or without IL-2 and PHA had preferential effects on cell proliferation of CD4 T cells compared to that of CD8 T cells. Collectively, these data provide evidence that the effects of leptin on differentiation and proliferation of CD4 T cells might be closely related to the expression of leptin receptor.

  1. NUTRIGENOMICS ANALYZE OF EXPRESSION OF EXTRACELLULAR LEPTIN RECEPTOR BY THE FOLLOWING ESSENTIAL OIL MONITORING AT THE AVIAN MODELS

    Directory of Open Access Journals (Sweden)

    Pavol Bajzík

    2011-04-01

    Full Text Available Leptin gene was identified in 1994 by positional cloning. His mutation is considered extreme obesity surface phenotype and infertility in ob/ob mice. Most of the research, which followed the discovery of this hormone, focused on the role of leptin in regulating body weight,  in order to clarify the pathophysiology of obesity. Many research results show that leptin is not only important in regulating food intake and energy balance, but also performs functions such as metabolic and neuroendocrine hormone. Using herbs and essential oils depends on their antimicrobial activity. Most plants have favorable multifunctional properties, which are the specific content of bioactive components. Some authors characterize fytogénne substance such as natural substancese plant origin, which leave no residues in animal products and is not necessary to keep the trade period before slaughter animals. Analyses suggest that the structural function of the receptor exists as a dimer constructively in the plasma membrane. Each receptor dimer pair is reversibly bound to one molecule of leptin. When bound, signaling pathways are responsible for beginning the activation receptor associated Janus kinase 2 (JAK2 and tyrosine phosphorylation of two key residues in the intracellular part of receptor.doi:10.5219/128 

  2. Leptin deficiency unmasks the deleterious effects of impaired peroxisome proliferator-activated receptor γ function (P465L PPARγ) in mice

    NARCIS (Netherlands)

    Gray, S.L.; Dalla Nora, E.; Grosse, J.; Manieri, M.; Stoeger, T.; Medina-Gomez, G.; Burling, K.; Wattler, S.; Russ, A.; Yeo, G.S.H.; Chatterjee, V.K.; O'Rahilly, S.; Voshol, P.J.; Cinti, S.; Vidal-Puig, A.

    2006-01-01

    Peroxisome proliferator-activated receptor (PPAR)γ is a key transcription factor facilitating fat deposition in adipose tissue through its proadipogenic and lipogenic actions. Human patients with dominant-negative mutations in PPARγ display lipodystrophy and extreme insulin resistance. For this

  3. Ciliary neurotrophic factor activates leptin-like pathways and reduces body fat, without cachexia or rebound weight gain, even in leptin-resistant obesity.

    Science.gov (United States)

    Lambert, P D; Anderson, K D; Sleeman, M W; Wong, V; Tan, J; Hijarunguru, A; Corcoran, T L; Murray, J D; Thabet, K E; Yancopoulos, G D; Wiegand, S J

    2001-04-10

    Ciliary Neurotrophic Factor (CNTF) was first characterized as a trophic factor for motor neurons in the ciliary ganglion and spinal cord, leading to its evaluation in humans suffering from motor neuron disease. In these trials, CNTF caused unexpected and substantial weight loss, raising concerns that it might produce cachectic-like effects. Countering this possibility was the suggestion that CNTF was working via a leptin-like mechanism to cause weight loss, based on the findings that CNTF acts via receptors that are not only related to leptin receptors, but also similarly distributed within hypothalamic nuclei involved in feeding. However, although CNTF mimics the ability of leptin to cause fat loss in mice that are obese because of genetic deficiency of leptin (ob/ob mice), CNTF is also effective in diet-induced obesity models that are more representative of human obesity, and which are resistant to leptin. This discordance again raised the possibility that CNTF might be acting via nonleptin pathways, perhaps more analogous to those activated by cachectic cytokines. Arguing strongly against this possibility, we now show that CNTF can activate hypothalamic leptin-like pathways in diet-induced obesity models unresponsive to leptin, that CNTF improves prediabetic parameters in these models, and that CNTF acts very differently than the prototypical cachectic cytokine, IL-1. Further analyses of hypothalamic signaling reveals that CNTF can suppress food intake without triggering hunger signals or associated stress responses that are otherwise associated with food deprivation; thus, unlike forced dieting, cessation of CNTF treatment does not result in binge overeating and immediate rebound weight gain.

  4. Abalation of Ghrelin receptor in leptin-deficient mice has paradoxical effects on glucose homeostasis compared to Ghrelin-abalated Leptin-deficient mice

    Science.gov (United States)

    Ghrelin is produced predominantly in stomach and is known to be the endogenous ligand of the growth hormone secretagogue receptor (GHSR). Ghrelin is a GH stimulator and an orexigenic hormone. In contrast, leptin is an anorexic hormone, and leptin-deficient ob/ob mice are obese and diabetic. To study...

  5. Screening of synthetic phage display scFv libraries yields competitive ligands of human leptin receptor.

    Science.gov (United States)

    Molek, Peter; Vodnik, Miha; Strukelj, Borut; Bratkovič, Tomaž

    2014-09-26

    Initially considered the main endogenous anorexigenic factor, fat-derived leptin turned out to be a markedly pleiotropic hormone, influencing diverse physiological processes. Moreover, hyperleptinemia in obese individuals has been linked to the onset or progression of serious disorders, such as cancer, autoimmune diseases, and atherosclerosis, and antagonizing peripheral leptin's signalization has been shown to improve these conditions. To develop an antibody-based leptin antagonist we have devised a tailored panning procedure and screened two phage display libraries of single chain variable antibody fragments (scFvs) against recombinant leptin receptor. One of the scFvs was expressed in Escherichia coli and its interaction with leptin receptor was characterized in more detail. It was found to recognize a discontinuous epitope and to compete with leptin for receptor binding with IC50 and Kd values in the nanomolar range. The reported scFv represents a lead for development of leptin antagonists that may ultimately find use in therapy of various hyperleptinemia-related disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Electroacupuncture Reduces Weight Gain Induced by Rosiglitazone through PPARγ and Leptin Receptor in CNS

    Directory of Open Access Journals (Sweden)

    Xinyue Jing

    2016-01-01

    Full Text Available We investigate the effect of electroacupuncture (EA on protecting the weight gain side effect of rosiglitazone (RSG in type 2 diabetes mellitus (T2DM rats and its possible mechanism in central nervous system (CNS. Our study showed that RSG (5 mg/kg significantly increased the body weight and food intake of the T2DM rats. After six-week treatment with RSG combined with EA, body weight, food intake, and the ratio of IWAT to body weight decreased significantly, whereas the ratio of BAT to body weight increased markedly. HE staining indicated that the T2DM-RSG rats had increased size of adipocytes in their IWAT, but EA treatment reduced the size of adipocytes. EA effectively reduced the lipid contents without affecting the antidiabetic effect of RSG. Furthermore, we noticed that the expression of PPARγ gene in hypothalamus was reduced by EA, while the expressions of leptin receptor and signal transducer and activator of transcription 3 (STAT3 were increased. Our results suggest that EA is an effective approach for inhibiting weight gain in T2DM rats treated by RSG. The possible mechanism might be through increased levels of leptin receptor and STAT3 and decreased PPARγ expression, by which food intake of the rats was reduced and RSG-induced weight gain was inhibited.

  7. The Association of Polymorphisms in Leptin/Leptin Receptor Genes and Ghrelin/Ghrelin Receptor Genes With Overweight/Obesity and the Related Metabolic Disturbances: A Review.

    Science.gov (United States)

    Ghalandari, Hamid; Hosseini-Esfahani, Firoozeh; Mirmiran, Parvin

    2015-07-01

    Leptin and ghrelin are two important appetite and energy balance-regulating peptides. Common polymorphisms in the genes coding these peptides and their related receptors are shown to be associated with body weight, different markers of obesity and metabolic abnormalities. This review article aims to investigate the association of common polymorphisms of these genes with overweight/obesity and the metabolic disturbances related to it. The keywords leptin, ghrelin, polymorphism, single-nucleotide polymorphism (SNP), obesity, overweight, Body Mass Index, metabolic syndrome, and type 2 diabetes mellitus (T2DM) (MeSH headings) were used to search in the following databases: Pubmed, Sciencedirect (Elsevier), and Google scholar. Overall, 24 case-control studies, relevant to our topic, met the criteria and were included in the review. The most prevalent leptin/leptin receptor genes (LEP/LEPR) and ghrelin/ghrelin receptor genes (GHRL/GHSR) single nucleotide polymorphisms studied were LEP G-2548A, LEPR Q223R, and Leu72Met, respectively. Nine studies of the 17 studies on LEP/LEPR, and three studies of the seven studies on GHRL/GHSR showed significant relationships. In general, our study suggests that the association between LEP/LEPR and GHRL/GHSR with overweight/obesity and the related metabolic disturbances is inconclusive. These results may be due to unidentified gene-environment interactions. More investigations are needed to further clarify this association.

  8. Protection against high-fat diet-induced obesity in Helz2-deficient male mice due to enhanced expression of hepatic leptin receptor.

    Science.gov (United States)

    Yoshino, Satoshi; Satoh, Tetsurou; Yamada, Masanobu; Hashimoto, Koshi; Tomaru, Takuya; Katano-Toki, Akiko; Kakizaki, Satoru; Okada, Shuichi; Shimizu, Hiroyuki; Ozawa, Atsushi; Tuchiya, Takafumi; Ikota, Hayato; Nakazato, Yoichi; Mori, Munemasa; Matozaki, Takashi; Sasaki, Tsutomu; Kitamura, Tadahiro; Mori, Masatomo

    2014-09-01

    Obesity arises from impaired energy balance, which is centrally coordinated by leptin through activation of the long form of leptin receptor (Leprb). Obesity causes central leptin resistance. However, whether enhanced peripheral leptin sensitivity could overcome central leptin resistance remains obscure. A peripheral metabolic organ targeted by leptin is the liver, with low Leprb expression. We here show that mice fed a high-fat diet (HFD) and obese patients with hepatosteatosis exhibit increased expression of hepatic helicase with zinc finger 2, a transcriptional coactivator (Helz2), which functions as a transcriptional coregulator of several nuclear receptors, including peroxisome proliferator-activated receptor γ in vitro. To explore the physiological importance of Helz2, we generated Helz2-deficient mice and analyzed their metabolic phenotypes. Helz2-deficient mice showing hyperleptinemia associated with central leptin resistance were protected against HFD-induced obesity and had significantly up-regulated hepatic Leprb expression. Helz2 deficiency and adenovirus-mediated liver-specific exogenous Leprb overexpression in wild-type mice significantly stimulated hepatic AMP-activated protein kinase on HFD, whereas Helz2-deficient db/db mice lacking functional Leprb did not. Fatty acid-β oxidation was increased in Helz2-deficeint hepatocytes, and Helz2-deficient mice revealed increased oxygen consumption and decreased respiratory quotient in calorimetry analyses. The enhanced hepatic AMP-activated protein kinase energy-sensing pathway in Helz2-deficient mice ameliorated hyperlipidemia, hepatosteatosis, and insulin resistance by reducing lipogenic gene expression and stimulating lipid-burning gene expression in the liver. These findings together demonstrate that Helz2 deficiency ameliorates HFD-induced metabolic abnormalities by stimulating endogenous hepatic Leprb expression, despite central leptin resistance. Hepatic HELZ2 might be a novel target molecule for

  9. No association of defined variability in leptin, leptin receptor, adiponectin, proopiomelanocortin and ghrelin gene with food preferences in the Czech population.

    Science.gov (United States)

    Bienertova-Vasku, Julie; Bienert, Petr; Tomandl, Josef; Forejt, Martin; Vavrina, Martin; Kudelkova, Jana; Vasku, Anna

    2008-02-01

    Previously, it has been reported that mutations in the genes encoding for adipokines may be associated with impaired food intake and may serve as potential obesity biomarkers. The aim of this study was to investigate the possible associations of defined variability in leptin, leptin receptor, adiponectin, proopiomelanocortin and ghrelin genes with food preferences in the obese and non-obese Czech population and evaluate their potential as the obesity susceptibility genes. Using PCR followed by restriction analysis, we studied 185 volunteers. Basic anthropometrical characteristics associated to obesity were measured and the food intake was monitored using a 7-day record method. In the group of obese individuals, a subset of 34 morbidly obese patients was studied for plasma leptin and soluble leptin receptor levels. None of the examined polymorphisms was associated to anthropometrical or demographic characteristics of the study subjects. The Gln223Arg polymorphism within the leptin receptor gene was significantly associated with lower plasma leptin levels (the RR genotype being more frequent in patients with lower plasma leptin levels; P = 0.001). No associations of the examined polymorphisms with food preferences was observed. Based on our results, the examined polymorphisms in the adipokine genes do not seem to be the major risk factor for obesity development in the Czech population nor significantly affect food preferences.

  10. Somato-dendritic localization and signaling by leptin receptors in hypothalamic POMC and AgRP neurons.

    Directory of Open Access Journals (Sweden)

    Sangdeuk Ha

    Full Text Available Leptin acts via neuronal leptin receptors to control energy balance. Hypothalamic pro-opiomelanocortin (POMC and agouti-related peptide (AgRP/Neuropeptide Y (NPY/GABA neurons produce anorexigenic and orexigenic neuropeptides and neurotransmitters, and express the long signaling form of the leptin receptor (LepRb. Despite progress in the understanding of LepRb signaling and function, the sub-cellular localization of LepRb in target neurons has not been determined, primarily due to lack of sensitive anti-LepRb antibodies. Here we applied light microscopy (LM, confocal-laser scanning microscopy (CLSM, and electron microscopy (EM to investigate LepRb localization and signaling in mice expressing a HA-tagged LepRb selectively in POMC or AgRP/NPY/GABA neurons. We report that LepRb receptors exhibit a somato-dendritic expression pattern. We further show that LepRb activates STAT3 phosphorylation in neuronal fibers within several hypothalamic and hindbrain nuclei of wild-type mice and rats, and specifically in dendrites of arcuate POMC and AgRP/NPY/GABA neurons of Leprb (+/+ mice and in Leprb (db/db mice expressing HA-LepRb in a neuron specific manner. We did not find evidence of LepRb localization or STAT3-signaling in axon-fibers or nerve-terminals of POMC and AgRP/NPY/GABA neurons. Three-dimensional serial EM-reconstruction of dendritic segments from POMC and AgRP/NPY/GABA neurons indicates a high density of shaft synapses. In addition, we found that the leptin activates STAT3 signaling in proximity to synapses on POMC and AgRP/NPY/GABA dendritic shafts. Taken together, these data suggest that the signaling-form of the leptin receptor exhibits a somato-dendritic expression pattern in POMC and AgRP/NPY/GABA neurons. Dendritic LepRb signaling may therefore play an important role in leptin's central effects on energy balance, possibly through modulation of synaptic activity via post-synaptic mechanisms.

  11. Leptin receptor (Ob-R) mRNA expression and serum leptin concentration in patients with colorectal and metastatic colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Erkasap, N.; Ozkurt, M. [Department of Physiology, Osmangazi University Medical Faculty, Meselik, Eskisehir (Turkey); Erkasap, S.; Yasar, F. [Department of General Surgery, Osmangazi University Medical Faculty, Meselik, Eskisehir (Turkey); Uzuner, K. [Department of Physiology, Osmangazi University Medical Faculty, Meselik, Eskisehir (Turkey); Ihtiyar, E. [Department of General Surgery, Osmangazi University Medical Faculty, Meselik, Eskisehir (Turkey); Uslu, S.; Kara, M. [Department of Biochemistry, Osmangazi University Medical Faculty, Meselik, Eskisehir (Turkey); Bolluk, O. [Department of Biostatistics, Osmangazi University Medical Faculty, Meselik, Eskisehir (Turkey)

    2013-03-19

    The objective of the present study was to investigate the effect of leptin on the progression of colorectal carcinoma to metastatic disease by analyzing the serum leptin concentration and Ob-R gene expression in colon cancer tissues. Tissue samples were obtained from 31 patients who underwent surgical resection for colon (18 cases) and metastatic colon (13 cases) cancer. Serum leptin concentration was determined by an enzyme-linked immunosorbent assay (ELISA) and Ob-R mRNA expression by real-time polymerase chain reaction (RT-PCR) for both groups. ELISA data were analyzed by the Student t-test and RT-PCR data were analyzed by the Mann-Whitney U-test. RT-PCR results demonstrated that mRNA expression of Ob-R in human metastatic colorectal cancer was higher than in local colorectal cancer tissues. On the other hand, mean serum leptin concentration was significantly higher in local colorectal cancer patients compared to patients with metastatic colorectal cancer. The results of the present study suggest a role for leptin in the progression of colon cancer to metastatic disease without weight loss. In other words, significantly increased Ob-R mRNA expression and decreased serum leptin concentration in patients with metastatic colon cancer indicate that sensitization to leptin activity may be a major indicator of metastasis to the colon tissue and the determination of leptin concentration and leptin gene expression may be used to aid the diagnosis.

  12. Leptin receptor (Ob-R) mRNA expression and serum leptin concentration in patients with colorectal and metastatic colorectal cancer

    International Nuclear Information System (INIS)

    Erkasap, N.; Ozkurt, M.; Erkasap, S.; Yasar, F.; Uzuner, K.; Ihtiyar, E.; Uslu, S.; Kara, M.; Bolluk, O.

    2013-01-01

    The objective of the present study was to investigate the effect of leptin on the progression of colorectal carcinoma to metastatic disease by analyzing the serum leptin concentration and Ob-R gene expression in colon cancer tissues. Tissue samples were obtained from 31 patients who underwent surgical resection for colon (18 cases) and metastatic colon (13 cases) cancer. Serum leptin concentration was determined by an enzyme-linked immunosorbent assay (ELISA) and Ob-R mRNA expression by real-time polymerase chain reaction (RT-PCR) for both groups. ELISA data were analyzed by the Student t-test and RT-PCR data were analyzed by the Mann-Whitney U-test. RT-PCR results demonstrated that mRNA expression of Ob-R in human metastatic colorectal cancer was higher than in local colorectal cancer tissues. On the other hand, mean serum leptin concentration was significantly higher in local colorectal cancer patients compared to patients with metastatic colorectal cancer. The results of the present study suggest a role for leptin in the progression of colon cancer to metastatic disease without weight loss. In other words, significantly increased Ob-R mRNA expression and decreased serum leptin concentration in patients with metastatic colon cancer indicate that sensitization to leptin activity may be a major indicator of metastasis to the colon tissue and the determination of leptin concentration and leptin gene expression may be used to aid the diagnosis

  13. Leptin receptor (Ob-R mRNA expression and serum leptin concentration in patients with colorectal and metastatic colorectal cancer

    Directory of Open Access Journals (Sweden)

    N. Erkasap

    Full Text Available The objective of the present study was to investigate the effect of leptin on the progression of colorectal carcinoma to metastatic disease by analyzing the serum leptin concentration and Ob-R gene expression in colon cancer tissues. Tissue samples were obtained from 31 patients who underwent surgical resection for colon (18 cases and metastatic colon (13 cases cancer. Serum leptin concentration was determined by an enzyme-linked immunosorbent assay (ELISA and Ob-R mRNA expression by real-time polymerase chain reaction (RT-PCR for both groups. ELISA data were analyzed by the Student t-test and RT-PCR data were analyzed by the Mann-Whitney U-test. RT-PCR results demonstrated that mRNA expression of Ob-R in human metastatic colorectal cancer was higher than in local colorectal cancer tissues. On the other hand, mean serum leptin concentration was significantly higher in local colorectal cancer patients compared to patients with metastatic colorectal cancer. The results of the present study suggest a role for leptin in the progression of colon cancer to metastatic disease without weight loss. In other words, significantly increased Ob-R mRNA expression and decreased serum leptin concentration in patients with metastatic colon cancer indicate that sensitization to leptin activity may be a major indicator of metastasis to the colon tissue and the determination of leptin concentration and leptin gene expression may be used to aid the diagnosis.

  14. The Expression of Leptin, Estrogen Receptors, and Vitellogenin mRNAs in Migrating Female Chum Salmon, : The Effects of Hypo-osmotic Environmental Changes

    Directory of Open Access Journals (Sweden)

    Young Jae Choi

    2014-04-01

    Full Text Available Leptin plays an important role in energy homeostasis and reproductive function in fish, especially in reproduction. Migrating fish, such as salmonoids, are affected by external environmental factors, and salinity changes are a particularly important influence on spawning migrations. The aim of this study was to test whether changes in salinity affect the expression of leptin, estrogen receptors (ERs, and vitellogenin (VTG in chum salmon (Oncorhynchus keta. The expression and activity of leptin, the expression of ERs and VTG, and the levels of estradiol-17β and cortisol increased after the fish were transferred to FW, demonstrating that changes in salinity stimulate the HPG axis in migrating female chum salmon. These findings reveal details about the role of elevated leptin levels and sex steroid hormones in stimulating sexual maturation and reproduction in response to salinity changes in chum salmon.

  15. The Association of Polymorphisms in Leptin/Leptin Receptor Genes and Ghrelin/Ghrelin Receptor Genes With Overweight/Obesity and the Related Metabolic Disturbances: A Review

    OpenAIRE

    Ghalandari; Hosseini-Esfahani; Mirmiran

    2015-01-01

    Context Leptin and ghrelin are two important appetite and energy balance-regulating peptides. Common polymorphisms in the genes coding these peptides and their related receptors are shown to be associated with body weight, different markers of obesity and metabolic abnormalities. This review article aims to investigate the association of common polymorphisms of these genes with overweight/obesity and the metabolic disturbances related to it. E...

  16. Polymorphism in leptin receptor gene was associated with obesity in ...

    African Journals Online (AJOL)

    Pramudji Hastuti

    2016-01-11

    Jan 11, 2016 ... This study aims to determine the association of LEPR gene polymorphisms, rs1137100 and rs1137101, on .... and that leptin levels were correlated with type 2 diabetes mel- .... Research using statistical meta-analysis [36,37] found ... and changes in glucose homeostasis in response to regular exercise.

  17. Impaired clearance of influenza A virus in obese, leptin receptor deficient mice is independent of leptin signaling in the lung epithelium and macrophages.

    Directory of Open Access Journals (Sweden)

    Kathryn A Radigan

    Full Text Available During the recent H1N1 outbreak, obese patients had worsened lung injury and increased mortality. We used a murine model of influenza A pneumonia to test the hypothesis that leptin receptor deficiency might explain the enhanced mortality in obese patients.We infected wild-type, obese mice globally deficient in the leptin receptor (db/db and non-obese mice with tissue specific deletion of the leptin receptor in the lung epithelium (SPC-Cre/LepR fl/fl or macrophages and alveolar type II cells (LysM-Cre/Lepr fl/fl with influenza A virus (A/WSN/33 [H1N1] (500 and 1500 pfu/mouse and measured mortality, viral clearance and several markers of lung injury severity.The clearance of influenza A virus from the lungs of mice was impaired in obese mice globally deficient in the leptin receptor (db/db compared to normal weight wild-type mice. In contrast, non-obese, SP-C-Cre+/+/LepR fl/fl and LysM-Cre+/+/LepR fl/fl had improved viral clearance after influenza A infection. In obese mice, mortality was increased compared with wild-type mice, while the SP-C-Cre+/+/LepR fl/fl and LysM-Cre+/+/LepR fl/fl mice exhibited improved survival.Global loss of the leptin receptor results in reduced viral clearance and worse outcomes following influenza A infection. These findings are not the result of the loss of leptin signaling in lung epithelial cells or macrophages. Our results suggest that factors associated with obesity or with leptin signaling in non-myeloid populations such as natural killer and T cells may be associated with worsened outcomes following influenza A infection.

  18. Frequency of distribution of leptin receptor gene polymorphism in obstructive sleep apnea patients.

    Science.gov (United States)

    Popko, K; Gorska, E; Wasik, M; Stoklosa, A; Pływaczewski, R; Winiarska, M; Gorecka, D; Sliwinski, P; Demkow, U

    2007-11-01

    Leptin is an adipocyte-derived hormone regulating energy homeostasis and body weight. Leptin concentration is increased in patients with the obstructive sleep apnea syndrome (OSAS). Leptin receptor (LEPR) is a single transmembrane protein belonging to the superfamily of cytokine receptors related by a structure to the hemopoietin receptor family. The aim of the present study was to evaluate the frequency of distribution of leptin receptor gene polymorphism GLN223ARG in OSAS patients compared with healthy controls. The examined group included 179 subjects: 102 OSAS patients (74 men and 28 women) and 77 non-apneic controls (39 men and 38 women). Genomic DNA was isolated with the use of a column method and genotyping of DNA sequence variation was carried out by restriction enzyme analysis of PCR-amplified DNA. The results revealed a significant correlation between the polymorphism of LEPR and OSAS. Carriers of Arg allele in homozygotic genotype Arg/Arg and heterozygotic genotype Gln/Arg were more often obese and developed OSAS than the group of carriers of homozygotic Gln/Gln genotype. This tendency was observed in the whole examined population and in the group of obese women. We also found the highest levels of total cholesterol, LDL, HDL, and triglycerides in the group of homozygotic Arg/Arg genotype carriers, lower in heterozygotic Gln/Arg genotype carriers, and the lowest in the group of persons carring homozygotic Gln/Gln genotype. The presence of Arg allel seems linked to a higher risk of obesity and higher lipid levels in OSAS patients. OSAS may have a strong genetic basis due to the effects from a variety of genes including those for leptin receptor.

  19. Duplicated leptin receptors in two species of eel bring new insights into the evolution of the leptin system in vertebrates

    DEFF Research Database (Denmark)

    Morini, M.; Pasquier, J.; van den Thillart, G.

    2015-01-01

    Since its discovery in mammals as a key-hormone in reproduction and metabolism, leptin has been identified in an increasing number of tetrapods and teleosts. Tetrapods possess only one leptin gene, while most teleosts possess two leptin genes, as a result of the teleost third whole genome duplica...

  20. Importance of leptin signaling and signal transducer and activator of transcription-3 activation in mediating the cardiac hypertrophy associated with obesity.

    Science.gov (United States)

    Leifheit-Nestler, Maren; Wagner, Nana-Maria; Gogiraju, Rajinikanth; Didié, Michael; Konstantinides, Stavros; Hasenfuss, Gerd; Schäfer, Katrin

    2013-07-11

    The adipokine leptin and its receptor are expressed in the heart, and leptin has been shown to promote cardiomyocyte hypertrophy in vitro. Obesity is associated with hyperleptinemia and hypothalamic leptin resistance as well as an increased risk to develop cardiac hypertrophy and heart failure. However, the role of cardiac leptin signaling in mediating the cardiomyopathy associated with increased body weight is unclear, in particular, whether it develops subsequently to cardiac leptin resistance or overactivation of hypertrophic signaling pathways via elevated leptin levels. The cardiac phenotype of high-fat diet (HFD)-induced obese wildtype (WT) mice was examined and compared to age-matched genetically obese leptin receptor (LepR)-deficient (LepRdb/db) or lean WT mice. To study the role of leptin-mediated STAT3 activation during obesity-induced cardiac remodeling, mice in which tyrosine residue 1138 within LepR had been replaced with a serine (LepRS1138) were also analyzed. Obesity was associated with hyperleptinemia and elevated cardiac leptin expression in both diet-induced and genetically obese mice. Enhanced LepR and STAT3 phosphorylation levels were detected in hearts of obese WT mice, but not in those with LepR mutations. Moreover, exogenous leptin continued to induce cardiac STAT3 activation in diet-induced obese mice. Although echocardiography revealed signs of cardiac hypertrophy in all obese mice, the increase in left ventricular (LV) mass and diameter was significantly more pronounced in LepRS1138 animals. LepRS1138 mice also exhibited an increased activation of signaling proteins downstream of LepR, including Jak2 (1.8-fold), Src kinase (1.7-fold), protein kinase B (1.3-fold) or C (1.6-fold). Histological analysis of hearts revealed that the inability of leptin to activate STAT3 in LepRdb/db and LepRS1138 mice was associated with reduced cardiac angiogenesis as well as increased apoptosis and fibrosis. Our findings suggest that hearts from obese mice

  1. Leptin receptor Gln223Arg polymorphism and breast cancer risk in Nigerian women: A case control study

    International Nuclear Information System (INIS)

    Okobia, Michael N; Taioli, Emanuela; Bunker, Clareann H; Garte, Seymour J; Zmuda, Joseph M; Ezeome, Emmanuel R; Anyanwu, Stanley N; Uche, Emmanuel E; Kuller, Lewis H; Ferrell, Robert E

    2008-01-01

    Leptin, a 16 kDa polypeptide hormone, implicated in various physiological processes, exerts its action through the leptin receptor, a member of the class I cytokine receptor family. Both leptin and leptin receptor have recently been implicated in processes leading to breast cancer initiation and progression in animal models and humans. An A to G transition mutation in codon 223 in exon 6 of the leptin receptor gene, resulting in glutamine to arginine substitution (Gln223Arg), lies within the first of two putative leptin-binding regions and may be associated with impaired signaling capacity of the leptin receptor. This study was designed to assess the role of this polymorphism in breast cancer susceptibility in Nigerian women. We utilized a polymerase chain reaction (PCR)-based restriction fragment length polymorphism (RFLP) assay to evaluate the association between the Gln223Arg polymorphism of the leptin receptor gene and breast risk in Nigeria in a case control study involving 209 women with breast cancer and 209 controls without the disease. Study participants were recruited from surgical outpatient clinics and surgical wards of four University Teaching Hospitals located in Midwestern and southeastern Nigeria between September 2002 and April 2004. Premenopausal women carrying at least one LEPR 223Arg allele were at a modestly increased risk of breast cancer after adjusting for confounders (OR = 1.8, 95% confidence interval [CI] 1.0–3.2, p = 0.07). There was no association with postmenopausal breast cancer risk (OR = 0.9, 95% CI 0.4–1.8, p = 0.68). Our results suggest that the LEPR Gln223Arg polymorphism in the extracellular domain of the LEPR receptor gene is associated with a modestly increased risk of premenopausal breast cancer in Nigerian women

  2. Hypothalamic growth hormone receptor (GHR controls hepatic glucose production in nutrient-sensing leptin receptor (LepRb expressing neurons

    Directory of Open Access Journals (Sweden)

    Gillian Cady

    2017-05-01

    Full Text Available Objective: The GH/IGF-1 axis has important roles in growth and metabolism. GH and GH receptor (GHR are active in the central nervous system (CNS and are crucial in regulating several aspects of metabolism. In the hypothalamus, there is a high abundance of GH-responsive cells, but the role of GH signaling in hypothalamic neurons is unknown. Previous work has demonstrated that the Ghr gene is highly expressed in LepRb neurons. Given that leptin is a key regulator of energy balance by acting on leptin receptor (LepRb-expressing neurons, we tested the hypothesis that LepRb neurons represent an important site for GHR signaling to control body homeostasis. Methods: To determine the importance of GHR signaling in LepRb neurons, we utilized Cre/loxP technology to ablate GHR expression in LepRb neurons (LeprEYFPΔGHR. The mice were generated by crossing the Leprcre on the cre-inducible ROSA26-EYFP mice to GHRL/L mice. Parameters of body composition and glucose homeostasis were evaluated. Results: Our results demonstrate that the sites with GHR and LepRb co-expression include ARH, DMH, and LHA neurons. Leptin action was not altered in LeprEYFPΔGHR mice; however, GH-induced pStat5-IR in LepRb neurons was significantly reduced in these mice. Serum IGF-1 and GH levels were unaltered, and we found no evidence that GHR signaling regulates food intake and body weight in LepRb neurons. In contrast, diminished GHR signaling in LepRb neurons impaired hepatic insulin sensitivity and peripheral lipid metabolism. This was paralleled with a failure to suppress expression of the gluconeogenic genes and impaired hepatic insulin signaling in LeprEYFPΔGHR mice. Conclusion: These findings suggest the existence of GHR-leptin neurocircuitry that plays an important role in the GHR-mediated regulation of glucose metabolism irrespective of feeding. Keywords: Growth hormone receptor, Hypothalamus, Leptin receptor, Glucose production, Liver

  3. Effects of body fat on the associations of high-molecular-weight adiponectin, leptin and soluble leptin receptor with metabolic syndrome in Chinese.

    Directory of Open Access Journals (Sweden)

    Danxia Yu

    Full Text Available BACKGROUND: Little is known regarding the associations between high-molecular-weight (HMW- adiponectin, leptin and soluble leptin receptor (sOB-R and metabolic syndrome (MetS in Chinese. Also few studies elucidate the effects of inflammation and body fat mass on the relations. METHODS: Plasma HMW-adiponectin, leptin and sOB-R were measured among 1055 Chinese men and women (35∼54 yrs. Whole body and trunk fat mass were determined by Dual-energy X-ray absorptiometry. MetS was defined by the updated NCEP/ATPIII criterion for Asian-Americans. RESULTS: HMW-adiponectin was inversely associated with MetS in multivariate model including fat mass index (FMI, inflammatory markers, leptin and sOB-R (OR in the highest quartile= 0.30, 95%CI 0.18∼0.50, P<.0001. Plasma sOB-R was also inversely associated with MetS independent of body fatness and inflammatory markers, whereas the association was somewhat attenuated after adjusting HMW-adiponectin (OR for the highest quartile = 0.78, 95%CI 0.47∼1.32, P = 0.15. In contrast, leptin was associated with increased odds of MetS independent of inflammatory markers, HMW-adiponectin, and sOB-R (OR for the highest quartile= 2.64, 95%CI 1.35∼5.18, P = 0.006, although further adjustment for FMI abolished this association. CONCLUSIONS: HMW-adiponectin exhibited strong inverse associations with MetS independent of body composition, inflammation, leptin and sOB-R; while the associations of leptin and sOB-R were largely explained by fat mass or HMW-adiponectin, respectively.

  4. Hypothalamic growth hormone receptor (GHR) controls hepatic glucose production in nutrient-sensing leptin receptor (LepRb) expressing neurons.

    Science.gov (United States)

    Cady, Gillian; Landeryou, Taylor; Garratt, Michael; Kopchick, John J; Qi, Nathan; Garcia-Galiano, David; Elias, Carol F; Myers, Martin G; Miller, Richard A; Sandoval, Darleen A; Sadagurski, Marianna

    2017-05-01

    The GH/IGF-1 axis has important roles in growth and metabolism. GH and GH receptor (GHR) are active in the central nervous system (CNS) and are crucial in regulating several aspects of metabolism. In the hypothalamus, there is a high abundance of GH-responsive cells, but the role of GH signaling in hypothalamic neurons is unknown. Previous work has demonstrated that the Ghr gene is highly expressed in LepRb neurons. Given that leptin is a key regulator of energy balance by acting on leptin receptor (LepRb)-expressing neurons, we tested the hypothesis that LepRb neurons represent an important site for GHR signaling to control body homeostasis. To determine the importance of GHR signaling in LepRb neurons, we utilized Cre/loxP technology to ablate GHR expression in LepRb neurons (Lepr EYFPΔGHR ). The mice were generated by crossing the Lepr cre on the cre-inducible ROSA26-EYFP mice to GHR L/L mice. Parameters of body composition and glucose homeostasis were evaluated. Our results demonstrate that the sites with GHR and LepRb co-expression include ARH, DMH, and LHA neurons. Leptin action was not altered in Lepr EYFPΔGHR mice; however, GH-induced pStat5-IR in LepRb neurons was significantly reduced in these mice. Serum IGF-1 and GH levels were unaltered, and we found no evidence that GHR signaling regulates food intake and body weight in LepRb neurons. In contrast, diminished GHR signaling in LepRb neurons impaired hepatic insulin sensitivity and peripheral lipid metabolism. This was paralleled with a failure to suppress expression of the gluconeogenic genes and impaired hepatic insulin signaling in Lepr EYFPΔGHR mice. These findings suggest the existence of GHR-leptin neurocircuitry that plays an important role in the GHR-mediated regulation of glucose metabolism irrespective of feeding.

  5. Whole-Body Vibration Mimics the Metabolic Effects of Exercise in Male Leptin Receptor-Deficient Mice.

    Science.gov (United States)

    McGee-Lawrence, Meghan E; Wenger, Karl H; Misra, Sudipta; Davis, Catherine L; Pollock, Norman K; Elsalanty, Mohammed; Ding, Kehong; Isales, Carlos M; Hamrick, Mark W; Wosiski-Kuhn, Marlena; Arounleut, Phonepasong; Mattson, Mark P; Cutler, Roy G; Yu, Jack C; Stranahan, Alexis M

    2017-05-01

    Whole-body vibration (WBV) has gained attention as a potential exercise mimetic, but direct comparisons with the metabolic effects of exercise are scarce. To determine whether WBV recapitulates the metabolic and osteogenic effects of physical activity, we exposed male wild-type (WT) and leptin receptor-deficient (db/db) mice to daily treadmill exercise (TE) or WBV for 3 months. Body weights were analyzed and compared with WT and db/db mice that remained sedentary. Glucose and insulin tolerance testing revealed comparable attenuation of hyperglycemia and insulin resistance in db/db mice following TE or WBV. Both interventions reduced body weight in db/db mice and normalized muscle fiber diameter. TE or WBV also attenuated adipocyte hypertrophy in visceral adipose tissue and reduced hepatic lipid content in db/db mice. Although the effects of leptin receptor deficiency on cortical bone structure were not eliminated by either intervention, exercise and WBV increased circulating levels of osteocalcin in db/db mice. In the context of increased serum osteocalcin, the modest effects of TE and WBV on bone geometry, mineralization, and biomechanics may reflect subtle increases in osteoblast activity in multiple areas of the skeleton. Taken together, these observations indicate that WBV recapitulates the effects of exercise on metabolism in type 2 diabetes.

  6. Interaction between leptin and leisure-time physical activity and development of hypertension

    DEFF Research Database (Denmark)

    Asferg, Camilla Lundegaard; Møgelvang, Rasmus; Flyvbjerg, Allan

    2011-01-01

    OBJECTIVE. The mechanisms by which overweight and physical inactivity lead to hypertension are complex. Leptin, an adipocyte-derived hormone, has been linked with hypertension. We wanted to investigate the relationship between leptin, physical activity and new-onset hypertension. METHODS. The study...... was a prospective cohort study of 744 women and 367 men, who were normotensive in the third Copenhagen City Heart Study (CCHS) examination, performed 1991−94. Based on questionnaire items, the participants were divided into two groups with low (n = 674) and high (n = 437) levels of leisure-time physical activity......, body mass index, SBP, DBP, level of physical activity and leptin, we found a significant interaction between leptin and level of physical activity with new-onset hypertension as outcome variable (p = 0.012). When we entered the interaction variables, effect of leptin with low level of physical activity...

  7. Interaction between leptin and leisure-time physical activity and development of hypertension

    DEFF Research Database (Denmark)

    Asferg, Camilla; Møgelvang, Rasmus; Flyvbjerg, Allan

    2011-01-01

    was a prospective cohort study of 744 women and 367 men, who were normotensive in the third Copenhagen City Heart Study (CCHS) examination, performed 1991-94. Based on questionnaire items, the participants were divided into two groups with low (n = 674) and high (n = 437) levels of leisure-time physical activity......OBJECTIVE. The mechanisms by which overweight and physical inactivity lead to hypertension are complex. Leptin, an adipocyte-derived hormone, has been linked with hypertension. We wanted to investigate the relationship between leptin, physical activity and new-onset hypertension. METHODS. The study......, body mass index, SBP, DBP, level of physical activity and leptin, we found a significant interaction between leptin and level of physical activity with new-onset hypertension as outcome variable (p = 0.012). When we entered the interaction variables, effect of leptin with low level of physical activity...

  8. Polymorphisms in genes encoding leptin, ghrelin and their receptors in German multiple sclerosis patients.

    Science.gov (United States)

    Rey, Linda K; Wieczorek, Stefan; Akkad, Denis A; Linker, Ralf A; Chan, Andrew; Hoffjan, Sabine

    2011-01-01

    Multiple sclerosis (MS) is a neuro-inflammatory, autoimmune disease influenced by environmental and polygenic components. There is growing evidence that the peptide hormone leptin, known to regulate energy homeostasis, as well as its antagonist ghrelin play an important role in inflammatory processes in autoimmune diseases, including MS. Recently, single nucleotide polymorphisms (SNPs) in the genes encoding leptin, ghrelin and their receptors were evaluated, amongst others, in Wegener's granulomatosis and Churg-Strauss syndrome. The Lys656Asn SNP in the LEPR gene showed a significant but contrasting association with these vasculitides. We therefore aimed at investigating these polymorphisms in a German MS case-control cohort. Twelve SNPs in the LEP, LEPR, GHRL and GHSR genes were genotyped in 776 MS patients and 878 control subjects. We found an association of a haplotype in the GHSR gene with MS that could not be replicated in a second cohort. Otherwise, no significant differences in allele or genotype frequencies were observed between patients and controls in this particular cohort. Thus, the present results do not support the hypothesis that genetic variation in the leptin/ghrelin system contributes substantially to the pathogenesis of MS. However, a modest effect of GHSR variation cannot be ruled out and needs to be further evaluated in future studies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Leptin differentially regulate STAT3 activation in ob/ob mouse adipose mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Zhou Zhou

    2012-12-01

    Full Text Available Abstract Background Leptin-deficient ob/ob mice exhibit adipocyte hypertrophy and hyperplasia as well as elevated adipose tissue and systemic inflammation. Multipotent stem cells isolated from adult adipose tissue can differentiate into adipocytes ex vivo and thereby contribute toward increased adipocyte cell numbers, obesity, and inflamm ation. Currently, information is lacking regarding regulation of adipose stem cell numbers as well as leptin-induced inflammation and its signaling pathway in ob/ob mice. Methods Using leptin deficient ob/ob mice, we investigated whether leptin injection into ob/ob mice increases adipose stem cell numbers and adipose tissue inflammatory marker MCP-1 mRNA and secretion levels. We also determined leptin mediated signaling pathways in the adipose stem cells. Results We report here that adipose stem cell number is significantly increased following leptin injection in ob/ob mice and with treatment of isolated stem cells with leptin in vitro. Leptin also up-regulated MCP-1 secretion in a dose- and time-dependent manner. We further showed that increased MCP-1 mRNA levels were due to increased phosphorylation of Signal Transducer and Activator of Transcription 3 (STAT3 Ser727 but not STAT3 Tyr705 phosphorylation, suggesting differential regulation of MCP-1 gene expression under basal and leptin-stimulated conditions in adipose stem cells. Conclusions Taken together, these studies demonstrate that leptin increases adipose stem cell number and differentially activates STAT3 protein resulting in up-regulation of MCP-1 gene expression. Further studies of mechanisms mediating adipose stem cell hyperplasia and leptin signaling in obesity are warranted and may help identify novel anti-obesity target strategies.

  10. Association Analysis of the Leptin and Ghrelin Receptor Gene Polymorphism in the Human with BMI

    Directory of Open Access Journals (Sweden)

    Zuzana Lieskovská

    2011-05-01

    Full Text Available The aim of this work was identification of Leptin and Ghrelin receptor gene polymorphism in the population. Leptin is a product of obese (ob gene expression that plays a role in energy metabolism and body weight. The human leptin gene is located in the 17 chromosome. The restriction site is located at the position 2549 bp (C→A. Ghrelin, a peptide hormone predominantly produced by the stomach, was isolated as the endogenous ligand for the growth hormone secretagogue receptor. Ghrelin is a potent stimulator of growth hormone (GH secretion and is the only circulatory hormone known to potently enhance feeding and weight gain and to regulate energy homeostasis following central and systemic administration. Therapeutic intervention with ghrelin in catabolic situations may induce a combination of enhanced food intake, increased gastric emptying and nutrient storage, coupled with an increase in GH thereby linking nutrient partitioning with growth and repair processes. The present study included 35 human samples. The average value of BMI was estimate on 24.45. The size of amplified PCR product is 242bp. Subsequently we used the specific restriction enzyme HhaI and length of fragments is 181+61 bp in the homozygote CC, 242+181+61 bp in the heterozygote AC and 242 bp in the homozygote AA. The restriction site is located at the position 171T/C. Examination of the polymorphism of the GHSR gene was accomplished used PCR-RFLP method. We used amplified the 593 bp product, which was subsequently digested with restriction enzyme LweI and length of fragmetnts is 593 bp in the homozygote TT, 593+567+26 bp in the heterozygote TC and 593+26 bp in the homozygote CC. We assume that this mutation has connection with human obesity level.

  11. The Prader-Willi syndrome proteins MAGEL2 and necdin regulate leptin receptor cell surface abundance through ubiquitination pathways.

    Science.gov (United States)

    Wijesuriya, Tishani Methsala; De Ceuninck, Leentje; Masschaele, Delphine; Sanderson, Matthea R; Carias, Karin Vanessa; Tavernier, Jan; Wevrick, Rachel

    2017-11-01

    In Prader-Willi syndrome (PWS), obesity is caused by the disruption of appetite-controlling pathways in the brain. Two PWS candidate genes encode MAGEL2 and necdin, related melanoma antigen proteins that assemble into ubiquitination complexes. Mice lacking Magel2 are obese and lack leptin sensitivity in hypothalamic pro-opiomelanocortin neurons, suggesting dysregulation of leptin receptor (LepR) activity. Hypothalamus from Magel2-null mice had less LepR and altered levels of ubiquitin pathway proteins that regulate LepR processing (Rnf41, Usp8, and Stam1). MAGEL2 increased the cell surface abundance of LepR and decreased their degradation. LepR interacts with necdin, which interacts with MAGEL2, which complexes with RNF41 and USP8. Mutations in the MAGE homology domain of MAGEL2 suppress RNF41 stabilization and prevent the MAGEL2-mediated increase of cell surface LepR. Thus, MAGEL2 and necdin together control LepR sorting and degradation through a dynamic ubiquitin-dependent pathway. Loss of MAGEL2 and necdin may uncouple LepR from ubiquitination pathways, providing a cellular mechanism for obesity in PWS. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Leptin receptor signaling inhibits ovarian follicle development and egg laying in chicken hens

    Science.gov (United States)

    2014-01-01

    Background Nutrition intake during growth strongly influences ovarian follicle development and egg laying in chicken hens, yet the underlying endocrine regulatory mechanism is still poorly understood. The relevant research progress is hindered by difficulties in detection of leptin gene and its expression in the chicken. However, a functional leptin receptor (LEPR) is present in the chicken which has been implicated to play a regulatory role in ovarian follicle development and egg laying. The present study targeted LEPR by immunizing against its extracellular domain (ECD), and examined the resultant ovarian follicle development and egg-laying rate in chicken hens. Methods Hens that have been immunized four times with chicken LEPR ECD were assessed for their egg laying rate and feed intake, numbers of ovarian follicles, gene expression profiles, serum lipid parameters, as well as STAT3 signaling pathway. Results Administrations of cLEPR ECD antigen resulted in marked reductions in laying rate that over time eventually recovered to the levels exhibited by the Control hens. Together with the decrease in egg laying rate, cLEPR-immunized hens also exhibited significant reductions in feed intake, plasma concentrations of glucose, triglyceride, high-density lipoprotein, and low-density lipoprotein. Parallelled by reductions in feed intake, mRNA gene expression levels of AgRP, orexin, and NPY were down regulated, but of POMC, MC4R and lepR up-regulated in Immunized hen hypothalamus. cLEPR-immunization also promoted expressions of apoptotic genes such as caspase3 in theca and fas in granulosa layer, but severely depressed IGF-I expression in both theca and granulosa layers. Conclusions Immunization against cLEPR ECD in egg-laying hens generated antibodies that mimic leptin bioactivity by enhancing leptin receptor transduction. This up-regulated apoptotic gene expression in ovarian follicles, negatively regulated the expression of genes that promote follicular development

  13. Leptin receptor blockade reduces intrahepatic vascular resistance and portal pressure in an experimental model of rat liver cirrhosis.

    Science.gov (United States)

    Delgado, María Gabriela; Gracia-Sancho, Jordi; Marrone, Giusi; Rodríguez-Vilarrupla, Aina; Deulofeu, Ramon; Abraldes, Juan G; Bosch, Jaume; García-Pagán, Juan Carlos

    2013-10-01

    Increased hepatic vascular resistance mainly due to elevated vascular tone and to fibrosis is the primary factor in the development of portal hypertension in cirrhosis. Leptin, a hormone associated with reduction in nitric oxide bioavailability, vascular dysfunction, and liver fibrosis, is increased in patients with cirrhosis. We aimed at evaluating whether leptin influences the increased hepatic resistance in portal hypertension. CCl4-cirrhotic rats received the leptin receptor-blocker ObR antibody, or its vehicle, every other day for 1 wk. Hepatic and systemic hemodynamics were measured in both groups. Hepatic nitric oxide production and bioavailability, together with oxidative stress, nitrotyrosinated proteins, and liver fibrosis, were evaluated. In cirrhotic rats, leptin-receptor blockade significantly reduced portal pressure without modifying portal blood flow, suggesting a reduction in the intrahepatic resistance. Portal pressure reduction was associated with increased nitric oxide bioavailability and with decreased O2(-) levels and nitrotyrosinated proteins. No changes in systemic hemodynamics and liver fibrosis were observed. In conclusion, the present study shows that blockade of the leptin signaling pathway in cirrhosis significantly reduces portal pressure. This effect is probably due to a nitric oxide-mediated reduction in the hepatic vascular tone.

  14. Interaction between leptin and leisure-time physical activity and development of hypertension.

    Science.gov (United States)

    Asferg, Camilla; Møgelvang, Rasmus; Flyvbjerg, Allan; Frystyk, Jan; Jensen, Jan S; Marott, Jacob L; Appleyard, Merete; Schnohr, Peter; Jensen, Gorm B; Jeppesen, J Rgen

    2011-12-01

    OBJECTIVE. The mechanisms by which overweight and physical inactivity lead to hypertension are complex. Leptin, an adipocyte-derived hormone, has been linked with hypertension. We wanted to investigate the relationship between leptin, physical activity and new-onset hypertension. METHODS. The study was a prospective cohort study of 744 women and 367 men, who were normotensive in the third Copenhagen City Heart Study (CCHS) examination, performed 1991−94. Based on questionnaire items, the participants were divided into two groups with low (n = 674) and high (n = 437) levels of leisure-time physical activity, respectively. RESULTS. Between the third and the fourth CCHS examination, performed 2001?03, 304 had developed hypertension, defined as systolic blood pressure (SBP) ≥140 mmHg or diastolic blood pressure (DBP) ≥90 mmHg or use of antihypertensive medication. In a logistic regression model, including age, sex, body mass index, SBP, DBP, level of physical activity and leptin, we found a significant interaction between leptin and level of physical activity with new-onset hypertension as outcome variable (p = 0.012). When we entered the interaction variables, effect of leptin with low level of physical activity and with high level of physical activity, respectively, in the original model, leptin predicted new-onset hypertension in participants with low level of physical activity [odds ratio (95% confidence interval): 1.16 (1.01−1.33) for one unit increase in log-transformed leptin levels, p = 0.038], but not in participants with high level of physical activity [0.88 (0.74−1.05), p = 0.15]. CONCLUSION. We found that leptin predicted new-onset hypertension but only in participants with low level of physical activity.

  15. Optogenetic activation of leptin- and glucose-regulated GABAergic neurons in dorsomedial hypothalamus promotes food intake via inhibitory synaptic transmission to paraventricular nucleus of hypothalamus

    Directory of Open Access Journals (Sweden)

    Zesemdorj Otgon-Uul

    2016-08-01

    Full Text Available Objective: The dorsomedial hypothalamus (DMH has been considered an orexigenic nucleus, since the DMH lesion reduced food intake and body weight and induced resistance to diet-induced obesity. The DMH expresses feeding regulatory neuropeptides and receptors including neuropeptide Y (NPY, cocaine- and amphetamine-regulated transcript (CART, cholecystokinin (CCK, leptin receptor, and melanocortin 3/4 receptors. However, the principal neurons generating the orexigenic function in the DMH remain to be defined. This study aimed to clarify the role of the DMH GABAergic neurons in feeding regulation by using optogenetics and electrophysiological techniques. Methods: We generated the mice expressing ChRFR-C167A, a bistable chimeric channelrhodopsin, selectively in GABAergic neurons of DMH via locally injected adeno-associated virus 2. Food intake after optogenetic activation of DMH GABAergic neurons was measured. Electrophysiological properties of DMH GABAergic neurons were measured using slice patch clamp. Results: Optogenetic activation of DMH GABAergic neurons promoted food intake. Leptin hyperpolarized and lowering glucose depolarized half of DMH GABAergic neurons, suggesting their orexigenic property. Optical activation of axonal terminals of DMH GABAergic neurons at the paraventricular nucleus of hypothalamus (PVN, where anorexigenic neurons are localized, increased inhibitory postsynaptic currents on PVN neurons and promoted food intake. Conclusion: DMH GABAergic neurons are regulated by metabolic signals leptin and glucose and, once activated, promote food intake via inhibitory synaptic transmission to PVN. Keywords: Dorsomedial hypothalamus, GABAergic neuron, Feeding, Leptin, Glucose, Optogenetics

  16. Bone mass regulation of leptin and postmenopausal osteoporosis with obesity.

    Science.gov (United States)

    Legiran, Siswo; Brandi, Maria Luisa

    2012-09-01

    Leptin has been known to play a role in weight regulation through food intake and energy expenditure. Leptin also has an important role in bone metabolism. The role of leptin is determined by leptin receptors, either central or peripheral to the bones. We discuss the role of leptin on bone and molecular genetics of osteoporosis in postmenopausal obese women. The role of leptin in bone preserves bone mineral density (BMD) through increased OPG levels leading to bind RANKL, resulting in reducing osteoclast activity. The estrogen role on bone is also mediated by RANKL and OPG. In postmenopausal women who have estrogen deficiency, it increases the rate of RANKL, which increases osteoclastogenesis. Obese individuals who have a high level of leptin will be effected by bone protection. There are similarities in the mechanism between estrogen and leptin in influencing the process of bone remodeling. It may be considered that the role of estrogen can be replaced by leptin. Molecular genetic aspects that play a role in bone remodeling, such as leptin, leptin receptors, cytokines (e.g. RANK, RANKL, and OPG), require further study to be useful, especially regarding osteoporosis therapy based on genetic analysis.

  17. Calcineurin /NFAT activation-dependence of leptin synthesis and vascular growth in response to mechanical stretch

    Directory of Open Access Journals (Sweden)

    Nadia Soudani

    2016-09-01

    Full Text Available Background and Aims- Hypertension and obesity are important risk factors of cardiovascular disease. They are both associated with high leptin levels and have been shown to promote vascular hypertrophy, through the RhoA/ROCK and ERK1/2 phosphorylation. Calcineurin/NFAT activation also induces vascular hypertrophy by upregulating various genes. This study aimed to decipher whether a crosstalk exists between the RhoA/ROCK pathway, Ca+2/calcineurin/NFAT pathway, and ERK1/2 phosphorylation in the process of mechanical stretch-induced vascular smooth muscle cell (VSMC hypertrophy and leptin synthesis. Methods and Results- Rat portal vein (RPV organ culture was used to investigate the effect of mechanical stretch and exogenous leptin (3.1 nM on VSMC hypertrophy and leptin synthesis. Results showed that stretching the RPV significantly upregulated leptin secretion, mRNA and protein expression, which were inhibited by the calcium channel blocker nifedipine (10 μM, the selective calcineurin inhibitor FK506 (1 nM and the ERK1/2 inhibitor PD98059 (1 μM. The transcription inhibitor actinomycin D (0.1M and the translation inhibitor cycloheximide (1 mM significantly decreased stretch-induced leptin protein expression. Mechanical stretch or leptin caused an increase in wet weight changes and protein synthesis, considered as hypertrophic markers, while they were inhibited by FK506 (0.1 nM; 1 nM. In addition, stretch or exogenous leptin significantly increased calcineurin activity and MCIP1 expression whereas leptin induced NFAT nuclear translocation in VSMCs. Moreover, in response to stretch or exogenous leptin, the Rho inhibitor C3 exoenzyme (30 ng/mL, the ROCK inhibitor Y-27632 (10 μM, and the actin depolymerization agents Latrunculin B (50 nM and cytochalasin D (1 μM reduced calcineurin activation and NFAT nuclear translocation. ERK1/2 phosphorylation was inhibited by FK506 and C3. Conclusions- Mechanical stretch-induced VSMC hypertrophy and leptin

  18. Genetic polymorphisms at the leptin receptor gene in three beef cattle breeds

    Directory of Open Access Journals (Sweden)

    Sabrina E.M. Almeida

    2008-01-01

    Full Text Available The genetic diversity of a single nucleotide polymorphism (SNP at the exon 20 (T945M of the leptin receptor gene (LEPR and of three short tandem repeats (STRs BM7225, BMS694, and BMS2145 linked to LEPR was investigated in three beef cattle herds (Brangus Ibagé, Charolais, and Aberdeen Angus. A cheap and effective new method to analyze the T945M polymorphism in cattle populations was developed and the possible role of these polymorphisms in reproduction and weight gain of postpartum cows was evaluated. High levels of genetic diversity were observed with the average heterozygosity of STRs ranging from 0.71 to 0.81. No significant association was detected between LEPR markers and reproductive parameters or daily weight gain. These negative results suggest that the LEPR gene polymorphisms, at least those herein described, do not influence postpartum cows production.

  19. Serum Leptin levels do not correlate with disease activity in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Sibel Yilmaz Oner

    2015-01-01

    Full Text Available Objectives Leptin, is a fat tissue hormone which effects energy expenditure , food intake , hematopoiesis, osteogenesis, angiogenesis, reproductive and immune systems. We aimed to determine serum leptin levels and investigate the association between disease activity and other parameters in RA patients. Methods Patients with RA (n=106 as the study group, healthy controls (n=52 and osteoarthritis (OA patients (n=37 as a control group were enrolled to the study. RA patients were categorized in four different groups according to DAS28 scores: remission ,low (LDA, moderate (MDA or high (HDA disease activity . Results No differences were present between the body mass indices of the three groups. Mean leptin levels in RA patients, OA group and healthy individuals were 25,60±13,41, 23,03±11,51 and 23,81±12,85 ng/ml, respectively and no significant difference was present between the groups. Nine of (8,5% RA patients were in remission, 16 (15,1% were in LDA, 40 (37,7% in MDA and 41 (38,7% were in HDA. Leptin levels did not correlate with DAS28 scores of RA patients (r=-0,12, p=0,11. Mean leptin levels in RA patients with remission was 32,65±7, 28 in LDA 23,94±10,94 in MDA 26,73±14,92 and in HDA 23,59±13,50 ng/ml (p=NS. No associations were observed between leptin levels and CRP, ESR, RF positivity and disease duration. Conclusions Our study revealed no correlation of disease activity and serum leptin levels. Therefore leptin does not seem to be an appropriate biomarker to monitorize inflammation in RA.

  20. The impact of leptin on perinatal development and psychopathology.

    Science.gov (United States)

    Valleau, Jeanette C; Sullivan, Elinor L

    2014-11-01

    Leptin has long been associated with metabolism as it is a critical regulator of both food intake and energy expenditure, but recently, leptin dysregulation has been proposed as a mechanism of psychopathology. This review discusses the evidence supporting a role for leptin in mental health disorders and describes potential mechanisms that may underlie this association. Leptin plays a critical role in pregnancy and in fetal growth and development. Leptin's role and profile during development is examined in available human studies, and the validity of applying studies conducted in animal models to the human population are discussed. Rodents experience a postnatal leptin surge, which does not occur in humans or larger animal models. This suggests that further research using large mammal models, which have a leptin profile across pregnancy and development similar to humans, are of high importance. Maternal obesity and hyperleptinemia correlate with increased leptin levels in the umbilical cord, placenta, and fetus. Leptin levels are thought to impact fetal brain development; likely by activating proinflammatory cytokines that are known to impact many of the neurotransmitter systems that regulate behavior. Leptin is likely involved in behavioral regulation as leptin receptors are widely distributed in the brain, and leptin influences cortisol release, the mesoaccumbens dopamine pathway, serotonin synthesis, and hippocampal synaptic plasticity. In humans, both high and low levels of leptin are reported to be associated with psychopathology. This inconsistency is likely due to differences in the metabolic state of the study populations. Leptin resistance, which occurs in the obese state, may explain how both high and low levels of leptin are associated with psychopathology, as well as the comorbidity of obesity with numerous mental illnesses. Leptin resistance is likely to influence disorders such as depression and anxiety where high leptin levels have been correlated

  1. Relationship between leptin concentrations and disease activity in patients with rheumatoid arthritis.

    Science.gov (United States)

    Batún-Garrido, José Antonio de Jesús; Salas-Magaña, Marisol; Juárez-Rojop, Isela Esther; Hernández-Núñez, Eúfrates; Olán, Francisco

    2018-05-11

    Multiple studies have found a direct relationship between leptin concentrations and disease activity in rheumatoid arthritis. We studied 77 patients with the diagnosis of rheumatoid arthritis; the leptin determination was through an enzyme immunoassay. Disease activity was assessed by the DAS-28 CRP. A multivariate logistic regression model was used to determine the association between significant variables and leptin concentrations. 40.3% of the patients were in remission, 41.6% were mildly active, 11.7% were moderately active and 6.5% were severely active. The results show an independent association between higher concentrations of leptin and disease activity (OR 1.7; 95% CI 1.4-3.2; p .03), the number of swollen joints (OR 4.6; 95% CI 1.7-8.3; p .000), the number of painful joints (OR 3.4; 95% CI 1.6-4.6; p .000), and the presence of metabolic syndrome (OR 1.3; 95% IC 1.2-1,9; p .045). The data suggest that serum leptin is elevated in patients with active RA. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  2. Association of leptin/receptor and TNF-α gene variants with adolescent obesity in Malaysia.

    Science.gov (United States)

    Ng, Zoe Yi; Veerapen, Muthu Kumar; Hon, Wei Min; Lim, Renee Lay Hong

    2014-10-01

    Leptin (LEP) G-2548A (rs7799039), leptin receptor (LEPR) Q223R (rs1137101) and tumor necrosis factor (TNF)-α G-308A (rs1800629) gene variants have been reported to be associated with obesity, although results for subjects from different countries have been controversial. The aim of this study was to determine the prevalence of overweight and obesity in Malaysian adolescents and the association of these polymorphisms with overweight and obese or over-fat adolescents. A total of 613 adolescents (241 Malay, 219 Chinese, 153 Indian) were enrolled. Anthropometric measurements of body mass index (BMI) and body fat percentage were used to classify subjects as controls (non-overweight/obese or normal fat) or as cases (overweight/obese or over-fat). Genomic DNA was extracted from oral buccal mucosa cells for genotyping using polymerase chain reaction-restriction fragment length polymorphism and data obtained were statistically analyzed. A total of 23.3% of subjects were overweight/obese whereas 11.4% were over-fat; there were significantly more overweight/obese and over-fat Indian and Malay adolescents compared to Chinese (P obesity (P = 0.025; odds ratio, 3.64; 95% confidence interval: 1.15-11.54). Despite the lack of association observed for LEPR Q223R and TNF-α G-308A, Indian and Chinese subjects with AA risk genotype for LEPR Q223R/LEP G-2548A and TNF-α G-308A/LEP G-2548A, respectively, had increased mean BMI (P = 0.049, P = 0.016). Genotype distribution and association of these polymorphisms with overweight/obesity vary between ethnic groups and genders. Nevertheless, the LEP G-2548A risk allele may be associated with overweight/obese Indian male adolescents in Malaysia. © 2014 Japan Pediatric Society.

  3. Leptin upregulates telomerase activity and transcription of human telomerase reverse transcriptase in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Ren, He, E-mail: herenrh@yahoo.com.cn [Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Hospital, Tianjin (China); Zhao, Tiansuo; Wang, Xiuchao; Gao, Chuntao; Wang, Jian; Yu, Ming [Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Hospital, Tianjin (China); Hao, Jihui, E-mail: jihuihao@yahoo.com [Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Hospital, Tianjin (China)

    2010-03-26

    The aim was to analyze the mechanism of leptin-induced activity of telomerase in MCF-7 breast cancer cells. We found that leptin activated telomerase in a dose-dependent manner; leptin upregulated the expression of Human Telomerase Reverse Transcriptase (hTERT) at mRNA and protein levels; blockade of signal transducer and activator of transcription 3 (STAT3) phosphorylation significantly counteracted leptin-induced hTERT transcription and protein expression; chromatin immunoprecipitation analysis showed that leptin enhanced the binding of STAT3 to the hTERT promoter. This study uncovers a new mechanism of the proliferative effect of leptin on breast cancer cells and provides a new explanation of obesity-related breast cancer.

  4. Ablation of the Leptin receptor in Myeloid Cells Impairs Pulmonary Clearance of Streptococcus Pneumoniae and Alveolar Macrophage Bactericidal Function.

    Science.gov (United States)

    Mancuso, Peter; Curtis, Jeffrey L; Freeman, Christine M; Peters-Golden, Marc; Weinberg, Jason B; Myers, Martin G

    2018-03-22

    Leptin is a pleiotropic hormone produced by white adipose tissue that regulates appetite and many physiologic functions including the immune response to infection. Genetic leptin deficiency in humans and mice impairs host defenses against respiratory tract infections. Since leptin deficiency is associated with obesity and other metabolic abnormalities, we generated mice that lack the leptin receptor (LepRb) in cells of the myeloid linage (LysM-LepRb-KO) to evaluate its impact in lean metabolically normal mice in a murine model of pneumococcal pneumonia. We observed higher lung and spleen bacterial burdens in LysM-LepRb-KO mice following an intratracheal challenge with S. pneumoniae. Although numbers of leukocytes recovered from bronchoalveolar lavage fluid did not differ between groups, we did observe higher levels of pulmonary IL-13 and TNFα in LysM-LepRb-KO mice 48 h post-infection. Phagocytosis and killing of ingested S. pneumoniae were also impaired in alveolar macrophages (AM)s from LysM-LepRb-KO mice in vitro, and was associated with reduced LTB4 and enhanced PGE2 synthesis in vitro. Pretreatment of AMs with LTB4 and the cyclooxygenase inhibitor, indomethacin, restored phagocytosis but not bacterial killing in vitro. These results, confirm our previous observations in leptin-deficient (ob/ob) and fasted mice, and demonstrate that decreased leptin action, as opposed to metabolic irregularities associated with obesity or starvation, are responsible for the defective host defense against pneumococcal pneumonia. They also provide novel targets for therapeutic intervention in humans with bacterial pneumonia.

  5. The daidzein- and estradiol- induced anorectic action in CCK or leptin receptor deficiency rats.

    Science.gov (United States)

    Fujitani, Mina; Mizushige, Takafumi; Bhattarai, Keshab; Iwahara, Asami; Aida, Ryojiro; Kishida, Taro

    2015-01-01

    We investigated the effect of daidzein feeding and estradiol treatment on food intake in cholecystokinin-1 receptor (CCK1R) deficiency, leptin receptor (ObRb) deficiency rats and their wild-type rats. These rats underwent an ovariectomy or a sham operation. For the 5 week experiment, each rat was divided in three groups: control, daidzein (150 mg/kg diet), and estradiol (4.2 μg/rat/day) groups. In both CCK1R+ and CCK1R- rats, daidzein feeding and estradiol treatment significantly decreased food intake. Daidzein feeding significantly reduced food intake in ovariectomized ObRb- rats, although not in ObRb+ rats. Estradiol treatment significantly lowered food intake in ovariectomized ObRb+ and ObRb- rats. In the ovariectomized rats, estradiol treatment significantly increases uterine weight, while daidzein feeding did not change it, suggesting that daidzein might have no or weak estrogenic effect in our experiment. These results suggest that CCK1R and ObRb signalings were not essential for the daidzein- and estradiol-induced anorectic action.

  6. Variability in the leptin, leptin receptor and heart fatty acid binding protein genes in relationship with meat quality traits in pigs

    Directory of Open Access Journals (Sweden)

    Renata Mikolášová

    2005-01-01

    Full Text Available The leptin (LEP-HinfI, leptin receptor (LEPR-HpaII and heart fatty acid binding protein (H-FABP-HinfI genes and their genotypes combination (LEP-HinfI *LEPR-HpaII were tested for associations with the pH1, pH24, myoglobin content (mg/100 g, intramuscular fat content (% and remission (%. The genotypes were determined in Large White, Landrace and Duroc breeds (n = 106, 56 and 4, respectively. The allele frequencies were: LEP-HinfI: C = 0.133 T = 0.867; LEPR-HpaII: A = 0.331 B = 0.669; H-FABP-HinfI: H = 0.745 h = 0.255. The populations of breeds were in the genetic equilibrium according to the χ2 test in the tested loci. The combinations of LEP-HinfI and LEPR-HpaII were significantly associated with the pH24 and remission. The H-FABP-HinfI locus was significantly associated with intramuscular fat content.

  7. Dietary fat and insulin resistance: a connection through leptin and PPARγ activation

    Directory of Open Access Journals (Sweden)

    Doaa Nader Al-Jada

    2016-06-01

    Full Text Available Insulin resistance refers to reduced insulin action in peripheral tissues and impaired suppression of endogenous glucose production, a state which is critical for maintaining normal glucose homeostasis. Insulin resistance is partly explained by genetic factors and is strongly influenced by the individual's habitual lifestyle. Investigating factors that may influence the development of insulin resistance and their mechanisms of action is highly significant; one of these factors include dietary fat. Both quantitative and qualitative terms of dietary fat have been known to play an important role in the development of insulin resistance, although the mechanism underlying this effect is not fully understood. In this regard, the classical view has been that dietary fat quality mainly affects cell membrane fatty acid composition and consequently the membrane function. Recently, the relationship between dietary fat and insulin resistance has entered an advanced level due to the discovery that different fatty acids can regulate gene expression, transcriptional activity and adipocytokines secretion. In essence, this provides new mechanisms by which fatty acids exert their cellular effects. The present review critically assesses the effect of dietary fat quality on the development of insulin resistance in relation to the adipocytokine, leptin and the activation of the transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ. It is evident that fat quality influences the development of insulin resistance and has a more important role than quantity. Leptin and PPARγ prove to be potential candidates linking dietary fat with insulin resistance. However, the exact role or mechanism of action of various types of dietary fat in the development of insulin resistance is still uncertain. Further well-controlled studies in humans are necessary to establish better evidence-based dietary fat recommendations for diabetes prevention and its

  8. Validity of leptin receptor-deficiency (db/db) type 2 diabetes mellitus mice as a model of secondary osteoporosis

    Science.gov (United States)

    Huang, Le; You, Yong-Ke; Zhu, Tracy Y.; Zheng, Li-Zhen; Huang, Xiao-Ru; Chen, Hai-Yong; Yao, Dong; Lan, Hui-Yao; Qin, Ling

    2016-06-01

    This study aimed to evaluate the validation of the leptin receptor-deficient mice model for secondary osteoporosis associated with type 2 diabetes mellitus (T2DM) at bone micro-architectural level. Thirty three 36-week old male mice were divided into four groups: normal control (db/m) (n = 7), leptin receptor-deficient T2DM (db/db) (n = 8), human C-reactive protein (CRP) transgenic normal control (crp/db/m) (n = 7), and human CRP transgenic T2DM (crp/db/db) (n = 11). Lumber vertebrae (L5) and bilateral lower limbs were scanned by micro-CT to analyze trabecular and cortical bone quality. Right femora were used for three-point bending to analyze the mechanical properties. Trabecular bone quality at L5 was better in db/db or crp/db/db group in terms of bone mineral density (BMD), bone volume fraction, connectivity density, trabecular number and separation (all p  0.05). Maximum loading and energy yield in mechanical test were similar among groups while the elastic modulus in db/db and crp/db/db significantly lower than db/m. The leptin-receptor mice is not a proper model for secondary osteoporosis associated with T2DM.

  9. Leptin Regulation of Gonadotrope Gonadotropin-Releasing Hormone Receptors As a Metabolic Checkpoint and Gateway to Reproductive Competence

    Directory of Open Access Journals (Sweden)

    Angela K. Odle

    2018-01-01

    Full Text Available The adipokine leptin signals the body’s nutritional status to the brain, and particularly, the hypothalamus. However, leptin receptors (LEPRs can be found all throughout the body and brain, including the pituitary. It is known that leptin is permissive for reproduction, and mice that cannot produce leptin (Lep/Lep are infertile. Many studies have pinpointed leptin’s regulation of reproduction to the hypothalamus. However, LEPRs exist at all levels of the hypothalamic–pituitary–gonadal axis. We have previously shown that deleting the signaling portion of the LEPR specifically in gonadotropes impairs fertility in female mice. Our recent studies have targeted this regulation to the control of gonadotropin releasing hormone receptor (GnRHR expression. The hypotheses presented here are twofold: (1 cyclic regulation of pituitary GnRHR levels sets up a target metabolic checkpoint for control of the reproductive axis and (2 multiple checkpoints are required for the metabolic signaling that regulates the reproductive axis. Here, we emphasize and explore the relationship between the hypothalamus and the pituitary with regard to the regulation of GnRHR. The original data we present strengthen these hypotheses and build on our previous studies. We show that we can cause infertility in 70% of female mice by deleting all isoforms of LEPR specifically in gonadotropes. Our findings implicate activin subunit (InhBa mRNA as a potential leptin target in gonadotropes. We further show gonadotrope-specific upregulation of GnRHR protein (but not mRNA levels following leptin stimulation. In order to try and understand this post-transcriptional regulation, we tested candidate miRNAs (identified with in silico analysis that may be binding the Gnrhr mRNA. We show significant upregulation of one of these miRNAs in our gonadotrope-Lepr-null females. The evidence provided here, combined with our previous work, lay the foundation for metabolically regulated post

  10. Orexin A/Hypocretin Modulates Leptin Receptor-Mediated Signaling by Allosteric Modulations Mediated by the Ghrelin GHS-R1A Receptor in Hypothalamic Neurons.

    Science.gov (United States)

    Medrano, Mireia; Aguinaga, David; Reyes-Resina, Irene; Canela, Enric I; Mallol, Josefa; Navarro, Gemma; Franco, Rafael

    2018-06-01

    The hypothalamus is a key integrator of nutrient-seeking signals in the form of hormones and metabolites originated in both the central nervous system and the periphery. The main autocrine and paracrine target of orexinergic-related hormones such as leptin, orexin/hypocretin, and ghrelin are neuropeptide Y neurons located in the arcuate nucleus of the hypothalamus. The aim of this study was to investigate the expression and the molecular and functional relationships between leptin, orexin/hypocretin and ghrelin receptors. Biophysical studies in a heterologous system showed physical interactions between them, with potential formation of heterotrimeric complexes. Functional assays showed robust allosteric interactions particularly different when the three receptors are expressed together. Further biochemical and pharmacological assays provided evidence of heterotrimer functional expression in primary cultures of hypothalamic neurons. These findings constitute evidence of close relationships in the action of the three hormones already starting at the receptor level in hypothalamic cells.

  11. Structured intermittent interruption of chronic HIV infection treatment with highly active antiretroviral therapy: effects on leptin and TNF-alpha.

    Science.gov (United States)

    Arjona, M Montes de Oca; Pérez-Cano, R; Garcia-Juárez, R; Martín-Aspas, A; del Alamo, C Fernández Gutiérrez; Girón-González, J A

    2006-04-01

    The changes in nutritional parameters and adipocytokines after structured intermittent interruption of highly active antiretroviral treatment of patients with chronic HIV infection are analyzed. Twenty-seven patients with chronic HIV infection (median CD4+ T cell count/microl: nadir, 394; at the beginning of structured interruptions, 1041; HIV viral load: nadir, 41,521 copies/ml; at the beginning of structured interruptions triglycerides, cholesterol, leptin, and tumor necrosis factor and its soluble receptors I and II were determined. After the three cycles of intermittent interruptions of therapy, no significant differences in CD4+ T cell count/microl, viral load, or serum concentrations of cholesterol or triglycerides with reference to baseline values were found. A near-significant higher fatty mass (skinfold thicknesses, at the end, 121 mm, at the beginning, 100 mm, p = 0.100), combined with a significant increase of concentration of leptin (1.5 vs. 4.7 ng/ml, p = 0,044), as well as a decrease in serum concentrations of soluble receptors of tumor necrosis factor (TNFRI, 104 vs. 73 pg/ml, p = 0.022; TNFRII 253 vs. 195 pg/ml, p = 0.098) were detected. Structured intermittent interruption of highly active antiretroviral treatment of patients with chronic HIV infection induces a valuable positive modification in markers of lipid turnover and adipose tissue mass.

  12. [Expression of neuropeptide Y and long leptin receptor in gastrointestinal tract of giant panda].

    Science.gov (United States)

    Luo, Qihui; Tang, Xiuying; Chen, Zhengli; Wang, Kaiyu; Wang, Chengdong; Li, Desheng; Li, Caiwu

    2015-08-01

    To study the expression and distribution of neuropeptide Y (NPY) and long leptin receptor (OB-Rb) in the gastrointestinal tract of giant panda, samples of three animals were collected from the key laboratory for reproduction and conservation genetics of endangered wildlife of Sichuan province, China conservation and research center for the giant panda. Paraffin sections of giant panda gastrointestinal tissue samples were observed using hematoxylin-eosin staining (HE) and strept actividin-biotin complex immunohistochemical staining (IHC). The results show that the intestinal histology of three pandas was normal and no pathological changes, and there were rich single-cell and multi-cell mucous glands, long intestinal villi and thick muscularis mucosa and muscle layer. Positive cells expressing NPY and OB-Rb were widely detected in the gastrointestinal tract by IHC methods. NPY positive nerve fibers and neuronal cell were widely distributed in submucosal plexus and myenteric plexus, especially in the former. They were arranged beaded or point-like shape. NPY positive cells were observed in the shape of ellipse and polygon and mainly located in the mucous layer and intestinal glands. OB-Rb positive cells were mainly distributed in the mucous layer and the laminae propria, especially the latter. These results confirmed that NPY and OB-Rb are widely distributed in the gut of the giant panda, which provide strong reference for the research between growth and development, digestion and absorption, and immune function.

  13. Leptin receptor and ghrelin genes polymorphisms in relation to the metabolism of lipids

    Directory of Open Access Journals (Sweden)

    Anna Trakovická

    2015-10-01

    Full Text Available The aim of this work was to analyse genetic polymorphisms in genes encoding leptin receptor (LEPR and ghrelin (GHR as genetic markers of metabolic disorders in human nutrition. Genomic DNA was obtained from in total 84 human blood samples. Effect of analysed genetic markers was evaluated for three biochemical parameters: total cholesterol, HDL and LDL cholesterol. The PCR-RFLP method was used for identification of SNPs in LEPR (Gln223Arg and GHR (171T/C genes. In analysed population prevalence of heterozygous LEPRAG (47.62% and GHRCT (40.48% genotypes was observed. Frequency of LEPRA and LEPRB alleles were 0.55 and 0.45, respectively. Similar the GHRC allele had only slight predominance than GHRT allele (0.54/0.46. In population was found higher level of observed heterozygosity across loci (0.44. For both SNPs was found high effective allele number (1.98 which was also transferred to the median level of polymorphic information content (0.37. Association analysis of LEPR and GHR genotypes effect on selected biochemical parameters was performed using GLM procedure. Significant association was found only for levels of LDL cholesterol (P<0.01. Our study shows that both genes are involved in nutritional status and therefore can be considered as candidate genes of lipids metabolism disorders and obesity.

  14. [Association between feeding behavior, and genetic polymorphism of leptin and its receptor in obese Chilean children].

    Science.gov (United States)

    Valladares, Macarena; Obregón, Ana María; Weisstaub, Gerardo; Burrows, Raquel; Patiño, Ana; Ho-Urriola, Judith; Santos, José Luis

    2014-09-12

    Leptin (LEP) is mainly produced in adipose tissue and acts in the hypothalamus to regulate energy intake. Mutations in the LEP gene or its receptor (LEPR) that produce monogenic obesity are infrequent. However, LEP and LEPR polymorphisms have been associated with obesity multifactorial, due to the association found with body weight and eating behavior. Measure the association between LEP and LEPR polymorphisms with childhood obesity and eating behavior. 221 Chilean obese children (BMI above the 95th percentile) were recruited. Parents of 134 of these children were also recruited to determine the association between LEP and LEPR polymorphisms with obesity in a case study-parent trio. Eating behavior was measured through the questionnaire of three factors progenitors' version (TFEQ-P19) and eating behavior in children (CEBQ). No significant difference between the studied polymorphisms and childhood obesity, after correction for multiple comparisons, was observed. The dimensions; "Slow eating", "emotional eating", "enjoyment of food" and "uncontrolling eating" were significant associated with certain polymorphisms of LEP and LEPR. There would be an association between polymorphisms of the LEP and LEPR genes with eating behavior in Chilean obese children. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  15. Reduced anorexigenic efficacy of leptin, but not of the melanocortin receptor agonist melanotan-II, predicts diet-induced obesity in rats

    NARCIS (Netherlands)

    van Dijk, G; de Vries, K; Nyakas, C; Buwalda, B; Adage, T; Kuipers, F; Kas, M.J.H.; Adan, RAH; Wilkinson, CW; Thiele, TE; Scheurink, AJW

    2005-01-01

    Leptin gains access to the central nervous system where it influences activity of neuronal networks involved in ingestive behavior, neuroendocrine activity, and metabolism. In particular, the brain melanocortin (MC) system is important in leptin signaling and maintenance of energy balance. Although

  16. Leptin Induces Oxidative Stress Through Activation of NADPH Oxidase in Renal Tubular Cells: Antioxidant Effect of L-Carnitine.

    Science.gov (United States)

    Blanca, Antonio J; Ruiz-Armenta, María V; Zambrano, Sonia; Salsoso, Rocío; Miguel-Carrasco, José L; Fortuño, Ana; Revilla, Elisa; Mate, Alfonso; Vázquez, Carmen M

    2016-10-01

    Leptin is a protein involved in the regulation of food intake and in the immune and inflammatory responses, among other functions. Evidences demonstrate that obesity is directly associated with high levels of leptin, suggesting that leptin may directly link obesity with the elevated cardiovascular and renal risk associated with increased body weight. Adverse effects of leptin include oxidative stress mediated by activation of NADPH oxidase. The aim of this study was to evaluate the effect of L-carnitine (LC) in rat renal epithelial cells (NRK-52E) exposed to leptin in order to generate a state of oxidative stress characteristic of obesity. Leptin increased superoxide anion (O2 (•) -) generation from NADPH oxidase (via PI3 K/Akt pathway), NOX2 expression and nitrotyrosine levels. On the other hand, NOX4 expression and hydrogen peroxide (H2 O2 ) levels diminished after leptin treatment. Furthermore, the expression of antioxidant enzymes, catalase, and superoxide dismutase, was altered by leptin, and an increase in the mRNA expression of pro-inflammatory factors was also found in leptin-treated cells. LC restored all changes induced by leptin to those levels found in untreated cells. In conclusion, stimulation of NRK-52E cells with leptin induced a state of oxidative stress and inflammation that could be reversed by preincubation with LC. Interestingly, LC induced an upregulation of NOX4 and restored the release of its product, hydrogen peroxide, which suggests a protective role of NOX4 against leptin-induced renal damage. J. Cell. Biochem. 117: 2281-2288, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Leptin activates oxytocin neurons of the hypothalamic paraventricular nucleus in both control and diet-induced obese rodents.

    Directory of Open Access Journals (Sweden)

    Mario Perello

    Full Text Available The adipocyte-derived hormone leptin acts in the brain to reduce body weight and fat mass. Recent studies suggest that parvocellular oxytocin (OXT neurons of the hypothalamic paraventricular nucleus (PVN can mediate body weight reduction through inhibition of food intake and increased energy expenditure. However, the role of OXT neurons of the PVN as a primary target of leptin has not been investigated. Here, we studied the potential role of OXT neurons of the PVN in leptin-mediated effects on body weight regulation in fasted rats. We demonstrated that intracerebroventricular (ICV leptin activates STAT3 phosphorylation in OXT neurons of the PVN, showed that this occurs in a subpopulation of OXT neurons that innervate the nucleus of the solitary tract (NTS, and provided further evidence suggesting a role of OXT to mediate leptin's actions on body weight. In addition, our results indicated that OXT neurons are responsive to ICV leptin and mediate leptin effects on body weight in diet induced obese (DIO rats, which are resistant to the anorectic effects of the hormone. Thus, we conclude that leptin targets a specific subpopulation of parvocellular OXT neurons of the PVN, and that this action may be important for leptin's ability to reduce body weight in both control and obese rats.

  18. Role of leptin as a link between metabolism and the immune system.

    Science.gov (United States)

    Pérez-Pérez, Antonio; Vilariño-García, Teresa; Fernández-Riejos, Patricia; Martín-González, Jenifer; Segura-Egea, Juan José; Sánchez-Margalet, Víctor

    2017-06-01

    Leptin is an adipocyte-derived hormone not only with an important role in the central control of energy metabolism, but also with many pleiotropic effects in different physiological systems. One of these peripheral functions of leptin is a regulatory role in the interplay between energy metabolism and the immune system, being a cornerstone of the new field of immunometabolism. Leptin receptor is expressed throughout the immune system and the regulatory effects of leptin include cells from both the innate and adaptive immune system. Leptin is one of the adipokines responsible for the inflammatory state found in obesity that predisposes not only to type 2 diabetes, metabolic syndrome and cardiovascular disease, but also to autoimmune and allergic diseases. Leptin is an important mediator of the immunosuppressive state in undernutrition status. Placenta is the second source of leptin and it may play a role in the immunomodulation during pregnancy. Finally, recent work has pointed to the participation of leptin and leptin receptor in the pathophysiology of inflammation in oral biology. Therefore, leptin and leptin receptor should be considered for investigation as a marker of inflammation and immune activation in the frontier of innate-adaptive system, and as possible targets for intervention in the immunometabolic mediated pathophysiology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Running on Empty: Leptin Signaling in VTA Regulates Reward from Physical Activity.

    Science.gov (United States)

    Chen, Zuxin; Kenny, Paul J

    2015-10-06

    Hunger increases physical activity and stamina to support food-directed foraging behaviors, but underlying mechanisms are unclear. In this issue, Fernandes et al. (2015) show that disruption of leptin-regulated STAT3 signaling in midbrain dopamine neurons increases the rewarding effects of running in mice, which could explain the "high" experienced by endurance runners. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Expressão do gene da leptina e seu receptor Ob-Rb no parênquima mamário de novilhas leiteiras Leptin and leptin receptor Ob-Rb gene expression in mammary parenchyma of dairy heifers

    Directory of Open Access Journals (Sweden)

    Betina Joyce Lew

    2012-05-01

    Full Text Available Objetivou-se com este trabalho avaliar os efeitos de uma dieta de alto nível de energia e proteína combinada com a aplicação de bST no perfil de expressão dos genes da leptina e de seu receptor Ob-Rb no parênquima mamário de novilhas leiteiras. Foram utilizadas amostras de parênquima mamário de 32 novilhas holandesas distribuídas aleatoriamente em quatro tratamentos (n=8: dieta com alto ou baixo teor de energia e proteína combinada ou não com a aplicação de bST. O delineamento utilizado foi em blocos casualizados com arranjo de tratamentos em esquema fatorial 2 × 2. A extração do RNA total das amostras de tecido foi feita e o nível de expressão gênica foi analisado por qRT-PCR utilizando-se o gene da glicuronidase β como controle, pelo método 2-ΔΔCt. Animais que receberam a dieta com alto conteúdo de energia e proteína apresentaram maior expressão de mRNA de leptina, com aumento de 56%, e menor expressão de mRNA do receptor Ob-Rb, com redução de 18%. Por outro lado, a aplicação de bST resultou em diminuição da expressão do mRNA de leptina e do receptor Ob-Rb em 74% e 23%, respectivamente. Não houve interação entre dieta e aplicação de bST. O aumento na expressão de leptina pode explicar, ao menos em parte, os efeitos negativos da dieta de alta energia e proteína, oferecida no período pré-púbere, sobre a produção de leite de novilhas leiteiras.The objective of this study was to examine the effects of a diet with high level of energy and protein, combined with bST injections, on leptin and leptin-receptor (Ob-Rb gene expression profile in the mammary parenchyma of dairy heifers. Mammary parenchyma samples from 32 Holstein heifers, randomly assigned to one of four treatments (n=8, were utilized: high or low energy and protein diet, with or without bST injection. The experiment was designed in randomized blocks and arranged in a 2 × 2 factorial arrangement. Total RNA was extracted from tissue samples

  1. [Association of leptin receptor gene polymorphrism with metabolic syndrome in older Han adults from major cities in China].

    Science.gov (United States)

    Wu, Jinghuan; Zhuo, Qin; Chen, Xi; Tian, Yuan; Piao, Jianhua; Yang, Xiaoguang

    2016-05-01

    To investigate the relationship of leptin receptor gene rs1137100 and rs1137101 single nucleotide polymorphrism (SNP) with metabolic syndrome (MS) in older Han adults from major cities in China. A total of 2082 older Han adults were selected from 18 major cities including 15 provinces/municipalities of China National Nutrition and Health Survey in 2002. According to the MS definition proposed by Joint Interim Statement (JIS), the subjects were divided into MS and control groups. Plasma leptin and insulin levels were measured. The genotypes of rs1137100 and rs1137101 were detected by Taqman method. Association of genotypes of leptin receptor gene SNPs with MS was investigated. The MS group showed higher body mass index (BMI), waist circumference, fasting serum glucose, systolic blood pressure (SBP) and diastolic blood pressure (DBP), triglycerides (TG), serum total cholesterol (TC), insulin, homeostasis model of assessment for insulin resistence index (HOMA-IR) and leptin levels than those of control individuals, while the high density lipoprotein cholesterol (HDL-c) was significantly lower than the control group. The, GG, AA, GA genotypes distribution and the A allele frequency of rs1137100 and rs1137101 were similar between the two groups. The DBP and SBP level were obviously higher in AA genotype. The HDL-c concentration Was significantly lower in AA and GA + AA genotype. The AA and GA genotypes carriers in rs1137100 had similar risk for MS when comparing with the GG genotypes, and the OR values were 1.23 (95% CI 0.90-1.67) and 2.23 (95% CI 0.83-6.44), respectively. The AA and GA genotypes carriers in rs1137101 had similar risk for MS when comparing with the GG genotypes, and the OR values were 1.23 (95% CI 0.90-1.67) and 2.23 (95% CI 0.83-6.44), respectively. Leptin receptor genes rs1137100 and rs1137101 are not associated with pathogenesis of MS in older Han adults, but it may relate with hypertension or lipid abnormality.

  2. Analysis of Gln223Agr Polymorphism of Leptin Receptor Gene in Type II Diabetic Mellitus Subjects among Malaysians

    Directory of Open Access Journals (Sweden)

    Chong Pei Pei

    2013-09-01

    Full Text Available Leptin is known as the adipose peptide hormone. It plays an important role in the regulation of body fat and inhibits food intake by its action. Moreover, it is believed that leptin level deductions might be the cause of obesity and may play an important role in the development of Type 2 Diabetes Mellitus (T2DM, as well as in cardiovascular diseases (CVD. The Leptin Receptor (LEPR gene and its polymorphisms have not been extensively studied in relation to the T2DM and its complications in various populations. In this study, we have determined the association of Gln223Agr loci of LEPR gene in three ethnic groups of Malaysia, namely: Malays, Chinese and Indians. A total of 284 T2DM subjects and 281 healthy individuals were recruited based on International Diabetes Federation (IDF criteria. Genomic DNA was extracted from the buccal specimens of the subjects. The commercial polymerase chain reaction (PCR method was carried out by proper restriction enzyme MSP I to both amplify and digest the Gln223Agr polymorphism. The p-value among the three studied races was 0.057, 0.011 and 0.095, respectively. The values such as age, WHR, FPG, HbA1C, LDL, HDL, Chol and Family History were significantly different among the subjects with Gln223Agr polymorphism of LEPR (p < 0.05.

  3. Analysis of Gln223Agr polymorphism of Leptin Receptor Gene in type II diabetic mellitus subjects among Malaysians.

    Science.gov (United States)

    Etemad, Ali; Ramachandran, Vasudevan; Pishva, Seyyed Reza; Heidari, Farzad; Aziz, Ahmad Fazli Abdul; Yusof, Ahmad Khairuddin Mohamed; Pei, Chong Pei; Ismail, Patimah

    2013-09-18

    Leptin is known as the adipose peptide hormone. It plays an important role in the regulation of body fat and inhibits food intake by its action. Moreover, it is believed that leptin level deductions might be the cause of obesity and may play an important role in the development of Type 2 Diabetes Mellitus (T2DM), as well as in cardiovascular diseases (CVD). The Leptin Receptor (LEPR) gene and its polymorphisms have not been extensively studied in relation to the T2DM and its complications in various populations. In this study, we have determined the association of Gln223Agr loci of LEPR gene in three ethnic groups of Malaysia, namely: Malays, Chinese and Indians. A total of 284 T2DM subjects and 281 healthy individuals were recruited based on International Diabetes Federation (IDF) criteria. Genomic DNA was extracted from the buccal specimens of the subjects. The commercial polymerase chain reaction (PCR) method was carried out by proper restriction enzyme MSP I to both amplify and digest the Gln223Agr polymorphism. The p-value among the three studied races was 0.057, 0.011 and 0.095, respectively. The values such as age, WHR, FPG, HbA1C, LDL, HDL, Chol and Family History were significantly different among the subjects with Gln223Agr polymorphism of LEPR (p < 0.05).

  4. Prenatal caffeine exposure induced a lower level of fetal blood leptin mainly via placental mechanism

    International Nuclear Information System (INIS)

    Wu, Yi-meng; Luo, Han-wen; Kou, Hao; Wen, Yin-xian; Shen, Lang; Pei, Ling-guo; Zhou, Jin; Zhang, Yuan-zhen; Wang, Hui

    2015-01-01

    It's known that blood leptin level is reduced in intrauterine growth retardation (IUGR) fetus, and placental leptin is the major source of fetal blood leptin. This study aimed to investigate the decreased fetal blood leptin level by prenatal caffeine exposure (PCE) and its underlying placental mechanisms. Pregnant Wistar rats were intragastrically administered caffeine (30–120 mg/kg day) from gestational day 9 to 20. The level of fetal serum leptin and the expression of placental leptin-related genes were analyzed. Furthermore, we investigated the molecular mechanism of the reduced placental leptin's expression by treatment with caffeine (0.8–20 μM) in the BeWo cells. In vivo, PCE significantly decreased fetal serum leptin level in caffeine dose-dependent manner. Meanwhile, placental mRNA expression of adenosine A2a receptor (Adora2a), cAMP-response element binding protein (CREB), a short-type leptin receptor (Ob-Ra) and leptin was reduced in the PCE groups. In vitro, caffeine significantly decreased the mRNA expression of leptin, CREB and ADORA2A in concentration and time-dependent manners. The addition of ADORA2A agonist or adenylyl cyclase (AC) agonist reversed the inhibition of leptin expression induced by caffeine. PCE induced a lower level of fetal blood leptin, which the primary mechanism is that caffeine inhibited antagonized Adora2a and AC activities to decreased cAMP synthesis, thus inhibited the expression of the transcription factor CREB and target gene leptin in the placenta. Meantime, the reduced transportation of maternal leptin by placental Ob-Ra also contributed to the reduced fetal blood leptin. Together, PCE decreased fetal blood leptin mainly via reducing the expression and transportation of leptin in the placenta. - Highlights: • Caffeine reduced fetal blood leptin level. • Caffeine inhibited placental leptin production and transport. • Caffeine down-regulated placental leptin expression via antagonizing ADORA2.

  5. Prenatal caffeine exposure induced a lower level of fetal blood leptin mainly via placental mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yi-meng [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Luo, Han-wen [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Kou, Hao [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Wen, Yin-xian [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Shen, Lang; Pei, Ling-guo; Zhou, Jin [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Zhang, Yuan-zhen [Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071 (China); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071 (China)

    2015-11-15

    It's known that blood leptin level is reduced in intrauterine growth retardation (IUGR) fetus, and placental leptin is the major source of fetal blood leptin. This study aimed to investigate the decreased fetal blood leptin level by prenatal caffeine exposure (PCE) and its underlying placental mechanisms. Pregnant Wistar rats were intragastrically administered caffeine (30–120 mg/kg day) from gestational day 9 to 20. The level of fetal serum leptin and the expression of placental leptin-related genes were analyzed. Furthermore, we investigated the molecular mechanism of the reduced placental leptin's expression by treatment with caffeine (0.8–20 μM) in the BeWo cells. In vivo, PCE significantly decreased fetal serum leptin level in caffeine dose-dependent manner. Meanwhile, placental mRNA expression of adenosine A2a receptor (Adora2a), cAMP-response element binding protein (CREB), a short-type leptin receptor (Ob-Ra) and leptin was reduced in the PCE groups. In vitro, caffeine significantly decreased the mRNA expression of leptin, CREB and ADORA2A in concentration and time-dependent manners. The addition of ADORA2A agonist or adenylyl cyclase (AC) agonist reversed the inhibition of leptin expression induced by caffeine. PCE induced a lower level of fetal blood leptin, which the primary mechanism is that caffeine inhibited antagonized Adora2a and AC activities to decreased cAMP synthesis, thus inhibited the expression of the transcription factor CREB and target gene leptin in the placenta. Meantime, the reduced transportation of maternal leptin by placental Ob-Ra also contributed to the reduced fetal blood leptin. Together, PCE decreased fetal blood leptin mainly via reducing the expression and transportation of leptin in the placenta. - Highlights: • Caffeine reduced fetal blood leptin level. • Caffeine inhibited placental leptin production and transport. • Caffeine down-regulated placental leptin expression via antagonizing ADORA2.

  6. Adiponectin receptor 2 is regulated by nutritional status, leptin and pregnancy in a tissue-specific manner.

    Science.gov (United States)

    González, Carmen Ruth; Caminos, Jorge Eduardo; Gallego, Rosalía; Tovar, Sulay; Vázquez, María Jesús; Garcés, María Fernanda; Lopez, Miguel; García-Caballero, Tomás; Tena-Sempere, Manuel; Nogueiras, Rubén; Diéguez, Carlos

    2010-01-12

    The aim of the present work was to study the regulation of circulating adiponectin levels and the expression of adiponectin receptor 2 (Adipo-R2) in several rat tissues in relation to fasting, leptin challenge, pregnancy, and chronic undernutrition. Using real-time PCR, we found Adipo-R2 mRNA expression in the liver, stomach, white and brown adipose tissues (WAT and BAT) of adult rats. Immunohistochemical studies confirmed protein expression in the same tissues. Adipo-R2 mRNA levels were decreased in liver after fasting, with no changes in the other tissues. Leptin decreased Adipo-R2 expression in liver and stomach, but increased its expression in WAT and BAT. Chronic caloric restriction in normal rats increased Adipo-R2 gene expression in stomach, while it decreased hepatic Adipo-R2 levels in pregnant rats. Using radioimmunoassay, we found that plasma adiponectin levels were diminished by fasting and leptin. Conversely, circulating adiponectin was increased in food-restricted rats, whereas its levels decreased in food-restricted pregnant rats by the end of gestation. In conclusion our findings provide the first evidence that (a) Adipo-R2 mRNA is regulated in a tissue-specific manner by fasting, but leptin is not responsible for those changes; (b) chronic caloric restriction in normal and pregnant rats also regulate Adipo-R2 mRNA in a tissue-specific manner; and (c) Adipo-R2 mRNA does not show a clear correlation with plasma adiponectin levels.

  7. Leptin and Pro-Inflammatory Stimuli Synergistically Upregulate MMP-1 and MMP-3 Secretion in Human Gingival Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Rachel C Williams

    Full Text Available Gingival fibroblast-mediated extracellular matrix remodelling is implicated in the pathogenesis of periodontitis, yet the stimuli that regulate this response are not fully understood. The immunoregulatory adipokine leptin is detectable in the gingiva, human gingival fibroblasts express functional leptin receptor mRNA and leptin is known to regulate extracellular matrix remodelling responses in cardiac fibroblasts. We therefore hypothesised that leptin would enhance matrix metalloproteinase secretion in human gingival fibroblasts.We used in vitro cell culture to investigate leptin signalling and the effect of leptin on mRNA and protein expression in human gingival fibroblasts. We confirmed human gingival fibroblasts expressed cell surface leptin receptor, found leptin increased matrix metalloproteinase-1, -3, -8 and -14 expression in human gingival fibroblasts compared to unstimulated cells, and observed that leptin stimulation activated MAPK, STAT1/3 and Akt signalling in human gingival fibroblasts. Furthermore, leptin synergised with IL-1 or the TLR2 agonist pam2CSK4 to markedly enhance matrix metalloproteinase-1 and -3 production by human gingival fibroblasts. Signalling pathway inhibition demonstrated ERK was required for leptin-stimulated matrix metalloproteinase-1 expression in human gingival fibroblasts; whilst ERK, JNK, p38 and STAT3 were required for leptin+IL-1- and leptin+pam2CSK4-induced matrix metalloproteinase-1 expression. A genome-wide expression array and gene ontology analysis confirmed genes differentially expressed in leptin+IL-1-stimulated human gingival fibroblasts (compared to unstimulated cells were enriched for extracellular matrix organisation and disassembly, and revealed that matrix metalloproteinase-8 and -12 were also synergistically upregulated by leptin+IL-1 in human gingival fibroblasts.We conclude that leptin selectively enhances the expression and secretion of certain matrix metalloproteinases in human gingival

  8. Leptin Suppresses Mouse Taste Cell Responses to Sweet Compounds.

    Science.gov (United States)

    Yoshida, Ryusuke; Noguchi, Kenshi; Shigemura, Noriatsu; Jyotaki, Masafumi; Takahashi, Ichiro; Margolskee, Robert F; Ninomiya, Yuzo

    2015-11-01

    Leptin is known to selectively suppress neural and behavioral responses to sweet-tasting compounds. However, the molecular basis for the effect of leptin on sweet taste is not known. Here, we report that leptin suppresses sweet taste via leptin receptors (Ob-Rb) and KATP channels expressed selectively in sweet-sensitive taste cells. Ob-Rb was more often expressed in taste cells that expressed T1R3 (a sweet receptor component) than in those that expressed glutamate-aspartate transporter (a marker for Type I taste cells) or GAD67 (a marker for Type III taste cells). Systemically administered leptin suppressed taste cell responses to sweet but not to bitter or sour compounds. This effect was blocked by a leptin antagonist and was absent in leptin receptor-deficient db/db mice and mice with diet-induced obesity. Blocking the KATP channel subunit sulfonylurea receptor 1, which was frequently coexpressed with Ob-Rb in T1R3-expressing taste cells, eliminated the effect of leptin on sweet taste. In contrast, activating the KATP channel with diazoxide mimicked the sweet-suppressing effect of leptin. These results indicate that leptin acts via Ob-Rb and KATP channels that are present in T1R3-expressing taste cells to selectively suppress their responses to sweet compounds. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  9. Adult exposure to tributyltin affects hypothalamic neuropeptide Y, Y1 receptor distribution, and circulating leptin in mice.

    Science.gov (United States)

    Bo, E; Farinetti, A; Marraudino, M; Sterchele, D; Eva, C; Gotti, S; Panzica, G

    2016-07-01

    Tributyltin (TBT), a pesticide used in antifouling paints, is toxic for aquatic invertebrates. In vertebrates, TBT may act in obesogen- inducing adipogenetic gene transcription for adipocyte differentiation. In a previous study, we demonstrated that acute administration of TBT induces c-fos expression in the arcuate nucleus. Therefore, in this study, we tested the hypothesis that adult exposure to TBT may alter a part of the nervous pathways controlling animal food intake. In particular, we investigated the expression of neuropeptide Y (NPY) immunoreactivity. This neuropeptide forms neural circuits dedicated to food assumption and its action is mediated by Y1 receptors that are widely expressed in the hypothalamic nuclei responsible for the regulation of food intake and energy homeostasis. To this purpose, TBT was orally administered at a dose of 0.025 mg/kg/day/body weight to adult animals [male and female C57BL/6 (Y1-LacZ transgenic mice] for 4 weeks. No differences were found in body weight and fat deposition, but we observed a significant increase in feed efficiency in TBT-treated male mice and a significant decrease in circulating leptin in both sexes. Computerized quantitative analysis of NPY immunoreactivity and Y1-related β-galactosidase activity demonstrated a statistically significant reduction in NPY and Y1 transgene expression in the hypothalamic circuit controlling food intake of treated male mice in comparison with controls. In conclusion, the present results indicate that adult exposure to TBT is profoundly interfering with the nervous circuits involved in the stimulation of food intake. © 2016 American Society of Andrology and European Academy of Andrology.

  10. Nutritional status modulates plasma leptin, AMPK and TOR activation, and mitochondrial biogenesis: Implications for cell metabolism and growth in skeletal muscle of the fine flounder.

    Science.gov (United States)

    Fuentes, Eduardo N; Safian, Diego; Einarsdottir, Ingibjörg Eir; Valdés, Juan Antonio; Elorza, Alvaro A; Molina, Alfredo; Björnsson, Björn Thrandur

    2013-06-01

    Insight of how growth and metabolism in skeletal muscle are related is still lacking in early vertebrates. In this context, molecules involved in these processes, such as leptin, AMP-activated protein kinase (AMPK), target of rapamicyn (TOR), peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α, and oxidative phosphorylation complexes (OXPHOS), were assessed in the skeletal muscle of a fish species. Periods of fasting followed by a period of refeeding were implemented, using the fine flounder as a model (Paralichthys adspersus). This species exhibits remarkably slow growth and food intake, which is linked to an inherent growth hormone (GH) resistance and high circulating levels of leptin. Leptin increased during fasting concomitantly with AMPK activation, which was inversely correlated with TOR activation. On the other hand, AMPK was directly correlated with an increase in PGC-1α and OXPHOS complexes contents. Dramatic changes in the activation and content of these molecules were observed during short-term refeeding. Leptin, AMPK activation, and PGC-1α/OXPHOS complexes contents decreased radically; whereas, TOR activation increased significantly. During long-term refeeding these molecules returned to basal levels. These results suggest that there is a relation among these components; thus, during fasting periods ATP-consuming biosynthetic pathways are repressed and alternative sources of ATP/energy are promoted, a phenomenon that is reversed during anabolic periods. These results provide novel insight on the control of metabolism and growth in the skeletal muscle of a non-mammalian species, suggesting that both processes in fish muscle are closely related and coordinated by a subset of common molecules. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. ENU mutagenesis identifies mice with morbid obesity and severe hyperinsulinemia caused by a novel mutation in leptin.

    Directory of Open Access Journals (Sweden)

    Chen-Jee Hong

    Full Text Available BACKGROUND: Obesity is a multifactorial disease that arises from complex interactions between genetic predisposition and environmental factors. Leptin is central to the regulation of energy metabolism and control of body weight in mammals. METHODOLOGY/PRINCIPAL FINDINGS: To better recapitulate the complexity of human obesity syndrome, we applied N-ethyl-N-nitrosourea (ENU mutagenesis in combination with a set of metabolic assays in screening mice for obesity. Mapping revealed linkage to the chromosome 6 within a region containing mouse Leptin gene. Sequencing on the candidate genes identified a novel T-to-A mutation in the third exon of Leptin gene, which translates to a V145E amino acid exchange in the leptin propeptide. Homozygous Leptin(145E/145E mutant mice exhibited morbid obesity, accompanied by adipose hypertrophy, energy imbalance, and liver steatosis. This was further associated with severe insulin resistance, hyperinsulinemia, dyslipidemia, and hyperleptinemia, characteristics of human obesity syndrome. Hypothalamic leptin actions in inhibition of orexigenic peptides NPY and AgRP and induction of SOCS1 and SOCS3 were attenuated in Leptin(145E/145E mice. Administration of exogenous wild-type leptin attenuated hyperphagia and body weight increase in Leptin(145E/145E mice. However, mutant V145E leptin coimmunoprecipitated with leptin receptor, suggesting that the V145E mutation does not affect the binding of leptin to its receptor. Molecular modeling predicted that the mutated residue would form hydrogen bond with the adjacent residues, potentially affecting the structure and formation of an active complex with leptin receptor within that region. CONCLUSIONS/SIGNIFICANCE: Thus, our evolutionary, structural, and in vivo metabolic information suggests the residue 145 as of special function significance. The mouse model harboring leptin V145E mutation will provide new information on the current understanding of leptin biology and novel mouse

  12. Mechanism of protein tyrosine phosphatase 1B-mediated inhibition of leptin signalling

    DEFF Research Database (Denmark)

    Lund, I K; Hansen, J A; Andersen, H S

    2005-01-01

    Upon leptin binding, the leptin receptor is activated, leading to stimulation of the JAK/STAT signal transduction cascade. The transient character of the tyrosine phosphorylation of JAK2 and STAT3 suggests the involvement of protein tyrosine phosphatases (PTPs) as negative regulators...

  13. Relationships between hypoxia markers and the leptin system, estrogen receptors in human primary and metastatic breast cancer: effects of preoperative chemotherapy

    International Nuclear Information System (INIS)

    Koda, Mariusz; Kanczuga-Koda, Luiza; Sulkowska, Mariola; Surmacz, Eva; Sulkowski, Stanislaw

    2010-01-01

    Tumor hypoxia is marked by enhanced expression of hypoxia-inducible factor-α (HIF-1α) and glucose transporter-1 (Glut-1). Hypoxic conditions have also been associated with overexpression of angiogenic factors, such as leptin. The aim of our study was to analyze the relationships between hypoxia markers HIF-1α, Glut-1, leptin, leptin receptor (ObR) and other breast cancer biomarkers in primary and metastatic breast cancer in patients treated or untreated with preoperative chemotherapy. The expression of different biomarkers was examined by immunohistochemistry in 116 primary breast cancers and 65 lymph node metastases. Forty five of these samples were obtained form patients who received preoperative chemotherapy and 71 from untreated patients. In primary tumors without preoperative chemotherapy, HIF-1α and Glut-1 were positively correlated (p = 0.02, r = 0.437). HIF-1α in primary and metastatic tumors without preoperative therapy positively correlated with leptin (p < 0.0001, r = 0.532; p = 0.013, r = 0.533, respectively) and ObR (p = 0.002, r = 0.319; p = 0.083, r = 0.387, respectively). Hypoxia markers HIF-1α and Glut-1 were negatively associated with estrogen receptor alpha (ERα) and positively correlated with estrogen receptor beta (ERβ). In this group of tumors, a positive correlation between Glut-1 and proliferation marker Ki-67 (p = 0.017, r = 0.433) was noted. The associations between HIF-1α and Glut-1, HIF-1α and leptin, HIF-1α and ERα as well as Glut-1 and ERβ were lost following preoperative chemotherapy. Intratumoral hypoxia in breast cancer is marked by coordinated expression of such markers as HIF-1α, Glut-1, leptin and ObR. The relationships among these proteins can be altered by preoperative chemotherapy

  14. Correlation between leptin receptor gene polymorphism and type 2 diabetes in Chinese population: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Miao HE

    2015-11-01

    Full Text Available Objective To evaluate the correlation between leptin receptor gene (LEPR polymorphism and type 2 diabetes (T2DM in Chinese population. Methods The literature concerning the correlation between LEPR polymorphism and T2DM in Chinese population were searched from Chinese databases (CNKI, VIP, WanFang, CBM with "leptin receptor gene" and "type 2 diabetes" as keywords, and from English databases (PubMed, Web of Knowledge, EBSCO with "leptin receptor gene", "LEPR", "OBR", "OB-R", "type 2 diabetes" and "T2DM" as keywords. The relevant articles were searched up to September 20, 2014. Then, meta-analysis was performed using RevMan 5.1 and Stata 11.0 software. The Newcastle-Ottawa Scale was applied to assess methodological quality of included articles from 3 aspects, namely, selection of participants, comparability and outcome assessment. Results Seventeen case-control studies involving 12 533 cases of T2DM and 3348 controls were included in Meta-analysis. A significant correlation was found between rs1137100 polymorphism in LEPR gene and T2DM (for recessive genetic model: OR=0.67, 95%CI 0.52-0.88, P=0.00; for allele contrast genetic model: OR=1.46, 95%CI 1.15-1.85, P=0.00. A strong correlation was also found between rs1137101 polymorphism and T2DM (for additive genetic model: OR=1.54, 95%CI 1.20-1.98, P=0.00; for allele contrast genetic model: OR=1.15, 95%CI 1.01-1.30, P=0.00. In addition, rs1805096 polymorphism was closely correlated with T2DM (for dominant genetic model: OR=1.32, 95%CI 1.07-1.62, P=0.00; for recessive genetic model: OR=1.30, 95%CI 1.09-1.54, P=0.00; for allele contrast genetic model: OR=0.67, 95%CI 0.59-0.75, P=0.00. Conclusions There is a significant correlation between rs1137100, rs1805096 of LEPR gene and T2DM in Chinese population under allele contrast genetic model as well as in recessive genetic model. Rs1137101 of LEPR gene is closely correlated with T2DM in Chinese population under additive genetic model. For dominant

  15. Contrasting association of a non-synonymous leptin receptor gene polymorphism with Wegener's granulomatosis and Churg-Strauss syndrome.

    Science.gov (United States)

    Wieczorek, Stefan; Holle, Julia U; Bremer, Jan P; Wibisono, David; Moosig, Frank; Fricke, Harald; Assmann, Gunter; Harper, Lorraine; Arning, Larissa; Gross, Wolfgang L; Epplen, Joerg T

    2010-05-01

    There is evidence that the leptin/ghrelin system is involved in T-cell regulation and plays a role in (auto)immune disorders such as SLE, RA and ANCA-associated vasculitides (AAVs). Here, we evaluate the genetic background of this system in WG. We screened variations in the genes encoding leptin, ghrelin and their receptors, the leptin receptor (LEPR) and the growth hormone secretagogue receptor (GHSR). Three single nucleotide polymorphisms (SNPs) in each gene region were analysed in 460 German WG cases and 878 ethnically matched healthy controls. A three-SNP haplotype of GHSR was significantly associated with WG [P = 0.0067; corrected P-value (P(c)) = 0.026; odds ratio (OR) = 1.30; 95% CI 1.08, 1.57], as was one non-synonymous SNP in LEPR (Lys656Asn, P = 0.0034; P(c) = 0.013; OR = 0.72; 95% CI 0.58, 0.90). These four SNPs were re-analysed in independent cohorts of 226 German WG cases and 519 controls. While the GHSR association was not confirmed, allele frequencies of the LEPR SNP were virtually identical to those from the initial cohorts. Analysis of this SNP in the combined WG and control panels revealed a significant association of the LEPR 656Lys allele with WG (P = 0.00032; P(c) = 0.0013; OR = 0.72; 95% CI 0.60, 0.86). Remarkably, the Lys656Asn SNP showed contrasting allele distribution in two cohorts of 108 and 88 German cases diagnosed with Churg-Strauss syndrome (CSS, combined P = 0.0067; OR = 1.41; 95% CI 1.10, 1.81), whereas identical allele frequencies were revealed when comparing British WG and microscopic polyangiitis cases. While GHSR has to be further evaluated, these data provide profound evidence for an association of the LEPR Lys656Asn SNP with AAV, resulting in opposing effects in WG and CSS.

  16. Leptin interferes with 3',5'-Cyclic Adenosine Monophosphate (cAMP signaling to inhibit steroidogenesis in human granulosa cells

    Directory of Open Access Journals (Sweden)

    HoYuen Basil

    2009-10-01

    Full Text Available Abstract Background Obesity has been linked to an increased risk of female infertility. Leptin, an adipocytokine which is elevated during obesity, may influence gonadal function through modulating steroidogenesis in granulosa cells. Methods The effect of leptin on progesterone production in simian virus 40 immortalized granulosa (SVOG cells was examined by Enzyme linked immunosorbent assay (ELISA. The effect of leptin on the expression of the steroidogenic enzymes (StAR, P450scc, 3betaHSD in SVOG cells was examined by real-time PCR and Western blotting. The mRNA expression of leptin receptor isoforms in SVOG cells were examined by using PCR. SVOG cells were co-treated with leptin and specific pharmacological inhibitors to identify the signaling pathways involved in leptin-reduced progesterone production. Silencing RNA against leptin receptor was used to determine that the inhibition of leptin on cAMP-induced steroidogenesis acts in a leptin receptor-dependent manner. Results and Conclusion In the present study, we investigated the cellular mechanisms underlying leptin-regulated steroidogenesis in human granulosa cells. We show that leptin inhibits 8-bromo cAMP-stimulated progesterone production in a concentration-dependent manner. Furthermore, we show that leptin inhibits expression of the cAMP-stimulated steroidogenic acute regulatory (StAR protein, the rate limiting de novo protein in progesterone synthesis. Leptin induces the activation of ERK1/2, p38 and JNK but only the ERK1/2 (PD98059 and p38 (SB203580 inhibitors attenuate the leptin-induced inhibition of cAMP-stimulated StAR protein expression and progesterone production. These data suggest that the leptin-induced MAPK signal transduction pathway interferes with cAMP/PKA-stimulated steroidogenesis in human granulosa cells. Moreover, siRNA mediated knock-down of the endogenous leptin receptor attenuates the effect of leptin on cAMP-induced StAR protein expression and progesterone

  17. Leptin suppresses non-apoptotic cell death in ischemic rat cardiomyocytes by reduction of iPLA{sub 2} activity

    Energy Technology Data Exchange (ETDEWEB)

    Takatani-Nakase, Tomoka, E-mail: nakase@mukogawa-u.ac.jp; Takahashi, Koichi, E-mail: koichi@mukogawa-u.ac.jp

    2015-07-17

    Caspase-independent, non-apoptotic cell death is an important therapeutic target in myocardial ischemia. Leptin, an adipose-derived hormone, is known to exhibit cytoprotective effects on the ischemic heart, but the mechanisms are poorly understood. In this research, we found that pretreatment of leptin strongly suppressed ischemic-augmented nuclear shrinkage and non-apoptotic cell death on cardiomyocytes. Leptin was also shown to significantly inhibit the activity of iPLA{sub 2}, which is considered to play crucial roles in non-apoptotic cell death, resulting in effective prevention of ischemia-induced myocyte death. These findings provide the first evidence of a protective mechanism of leptin against ischemia-induced non-apoptotic cardiomyocyte death. - Highlights: • Myocardial ischemia-model induces in caspase-independent, non-apoptotic cell death. • Leptin strongly inhibits ischemic-augmented non-apoptotic cell death. • Leptin reduces iPLA{sub 2} activity, leading to avoidance of non-apoptotic cell death.

  18. Leptin suppresses non-apoptotic cell death in ischemic rat cardiomyocytes by reduction of iPLA2 activity

    International Nuclear Information System (INIS)

    Takatani-Nakase, Tomoka; Takahashi, Koichi

    2015-01-01

    Caspase-independent, non-apoptotic cell death is an important therapeutic target in myocardial ischemia. Leptin, an adipose-derived hormone, is known to exhibit cytoprotective effects on the ischemic heart, but the mechanisms are poorly understood. In this research, we found that pretreatment of leptin strongly suppressed ischemic-augmented nuclear shrinkage and non-apoptotic cell death on cardiomyocytes. Leptin was also shown to significantly inhibit the activity of iPLA 2 , which is considered to play crucial roles in non-apoptotic cell death, resulting in effective prevention of ischemia-induced myocyte death. These findings provide the first evidence of a protective mechanism of leptin against ischemia-induced non-apoptotic cardiomyocyte death. - Highlights: • Myocardial ischemia-model induces in caspase-independent, non-apoptotic cell death. • Leptin strongly inhibits ischemic-augmented non-apoptotic cell death. • Leptin reduces iPLA 2 activity, leading to avoidance of non-apoptotic cell death

  19. The role of leptin in gastric cancer: Clinicopathologic features and molecular mechanisms

    International Nuclear Information System (INIS)

    Lee, Kang Nyeong; Choi, Ho Soon; Yang, Sun Young; Park, Hyun Ki; Lee, Young Yiul; Lee, Oh Young; Yoon, Byung Chul; Hahm, Joon Soo; Paik, Seung Sam

    2014-01-01

    Highlights: • Leptin and Ob-R are expressed in gastric adenoma and early and advanced cancer. • Leptin is more likely associated with differentiated gastric cancer or cardia cancer. • Leptin proliferates gastric cancer cells via activating the STAT3 and ERK1/2 pathways. - Abstract: Obesity is associated with certain types of cancer, including gastric cancer. However, it is still unclear whether obesity-related cytokine, leptin, is implicated in gastric cancer. Therefore, we aimed to investigate the role of leptin in gastric cancer. The expression of leptin and its receptor, Ob-R, was assessed by immunohistochemical staining and was compared in patients with gastric adenoma (n = 38), early gastric cancer (EGC) (n = 38), and advanced gastric cancer (AGC) (n = 38), as a function of their clinicopathological characteristics. Gastric cancer cell lines were studied to investigate the effects of leptin on the signal transducer and activator of transcription-3 (STAT3) and extracellular receptor kinase 1/2 (ERK1/2) signaling pathways using MTT assays, immunoblotting, and inhibition studies. Leptin was expressed in gastric adenomas (42.1%), EGCs (47.4%), and AGCs (43.4%). Ob-R expression tended to increase from gastric adenoma (2%), through EGC (8%), to AGC (18%). Leptin induced the proliferation of gastric cancer cells by activating STAT3 and ERK1/2 and up-regulating the expression of vascular endothelial growth factor (VEGF). Blocking Ob-R with pharmacological inhibitors and by RNAi decreased both the leptin-induced activation of STAT3 and ERK1/2 and the leptin-induced expression of VEGF. Leptin plays a role in gastric cancer by stimulating the proliferation of gastric cancer cells via activating the STAT3 and ERK1/2 pathways

  20. Treatment with a GLP-1 receptor agonist diminishes the decrease in free plasma leptin during maintenance of weight loss

    DEFF Research Database (Denmark)

    Iepsen, E W; Lundgren, J; Dirksen, C

    2015-01-01

    of weight gain, low-calorie diet products were allowed to replace up to two meals per day to achieve equal weight maintenance. Glucose tolerance and hormone responses were investigated before and after weight loss and after 52 weeks weight maintenance. Primary end points: increase in soluble leptin receptor.......3 kg (95% CI=-0.6 to -4.0)), and had fewer meal replacements per day compared with the control group (minus one meal per day (95% CI=-0.6 to -1)), P....3±0.1 mmol l(-1) to the level before weight loss (-0.5mmol l(-1) (95% CI=-0.1 to -0.9)), PMeal response of peptide PYY3-36 was higher at week 52 in the GLP-1RA group compared with the control group, P

  1. Leptin and Physical Activity in Adult Patients with Anorexia Nervosa: Failure to Demonstrate a Simple Linear Association

    Directory of Open Access Journals (Sweden)

    Andreas Stengel

    2017-11-01

    Full Text Available High physical activity (PA in patients with anorexia nervosa (AN is hypothesized to be, at least in part, a consequence of hypoleptinemia. However, most studies on the association of leptin and PA in AN were performed in adolescents or young adults, and PA was generally measured with subjective tools. We aimed to explore the association of leptin and PA in adults with AN using an objective technique to quantify PA. Using a cross-sectional, observational design, we analyzed body fat (bioelectrical impedance, PA (accelerometry, SenseWear™ armband and plasma leptin (ELISA in 61 women with AN (median age: 25 years, range: 18–52 years; median BMI: 14.8 ± 2.0 kg/m2 at the start of hospitalization. Results indicated a mean step count per day of 12,841 ± 6408 (range: 3956–37,750. Leptin was closely associated with BMI and body fat (ρ = 0.508 and ρ = 0.669, p < 0.001, but not with steps (ρ = 0.015, p = 0.908. Moreover, no significant association was observed between BMI and steps (ρ = 0.189, p = 0.146. In conclusion, there was no simple, linear association of leptin and PA, highlighting the need for more complex and non-linear models to analyze the association of leptin and PA in adults with AN in future studies.

  2. Leptin as a critical regulator of hepatocellular carcinoma development through modulation of human telomerase reverse transcriptase

    Directory of Open Access Journals (Sweden)

    Stefanou Nikolaos

    2010-08-01

    Full Text Available Abstract Background Numerous epidemiological studies have documented that obesity is associated with hepatocellular carcinoma (HCC. The aim of this study was to investigate the biological actions regulated by leptin, the obesity biomarker molecule, and its receptors in HCC and the correlation between leptin and human telomerase reverse transcriptase (hTERT, a known mediator of cellular immortalization. Methods We investigated the relationship between leptin, leptin receptors and hTERT mRNA expression in HCC and healthy liver tissue samples. In HepG2 cells, chromatin immunoprecipitation assay was used to study signal transducer and activator of transcription-3 (STAT3 and myc/mad/max transcription factors downstream of leptin which could be responsible for hTERT regulation. Flow cytometry was used for evaluation of cell cycle modifications and MMP1, 9 and 13 expression after treatment of HepG2 cells with leptin. Blocking of leptin's expression was achieved using siRNA against leptin and transfection with liposomes. Results We showed, for the first time, that leptin's expression is highly correlated with hTERT expression levels in HCC liver tissues. We also demonstrated in HepG2 cells that leptin-induced up-regulation of hTERT and TA was mediated through binding of STAT3 and Myc/Max/Mad network proteins on hTERT promoter. We also found that leptin could affect hepatocellular carcinoma progression and invasion through its interaction with cytokines and matrix mettaloproteinases (MMPs in the tumorigenic microenvironment. Furthermore, we showed that histone modification contributes to leptin's gene regulation in HCC. Conclusions We propose that leptin is a key regulator of the malignant properties of hepatocellular carcinoma cells through modulation of hTERT, a critical player of oncogenesis.

  3. Leptin stimulates hepatic growth hormone receptor and insulin-like growth factor gene expression in a teleost fish, the hybrid striped bass.

    Science.gov (United States)

    Won, Eugene T; Douros, Jonathan D; Hurt, David A; Borski, Russell J

    2016-04-01

    Leptin is an anorexigenic peptide hormone that circulates as an indicator of adiposity in mammals, and functions to maintain energy homeostasis by balancing feeding and energy expenditure. In fish, leptin tends to be predominantly expressed in the liver, another important energy storing tissue, rather than in fat depots as it is in mammals. The liver also produces the majority of circulating insulin-like growth factors (IGFs), which comprise the mitogenic component of the growth hormone (GH)-IGF endocrine growth axis. Based on similar regulatory patterns of leptin and IGFs that we have documented in previous studies on hybrid striped bass (HSB: Morone saxatilis×Morone chrysops), and considering the co-localization of these peptides in the liver, we hypothesized that leptin might regulate the endocrine growth axis in a manner that helps coordinate somatic growth with energy availability. Using a HSB hepatocyte culture system to simulate autocrine or paracrine exposure that might occur within the liver, this study examines the potential for leptin to modulate metabolism and growth through regulation of IGF gene expression directly, or indirectly through the regulation of GH receptors (GHR), which mediate GH-induced IGF expression. First, we verified that GH (50nM) has a classical stimulatory effect on IGF-1 and additionally show it stimulates IGF-2 transcription in hepatocytes. Leptin (5 and/or 50nM) directly stimulated in vitro GHR2 gene expression within 8h of exposure, and both GHR1 and GHR2 as well as IGF-1 and IGF-2 gene expression after 24h. Cells were then co-incubated with submaximal concentrations of leptin and GH (25nM each) to test if they had a synergistic effect on IGF gene expression, possibly through increased GH sensitivity following GHR upregulation by leptin. In combination, however, the treatments only had an additive effect on stimulating IGF-1 mRNA despite their capacity to increase GHR mRNA abundance. This suggests that leptin's stimulatory

  4. Leptin Deficiency: Clinical Implications and Opportunities for Therapeutic Interventions

    OpenAIRE

    Bl?her, Susan; Shah, Sunali; Mantzoros, Christos S.

    2009-01-01

    The discovery of leptin has significantly advanced our understanding of the metabolic importance of adipose tissue and has revealed that both leptin deficiency and leptin excess are associated with severe metabolic, endocrine, and immunological consequences. We and others have shown that a prominent role of leptin in humans is to mediate the neuroendocrine adaptation to energy deprivation. Humans with genetic mutations in the leptin and leptin receptor genes have deregulated food intake and e...

  5. Proinflammatory adipokine leptin mediates disinfection byproduct bromodichloromethane-induced early steatohepatitic injury in obesity

    International Nuclear Information System (INIS)

    Das, Suvarthi; Kumar, Ashutosh; Seth, Ratanesh Kumar; Tokar, Erik J.; Kadiiska, Maria B.; Waalkes, Michael P.; Mason, Ronald P.; Chatterjee, Saurabh

    2013-01-01

    Today's developed world faces a major public health challenge in the rise in the obese population and the increased incidence in fatty liver disease. There is a strong association among diet induced obesity, fatty liver disease and development of nonalcoholic steatohepatitis but the environmental link to disease progression remains unclear. Here we demonstrate that in obesity, early steatohepatitic lesions induced by the water disinfection byproduct bromodichloromethane are mediated by increased oxidative stress and leptin which act in synchrony to potentiate disease progression. Low acute exposure to bromodichloromethane (BDCM), in diet-induced obesity produced oxidative stress as shown by increased lipid peroxidation, protein free radical and nitrotyrosine formation and elevated leptin levels. Exposed obese mice showed histopathological signs of early steatohepatitic injury and necrosis. Spontaneous knockout mice for leptin or systemic leptin receptor knockout mice had significantly decreased oxidative stress and TNF-α levels. Co-incubation of leptin and BDCM caused Kupffer cell activation as shown by increased MCP-1 release and NADPH oxidase membrane assembly, a phenomenon that was decreased in Kupffer cells isolated from leptin receptor knockout mice. In obese mice that were BDCM-exposed, livers showed a significant increase in Kupffer cell activation marker CD68 and, increased necrosis as assessed by levels of isocitrate dehydrogenase, events that were decreased in the absence of leptin or its receptor. In conclusion, our results show that exposure to the disinfection byproduct BDCM in diet-induced obesity augments steatohepatitic injury by potentiating the effects of leptin on oxidative stress, Kupffer cell activation and cell death in the liver. - Highlights: ► BDCM acute exposure sensitizes liver to increased free radical stress in obesity. ► BDCM-induced higher leptin contributes to early steatohepatitic lesions. ► Increased leptin mediates protein

  6. Proinflammatory adipokine leptin mediates disinfection byproduct bromodichloromethane-induced early steatohepatitic injury in obesity

    Energy Technology Data Exchange (ETDEWEB)

    Das, Suvarthi [Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208 (United States); Kumar, Ashutosh [Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, Research Triangle Park, NC 27709 (United States); Seth, Ratanesh Kumar [Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208 (United States); Tokar, Erik J. [Inorganic Toxicology Group, National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (United States); Kadiiska, Maria B. [Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, Research Triangle Park, NC 27709 (United States); Waalkes, Michael P. [Inorganic Toxicology Group, National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (United States); Mason, Ronald P. [Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, Research Triangle Park, NC 27709 (United States); Chatterjee, Saurabh, E-mail: schatt@mailbox.sc.edu [Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208 (United States)

    2013-06-15

    Today's developed world faces a major public health challenge in the rise in the obese population and the increased incidence in fatty liver disease. There is a strong association among diet induced obesity, fatty liver disease and development of nonalcoholic steatohepatitis but the environmental link to disease progression remains unclear. Here we demonstrate that in obesity, early steatohepatitic lesions induced by the water disinfection byproduct bromodichloromethane are mediated by increased oxidative stress and leptin which act in synchrony to potentiate disease progression. Low acute exposure to bromodichloromethane (BDCM), in diet-induced obesity produced oxidative stress as shown by increased lipid peroxidation, protein free radical and nitrotyrosine formation and elevated leptin levels. Exposed obese mice showed histopathological signs of early steatohepatitic injury and necrosis. Spontaneous knockout mice for leptin or systemic leptin receptor knockout mice had significantly decreased oxidative stress and TNF-α levels. Co-incubation of leptin and BDCM caused Kupffer cell activation as shown by increased MCP-1 release and NADPH oxidase membrane assembly, a phenomenon that was decreased in Kupffer cells isolated from leptin receptor knockout mice. In obese mice that were BDCM-exposed, livers showed a significant increase in Kupffer cell activation marker CD68 and, increased necrosis as assessed by levels of isocitrate dehydrogenase, events that were decreased in the absence of leptin or its receptor. In conclusion, our results show that exposure to the disinfection byproduct BDCM in diet-induced obesity augments steatohepatitic injury by potentiating the effects of leptin on oxidative stress, Kupffer cell activation and cell death in the liver. - Highlights: ► BDCM acute exposure sensitizes liver to increased free radical stress in obesity. ► BDCM-induced higher leptin contributes to early steatohepatitic lesions. ► Increased leptin mediates

  7. Relationship between serum leptin levels, ATPase activity of erythrocyte membrance and development of diabetic nephropathy in patients with DM2

    International Nuclear Information System (INIS)

    Wang Yuming

    2009-01-01

    Objective: To study the possible mechanism of development of nephrosis affected by changes of serum leptin levels and alteration of activities of Na + K + -ATPase and Ca 2+ Mg 2+ -ATPase of erythrocyte membrane in patients with type 2 diabetes(DM2). Methods: Serum leptin levels (with RIA) and erythrocyte membrane Na + K + -ATPase and Ca 2+ Mg 2+ -ATPase activitities (with Reinila method) were determined in 40 DM2 patients without nephropathy, 32 DM2 patients with nephropathy and 35 controls. Results Serum leptin levels were significantly higher in the diabetics as a whole than those in controls (P + K + -ATPase and Ca 2+ Mg 2+ -ATPase activities were significantly lower (P<0.01). Among the diabetic patients, the serum leptin levels in patients without nephrosis (P<0.05), but the RBC membrance ATPase activities were significantly lower(P<0.05). Conclusion: Development of type 2 diabetes nephrosis might be correlated with the high serum leptin level and decreased ATPase activities of erythrocite membrane. (authors)

  8. Regulation of Blood Pressure, Appetite, and Glucose by Leptin After Inactivation of Insulin Receptor Substrate 2 Signaling in the Entire Brain or in Proopiomelanocortin Neurons.

    Science.gov (United States)

    do Carmo, Jussara M; da Silva, Alexandre A; Wang, Zhen; Freeman, Nathan J; Alsheik, Ammar J; Adi, Ahmad; Hall, John E

    2016-02-01

    Insulin receptor substrate 2 (IRS2) is one of the 3 major leptin receptor signaling pathways, but its role in mediating the chronic effects of leptin on blood pressure, food intake, and glucose regulation is unclear. We tested whether genetic inactivation of IRS2 in the entire brain (IRS2/Nestin-cre mice) or specifically in proopiomelanocortin (POMC) neurons (IRS2/POMC-cre mice) attenuates the chronic cardiovascular, metabolic, and antidiabetic effects of leptin. Mice were instrumented with telemetry probes for measurement of blood pressure and heart rate and with venous catheters for intravenous infusions. After a 5-day control period, mice received leptin infusion (2 μg/kg per minute) for 7 days. Compared with control IRS2(flox/flox) mice, IRS2/POMC-cre mice had similar body weight and food intake (33±1 versus 35±1 g and 3.6±0.5 versus 3.8±0.2 g per day) but higher mean arterial pressure (MAP) and heart rate (110±2 versus 102±2 mm Hg and 641±9 versus 616±5 bpm). IRS2/Nestin-cre mice were heavier (38±2 g), slightly hyperphagic (4.5±1.0 g per day), and had higher MAP and heart rate (108±2 mm Hg and 659±9 bpm) compared with control mice. Leptin infusion gradually increased MAP despite decreasing food intake by 31% in IRS2(flox/flox) and in Nestin-cre control mice. In contrast, leptin infusion did not change MAP in IRS2/Nestin-cre or IRS2/POMC-cre mice. The anorexic and antidiabetic effects of leptin, however, were similar in all 3 groups. These results indicate that IRS2 signaling in the central nervous system, and particularly in POMC neurons, is essential for the chronic actions of leptin to raise MAP but not for its anorexic or antidiabetic effects. © 2015 American Heart Association, Inc.

  9. The effect of leptin receptor deficiency and fasting on cannabinoid receptor 1 mRNA expression in the rat hypothalamus, brainstem and nodose ganglion.

    Science.gov (United States)

    Jelsing, Jacob; Larsen, Philip Just; Vrang, Niels

    2009-10-02

    Despite ample evidence for the involvement of the endocannabinoid system in the control of appetite, food intake and energy balance, relatively little is known about the regulation of cannabinoid receptor 1 (CB(1)R) expression in respect to leptin signalling and fasting. In the present study, we examined CB(1)R mRNA levels in lean (Fa/?) and obese (fa/fa) male Zucker rats under basal and food-restricted conditions. Using stereological sampling principles coupled with semi-quantitative radioactive in situ hybridization we provide semi-quantitative estimates of CB(1)R mRNA expression in key appetite regulatory hypothalamic and brainstem areas, as well as in the nodose ganglia. Whereas no effect of fasting were determined on CB(1)R mRNA levels in the paraventricular (PVN) and ventromedial hypothalamic (VMH) nucleus, in the brainstem dorsal vagal complex or nodose ganglion of lean Zucker rats, CB(1)R mRNA levels were consistently elevated in obese Zucker rats pointing to a direct influence of disrupted leptin signalling on CB(1)R mRNA regulation.

  10. High circulatory leptin mediated NOX-2-peroxynitrite-miR21 axis activate mesangial cells and promotes renal inflammatory pathology in nonalcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    Firas Alhasson

    2018-07-01

    Full Text Available High circulatory insulin and leptin followed by underlying inflammation are often ascribed to the ectopic manifestations in non-alcoholic fatty liver disease (NAFLD but the exact molecular pathways remain unclear. We have shown previously that CYP2E1-mediated oxidative stress and circulating leptin in NAFLD is associated with renal disease severity. Extending the studies, we hypothesized that high circulatory leptin in NAFLD causes renal mesangial cell activation and tubular inflammation via a NOX2 dependent pathway that upregulates proinflammatory miR21. High-fat diet (60% kcal was used to induce fatty liver phenotype with parallel insulin and leptin resistance. The kidneys were probed for mesangial cell activation and tubular inflammation that showed accelerated NASH phenotype and oxidative stress in the liver. Results showed that NAFLD kidneys had significant increases in α-SMA, a marker of mesangial cell activation, miR21 levels, tyrosine nitration and renal inflammation while they were significantly decreased in leptin and p47 phox knockout mice. Micro RNA21 knockout mice showed decreased tubular immunotoxicity and proinflammatory mediator release. Mechanistically, use of NOX2 siRNA or apocynin,phenyl boronic acid (FBA, DMPO or miR21 antagomir inhibited leptin primed-miR21-mediated mesangial cell activation in vitro suggesting a direct role of leptin-mediated NOX-2 in miR21-mediated mesangial cell activation. Finally, JAK-STAT inhibitor completely abrogated the mesangial cell activation in leptin-primed cells suggesting that leptin signaling in the mesangial cells depended on the JAK-STAT pathway. Taken together the study reports a novel mechanistic pathway of leptin-mediated renal inflammation that is dependent on NOX-2-miR21 axis in ectopic manifestations underlying NAFLD-induced co-morbidities. Keywords: Leptin, NOX-2, NADPH, Mesangial cells, miR21, Oxidative stress, NAFLD, JAK/STAT, siRNA

  11. ROLE OF LEPTIN ON CYTOCHROME P-450 AND SOME LIVER MICROSOMAL ENZYMES ACTIVITIES IN THE OBESE AND LEAN MICE

    International Nuclear Information System (INIS)

    HEBEISHY, M.I.A.; MAZEN, G.M.A.; SHAHIN, M.I

    2008-01-01

    Leptin is a hormone that is secreted by adipocytes and regulates body weight through its effect on satiety and energy metabolism. The obese mouse is deficient in this protein and is characterized by obesity and other metabolic disorders. This study investigated the alterations of several hepatic cytochrome P 4 -5 0 (CYP), conjugation and antioxidant enzymes in lean and obese mice and the role of leptin in the modulation of these enzymes. Lean and obese male mice were injected with leptin (100 μg / rat) for 15 days. The obtained results revealed that administration of leptin to lean mice caused a significant elevation in the level of blood glucose, serum insulin, 6α, 6β, 16α- hydroxylation of testosterone, the activity of CYP 1 A 1 , CYP 4 A and GSH reductase in liver microsomes while serum corticosterone and the activity of total GSH were significantly decreased when compared to lean control mice. Moreover, obese mice treated with leptin recorded significant reduction in body weight, blood glucose concentration, serum levels of insulin and corticosterone, 7α and 16α- hydroxylation of testosterone, the activity of CYP 1A 1, CYP 2 B 1 and CYP 4 A and GST in liver microsomes. On the other hand, 6α, 6β-hydroxylation of testosterone, the activity of CYP 2 E 1 and GSH reductase in liver microsome were significantly increased when compared to obese control mice. The mechanism for the observed alterations may be due to direct leptin effects or via indirect alterations in insulin, corticosterone and/or growth hormone

  12. Leptin: A biomarker for sleep disorders?

    OpenAIRE

    Pan, Weihong; Kastin, Abba J.

    2013-01-01

    Leptin, a pleiotropic protein hormone produced mainly by fat cells, regulates metabolic activity and many other physiological functions. The intrinsic circadian rhythm of blood leptin is modulated by gender, development, feeding, fasting, sleep, obesity, and endocrine disorders. Hyperleptinemia is implicated in leptin resistance. To determine the specificity and sensitivity of leptin concentrations in sleep disorders, we summarize here the alterations of leptin in four conditions in animal an...

  13. Reference values for serum leptin in healthy non-obese children and adolescents.

    Science.gov (United States)

    Lausten-Thomsen, Ulrik; Christiansen, Michael; Louise Hedley, Paula; Esmann Fonvig, Cilius; Stjernholm, Theresa; Pedersen, Oluf; Hansen, Torben; Holm, Jens-Christian

    2016-11-01

    Adipokines are biologically active, low-molecular weight peptides, which play a major role in metabolic homeostasis in humans. Leptin has gained increasing attention in pediatrics as a biomarker for various metabolic pathologies. Yet, its usefulness is hampered by the relative lack of reference values from pediatric settings. Accordingly, this study aims to evaluate serum concentrations of leptin, soluble leptin receptor (sOB-R), and free leptin index (FLI) in healthy Danish schoolchildren aged 6-18 years and subsequently to establish reference intervals across sex and age groups. A total of 1193 healthy, non-obese Danish schoolchildren (730 girls, 463 boys) aged 6-18 years (median 11.9) were examined by trained medical staff. Serum leptin and sOB-R concentrations in venous fasting blood samples were quantitated by immunoassay. Percentile curves of leptin, sOB-R, and free leptin index were calculated using the General Additive Model for Location Scale and Shape (GAMLSS). Significant age and sex-dependent differences in circulating leptin levels were found. In boys, the median leptin concentration for all ages combined was 3.35 μg/L (95%-interval: 0.71-22.47) and in girls, it was 9.89 ng/L (95%-interval: 2.06-41.49). For SOB-R, no sex-specific difference was found, and the median sOB-R concentration was 8.24 μg/L (IQR: 3.58-23.74; range: < 1.56-744.15). We demonstrated an age-dependent correlation with both serum leptin concentration and free leptin index with a gradual and significant increase in girls throughout childhood and adolescence and a significantly higher leptin concentration and free leptin index bell-shaped peak in early adolescence in boys.

  14. The role of leptin in nutritional status and reproductive function.

    Science.gov (United States)

    Keisler, D H; Daniel, J A; Morrison, C D

    1999-01-01

    Infertility associated with suboptimal nutrition is a major concern among livestock producers. Undernourished prepubertal animals will not enter puberty until they are well fed; similarly, adult, normally cyclic females will stop cycling when faced with extreme undernutrition. Work in our laboratory has focused on how body fat (or adiposity) of an animal can communicate to the brain and regulate reproductive competence. In 1994, the discovery in rodents of the obese (ob) gene product leptin, secreted as a hormone from adipocytes, provided a unique opportunity to understand and hence regulate whole body compositional changes. There is now evidence that similar mechanisms are functioning in livestock species in which food intake, body composition, and reproductive performance are of considerable economic importance. Leptin has been reported to be a potent regulator of food intake and reproduction in rodents. There is evidence indicating that at least some of the effects of leptin occur through receptor-mediated regulation of the hypothalamic protein neuropeptide Y (NPY). NPY is a potent stimulator of food intake, is present at high concentrations in feed-restricted cattle and ewes, and is an inhibitor of LH secretion in these livestock species. In our investigations in sheep, we have cloned a partial cDNA corresponding to the ovine long-form leptin receptor, presumably the only fully active form, and have localized the long-form leptin receptor in the ventromedial and arcuate nuclei of the hypothalamus. Leptin receptor mRNA expression was colocalized with NPY mRNA-containing cell bodies in those regions. We have also determined that hypothalamic leptin receptor expression is greater in feed-restricted ewes than in well-fed ewes. These observations provide a foundation for future investigations into the nutritional modulators of reproduction in livestock.

  15. Short-Term High-Fat Diet Increases Leptin Activation of CART Neurons and Advances Puberty in Female Mice.

    Science.gov (United States)

    Venancio, Jade Cabestre; Margatho, Lisandra Oliveira; Rorato, Rodrigo; Rosales, Roberta Ribeiro Costa; Debarba, Lucas Kniess; Coletti, Ricardo; Antunes-Rodrigues, Jose; Elias, Carol F; Elias, Lucila Leico K

    2017-11-01

    Leptin is a permissive factor for puberty initiation, participating as a metabolic cue in the activation of the kisspeptin (Kiss1)-gonadotropin-releasing hormone neuronal circuitry; however, it has no direct effect on Kiss1 neurons. Leptin acts on hypothalamic cocaine- and amphetamine-regulated transcript (CART) neurons, participating in the regulation of energy homeostasis. We investigated the influence of a short-term high-fat diet (HFD) on the effect of leptin on puberty timing. Kiss1-hrGFP female mice received a HFD or regular diet (RD) after weaning at postnatal day (PN)21 and were studied at PN28 and PN32. The HFD increased body weight and plasma leptin concentrations and decreased the age at vaginal opening (HFD, 32 ± 0.53 days; RD, 38 ± 0.67 days). Similar colocalization of neurokinin B and dynorphin in Kiss1-hrGFP neurons of the arcuate nucleus (ARC) was observed between the HFD and RD groups. The HFD increased CART expression in the ARC and Kiss1 messenger RNA expression in the anteroventral periventricular (AVPV)/anterior periventricular (Pe). The HFD also increased the number of ARC CART neurons expressing leptin-induced phosphorylated STAT3 (signal transducer and activator of transcription 3) at PN32. Close apposition of CART fibers to Kiss1-hrGFP neurons was observed in the ARC of both RD- and HFD-fed mice. In conclusion, these data reinforce the notion that a HFD increases kisspeptin expression in the AVPV/Pe and advances puberty initiation. Furthermore, we have demonstrated that the HFD-induced earlier puberty is associated with an increase in CART expression in the ARC. Therefore, these data indicate that CART neurons in the ARC can mediate the effect of leptin on Kiss1 neurons in early puberty induced by a HFD. Copyright © 2017 Endocrine Society.

  16. Leptin-dependent neuronal NO signaling in the preoptic hypothalamus facilitates reproduction.

    Science.gov (United States)

    Bellefontaine, Nicole; Chachlaki, Konstantina; Parkash, Jyoti; Vanacker, Charlotte; Colledge, William; d'Anglemont de Tassigny, Xavier; Garthwaite, John; Bouret, Sebastien G; Prevot, Vincent

    2014-06-01

    The transition to puberty and adult fertility both require a minimum level of energy availability. The adipocyte-derived hormone leptin signals the long-term status of peripheral energy stores and serves as a key metabolic messenger to the neuroendocrine reproductive axis. Humans and mice lacking leptin or its receptor fail to complete puberty and are infertile. Restoration of leptin levels in these individuals promotes sexual maturation, which requires the pulsatile, coordinated delivery of gonadotropin-releasing hormone to the pituitary and the resulting surge of luteinizing hormone (LH); however, the neural circuits that control the leptin-mediated induction of the reproductive axis are not fully understood. Here, we found that leptin coordinated fertility by acting on neurons in the preoptic region of the hypothalamus and inducing the synthesis of the freely diffusible volume-based transmitter NO, through the activation of neuronal NO synthase (nNOS) in these neurons. The deletion of the gene encoding nNOS or its pharmacological inhibition in the preoptic region blunted the stimulatory action of exogenous leptin on LH secretion and prevented the restoration of fertility in leptin-deficient female mice by leptin treatment. Together, these data indicate that leptin plays a central role in regulating the hypothalamo-pituitary-gonadal axis in vivo through the activation of nNOS in neurons of the preoptic region.

  17. Obesity, Fat Mass and Immune System: Role for Leptin

    Directory of Open Access Journals (Sweden)

    Vera Francisco

    2018-06-01

    Full Text Available Obesity is an epidemic disease characterized by chronic low-grade inflammation associated with a dysfunctional fat mass. Adipose tissue is now considered an extremely active endocrine organ that secretes cytokine-like hormones, called adipokines, either pro- or anti-inflammatory factors bridging metabolism to the immune system. Leptin is historically one of most relevant adipokines, with important physiological roles in the central control of energy metabolism and in the regulation of metabolism-immune system interplay, being a cornerstone of the emerging field of immunometabolism. Indeed, leptin receptor is expressed throughout the immune system and leptin has been shown to regulate both innate and adaptive immune responses. This review discusses the latest data regarding the role of leptin as a mediator of immune system and metabolism, with particular emphasis on its effects on obesity-associated metabolic disorders and autoimmune and/or inflammatory rheumatic diseases.

  18. Influence of age on leptin induced skeletal muscle signaling

    DEFF Research Database (Denmark)

    Guadalupe Grau, Amelia; Larsen, Steen; Guerra, Borja

    2014-01-01

    transducer and activator of transcription 3 (STAT3), insulin receptor substrate 1 (IRS-1), AMP-activated protein kinase (AMPK) and acetyl-coenzyme A carboxylase (ACC), combined with the leptin signaling inhibitors suppressor of cytokine signaling 3 (SOCS3) and protein tyrosine phosphatase 1B (PTP1B) in human...

  19. Inhibitory effect of leptin on rosiglitazone-induced differentiation of primary adipocytes prepared from TallyHO/Jng mice

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Young; Kim, Joo Young; Sung, Yoon-Young; Jung, Won Hoon; Kim, Hee-Youn; Park, Ji Seon; Cheon, Hyae Gyeong [Medicinal Science Division, Korea Research Institute of Chemical Technology, 100 Jang-dong, Yuseong, 305-600 Daejon (Korea, Republic of); Rhee, Sang Dal, E-mail: sdrhee@krict.re.kr [Medicinal Science Division, Korea Research Institute of Chemical Technology, 100 Jang-dong, Yuseong, 305-600 Daejon (Korea, Republic of)

    2011-03-25

    Research highlights: {yields} In this study, we investigated the effects of leptin on adipocyte differentiation prepared from subcutaneous fat of TallyHo mice. {yields} Leptin inhibited the adipocytes differentiation at physiological concentration via inhibition of PPAR{gamma} expression. {yields} Inhibitors of ERK and STAT1 restored the leptin's inhibitory activity both in vitro and in vivo. -- Abstract: The effects of leptin on rosiglitazone-induced adipocyte differentiation were investigated in the primary adipocytes prepared from subcutaneous fat of TallyHO/Jng (TallyHO) mouse, a recently developed model animal for type 2 diabetes mellitus (T2DM). The treatment of leptin inhibited the rosiglitazone-induced adipocyte differentiation with a decreased expression of peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) a key adipogenic transcription factor, both in mRNA and protein levels. Leptin (10 nM) was sufficient to inhibit the adipocyte differentiation, which seemed to come from increased expression of leptin receptor genes in the fat of TallyHO mice. The inhibition of adipogenesis by leptin was restored by the treatment of inhibitors for extracellular-signal-regulated kinase (ERK) (PD98059) and signal transducer and activator of transcription-1 (STAT1) (fludarabine). Furthermore, in vivo intraperitoneal administration of PD98059 and fludarabine increased the PPAR{gamma} expression in the subcutaneous fat of TallyHO mice. These data suggest that leptin could inhibit the PPAR{gamma} expression and adipocyte differentiation in its physiological concentration in TallyHO mice.

  20. Mechanical Vibration Mitigates the Decrease of Bone Quantity and Bone Quality of Leptin Receptor-Deficient Db/Db Mice by Promoting Bone Formation and Inhibiting Bone Resorption.

    Science.gov (United States)

    Jing, Da; Luo, Erping; Cai, Jing; Tong, Shichao; Zhai, Mingming; Shen, Guanghao; Wang, Xin; Luo, Zhuojing

    2016-09-01

    Leptin, a major hormonal product of adipocytes, is involved in regulating appetite and energy metabolism. Substantial studies have revealed the anabolic actions of leptin on skeletons and bone cells both in vivo and in vitro. Growing evidence has substantiated that leptin receptor-deficient db/db mice exhibit decreased bone mass and impaired bone microstructure despite several conflicting results previously reported. We herein systematically investigated bone microarchitecture, mechanical strength, bone turnover and its potential molecular mechanisms in db/db mice. More importantly, we also explored an effective approach for increasing bone mass in leptin receptor-deficient animals in an easy and noninvasive manner. Our results show that deterioration of trabecular and cortical bone microarchitecture and decreases of skeletal mechanical strength-including maximum load, yield load, stiffness, energy, tissue-level modulus and hardness-in db/db mice were significantly ameliorated by 12-week, whole-body vibration (WBV) with 0.5 g, 45 Hz via micro-computed tomography (μCT), three-point bending, and nanoindentation examinations. Serum biochemical analysis shows that WBV significantly decreased serum tartrate-resistant acid phosphatase 5b (TRACP5b) and CTx-1 levels and also mitigated the reduction of serum osteocalcin (OCN) in db/db mice. Bone histomorphometric analysis confirmed that decreased bone formation-lower mineral apposition rate, bone formation rate, and osteoblast numbers in cancellous bone-in db/db mice were suppressed by WBV. Real-time PCR assays show that WBV mitigated the reductions of tibial alkaline phosphatase (ALP), OCN, Runt-related transcription factor 2 (RUNX2), type I collagen (COL1), BMP2, Wnt3a, Lrp6, and β-catenin mRNA expression, and prevented the increases of tibial sclerostin (SOST), RANK, RANKL, RANL/osteoprotegerin (OPG) gene levels in db/db mice. Our results show that WBV promoted bone quantity and quality in db/db mice with obvious

  1. LEPTIN AND OBESITY – NEUROENDOCRINE , METABOLIC AND ATHEROGENIC EFFECTS OF LEPTIN

    Directory of Open Access Journals (Sweden)

    Mišo Šabovič

    2003-01-01

    Full Text Available Background. Leptin is an adipocyte-derived hormone that was recently discovered. Leptin and leptin resistance play an important role in the pathogenesis of obesity. Leptin acts by binding to specific receptors in the hypothalamus to alter the expression of several neuropeptides that regulate food intake and energy expenditure. As commonly found, obese persons have leptin resistance and consequently attenuated effects of leptin. Mechanism underlying leptin resistance has not been explained yet: it might be the result of a receptor or post receptor defect, impaired transport of leptin through cerebrovascular barrier or inactivation of leptin by binding proteins. Phase I and II clinical trials proved that recombinant leptin administration to humans is safe. First results of the current phase III clinical trials demonstrated that leptin is moderately effective in the treatment of obesity.Conclusions. Beside anti-obesity effect, leptin can have important metabolic and neuroendocrine effects. It is involved in glucose metabolism and insulin secretion, pathogenesis of polymetabolic syndrome, diabetes and arterial hypertension. In addition it affects some processes of atherothrombosis. It interacts with and significantly influences hypothalamic-pituitaryadrenal, thyroid, sexual glands and growth hormone axes. Explaining the mechanism of leptin resistance could be important for understanding the pathogenesis of obesity and associated pathologic states as polymetabolic syndrom, diabetes, arterial hipertension and atherothrombosis.

  2. Leptin promoter gene polymorphism on -2549 position decreases plasma leptin and increases appetite in normal weight volunteers

    Directory of Open Access Journals (Sweden)

    Sandra Bragança Coelho

    2014-05-01

    Full Text Available Introduction: Investigate whether polymorphism in the promoter region encoding leptin and leptin receptor gene, in normal weight individuals, affects hormonal and appetite responses to peanuts.Materials and methods: Appetite, anthropometric indices, body composition, physical activity, dietary intake and leptin, ghrelin and insulin levels were monitored. Polymorphism analyses were also carried out.Results: None of the treatments led to statistical differences in the analyzed hormones. No polymorphism was found for leptin receptor gene, while for leptin gene, 50% of the volunteers presented one polymorphic allele and 13% presented both polymorphic alleles. These last ones presented lower body fat mass, leptin and ghrelin plasma concentrations, and fullness rates. They also presented higher hunger, desire to eat, and desire to eat sweet and salty foods.Conclusions: Peanut did not affect appetite and presented no different hormonal responses, compared to other foods studied. Polymorphic allele carriers in both alleles presented higher probability to develop obesity. However, the magnitude of this probability could not be measured.

  3. Leptin Inhibits the Proliferation of Vascular Smooth Muscle Cells Induced by Angiotensin II through Nitric Oxide-Dependent Mechanisms

    Directory of Open Access Journals (Sweden)

    Amaia Rodríguez

    2010-01-01

    Full Text Available Objective. This study was designed to investigate whether leptin modifies angiotensin (Ang II-induced proliferation of aortic vascular smooth muscle cells (VSMCs from 10-week-old male Wistar and spontaneously hypertensive rats (SHR, and the possible role of nitric oxide (NO. Methods. NO and NO synthase (NOS activity were assessed by the Griess and 3H-arginine/citrulline conversion assays, respectively. Inducible NOS (iNOS and NADPH oxidase subutnit Nox2 expression was determined by Western-blot. The proliferative responses to Ang II were evaluated through enzymatic methods. Results. Leptin inhibited the Ang II-induced proliferative response of VSMCs from control rats. This inhibitory effect of leptin was abolished by NOS inhibitor, NMMA, and iNOS selective inhibitor, L-NIL, and was not observed in leptin receptor-deficient fa/fa rats. SHR showed increased serum leptin concentrations and lipid peroxidation. Despite a similar leptin-induced iNOS up-regulation, VSMCs from SHR showed an impaired NOS activity and NO production induced by leptin, and an increased basal Nox2 expression. The inhibitory effect of leptin on Ang II-induced VSMC proliferation was attenuated. Conclusion. Leptin blocks the proliferative response to Ang II through NO-dependent mechanisms. The attenuation of this inhibitory effect of leptin in spontaneous hypertension appears to be due to a reduced NO bioavailability in VSMCs.

  4. The unique cysteine knot regulates the pleotropic hormone leptin.

    Directory of Open Access Journals (Sweden)

    Ellinor Haglund

    Full Text Available Leptin plays a key role in regulating energy intake/expenditure, metabolism and hypertension. It folds into a four-helix bundle that binds to the extracellular receptor to initiate signaling. Our work on leptin revealed a hidden complexity in the formation of a previously un-described, cysteine-knotted topology in leptin. We hypothesized that this unique topology could offer new mechanisms in regulating the protein activity. A combination of in silico simulation and in vitro experiments was used to probe the role of the knotted topology introduced by the disulphide-bridge on leptin folding and function. Our results surprisingly show that the free energy landscape is conserved between knotted and unknotted protein, however the additional complexity added by the knot formation is structurally important. Native state analyses led to the discovery that the disulphide-bond plays an important role in receptor binding and thus mediate biological activity by local motions on distal receptor-binding sites, far removed from the disulphide-bridge. Thus, the disulphide-bridge appears to function as a point of tension that allows dissipation of stress at a distance in leptin.

  5. LEPTIN RESISTANCE AND TYPE 2 DIABETES

    Directory of Open Access Journals (Sweden)

    O. M. Oleshchuk

    2017-07-01

    Full Text Available Leptin is one of adipocyte-secreted hormones. It signals to the brain and other tissues about the status of body energy reserves. Circulating leptin levels are directly proportional to the amount of the body fat. Leptin concentration increases when surfeit and decreases during fasting. Obese patients are hyperleptinemic compared with thin persons and they are tolerant to the central hypothalamic effects of leptin. The reduced sensitivity toward exogenous and endogenous leptin is commonly referred to as leptin resistance. Alterations in the signaling of the long isoform of the leptin receptor play the crucial role in leptin resistance. Surfeit may induce leptin resistance and other metabolic sequelae of obesity. Leptin insensitivity and insulin resistance play a major role in the development of type 2 diabetes. Metformin remains the preferred first-line pharmacologic agent for the treatment of type 2 diabetes. It reduces hepatic glucose production, increases glucose uptake in peripheral tissue and can lead to weight loss. Metformin decreases both insulin and leptin concentration, restores the sensitivity to these hormones. But some studies have shown poor relationship between metformin action and leptin level. And the mechanism of metformin action on leptin resistance remains unclear. Thus, these issues should be studied as well as polymorphisms in genes encoding metformin action.

  6. Characterization of Leptin Intracellular Trafficking

    Directory of Open Access Journals (Sweden)

    E Walum

    2009-12-01

    Full Text Available Leptin is produced by adipose tissue, and its concentration in plasma is related to the amount of fat in the body. The leptin receptor (OBR is a member of the class I cytokine receptor family and several different isoforms, produced by alternative mRNA splicing are found in many tissues, including the hypothalamus. The two predominant isoforms includes a long form (OBRl with an intracellular domain of 303 amino acids and a shorter form (OBRs with an intracellular domain of 34 amino acids. Since OBRl is mainly expressed in the hypotalamus, it has been suggested to be the main signalling form. The peripheral production of leptin by adipocyte tissue and its effects as a signal of satiety in the central nervous system imply that leptin gains access to regions of the brain regulating in energy balance by crossing the blood-brain barrier. In an attempt to characterize the intracellular transport of leptin, we have followed binding internalization and degradation of leptin in HEK293 cells. We have also monitored the intracellular transport pathway of fluorescent conjugated leptin in HEK293 cells. Phenylarsine oxide, a general inhibitor of endocytosis, as well as incubation at mild hypertonic conditions, prevented the uptake of leptin, confirming a receptor-mediated internalization process. When internalized, 125I-leptin was rapidly accumulated inside the cells and reached a maximum after 10 min. After 70 minutes about 40-50% of total counts in each time point were found in the medium as TCA-soluble material. Leptin sorting, at the level of early endosomes, did not seem to involve recycling endosomes, since FITC-leptin was sorted from Cy3- transferrin containing compartments at 37°C. At 45 minutes of continuos internalization, FITC-leptin appeared mainly accumulated in late endocytic structures colocalizing with internalized rhodamine coupled epidermial growth factor (EGF and the lysosomal marker protein lamp-1. The transport of leptin was also shown

  7. Goldfish Leptin-AI and Leptin-AII: Function and Central Mechanism in Feeding Control

    Directory of Open Access Journals (Sweden)

    Ai-Fen Yan

    2016-05-01

    Full Text Available In mammals, leptin is a peripheral satiety factor that inhibits feeding by regulating a variety of appetite-related hormones in the brain. However, most of the previous studies examining leptin in fish feeding were performed with mammalian leptins, which share very low sequence homologies with fish leptins. To elucidate the function and mechanism of endogenous fish leptins in feeding regulation, recombinant goldfish leptin-AI and leptin-AII were expressed in methylotrophic yeast and purified by immobilized metal ion affinity chromatography (IMAC. By intraperitoneal (IP injection, both leptin-AI and leptin-AII were shown to inhibit the feeding behavior and to reduce the food consumption of goldfish in 2 h. In addition, co-treatment of leptin-AI or leptin-AII could block the feeding behavior and reduce the food consumption induced by neuropeptide Y (NPY injection. High levels of leptin receptor (lepR mRNA were detected in the hypothalamus, telencephalon, optic tectum and cerebellum of the goldfish brain. The appetite inhibitory effects of leptins were mediated by downregulating the mRNA levels of orexigenic NPY, agouti-related peptide (AgRP and orexin and upregulating the mRNA levels of anorexigenic cocaine-amphetamine-regulated transcript (CART, cholecystokinin (CCK, melanin-concentrating hormone (MCH and proopiomelanocortin (POMC in different areas of the goldfish brain. Our study, as a whole, provides new insights into the functions and mechanisms of leptins in appetite control in a fish model.

  8. Leptin signaling molecular actions and drug target in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Jiang N

    2014-11-01

    Full Text Available Nan Jiang,1,* Rongtong Sun,2,* Qing Sun3 1Shandong University School of Medicine, Jinan, Shandong Province, People’s Republic of China; 2Weihai Municipal Hospital, Weihai, Shandong Province, People’s Republic of China; 3Department of Pathology, QianFoShan Hospital Affiliated to Shandong University, Jinan, Shandong Province, People’s Republic of China *These authors contributed equally to this work Abstract: Previous reports indicate that over 13 different tumors, including hepatocellular carcinoma (HCC, are related to obesity. Obesity-associated inflammatory, metabolic, and endocrine mediators, as well as the functioning of the gut microbiota, are suspected to contribute to tumorigenesis. In obese people, proinflammatory cytokines/chemokines including tumor necrosis factor-alpha, interleukin (IL-1 and IL-6, insulin and insulin-like growth factors, adipokines, plasminogen activator inhibitor-1, adiponectin, and leptin are found to play crucial roles in the initiation and development of cancer. The cytokines induced by leptin in adipose tissue or tumor cells have been intensely studied. Leptin-induced signaling pathways are critical for biological functions such as adiposity, energy balance, endocrine function, immune reaction, and angiogenesis as well as oncogenesis. Leptin is an activator of cell proliferation and anti-apoptosis in several cell types, and an inducer of cancer stem cells; its critical roles in tumorigenesis are based on its oncogenic, mitogenic, proinflammatory, and pro-angiogenic actions. This review provides an update of the pathological effects of leptin signaling with special emphasis on potential molecular mechanisms and therapeutic targeting, which could potentially be used in future clinical settings. In addition, leptin-induced angiogenic ability and molecular mechanisms in HCC are discussed. The stringent binding affinity of leptin and its receptor Ob-R, as well as the highly upregulated expression of both

  9. Leptin and insulin engage specific PI3K subunits in hypothalamic SF1 neurons

    Directory of Open Access Journals (Sweden)

    Jong-Woo Sohn

    2016-08-01

    Full Text Available Objective: The ventromedial hypothalamic nucleus (VMH regulates energy balance and glucose homeostasis. Leptin and insulin exert metabolic effects via their cognate receptors expressed by the steroidogenic factor 1 (SF1 neurons within the VMH. However, detailed cellular mechanisms involved in the regulation of these neurons by leptin and insulin remain to be identified. Methods: We utilized genetically-modified mouse models and performed patch-clamp electrophysiology experiments to resolve this issue. Results: We identified distinct populations of leptin-activated and leptin-inhibited SF1 neurons. In contrast, insulin uniformly inhibited SF1 neurons. Notably, we found that leptin-activated, leptin-inhibited, and insulin-inhibited SF1 neurons are distinct subpopulations within the VMH. Leptin depolarization of SF1 neuron also required the PI3K p110β catalytic subunit. This effect was mediated by the putative transient receptor potential C (TRPC channel. On the other hand, hyperpolarizing responses of SF1 neurons by leptin and insulin required either of the p110α or p110β catalytic subunits, and were mediated by the putative ATP-sensitive K+ (KATP channel. Conclusions: Our results demonstrate that specific PI3K catalytic subunits are responsible for the acute effects of leptin and insulin on VMH SF1 neurons, and provide insights into the cellular mechanisms of leptin and insulin action on VMH SF1 neurons that regulate energy balance and glucose homeostasis. Author Video: Author Video Watch what authors say about their articles Keywords: Cellular mechanism, Conditional knockout mouse, Patch clamp technique, Functional heterogeneity, Homeostasis

  10. Leptin-dependent neurotoxicity via induction of apoptosis in adult rat neural stem cells

    Directory of Open Access Journals (Sweden)

    Stéphanie eSEGURA

    2015-09-01

    Full Text Available Adipocyte-derived hormone leptin has been recently implicated in the control of neuronal plasticity. To explore whether modulation of adult neurogenesis may contribute to leptin control of neuronal plasticity, we used the neurosphere assay of neural stem cells derived from the adult rat subventricular zone (SVZ. Endogenous expression of specific leptin receptor (ObRb transcripts, as revealed by RT-PCR, is associated with activation of both ERK and STAT-3 pathways via phosphorylation of the critical ERK/STAT-3 amino acid residues upon addition of leptin to neurospheres. Furthermore, leptin triggered withdrawal of neural stem cells from the cell cycle as monitored by Ki67 labelling. This effect was blocked by pharmacological inhibition of ERK activation thus demonstrating that ERK mediates leptin effects on neural stem cell expansion. Leptin-dependent withdrawal of neural stem cells from the cell cycle was associated with increased apoptosis, as detected by TUNEL, which was preceded by cyclin D1 induction. Cyclin D1 was indeed extensively colocalized with TUNEL-positive apoptotic cells. Cyclin-D1 silencing by specific shRNA prevented leptin-induced decrease of the cell number per neurosphere thus pointing to the causal relationship between leptin actions on apoptosis and cyclin D1 induction. Leptin target cells in SVZ neurospheres were identified by double TUNEL/phenotypic marker immunocytofluorescence as differentiating neurons mostly. The inhibition of neural stem cell expansion via ERK/cyclin D1-triggered apoptosis defines novel biological action of leptin which may be involved in adiposity-dependent neurotoxicity.

  11. Clustering of leptin and physical activity with components of metabolic syndrome in Iranian population: an exploratory factor analysis.

    Science.gov (United States)

    Esteghamati, Alireza; Zandieh, Ali; Khalilzadeh, Omid; Morteza, Afsaneh; Meysamie, Alipasha; Nakhjavani, Manouchehr; Gouya, Mohammad Mehdi

    2010-10-01

    Metabolic syndrome (MetS), manifested by insulin resistance, dyslipidemia, central obesity, and hypertension, is conceived to be associated with hyperleptinemia and physical activity. The aim of this study was to elucidate the factors underlying components of MetS and also to test the suitability of leptin and physical activity as additional components of this syndrome. Data of the individuals without history of diabetes mellitus, aged 25-64 years, from third national surveillance of risk factors of non-communicable diseases (SuRFNCD-2007), were analyzed. Performing factor analysis on waist circumference, homeostasis model assessment of insulin resistance, systolic blood pressure, triglycerides (TG) and high-density lipoprotein cholesterol (HDL-C) led to extraction of two factors which explained around 59.0% of the total variance in both genders. When TG and HDL-C were replaced by TG to HDL-C ratio, a single factor was obtained. In contrast to physical activity, addition of leptin was consistent with one-factor structure of MetS and improved the ability of suggested models to identify obesity (BMI≥30 kg/m2, Pphysical activity loaded on the first identified factor. Our study shows that one underlying factor structure of MetS is also plausible and the inclusion of leptin does not interfere with this structure. Further, this study suggests that physical activity influences MetS components via modulation of the main underlying pathophysiologic pathway of this syndrome.

  12. Bilirubin Increases Insulin Sensitivity in Leptin-Receptor Deficient and Diet-Induced Obese Mice Through Suppression of ER Stress and Chronic Inflammation

    Science.gov (United States)

    Dong, Huansheng; Huang, Hu; Yun, Xinxu; Kim, Do-sung; Yue, Yinan; Wu, Hongju; Sutter, Alton; Chavin, Kenneth D.; Otterbein, Leo E.; Adams, David B.; Kim, Young-Bum

    2014-01-01

    Obesity-induced endoplasmic reticulum (ER) stress causes chronic inflammation in adipose tissue and steatosis in the liver, and eventually leads to insulin resistance and type 2 diabetes (T2D). The goal of this study was to understand the mechanisms by which administration of bilirubin, a powerful antioxidant, reduces hyperglycemia and ameliorates obesity in leptin-receptor-deficient (db/db) and diet-induced obese (DIO) mouse models. db/db or DIO mice were injected with bilirubin or vehicle ip. Blood glucose and body weight were measured. Activation of insulin-signaling pathways, expression of inflammatory cytokines, and ER stress markers were measured in skeletal muscle, adipose tissue, and liver of mice. Bilirubin administration significantly reduced hyperglycemia and increased insulin sensitivity in db/db mice. Bilirubin treatment increased protein kinase B (PKB/Akt) phosphorylation in skeletal muscle and suppressed expression of ER stress markers, including the 78-kDa glucose-regulated protein (GRP78), CCAAT/enhancer-binding protein (C/EBP) homologous protein, X box binding protein (XBP-1), and activating transcription factor 4 in db/db mice. In DIO mice, bilirubin treatment significantly reduced body weight and increased insulin sensitivity. Moreover, bilirubin suppressed macrophage infiltration and proinflammatory cytokine expression, including TNF-α, IL-1β, and monocyte chemoattractant protein-1, in adipose tissue. In liver and adipose tissue of DIO mice, bilirubin ameliorated hepatic steatosis and reduced expression of GRP78 and C/EBP homologous protein. These results demonstrate that bilirubin administration improves hyperglycemia and obesity by increasing insulin sensitivity in both genetically engineered and DIO mice models. Bilirubin or bilirubin-increasing drugs might be useful as an insulin sensitizer for the treatment of obesity-induced insulin resistance and type 2 diabetes based on its profound anti-ER stress and antiinflammatory properties. PMID

  13. Regulation of leptin synthesis in white adipose tissue of the female fruit bat, Cynopterus sphinx: role of melatonin with or without insulin.

    Science.gov (United States)

    Banerjee, A; Udin, S; Krishna, A

    2011-02-01

    Factors regulating leptin synthesis during adipogenesis in wild species are not well known. Studies in the female Cynopterus sphinx bat have shown that it undergoes seasonal changes in its fat deposition and serum leptin and melatonin levels. The aim of the present study was to investigate the hormonal regulation of leptin synthesis by the white adipose tissue during the period of fat deposition in female C. sphinx. This study showed a significant correlation between the seasonal changes in serum melatonin level with the circulating leptin level (r = 0.78; P sphinx. A significant correlation between circulating insulin and leptin levels (r = 0.65; P sphinx. The study showed MT(2) receptors in adipose tissue and a stimulatory effect of melatonin on leptin synthesis, which was blocked by treatment with an MT(2) receptor antagonist, suggesting that the effect of melatonin on leptin synthesis by adipose tissue is mediated through the MT(2) receptor in C. sphinx. The in vitro study showed that the synthesis of leptin is directly proportional to the amount of glucose uptake by the adipose tissue. It further showed that melatonin together with insulin synergistically enhanced the leptin synthesis by adipose tissue through phosphorylation of mitogen-activated protein kinase in C. sphinx.

  14. Leptin/HER2 crosstalk in breast cancer: in vitro study and preliminary in vivo analysis

    International Nuclear Information System (INIS)

    Fiorio, Elena; Bonetti, Franco; Giordano, Antonio; Cetto, Gian Luigi; Surmacz, Eva; Mercanti, Anna; Terrasi, Marianna; Micciolo, Rocco; Remo, Andrea; Auriemma, Alessandra; Molino, Annamaria; Parolin, Veronica; Di Stefano, Bruno

    2008-01-01

    Obesity in postmenopausal women is associated with increased breast cancer risk, development of more aggressive tumors and resistance to certain anti-breast cancer treatments. Some of these effects might be mediated by obesity hormone leptin, acting independently or modulating other signaling pathways. Here we focused on the link between leptin and HER2. We tested if HER2 and the leptin receptor (ObR) can be coexpressed in breast cancer cell models, whether these two receptors can physically interact, and whether leptin can transactivate HER2. Next, we studied if leptin/ObR can coexist with HER2 in breast cancer tissues, and if presence of these two systems correlates with specific clinicopathological features. Expression of ObR, HER2, phospo-HER2 was assessed by immonoblotting. Physical interactions between ObR and HER2 were probed by immunoprecipitation and fluorescent immunostaining. Expression of leptin and ObR in breast cancer tissues was detected by immunohistochemistry (IHC). Associations among markers studied by IHC were evaluated using Fisher's exact test for count data. HER2 and ObR were coexpressed in all studied breast cancer cell lines. In MCF-7 cells, HER2 physically interacted with ObR and leptin treatment increased HER2 phosphorylation on Tyr 1248. In 59 breast cancers, the presence of leptin was correlated with ObR (the overall association was about 93%). This result was confirmed both in HER2-positive and in HER2-negative subgroups. The expression of leptin or ObR was numerically more frequent in larger (> 10 mm) tumors. Coexpression of HER2 and the leptin/ObR system might contribute to enhanced HER2 activity and reduced sensitivity to anti-HER2 treatments

  15. Liraglutide, leptin and their combined effects on feeding: additive intake reduction through common intracellular signalling mechanisms.

    Science.gov (United States)

    Kanoski, S E; Ong, Z Y; Fortin, S M; Schlessinger, E S; Grill, H J

    2015-03-01

    To investigate the behavioural and intracellular mechanisms by which the glucagon like peptide-1 (GLP-1) receptor agonist, liraglutide, and leptin in combination enhance the food intake inhibitory and weight loss effects of either treatment alone. We examined the effects of liraglutide (a long-acting GLP-1 analogue) and leptin co-treatment, delivered in low or moderate doses subcutaneously (s.c.) or to the third ventricle, respectively, on cumulative intake, meal patterns and hypothalamic expression of intracellular signalling proteins [phosphorylated signal transducer and activator of transcription-3 (pSTAT3) and protein tyrosine phosphatase-1B (PTP1B)] in lean rats. A low-dose combination of liraglutide (25 µg/kg) and leptin (0.75 µg) additively reduced cumulative food intake and body weight, a result mediated predominantly through a significant reduction in meal frequency that was not present with either drug alone. Liraglutide treatment alone also reduced meal size; an effect not enhanced with leptin co-administration. Moderate doses of liraglutide (75 µg/kg) and leptin (4 µg), examined separately, each reduced meal frequency, cumulative food intake and body weight; only liraglutide reduced meal size. In combination these doses did not further enhance the anorexigenic effects of either treatment alone. Ex vivo immunoblot analysis showed elevated pSTAT3 in the hypothalamic tissue after liraglutide-leptin co-treatment, an effect which was greater than that of leptin treatment alone. In addition, s.c. liraglutide reduced the expression of PTP1B (a negative regulator of leptin receptor signalling), revealing a potential mechanism for the enhanced pSTAT3 response after liraglutide-leptin co-administration. Collectively, these results show novel behavioural and molecular mechanisms underlying the additive reduction in food intake and body weight after liraglutide-leptin combination treatment. © 2014 John Wiley & Sons Ltd.

  16. Leptin deficiency: clinical implications and opportunities for therapeutic interventions.

    Science.gov (United States)

    Blüher, Susan; Shah, Sunali; Mantzoros, Christos S

    2009-10-01

    The discovery of leptin has significantly advanced our understanding of the metabolic importance of adipose tissue and has revealed that both leptin deficiency and leptin excess are associated with severe metabolic, endocrine, and immunological consequences. We and others have shown that a prominent role of leptin in humans is to mediate the neuroendocrine adaptation to energy deprivation. Humans with genetic mutations in the leptin and leptin receptor genes have deregulated food intake and energy expenditure leading to a morbidly obese phenotype and a disrupted regulation in neuroendocrine and immune function and in glucose and fat metabolism. Observational and interventional studies in humans with (complete) congenital leptin deficiency caused by mutations in the leptin gene or with relative leptin deficiency as seen in states of negative energy balance such as lipoatrophy, anorexia nervosa, or exercise-induced hypothalamic and neuroendocrine dysfunction have contributed to the elucidation of the pathophysiological role of leptin in these conditions and of the clinical significance of leptin administration in these subjects. More specifically, interventional studies have demonstrated that several neuroendocrine, metabolic, or immune disturbances in these states could be restored by leptin administration. Leptin replacement therapy is currently available through a compassionate use program for congenital complete leptin deficiency and under an expanded access program to subjects with leptin deficiency associated with congenital or acquired lipoatrophy. In addition, leptin remains a potentially forthcoming treatment for several other states of energy deprivation including anorexia nervosa or milder forms of hypothalamic amenorrhea pending appropriate clinical trials.

  17. Low Leptin Availability as a Risk Factor for Dementia in Chilean Older People

    Directory of Open Access Journals (Sweden)

    Cecilia Albala

    2016-07-01

    Full Text Available Objective: The aim was to study the role of leptin in the development of dementia. Methods: Follow-up of the ALEXANDROS cohorts, with baseline measurements in 2000. From 1,136 available subjects free of dementia at baseline, 667 subjects had frozen baseline blood samples for measuring leptin and soluble leptin receptor (sOB-R. The free leptin index (FLI was calculated as the ratio of leptin to sOB-R. Dementia was defined as an MMSE score 5 in the Pfeffer Activities Questionnaire. Results: After 15 years of follow-up, 42 incident cases of dementia were identified. No difference in serum leptin was observed between people with and without dementia, but sOB-R was higher in demented than in nondemented subjects (sOB-R: 44.94 ± 23.97 vs. 33.73 ± 21.13 ng/ml. The adjusted risk for dementia increased, the higher the log sOB (hazard ratio = 3.58; 95% CI 1.72-7.45, p = 0.001. Conclusion: Lower availability of free leptin was found in demented than in nondemented people, suggesting a role of leptin in cognition.

  18. Exposure to a high-fat diet alters leptin sensitivity and elevates renal sympathetic nerve activity and arterial pressure in rabbits.

    Science.gov (United States)

    Prior, Larissa J; Eikelis, Nina; Armitage, James A; Davern, Pamela J; Burke, Sandra L; Montani, Jean-Pierre; Barzel, Benjamin; Head, Geoffrey A

    2010-04-01

    The activation of the sympathetic nervous system through the central actions of the adipokine leptin has been suggested as a major mechanism by which obesity contributes to the development of hypertension. However, direct evidence for elevated sympathetic activity in obesity has been limited to muscle. The present study examined the renal sympathetic nerve activity and cardiovascular effects of a high-fat diet (HFD), as well as the changes in the sensitivity to intracerebroventricular leptin. New Zealand white rabbits fed a 13.5% HFD for 4 weeks showed modest weight gain but a 2- to 3-fold greater accumulation of visceral fat compared with control rabbits. Mean arterial pressure, heart rate, and plasma norepinephrine concentration increased by 8%, 26%, and 87%, respectively (Pdiet rabbits and was correlated to plasma leptin (r=0.87; Pfat accumulation through consumption of a HFD leads to marked sympathetic activation, which is related to increased responsiveness to central sympathoexcitatory effects of leptin. The paradoxical reduction in hypothalamic neuronal activation by leptin suggests a marked "selective leptin resistance" in these animals.

  19. Expression of feeding-related peptide receptors mRNA in GT1-7 cell line and roles of leptin and orexins in control of GnRH secretion.

    Science.gov (United States)

    Yang, Ying; Zhou, Li-bin; Liu, Shang-quan; Tang, Jing-feng; Li, Feng-yin; Li, Rong-ying; Song, Huai-dong; Chen, Ming-dao

    2005-08-01

    To investigate the expression of feeding-related peptide receptors mRNA in GT1-7 cell line and roles of leptin and orexins in the control of GnRH secretion. Receptors of bombesin3, cholecystokinin (CCK)-A, CCK-B, glucagon-like peptide (GLP)1, melanin-concentrating hormone (MCH)1, orexin1, orexin2, neuromedin-B, neuropeptide Y (NPY)1 and NPY5, neurotensin (NT)1, NT2, NT3, and leptin receptor long form mRNA in GT1-7 cells were detected by reversed transcriptase-polymerase chain reaction. GT1-7 cells were treated with leptin, orexin A and orexin B at a cohort of concentrations for different lengths of time, and GnRH in medium was determined by radioimmunoassay (RIA). Receptors of bombesin 3, CCK-B, GLP1, MCH1, orexin1, neuromedin-B, NPY1, NPY5, NT1, NT3, and leptin receptor long form mRNA were expressed in GT1-7 cells, of which, receptors of GLP1, neuromedin-B, NPY1, and NT3 were highly expressed. No amplified fragments of orexin2, NT2, and CCK-A receptor cDNA were generated with GT1-7 RNA, indicating that the GT1-7 cells did not express mRNA of them. Leptin induced a significant stimulation of GnRH release, the results being most significant at 0.1 nmol/L for 15 min. In contrast to other studies in hypothalamic explants, neither orexin A nor orexin B affected basal GnRH secretion over a wide range of concentrations ranging from 1 nmol/L to 500 nmol/Lat 15, 30, and 60 min. Feeding and reproductive function are closely linked. Many orexigenic and anorexigenic signals may control feeding behavior as well as alter GnRH secretion through their receptors on GnRH neurons.

  20. Leptin promotes wound healing in the skin.

    Directory of Open Access Journals (Sweden)

    Susumu Tadokoro

    Full Text Available Leptin, a 16 kDa anti-obesity hormone, exhibits various physiological properties. Interestingly, skin wound healing was proven to delay in leptin-deficient ob/ob mice. However, little is known on the mechanisms of this phenomenon. In this study, we attempted to elucidate a role of leptin in wound healing of skin.Immunohistochemical analysis was performed to confirm the expression of the leptin receptor (Ob-R in human and mouse skin. Leptin was topically administered to chemical wounds created in mouse back skin along with sustained-release absorbable hydrogel. The process of wound repair was histologically observed and the area of ulceration was measured over time. The effect of leptin on the proliferation, differentiation and migration of human epidermal keratinocytes was investigated.Ob-R was expressed in epidermal cells of human and mouse skin. Topical administration of leptin significantly promoted wound healing. Histological analysis showed more blood vessels in the dermal connective tissues in the leptin-treated group. The proliferation, differentiation/function and migration of human epidermal keratinocytes were enhanced by exogenous leptin.Topically administered leptin was proven to promote wound healing in the skin by accelerating proliferation, differentiation/function and migration of epidermal keratinocytes and enhancing angiogenesis around the wounded area. These results strongly suggest that topical administration of leptin may be useful as a treatment to promote wound healing in the skin.

  1. Genetic polymorphisms and protein structures in growth hormone, growth hormone receptor, ghrelin, insulin-like growth factor 1 and leptin in Mehraban sheep.

    Science.gov (United States)

    Bahrami, A; Behzadi, Sh; Miraei-Ashtiani, S R; Roh, S-G; Katoh, K

    2013-09-15

    The somatotropic axis, the control system for growth hormone (GH) secretion and its endogenous factors involved in the regulation of metabolism and energy partitioning, has promising potentials for producing economically valuable traits in farm animals. Here we investigated single nucleotide polymorphisms (SNPs) of the genes of factors involved in the somatotropic axis for growth hormone (GH1), growth hormone receptor (GHR), ghrelin (GHRL), insulin-like growth factor 1 (IGF-I) and leptin (LEP), using polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) and DNA sequencing methods in 452 individual Mehraban sheep. A nonradioactive method to allow SSCP detection was used for genomic DNA and PCR amplification of six fragments: exons 4 and 5 of GH1; exon 10 of GH receptor (GHR); exon 1 of ghrelin (GHRL); exon 1 of insulin-like growth factor-I (IGF-I), and exon 3 of leptin (LEP). Polymorphisms were detected in five of the six PCR products. Two electrophoretic patterns were detected for GH1 exon 4. Five conformational patterns were detected for GH1 exon 5 and LEP exon 3, and three for IGF-I exon 1. Only GHR and GHRL were monomorphic. Changes in protein structures due to variable SNPs were also analyzed. The results suggest that Mehraban sheep, a major breed that is important for the animal industry in Middle East countries, has high genetic variability, opening interesting prospects for future selection programs and preservation strategies. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. SOCS3 deficiency in leptin receptor-expressing cells mitigates the development of pregnancy-induced metabolic changes

    Directory of Open Access Journals (Sweden)

    Thais T. Zampieri

    2015-03-01

    Conclusions: Our study identified the increased hypothalamic expression of SOCS3 as a key mechanism responsible for triggering pregnancy-induced leptin resistance and metabolic adaptations. These findings not only help to explain a common phenomenon of the mammalian physiology, but it may also aid in the development of approaches to prevent and treat gestational metabolic imbalances.

  3. Elsevier Trophoblast Research Award lecture: Molecular mechanisms underlying estrogen functions in trophoblastic cells--focus on leptin expression.

    Science.gov (United States)

    Gambino, Y P; Maymó, J L; Pérez Pérez, A; Calvo, J C; Sánchez-Margalet, V; Varone, C L

    2012-02-01

    The steroid hormone 17β-estradiol is an estrogen that influences multiple aspects of placental function and fetal development in humans. During early pregnancy it plays a role in the regulation of blastocyst implantation, trophoblast differentiation and invasiveness, remodeling of uterine arteries, immunology and trophoblast production of hormones such as leptin. Estradiol exerts some effects through the action of classical estrogen receptors ERα and ERβ, which act as ligand-activated transcription factors and regulate gene expression. In addition, estradiol can elicit rapid responses from membrane-associated receptors, like activation of protein-kinase pathways. Thus, the cellular effects of estradiol will depend on the specific receptors expressed and the integration of their signaling events. Leptin, the 16,000MW protein product of the obese gene, was originally considered an adipocyte-derived signaling molecule for the central control of metabolism. However, pleiotropic effects of leptin have been identified in reproduction and pregnancy. The leptin gene is expressed in placenta, where leptin promotes proliferation and survival of trophoblastic cells. Expression of leptin in placenta is highly regulated by key pregnancy molecules as hCG and estradiol. The aim of this paper is to review the molecular mechanisms underlying estrogen functions in trophoblastic cells; focusing on mechanisms involved in estradiol regulation of placental leptin expression. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Improved leptin sensitivity as a potential candidate responsible for the spontaneous food restriction of the Lou/C rat.

    Directory of Open Access Journals (Sweden)

    Christelle Veyrat-Durebex

    Full Text Available The Lou/C rat, an inbred strain of Wistar origin, was described as a model of resistance to age- and diet-induced obesity. Although such a resistance involves many metabolic parameters described in our previous studies, Lou/C rats also exhibit a spontaneous food restriction due to decreased food consumption during the nocturnal period. We then attempted to delineate the leptin sensitivity and mechanisms implicated in this strain, using different protocols of acute central and peripheral leptin administration. A first analysis of the meal patterns revealed that Lou/C rats eat smaller meals, without any change in meal number compared to age-matched Wistar animals. Although the expression of the recognized leptin transporters (leptin receptors and megalin measured in the choroid plexus was normal in Lou/C rats, the decreased triglyceridemia observed in these animals is compatible with an increased leptin transport across the blood brain barrier. Improved hypothalamic leptin signaling in Lou/C rats was also suggested by the higher pSTAT3/STAT3 (signal transducer and activator of transcription 3 ratio observed following acute peripheral leptin administration, as well as by the lower hypothalamic mRNA expression of the suppressor of cytokine signaling 3 (SOCS3, known to downregulate leptin signaling. To conclude, spontaneous hypophagia of Lou/C rats appears to be related to improved leptin sensitivity. The main mechanism underlying such a phenomenon consists in improved leptin signaling through the Ob-Rb leptin receptor isoform, which seems to consequently lead to overexpression of brain-derived neurotrophic factor (BDNF and thyrotropin-releasing hormone (TRH.

  5. Leptin Suppresses the Rewarding Effects of Running via STAT3 Signaling in Dopamine Neurons.

    Science.gov (United States)

    Fernandes, Maria Fernanda A; Matthys, Dominique; Hryhorczuk, Cécile; Sharma, Sandeep; Mogra, Shabana; Alquier, Thierry; Fulton, Stephanie

    2015-10-06

    The adipose hormone leptin potently influences physical activity. Leptin can decrease locomotion and running, yet the mechanisms involved and the influence of leptin on the rewarding effects of running ("runner's high") are unknown. Leptin receptor (LepR) signaling involves activation of signal transducer and activator of transcription-3 (STAT3), including in dopamine neurons of the ventral tegmental area (VTA) that are essential for reward-relevant behavior. We found that mice lacking STAT3 in dopamine neurons exhibit greater voluntary running, an effect reversed by viral-mediated STAT3 restoration. STAT3 deletion increased the rewarding effects of running whereas intra-VTA leptin blocked it in a STAT3-dependent manner. Finally, STAT3 loss-of-function reduced mesolimbic dopamine overflow and function. Findings suggest that leptin influences the motivational effects of running via LepR-STAT3 modulation of dopamine tone. Falling leptin is hypothesized to increase stamina and the rewarding effects of running as an adaptive means to enhance the pursuit and procurement of food. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Correlation between maternal and cord blood leptin and fetal growth

    African Journals Online (AJOL)

    SERVER

    2007-09-05

    Sep 5, 2007 ... IL -2 and growth hormone. The long form of the leptin receptor functions similarly to cytokine ... regulation of leptin synthesis and the risk for obesity in the offspring. In species such as the human and sheep, ..... Hormonal regulation of leptin levels in the fetus and neonate might be different from the endocrine ...

  7. Leptin differentially regulates STAT3 activation in the ob/ob mice adipose mesenchymal stem cells

    Science.gov (United States)

    Leptin-deficient genetically obese ob/ob mice exhibit adipocyte hypertrophy and hyperplasia as well as elevated adipose tissue and systemic inflammation. Studies have shown that multipotent stem cells isolated from adult adipose tissue can differentiate into adipocytes ex vivo and thereby contribute...

  8. Ablation of ghrelin receptor in leptin-deficient ob/ob mice has paradoxical effects on glucose homeostasis when compared with ablation of ghrelin in ob/ob mice

    Science.gov (United States)

    The orexigenic hormone ghrelin is important in diabetes because it has an inhibitory effect on insulin secretion. Ghrelin ablation in leptin-deficient ob/ob (Ghrelin(-/-):ob/ob) mice increases insulin secretion and improves hyperglycemia. The physiologically relevant ghrelin receptor is the growth ...

  9. Endogenous leptin contributes to baroreflex suppression within the solitary tract nucleus of aged rats

    Science.gov (United States)

    Arnold, Amy C.

    2014-01-01

    The decline in cardiovagal baroreflex function that occurs with aging is accompanied by an increase in circulating leptin levels. Our previous studies showed that exogenous leptin impairs the baroreflex sensitivity for control of heart rate in younger rats, but the contribution of this hormone to baroreflex dysfunction during aging is unknown. Thus we assessed the effect of bilateral leptin microinjection (500 fmol/60 nl) within the solitary tract nucleus (NTS) on the baroreflex sensitivity in older (66 ± 2 wk of age) urethane/chloralose anesthetized Sprague-Dawley rats with elevated circulating leptin levels. In contrast to the 63% reduction observed in younger rats, leptin did not alter the baroreflex sensitivity for bradycardia evoked by phenylephrine in older rats (0.76 ± 0.19 baseline vs. 0.71 ± 0.15 ms/mmHg after leptin; P = 0.806). We hypothesized that this loss of sensitivity reflected endogenous suppression of the baroreflex by elevated leptin, rather than cardiovascular resistance to the peptide. Indeed, NTS administration of a leptin receptor antagonist (75 pmol/120 nl) improved the baroreflex sensitivity for bradycardia in older rats (0.73 ± 0.13 baseline vs. 1.19 ± 0.26 at 10 min vs. 1.87 ± 0.32 at 60 min vs. 1.22 ± 0.54 ms/mmHg at 120 min; P = 0.002), with no effect in younger rats. There was no effect of the leptin antagonist on the baroreflex sensitivity for tachycardia, responses to cardiac vagal chemosensitive fiber activation, or resting hemodynamics in older rats. These findings suggest that the actions of endogenous leptin within the NTS, either produced locally or derived from the circulation, contribute to baroreflex suppression during aging. PMID:25260611

  10. Leptin signaling in GABA neurons, but not glutamate neurons, is required for reproductive function.

    Science.gov (United States)

    Zuure, Wieteke A; Roberts, Amy L; Quennell, Janette H; Anderson, Greg M

    2013-11-06

    The adipocyte-derived hormone leptin acts in the brain to modulate the central driver of fertility: the gonadotropin releasing hormone (GnRH) neuronal system. This effect is indirect, as GnRH neurons do not express leptin receptors (LEPRs). Here we test whether GABAergic or glutamatergic neurons provide the intermediate pathway between the site of leptin action and the GnRH neurons. Leptin receptors were deleted from GABA and glutamate neurons using Cre-Lox transgenics, and the downstream effects on puberty onset and reproduction were examined. Both mouse lines displayed the expected increase in body weight and region-specific loss of leptin signaling in the hypothalamus. The GABA neuron-specific LEPR knock-out females and males showed significantly delayed puberty onset. Adult fertility observations revealed that these knock-out animals have decreased fecundity. In contrast, glutamate neuron-specific LEPR knock-out mice displayed normal fertility. Assessment of the estrogenic hypothalamic-pituitary-gonadal axis regulation in females showed that leptin action on GABA neurons is not necessary for estradiol-mediated suppression of tonic luteinizing hormone secretion (an indirect measure of GnRH neuron activity) but is required for regulation of a full preovulatory-like luteinizing hormone surge. In conclusion, leptin signaling in GABAergic (but not glutamatergic neurons) plays a critical role in the timing of puberty onset and is involved in fertility regulation throughout adulthood in both sexes. These results form an important step in explaining the role of central leptin signaling in the reproductive system. Limiting the leptin-to-GnRH mediators to GABAergic cells will enable future research to focus on a few specific types of neurons.

  11. The effects of leptin in combination with a cannabinoid receptor 1 antagonist, AM 251, or cannabidiol on food intake and body weight in rats fed a high-fat or a free-choice high sugar diet.

    Science.gov (United States)

    Wierucka-Rybak, M; Wolak, M; Bojanowska, E

    2014-08-01

    High intake of fats and sugars has prompted a rapid growth in the number of obese individuals worldwide. To further investigate whether simultaneous pharmacological intervention in the leptin and cannabinoid system might change food and water intake, preferences for palatable foods, and body weight, we have examined the effects of concomitant intraperitoneal administration of leptin and AM 251, a cannabinoid 1 (CB1) receptor antagonist, or cannabidiol (CBD), a plant cannabinoid, in rats maintained on either a high-fat (HF) diet (45% energy from fat) or free-choice (FC) diet consisting of high-sucrose and normal rat chow (83% and 61% energy from carbohydrates, respectively). Leptin at a dose of 100 μg/kg injected individually for 3 subsequent days to rats fed a HF diet reduced significantly the daily caloric intake and inhibited body weight gain. The hormone had no significant effects, however, on either caloric intake, body weight or food preferences in rats fed an FC diet. Co-injection of leptin and 1 mg/kg AM 251 resulted in a further significant decrease in HF diet intake and a profound reduction in body weight gain both in HF diet- and FC diet-fed rats. This drug combination, however, had no effect on the consumption of high-sucrose chow. In contrast, 3mg/kg of CBD co-injected with leptin did not modify leptin effects on food intake in rats maintained on an FC or HF diet. None of the drug combinations affected water consumption. It is concluded that the concomitant treatment with leptin and AM 251 attenuated markedly body weight gain in rats maintained on high-calorie diets rich in fat and carbohydrates but did not affect preferences for sweet food.

  12. Regulation of chick bone growth by leptin and catecholamines.

    Science.gov (United States)

    Mauro, L J; Wenzel, S J; Sindberg, G M

    2010-04-01

    Leptin and the sympathetic nervous system have a unique role in linking nutritional status to skeletal metabolism in mammals. Such a regulatory mechanism has not been identified in birds but would be beneficial to signal information about energy reserves to an organ system essential for locomotion, reproduction, and survival. To explore this potential role of leptin and the sympathetic nervous system in birds, an ex vivo chick tibiotarsal model was used to test the effects of leptin and sympathetic activity on longitudinal bone growth and the expression of chondrocyte markers. Reverse transcription-PCR analysis revealed the expression of chicken leptin receptor mRNA as well as both alpha-adrenergic (alpha1A, alpha2A, alpha2B, alpha2C) and beta adrenergic (beta1, beta2) receptor subtype mRNA in the whole bone. Incubation with norepinephrine (NE; 0, 10, or 100 microM for 4 d) caused a significant increase in distal condyle length as compared with vehicle-treated, contralateral tibiotarsi. In contrast, no change in condyle length was detected after leptin treatment (0 or 10 nM or 1 microM for 4 d). Analysis of cell proliferation by bromodeoxyuridine incorporation revealed no increase in bromodeoxyuridine-positive cells in the condyles in response to leptin or NE treatments. Real-time PCR analysis showed that NE enhanced type X collagen mRNA expression, a marker of mature hypertrophic chondrocytes, with no effect on type II collagen mRNA, the matrix protein secreted by proliferating chondrocytes. Leptin treatment had no effect on the expression of either matrix protein. Treatment with agonists specific for alpha- or beta-adrenergic receptors indicates that the activation of alpha-adrenergic receptors is most likely responsible for the sympathetic effect on type X collagen gene expression. These results suggest that NE and other sympathetic agonists have positive effects on bone elongation and the changes in critical genes associated with this process. These

  13. Selective Deletion of Leptin Signaling in Endothelial Cells Enhances Neointima Formation and Phenocopies the Vascular Effects of Diet-Induced Obesity in Mice.

    Science.gov (United States)

    Hubert, Astrid; Bochenek, Magdalena L; Schütz, Eva; Gogiraju, Rajinikanth; Münzel, Thomas; Schäfer, Katrin

    2017-09-01

    Obesity is associated with elevated circulating leptin levels and hypothalamic leptin resistance. Leptin receptors (LepRs) are expressed on endothelial cells, and leptin promotes neointima formation in a receptor-dependent manner. Our aim was to examine the importance of endothelial LepR (End.LepR) signaling during vascular remodeling and to determine whether the cardiovascular consequences of obesity are because of hyperleptinemia or endothelial leptin resistance. Mice with loxP-flanked LepR alleles were mated with mice expressing Cre recombinase controlled by the inducible endothelial receptor tyrosine kinase promoter. Obesity was induced with high-fat diet. Neointima formation was examined after chemical carotid artery injury. Morphometric quantification revealed significantly greater intimal hyperplasia, neointimal cellularity, and proliferation in End.LepR knockout mice, and similar findings were obtained in obese, hyperleptinemic End.LepR wild-type animals. Analysis of primary endothelial cells confirmed abrogated signal transducer and activator of transcription-3 phosphorylation in response to leptin in LepR knockout and obese LepR wild-type mice. Quantitative PCR, ELISA, and immunofluorescence analyses revealed increased expression and release of endothelin-1 in End.LepR-deficient and LepR-resistant cells, and ET receptor A/B antagonists abrogated their paracrine effects on murine aortic smooth muscle cell proliferation. Reduced expression of peroxisome proliferator-activated receptor-γ and increased nuclear activator protein-1 staining was observed in End.LepR-deficient and LepR-resistant cells, and peroxisome proliferator-activated receptor-γ antagonization increased endothelial endothelin-1 expression. Our findings suggest that intact endothelial leptin signaling limits neointima formation and that obesity represents a state of endothelial leptin resistance. These observations and the identification of endothelin-1 as soluble mediator of the

  14. Leptin regulates bone formation via the sympathetic nervous system

    Science.gov (United States)

    Takeda, Shu; Elefteriou, Florent; Levasseur, Regis; Liu, Xiuyun; Zhao, Liping; Parker, Keith L.; Armstrong, Dawna; Ducy, Patricia; Karsenty, Gerard

    2002-01-01

    We previously showed that leptin inhibits bone formation by an undefined mechanism. Here, we show that hypothalamic leptin-dependent antiosteogenic and anorexigenic networks differ, and that the peripheral mediators of leptin antiosteogenic function appear to be neuronal. Neuropeptides mediating leptin anorexigenic function do not affect bone formation. Leptin deficiency results in low sympathetic tone, and genetic or pharmacological ablation of adrenergic signaling leads to a leptin-resistant high bone mass. beta-adrenergic receptors on osteoblasts regulate their proliferation, and a beta-adrenergic agonist decreases bone mass in leptin-deficient and wild-type mice while a beta-adrenergic antagonist increases bone mass in wild-type and ovariectomized mice. None of these manipulations affects body weight. This study demonstrates a leptin-dependent neuronal regulation of bone formation with potential therapeutic implications for osteoporosis.

  15. The leptin system and its expression at different nutritional and pregnant stages in lined seahorse (Hippocampus erectus)

    OpenAIRE

    Huixian Zhang; Geng Qin; Yanhong Zhang; Shuisheng Li; Qiang Lin

    2016-01-01

    ABSTRACT Leptin is an essential hormone for the regulation of energy metabolism and food intake in vertebrate animals. To better understand the physiological roles of leptin in nutrient regulation in paternal ovoviviparous fish (family Syngnathidae), the present study cloned the full-length of leptin-a and leptin receptor (lepr) genes in lined seahorse (Hippocampus erectus). Results showed that there was a 576-bp intron between two exons in leptin-a gene but no leptin-b gene in seahorse. Alth...

  16. Role of leptin in farm animals: a review.

    Science.gov (United States)

    Mácajová, M; Lamosová, D; Zeman, M

    2004-05-01

    The discovery of hormone leptin has led to better understanding of the energy balance control. In addition to its effects on food intake and energy expenditure, leptin has now been implicated as a mediator of diverse physiological functions. Recently, leptin has been cloned in several domestic species. The sequence similarity suggests a common function or mechanism of this peptide hormone across species. Leptin receptors are expressed in most of tissues, which is consistent with the multiplicity of leptin functions. The main goal of this review was to summarize knowledge about effect of leptin on physiology of farm animals. Experiments point to a stimulatory action of leptin on growth hormone (GH) secretion, normal growth and development of the brain. Surprisingly, leptin is synthesized at a high rate in placenta and may function as a growth factor for fetus, signalling the nutritional status from the mother to her offspring. Maturation of reproductive system can be stimulated by leptin administration. Morphological and hormonal changes, consistent with a major role of leptin in the reproductive system, have also been described, including the stimulation of the release of luteinizing hormone (LH), follicle-stimulating hormone (FSH) and prolactin. Leptin has a substantial effect on food intake and feeding behaviour in animals. Administration of leptin reduces food intake. Its level decrease within hours after initiation of fasting. Leptin also serves as a mediator of the adaptation to fasting, and this role may be the primary function for which was the molecule evolved.

  17. [Leptin--an interim evaluation].

    Science.gov (United States)

    Bodner, J; Ebenbichler, C F; Lechleitner, M; Ritsch, A; Sandhofer, A; Gander, R; Wolf, H J; Huter, O; Patsch, J R

    1998-03-27

    The discovery of leptin, the product of the obese (ob)-gene, has broadened the horizons of research on energy balance. This hormone, produced and secreted by adipose tissue and some placental cells, finds its way to the hypothalamus, where it binds to the leptin receptors and signals satiety through the neuroendocrine axis. The fact that adipose tissue is not merely a storage depot, but also an important endocrine tissue, has revived the interest in the "lipostatic" theory of body fat regulation and has initiated many research efforts in the field of obesity, anorexia nervosa, bulimia, reproduction and haematology.

  18. Insulin and leptin induce Glut4 plasma membrane translocation and glucose uptake in a human neuronal cell line by a phosphatidylinositol 3-kinase- dependent mechanism.

    Science.gov (United States)

    Benomar, Yacir; Naour, Nadia; Aubourg, Alain; Bailleux, Virginie; Gertler, Arieh; Djiane, Jean; Guerre-Millo, Michèle; Taouis, Mohammed

    2006-05-01

    The insulin-sensitive glucose transporter Glut4 is expressed in brain areas that regulate energy homeostasis and body adiposity. In contrast with peripheral tissues, however, the impact of insulin on Glut4 plasma membrane (PM) translocation in neurons is not known. In this study, we examined the role of two anorexic hormones (leptin and insulin) on Glut4 translocation in a human neuronal cell line that express endogenous insulin and leptin receptors. We show that insulin and leptin both induce Glut4 translocation to the PM of neuronal cells and activate glucose uptake. Wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase, totally abolished insulin- and leptin-dependent Glut4 translocation and stimulation of glucose uptake. Thus, Glut4 translocation is a phosphatidylinositol 3-kinase-dependent mechanism in neuronal cells. Next, we investigated the impact of chronic insulin and leptin treatments on Glut4 expression and translocation. Chronic exposure of neuronal cells to insulin or leptin down-regulates Glut4 proteins and mRNA levels and abolishes the acute stimulation of glucose uptake in response to acute insulin or leptin. In addition, chronic treatment with either insulin or leptin impaired Glut4 translocation. A cross-desensitization between insulin and leptin was apparent, where exposure to insulin affects leptin-dependent Glut4 translocation and vice versa. This cross-desensitization could be attributed to the increase in suppressor of cytokine signaling-3 expression, which was demonstrated in response to each hormone. These results provide evidence to suggest that Glut4 translocation to neuronal PM is regulated by both insulin and leptin signaling pathways. These pathways might contribute to an in vivo glucoregulatory reflex involving a neuronal network and to the anorectic effect of insulin and leptin.

  19. Leptin modulates human Sertoli cells acetate production and glycolytic profile: a novel mechanism of obesity-induced male infertility?

    Science.gov (United States)

    Martins, Ana D; Moreira, Ana C; Sá, Rosália; Monteiro, Mariana P; Sousa, Mário; Carvalho, Rui A; Silva, Branca M; Oliveira, Pedro F; Alves, Marco G

    2015-09-01

    Human feeding behavior and lifestyle are gradually being altered, favoring the development of metabolic diseases, particularly type 2 diabetes and obesity. Leptin is produced by the adipose tissue acting as a satiety signal. Its levels have been positively correlated with fat mass and hyperleptinemia has been proposed to negatively affect male reproductive function. Nevertheless, the molecular mechanisms by which this hormone affects male fertility remain unknown. Herein, we hypothesize that leptin acts on human Sertoli cells (hSCs), the "nurse cells" of spermatogenesis, altering their metabolism. To test our hypothesis, hSCs were cultured without or with leptin (5, 25 and 50ng/mL). Leptin receptor was identified by qPCR and Western blot. Protein levels of glucose transporters (GLUT1, GLUT2 and GLUT3), phosphofructokinase, lactate dehydrogenase (LDH) and monocarboxylate transporter 4 (MCT4) were determined by Western Blot. LDH activity was assessed and metabolite production/consumption determined by proton nuclear magnetic resonance. Oxidative damage was evaluated by assessing lipid peroxidation, protein carbonilation and nitration. Our data shows that leptin receptor is expressed in hSCs. The concentration of leptin found in lean, healthy patients, upregulated GLUT2 protein levels and concentrations of leptin found in lean and obese patients increased LDH activity. Of note, all leptin concentrations decreased hSCs acetate production illustrating a novel mechanism for this hormone action. Moreover, our data shows that leptin does not induce or protect hSCs from oxidative damage. We report that this hormone modulates the nutritional support of spermatogenesis, illustrating a novel mechanism that may be linked to obesity-induced male infertility. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Leptin Mediate High Fat Diet Sensitization of Angiotensin II-elicited Hypertension by Upregulating the Brain Renin-Angiotensin System and Inflammation

    Science.gov (United States)

    Xue, Baojian; Yu, Yang; Zhang, Zhongming; Guo, Fang; Beltz, Terry G.; Thunhorst, Robert L.; Felder, Robert B.; Johnson, Alan Kim

    2016-01-01

    Obesity is characterized by increased circulating levels of the adipocyte-derived hormone leptin, which can increase sympathetic nerve activity and raise blood pressure. A previous study revealed that rats fed a high fat diet (HFD) have an enhanced hypertensive response to subsequent angiotensin (Ang) II administration that is mediated at least in part by increased activity of brain renin-angiotensin system (RAS) and proinflammatory cytokines (PICs). The present study tested whether leptin mediates this HFD-induced sensitization of Ang II-elicited hypertension by interacting with brain RAS and PICs mechanisms. Rats fed a HFD for 3 weeks had significant increases in white adipose tissue mass, plasma leptin levels and mRNA expression of leptin and its receptors in the lamina terminalis (LT) and hypothalamic paraventricular nucleus (PVN). Central infusion of a leptin receptor antagonist during HFD feeding abolished HFD sensitization of Ang II-elicited hypertension. Furthermore, central infusion of leptin mimicked the sensitizing action of HFD. Concomitant central infusions of the AT1-R antagonist irbesartan, the TNF-α synthesis inhibitor pentoxifylline, or the inhibitor of microglial activation minocycline prevented the sensitization produced by central infusion of leptin. RT-PCR analysis indicated that either HFD or leptin administration upregulated mRNA expression of several components of the RAS and PICs in the LT and PVN. The leptin antagonist and the inhibitors of AT1-R, TNF-α synthesis and microglial activation all reversed the expression of these genes. The results suggest that HFD-induced sensitization of Ang II-elicited hypertension is mediated by leptin through upregulation of central RAS and PICs. PMID:27021010

  1. Alterations in mouse hypothalamic adipokine gene expression and leptin signaling following chronic spinal cord injury and with advanced age.

    Directory of Open Access Journals (Sweden)

    Gregory E Bigford

    Full Text Available Chronic spinal cord injury (SCI results in an accelerated trajectory of several cardiovascular disease (CVD risk factors and related aging characteristics, however the molecular mechanisms that are activated have not been explored. Adipokines and leptin signaling are known to play a critical role in neuro-endocrine regulation of energy metabolism, and are now implicated in central inflammatory processes associated with CVD. Here, we examine hypothalamic adipokine gene expression and leptin signaling in response to chronic spinal cord injury and with advanced age. We demonstrate significant changes in fasting-induced adipose factor (FIAF, resistin (Rstn, long-form leptin receptor (LepRb and suppressor of cytokine-3 (SOCS3 gene expression following chronic SCI and with advanced age. LepRb and Jak2/stat3 signaling is significantly decreased and the leptin signaling inhibitor SOCS3 is significantly elevated with chronic SCI and advanced age. In addition, we investigate endoplasmic reticulum (ER stress and activation of the uncoupled protein response (UPR as a biological hallmark of leptin resistance. We observe the activation of the ER stress/UPR proteins IRE1, PERK, and eIF2alpha, demonstrating leptin resistance in chronic SCI and with advanced age. These findings provide evidence for adipokine-mediated inflammatory responses and leptin resistance as contributing to neuro-endocrine dysfunction and CVD risk following SCI and with advanced age. Understanding the underlying mechanisms contributing to SCI and age related CVD may provide insight that will help direct specific therapeutic interventions.

  2. Exposure to a high-fat diet during development alters leptin and ghrelin sensitivity and elevates renal sympathetic nerve activity and arterial pressure in rabbits.

    Science.gov (United States)

    Prior, Larissa J; Davern, Pamela J; Burke, Sandra L; Lim, Kyungjoon; Armitage, James A; Head, Geoffrey A

    2014-02-01

    Exposure to maternal obesity or a maternal diet rich in fat during development may have adverse outcomes in offspring, such as the development of obesity and hypertension. The present study examined the effect of a maternal high-fat diet (m-HFD) on offspring blood pressure and renal sympathetic nerve activity, responses to stress, and sensitivity to central administration of leptin and ghrelin. Offspring of New Zealand white rabbits fed a 13% HFD were slightly heavier than offspring from mothers fed a 4% maternal normal fat diet (Pfat pad mass (P=0.015). Mean arterial pressure, heart rate, and renal sympathetic nerve activity at 4 months of age were 7%, 7%, and 24% greater, respectively (Pfat diet rabbits, and the renal sympathetic nerve activity response to airjet stress was enhanced in the m-HFD group. m-HFD offspring had markedly elevated pressor and renal sympathetic nerve activity responses to intracerebroventricular leptin (5-100 µg) and enhanced sympathetic responses to intracerebroventricular ghrelin (1-5 nmol). In contrast, there was resistance to the anorexic effects of intracerebroventricular leptin and less neuronal activation as detected by Fos immunohistochemistry in the arcuate (-57%; Pfat diet rabbits. We conclude that offspring from mothers consuming an HFD exhibit an adverse cardiovascular profile in adulthood because of altered central hypothalamic sensitivity to leptin and ghrelin.

  3. TrpC5 Mediates Acute Leptin and Serotonin Effects via Pomc Neurons

    Directory of Open Access Journals (Sweden)

    Yong Gao

    2017-01-01

    Full Text Available The molecular mechanisms underlying acute leptin and serotonin 2C receptor-induced hypophagia remain unclear. Here, we show that neuronal and pro-opiomelanocortin (Pomc-specific loss of transient receptor potential cation 5 (TrpC5 subunits is sufficient to decrease energy expenditure and increase food intake resulting in elevated body weight. Deficiency of Trpc5 subunits in Pomc neurons is also sufficient to block the anorexigenic effects of leptin and serotonin 2C receptor (Ht2Cr agonists. The loss of acute anorexigenic effects of these receptors is concomitant with a blunted electrophysiological response to both leptin and Ht2Cr agonists in arcuate Pomc neurons. We also demonstrate that the Ht2Cr agonist lorcaserin-induced improvements in glucose and insulin tolerance are blocked by TrpC5 deficiency in Pomc neurons. Together, our results link TrpC5 subunits in the brain with leptin- and serotonin 2C receptor-dependent changes in neuronal activity, as well as energy balance, feeding behavior, and glucose metabolism.

  4. A synthetic fragment of leptin increase hematopoietic stem cell population and improve its engraftment ability.

    Science.gov (United States)

    Dias, Carolina C; Nogueira-Pedro, Amanda; Tokuyama, Paula Yumi; Martins, Marta N C; Segreto, Helena Regina Comodo; Buri, Marcus V; Miranda, Antonio; Paredes-Gamero, Edgar J

    2015-07-01

    Several studies have shown the important actions of cytokine leptin that regulates food intake and energy expenditure. Additionally, the ability to modulate hematopoiesis has also been demonstrated. Previous reports have shown that some synthetic sequences of leptin molecules can activate leptin receptor. Herein, decapeptides encompassing amino acids from positions 98 to 122 of the leptin molecule were constructed to evaluate their effects on hematopoiesis. Among them, the synthetic peptide Lep(110-119)-NH2 (LEP F) was the only peptide that possessed the ability to increase the percentage of hematopoietic stem cells (HSC). Moreover, LEP F also produced an increase of granulocyte/macrophage colony-forming units and activated leptin receptor. Furthermore, LEP F also improves the grafting of HSC in bone marrow, but did not accelerate the recovery of bone marrow after ablation with 5-fluorouracil. These results show that LEP F is a positive modulator of the in vivo expansion of HSC and could be useful in bone marrow transplantation. © 2015 Wiley Periodicals, Inc.

  5. Plasma leptin concentrations are greater in type II diabetic patients and stimulate monocyte chemotactic peptide-1 synthesis via the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway

    Directory of Open Access Journals (Sweden)

    Jin Joo Cha

    2012-09-01

    Conclusions: Overall, these findings suggest that activation of leptin synthesis may promote MCP-1 activation in a diabetic environment via the MAPK pathway in VSMCs and that it possibly contributes to the acceleration of atherosclerosis.

  6. 20 years of leptin: leptin and reproduction: past milestones, present undertakings, and future endeavors.

    Science.gov (United States)

    Chehab, Farid F

    2014-10-01

    The association between leptin and reproduction originated with the leptin-mediated correction of sterility in ob/ob mice and initiation of reproductive function in normal female mice. The uncovering of a central leptin pathway regulating food intake prompted the dissection of neuroendocrine mechanisms involving leptin in the metabolic control of reproduction. The absence of leptin receptors on GnRH neurons incited a search for intermediary neurons situated between leptin-responsive and GnRH neurons. This review addresses the most significant findings that have furthered our understanding of recent progress in this new field. The role of leptin in puberty was impacted by the discovery of neurons that co-express kisspeptin, neurokinin B, and dynorphin and these could act as leptin intermediates. Furthermore, the identification of first-order leptin-responsive neurons in the premammilary ventral nucleus and other brain regions opens new avenues to explore their relationship to GnRH neurons. Central to these advances is the unveiling that agouti-related protein/neuropeptide Y neurons project onto GnRH and kisspeptin neurons, allowing for a crosstalk between food intake and reproduction. Finally, while puberty is a state of leptin sensitivity, mid-gestation represents a state of leptin resistance aimed at building energy stores to sustain pregnancy and lactation. The mechanisms underlying leptin resistance in pregnancy have lagged; however, the establishment of this natural state is significant. Reproduction and energy balance are tightly controlled and backed up by redundant mechanisms that are critical for the survival of our species. It will be the goal of the following decade to shed new light on these complex and essential pathways. © 2014 Society for Endocrinology.

  7. CERAPP: Collaborative Estrogen Receptor Activity Prediction Project

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data from a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project) demonstrating using predictive computational...

  8. Leptin and Pathological Indexes in Women with Breast Cancer

    Directory of Open Access Journals (Sweden)

    B Noori Alavicheh

    2015-06-01

    Full Text Available Background & aim: Breast cancer is the most common cancer among women and one of the factors threatening the health of women worldwide. Leptin is a 16 kD glycoprotein hormone produced predominantly by white adipose tissue. Leptin binds to receptors in the hypothalamus and plays a key role in regulation of metabolism. Both leptin and leptin receptor have recently been implicated in processes and progress leading to breast cancer initiation. The aim of this study was to identify if there is association between leptin and pathological indexes in patients with breast cancer Methods: 45women with breast cancer were enrolled. Serum leptin levels of patients were measured by the ELISA method. Pathological information such as stage of the breast cancer, Hormonal receptor (ER, PR and Her2 status in these patients were determined. Result: Results revealed that the patients who were in stage one and two, the mean serum leptin level was (34.18±21.22 ng/ml And patients who were in stage three and four, the mean serum leptin level was (32.21±21/93 ng/ml. Also the mean serum leptin levels in patients whose receptor status of ER, PR and HER2 positive were (35.90±23.55, 35.74±23.91and 37.02±24.25ng/ml, respectively. The Patients whose receptor status of ER, PR and HER2 negative were 26.64±13.13, 28.17±14.26and31.32±19.9ng/ml respectively. No significant association was found between leptin leveland stage of the breast cancer, hormonal receptor (ER, PR and Her2 status in Patients with Breast cancer(p>0.05. Conclusions: In this study, no association was found between serum leptin level and pathological indices in women with Breast cancer in Yasuj, Iran.

  9. Chapter 8. Activation mechanisms of chemokine receptors

    DEFF Research Database (Denmark)

    Jensen, Pia C; Rosenkilde, Mette M

    2009-01-01

    binding. Attempts to unravel the activation mechanism of 7TM receptors have led to the conclusion that activation involves movements of the transmembrane segments VI and VII in particular, as recently gathered in the Global Toggle Switch Model. However, to understand the activation mechanism completely......, more research has to be done in this field. Chemokine receptors are interesting tools in this matter. First, the chemokine system has a high degree of promiscuity that allows several chemokines to target one receptor in different ways, as well as a single chemokine ligand to target several receptors...

  10. Leptin's effect on taste bud calcium responses and transmitter secretion.

    Science.gov (United States)

    Meredith, Tricia L; Corcoran, Alan; Roper, Stephen D

    2015-05-01

    Leptin, a peptide hormone released by adipose tissue, acts on the hypothalamus to control cravings and appetite. Leptin also acts to decrease taste responses to sweet substances, though there is little detailed information regarding where leptin acts in the taste transduction cascade. The present study examined the effects of leptin on sweet-evoked responses and neuro transmitter release from isolated taste buds. Our results indicate that leptin moderately decreased sweet-evoked calcium mobilization in isolated mouse taste buds. We also employed Chinese hamster ovary biosensor cells to examine taste transmitter release from isolated taste buds. Leptin reduced ATP and increased serotonin release in response to sweet stimulation. However, leptin has no effect on bitter-evoked transmitter release, further showing that the action of leptin is sweet specific. Our results support those of previous studies, which state that leptin acts on taste tissue via the leptin receptor, most likely on Type II (Receptor) cells, but also possibly on Type III (Presynaptic) cells. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Impact of enteral supplements enriched with omega-3 fatty acids and/or omega-6 fatty acids, arginine and ribonucleic acid compounds on leptin levels and nutritional status in active Crohn's disease treated with prednisolone

    DEFF Research Database (Denmark)

    Nielsen, Aneta Aleksandra; Nielsen, Jens Nederby; Grønbaek, Henning

    2007-01-01

    BACKGROUND: Patients with Crohn's disease (CD) often develop malnutrition due to disease activity. We aimed to assess the effect of two different enteral supplements of Impact(R) Powder (IP; Novartis, Switzerland) on leptin levels and nutritional status in active CD patients during prednisolone...... treatment and tapering. METHODS: Thirty-one CD patients were randomized to IP Extra (group 1) or IP Standard (group 2). Leptin levels, nutritional, clinical and biochemical markers were studied at inclusion, after 5 and after 9 weeks of the study. RESULTS: Leptin levels, body mass index (BMI) and total...... to improve nutritional status in CD patients....

  12. Longitudinal changes in the physical activity of adolescents with anorexia nervosa and their influence on body composition and leptin serum levels after recovery.

    Directory of Open Access Journals (Sweden)

    Elzbieta Kostrzewa

    Full Text Available OBJECTIVE: Patients with anorexia nervosa (AN are often observed to have high levels of physical activity, which do not necessarily diminish after a successful therapy. Previous studies have shown that body fat tissue recovery in these patients is associated with a disproportional restoration of the adipocyte hormone, leptin. Therefore, we wondered whether the individual variation in physical activity in AN patients prior to treatment may be related to body fat percentage and plasma leptin level outcome. METHOD: Body fat percentage, leptin serum, and physical activity levels (accelerometer were measured in adolescents with an (n=37, age 13 to 17.5 years at initial assessment, at the end of study participation (median 12 months, and at one-year follow-up. RESULTS: Accelerometer data were used to split the patients in two groups: those with low (n=26 and those with high levels of physical activity (HLPA, n=11. These groups did not differ in terms of age, IQ, presence of menses, BMI and season of admission. The HLPA group was characterized by a longer total duration of illness. Physical activity levels during therapy decreased for the group with initially HLPA and increased for the group with low levels of physical activity (to comparable levels. Physical activity remained stable after one year. The increase in body fat percentage and leptin levels were dependent on the recovery status; however, recovered patients with initially HLPA had significantly higher fat mass during the follow-up. DISCUSSION: HLPA, an important modulator of AN progression in adolescents, can be successfully diminished by therapeutic intervention. Among recovered patients, those with initially HLPA had higher fat mass levels than those with low levels of physical activity. This finding suggests that HLPA are an important modulator of the body composition recovery mechanism.

  13. Leptin and its cardiovascular effects: Focus on angiogenesis

    Directory of Open Access Journals (Sweden)

    Zoya Tahergorabi

    2015-01-01

    Full Text Available Leptin is an endocrine hormone synthesized by adipocytes. It plays a key role in the energy homeostasis in central and peripheral tissues and has additional roles are attributed to it, such as the regulation of reproduction, immune function, bone homeostasis, and angiogenesis. The plasma concentration of leptin significantly increases in obese individuals. In the present review, we give an introduction concerning leptin, its receptors, signaling pathways, and its effect on cardiovascular system, especially on angiogenesis.

  14. HF diets increase hypothalamic PTP1B and induce leptin resistance through both leptin-dependent and -independent mechanisms

    Science.gov (United States)

    White, Christy L.; Whittington, Amy; Barnes, Maria J.; Wang, Zhong; Bray, George A.; Morrison, Christopher D.

    2009-01-01

    Protein tyrosine phosphatase 1B (PTP1B) contributes to leptin resistance by inhibiting intracellular leptin receptor signaling. Mice with whole body or neuron-specific deletion of PTP1B are hypersensitive to leptin and resistant to diet-induced obesity. Here we report a significant increase in PTP1B protein levels in the mediobasal hypothalamus (P = 0.003) and a concomitant reduction in leptin sensitivity following 28 days of high-fat (HF) feeding in rats. A significant increase in PTP1B mRNA levels was also observed in rats chronically infused with leptin (3 μg/day icv) for 14 days (P = 0.01) and in leptin-deficient ob/ob mice infused with leptin (5 μg/day sc for 14 days; P = 0.003). When saline-infused ob/ob mice were placed on a HF diet for 14 days, an increase in hypothalamic PTP1B mRNA expression was detected (P = 0.001) despite the absence of circulating leptin. In addition, although ob/ob mice were much more sensitive to leptin on a low-fat (LF) diet, a reduction in this sensitivity was still observed following exposure to a HF diet. Taken together, these data indicate that hypothalamic PTP1B is specifically increased during HF diet-induced leptin resistance. This increase in PTP1B is due in part to chronic hyperleptinemia, suggesting that hyperleptinemia is one mechanism contributing to the development of leptin resistance. However, these data also indicate that leptin is not required for the increase in hypothalamic PTP1B or the development of leptin resistance. Therefore, additional, leptin-independent mechanisms must exist that increase hypothalamic PTP1B and contribute to leptin resistance. PMID:19017730

  15. Adipocyte Versus Pituitary Leptin in the Regulation of Pituitary Hormones: Somatotropes Develop Normally in the Absence of Circulating Leptin

    Science.gov (United States)

    Odle, Angela K.; Haney, Anessa; Allensworth-James, Melody; Akhter, Noor

    2014-01-01

    Leptin is a cytokine produced by white fat cells, skeletal muscle, the placenta, and the pituitary gland among other tissues. Best known for its role in regulating appetite and energy expenditure, leptin is produced largely by and in proportion to white fat cells. Leptin is also important to the maintenance and function of the GH cells of the pituitary. This was shown when the deletion of leptin receptors on somatotropes caused decreased numbers of GH cells, decreased circulating GH, and adult-onset obesity. To determine the source of leptin most vital to GH cells and other pituitary cell types, we compared two different leptin knockout models with Cre-lox technology. The global Lep-null model is like the ob/ob mouse, whereby only the entire exon 3 is deleted. The selective adipocyte-Lep-null model lacks adipocyte leptin but retains pituitary leptin, allowing us to investigate the pituitary as a potential source of circulating leptin. Male and female mice lacking adipocyte leptin (Adipocyte-lep-null) did not produce any detectable circulating leptin and were infertile, suggesting that the pituitary does not contribute to serum levels. In the presence of only pituitary leptin, however, these same mutants were able to maintain somatotrope numbers and GH mRNA levels. Serum GH trended low, but values were not significant. However, hypothalamic GHRH mRNA was significantly reduced in these animals. Other serum hormone and pituitary mRNA differences were observed, some of which varied from previous results reported in ob/ob animals. Whereas pituitary leptin is capable of maintaining somatotrope numbers and GH mRNA production, the decreased hypothalamic GHRH mRNA and low (but not significant) serum GH levels indicate an important role for adipocyte leptin in the regulation of GH secretion in the mouse. Thus, normal GH secretion may require the coordinated actions of both adipocyte and pituitary leptin. PMID:25116704

  16. Leptin and cancer: Pathogenesis and modulation

    Directory of Open Access Journals (Sweden)

    Deep Dutta

    2012-01-01

    Full Text Available Leptin, a product of Ob gene from adipocytes regulates appetite, energy expenditure and body mass composition by decreasing orexigenic and increasing anorexigenic neuropeptide release from hypothalamus. Research over the past few years have suggested leptin/leptin receptor dysregulation to have a role in the development of a large variety of malignancies like breast ca, thyroid ca, endometrial ca and gastrointestinal malignancies, predominantly through JAK/STAT pathway which modulates PI3K/AKT3 signaling, ERK1/2 signaling, expression of antiapoptotic proteins (like XIAP, systemic inflammation (TNF-α, IL6, angiogenic factors (VEGF and hypoxia inducible factor-1a (HIF-1a expression. In this review, the current understanding of leptin′s role in carcinogenesis has been elaborated. Also a few agents modulating leptin signaling to inhibit cancer cell growth has been described.

  17. Pivotal role of leptin in insulin effects

    Directory of Open Access Journals (Sweden)

    R.B. Ceddia

    1998-06-01

    Full Text Available The OB protein, also known as leptin, is secreted by adipose tissue, circulates in the blood, probably bound to a family of binding proteins, and acts on central neural networks regulating ingestive behavior and energy balance. The two forms of leptin receptors (long and short forms have been identified in various peripheral tissues, a fact that makes them possible target sites for a direct action of leptin. It has been shown that the OB protein interferes with insulin secretion from pancreatic islets, reduces insulin-stimulated glucose transport in adipocytes, and increases glucose transport, glycogen synthesis and fatty acid oxidation in skeletal muscle. Under normoglycemic and normoinsulinemic conditions, leptin seems to shift the flux of metabolites from adipose tissue to skeletal muscle. This may function as a peripheral mechanism that helps control body weight and prevents obesity. Data that substantiate this hypothesis are presented in this review.

  18. Mammary gland leptin in relation to lactogenesis in the periparturient dairy goat

    DEFF Research Database (Denmark)

    Rasmussen, Alice Neess; Nielsen, Mette Olaf; Tauson, Anne-Helene

    2008-01-01

    The role of leptin in development of mammary gland secretory function was studied during the periparturient period in dairy goats. Changes in mammary leptin and leptin receptor (short cytoplasmic form) expression were evaluated by real-time RT-PCR and related to changes in milk and plasma leptin...... peak in milk leptin 2 days post-partum needs to be understood. We did not find evidence that milk leptin can be absorbed, and thus play a role in systemic regulation, of the neonatal goat....

  19. Dietary components in the development of leptin resistance.

    Science.gov (United States)

    Vasselli, Joseph R; Scarpace, Philip J; Harris, Ruth B S; Banks, William A

    2013-03-01

    Classically, leptin resistance has been associated with increased body fat and circulating leptin levels, and the condition is believed to contribute to the onset and/or maintenance of obesity. Although a great deal is known about the central nervous system mechanisms mediating leptin resistance, considerably less is known about the role of diet in establishing and maintaining this altered hormonal state. An exciting new finding has recently been published demonstrating the existence of leptin resistance in normal-weight rats with lean leptin levels by feeding them a high-concentration-fructose diet. This finding has opened the possibility that specific macronutrients may be capable of inducing leptin resistance, independently of the amount of body fat or circulating leptin present in the treated animals. This review describes several lines of research that have recently emerged indicating that specific types of dietary sugars and fats are capable of inducing leptin resistance in experimental rodent models. The results further show that diet-induced leptin resistance is capable of increasing energy intake and elevating body weight gain under appropriate dietary challenges. It appears that biological mechanisms on multiple levels may underlie the dietary induction of leptin resistance, including alterations in the leptin blood-to-brain transport system, in peripheral glucose metabolism, and in central leptin receptor signaling pathways. What is clear from the findings reviewed here is that diet-induced leptin resistance can occur in the absence of elevated circulating leptin levels and body weight, rendering it a potential cause and/or predisposing factor to excess body weight gain and obesity.

  20. Dietary Components in the Development of Leptin Resistance123

    Science.gov (United States)

    Vasselli, Joseph R.; Scarpace, Philip J.; Harris, Ruth B. S.; Banks, William A.

    2013-01-01

    Classically, leptin resistance has been associated with increased body fat and circulating leptin levels, and the condition is believed to contribute to the onset and/or maintenance of obesity. Although a great deal is known about the central nervous system mechanisms mediating leptin resistance, considerably less is known about the role of diet in establishing and maintaining this altered hormonal state. An exciting new finding has recently been published demonstrating the existence of leptin resistance in normal-weight rats with lean leptin levels by feeding them a high-concentration-fructose diet. This finding has opened the possibility that specific macronutrients may be capable of inducing leptin resistance, independently of the amount of body fat or circulating leptin present in the treated animals. This review describes several lines of research that have recently emerged indicating that specific types of dietary sugars and fats are capable of inducing leptin resistance in experimental rodent models. The results further show that diet-induced leptin resistance is capable of increasing energy intake and elevating body weight gain under appropriate dietary challenges. It appears that biological mechanisms on multiple levels may underlie the dietary induction of leptin resistance, including alterations in the leptin blood-to-brain transport system, in peripheral glucose metabolism, and in central leptin receptor signaling pathways. What is clear from the findings reviewed here is that diet-induced leptin resistance can occur in the absence of elevated circulating leptin levels and body weight, rendering it a potential cause and/or predisposing factor to excess body weight gain and obesity. PMID:23493533

  1. The neuroanatomical function of leptin in the hypothalamus.

    Science.gov (United States)

    van Swieten, M M H; Pandit, R; Adan, R A H; van der Plasse, G

    2014-11-01

    The anorexigenic hormone leptin plays an important role in the control of food intake and feeding-related behavior, for an important part through its action in the hypothalamus. The adipose-derived hormone modulates a complex network of several intercommunicating orexigenic and anorexigenic neuropeptides in the hypothalamus to reduce food intake and increase energy expenditure. In this review we present an updated overview of the functional role of leptin in respect to feeding and feeding-related behavior per distinct hypothalamic nuclei. In addition to the arcuate nucleus, which is a major leptin sensitive hub, leptin-responsive neurons in other hypothalamic nuclei, including the, dorsomedial-, ventromedial- and paraventricular nucleus and the lateral hypothalamic area, are direct targets of leptin. However, leptin also modulates hypothalamic neurons in an indirect manner, such as via the melanocortin system. The dissection of the complexity of leptin's action on the networks involved in energy balance is subject of recent and future studies. A full understanding of the role of hypothalamic leptin in the regulation of energy balance requires cell-specific manipulation using of conditional deletion and expression of leptin receptors. In addition, optogenetic and pharmacogenetic tools in combination with other pharmacological (such as the recent discovery of a leptin receptor antagonist) and neuronal tracing techniques to map the circuit, will be helpful to understand the role of leptin receptor expressing neurons. Better understanding of these circuits and the involvement of leptin could provide potential sites for therapeutic interventions in obesity and metabolic diseases characterized by dysregulation of energy balance. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Voluntary exercise improves high-fat diet-induced leptin resistance independent of adiposity.

    Science.gov (United States)

    Krawczewski Carhuatanta, Kimberly A; Demuro, Giovanna; Tschöp, Matthias H; Pfluger, Paul T; Benoit, Stephen C; Obici, Silvana

    2011-07-01

    The efficacy of exercise as primary prevention of obesity is the subject of intense investigation. Here, we show that voluntary exercise in a mouse strain susceptible to diet-induced obesity (C57B6J) decreases fat mass and increases energy expenditure. In addition, exercise attenuates obesity in mice fed a high-fat diet (HFD). Using FosB immunoreactivity as a marker of chronic neuronal activation, we found that exercise activates leptin receptor-positive neurons in the ventromedial hypothalamic nucleus, involved in homeostatic control of energy balance. FosB immunoreactivity in the ventromedial hypothalamic nucleus is decreased in sedentary mice exposed to HFD but is increased in exercised mice independent of adiposity. To determine whether the antiobesity effects of voluntary exercise improve central nervous system (CNS) leptin action, we measured the anorectic and weight reducing effects of intracerebroventricular (ICV) leptin in sedentary and exercised mice exposed to HFD (EH), as well as in sedentary mice that have been calorie restricted (SR) to match the fat mass of EH mice. ICV leptin was ineffective in lowering food intake and body weight (BW) in sedentary mice exposed to HFD mice. The anorectic potency of leptin was partially restored in EH and SR groups. However, ICV leptin significantly lowered BW in EH but not SR mice. Thus, exercise leads to the maintenance of a lower BW and leaner composition, as well as to improved CNS leptin action, independent of fat mass. These results support the notion that physical exercise directly influences the responsiveness of the CNS circuits involved in energy homeostasis by allowing the defense of a lowered BW.

  3. Impact of enteral supplements enriched with omega-3 fatty acids and/or omega-6 fatty acids, arginine and ribonucleic acid compounds on leptin levels and nutritional status in active Crohn's disease treated with prednisolone

    DEFF Research Database (Denmark)

    Nielsen, A.A.; Nielsen, J.N.; Grønbæk, Henning

    2007-01-01

    treatment and tapering. METHODS: Thirty-one CD patients were randomized to IP Extra (group 1) or IP Standard (group 2). Leptin levels, nutritional, clinical and biochemical markers were studied at inclusion, after 5 and after 9 weeks of the study. RESULTS: Leptin levels, body mass index (BMI) and total......BACKGROUND: Patients with Crohn's disease (CD) often develop malnutrition due to disease activity. We aimed to assess the effect of two different enteral supplements of Impact(R) Powder (IP; Novartis, Switzerland) on leptin levels and nutritional status in active CD patients during prednisolone...... cholesterol increased significantly within both groups at week 5 compared to inclusion. Leptin levels correlated with BMI in both groups at inclusion and in group 2 at week 9. In group 1, triglyceride levels remained unchanged, while levels in group 2 increased significantly at week 5 compared to inclusion...

  4. Association between Salivary Leptin Levels and Taste Perception in Children

    Directory of Open Access Journals (Sweden)

    Lénia Rodrigues

    2017-01-01

    Full Text Available The satiety inducing hormone leptin acts not only at central nervous system but also at peripheral level. Leptin receptors are found in several sense related organs, including the mouth. A role of leptin in sweet taste response has been suggested but, until now, studies have been based on in vitro experiments, or in assessing the levels of the hormone in circulation. The present study investigated whether the levels of leptin in saliva are related to taste perception in children and whether Body Mass Index (BMI affects such relationship. Sweet and bitter taste sensitivity was assessed for 121 children aged 9-10 years and unstimulated whole saliva was collected for leptin quantification, using ELISA technique. Children females with lower sweet taste sensitivity presented higher salivary leptin levels, but this is only in the normal weight ones. For bitter taste, association between salivary leptin and caffeine threshold detection was observed only in preobese boys, with higher levels of salivary hormone in low sensitive individuals. This study is the first presenting evidences of a relationship between salivary leptin levels and taste perception, which is sex and BMI dependent. The mode of action of salivary leptin at taste receptor level should be elucidated in future studies.

  5. Leptin actions on food intake and body temperature are mediated by IL-1

    OpenAIRE

    Luheshi, Giamal N.; Gardner, Jason D.; Rushforth, David A.; Loudon, Andrew S.; Rothwell, Nancy J.

    1999-01-01

    Leptin regulates energy balance through its actions in the brain on appetite and energy expenditure and also shares properties with cytokines such as IL-1. We report here that leptin, injected into rats intracerebroventricularly or peripherally, induces significant dose-dependent increases in core body temperature as well as suppression of appetite. Leptin failed to affect food intake or body temperature in obese (fa/fa) Zucker rats, which posses a defective leptin receptor. Furthermore, inje...

  6. Presynaptic Regulation of Leptin in a Defined Lateral Hypothalamus-Ventral Tegmental Area Neurocircuitry Depends on Energy State.

    Science.gov (United States)

    Liu, Jing-Jing; Bello, Nicholas T; Pang, Zhiping P

    2017-12-06

    Synaptic transmission controls brain activity and behaviors, including food intake. Leptin, an adipocyte-derived hormone, acts on neurons located in the lateral hypothalamic area (LHA) to maintain energy homeostasis and regulate food intake behavior. The specific synaptic mechanisms, cell types, and neural projections mediating this effect remain unclear. In male mice, using pathway-specific retrograde tracing, whole-cell patch-clamp recordings and post hoc cell type identification, we found that leptin reduces excitatory synaptic strength onto both melanin-concentrating hormone- and orexin-expressing neurons projecting from the LHA to the ventral tegmental area (VTA), which may affect dopamine signaling and motivation for feeding. A presynaptic mechanism mediated by distinct intracellular signaling mechanisms may account for this regulation by leptin. The regulatory effects of leptin depend on intact leptin receptor signaling. Interestingly, the synaptic regulatory function of leptin in the LHA-to-VTA neuronal pathway is highly sensitive to energy states: both energy deficiency (acute fasting) and excessive energy storage (high-fat diet-induced obesity) blunt the effect of leptin. These data revealed that leptin may regulate synaptic transmission in the LHA-to-VTA neurocircuitry in an inverted "U-shape" fashion dependent on plasma glucose levels and related to metabolic states. SIGNIFICANCE STATEMENT The lateral hypothalamic area (LHA) to ventral tegmental area (VTA) projection is an important neural pathway involved in balancing whole-body energy states and reward. We found that the excitatory synaptic inputs to both orexin- and melanin-concentrating hormone expressing LHA neurons projecting to the VTA were suppressed by leptin, a peptide hormone derived from adipocytes that signals peripheral energy status to the brain. Interestingly, energy states seem to affect how leptin regulates synaptic transmission since both the depletion of energy induced by acute food

  7. Tissue-specific 5' heterogeneity of PPARα transcripts and their differential regulation by leptin.

    Directory of Open Access Journals (Sweden)

    Emma S Garratt

    Full Text Available The genes encoding nuclear receptors comprise multiple 5'untranslated exons, which give rise to several transcripts encoding the same protein, allowing tissue-specific regulation of expression. Both human and mouse peroxisome proliferator activated receptor (PPAR α genes have multiple promoters, although their function is unknown. Here we have characterised the rat PPARα promoter region and have identified three alternative PPARα transcripts, which have different transcription start sites owing to the utilisation of distinct first exons. Moreover these alternative PPARα transcripts were differentially expressed between adipose tissue and liver. We show that while the major adipose (P1 and liver (P2 transcripts were both induced by dexamethasone, they were differentially regulated by the PPARα agonist, clofibric acid, and leptin. Leptin had no effect on the adipose-specific P1 transcript, but induced liver-specific P2 promoter activity via a STAT3/Sp1 mechanism. Moreover in Wistar rats, leptin treatment between postnatal day 3-13 led to an increase in P2 but not P1 transcription in adipose tissue which was sustained into adulthood. This suggests that the expression of the alternative PPARα transcripts are in part programmed by early life exposure to leptin leading to persistent change in adipose tissue fatty acid metabolism through specific activation of a quiescent PPARα promoter. Such complexity in the regulation of PPARα may allow the expression of PPARα to be finely regulated in response to environmental factors.

  8. Tissue-Specific 5′ Heterogeneity of PPARα Transcripts and Their Differential Regulation by Leptin

    Science.gov (United States)

    Garratt, Emma S.; Vickers, Mark H.; Gluckman, Peter D.; Hanson, Mark A.

    2013-01-01

    The genes encoding nuclear receptors comprise multiple 5′untranslated exons, which give rise to several transcripts encoding the same protein, allowing tissue-specific regulation of expression. Both human and mouse peroxisome proliferator activated receptor (PPAR) α genes have multiple promoters, although their function is unknown. Here we have characterised the rat PPARα promoter region and have identified three alternative PPARα transcripts, which have different transcription start sites owing to the utilisation of distinct first exons. Moreover these alternative PPARα transcripts were differentially expressed between adipose tissue and liver. We show that while the major adipose (P1) and liver (P2) transcripts were both induced by dexamethasone, they were differentially regulated by the PPARα agonist, clofibric acid, and leptin. Leptin had no effect on the adipose-specific P1 transcript, but induced liver-specific P2 promoter activity via a STAT3/Sp1 mechanism. Moreover in Wistar rats, leptin treatment between postnatal day 3–13 led to an increase in P2 but not P1 transcription in adipose tissue which was sustained into adulthood. This suggests that the expression of the alternative PPARα transcripts are in part programmed by early life exposure to leptin leading to persistent change in adipose tissue fatty acid metabolism through specific activation of a quiescent PPARα promoter. Such complexity in the regulation of PPARα may allow the expression of PPARα to be finely regulated in response to environmental factors. PMID:23825665

  9. A dangerous liaison: Leptin and sPLA2-IIA join forces to induce proliferation and migration of astrocytoma cells.

    Directory of Open Access Journals (Sweden)

    Rubén Martín

    Full Text Available Glioblastoma, the most aggressive type of primary brain tumour, shows worse prognosis linked to diabetes or obesity persistence. These pathologies are chronic inflammatory conditions characterized by altered profiles of inflammatory mediators, including leptin and secreted phospholipase A2-IIA (sPLA2-IIA. Both proteins, in turn, display diverse pro-cancer properties in different cell types, including astrocytes. Herein, to understand the underlying relationship between obesity and brain tumors, we investigated the effect of leptin, alone or in combination with sPLA2-IIA on astrocytoma cell functions. sPLA2-IIA induced up-regulation of leptin receptors in 1321N1 human astrocytoma cells. Leptin, as well as sPLA2-IIA, increased growth and migration in these cells, through activation/phosphorylation of key proteins of survival cascades. Leptin, at concentrations with minimal or no activating effects on astrocytoma cells, enhanced growth and migration promoted by low doses of sPLA2-IIA. sPLA2-IIA alone induced a transient phosphorylation pattern in the Src/ERK/Akt/mTOR/p70S6K/rS6 pathway through EGFR transactivation, and co-addition of leptin resulted in a sustained phosphorylation of these signaling regulators. Mechanistically, EGFR transactivation and tyrosine- and serine/threonine-protein phosphatases revealed a key role in this leptin-sPLA2-IIA cross-talk. This cooperative partnership between both proteins was also found in primary astrocytes. These findings thus indicate that the adipokine leptin, by increasing the susceptibility of cells to inflammatory mediators, could contribute to worsen the prognosis of tumoral and neurodegenerative processes, being a potential mediator of some obesity-related medical complications.

  10. Differential Effects of Leptin on the Invasive Potential of Androgen-Dependent and -Independent Prostate Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Dayanand D. Deo

    2008-01-01

    Full Text Available Obesity has been linked with an increased risk of prostate cancer. The formation of toxic free oxygen radicals has been implicated in obesity mediated disease processes. Leptin is one of the major cytokines produced by adipocytes and controls body weight homeostasis through food intake and energy expenditure. The rationale of the study was to determine the impact of leptin on the metastatic potential of androgen-sensitive (LNCaP cells as well as androgen-insensitive (PC-3 and DU-145 cells. At a concentration of 200_nm, LNCaP cells showed a significant increase (20% above control; P<.0001 in cellular proliferation without any effect on androgen-insensitive cells. Furthermore, exposure to leptin caused a significant (P<.01 to P<.0001 dose-dependent decrease in migration and invasion of PC3 and Du-145 prostate carcinoma cell lines. At the molecular level, exposure of androgen-independent prostate cancer cells to leptin stimulates the phosphorylation of MAPK at early time point as well as the transcription factor STAT3, suggesting the activation of the intracellular signaling cascade upon leptin binding to its cognate receptor. Taken together, these results suggest that leptin mediates the invasive potential of prostate carcinoma cells, and that this effect is dependent on their androgen sensitivity.

  11. Effects of leptin on FSH cells in the pituitary gland of Podarcis siculus.

    Science.gov (United States)

    Ferrandino, Ida; Monaco, Antonio; Grimaldi, Maria Consiglio

    2015-03-01

    Leptin is the hormone synthesised by adipocytes, which plays an important role in regulating appetite and metabolism. In mammals, this pleiotropic hormone also plays a key role in controlling gonadotropin secretion by stimulatory hypothalamic and pituitary actions. However, little is known about leptin in lower vertebrates and particularly few studies are available on reptiles. In the present work, we analysed the action of recombinant human leptin on FSH cells in the pituitary gland of Podarcis siculus female lizards exposed to four different concentrations of the hormone. FSH cells showed a dose-dependent reaction. The data are indicative of the role played by leptin in modulating the cellular activity of such cells in the pituitary gland of P. siculus, similar to what was already reported in mammals. A functional receptor is evidently able to respond to leptin in this lizard, but further comparative studies are needed to understand the role of this hormone in ectothermic vertebrates. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  12. Leptin promotes wound healing in the oral mucosa.

    Science.gov (United States)

    Umeki, Hirochika; Tokuyama, Reiko; Ide, Shinji; Okubo, Mitsuru; Tadokoro, Susumu; Tezuka, Mitsuki; Tatehara, Seiko; Satomura, Kazuhito

    2014-01-01

    Leptin, a 16 kDa circulating anti-obesity hormone, exhibits many physiological properties. Recently, leptin was isolated from saliva; however, its function in the oral cavity is still unclear. In this study, we investigated the physiological role of leptin in the oral cavity by focusing on its effect on wound healing in the oral mucosa. Immunohistochemical analysis was used to examine the expression of the leptin receptor (Ob-R) in human/rabbit oral mucosa. To investigate the effect of leptin on wound healing in the oral mucosa, chemical wounds were created in rabbit oral mucosa, and leptin was topically administered to the wound. The process of wound repair was histologically observed and quantitatively analyzed by measuring the area of ulceration and the duration required for complete healing. The effect of leptin on the proliferation, differentiation and migration of human oral mucosal epithelial cells (RT7 cells) was investigated using crystal violet staining, reverse transcription polymerase chain reaction (RT-PCR) and a wound healing assay, respectively. Ob-R was expressed in spinous/granular cells in the epithelial tissue and vascular endothelial cells in the subepithelial connective tissue of the oral mucosa. Topical administration of leptin significantly promoted wound healing and shortened the duration required for complete healing. Histological analysis of gingival tissue beneath the ulceration showed a denser distribution of blood vessels in the leptin-treated group. Although the proliferation and differentiation of RT7 cells were not affected by leptin, the migration of these cells was accelerated in the presence of leptin. Topically administered leptin was shown to promote wound healing in the oral mucosa by accelerating epithelial cell migration and enhancing angiogenesis around the wounded area. These results strongly suggest that topical administration of leptin may be useful as a treatment to promote wound healing in the oral mucosa.

  13. Triiodothyronine increases mRNA and protein leptin levels in short time in 3T3-L1 adipocytes by PI3K pathway activation.

    Directory of Open Access Journals (Sweden)

    Miriane de Oliveira

    Full Text Available The present study aimed to examine the effects of thyroid hormone (TH, more precisely triiodothyronine (T3, on the modulation of leptin mRNA expression and the involvement of the phosphatidyl inositol 3 kinase (PI3K signaling pathway in adipocytes, 3T3-L1, cell culture. We examined the involvement of this pathway in mediating TH effects by treating 3T3-L1 adipocytes with physiological (P=10nM or supraphysiological (SI=100 nM T3 dose during one hour (short time, in the absence or the presence of PI3K inhibitor (LY294002. The absence of any treatment was considered the control group (C. RT-qPCR was used for mRNA expression analyzes. For data analyzes ANOVA complemented with Tukey's test was used at 5% significance. T3 increased leptin mRNA expression in P (2.26 ± 0.36, p 0.001. These results demonstrate that the activation of the PI3K signaling pathway has a role in TH-mediated direct and indirect leptin gene expression in 3T3-L1 adipocytes.

  14. Androgen insensitivity syndrome: gonadal androgen receptor activity

    International Nuclear Information System (INIS)

    Coulam, C.B.; Graham, M.L.; Spelsberg, T.C.

    1984-01-01

    To determine whether abnormalities of the androgen receptor previously observed in skin fibroblasts from patients with androgen insensitivity syndrome also occur in the gonads of affected individuals, androgen receptor activity in the gonads of a patient with testicular feminization syndrome was investigated. Using conditions for optimal recovery of androgen receptor from human testes established by previous studies, we detected the presence of a high-affinity (dissociation constant . 3.2 X 10(-10) mol/L), low-capacity (4.2 X 10(-12) mol/mg DNA), androgen-binding protein when tritium-labeled R1881 was incubated at 4 degrees C with nuclear extracts from the gonads of control patients or from a patient with testicular feminization syndrome but not when incubated at 37 degrees C. Thus this patient has an androgen receptor with a temperature lability similar to that of receptors from normal persons

  15. Leptin and Leptin Resistance in the Pathogenesis of Obstructive Sleep Apnea: A Possible Link to Oxidative Stress and Cardiovascular Complications

    Directory of Open Access Journals (Sweden)

    Slava Berger

    2018-01-01

    Full Text Available Obesity-related sleep breathing disorders such as obstructive sleep apnea (OSA and obesity hypoventilation syndrome (OHS cause intermittent hypoxia (IH during sleep, a powerful trigger of oxidative stress. Obesity also leads to dramatic increases in circulating levels of leptin, a hormone produced in adipose tissue. Leptin acts in the hypothalamus to suppress food intake and increase metabolic rate. However, obese individuals are resistant to metabolic effects of leptin. Leptin also activates the sympathetic nervous system without any evidence of resistance, possibly because these effects occur peripherally without a need to penetrate the blood-brain barrier. IH is a potent stimulator of leptin expression and release from adipose tissue. Hyperleptinemia and leptin resistance may upregulate generation of reactive oxygen species, increasing oxidative stress and promoting inflammation. The current review summarizes recent data on a possible link between leptin and oxidative stress in the pathogenesis of sleep breathing disorders.

  16. A leptin-regulated circuit controls glucose mobilization during noxious stimuli.

    Science.gov (United States)

    Flak, Jonathan N; Arble, Deanna; Pan, Warren; Patterson, Christa; Lanigan, Thomas; Goforth, Paulette B; Sacksner, Jamie; Joosten, Maja; Morgan, Donald A; Allison, Margaret B; Hayes, John; Feldman, Eva; Seeley, Randy J; Olson, David P; Rahmouni, Kamal; Myers, Martin G

    2017-08-01

    Adipocytes secrete the hormone leptin to signal the sufficiency of energy stores. Reductions in circulating leptin concentrations reflect a negative energy balance, which augments sympathetic nervous system (SNS) activation in response to metabolically demanding emergencies. This process ensures adequate glucose mobilization despite low energy stores. We report that leptin receptor-expressing neurons (LepRb neurons) in the periaqueductal gray (PAG), the largest population of LepRb neurons in the brain stem, mediate this process. Application of noxious stimuli, which often signal the need to mobilize glucose to support an appropriate response, activated PAG LepRb neurons, which project to and activate parabrachial nucleus (PBN) neurons that control SNS activation and glucose mobilization. Furthermore, activating PAG LepRb neurons increased SNS activity and blood glucose concentrations, while ablating LepRb in PAG neurons augmented glucose mobilization in response to noxious stimuli. Thus, decreased leptin action on PAG LepRb neurons augments the autonomic response to noxious stimuli, ensuring sufficient glucose mobilization during periods of acute demand in the face of diminished energy stores.

  17. Deletion of protein tyrosine phosphatase 1b in proopiomelanocortin neurons reduces neurogenic control of blood pressure and protects mice from leptin- and sympatho-mediated hypertension.

    Science.gov (United States)

    Bruder-Nascimento, Thiago; Butler, Benjamin R; Herren, David J; Brands, Michael W; Bence, Kendra K; Belin de Chantemèle, Eric J

    2015-12-01

    Protein tyrosine phosphatase 1b (Ptp1b), which represses leptin signaling, is a promising therapeutic target for obesity. Genome wide deletion of Ptp1b, increases leptin sensitivity, protects mice from obesity and diabetes, but alters cardiovascular function by increasing blood pressure (BP). Leptin-control of metabolism is centrally mediated and involves proopiomelanocortin (POMC) neurons. Whether these neurons contribute to leptin-mediated increases in BP remain unclear. We hypothesized that increasing leptin signaling in POMC neurons with Ptp1b deletion will sensitize the cardiovascular system to leptin and enhance neurogenic control of BP. We analyzed the cardiovascular phenotype of Ptp1b+/+ and POMC-Ptp1b-/- mice, at baseline and after 7 days of leptin infusion or sympatho-activation with phenylephrine. POMCPtp1b deletion did not alter baseline cardiovascular hemodynamics (BP, heart rate) but reduced BP response to ganglionic blockade and plasma catecholamine levels that suggests a decreased neurogenic control of BP. In contrast, POMC-Ptp1b deletion increased vascular adrenergic reactivity and aortic α-adrenergic receptors expression. Chronic leptin treatment reduced vascular adrenergic reactivity and blunted diastolic and mean BP increases in POMC-Ptp1b-/- mice only. Similarly POMC-Ptp1b-/- mice exhibited a blunted increased in diastolic and mean BP accompanied by a gradual reduction in adrenergic reactivity in response to chronic vascular sympatho-activation with phenylephrine. Together these data rule out our hypothesis but suggest that deletion of Ptp1b in POMC neurons protects from leptin- and sympatho-mediated increases in BP. Vascular adrenergic desensitization appears as a protective mechanism against hypertension, and POMC-Ptp1b as a key therapeutic target for the treatment of metabolic and cardiovascular dysfunctions associated with obesity. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Palmitate-induced ER stress and subsequent C 1 HOP activation attenuates leptin and IGF1expression in the brain

    Science.gov (United States)

    Background: The peptide hormones insulin-like growth factor-1 (IGF1) and leptin mediate a myriad of biological effects both in the peripheral and central nervous systems. The transcription of these two hormones is regulated by the transcription factor C/EBPa, which in turn is negatively regulated by...

  19. Essential Role for Hypothalamic Calcitonin Receptor‒Expressing Neurons in the Control of Food Intake by Leptin.

    Science.gov (United States)

    Pan, Warren; Adams, Jessica M; Allison, Margaret B; Patterson, Christa; Flak, Jonathan N; Jones, Justin; Strohbehn, Garth; Trevaskis, James; Rhodes, Christopher J; Olson, David P; Myers, Martin G

    2018-04-01

    The adipocyte-derived hormone leptin acts via its receptor (LepRb) on central nervous system neurons to communicate the repletion of long-term energy stores, to decrease food intake, and to promote energy expenditure. We generated mice that express Cre recombinase from the calcitonin receptor (Calcr) locus (Calcrcre mice) to study Calcr-expressing LepRb (LepRbCalcr) neurons, which reside predominantly in the arcuate nucleus (ARC). Calcrcre-mediated ablation of LepRb in LepRbCalcrknockout (KO) mice caused hyperphagic obesity. Because LepRb-mediated transcriptional control plays a crucial role in leptin action, we used translating ribosome affinity purification followed by RNA sequencing to define the transcriptome of hypothalamic Calcr neurons, along with its alteration in LepRbCalcrKO mice. We found that ARC LepRbCalcr cells include neuropeptide Y (NPY)/agouti-related peptide (AgRP)/γ-aminobutyric acid (GABA) ("NAG") cells as well as non-NAG cells that are distinct from pro-opiomelanocortin cells. Furthermore, although LepRbCalcrKO mice exhibited dysregulated expression of several genes involved in energy balance, neither the expression of Agrp and Npy nor the activity of NAG cells was altered in vivo. Thus, although direct leptin action via LepRbCalcr cells plays an important role in leptin action, our data also suggest that leptin indirectly, as well as directly, regulates these cells.

  20. Neurokinin-1 receptor activation in globus pallidus

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2009-10-01

    Full Text Available The undecapeptide substance P has been demonstrated to modulate neuronal activity in a number of brain regions by acting on neurokinin-1 receptors. Anatomical studies revealed a moderate level of neurokinin-1 receptor in rat globus pallidus. To determine the electrophysiological effects of neurokinin-1 receptor activation in globus pallidus, whole-cell patch-clamp recordings were performed in the present study. Under current-clamp recordings, neurokinin-1 receptor agonist, [Sar9, Met(O211] substance P (SM-SP at 1 μM, depolarized globus pallidus neurons and increased their firing rate. Consistently, SM-SP induced an inward current under voltage-clamp recording. The depolarization evoked by SM-SP persisted in the presence of tetrodotoxin, glutamate and GABA receptor antagonists, indicating its direct postsynaptic effects. The neurokinin-1 receptor antagonist, SR140333B, could block SM-SP-induced depolarization. Further experiments showed that suppression of potassium conductance was the predominant ionic mechanism of SM-SP-induced depolarization. To determine if neurokinin-1 receptor activation exerts any effects on GABAergic and glutamatergic neurotransmission, the action of SM-SP on synaptic currents was studied. SM-SP significantly increased the frequency of spontaneous inhibitory postsynaptic currents, but only induced a transient increase in the frequency of miniature inhibitory postsynaptic currents. No change was observed in both spontaneous and miniature excitatory postsynaptic currents. Based on the direct excitatory effects of SM-SP on pallidal neurons, we hypothesize that neurokinin-1 receptor activation in globus pallidus may be involved in the beneficial effect of substance P in Parkinson’s disease.

  1. Transport across the blood-brain barrier of pluronic leptin.

    Science.gov (United States)

    Price, Tulin O; Farr, Susan A; Yi, Xiang; Vinogradov, Serguei; Batrakova, Elena; Banks, William A; Kabanov, Alexander V

    2010-04-01

    Leptin is a peptide hormone produced primarily by adipose tissue that acts as a major regulator of food intake and energy homeostasis. Impaired transport of leptin across the blood-brain barrier (BBB) contributes to leptin resistance, which is a cause of obesity. Leptin as a candidate for the treatment of this obesity is limited because of the short half-life in circulation and the decreased BBB transport that arises in obesity. Chemical modification of polypeptides with amphiphilic poly(ethylene oxide)-poly(propylene oxide) block copolymers (Pluronic) is a promising technology to improve efficiency of delivery of polypeptides to the brain. In the present study, we determined the effects of Pluronic P85 (P85) with intermediate hydrophilic-lipophilic balance conjugated with leptin via a degradable SS bond [leptin(ss)-P85] on food intake, clearance, stability, and BBB uptake. The leptin(ss)-P85 exhibited biological activity when injected intracerebroventricularly after overnight food deprivation and 125I-leptin(ss)-P85 was stable in blood, with a half-time clearance of 32.3 min (versus 5.46 min for leptin). 125I-Leptin(ss)-P85 crossed the BBB [blood-to-brain unidirectional influx rate (K(i)) = 0.272 +/- 0.037 microl/g x min] by a nonsaturable mechanism unrelated to the leptin transporter. Capillary depletion showed that most of the 125I-leptin(ss)-P85 taken up by the brain reached the brain parenchyma. Food intake was reduced when 3 mg of leptin(ss)-P85 was administered via tail vein in normal body weight mice [0-30 min, p penetration by a mechanism-independent BBB leptin transporter.

  2. Ghrelin, leptin and adiponectin as possible predictors of the hedonic value of odors.

    Science.gov (United States)

    Trellakis, Sokratis; Tagay, Sefik; Fischer, Cornelia; Rydleuskaya, Alena; Scherag, André; Bruderek, Kirsten; Schlegl, Sandra; Greve, Jens; Canbay, Ali E; Lang, Stephan; Brandau, Sven

    2011-02-25

    Several lines of evidence point to a close relationship between the hormones of energy homeostasis and the olfactory system. Examples are the localization of leptin and adiponectin receptors in the olfactory system or increased activation of brain regions related to the palatability and the hedonic value of food in response to food pictures after application of ghrelin. In this preliminary study, we tested in 31 subjects (17 male and 14 female) if and to what extent the peripheral blood concentrations of "satiety" hormones, such as leptin, adiponectin, and ghrelin (acyl and total), are correlated with the self-ratings of odor pleasantness and with the objective olfactory and gustatory ability. The hedonic values of some odors were found to be differently rated between donors depending on gender and body weight. The concentrations of leptin, adiponectin and total ghrelin were significantly associated with the hedonic value of pepper black oil, but failed to show significant correlations for 5 other odors tested. Except for a significant association between leptin and odor identification, hormone concentrations were not linked to the abilities of smell and taste. Peripheral adipokines and gut hormones may alter the perception and pleasantness of specific odors, presumably either directly through their receptors in the olfactory system or indirectly through central interfaces between the regulation systems of olfaction, appetite control, memory and motivation. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Leptin and Reproduction: Past Milestones, Present Undertakings and Future Endeavors

    Science.gov (United States)

    Chehab, Farid F.

    2014-01-01

    The association between leptin and reproduction originated with the leptin-mediated correction of sterility in ob/ob mice and initiation of reproductive function in normal female mice. The uncovering of a central leptin pathway regulating food intake prompted the dissection of neuroendocrine mechanisms involving leptin in the metabolic control of reproduction. The absence of leptin receptors on GnRH neurons incited a search for intermediary neurons situated between leptin responsive and GnRH neurons. This review addresses the most significant findings that have furthered our understanding of recent progress in this new field. The role of leptin in puberty was impacted by the discovery of neurons that co-express kisspeptin, neurokinin B and dynorphin and that could act as leptin intermediates. Furthermore, the identification of first-order leptin-responsive neurons in the premammilary ventral nucleus and other brain regions opens new avenues to explore their relationship to GnRH neurons. Central to these advances is the unveiling that AgRP/NPY neurons project onto GnRH and kisspeptin neurons, allowing a crosstalk between food intake and reproduction. Finally, whereas puberty is a state of leptin sensitivity, mid-gestation represents a state of leptin resistance aimed at building energy stores to sustain pregnancy and lactation. Mechanisms underlying leptin resistance in pregnancy have lagged, however the establishment of this natural state is significant. Reproduction and energy balance are tightly controlled and backed up by redundant mechanisms that are critical for the survival of our species. It will be the goal of the next decade to shed new light on these complex and essential pathways. PMID:25118207

  4. Adiponectin potentiates the acute effects of leptin in arcuate Pomc neurons

    Directory of Open Access Journals (Sweden)

    Jia Sun

    2016-10-01

    Full Text Available Objective: Adiponectin receptors (AdipoRs are located on neurons of the hypothalamus involved in metabolic regulation – including arcuate proopiomelanocortin (Pomc and Neuropeptide Y/Agouti-related peptide (NPY/AgRP neurons. AdipoRs play a critical role in regulating glucose and fatty acid metabolism by initiating several signaling cascades overlapping with Leptin receptors (LepRs. However, the mechanism by which adiponectin regulates cellular activity in the brain remains undefined. Methods: In order to resolve this issue, we utilized neuron-specific transgenic mouse models to identify Pomc and NPY/AgRP neurons which express LepRs for patch-clamp electrophysiology experiments. Results: We found that leptin and adiponectin synergistically activated melanocortin neurons in the arcuate nucleus. Conversely, NPY/AgRP neurons were inhibited in response to adiponectin. The adiponectin-induced depolarization of arcuate Pomc neurons occurred via activation of Phosphoinositide-3-kinase (PI3K signaling, independent of 5′ AMP-activated protein kinase (AMPK activity. Adiponectin also activated melanocortin neurons at various physiological glucose levels. Conclusions: Our results demonstrate a requirement for PI3K signaling in the acute adiponectin-induced effects on the cellular activity of arcuate melanocortin neurons. Moreover, these data provide evidence for PI3K as a substrate for both leptin and adiponectin to regulate energy balance and glucose metabolism via melanocortin activity. Author Video: Author Video Watch what authors say about their articles Keywords: Melanocortin, Obesity, Diabetes, Energy balance, Patch-clamp, Electrophysiology

  5. Leptin actions on food intake and body temperature are mediated by IL-1.

    Science.gov (United States)

    Luheshi, G N; Gardner, J D; Rushforth, D A; Loudon, A S; Rothwell, N J

    1999-06-08

    Leptin regulates energy balance through its actions in the brain on appetite and energy expenditure and also shares properties with cytokines such as IL-1. We report here that leptin, injected into rats intracerebroventricularly or peripherally, induces significant dose-dependent increases in core body temperature as well as suppression of appetite. Leptin failed to affect food intake or body temperature in obese (fa/fa) Zucker rats, which posses a defective leptin receptor. Furthermore, injection of leptin increased levels of the proinflammatory cytokine IL-1beta in the hypothalamus of normal Sprague-Dawley rats. Central injection of IL-1 receptor antagonist (IL-1ra) inhibited the suppression of food intake caused by central or peripheral injection of leptin (60 and 84%, respectively) and abolished the leptin-induced increase in body temperature in both cases. Mice lacking (gene knockout) the main IL-1 receptor (80 kDa, R1) responsible for IL-1 actions showed no reduction in food intake in response to leptin. These data indicate that leptin actions in the brain depend on IL-1, and we show further that the effect of leptin on fever, but not food intake, is abolished by a cyclooxygenase inhibitor. Thus, we propose that in addition to its role in body weight regulation, leptin may mediate neuroimmune responses via actions in the brain dependent on release of IL-1 and prostaglandins.

  6. Upregulation of miR21 and repression of Grhl3 by leptin mediates sinusoidal endothelial injury in experimental nonalcoholic steatohepatitis.

    Directory of Open Access Journals (Sweden)

    Sahar Pourhoseini

    Full Text Available Sinusoidal endothelial dysfunction (SED has been found to be an early event in nonalcoholic steatohepatitis (NASH progression but the molecular mechanisms underlying its causation remains elusive. We hypothesized that adipokine leptin worsens sinusoidal injury by decreasing functionally active nitric oxide synthase 3 (NOS3 via miR21. Using rodent models of NASH, and transgenic mice lacking leptin and leptin receptor, results showed that hyperleptinemia caused a 4-5 fold upregulation of hepatic miR21 as assessed by qRTPCR. The upregulation of miR21 led to a time-dependent repression of its target protein Grhl3 levels as shown by western blot analyses. NOS3-p/NOS3 ratio which is controlled by Grhl3 was significantly decreased in NASH models. SED markers ICAM-1, VEGFR-2, and E-selectin as assessed by immunofluorescence microscopy were significantly up regulated in the progressive phases of NASH. Lack of leptin or its receptor in vivo, reversed the upregulation of miR21 and restored the levels of Grhl3 and NOS3-p/NOS3 ratio coupled with decreased SED dysfunction markers. Interestingly, leptin supplementation in mice lacking leptin, significantly enhanced miR21 levels, decreased Grhl3 repression and NOS3 phosphorylation. Leptin supplementation in isolated primary endothelial cells, Kupffer cells and stellate cells showed increased mir21 expression in stellate cells while sinusoidal injury was significantly higher in all cell types. Finally miR21 KO mice showed increased NOS3-p/NOS3 ratio and reversed SED markers in the rodent models of NASH. The experimental results described here show a close association of leptin-induced miR21 in aiding sinusoidal injury in NASH.

  7. Evidence for positive selection on the leptin gene in Cetacea and Pinnipedia.

    Directory of Open Access Journals (Sweden)

    Li Yu

    Full Text Available The leptin gene has received intensive attention and scientific investigation for its importance in energy homeostasis and reproductive regulation in mammals. Furthermore, study of the leptin gene is of crucial importance for public health, particularly for its role in obesity, as well as for other numerous physiological roles that it plays in mammals. In the present work, we report the identification of novel leptin genes in 4 species of Cetacea, and a comparison with 55 publicly available leptin sequences from mammalian genome assemblies and previous studies. Our study provides evidence for positive selection in the suborder Odontoceti (toothed whales of the Cetacea and the family Phocidae (earless seals of the Pinnipedia. We also detected positive selection in several leptin gene residues in these two lineages. To test whether leptin and its receptor evolved in a coordinated manner, we analyzed 24 leptin receptor gene (LPR sequences from available mammalian genome assemblies and other published data. Unlike the case of leptin, our analyses did not find evidence of positive selection for LPR across the Cetacea and Pinnipedia lineages. In line with this, positively selected sites identified in the leptin genes of these two lineages were located outside of leptin receptor binding sites, which at least partially explains why co-evolution of leptin and its receptor was not observed in the present study. Our study provides interesting insights into current understanding of the evolution of mammalian leptin genes in response to selective pressures from life in an aquatic environment, and leads to a hypothesis that new tissue specificity or novel physiologic functions of leptin genes may have arisen in both odontocetes and phocids. Additional data from other species encompassing varying life histories and functional tests of the adaptive role of the amino acid changes identified in this study will help determine the factors that promote the adaptive

  8. Interplay between glucose and leptin signalling determines the strength of GABAergic synapses at POMC neurons.

    Science.gov (United States)

    Lee, Dong Kun; Jeong, Jae Hoon; Chun, Sung-Kun; Chua, Streamson; Jo, Young-Hwan

    2015-03-26

    Regulation of GABAergic inhibitory inputs and alterations in POMC neuron activity by nutrients and adiposity signals regulate energy and glucose homeostasis. Thus, understanding how POMC neurons integrate these two signal molecules at the synaptic level is important. Here we show that leptin's action on GABA release to POMC neurons is influenced by glucose levels. Leptin stimulates the JAK2-PI3K pathway in both presynaptic GABAergic terminals and postsynaptic POMC neurons. Inhibition of AMPK activity in presynaptic terminals decreases GABA release at 10 mM glucose. However, postsynaptic TRPC channel opening by the PI3K-PLC signalling pathway in POMC neurons enhances spontaneous GABA release via activation of presynaptic MC3/4 and mGlu receptors at 2.5 mM glucose. High-fat feeding blunts AMPK-dependent presynaptic inhibition, whereas PLC-mediated GABAergic feedback inhibition remains responsive to leptin. Our data indicate that the interplay between glucose and leptin signalling in glutamatergic POMC neurons is critical for determining the strength of inhibitory tone towards POMC neurons.

  9. The importance of leptin in animal science

    Directory of Open Access Journals (Sweden)

    Mirela Ahmadi

    2016-05-01

    Full Text Available There are two different neurons that control the energetic homeostasis in animals: appetite-stimulating and appetite-suppressing neurons. Leptin is a peptide hormone (also known as “satiety hormone”, released by adipose cells, being an anorexigenic compound which inhibit the hunger. Leptin function in animal organism is opposite by the action of ghrelin – a peptide hormone acting as an orexigenic compound that activate the hunger sensation. The quantity of leptin produced in organism is correlated by the size and the number of adipocytes, and of course by the lipid tissue mass. The action of leptin is in accordance with the neuropeptide Y that signaling the brain to increase the appetite and make the animal to eat. When the animals lose weight, the mass of adipose tissue is diminished, that has as consequence a decrease the leptin concentration in the blood. Blood leptin is correlated also with other characteristics, such as: fasting for a short term, stress, physical activity, sleep duration (prehibernation and hibernation, insulin concentration, obesity and diabetes.

  10. Studies on leptin and its feedback system for weight regulation

    International Nuclear Information System (INIS)

    Lei Chengzhi

    2002-01-01

    Recently the hormone leptin has been regarded as hormonal signal linking adipose tissue status with a number of key central nervous system circuits. The role of leptin and its feedback system in man is partly revealed. Hypothalamic centers appear to control appetite, metabolic rate and activity level in a co-ordinate manner. Within the hypothalamus, known weight regulatory molecules include leptin, neuropeptide Y and POMC. The authors integrated new information into a revised model for understanding this important regulatory process. The model of energy homeostasis propose that the interaction of leptin with various neuroendocrine pathway in the brain and in the periphery to affect food-take

  11. Euglycemia Restoration by Central Leptin in Type 1 Diabetes Requires STAT3 Signaling but Not Fast-Acting Neurotransmitter Release.

    Science.gov (United States)

    Xu, Yuanzhong; Chang, Jeffrey T; Myers, Martin G; Xu, Yong; Tong, Qingchun

    2016-04-01

    Central leptin action is sufficient to restore euglycemia in insulinopenic type 1 diabetes (T1D); however, the underlying mechanism remains poorly understood. To examine the role of intracellular signal transducer and activator of transcription 3 (STAT3) pathways, we used LepRs/s mice with disrupted leptin-phosphorylated STAT3 signaling to test the effect of central leptin on euglycemia restoration. These mice developed streptozocin-induced T1D, which was surprisingly not associated with hyperglucagonemia, a typical manifestation in T1D. Further, leptin action on euglycemia restoration was abrogated in these mice, which was associated with refractory hypercorticosteronemia. To examine the role of fast-acting neurotransmitters glutamate and γ-aminobutyric acid (GABA), two major neurotransmitters in the brain, from leptin receptor (LepR) neurons, we used mice with disrupted release of glutamate, GABA, or both from LepR neurons. Surprisingly, all mice responded normally to leptin-mediated euglycemia restoration, which was associated with expected correction from hyperglucagonemia and hyperphagia. In contrast, mice with loss of glutamate and GABA appeared to develop an additive obesity effect over those with loss of single neurotransmitter release. Thus, our study reveals that STAT3 signaling, but not fast-acting neurotransmitter release, is required for leptin action on euglycemia restoration and that hyperglucagonemia is not required for T1D. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  12. Kadar leptin saliva dan kejadian karies gigi anak obesitas (Salivary leptin levels and caries incidence in obese children

    Directory of Open Access Journals (Sweden)

    Elfrida Atzmaryanni

    2013-09-01

    Full Text Available Background: Children with obesity have a lower incidence of caries. Salivary leptin levels of obese children is higher than normal children. Leptin is protein hormone, contained in saliva. Salivary proteins maintain the balance of the ecosystem in the mouth. Purpose: The article was aimed to study the correlation of salivary leptin levels with caries incidence in obese children. Review: Mouth is reflection of the health status and so many changes occur as a weight gain. Child with obesity has a low incidence of caries than normal. This condition is associated with changes in oral cavity, especially the increase in salivary leptin. Caries is a disease of hard tissues cause by the activty of microorganisms, especially Streptococcus mutans. Salivary proteins maintain the balance of the ecosystem in the mouth. Leptin is a protein saliva, produced predominantly in adipose tissue and conduct active transport to saliva. Salivary leptin works in two ways: as an antimicrobial which prevents the attachment of bacteria on tooth surface or by inducing cytokine that affect the immune system in oral cavity. Conclusion: Salivary leptin is higher in obese children than in normal children. The low incidence of caries on obesity is associated with salivary leptin. Alteration in salivary composition and flow rate also decreased caries in obesity.Latar belakang: Anak yang mengalami obesitas memiliki insiden karies yang rendah. Kadar leptin saliva anak obesitas lebih tinggi dari anak normal. Leptin merupakan salah satu protein hormon yang terdapat di saliva. Protein saliva berfungsi untuk menjaga keseimbangan ekosistem di mulut. Tujuan: Artikel ini bertujuan mempelajari hubungan antara kadar leptin di dalam saliva dengan kejadian karies anak obesitas. Tinjauan pustaka: Rongga mulut merupakan cerminan dari status kesehatan dan banyak perubahan yang terjadi seiring peningkatan berat badan seseorang. Anak Obesitas memiliki insiden karies yang rendah jika dibandingkan

  13. Leptin acts on neoplastic behavior and expression levels of genes related to hypoxia, angiogenesis, and invasiveness in oral squamous cell carcinoma.

    Science.gov (United States)

    Sobrinho Santos, Eliane Macedo; Guimarães, Talita Antunes; Santos, Hércules Otacílio; Cangussu, Lilian Mendes Borborema; de Jesus, Sabrina Ferreira; Fraga, Carlos Alberto de Carvalho; Cardoso, Claudio Marcelo; Santos, Sérgio Henrique Souza; de Paula, Alfredo Maurício Batista; Gomez, Ricardo Santiago; Guimarães, André Luiz Sena; Farias, Lucyana Conceição

    2017-05-01

    Leptin, one of the main hormones controlling energy homeostasis, has been associated with different cancer types. In oral cancer, its effect is not well understood. We investigated, through in vitro and in vivo assays, whether leptin can affect the neoplastic behavior of oral squamous cell carcinoma. Expression of genes possibly linked to the leptin pathway was assessed in leptin-treated oral squamous cell carcinoma cells and also in tissue samples of oral squamous cell carcinoma and oral mucosa, including leptin, leptin receptor, hypoxia-inducible factor 1-alpha, E-cadherin, matrix metalloproteinase-2, matrix metalloproteinase-9, Col1A1, Ki67, and mir-210. Leptin treatment favored higher rates of cell proliferation and migration, and reduced apoptosis. Accordingly, leptin-treated oral squamous cell carcinoma cells show decreased messenger RNA caspase-3 expression, and increased levels of E-cadherin, Col1A1, matrix metalloproteinase-2, matrix metalloproteinase-9, and mir-210. In tissue samples, hypoxia-inducible factor 1-alpha messenger RNA and protein expression of leptin and leptin receptor were high in oral squamous cell carcinoma cases. Serum leptin levels were increased in first clinical stages of the disease. In animal model, oral squamous cell carcinoma-induced mice show higher leptin receptor expression, and serum leptin level was increased in dysplasia group. Our findings suggest that leptin seems to exert an effect on oral squamous cell carcinoma cells behavior and also on molecular markers related to cell proliferation, migration, and tumor angiogenesis.

  14. DRP1 Suppresses Leptin and Glucose Sensing of POMC Neurons.

    Science.gov (United States)

    Santoro, Anna; Campolo, Michela; Liu, Chen; Sesaki, Hiromi; Meli, Rosaria; Liu, Zhong-Wu; Kim, Jung Dae; Diano, Sabrina

    2017-03-07

    Hypothalamic pro-opiomelanocortin (POMC) neurons regulate energy and glucose metabolism. Intracellular mechanisms that enable these neurons to respond to changes in metabolic environment are ill defined. Here we show reduced expression of activated dynamin-related protein (pDRP1), a mitochondrial fission regulator, in POMC neurons of fed mice. These POMC neurons displayed increased mitochondrial size and aspect ratio compared to POMC neurons of fasted animals. Inducible deletion of DRP1 of mature POMC neurons (Drp1 fl/fl -POMC-cre:ER T2 ) resulted in improved leptin sensitivity and glucose responsiveness. In Drp1 fl/fl -POMC-cre:ER T2 mice, POMC neurons showed increased mitochondrial size, ROS production, and neuronal activation with increased expression of Kcnj11 mRNA regulated by peroxisome proliferator-activated receptor (PPAR). Furthermore, deletion of DRP1 enhanced the glucoprivic stimulus in these neurons, causing their stronger inhibition and a greater activation of counter-regulatory responses to hypoglycemia that were PPAR dependent. Together, these data unmasked a role for mitochondrial fission in leptin sensitivity and glucose sensing of POMC neurons. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Fatty acids activate a chimera of the clofibric acid-activated receptor and the glucocorticoid receptor.

    Science.gov (United States)

    Göttlicher, M; Widmark, E; Li, Q; Gustafsson, J A

    1992-01-01

    Peroxisome proliferators such as clofibric acid, nafenopin, and WY-14,643 have been shown to activate PPAR (peroxisome proliferator-activated receptor), a member of the steroid nuclear receptor superfamily. We have cloned the cDNA from the rat that is homologous to that from the mouse [Issemann, I. & Green, S. (1990) Nature (London) 347, 645-650], which encodes a 97% similar protein with a particularly well-conserved putative ligand-binding domain. To search for physiologically occurring activators, we established a transcriptional transactivation assay by stably expressing in CHO cells a chimera of rat PPAR and the human glucocorticoid receptor that activates expression of the placental alkaline phosphatase reporter gene under the control of the mouse mammary tumor virus promoter. Testing of compounds related to lipid metabolism or peroxisomal proliferation revealed that 150 microM concentrations of arachidonic or linoleic acid but not of dehydroepiandrosterone, cholesterol, or 25-hydroxy-cholesterol, activate the receptor chimera. In addition, saturated fatty acids induce the reporter gene. Shortening the chain length to n = 6 or introduction of an omega-terminal carboxylic group abolished the activation potential of the fatty acid. In conclusion, the present results indicate that fatty acids can regulate gene expression mediated by a member of the steroid nuclear receptor superfamily. Images PMID:1316614

  16. CERAPP: Collaborative estrogen receptor activity prediction project

    DEFF Research Database (Denmark)

    Mansouri, Kamel; Abdelaziz, Ahmed; Rybacka, Aleksandra

    2016-01-01

    ). Risk assessors need tools to prioritize chemicals for evaluation in costly in vivo tests, for instance, within the U.S. EPA Endocrine Disruptor Screening Program. oBjectives: We describe a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project...... States and Europe to predict ER activity of a common set of 32,464 chemical structures. Quantitative structure-activity relationship models and docking approaches were employed, mostly using a common training set of 1,677 chemical structures provided by the U.S. EPA, to build a total of 40 categorical......: Individual model scores ranged from 0.69 to 0.85, showing high prediction reliabilities. Out of the 32,464 chemicals, the consensus model predicted 4,001 chemicals (12.3%) as high priority actives and 6,742 potential actives (20.8%) to be considered for further testing. conclusion: This project demonstrated...

  17. Leptin Action on GABAergic Neurons Prevents Obesity and Reduces Inhibitory Tone to POMC Neurons

    OpenAIRE

    Vong, Linh; Ye, Chianping; Yang, Zongfang; Choi, Brian; Chua, Streamson; Lowell, Bradford B.

    2011-01-01

    Leptin acts in the brain to prevent obesity. The underlying neurocircuitry responsible for this is poorly understood, in part due to incomplete knowledge regarding first order, leptin-responsive neurons. To address this, we and others have been removing leptin receptors from candidate first order neurons. While functionally relevant neurons have been identified, the observed effects have been small suggesting that most first order neurons remain unidentified. Here we take an alternative appro...

  18. Structural basis for activation of G-protein-coupled receptors

    DEFF Research Database (Denmark)

    Gether, Ulrik; Asmar, Fazila; Meinild, Anne Kristine

    2002-01-01

    into conformational changes accompanying GPCR activation and the underlying molecular mechanism governing transition of the receptor between its active and inactive states. Using the beta2-adrenergic receptor as a model system we have obtained evidence for an evolutionary conserved activation mechanism where...... changes and receptor activation. At the current stage we are exploring the possibility of reaching this goal by direct in situ labeling of the beta2-adrenergic receptor in Xenopus laevis oocytes with conformationally sensitive fluorescent probes and parallel detection of receptor activation by co...

  19. Modulation of the mesolimbic dopamine system by leptin.

    Science.gov (United States)

    Opland, Darren M; Leinninger, Gina M; Myers, Martin G

    2010-09-02

    Nutritional status modulates many forms of reward-seeking behavior, with caloric restriction increasing the drive for drugs of abuse as well as for food. Understanding the interactions between the mesolimbic dopamine (DA) system (which mediates the incentive salience of natural and artificial rewards) and the neural and hormonal systems that sense and regulate energy balance is thus of significant importance. Leptin, which is produced by adipocytes in proportion to fat content as a hormonal signal of long-term energy stores, acts via its receptor (LepRb) on multiple populations of central nervous system neurons to modulate neural circuits in response to body energy stores. Leptin suppresses feeding and plays a central role in the control of energy balance. In addition to demonstrating that leptin modulates hypothalamic and brainstem circuits to promote satiety, recent work has begun to explore the mechanisms by which leptin influences the mesolimbic DA system and related behaviors. Indeed, leptin diminishes several measures of drug and food reward, and promotes a complex set of changes in the mesolimbic DA system. While many of the details remain to be worked out, several lines of evidence suggest that leptin regulates the mesolimbic DA system via multiple neural pathways and processes, and that distinct sets of LepRb neurons each modulate unique aspects of the mesolimbic DA system and behavior in response to leptin. 2010 Elsevier B.V. All rights reserved.

  20. Control of leptin by metabolic state and its regulatory interactions with pituitary growth hormone and hepatic growth hormone receptors and insulin like growth factors in the tilapia (Oreochromis mossambicus).

    Science.gov (United States)

    Douros, Jonathan D; Baltzegar, David A; Mankiewicz, Jamie; Taylor, Jordan; Yamaguchi, Yoko; Lerner, Darren T; Seale, Andre P; Grau, E Gordon; Breves, Jason P; Borski, Russell J

    2017-01-01

    Leptin is an important cytokine for regulating energy homeostasis, however, relatively little is known about its function and control in teleost fishes or other ectotherms, particularly with regard to interactions with the growth hormone (GH)/insulin-like growth factors (IGFs) growth regulatory axis. Here we assessed the regulation of LepA, the dominant paralog in tilapia (Oreochromis mossambicus) and other teleosts under altered nutritional state, and evaluated how LepA might alter pituitary growth hormone (GH) and hepatic insulin-like growth factors (IGFs) that are known to be disparately regulated by metabolic state. Circulating LepA, and lepa and lepr gene expression increased after 3-weeks fasting and declined to control levels 10days following refeeding. This pattern of leptin regulation by metabolic state is similar to that previously observed for pituitary GH and opposite that of hepatic GHR and/or IGF dynamics in tilapia and other fishes. We therefore evaluated if LepA might differentially regulate pituitary GH, and hepatic GH receptors (GHRs) and IGFs. Recombinant tilapia LepA (rtLepA) increased hepatic gene expression of igf-1, igf-2, ghr-1, and ghr-2 from isolated hepatocytes following 24h incubation. Intraperitoneal rtLepA injection, on the other hand, stimulated hepatic igf-1, but had little effect on hepatic igf-2, ghr1, or ghr2 mRNA abundance. LepA suppressed GH accumulation and gh mRNA in pituitaries in vitro, but had no effect on GH release. We next sought to test if abolition of pituitary GH via hypophysectomy (Hx) affects the expression of hepatic lepa and lepr. Hypophysectomy significantly increases hepatic lepa mRNA abundance, while GH replacement in Hx fish restores lepa mRNA levels to that of sham controls. Leptin receptor (lepr) mRNA was unchanged by Hx. In in vitro hepatocyte incubations, GH inhibits lepa and lepr mRNA expression at low concentrations, while higher concentration stimulates lepa expression. Taken together, these findings

  1. Circulating leptin and thyroid dysfunction

    DEFF Research Database (Denmark)

    Zimmermann-Belsing, Tina; Brabant, Georg; Holst, Jens Juul

    2003-01-01

    and triiodothyronine are involved in the starvation-induced decrease in thermogenesis. Both rodent and human studies of leptin have failed to show any consistent relationship between thyroid function and serum leptin concentrations. However, leptin might have an important role in thyroid pathophysiology due to thyroid...

  2. Roux-en-Y gastric bypass surgery suppresses hypothalamic PTP1B protein level and alleviates leptin resistance in obese rats.

    Science.gov (United States)

    Liu, Jia-Yu; Mu, Song; Zhang, Shu-Ping; Guo, Wei; Li, Qi-Fu; Xiao, Xiao-Qiu; Zhang, Jun; Wang, Zhi-Hong

    2017-09-01

    The present study aimed to explore the effect of Roux-en-Y gastric bypass (RYGB) surgery on protein tyrosine phosphatase 1B (PTP1B) expression levels and leptin activity in hypothalami of obese rats. Obese rats induced by a high-fat diet (HFD) that underwent RYGB (n=11) or sham operation (SO, n=9), as well as an obese control cohort (Obese, n=10) and an additional normal-diet group (ND, n=10) were used. Food efficiency was measured at 8 weeks post-operation. Plasma leptin levels were evaluated and hypothalamic protein tyrosine phosphatase 1B (PTP1B) levels and leptin signaling activity were examined at the genetic and protein levels. The results indicated that food efficiency was typically lower in RYGB rats compared with that in the Obese and SO rats. In the RYGB group, leptin receptor expression and proopiomelanocortin was significantly higher, while Neuropeptide Y levels were lower than those in the Obese and SO groups. Furthermore, the gene and protein expression levels of PTP1B in the RYGB group were lower, while levels of phosphorylated signal transducer and activator of transcription 3 protein were much higher compared with those in the Obese and SO groups. In conclusion, RYGB surgery significantly suppressed hypothalamic PTP1B protein expression. PTP1B regulation may partially alleviate leptin resistance.

  3. Protease activated receptors (PARS) mediation in gyroxin biological activity

    International Nuclear Information System (INIS)

    Silva, Jose Alberto Alves da

    2009-01-01

    Gyroxin is a serine protease enzyme from the South American rattlesnake (Crotalus durissus terrificus) venom; it is only partially characterized and has multiple activities. Gyroxin induces blood coagulation, blood pressure decrease and a neurotoxic behavior named barrel rotation. The mechanisms involved in this neurotoxic activity are not known. Whereas gyroxin is a member of enzymes with high potential to become a new drug with clinical applications such as thrombin, batroxobin, ancrod, tripsyn and kalicrein, it is important to find out how gyroxin works. The analysis on agarose gel electrophoresis and circular dichroism confirmed the molecules' integrity and purity. The gyroxin intravenous administration in mice proved its neurotoxicity (barrel rotation). In vivo studies employing intravital microscopy proved that gyroxin induces vasodilation with the participation of protease activated receptors (PARs), nitric oxide and Na+K+ATPase. The leukocytes' adherence and rolling counting indicated that gyroxin has no pro inflammatory activity. Gyroxin induced platelet aggregation, which was blocked by inhibitors of PAR1 and PAR4 receptors (SCH 79797 and tcY-NH 2 , respectively). Finally, it was proved that the gyroxin temporarily alter the permeability of the blood brain barrier (BBB). Our study has shown that both the protease-activated receptors and nitric oxide are mediators involved in the biological activities of gyroxin. (author)

  4. Leptin stimulates aromatase in the growth plate: limiting catch-up growth efficiency.

    Science.gov (United States)

    Masarwi, Majdi; Shamir, Raanan; Phillip, Moshe; Gat-Yablonski, Galia

    2018-06-01

    Catch-up growth (CUG) in childhood is defined as periods of growth acceleration, after the resolution of growth attenuation causes, bringing the children back to their original growth trajectory. Sometimes, however, CUG is incomplete, leading to permanent growth deficit and short stature. The aim of this study was to investigate the mechanisms that limit nutritional-CUG. Specifically, we focused on the crosstalk between leptin, increased by re-feeding, and sex hormones, which increase with age. In vivo studies were performed in young male Sprague Dawley rats fed ad libitum or subjected to 10/36 days of 40% food restriction followed by 90-120 days of re-feeding. In vitro studies were performed on ATDC5 cells. Analyses of mRNA and protein levels were done using qPCR and Western blot, respectively. CUG was complete in body weight and humerus length in animals that were food-restricted for 10 days but not for those food-restricted for 36 days. In vitro studies showed that leptin significantly increased aromatase gene expression and protein level as well as the expression of estrogen and leptin receptors in a dose- and time-dependent manner. The effect of leptin on aromatase was direct and was mediated through the MAPK/Erk, STAT3 and PI3K pathways. The crosstalk between leptin and aromatase in the growth plate suggests that re-feeding during puberty may lead to increased estrogen level and activity, and consequently, irreversible premature epiphyseal growth plate closure. These results may have important implications for the development of novel treatment strategies for short stature in children. © 2018 Society for Endocrinology.

  5. The Role of Leptin in Maintaining Plasma Glucose During Starvation.

    Science.gov (United States)

    Perry, Rachel J; Shulman, Gerald I

    2018-03-01

    For 20 years it has been known that concentrations of leptin, a hormone produced by the white adipose tissue (WAT) largely in proportion to body fat, drops precipitously with starvation, particularly in lean humans and animals. The role of leptin to suppress the thyroid and reproductive axes during a prolonged fast has been well defined; however, the impact of leptin on metabolic regulation has been incompletely understood. However emerging evidence suggests that, in starvation, hypoleptinemia increases activity of the hypothalamic-pituitary-adrenal axis, promoting WAT lipolysis, increasing hepatic acetyl-CoA concentrations, and maintaining euglycemia. In addition, leptin may be largely responsible for mediating a shift from a reliance upon glucose metabolism (absorption and glycogenolysis) to fat metabolism (lipolysis increasing gluconeogenesis) which preserves substrates for the brain, heart, and other critical organs. In this way a leptin-mediated glucose-fatty acid cycle appears to maintain glycemia and permit survival in starvation.

  6. Leptin as a Potential Regulator of FGF21

    Directory of Open Access Journals (Sweden)

    Mohamed Asrih

    2016-03-01

    Full Text Available Background/Aims: Fibroblast growth factor 21 (FGF21, a potent metabolic regulator, has been shown to improve insulin sensitivity in animal models of insulin resistance. Several studies have focused on identifying mediators of FGF21 effects. However, the identification of factors involved in FGF21 regulation is far from complete. As leptin is a potent metabolic modulator as well, we aimed at characterizing whether leptin may regulate FGF21. Methods: We investigated a potential regulation of FGF21 by leptin in vivo in Wistar rats and in vitro using human derived hepatocarcinoma HepG2 cells. This model was chosen as the liver is considered the main FGF21 expression site. Results: We found that leptin injections increased plasma FGF21 levels in adult Wistar rats. This was confirmed in vitro, as leptin increased FGF21 expression in HepG2 cells. We also showed that the leptin effect on FGF21 expression was mediated by STAT3 activation in HepG2 cells. Conclusion: New findings regarding a leptin-STAT3-FGF21 axis were provided in this study, although investigating the exact mechanisms linking leptin and FGF21 are still needed. These results are of great interest in the context of identifying potential new clinical approaches to treat metabolic diseases associated with insulin resistance, such as obesity and type 2 diabetes.

  7. Chronic sleep fragmentation during the sleep period induces hypothalamic endoplasmic reticulum stress and PTP1b-mediated leptin resistance in male mice.

    Science.gov (United States)

    Hakim, Fahed; Wang, Yang; Carreras, Alba; Hirotsu, Camila; Zhang, Jing; Peris, Eduard; Gozal, David

    2015-01-01

    Sleep fragmentation (SF) is highly prevalent and may constitute an important contributing factor to excessive weight gain and the metabolic syndrome. Increased endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) leading to the attenuation of leptin receptor signaling in the hypothalamus leads to obesity and metabolic dysfunction. Mice were exposed to SF and sleep control (SC) for varying periods of time during which ingestive behaviors were monitored. UPR pathways and leptin receptor signaling were assessed in hypothalami. To further examine the mechanistic role of ER stress, changes in leptin receptor (ObR) signaling were also examined in wild-type mice treated with the ER chaperone tauroursodeoxycholic acid (TUDCA), as well as in CHOP-/+ transgenic mice. Fragmented sleep in male mice induced increased food intake starting day 3 and thereafter, which was preceded by increases in ER stress and activation of all three UPR pathways in the hypothalamus. Although ObR expression was unchanged, signal transducer and activator of transcription 3 (STAT3) phosphorylation was decreased, suggesting reduced ObR signaling. Unchanged suppressor of cytokine signaling-3 (SOCS3) expression and increases in protein-tyrosine phosphatase 1B (PTP1B) expression and activity emerged with SF, along with reduced p-STAT3 responses to exogenous leptin. SF-induced effects were reversed following TUDCA treatment and were absent in CHOP -/+ mice. SF induces hyperphagic behaviors and reduced leptin signaling in hypothalamus that are mediated by activation of ER stress, and ultimately lead to increased PTP1B activity. ER stress pathways are therefore potentially implicated in SF-induced weight gain and metabolic dysfunction, and may represent a viable therapeutic target. © 2014 Associated Professional Sleep Societies, LLC.

  8. The Beneficial Effects of Leptin on REM Sleep Deprivation-Induced Cognitive Deficits in Mice

    Science.gov (United States)

    Chang, Hsiao-Fu; Su, Chun-Lin; Chang, Chih-Hua; Chen, Yu-Wen; Gean, Po-Wu

    2013-01-01

    Leptin, a 167 amino acid peptide, is synthesized predominantly in the adipose tissues and plays a key role in the regulation of food intake and body weight. Recent studies indicate that leptin receptor is expressed with high levels in many brain regions that may regulate synaptic plasticity. Here we show that deprivation of rapid eye movement…

  9. Retinoid X receptor and peroxisome proliferator-activated receptor activate an estrogen responsive gene independent of the estrogen receptor.

    Science.gov (United States)

    Nuñez, S B; Medin, J A; Braissant, O; Kemp, L; Wahli, W; Ozato, K; Segars, J H

    1997-03-14

    Estrogen receptors regulate transcription of genes essential for sexual development and reproductive function. Since the retinoid X receptor (RXR) is able to modulate estrogen responsive genes and both 9-cis RA and fatty acids influenced development of estrogen responsive tumors, we hypothesized that estrogen responsive genes might be modulated by RXR and the fatty acid receptor (peroxisome proliferator-activated receptor, PPAR). To test this hypothesis, transfection assays in CV-1 cells were performed with an estrogen response element (ERE) coupled to a luciferase reporter construct. Addition of expression vectors for RXR and PPAR resulted in an 11-fold increase in luciferase activity in the presence of 9-cis RA. Furthermore, mobility shift assays demonstrated binding of RXR and PPAR to the vitellogenin A2-ERE and an ERE in the oxytocin promoter. Methylation interference assays demonstrated that specific guanine residues required for RXR/PPAR binding to the ERE were similar to residues required for ER binding. Moreover, RXR domain-deleted constructs in transfection assays showed that activation required RXR since an RXR delta AF-2 mutant completely abrogated reporter activity. Oligoprecipitation binding studies with biotinylated ERE and (35)S-labeled in vitro translated RXR constructs confirmed binding of delta AF-2 RXR mutant to the ERE in the presence of baculovirus-expressed PPAR. Finally, in situ hybridization confirmed RXR and PPAR mRNA expression in estrogen responsive tissues. Collectively, these data suggest that RXR and PPAR are present in reproductive tissues, are capable of activating estrogen responsive genes and suggest that the mechanism of activation may involve direct binding of the receptors to estrogen response elements.

  10. Sip-jeon-dea-bo-tang, a traditional herbal medicine, ameliorates cisplatin-induced anorexia via the activation of JAK1/STAT3-mediated leptin and IL-6 production in the fat tissue of mice.

    Science.gov (United States)

    Woo, Sang-Mi; Choi, Youn Kyung; Kim, Ah-Jeong; Yun, Yee Jin; Shin, Yong Cheol; Cho, Sung-Gook; Ko, Seong Gyu

    2016-04-01

    Despite its therapeutic advantages, chemotherapy can also cause adverse effects, including anorexia and loss of appetite. Although numerous patients with cancer have been reported to suffer from anorexia during or following chemotherapy, treatment options for anorexia remain to be determined. In Asian countries, traditional medicines are widely used to treat problems with appetite; sip-jeon-dea-bo-tang (SJDBT) is one of those medicines used for the treatment of anorexia. The present study demonstrated that SJDBT ameliorated cisplatin-induced anorexia. In a mouse model of chemotherapy-induced anorexia, oral administration of SJDBT prevented the cisplatin-induced reduction of food intake, inhibiting weight loss. The results of multiplex assays showed that SJDBT only altered the levels of interleukin (IL)-6 and leptin in the serum and fat tissue. In addition, SJDBT maintained the serum leptin level and increased the serum IL-6 level, whereas cisplatin reduced the levels of both serum leptin and IL‑6. Furthermore, SJDBT was revealed to increase the levels of leptin and IL-6 in the fat tissue by activating the JAK1/STAT3 signaling pathway. In conclusion, the present results revealed that SJDBT ameliorated cisplatin-induced anorexia, suggesting its usefulness in the prevention of anorexia during chemotherapy.

  11. In vitro effects of 5-hydroxytryptophan, indoleamines and leptin on arylalkylamine N-acetyltransferase (AA-NAT) activity in pineal organ of the fish, Clarias gariepinus (Burchell, 1822) during different phases of the breeding cycle.

    Science.gov (United States)

    Gupta, B B P; Yanthan, L; Singh, Ksh Manisana

    2010-08-01

    Arylalkylamine N-acetyltransferase (AA-NAT) is the rate-limiting enzyme of melatonin biosynthetic pathway. In vitro effects of 5-hydroxytryptophan (5-HTP) and indoleamines (serotonin, N-acetylserotonin and melatonin) were studied on AA-NAT activity in the pineal organ of the fish, C. gariepinus during different phases of its annual breeding cycle. Further, in vitro effects of leptin on AA-NAT activity in the pineal organ were studied in fed and fasted fishes during summer and winter seasons. Treatments with 5-HTP and indoleamines invariably stimulated pineal AA-NAT activity in a dose-dependent manner during all the phases. However, leptin increased AA-NAT activity in a dose-dependent manner only in the pineal organ of the fed fishes, but not of the fasted fishes irrespective of the seasons.

  12. Flurbiprofen ameliorates glucose deprivation-induced leptin resistance

    Directory of Open Access Journals (Sweden)

    Toru Hosoi

    2016-09-01

    Full Text Available Leptin resistance is one of the mechanisms involved in the pathophysiology of obesity. The present study showed that glucose deprivation inhibited leptin-induced phosphorylation of signal transducer and activator of transcription 3 (STAT3 and signal transducer and activator of transcription 5 (STAT5 in neuronal cells. Flurbiprofen reversed glucose deprivation-mediated attenuation of STAT3, but not STAT5 activation, in leptin-treated cells. Glucose deprivation increased C/EBP-homologous protein (CHOP and glucose regulated protein 78 (GRP78 induction, indicating the activation of unfolded protein responses (UPR. Flurbiprofen did not affect the glucose deprivation-induced activation of UPR, but did attenuate the glucose deprivation-mediated induction of AMP-activated protein kinase (AMPK phosphorylation. Flurbiprofen may ameliorate glucose deprivation-induced leptin resistance in neuronal cells.

  13. Leptin and psychiatry

    African Journals Online (AJOL)

    QuickSilver

    and functions as a metabolic and neuro-endocrine hormone. Leptin has been shown to .... a study of 36 patients, Hinze Selch et al concluded that weight gain induced by .... European Journal ... and its encoded protein in Rodents: Impact of nutrition and obe- sity. Journal ... Psychology Annals 1989:19;488–493. 15. Elke D.

  14. Leptin rapidly improves glucose homeostasis in obese mice by increasing hypothalamic insulin sensitivity.

    Science.gov (United States)

    Koch, Christiane; Augustine, Rachael A; Steger, Juliane; Ganjam, Goutham K; Benzler, Jonas; Pracht, Corinna; Lowe, Chrishanthi; Schwartz, Michael W; Shepherd, Peter R; Anderson, Greg M; Grattan, David R; Tups, Alexander

    2010-12-01

    Obesity is associated with resistance to the actions of both leptin and insulin via mechanisms that remain incompletely understood. To investigate whether leptin resistance per se contributes to insulin resistance and impaired glucose homeostasis, we investigated the effect of acute leptin administration on glucose homeostasis in normal as well as leptin- or leptin receptor-deficient mice. In hyperglycemic, leptin-deficient Lep(ob/ob) mice, leptin acutely and potently improved glucose metabolism, before any change of body fat mass, via a mechanism involving the p110α and β isoforms of phosphatidylinositol-3-kinase (PI3K). Unlike insulin, however, the anti-diabetic effect of leptin occurred independently of phospho-AKT, a major downstream target of PI3K, and instead involved enhanced sensitivity of the hypothalamus to insulin action upstream of PI3K, through modulation of IRS1 (insulin receptor substrate 1) phosphorylation. These data suggest that leptin resistance, as occurs in obesity, reduces the hypothalamic response to insulin and thereby impairs peripheral glucose homeostasis, contributing to the development of type 2 diabetes.

  15. Role of leptin in female reproduction.

    Science.gov (United States)

    Pérez-Pérez, Antonio; Sánchez-Jiménez, Flora; Maymó, Julieta; Dueñas, José L; Varone, Cecilia; Sánchez-Margalet, Víctor

    2015-01-01

    Reproductive function is dependent on energy resources. The role of weight, body composition, fat distribution and the effect of diet have been largely investigated in experimental female animals as well as in women. Any alteration in diet and/or weight may induce abnormalities in timing of sexual maturation and fertility. However, the cellular mechanisms involved in the fine coordination of energy balance and reproduction are largely unknown. The brain and hypothalamic structures receive endocrine and/or metabolic signals providing information on the nutritional status and the degree of fat stores. Adipose tissue acts both as a store of energy and as an active endocrine organ, secreting a large number of biologically important molecules termed adipokines. Adipokines have been shown to be involved in regulation of the reproductive functions. The first adipokine described was leptin. Extensive research over the last 10 years has shown that leptin is not only an adipose tissue-derived messenger of the amount of energy stores to the brain, but also a crucial hormone/cytokine for a number of diverse physiological processes, such as inflammation, angiogenesis, hematopoiesis, immune function, and most importantly, reproduction. Leptin plays an integral role in the normal physiology of the reproductive system with complex interactions at all levels of the hypothalamic-pituitary gonadal (HPG) axis. In addition, leptin is also produced by placenta, where it plays an important autocrine function. Observational studies have demonstrated that states of leptin excess, deficiency, or resistance can be associated with abnormal reproductive function. This review focuses on the leptin action in female reproduction.

  16. Children's psychosocial stress and emotional eating: A role for leptin?

    Science.gov (United States)

    Michels, Nathalie; Sioen, Isabelle; Ruige, Johannes; De Henauw, Stefaan

    2017-05-01

    Psychosocial stress can be a health threat by stimulating unhealthier eating behaviors. We aim to test the role of the hormone leptin in the association between stress and diet/emotional eating as detected in primary school children. In a two-wave longitudinal study with 308 Belgian children (5-12y) in 2010-2012, the association of fasting serum leptin with reported stress (negative events and emotional problems), measured stress by salivary cortisol (overall cortisol output and awakening response), emotional eating and food consumption frequency was examined. Analyses were split by sex. Mediation and moderation by leptin change were tested. One stress marker (overall cortisol output) was significantly correlated with high leptin levels, but only in girls and cross-sectionally. Only in boys, leptin was associated with low emotional eating. Leptin was not a significant predictor of unhealthy food consumption. Leptin change was not a mediator but an enhancing moderator in the link between stress (high cortisol output and emotional problems) and emotional eating in girls: high reports of emotional eating in 2012 were present in the case of combined high 2-year leptin increase and high stress at baseline. Stress (represented by emotional problems and high daily cortisol) seems to lead to hyperleptinemia in girls; and the combination of high stress and hyperleptinemia might make girls more vulnerable to stress-induced eating. No functional data on leptin sensitivity were present, but results might suggest that stress induces lower sensitivity to the anorexigenic leptin activity. © 2016 Wiley Periodicals, Inc.(Int J Eat Disord 2017; 50:471-480). © 2016 Wiley Periodicals, Inc.

  17. Interplay between glucose and leptin signaling determines the strength of GABAergic synapses at POMC neurons

    Science.gov (United States)

    Lee, Dong Kun; Jeong, Jae Hoon; Chun, Sung-Kun; Chua, Streamson; Jo, Young-Hwan

    2015-01-01

    Regulation of GABAergic inhibitory inputs and alterations in POMC neuron activity by nutrients and adiposity signals regulate energy and glucose homeostasis. Thus, understanding how POMC neurons integrate these two signal molecules at the synaptic level is important. Here we show that leptin’s action on GABA release to POMC neurons is influenced by glucose levels. Leptin stimulates the JAK2-PI3K pathway in both presynaptic GABAergic terminals and postsynaptic POMC neurons. Inhibition of AMPK activity in presynaptic terminals decreases GABA release at 10 mM glucose. However, postsynaptic TRPC channel opening by the PI3K-PLC signaling pathway in POMC neurons enhances spontaneous GABA release via activation of presynaptic MC3/4 and mGlu receptors at 2.5 mM glucose. High-fat feeding blunts AMPK-dependent presynaptic inhibition, whereas PLC-mediated GABAergic feedback inhibition remains responsive to leptin. Our data indicate that the interplay between glucose and leptin signaling in glutamatergic POMC neurons is critical for determining the strength of inhibitory tone towards POMC neurons. PMID:25808323

  18. The leptin system and its expression at different nutritional and pregnant stages in lined seahorse (Hippocampus erectus

    Directory of Open Access Journals (Sweden)

    Huixian Zhang

    2016-10-01

    Full Text Available Leptin is an essential hormone for the regulation of energy metabolism and food intake in vertebrate animals. To better understand the physiological roles of leptin in nutrient regulation in paternal ovoviviparous fish (family Syngnathidae, the present study cloned the full-length of leptin-a and leptin receptor (lepr genes in lined seahorse (Hippocampus erectus. Results showed that there was a 576-bp intron between two exons in leptin-a gene but no leptin-b gene in seahorse. Although the primary amino acid sequence conservation of seahorse leptin-a was very low, the 3-D structure modeling of seahorse leptin-a revealed strong conservation of tertiary structure with other vertebrates. Seahorse leptin-a mRNA was highly expressed in brain, whereas lepr mRNA was mainly expressed in ovary and gill. Interestingly, both leptin-a and lepr mRNA were expressed in the brood pouch of male seahorse, suggesting the leptin system plays a role during the male pregnancy. Physiological experiments showed that the expression of hepatic leptin-a and lepr mRNA in unfed seahorses was significantly higher than that in those fed 100%, as well as 60%, of their food during the fasting stage, showing that seahorse might initiate the leptin system to regulate its energy metabolism while starving. Moreover, the expression of leptin-a in the brood pouch of pregnant seahorse was significantly upregulated compared with non-pregnant seahorse, whereas the expression of lepr was downregulated, suggesting that the leptin system might be involved in the male pregnancy. In conclusion, the leptin system plays a role in the energy metabolism and food intake, and might provide new insights into molecular regulation of male pregnancy in seahorse.

  19. The leptin system and its expression at different nutritional and pregnant stages in lined seahorse (Hippocampus erectus).

    Science.gov (United States)

    Zhang, Huixian; Qin, Geng; Zhang, Yanhong; Li, Shuisheng; Lin, Qiang

    2016-10-15

    Leptin is an essential hormone for the regulation of energy metabolism and food intake in vertebrate animals. To better understand the physiological roles of leptin in nutrient regulation in paternal ovoviviparous fish (family Syngnathidae), the present study cloned the full-length of leptin-a and leptin receptor (lepr) genes in lined seahorse (Hippocampus erectus). Results showed that there was a 576-bp intron between two exons in leptin-a gene but no leptin-b gene in seahorse. Although the primary amino acid sequence conservation of seahorse leptin-a was very low, the 3-D structure modeling of seahorse leptin-a revealed strong conservation of tertiary structure with other vertebrates. Seahorse leptin-a mRNA was highly expressed in brain, whereas lepr mRNA was mainly expressed in ovary and gill. Interestingly, both leptin-a and lepr mRNA were expressed in the brood pouch of male seahorse, suggesting the leptin system plays a role during the male pregnancy. Physiological experiments showed that the expression of hepatic leptin-a and lepr mRNA in unfed seahorses was significantly higher than that in those fed 100%, as well as 60%, of their food during the fasting stage, showing that seahorse might initiate the leptin system to regulate its energy metabolism while starving. Moreover, the expression of leptin-a in the brood pouch of pregnant seahorse was significantly upregulated compared with non-pregnant seahorse, whereas the expression of lepr was downregulated, suggesting that the leptin system might be involved in the male pregnancy. In conclusion, the leptin system plays a role in the energy metabolism and food intake, and might provide new insights into molecular regulation of male pregnancy in seahorse. © 2016. Published by The Company of Biologists Ltd.

  20. Effects of high-fat diet and/or body weight on mammary tumor leptin and apoptosis signaling pathways in MMTV-TGF-α mice

    Science.gov (United States)

    Dogan, Soner; Hu, Xin; Zhang, Yan; Maihle, Nita J; Grande, Joseph P; Cleary, Margot P

    2007-01-01

    Introduction Obesity is a risk factor for postmenopausal breast cancer and is associated with shortened mammary tumor (MT) latency in MMTV-TGF-α mice with dietary-induced obesity. One link between obesity and breast cancer is the adipokine, leptin. Here, the focus is on diet-induced obesity and MT and mammary fat pad (MFP) leptin and apoptotic signaling proteins. Methods MMTV-TGF-α mice were fed low-fat or high-fat diets from 10 to 85 weeks of age. High-Fat mice were divided into Obesity-Prone and Obesity-Resistant groups based on final body weights. Mice were followed to assess MT development and obtain serum, MFP, and MT. Results Incidence of palpable MTs was significantly different: Obesity-Prone > Obesity-Resistant > Low-Fat. Serum leptin was significantly higher in Obesity-Prone compared with Obesity-Resistant and Low-Fat mice. Low-Fat mice had higher MFP and MT ObRb (leptin receptor) protein and Jak2 (Janus kinase 2) protein and mRNA levels in comparison with High-Fat mice regardless of body weight. Leptin (mRNA) and pSTAT3 (phosphorylated signal transducer and activator of transcription 3) (mRNA and protein) also were higher in MTs from Low-Fat versus High-Fat mice. Expression of MT and MFP pro-apoptotic proteins was higher in Low-Fat versus High-Fat mice. Conclusion These results confirm a connection between body weight and MT development and between body weight and serum leptin levels. However, diet impacts MT and MFP leptin and apoptosis signaling proteins independently of body weight. PMID:18162139

  1. The Relationship among Smoking, Plasma Adiponectin, Leptin, Inflammatory Markers and Insulin Resistance

    International Nuclear Information System (INIS)

    Shousha, M.A.; Soliman, S.Et

    2012-01-01

    We aimed to study how smoking influences the relationship between fat mass ,soluble tumor necrosis factor-α, (TNF?) receptors 1 and 2 (sTNFR1 and sTNFR2),highly sensitive C-reactive protein(hs-CRP), adiponectin, leptin and insulin resistance.A total of 60 healthy men (age: 27-53 years, body mass index (BMI): 20-35 kg/m 2 ), 30 of whom were never-smokers and 30 smokers, matched for age, BMI and waist-to-hip ratio were included in this study. Those were subdivided into insulin resistant (IR) and insulin sensitive (IS) subgroups. Measures included circulating soluble fractions of the tumor necrosis factor α (TNF α) receptors (sTNFR1 and sTNFR2) and their relationship to fat mass, fasting plasma adiponectin, leptin, hs- CRP and insulin sensitivity index.Smokers had significantly lower fat mass, lower fasting glucose, insulin and leptin concentrations than nonsmokers. Despite lower fat mass, insulin and leptin, smokers showed significantly increased circulating sTNFR2 levels (3.7±0.8 vs. 2.9 ±0.8 ng/ml, π=0.03). Being either a smoker or having insulin resistance was independently associated with lower adiponectin concentrations (π = 0.046 and 0.001, respectively). No difference was detected in average hs- CRP concentrations between smokers and nonsmokers (π = 0.18) and between IR and IS subjects (π = 0.13).Both fat mass and smoking are related to increased activity of the TNFα axis. Plasma adiponectin concentrations are lower in smokers and IR subjects. These two mechanisms could be associated with increased cardiovascular risk in smokers

  2. The Relationship among Smoking, Plasma Adiponectin, Leptin, Inflammatory Markers and Insulin Resistance

    International Nuclear Information System (INIS)

    Shousha, M.A.; Soliman, S.Et.

    2011-01-01

    The study aimed to investigate how smoking influences the relationship between fat mass, soluble tumor necrosis factor-α , (TNFα ) receptors 1 and 2 (sTNFR1 and sTNFR2), highly sensitive C-reactive protein (hs-CRP), adiponectin, leptin and insulin resistance. A total of 60 healthy men (age: 27-53 years, body mass index (BMI): 20-35 kg/m2), 30 of whom were never-smokers and 30 smokers, matched for age, BMI and waist-to-hip ratio were included in this study. Those were subdivided into insulin resistant (IR) and insulin sensitive (IS) subgroups. Measures included circulating soluble fractions of the tumor necrosis factor α (TNFα ) receptors (sTNFR1 and sTNFR2) and their relationship to fat mass, fasting plasma adiponectin, leptin, hs-CRP and insulin sensitivity index. Smokers had significantly lower fat mass, lower fasting glucose, insulin and leptin concentrations than nonsmokers. Despite lower fat mass, insulin and leptin, smokers showed significantly increased circulating sTNFR2 levels (3.7±0.8 vs. 2.9±0.8 ng/ml, P=0.03). Being either a smoker or having insulin resistance was independently associated with lower adiponectin concentrations (P = 0.046 and 0.001, respectively). No difference was detected in average hs- CRP concentrations between smokers and nonsmokers (P = 0.18) and between IR and IS subjects (P = 0.13).Both fat mass and smoking are related to increased activity of the TNFα axis. Plasma adiponectin concentrations are lower in smokers and IR subjects. These two mechanisms could be associated with increased cardiovascular risk in smokers

  3. Recruitment of activation receptors at inhibitory NK cell immune synapses.

    Directory of Open Access Journals (Sweden)

    Nicolas Schleinitz

    2008-09-01

    Full Text Available Natural killer (NK cell activation receptors accumulate by an actin-dependent process at cytotoxic immune synapses where they provide synergistic signals that trigger NK cell effector functions. In contrast, NK cell inhibitory receptors, including members of the MHC class I-specific killer cell Ig-like receptor (KIR family, accumulate at inhibitory immune synapses, block actin dynamics, and prevent actin-dependent phosphorylation of activation receptors. Therefore, one would predict inhibition of actin-dependent accumulation of activation receptors when inhibitory receptors are engaged. By confocal imaging of primary human NK cells in contact with target cells expressing physiological ligands of NK cell receptors, we show here that this prediction is incorrect. Target cells included a human cell line and transfected Drosophila insect cells that expressed ligands of NK cell activation receptors in combination with an MHC class I ligand of inhibitory KIR. The two NK cell activation receptors CD2 and 2B4 accumulated and co-localized with KIR at inhibitory immune synapses. In fact, KIR promoted CD2 and 2B4 clustering, as CD2 and 2B4 accumulated more efficiently at inhibitory synapses. In contrast, accumulation of KIR and of activation receptors at inhibitory synapses correlated with reduced density of the integrin LFA-1. These results imply that inhibitory KIR does not prevent CD2 and 2B4 signaling by blocking their accumulation at NK cell immune synapses, but by blocking their ability to signal within inhibitory synapses.

  4. Leptin differentially regulates chondrogenesis in mouse vertebral and tibial growth plates.

    Science.gov (United States)

    Yu, Bo; Jiang, Kaibiao; Chen, Bin; Wang, Hantao; Li, Xinfeng; Liu, Zude

    2017-05-31

    Leptin plays an important role in mediating chondrogenesis of limb growth plate. Previous studies suggest that bone structures and development of spine and limb are different. The expression of Ob-Rb, the gene that encodes leptin receptors, is vertebral and appendicular region-specific, suggesting the regulation of leptin on VGP and TGP chondrogenesis may be very different. The aim of the present study was to investigate the differential regulation of leptin on the chondrogenesis of vertebral growth plate (VGP) and tibial growth plate (TGP). We compared the VGP and TGP from wild type (C57BL/6) and leptin-deficient (ob/ob) mice. We then generated primary cultures of TGP and VGP chondrocytes. By treating the primary cells with different concentrations of leptin in vitro, we analyzed proliferation and apoptosis of the primary chondrocytes from TGP and VGP. We further measured expression of chondrogenic-related genes in these cells that had been incubated with different doses of leptin. Leptin-deficient mice of 8-week-old had shorter tibial and longer vertebral lengths than the wide type mice. Disturbed columnar structure was observed for TGP but not for VGP. In primary chondrocyte cultures, leptin inhibited VGP chondrocyte proliferation but promoted their apoptosis. Collagen IIA and aggrecan mRNA, and the protein levels of proliferation- and chondrogenesis-related markers, including PCNA, Sox9, and Smad4, were downregulated by leptin in a dose-dependent manner. In contrast, leptin stimulated the proliferation and chondrogenic differentiation of TGP chondrocytes at physiological levels (i.e., 10 and 50 ng/mL) but not at high levels (i.e., 100 and 1000 ng/mL). Leptin exerts a stimulatory effect on the proliferation and chondrogenic differentiation of the long bone growth plate but an inhibitory effect on the spine growth plate. The ongoing study will shed light on the regulatory mechanisms of leptin in bone development and metabolism.

  5. The WSXWS motif in cytokine receptors is a molecular switch involved in receptor activation

    DEFF Research Database (Denmark)

    Dagil, Robert; Knudsen, Maiken J.; Olsen, Johan Gotthardt

    2012-01-01

    The prolactin receptor (PRLR) is activated by binding of prolactin in a 2:1 complex, but the activation mechanism is poorly understood. PRLR has a conserved WSXWS motif generic to cytokine class I receptors. We have determined the nuclear magnetic resonance solution structure of the membrane...

  6. Leptin regulates dopamine responses to sustained stress in humans.

    Science.gov (United States)

    Burghardt, Paul R; Love, Tiffany M; Stohler, Christian S; Hodgkinson, Colin; Shen, Pei-Hong; Enoch, Mary-Anne; Goldman, David; Zubieta, Jon-Kar

    2012-10-31

    Neural systems that identify and respond to salient stimuli are critical for survival in a complex and changing environment. In addition, interindividual differences, including genetic variation and hormonal and metabolic status likely influence the behavioral strategies and neuronal responses to environmental challenges. Here, we examined the relationship between leptin allelic variation and plasma leptin levels with DAD2/3R availability in vivo as measured with [(11)C]raclopride PET at baseline and during a standardized pain stress challenge. Allelic variation in the leptin gene was associated with varying levels of dopamine release in response to the pain stressor, but not with baseline D2/3 receptor availability. Circulating leptin was also positively associated with stress-induced dopamine release. These results show that leptin serves as a regulator of neuronal function in humans and provides an etiological mechanism for differences in dopamine neurotransmission in response to salient stimuli as related to metabolic function. The capacity for leptin to influence stress-induced dopaminergic function is of importance for pathological states where dopamine is thought to play an integral role, such as mood, substance-use disorders, eating disorders, and obesity.

  7. Averrhoa carambola free phenolic extract ameliorates nonalcoholic hepatic steatosis by modulating mircoRNA-34a, mircoRNA-33 and AMPK pathways in leptin receptor-deficient db/db mice.

    Science.gov (United States)

    Pang, Daorui; You, Lijun; Zhou, Lin; Li, Tong; Zheng, Bisheng; Liu, Rui Hai

    2017-12-13

    The objective of the present study is to investigate the hepatic steatosis relieving effect of Averrhoa carambola free phenolic extract (ACF) on leptin receptor-deficient (db/db) mice and elucidate the modulation hepatic lipogenesis mechanisms. The serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) assays, accompanying hematoxylin and eosin (H&E) staining, were applied to identify the alleviation of liver histopathological changes. Serum and hepatic lipid assays, combined with oil red O staining, were used to investigate the amelioration of lipid accumulation. Further assessments by quantitative real-time PCR and western blot assays were used to elucidate the suppression of the fatty acid and triglyceride (TG) synthesis mechanisms underlying ACF protection. These results indicated that ACF treatment significantly reduced the liver TG of db/db mice (p < 0.05). The mechanisms are partly through phosphorylation of AMPK α and down-regulation of SREBP-1c expression, and further down-regulation of FAS and SCD1 (p < 0.05). In addition, the expression levels of mircoRNA-34a and mircoRNA-33, which modulate this signaling pathway, were significantly down-regulated by ACF treatment (p < 0.05). Collectively, these results revealed that ACF exhibited a potent hepatic steatosis relieving effect partly by inhibiting the signal transduction of hepatic lipogenesis.

  8. Diet-Induced Growth Is Regulated via Acquired Leptin Resistance and Engages a Pomc-Somatostatin-Growth Hormone Circuit

    Directory of Open Access Journals (Sweden)

    Heiko Löhr

    2018-05-01

    Full Text Available Summary: Anorexigenic pro-opiomelanocortin (Pomc/alpha-melanocyte stimulating hormone (αMSH neurons of the hypothalamic melanocortin system function as key regulators of energy homeostasis, also controlling somatic growth across different species. However, the mechanisms of melanocortin-dependent growth control still remain ill-defined. Here, we reveal a thus-far-unrecognized structural and functional connection between Pomc neurons and the somatotropic hypothalamo-pituitary axis. Excessive feeding of larval zebrafish causes leptin resistance and reduced levels of the hypothalamic satiety mediator pomca. In turn, this leads to reduced activation of hypophysiotropic somatostatin (Sst-neurons that express the melanocortin receptor Mc4r, elevated growth hormone (GH expression in the pituitary, and enhanced somatic growth. Mc4r expression and αMSH responsiveness are conserved in Sst-expressing hypothalamic neurons of mice. Thus, acquired leptin resistance and attenuation of pomca transcription in response to excessive caloric intake may represent an ancient mechanism to promote somatic growth when food resources are plentiful. : The melanocortin system controls energy homeostasis and somatic growth, but the underlying mechanisms are elusive. Löhr et al. identify a functional neural circuit in which Pomc neurons stimulate hypothalamic somatostatin neurons, thereby inhibiting hypophyseal growth hormone production. Excessive feeding and acquired leptin resistance attenuate this pathway, allowing faster somatic growth when food resources are rich. Keywords: Pomc neuron, somatostatin neuron, somatic growth, growth hormone, melanocortin system, high-fat diet, obesity, leptin resistance, zebrafish, mouse

  9. Roles of sex hormones on the regulation of leptin secretion in pregnant golden hamster

    International Nuclear Information System (INIS)

    Wang Cheng; Yang Liguo

    2003-01-01

    Objective: To investigate the effect of sex hormones on the secretion of leptin and the causative factor of the gestational leptin spike in the golden hamster. Methods: Three months old female golden hamster were used as animal model. As a source of high level estradiol and progesterone, silicane rubber tubes impregnates with estradiol and progesterone were prepared and their bioactivity were determined. Antisera against estradiol and progesterone were prepared and activity tested to be used, for the elimination of the effects of endogenous hormones on leptin secretion in the subsequent experiments. Biological activity of the antiserum was determined by evaluating effects of these antisera on the weight of uterus or ovary. Groups of pregnant animals were ovariectomied during day 11 of pregnancy to explore the effect of the gonad on the secretion of leptin. Groups of virgin animals were ovariectomied and the silicone rubber tubes containing estradiol and progesterone were implanted to determine the effect of high-level estradiol and progesterone on the secretion of leptin in vivo. Results: Plasma concentration of leptin decreased and the gestational leptin profile disappeared with absence of the secretion spike on day 12 after ovariectomy on the day 11 of pregnancy. Injections of antiserum against estradiol or progesterone had no significant effect on the plasma concentration of leptin. Leptin level significantly decreased after ovariectomy in the virgin golden hamsters (p < 0.05). Implantation of silicone rubber tubes of estradiol or progesterone after ovariectomy could not restore leptin levels, but implantation of tubes containing both estradiol and progesterone could prevent the decrease of leptin levels. Conclusion: Our results suggested that sex hormones had important regulatory effect on the secretion of leptin. Estradiol plus progesterone had stimulatory effects on the secretion of leptin in vivo. High estradiol and progesterone levels during pregnancy was

  10. Activation of glucocorticoid receptors increases 5-HT2A receptor levels

    DEFF Research Database (Denmark)

    Trajkovska, Viktorija; Kirkegaard, Lisbeth; Krey, Gesa

    2009-01-01

    an effect of GR activation on 5-HT2A levels, mature organotypic hippocampal cultures were exposed to corticosterone with or without GR antagonist mifepristone and mineralocorticoid receptor (MR) antagonist spironolactone. In GR under-expressing mice, hippocampal 5-HT2A receptor protein levels were decreased......Major depression is associated with both dysregulation of the hypothalamic pituitary adrenal axis and serotonergic deficiency, not the least of the 5-HT2A receptor. However, how these phenomena are linked to each other, and whether a low 5-HT2A receptor level is a state or a trait marker...... of depression is unknown. In mice with altered glucocorticoid receptor (GR) expression we investigated 5-HT2A receptor levels by Western blot and 3H-MDL100907 receptor binding. Serotonin fibre density was analyzed by stereological quantification of serotonin transporter immunopositive fibers. To establish...

  11. β3-Adrenergic receptors, adipokines and neuroendocrine activation during stress induced by repeated immune challenge in male and female rats.

    Science.gov (United States)

    Csanova, Agnesa; Hlavacova, Natasa; Hasiec, Malgorzata; Pokusa, Michal; Prokopova, Barbora; Jezova, Daniela

    2017-05-01

    The main hypothesis of the study is that stress associated with repeated immune challenge has an impact on β 3 -adrenergic receptor gene expression in the brain. Sprague-Dawley rats were intraperitoneally injected with increasing doses of lipopolysaccharide (LPS) for five consecutive days. LPS treatment was associated with body weight loss and increased anxiety-like behavior. In LPS-treated animals of both sexes, β 3 -receptor gene expression was increased in the prefrontal cortex but not the hippocampus. LPS treatment decreased β 3 -receptor gene expression in white adipose tissue with higher values in males compared to females. In the adipose tissue, LPS reduced peroxisome proliferator-activated receptor-gamma, leptin and adiponectin gene expression, but increased interleukin-6 expression, irrespective of sex. Repeated immune challenge resulted in increased concentrations of plasma aldosterone and corticosterone with higher values of corticosterone in females compared to males. Concentrations of dehydroepiandrosterone (DHEA) in plasma were unaffected by LPS, while DHEA levels in the frontal cortex were lower in the LPS-treated animals compared to the controls. Thus, changes of DHEA levels in the brain take place irrespective of the changes of this neurosteroid in plasma. We have provided the first evidence on stress-induced increase in β 3 -adrenergic receptor gene expression in the brain. Greater reduction of β 3 -adrenergic receptor expression in the adipose tissue and of the body weight gain by repeated immune challenge in male than in female rats suggests sex differences in the role of β 3 -adrenergic receptors in the metabolic functions. LPS-induced changes in adipose tissue regulatory factors and hormone concentrations might be important for coping with chronic infections.

  12. Polychlorinated biphenyls (PCB 101, PCB 153 and PCB 180) alter leptin signaling and lipid metabolism in differentiated 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Ferrante, Maria C.; Amero, Paola; Santoro, Anna; Monnolo, Anna; Simeoli, Raffaele; Di Guida, Francesca; Mattace Raso, Giuseppina; Meli, Rosaria

    2014-01-01

    Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) are highly lipophilic environmental contaminants that accumulate in lipid-rich tissues, such as adipose tissue. Here, we reported the effects induced by PCBs 101, 153 and 180, three of the six NDL-PCBs defined as indicators, on mature 3T3-L1 adipocytes. We observed an increase in lipid content, in leptin gene expression and a reduction of leptin receptor expression and signaling, when cells were exposed to PCBs, alone or in combination. These modifications were consistent with the occurrence of “leptin-resistance” in adipose tissue, a typical metabolic alteration related to obesity. Therefore, we investigated how PCBs affect the expression of pivotal proteins involved in the signaling of leptin receptor. We evaluated the PCB effect on the intracellular pathway JAK/STAT, determining the phosphorylation of STAT3, a downstream activator of the transcription of leptin gene targets, and the expression of SOCS3 and PTP1B, two important regulators of leptin resistance. In particular, PCBs 153 and 180 or all PCB combinations induced a significant reduction in pSTAT3/STAT3 ratio and an increase in PTP1B and SOCS3, evidencing an additive effect. The impairment of leptin signaling was associated with the reduction of AMPK/ACC pathway activation, leading to the increase in lipid content. These pollutants were also able to increase the transcription of inflammatory cytokines (IL-6 and TNFα). It is worthy to note that the PCB concentrations used are comparable to levels detectable in human adipose tissue. Our data strongly support the hypothesis that NDL-PCBs may interfere with the lipid metabolism contributing to the development of obesity and related diseases. - Highlights: • NDL-PCBs alter lipid content and metabolism in 3T3-L1 adipocytes. • Impairment of leptin signaling was induced by NDL-PCBs. • NDL-PCBs reduce AMPK and ACC activation. • NDL-PCBs induce the synthesis of pro-inflammatory cytokine by

  13. Polychlorinated biphenyls (PCB 101, PCB 153 and PCB 180) alter leptin signaling and lipid metabolism in differentiated 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ferrante, Maria C. [Department of Veterinary Medicine and Animal Productions, Federico II University of Naples, Via Delpino 1, 80137 Naples (Italy); Amero, Paola; Santoro, Anna [Department of Pharmacy, Federico II University of Naples, Via Montesano 49, 80131 Naples (Italy); Monnolo, Anna [Department of Veterinary Medicine and Animal Productions, Federico II University of Naples, Via Delpino 1, 80137 Naples (Italy); Simeoli, Raffaele; Di Guida, Francesca [Department of Pharmacy, Federico II University of Naples, Via Montesano 49, 80131 Naples (Italy); Mattace Raso, Giuseppina, E-mail: mattace@unina.it [Department of Pharmacy, Federico II University of Naples, Via Montesano 49, 80131 Naples (Italy); Meli, Rosaria, E-mail: meli@unina.it [Department of Pharmacy, Federico II University of Naples, Via Montesano 49, 80131 Naples (Italy)

    2014-09-15

    Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) are highly lipophilic environmental contaminants that accumulate in lipid-rich tissues, such as adipose tissue. Here, we reported the effects induced by PCBs 101, 153 and 180, three of the six NDL-PCBs defined as indicators, on mature 3T3-L1 adipocytes. We observed an increase in lipid content, in leptin gene expression and a reduction of leptin receptor expression and signaling, when cells were exposed to PCBs, alone or in combination. These modifications were consistent with the occurrence of “leptin-resistance” in adipose tissue, a typical metabolic alteration related to obesity. Therefore, we investigated how PCBs affect the expression of pivotal proteins involved in the signaling of leptin receptor. We evaluated the PCB effect on the intracellular pathway JAK/STAT, determining the phosphorylation of STAT3, a downstream activator of the transcription of leptin gene targets, and the expression of SOCS3 and PTP1B, two important regulators of leptin resistance. In particular, PCBs 153 and 180 or all PCB combinations induced a significant reduction in pSTAT3/STAT3 ratio and an increase in PTP1B and SOCS3, evidencing an additive effect. The impairment of leptin signaling was associated with the reduction of AMPK/ACC pathway activation, leading to the increase in lipid content. These pollutants were also able to increase the transcription of inflammatory cytokines (IL-6 and TNFα). It is worthy to note that the PCB concentrations used are comparable to levels detectable in human adipose tissue. Our data strongly support the hypothesis that NDL-PCBs may interfere with the lipid metabolism contributing to the development of obesity and related diseases. - Highlights: • NDL-PCBs alter lipid content and metabolism in 3T3-L1 adipocytes. • Impairment of leptin signaling was induced by NDL-PCBs. • NDL-PCBs reduce AMPK and ACC activation. • NDL-PCBs induce the synthesis of pro-inflammatory cytokine by

  14. Leptin signaling in skeletal muscle after bed rest in healthy humans

    DEFF Research Database (Denmark)

    Guerra, Borja; Ponce-Gonzalez, Jesus Gustavo; Morales-Alamo, David

    2014-01-01

    . Leptin receptor isoforms (OB-Rs), suppressor of cytokine signaling 3 (SOCS3) and protein tyrosine phosphatase 1B (PTP1B) protein expression and signal transducer and activator of transcription 3 (STAT3) phosphorylation were analyzed by Western blot. RESULTS: After bed rest basal insulin concentration.......4-fold after bed rest (P PTP1B in the deltoid. PTP1B was increased by 90% with bed rest in the vastus lateralis (P ... between the increase in vastus lateralis PTP1B and the increase in both basal insulin concentrations (r = 0.66, P

  15. Leptin levels in patients with systemic lupus erythematosus inversely correlate with regulatory T cell frequency.

    Science.gov (United States)

    Wang, X; Qiao, Y; Yang, L; Song, S; Han, Y; Tian, Y; Ding, M; Jin, H; Shao, F; Liu, A

    2017-11-01

    Leptin levels are increased in patients with systemic lupus erythematosus (SLE) but little is known on how this correlates with several disease characteristics including the frequency of regulatory T cells (Tregs). Here we compared serum leptin levels with frequency of circulating Tregs in 47 lupus patients vs. 25 healthy matched controls. Correlations with lupus disease activity were also analyzed, as well as Treg proliferation potential. It was found that leptin was remarkably increased in SLE patients as compared to controls, particularly in SLE patients with moderate and severe active SLE, and the increase correlated with disease activity. Importantly, increased leptin in lupus patients inversely correlated with the frequency of Tregs but not in controls, and leptin neutralization resulted in the expansion of Tregs ex vivo. Thus, hyperleptinemia in lupus patients correlates directly with disease activity and inversely with Treg frequency. The finding that leptin inhibition expands Tregs in SLE suggests possible inhibition of this molecule for an enhanced Treg function in the disease.

  16. Modulating Estrogen Receptor-related ReceptorActivity Inhibits Cell Proliferation*

    OpenAIRE

    Bianco, Stéphanie; Lanvin, Olivia; Tribollet, Violaine; Macari, Claire; North, Sophie; Vanacker, Jean-Marc

    2009-01-01

    High expression of the estrogen receptor-related receptor (ERR)-α in human tumors is correlated to a poor prognosis, suggesting an involvement of the receptor in cell proliferation. In this study, we show that a synthetic compound (XCT790) that modulates the activity of ERRα reduces the proliferation of various cell lines and blocks the G1/S transition of the cell cycle in an ERR...

  17. The molecular mechanism of leptin secretion and expression induced by aristolochic acid in kidney fibroblast.

    Directory of Open Access Journals (Sweden)

    Tsung-Chieh Lin

    Full Text Available BACKGROUND: Leptin is a peptide hormone playing pivotal role in regulating food intake and energy expenditure. Growing evidence has suggested the pro-inflammatory and fibrogenic properties of leptin. In addition, patients with renal fibrosis have higher level of plasma leptin, which was due to the increased leptin production. Aristolochic acid (AA is a botanical toxin characterized to associate with the development of renal fibrosis including tubulointerstitial fibrosis. However, whether leptin is upregulated to participate in AA-induced kidney fibrosis remain completely unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this study, leptin expression was increased by sublethal dose of AA in kidney fibroblast NRK49f determined by enzyme-linked immunosorbent assay and Western blot. Data from real-time reverse transcriptase-polymerase chain reaction revealed that leptin was upregulated by AA at transcriptional level. DNA binding activity of CCAAT enhancer binding protein α (C/EBP α, one of the transcription factors for leptin gene, was enhanced in DNA affinity precipitation assay and chromatin immunoprecipitation experiments. Knockdown of C/EBP α expression by small interfering RNA markedly reduced AA-induced leptin expression. Moreover, AA promoted Akt interaction with p-PDK1, and increased phosphorylated activation of Akt. Akt knockdown, and inhibition of Akt signaling by LY294002 and mTOR inhibitor rapamycin reduced leptin expression. Furthermore, treatment of LY294002 or rapamycin significantly suppressed AA-induced C/EBP α DNA-binding activity. These results suggest that Akt and C/EBP α activation were involved in AA-regulated leptin expression. CONCLUSIONS/SIGNIFICANCE: Our findings demonstrate the first that AA could induce secretion and expression of fibrogenic leptin in kidney fibroblasts, which reveal potential involvement of leptin in the progression of kidney fibrosis in aristolochic acid nephropathy.

  18. The Orphan Nuclear Receptor TR4 Is a Vitamin A-activated Nuclear Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X. Edward; Suino-Powell, Kelly M.; Xu, Yong; Chan, Cee-Wah; Tanabe, Osamu; Kruse, Schoen W.; Reynolds, Ross; Engel, James Douglas; Xu, H. Eric (Michigan-Med); (Van Andel)

    2015-11-30

    Testicular receptors 2 and 4 (TR2/4) constitute a subgroup of orphan nuclear receptors that play important roles in spermatogenesis, lipid and lipoprotein regulation, and the development of the central nervous system. Currently, little is known about the structural features and the ligand regulation of these receptors. Here we report the crystal structure of the ligand-free TR4 ligand binding domain, which reveals an autorepressed conformation. The ligand binding pocket of TR4 is filled by the C-terminal half of helix 10, and the cofactor binding site is occupied by the AF-2 helix, thus preventing ligand-independent activation of the receptor. However, TR4 exhibits constitutive transcriptional activity on multiple promoters, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, or ligand binding substantially reduce the transcriptional activity of this receptor. Importantly, both retinol and retinoic acid are able to promote TR4 to recruit coactivators and to activate a TR4-regulated reporter. These findings demonstrate that TR4 is a ligand-regulated nuclear receptor and suggest that retinoids might have a much wider regulatory role via activation of orphan receptors such as TR4.

  19. Family C 7TM receptor dimerization and activation

    DEFF Research Database (Denmark)

    Bonde, Marie Mi; Sheikh, Søren P; Hansen, Jakob Lerche

    2006-01-01

    The family C seven transmembrane (7TM) receptors constitutes a small and especially well characterized subfamily of the large 7TM receptor superfamily. Approximately 50% of current prescription drugs target 7TM receptors, this biologically important family represents the largest class of drug...... to be fully defined. This review presents the biochemical support for family C 7TM receptor dimerization and discusses its importance for receptor biosynthesis, surface expression, ligand binding and activation, since lessons learnt here may well be applicable to the whole superfamily of 7TM receptors.......-targets today. It is well established that family C 7TM receptors form homo- or hetero-dimers on the cell surface of living cells. The large extra-cellular domains (ECD) have been crystallized as a dimer in the presence and absence of agonist. Upon agonist binding, the dimeric ECD undergoes large conformational...

  20. Effects of Acute Exercise and Chronic Exercise on the Liver Leptin-AMPK-ACC Signaling Pathway in Rats with Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Xuejie Yi

    2013-01-01

    Full Text Available Aim. To investigate the effects of acute and chronic exercise on glucose and lipid metabolism in liver of rats with type 2 diabetes caused by a high fat diet and low dose streptozotocin (STZ. Methods. Animals were classified into control (CON, diabetes (DC, diabetic chronic exercise (DCE, and diabetic acute exercise (DAE groups. Results. Compared to CON, the leptin levels in serum and liver and ACC phosphorylation were significantly higher in DC, but the levels of liver leptin receptor, AMPKα1/2, AMPKα1, and ACC proteins expression and phosphorylation were significantly lower in DC. In addition, the levels of liver glycogen reduced significantly, and the levels of TG and FFA increased significantly in DC compared to CON. Compared to DC, the levels of liver AMPKα1/2, AMPKα2, AMPKα1, and ACC phosphorylation significantly increased in DCE and DAE. However, significant increase of the level of liver leptin receptor and glycogen as well as significant decrease of the level of TG and FFA were observed only in DEC. Conclusion. Our study demonstrated that both acute and chronic exercise indirectly activated the leptin-AMPK-ACC signaling pathway and increased insulin sensitivity in the liver of type 2 diabetic rats. However, only chronic and long-term exercise improved glucose and lipid metabolism of the liver.

  1. Obese Neuronal PPARγ Knockout Mice Are Leptin Sensitive but Show Impaired Glucose Tolerance and Fertility.

    Science.gov (United States)

    Fernandez, Marina O; Sharma, Shweta; Kim, Sun; Rickert, Emily; Hsueh, Katherine; Hwang, Vicky; Olefsky, Jerrold M; Webster, Nicholas J G

    2017-01-01

    The peroxisome-proliferator activated receptor γ (PPARγ) is expressed in the hypothalamus in areas involved in energy homeostasis and glucose metabolism. In this study, we created a deletion of PPARγ brain-knockout (BKO) in mature neurons in female mice to investigate its involvement in metabolism and reproduction. We observed that there was no difference in age at puberty onset between female BKOs and littermate controls, but the BKOs gave smaller litters when mated and fewer oocytes when ovulated. The female BKO mice had regular cycles but showed an increase in the number of cycles with prolonged estrus. The mice also had increased luteinizing hormone (LH) levels during the LH surge and histological examination showed hemorrhagic corpora lutea. The mice were challenged with a 60% high-fat diet (HFD). Metabolically, the female BKO mice showed normal body weight, glucose and insulin tolerance, and leptin levels but were protected from obesity-induced leptin resistance. The neuronal knockout also prevented the reduction in estrous cycles due to the HFD. Examination of ovarian histology showed a decrease in the number of primary and secondary follicles in both genotypes due to the HFD, but the BKO ovaries showed an increase in the number of hemorrhagic follicles. In summary, our results show that neuronal PPARγ is required for optimal female fertility but is also involved in the adverse effects of diet-induced obesity by creating leptin resistance potentially through induction of the repressor Socs3. Copyright © 2017 by the Endocrine Society.

  2. Leptin, NPY, Melatonin and Zinc Levels in Experimental Hypothyroidism and Hyperthyroidism: The Relation to Zinc.

    Science.gov (United States)

    Baltaci, Abdulkerim Kasım; Mogulkoc, Rasim

    2017-06-01

    Since zinc mediates the effects of many hormones or is found in the structure of numerous hormone receptors, zinc deficiency leads to various functional impairments in the hormone balance. And also thyroid hormones have important activity on metabolism and feeding. NPY and leptin are affective on food intake and regulation of appetite. The present study is conducted to determine how zinc supplementation and deficiency affect thyroid hormones (free and total T3 and T4), melatonin, leptin, and NPY levels in thyroid dysfunction in rats. The experiment groups in the study were formed as follows: Control (C); Hypothyroidism (PTU); Hypothyroidism+Zinc (PTU+Zn); Hypothyroidism+Zinc deficient; Hyperthyroidism (H); Hyperthyroidism+Zinc (H+Zn); and Hyperthyroidism+Zinc deficient. Thyroid hormone parameters (FT 3 , FT 4 , TT 3 , and TT 4 ) were found to be reduced in hypothyroidism groups and elevated in the hyperthyroidism groups. Melatonin values increased in hyperthyroidism and decreased in hypothyroidism. Leptin and NPY levels both increased in hypo- and hyperthyroidism. Zinc levels, on the other hand, decreased in hypothyroidism and increased in hyperthyroidism. Zinc supplementation, particularly when thyroid function is impaired, has been demonstrated to markedly prevent these changes.

  3. Leptin, An Adipokine With Central Importance in the Global Obesity Problem.

    Science.gov (United States)

    Mechanick, Jeffrey I; Zhao, Shan; Garvey, W Timothy

    2017-12-13

    Leptin has central importance in the global obesity and cardiovascular disease problem. Leptin is principally secreted by adipocytes and acts in the hypothalamus to suppress appetite and food intake, increase energy expenditure, and regulate body weight. Based on clinical translation of specific and networked actions, leptin affects the cardiovascular system and may be a marker and driver of cardiometabolic risk factors with interventions that are actionable by cardiologists. Leptin subnetwork analysis demonstrates a statistically significant role for ethnoculturally and socioeconomically appropriate lifestyle intervention in cardiovascular disease. Emergent mechanistic components and potential diagnostic or therapeutic targets include hexokinase 3, urocortins, clusterin, sialic acid-binding immunoglobulin-like lectin 6, C-reactive protein, platelet glycoprotein VI, albumin, pentraxin 3, ghrelin, obestatin prepropeptide, leptin receptor, neuropeptide Y, and corticotropin-releasing factor receptor 1. Emergent associated symptoms include weight change, eating disorders, vascular necrosis, chronic fatigue, and chest pain. Leptin-targeted therapies are reported for lipodystrophy and leptin deficiency, but they are investigational for leptin resistance, obesity, and other chronic diseases. Copyright © 2017 World Heart Federation (Geneva). Published by Elsevier B.V. All rights reserved.

  4. Interaction of chemokines with their receptors--from initial chemokine binding to receptor activating steps

    DEFF Research Database (Denmark)

    Thiele, Stefanie; Rosenkilde, Mette Marie

    2014-01-01

    and surveillance. Chemokines are a group of 8-12 kDa large peptides with a secondary structure consisting of a flexible N-terminus and a core-domain usually stabilized by two conserved disulfide bridges. They mainly interact with the extracellular domains of their cognate 7TM receptors. Affinityand activity......-contributing interactions are attributed to different domains and known to occur in two steps. Here, knowledge on chemokine and receptor domains involved in the first binding-step and the second activation-step is reviewed. A mechanism comprising at least two steps seems consistent; however, several intermediate...... interactions possibly occur, resulting in a multi-step process, as recently proposed for other 7TM receptors. Overall, the N-terminus of chemokine receptors is pivotal for binding of all chemokines. During receptor activation, differences between the two major chemokine subgroups occur, as CC-chemokines mainly...

  5. Leptin and reproduction: a review.

    Science.gov (United States)

    Moschos, Stergios; Chan, Jean L; Mantzoros, Christos S

    2002-03-01

    To review recent advances in understanding the role of leptin in the physiology and pathophysiology of reproduction, with a focus on relevant clinical situations. A MEDLINE computer search was performed to identify relevant articles. Leptin, an adipocyte hormone important in regulating energy homeostasis, interacts with the reproductive axis at multiple sites, with stimulatory effects at the hypothalamus and pituitary and inhibitory actions at the gonads. More recently, leptin has been shown to play a role in other target reproductive organs, such as the endometrium, placenta, and mammary gland, with corresponding influences on important physiologic processes such as menstruation, pregnancy, and lactation. As a marker of whether nutritional stores are adequate, leptin may act in concert with gonadotropins and the growth hormone axis to initiate the complex process of puberty. Conditions in which nutritional status is suboptimal, such as eating disorders, exercise-induced amenorrhea, and functional hypothalamic amenorrhea, are associated with low serum leptin levels; and conditions with excess energy stores or metabolic disturbances, such as obesity and polycystic ovarian syndrome, often have elevated serum or follicular fluid leptin levels, raising the possibility that relative leptin deficiency or resistance may be at least partly responsible for the reproductive abnormalities that occur with these conditions. Leptin may act as the critical link between adipose tissue and the reproductive system, indicating whether adequate energy reserves are present for normal reproductive function. Future interventional studies involving leptin administration are expected to further clarify this role of leptin and may provide new therapeutic options for the reproductive dysfunction associated with states of relative leptin deficiency or resistance.

  6. Hantaran Sinyal Leptin dan Obesitas: Hubungannya dengan Penyakit Kardiovaskuler

    Directory of Open Access Journals (Sweden)

    David Limanan

    2013-11-01

    Full Text Available Diperkirakan saat ini jumlah orang dengan obesitas melebihi 250 juta orang, yaitu 7% dari populasi orang dewasa di dunia. Mortalitas obesitas erat hubungannya dengan sindrom metabolik yang merupakan kelainan metabolik meliputi obesitas, resistensi insulin, gangguan toleransi glukosa, abnormalitas trigliserida dan hemostasis, disfungsi endotel dan hipertensi. Leptin dihasilkan adiposit dan merupakan anggota dari adipositokin; berperan dalam hantaran sinyal hormon jaringan adiposa. Kelainan leptin maupun reseptornyadapat menyebabkan seseorang mengalami obesitas, metabolik sindrom, diabetes dan penyakit kardiovaskuler. Kompleks leptin-reseptor mengaktifkan sistem transduksi sinyal, yang paling dominan adalah jalur janus kinase-signal transducer and activator of transcription-3 (JAK-STAT3, kemudian phospatidyl inositol 3- kinase (PI3K, mitogen-activated protein kinase (MAPK, 5’adenosine monophosphate-activated protein kinase (AMPK, dan mammalian target of rapamycin (mTOR. Jalur leptin-associated PI3K dengan ERK cascade berperan penting dalam proliferasi kardiomiosit dan melindungi jantung dari ischemia reperfusion injury. ERK1/2 mengaktifkan target gen seperti c-fos dan egr-1 yang berperan dalam proliferasi dan diferensiasi. Nuclear factor κB diduga sebagai target jalur p38 dan JNK MAPK. Faktor transkripsi inu berperan pentingdalam mengatur transkripsi sitokin proinflamasi seperti tumor necrosis factor (TNF-α dan interleukin (IL-1β. Leptin dapat meningkatkan pembentukan reactive oxygen species (ROS sel endotel pembuluh darah dan menstimulasi sekresi TNF-α dan IL-6 yang merupakan promotor hipertensi dan aterosklerosis.Kata Kunci: obesitas, leptin, sistem kardiovaskuler 

  7. TNF-alpha, leptin, and lymphocyte function in human aging

    DEFF Research Database (Denmark)

    Bruunsgaard, H.; Pedersen, Agnes Nadelmann; Schroll, M.

    2000-01-01

    Aging is associated with increased inflammatory activity and concomitant decreased T cell mediated immune responses. Leptin may provide a link between inflammation and T cell function in aging. The aim of the study was to investigate if plasma levels of tumor necrosis factor (TNF)-alpha were...... there was no difference with regard to IL-2 production. Furthermore, there were no age-related differences in serum levels of leptin, However, women had higher levels than men. In the elderly people, serum levels of leptin were correlated with TNF-alpha in univariate regression analysis and in a multiple linear...... regression analysis adjusting for the effect of gender and body mass index. Furthermore, TNF-alpha, but not leptin, was positively correlated to sIL-2R and negatively correlated to IL-2 production. In conclusion, increased plasma levels of TNF-alpha in aging is associated with poor IL-2 production ex vivo...

  8. [Contribution of leptin in the development of insulin resistance in pregnant women with obesity].

    Science.gov (United States)

    Tarasenko, K

    2014-03-01

    The aim of the present study was to investigate contribution of leptin in the development of insulin resistance in obese pregnant women depending on the obesity class as well as its effect on the progression of pregnancy. 36 pregnant women of I and II obesity classes and 21 pregnant women with normal body mass participated in the study. Concentrations of insulin, leptin and C-reactive protein in blood serum were measured with immunoenzymatic assays. Insulin resistance (IR) was determined with the Caro index. Contribution of leptin to development of IR was assessed with the ratio "leptin/Caro index". An increase of leptin concentration in blood serum was found in pregnant women with obesity compared to healthy controls. Moreover, the ratio "leptin/Caro index" increased with IR progression and reached maximum in the group with obesity class II, where it was 5.8 times higher than in the control group. An increased frequency of gestoses and placentary dysfunction were manifestations of weakening of adaptive mechanisms of the organism associated with the IR progression and increased role of leptin in its development. Therefore, activation of adipocyte function through the increased leptin secretion and increased ratio "leptin/Caro index" reflects the important role of leptin in pathogenesis of IR in pregnant women with obesity.

  9. Narrative review: the role of leptin in human physiology: emerging clinical applications.

    Science.gov (United States)

    Kelesidis, Theodore; Kelesidis, Iosif; Chou, Sharon; Mantzoros, Christos S

    2010-01-19

    Leptin is a hormone secreted by adipose tissue in direct proportion to amount of body fat. The circulating leptin levels serve as a gauge of energy stores, thereby directing the regulation of energy homeostasis, neuroendocrine function, and metabolism. Persons with congenital deficiency are obese, and treatment with leptin results in dramatic weight loss through decreased food intake and possible increased energy expenditure. However, most obese persons are resistant to the weight-reducing effects of leptin. Recent studies suggest that leptin is physiologically more important as an indicator of energy deficiency, rather than energy excess, and may mediate adaptation by driving increased food intake and directing neuroendocrine function to converse energy, such as inducing hypothalamic hypogonadism to prevent fertilization. Current studies investigate the role of leptin in weight-loss management because persons who have recently lost weight have relative leptin deficiency that may drive them to regain weight. Leptin deficiency is also evident in patients with diet- or exercise-induced hypothalamic amenorrhea and lipoatrophy. Replacement of leptin in physiologic doses restores ovulatory menstruation in women with hypothalamic amenorrhea and improves metabolic dysfunction in patients with lipoatrophy, including lipoatrophy associated with HIV or highly active antiretroviral therapy. The applications of leptin continue to grow and will hopefully soon be used therapeutically.

  10. Uroguanylin levels in intestine and plasma are regulated by nutritional status in a leptin-dependent manner.

    Science.gov (United States)

    Folgueira, C; Sanchez-Rebordelo, E; Barja-Fernandez, S; Leis, R; Tovar, S; Casanueva, F F; Dieguez, C; Nogueiras, R; Seoane, L M

    2016-03-01

    Uroguanylin (UGN) is a 16 amino acid peptide produced mainly by intestinal epithelial cells. Nutrients intake increases circulating levels of prouroguanylin that is processed and converted to UGN to activate the guanylyl cyclase 2C receptor (GUCY2C). Given that the UGN-GUCY2C system has been proposed as a novel gut-brain endocrine axis regulating energy balance, the aim of the present study was to investigate the regulation of UGN protein levels in duodenum and circulating levels in lean and obese mice under different nutritional conditions and its potential interaction with leptin. Swiss, C57BL/6 wild-type and ob/ob male adult mice under different nutritional conditions were used: fed ad libitum standard diet (control); 48 h fasting (fasted); 48 h fasting followed by 24 h of feeding (refed); and fed high-fat diet (45 %) during 10 weeks. In addition, peripheral leptin administration was performed. Intestinal uroguanylin expression was studied by Western blot analysis; plasma levels were measured by ELISA. Food deprivation significantly reduced plasma UGN levels, which were correlated with the lower protein levels of UGN in duodenum. These effects were reverted after refeeding and leptin challenge. Consistently, in ob/ob mice UGN expression was decreased, whereas leptin treatment up-regulated UGN levels in duodenum in these genetically modified mice compared to WT. Diet-induced obese mice displayed increased UGN levels in intestine and plasma in comparison with lean mice. Our findings suggest that UGN levels are correlated with energy balance status and that the regulation of UGN by nutritional status is leptin-dependent.

  11. Leptin signaling in the medial nucleus tractus solitarius reduces food seeking and willingness to work for food.

    Science.gov (United States)

    Kanoski, Scott E; Alhadeff, Amber L; Fortin, Samantha M; Gilbert, Jennifer R; Grill, Harvey J

    2014-02-01

    The adipose-derived hormone leptin signals in the medial nucleus tractus solitarius (mNTS) to suppress food intake, in part, by amplifying within-meal gastrointestinal (GI) satiation signals. Here we show that mNTS leptin receptor (LepRb) signaling also reduces appetitive and motivational aspects of feeding, and that these effects can depend on energy status. Using the lowest dose that significantly suppressed 3-h cumulative food intake, unilateral leptin (0.3 μg) administration to the mNTS (3 h before testing) reduced operant lever pressing for sucrose under increasing work demands (progressive ratio reinforcement schedule) regardless of whether animals were energy deplete (food restricted) or replete (ad libitum fed). However, in a separate test of food-motivated responding in which there was no opportunity to consume food (conditioned place preference (CPP) for an environment previously associated with a palatable food reward), mNTS leptin administration suppressed food-seeking behavior only in chronically food-restricted rats. On the other hand, mNTS LepRb signaling did not reduce CPP expression for morphine reinforcement regardless of energy status, suggesting that mNTS leptin signaling differentially influences motivated responding for food vs opioid reward. Overall results show that mNTS LepRb signaling reduces food intake and appetitive food-motivated responding independent of energy status in situations involving orosensory and postingestive contact with food, whereas food-seeking behavior independent of food consumption is only reduced by mNTS LepRb activation in a state of energy deficit. These findings reveal a novel appetitive role for LepRb signaling in the mNTS, a brain region traditionally linked with processing of meal-related GI satiation signals.

  12. Hypothalamic CART is a new anorectic peptide regulated by leptin.

    Science.gov (United States)

    Kristensen, P; Judge, M E; Thim, L; Ribel, U; Christjansen, K N; Wulff, B S; Clausen, J T; Jensen, P B; Madsen, O D; Vrang, N; Larsen, P J; Hastrup, S

    1998-05-07

    The mammalian hypothalamus strongly influences ingestive behaviour through several different signalling molecules and receptor systems. Here we show that CART (cocaine- and amphetamine-regulated transcript), a brain-located peptide, is a satiety factor and is closely associated with the actions of two important regulators of food intake, leptin and neuropeptide Y. Food-deprived animals show a pronounced decrease in expression of CART messenger RNA in the arcuate nucleus. In animal models of obesity with disrupted leptin signalling, CART mRNA is almost absent from the arcuate nucleus. Peripheral administration of leptin to obese mice stimulates CART mRNA expression. When injected intracerebroventricularly into rats, recombinant CART peptide inhibits both normal and starvation-induced feeding, and completely blocks the feeding response induced by neuropeptide Y. An antiserum against CART increases feeding in normal rats, indicating that CART may be an endogenous inhibitor of food intake in normal animals.

  13. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling.

    Science.gov (United States)

    Mutoh, Shingo; Sobhany, Mack; Moore, Rick; Perera, Lalith; Pedersen, Lee; Sueyoshi, Tatsuya; Negishi, Masahiko

    2013-05-07

    Phenobarbital is a central nervous system depressant that also indirectly activates nuclear receptor constitutive active androstane receptor (CAR), which promotes drug and energy metabolism, as well as cell growth (and death), in the liver. We found that phenobarbital activated CAR by inhibiting epidermal growth factor receptor (EGFR) signaling. Phenobarbital bound to EGFR and potently inhibited the binding of EGF, which prevented the activation of EGFR. This abrogation of EGFR signaling induced the dephosphorylation of receptor for activated C kinase 1 (RACK1) at Tyr(52), which then promoted the dephosphorylation of CAR at Thr(38) by the catalytic core subunit of protein phosphatase 2A. The findings demonstrated that the phenobarbital-induced mechanism of CAR dephosphorylation and activation is mediated through its direct interaction with and inhibition of EGFR.

  14. The association of serum leptin levels with metabolic diseases

    Directory of Open Access Journals (Sweden)

    Jen-Pi Tsai

    2017-01-01

    Full Text Available Leptin is a 167-amino-acid protein released by white adipose tissue and encoded by the obese gene. It has a role as a negative regulator of appetite control through sending a satiety signal to act on receptors within the hypothalamus. At normal levels, leptin can exert its effects on weight regulation according to white fat mass, induce sodium excretion, maintain vascular tone, and repair the myocardium. Beyond these effects, elevated serum leptin levels have been implicated in the pathogenesis of metabolic syndrome, diabetes mellitus, hypertension, and multiple cardiovascular diseases. In addition, hyperleptinemia had been reported to contribute to renal diseases through multiple mechanisms resulting in glomerulopathy presenting with a decreased glomerular filtration rate, increased albuminuria, and related clinical symptoms, which are pathophysiological features of chronic kidney disease. Because these cardiovascular and metabolic disorders are great challenges for physicians, understanding the related pathophysiological association with leptin might become a valuable aid in handling patients in daily clinical practice. This review will discuss the roles of leptin in the regulation of biological functions of multiple organs beyond the maintenance of feeding and metabolism.

  15. Differential trafficking of AMPA receptors following activation of NMDA receptors and mGluRs

    Directory of Open Access Journals (Sweden)

    Sanderson Thomas M

    2011-07-01

    Full Text Available Abstract The removal of AMPA receptors from synapses is a major component of long-term depression (LTD. How this occurs, however, is still only partially understood. To investigate the trafficking of AMPA receptors in real-time we previously tagged the GluA2 subunit of AMPA receptors with ecliptic pHluorin and studied the effects of NMDA receptor activation. In the present study we have compared the effect of NMDA receptor and group I mGluR activation, using GluA2 tagged with super ecliptic pHluorin (SEP-GluA2 expressed in cultured hippocampal neurons. Surprisingly, agonists of the two receptors, which are both able to induce chemical forms of LTD, had clearly distinct effects on AMPA receptor trafficking. In agreement with our previous work we found that transient NMDA receptor activation results in an initial decrease in surface GluA2 from extrasynaptic sites followed by a delayed reduction in GluA2 from puncta (putative synapses. In contrast, transient activation of group I mGluRs, using DHPG, led to a pronounced but more delayed decrease in GluA2 from the dendritic shafts. Surprisingly, there was no average change in the fluorescence of the puncta. Examination of fluorescence at individual puncta, however, indicated that alterations did take place, with some puncta showing an increase and others a decrease in fluorescence. The effects of DHPG were, like DHPG-induced LTD, prevented by treatment with a protein tyrosine phosphatase (PTP inhibitor. The electrophysiological correlate of the effects of DHPG in the SEP-GluA2 infected cultures was a reduction in mEPSC frequency with no change in amplitude. The implications of these findings for the initial mechanisms of expression of both NMDA receptor- and mGluR-induced LTD are discussed.

  16. Transcriptional peroxisome proliferator-activated receptor γ ...

    African Journals Online (AJOL)

    user

    regulates slow fiber type formation during the transformation of muscle fiber type in S. prenanti. Key words: PGC-1ɑ, ... a master regulator of energy metabolism. PGC-1ɑ is identified ..... which is involved in hormone receptor families, such as ...

  17. Agrarian diet and diseases of affluence – Do evolutionary novel dietary lectins cause leptin resistance?

    Directory of Open Access Journals (Sweden)

    Jönsson Tommy

    2005-12-01

    Full Text Available Abstract Background The global pattern of varying prevalence of diseases of affluence, such as obesity, cardiovascular disease and diabetes, suggests that some environmental factor specific to agrarian societies could initiate these diseases. Presentation of the hypothesis We propose that a cereal-based diet could be such an environmental factor. Through previous studies in archaeology and molecular evolution we conclude that humans and the human leptin system are not specifically adapted to a cereal-based diet, and that leptin resistance associated with diseases of affluence could be a sign of insufficient adaptation to such a diet. We further propose lectins as a cereal constituent with sufficient properties to cause leptin resistance, either through effects on metabolism central to the proper functions of the leptin system, and/or directly through binding to human leptin or human leptin receptor, thereby affecting the function. Testing the hypothesis Dietary interventions should compare effects of agrarian and non-agrarian diets on incidence of diseases of affluence, related risk factors and leptin resistance. A non-significant (p = 0.10 increase of cardiovascular mortality was noted in patients advised to eat more whole-grain cereals. Our lab conducted a study on 24 domestic pigs in which a cereal-free hunter-gatherer diet promoted significantly higher insulin sensitivity, lower diastolic blood pressure and lower C-reactive protein as compared to a cereal-based swine feed. Testing should also evaluate the effects of grass lectins on the leptin system in vivo by diet interventions, and in vitro in various leptin and leptin receptor models. Our group currently conducts such studies. Implications of the hypothesis If an agrarian diet initiates diseases of affluence it should be possible to identify the responsible constituents and modify or remove them so as to make an agrarian diet healthier.

  18. Helix 11 Dynamics is Critical for Constitutive Androstane Receptor Activity

    OpenAIRE

    Wright, Edward; Busby, Scott A.; Wisecarver, Sarah; Vincent, Jeremy; Griffin, Patrick R.; Fernandez, Elias J.

    2011-01-01

    The constitutive androstane receptor (CAR) transactivation can occur in the absence of exogenous ligand and this activity is enhanced by agonists TCPOBOP and meclizine. We use biophysical and cell-based assays to show that increased activity of CAR(TCPOBOP) relative to CAR(meclizine) corresponds to a higher affinity of CAR(TCPOBOP) for the steroid receptor coactivator-1. Additionally, steady-state fluorescence spectra suggest conformational differences between CAR(TCPOBOP):RXR and CAR(meclizi...

  19. Mincle suppresses Toll-like receptor 4 activation.

    Science.gov (United States)

    Greco, Stephanie H; Mahmood, Syed Kashif; Vahle, Anne-Kristin; Ochi, Atsuo; Batel, Jennifer; Deutsch, Michael; Barilla, Rocky; Seifert, Lena; Pachter, H Leon; Daley, Donnele; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R; Miller, George

    2016-07-01

    Regulation of Toll-like receptor responses is critical for limiting tissue injury and autoimmunity in both sepsis and sterile inflammation. We found that Mincle, a C-type lectin receptor, regulates proinflammatory Toll-like receptor 4 signaling. Specifically, Mincle ligation diminishes Toll-like receptor 4-mediated inflammation, whereas Mincle deletion or knockdown results in marked hyperresponsiveness to lipopolysaccharide in vitro, as well as overwhelming lipopolysaccharide-mediated inflammation in vivo. Mechanistically, Mincle deletion does not up-regulate Toll-like receptor 4 expression or reduce interleukin 10 production after Toll-like receptor 4 ligation; however, Mincle deletion decreases production of the p38 mitogen-activated protein kinase-dependent inhibitory intermediate suppressor of cytokine signaling 1, A20, and ABIN3 and increases expression of the Toll-like receptor 4 coreceptor CD14. Blockade of CD14 mitigates the increased sensitivity of Mincle(-/-) leukocytes to Toll-like receptor 4 ligation. Collectively, we describe a major role for Mincle in suppressing Toll-like receptor 4 responses and implicate its importance in nonmycobacterial models of inflammation. © Society for Leukocyte Biology.

  20. Leptin - a link between obesity and osteoarthritis. applications for prevention and treatment.

    Science.gov (United States)

    Vuolteenaho, Katriina; Koskinen, Anna; Moilanen, Eeva

    2014-01-01

    Osteoarthritis (OA) is the most common cause of musculoskeletal disability and pain in the world. The current drug treatment for OA is symptom relieving, and there is an urgent need for treatments that could retard, prevent or repair cartilage destruction in OA. Obesity is a major risk factor for OA. Traditionally, it has been thought to contribute to the development of OA by increasing the load on weight-bearing joints. However, this appears to be an over-simplification, because obesity is also linked to OA in the hand and finger joints. Recent studies have shown that adipocytokine leptin is a possible link between obesity and OA: Leptin levels in synovial fluid are increased in obese patients, leptin receptor (Ob-R) is expressed in cartilage, and leptin induces the production of matrix metalloproteinases (MMPs), pro-inflammatory mediators and nitric oxide (NO) in chondrocytes. Furthermore, according to the very recent findings, not only leptin levels in the joint but also leptin sensitivity in the cartilage are enhanced in obese OA patients. The findings supporting leptin as a causative link between obesity and OA offer leptin as a potential target to the development of disease-modifying drugs for osteoarthritis (DMOAD), especially for obese patients. © 2013 Nordic Pharmacological Society. Published by John Wiley & Sons Ltd.

  1. Insulin and Leptin Signaling Interact in the Mouse Kiss1 Neuron during the Peripubertal Period.

    Directory of Open Access Journals (Sweden)

    Xiaoliang Qiu

    Full Text Available Reproduction requires adequate energy stores for parents and offspring to survive. Kiss1 neurons, which are essential for fertility, have the potential to serve as the central sensors of metabolic factors that signal to the reproductive axis the presence of stored calories. Paradoxically, obesity is often accompanied by infertility. Despite excess circulating levels of insulin and leptin, obese individuals exhibit resistance to both metabolic factors in many neuron types. Thus, resistance to insulin or leptin in Kiss1 neurons could lead to infertility. Single deletion of the receptors for either insulin or the adipokine leptin from Kiss1 neurons does not impair adult reproductive dysfunction. However, insulin and leptin signaling pathways may interact in such a way as to obscure their individual functions. We hypothesized that in the presence of genetic or obesity-induced concurrent insulin and leptin resistance, Kiss1 neurons would be unable to maintain reproductive function. We therefore induced a chronic hyperinsulinemic and hyperleptinemic state in mice lacking insulin receptors in Kiss1 neurons through high fat feeding and examined the impact on fertility. In an additional, genetic model, we ablated both leptin and insulin signaling in Kiss1 neurons (IR/LepRKiss mice. Counter to our hypothesis, we found that the addition of leptin insensitivity did not alter the reproductive phenotype of IRKiss mice. We also found that weight gain, body composition, glucose and insulin tolerance were normal in mice of both genders. Nonetheless, leptin and insulin receptor deletion altered pubertal timing as well as LH and FSH levels in mid-puberty in a reciprocal manner. Our results confirm that Kiss1 neurons do not directly mediate the critical role that insulin and leptin play in reproduction. However, during puberty kisspeptin neurons may experience a critical window of susceptibility to the influence of metabolic factors that can modify the onset of

  2. Nuclear receptor corepressor-dependent repression of peroxisome-proliferator-activated receptor delta-mediated transactivation

    DEFF Research Database (Denmark)

    Krogsdam, Anne-M; Nielsen, Curt A F; Neve, Søren

    2002-01-01

    delta-RXR alpha heterodimer bound to an acyl-CoA oxidase (ACO)-type peroxisome-proliferator response element recruited a glutathione S-transferase-NCoR fusion protein in a ligand-independent manner. Contrasting with most other nuclear receptors, PPAR delta was found to interact equally well......The nuclear receptor corepressor (NCoR) was isolated as a peroxisome-proliferator-activated receptor (PPAR) delta interacting protein using the yeast two-hybrid system. NCoR interacted strongly with the ligand-binding domain of PPAR delta, whereas interactions with the ligand-binding domains...

  3. Inhibitors for Androgen Receptor Activation Surfaces

    Science.gov (United States)

    2007-09-01

    times and the electron-rich iodine groups of Triac representing particularly good markers. Control soaks with solvent ( DMSO ) reveal no similar...electron-rich iodine groups of Triac represent particu- larly good markers. Control soaks with solvent ( DMSO ) reveal no similar effects on coregulator...3-(dibutylamino)-1-(4-hexylphenyl)propan-1-one DMSO , dimethylsulfoxide DTT, dithiothreitol ER, estrogen receptor GST, glutathione S-transferase

  4. Modulation of β-catenin signaling by glucagon receptor activation.

    Directory of Open Access Journals (Sweden)

    Jiyuan Ke

    Full Text Available The glucagon receptor (GCGR is a member of the class B G protein-coupled receptor family. Activation of GCGR by glucagon leads to increased glucose production by the liver. Thus, glucagon is a key component of glucose homeostasis by counteracting the effect of insulin. In this report, we found that in addition to activation of the classic cAMP/protein kinase A (PKA pathway, activation of GCGR also induced β-catenin stabilization and activated β-catenin-mediated transcription. Activation of β-catenin signaling was PKA-dependent, consistent with previous reports on the parathyroid hormone receptor type 1 (PTH1R and glucagon-like peptide 1 (GLP-1R receptors. Since low-density-lipoprotein receptor-related protein 5 (Lrp5 is an essential co-receptor required for Wnt protein mediated β-catenin signaling, we examined the role of Lrp5 in glucagon-induced β-catenin signaling. Cotransfection with Lrp5 enhanced the glucagon-induced β-catenin stabilization and TCF promoter-mediated transcription. Inhibiting Lrp5/6 function using Dickkopf-1(DKK1 or by expression of the Lrp5 extracellular domain blocked glucagon-induced β-catenin signaling. Furthermore, we showed that Lrp5 physically interacted with GCGR by immunoprecipitation and bioluminescence resonance energy transfer assays. Together, these results reveal an unexpected crosstalk between glucagon and β-catenin signaling, and may help to explain the metabolic phenotypes of Lrp5/6 mutations.

  5. CINPA1 Is an Inhibitor of Constitutive Androstane Receptor That Does Not Activate Pregnane X Receptor

    OpenAIRE

    Cherian, Milu T; Lin, Wenwei; Wu, Jing; Chen, Taosheng

    2015-01-01

    Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic sensors that enhance the detoxification and elimination of xenobiotics and endobiotics by modulating the expression of genes encoding drug-metabolizing enzymes and transporters. Elevated levels of drug-metabolizing enzymes and efflux transporters, resulting from CAR activation in various cancers, promote the elimination of chemotherapeutic agents, leading to reduced therapeutic effectiveness and acquired drug ...

  6. Comparison of Serum Leptin Levels in Pulmonary Tuberculosis Patients with Acute Pneumonia Patients and Healthy Individuals

    Directory of Open Access Journals (Sweden)

    M. Naderi

    2017-10-01

    Full Text Available Aims: Leptin is one of the most important fat-derived hormones. Several studies have shown that serum leptin levels in systemic inflammatory diseases are reduced. The aim of this study was to evaluate the serum leptin levels in three groups: patients with active pulmonary tuberculosis (TB, patients with non-pulmonary infections (acute pneumonia and normal people. Materials & Methods: In this cross-sectional study, in 2010, 40 patients with active pulmonary TB (case group and 40 patients with non-pulmonary infections (positive control group admitted to Boo-Ali hospital in Zahedan and 40 healthy subjects (negative control group were selected using easy access and serum leptin levels were evaluated by ELISA. Data were analyzed by SPSS 18 software and one-way ANOVA. Findings: The mean of serum leptin levels in patients with non-pulmonary infections (p=0.030 and in patients with active pulmonary TB (p=0.004 were significantly lower than normal group, but the mean of serum leptin levels in patients with active pulmonary TB and patients with non-pulmonary infections were not significantly different (p=0.555. Conclusion: Serum leptin levels are lower in patients with active pulmonary tuberculosis and in patients with non-pulmonary infections than in normal people, but there is no difference between patients with active pulmonary tuberculosis and patients with non-pulmonary infections. Therefore, serum leptin levels are not an appropriate marker for the differentiation of active pulmonary tuberculosis from pulmonary infections (acute pneumonia.

  7. Plasma cholesteryl ester transfer protein mass and phospholipid transfer protein activity are associated with leptin in type 2 diabetes mellitus

    NARCIS (Netherlands)

    Dullaart, R. P. F.; de Vries, R.; Dallinga-Thie, G. M.; van Tol, A.; Sluiter, W. J.

    Adipose tissue contributes to plasma levels of lipid transfer proteins and is also the major source of plasma adipokines. We hypothesized that plasma cholesteryl ester transfer protein (CETP) mass, phospholipid transfer protein (PLTP) activity and cholesteryl ester transfer (CET, a measure of CETP

  8. Pharmacological characterization of receptor-activity-modifying proteins (RAMPs) and the human calcitonin receptor.

    Science.gov (United States)

    Armour, S L; Foord, S; Kenakin, T; Chen, W J

    1999-12-01

    Receptor-activity-modifying proteins (RAMPs) are a family of single transmembrane domain proteins shown to be important for the transport and ligand specificity of the calcitonin gene-related peptide (CGRP) receptor. In this report, we describe the analysis of pharmacological properties of the human calcitonin receptor (hCTR) coexpressed with different RAMPs with the use of the Xenopus laevis melanophore expression system. We show that coexpression of RAMP3 with human calcitonin receptor changed the relative potency of hCTR to human calcitonin (hCAL) and rat amylin. RAMP1 and RAMP2, in contrast, had little effect on the change of hCTR potency to hCAL or rat amylin. When coexpressed with RAMP3, hCTR reversed the relative potency by a 3.5-fold loss in sensitivity to hCAL and a 19-fold increase in sensitivity to rat amylin. AC66, an inverse agonist, produced apparent simple competitive antagonism of hCAL and rat amylin, as indicated by linear Schild regressions. The potency of AC66 was changed in the blockade of rat amylin but not hCAL responses with RAMP3 coexpression. The mean pK(B) for AC66 to hCAL was 9.4 +/- 0.3 without RAMP3 and 9.45 +/- 0.07 with RAMP3. For the antagonism of AC66 to rat amylin, the pK(B) was 9.25 +/- 0.15 without RAMP3 and 8.2 +/- 0.35 with RAMP3. The finding suggests that RAMP3 might modify the active states of calcitonin receptor in such a way as to create a new receptor phenotype that is "amylin-like." Irrespective of the physiological association of the new receptor species, the finding that a coexpressed membrane protein can completely change agonist and antagonist affinities for a receptor raises implications for screening in recombinant receptor systems.

  9. Correlation of the leptin

    DEFF Research Database (Denmark)

    Finucane, F; Luan, J; Wareham, N

    2009-01-01

    (M/I) from hyperinsulinaemic-euglycaemic clamp studies in 1,226 EGIR RISC participants. RESULTS: The LAR was highly correlated with HOMA-S in men (r = -0.58, p = 4.5 x 10(-33) and r = -0.65, p = 1.1 x 10(-66) within the Ely and EGIR RISC study cohorts, respectively) and in women (r = -0.51, p = 2.8 x...... 10(-36) and r = -0.61, p = 2.5 x 10(-73)). The LAR was also strongly correlated with the clamp M/I value (r = -0.52, p = 4.5 x 10(-38) and r = -0.47, p = 6.6 x 10(-40) in men and women, respectively), similar to correlations between HOMA-S and the M/I value. CONCLUSIONS/INTERPRETATION: The leptin...

  10. Dynamic regulation of Drosophila nuclear receptor activity in vivo.

    Science.gov (United States)

    Palanker, Laura; Necakov, Aleksandar S; Sampson, Heidi M; Ni, Ruoyu; Hu, Chun; Thummel, Carl S; Krause, Henry M

    2006-09-01

    Nuclear receptors are a large family of transcription factors that play major roles in development, metamorphosis, metabolism and disease. To determine how, where and when nuclear receptors are regulated by small chemical ligands and/or protein partners, we have used a 'ligand sensor' system to visualize spatial activity patterns for each of the 18 Drosophila nuclear receptors in live developing animals. Transgenic lines were established that express the ligand binding domain of each nuclear receptor fused to the DNA-binding domain of yeast GAL4. When combined with a GAL4-responsive reporter gene, the fusion proteins show tissue- and stage-specific patterns of activation. We show that these responses accurately reflect the presence of endogenous and exogenously added hormone, and that they can be modulated by nuclear receptor partner proteins. The amnioserosa, yolk, midgut and fat body, which play major roles in lipid storage, metabolism and developmental timing, were identified as frequent sites of nuclear receptor activity. We also see dynamic changes in activation that are indicative of sweeping changes in ligand and/or co-factor production. The screening of a small compound library using this system identified the angular psoralen angelicin and the insect growth regulator fenoxycarb as activators of the Ultraspiracle (USP) ligand-binding domain. These results demonstrate the utility of this system for the functional dissection of nuclear receptor pathways and for the development of new receptor agonists and antagonists that can be used to modulate metabolism and disease and to develop more effective means of insect control.

  11. Opportunistic activation of TRP receptors by endogenous lipids: exploiting lipidomics to understand TRP receptor cellular communication.

    Science.gov (United States)

    Bradshaw, Heather B; Raboune, Siham; Hollis, Jennifer L

    2013-03-19

    Transient receptor potential channels (TRPs) form a large family of ubiquitous non-selective cation channels that function as cellular sensors and in many cases regulate intracellular calcium. Identification of the endogenous ligands that activate these TRP receptors is still under intense investigation with the majority of these channels still remaining "orphans." That these channels respond to a variety of external stimuli (e.g. plant-derived lipids, changes in temperature, and changes in pH) provides a framework for their abilities as cellular sensors, however, the mechanism of direct activation is still under much debate and research. In the cases where endogenous ligands (predominately lipids) have shown direct activation of a channel, multiple ligands have been shown to activate the same channel suggesting that these receptors are "promiscuous" in nature. Lipidomics of a growing class of endogenous lipids, N-acyl amides, the most famous of which is N-arachidonoyl ethanolamine (the endogenous cannabinoid, Anandamide) is providing a novel set of ligands that have been shown to activate some members of the TRP family and have the potential to deorphanize many more. Here it is argued that activation of TRPV receptors, a subset of the larger family of TRPs, by multiple endogenous lipids that are structurally analogous is a model system to drive our understanding that many TRP receptors are not promiscuous, but are more characteristically "opportunistic" in nature; exploiting the structural similarity and biosynthesis of a narrow range of analogous endogenous lipids. In addition, this manuscript will compare the activation properties of TRPC5 to the activity profile of an "orphan" lipid, N-palmitoyl glycine; further demonstrating that lipidomics aimed at expanding our knowledge of the family of N-acyl amides has the potential to provide novel avenues of research for TRP receptors. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Activation of Adenylyl Cyclase Causes Stimulation of Adenosine Receptors

    Directory of Open Access Journals (Sweden)

    Thomas Pleli

    2018-03-01

    Full Text Available Background/Aims: Signaling of Gs protein-coupled receptors (GsPCRs is accomplished by stimulation of adenylyl cyclase, causing an increase of the intracellular cAMP concentration, activation of the intracellular cAMP effectors protein kinase A (PKA and Epac, and an efflux of cAMP, the function of which is still unclear. Methods: Activation of adenylyl cyclase by GsPCR agonists or cholera toxin was monitored by measurement of the intracellular cAMP concentration by ELISA, anti-phospho-PKA substrate motif phosphorylation by immunoblotting, and an Epac-FRET assay in the presence and absence of adenosine receptor antagonists or ecto-nucleotide phosphodiesterase/pyrophosphatase2 (eNPP2 inhibitors. The production of AMP from cAMP by recombinant eNPP2 was measured by HPLC. Extracellular adenosine was determined by LC-MS/MS, extracellular ATP by luciferase and LC-MS/MS. The expression of eNPP isoenzymes 1-3 was examined by RT-PCR. The expression of multidrug resistance protein 4 was suppressed by siRNA. Results: Here we show that the activation of GsPCRs and the GsPCRs-independent activation of Gs proteins and adenylyl cyclase by cholera toxin induce stimulation of cell surface adenosine receptors (A2A or A2B adenosine receptors. In PC12 cells stimulation of adenylyl cyclase by GsPCR or cholera toxin caused activation of A2A adenosine receptors by an autocrine signaling pathway involving cAMP efflux through multidrug resistance protein 4 and hydrolysis of released cAMP to AMP by eNPP2. In contrast, in PC3 cells cholera toxin- and GsPCR-induced stimulation of adenylyl cyclase resulted in the activation of A2B adenosine receptors. Conclusion: Our findings show that stimulation of adenylyl cyclase causes a remarkable activation of cell surface adenosine receptors.

  13. Flavonoids with M1 Muscarinic Acetylcholine Receptor Binding Activity

    Directory of Open Access Journals (Sweden)

    Meyyammai Swaminathan

    2014-06-01

    Full Text Available Muscarinic acetylcholine receptor-active compounds have potential for the treatment of Alzheimer’s disease. In this study, a series of natural and synthetic flavones and flavonols was assayed in vitro for their ability to inhibit radioligand binding at human cloned M1 muscarinic receptors. Several compounds were found to possess competitive binding affinity (Ki = 40–110 µM, comparable to that of acetylcholine (Ki = 59 µM. Despite the fact that these compounds lack a positively-charged ammonium group under physiological conditions, molecular modelling studies suggested that they bind to the orthosteric site of the receptor, mainly through non-polar interactions.

  14. Plasma leptin concentration in donkeys.

    Science.gov (United States)

    Díez, E; López, I; Pérez, C; Pineda, C; Aguilera-Tejero, E

    2012-01-01

    Donkeys appear to be more predisposed than large breed horses to suffer from hyperlipemia. The reason for that predisposition is unknown but anorexia is a consistent feature of the disease. Leptin, a protein synthesized in fat tissue, is one of the major inhibitors of appetite in mammals. We hypothesized that donkeys could have elevated plasma leptin concentrations compared to horses. Blood samples were obtained from 50 donkeys for measurement of leptin, triglycerides (TGs), glucose, and insulin. Glucose/insulin ratio, modified insulin to glucose ratio, and reciprocal of the square root of insulin were calculated. Based on their body condition score (BCS), donkeys were classified as lean (n = 18), normal (n = 16), or overweight (n = 16). The results were compared with reference values from our laboratory and with a group of horses (n = 25) used as an internal control. Values of both leptin and TGs in donkeys were above the horse reference range and also significantly higher than those of the control horses: leptin (11.2 ± 1.7 versus 5.8 ± 0.5 µg/L, p donkeys had leptin (19.3 ± 2.9 µg/L) and TG (1.3 ± 0.2 mmol/L) concentrations that were significantly (p donkeys. A significant positive correlation (p Donkeys have higher plasma leptin concentrations than horses and leptin is correlated with BCS.

  15. Assembly and activation of neurotrophic factor receptor complexes.

    Science.gov (United States)

    Simi, Anastasia; Ibáñez, Carlos F

    2010-04-01

    Neurotrophic factors play important roles in the development and function of both neuronal and glial elements of the central and peripheral nervous systems. Their functional diversity is in part based on their ability to interact with alternative complexes of receptor molecules. This review focuses on our current understanding of the mechanisms that govern the assembly and activation of neurotrophic factor receptor complexes. The realization that many, if not the majority, of these complexes exist in a preassembled form at the plasma membrane has forced the revision of classical ligand-mediated oligomerization models, and led to the discovery of novel mechanisms of receptor activation and generation of signaling diversity which are likely to be shared by many different classes of receptors.

  16. [The leptin concentration in patients with primary arterial hypertension].

    Science.gov (United States)

    Jołda-Mydłowska, Beata; Przewłocka-Kosmala, Monika; Zyśko, Dorota; Gajek, Jacek; Mazurek, Walentyna

    2006-01-01

    Leptin seems to play a role in the pathogenesis of arterial hypertension by activation of the sympathetic nervous system, influencing water - electrolyte balance and vascular remodeling. It is not known whether leptin is a factor participating in the pathogenesis of primary arterial hypertension or its higher concentration in patients with arterial hypertension reflects only the presence of other factors leading to increased blood pressure. The aim of the study was to try to estimate the leptin participation in the development of the arterial hypertension, to evaluate the concentration of leptin in blood serum of patients with mild, moderate and severe arterial hypertension and to determine the relationships between the observed leptin concentration, arterial hypertension degree according to WHO criteria and body mass. The investigations were performed on 74 untreated patients aged 19-74 years (mean 47 +/- 12 years ). In this group there were 33 women aged 35-74 years (mean 51 +/- 10 years) and 41 men aged 19-73 years (mean 45 +/- 14 years). The mild arterial hypertension was observed in 24 patients, moderate hypertension in 34 patients and severe hypertension in 16. The obesity, identified when BMI was equal or higher than 30 kg/m2, was observed in 4 patients with mild hypertension, in 9 with moderate hypertension and in 6 with severe hypertension. All patients had normal renal function. The leptin concentration was determined by the radioimmunological method using the Human Leptin RIA Kit by LINCO Research, Inc. (Cat# HL-81 K). The analysis of the obtained results was performed using Statistica for Windows PL.V5.0. The concentration of leptin in patients with mild hypertension was 3.61 +/- 2.22 ng/ml, in patients with moderate hypertension was 12.65 +/- 8.48 and in patients with severe hypertension 33.51 +/- 28.45 ng/ml. The concentration of leptin in obese patients was 24.83 +/- 26.60 and in patients without obesity was 10.57 +/- 11.99 ng/ml. 1. In patients with

  17. Quantum chemical study of agonist-receptor vibrational interactions for activation of the glutamate receptor.

    Science.gov (United States)

    Kubo, M; Odai, K; Sugimoto, T; Ito, E

    2001-06-01

    To understand the mechanism of activation of a receptor by its agonist, the excitation and relaxation processes of the vibrational states of the receptor should be examined. As a first approach to this problem, we calculated the normal vibrational modes of agonists (glutamate and kainate) and an antagonist (6-cyano-7-nitroquinoxaline-2,3-dione: CNQX) of the glutamate receptor, and then investigated the vibrational interactions between kainate and the binding site of glutamate receptor subunit GluR2 by use of a semiempirical molecular orbital method (MOPAC2000-PM3). We found that two local vibrational modes of kainate, which were also observed in glutamate but not in CNQX, interacted through hydrogen bonds with the vibrational modes of GluR2: (i) the bending vibration of the amine group of kainate, interacting with the stretching vibration of the carboxyl group of Glu705 of GluR2, and (ii) the symmetric stretching vibration of the carboxyl group of kainate, interacting with the bending vibration of the guanidinium group of Arg485. We also found collective modes with low frequency at the binding site of GluR2 in the kainate-bound state. The vibrational energy supplied by an agonist may flow from the high-frequency local modes to the low-frequency collective modes in a receptor, resulting in receptor activation.

  18. Energy budget, behavior and leptin in striped hamsters subjected to food restriction and refeeding.

    Directory of Open Access Journals (Sweden)

    Zhi-Jun Zhao

    Full Text Available Food restriction induces a loss of body mass that is often followed by rapid regaining of the lost weight when the restriction ends, consequently increasing a risk of development of obesity. To determine the physiological and behavioral mechanisms underlining the regaining, striped hamsters were restricted to 85% of initial food intake for 4 weeks and refed ad libitum for another 4 weeks. Changes in body mass, energy budget, activity, body composition and serum leptin level were measured. Body mass, body fat mass and serum leptin level significantly decreased in food-restricted hamsters, and increased when the restriction ended, showing a short "compensatory growth" rather than over-weight or obesity compared with ad libitum controls. During restriction, the time spent on activity increased significantly, which was opposite to the changes in serum leptin level. Food intake increased shortly during refeeding, which perhaps contributed to the rapid regaining of body mass. No correlation was observed between serum leptin and energy intake, while negative correlations were found in hamsters that were refed for 7 and 28 days. Exogenous leptin significantly decreased the time spent on activity during food restriction and attenuated the increase in food intake during refeeding. This suggests that low leptin in restricted animals may function as a starvation signal to induce an increase in activity behavior, and high leptin likely serves as a satiety signal to prevent activity during refeeding. Leptin may play a crucial role in controlling food intake when the restriction ends, and consequently preventing overweight.

  19. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yasuko Kitagishi

    2013-10-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer.

  20. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Satoru, E-mail: smatsuda@cc.nara-wu.ac.jp; Kitagishi, Yasuko [Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506 (Japan)

    2013-10-21

    Peroxisome proliferator-activated receptors (PPARs) are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR) signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer.

  1. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    International Nuclear Information System (INIS)

    Matsuda, Satoru; Kitagishi, Yasuko

    2013-01-01

    Peroxisome proliferator-activated receptors (PPARs) are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR) signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer

  2. Kupffer cell depletion attenuates leptin-mediated methoxamine-stimulated portal perfusion pressure and thromboxane A2 release in a rodent model of NASH-cirrhosis.

    Science.gov (United States)

    Yang, Ying-Ying; Huang, Yi-Tsau; Tsai, Tung-Hu; Hou, Ming-Chih; Lee, Fa-Yauh; Lee, Shou-Dong; Lin, Han-Chieh

    2012-12-01

    Cirrhotic portal hypertension is characterized by increased hepatic oxidative stress, AA (arachidonic acid)-derived TXA(2) (thromboxane A(2)) release and exaggerated hepatic response to the α-adrenergic agonist MTX (methoxamine). Besides promoting hepatic fibrosis, the role of hyperleptinaemia in the modulation of vascular response in NASH (non-alcoholic steatohepatitis) rat livers remains unknown. The aim of the present study was to explore the possible links between hyperleptinaemia and the disarrangement in the hepatic microcirculation. NASH-cirrhosis with hyperleptinaemia was induced in lean rats by feeding with an HF/MCD (high-fat/methionine-choline-deficient) diet. Portal haemodynamics, various substances, protein and mRNA expression and PUFA (polyunsaturated fatty acid) composition were measured. Finally, the effects of leptin pre-infusion on TXA(2) release and concentration-PPP (portal perfusion pressure) curves in response to MTX were evaluated by simultaneously pre-treatment with the Kupffer cell inactivators GdCl(3) (gadolinium chloride) or EC (encapsulated clodronate), the TXS (TXA(2) synthase) inhibitor furegrelate, the TP receptor (TXA(2) receptor) antagonist SQ29548 and the dual TXS/TP receptor antagonist BM567. In HF/MCD+leptin-lean rats, cirrhosis-induced PPP and MTX hyper-responsiveness were associated with increased hepatic TXA(2) production, TBARS (thiobarbituric acid-reacting substances) levels and the AA (arachidonic acid)/n-3 PUFA ratio, and up-regulation of hepatic leptin, FAS (fatty acid synthase), NADPH oxidase subunits, TXS, TP receptor, TGFβ(1) (transforming growth factor β(1)) proteins and mRNAs. Pre-infusion of leptin significantly enhanced MTX-stimulated PPP elevation and TXA(2) release, which were attenuated by GdCl(3) and EC pre-treatment. Concomitantly pre-incubation with BM567, but not furegrelate or SQ29548, significantly abolished the leptin-enhanced MTX-stimulated increase in PPP in NASH-cirrhotic rats. Hyperleptinaemia

  3. The Proton-Activated Receptor GPR4 Modulates Glucose Homeostasis by Increasing Insulin Sensitivity

    Directory of Open Access Journals (Sweden)

    Luca Giudici

    2013-11-01

    Full Text Available Background: The proton-activated G protein-coupled receptor GPR4 is expressed in many tissues including white adipose tissue. GPR4 is activated by extracellular protons in the physiological pH range (i.e. pH 7.7 - 6.8 and is coupled to the production of cAMP. Methods: We examined mice lacking GPR4 and examined glucose tolerance and insulin sensitivity in young and aged mice as well as in mice fed with a high fat diet. Expression profiles of pro- and anti-inflammatory cytokines in white adipose tissue, liver and skeletal muscle was assessed. Results: Here we show that mice lacking GPR4 have an improved intraperitoneal glucose tolerance test and increased insulin sensitivity. Insulin levels were comparable but leptin levels were increased in GPR4 KO mice. Gpr4-/- showed altered expression of PPARα, IL-6, IL-10, TNFα, and TGF-1β in skeletal muscle, white adipose tissue, and liver. High fat diet abolished the differences in glucose tolerance and insulin sensitivity between Gpr4+/+ and Gpr4-/- mice. In contrast, in aged mice (12 months old, the positive effect of GPR4 deficiency on glucose tolerance and insulin sensitivity was maintained. Liver and adipose tissue showed no major differences in the mRNA expression of pro- and anti-inflammatory factors between aged mice of both genotypes. Conclusion: Thus, GPR4 deficiency improves glucose tolerance and insulin sensitivity. The effect may involve an altered balance between pro- and anti-inflammatory factors in insulin target tissues.

  4. 7A.06: MATERNAL OBESITY AND THE DEVELOPMENTAL PROGRAMMING OF HYPERTENSION: ALTERED LEPTIN SIGNALLING PATHWAY IN THE CENTRAL NERVOUS SYSTEM.

    Science.gov (United States)

    Lim, J; Burke, S; Head, G A

    2015-06-01

    The prevalence of obesity in women among child baring age is increasing and this has been parallel to the increase in obesity in general population around the world. We investigated the trans-generational 'programming' of leptin signalling in the central nervous system (CNS) to increase blood pressure (BP), heart rate (HR) and renal sympathetic nerve activity (RSNA) following a high fat diet (HFD)feeding in mothers. Female New Zealand White rabbits were fed a high fat (13%) diet (mHFD) or a control diet (mCD) prior mating and during pregnancy. Kittens from mCD rabbits were subdivided and fed HFD for 10days (mCD10dHFD) at 15 weeks of age. All rabbits received an intracerebroventricular (ICV) catheter into the lateral ventricle and a recording electrode on the left renal nerve. Experiments were conducted in conscious rabbits and BP, HR and RSNA was measured. Rabbits received an increasing doses of ICV Melanocortin receptor antagonist (SHU9119),alpha-Melanocortin stimulating hormone (alpha-MSH) and a single dose of Leptin antagonist. ICV SHU9119 reduced BP (-5.8 ± 0.7mmHg and -4.1 ± 0.9mmHg) and RSNA (-2.4 ± 0.3 nu and -0.7 ± 0.3 nu) in mHFD and mCD10dHFD rabbits (P fat was increased (50%) in all rabbits that had HFD. Obesity during pregnancy 'programs' leptin signalling pathway in the CNS of the offspring during development. Leptin via activation of melanocirtin pathway plays a key role in the CNS contributing to the pressor and tachycardic effects as well as renal sympathetic nerve activity in the pathophysiology of obesity.

  5. p75 Neurotrophin Receptor Signaling Activates Sterol Regulatory Element-binding Protein-2 in Hepatocyte Cells via p38 Mitogen-activated Protein Kinase and Caspase-3.

    Science.gov (United States)

    Pham, Dan Duc; Do, Hai Thi; Bruelle, Céline; Kukkonen, Jyrki P; Eriksson, Ove; Mogollón, Isabel; Korhonen, Laura T; Arumäe, Urmas; Lindholm, Dan

    2016-05-13

    Nerve growth factor (NGF) influences the survival and differentiation of a specific population of neurons during development, but its role in non-neuronal cells has been less studied. We observed here that NGF and its pro-form, pro-NGF, are elevated in fatty livers from leptin-deficient mice compared with controls, concomitant with an increase in low density lipoprotein receptors (LDLRs). Stimulation of mouse primary hepatocytes with NGF or pro-NGF increased LDLR expression through the p75 neurotrophin receptor (p75NTR). Studies using Huh7 human hepatocyte cells showed that the neurotrophins activate the sterol regulatory element-binding protein-2 (SREBP2) that regulates genes involved in lipid metabolism. The mechanisms for this were related to stimulation of p38 mitogen-activated protein kinase (p38 MAPK) and activation of caspase-3 and SREBP2 cleavage following NGF and pro-NGF stimulations. Cell fractionation experiments showed that caspase-3 activity was increased particularly in the membrane fraction that harbors SREBP2 and caspase-2. Experiments showed further that caspase-2 interacts with pro-caspase-3 and that p38 MAPK reduced this interaction and caused caspase-3 activation. Because of the increased caspase-3 activity, the cells did not undergo cell death following p75NTR stimulation, possibly due to concomitant activation of nuclear factor-κB (NF-κB) pathway by the neurotrophins. These results identify a novel signaling pathway triggered by ligand-activated p75NTR that via p38 MAPK and caspase-3 mediate the activation of SREBP2. This pathway may regulate LDLRs and lipid uptake particularly after injury or during tissue inflammation accompanied by an increased production of growth factors, including NGF and pro-NGF. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Neurotrophin receptors expression and JNK pathway activation in human astrocytomas

    International Nuclear Information System (INIS)

    Assimakopoulou, Martha; Kondyli, Maria; Gatzounis, George; Maraziotis, Theodore; Varakis, John

    2007-01-01

    Neurotrophins are growth factors that regulate cell growth, differentiation and apoptosis in the nervous system. Their diverse actions are mediated through two different transmembrane – receptor signaling systems: Trk receptor tyrosine kinases (TrkA, TrkB, TrkC) and p75 NTR neurotrophin receptor. Trk receptors promote cell survival and differentiation while p75 NTR induces, in most cases, the activity of JNK-p53-Bax apoptosis pathway or suppresses intracellular survival signaling cascades. Robust Trk activation blocks p75 NTR -induced apoptosis by suppressing the JNK-p53-Bax pathway. The aim of this exploratory study was to investigate the expression levels of neurotrophin receptors, Trks and p75 NTR , and the activation of JNK pathway in human astrocytomas and in adjacent non-neoplastic brain tissue. Formalin-fixed paraffin-embedded serial sections from 33 supratentorial astrocytomas (5 diffuse fibrillary astrocytomas, WHO grade II; 6 anaplastic astrocytomas, WHO grade III; 22 glioblastomas multiforme, WHO grade IV) were immunostained following microwave pretreatment. Polyclonal antibodies against TrkA, TrkB, TrkC and monoclonal antibodies against p75 NTR and phosphorylated forms of JNK (pJNK) and c-Jun (pc-Jun) were used. The labeling index (LI), defined as the percentage of positive (labeled) cells out of the total number of tumor cells counted, was determined. Moderate to strong, granular cytoplasmic immunoreactivity for TrkA, TrkB and TrkC receptors was detected in greater than or equal to 10% of tumor cells in the majority of tumors independently of grade; on the contrary, p75 NTR receptor expression was found in a small percentage of tumor cells (~1%) in some tumors. The endothelium of tumor capillaries showed conspicuous immunoreactivity for TrkB receptor. Trk immunoreactivity seemed to be localized in some neurons and astrocytes in non-neoplastic tissue. Phosphorylated forms of JNK (pJNK) and c-Jun (pc-Jun) were significantly co-expressed in a tumor

  7. The metabotropic glutamate receptors: structure, activation mechanism and pharmacology.

    Science.gov (United States)

    Pin, Jean-Philippe; Acher, Francine

    2002-06-01

    The metabotropic glutamate receptors are G-protein coupled receptors (GPCR) involved in the regulation of many synapses, including most glutamatergic fast excitatory synapses. Eight subtypes have been identified that can be classified into three groups. The molecular characterization of these receptors revealed proteins much more complex than any other GPCRs. They are composed of a Venus Flytrap (VFT) module where glutamate binds, connected to a heptahelical domain responsible for G-protein coupling. Recent data including the structure of the VFT module determined with and without glutamate, indicate that these receptors function as dimers. Moreover a number of intracellular proteins can regulate their targeting and transduction mechanism. Such structural features of mGlu receptors offer multiple possibilities for synthetic compounds to modulate their activity. In addition to agonists and competitive antagonists acting at the glutamate binding site, a number of non-competitive antagonists with inverse agonist activity, and positive allosteric modulators have been discovered. These later compounds share specific properties that make them good candidates for therapeutic applications. First, their non-amino acid structure makes them pass more easily the blood brain barrier. Second, they are much more selective than any other compound identified so far, being the first subtype selective molecules. Third, for the negative modulators, their non competitive mechanism of action makes them relatively unaffected by high concentrations of glutamate that may be present in disease states (e.g. stroke, epilepsy, neuropathic pain, etc.). Fourth, like the benzodiazepines acting at the GABA(A) receptors, the positive modulators offer a new way to increase the activity of these receptors in vivo, with a low risk of inducing their desensitization. The present review article focuses on the specific structural features of these receptors and highlights the various possibilities these

  8. Leptin and zinc relation : In regulation of food intake and immunity

    Directory of Open Access Journals (Sweden)

    Abdulkerim Kasim Baltaci

    2012-01-01

    Full Text Available Leptin is synthesized and released by the adipose tissue. Leptin, which carries the information about energy reserves of the body to the brain, controls food intake by acting on neuropeptide Y (NPY, which exercises a food-intake-increasing effect through relevant receptors in the hypothalamus. Zinc deficiency is claimed to result in anorexia, weight loss, poor food efficiency, and growth impairment. The fact that obese individuals have low zinc and high leptin levels suggests that there is a relation between zinc and nutrition, and consequently also between zinc and leptin. Leptin deficiency increases the predisposition to infections and this increase is associated with the impairments in the production of cytokines. Zinc has a key role in the sustenance of immune resistance against infections. Dietary zinc deficiency negatively affects CD +4 cells, Th functions, and consequently, cell-mediated immunity by causing a decrease in the production of IL-2, IF-γ, and TNF-α, which are Th1 products. The relation between zinc and the concerned cytokines in particular, and the fact that leptin has a part in the immune responses mediated by these cytokines demonstrate that an interaction among cellular immunity, leptin and zinc is inevitable. An overall evaluation of the information presented above suggests that there are complex relations among food intake, leptin and zinc on one hand and among cellular immunity, leptin and zinc on the other. The aim of the present review was to draw attention to the possible relation between zinc and leptin in dietary regulation and cellular immunity.

  9. Leptin levels are associated with fat oxidation and dietary-induced weight loss in obesity

    DEFF Research Database (Denmark)

    Verdich, C; Toubro, S; Buemann, B

    2001-01-01

    To examine the relationship between fasting plasma leptin and 24-hour energy expenditure (EE), substrate oxidation, and spontaneous physical activity (SPA) in obese subjects before and after a major weight reduction compared with normal weight controls. To test fasting plasma leptin, substrate...

  10. Leptin levels in infertile males

    International Nuclear Information System (INIS)

    Jahan, S.; Bibi, R.; Ahmed, S.

    2011-01-01

    Objective: To determine the leptin levels in the serum of normal, sub fertile and infertile men. Study Design: Analytical study. Place and Duration of Study: Department of Animal Sciences Quaid-e-Azam University, Islamabad, National Institute of Health (NIH), Islamabad and Dr. Salma and Kafeel Medical Centre, Islamabad, from April to December 2009. Methodology: Serum leptin levels hormonal concentrations (LH, FSH and testosterone) were determined by EIA in 154 males including 24 (15.58%) fertile, 19 (12.34%) polyzoospermic (PZs), 26 (16.88%) teratozoospermic (TZs), 27 (17.53%) astheno-teratozoospermic (ATZs), 18 (11.69%) oligozoospermic (OZs), 18 (11.69%) oligo-astheno-teratozoospermic (OATZs), 11 (7.14%) obstructive azoospermic (OBST-AZOOs) and 11 (7.14%) non-obstructive azoospermic (NON-OBST-AZOOs). BMI was also determined, divided into groups of greater than 24. Hormonal concentrations were compared by ANOVA and correlation was performed by using Graph pad prism version 5. Results: Significantly high levels of leptin concentrations were found in fertile (p 24 compared to fertile and infertile male patients with BMI 24. Leptin showed a significant positive correlation with LH (p < 0.01) and FSH (p < 0.002) and a significant negative correlation with testosterone (p < 0.001). Conclusion: Abnormal leptin level was significantly associated with fertility problems in males. Providing a link between leptin and reproduction factors contributing in control of testosterone and gonadotropins secretion in many aspects depending on fertility status in male subjects. BMI appears to have significant association with serum leptin levels. (author)

  11. Neurotrophin receptors expression and JNK pathway activation in human astrocytomas

    Directory of Open Access Journals (Sweden)

    Maraziotis Theodore

    2007-10-01

    Full Text Available Abstract Background Neurotrophins are growth factors that regulate cell growth, differentiation and apoptosis in the nervous system. Their diverse actions are mediated through two different transmembrane – receptor signaling systems: Trk receptor tyrosine kinases (TrkA, TrkB, TrkC and p75NTR neurotrophin receptor. Trk receptors promote cell survival and differentiation while p75NTR induces, in most cases, the activity of JNK-p53-Bax apoptosis pathway or suppresses intracellular survival signaling cascades. Robust Trk activation blocks p75NTR -induced apoptosis by suppressing the JNK-p53-Bax pathway. The aim of this exploratory study was to investigate the expression levels of neurotrophin receptors, Trks and p75NTR, and the activation of JNK pathway in human astrocytomas and in adjacent non-neoplastic brain tissue. Methods Formalin-fixed paraffin-embedded serial sections from 33 supratentorial astrocytomas (5 diffuse fibrillary astrocytomas, WHO grade II; 6 anaplastic astrocytomas, WHO grade III; 22 glioblastomas multiforme, WHO grade IV were immunostained following microwave pretreatment. Polyclonal antibodies against TrkA, TrkB, TrkC and monoclonal antibodies against p75NTR and phosphorylated forms of JNK (pJNK and c-Jun (pc-Jun were used. The labeling index (LI, defined as the percentage of positive (labeled cells out of the total number of tumor cells counted, was determined. Results Moderate to strong, granular cytoplasmic immunoreactivity for TrkA, TrkB and TrkC receptors was detected in greater than or equal to 10% of tumor cells in the majority of tumors independently of grade; on the contrary, p75NTR receptor expression was found in a small percentage of tumor cells (~1% in some tumors. The endothelium of tumor capillaries showed conspicuous immunoreactivity for TrkB receptor. Trk immunoreactivity seemed to be localized in some neurons and astrocytes in non-neoplastic tissue. Phosphorylated forms of JNK (pJNK and c-Jun (pc-Jun were

  12. Leptin promotor mutations affect leptin levels and performance traits in dairy cows

    NARCIS (Netherlands)

    Liefers, S.C.; Pas, te M.F.W.; Veerkamp, R.F.; Platje, M.; Delavaud, C.; Chilliard, Y.; Lende, van der T.

    2005-01-01

    Leptin concentrations in body fluids and tissues undergo dynamic changes during the periparturient period. Polymorphisms in the leptin gene have been shown to be associated with differences in leptin concentration during late pregnancy but not during lactation. As the promoter of leptin regulates

  13. Activation-induced proteolysis of cytoplasmic domain of zeta in T cell receptors and Fc receptors.

    Science.gov (United States)

    Taupin, J L; Anderson, P

    1994-12-01

    The CD3-T cell receptor (TCR) complex on T cells and the Fc gamma receptor type III (Fc gamma RIII)-zeta-gamma complex on natural killer cells are functionally analogous activation receptors that associate with a family of disulfide-linked dimers composed of the related subunits zeta and gamma. Immunochemical analysis of receptor complexes separated on two-dimensional diagonal gels allowed the identification of a previously uncharacterized zeta-p14 heterodimer. zeta-p14 is a component of both CD3-TCR and Fc gamma RIII-zeta-gamma. Peptide mapping analysis shows that p14 is structurally related to zeta, suggesting that it is either: (i) derived from zeta proteolytically or (ii) the product of an alternatively spliced mRNA. The observation that COS cells transformed with a cDNA encoding zeta express zeta-p14 supports the former possibility. The expression of CD3-TCR complexes including zeta-p14 increases following activation with phorbol 12-myristate 13-acetate or concanavalin A, suggesting that proteolysis of zeta may contribute to receptor modulation or desensitization.

  14. Metabolic syndrome and related variables, insulin resistance, leptin levels, and PPAR-γ2 and leptin gene polymorphisms in a pedigree of subjects with bipolar disorder

    Directory of Open Access Journals (Sweden)

    Trino Baptista

    2015-06-01

    Full Text Available Objective:Evidence points to a high prevalence of metabolic dysfunction in bipolar disorder (BD, but few studies have evaluated the relatives of subjects with BD. We conducted a cross-sectional study in an extended family of patients with BD type I.Methods:The available relatives of the same family were interviewed (DSM-IV-R and assessed in fasting conditions for body mass index, constituent variables of the metabolic syndrome (MS, leptin levels, insulin resistance index, and single nucleotide polymorphisms (SNPs for the leptin receptor and promoter and PPAR-γ2 genes. The frequency of MS was compared with that recorded in the local general population.Results:Ninety-three relatives of three adults with BD were evaluated (30 aged 18 years. The frequency of MS was similar to that of the general population. Significantly higher frequencies of abnormal glucose, total and low density cholesterol (LDL-c levels (all p < 0.05, waist circumference (p = 0.057, and leptin and insulin resistance values (in adults only were observed in the family. Adults with the QQ genotype of the leptin receptor displayed higher LDL-c levels than carriers of the R allele.Conclusions:The associations among BD consanguinity, familial hypercholesterolemia, and leptin receptor SNPs reported herein should be replicated and extended in other pedigrees.

  15. Integral Role of PTP1B in Adiponectin-Mediated Inhibition of Oncogenic Actions of Leptin in Breast Carcinogenesis

    Directory of Open Access Journals (Sweden)

    LaTonia Taliaferro-Smith

    2013-01-01

    Full Text Available The molecular effects of obesity are mediated by alterations in the levels of adipocytokines. High leptin level associated with obese state is a major cause of breast cancer progression and metastasis, whereas adiponectin is considered a “guardian angel adipocytokine” for its protective role against various obesity-related pathogenesis including breast cancer. In the present study, investigating the role of adiponectin as a potential inhibitor of leptin, we show that adiponectin treatment inhibits leptin-induced clonogenicity and anchorage-independent growth. Leptin-stimulated migration and invasion of breast cancer cells is also effectively inhibited by adiponectin. Analyses of the underlying molecular mechanisms reveal that adiponectin suppresses activation of two canonical signaling molecules of leptin signaling axis: extracellular signal-regulated kinase (ERK and Akt. Pretreatment of breast cancer cells with adiponectin protects against leptin-induced activation of ERK and Akt. Adiponectin increases expression and activity of the physiological inhibitor of leptin signaling, protein tyrosine phosphatase 1B (PTP1B, which is found to be integral to leptin-antagonist function of adiponectin. Inhibition of PTP1B blocks adiponectin-mediated inhibition of leptin-induced breast cancer growth. Our in vivo studies show that adenovirus-mediated adiponectin treatment substantially reduces leptin-induced mammary tumorigenesis in nude mice. Exploring therapeutic strategies, we demonstrate that treatment of breast cancer cells with rosiglitazone results in increased adiponectin expression and inhibition of migration and invasion. Rosiglitazone treatment also inhibits leptin-induced growth of breast cancer cells. Taken together, these data show that adiponectin treatment can inhibit the oncogenic actions of leptin through blocking its downstream signaling molecules and raising adiponectin levels could be a rational therapeutic strategy for breast

  16. Maternal serum leptin concentration in gestational diabetes

    Directory of Open Access Journals (Sweden)

    Sedigheh Soheilykhah

    2011-06-01

    Conclusion: Our data showed that serum leptin level was higher in GDM and had a positive correlation with insulin resistance. Our findings suggest that high leptin levels might be a risk factor for GDM and IGT in pregnant women.

  17. Lung function testing according leptin levels in patients with chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    O. Radchenko

    2017-02-01

    Full Text Available Chronic obstructive pulmonary disease (COPD belongs to urgent medical and social problems of our time. Prognosis of COPD is often determined by a comorbidity, in particular obesity. The key chain, which unites COPD and obesity, is systemic inflammation, in the development of which the hormone of fatty tissue leptin plays an important role. The presence of receptors to leptin in the alveolar and bronchial epithelial cells, in smooth muscle tissue and submucous bronchial membrane allowes to assume that leptin takes pathogenetic part in COPD progression. The aim of our research was to estimate the leptin level in COPD patient and analyze changes of the respiratory function depending on it. Methods. We have been examined 26 patients with exacerbation of COPD (13 male and 13 female, 58 y.o. and 20 healthy people representative by gender, age and body mass. The level of serum leptin has been defined by the solid phase enzyme linked immunosorbent analysis, lung function – by computed testing. Results and conclusion. With the leptin level increase all of the lung function parameters progressively decreased, most significant - forced vital capacity and peak expiratory flow. Patients with hyperleptinemia had significantly lower measurements of forced expiratory volume in 1 second and vital lungs capacity. Severe degree of both obstructive and restrictive changes has been found more often among patients with hyperleptinemia and leptin level has been associated with the bronchial obstruction severity.

  18. Peroxisome proliferator-activated receptor delta activation leads to increased transintestinal cholesterol efflux

    NARCIS (Netherlands)

    Vrins, Carlos L. J.; van der Velde, Astrid E.; van den Oever, Karin; Levels, Johannes H. M.; Huet, Stephane; Elferink, Ronald P. J. Oude; Kuipers, Folkert; Groen, Albert K.

    2009-01-01

    Peroxisome proliferator-activated receptor delta (PPAR delta) is involved in regulation of energy homeostasis. Activation of PPAR delta markedly increases fecal neutral sterol secretion, the last step in reverse cholesterol transport. This phenomenon can neither be explained by increased

  19. Peroxisome proliferator-activated receptor delta activation leads to increased transintestinal cholesterol efflux

    NARCIS (Netherlands)

    Vrins, Carlos L. J.; van der Velde, Astrid E.; van den Oever, Karin; Levels, Johannes H. M.; Huet, Stephane; Oude Elferink, Ronald P. J.; Kuipers, Folkert; Groen, Albert K.

    2009-01-01

    Peroxisome proliferator-activated receptor delta (PPARdelta) is involved in regulation of energy homeostasis. Activation of PPARdelta markedly increases fecal neutral sterol secretion, the last step in reverse cholesterol transport. This phenomenon can neither be explained by increased hepatobiliary

  20. Serum leptin and insulin tests in obesity

    International Nuclear Information System (INIS)

    Yang Yin; Jiang Xiaojin; Leng Xiumei

    2001-01-01

    Objective: To study the clinical significance and the relations of leptin and insulin on obesity group. Methods: Leptin and insulin were tested with radioimmunoassay (RIA) in pre-obesity group and obesity group respectively. Results: Serum leptin and insulin levels were significantly elevated in obesity group compare with the controls (P<0.01). Conclusion: Changing with insulin, the elevation of leptin in obesity group has been identified as an important agent of diabetes mellitus (DM)

  1. Circulating leptin concentrations do not distinguish menstrual status in exercising women.

    Science.gov (United States)

    Corr, M; De Souza, M J; Toombs, R J; Williams, N I

    2011-03-01

    Low concentrations of leptin secondary to low body fat or other modulators are thought to be a key signal whereby an energy deficit suppresses the reproductive axis in exercising women resulting in functional hypothalamic amenorrhea (FHA). The purpose of this study was to first examine leptin concentrations in exercising women with and without FHA to address whether there is a threshold concentration of leptin below which reproductive function is suppressed. Secondly, we examined the role of adiposity and other possible modulators of leptin to ascertain whether leptin regulation differs depending on reproductive status. This study assessed 50 exercising, premenopausal women (aged 18-30 years) over the course of one menstrual cycle (eumenorrheic women) or one 28-day monitoring period (amenorrheic women). Quantification of daily urinary ovarian steroids and menstrual history were used to determine menstrual status. Body composition was assessed using dual energy X-ray absorptiometry, and leptin was determined by enzyme-linked immunoassay. Key modulators of leptin such as serum insulin concentration, carbohydrate intake, glucose availability, indirect indices of sympathetic nervous activity and other factors were assessed using linear regression. Percentage body fat (%BF) (21.0 ± 1.0 versus 26.8 ± 0.7%; P exercising women with amenorrhea (ExAmen; n = 24) compared with the exercising ovulatory women (ExOvul; n = 26). However, the ranges in leptin were similar for each group (ExAmen: 0.30-16.98 ng/ml; ExOvul: 2.57-18.28 ng/ml), and after adjusting for adiposity the difference in leptin concentration was no longer significant. Significant predictors of log leptin in ExAmen included %BF (β = 0.826, P exercising women, but the modulation of leptin concentrations may differ depending on reproductive status.

  2. Modeling the Impact of Growth and Leptin Deficits on the Neuronal Regulation of Blood Pressure

    Science.gov (United States)

    Steinbrekera, Baiba; Roghair, Robert

    2016-01-01

    The risk of hypertension is increased by intrauterine growth restriction (IUGR) and preterm birth. In the search for modifiable etiologies for this life-threatening cardiovascular morbidity, a number of pathways have been investigated, including excessive glucocorticoid exposure, nutritional deficiency, and aberration in sex hormone levels. As a neurotrophic hormone intimately involved in cardiovascular regulation whose levels are influenced by glucocorticoids, nutritional status and sex hormones, leptin has emerged as a putative etiologic and thus therapeutic agent. As a product of maternal and late fetal adipocytes as well as the placenta, circulating leptin typically surges late in gestation and declines following delivery until the infant consumes sufficient leptin-containing breast milk or accrues sufficient leptin-secreting adipose tissue to reestablish circulating levels. The leptin deficiency seen in IUGR infants is a multifactorial manifestation of placental insufficiency, exaggerated glucocorticoid exposure and fetal adipose deficit. The preterm infant suffers from the same cascade of events, including separation from the placenta, antenatal steroid exposure and persistently underdeveloped adipose depots. Preterm infants remain leptin deficient beyond term gestation, rendering them susceptible to neurodevelopmental impairment and subsequent cardiovascular dysregulation. This pathologic pathway is efficiently modeled by placing neonatal mice into atypically large litters, thereby recapitulating the perinatal growth restriction-adult hypertension phenotype. In this model, neonatal leptin supplementation restores the physiologic leptin surge, attenuates leptin-triggered sympathetic activation in adulthood and prevents leptin- or stress-evoked hypertension. Further pathway interrogation and clinical translation are needed to fully test the therapeutic potential of perinatal leptin supplementation. PMID:27613336

  3. Better prognosis in overweight/obese coronary heart disease patients with high plasma levels of leptin.

    Science.gov (United States)

    Simiti, Luminita Animarie Vida; Todor, Irina; Stoia, Mirela Anca; Goidescu, Cerasela Mihaela; Anton, Florin Petru; Farcas, Anca Daniela

    2016-01-01

    The involvement of leptin in atherosclerosis is very complex, including inflammation, the oxidative stress and thrombosis. Leptin has atherogenic and also antiatherogenic actions. In obesity elevated leptin levels are not sufficient to prevent disturbances of energy balance, suggesting that obese people are leptin resistant. The aim of the study was to investigate the relationship between baseline plasma levels of leptin and the incidence of new ischemic events in patients with CHD. Plasma levels of leptin in fifty nine consecutive patients (29 men and 30 women) with CHD hospitalized in the County Emergency Clinical Hospital of Cluj-Napoca were measured using commercially available ELISA at admission. Patients with active infectious disease, neoplasia, acute coronary syndrome, stroke, hepatic or renal failure and severe heart failure were excluded The relationship between leptin levels and incident cardiovascular events (angina, nonfatal myocardial infarction or heart failure) over two years follow-up was studied using MEDCALC version 9.6. 73.6% patients with CHD were overweight or suffered of obesity. There were no significant differences between women and men regarding the plasma levels of leptin, the body mass index (BMI), the number of rehospitalizations, rehospitalizations/patient, diabetes mellitus, hypertension or dyslipidemia. Only in women plasma levels of leptin are correlated with BMI. As compared with men with overweight and obesity (BMI≥25kg/m(2)), plasma levels of leptin were significantly higher in women with overweight and obesity (3905.97±463.91 pg/ml vs 1835.17±533.9 pg/ml) (p2000 pg/ml and BMI >28kg/m(2) had a better prognosis, suggesting a protective role of leptin in overweight/mild obesity.

  4. Regulation of Liver Energy Balance by the Nuclear Receptors Farnesoid X Receptor and Peroxisome Proliferator Activated Receptor α.

    Science.gov (United States)

    Kim, Kang Ho; Moore, David D

    2017-01-01

    The liver undergoes major changes in substrate utilization and metabolic output over the daily feeding and fasting cycle. These changes occur acutely in response to hormones such as insulin and glucagon, with rapid changes in signaling pathways mediated by protein phosphorylation and other post-translational modifications. They are also reflected in chronic alterations in gene expression in response to nutrient-sensitive transcription factors. Among these, the nuclear receptors farnesoid X receptor (FXR) and peroxisome proliferator activated receptor α (PPARα) provide an intriguing, coordinated response to maintain energy balance in the liver. FXR is activated in the fed state by bile acids returning to the liver, while PPARα is activated in the fasted state in response to the free fatty acids produced by adipocyte lipolysis or possibly other signals. Key Messages: Previous studies indicate that FXR and PPARα have opposing effects on each other's primary targets in key metabolic pathways including gluconeogenesis. Our more recent work shows that these 2 nuclear receptors coordinately regulate autophagy: FXR suppresses this pathway of nutrient and energy recovery, while PPARα activates it. Another recent study indicates that FXR activates the complement and coagulation pathway, while earlier studies identify this as a negative target of PPARα. Since secretion is a very energy- and nutrient-intensive process for hepatocytes, it is possible that FXR licenses it in the nutrient-rich fed state, while PPARα represses it to spare resources in the fasted state. Energy balance is a potential connection linking FXR and PPARα regulation of autophagy and secretion, 2 seemingly unrelated aspects of hepatocyte function. FXR and PPARα act coordinately to promote energy balance and homeostasis in the liver by regulating autophagy and potentially protein secretion. It is quite likely that their impact extends to additional pathways relevant to hepatic energy balance, and

  5. Human pregnane X receptor is activated by dibenzazepine carbamate-based inhibitors of constitutive androstane receptor.

    Science.gov (United States)

    Jeske, Judith; Windshügel, Björn; Thasler, Wolfgang E; Schwab, Matthias; Burk, Oliver

    2017-06-01

    Unintentional activation of xenosensing nuclear receptors pregnane X receptor (PXR) and/or constitutive androstane receptor (CAR) by clinical drug use is known to produce severe side effects in patients, which may be overcome by co-administering antagonists. However, especially antagonizing CAR is hampered by the lack of specific inhibitors, which do not activate PXR. Recently, compounds based on a dibenzazepine carbamate scaffold were identified as potent CAR inhibitors. However, their potential to activate PXR was not thoroughly investigated, even if the lead compound was named "CAR inhibitor not PXR activator 1" (CINPA1). Thus, we performed a comprehensive analysis of the interaction of CINPA1 and four analogs with PXR. Cellular assays were used to investigate intra- and intermolecular interactions and transactivation activity of PXR as a function of the compounds. Modulation of PXR target gene expression was analyzed in primary human hepatocytes. Ligand binding to PXR was investigated by molecular docking and limited proteolytic digestion. We show here that CINPA1 induced the assembly of the PXR ligand-binding domain, released co-repressors from and recruited co-activators to the receptor. CINPA1 and its analogs induced the PXR-dependent activation of a CYP3A4 reporter gene and CINPA1 induced the expression of endogenous cytochrome P450 genes in primary hepatocytes, while not consistently inhibiting CAR-mediated induction. Molecular docking revealed favorable binding of CINPA1 and analogs to the PXR ligand-binding pocket, which was confirmed in vitro. Altogether, our data provide consistent evidence that compounds with a dibenzazepine carbamate scaffold, such as CINPA1 and its four analogs, bind to and activate PXR.

  6. [Leptin: aspects on energetic balance, physical exercise and athletic amenorhea].

    Science.gov (United States)

    Ribeiro, Sandra Maria Lima; dos Santos, Zirlene Adriana; da Silva, Renata Juliana; Louzada, Eliana; Donato, José; Tirapegui, Julio

    2007-02-01

    The aim of this manuscript was to review the knowledge about leptin, detailing its relationship with energetic intake and physical activity. Leptin is an adipocyte hormone, recognized mainly for its putative role in control of energy expenditure, food intake, body weight and reproductive function. Leptin has still important peripheral actions, including its role on the ovarian tissue. The intracellular signaling mechanisms are recognized in hypothalamus, but in peripheral tissue are not fully understood. The exercise, when practiced by women, if not appropriately planned according to food intake, can modify the leptin release. When energy imbalances induced by exercise and/or deficient food ingestion occurs, low leptin levels are observed, leading to a reduction in GnRH (gonadotropin-release hormone), in LH (luteinizing hormone) and FSH (follicle-stimulating hormone) in pituitary, and consequently a minor release of ovarian estrogens. This process is named hypothalamic amenorrhea, and has repercussions in the woman's health. In this perspective, it is important to emphasize the need to evaluate the energy expenditure from exercise and to formulate adequate alimentary plans to these individuals.

  7. Studies on leptin utilizing to obesity

    International Nuclear Information System (INIS)

    Zhao Minghui

    2001-01-01

    Leptin is a hormone synthesized and secreted by lipid cells. It is a product encoded and expressed by the obese gene. Administration of recombinant leptin decreases food intake, increases energy expenditure and promotes weight loss. Most studies indicate that leptin is a main regulating factor of catabolism and anabolism of adipose tissue. The circulating leptin level is a sensitive index which indicates the confusion of the rate of lipid metabolism such as hyperlipemia, lipo-liver and so on. The human leptin radioimmunoassay has been developed to quantitate human leptin in plasma or serum, and to further investigate the relationship between serum leptin concentration and body fat, gender, age, sexual hormones, endocrine of insulin, etc. Especially, serum leptin concentrations are correlated with body-mass-index (BMI), suggesting that most obese persons are resistant to leptin; Those who are relatively deficient of leptin may become the good candidates of leptin treatment in the future. The discovery and application of leptin make the study of obesity, non-insulin dependent diabetes and other correlation diseases enter a new stage

  8. Renaissance of leptin for obesity therapy

    DEFF Research Database (Denmark)

    Quarta, Carmelo; Sánchez-Garrido, Miguel A; Tschöp, Matthias H

    2016-01-01

    evident that leptin as a stand-alone therapy is not an effective approach, the potential for employing sensitising pharmacology to unleash the weight-lowering properties of leptin has injected new hope into the field. Fascinatingly, these leptin-sensitising agents seem to act via distinct metabolic...

  9. Microsomal receptor for steroid hormones: functional implications for nuclear activity.

    Science.gov (United States)

    Muldoon, T G; Watson, G H; Evans, A C; Steinsapir, J

    1988-01-01

    Target tissues for steroid hormones are responsive by virtue of and to the extent of their content of functional intracellular receptors. Recent years have seen a shift in considerations of the cellular dynamics and distribution of these receptors, with current views favoring predominant intranuclear localization in the intact cell. This paper summarizes our analyses of the microsomal estrogen and androgen binding capability of rat uterine and ventral prostate tissue, respectively; these studies have revealed a set of high affinity sites that may act as a conduit for estrogen traversing the cell en route to the nucleus. These sites have many properties in common with cytosolic receptors, with the salient difference of a failure to activate to a more avid DNA-binding form under conditions which permit such activation of cytosolic receptors. The microsomal estrogen-binding proteins also have appreciable affinity for progesterone, another distinction from other known cellular estrogen receptor species. Various experimental approaches were employed to demonstrate that the microsomal receptors were not simply cytosol contaminants; the most convincing evidence is the recent successful separation of the cytosolic and microsomal forms by differential ammonium sulfate precipitation. Discrete subfractionation of subcellular components on successive sucrose gradients, with simultaneous assessments of binding capability and marker enzyme concentrations, indicates that the major portion of the binding is localized within the vesicles of the endoplasmic reticulum free of significant plasma membrane contamination. The microsomal receptors are readily solubilized by extraction with high- or low-salt-containing buffers or with steroid. The residual microsomes following such extraction have the characteristics of saturable acceptor sites for cytosolic estrogen-receptor complexes. The extent to which these sites will accept the cytosolic complexes is equal to the concentration of

  10. Modulating Estrogen Receptor-related ReceptorActivity Inhibits Cell Proliferation*

    Science.gov (United States)

    Bianco, Stéphanie; Lanvin, Olivia; Tribollet, Violaine; Macari, Claire; North, Sophie; Vanacker, Jean-Marc

    2009-01-01

    High expression of the estrogen receptor-related receptor (ERR)-α in human tumors is correlated to a poor prognosis, suggesting an involvement of the receptor in cell proliferation. In this study, we show that a synthetic compound (XCT790) that modulates the activity of ERRα reduces the proliferation of various cell lines and blocks the G1/S transition of the cell cycle in an ERRα-dependent manner. XCT790 induces, in a p53-independent manner, the expression of the cell cycle inhibitor p21waf/cip1 at the protein, mRNA, and promoter level, leading to an accumulation of hypophosphorylated Rb. Finally, XCT790 reduces cell tumorigenicity in Nude mice. PMID:19546226

  11. Genetics Home Reference: leptin receptor deficiency

    Science.gov (United States)

    ... caused by reduced production of hormones that direct sexual development. Affected individuals experience delayed puberty or do not ... regulating the body's response to hormones that control sexual development, and that this response is affected by LEPR ...

  12. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Shoko, E-mail: satosho@rs.tus.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Shirakawa, Hitoshi, E-mail: shirakah@m.tohoku.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Tomita, Shuhei, E-mail: tomita@med.tottori-u.ac.jp [Division of Molecular Pharmacology, Department of Pathophysiological and Therapeutic Science, Yonago 683-8503 (Japan); Tohkin, Masahiro, E-mail: tohkin@phar.nagoya-cu.ac.jp [Department of Medical Safety Science, Graduate School of Pharmaceutical Science, Nagoya City University, Nagoya 267-8603 (Japan); Gonzalez, Frank J., E-mail: gonzalef@mail.nih.gov [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Komai, Michio, E-mail: mkomai@m.tohoku.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan)

    2013-11-15

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction.

  13. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    International Nuclear Information System (INIS)

    Sato, Shoko; Shirakawa, Hitoshi; Tomita, Shuhei; Tohkin, Masahiro; Gonzalez, Frank J.; Komai, Michio

    2013-01-01

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction

  14. Leptin Enhances Synthesis of Proinflammatory Mediators in Human Osteoarthritic Cartilage—Mediator Role of NO in Leptin-Induced PGE2, IL-6, and IL-8 Production

    Directory of Open Access Journals (Sweden)

    Katriina Vuolteenaho

    2009-01-01

    Full Text Available Obesity is an important risk factor for osteoarthritis (OA in weight-bearing joints, but also in hand joints, pointing to an obesity-related metabolic factor that influences on the pathogenesis of OA. Leptin is an adipokine regulating energy balance, and it has recently been related also to arthritis and inflammation as a proinflammatory factor. In the present paper, the effects of leptin on human OA cartilage were studied. Leptin alone or in combination with IL-1 enhanced the expression of iNOS and COX-2, and production of NO, PGE2, IL-6, and IL-8. The results suggest that the effects of leptin are mediated through activation of transcription factor nuclear factor κB (NF-κB and mitogen-activated protein kinase (MAPK pathway c-Jun NH2-terminal kinase (JNK. Interestingly, inhibition of leptin-induced NO production with a selective iNOS inhibitor 1400 W inhibited also the production of IL-6, IL-8, and PGE2, and this was reversed by exogenously added NO-donor SNAP, suggesting that the effects of leptin on IL-6, IL-8, and PGE2 production are dependent on NO. These findings support the idea of leptin as a factor enhancing the production of proinflammatory factors in OA cartilage and as an agent contributing to the obesity-associated increased risk for osteoarthritis.

  15. Twentieth Anniversary of Leptin discovery and the Approval of Myalept by FDA

    Directory of Open Access Journals (Sweden)

    Ata Mahmoodpoor

    2015-04-01

    Full Text Available Leptin is a 16 kDa hormone that is mainly expressed in adipose tissues (1. The major target of leptin is hypothalamus and it suppresses food intake and energy consumption, consequently diminishing adipose deposits and body weight (2, 3. The OB gene was isolated by Friedman in 1994 (4.  Based on the suggestion of Roger Guillemin, Friedman named this new hormone "leptin" from the Greek lepto meaning thin (5, 6. Since leptin discovery, numerous studies have been conducted on its physiological effects and its function in pathological conditions. Most of studies on leptin concentrated on its metabolic actions (7, receptors (8 and further broad functions such as immunity modulation (9 and memory processing (10. Considering such a vast range of functions, it is clear that patients with lack of leptin physiologically need pharmacological interventions. At this moment, we are in the twentieth year of leptin discovery. Finally, FDA approved a drug named Myalept (metreleptin for injection on February 2014 to treat rare metabolic disease caused by leptin deficiency. Congenital generalized lipodystrophy is a disorder with partial lack of fat tissues (11. The trial for the safety and effectiveness of Myalept demonstrated decrease in HbA1c, fasting blood glucose, and triglycerides (11. Nevertheless, there are some limitations to the usage of Myalept in HIV-related lipodystrophy and some metabolic disorders (11. Moreover, it may increase the risk of lymphoma by producing anti-metreleptin antibodies neutralizing endogenous leptin. Considering these concerns, Myalept is available only through a limited profile under a Risk Evaluation and Mitigation Strategy (REMS. Myalept is contraindicated in patients with general obesity not related to congenital leptin deficiency (12. Even though, Myalept has very limited indications for use in general population, it is considered a milestone towards the discovery of novel treatments for Leptin deficiencies and disorders

  16. Review of theories on development of ovarian cancer. Leptin as a potential agent engaged in carcinogenesis

    International Nuclear Information System (INIS)

    Markowska, A.

    2007-01-01

    include overexpression of apolipoprotein E, belonging to the group of apolipoproteins, and apolipoprotein J, the substance which binds leptin in the serum. Moreover, in recent years the expression of leptin and its receptor has been detected in ovarian cancers (not including mucinous cancers) and leptin has been found to stimulate the proliferation of ovarian cancer cell lines in vitro. Considering the involvement of leptin in the processes linked to the development of ovarian cancer it may be suggested that leptin can be potentially involved in the carcinogenesis of ovarian cancer. (author)

  17. Intramolecular Crosstalk between Catalytic Activities of Receptor Kinases

    KAUST Repository

    Kwezi, Lusisizwe

    2018-01-22

    Signal modulation is important for the growth and development of plants and this process is mediated by a number of factors including physiological growth regulators and their associated signal transduction pathways. Protein kinases play a central role in signaling, including those involving pathogen response mechanisms. We previously demonstrated an active guanylate cyclase (GC) catalytic center in the brassinosteroid insensitive receptor (AtBRI1) within an active intracellular kinase domain resulting in dual enzymatic activity. Here we propose a novel type of receptor architecture that is characterized by a functional GC catalytic center nested in the cytosolic kinase domain enabling intramolecular crosstalk. This may be through a cGMP-AtBRI1 complex forming that may induce a negative feedback mechanism leading to desensitisation of the receptor, regulated through the cGMP production pathway. We further argue that the comparatively low but highly localized cGMP generated by the GC in response to a ligand is sufficient to modulate the kinase activity. This type of receptor therefore provides a molecular switch that directly and/or indirectly affects ligand dependent phosphorylation of downstream signaling cascades and suggests that subsequent signal transduction and modulation works in conjunction with the kinase in downstream signaling.

  18. Intramolecular Crosstalk between Catalytic Activities of Receptor Kinases

    KAUST Repository

    Kwezi, Lusisizwe; Wheeler, Janet I; Marondedze, Claudius; Gehring, Christoph A; Irving, Helen R

    2018-01-01

    Signal modulation is important for the growth and development of plants and this process is mediated by a number of factors including physiological growth regulators and their associated signal transduction pathways. Protein kinases play a central role in signaling, including those involving pathogen response mechanisms. We previously demonstrated an active guanylate cyclase (GC) catalytic center in the brassinosteroid insensitive receptor (AtBRI1) within an active intracellular kinase domain resulting in dual enzymatic activity. Here we propose a novel type of receptor architecture that is characterized by a functional GC catalytic center nested in the cytosolic kinase domain enabling intramolecular crosstalk. This may be through a cGMP-AtBRI1 complex forming that may induce a negative feedback mechanism leading to desensitisation of the receptor, regulated through the cGMP production pathway. We further argue that the comparatively low but highly localized cGMP generated by the GC in response to a ligand is sufficient to modulate the kinase activity. This type of receptor therefore provides a molecular switch that directly and/or indirectly affects ligand dependent phosphorylation of downstream signaling cascades and suggests that subsequent signal transduction and modulation works in conjunction with the kinase in downstream signaling.

  19. Leptin and glucocorticoid signaling pathways in the hypothalamus of female and male fructose-fed rats

    Directory of Open Access Journals (Sweden)

    Vojnović-Milutinović Danijela

    2014-01-01

    Full Text Available Alterations in leptin and glucocorticoid signaling pathways in the hypothalamus of male and female rats subjected to a fructose-enriched diet were studied. The level of expression of the key components of the leptin signaling pathway (neuropeptide Y /NPY/ and suppressor of cytokine signaling 3 /SOCS3/, and the glucocorticoid signaling pathway (glucocorticoid receptor /GR/, 11β-hydroxysteroid dehydrogenase type 1 /11βHSD1/ and hexose-6-phosphate dehydrogenase /H6PDH/ did not differ between fructose-fed rats and control animals of both genders. However, in females, a fructose-enriched diet provoked increases in the adiposity index, plasma leptin and triglyceride concentrations, and displayed a tendency to decrease the leptin receptor (ObRb protein and mRNA levels. In male rats, the fructose diet caused elevations in plasma non-esterified fatty acids and triglycerides, as well as in both plasma and hypothalamic leptin concentrations. Our results suggest that a fructose-enriched diet can induce hyperleptinemia in both female and male rats, but with a more pronounced effect on hypothalamic leptin sensitivity in females, probably contributing to the observed development of visceral adiposity. [Projekat Ministarstva nauke Republike Srbije, br. III41009

  20. Effects of leptin treatment and Western diet on wheel running in selectively bred high runner mice.

    Science.gov (United States)

    Meek, Thomas H; Dlugosz, Elizabeth M; Vu, Kim T; Garland, Theodore

    2012-05-15

    The role of leptin in regulating physical activity is varied. The behavioral effects of leptin signaling depend on the type of activity and the animal's physiological state. We used mice from lines selectively bred for high voluntary wheel running to further study how leptin regulates volitional exercise. Mice from four replicate high runner (HR) lines typically run ~3-fold more revolutions per day than those from four non-selected control (C) lines. HR mice have altered dopamine function and differences from C in brain regions known to be important in leptin-mediated behavior. Furthermore, male HR mice have been found to dramatically increase running when administered Western diet, an effect possibly mediated through leptin signaling. Male mice from generation 61 (representing three HR lines and one C line) were allowed wheel access at 24 days of age and given either Western diet (high in fat and with added sucrose) or standard chow. After four weeks, Western diet significantly increased circulating leptin, insulin, C-peptide, gastric inhibitory polypeptide, and inflammatory hormone resistin concentrations in HR mice (C mice not measured). Western diet increased running in HR mice, but did not significantly affect running in C mice. During the fifth week, all mice received two days of intra-peritoneal sham injections (physiological saline) followed by three days of murine recombinant leptin injections, and then another six days of sham injections. Leptin treatment significantly decreased caloric intake (adjusted for body mass) and body mass in all groups. Wheel running significantly increased with leptin injections in HR mice (fed Western or standard diet), but was unaffected in C mice. Whether Western diet and leptin treatment stimulate wheel running in HR mice through the same physiological pathways awaits future study. These results have implications for understanding the neural and endocrine systems that control locomotor activity, food consumption, and body

  1. Leptin and bone mineral density

    DEFF Research Database (Denmark)

    Morberg, Cathrine M.; Tetens, Inge; Black, Eva

    2003-01-01

    Leptin has been suggested to decrease bone mineral density (BMD). This observational analysis explored the relationship between serum leptin and BMD in 327 nonobese men (controls) (body mass index 26.1 +/- 3.7 kg/m(2), age 49.9 +/- 6.0 yr) and 285 juvenile obese men (body mass index 35.9 +/- 5.9 kg...... males, but it also stresses the fact that the strong covariation between the examined variables is a shortcoming of the cross-sectional design....

  2. Structure-activity relationships of strychnine analogues at glycine receptors

    DEFF Research Database (Denmark)

    Mohsen, A.M.Y.; Heller, Eberhard; Holzgrabe, Ulrike

    2014-01-01

    Nine strychnine derivatives including neostrychnine, strychnidine, isostrychnine, 21,22-dihydro-21-hydroxy-22-oxo-strychnine, and several hydrogenated analogs were synthesized, and their antagonistic activities at human α1 and α1β glycine receptors were evaluated. Isostrychnine has shown the best...... pharmacological profile exhibiting an IC50 value of 1.6 μM at α1 glycine receptors and 3.7-fold preference towards the α1 subtype. SAR Analysis indicates that the lactam moiety and the C(21)[DOUBLE BOND]C(22) bond in strychnine are essential structural features for its high antagonistic potency at glycine...

  3. Diabetes and obesity treatment based on dual incretin receptor activation

    DEFF Research Database (Denmark)

    Skow, M A; Bergmann, N C; Knop, F K

    2016-01-01

    , whereas GIP seems to affect lipid metabolism. The introduction of selective GLP-1 receptor (GLP-1R) agonists for the treatment of type 2 diabetes and obesity has increased the scientific and clinical interest in incretins. Combining the body weight-lowering and glucose-lowering effects of GLP-1...... with a more potent improvement of β cell function through additional GIP action could potentially offer a more effective treatment of diabetes and obesity, with fewer adverse effects than selective GLP-1R agonists; therefore, new drugs designed to co-activate both the GIP receptor (GIPR) and the GLP-1R...

  4. Influence of phasic and tonic dopamine release on receptor activation

    DEFF Research Database (Denmark)

    Dreyer, Jakob Kristoffer Kisbye; Herrik, Kjartan F; Berg, Rune W

    2010-01-01

    Tonic and phasic dopamine release is implicated in learning, motivation, and motor functions. However, the relationship between spike patterns in dopaminergic neurons, the extracellular concentration of dopamine, and activation of dopamine receptors remains unresolved. In the present study, we...... develop a computational model of dopamine signaling that give insight into the relationship between the dynamics of release and occupancy of D(1) and D(2) receptors. The model is derived from first principles using experimental data. It has no free parameters and offers unbiased estimation...

  5. Anti-TNF-alpha therapy does not modulate leptin in patients with severe rheumatoid arthritis.

    Science.gov (United States)

    Gonzalez-Gay, M A; Garcia-Unzueta, M T; Berja, A; Gonzalez-Juanatey, C; Miranda-Filloy, J A; Vazquez-Rodriguez, T R; de Matias, J M; Martin, J; Dessein, P H; Llorca, J

    2009-01-01

    The adipocytokine leptin regulates weight centrally and participates in the regulation of the immune and inflammatory responses. Chronic systemic inflammation is of major importance in the development of atherosclerosis in rheumatoid arthritis (RA). In the present study we investigated whether inflammation, obesity or both of these characteristics are potential determinants of circulating leptin concentrations in a group of RA patients on periodical treatment with the TNF-alpha-blocker-infliximab due to severe disease. We also assessed whether the infusion of infliximab may alter circulating leptin concentrations in patients with severe RA. We investigated 33 patients with RA on periodical treatment with infliximab. Serum leptin levels were determined immediately prior to and after infliximab infusion. There was a positive correlation between body mass index of RA patients and baseline serum level of leptin (rho=0.665, pghrelin or the cumulative prednisone dose at the time of the study were found. Leptin levels did not change upon infliximab infusion (p=0.48). In RA patients on TNF-alpha blocker treatment, circulating leptin levels are unrelated to disease activity but constitute a manifestation of adiposity. The beneficial effect of anti-TNF-alpha therapy on cardiovascular mortality in RA does not seem to be mediated by reduction in serum levels of leptin.

  6. What fans the fire: insights into mechanisms of leptin in metabolic syndrome-associated heart diseases.

    Science.gov (United States)

    Dong, Maolong; Ren, Jun

    2014-01-01

    Obesity and metabolic syndrome are one of the most devastating risk factors for cardiovascular diseases. The obesity gene product leptin plays a central role in the regulation of food intake and energy expenditure. The physiological and pathophysiological roles of leptin in cardiovascular system have been investigated extensively since its discovery in 1994. In addition to its well-established metabolic effects, more recent evidence have depicted a rather pivotal role of leptin in inflammation, oxidative stress, endoplasmic reticulum stress, apoptosis and tissue remodeling en route to the pathogenesis of type 2 diabetes mellitus, hypertension, atherosclerosis, and insulin resistance. Under physiological condition, leptin is known to reduce appetite, promote energy expenditure, increase sympathetic activity, facilitate glucose utilization and improve insulin sensitivity. In addition, leptin may regulate cardiac and vascular function through a nitric oxide-dependent mechanism. However, hyperleptinemia usually occurs with progressively increased body weight and metabolic syndrome development, leading to a state of global or selective leptin resistance. Both central and peripheral leptin resistance may be present under pathophysiological conditions such as inflammation, insulin resistance, hyperlipidemia and a cadre of other cardiovascular diseases including hypertension, atherosclerosis, obesity, ischemic heart disease and heart failure. In this review, we will discuss cardiovascular actions of leptin related to various components of metabolic syndrome. Particular emphasis will be given to insights derived from therapeutic interventions with lifestyle modification, cardiovascular drugs, anti-diabetic and anti-obesity drugs.

  7. Liver X receptor and peroxisome proliferator-activated receptor as integrators of lipid homeostasis and immunity.

    Science.gov (United States)

    Kidani, Yoko; Bensinger, Steven J

    2012-09-01

    Lipid metabolism has emerged as an important modulator of innate and adaptive immune cell fate and function. The lipid-activated transcription factors peroxisome proliferator-activated receptor (PPAR) α, β/δ, γ and liver X receptor (LXR) are members of the nuclear receptor superfamily that have a well-defined role in regulating lipid homeostasis and metabolic diseases. Accumulated evidence over the last decade indicates that PPAR and LXR signaling also influence multiple facets of inflammation and immunity, thereby providing important crosstalk between metabolism and immune system. Herein, we provide a brief introduction to LXR and PPAR biology and review recent discoveries highlighting the importance of PPAR and LXR signaling in the modulation of normal and pathologic states of immunity. We also examine advances in our mechanistic understanding of how nuclear receptors impact immune system function and homeostasis. Finally, we discuss whether LXRs and PPARs could be pharmacologically manipulated to provide novel therapeutic approaches for modulation of the immune system under pathologic inflammation or in the context of allergic and autoimmune disease. © 2012 John Wiley & Sons A/S.

  8. Leptin Is Required for Glucose Homeostasis after Roux-en-Y Gastric Bypass in Mice.

    Directory of Open Access Journals (Sweden)

    Mohamad Mokadem

    Full Text Available Leptin, the protein product of the ob gene, increases energy expenditure and reduces food intake, thereby promoting weight reduction. Leptin also regulates glucose homeostasis and hepatic insulin sensitivity via hypothalamic proopiomelanocortin neurons in mice. Roux-en-Y gastric bypass (RYGB induces weight loss that is substantial and sustained despite reducing plasma leptin levels. In addition, patients who fail to undergo diabetes remission after RYGB are hypoletinemic compared to those who do and to lean controls. We have previously demonstrated that the beneficial effects of RYGB in mice require the melanocortin-4 receptor, a downstream effector of leptin action. Based on these observations, we hypothesized that leptin is required for sustained weight reduction and improved glucose homeostasis observed after RYGB.To investigate this hypothesis, we performed RYGB or sham operations on leptin-deficient ob/ob mice maintained on regular chow. To investigate whether leptin is involved in post-RYGB weight maintenance, we challenged post-surgical mice with high fat diet.RYGB reduced total body weight, fat and lean mass and caused reduction in calorie intake in ob/ob mice. However, it failed to improve glucose tolerance, glucose-stimulated plasma insulin, insulin tolerance, and fasting plasma insulin. High fat diet eliminated the reduction in calorie intake observed after RYGB in ob/ob mice and promoted weight regain, although not to the same extent as in sham-operated mice. We conclude that leptin is required for the effects of RYGB on glucose homeostasis but not body weight or composition in mice. Our data also suggest that leptin may play a role in post-RYGB weight maintenance.

  9. Relationship and significance of serum leptin with blood insulin and lipid in 6-13 years old obese children

    International Nuclear Information System (INIS)

    Sheng Chunyong; Wang Chunlan; Zhang Linong

    2005-01-01

    To explore relationship and significance of Serum Leptin with BMI, Insulin, triglyceride (TG) and total cholesterol (TC) in obese children aged 6-13 years. Serum Leptin of school-age children 118 (64 male, 54 female; normal non-obese 56 and obese 62) were deter- mined and compared with BMI, Insulin, TG and TC. The results showed that: (1) Each index of obese children was remarkably higher than that of non-obese children (P 0.05). (3) Leptin was poritinely corelation with BMI, insulin, TG and TC(P=0.001). Leptin level in serum may varied according to sex, BMI or blood lipid level. It is of great significance in prevention and treatment of obesity to use drug which may improve Leptin receptor effect. (authors)

  10. Human skeletal muscle releases leptin in vivo

    DEFF Research Database (Denmark)

    Wolsk, Emil; Grøndahl, Thomas Sahl; Pedersen, Bente Klarlund

    2012-01-01

    Leptin is considered an adipokine, however, cultured myocytes have also been found to release leptin. Therefore, as proof-of-concept we investigated if human skeletal muscle synthesized leptin by measuring leptin in skeletal muscle biopsies. Following this, we quantified human skeletal muscle...... was unaltered. During saline infusion the adipose tissue release averaged 0.8 ± 0.3 ng min(-1) 100g tissue(-1) whereas skeletal muscle release was 0.5 ± 0.1 ng min(-1) 100g tissue(-1). In young healthy humans, skeletal muscle contribution to whole body leptin production could be substantial given the greater...

  11. CINPA1 Is an Inhibitor of Constitutive Androstane Receptor That Does Not Activate Pregnane X Receptor

    Science.gov (United States)

    Cherian, Milu T; Lin, Wenwei; Wu, Jing

    2015-01-01

    Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic sensors that enhance the detoxification and elimination of xenobiotics and endobiotics by modulating the expression of genes encoding drug-metabolizing enzymes and transporters. Elevated levels of drug-metabolizing enzymes and efflux transporters, resulting from CAR activation in various cancers, promote the elimination of chemotherapeutic agents, leading to reduced therapeutic effectiveness and acquired drug resistance. CAR inhibitors, in combination with existing chemotherapeutics, could therefore be used to attenuate multidrug resistance in cancers. Interestingly, all previously reported CAR inverse-agonists are also activators of PXR, rendering them mechanistically counterproductive in tissues where both these xenobiotic receptors are present and active. We used a directed high-throughput screening approach, followed by subsequent mechanistic studies, to identify novel, potent, and specific small-molecule CAR inhibitors that do not activate PXR. We describe here one such inhibitor, CINPA1 (CAR inhibitor not PXR activator 1), capable of reducing CAR-mediated transcription with an IC50 of ∼70 nM. CINPA1 1) is a specific xenobiotic receptor inhibitor and has no cytotoxic effects up to 30 µM; 2) inhibits CAR-mediated gene expression in primary human hepatocytes, where CAR is endogenously expressed; 3) does not alter the protein levels or subcellular localization of CAR; 4) increases corepressor and reduces coactivator interaction with the CAR ligand-binding domain in mammalian two-hybrid assays; and 5) disrupts CAR binding to the promoter regions of target genes in chromatin immunoprecipitation assays. CINPA1 could be used as a novel molecular tool for understanding CAR function. PMID:25762023

  12. CINPA1 is an inhibitor of constitutive androstane receptor that does not activate pregnane X receptor.

    Science.gov (United States)

    Cherian, Milu T; Lin, Wenwei; Wu, Jing; Chen, Taosheng

    2015-05-01

    Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic sensors that enhance the detoxification and elimination of xenobiotics and endobiotics by modulating the expression of genes encoding drug-metabolizing enzymes and transporters. Elevated levels of drug-metabolizing enzymes and efflux transporters, resulting from CAR activation in various cancers, promote the elimination of chemotherapeutic agents, leading to reduced therapeutic effectiveness and acquired drug resistance. CAR inhibitors, in combination with existing chemotherapeutics, could therefore be used to attenuate multidrug resistance in cancers. Interestingly, all previously reported CAR inverse-agonists are also activators of PXR, rendering them mechanistically counterproductive in tissues where both these xenobiotic receptors are present and active. We used a directed high-throughput screening approach, followed by subsequent mechanistic studies, to identify novel, potent, and specific small-molecule CAR inhibitors that do not activate PXR. We describe here one such inhibitor, CINPA1 (CAR inhibitor not PXR activator 1), capable of reducing CAR-mediated transcription with an IC50 of ∼70 nM. CINPA1 1) is a specific xenobiotic receptor inhibitor and has no cytotoxic effects up to 30 µM; 2) inhibits CAR-mediated gene expression in primary human hepatocytes, where CAR is endogenously expressed; 3) does not alter the protein levels or subcellular localization of CAR; 4) increases corepressor and reduces coactivator interaction with the CAR ligand-binding domain in mammalian two-hybrid assays; and 5) disrupts CAR binding to the promoter regions of target genes in chromatin immunoprecipitation assays. CINPA1 could be used as a novel molecular tool for understanding CAR function. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  13. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling.

    Science.gov (United States)

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook; Baek, Songjoon; Sung, Myong-Hee; Zhao, Li; Park, Jeong Won; Nielsen, Ronni; Walker, Robert L; Zhu, Yuelin J; Meltzer, Paul S; Hager, Gordon L; Cheng, Sheue-yann

    2015-04-28

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co-repressors and facilitates recruitment of co-activators to activate transcription. Here we show that in addition to hormone-independent TR occupancy, ChIP-seq against endogenous TR in mouse liver tissue demonstrates considerable hormone-induced TR recruitment to chromatin associated with chromatin remodelling and activated gene transcription. Genome-wide footprinting analysis using DNase-seq provides little evidence for TR footprints both in the absence and presence of hormone, suggesting that unliganded TR engagement with repressive complexes on chromatin is, similar to activating receptor complexes, a highly dynamic process. This dynamic and ligand-dependent interaction with chromatin is likely shared by all steroid hormone receptors regardless of their capacity to repress transcription in the absence of ligand.

  14. Reduced beta-adrenergic receptor activation decreases G-protein expression and beta-adrenergic receptor kinase activity in porcine heart.

    OpenAIRE

    Ping, P; Gelzer-Bell, R; Roth, D A; Kiel, D; Insel, P A; Hammond, H K

    1995-01-01

    To determine whether beta-adrenergic receptor agonist activation influences guanosine 5'-triphosphate-binding protein (G-protein) expression and beta-adrenergic receptor kinase activity in the heart, we examined the effects of chronic beta 1-adrenergic receptor antagonist treatment (bisoprolol, 0.2 mg/kg per d i.v., 35 d) on components of the myocardial beta-adrenergic receptor-G-protein-adenylyl cyclase pathway in porcine myocardium. Three novel alterations in cardiac adrenergic signaling as...

  15. Congenital leptin deficiency and thyroid function

    Directory of Open Access Journals (Sweden)

    Paz-Filho Gilberto

    2009-11-01

    Full Text Available Abstract Thyroid function is closely related to leptin's secretion by the adipose tissue. In states of leptin-deficiency, the circadian rhythm of TSH is altered, leading to central hypothyroidism in animal models. In humans, central hypothyroidism has also been described in rare cases of congenital leptin deficiency. However, the thyroid phenotype in these cases is heterogeneous, with the occurrence of central hypothyroidism in a minority of cases. Here we describe thyroid function in four leptin-deficient humans (2 males aged 5 and 27, and 2 females aged 35 and 40, before and during leptin replacement with recombinant human methionyl leptin (r-metHuLeptin. The child was evaluated for four years, and the adults, for eight years. In addition, the adults were submitted to a brief withdrawal of leptin during six weeks in the sixth year. Our results show that, regardless of leptin replacement, our leptin-deficient patients have normal thyroid function. In spite of having an important role in regulating the hypothalamic-pituitary-thyroidal axis, leptin is not required for normal thyroid function. Trial Registration ClinicalTrials.gov Identifiers: NCT00659828 and NCT00657605

  16. Activation of peroxisome proliferator-activated receptors (PPARs) by their ligands and protein kinase A activators

    Science.gov (United States)

    Lazennec, Gwendal; Canaple, Laurence; Saugy, Damien; Wahli, Walter

    2000-01-01

    The nuclear peroxisome proliferator-activated receptors (PPARs) α, β and γ activate the transcription of multiple genes involved in lipid metabolism. Several natural and synthetic ligands have been identified for each PPAR isotype but little is known about the phosphorylation state of these receptors. We show here that activators of protein kinase A (PKA) can enhance mouse PPAR activity in the absence and the presence of exogenous ligands in transient transfection experiments. The activation function 1 (AF-1) of PPARs was dispensable for transcriptional enhancement, whereas the activation function 2 (AF-2) was required for this effect. We also show that several domains of PPAR can be phosphorylated by PKA in vitro. Moreover, gel experiments suggest that PKA stabilizes binding of the liganded PPAR to DNA. PKA inhibitors decreased not only the kinase dependent induction of PPARs but also their ligand-dependent induction, suggesting that the ligands may also mobilize the PKA pathway to lead to maximal transcriptional induction by PPARs. Moreover, comparing PPARα KO with PPARα wild-type mice, we show that the expression of the ACO gene can be regulated by PKA-activated PPARα in liver. These data demonstrate that the PKA pathway is an important modulator of PPAR activity and we propose a model associating this pathway in the control of fatty acid β-oxidation under conditions of fasting, stress and exercise. PMID:11117527

  17. Common structural basis for constitutive activity of the ghrelin receptor family

    DEFF Research Database (Denmark)

    Holst, Birgitte; Holliday, Nicholas D; Bach, Anders

    2004-01-01

    Three members of the ghrelin receptor family were characterized in parallel: the ghrelin receptor, the neurotensin receptor 2 and the orphan receptor GPR39. In transiently transfected COS-7 and human embryonic kidney 293 cells, all three receptors displayed a high degree of ligand......-independent signaling activity. The structurally homologous motilin receptor served as a constitutively silent control; upon agonist stimulation, however, it signaled with a similar efficacy to the three related receptors. The constitutive activity of the ghrelin receptor and of neurotensin receptor 2 through the G...... demonstrated that the epitope-tagged ghrelin receptor was constitutively internalized but could be trapped at the cell surface by an inverse agonist, whereas GPR39 remained at the cell surface. Mutational analysis showed that the constitutive activity of both the ghrelin receptor and GPR39 could systematically...

  18. Peroxisome Proliferator-Activated Receptor Alpha Target Genes

    Directory of Open Access Journals (Sweden)

    Maryam Rakhshandehroo

    2010-01-01

    Full Text Available The peroxisome proliferator-activated receptor alpha (PPARα is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPARα serves as a molecular target for hypolipidemic fibrates drugs which bind the receptor with high affinity. Furthermore, PPARα binds and is activated by numerous fatty acids and fatty acid-derived compounds. PPARα governs biological processes by altering the expression of a large number of target genes. Accordingly, the specific role of PPARα is directly related to the biological function of its target genes. Here, we present an overview of the involvement of PPARα in lipid metabolism and other pathways through a detailed analysis of the different known or putative PPARα target genes. The emphasis is on gene regulation by PPARα in liver although many of the results likely apply to other organs and tissues as well.

  19. Glycine Receptor α2 Subunit Activation Promotes Cortical Interneuron Migration

    Directory of Open Access Journals (Sweden)

    Ariel Avila

    2013-08-01

    Full Text Available Glycine receptors (GlyRs are detected in the developing CNS before synaptogenesis, but their function remains elusive. This study demonstrates that functional GlyRs are expressed by embryonic cortical interneurons in vivo. Furthermore, genetic disruption of these receptors leads to interneuron migration defects. We discovered that extrasynaptic activation of GlyRs containing the α2 subunit in cortical interneurons by endogenous glycine activates voltage-gated calcium channels and promotes calcium influx, which further modulates actomyosin contractility to fine-tune nuclear translocation during migration. Taken together, our data highlight the molecular events triggered by GlyR α2 activation that control cortical tangential migration during embryogenesis.

  20. Differences in zinc status and the leptin axis in anorexic and recovered adolescents and young adults: a pilot study

    Directory of Open Access Journals (Sweden)

    F.D. Zepf

    2012-03-01

    Full Text Available Evidence from animal studies suggests that leptin metabolism is associated with zinc (Zn status. However, research investigating this relationship in adolescents and young adults with anorexia nervosa (AN is scarce; the present study aims to fill that gap.Serum concentrations of leptin, the soluble leptin receptor (sOB-R and the free leptin index (FLI were obtained in healthy control subjects (n=19, acutely ill individuals (n=14 and recovered patients with AN (n=15. Serum Zn concentrations noted in previous research data were also incorporated for all groups.Leptin, FLI and Zn concentrations were higher in recovered subjects with AN when compared with acutely ill AN patients. Remitted patients showed higher sOB-R concentrations but no difference in FLI compared with the control group. Leptin and FLI were lower in the acutely ill patients compared with the control subjects, who showed no differences in Zn concentrations. Zn concentrations were not correlated with leptin, sOB-R or FLI concentrations in any of the three investigated subgroups.The present investigation does not entirely support an association between Zn, Leptin and FLI concentrations in subjects with AN, possibly due to limited statistical power. Further research and replication of the present findings related to the interaction between leptin and Zn is warranted. However, with respect to serum leptin levels the data of the present investigation indicate that acutely ill and remitted patients with AN differ as regards serum leptin concentrations and FLI, which is in line with previous research.

  1. Environmental phthalate monoesters activate pregnane X receptor-mediated transcription

    International Nuclear Information System (INIS)

    Hurst, Christopher H.; Waxman, David J.

    2004-01-01

    Phthalate esters, widely used as plasticizers in the manufacture of products made of polyvinyl chloride, induce reproductive and developmental toxicities in rodents. The mechanism that underlies these effects of phthalate exposure, including the potential role of members of the nuclear receptor superfamily, is not known. The present study investigates the effects of phthalates on the pregnane X receptor (PXR), which mediates the induction of enzymes involved in steroid metabolism and xenobiotic detoxification. The ability of phthalate monoesters to activate PXR-mediated transcription was assayed in a HepG2 cell reporter assay following transfection with mouse PXR (mPXR), human PXR (hPXR), or the hPXR allelic variants V140M, D163G, and A370T. Mono-2-ethylhexyl phthalate (MEHP) increased the transcriptional activity of both mPXR and hPXR (5- and 15-fold, respectively) with EC 50 values of 7-8 μM. mPXR and hPXR were also activated by monobenzyl phthalate (MBzP, up to 5- to 6-fold) but were unresponsive to monomethyl phthalate and mono-n-butyl phthalate (M(n)BP) at the highest concentrations tested (300 μM). hPXR-V140M and hPXR-A370T exhibited patterns of phthalate responses similar to the wild-type receptor. By contrast, hPXR-D163G was unresponsive to all phthalate monoesters tested. Further studies revealed that hPXR-D163G did respond to rifampicin, but required approximately 40-fold higher concentrations than wild-type receptor, suggesting that the ligand-binding domain D163G variant has impaired ligand-binding activity. The responsiveness of PXR to activation by phthalate monoesters demonstrated here suggests that these ubiquitous environmental chemicals may, in part, exhibit their endocrine disruptor activities by altering PXR-regulated steroid hormone metabolism with potential adverse health effects in exposed individuals

  2. Leptin in humans: lessons from translational research.

    Science.gov (United States)

    Blüher, Susann; Mantzoros, Christos S

    2009-03-01

    Leptin has emerged over the past decade as a key hormone in not only the regulation of food intake and energy expenditure but also in the regulation of neuroendocrine and immune function as well as the modulation of glucose and fat metabolism as shown by numerous observational and interventional studies in humans with (complete) congenital or relative leptin deficiency. These results have led to proof-of-concept studies that have investigated the effect of leptin administration in subjects with complete (congenital) leptin deficiency caused by mutations in the leptin gene as well as in humans with relative leptin deficiency, including states of lipoatrophy or negative energy balance and neuroendocrine dysfunction, as for instance seen with hypothalamic amenorrhea in states of exercise-induced weight loss. In those conditions, most neuroendocrine, metabolic, or immune disturbances can be restored by leptin administration. Leptin replacement therapy is thus a promising approach in several disease states, including congenital complete leptin deficiency, states of energy deprivation, including anorexia nervosa or milder forms of hypothalamic amenorrhea, as well as syndromes of insulin resistance seen in conditions such as congenital or acquired lipodystrophy. In contrast, states of energy excess such as garden-variety obesity are associated with hyperleptinemia that reflects either leptin tolerance or leptin resistance. For those conditions, development of leptin sensitizers is currently a focus of pharmaceutical research. This article summarizes our current understanding of leptin's role in human physiology and its potential role as a novel therapeutic option in human disease states associated with a new hormone deficiency, ie, leptin deficiency.

  3. The Growth Hormone Receptor: Mechanism of Receptor Activation, Cell Signaling, and Physiological Aspects

    Directory of Open Access Journals (Sweden)

    Farhad Dehkhoda

    2018-02-01

    Full Text Available The growth hormone receptor (GHR, although most well known for regulating growth, has many other important biological functions including regulating metabolism and controlling physiological processes related to the hepatobiliary, cardiovascular, renal, gastrointestinal, and reproductive systems. In addition, growth hormone signaling is an important regulator of aging and plays a significant role in cancer development. Growth hormone activates the Janus kinase (JAK–signal transducer and activator of transcription (STAT signaling pathway, and recent studies have provided a new understanding of the mechanism of JAK2 activation by growth hormone binding to its receptor. JAK2 activation is required for growth hormone-mediated activation of STAT1, STAT3, and STAT5, and the negative regulation of JAK–STAT signaling comprises an important step in the control of this signaling pathway. The GHR also activates the Src family kinase signaling pathway independent of JAK2. This review covers the molecular mechanisms of GHR activation and signal transduction as well as the physiological consequences of growth hormone signaling.

  4. Neurohumoral activation in heart failure: the role of adrenergic receptors

    Directory of Open Access Journals (Sweden)

    Patricia C. Brum

    2006-09-01

    Full Text Available Heart failure (HF is a common endpoint for many forms of cardiovascular disease and a significant cause of morbidity and mortality. The development of end-stage HF often involves an initial insult to the myocardium that reduces cardiac output and leads to a compensatory increase in sympathetic nervous system activity. Acutely, the sympathetic hyperactivity through the activation of beta-adrenergic receptors increases heart rate and cardiac contractility, which compensate for decreased cardiac output. However, chronic exposure of the heart to elevated levels of catecholamines released from sympathetic nerve terminals and the adrenal gland may lead to further pathologic changes in the heart, resulting in continued elevation of sympathetic tone and a progressive deterioration in cardiac function. On a molecular level, altered beta-adrenergic receptor signaling plays a pivotal role in the genesis and progression of HF. beta-adrenergic receptor number and function are decreased, and downstream mechanisms are altered. In this review we will present an overview of the normal beta-adrenergic receptor pathway in the heart and the consequences of sustained adrenergic activation in HF. The myopathic potential of individual components of the adrenergic signaling will be discussed through the results of research performed in genetic modified animals. Finally, we will discuss the potential clinical impact of beta-adrenergic receptor gene polymorphisms for better understanding the progression of HF.A insuficiência cardíaca (IC é a via final comum da maioria das doenças cardiovasculares e uma das maiores causas de morbi-mortalidade. O desenvolvimento do estágio final da IC freqüentemente envolve um insulto inicial do miocárdio, reduzindo o débito cardíaco e levando ao aumento compensatório da atividade do sistema nervoso simpático (SNS. Existem evidências de que apesar da exposição aguda ser benéfica, exposições crônicas a elevadas concentra

  5. Mechanism of A2 adenosine receptor activation. I. Blockade of A2 adenosine receptors by photoaffinity labeling

    International Nuclear Information System (INIS)

    Lohse, M.J.; Klotz, K.N.; Schwabe, U.

    1991-01-01

    It has previously been shown that covalent incorporation of the photoreactive adenosine derivative (R)-2-azido-N6-p-hydroxy-phenylisopropyladenosine [(R)-AHPIA] into the A1 adenosine receptor of intact fat cells leads to a persistent activation of this receptor, resulting in a reduction of cellular cAMP levels. In contrast, covalent incorporation of (R)-AHPIA into human platelet membranes, which contain only stimulatory A2 adenosine receptors, reduces adenylate cyclase stimulation via these receptors. This effect of (R)-AHPIA is specific for the A2 receptor and can be prevented by the adenosine receptor antagonist theophylline. Binding studies indicate that up to 90% of A2 receptors can be blocked by photoincorporation of (R)-AHPIA. However, the remaining 10-20% of A2 receptors are sufficient to mediate an adenylate cyclase stimulation of up to 50% of the control value. Similarly, the activation via these 10-20% of receptors occurs with a half-life that is only 2 times longer than that in control membranes. This indicates the presence of a receptor reserve, with respect to both the extent and the rate of adenylate cyclase stimulation. These observations require a modification of the models of receptor-adenylate cyclase coupling

  6. Functional relevance of G-protein-coupled-receptor-associated proteins, exemplified by receptor-activity-modifying proteins (RAMPs).

    Science.gov (United States)

    Fischer, J A; Muff, R; Born, W

    2002-08-01

    The calcitonin (CT) receptor (CTR) and the CTR-like receptor (CRLR) are close relatives within the type II family of G-protein-coupled receptors, demonstrating sequence identity of 50%. Unlike the interaction between CT and CTR, receptors for the related hormones and neuropeptides amylin, CT-gene-related peptide (CGRP) and adrenomedullin (AM) require one of three accessory receptor-activity-modifying proteins (RAMPs) for ligand recognition. An amylin/CGRP receptor is revealed when CTR is co-expressed with RAMP1. When complexed with RAMP3, CTR interacts with amylin alone. CRLR, initially classed as an orphan receptor, is a CGRP receptor when co-expressed with RAMP1. The same receptor is specific for AM in the presence of RAMP2. Together with human RAMP3, CRLR defines an AM receptor, and with mouse RAMP3 it is a low-affinity CGRP/AM receptor. CTR-RAMP1, antagonized preferentially by salmon CT-(8-32) and not by CGRP-(8-37), and CRLR-RAMP1, antagonized by CGRP-(8-37), are two CGRP receptor isotypes. Thus amylin and CGRP interact specifically with heterodimeric complexes between CTR and RAMP1 or RAMP3, and CGRP and AM interact with complexes between CRLR and RAMP1, RAMP2 or RAMP3.

  7. [Mechanism study on leptin resistance in lung cancer cachexia rats treated by Xiaoyan Decoction].

    Science.gov (United States)

    Zhang, Yun-Chao; Jia, Ying-Jie; Yang, Pei-Ying; Zhang, Xing; Li, Xiao-Jiang; Zhang, Ying; Zhu, Jin-Li; Sun, Yi-Yu; Chen, Jun; Duan, Hao-Guo; Guo, Hua; Li, Chao

    2014-12-01

    To study the leptin resistance mechanism of Xiaoyan Decoction (XD) in lung cancer cachexia (LCC) rats. An LCC rat model was established. Totally 40 rats were randomly divided into the normal control group, the LCC model group, the XD group, and the positive control group, 10 in each group. After LCC model was set up, rats in the LCC model group were administered with normal saline, 2 mL each time. Rats in the XD group were administered with XD at the daily dose of 2 mL. Those in the positive control group were administered with Medroxyprogesterone Acetate suspension (20 mg/kg) by gastrogavage at the daily dose of 2 mL. All medication lasted for 14 days. The general condition and tumor growth were observed. Serum levels of leptin and leptin receptor in the hypothalamus were detected using enzyme-linked immunosorbent assay. Contents of neuropeptide Y (NPY) and anorexia for genomic POMC were detected using real-time PCR technique. Serum leptin levels were lower in the LCC model group than in the normal control group with statistical significance (P XD group (P XD or Medroxyprogesterone Acetate could effectively reduce levels of leptin receptor with statistical significance (P XD group and the positive control group (P 0.05). There was statistical difference in POMC between the normal control group and the LCC model group (P XD group and the positive control group with statistical significance (P XD group (P XD could increase serum leptin levels and reduce leptin receptor levels in the hypothalamus. LCC could be improved by elevating NPY contents in the hypothalamus and reducing POMC contents, promoting the appetite, and increasing food intake from the periphery pathway and the central pathway.

  8. Behavioral changes induced by cocaine in mice are modified by a hyperlipidic diet or recombinant leptin

    Directory of Open Access Journals (Sweden)

    E. Erhardt

    2006-12-01

    Full Text Available The objective of the present study was to determine if the acute behavioral effects of cocaine acutely administered intraperitoneally (ip at doses of 5, 10 and 20 mg/kg on white male CF1 mice, 90 days of age, would be influenced by leptin acutely administered ip (at doses of 5, 10 and 20 µg/kg or by endogenous leptin production enhanced by a high-fat diet. The acute behavioral effects of cocaine were evaluated in open-field, elevated plus-maze and forced swimming tests. Results were compared between a group of 80 mice consuming a balanced diet and a high-fat diet, and a group of 80 mice fed a commercially available rodent chow formula (Ralston Purina but receiving recombinant leptin (rLeptin or saline ip. Both the high-fat-fed and rLeptin-treated mice showed decreased locomotion in the open-field test, spent more time in the open arms of the elevated plus-maze and showed less immobility time in the forced swimming test (F(1,68 = 7.834, P = 0.007. There was an interaction between diets and cocaine/saline treatments in locomotion (F(3,34 = 3.751, P = 0.020 and exploration (F(3,34 = 3.581, P = 0.024. These results suggest that anxiolytic effects and increased general activity were induced by leptin in cocaine-treated mice and that low leptin levels are associated with behavioral depression. Chronic changes in diet composition producing high leptin levels or rLeptin treatment may result in an altered response to cocaine in ethologic tests that measure degrees of anxiety and depression, which could be attributed to an antagonistic effect of leptin.

  9. Activation of Penile Proadipogenic Peroxisome Proliferator-Activated Receptor with an Estrogen: Interaction with Estrogen Receptor Alpha during Postnatal Development

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Mansour

    2008-01-01

    Full Text Available Exposure to the estrogen receptor alpha (ER ligand diethylstilbesterol (DES between neonatal days 2 to 12 induces penile adipogenesis and adult infertility in rats. The objective of this study was to investigate the in vivo interaction between DES-activated ER and the proadipogenic transcription factor peroxisome proliferator-activated receptor gamma (PPAR. Transcripts for PPARs , , and and 1a splice variant were detected in Sprague-Dawley normal rat penis with PPAR predominating. In addition, PPAR1b and PPAR2 were newly induced by DES. The PPAR transcripts were significantly upregulated with DES and reduced by antiestrogen ICI 182, 780. At the cellular level, PPAR protein was detected in urethral transitional epithelium and stromal, endothelial, neuronal, and smooth muscular cells. Treatment with DES activated ER and induced adipocyte differentiation in corpus cavernosum penis. Those adipocytes exhibited strong nuclear PPAR expression. These results suggest a biological overlap between PPAR and ER and highlight a mechanism for endocrine disruption.

  10. Endogenous activation of adenosine A(1) receptors accelerates ischemic suppression of spontaneous electrocortical activity

    DEFF Research Database (Denmark)

    Ilie, Andrei; Ciocan, Dragos; Zagrean, Ana-Maria

    2006-01-01

    Cerebral ischemia induces a rapid suppression of spontaneous brain rhythms prior to major alterations in ionic homeostasis. It was found in vitro during ischemia that the rapidly formed adenosine, resulting from the intracellular breakdown of ATP, may inhibit synaptic transmission via the A(1......) receptor subtype. The link between endogenous A(1) receptor activation during ischemia and the suppression of spontaneous electrocortical activity has not yet been established in the intact brain. The aim of this study was to investigate in vivo the effects of A(1) receptor antagonism by 8-cyclopentyl-1...

  11. Growth hormone receptor-deficient pigs resemble the pathophysiology of human Laron syndrome and reveal altered activation of signaling cascades in the liver

    Directory of Open Access Journals (Sweden)

    Arne Hinrichs

    2018-05-01

    significantly reduced. In contrast, phosphorylation of JAK2 was significantly increased, possibly due to the increased serum leptin levels and increased hepatic leptin receptor expression and activation in GHR-KO pigs. In addition, increased mTOR phosphorylation was observed in GHR-KO liver samples, and phosphorylation studies of downstream substrates suggested the activation of mainly mTOR complex 2. Conclusion: GHR-KO pigs resemble the pathophysiology of LS and are an interesting model for mechanistic studies and treatment trials. Keywords: Growth hormone receptor, Laron syndrome, Pig model, Dwarfism, Hypoglycemia, Insulin-like growth factor 1, Signaling

  12. Modulation of leptin resistance by food compounds.

    Science.gov (United States)

    Aragonès, Gerard; Ardid-Ruiz, Andrea; Ibars, Maria; Suárez, Manuel; Bladé, Cinta

    2016-08-01

    Leptin is mainly secreted by white adipose tissue and regulates energy homeostasis by inhibiting food intake and stimulating energy expenditure through its action in neuronal circuits in the brain, particularly in the hypothalamus. However, hyperleptinemia coexists with the loss of responsiveness to leptin in common obese conditions. This phenomenon has been defined as leptin resistance and the restoration of leptin sensitivity is considered to be a useful strategy to treat obesity. This review summarizes the existing literature on potentially valuable nutrients and food components to reverse leptin resistance. Notably, several food compounds, such as teasaponins, resveratrol, celastrol, caffeine, and taurine among others, are able to restore the leptin signaling in neurons by overexpressing anorexigenic peptides (proopiomelanocortin) and/or repressing orexigenic peptides (neuropeptide Y/agouti-related peptide), thus decreasing food intake. Additionally, some nutrients, such as vitamins A and D, can improve leptin transport through the blood-brain barrier. Therefore, food components can improve leptin resistance by acting at different levels of the leptin pathway; moreover, some compounds are able to target more than one feature of leptin resistance. However, systematic studies are necessary to define the actual effectiveness of each compound. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. GRK2 Constitutively Governs Peripheral Delta Opioid Receptor Activity

    Directory of Open Access Journals (Sweden)

    Allison Doyle Brackley

    2016-09-01

    Full Text Available Opioids remain the standard for analgesic care; however, adverse effects of systemic treatments contraindicate long-term administration. While most clinical opioids target mu opioid receptors (MOR, those that target the delta class (DOR also demonstrate analgesic efficacy. Furthermore, peripherally restrictive opioids represent an attractive direction for analgesia. However, opioid receptors including DOR are analgesically incompetent in the absence of inflammation. Here, we report that G protein-coupled receptor kinase 2 (GRK2 naively associates with plasma membrane DOR in peripheral sensory neurons to inhibit analgesic agonist efficacy. This interaction prevents optimal Gβ subunit association with the receptor, thereby reducing DOR activity. Importantly, bradykinin stimulates GRK2 movement away from DOR and onto Raf kinase inhibitory protein (RKIP. protein kinase C (PKC-dependent RKIP phosphorylation induces GRK2 sequestration, restoring DOR functionality in sensory neurons. Together, these results expand the known function of GRK2, identifying a non-internalizing role to maintain peripheral DOR in an analgesically incompetent state.

  14. Identification of an Activating Chicken Ig-like Receptor Recognizing Avian Influenza Viruses

    NARCIS (Netherlands)

    Jansen, Christine A; van Haarlem, Daphne A; Sperling, Beatrice; van Kooten, Peter J; de Vries, Erik; Viertlboeck, Birgit C; Vervelde, Lonneke; Göbel, Thomas W

    2016-01-01

    Chicken Ig-like receptors (CHIRs) represent a multigene family encoded by the leukocyte receptor complex that encodes a variety of receptors that are subdivided into activating CHIR-A, inhibitory CHIR-B, and bifunctional CHIR-AB. Apart from CHIR-AB, which functions as an Fc receptor, CHIR ligands

  15. Leptin suppresses semi-starvation induced hyperactivity in rats: implications for anorexia nervosa.

    Science.gov (United States)

    Exner, C; Hebebrand, J; Remschmidt, H; Wewetzer, C; Ziegler, A; Herpertz, S; Schweiger, U; Blum, W F; Preibisch, G; Heldmaier, G; Klingenspor, M

    2000-09-01

    Semi-starvation induced hyperactivity (SIH) occurs in rodents upon caloric restriction. We hypothesized that SIH is triggered by the decline in leptin secretion associated with food restriction. To test this hypothesis, rats, which had established a stable level of activity, were treated with leptin or vehicle via implanted minipumps concomitantly to initiation of food restriction for 7 days. In a second experiment treatment was initiated after SIH had already set in. In contrast to the vehicle-treated rats, which increased their baseline activity level by 300%, the development of SIH was suppressed by leptin. Furthermore, leptin was able to stop SIH, after it had set in. These results underscore the assumed major role of leptin in the adaptation to semi-starvation. Because SIH has been viewed as a model for anorexia nervosa, we also assessed subjective ratings of motor restlessness in 30 patients with this eating disorder in the emaciated state associated with hypoleptinemia and after increments in leptin secretion brought upon by therapeutically induced weight gain. Hypoleptinemic patients ranked their motor restlessness higher than upon attainment of their maximal leptin level during inpatient treatment. Thus, hypoleptinemia might also contribute to the hyperactivity frequently associated with anorexia nervosa.

  16. Effect of leptin on proliferation and apoptosis of cholangiocarcinoma QBC939 cells

    Directory of Open Access Journals (Sweden)

    DAI Kai

    2013-03-01

    Full Text Available ObjectiveTo determine whether leptin can exert anti-proliferative and pro-apoptotic effects on human cholangiocarcinoma cells and to investigate the underlying molecular mechanisms. MethodsHuman cholangiocarcinoma QBC939 cells were cultured and treated with different concentrations of leptin. Changes in the proliferation rate were measured by the MTT assay. Changes in cell cycle and in the apoptosis incidence rate were detected by flow cytometry. Changes in cyclin D1, bax and bcl-2 gene expression were detected by measuring mRNA levels by real-time quantitative reverse transcription-polymerase chain reaction (qPCR. Changes in caspase-3 protease activity were detected by fluorometric assay. ResultsLeptin treatment significantly increased the proliferation rate of QBC939 cells in a dose- and time-dependent manner. Compared to untreated QBC939 cells, leptin treatment led to significantly more G0/G1 to S phase transition and significantly lower apoptosis rate. In addition, leptin-treated QBC939 cells showed enhanced mRNA expression of cyclin D1 and bcl-2, but decreased mRNA expression of bax. The leptin treatment also led to decreased caspase-3 activity. ConclusionLeptin promotes S to G0/G1 phase transition and proliferation, but inhibits apoptosis, of human cholangiocarcinoma cells in vitro.

  17. In vitro binding and receptor-mediated activity of terlipressin at vasopressin receptors V1 and V2.

    Science.gov (United States)

    Jamil, Khurram; Pappas, Stephen Chris; Devarakonda, Krishna R

    2018-01-01

    Terlipressin, a synthetic, systemic vasoconstrictor with selective activity at vasopressin-1 (V 1 ) receptors, is a pro-drug for the endogenous/natural porcine hormone [Lys 8 ]-vasopressin (LVP). We investigated binding and receptor-mediated cellular activities of terlipressin, LVP, and endogenous human hormone [Arg 8 ]-vasopressin (AVP) at V 1 and vasopressin-2 (V 2 ) receptors. Cell membrane homogenates of Chinese hamster ovary cells expressing human V 1 and V 2 receptors were used in competitive binding assays to measure receptor-binding activity. These cells were used in functional assays to measure receptor-mediated cellular activity of terlipressin, LVP, and AVP. Binding was measured by [ 3 H]AVP counts, and the activity was measured by fluorometric detection of intracellular calcium mobilization (V 1 ) and cyclic adenosine monophosphate (V 2 ). Binding potency at V 1 and V 2 was AVP>LVP>terlipressin. LVP and terlipressin had approximately sixfold higher affinity for V 1 than for V 2 . Cellular activity potency was also AVP>LVP>terlipressin. Terlipressin was a partial agonist at V 1 and a full agonist at V 2 ; LVP was a full agonist at both V 1 and V 2 . The in vivo response to terlipressin is likely due to the partial V 1 agonist activity of terlipressin and full V 1 agonist activity of its metabolite, LVP. These results provide supportive evidence for previous findings and further establish terlipressin pharmacology for vasopressin receptors.

  18. Acute activation, desensitization and smoldering activation of human acetylcholine receptors.

    Directory of Open Access Journals (Sweden)

    Barbara G Campling

    Full Text Available The behavioral effects of nicotine and other nicotinic agonists are mediated by AChRs in the brain. The relative contribution of acute activation versus chronic desensitization of AChRs is unknown. Sustained "smoldering activation" occurs over a range of agonist concentrations at which activated and desensitized AChRs are present in equilibrium. We used a fluorescent dye sensitive to changes in membrane potential to examine the effects of acute activation and chronic desensitization by nicotinic AChR agonists on cell lines expressing human α4β2, α3β4 and α7 AChRs. We examined the effects of acute and prolonged application of nicotine and the partial agonists varenicline, cytisine and sazetidine-A on these AChRs. The range of concentrations over which nicotine causes smoldering activation of α4β2 AChRs was centered at 0.13 µM, a level found in smokers. However, nicotine produced smoldering activation of α3β4 and α7 AChRs at concentrations well above levels found in smokers. The α4β2 expressing cell line contains a mixture of two stoichiometries, namely (α4β22β2 and (α4β22α4. The (α4β22β2 stoichiometry is more sensitive to activation by nicotine. Sazetidine-A activates and desensitizes only this stoichiometry. Varenicline, cytisine and sazetidine-A were partial agonists on this mixture of α4β2 AChRs, but full agonists on α3β4 and α7 AChRs. It has been reported that cytisine and varenicline are most efficacious on the (α4β22α4 stoichiometry. In this study, we distinguish the dual effects of activation and desensitization of AChRs by these nicotinic agonists and define the range of concentrations over which smoldering activation can be sustained.

  19. Leptin ameliorates ischemic necrosis of the femoral head in rats with obesity induced by a high-fat diet.

    Science.gov (United States)

    Zhou, Lu; Jang, Kyu Yun; Moon, Young Jae; Wagle, Sajeev; Kim, Kyoung Min; Lee, Kwang Bok; Park, Byung-Hyun; Kim, Jung Ryul

    2015-03-23

    Obesity is a risk factor for ischemic necrosis of the femoral head (INFH). The purpose of this study was to determine if leptin treatment of INFH stimulates new bone formation to preserve femoral head shape in rats with diet-induced obesity. Rats were fed a high-fat diet (HFD) or normal chow diet (NCD) for 16 weeks to induce progressive development of obesity. Avascular necrosis of the femoral head (AVN) was surgically induced. Adenovirus-mediated introduction of the leptin gene was by intravenous injection 2 days before surgery-induced AVN. At 6 weeks post-surgery, radiologic and histomorphometric assessments were performed. Leptin signaling in tissues was examined by Western blot. Osteogenic markers were analyzed by real-time RT-PCR. Radiographs showed better preservation of femoral head architecture in the HFD-AVN-Leptin group than the HFD-AVN and HFD-AVN-LacZ groups. Histology and immunohistochemistry revealed the HFD-AVN-Leptin group had significantly increased osteoblastic proliferation and vascularity in infarcted femoral heads compared with the HFD-AVN and HFD-AVN-LacZ groups. Intravenous injection of leptin enhanced serum VEGF levels and activated HIF-1α pathways. Runx 2 and its target genes were significantly upregulated in the HFD-AVN-Leptin group. These results indicate that leptin resistance is important in INFH pathogenesis. Leptin therapy could be a new strategy for INFH.

  20. The prostaglandin EP1 receptor potentiates kainate receptor activation via a protein kinase C pathway and exacerbates status epilepticus

    Science.gov (United States)

    Rojas, Asheebo; Gueorguieva, Paoula; Lelutiu, Nadia; Quan, Yi; Shaw, Renee; Dingledine, Raymond

    2014-01-01

    Prostaglandin E2 (PGE2) regulates membrane excitability, synaptic transmission, plasticity, and neuronal survival. The consequences of PGE2 release following seizures has been the subject of much study. Here we demonstrate that the prostaglandin E2 receptor 1 (EP1, or Ptger1) modulates native kainate receptors, a family of ionotropic glutamate receptors widely expressed throughout the central nervous system. Global ablation of the EP1 gene in mice (EP1-KO) had no effect on seizure threshold after kainate injection but reduced the likelihood to enter status epilepticus. EP1-KO mice that did experience typical status epilepticus had reduced hippocampal neurodegeneration and a blunted inflammatory response. Further studies with native prostanoid and kainate receptors in cultured cortical neurons, as well as with recombinant prostanoid and kainate receptors expressed in Xenopus oocytes, demonstrated that EP1 receptor activation potentiates heteromeric but not homomeric kainate receptors via a second messenger cascade involving phospholipase C, calcium and protein kinase C. Three critical GluK5 C-terminal serines underlie the potentiation of the GluK2/GluK5 receptor by EP1 activation. Taken together, these results indicate that EP1 receptor activation during seizures, through a protein kinase C pathway, increases the probability of kainic acid induced status epilepticus, and independently promotes hippocampal neurodegeneration and a broad inflammatory response. PMID:24952362

  1. Relationship between leptin and neuropeptide Y levels in patients with different kinds of tumors

    Energy Technology Data Exchange (ETDEWEB)

    Nanping, Luo; Hengguo, Liu; Xiaoming, Sun; Yingjian, Chen [Department of Laboratory Medicine, General Hospital of Jinan Military Area, Jinan (China)

    2008-06-15

    Objective: To investigate the relationship between leptin and neuropeptide Y (NPY) levels in patients with different kinds of tumors. Methods: Serum leptin and plasma NPY levels were between with RIA in 180 patients with different kinds of tumors and 30 controls. Results: (1) Leptin levels were statistically higher in patients with gastric cancer (n=38), liver cancer (n=30), esophageal carcinoma (n=38), colon carcinoma (n=32) and lung cancer (n=42) than those in controls (4.18{+-}0.51ng/ml) (P <0.01, P<0.05, P<0.01, P<0.01, P<0.05). Plasma NPY levels in controls were (150.25{+-}20.33) pg/ml. NPY levels were significantly higher in the patients (except patients with liver cancer than those in controls). (2) Leptin levels were positively correlated with NPY levels in patients with gastric cancer. Esophageal carcinoma and colon carcinoma (r=0.354, 0.30, 0.285, P<0.01). Leptin levels were also positively correlated with TG in patients with gastric cancer, liver cancer, esophageal carcinoma and colon carcinoma (r=0.301, 0.268, 0.335, P<0.01). There were no correlations between leptin and TC, LDL-C, HDL-C levels. Conclusion: (1) There were high leptin and NPY blood levels in patients with gastric cancer, liver cancer, esophagesl carcinoma, colon carcinoma, and lung cancer. (2)Leptin and NPY might play important roles in the development of tumor cachexia through their abnormal synthesis, secretion and receptor binding. (authors)

  2. Relationship between leptin and neuropeptide Y levels in patients with different kinds of tumors

    International Nuclear Information System (INIS)

    Luo Nanping; Liu Hengguo; Sun Xiaoming; Chen Yingjian

    2008-01-01

    Objective: To investigate the relationship between leptin and neuropeptide Y (NPY) levels in patients with different kinds of tumors. Methods: Serum leptin and plasma NPY levels were between with RIA in 180 patients with different kinds of tumors and 30 controls. Results: (1) Leptin levels were statistically higher in patients with gastric cancer (n=38), liver cancer (n=30), esophageal carcinoma (n=38), colon carcinoma (n=32) and lung cancer (n=42) than those in controls (4.18±0.51ng/ml) (P <0.01, P<0.05, P<0.01, P<0.01, P<0.05). Plasma NPY levels in controls were (150.25±20.33) pg/ml. NPY levels were significantly higher in the patients (except patients with liver cancer than those in controls). (2) Leptin levels were positively correlated with NPY levels in patients with gastric cancer. Esophageal carcinoma and colon carcinoma (r=0.354, 0.30, 0.285, P<0.01). Leptin levels were also positively correlated with TG in patients with gastric cancer, liver cancer, esophageal carcinoma and colon carcinoma (r=0.301, 0.268, 0.335, P<0.01). There were no correlations between leptin and TC, LDL-C, HDL-C levels. Conclusion: (1) There were high leptin and NPY blood levels in patients with gastric cancer, liver cancer, esophagesl carcinoma, colon carcinoma, and lung cancer. (2)Leptin and NPY might play important roles in the development of tumor cachexia through their abnormal synthesis, secretion and receptor binding. (authors)

  3. Deflation-activated receptors, not classical inflation-activated receptors, mediate the Hering-Breuer deflation reflex.

    Science.gov (United States)

    Yu, Jerry

    2016-11-01

    Many airway sensory units respond to both lung inflation and deflation. Whether those responses to opposite stimuli come from one sensor (one-sensor theory) or more than one sensor (multiple-sensor theory) is debatable. One-sensor theory is commonly presumed in the literature. This article proposes a multiple-sensor theory in which a sensory unit contains different sensors for sensing different forces. Two major types of mechanical sensors operate in the lung: inflation- and deflation-activated receptors (DARs). Inflation-activated sensors can be further divided into slowly adapting receptors (SARs) and rapidly adapting receptors (RARs). Many SAR and RAR units also respond to lung deflation because they contain DARs. Pure DARs, which respond to lung deflation only, are rare in large animals but are easily identified in small animals. Lung deflation-induced reflex effects previously attributed to RARs should be assigned to DARs (including pure DARs and DARs associated with SARs and RARs) if the multiple-sensor theory is accepted. Thus, based on the information, it is proposed that activation of DARs can attenuate lung deflation, shorten expiratory time, increase respiratory rate, evoke inspiration, and cause airway secretion and dyspnea.

  4. Allelic polymorphism of Makoei sheep leptin gene identified by ...

    African Journals Online (AJOL)

    use

    2011-12-05

    Dec 5, 2011 ... Lord et al., 1998) have shed light on the influence of leptin on both the .... A weak correlation between leptin serum levels and cow body condition ... Detection of polymorphisms in the ovine leptin (LEP) gene: .... Signals that.

  5. Leptin-Aldosterone-Neprilysin Axis: Identification of Its Distinctive Role in the Pathogenesis of the Three Phenotypes of Heart Failure in People With Obesity.

    Science.gov (United States)

    Packer, Milton

    2018-04-10

    Obesity (especially visceral adiposity) can be associated with 3 different phenotypes of heart failure: heart failure with a reduced ejection fraction, heart failure with a preserved ejection fraction, and high-output heart failure. All 3 phenotypes are characterized by an excessive secretion of aldosterone and sodium retention. In addition, obesity is accompanied by increased signaling through the leptin receptor, which can promote activation of both the sympathetic nervous system and the renin-angiotensin system and can directly stimulate the secretion of aldosterone. The deleterious interaction of leptin and aldosterone is potentiated by the simultaneous action of adiposity and the renal sympathetic nerves to cause overactivity of neprilysin; the loss of the counterbalancing effects of natriuretic peptides is exacerbated by an additional effect of both obesity and heart failure to interfere with adiponectin signaling. This intricate neurohormonal interplay leads to plasma volume expansion as well as to adverse ventricular remodeling and cardiac fibrosis. Furthermore, the activity of aldosterone and neprilysin is not only enhanced by obesity, but these mechanisms can also promote adipogenesis and adipocyte dysfunction, thereby enhancing the positive feedback loop. Last, in elderly obese women, changes in quantity and biology of epicardial adipose tissue further enhances the release of leptin and other proinflammatory adipokines, thereby leading to cardiac and systemic inflammation, end-organ fibrosis, and multiple comorbidities. Regardless of the phenotypic expression, activation of the leptin-aldosterone-neprilysin axis appears to contribute importantly to the evolution and progression of heart failure in people with obesity. Efforts to interfere with the detrimental interactions of this distinctive neurohormonal ecosystem with existing or novel therapeutic agents are likely to yield unique clinical benefits. © 2018 American Heart Association, Inc.

  6. Time course and determinants of leptin decline during weight loss in obese boys and girls

    DEFF Research Database (Denmark)

    Holm, Jens-Christian; Gamborg, Michael; Kaas-Ibsen, Karsten

    2007-01-01

    OBJECTIVE: To investigate whether changes in leptin concentrations during weight loss can be explained by gender, puberty, baseline adiposity and changes in adiposity, body composition, rate of weight loss, physical activity and insulin concentrations. DESIGN: A longitudinal study with 9 repeated......, puberty, baseline adiposity or concomitant changes in BMI SDS, fat mass percentage, rate of weight loss, physical activity scores or insulin concentrations. CONCLUSION: The biphasic leptin decline, which exceeded the level expected, was independent of puberty, baseline adiposity and changes in adiposity...... size, physical activity scores, blood leptin (ng/ml) and insulin concentrations (pmol/l) were measured at baseline, and except for Tanner stage and testicular size, repeated regularly during the programme. RESULTS: The weight loss was accompanied by a steep decline in leptin concentrations during...

  7. Mother and Infant Body Mass Index, Breast Milk Leptin and Their Serum Leptin Values.

    Science.gov (United States)

    Savino, Francesco; Sardo, Allegra; Rossi, Lorenza; Benetti, Stefania; Savino, Andrea; Silvestro, Leandra

    2016-06-21

    This study investigates correlations between mother and infant Body Mass Index (BMI), their serum leptin values and breast milk leptin concentration in early infancy. We determined serum leptin values in 58 healthy infants and leptin values in their mothers' breast milk, using radioimmunoassay (RIA). Infant and maternal anthropometrics were measured. Median leptin concentration was 3.9 ng/mL (interquartile range (IQR): 2.75) in infant serum, 4.27 ng/mL (IQR: 5.62) in maternal serum and 0.89 ng/mL (IQR: 1.32) in breast milk. Median maternal BMI and weight were 24 kg/m² (IQR: 4.41) and 64 kg (IQR: 15). Median infant BMI was 15.80 kg/cm² (IQR: 4.02), while average weight was 5.130 kg (IQR: 1.627). Infants serum leptin values positively correlated with infants' BMI (p = 0.001; r = 0.213) and breast milk leptin (p = 0.03; r = 0.285). Maternal serum leptin values positively correlated with maternal BMI (p = 0.000, r = 0.449) and breast milk leptin ones (p = 0.026; r = 0.322). Breast milk leptin and maternal BMI could influence infant serum leptin values. Further studies are needed to better elucidate the role of genetics and environment on infant leptin production and risk of obesity later in life.

  8. Implications of compound heterozygous insulin receptor mutations in congenital muscle fibre type disproportion myopathy for the receptor kinase activation

    DEFF Research Database (Denmark)

    Klein, H H; Müller, R; Vestergaard, H

    1999-01-01

    We studied insulin receptor kinase activation in two brothers with congenital muscle fibre type disproportion myopathy and compound heterozygous mutations of the insulin receptor gene, their parents, and their unaffected brother. In the father who has a heterozygote Arg1174-->Gln mutation, in sit...

  9. Urokinase-type plasminogen activator receptor (uPAR), tissue factor (TF) and epidermal growth factor receptor (EGFR)

    DEFF Research Database (Denmark)

    Christensen, Anders; Kiss, Katalin; Lelkaitis, Giedrius

    2017-01-01

    Background: Tumor-specific biomarkers are a prerequisite for the development of targeted imaging and therapy in oral squamous cell carcinoma (OSCC). urokinase-type Plasminogen Activator Receptor (uPAR), Tissue Factor (TF) and Epidermal Growth Factor Receptor (EGFR) are three biomarkers that exhib...... with a reduced survival. uPAR seems to be a prognostic biomarker in oral cancer....

  10. Development of a radioimmunoassay for the measurement of human leptin in serum

    International Nuclear Information System (INIS)

    Lagarde, A. R.; Nagy, K.; Forgach, T.; Janoki, G. A.

    2003-01-01

    Leptin is a 16 kDa polypeptide hormone encoded by the obese gene (ob) and secreted by adipose tissue. This hormone plays a major role in energy homeostasis and regulation of food intake and body weight. It also affects the metabolic, neuroendocrine and reproductive systems. Labelling of recombinant human leptin with 125I was best performed by the Chloramine-T method. New Zealand white rabbits were immunised with recombinant human leptin, cross-reaction of obtained antisera was analyzed with 10 different antigens. The separation of bound and free fractions was performed using the second antibody - PEG method. The obtained tracer had specific activities of 2.8-3.3 kBq/μg and had a stability of 5 weeks. A highly specific polyclonal antibody was obtained without measurable cross-reaction against the analysed antigens. Concentrations of human leptin were measured by a single overnight incubation assay with a sensitivity of 0.5 ng/ml and a measuring range of 0.5-100 ng/ml. The intra-assay and inter-assay coefficient of variation was under 6% and 8%, respectively. Recovery ranged from 88% to 106%. Serum human leptin concentrations can be accurately and precisely measured by this new radioimmunoassay. Preliminary results obtained from the measurement of serum leptin in lean, overweight and obese patients are presented. Serum leptin concentrations correlated with body mass index and were significantly higher in women than in men, except for obese patients. (author)

  11. Role of leptin in delayed embryonic development in the Indian short-nosed fruit bat, Cynopterus sphinx.

    Science.gov (United States)

    Banerjee, A; Meenakumari, K J; Krishna, A

    2010-08-01

    An adiposity-associated rise in leptin occurs at the time of delayed embryonic development in Cynopterus sphinx. The aim of present study was to examine the mechanism by which leptin may inhibit progesterone, and therefore could be responsible for delayed development. The study showed a significant increase in circulating leptin level during the period of increased fat accumulation, which coincided with significant decrease in serum progesterone level and delayed embryonic development in C. sphinx. The study showed increased Ob-R expression in the corpus luteum and in the utero-embryonic unit during the period of delayed embryonic development. The in vitro study showed suppressive effect of leptin on progesterone synthesis. The effect of high dose of leptin on ovarian steroidogenesis was found to be mediated through decreased expression of StAR and LH-R proteins in the ovary. The treatment with leptin caused increased expression of STAT 3 and iNOS proteins in the ovary, which correlated with decreased expression of StAR protein in the ovary. The inhibitory effects of leptin on progesterone synthesis in the ovary are thus mediated through STAT 3 and iNOS-NO signaling pathways. This study further demonstrated low expression of PCNA coinciding with the increased concentration of the leptin receptor in the utero-embryonic unit and high circulating leptin level during November. In conclusion, adiposity associated increased leptin level during November-December might play role in suppressing progesterone synthesis in the corpus luteum as well as suppressing the rate of cell-proliferation in the utero-embryonic unit thereby causing delayed embryonic development in C. sphinx. Copyright 2010 Elsevier Inc. All rights reserved.

  12. Association of Body Mass Index with Leptin and Other Hormonal Parameters in Women with Unexplained Infertility and Fertile Women

    Directory of Open Access Journals (Sweden)

    Farzaneh Tafvizi

    2016-04-01

    Conclusion: Given the presence of a correlation between leptin and BMI, and the effect of leptin on ovulation, it is recommended that the infertile women maintain the BMI in the normal range, exercise and put the physical activity in their daily life schedules.

  13. Methamphetamine Increases Locomotion and Dopamine Transporter Activity in Dopamine D5 Receptor-Deficient Mice

    OpenAIRE

    Hayashizaki, Seiji; Hirai, Shinobu; Ito, Yumi; Honda, Yoshiko; Arime, Yosefu; Sora, Ichiro; Okado, Haruo; Kodama, Tohru; Takada, Masahiko

    2013-01-01

    Dopamine regulates the psychomotor stimulant activities of amphetamine-like substances in the brain. The effects of dopamine are mediated through five known dopamine receptor subtypes in mammals. The functional relevance of D5 dopamine receptors in the central nervous system is not well understood. To determine the functional relevance of D5 dopamine receptors, we created D5 dopamine receptor-deficient mice and then used these mice to assess the roles of D5 dopamine receptors in the behaviora...

  14. Growth Hormone Overexpression Disrupts Reproductive Status Through Actions on Leptin

    Directory of Open Access Journals (Sweden)

    Ji Chen

    2018-03-01

    Full Text Available Growth and reproduction are closely related. Growth hormone (GH-transgenic common carp exhibit accelerated growth and delayed reproductive development, which provides an amenable model to study hormone cross talk between the growth and reproductive axes. We analyzed the energy status and reproductive development in GH-transgenic common carp by using multi-tissue RNA sequencing, real-time-PCR, Western blotting, ELISA, immunofluorescence, and in vitro incubation. The expression of gys (glycogen synthase and igfbp1 (insulin-like growth factor binding protein as well as blood glucose concentrations are lower in GH-transgenic carp. Agrp1 (agouti-related protein 1 and sla (somatolactin a, which are related to appetite and lipid catabolism, are significantly higher in GH-transgenic carp. Low glucose content and increased appetite indicate disrupted metabolic and energy deprivation status in GH-transgenic carp. Meanwhile, the expression of genes, such as gnrhr2 (gonadotropin-releasing hormone receptor 2, gthα (gonadotropin hormone, alpha polypeptide, fshβ (follicle stimulating hormone, beta polypeptide, lhβ [luteinizing hormone, beta polypeptide] in the pituitary, cyp19a1a (aromatase A in the gonad, and cyp19a1b (aromatase B in the hypothalamus, are decreased in GH-transgenic carp. In contrast, pituitary gnih (gonadotropin inhibitory hormone, drd1 (dopamine receptor D1, drd3 (dopamine receptor D3, and drd4 (dopamine receptor D4 exhibit increased expression, which were associated with the retarded reproductive development. Leptin receptor mRNA was detected by fluorescence in situ hybridization in the pituitary including the pars intermedia and proximal pars distalis, suggesting a direct effect of leptin on LH. Recombinant carp Leptin protein was shown to stimulate pituitary gthα, fshβ, lhβ expression, and ovarian germinal vesicle breakdown in vitro. In addition to neuroendocrine factors, we suggest that reduced hepatic leptin signaling to the

  15. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    International Nuclear Information System (INIS)

    Teodorov, E.; Ferrari, M.F.R.; Fior-Chadi, D.R.; Camarini, R.; Felício, L.F.

    2012-01-01

    The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of U69593 group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the co