WorldWideScience

Sample records for lepidopterous cotton pests

  1. Cotton in Benin: governance and pest management

    NARCIS (Netherlands)

    Togbe, C.E.

    2013-01-01

    Key words: cotton, synthetic pesticides, neem oil (Azadirachta indica), Beauveria bassiana,

    Bacillus thuringiensis, field experiment, farmers’ participation

    Pests are one of the main factors limiting cotton production worldwide. Most of the pest

    control

  2. EVALUATION OF FOUR INTEGRATED PEST MANAGEMENT PACKAGES FOR CONTROLLING MAIN PESTS OF COTTON IN RAINFED FIELDS

    OpenAIRE

    Nurindah Nurindah; Dwi Adi Sunarto

    2014-01-01

    Cotton production nationally is low due to various constraints, including pests. Two main pests commonly found in cotton plantation in rain fed fields are cotton leafhopper (Amrasca biguttula) and cotton bollworm (Helicoverpa armigera). The study aimed to evaluate four packages of integrated pest management (IPM) techniques to control cotton leafhopper and cotton bollworm in rain fed fields. The experiment was conducted in farmers’ fields at Asembagus, East Java, between January and July 2012...

  3. EVALUATION OF FOUR INTEGRATED PEST MANAGEMENT PACKAGES FOR CONTROLLING MAIN PESTS OF COTTON IN RAINFED FIELDS

    Directory of Open Access Journals (Sweden)

    Nurindah Nurindah

    2014-04-01

    Full Text Available Cotton production nationally is low due to various constraints, including pests. Two main pests commonly found in cotton plantation in rain fed fields are cotton leafhopper (Amrasca biguttula and cotton bollworm (Helicoverpa armigera. The study aimed to evaluate four packages of integrated pest management (IPM techniques to control cotton leafhopper and cotton bollworm in rain fed fields. The experiment was conducted in farmers’ fields at Asembagus, East Java, between January and July 2012. Four packages of IPM evaluated were cotton varieties, i.e. Kanesia 10 or Kanesia 13, and seed treatment with synthetic insecticide (imidacloprid before sowing or spraying molasses (10 ml L-1 water as food for natural enemies. The cotton plants were intercropped with groundnut and sprayed with neem seed extract (NSE at the action threshold level for pest control. These packages were compared among themselves and also with the methods usually used by farmers, i.e. planting cotton variety Kanesia 8 intercropped with groundnut and pest control using synthetic chemical insecticides. Twenty five plants were sampled randomly per plot and measured for their growth, leafhopper and  bollworm populations, as well as cotton seed yield per plot. Observations were made weekly, starting at 30 days after planting (DAP until 120 DAP. The results showed that the use of Kanesia 10 or Kanesia 13 intercropped with groundnut and spraying molasses to conserve natural enemies was the best  pest management practice and superior to farmers’ practices. Conserving natural enemies is not only profitable (saving production cost of IDR1,150,000 to IDR1,500,000 ha-1 season-1, but also safe for the environment (no need to spray chemical insecticides.

  4. farmers' knowledge and perceptions of cotton insect pests and their

    African Journals Online (AJOL)

    Prince Acheampong

    A survey of 337 cotton farmers in the three northern regions of Ghana was ... five applications were made during the season. ... Keywords: cotton, farmer knowledge and perception, insect pest control, Ghana. .... bordered on tests of farmers' knowledge of cotton insect pests, their damage ..... Agricultural Experiment Station.

  5. Plant training for induced defense against insect pests: a promising tool for integrated pest management in cotton.

    Science.gov (United States)

    Llandres, Ana L; Almohamad, Raki; Brévault, Thierry; Renou, Alain; Téréta, Idrissa; Jean, Janine; Goebel, François-Regis

    2018-04-17

    Enhancing cotton pest management using plant natural defenses has been described as a promising way to improve the management of crop pests. We here reviewed different studies on cotton growing systems to illustrate how an ancient technique called plant training, which includes plant topping and pruning, may contribute to this goal. Based on examples from cotton crops, we show how trained plants could be promoted to a state of enhanced defense that causes faster and more robust activation of their defense responses. We revisit agricultural benefits associated to this technique in cotton crops, with a focus on its potential as a supplementary tool for Integrated Pest Management (IPM). Particularly, we examine its role in mediating plant interactions with conspecific neighboring plants, pests and associated natural enemies. We propose a new IPM tool, plant training for induced defense, which involves inducing plant defense by artificial injuries. Experimental evidence from various studies shows that cotton training is a promising technique, particularly for smallholders, which can be used as part of an IPM program to significantly reduce insecticide use and to improve productivity in cotton farming. This article is protected by copyright. All rights reserved.

  6. Developing Cotton IPM by Conserving Parasitoids and Predators of The Main Pest

    Directory of Open Access Journals (Sweden)

    Nurindah Nurindah

    2015-09-01

    Full Text Available On early development of intensive cotton program, insect pests were considered as an important aspect in cotton cultivation, so that it needed to be scheduled sprays. The frequency of sprays was 7 times used 12L of chemical insecticides per hectare per season. Development of cotton IPM was emphasized on non-chemical control methods through optimally utilize natural enemies of the cotton main pests (Amrasca biguttulla (IshidaHelicoverpa armigera (Hübner. Conservation of parasitoids and predators by providing the environment that support their population development is an act of supporting the natural enemies as an effective biotic mortality factor of the insect pests. The conservation could be done by improving the plant matter and cultivation techniques that include the use of resistant variety to leafhopper, intercropping cotton with secondary food plants, mulch utilization, using action threshold that considered the presence of natural enemies, and application of botanical insecticides, if needed. Conservation of parasitoids and predators in cotton IPM could control the insect pests without any insecticide spray in obtaining the production of cotton seed. As such, the use of IPM method would increase farmers’ income.

  7. The Management of Insect Pests in Australian Cotton: An Evolving Story.

    Science.gov (United States)

    Wilson, Lewis J; Whitehouse, Mary E A; Herron, Grant A

    2018-01-07

    The Australian cotton industry progressively embraced integrated pest management (IPM) to alleviate escalating insecticide resistance issues. A systems IPM approach was used with core principles that were built around pest ecology/biology and insecticide resistance management; together, these were integrated into a flexible, year-round approach that facilitated easy incorporation of new science, strategies, and pests. The approach emphasized both strategic and tactical elements to reduce pest abundance and rationalize decisions about pest control, with insecticides as a last resort. Industry involvement in developing the approach was vital to embedding IPM within the farming system. Adoption of IPM was facilitated by the introduction of Bt cotton, availability of selective insecticides, economic validation, and an industry-wide extension campaign. Surveys indicate IPM is now embedded in industry, confirming the effectiveness of an industry-led, backed-by-science approach. The amount of insecticide active ingredient applied per hectare against pests has also declined dramatically. Though challenges remain, pest management has transitioned from reactively attempting to eradicate pests from fields to proactively managing them year-round, considering the farm within the wider landscape.

  8. Nuclear ribosomal DNA diversity of a cotton pest ( Rotylenchulus ...

    African Journals Online (AJOL)

    The reniform nematode (Rotylenchulus reniformis) has emerged as a major cotton pest in the United States. A recent analysis of over 20 amphimictic populations of this pest from the US and three other countries has shown no sequence variation at the nuclear ribosomal internal transcribed spacer (ITS) despite the region's ...

  9. Insect pests management of bt cotton through the manipulation of different eco-friendly techniques

    International Nuclear Information System (INIS)

    Ahmad, N.; Khan, M.H.; Tofique, M.

    2011-01-01

    This study was designed to manage insect pests of Bt cotton through the manipulation of different eco-friendly techniques. A perusal of data, based on the overall performance of different treatments reflected that lowest population of jassids (0.29) was observed in bio-control treated Bt cotton followed by bio-control treated conventional cotton (0.41). Mean per leaf population of thrips was found lowest in insecticide treated Bt cotton (0.97) which was statically at par with bi-control treated conventional cotton (0.95), biocontrol treated Bt cotton (1.09) and colour traps treated Bt cotton (1.50). In case of white flies, bio-control treated Bt cotton and bio-control treated conventional cotton again proved effective in maintaining the population at lower levels per leaf (0.33 and 0.35 respectively). No bollworms infestation was recorded in transgenic cotton whereas higher attack of the same was observed in the untreated conventional cotton block. The best results were achieved with the application of bio-control agents in combination with Bt cotton resulting in least infestation by insect pests and maximum seed yield of 3657 kg/ha. The population of Chrysoperla carnea was significantly higher in Bt and conventional cotton treated with bio-control agents as compared to the other treatments. The parasitism percentage of Trichogramma chilonis was observed significantly higher in bio-control treated conventional cotton. The studies manifested that combination of bio-control technology with Bt cotton effectively preserves the local beneficial insect fauna indicating its potential to be used as integrated management system against different insect pests of cotton. (author)

  10. Competitive release and outbreaks of non-target pests associated with transgenic Bt cotton.

    Science.gov (United States)

    Zeilinger, Adam R; Olson, Dawn M; Andow, David A

    2016-06-01

    The adoption of transgenic Bt cotton has, in some cases, led to environmental and economic benefits through reduced insecticide use. However, the distribution of these benefits and associated risks among cotton growers and cotton-growing regions has been uneven due in part to outbreaks of non-target or secondary pests, thereby requiring the continued use of synthetic insecticides. In the southeastern USA, Bt cotton adoption has resulted in increased abundance of and damage from stink bug pests, Euschistus servus and Nezara viridula (Heteroptera: Pentatomidae). While the impact of increased stink bug abundance has been well-documented, the causes have remained unclear. We hypothesize that release from competition with Bt-susceptible target pests may drive stink bug outbreaks in Bt cotton. We first examined the evidence for competitive release of stink bugs through meta-analysis of previous studies. We then experimentally tested if herbivory by Bt-susceptible Helicoverpa zea increases stink bug leaving rates and deters oviposition on non-Bt cotton. Consistent with previous studies, we found differences in leaving rates only for E servus, but we found that both species strongly avoided ovipositing on H. zea-damaged plants. Considering all available evidence, competitive release of stink bug populations in Bt cotton likely contributes to outbreaks, though the relative importance of competitive release remains an open question. Ecological risk assessments of Bt crops and other transgenic insecticidal crops would benefit from greater understanding of the ecological mechanisms underlying non-target pest outbreaks and greater attention to indirect ecological effects more broadly.

  11. Farmers' knowledge and perception of cotton pests and pest control practices in Benin: results of a diagnostic study

    NARCIS (Netherlands)

    Sinzogan, A.A.C.; Huis, van A.; Kossou, D.K.; Jiggins, J.L.S.; Vodouhè, S.

    2004-01-01

    Cotton production constraints in Benin as perceived by farmers were studied from May to July 2003. The knowledge, perceptions and practices of farmers growing cotton under different pest management regimes were analysed. The methods used were open and semi-structured interviews with groups and

  12. Relationships between farmers' cropping practices, pest profiles and cotton yield losses in Thailand

    OpenAIRE

    Castella, Jean-Christophe; Dollon, Karine; Savary, Serge

    1998-01-01

    Insect pests represent one of the main factors influencing the steady reduction in Thai cotton production over the last three decades. Misuse of insecticides has brought about profound changes in the composition of the entomo-fauna. Nowadays, farmers' ability to control pests through ecologically and economically sustainable practices is a prerequisite to enhance cotton production in Thailand. A systems approach, consisting of on-farm experiments and surveys, was aimed at investigating the op...

  13. Impacts of transgenic poplar-cotton agro-ecosystems upon target pests and non-target insects under field conditions.

    Science.gov (United States)

    Zhang, D J; Liu, J X; Lu, Z Y; Li, C L; Comada, E; Yang, M S

    2015-07-27

    Poplar-cotton agro-ecosystems are the main agricultural planting modes of cotton fields in China. With increasing acres devoted to transgenic insect-resistant poplar and transgenic insect-resistant cotton, studies examining the effects of transgenic plants on target and non-target insects become increasingly important. We systematically surveyed populations of both target pests and non-target insects for 4 different combinations of poplar-cotton eco-systems over 3 years. Transgenic Bt cotton strongly resisted the target insects Fall webworm moth [Hyphantria cunea (Drury)], Sylepta derogata Fabrieius, and American bollworm (Heliothis armigera), but no clear impact on non-target insect cotton aphids (Aphis gossypii). Importantly, intercrops containing transgenic Pb29 poplar significantly increased the inhibitory effects of Bt cotton on Fall webworm moth in ecosystem IV. Highly resistant Pb29 poplar reduced populations of the target pests Grnsonoma minutara Hubner and non-target insect poplar leaf aphid (Chaitophorus po-pulialbae), while Fall webworm moth populations were unaffected. We determined the effects of Bt toxin from transgenic poplar and cotton on target and non-target pests in different ecosystems of cotton-poplar intercrops and identified the synergistic effects of such combinations toward both target and non-target insects.

  14. Pest diagnosis and pesticide use by cotton growers of multan area and their and their occupational health

    International Nuclear Information System (INIS)

    Haq, Q.U.; Fareedi, I.A.; Iftkhar, N.

    2008-01-01

    Economy of Pakistan is based on exports of cotton and cotton products, and cotton-growing farmers are the vertebrae of Economical backbone of the country. Cotton growing farmers (male) involved in monitoring of quality and quantity of cotton crops by handsome usage of pesticides for better yield and marketing. To assess their knowledge for diagnosing the pests, attacking their crops and their orientation about the pesticide chemicals and their usage, study in hand was designed and conducted in 20 villages of district Multan selected by multistage random sampling technique. The selected 20 villages, from the list bearing the villages, mouzas and union councils of district Multan. 220 cotton growers were selected by simple random sampling technique and interviewed through a reliable and validated interview schedule. The data collected were processed through Statistical Package for Social Sciences (SPSS). The results showed that almost 71% of cotton growing farmers were in a position to diagnose the pests, damaging their cotton crops whereas; almost 29% of respondents had no pest diagnosis concept. The data showed that 75% of cotton growing farmers were having orientation about side effects of pesticide chemicals, whereas almost 94% of respondents were involved in pesticide using practices. (author)

  15. Mass rearing and augmentative biological control evaluation of Rhynocoris fuscipes (Hemiptera: Reduviidae) against multiple pests of cotton.

    Science.gov (United States)

    Tomson, Majesh; Sahayaraj, Kitherian; Kumar, Vivek; Avery, Pasco B; McKenzie, Cindy L; Osborne, Lance S

    2017-08-01

    Rhynocoris fuscipes (Fab.) (Hemiptera: Reduviidae) is a generalist predator of cotton pests and is commonly found inhabiting cotton-growing regions in southern India. With the goal of integrating this predator in standard management practices used against cotton pests on a commercial scale, (1) we developed a protocol for adult group rearing of this predator inside micro-environmental cages (MECs), and (2) we evaluated the biocontrol potential of mass-produced predators against cotton pests under potted and field conditions. Higher fecundity and adult longevity of R. fuscipes was recorded in the MECs than under natural growing conditions. The reduviid predator preferred stones and fallen leaves as hiding places in the MECs. The predator showed a higher biocontrol potential during the night hours against two pests, Phenacoccus solenopsis Tinsley and Dysdercus cingulatus (Fab.), than during the day under potted conditions. Under field conditions, R. fuscipes significantly reduced the population of Aphis gossypii Glover, P. solenopsis, D. cingulatus and Helicoverpa armigera (Hübner) by 28, 70, 29 and 50%, respectively. No negative impact of R. fuscipes was reported on other natural enemies present in the cotton agroecosystem. Significantly higher crop yield and cost benefit ratio were observed in R. fuscipes-released plots than in the control plots. The results suggest that R. fuscipes can be mass produced efficiently under controlled conditions in MECs, and used in an integrated management program for multiple cotton pests. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Performance of some transgenic cotton cultivars against insect pest complex, virus incidence and yield

    International Nuclear Information System (INIS)

    Babar, T.K.; Karar, H.; Hasnain, M.; Saleem, M.; Ali, A.

    2013-01-01

    Five cultivars of cotton i.e., IR4-NIBGE, IR5-NIBGE Bt-121, Sitara-10M and Sitara-11M were screened for resistance against insect pest complex and Cotton Leaf Curl Virus (CLCuV) incidence in the research area of Cotton Research Station, Multan. The result depicted that the most resistant variety against jassids was IR4-NIBGE and Sitara-11M whereas IR4-NIBGE showed the maximum resistance against whitefly infestation. The least susceptible variety to the infestation of thrips was Sitara-10M. The most susceptible variety to the prevalence of Red Cotton Bug (RCB) was IR4-NIBGE. The genotype Bt-121 showed the attack of spotted bollworm. The high population of Dusky Cotton Bug (DCB) was observed on Bt-121 throughout the season. The incidence of virus percentage increased with the passage of time; however, the variety IR5-NIBGE exhibited maximum level of tolerance. Variety Bt-121 gave the maximum yield i.e., 1852 kg per acre followed by IR5-NIBGE, Sitara-11M, Sitara-10M 1584, 1503, 1466 kg per acre respectively. Our results suggest that IR4-NIBGE and Sitara -11M are comparatively tolerant to jassids and whitefly which are the yield losing pest. So IR4-NIBGE and Sitara -11M varieties can be included in IPM programme for the management of these voracious pests. (author)

  17. Transgenic cotton coexpressing Vip3A and Cry1Ac has a broad insecticidal spectrum against lepidopteran pests.

    Science.gov (United States)

    Chen, Wen-Bo; Lu, Guo-Qing; Cheng, Hong-Mei; Liu, Chen-Xi; Xiao, Yu-Tao; Xu, Chao; Shen, Zhi-Cheng; Wu, Kong-Ming

    2017-10-01

    Although farmers in China have grown transgenic Bt-Cry1Ac cotton to resist the major pest Helicoverpa armigera since 1997 with great success, many secondary lepidopteran pests that are tolerant to Cry1Ac are now reported to cause considerable economic damage. Vip3AcAa, a chimeric protein with the N-terminal part of Vip3Ac and the C-terminal part of Vip3Aa, has a broad insecticidal spectrum against lepidopteran pests and has no cross resistance to Cry1Ac. In the present study, we tested insecticidal activities of Vip3AcAa against Spodoptera litura, Spodoptera exigua, and Agrotis ipsilon, which are relatively tolerant to Cry1Ac proteins. The bioassay results showed that insecticidal activities of Vip3AcAa against these three pests are superior to Cry1Ac, and after an activation pretreatment, Vip3AcAa retained insecticidal activity against S. litura, S. exigua and A. ipsilon that was similar to the unprocessed protein. The putative receptor for this chimeric protein in the brush border membrane vesicle (BBMV) in the three pests was also identified using biotinylated Vip3AcAa toxin. To broaden Bt cotton activity against a wider spectrum of pests, we introduced the vip3AcAa and cry1Ac genes into cotton. Larval mortality rates for S. litura, A. ipsilon and S. exigua that had fed on this new cotton increased significantly compared with larvae fed on non-Bt cotton and Bt-Cry1Ac cotton in a laboratory experiment. These results suggested that the Vip3AcAa protein is an excellent option for a "pyramid" strategy for integrated pest management in China. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Influence of cover crops on insect pests and predators in conservation tillage cotton.

    Science.gov (United States)

    Tillman, Glynn; Schomberg, Harry; Phatak, Sharad; Mullinix, Benjamin; Lachnicht, Sharon; Timper, Patricia; Olson, Dawn

    2004-08-01

    In fall 2000, an on-farm sustainable agricultural research project was established for cotton, Gossypium hirsutum L., in Tift County, Georgia. The objective of our 2-yr research project was to determine the impact of several cover crops on pest and predator insects in cotton. The five cover crop treatments included 1) cereal rye, Secale cereale L., a standard grass cover crop; 2) crimson clover, Trifolium incarnatum L., a standard legume cover crop; 3) a legume mixture of balansa clover, Trifolium michelianum Savi; crimson clover; and hairy vetch, Vicia villosa Roth; 4) a legume mixture + rye combination; and 5) no cover crop in conventionally tilled fields. Three main groups or species of pests were collected in cover crops and cotton: 1) the heliothines Heliothis virescens (F.) and Helicoverpa zea (Boddie); 2) the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois); and 3) stink bugs. The main stink bugs collected were the southern green stink bug, Nezara viridula (L.); the brown stink bug, Euschistus servus (Say); and the green stink bug, Acrosternum hilare (Say). Cotton aphids, Aphis gossypii Glover, were collected only on cotton. For both years of the study, the heliothines were the only pests that exceeded their economic threshold in cotton, and the number of times this threshold was exceeded in cotton was higher in control cotton than in crimson clover and rye cotton. Heliothine predators and aphidophagous lady beetles occurred in cover crops and cotton during both years of the experiment. Geocoris punctipes (Say), Orius insidiosus (Say), and red imported fire ant, Solenopsis invicta Buren were relatively the most abundant heliothine predators observed. Lady beetles included the convergent lady beetle, Hippodamia convergens Guérin-Méneville; the sevenspotted lady beetle, Coccinella septempunctata L.; spotted lady beetle, Coleomegilla maculata (DeGeer); and the multicolored Asian lady beetle, Harmonia axyridis (Pallas). Density of G. punctipes was

  19. Screening of broad spectrum natural pesticides against conserved target arginine kinase in cotton pests by molecular modeling.

    Science.gov (United States)

    Sakthivel, Seethalakshmi; Habeeb, S K M; Raman, Chandrasekar

    2018-03-12

    Cotton is an economically important crop and its production is challenged by the diversity of pests and related insecticide resistance. Identification of the conserved target across the cotton pest will help to design broad spectrum insecticide. In this study, we have identified conserved sequences by Expressed Sequence Tag profiling from three cotton pests namely Aphis gossypii, Helicoverpa armigera, and Spodoptera exigua. One target protein arginine kinase having a key role in insect physiology and energy metabolism was studied further using homology modeling, virtual screening, molecular docking, and molecular dynamics simulation to identify potential biopesticide compounds from the Zinc natural database. We have identified four compounds having excellent inhibitor potential against the identified broad spectrum target which are highly specific to invertebrates.

  20. Quantifying secondary pest outbreaks in cotton and their monetary cost with causal-inference statistics.

    Science.gov (United States)

    Gross, Kevin; Rosenheim, Jay A

    2011-10-01

    Secondary pest outbreaks occur when the use of a pesticide to reduce densities of an unwanted target pest species triggers subsequent outbreaks of other pest species. Although secondary pest outbreaks are thought to be familiar in agriculture, their rigorous documentation is made difficult by the challenges of performing randomized experiments at suitable scales. Here, we quantify the frequency and monetary cost of secondary pest outbreaks elicited by early-season applications of broad-spectrum insecticides to control the plant bug Lygus spp. (primarily L. hesperus) in cotton grown in the San Joaquin Valley, California, USA. We do so by analyzing pest-control management practices for 969 cotton fields spanning nine years and 11 private ranches. Our analysis uses statistical methods to draw formal causal inferences from nonexperimental data that have become popular in public health and economics, but that are not yet widely known in ecology or agriculture. We find that, in fields that received an early-season broad-spectrum insecticide treatment for Lygus, 20.2% +/- 4.4% (mean +/- SE) of late-season pesticide costs were attributable to secondary pest outbreaks elicited by the early-season insecticide application for Lygus. In 2010 U.S. dollars, this equates to an additional $6.00 +/- $1.30 (mean +/- SE) per acre in management costs. To the extent that secondary pest outbreaks may be driven by eliminating pests' natural enemies, these figures place a lower bound on the monetary value of ecosystem services provided by native communities of arthropod predators and parasitoids in this agricultural system.

  1. Using Trichogramma Westwood (Hymenoptera: Trichogrammatidae) for insect pest biological control in cotton crops: an Australian perspective

    Science.gov (United States)

    Trichogramma Westwood egg parasitoids alone generally fail to suppress heliothine pests when released in established cotton growing regions. Factors hindering their success include indiscriminate use of detrimental insecticides, compensation for minimal pest larval hatch due to their activity via re...

  2. Seed Treatment Combined with a Spot Application of Clothianidin Granules Prolongs the Efficacy of Controlling Piercing-Sucking Insect Pests in Cotton Fields.

    Science.gov (United States)

    Zhang, Zhengqun; Zhao, Yunhe; Wang, Yao; Li, Beixing; Lin, Jin; Zhang, Xuefeng; Mu, Wei

    2017-09-13

    Seed treatments can directly protect cotton from early season piercing-sucking insect Aphis gossypii Glover but hardly provide long-term protection against Apolygus lucorum (Meyer-Dür). Therefore, the efficacy of clothianidin seed treatments combined with spot applications of clothianidin granules at the bud stage of cotton was evaluated to control piercing-sucking pests during the entire cotton growing season. Clothianidin seed treatments (at the rate of 4 g ai/kg seed) combined with a clothianidin granular treatment (even at low rate of 0.9 kg ai/ha) at the bud stage can effectively suppress A. gossypii and A. lucorum infestations throughout the seedling and blooming stages after planting and can improve cotton yield. The spot application of clothianidin granules also reduced the population densities of Bemisia tabaci (Gennadius). The dynamic changes of clothianidin residues demonstrated that the control efficacy of clothianidin against A. gossypii and A. lucorum might be related to the residues of this neonicotinoid in cotton leaves. This pest management practice provided long-term protection against cotton piercing-sucking pests for the entire growing season of cotton plants and could supplement the short-term control efficiency of clothianidin used as a seed treatment.

  3. COMPARATIVE EFFICACY OF SYNTHETIC AND BOTANICAL INSECTICIDES AGAINST SUCKING INSECT PEST AND THEIR NATURAL ENEMIES ON COTTON CROP

    Directory of Open Access Journals (Sweden)

    M. A. Baker

    2016-08-01

    Full Text Available The Synthetic and botanical insecticides are relatively safer for environment and beneficial insects. The study was conducted in Rahim Yar Khan during the cotton cropping season 2014 to evaluate the comparative efficacy of two Synthetic insecticides i.e. Nitenpyram (Jasper 10% SL and Pyriproxyfen (Bruce 10.8% EC and two botanical extracts of Calotropic procera and Azadirachta indica, against sucking insect pest complex of cotton and their natural enemies. Upon reaching economic thresholds, the recommended field doses of all the insecticides were applied on cotton cultivar MNH-886. Data against sucking pests and their natural enemies was recorded 24 hours prior to insecticidal application and then 24, 48, 72 and 96 hours after insecticidal application. Results revealed that Nitenpyram was much toxic against sucking pests followed by Pyriproxyfen as compared to two botanical extracts. On the other hand, the synthetic insecticides did not prove safer for natural enemies as compared to botanical extracts. It was concluded that as an Integrated Pest Management (IPM strategy, botanical extracts can be used at low infestation levels so that ecosystem service of biological control may be sustained.

  4. Market forces and technological substitutes cause fluctuations in the value of bat pest-control services for cotton.

    Directory of Open Access Journals (Sweden)

    Laura López-Hoffman

    Full Text Available Critics of the market-based, ecosystem services approach to biodiversity conservation worry that volatile market conditions and technological substitutes will diminish the value of ecosystem services and obviate the "economic benefits" arguments for conservation. To explore the effects of market forces and substitutes on service values, we assessed how the value of the pest-control services provided by Mexican free-tailed bats (Tadarida brasiliensis mexicana to cotton production in the southwestern U.S. has changed over time. We calculated service values each year from 1990 through 2008 by estimating the value of avoided crop damage and the reduced social and private costs of insecticide use in the presence of bats. Over this period, the ecosystem service value declined by 79% ($19.09 million U.S. dollars due to the introduction and widespread adoption of Bt (Bacillus thuringiensis cotton transgenically modified to express its own pesticide, falling global cotton prices and the reduction in the number of hectares in the U.S. planted with cotton. Our results demonstrate that fluctuations in market conditions can cause temporal variation in ecosystem service values even when ecosystem function--in this case bat population numbers--is held constant. Evidence is accumulating, however, of the evolution of pest resistance to Bt cotton, suggesting that the value of bat pest-control services may increase again. This gives rise to an economic option value argument for conserving Mexican free-tailed bat populations. We anticipate that these results will spur discussion about the role of ecosystem services in biodiversity conservation in general, and bat conservation in particular.

  5. Market forces and technological substitutes cause fluctuations in the value of bat pest-control services for cotton

    Science.gov (United States)

    López-Hoffman, Laura; Wiederholt, Ruscena; Sansone, Chris; Bagstad, Kenneth J.; Cryan, Paul M.; Diffendorfer, James E.; Goldstein, Joshua; LaSharr, Kelsie; Loomis, John; McCracken, Gary; Medellin, Rodrigo A.; Russell, Amy; Semmens, Darius J.

    2014-01-01

    Critics of the market-based, ecosystem services approach to biodiversity conservation worry that volatile market conditions and technological substitutes will diminish the value of ecosystem services and obviate the “economic benefits” arguments for conservation. To explore the effects of market forces and substitutes on service values, we assessed how the value of the pest-control services provided by Mexican free-tailed bats (Tadarida brasiliensis mexicana) to cotton production in the southwestern U.S. has changed over time. We calculated service values each year from 1990 through 2008 by estimating the value of avoided crop damage and the reduced social and private costs of insecticide use in the presence of bats. Over this period, the ecosystem service value declined by 79% ($19.09 million U.S. dollars) due to the introduction and widespread adoption of Bt (Bacillus thuringiensis) cotton transgenically modified to express its own pesticide, falling global cotton prices and the reduction in the number of hectares in the U.S. planted with cotton. Our results demonstrate that fluctuations in market conditions can cause temporal variation in ecosystem service values even when ecosystem function – in this case bat population numbers – is held constant. Evidence is accumulating, however, of the evolution of pest resistance to Bt cotton, suggesting that the value of bat pest-control services may increase again. This gives rise to an economic option value argument for conserving Mexican free-tailed bat populations. We anticipate that these results will spur discussion about the role of ecosystem services in biodiversity conservation in general, and bat conservation in particular.

  6. Transcriptome analysis in cotton boll weevil (Anthonomus grandis and RNA interference in insect pests.

    Directory of Open Access Journals (Sweden)

    Alexandre Augusto Pereira Firmino

    Full Text Available Cotton plants are subjected to the attack of several insect pests. In Brazil, the cotton boll weevil, Anthonomus grandis, is the most important cotton pest. The use of insecticidal proteins and gene silencing by interference RNA (RNAi as techniques for insect control are promising strategies, which has been applied in the last few years. For this insect, there are not much available molecular information on databases. Using 454-pyrosequencing methodology, the transcriptome of all developmental stages of the insect pest, A. grandis, was analyzed. The A. grandis transcriptome analysis resulted in more than 500.000 reads and a data set of high quality 20,841 contigs. After sequence assembly and annotation, around 10,600 contigs had at least one BLAST hit against NCBI non-redundant protein database and 65.7% was similar to Tribolium castaneum sequences. A comparison of A. grandis, Drosophila melanogaster and Bombyx mori protein families' data showed higher similarity to dipteran than to lepidopteran sequences. Several contigs of genes encoding proteins involved in RNAi mechanism were found. PAZ Domains sequences extracted from the transcriptome showed high similarity and conservation for the most important functional and structural motifs when compared to PAZ Domains from 5 species. Two SID-like contigs were phylogenetically analyzed and grouped with T. castaneum SID-like proteins. No RdRP gene was found. A contig matching chitin synthase 1 was mined from the transcriptome. dsRNA microinjection of a chitin synthase gene to A. grandis female adults resulted in normal oviposition of unviable eggs and malformed alive larvae that were unable to develop in artificial diet. This is the first study that characterizes the transcriptome of the coleopteran, A. grandis. A new and representative transcriptome database for this insect pest is now available. All data support the state of the art of RNAi mechanism in insects.

  7. Transcriptome analysis in cotton boll weevil (Anthonomus grandis) and RNA interference in insect pests.

    Science.gov (United States)

    Firmino, Alexandre Augusto Pereira; Fonseca, Fernando Campos de Assis; de Macedo, Leonardo Lima Pepino; Coelho, Roberta Ramos; Antonino de Souza, José Dijair; Togawa, Roberto Coiti; Silva-Junior, Orzenil Bonfim; Pappas, Georgios Joannis; da Silva, Maria Cristina Mattar; Engler, Gilbert; Grossi-de-Sa, Maria Fatima

    2013-01-01

    Cotton plants are subjected to the attack of several insect pests. In Brazil, the cotton boll weevil, Anthonomus grandis, is the most important cotton pest. The use of insecticidal proteins and gene silencing by interference RNA (RNAi) as techniques for insect control are promising strategies, which has been applied in the last few years. For this insect, there are not much available molecular information on databases. Using 454-pyrosequencing methodology, the transcriptome of all developmental stages of the insect pest, A. grandis, was analyzed. The A. grandis transcriptome analysis resulted in more than 500.000 reads and a data set of high quality 20,841 contigs. After sequence assembly and annotation, around 10,600 contigs had at least one BLAST hit against NCBI non-redundant protein database and 65.7% was similar to Tribolium castaneum sequences. A comparison of A. grandis, Drosophila melanogaster and Bombyx mori protein families' data showed higher similarity to dipteran than to lepidopteran sequences. Several contigs of genes encoding proteins involved in RNAi mechanism were found. PAZ Domains sequences extracted from the transcriptome showed high similarity and conservation for the most important functional and structural motifs when compared to PAZ Domains from 5 species. Two SID-like contigs were phylogenetically analyzed and grouped with T. castaneum SID-like proteins. No RdRP gene was found. A contig matching chitin synthase 1 was mined from the transcriptome. dsRNA microinjection of a chitin synthase gene to A. grandis female adults resulted in normal oviposition of unviable eggs and malformed alive larvae that were unable to develop in artificial diet. This is the first study that characterizes the transcriptome of the coleopteran, A. grandis. A new and representative transcriptome database for this insect pest is now available. All data support the state of the art of RNAi mechanism in insects.

  8. Relative efficacy of some insecticides against the sucking insect pest complex of cotton

    International Nuclear Information System (INIS)

    Asif, M.U.; Muhammad, R.; Tofique, M.

    2016-01-01

    The comparative efficacy of some conventional and neonicotinoid insecticides for the management of sucking insect pests of cotton (whitefly, jassid and thrips) was determined. Six insecticides viz., Confidor 200 SL (imidacloprid) at the rate acre /sup -1/, Karate 1.5 EC (lambda cyhalothrin) at the rate 330 ml acre /sup -1/, Nockout 25 SP (nitenpyram) at the rate 100 gm acre /sup -1/, Polytrin-C 44 EC (profenofos+cypermethrin) at the rate 600 ml acre /sup -1/, Talstar 10 EC (bifenthrin) at the rate 250 ml acre /sup -1/ and Advantage 20 EC (carbosulfan) at the rate of 1000 ml acre /sup -1/ were sprayed twice in order to ascertain the reduction of the pests population on Sadori variety of cotton sown at experimental area of Nuclear Institute of Agriculture, Tandojam. All the tested insecticides caused significant reduction of whitefly, jassid and thrips at 24 hours, 72 hours and even 7 days after application. Imidacloprid followed by the nitenpyram proved to be most effective for bringing about a significant reduction in the populations of whitefly and thrips. Nitenpyram had the highest percentage reduction (73.80%) against jassid at 7th day after application but that was nonsignificantly different from imidacloprid(63.49%). Whereas, the conventional insecticides i.e. lambda cyhalothrin, profenofos+cypermethrin, bifenthrin and carbosulfan showed 57.93%, 52.38%, 47.61% and 42.06% reduction, respectively. Maximum extrapolated yield (2.99 tons ha /sup -1/) was also obtained in imidacloprid treated plots followed by nitenpyram (2.66 tons ha /sup -1/). Thus, these two insecticides were most effective for the sucking pests and in increasing seed cotton yield as compared to the conventional ones. (author)

  9. Response of the reduviid bug, Rhynocoris marginatus (Heteroptera: Reduviidae) to six different species of cotton pests

    DEFF Research Database (Denmark)

    Sahayaraj, Kitherian; Muthu Kumar, Subramanian; Enkegaard, Annie

    2016-01-01

    In Indian agro-ecosystems Rhynocoris marginatus (F.) is one of the most abundant predatory arthropods and feeds on a wide range of insect pests. We investigated the responses of R. marginatus to six species of cotton pests: Spodoptera litura (F.), Sylepta derogata (F.), Pericallia ricini (F.), My...

  10. Weakening density dependence from climate change and agricultural intensification triggers pest outbreaks: a 37-year observation of cotton bollworms.

    Science.gov (United States)

    Ouyang, Fang; Hui, Cang; Ge, Saiying; Men, Xin-Yuan; Zhao, Zi-Hua; Shi, Pei-Jian; Zhang, Yong-Sheng; Li, Bai-Lian

    2014-09-01

    Understanding drivers of population fluctuation, especially for agricultural pests, is central to the provision of agro-ecosystem services. Here, we examine the role of endogenous density dependence and exogenous factors of climate and human activity in regulating the 37-year population dynamics of an important agricultural insect pest, the cotton bollworm (Helicoverpa armigera), in North China from 1975 to 2011. Quantitative time-series analysis provided strong evidence explaining long-term population dynamics of the cotton bollworm and its driving factors. Rising temperature and declining rainfall exacerbated the effect of agricultural intensification on continuously weakening the negative density dependence in regulating the population dynamics of cotton bollworms. Consequently, ongoing climate change and agricultural intensification unleashed the tightly regulated pest population and triggered the regional outbreak of H. armigera in 1992. Although the negative density dependence can effectively regulate the population change rate to fluctuate around zero at stable equilibrium levels before and after outbreak in the 1992, the population equilibrium jumped to a higher density level with apparently larger amplitudes after the outbreak. The results highlight the possibility for exogenous factors to induce pest outbreaks and alter the population regulating mechanism of negative density dependence and, thus, the stable equilibrium of the pest population, often to a higher level, posing considerable risks to the provision of agro-ecosystem services and regional food security. Efficient and timely measures of pest management in the era of Anthropocene should target the strengthening and revival of weakening density dependence caused by climate change and human activities.

  11. Early warning of cotton bollworm resistance associated with intensive planting of Bt cotton in China.

    Directory of Open Access Journals (Sweden)

    Haonan Zhang

    Full Text Available Transgenic crops producing Bacillus thuringiensis (Bt toxins kill some key insect pests, but evolution of resistance by pests can reduce their efficacy. The predominant strategy for delaying pest resistance to Bt crops requires refuges of non-Bt host plants to promote survival of susceptible pests. To delay pest resistance to transgenic cotton producing Bt toxin Cry1Ac, farmers in the United States and Australia planted refuges of non-Bt cotton, while farmers in China have relied on "natural" refuges of non-Bt host plants other than cotton. Here we report data from a 2010 survey showing field-evolved resistance to Cry1Ac of the major target pest, cotton bollworm (Helicoverpa armigera, in northern China. Laboratory bioassay results show that susceptibility to Cry1Ac was significantly lower in 13 field populations from northern China, where Bt cotton has been planted intensively, than in two populations from sites in northwestern China where exposure to Bt cotton has been limited. Susceptibility to Bt toxin Cry2Ab did not differ between northern and northwestern China, demonstrating that resistance to Cry1Ac did not cause cross-resistance to Cry2Ab, and implying that resistance to Cry1Ac in northern China is a specific adaptation caused by exposure to this toxin in Bt cotton. Despite the resistance detected in laboratory bioassays, control failures of Bt cotton have not been reported in China. This early warning may spur proactive countermeasures, including a switch to transgenic cotton producing two or more toxins distinct from Cry1A toxins.

  12. Development of transgenic cotton lines expressing Allium sativum agglutinin (ASAL) for enhanced resistance against major sap-sucking pests.

    Science.gov (United States)

    Vajhala, Chakravarthy S K; Sadumpati, Vijaya Kumar; Nunna, Hariprasad Rao; Puligundla, Sateesh Kumar; Vudem, Dashavantha Reddy; Khareedu, Venkateswara Rao

    2013-01-01

    Mannose-specific Allium sativum leaf agglutinin encoding gene (ASAL) and herbicide tolerance gene (BAR) were introduced into an elite cotton inbred line (NC-601) employing Agrobacterium-mediated genetic transformation. Cotton transformants were produced from the phosphinothricin (PPT)-resistant shoots obtained after co-cultivation of mature embryos with the Agrobacterium strain EHA105 harbouring recombinant binary vector pCAMBIA3300-ASAL-BAR. PCR and Southern blot analysis confirmed the presence and stable integration of ASAL and BAR genes in various transformants of cotton. Basta leaf-dip assay, northern blot, western blot and ELISA analyses disclosed variable expression of BAR and ASAL transgenes in different transformants. Transgenes, ASAL and BAR, were stably inherited and showed co-segregation in T1 generation in a Mendelian fashion for both PPT tolerance and insect resistance. In planta insect bioassays on T2 and T3 homozygous ASAL-transgenic lines revealed potent entomotoxic effects of ASAL on jassid and whitefly insects, as evidenced by significant decreases in the survival, development and fecundity of the insects when compared to the untransformed controls. Furthermore, the transgenic cotton lines conferred higher levels of resistance (1-2 score) with minimal plant damage against these major sucking pests when bioassays were carried out employing standard screening techniques. The developed transgenics could serve as a potential genetic resource in recombination breeding aimed at improving the pest resistance of cotton. This study represents the first report of its kind dealing with the development of transgenic cotton resistant to two major sap-sucking insects.

  13. COMPARATIVE EFFICACY OF SYNTHETIC AND BOTANICAL INSECTICIDES AGAINST SUCKING INSECT PEST AND THEIR NATURAL ENEMIES ON COTTON CROP

    OpenAIRE

    M. A. Baker; A. H. Makhdum; M. Nasir; A. Imran; A. Ahmad; F. Tufail

    2016-01-01

    The Synthetic and botanical insecticides are relatively safer for environment and beneficial insects. The study was conducted in Rahim Yar Khan during the cotton cropping season 2014 to evaluate the comparative efficacy of two Synthetic insecticides i.e. Nitenpyram (Jasper 10% SL) and Pyriproxyfen (Bruce 10.8% EC) and two botanical extracts of Calotropic procera and Azadirachta indica, against sucking insect pest complex of cotton and their natural enemies. Upon reaching economic thresholds, ...

  14. Incidence of a New Pest, the Cotton Mealybug Phenacoccus solenopsis Tinsley, on Sesame in North Ethiopia

    Directory of Open Access Journals (Sweden)

    Zenawi Gebregergis

    2018-01-01

    Full Text Available Sesame (Sesamum indicum is one of the most important cash crops grown extensively for its seeds in Ethiopia. Production of sesame in the country is very crucial in many aspects, but the invasion of the cotton mealybug, Phenacoccus solenopsis Tinsley, is becoming a big deal in its production. A survey for mealybug infestation was conducted during 2016 production season in 15 localities of “Kafta Humera” district so as to assess the incidence and severity of the pest. In each locality 2 sesame farms have been selected and 6 samples per farm (2 samples from the road sides, 2 from camp surrounding, and 2 from the central part of the farms have been checked. During the survey, “Bowal” and “Sherif Hamad” have scored the higher incidence and severity of mealybugs. Road sides and camp surrounding of the farms were shown to have severe infestation. Stony and oxen plowed farms were also intensively invaded with cotton mealybugs. The pest has different natural means to infest new areas; thus its control measure has to be developing timely.

  15. Thwarting one of cotton's nemeses

    International Nuclear Information System (INIS)

    Senft, D.

    1991-01-01

    There's not much good to be said for the pink bollworm, cotton's most destructive pest, except that it is being controlled to cut crop damage. Scientists have developed strategies, such as increasing native populations of predatory insects and pest-resistant cotton varieties. Thanks to research, growers today can also use cultural practices such as early plowdown of harvested cotton to break up stalks and bury overwintering pink bollworms. And they can disrupt normal mating by releasing sterile insects and using copies of natural compounds, called pheromones, that the pink bollworm uses to attract mates. Such strategies, together with judicious use of insecticides, put together in various combinations, form what is called an integrated pest management system

  16. The impact of some environmental factors on the fecundity of phenacoccus solenopsis tinsley (hemiptera: pseudococcidae): a serious pest of cotton and other crops

    International Nuclear Information System (INIS)

    Abbas, G.; Arif, M.J.; Aslam, M.

    2010-01-01

    Phenacoccus solenopsis Tinsley (Hemiptera: Sternorrhyncha: Pseudococcidae) was first recorded on cultivated cotton from Texas, USA in 1991. Since 2005, this New World species has emerged as serious pest of cotton in Pakistan and India, and is now a serious threat to cotton in China and other cotton-growing countries worldwide. The species is polyphagous and invasive, and can attack many other economic crops. So far, it has been reported from 173 species in 54 plant families, and from 26 countries in different ecological zones. The study found that host plant species and meteorological conditions had significant effects, whereas locality had no significant effect on the fecundity of the mealybug. (author)

  17. Detecting mismatches in the phenology of cotton bollworm larvae and cotton flowering in response to climate change

    Science.gov (United States)

    Huang, Jian; Hao, HongFei

    2018-05-01

    Current evidence suggests that climate change has directly affected the phenology of many invertebrate species associated with agriculture. Such changes in phenology have the potential to cause temporal mismatches between predators and prey and may lead to a disruption in natural pest control ecosystem. Understanding the synchrony between pest insects and host plant responses to climate change is a key step to improve integrated pest management strategies. Cotton bollworm larvae damage cotton, and thus, data from Magaiti County, China, collected during the period of 1990-2015 were analyzed to assess the effects of climate change on cotton bollworm larvae and cotton flowering. The results showed that a warming climate advanced the phenology of cotton bollworm larvae and cotton flowering. However, the phenological rate of change was faster in cotton bollworm larvae than that in cotton flowering, and the larval period was prolonged, resulting in a great increase of the larval population. The abrupt phenological changes in cotton bollworm larvae occurred earlier than that in cotton, and the abrupt phenological changes in cotton flowering occurred earlier than that in larval abundance. However, the timing of abrupt changes in larval abundance all occurred later than that in temperature. Thus, the abrupt changes that occurred in larvae, cotton flowering and climate were asynchronous. The interval days between the cotton flowering date (CFD) and the half-amount larvae date (HLD) expanded by 3.41 and 4.41 days with a 1 °C increase of T mean in May and June, respectively. The asynchrony between cotton bollworm larvae and cotton flowering will likely broaden as the climate changes. The effective temperature in March and April and the end date of larvae (ED) were the primary factors affecting asynchrony.

  18. Detecting mismatches in the phenology of cotton bollworm larvae and cotton flowering in response to climate change.

    Science.gov (United States)

    Huang, Jian; Hao, HongFei

    2018-05-11

    Current evidence suggests that climate change has directly affected the phenology of many invertebrate species associated with agriculture. Such changes in phenology have the potential to cause temporal mismatches between predators and prey and may lead to a disruption in natural pest control ecosystem. Understanding the synchrony between pest insects and host plant responses to climate change is a key step to improve integrated pest management strategies. Cotton bollworm larvae damage cotton, and thus, data from Magaiti County, China, collected during the period of 1990-2015 were analyzed to assess the effects of climate change on cotton bollworm larvae and cotton flowering. The results showed that a warming climate advanced the phenology of cotton bollworm larvae and cotton flowering. However, the phenological rate of change was faster in cotton bollworm larvae than that in cotton flowering, and the larval period was prolonged, resulting in a great increase of the larval population. The abrupt phenological changes in cotton bollworm larvae occurred earlier than that in cotton, and the abrupt phenological changes in cotton flowering occurred earlier than that in larval abundance. However, the timing of abrupt changes in larval abundance all occurred later than that in temperature. Thus, the abrupt changes that occurred in larvae, cotton flowering and climate were asynchronous. The interval days between the cotton flowering date (CFD) and the half-amount larvae date (HLD) expanded by 3.41 and 4.41 days with a 1 °C increase of T mean in May and June, respectively. The asynchrony between cotton bollworm larvae and cotton flowering will likely broaden as the climate changes. The effective temperature in March and April and the end date of larvae (ED) were the primary factors affecting asynchrony.

  19. Review of the cotton market in Pakistan and its future prospects

    Directory of Open Access Journals (Sweden)

    Malik Tassawar Hussain

    2016-11-01

    Full Text Available Pakistan is the world’s 4th largest producer of cotton. Cultivation along the Indus River extends across nearly 3 million hectares and serves as the backbone of the economy. Despite this importance, information on the cotton sector in Pakistan, in particular with regard to cotton oils, is scanty and not available from a single source. This review seeks to remedy that gap. Though cultivated mainly for fiber, its kernel seed oil is also used as an edible vegetable oil and accounts for a large share of the local oil industry; per capita consumption of edible oils is nearly 14 kg, which is much higher than consumption in countries at similar levels of economic development. Pakistan fulfills 17.7% of its demand for edible oils through cottonseed oil. Total demand for this purpose in 2029–30 is estimated at 5.36 million tons of which local production will be 1.98 million tons. Genetically modified (Bt cotton was introduced in Pakistan in 2010 to control three deleterious lepidopterous insects; it now accounts for more than 85% of the cotton cultivated. There is good scope for organic cotton production in Pakistan, especially in non-traditional cotton growing areas where there is less insect pressure. High temperature and water scarcity associated with climate change are a major concern, since current cultivation takes place in areas that already experience extremely high temperatures.

  20. Genetic methods for area-wide management of Lepidopterous pests with emphasis on F1 sterility

    International Nuclear Information System (INIS)

    Ocampo, V.R.

    1996-01-01

    Enormous losses in the production and marketing of food and fiber are caused by larvae of Lepidoptera. Currently, large quantities of insecticides are used to combat these pests. Insecticide resistance, increasing concern over pesticide pollution, and the desire to effectively manage lepidopteran pests on an area-wide basis have motivated scientists to identify and develop new pest management tactics that are compatible with current IPM. Genetic methods have emerged as a promising control strategy for lepidopteran pests. Genetic control as a practical means of pest management was first successfully implemented by Knipling and colleagues in the USA during the 1960's with the sterile insect technique (SIT) program for the screwworm fly. SIT is not a readily adapted for use against Lepidoptera as against Diptera. Radiation-induced inherited sterility (or F 1 sterility) is generally considered the most promising genetic methods for large-scale suppression of lepidopteran populations. This papers discusses four genetic control methods that have been developed and the progress that has been made in integrating sterility with other IPM tactics. (author)

  1. Biological control of cotton aphid (Aphis gossypii Glover) in cotton (inter)cropping systems in China : a simulation study

    NARCIS (Netherlands)

    Xia, J.

    1997-01-01

    Cotton aphid ( Aphis gossypii Glover) is the key insect pest of seedling cotton ( Gossypium hirsutum L. ) in China, particularly in the North China cotton region. The resulting annual losses amount to 10-15% of the attainable yield. Sole reliance on

  2. The halo effect: suppression of pink bollworm on non-Bt cotton by Bt cotton in China.

    Directory of Open Access Journals (Sweden)

    Peng Wan

    Full Text Available In some previously reported cases, transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt have suppressed insect pests not only in fields planted with such crops, but also regionally on host plants that do not produce Bt toxins. Here we used 16 years of field data to determine if Bt cotton caused this "halo effect" against pink bollworm (Pectinophora gossypiella in six provinces of the Yangtze River Valley of China. In this region, the percentage of cotton hectares planted with Bt cotton increased from 9% in 2000 to 94% in 2009 and 2010. We found that Bt cotton significantly decreased the population density of pink bollworm on non-Bt cotton, with net decreases of 91% for eggs and 95% for larvae on non-Bt cotton after 11 years of Bt cotton use. Insecticide sprays targeting pink bollworm and cotton bollworm (Helicoverpa armigera decreased by 69%. Previously reported evidence of the early stages of evolution of pink bollworm resistance to Bt cotton in China has raised concerns that if unchecked, such resistance could eventually diminish or eliminate the benefits of Bt cotton. The results reported here suggest that it might be possible to find a percentage of Bt cotton lower than the current level that causes sufficient regional pest suppression and reduces the risk of resistance.

  3. Landscape crop composition effects on cotton yield, Lygus hesperus densities and pesticide use.

    Science.gov (United States)

    Meisner, Matthew H; Zaviezo, Tania; Rosenheim, Jay A

    2017-01-01

    Landscape crop composition surrounding agricultural fields is known to affect the density of crop pests, but quantifying these effects, as well as measuring how they translate to changes in yield, is difficult. Using a large dataset consisting of 1498 records of commercial cotton production in California between 1997 and 2008, we explored the relationship between landscape composition and cotton yield, the density of Lygus hesperus (a key cotton pest) at field-level and within-field spatial scales and pesticide use. We found that the crop composition immediately adjacent to a cotton field was associated with substantial differences in cotton yield, L. hesperus density and pesticide use. Furthermore, crops that tended to be associated with increased L. hesperus density also tended to be associated with increased pesticide use and decreased cotton yield. Our results suggest a possible mechanism by which landscape composition can affect cotton yield: by increasing the density of pests which in turn damage cotton plants. Our quantification of how surrounding crops affect pest densities, and in turn yield, in cotton fields has significant impacts for cotton farmers, who can use this information to help optimize crop selection and ranch layout. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. Indian Bt cotton varieties do not affect the performance of cotton aphids.

    Directory of Open Access Journals (Sweden)

    Nora C Lawo

    Full Text Available Cotton varieties expressing Cry proteins derived from the soil bacterium Bacillus thuringiensis (Bt are grown worldwide for the management of pest Lepidoptera. To prevent non-target pest outbreaks and to retain the biological control function provided by predators and parasitoids, the potential risk that Bt crops may pose to non-target arthropods is addressed prior to their commercialization. Aphids play an important role in agricultural systems since they serve as prey or host to a number of predators and parasitoids and their honeydew is an important energy source for several arthropods. To explore possible indirect effects of Bt crops we here examined the impact of Bt cotton on aphids and their honeydew. In climate chambers we assessed the performance of cotton aphids, Aphis gossypii Glover (Hemiptera: Aphididae when grown on three Indian Bt (Cry1Ac cotton varieties (MECH 12, MECH 162, MECH 184 and their non-transformed near isolines. Furthermore, we examined whether aphids pick up the Bt protein and analyzed the sugar composition of aphid honeydew to evaluate its suitability for honeydew-feeders. Plant transformation did not have any influence on aphid performance. However, some variation was observed among the three cotton varieties which might partly be explained by the variation in trichome density. None of the aphid samples contained Bt protein. As a consequence, natural enemies that feed on aphids are not exposed to the Cry protein. A significant difference in the sugar composition of aphid honeydew was detected among cotton varieties as well as between transformed and non-transformed plants. However, it is questionable if this variation is of ecological relevance, especially as honeydew is not the only sugar source parasitoids feed on in cotton fields. Our study allows the conclusion that Bt cotton poses a negligible risk for aphid antagonists and that aphids should remain under natural control in Bt cotton fields.

  5. Population Explosions of Tiger Moth Lead to Lepidopterism Mimicking Infectious Fever Outbreaks.

    Directory of Open Access Journals (Sweden)

    Pallara Janardhanan Wills

    Full Text Available Lepidopterism is a disease caused by the urticating scales and toxic fluids of adult moths, butterflies or its caterpillars. The resulting cutaneous eruptions and systemic problems progress to clinical complications sometimes leading to death. High incidence of fever epidemics were associated with massive outbreaks of tiger moth Asota caricae adult populations during monsoon in Kerala, India. A significant number of monsoon related fever characteristic to lepidopterism was erroneously treated as infectious fevers due to lookalike symptoms. To diagnose tiger moth lepidopterism, we conducted immunoblots for tiger moth specific IgE in fever patients' sera. We selected a cohort of patients (n = 155 with hallmark symptoms of infectious fevers but were tested negative to infectious fevers. In these cases, the total IgE was elevated and was detected positive (78.6% for tiger moth specific IgE allergens. Chemical characterization of caterpillar and adult moth fluids was performed by HPLC and GC-MS analysis and structural identification of moth scales was performed by SEM analysis. The body fluids and chitinous scales were found to be highly toxic and inflammatory in nature. To replicate the disease in experimental model, wistar rats were exposed to live tiger moths in a dose dependant manner and observed similar clinico-pathological complications reported during the fever epidemics. Further, to link larval abundance and fever epidemics we conducted cointegration test for the period 2009 to 2012 and physical presence of the tiger moths were found to be cointegrated with fever epidemics. In conclusion, our experiments demonstrate that inhalation of aerosols containing tiger moth fluids, scales and hairs cause systemic reactions that can be fatal to human. All these evidences points to the possible involvement of tiger moth disease as a major cause to the massive and fatal fever epidemics observed in Kerala.

  6. Insecticide use and practices among cotton farmers in northern ...

    African Journals Online (AJOL)

    Cotton (Gossypium hirsutum L.) is an important cash crop in Uganda. Insecticide application practices among cotton growers in northern Uganda were examined to determine the pests targeted and the compliance of control measures with the standards recommended by the Uganda's Cotton Development Organization ...

  7. Incorporating a Sorghum Habitat for Enhancing Lady Beetles (Coleoptera: Coccinellidae in Cotton

    Directory of Open Access Journals (Sweden)

    P. G. Tillman

    2012-01-01

    Full Text Available Lady beetles (Coleoptera: Coccinellidae prey on insect pests in cotton. The objective of this 2 yr on-farm study was to document the impact of a grain sorghum trap crop on the density of Coccinellidae on nearby cotton. Scymnus spp., Coccinella septempunctata (L., Hippodamia convergens Guérin-Méneville, Harmonia axyridis (Pallas, Coleomegilla maculata (De Geer, Cycloneda munda (Say, and Olla v-nigrum (Mulsant were found in sorghum over both years. Lady beetle compositions in sorghum and cotton and in yellow pyramidal traps were similar. For both years, density of lady beetles generally was higher on cotton with sorghum than on control cotton. Our results indicate that sorghum was a source of lady beetles in cotton, and thus incorporation of a sorghum habitat in farmscapes with cotton has great potential to enhance biocontrol of insect pests in cotton.

  8. Identification of top-down forces regulating cotton aphid population growth in transgenic Bt cotton in central China.

    Directory of Open Access Journals (Sweden)

    Peng Han

    Full Text Available The cotton aphid Aphis gossypii Glover is the main aphid pest in cotton fields in the Yangtze River Valley Cotton-planting Zone (YRZ in central China. Various natural enemies may attack the cotton aphid in Bt cotton fields but no studies have identified potential specific top-down forces that could help manage this pest in the YRZ in China. In order to identify possibilities for managing the cotton aphid, we monitored cotton aphid population dynamics and identified the effect of natural enemies on cotton aphid population growth using various exclusion cages in transgenic Cry1Ac (Bt+CpTI (Cowpea trypsin inhibitor cotton field in 2011. The aphid population growth in the open field (control was significantly lower than those protected or restricted from exposure to natural enemies in the various exclusion cage types tested. The ladybird predator Propylaea japonica Thunberg represented 65% of Coccinellidae predators, and other predators consisted mainly of syrphids (2.1% and spiders (1.5%. The aphid parasitoids Aphidiines represented 76.7% of the total count of the natural enemy guild (mainly Lysiphlebia japonica Ashmead and Binodoxys indicus Subba Rao & Sharma. Our results showed that P. japonica can effectively delay the establishment and subsequent population growth of aphids during the cotton growing season. Aphidiines could also reduce aphid density although their impact may be shadowed by the presence of coccinellids in the open field (likely both owing to resource competition and intraguild predation. The implications of these results are discussed in a framework of the compatibility of transgenic crops and top-down forces exerted by natural enemy guild.

  9. Transgenic cotton plants expressing Cry1Ia12 toxin confer resistance to fall armyworm (Spodoptera frugiperda and cotton boll weevil (Anthonomus grandis

    Directory of Open Access Journals (Sweden)

    Raquel Sampaio Oliveira

    2016-02-01

    Full Text Available Gossypium hirsutum (commercial cooton is one of the most economically important fibers sources and a commodity crop highly affected by insect pests and pathogens. Several transgenic approaches have been developed to improve cotton resistance to insect pests, through the transgenic expression of different factors, including Cry toxins, proteinase inhibitors, and toxic peptides, among others. In the present study, we developed transgenic cotton plants by fertilized floral buds injection (through the pollen-tube pathway technique using an DNA expression cassette harboring the cry1Ia12 gene, driven by CaMV35S promoter. The T0 transgenic cotton plants were initially selected with kanamycin and posteriorly characterized with PCR and Southern blot experiments to confirm the genetic transformation. Western blot and ELISA assays indicated the transgenic cotton plants with higher Cry1Ia12 protein expression levels to be further tested in the control of two major G. hirsutum insect pests. Bioassays with T1 plants revealed the Cry1Ia12 protein toxicity on Spodoptera frugiperda larvae, as evidenced by mortality up to 40% and a significant delay in the development of the target insects compared to untransformed controls (up to 30-fold. Also, a significant reduction of Anthonomus grandis emerging adults (up to 60% was observed when the insect larvae were fed on T1 floral buds. All the larvae and adult insect survivors on the transgenic lines were weaker and significantly smaller compared to the non-transformed plants. Therefore, this study provides GM cotton plant with simultaneous resistance against the Lepidopteran (S. frugiperda and the Coleopteran (A. grandis insect orders, and all data suggested that the Cry1Ia12 toxin could effectively enhance the cotton transgenic plants resistance to both insect pests.

  10. Transgenic Cotton Plants Expressing Cry1Ia12 Toxin Confer Resistance to Fall Armyworm (Spodoptera frugiperda) and Cotton Boll Weevil (Anthonomus grandis).

    Science.gov (United States)

    de Oliveira, Raquel S; Oliveira-Neto, Osmundo B; Moura, Hudson F N; de Macedo, Leonardo L P; Arraes, Fabrício B M; Lucena, Wagner A; Lourenço-Tessutti, Isabela T; de Deus Barbosa, Aulus A; da Silva, Maria C M; Grossi-de-Sa, Maria F

    2016-01-01

    Gossypium hirsutum (commercial cooton) is one of the most economically important fibers sources and a commodity crop highly affected by insect pests and pathogens. Several transgenic approaches have been developed to improve cotton resistance to insect pests, through the transgenic expression of different factors, including Cry toxins, proteinase inhibitors, and toxic peptides, among others. In the present study, we developed transgenic cotton plants by fertilized floral buds injection (through the pollen-tube pathway technique) using an DNA expression cassette harboring the cry1Ia12 gene, driven by CaMV35S promoter. The T0 transgenic cotton plants were initially selected with kanamycin and posteriorly characterized by PCR and Southern blot experiments to confirm the genetic transformation. Western blot and ELISA assays indicated the transgenic cotton plants with higher Cry1Ia12 protein expression levels to be further tested in the control of two major G. hirsutum insect pests. Bioassays with T1 plants revealed the Cry1Ia12 protein toxicity on Spodoptera frugiperda larvae, as evidenced by mortality up to 40% and a significant delay in the development of the target insects compared to untransformed controls (up to 30-fold). Also, an important reduction of Anthonomus grandis emerging adults (up to 60%) was observed when the insect larvae were fed on T1 floral buds. All the larvae and adult insect survivors on the transgenic lines were weaker and significantly smaller compared to the non-transformed plants. Therefore, this study provides GM cotton plant with simultaneous resistance against the Lepidopteran (S. frugiperda), and the Coleopteran (A. grandis) insect orders, and all data suggested that the Cry1Ia12 toxin could effectively enhance the cotton transgenic plants resistance to both insect pests.

  11. Transgenic Cotton Plants Expressing Cry1Ia12 Toxin Confer Resistance to Fall Armyworm (Spodoptera frugiperda) and Cotton Boll Weevil (Anthonomus grandis)

    Science.gov (United States)

    de Oliveira, Raquel S.; Oliveira-Neto, Osmundo B.; Moura, Hudson F. N.; de Macedo, Leonardo L. P.; Arraes, Fabrício B. M.; Lucena, Wagner A.; Lourenço-Tessutti, Isabela T.; de Deus Barbosa, Aulus A.; da Silva, Maria C. M.; Grossi-de-Sa, Maria F.

    2016-01-01

    Gossypium hirsutum (commercial cooton) is one of the most economically important fibers sources and a commodity crop highly affected by insect pests and pathogens. Several transgenic approaches have been developed to improve cotton resistance to insect pests, through the transgenic expression of different factors, including Cry toxins, proteinase inhibitors, and toxic peptides, among others. In the present study, we developed transgenic cotton plants by fertilized floral buds injection (through the pollen-tube pathway technique) using an DNA expression cassette harboring the cry1Ia12 gene, driven by CaMV35S promoter. The T0 transgenic cotton plants were initially selected with kanamycin and posteriorly characterized by PCR and Southern blot experiments to confirm the genetic transformation. Western blot and ELISA assays indicated the transgenic cotton plants with higher Cry1Ia12 protein expression levels to be further tested in the control of two major G. hirsutum insect pests. Bioassays with T1 plants revealed the Cry1Ia12 protein toxicity on Spodoptera frugiperda larvae, as evidenced by mortality up to 40% and a significant delay in the development of the target insects compared to untransformed controls (up to 30-fold). Also, an important reduction of Anthonomus grandis emerging adults (up to 60%) was observed when the insect larvae were fed on T1 floral buds. All the larvae and adult insect survivors on the transgenic lines were weaker and significantly smaller compared to the non-transformed plants. Therefore, this study provides GM cotton plant with simultaneous resistance against the Lepidopteran (S. frugiperda), and the Coleopteran (A. grandis) insect orders, and all data suggested that the Cry1Ia12 toxin could effectively enhance the cotton transgenic plants resistance to both insect pests. PMID:26925081

  12. Transgenic cotton expressing Cry10Aa toxin confers high resistance to the cotton boll weevil.

    Science.gov (United States)

    Ribeiro, Thuanne Pires; Arraes, Fabricio Barbosa Monteiro; Lourenço-Tessutti, Isabela Tristan; Silva, Marilia Santos; Lisei-de-Sá, Maria Eugênia; Lucena, Wagner Alexandre; Macedo, Leonardo Lima Pepino; Lima, Janaina Nascimento; Santos Amorim, Regina Maria; Artico, Sinara; Alves-Ferreira, Márcio; Mattar Silva, Maria Cristina; Grossi-de-Sa, Maria Fatima

    2017-08-01

    Genetically modified (GM) cotton plants that effectively control cotton boll weevil (CBW), which is the most destructive cotton insect pest in South America, are reported here for the first time. This work presents the successful development of a new GM cotton with high resistance to CBW conferred by Cry10Aa toxin, a protein encoded by entomopathogenic Bacillus thuringiensis (Bt) gene. The plant transformation vector harbouring cry10Aa gene driven by the cotton ubiquitination-related promoter uceA1.7 was introduced into a Brazilian cotton cultivar by biolistic transformation. Quantitative PCR (qPCR) assays revealed high transcription levels of cry10Aa in both T 0 GM cotton leaf and flower bud tissues. Southern blot and qPCR-based 2 -ΔΔCt analyses revealed that T 0 GM plants had either one or two transgene copies. Quantitative and qualitative analyses of Cry10Aa protein expression showed variable protein expression levels in both flower buds and leaves tissues of T 0 GM cotton plants, ranging from approximately 3.0 to 14.0 μg g -1 fresh tissue. CBW susceptibility bioassays, performed by feeding adults and larvae with T 0 GM cotton leaves and flower buds, respectively, demonstrated a significant entomotoxic effect and a high level of CBW mortality (up to 100%). Molecular analysis revealed that transgene stability and entomotoxic effect to CBW were maintained in T 1 generation as the Cry10Aa toxin expression levels remained high in both tissues, ranging from 4.05 to 19.57 μg g -1 fresh tissue, and the CBW mortality rate remained around 100%. In conclusion, these Cry10Aa GM cotton plants represent a great advance in the control of the devastating CBW insect pest and can substantially impact cotton agribusiness. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  13. Field inactivation of wild-type and genetically modified Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus in cotton

    NARCIS (Netherlands)

    Sun, X.; Sun, X.C.; Werf, van der W.; Vlak, J.M.; Hu, Z.H.

    2004-01-01

    Cotton bollworm (Helicoverpa armigera) is a serious pest on cotton in China. A specific baculovirus, H. armigera nucleopolyhedroviruses (HaSNPV) is used as a commercial biopesticide to control this pest. To improve the pesticidal properties, HaSNPV has been genetically engineered by both deleting

  14. Leaf tissue assay for lepidopteran pests of Bt cotton

    Science.gov (United States)

    Laboratory measurements of susceptibility to Bt toxins can be a poor indicator of the ability of an insect to survive on transgenic crops. We investigated the potential of using cotton leaf tissue for evaluating heliothine susceptibilities to two dual-gene Bt cottons. A preliminary study was conduct...

  15. Agriculture sows pests: how crop domestication, host shifts, and agricultural intensification can create insect pests from herbivores.

    Science.gov (United States)

    Bernal, Julio S; Medina, Raul F

    2018-04-01

    We argue that agriculture as practiced creates pests. We use three examples (Corn leafhopper, Dalbulus maidis; Western corn rootworm, Diabrotica virgifera virgifera; Cotton fleahopper, Pseudatomoscelis seriatus) to illustrate: firstly, how since its origins, agriculture has proven conducive to transforming selected herbivores into pests, particularly through crop domestication and spread, and agricultural intensification, and; secondly, that the herbivores that became pests were among those hosted by crop wild relatives or associates, and were pre-adapted either as whole species or component subpopulations. Two of our examples, Corn leafhopper and Western corn rootworm, illustrate how following a host shift to a domesticated host, emergent pests 'hopped' onto crops and rode expansion waves to spread far beyond the geographic ranges of their wild hosts. Western corn rootworm exemplifies how an herbivore-tolerant crop was left vulnerable when it was bred for yield and protected with insecticides. Cotton fleahopper illustrates how removing preferred wild host plants from landscapes and replacing them with crops, allows herbivores with flexible host preferences to reach pest-level populations. We conclude by arguing that in the new geological epoch we face, the Anthropocene, we can improve agriculture by looking to our past to identify and avoid missteps of early and recent farmers. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Genetic transformation of cry1EC gene into cotton ( Gossypium ...

    African Journals Online (AJOL)

    Cotton is the chief fibre crop of global importance. It plays a significant role in the national economy. Cotton crop is vulnerable to a number of insect species, especially to the larvae of lepidopteron pests. 60% insecticides sprayed on cotton are meant to control the damage caused by bollworm complex. Transgenic ...

  17. List of the Lepidopterous insects collected by Mr. A. G. Vorderman in the island of Billiton

    NARCIS (Netherlands)

    Snellen, P.C.T.

    1891-01-01

    Up to this day only a single information concerning the Lepidopterous fauna of the island of Billiton, situated between Sumatra and Borneo, was published (see: Godman, Salvin and Druce in Proceed. Zool. Soc. of London for 1878, p. 637, pl. 40). This communication was based upon a small collection

  18. Current status of genetic engineering in cotton (Gossypium hirsutum L): an assessment.

    Science.gov (United States)

    Chakravarthy, Vajhala S K; Reddy, Tummala Papi; Reddy, Vudem Dashavantha; Rao, Khareedu Venkateswara

    2014-06-01

    Cotton is considered as the foremost commercially important fiber crop and is deemed as the backbone of the textile industry. The productivity of cotton crop, worldwide, is severely hampered by the occurrence of pests, weeds, pathogens apart from various environmental factors. Several beneficial agronomic traits, viz., early maturity, improved fiber quality, heat tolerance, etc. have been successfully incorporated into cotton varieties employing conventional hybridization and mutation breeding. Crop losses, due to biotic factors, are substantial and may be reduced through certain crop protection strategies. In recent years, pioneering success has been achieved through the adoption of modern biotechnological approaches. Genetically engineered cotton varieties, expressing Bacillus thuringiensis cry genes, proved to be highly successful in controlling the bollworm complex. Various other candidate genes responsible for resistance to insect pests and pathogens, tolerance to major abiotic stress factors such as temperature, drought and salinity, have been introduced into cotton via genetic engineering methods to enhance the agronomic performance of cotton cultivars. Furthermore, genes for improving the seed oil quality and fiber characteristics have been identified and introduced into cotton cultivars. This review provides a brief overview of the various advancements made in cotton through genetic engineering approaches.

  19. Transgenic Cotton Plants Expressing Double-stranded RNAs Target HMG-CoA Reductase (HMGR) Gene Inhibits the Growth, Development and Survival of Cotton Bollworms.

    Science.gov (United States)

    Tian, Geng; Cheng, Linlin; Qi, Xuewei; Ge, Zonghe; Niu, Changying; Zhang, Xianlong; Jin, Shuangxia

    2015-01-01

    RNA interference (RNAi) has been developed as a powerful technique in the research of functional genomics as well as plant pest control. In this report, double-stranded RNAs (dsRNA) targeting 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) gene, which catalyze a rate-limiting enzymatic reaction in the mevalonate pathway of juvenile hormone (JH) synthesis in cotton bollworm, was expressed in cotton plants via Agrobacterium tumefaciens-mediated transformation. PCR and Sothern analysis revealed the integration of HMGR gene into cotton genome. RT-PCR and qRT-PCR confirmed the high transcription level of dsHMGR in transgenic cotton lines. The HMGR expression both in transcription and translation level was significantly downregulated in cotton bollworms (helicoverpa armigera) larvae after feeding on the leaves of HMGR transgenic plants. The transcription level of HMGR gene in larvae reared on transgenic cotton leaves was as much as 80.68% lower than that of wild type. In addition, the relative expression level of vitellogenin (Vg, crucial source of nourishment for offspring embryo development) gene was also reduced by 76.86% when the insect larvae were fed with transgenic leaves. The result of insect bioassays showed that the transgenic plant harboring dsHMGR not only inhibited net weight gain but also delayed the growth of cotton bollworm larvae. Taken together, transgenic cotton plant expressing dsRNAs successfully downregulated HMGR gene and impaired the development and survival of target insect, which provided more option for plant pest control.

  20. Radiation induced F1 sterility in the management of lepidopterous pests: concept, overview and prospects

    International Nuclear Information System (INIS)

    Harwalkar, M.R.

    1994-01-01

    The phenomenon of F1 or inherited sterility has been observed in a number of important pests which include Heliothis virescens, H. Zea, Trichoplusia ni etc.. Key findings that have advanced in the development of radiation sterilization technique are reviewed. 2 refs

  1. Evaluation of the Impact of Genetically Modified Cotton After 20 Years of Cultivation in Mexico

    Directory of Open Access Journals (Sweden)

    Martha G. Rocha-Munive

    2018-06-01

    Full Text Available For more than 20 years cotton has been the most widely sown genetically modified (GM crop in Mexico. Its cultivation has fulfilled all requirements and has gone through the different regulatory stages. During the last 20 years, both research-institutions and biotech-companies have generated scientific and technical information regarding GM cotton cultivation in Mexico. In this work, we collected data in order to analyze the environmental and agronomic effects of the use of GM cotton in Mexico. In 1996, the introduction of Bt cotton made it possible to reactivate this crop, which in previous years was greatly reduced due to pest problems, production costs and environmental concerns. Bt cotton is a widely accepted tool for cotton producers and has proven to be efficient for the control of lepidopteran pests. The economic benefits of its use are variable, and depend on factors such as the international cotton-prices and other costs associated with its inputs. So far, the management strategies used to prevent development of insect resistance to GM cotton has been successful, and there are no reports of insect resistance development to Bt cotton in Mexico. In addition, no effects have been observed on non-target organisms. For herbicide tolerant cotton, the prevention of herbicide resistance has also been successful since unlike other countries, the onset of resistance weeds is still slow, apparently due to cultural practices and rotation of different herbicides. Environmental benefits have been achieved with a reduction in chemical insecticide applications and the subsequent decrease in primary pest populations, so that the inclusion of other technologies—e.g., use of non-Bt cotton- can be explored. Nevertheless, control measures need to be implemented during transport of the bolls and fiber to prevent dispersal of volunteer plants and subsequent gene flow to wild relatives distributed outside the GM cotton growing areas. It is still necessary to

  2. Phylogeographic structure of cotton pest Adelphocoris suturalis (Hemiptera: Miridae): strong subdivision in China inferred from mtDNA and rDNA ITS markers

    OpenAIRE

    Zhang, Lijuan; Li, Hu; Li, Shujuan; Zhang, Aibing; Kou, Fei; Xun, Huaizhu; Wang, Pei; Wang, Ying; Song, Fan; Cui, Jianxin; Cui, Jinjie; Gouge, Dawn H.; Cai, Wanzhi

    2015-01-01

    Phylogeographic patterns of some extant plant and vertebrate species have been well studied; however, they are poorly understood in the majority of insects. The study documents analysis of mitochondrial (COI, CYTB and ND5) and nuclear (5.8S rDNA, ITS2 and 28S rDNA) data from 419 individuals of Adelphocoris suturalis, which is one of the main cotton pests found in the 31 locations in China and Japan involved in the study. Results show that the species is highly differentiated between populatio...

  3. [Characterization of the damage of Spodoptera eridania (Cramer) and Spodoptera cosmioides (Walker) (Lepidoptera: Noctuidae) to structures of cotton plants].

    Science.gov (United States)

    Santos, Karen B Dos; Meneguim, Ana M; Santos, Walter J Dos; Neves, Pedro M O J; Santos, Rachel B Dos

    2010-01-01

    The cotton plant, Gossypium hirsutum, hosts various pests that damage different structures. Among these pests, Spodoptera cosmioides (Walker) and Spodoptera eridania (Cramer) (Lepidoptera: Noctuidae) are considered important. The objectives of this study were to characterize and to quantify the potential damage of S. eridania and S. cosmioides feeding on different structures of cotton plants. For this purpose, newly-hatched larvae were reared on the following plant parts: leaf and flower bud; leaf and boll; flower bud or boll; and leaf, flower bud and boll. The survival of S. cosmioides and S. eridania was greater than 80% and 70% for larvae fed on cotton plant parts offered separately or together, respectively. One larva of S. eridania damaged 1.7 flower buds, but did not damage bolls, while one larva of S. cosmioides damaged 5.2 flower buds and 3.0 cotton bolls. Spodoptera eridania and S. cosmioides can be considered species with potential to cause economic damage to cotton plants because they can occur throughout cotton developmental stages causing defoliation and losses of reproductive structures. Therefore, the results validate field observations that these two species of Spodoptera are potential pests for cotton.

  4. The natural refuge policy for Bt cotton (Gossypium L. in Pakistan – a situation analysis

    Directory of Open Access Journals (Sweden)

    Muhammad Sajjad Ali

    2013-07-01

    Full Text Available Bt cotton (event Cry1Ac was formally commercialized in Pakistan in 2010. However, there has been an increasing trend of planting unauthorized Bt cotton germplasm in farmers' fields since 2003 with a high rate of adoption in the core cotton areas especially in the province Punjab. The transgenic cotton technology has provided the growers with substantial economic benefits and has reduced their dependence on pesticides for pest control, especially against Helicoverpa armigera (Hubner. However, keeping in view the capacity of this insect to develop resistance against novel chemical formulations, it is easily speculated that Bt toxin, too, is no exception. Refuge crop policy for mono transgenic crop events has helped in delaying the rate of resistance evolution in the target pests. Thus, in Pakistan, where planting of structured refuge crops along Bt cotton fields is not mandatory, the effectiveness and durability of Bt cotton technology may decrease due to a number of factors which are discussed in this review.

  5. Cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Rathore, Keerti S; Campbell, LeAnne M; Sherwood, Shanna; Nunes, Eugenia

    2015-01-01

    Cotton continues to be a crop of great economic importance in many developing and some developed countries. Cotton plants expressing the Bt gene to deter some of the major pests have been enthusiastically and widely accepted by the farmers in three of the major producing countries, i.e., China, India, and the USA. Considering the constraints related to its production and the wide variety of products derived from the cotton plant, it offers several target traits that can be improved through genetic engineering. Thus, there is a great need to accelerate the application of biotechnological tools for cotton improvement. This requires a simple, yet robust gene delivery/transformant recovery system. Recently, a protocol, involving large-scale, mechanical isolation of embryonic axes from germinating cottonseeds followed by direct transformation of the meristematic cells has been developed by an industrial laboratory. However, complexity of the mechanical device and the patent restrictions are likely to keep this method out of reach of most academic laboratories. In this chapter, we describe the method developed in our laboratory that has undergone further refinements and involves Agrobacterium-mediated transformation of cotton cells, selection of stable transgenic callus lines, and recovery of plants via somatic embryogenesis.

  6. Cotton genetic resources and crop vulnerability

    Science.gov (United States)

    A report on the genetic vulnerability of cotton was provided to the National Genetic Resources Advisory Council. The report discussed crop vulnerabilities associated with emerging diseases, emerging pests, and a narrowing genetic base. To address these crop vulnerabilities, the report discussed the ...

  7. Induced mutations for improvement of desi cotton

    International Nuclear Information System (INIS)

    Waghmare, V.N.; Mohan, Punit; Singh, Phundan; Gururajan, K.N.

    2000-01-01

    Desi cotton varieties of Gossypium arboreum have wide adaptability and are relatively tolerant to biotic (insect pests and diseases) and abiotic (moisture and salt) stresses. Desi varieties have got potential to yield even under adverse and low input situations. Most of them are synchronous in maturity and possess consistent fibre properties. Despite such merits, very little attention has been paid for improvement of desi cotton. The present area under arboreum varieties is 17.0% (15.30 lakh ha.) against 65% (35.75 lakh ha) during 1947-48. Deliberate attempts are required to improve G. arboreum for its economic and quality characters to compete with upland varieties in rainfed cotton ecology

  8. Field evaluation of Bt cotton crop impact on nontarget pests: cotton aphid and boll weevil.

    Science.gov (United States)

    Sujii, E R; Togni, P H B; de A Ribeiro, P; de A Bernardes, T; Milane, P V G N; Paula, D P; Pires, C S S; Fontes, E M G

    2013-02-01

    Bt cotton plants expressing Cry1Ac protein have high specificity for the control of lepidopteran larvae. However, studies conducted in several countries have shown these plants have a differential impact on nontarget herbivores. The aim of this study was to compare the colonization rates and population abundance of the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae) and the boll weevil, Anthonomus grandis Boheman (Coleoptera: Curculionidae), in plots of Bt (Nuopal) and non-Bt cotton (Delta Opal) in an experimental field in Brasilia, DF, Brazil. No difference was observed in the preference and colonization by winged aphids to plants from the two treatments. There was no significant difference in abundance of wingless aphids or in the production of winged aphids between treatments. Apparently, the parameters that control factors such as fecundity, survival, and dispersal were similar on both Bt and non-Bt plants. Monitoring of plants for coccinellids, a specialist predator of aphids, and ants that act on the dispersal of aphids among plants showed no significant difference between Bt and non-Bt plants, supporting the inference above. Regarding the effect on boll weevil, there was also no significant difference between treatments in the total number of fruiting structures attacked in each plot, the percentage of fruiting structures attacked per plant or on the number of weevils emerging from fruits with boll weevil damage from egg-laying, when damaged fruit samples were held in the laboratory. Based on these results, we conclude that there is no impact of Bt cotton crop expressing Cry1Ac on the nontarget herbivores tested under field conditions.

  9. Toxicity of seven foliar insecticides to four insect parasitoids attacking citrus and cotton pests.

    Science.gov (United States)

    Prabhaker, Nilima; Morse, J G; Castle, S J; Naranjo, S E; Henneberry, T J; Toscano, N C

    2007-08-01

    Laboratory studies were carried out to compare the toxicity of seven foliar insecticides to four species of adult beneficial insects representing two families of Hymenoptera: Aphelinidae (Aphytis melinus Debach, Eretmocerus eremicus Rose & Zolnerowich, and Encarsiaformosa Gahan) and Mymaridae (Gonatocerus ashmeadi Girault) that attack California red scale, Aonidiella aurantii (Maskell); sweetpotato whitefly, Bemisia tabaci (Gennadius) (both E. eremicus and E. formosa); and glassy-winged sharpshooter, Homalodisca vitripennis (Germar), respectively. Insecticides from four pesticide classes were evaluated using a petri dish bioassay technique across a range of concentrations to develop dosage-mortality regressions. Insecticides tested included acetamiprid (neonicotinoid); chlorpyrifos (organophosphate); bifenthrin, cyfluthrin, and fenpropathrin (pyrethroids); and buprofezin and pyriproxyfen (insect growth regulators [IGRs]). Chlorpyrifos was consistently the most toxic pesticide to all four species of beneficial insects tested based on LC50 values recorded 24 h posttreatment compared with 48-h LC50 values with the neonicotinoid and pyrethroids or 96 h with the IGRs. Among the three pyrethroids, fenpropathrin was usually less toxic (except similar toxicity to A. melinus) than was cyfluthrin, and it was normally less toxic (except similar toxicity with E. formosa) than was bifenthrin. Acetamiprid was generally less toxic than bifenthrin (except similar toxicity with G. ashmeadi). The IGRs buprofezin and pyriproxyfen were usually less toxic than the contact pesticides, but we did not test for possible impacts on female fecundity. For all seven pesticides tested, A. melinus was the most susceptible parasitoid of the four test species. The data presented here will provide pest managers with specific information on the compatibility of select insecticides with natural enemies attacking citrus and cotton, Gossypium hirsutum L., pests.

  10. Stink Bug Feeding Induces Fluorescence in Developing Cotton Bolls

    Directory of Open Access Journals (Sweden)

    Toews Michael D

    2011-08-01

    Full Text Available Abstract Background Stink bugs (Hemiptera: Pentatomidae comprise a critically important insect pest complex affecting 12 major crops worldwide including cotton. In the US, stink bug damage to developing cotton bolls causes boll abscission, lint staining, reduced fiber quality, and reduced yields with estimated losses ranging from 10 to 60 million dollars annually. Unfortunately, scouting for stink bug damage in the field is laborious and excessively time consuming. To improve scouting accuracy and efficiency, we investigated fluorescence changes in cotton boll tissues as a result of stink bug feeding. Results Fluorescent imaging under long-wave ultraviolet light showed that stink bug-damaged lint, the inner carpal wall, and the outside of the boll emitted strong blue-green fluorescence in a circular region near the puncture wound, whereas undamaged tissue emissions occurred at different wavelengths; the much weaker emission of undamaged tissue was dominated by chlorophyll fluorescence. We further characterized the optimum emission and excitation spectra to distinguish between stink bug damaged bolls from undamaged bolls. Conclusions The observed characteristic fluorescence peaks associated with stink bug damage give rise to a fluorescence-based method to rapidly distinguish between undamaged and stink bug damaged cotton bolls. Based on the fluorescent fingerprint, we envision a fluorescence reflectance imaging or a fluorescence ratiometric device to assist pest management professionals with rapidly determining the extent of stink bug damage in a cotton field.

  11. Toxicity of flonicamid to the cotton leafhopper, Amrasca biguttula (Ishida) is by disruption of ingestion, an EPG study

    Science.gov (United States)

    The cotton leafhopper, Amrasca biguttula (Ishida) (Hemiptera: Cicadellidae), is one of the most destructive pests of cotton in Asia. This species is thought to cause damage by injecting enzymatic saliva into various, presently unknown, cotton tissues and ingesting the resulting macerate. Flonicamid ...

  12. Effect of Iranian Bt cotton on life table of Bemisia tabaci (Hemiptera: Alyrodidae and Cry 1Ab detection in the whitefly honeydew

    Directory of Open Access Journals (Sweden)

    Solmaz Azimi

    2016-09-01

    Full Text Available Transgenic cotton expressing the Cry 1Ab protein of Bacillus thuringiensis developing against Helocoverpa armigera may be affect on secondary pest such as Bemisia tabaci. In this study effects of Bt cotton on demographic parameters of B. tabaci were assessed and the data analyzed using the age specific, two-sex life table parameters. Results showed that getting to the adulthood stage, was faster on non-Bt cotton in comparison with Bt cotton. Also the fecundity was higher on non-Bt cotton than that on Bt cotton. Some of the population parameters (r, R0 and T of B. tabaci were affected by the Bt cotton significantly. The intrinsic rate of increase (r on Bt and non-Bt cotton was 0.07 day-1 and 0.1 day-1 , respectively. The net reproductive rate (R0 was 20.68 and 15.04 offspring/individual on Bt and non-Bt cotton, respectively. Mean generation time (T in non-Bt cotton was 27.22 and 34.62 days in Bt cotton. The results indicated that the life history of B. tabaci in the laboratory condition was influenced by host plant quality and Bt cotton was not a suitable host for B. tabaci. The western immunoblot method showed that the Cry protein detection in honeydew was positive which indicated that the Cry protein was ingested. Results revealed that the transgenic cotton could adversely affect the secondary pest and the natural enemies which feed on such pests as a host or their honeydew as a food source should be considered.

  13. Gone with transgenic cotton cropping in the USA. A perception of the presentations and interactions at the Beltwide Cotton Conferences, New Orleans (Louisiana, USA, 4-7/01/2010

    Directory of Open Access Journals (Sweden)

    Fok, M.

    2011-01-01

    Full Text Available The 2010 Beltwide Cotton Conferences provided a new vision of the consequences of about 15 years of widespread and uncoordinated cropping of transgenic cotton in the United States. Insect-resistant and/or herbicide-tolerant cotton varieties modified parasite complexes, namely those of insects and weeds damaging cotton crops. The Conferences have revealed that the adaptation solutions so far proposed make illusory the expectations at the launch of transgenic cotton, in terms of effective pest control, cost reduction, and antagonism between chemical and biotech methods. The USA case points out that the technical and economic sustainability of transgenic varieties must lie in a systemic and coordinated approach.

  14. Agricultural production - Phase 2. Indonesia. Insect ecology studies and insect pest control

    International Nuclear Information System (INIS)

    Butt, B.

    1992-01-01

    This document reviews the activities of the Pest Control Research Group in Indonesia. Pests under study are the diamondback moth (Plutella xylostella), the rice stem borer (Chilo suppressalis), the sugar cane borer (Chilo auricilius), bean flies (Agromyza spp.), tobacco insects (Heliothis armigera and Spodoptera litura) and cotton insects, especially the pink bollworm

  15. Integrating immunomarking with ecological and behavioural approaches to assess predation of Helicoverpa spp. larvae by wolf spiders in cotton

    Science.gov (United States)

    Wolf spiders (Araneae: Lycosidae) are abundant soil-dwelling predators found in cotton fields and can contribute important pest management services. These spiders can kill and consume larvae of the cotton bollworm Helicoverpa spp. (Lepidoptera: Noctuidae) that survive foraging on Bt cotton and desce...

  16. Active optical sensor assessment of spider mite damage on greenhouse beans and cotton

    Science.gov (United States)

    The two-spotted spider mite, Tetranychus urticae Koch is an important pest of cotton in mid-southern United States and causes yield reduction, and deprivation in fiber fitness. A greenhouse colony of the spider mite was used to infest cotton and pinto beans at the three-leaf and trifoliate stages, r...

  17. Intraspecific Variability of Rotylenchulus reniformis from Cotton-growing Regions in the United States

    OpenAIRE

    Agudelo, Paula; Robbins, Robert T.; Stewart, James McD.; Szalanski, Allen L.

    2005-01-01

    Reniform nematode (Rotylenchulus reniformis) is a major pest of cotton in the southeastern United States. The objective of this study was to examine the variation of reniform nematode populations from cotton-growing locations in the United States where it is prevalent. Multivariate analysis of variance and discriminant analysis were used to determine the variability of morphology in males and immature females. Reproduction indices of populations were measured on selected soybean and cotton ge...

  18. The cotton mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae as a new menace to cotton in Egypt and its chemical control

    Directory of Open Access Journals (Sweden)

    El-Zahi El-Zahi Saber

    2016-04-01

    Full Text Available The cotton mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae is a polyphagous sap sucking insect with a wide geographical and host range causing severe losses in economically important crops. This study represents the first record of P. solenopsis as a new insect attacking cotton plants (Gossypium barbadense var. Giza 86 in Kafr El-Sheikh governorate, Egypt. The insect was noticed on cotton plants for the first time during its growing season of 2014. The mealybug specimens were collected from infested cotton plants and identified as P. solenopsis. In an attempt to control this pest, eight toxic materials viz., imidacloprid, thiamethoxam, flonicamid, emamectin-benzoate, chlorpyrifos, methomyl, deltamethrin and mineral oil (KZ-oil, belonging to different chemical groups, were tested for their influence against P. solenopsis on cotton under field conditions. Methomyl, imidacloprid, thiamethoxam and chlorpyrifos showed the highest efficacy against P. solenopsis recording 92.3 to 80.4% reduction of the insect population. Flonicamid, emamectin-benzoate and KZ-oil failed to exhibit sufficient P. solenopsis control.

  19. Characterization of the damage of Spodoptera eridania (Cramer) and Spodoptera cosmioides (Walker) (Lepidoptera: Noctuidae) to structures of cotton plants

    OpenAIRE

    Santos, Karen B dos; Meneguim, Ana M; Santos, Walter J dos; Neves, Pedro M O J; Santos, Rachel B dos

    2010-01-01

    The cotton plant, Gossypium hirsutum, hosts various pests that damage different structures. Among these pests, Spodoptera cosmioides (Walker) and Spodoptera eridania (Cramer) (Lepidoptera: Noctuidae) are considered important. The objectives of this study were to characterize and to quantify the potential damage of S. eridania and S. cosmioides feeding on different structures of cotton plants. For this purpose, newly-hatched larvae were reared on the following plant parts: leaf and flower bud;...

  20. Cotton proteomics for deciphering the mechanism of environment stress response and fiber development.

    Science.gov (United States)

    Zhou, Meiliang; Sun, Guoqing; Sun, Zhanmin; Tang, Yixiong; Wu, Yanmin

    2014-06-13

    Cotton fiber is considered as the backbone of the textile industry. The productivity of cotton crop is severely hampered by the occurrence of pathogens, pests, and various environmental factors. Nevertheless, cotton plant has developed sophisticated mechanisms to respond to environment stresses to avoid detrimental effects on its growth and development. Therefore, understanding the mechanisms of cotton fiber development and environment stress response is of considerable interest for designing agriculture breeding strategies to ensure sustainable productivity. The application of proteomics technologies to advance our knowledge in cotton fiber development and abiotic/biotic stress tolerance has increased dramatically in the last 5years as evidenced by the large amount of publications in this area. This review summarizes the work which has been reported for cotton proteomics and evaluates the findings in context of the approaches that are widely employed with the aim to generate novel insight useful for cotton improvement. Cotton (Gossypium spp.) is considered as the foremost commercially important fiber crop grown all over the world and is deemed as the backbone of the textile industry. Cotton is also an important source of edible oil seed and a nutrient-rich food crop as cottonseed contains high-quality protein and oil. The growth and productivity of cotton crop are often hampered by various biotic stress factors, such as insect pests and pathogens. In addition, cotton plants are frequently subjected to unavoidable environmental factors that cause abiotic stress, such as salt, heat and drought. Proteomic techniques provide one of the best options for understanding the gene function and phenotypic changes during cotton fiber development and stress response. This review first summarizes the work which has been reported for cotton proteomics about cotton fiber development and abiotic/biotic stress tolerance, and also evaluates the findings in context of the approaches

  1. Current situation of pests targeted by Bt crops in Latin America.

    Science.gov (United States)

    Blanco, C A; Chiaravalle, W; Dalla-Rizza, M; Farias, J R; García-Degano, M F; Gastaminza, G; Mota-Sánchez, D; Murúa, M G; Omoto, C; Pieralisi, B K; Rodríguez, J; Rodríguez-Maciel, J C; Terán-Santofimio, H; Terán-Vargas, A P; Valencia, S J; Willink, E

    2016-06-01

    Transgenic crops producing Bacillus thuringiensis- (Bt) insecticidal proteins (Bt crops) have provided useful pest management tools to growers for the past 20 years. Planting Bt crops has reduced the use of synthetic insecticides on cotton, maize and soybean fields in 11 countries throughout Latin America. One of the threats that could jeopardize the sustainability of Bt crops is the development of resistance by targeted pests. Governments of many countries require vigilance in measuring changes in Bt-susceptibility in order to proactively implement corrective measures before Bt-resistance is widespread, thus prolonging the usefulness of Bt crops. A pragmatic approach to obtain information on the effectiveness of Bt-crops is directly asking growers, crop consultants and academics about Bt-resistance problems in agricultural fields, first-hand information that not necessarily relies on susceptibility screens performed in laboratories. This type of information is presented in this report. Problematic pests of cotton and soybeans in five Latin American countries currently are effectively controlled by Bt crops. Growers that plant conventional (non-Bt) cotton or soybeans have to spray synthetic insecticides against multiple pests that otherwise are controlled by these Bt crops. A similar situation has been observed in six Latin American countries where Bt maize is planted. No synthetic insecticide applications are used to control corn pests because they are controlled by Bt maize, with the exception of Spodoptera frugiperda. While this insect in some countries is still effectively controlled by Bt maize, in others resistance has evolved and necessitates supplemental insecticide applications and/or the use of Bt maize cultivars that express multiple Bt proteins. Partial control of S. frugiperda in certain countries is due to its natural tolerance to the Bt bacterium. Of the 31 pests targeted and controlled by Bt crops in Latin America, only S. frugiperda has shown

  2. Improving food and agricultural production. Thailand. Breeding for resistance to diseases in cotton

    International Nuclear Information System (INIS)

    Wallace, T.P.

    1992-01-01

    This document reports the results of a 20-day mission to Thailand within the framework of the project ''Improving food and agricultural production with nuclear and related technology''. The expert discussed the status of cotton breeding, production practices and problems with personnel of the Department of Agriculture in Bangkok, and travelled to cotton-producing regions of the central and northern areas of the country to discuss current research, pest problems and social factors affecting cotton production

  3. Categorical likelihood method for combining NDVI and elevation information for cotton precision agricultural applications

    Science.gov (United States)

    This presentation investigates an algorithm to fuse the Normalized Difference Vegetation Index (NDVI) with LiDAR elevation data to produce a map useful for the site-specific scouting and pest management (Willers et al. 1999; 2005; 2009) of the cotton insect pests, the tarnished plant bug (Lygus lin...

  4. Transgenic Cotton Plants Expressing the HaHR3 Gene Conferred Enhanced Resistance to Helicoverpa armigera and Improved Cotton Yield.

    Science.gov (United States)

    Han, Qiang; Wang, Zhenzhen; He, Yunxin; Xiong, Yehui; Lv, Shun; Li, Shupeng; Zhang, Zhigang; Qiu, Dewen; Zeng, Hongmei

    2017-08-30

    RNA interference (RNAi) has been developed as an efficient technology. RNAi insect-resistant transgenic plants expressing double-stranded RNA (dsRNA) that is ingested into insects to silence target genes can affect the viability of these pests or even lead to their death. HaHR3 , a molt-regulating transcription factor gene, was previously selected as a target expressed in bacteria and tobacco plants to control Helicoverpa armigera by RNAi technology. In this work, we selected the dsRNA- HaHR3 fragment to silence HaHR3 in cotton bollworm for plant mediated-RNAi research. A total of 19 transgenic cotton lines expressing HaHR3 were successfully cultivated, and seven generated lines were used to perform feeding bioassays. Transgenic cotton plants expressing ds HaHR3 were shown to induce high larval mortality and deformities of pupation and adult eclosion when used to feed the newly hatched larvae, and 3rd and 5th instar larvae of H. armigera . Moreover, HaHR3 transgenic cotton also demonstrated an improved cotton yield when compared with controls.

  5. Evaluating cotton seed gland initiation by microscopy

    Science.gov (United States)

    Gossypol is a terpenoid aldehyde found in cotton (Gossypium hirsutum L.) glands and helps protect the seed from pests and pathogens. However, gossypol is toxic to many animals, so the seed is used mainly in cattle feed, as ruminants are tolerant to the effects of gossypol. In order to develop strat...

  6. Time course study of feeding damage to pin head cotton squares by Lygus hesperus (Hemiptera: Miridae)

    Science.gov (United States)

    Lygus hesperus (Hemiptera: Miridae) is an economically important pest affecting cotton crops in California. Lygus feeding causes abscission of cotton squares, with damage severity dependent on size of the square and life stage of the insect. Fifth instar nymphs are the most damaging stage; however, ...

  7. A categorical, improper probability method for combining NDVI and LiDAR elevation information for potential cotton precision agricultural applications

    Science.gov (United States)

    An algorithm is presented to fuse the Normalized Difference Vegetation Index (NDVI) with Light Detection and Ranging (LiDAR) elevation data to produce a map potentially useful for the site-specific scouting and pest management of several insect pests. In cotton, these pests include the Tarnished Pl...

  8. Population dynamics of caterpillars on three cover crops before sowing cotton in Mato Grosso (Brazil).

    Science.gov (United States)

    Silvie, P J; Menzel, C A; Mello, A; Coelho, A G

    2010-01-01

    Direct seeding mulch-based cropping systems under a preliminary cover crop such as millet are common in some areas of Brazil. Lepidopteran pests that damage cotton, soybean and maize crops can proliferate on cover crops, so preventive chemical treatments are necessary. Very little data is available on these pests on cover crops. This paper presents the dynamics of Spodoptera frugiperda, S. eridania, Mocis latipes and Diatraea saccharalis caterpillars monitored at Primavera do Leste, Mato Grosso state (Brazil) during the of 2005/2006 and 2006/2007 cropping seasons on four cover crops, i.e. finger millet (Eleusine coracana), pearl millet (Pennisetum glaucum), sorghum (Sorghum bicolor) and ruzigrass (Brachiaria ruziziensis). The pests were visually counted on plants within a 1 m2 transect (wooden frame). Caterpillars were reared to facilitate identification of collected species and parasitoids. Many S. frugiperda caterpillars were observed on millet in 2005, with a maximum of 37 caterpillars/m2. On sorghum, we found 30 caterpillars/m2, or 0.83 caterpillars/plant. The Diatraea borer attacked sorghum later than the other pests. M. latipes was also observed on millet. The millet cover crop had to be dried for at least 1 month before direct drilling the main cotton crop in order to impede S. frugiperda infestations on cotton plantlets, thus avoiding the need for substantial resowing. The comparative methodological aspects are discussed.

  9. Effects of soybean Kunitz trypsin inhibitor on the cotton boll weevil (Anthonomus grandis).

    Science.gov (United States)

    Franco, Octávio L; Dias, Simoni C; Magalhães, Claudio P; Monteiro, Ana C S; Bloch, Carlos; Melo, Francislete R; Oliveira-Neto, Osmundo B; Monnerat, Rose G; Grossi-de-Sá, Maria Fátima

    2004-01-01

    The cotton boll weevil, Anthonomus grandis, is an economically important pest of cotton in tropical and subtropical areas of several countries in the Americas, causing severe losses due to their damage in cotton floral buds. Enzymatic assays using gut extracts from larval and adult boll weevil have demonstrated the presence of digestive serine proteinase-like activities. Furthermore, in vitro assays showed that soybean Kunitz trypsin inhibitor (SKTI) was able to inhibit these enzymes. Previously, in vivo effects of black-eyed pea trypsin chymotrypsin inhibitor (BTCI) have been demonstrated towards the boll weevil pest. Here, when neonate larvae were reared on an artificial diet containing SKTI at three different concentrations, a reduction of larval weight of up to 64% was observed for highest SKTI concentration 500 microM. The presence of SKTI caused an increase in mortality and severe deformities of larvae, pupae and adult insects. This work therefore represents the first observation of a Kunitz trypsin inhibitor active in vivo and in vitro against A. grandis. Bioassays suggested that SKTI could be used as a tool in engineering crop plants, which might exhibit increased resistance against cotton boll weevil.

  10. SELECTIVITY OF INSECTICIDES TO PREDATORS OF PESTS COTTON PLANT SELETIVIDADE DE INSETICIDAS AOS PREDADORES DAS PRAGAS DO ALGODOEIRO

    Directory of Open Access Journals (Sweden)

    Julio Cezar Silveira Nunes

    2007-09-01

    Full Text Available

    The selectivity of insecticides for the complex of predators of the pests of cotton plant was evaluated in field experiment, in Goiânia- Goiás (Brazil, during the crop 1998/99. The experimental design was the randomized blocks with seven treatments and four repetitions (check, clorfluazuron, Bacillus thuringiensis, alanycarb, endosulfan and acephate in two amounts. The samplings were accomplished in beforeapplication, two days, seven and fourteen days after the treatment. For the obtained results (Henderson & Tilton, the products, in the decreasing order of selectivity, were: alanycarb, clorfluazuron, B. thuringiensis, endosulfan e acephate.

    KEY-WORDS: Insecta; insecticides; cotton plant; predators.

    A seletividade de inseticidas para o complexo das pragas do algodoeiro foi avaliada em experimento de campo, em Goiânia (GO, durante a safra 1998/99. O delineamento experimental foi em blocos ao acaso com sete tratamentos testemunha, clorfluazuron, B. thuringiensis, alanycarb, endosulfan e acephate em duas dosagens, em quatro repetições. As amostragens foram realizadas em pré-aplicação; aos dois, sete e quatorze dias após as pulverizações. Pelos resultados obtidos (fórmula de Herderson & Tilton, os produtos, na ordem decrescente de seletividade, foram: alanycarb, clorfluazuron, B. thuringiensis, endosulfan e acephate.

    PALAVRAS-CHAVE: Insecta; inseticidas; algodão; predadores.

  11. Diversity of arthropod community in transgenic poplar-cotton ecosystems.

    Science.gov (United States)

    Zhang, D J; Lu, Z Y; Liu, J X; Li, C L; Yang, M S

    2015-12-02

    Poplar-cotton agro-ecosystems are the main agricultural planting modes of plain cotton fields in China. Here, we performed a systematic survey of the diversity and population of arthropod communities in four different combination of poplar-cotton eco-systems, including I) non-transgenic poplar and non-transgenic cotton fields; II) non-transgenic poplar and transgenic cotton fields [Bacillus thuringiensis (Bt) cotton]; III) Bt transgenic poplar (high insect resistant strain Pb29) and non-transgenic cotton; and IV) transgenic poplar and transgenic cotton fields, over a period of 3 years. Based on the statistical methods used to investigate community ecology, the effects of transgenic ecosystems on the whole structure of the arthropod community, on the structure of arthropods in the nutritive layer, and on the similarity of arthropod communities were evaluated. The main results were as follows: the transgenic poplar-cotton ecosystem has a stronger inhibitory effect on insect pests and has no impact on the structure of the arthropod community, and therefore, maintains the diversity of the arthropod community. The character index of the community indicated that the structure of the arthropod community of the transgenic poplar-cotton ecosystem was better than that of the poplar-cotton ecosystem, and that system IV had the best structure. As for the abundance of nutritional classes, the transgenic poplar-cotton ecosystem was also better than that of the non-transgenic poplar-cotton ecosystem. The cluster analysis and similarity of arthropod communities between the four different transgenic poplar-cotton ecosystems illustrated that the structure of the arthropod community excelled in the small sample of the transgenic poplar-cotton ecosystems.

  12. Population growth and within-plant distribution of the striped mealybug Ferrisia virgata (Cockerell (Hemiptera, Pseudococcidae on cotton

    Directory of Open Access Journals (Sweden)

    Martin D. Oliveira

    2014-03-01

    Full Text Available Population growth and within-plant distribution of the striped mealybug Ferrisia virgata (Cockerell (Hemiptera, Pseudococcidae on cotton. The striped mealybug, Ferrisia virgata (Cockerell (Hemiptera, Pseudococcidae, is a widely distributed and polyphagous pest species, which naturally occurs on cotton plants in Brazil. This study evaluated the establishment and population growth as well as the within-plant distribution of F. virgata on four cotton cultivars: CNPA 7H (white fibers, BRS Verde, BRS Safira, and BRS Rubi (colored fibers. The experiment was conducted in a complete randomized design with four treatments (cultivars and 18 replications of each. Thus, cotton plants of each cultivar were infested with 100 newly hatched nymphs of F. virgata. The number of adult female mealybugs and the total number of mealybugs per plant were quantified, respectively, at 25 and 50 days after infestation. The developmental and pre-reproductive periods were also determined. Furthermore, we verified the distribution of F. virgata on the plant parts at 25 and 50 days after infestation. Ferrisia virgata showed similar growth of 412-fold in the four cotton cultivars studied. Also, the nymphs were spread on infested leaves; the secondgeneration nymphs were spread and established in all plant parts. Our results characterize F. virgata as having much potential as an important cotton pest in Brazil.

  13. Effect of Participatory Research on Farmers' Knowledge and Practice of IPM: The Case of Cotton in Benin

    Science.gov (United States)

    Togbé, Codjo Euloge; Haagsma, Rein; Aoudji, Augustin K. N.; Vodouhê, Simplice D.

    2015-01-01

    Purpose: This study assesses the effect of participatory research on farmers' knowledge and practice of Integrated Pest Management (IPM) in Benin. The participatory field experiments were carried out during the 2011-2012 cotton growing season, and focused on the development and application of pest management knowledge. Methodology: A…

  14. Spatial and temporal variation in fungal endophyte communities isolated from cultivated cotton (Gossypium hirsutum.

    Directory of Open Access Journals (Sweden)

    María J Ek-Ramos

    Full Text Available Studies of fungi in upland cotton (Gossypium hirsutum cultivated in the United States have largely focused on monitoring and controlling plant pathogens. Given increasing interest in asymptomatic fungal endophytes as potential biological control agents, surveys are needed to better characterize their diversity, distribution patterns and possible applications in integrated pest management. We sampled multiple varieties of cotton in Texas, USA and tested for temporal and spatial variation in fungal endophyte diversity and community composition, as well as for differences associated with organic and conventional farming practices. Fungal isolates were identified by morphological and DNA identification methods. We found members of the genera Alternaria, Colletotrichum and Phomopsis, previously isolated as endophytes from other plant species. Other recovered species such as Drechslerella dactyloides (formerly Arthrobotrys dactyloides and Exserohilum rostratum have not, to our knowledge, been previously reported as endophytes in cotton. We also isolated many latent pathogens, but some species such as Alternaria tennuissima, Epicoccum nigrum, Acremonium alternatum, Cladosporium cladosporioides, Chaetomium globosum and Paecilomyces sp., are known to be antagonists against plant pathogens, insects and nematode pests. We found no differences in endophyte species richness or diversity among different cotton varieties, but did detect differences over time and in different plant tissues. No consistent patterns of community similarity associated with variety, region, farming practice, time of the season or tissue type were observed regardless of the ecological community similarity measurements used. Results indicated that local fungal endophyte communities may be affected by both time of the year and plant tissue, but the specific community composition varies across sites. In addition to providing insights into fungal endophyte community structure, our survey

  15. Active optical sensor assessment of spider mite damage on greenhouse beans and cotton.

    Science.gov (United States)

    Martin, Daniel E; Latheef, Mohamed A

    2018-02-01

    The two-spotted spider mite, Tetranychus urticae Koch, is an important pest of cotton in mid-southern USA and causes yield reduction and deprivation in fiber fitness. Cotton and pinto beans grown in the greenhouse were infested with spider mites at the three-leaf and trifoliate stages, respectively. Spider mite damage on cotton and bean canopies expressed as normalized difference vegetation index indicative of changes in plant health was measured for 27 consecutive days. Plant health decreased incrementally for cotton until day 21 when complete destruction occurred. Thereafter, regrowth reversed decline in plant health. On spider mite treated beans, plant vigor plateaued until day 11 when plant health declined incrementally. Results indicate that pinto beans were better suited as a host plant than cotton for rearing T. urticae in the laboratory.

  16. The behavior of Aphis gossypii and Aphis craccivora (Hemiptera: Aphididae) and of their predator Cycloneda sanguinea (Coleoptera: Coccinellidae) in cotton-cowpea intercropping systems.

    Science.gov (United States)

    Fernandes, Francisco S; Godoy, Wesley A C; Ramalho, Francisco S; Malaquias, José B; Santos, Bárbara D B

    2018-01-01

    The intercropping is an important cultural practice commonly used in pest management. It is based on the principle that increased plant diversity in the agro-ecosystem can lead to reductions of pest populations in the crop. The current study aimed to assess the impact the colored fiber cotton-cowpea intercropped systems on Aphis gossypii and Aphis craccivora and on their predator Cycloneda sanguinea and the losses and the dispersion behavior of these aphids and their predator in these cropping systems. The experiment had a randomized block experimental design with two bioassays and four treatments. The number of apterous and alate aphids (A. gossypii) per cotton plant was 1.46 and 1.73 or 1.97 and 2.19 times highest in the solid cotton system than that found in the cotton-cowpea intercropped systems (S1) and (S2), respectively. On the other hand, the cotton-cowpea intercropped systems (S1 and S2) reduced, respectively, in 43% and 31% the number of apterousA. gossypiiper cotton plant compared to the control. Implementing cotton-cowpea intercropped system in the S1 scheme reduced A. gossypii infestation, favored the multiplication of C. sanguinea, and allowed obtaining heavier open bolls.

  17. Ecoinformatics reveals effects of crop rotational histories on cotton yield.

    Science.gov (United States)

    Meisner, Matthew H; Rosenheim, Jay A

    2014-01-01

    Crop rotation has been practiced for centuries in an effort to improve agricultural yield. However, the directions, magnitudes, and mechanisms of the yield effects of various crop rotations remain poorly understood in many systems. In order to better understand how crop rotation influences cotton yield, we used hierarchical Bayesian models to analyze a large ecoinformatics database consisting of records of commercial cotton crops grown in California's San Joaquin Valley. We identified several crops that, when grown in a field the year before a cotton crop, were associated with increased or decreased cotton yield. Furthermore, there was a negative association between the effect of the prior year's crop on June densities of the pest Lygus hesperus and the effect of the prior year's crop on cotton yield. This suggested that some crops may enhance L. hesperus densities in the surrounding agricultural landscape, because residual L. hesperus populations from the previous year cannot continuously inhabit a focal field and attack a subsequent cotton crop. In addition, we found that cotton yield declined approximately 2.4% for each additional year in which cotton was grown consecutively in a field prior to the focal cotton crop. Because L. hesperus is quite mobile, the effects of crop rotation on L. hesperus would likely not be revealed by small plot experimentation. These results provide an example of how ecoinformatics datasets, which capture the true spatial scale of commercial agriculture, can be used to enhance agricultural productivity.

  18. Ecoinformatics reveals effects of crop rotational histories on cotton yield.

    Directory of Open Access Journals (Sweden)

    Matthew H Meisner

    Full Text Available Crop rotation has been practiced for centuries in an effort to improve agricultural yield. However, the directions, magnitudes, and mechanisms of the yield effects of various crop rotations remain poorly understood in many systems. In order to better understand how crop rotation influences cotton yield, we used hierarchical Bayesian models to analyze a large ecoinformatics database consisting of records of commercial cotton crops grown in California's San Joaquin Valley. We identified several crops that, when grown in a field the year before a cotton crop, were associated with increased or decreased cotton yield. Furthermore, there was a negative association between the effect of the prior year's crop on June densities of the pest Lygus hesperus and the effect of the prior year's crop on cotton yield. This suggested that some crops may enhance L. hesperus densities in the surrounding agricultural landscape, because residual L. hesperus populations from the previous year cannot continuously inhabit a focal field and attack a subsequent cotton crop. In addition, we found that cotton yield declined approximately 2.4% for each additional year in which cotton was grown consecutively in a field prior to the focal cotton crop. Because L. hesperus is quite mobile, the effects of crop rotation on L. hesperus would likely not be revealed by small plot experimentation. These results provide an example of how ecoinformatics datasets, which capture the true spatial scale of commercial agriculture, can be used to enhance agricultural productivity.

  19. Weed hosts of cotton mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae).

    Science.gov (United States)

    Vennila, S; Prasad, Y G; Prabhakar, M; Agarwal, Meenu; Sreedevi, G; Bambawale, O M

    2013-03-01

    The exotic cotton mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) invaded India during 2006, and caused widespread infestation across all nine cotton growing states. P. solenopsis also infested weeds that aided its faster spread and increased severity across cotton fields. Two year survey carried out to document host plants of P. solenopsis between 2008 and 2010 revealed 27, 83, 59 and 108 weeds belonging to 8, 18, 10 and 32 families serving as alternate hosts at North, Central, South and All India cotton growing zones, respectively. Plant species of four families viz., Asteraceae, Amaranthaceae, Malvaceae and Lamiaceae constituted almost 50% of the weed hosts. While 39 weed species supported P. solenopsis multiplication during the cotton season, 37 were hosts during off season. Higher number of weeds as off season hosts (17) outnumbering cotton season (13) at Central over other zones indicated the strong carryover of the pest aided by weeds between two cotton seasons. Six, two and seven weed hosts had the extreme severity of Grade 4 during cotton, off and cotton + off seasons, respectively. Higher number of weed hosts of P. solenopsis were located at roadside: South (12) > Central (8) > North (3) zones. Commonality of weed hosts was higher between C+S zones, while no weed host was common between N+S zones. Paper furnishes the wide range of weed hosts of P. solenopsis, discusses their significance, and formulated general and specific cultural management strategies for nationwide implementation to prevent its outbreaks.

  20. Suppressing Resistance to Bt Cotton with Sterile Insect Releases

    Energy Technology Data Exchange (ETDEWEB)

    Tabashnik, B E [Department of Entomology, University of Arizona, Tucson, AZ (United States); Sisterson, M S [USDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, CA (United States); Ellsworth, P C [Department of Entomology, University of Arizona, Maricopa Agricultural Center, Maricopa, AZ (United States)

    2011-01-15

    Genetically engineered crops that produce insecticidal toxins from Bacillus thuringiensis (Bt) are grown widely for pest control. However, insect adaptation can reduce the toxins' efficacy. The predominant strategy for delaying pest resistance to Bt crops requires refuges of non-Bt host plants to provide susceptible insects to mate with resistant insects. Variable farmer compliance is one of the limitations of this approach. Here we report the benefits of an alternative strategy where sterile insects are released to mate with resistant insects and refuges are scarce or absent. Computer simulations show that this approach works in principle against pests with recessive or dominant inheritance of resistance. During a largescale, four-year field deployment of this strategy in Arizona, resistance of pink bollworm (Pectinophora gossypiella) to Bt cotton did not increase. A multitactic eradication program that included the release of sterile moths reduced pink bollworm abundance by >99%, while eliminating insecticide sprays against this key invasive pest. (author)

  1. Effects of 1,1-Dimethylpiperidinium Chloride on the Pests and Allelochemicals of Cotton and Pecan.

    Science.gov (United States)

    P. A. Hedin; J. N. Jenkins; J. C. McCarty; J. E. Mulrooney; W. L. Parrott; A. Borazjani; C. H. Graves; T. H. Filer

    1984-01-01

    The growth regulator, PIX (mepiquat chloride - 1,1-dimethyl-piperdinium chloride), when applied to cotton (Gossypium hirsutum L.) and pecan (Carya illinoensis Koch), caused internode shortening. PIX did not elicit an increase in resistance in cotton to the tobacco budworm (Heliothis virescens (Fab.)], or in pecan...

  2. Impact of Bollgard ® genetically modified cotton on the biodiversity ...

    African Journals Online (AJOL)

    Using cotton cultivars that express a gene of the Bacillus thuringiensis (Bt) bacterium producing a protein (Cry1Ac) with an insecticide effect on the Lepidoptera pests has made it possible to reduce the number of insecticide applications during the crop cycle. Thus, the objective was to determine, in the field during the ...

  3. Effects of nitrogen fertilization in cotton crop on Aphis gossypii Glover (Hemiptera: Aphididae) biology

    International Nuclear Information System (INIS)

    Barros, Ricardo; Degrande, Paulo E.; Fernandes, Marcos G.; Nogueira, Rodrigo F.

    2007-01-01

    The cotton aphid, Aphis gossypii Glove, is one of the pests of cotton crop and its relation with the host seem to depend on the amount of nitrogen available to the plant. The biology of A. gossypii using different cotton nitrogen fertility regimes was studied under greenhouse conditions, in Dourados, MS. A completely randomized design with nine replications in a factorial scheme (2x4x2)+1 was used. Two nitrogen sources (sulphate of ammonium and urea), four doses of nitrogen (50, 100, 150 and 200 kg ha-1), two different times of nitrogen application and one additional treatment without nitrogen were taken as factors. The nymphal phases, the pre-reproductive, reproductive and pos-reproductive periods, longevity, the life cycle and fecundity of the cotton aphid were evaluated. The doses of nitrogen influenced the cotton aphid biology in both sources and times of application, favoring its development and fecundity. (author)

  4. Preliminary list of the lepidopterous insects in the Arizona State University Hasbrouck Insect Collection

    Directory of Open Access Journals (Sweden)

    Sangmi Lee

    2014-03-01

    Full Text Available The Arizona State University Hasbrouck Insect Collection (ASUHIC is one of the vital Southwest Arthropod collections in America North of Mexico, providing important biological information. The principal objective of the Catalog is to give a complete list of the lepidopterous insects held in the ASUHIC. Furthermore, it will be an online catalog of the Lepidoptera of Arizona. The preliminary Lepidoptera checklist is presented, consisting of 1983 species and 175 subspecies of 55 families in approximately 60,000 holdings at the ASUHIC. This article follows the recent classification and nomenclature (Hodges RW. 1983. Check list of the Lepidoptera of America north of Mexico. London, UK: E.W. Classey Ltd. and the Wedge Entomological Research Foundation; Moth Photographers Group (MPG. 2014. http://mothphotographersgroup.msstate.edu/MainMenu.shtml.

  5. Employing in vitro directed molecular evolution for the selection of α-amylase variant inhibitors with activity toward cotton boll weevil enzyme.

    Science.gov (United States)

    da Silva, Maria Cristina Mattar; Del Sarto, Rafael Perseghini; Lucena, Wagner Alexandre; Rigden, Daniel John; Teixeira, Fabíola Rodrigues; Bezerra, Caroline de Andrade; Albuquerque, Erika Valéria Saliba; Grossi-de-Sa, Maria Fatima

    2013-09-20

    Numerous species of insect pests attack cotton plants, out of which the cotton boll weevil (Anthonomus grandis) is the main insect in Brazil and must be controlled to avert large economic losses. Like other insect pests, A. grandis secretes a high level of α-amylases in the midgut lumen, which are required for digestion of carbohydrates. Thus, α-amylase inhibitors (α-AIs) represent a powerful tool to apply in the control of insect pests. Here, we applied DNA shuffling and phage display techniques and obtained a combinatorial library containing 10⁸ α-AI variant forms. From this library, variants were selected exhibiting in vitro affinity for cotton boll weevil α-amylases. Twenty-six variant sequences were cloned into plant expression vectors and expressed in Arabidopsis thaliana. Transformed plant extracts were assayed in vitro to select specific and potent α-amylase inhibitors against boll weevil amylases. While the wild type inhibitors, used to create the shuffled library, did not inhibit the A. grandis α-amylases, three α-AI mutants, named α-AIC3, α-AIA11 and α-AIG4 revealed high inhibitory activities against A. grandis α-amylases in an in vitro assay. In summary, data reported here shown the potential biotechnology of new α-AI variant genes for cotton boll weevil control. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Spectral response of spider mite infested cotton: Mite density and miticide rate study

    Science.gov (United States)

    Two-spotted spider mites are important pests in many agricultural systems. Spider mites (Acari: Tetranychidae) have been found to cause economic damage in corn, cotton, and sorghum. Adult glass vial bioassays indicate that Temprano™ (abamectin) is the most toxic technical miticide for adult two-spot...

  7. Selection of Trichogramma for inundative biological control

    NARCIS (Netherlands)

    Pak, G.A.

    1988-01-01

    This thesis presents a study of the potential for biological control of lepidopterous pests on cabbage crops in the Netherlands, by means of inundative releases of the egg parasite Trichogramma (Hymenoptera, Trichogrammatidae). The objective of this study is to investigate the

  8. Compatibility of Two Systematic Neonicotinoids, Imidacloprid and Thiamethoxam with various Natural Enemies of Agricultural Pests.

    Science.gov (United States)

    Two systemic neonicotinoids, imidacloprid and thiamethoxam, are widely used for residual control of a number of insect pests in cotton, vegetables, and citrus. We evaluated their impact on six species of beneficial arthropods including four parasitoid species, Aphytis melinus Gonatocerus ashmeadi, ...

  9. Studies on the controlled release pesticide formulation for pest control in cotton using isotope technique

    International Nuclear Information System (INIS)

    Jamil, F.F.; Qureshi, M.J.; Naqvi, S.H.M.

    1989-06-01

    Cotton plants were treated with 14C-carbofuran, cold carbofuran formulation and granular carbofuran pesticides. Sampling of soil and formulation pieces from the field was done at the end of experiment. Data for insect attack was also recorded throughout the crop season. Cotton plants treated with cold carbofuran formulation and granular carbofuran, their soil samples and residual cold formulation pieces were analyzed by HPLC. (A.B)

  10. Improving control of duponchelia fovealis (Lepidoptera: Pyralidae) by rooting media related strategies

    NARCIS (Netherlands)

    Blok, C.; Messelink, G.J.

    2009-01-01

    Soil-dwelling predatory mites can be very effective as biological control agents against larvae of the lepidopteral pest Duponchelia fovealis. Some growing media were reported to have natural high level and stable populations of predatory mite. The objective of this experiment was to define

  11. Climate variability, perceptions and political ecology: Factors influencing changes in pesticide use over 30 years by Zimbabwean smallholder cotton producers.

    Science.gov (United States)

    Zinyemba, Cliff; Archer, Emma; Rother, Hanna-Andrea

    2018-01-01

    Pesticides represent a potential public health hazard of note in farming communities. Accumulating evidence indicates that some pesticides used in agriculture act as hormone disrupters, with the potential to result in chronic health effects. Despite such a growing evidence base, pesticides remain the preferred method of pest control in agriculture worldwide. In many parts of Sub-Saharan Africa, usage is on the increase. This qualitative study assessed changes in the usage of pesticides by Zimbabwean smallholder cotton farmers in the past 30 years. Farmers reported an increase in the usage of pesticides, specifically insecticides, since the early 1980s. An increase in pest populations was also reported. The findings suggested a bi-directional causal relationship between the increase in pest population and the increase in pesticide use. Factors which emerged to have collectively impacted on the changes include climate variability, limited agency on the part of farmers, power dynamics involving the government and private cotton companies and farmers' perceptions and practices. An Integrated Pest Management Policy for Zimbabwe is recommended to facilitate integration of chemical controls with a broad range of other pest control tactics. Continuous farmer education and awareness raising is further recommended, since farmers' perceptions can influence their practices.

  12. Systems for harvesting and handling cotton plant residue

    Energy Technology Data Exchange (ETDEWEB)

    Coates, W. [Univ. of Arizona, Tucson, AZ (United States)

    1993-12-31

    In the warmer regions of the United States, cotton plant residue must be buried to prevent it from serving as an overwintering site for insect pests such as the pink bollworm. Most of the field operations used to bury the residue are high energy consumers and tend to degrade soil structure, thereby increasing the potential for erosion. The residue is of little value as a soil amendment and consequently is considered a negative value biomass. A commercial system to harvest cotton plant residue would be of both economic and environmental benefit to cotton producers. Research has been underway at the University of Arizona since the spring of 1991 to develop a commercially viable system for harvesting cotton plant residue. Equipment durability, degree of densification, energy required, cleanliness of the harvested material, and ease of product handling and transport are some of the performance variables which have been measured. Two systems have proven superior. In both, the plants are pulled from the ground using an implement developed specifically for the purpose. In one system, the stalks are baled using a large round baler, while in the other the stalks are chopped with a forage harvester, and then made into packages using a cotton module maker. Field capacities, energy requirements, package density and durability, and ease of handling with commercially available equipment have been measured for both systems. Selection of an optimum system for a specific operation depends upon end use of the product, and upon equipment availability.

  13. Parasitoids of boll weevil Anthonomus grandis and resident predators in kaolin-treated cotton

    Directory of Open Access Journals (Sweden)

    Roberta Leme Santos

    2013-12-01

    Full Text Available Simultaneous use of control methods is essential to reach success in managing arthropod pests. The current study investigated the effect of kaolin application on resident predators in the cotton plant canopy and parasitism of boll weevil on abscised squares in the field, and parasitism of boll weevil in the laboratory. Predators Araneae, Formicidae, Chrysopidae, and Coccinellidae showed similar seasonal densities for kaolin-treated and untreated cotton fields as well as the emergence rate of the parasitoids Bracon vulgaris Ashmead (Hymenoptera: Braconidae and Catolaccus grandis Burks (Hymenoptera: Pteromalidae from abscised field-collected structures. Under laboratory conditions, the parasitism of boll weevil larvae infesting squares was similar when treated and untreated squares with kaolin were offered to the parasitoid under free choice test. Therefore, the results show that spraying cotton fields with kaolin does not affect the natural biological control by parasitoids of boll weevil and pink bollworm and resident predators naturally occurring in cotton fields.

  14. Pest Control Section Biochemical Group, Progress Report 1982-86

    International Nuclear Information System (INIS)

    1988-01-01

    Reserch efforts in the Pest Control Section, BARC, a continuator of insect sterilization and pest control section of the erstwhile Biology and Agriculture Division, were continued to develop integrated management practices for the control of important insect pests of agricultural and medical importance. Insect pests chosen are, ubiquitous potato tuberworm, a serious pest of potatoes, cotton bollworms with particular reference to spotted bollworms and a mosquito (Culex fatigans), a vector of filariasis. Keeping these insects as targets, research activities have been concentrated in the fields of biological control with parasities, pathogens and sterile insects, sex pheromones and insect plant interaction with a view to integrate pest management programme. Besides, the research activity also encompasses investigations of basic nature in the fields of insect sex pheromones, insect pathology and insect plant interaction. Studies on insect pheromones relate to the modifying influence of abiotic and biotic factors of the environment on pheromone production and perception and the possibility of insect developing resistance to pheromones. Studies in the field of insect plant interaction are directed towards identifying weak links in the insect plant relationship with a view to exploit them for developing control. Basic studies in the field of insect pathology relate to isolation and identification of entomopathogens, source of their pathogenecity, improvement in their virulence and formulation of cheaper and potent microbial insecticides. This report pertains to the period 1982-86. (Orig.). 11 tables, 5 figures

  15. 76 FR 37769 - Bayer CropScience LP; Availability of Petition, Plant Pest Risk Assessment, and Environmental...

    Science.gov (United States)

    2011-06-28

    ... glufosinate ammonium herbicide tolerance trait based on LibertyLink[reg] technology. TwinLink\\TM\\ cotton is... the herbicide glufosinate and resistant to several lepidopteran pests. The petition has been submitted... has been genetically engineered to be tolerant to the herbicide glufosinate and resistant to several...

  16. Cucumber Plants Baited with Methyl Salicylate Accelerates Scymnus (Pullus) sodalis (Coleoptera: Coccinellidae) Visiting to Reduce Cotton Aphid (Hemiptera: Aphididae) Infestation.

    Science.gov (United States)

    Dong, Y J; Hwang, S Y

    2017-10-01

    The cotton aphid, Aphis gossypii (Glover) (Hemiptera: Aphididae), is a major pest of many crops worldwide and a major cucumber plant pest in Taiwan. Because cotton aphids rapidly develop insecticide resistance and because of the insecticide residue problem, a safe and sustainable method is required to replace conventional chemical control methods. Methyl salicylate (MeSA), a herbivore-induced plant volatile, has been shown to affect aphids' behavior and attract the natural enemies of aphids for reducing their population. Therefore, this study examined the direct effects of MeSA on cotton aphids' settling preference, population development, and attractiveness to natural enemies. The efficiency of using MeSA and the commercial insecticide pymetrozine for reducing the cotton aphid population in laboratory and outdoor cucumber plant pot was also examined. The results showed no difference in winged aphids' settling preference and population development between the MeSA and blank treatments. Cucumber plants infested with cotton aphids and baited with 0.1% or 10% MeSA contained significantly higher numbers of the natural enemy of cotton aphids, namely Scymnus (Pullus) sodalis (Weise) (Coleoptera: Coccinellidae), and MeSA-treated cucumber plants contained a lower number of aphids. Significantly lower cotton aphid numbers were found on cucumber plants within a 10-m range of MeSA application. In addition, fruit yield showed no difference between the MeSA and pymetrozine treatments. According to our findings, 0.1% MeSA application can replace insecticides as a cotton aphid control tool. However, large-scale experiments are necessary to confirm its efficiency and related conservation biological control strategies before further use. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Potential use of a serpin from Arabidopsis for pest control.

    Directory of Open Access Journals (Sweden)

    Fernando Alvarez-Alfageme

    Full Text Available Although genetically modified (GM plants expressing toxins from Bacillus thuringiensis (Bt protect agricultural crops against lepidopteran and coleopteran pests, field-evolved resistance to Bt toxins has been reported for populations of several lepidopteran species. Moreover, some important agricultural pests, like phloem-feeding insects, are not susceptible to Bt crops. Complementary pest control strategies are therefore necessary to assure that the benefits provided by those insect-resistant transgenic plants are not compromised and to target those pests that are not susceptible. Experimental GM plants producing plant protease inhibitors have been shown to confer resistance against a wide range of agricultural pests. In this study we assessed the potential of AtSerpin1, a serpin from Arabidopsis thaliana (L. Heynh., for pest control. In vitro assays were conducted with a wide range of pests that rely mainly on either serine or cysteine proteases for digestion and also with three non-target organisms occurring in agricultural crops. AtSerpin1 inhibited proteases from all pest and non-target species assayed. Subsequently, the cotton leafworm Spodoptera littoralis Boisduval and the pea aphid Acyrthosiphon pisum (Harris were fed on artificial diets containing AtSerpin1, and S. littoralis was also fed on transgenic Arabidopsis plants overproducing AtSerpin1. AtSerpin1 supplied in the artificial diet or by transgenic plants reduced the growth of S. littoralis larvae by 65% and 38%, respectively, relative to controls. Nymphs of A. pisum exposed to diets containing AtSerpin1 suffered high mortality levels (LC(50 = 637 µg ml(-1. The results indicate that AtSerpin1 is a good candidate for exploitation in pest control.

  18. The moth Hylesia metabus and French Guiana lepidopterism: centenary of a public health concern

    Directory of Open Access Journals (Sweden)

    Jourdain F.

    2012-05-01

    Full Text Available The females of the moths Hylesia metabus have their abdomens covered by urticating hairs looking like micro-arrows and causing a puriginous dermatitis to humans known as “papillonite” in French Guiana and also called yellowtail moth dermatitis or Caripito itch. The densities of the moths show great seasonal and annual variations depending on mechanisms mostly unknown. When H. metabus infestations occur, numerous cases of dermatologic manifestations are reported from people living near the mangrove swamps where the moths are developing. One hundred years after the first “papillonite” epidemic reported from French Guiana in 1912, the data presented herein summarize the actual state of knowledge on H. metabus biology and ecology and on the lepidopterism. Some recommendations are proposed for the surveillance and warning systems of H. metabus infestations and to avoid contact with the moths. Research priorities are suggested to improve the control against this problem emerging between nuisance and public health.

  19. Correlation of EPG waveforms from Lygus lineolaris feeding on cotton squares and chemical evidence of inducible tannins

    Science.gov (United States)

    Probing behavior of Lygus lineolaris (Palisot de Beauvois), one of the most important pests affecting cotton production in mid-southern United States, has previously been characterized with electropenetrography (EPG). Cell rupturing (CR) and Ingestion (I) EPG waveforms were identified as two of the ...

  20. Suppression of jasmonic acid-dependent defense in cotton plant by the mealybug Phenacoccus solenopsis.

    Directory of Open Access Journals (Sweden)

    Pengjun Zhang

    Full Text Available The solenopsis mealybug, Phenacoccus solenopsis, has been recently recognized as an aggressively invasive pest in China, and is now becoming a serious threat to the cotton industry in the country. Thus, it is necessary to investigate the molecular mechanisms employed by cotton for defending against P. solenopsis before the pest populations reach epidemic levels. Here, we examined the effects of exogenous jasmonic acid (JA, salicylic acid (SA, and herbivory treatments on feeding behavior and on development of female P. solenopsis. Further, we compared the volatile emissions of cotton plants upon JA, SA, and herbivory treatments, as well as the time-related changes in gossypol production and defense-related genes. Female adult P. solenopsis were repelled by leaves from JA-treated plant, but were not repelled by leaves from SA-treated plants. In contrast, females were attracted by leaves from plants pre-infested by P. solenopsis. The diverse feeding responses by P. solenopsis were due to the difference in volatile emission of plants from different treatments. Furthermore, we show that JA-treated plants slowed P. solenopsis development, but plants pre-infested by P. solenopsis accelerated its development. We also show that P. solenopsis feeding inhibited the JA-regulated gossypol production, and prevented the induction of JA-related genes. We conclude that P. solenopsis is able to prevent the activation of JA-dependent defenses associated with basal resistance to mealybugs.

  1. Case Study: Trap Crop with Pheromone Traps for Suppressing Euschistus servus (Heteroptera: Pentatomidae in Cotton

    Directory of Open Access Journals (Sweden)

    P. G. Tillman

    2012-01-01

    Full Text Available The brown stink bug, Euschistus servus (Say, can disperse from source habitats, including corn, Zea mays L., and peanut, Arachis hypogaea L., into cotton, Gossypium hirsutum L. Therefore, a 2-year on-farm experiment was conducted to determine the effectiveness of a sorghum (Sorghum bicolor (L. Moench spp. bicolor trap crop, with or without Euschistus spp. pheromone traps, to suppress dispersal of this pest to cotton. In 2004, density of E. servus was lower in cotton fields with sorghum trap crops (with or without pheromone traps compared to control cotton fields. Similarly, in 2006, density of E. servus was lower in cotton fields with sorghum trap crops and pheromone traps compared to control cotton fields. Thus, the combination of the sorghum trap crop and pheromone traps effectively suppressed dispersal of E. servus into cotton. Inclusion of pheromone traps with trap crops potentially offers additional benefits, including: (1 reducing the density of E. servus adults in a trap crop, especially females, to possibly decrease the local population over time and reduce the overwintering population, (2 reducing dispersal of E. servus adults from the trap crop into cotton, and (3 potentially attracting more dispersing E. servus adults into a trap crop during a period of time when preferred food is not prevalent in the landscape.

  2. No evidence for change in oviposition behaviour of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) after widespread adoption of transgenic insecticidal cotton.

    Science.gov (United States)

    Zalucki, M P; Cunningham, J P; Downes, S; Ward, P; Lange, C; Meissle, M; Schellhorn, N A; Zalucki, J M

    2012-08-01

    Cotton growing landscapes in Australia have been dominated by dual-toxin transgenic Bt varieties since 2004. The cotton crop has thus effectively become a sink for the main target pest, Helicoverpa armigera. Theory predicts that there should be strong selection on female moths to avoid laying on such plants. We assessed oviposition, collected from two cotton-growing regions, by female moths when given a choice of tobacco, cotton and cabbage. Earlier work in the 1980s and 1990s on populations from the same geographic locations indicated these hosts were on average ranked as high, mid and low preference plants, respectively, and that host rankings had a heritable component. In the present study, we found no change in the relative ranking of hosts by females, with most eggs being laid on tobacco, then cotton and least on cabbage. As in earlier work, some females laid most eggs on cotton and aspects of oviposition behaviour had a heritable component. Certainly, cotton is not avoided as a host, and the implications of these finding for managing resistance to Bt cotton are discussed.

  3. Spatial Distribution of Adult Anthonomus grandis Boheman (Coleoptera: Curculionidae) and Damage to Cotton Flower Buds Due to Feeding and Oviposition.

    Science.gov (United States)

    Grigolli, J F J; Souza, L A; Fernandes, M G; Busoli, A C

    2017-08-01

    The cotton boll weevil Anthonomus grandis Boheman (Coleoptera: Curculionidae) is the main pest in cotton crop around the world, directly affecting cotton production. In order to establish a sequential sampling plan, it is crucial to understand the spatial distribution of the pest population and the damage it causes to the crop through the different developmental stages of cotton plants. Therefore, this study aimed to investigate the spatial distribution of adults in the cultivation area and their oviposition and feeding behavior throughout the development of the cotton plants. The experiment was conducted in Maracaju, Mato Grosso do Sul, Brazil, in the 2012/2013 and 2013/2014 growing seasons, in an area of 10,000 m 2 , planted with the cotton cultivar FM 993. The experimental area was divided into 100 plots of 100 m 2 (10 × 10 m) each, and five plants per plot were sampled weekly throughout the crop cycle. The number of flower buds with feeding and oviposition punctures and of adult A. grandis was recorded throughout the crop cycle in five plants per plot. After determining the aggregation indices (variance/mean ratio, Morisita's index, exponent k of the negative binomial distribution, and Green's coefficient) and adjusting the frequencies observed in the field to the distribution of frequencies (Poisson, negative binomial, and positive binomial) using the chi-squared test, it was observed that flower buds with punctures derived from feeding, oviposition, and feeding + oviposition showed an aggregated distribution in the cultivation area until 85 days after emergence and a random distribution after this stage. The adults of A. grandis presented a random distribution in the cultivation area.

  4. The improvement of cotton plant in mutation breeding dry climate areas at NTB

    International Nuclear Information System (INIS)

    Lilik Harsanti

    2015-01-01

    The opportunity of cotton plant to become a major crop in Indonesia is widely opened due to its extensive adaptability, productivity, efficiency of nutrient intake, and relatively resistant against pests and plant diseases. Generally, cotton plant is an important industrial crop in textile manufacture. Cotton plant has been known and planted for a long time ago by the local farmer, especially at Java, NTB and NTT. Plant mutation breeding have the mutant lines genetic for plant. The mutant lines of cotton plant, which originally come from embryogenic tissue culture (embryo axis, NIAB-999), were irradiated with dose of 20 Gy. Gamma Chamber 4000-A with source of 60 Cobalt was used for the irradiation treatment. The experiments were done at Citayam by designed by randomized Block design with five replications. Both of mutant lines were planted in the plot with size of 8 × 7 m 2 and 10 × 100 cm of spacing. Kanesia 15 variety was used as a control. The parameters observed were the days of maturity, plant height, number of generative branches, number of fruit/plant, weight of 100 cotton boll per plot. As the results, CN 2A has the biggest productivity, shown by the weight of the cotton fiber per plot, which is 447.510 kg compared to Kanesia 15 and NIAB 999 is control national and control mother. (author)

  5. Evaluation of selected acaricides against two-spotted spider mite (Acari: Tetranychidae) on greenhouse cotton using multispectral data

    Science.gov (United States)

    Two-spotted spider mite (TSSM), Tetranychus urticae (Koch), is an early season pest of cotton in the mid-southern United States and causes reduction in yield, fiber quality and impaired seed germination. Objectives of this study were to investigate the efficacy of abamectin and spiromesifen with two...

  6. PRODUCT NEEM AZAL T/S - BROAD-SPECTRUM PHYPOPESTICIDE FOR CONTROL OF PESTS ON VEGETABLE CROPS

    Directory of Open Access Journals (Sweden)

    Vinelina Yankova

    2016-09-01

    Full Text Available Experiments for determination of the effectiveness of product Neem Azal T/S (a. i. azadirachtin were conducted at a concentration of 0,3% against some major pests in vegetable crops grown in greenhouses at the Maritsa Vegetable Crops research Institute, Plovdiv during the period 2010-2016. It was established very good insecticidal and acaricidal action of phytopesticide against: cotton aphid (Aphis gossypii Glov.; green peach aphid (Myzus persicae Sulz.; western flower trips (Frankliniella occidentalis Perg.; cotton bollworm (Helicoverpa armigera Hubn.; tomato borer (Tuta absoluta Meyrick and two-spotted spider mite (Tetranichus urticae Koch.. This product is a successful alternative to using chemical insecticides and acaricides.

  7. LANDSCAPE CHANGES IN A LOWLAND IN BENIN: ECOLOGICAL IMPACT ON PESTS AND NATURAL ENEMIES.

    Science.gov (United States)

    Boucher, A; Silvie, P; Menozzi, P; Adda, C; Auzoux, S; Jean, J; Huat, J

    2015-01-01

    Habitat management involving conservative biological control could be a good crop pest management option in poor African countries. A survey was conducted from August 2013 to July 2014 in a rainfed lowland region near Pélébina, northern Benin, in order to characterize spatiotemporal landscape changes and investigate their influence on the main crop pests and their associated natural enemies. The area was mapped mainly regarding crop fields and fallows. Visual observations were recorded and a database was compiled. Major landscape composition changes were noted between rainy and dry seasons, which affected the presence of both pests and natural enemies. Cereals (rice, maize and sorghum) and cotton were grown in the humid season, and then okra (Abelmoschus esculentus) was the dominant vegetable crop in dry season. These modifications impacted fallow abundance throughout the lowland. Different cotton (e.g. Helicoverpa armigera, Dysdercus sp., Zonocerus variegatus) or rice (e.g. Diopsis longicornis, D. apicalis) pests were observed during dry season in okra crops. Dry season surveys of Poaceae in two types of fallows ('humid', 'dry') revealed the presence of very few stem borers: only 0.04% of stems sampled were infested by stem borers, with a mean of 1.13 larvae per stem. Known cereal stem borer species such as Busseola fusco, Coniesta ignefusalis, Sesamia calamistis were not clearly identified among these larvae because of their diapausing stage and white color. Unexpected pollinators (Hymenoptera Apidae, genus Braunsapis, Ceratina and Xylocopa) and predators (Crabronidae, genus Dasyproctus) were found in the stems. Sweep-net collection of insects in humid fallows allowed us to describe for the first time in Benin seven Diopsidae species (23% of adults bearing Laboulbeniomycetes ectoparasitic fungi). Some of these species were captured in rice fields during rainy season. Parasitoids (adult Chalcidoidae and Ichneumonoidae) were observed during both seasons but their

  8. Clomazone selectivity in cotton seeds treated with dietholate and zinc acetate

    Directory of Open Access Journals (Sweden)

    Miriam Hiroko Inoue

    2014-12-01

    Full Text Available The objective of this study objective was to evaluate the selectivity of pre-emergence applications the herbicide clomazone cotton seeds treated with dietholate and zinc acetate. The 4 x 2 factorial arrangement was adopted (4 seed treatment methods and 2 clomazone dosages, distributed in a randomized block design with 4 repetitions. In treatments where dietholate and zinc acetate were applied, rates of 0.4 kg ha-1 and 8 ml per kg of seeds were used respectively. The clomazone rates used refer to 0.8 and 1.0 kg ha- 1. The cotton cultivar used was the Fiber Max 966 LL. Independent of treatment, all seeds were treated with tiametoxam insecticide and fludioxonil + metalaxyl-M fungicide at rates of 2.24 and 0.08 + 0.03 g per kg of seed, respectively, to control pests early and limit losses caused by pathogens in germination and seedling emergence. Dietholate and zinc acetate treatment had greater initial effect on cotton plants at 21, 30 and 45 days after application. In phytointoxication symptoms were observed for treatment with dietholate and zinc acetate during the evaluation periods. Seeds treated with dietholate, dietholate and zinc acetate or zinc acetate alone provided a higher number of bolls and seed cotton production compared to the control.

  9. Gamma radiation for all phases of life cycle of cotton bollworm Helicoverpa armigera aiming at its control

    International Nuclear Information System (INIS)

    Haddad, Gianni Q.; Arthur, Valter

    2017-01-01

    Since the 1950s, scientists have used ionizing radiation to sterilize insects, which are released in nature to mate, but without any progeny. Known as the sterile insect technique (SIT), this insect control method traditionally uses ionizing radiations to sterilize insects, being a technique that does not generate residue, and can act in synergy with the other techniques within integrated pest management. For several years, Brazil has been fighting against the increase of pests, introducing new tactics and techniques within IPM programs, to overcome the resistance of chemical products, such as: reducing residues of pesticides. For some important crops of our country, we have a wide spectrum of pests occurring from beginning to end of the harvest, one of them is the cotton crop and among the key pests of this crop, we have some extremely important caterpillars among them Helicoverpa armigera. Due to this the objective this study was establishes doses of gamma radiation to sterilizing of the phases of : eggs, larvae, pupae and adults of H. armigera aiming their control. The experiment was carried out with application of gamma radiation from a Cobalt-60 source. The treatments consisted of doses of gamma radiation varying of according with the insect phase, being this variation of: 0 (control) to 400 Gy. The experiments with pupae and adult phases showed satisfactory results in the sterilization of H. armigera for use in autocide control programs. The sterilize dose to adult and pupae phase were 400 Gy and 100 Gy respectively, being the best doses for the application of the sterile insect technique to this pest in cotton. (author)

  10. Gamma radiation for all phases of life cycle of cotton bollworm Helicoverpa armigera aiming at its control

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Gianni Q.; Arthur, Valter, E-mail: ghaddad2001@yahoo.com.br, E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Laboratório de Radiobiologia e Ambiente; Machi, André R., E-mail: rica_machi@hotmail.com [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Since the 1950s, scientists have used ionizing radiation to sterilize insects, which are released in nature to mate, but without any progeny. Known as the sterile insect technique (SIT), this insect control method traditionally uses ionizing radiations to sterilize insects, being a technique that does not generate residue, and can act in synergy with the other techniques within integrated pest management. For several years, Brazil has been fighting against the increase of pests, introducing new tactics and techniques within IPM programs, to overcome the resistance of chemical products, such as: reducing residues of pesticides. For some important crops of our country, we have a wide spectrum of pests occurring from beginning to end of the harvest, one of them is the cotton crop and among the key pests of this crop, we have some extremely important caterpillars among them Helicoverpa armigera. Due to this the objective this study was establishes doses of gamma radiation to sterilizing of the phases of : eggs, larvae, pupae and adults of H. armigera aiming their control. The experiment was carried out with application of gamma radiation from a Cobalt-60 source. The treatments consisted of doses of gamma radiation varying of according with the insect phase, being this variation of: 0 (control) to 400 Gy. The experiments with pupae and adult phases showed satisfactory results in the sterilization of H. armigera for use in autocide control programs. The sterilize dose to adult and pupae phase were 400 Gy and 100 Gy respectively, being the best doses for the application of the sterile insect technique to this pest in cotton. (author)

  11. Vitellogenin knockdown strongly affects cotton boll weevil egg viability but not the number of eggs laid by females.

    Science.gov (United States)

    Coelho, Roberta R; de Souza Júnior, José Dijair Antonino; Firmino, Alexandre A P; de Macedo, Leonardo L P; Fonseca, Fernando C A; Terra, Walter R; Engler, Gilbert; de Almeida Engler, Janice; da Silva, Maria Cristina M; Grossi-de-Sa, Maria Fatima

    2016-09-01

    Vitellogenin (Vg), a yolk protein precursor, is the primary egg nutrient source involved in insect reproduction and embryo development. The Cotton Boll weevil (CBW) Anthonomus grandis Boheman, the most important cotton pest in Americas, accumulates large amounts of Vg during reproduction. However, the precise role of this protein during embryo development in this insect remains unknown. Herein, we investigated the effects of vitellogenin (AgraVg) knockdown on the egg-laying and egg viability in A. grandis females, and also characterized morphologically the unviable eggs. AgraVg transcripts were found during all developmental stages of A. grandis, with highest abundance in females. Silencing of AgraVg culminated in a significant reduction in transcript amount, around 90%. Despite this transcriptional reduction, egg-laying was not affected in dsRNA-treated females but almost 100% of the eggs lost their viability. Eggs from dsRNA-treated females showed aberrant embryos phenotype suggesting interference at different stages of embryonic development. Unlike for other insects, the AgraVg knockdown did not affect the egg-laying ability of A. grandis, but hampered A. grandis reproduction by perturbing embryo development. We concluded that the Vg protein is essential for A. grandis reproduction and a good candidate to bio-engineer the resistance against this devastating cotton pest.

  12. Screening of cotton (gossypium hirsutum l.) genotypes for heat tolerance

    International Nuclear Information System (INIS)

    Abro, S.; Khan, M.A.; Sial, M.A.

    2015-01-01

    Cotton yield is highly affected due to biotic (diseases and pests) and abiotic (heat, dought and salinity) Stresses. Among them, high temperature is the main environmental constraint which adversely reduces cotton yield and quality. High temperature above 36 degree C affects plant growth and development especially during reproductive phase. Present studies were carried out to assess the tolerance of fifty-eight newly evolved cotton genotypes to heat stresses, based on agronomic and physiological characteristics. The genotypes were screened in field conditions under two temperature regimes. The studies were conducted at experimental farm of Nuclear Institute of Agriculture, Tando Jam, Pakistan. The results showed that March sown crop experienced high temperature (i.e. > 44 degree C in May and June), which significantly affected crop growth and productivity. The genotypes were identified as heat-tolerant on the basis of relative cell injury percentage (RCI %), heat susceptibility index (HSI) values, boll retention and seed cotton yield (kg/ha). RCI level in cotton genotypes ranged from 39.0 to 86.0%. Out of 58, seventeen genotypes (viz.NIA-80, NIA-81, NIA-83, NIA-84, NIA-M-30, NIA-M31, NIA-HM-48, NIA-HM-327, NIA-H-32, NIA-HM-2-1, NIA-Bt1, NIA-Bt2, NIA-Perkh, CRIS-342, CRIS-134, NIAB-111 and check variety Sadori indicated high level of heat tolerance at both (heat-stressed and non-stressed) temperature regimes; as shown the lowest relative injury level and relatively heat resistant index (HSI<1) values. Such genotypes could be used as heattolerant genotypes under heat-stressed environments. (author)

  13. Natural products to agro-ecological pest management and their natural enemies of cotton plant intercropped with maize, cowpea and sesame = Produtos naturais no manejo agroecológico de pragas e seus inimigos naturais do algodoeiro consorciado com milho, feijão-caupi e gergelim

    Directory of Open Access Journals (Sweden)

    Gildo Pereira de Araujo

    2015-06-01

    Full Text Available Cotton was once the main crop grown in the northeast of Brazil; its production boosted the development of many cities and contributed to the development of the semi-arid region. Attacks by pests, low productivity, high production costs and low prices on the international market, coupled with a lack of adequate technical assistance, contributed to the decline of the crop. The aim of this study was to evaluate the natural insecticides: aqueous extract from the malagueta pepper, kaolin, Azamax®, Rotenat® and Pironat®, on the agroecological management of the principal pests, with their natural enemies, of cotton intercropped with maize, cowpea and sesame crops. The studies were carried out at the experimental area of Embrapa Algodão, in Barbalha, in the state of Ceará, Brazil (CE, where an experiment was set up to evaluate these natural products, in an experimental design of randomised blocks with four replications, represented by six treatments: T1-Control (no application, T2-Malagueta pepper, T3-Kaolin, T4-Azamax®, T5-Rotenat® and T6-Pironat®. The products were applied every seven days, followed by weekly assessments, considering the effect of the treatments on the occurrence of insect pests of the cotton plant, and on their natural enemies. Kaolin is the most effective natural product in controlling the boll weevil, Anthonomus grandis. Malagueta pepper is not effective in controlling the principle pests of the cotton plant. Natural products applied by spraying the leaves of the cotton plant every 7 days do not interfere with the presence of natural enemies = O algodão já foi a principal cultura cultivada no Nordeste, a sua produção alavancou o desenvolvimento de muitas cidades e contribuiu para o desenvolvimento da região semiárida. Ataque de pragas, baixas produtividades, alto custo de produção e baixa nos preços no mercado internacional, aliado a falta de assistência técnica adequada, contribuíram para o declínio da cultura

  14. Field evaluation of the efficacy of neem oil (Azadirachta indica A. Juss) and Beauveria bassiana (Bals.) Vuill. in cotton production

    NARCIS (Netherlands)

    Togbe, C.E.; Haagsma, R.; Zannou, E.; Gbehounou, G.; Déguénon, J.M.; Vodouhe, S.; Kossou, D.; Huis, van A.

    2015-01-01

    Neem oil (Azadirachta indica A. Juss) alone and combined with the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin (isolate Bb11) was applied to control cotton pests. The efficacy of these treatments was compared with that of synthetic insecticides applied either in a calendar-based

  15. Improving Cry8Ka toxin activity towards the cotton boll weevil (Anthonomus grandis).

    Science.gov (United States)

    Oliveira, Gustavo R; Silva, Maria C M; Lucena, Wagner A; Nakasu, Erich Y T; Firmino, Alexandre A P; Beneventi, Magda A; Souza, Djair S L; Gomes, José E; de Souza, José D A; Rigden, Daniel J; Ramos, Hudson B; Soccol, Carlos R; Grossi-de-Sa, Maria F

    2011-09-09

    The cotton boll weevil (Anthonomus grandis) is a serious insect-pest in the Americas, particularly in Brazil. The use of chemical or biological insect control is not effective against the cotton boll weevil because of its endophytic life style. Therefore, the use of biotechnological tools to produce insect-resistant transgenic plants represents an important strategy to reduce the damage to cotton plants caused by the boll weevil. The present study focuses on the identification of novel molecules that show improved toxicity against the cotton boll weevil. In vitro directed molecular evolution through DNA shuffling and phage display screening was applied to enhance the insecticidal activity of variants of the Cry8Ka1 protein of Bacillus thuringiensis. Bioassays carried out with A. grandis larvae revealed that the LC50 of the screened mutant Cry8Ka5 toxin was 3.15-fold higher than the wild-type Cry8Ka1 toxin. Homology modelling of Cry8Ka1 and the Cry8Ka5 mutant suggested that both proteins retained the typical three-domain Cry family structure. The mutated residues were located mostly in loops and appeared unlikely to interfere with molecular stability. The improved toxicity of the Cry8Ka5 mutant obtained in this study will allow the generation of a transgenic cotton event with improved potential to control A. grandis.

  16. Improving Cry8Ka toxin activity towards the cotton boll weevil (Anthonomus grandis

    Directory of Open Access Journals (Sweden)

    Gomes José E

    2011-09-01

    Full Text Available Abstract Background The cotton boll weevil (Anthonomus grandis is a serious insect-pest in the Americas, particularly in Brazil. The use of chemical or biological insect control is not effective against the cotton boll weevil because of its endophytic life style. Therefore, the use of biotechnological tools to produce insect-resistant transgenic plants represents an important strategy to reduce the damage to cotton plants caused by the boll weevil. The present study focuses on the identification of novel molecules that show improved toxicity against the cotton boll weevil. In vitro directed molecular evolution through DNA shuffling and phage display screening was applied to enhance the insecticidal activity of variants of the Cry8Ka1 protein of Bacillus thuringiensis. Results Bioassays carried out with A. grandis larvae revealed that the LC50 of the screened mutant Cry8Ka5 toxin was 3.15-fold higher than the wild-type Cry8Ka1 toxin. Homology modelling of Cry8Ka1 and the Cry8Ka5 mutant suggested that both proteins retained the typical three-domain Cry family structure. The mutated residues were located mostly in loops and appeared unlikely to interfere with molecular stability. Conclusions The improved toxicity of the Cry8Ka5 mutant obtained in this study will allow the generation of a transgenic cotton event with improved potential to control A. grandis.

  17. Effects of morning and night application of Beauveria bassiana strains NI8 and GHA against the tarnished plant bug in cotton

    Science.gov (United States)

    The tarnished plant bug, (TPB), Lygus lineolaris (Palisot de Beauvois), (Hemiptera: Miridae) an important pest of cotton (Gosssypium hirsutum L.) found in the Mississippi Delta is naturally attacked by the entomopathogenic fungus Beauveria bassiana (Balsamo) Vueillemin. In this study, two isolates o...

  18. Incidence of pests and viral disease on pepino (Solanum muricatum Ait.) in Kanagawa Prefecture, Japan.

    Science.gov (United States)

    Kim, Ok-Kyung; Ishikawa, Tadashi; Yamada, Yoshihiro; Sato, Takuma; Shinohara, Hirosuke; Takahata, Ken

    2017-01-01

    The solanaceous fruit crop pepino ( Solanum muricatum Ait.), originating in the Andes, is grown commercially in South American countries and New Zealand. In these areas, pests and diseases of pepino have been identified well; however, to date, these have seldom been investigated in detail in Japan. Herein, we attempt to reconstruct an agricultural production system for commercial pepino crops in Japan, and evaluate the incidence of pests and viral diseases on pepino. The findings of this study will facilitate in developing a better crop system for the commercial cultivation of healthy pepino fruits. A total of 11 species, comprising nine insects and two mites, were recognized as pests of pepino plants in our experimental fields in Kanagawa Prefecture, central Honshu, Japan. Of these pest species, the two-spotted spider mite Tetranychus urticae Koch, 1836 and the cotton aphid Aphis gossypii Glover, 1877, were remarkably abundant than the other pest species. Eventually, 13 species, including two previously recorded, are currently recognized as the pests of pepino in Japan. With regard to viruses, we tested two species Alfalfa mosaic virus (AMV) and Cucumber mosaic virus (CMV), as well as three genera Carlavirus , Potexvirus , and Potyvirus . No virus was detected in symptomatic pepino leaves collected in our experimental fields. This is a first report on the identification of pests on pepino plants in Kanagawa Prefecture, Japan and elucidates the relationship between currently occurring pests of pepino plants and potential viral pathogens that they can transmit.

  19. Performance of novel vs traditional insecticides for the control of amrascs biguttula biguttula (homoptera, cicadellidae) on cotton

    International Nuclear Information System (INIS)

    Karar, H.; Babar, T.K.; Shahzad, F.; Saleem, M.; Ali, A.; Akram, M.

    2013-01-01

    Amrasca biguttula biguttula (ishida) can reduce the yield of cotton approximately 25%. no potential predators have been recorded in the field for its control. to overcome this pest insecticides play significant role in the improvement of crop yields all over the world during the last four to five decades. to save the crop from this notorious pest, ten formulations of insecticides viz., acephate 75sp (acephate) at the rate 625g, imidacloprid 25wp (imidacloprid) at the rate188g, thiamethaxim 25wg (actara) at the rate 60g, imidacloprid 70wg (confidor) at the rate 43g, dimethoat e 40ec (sanitox) at the rate 1000 ml, nytonpyron 10sl (pyramid) at the rate 500ml, lambdacyhlothrin 2.5e (kango) at the rate 825 ml, thiachloprid 480sc (talent) at the rate 63 ml, imidacloprid 25sl (confidor) at the rate 500ml, and diafenthiuron 500sc (polo), at the rate 500ml, per hectare were sprayed in the field having maximum population of nymphs and adults of jassid at cotton research station, multan on cotton variety bt-886 in the month of july, 2011 and 2012. the maximum mortality of Jassid was observed in those treatments, where acephate was applied with 79, 72, 65 mortality, nytonpyron with 69, 63, 55 and imidacloprid 68, 63, 57 percent mortality after 24, 72 and 168 h of spray. minimum mortality of jassid was observed in the treatments where talent was applied having 25, 17 and 16 percent mortality 24, 72 and 168 h after spray. By the application of acephate, pyramid and confidor 25sl on cotton crop the yield can be increased. (author)

  20. Eradication of the cotton boll weevil (Anthonomus grandis) in the United States - A successful multi-regional approach

    International Nuclear Information System (INIS)

    Cunningham, Gary L.; Grefenstette, William J.

    2000-01-01

    The cotton boll weevil, Anthonomus grandis Boheman, is believed to have entered the US from Mexico and was first detected in South Texas in 1892. Since that time, the pest has spread throughout most of the nation's cotton-producing areas and has become the industry's number one nemesis. More than US$13 billion in economic losses have occurred since its introduction, with recent annual expenditures of more than US$300 million for control costs alone. Although the weevil has been eradicated from over 4 million acres, its presence in non-programme areas continues to dictate production practices within the mid-south, Texas and Oklahoma

  1. Non-recessive Bt toxin resistance conferred by an intracellular cadherin mutation in field-selected populations of cotton bollworm.

    Directory of Open Access Journals (Sweden)

    Haonan Zhang

    Full Text Available Transgenic crops producing Bacillus thuringiensis (Bt toxins have been planted widely to control insect pests, yet evolution of resistance by the pests can reduce the benefits of this approach. Recessive mutations in the extracellular domain of toxin-binding cadherin proteins that confer resistance to Bt toxin Cry1Ac by disrupting toxin binding have been reported previously in three major lepidopteran pests, including the cotton bollworm, Helicoverpa armigera. Here we report a novel allele from cotton bollworm with a deletion in the intracellular domain of cadherin that is genetically linked with non-recessive resistance to Cry1Ac. We discovered this allele in each of three field-selected populations we screened from northern China where Bt cotton producing Cry1Ac has been grown intensively. We expressed four types of cadherin alleles in heterologous cell cultures: susceptible, resistant with the intracellular domain mutation, and two complementary chimeric alleles with and without the mutation. Cells transfected with each of the four cadherin alleles bound Cry1Ac and were killed by Cry1Ac. However, relative to cells transfected with either the susceptible allele or the chimeric allele lacking the intracellular domain mutation, cells transfected with the resistant allele or the chimeric allele containing the intracellular domain mutation were less susceptible to Cry1Ac. These results suggest that the intracellular domain of cadherin is involved in post-binding events that affect toxicity of Cry1Ac. This evidence is consistent with the vital role of the intracellular region of cadherin proposed by the cell signaling model of the mode of action of Bt toxins. Considered together with previously reported data, the results suggest that both pore formation and cell signaling pathways contribute to the efficacy of Bt toxins.

  2. Phylogeographic structure of cotton pest Adelphocoris suturalis (Hemiptera: Miridae): strong subdivision in China inferred from mtDNA and rDNA ITS markers.

    Science.gov (United States)

    Zhang, Lijuan; Li, Hu; Li, Shujuan; Zhang, Aibing; Kou, Fei; Xun, Huaizhu; Wang, Pei; Wang, Ying; Song, Fan; Cui, Jianxin; Cui, Jinjie; Gouge, Dawn H; Cai, Wanzhi

    2015-09-21

    Phylogeographic patterns of some extant plant and vertebrate species have been well studied; however, they are poorly understood in the majority of insects. The study documents analysis of mitochondrial (COI, CYTB and ND5) and nuclear (5.8S rDNA, ITS2 and 28S rDNA) data from 419 individuals of Adelphocoris suturalis, which is one of the main cotton pests found in the 31 locations in China and Japan involved in the study. Results show that the species is highly differentiated between populations from central China and peripheral China regions. Analysis of molecular variance showed a high level of geographical differentiation at different hierarchical levels. Isolation-by-distance test showed no significant correlation between genetic distance and geographical distance among A. suturalis populations, which suggested gene flow is not restricted by distance. In seven peripheral populations, the high levels of genetic differentiation and the small Nem values implied that geographic barriers were more likely restrict gene flow. Neutrality tests and the Bayesian skyline plot suggested population expansion likely happened during the cooling transition between Last Interglacial and Last Glacial Maximum. All lines of evidence suggest that physical barriers, Pleistocene climatic oscillations and geographical heterogeneity have affected the population structure and distribution of this insect in China.

  3. Efeito da época de plantio na produção e na ocorrência de pragas em culturas do algodoeiro (Gossypium hirsutum = Effect of planting date on the production and the occurrence of pests in the cotton (Gossypium hirsutum

    Directory of Open Access Journals (Sweden)

    José Janduí Soares

    2006-07-01

    Full Text Available O objetivo deste trabalho foi verificar o efeito da época de plantio na produção e ocorrência de pragas em culturas do algodoeiro. Foi analisada a influência da época de plantio no rendimento e na ocorrência de pragas nos cultivares de algodoeiro CNPA 7H e DeltapineAcala 90, em Formosa do Rio Preto, São Desidério e Luiz Eduardo Magalhães, no estado da Bahia, nos campos experimentais da Embrapa, instalados nas fazendas Independência, Mizote e Poletto, respectivamente. Quatro épocas foram avaliadas e os plantios foram feitos nos meses de novembro, dezembro e janeiro, safras 1998/1999 e 1999/2000, com intervalos de 15 dias entre cada plantio. Os dados foram submetidos à análise da variância e as médias comparadas pelo teste de Tukey a 5% de probabilidade. Realizou-se levantamentos semanais de 5 insetos-praga e pulverizações para manter a infestação abaixo dos níveis de controle. Por meio dos resultados obtidos, pode-se inferir que: a a época de plantio tem uma marcante influência na produção do algodoeiro; b a época de plantio do algodoeiro influencia a ocorrência de insetos-praga com reflexos em sua produtividade.The aim of this research was to determine the effect of planting date and the occurrence of pests on the cotton crop. The influence of the planting date on the output of the cotton CNPA 7H and Deltapine Acala 90, at Formosa do Rio Preto, São Desidério and Luiz Eduardo Magalhães, in the experimental fields of the Embrapa, in the state of Bahia, was analyzed. Four planting dates were evaluated. The plantings were in November, December and January, 1998/1999 and 1999/2000 crops, with intervals of 15 days between each planting. The data were submitted to analysis of variance and the averages compared by Tukey’s test at 5% probability. According to the results, the following conclusions can be inferred: a The planting date has a significant influence on the cotton production; b The cotton planting date

  4. Identification of cotton fleahopper (Hemiptera: Miridae) host plants in central Texas and compendium of reported hosts in the United States.

    Science.gov (United States)

    Esquivel, J F; Esquivel, S V

    2009-06-01

    The cotton fleahopper, Pseudatomoscelis seriatus (Reuter), is an early-season pest of developing cotton in Central Texas and other regions of the Cotton Belt. Cotton fleahopper populations develop on spring weed hosts and move to cotton as weed hosts senesce or if other weed hosts are not readily available. To identify weed hosts that were seasonably available for the cotton fleahopper in Central Texas, blooming weed species were sampled during early-season (17 March-31 May), mid-season (1 June-14 August), late-season (15 August-30 November), and overwintering (1 December-16 March) periods. The leading hosts for cotton fleahopper adults and nymphs were evening primrose (Oenothera speciosa T. Nuttall) and Mexican hat [Ratibida columnifera (T. Nuttall) E. Wooton and P. Standley], respectively, during the early season. During the mid-season, silver-leaf nightshade (Solanum elaeagnifolium A. Cavanilles) was consistently a host for fleahopper nymphs and adults. Woolly croton (Croton capitatus A. Michaux) was a leading host during the late season. Cotton fleahoppers were not collected during the overwintering period. Other suitable hosts were available before previously reported leading hosts became available. Eight previously unreported weed species were documented as temporary hosts. A compendium of reported hosts, which includes >160 plant species representing 35 families, for the cotton fleahopper is provided for future research addressing insect-host plant associations. Leading plant families were Asteraceae, Lamiaceae, and Onagraceae. Results presented here indicate a strong argument for assessing weed species diversity and abundance for the control of the cotton fleahopper in the Cotton Belt.

  5. Ingestion of a marked bacterial pathogen of cotton conclusively demonstrates feeding by first instar southern green stink bug (Hemiptera: Pentatomidae)

    Science.gov (United States)

    Long-held dogma dictates that 1st instars of Nezara viridula (L.) do not feed, yet recent observations of stylet activity within a food source suggest otherwise. As a cosmopolitan pest of cotton and other high-value cash crops, confirmation of feeding by 1st instars may ultimately influence the biol...

  6. The control and protection of cotton plants using natural insecticides against the colonization by Aphis gossypii Glover (Hemiptera: Aphididae - doi: 10.4025/actasciagron.v35i2.15764

    Directory of Open Access Journals (Sweden)

    Ezio Santos Pinto

    2012-12-01

    Full Text Available The cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae, is a key pest of cotton, irrespective of the use of conventional or organic management. In organic systems, however, the use of synthetic insecticides is not allowed, increasing the difficulty of controlling this pest. This work evaluated aphid control and the ability of products to prevent aphid infestation using natural insecticides compared to a standard synthetic insecticide. The control trial was conducted with four products [Beauveria bassiana (Boveril®, neem oil (Neemseto®, and cotton seed oil compared to thiamethoxam (Actara®], and untreated plants served as the control group. The trial testing the efficacy of these products in preventing aphid infestation was conducted using the same products, excluding Boveril®. The evaluations were conducted 72 and 120h post-treatment for the efficacy and the protection against colonization trials, respectively. The aphid control by cotton seed oil, Neemseto®, and thiamethoxam was similar, with 100% control being achieved on the thiamethoxam-treated plants. Regarding the plant protection against aphid colonization, the insecticide thiamethoxam exhibited a better performance compared to the other tested products with steady results over the evaluation period. The natural products exhibited variable results with low protection against plant colonization throughout the evaluation period.

  7. Adoption of Bt Cotton: Threats and Challenges Adopción de Algodón Bt: Desafíos y Amenazas

    Directory of Open Access Journals (Sweden)

    Muhammad Faisal Bilal

    2012-09-01

    Full Text Available Adopting new technology always involves advantages and risks; Bt cotton (Gossypium hirsutum L. is a new technology well known in developed countries for its many advantages, such as reduced pesticide application, better insect pest control, and higher lint yield. However, its success in developing countries is still a question mark. Global adoption of Bt cotton has risen dramatically from 0.76 million ha when introduced in 1996 to 7.85 million ha in the 2005 cotton-growing season where 54% of the cotton crops in the USA, 76% in China, and 80% in Australia were grown with single or multiple Bt genes. Bollworms are serious cotton pests causing 30-40% yield reduction in Pakistan and 20-66% potential crop losses in India. The major advances shown in this review include: (1 Evolution of Bt cotton may prove to be a green revolution to enhance cotton yield; (2 adoption of Bt cotton by farmers is increasing due to its beneficial environmental effects by reducing pesticide application: however, a high seed price has compelled farmers to use illegal non-approved Bt causing huge damage to crops because of low tolerance to insect pests; and (3 some factors responsible for changes in the efficiency of the Bt gene and Bt cotton yield include internal phenology (genetics, atmospheric changes (CO2 concentration, nutrition, insect pests, boll distribution pattern, disease and nematodes, removal of fruiting branch and/or floral bud, introduction of Bt gene, and terpenoids and tannin production in the plant body.La adopción de nueva tecnología siempre involucra ventajas y riesgos; algodón Bt (Gossypium hirsutum L. es una nueva tecnología bien conocida en países desarrollados por muchas ventajas como reducida aplicación de pesticidas, mejor control de insectos plaga, y mayor producción de fibra, pero su éxito en países en desarrollo aún conlleva dudas. La adopción global de algodón Bt ha aumentado dramáticamente de 0,76 millones de hectáreas en su

  8. Population dynamics of Sesamia inferens on transgenic rice expressing Cry1Ac and CpTI in southern China.

    Science.gov (United States)

    Han, Lanzhi; Liu, Peilei; Wu, Kongming; Peng, Yufa; Wang, Feng

    2008-10-01

    Genetically modified insect-resistant rice lines containing the cry1Ac gene from Bacillus thuringiensis (Bt) or the CpTI (cowpea trypsin inhibitor) gene developed for the management of lepidopterous pests are highly resistant to the major target pests, Chilo suppressalis (Walker), Cnaphalocrocis medinalis (Guenée), and Scirpophaga incertulas (Walker), in the main rice-growing areas of China. However, the effects of these transgenic lines on Sesamia inferens (Walker), an important lepidopterous rice pest, are currently unknown. Because different insect species have varying susceptibility to Bt insecticidal proteins that may affect population dynamics, research into the effects of these transgenic rice lines on the population dynamics of S. inferens was conducted in Fuzhou, southern China, in 2005 and 2006. The results of laboratory, field cage, and field plot experiments show that S. inferens has comparatively high susceptibility to the transgenic line during the early growing season, with significant differences observed in larval density and infestation levels between transgenic and control lines. Because of a decrease in Cry1Ac levels in the plant as it ages, the transgenic line provided only a low potential for population suppression late in the growing season. There is a correlation between the changing expression of Cry1Ac and the impact of transgenic rice on the population dynamics of S. inferens during the season. These results indicate that S. inferens may become a major pest in fields of prospective commercially released transgenic rice, and more attention should be paid to developing an effective alternative management strategy.

  9. Performance and cross-crop resistance of Cry1F-maize selected Spodoptera frugiperda on transgenic Bt cotton: implications for resistance management.

    Science.gov (United States)

    Yang, Fei; Kerns, David L; Brown, Sebe; Kurtz, Ryan; Dennehy, Tim; Braxton, Bo; Head, Graham; Huang, Fangneng

    2016-06-15

    Transgenic crops producing Bacillus thuringiensis (Bt) proteins have become a primary tool in pest management. Due to the intensive use of Bt crops, resistance of the fall armyworm, Spodoptera frugiperda, to Cry1F maize has occurred in Puerto Rico, Brazil, and some areas of the southeastern U.S. The sustainability of Bt crops faces a great challenge because the Cry1F-maize resistant S. frugiperda may also infest other Bt crops in multiple cropping ecosystems. Here we examined the survival and plant injury of a S. frugiperda population selected with Cry1F maize on three single-gene and five pyramided Bt cotton products. Larvae of Cry1F-susceptible (SS), -heterozygous (RS), and -resistant (RR) genotypes of S. frugiperda were all susceptible to the pyramided cotton containing Cry1Ac/Cry2Ab, Cry1Ac/Cry1F/Vip3A, Cry1Ab/Cry2Ae, or Cry1Ab/Cry2Ae/Vip3A, and the single-gene Cry2Ae cotton. Pyramided cotton containing Cry1Ac/Cry1F was effective against SS and RS, but not for RR. These findings show that the Cry1F-maize selected S. frugiperda can cause cross-crop resistance to other Bt crops expressing similar insecticidal proteins. Resistance management and pest management programs that utilize diversify mortality factors must be implemented to ensure the sustainability of Bt crops. This is especially important in areas where resistance to single-gene Bt crops is already widespread.

  10. Investigating the (MisMatch between Natural Pest Control Knowledge and the Intensity of Pesticide Use

    Directory of Open Access Journals (Sweden)

    David Mall

    2018-01-01

    Full Text Available Transforming modern agriculture towards both higher yields and greater sustainability is critical for preserving biodiversity in an increasingly populous and variable world. However, the intensity of agricultural practices varies strongly between crop systems. Given limited research capacity, it is crucial to focus efforts to increase sustainability in the crop systems that need it most. In this study, we investigate the match (or mismatch between the intensity of pesticide use and the availability of knowledge on the ecosystem service of natural pest control across various crop systems. Using a systematic literature search on pest control and publicly available pesticide data, we find that pest control literature is not more abundant in crops where insecticide input per hectare is highest. Instead, pest control literature is most abundant, with the highest number of studies published, in crops with comparatively low insecticide input per hectare but with high world harvested area. These results suggest that a major increase of interest in agroecological research towards crops with high insecticide input, particularly cotton and horticultural crops such as citrus and high value-added vegetables, would help meet knowledge needs for a timely ecointensification of agriculture.

  11. Investigating the (Mis)Match between Natural Pest Control Knowledge and the Intensity of Pesticide Use.

    Science.gov (United States)

    Mall, David; Larsen, Ashley E; Martin, Emily A

    2018-01-05

    Transforming modern agriculture towards both higher yields and greater sustainability is critical for preserving biodiversity in an increasingly populous and variable world. However, the intensity of agricultural practices varies strongly between crop systems. Given limited research capacity, it is crucial to focus efforts to increase sustainability in the crop systems that need it most. In this study, we investigate the match (or mismatch) between the intensity of pesticide use and the availability of knowledge on the ecosystem service of natural pest control across various crop systems. Using a systematic literature search on pest control and publicly available pesticide data, we find that pest control literature is not more abundant in crops where insecticide input per hectare is highest. Instead, pest control literature is most abundant, with the highest number of studies published, in crops with comparatively low insecticide input per hectare but with high world harvested area. These results suggest that a major increase of interest in agroecological research towards crops with high insecticide input, particularly cotton and horticultural crops such as citrus and high value-added vegetables, would help meet knowledge needs for a timely ecointensification of agriculture.

  12. Synthesis of Cotton from Tossa Jute Fiber and Comparison with Original Cotton

    Directory of Open Access Journals (Sweden)

    Md. Mizanur Rahman

    2015-01-01

    Full Text Available Cotton fibers were synthesized from tossa jute and characteristics were compared with original cotton by using FTIR and TGA. The FTIR results indicated that the peak intensity of OH group from jute cotton fibers occurred at 3336 cm−1 whereas the peak intensity of original cotton fibers occurred at 3338 cm−1. This indicated that the synthesized cotton fiber properties were very similar to the original cotton fibers. The TGA result showed that maximum rate of mass loss, the onset of decomposition, end of decomposition, and activation energy of synthesized cotton were higher than original cotton. The activation energy of jute cotton fibers was higher than the original cotton fibers.

  13. Economic Injury Level of the Neotropical Brown Stink Bug Euschistus heros (F.) on Cotton Plants.

    Science.gov (United States)

    Soria, M F; Degrande, P E; Panizzi, A R; Toews, M D

    2017-06-01

    In Brazil, the Neotropical brown stink bug, Euschistus heros (F.) (Hemiptera: Pentatomidae), commonly disperses from soybeans to cotton fields. The establishment of an economic treatment threshold for this pest on cotton crops is required. Infestation levels of adults of E. heros were evaluated on cotton plants at preflowering, early flowering, boll filling, and full maturity by assessing external and internal symptoms of injury on bolls, seed cotton/lint production, and fiber quality parameters. A completely randomized experiment was designed to infest cotton plants in a greenhouse with 0, 2, 4, 6, and 8 bugs/plant, except at the full-maturity stage in which only infestation with 8 bugs/plant and uninfested plants were evaluated. Results indicated that the preflowering, early-flowering, and full-maturity stages were not affected by E. heros. A linear regression model showed a significant increase in the number of internal punctures and warts in the boll-filling stage as the population of bugs increased. The average number of loci with mottled immature fibers was significantly higher at 4, 6, and 8 bugs compared with uninfested plants with data following a quadratic regression model. The seed and lint cotton was reduced by 18 and 25% at the maximum level of infestation (ca. 8 bugs/plant) in the boll-filling stage. The micronaire and yellowing indexes were, respectively, reduced and increased with the increase of the infestation levels. The economic injury level of E. heros on cotton plants at the boll-filling stage was determined as 0.5 adult/plant. Based on that, a treatment threshold of 0.1 adult/plant can be recommended to avoid economic losses.

  14. Toxicity to cotton boll weevil Anthonomus grandis of a trypsin inhibitor from chickpea seeds.

    Science.gov (United States)

    de P G Gomes, Angélica; Dias, Simoni C; Bloch, Carlos; Melo, Francislete R; Furtado, José R; Monnerat, Rose G; Grossi-de-Sá, Maria F; Franco, Octávio L

    2005-02-01

    Cotton (Gossypium hirsutum L.) is an important agricultural commodity, which is attacked by several pests such as the cotton boll weevil Anthonomus grandis. Adult A. grandis feed on fruits and leaf petioles, reducing drastically the crop production. The predominance of boll weevil digestive serine proteinases has motivated inhibitor screenings in order to discover new ones with the capability to reduce the digestion process. The present study describes a novel proteinase inhibitor from chickpea seeds (Cicer arietinum L.) and its effects against A. grandis. This inhibitor, named CaTI, was purified by using affinity Red-Sepharose Cl-6B chromatography, followed by reversed-phase HPLC (Vydac C18-TP). SDS-PAGE and MALDI-TOF analyses, showed a unique monomeric protein with a mass of 12,877 Da. Purified CaTI showed significant inhibitory activity against larval cotton boll weevil serine proteinases (78%) and against bovine pancreatic trypsin (73%), when analyzed by fluorimetric assays. Although the molecular mass of CaTI corresponded to alpha-amylase/trypsin bifunctional inhibitors masses, no inhibitory activity against insect and mammalian alpha-amylases was observed. In order to observe CaTI in vivo effects, an inhibitor rich fraction was added to an artificial diet at different concentrations. At 1.5% (w/w), CaTI caused severe development delay, several deformities and a mortality rate of approximately 45%. These results suggested that CaTI could be useful in the production of transgenic cotton plants with enhanced resistance toward cotton boll weevil.

  15. Using and development of multi adversity resistance system in cotton

    Directory of Open Access Journals (Sweden)

    Metin Durmuş ÇETİN

    2014-12-01

    Full Text Available The basic approach in plant breeding, make it possible to show the full genetic potential of plant. This methods also protect the health of plant growth over the period, by increasing resistance to diseases and pests is expected to provide. For this purpose, by Bird in 1963, with the name of multi adversity resistance has been initiated in cotton breeding and for many years as a result of the work carried out important varieties and germplasm have been developed. Nowadays, those using for varieties resistant to stress factors such as heat and drought are evaluated. And successful results are obtained.

  16. SELECTIVITY OF PESTICIDES OVER PREDATORS OF COTTON PLANT PESTS SELETIVIDADE DE INSETICIDAS SOBRE O COMPLEXO DE PREDADORES DAS PRAGAS DO ALGODOEIRO

    Directory of Open Access Journals (Sweden)

    Izidro dos Santos de Lima Júnior

    2010-08-01

    Full Text Available

    The cotton plant hosts a complex of pests that can damage plant structures. Its supported development, in this agroecosystem, demands the implementation of an integrated pest management (IPM system. The goal of this research was to study the selectivity of pesticides over predators of cotton plant pests. The experimental design was randomized blocks, with 9 treatments (84 days after the emergence and 4 replicates. The sampling involved the beat cloth method, with 5 beats per plot, allowing to identify and count the living predators. Clotianidin 500 WP (200 g ha-1, Carbosulfan 400 SC (400 mL ha-1, Benfuracarb 400 EC (450 mL ha-1, Cartap hydrochloride 500 SP (1,000 g ha-1, Thiamethoxam 250 WG (200 g ha-1, and Acetamiprid 200 SP (150 g ha-1 were not selective for the complex of the predators identified, with mortality percentages ranging from moderately toxic to toxic. Etofenprox 300 EC (450 mL ha-1 was the most toxic pesticide, when compared to the others treatments. The Flonicamid 500 WG (150 g ha-1 treatment was selective, with average of predators

  17. Transgenic plants expressing the AaIT/GNA fusion protein show increased resistance and toxicity to both chewing and sucking pests.

    Science.gov (United States)

    Liu, Shu-Min; Li, Jie; Zhu, Jin-Qi; Wang, Xiao-Wei; Wang, Cheng-Shu; Liu, Shu-Sheng; Chen, Xue-Xin; Li, Sheng

    2016-04-01

    The adoption of pest-resistant transgenic plants to reduce yield losses and decrease pesticide use has been successful. To achieve the goal of controlling both chewing and sucking pests in a given transgenic plant, we generated transgenic tobacco, Arabidopsis, and rice plants expressing the fusion protein, AaIT/GNA, in which an insecticidal scorpion venom neurotoxin (Androctonus australis toxin, AaIT) is fused to snowdrop lectin (Galanthus nivalis agglutinin, GNA). Compared with transgenic tobacco and Arabidopsis plants expressing AaIT or GNA, transgenic plants expressing AaIT/GNA exhibited increased resistance and toxicity to one chewing pest, the cotton bollworm, Helicoverpa armigera. Transgenic tobacco and rice plants expressing AaIT/GNA showed increased resistance and toxicity to two sucking pests, the whitefly, Bemisia tabaci, and the rice brown planthopper, Nilaparvata lugens, respectively. Moreover, in the field, transgenic rice plants expressing AaIT/GNA exhibited a significant improvement in grain yield when infested with N. lugens. This study shows that expressing the AaIT/GNA fusion protein in transgenic plants can be a useful approach for controlling pests, particularly sucking pests which are not susceptible to the toxin in Bt crops. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  18. Captures of Boll Weevils (Coleoptera: Curculionidae) in Relation to Trap Distance From Cotton Fields.

    Science.gov (United States)

    Spurgeon, Dale W

    2016-12-01

    The boll weevil (Anthonomus grandis grandis Boheman) has been eradicated from much of the United States, but remains an important pest of cotton (Gossypium spp.) in other parts of the Americas. Where the weevil occurs, the pheromone trap is a key tool for population monitoring or detection. Traditional monitoring programs have placed traps in or near the outermost cotton rows where damage by farm equipment can cause loss of trapping data. Recently, some programs have adopted a trap placement adjacent to but outside monitored fields. The effects of these changes have not been previously reported. Captures of early-season boll weevils by traps near (≤1 m) or far (7-10 m) from the outermost cotton row were evaluated. In 2005, during renewed efforts to eradicate the boll weevil from the Lower Rio Grande Valley of Texas, far traps consistently captured more weevils than traps near cotton. Traps at both placements indicated similar patterns of early-season weevil captures, which were consistent with those previously reported. In 2006, no distinction between trap placements was detected. Early-season patterns of captures in 2006 were again similar for both trap placements, but captures were much lower and less regular compared with those observed in 2005. These results suggest magnitude and likelihood of weevil capture in traps placed away from cotton are at least as high as for traps adjacent to cotton. Therefore, relocation of traps away from the outer rows of cotton should not negatively impact ability to monitor or detect the boll weevil. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by a US Government employee and is in the public domain in the US.

  19. Brazilian Free-tailed Bats (Tadarida brasiliensis) as Insect Pest Regulators in Transgenic and Conventional Cotton Crops

    Science.gov (United States)

    During the past 12,000 years agricultural systems have transitioned from natural habitats to conventional agricultural regions, and recently to large areas of genetically- engineered (GE) croplands. This GE revolution occurred for cotton in a span of slightly more than a decade w...

  20. Reduce pests, enhance production: benefits of intercropping at high densities for okra farmers in Cameroon.

    Science.gov (United States)

    Singh, Akanksha; Weisser, Wolfgang W; Hanna, Rachid; Houmgny, Raissa; Zytynska, Sharon E

    2017-10-01

    Intercropping can help reduce insect pest populations. However, the results of intercropping can be pest- and crop-species specific, with varying effects on crop yield, and pest suppression success. In Cameroon, okra vegetable is often grown in intercropped fields and sown with large distances between planting rows (∼ 2 m). Dominant okra pests include cotton aphids, leaf beetles and whiteflies. In a field experiment, we intercropped okra with maize and bean in different combinations (okra monoculture, okra-bean, okra-maize and okra-bean-maize) and altered plant densities (high and low) to test for the effects of diversity, crop identity and planting distances on okra pests, their predators and yield. We found crop identity and plant density, but not crop diversity to influence okra pests, their predators and okra yield. Only leaf beetles decreased okra yield and their abundance reduced at high plant density. Overall, okra grown with bean at high density was the most economically profitable combination. We suggest that when okra is grown at higher densities, legumes (e.g. beans) should be included as an additional crop. Intercropping with a leguminous crop can enhance nitrogen in the soil, benefiting other crops, while also being harvested and sold at market for additional profit. Manipulating planting distances and selecting plants based on their beneficial traits may thus help to eliminate yield gaps in sustainable agriculture. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Susceptibility of Anthonomus grandis (cotton boll weevil) and Spodoptera frugiperda (fall armyworm) to a cry1ia-type toxin from a Brazilian Bacillus thuringiensis strain.

    Science.gov (United States)

    Grossi-de-Sa, Maria Fatima; Quezado de Magalhaes, Mariana; Silva, Marilia Santos; Silva, Shirley Margareth Buffon; Dias, Simoni Campos; Nakasu, Erich Yukio Tempel; Brunetta, Patricia Sanglard Felipe; Oliveira, Gustavo Ramos; Neto, Osmundo Brilhante de Oliveira; Sampaio de Oliveira, Raquel; Soares, Luis Henrique Barros; Ayub, Marco Antonio Zachia; Siqueira, Herbert Alvaro Abreu; Figueira, Edson L Z

    2007-09-30

    Different isolates of the soil bacterium Bacillus thuringiensis produce multiple crystal (Cry) proteins toxic to a variety of insects, nematodes and protozoans. These insecticidal Cry toxins are known to be active against specific insect orders, being harmless to mammals, birds, amphibians, and reptiles. Due to these characteristics, genes encoding several Cry toxins have been engineered in order to be expressed by a variety of crop plants to control insectpests. The cotton boll weevil, Anthonomus grandis, and the fall armyworm, Spodoptera frugiperda, are the major economically devastating pests of cotton crop in Brazil, causing severe losses, mainly due to their endophytic habit, which results in damages to the cotton boll and floral bud structures. A cry1Ia-type gene, designated cry1Ia12, was isolated and cloned from the Bt S811 strain. Nucleotide sequencing of the cry1Ia12 gene revealed an open reading frame of 2160 bp, encoding a protein of 719 amino acid residues in length, with a predicted molecular mass of 81 kDa. The amino acid sequence of Cry1Ia12 is 99% identical to the known Cry1Ia proteins and differs from them only in one or two amino acid residues positioned along the three domains involved in the insecticidal activity of the toxin. The recombinant Cry1Ia12 protein, corresponding to the cry1Ia12 gene expressed in Escherichia coli cells, showed moderate toxicity towards first instar larvae of both cotton boll weevil and fall armyworm. The highest concentration of the recombinant Cry1Ia12 tested to achieve the maximum toxicities against cotton boll weevil larvae and fall armyworm larvae were 230 microg/mL and 5 microg/mL, respectively. The herein demonstrated insecticidal activity of the recombinant Cry1Ia12 toxin against cotton boll weevil and fall armyworm larvae opens promising perspectives for the genetic engineering of cotton crop resistant to both these devastating pests in Brazil.

  2. Influence of Crop Management and Environmental Factors on Wolf Spider Assemblages (Araneae: Lycosidae) in an Australian Cotton Cropping System.

    Science.gov (United States)

    Rendon, Dalila; Whitehouse, Mary E A; Hulugalle, Nilantha R; Taylor, Phillip W

    2015-02-01

    Wolf spiders (Lycosidae) are the most abundant ground-hunting spiders in the Australian cotton (Gossypium hirsutum L.) agroecosystems. These spiders have potential in controlling pest bollworms, Helicoverpa spp. (Lepidoptera: Noctuidae) in minimum-tilled fields. A study was carried out during a wet growing season (2011-2012) in Narrabri, New South Wales, Australia, to determine how different crop rotations and tillage affect wolf spider assemblages in cotton fields. Spider abundance and species richness did not differ significantly between simple plots (no winter crop) and complex plots (cotton-wheat Triticum aestivum L.-vetch Vicia benghalensis L. rotation). However, the wolf spider biodiversity, as expressed by the Shannon-Weaver and Simpson's indices, was significantly higher in complex plots. Higher biodiversity reflected a more even distribution of the most dominant species (Venatrix konei Berland, Hogna crispipes Koch, and Tasmanicosa leuckartii Thorell) and the presence of more rare species in complex plots. T. leuckartii was more abundant in complex plots and appears to be sensitive to farming disturbances, whereas V. konei and H. crispipes were similarly abundant in the two plot types, suggesting higher resilience or recolonizing abilities. The demographic structure of these three species varied through the season, but not between plot types. Environmental variables had a significant effect on spider assemblage, but effects of environment and plot treatment were overshadowed by the seasonal progression of cotton stages. Maintaining a high density and even distribution of wolf spiders that prey on Helicoverpa spp. should be considered as a conservation biological control element when implementing agronomic and pest management strategies. © The Author 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Correlation of Electropenetrography Waveforms From Lygus lineolaris (Hemiptera: Miridae) Feeding on Cotton Squares With Chemical Evidence of Inducible Tannins.

    Science.gov (United States)

    Cervantes, Felix A; Backus, Elaine A; Godfrey, Larry; Wallis, Christopher; Akbar, Waseem; Clark, Thomas L; Rojas, Maria G

    2017-10-01

    Probing behavior of Lygus lineolaris (Palisot de Beauvois) has previously been characterized with electropenetrography (EPG). Cell rupturing (CR) and ingestion (I) EPG waveforms were identified as the two main stylet-probing behaviors by adult L. lineolaris. However, characterization and identification of EPG waveforms are not complete until specific events of a particular waveform are correlated to insect probing. With the use of EPG, histology, microscopy, and chemical analysis, probing behavior of L. lineolaris on pin-head cotton squares was studied. Occurrences of waveforms CR and I were artificially terminated during the EPG recording. Histological samples of probed cotton squares were prepared and analyzed to correlate specific types and occurrences of feeding damage location and plant responses to insect feeding. Both CR and I occurred in the staminal column of the cotton square. Cell rupturing events elicited the production of dark-red deposits seen in histological staining that were demonstrated via chemical analysis to contain condensed tannins. We hypothesize that wounding and saliva secreted during CR triggered release of tannins, because tannin production was positively correlated with the number of probes with single CR events performed by L. lineolaris. Degraded plant tissue and tannins were removed from the staminal column during occurrence of waveform I. These results conclude the process of defining CR and I as probing waveforms performed by L. lineolaris on pin-head cotton squares. These biological definitions will now allow EPG to be used to quantitatively compare L. lineolaris feeding among different plant treatments, with the goal of improving pest management tactics against this pest. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  4. Investigating Engineered Ribonucleoprotein Particles to Improve Oral RNAi Delivery in Crop Insect Pests.

    Science.gov (United States)

    Gillet, François-Xavier; Garcia, Rayssa A; Macedo, Leonardo L P; Albuquerque, Erika V S; Silva, Maria C M; Grossi-de-Sa, Maria F

    2017-01-01

    Genetically modified (GM) crops producing double-stranded RNAs (dsRNAs) are being investigated largely as an RNA interference (RNAi)-based resistance strategy against crop insect pests. However, limitations of this strategy include the sensitivity of dsRNA to insect gut nucleases and its poor insect cell membrane penetration. Working with the insect pest cotton boll weevil ( Anthonomus grandis ), we showed that the chimeric protein PTD-DRBD (peptide transduction domain-dsRNA binding domain) combined with dsRNA forms a ribonucleoprotein particle (RNP) that improves the effectiveness of the RNAi mechanism in the insect. The RNP slows down nuclease activity, probably by masking the dsRNA. Furthermore, PTD-mediated internalization in insect gut cells is achieved within minutes after plasma membrane contact, limiting the exposure time of the RNPs to gut nucleases. Therefore, the RNP provides an approximately 2-fold increase in the efficiency of insect gene silencing upon oral delivery when compared to naked dsRNA. Taken together, these data demonstrate the role of engineered RNPs in improving dsRNA stability and cellular entry, representing a path toward the design of enhanced RNAi strategies in GM plants against crop insect pests.

  5. Investigating Engineered Ribonucleoprotein Particles to Improve Oral RNAi Delivery in Crop Insect Pests

    Directory of Open Access Journals (Sweden)

    François-Xavier Gillet

    2017-04-01

    Full Text Available Genetically modified (GM crops producing double-stranded RNAs (dsRNAs are being investigated largely as an RNA interference (RNAi-based resistance strategy against crop insect pests. However, limitations of this strategy include the sensitivity of dsRNA to insect gut nucleases and its poor insect cell membrane penetration. Working with the insect pest cotton boll weevil (Anthonomus grandis, we showed that the chimeric protein PTD-DRBD (peptide transduction domain—dsRNA binding domain combined with dsRNA forms a ribonucleoprotein particle (RNP that improves the effectiveness of the RNAi mechanism in the insect. The RNP slows down nuclease activity, probably by masking the dsRNA. Furthermore, PTD-mediated internalization in insect gut cells is achieved within minutes after plasma membrane contact, limiting the exposure time of the RNPs to gut nucleases. Therefore, the RNP provides an approximately 2-fold increase in the efficiency of insect gene silencing upon oral delivery when compared to naked dsRNA. Taken together, these data demonstrate the role of engineered RNPs in improving dsRNA stability and cellular entry, representing a path toward the design of enhanced RNAi strategies in GM plants against crop insect pests.

  6. Effects of nitrogen fertilization in cotton crop on Aphis gossypii Glover (Hemiptera: Aphididae) biology; Efeitos da adubacao nitrogenada em algodoeiro sobre a biologia de Aphis gossypii Glover (Hemiptera: Aphididae)

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Ricardo; Degrande, Paulo E.; Fernandes, Marcos G.; Nogueira, Rodrigo F. [Universidade Federal da Grande Dourados, MS (Brazil). Faculdade de Ciencias Agrarias]. E-mail: rbarrosufms@yahoo.com.br, degrande@ufgd.edu.br

    2007-09-15

    The cotton aphid, Aphis gossypii Glove, is one of the pests of cotton crop and its relation with the host seem to depend on the amount of nitrogen available to the plant. The biology of A. gossypii using different cotton nitrogen fertility regimes was studied under greenhouse conditions, in Dourados, MS. A completely randomized design with nine replications in a factorial scheme (2x4x2)+1 was used. Two nitrogen sources (sulphate of ammonium and urea), four doses of nitrogen (50, 100, 150 and 200 kg ha-1), two different times of nitrogen application and one additional treatment without nitrogen were taken as factors. The nymphal phases, the pre-reproductive, reproductive and pos-reproductive periods, longevity, the life cycle and fecundity of the cotton aphid were evaluated. The doses of nitrogen influenced the cotton aphid biology in both sources and times of application, favoring its development and fecundity. (author)

  7. Feeding habits of Carabidae (Coleoptera associated with herbaceous plants and the phenology of coloured cotton

    Directory of Open Access Journals (Sweden)

    Danilo Henrique da Matta

    2017-04-01

    Full Text Available The carabids (Coleoptera: Carabidae are recognized as polyphagous predators and important natural enemies of insect pests. However, little is known about the feeding habits of these beetles. In this work, we determine the types of food content in the digestive tracts of nine species of Carabidae associated with herbaceous plants and different growth stages of coloured cotton. The food contents were evaluated for beetles associated with the coloured cotton cv. BRS verde, Gossypium hirsutum L. latifolium Hutch., adjacent to weed plants and the flowering herbaceous plants (FHPs Lobularia maritima (L., Tagetes erecta L., and Fagopyrum esculentum Moench. The digestive tract analysis indicated various types of diets and related arthropods for Abaris basistriata, Galerita brasiliensis, Scarites sp., Selenophorus alternans, Selenophorus discopunctatus and Tetracha brasiliensis. The carabids were considered to be polyphagous predators, feeding on different types of prey.

  8. Interspecific Associations between Cycloneda sanguinea and Two Aphid Species (Aphis gossypii and Hyadaphis foeniculi) in Sole-Crop and Fennel-Cotton Intercropping Systems.

    Science.gov (United States)

    Fernandes, Francisco S; Ramalho, Francisco S; Malaquias, José B; Godoy, Wesley A C; Santos, Bárbara Davis B

    2015-01-01

    Aphids cause significant damage to crop plants. Studies regarding predator-prey relationships in fennel (Foeniculum vulgare Mill.) and cotton (Gossypium hirsutum L.) crops are important for understanding essential ecological interactions in the context of intercropping and for establishing pest management programs for aphids. This study evaluated the association among Hyadaphis foeniculi (Passerini) (Hemiptera: Aphididae), Aphis gossypii Glover (Hemiptera: Aphididae) and Cycloneda sanguinea (L.) (Coleoptera: Coccinellidae) in cotton with coloured fibres, fennel and cotton intercropped with fennel. Association analysis was used to investigate whether the presence or absence of prey and predator species can indicate possible interactions between aphids and ladybugs. Significant associations among both apterous and alate H. foeniculi and C. sanguinea were observed in both the fennel and fennel-cotton intercropping systems. The similarity analysis showed that the presence of aphids and ladybugs in the same system is significantly dependent on the type of crop. A substantial amount of evidence indicates that the presence of the ladybug C. sanguinea, is associated with apterous or alate A. gossypii and H. foeniculi in fennel-cotton intercropping system. We recommend that future research vising integrated aphid management taking into account these associations for take decisions.

  9. Recombinant Cry1Ia protein is highly toxic to cotton boll weevil (Anthonomus grandis Boheman) and fall armyworm (Spodoptera frugiperda).

    Science.gov (United States)

    Martins, E S; Aguiar, R W D S; Martins, N F; Melatti, V M; Falcão, R; Gomes, A C M M; Ribeiro, B M; Monnerat, R G

    2008-05-01

    To evaluate the activity of cry1Ia gene against cotton pests, Spodoptera frugiperda and Anthonomus grandis. Had isolated and characterized a toxin gene from the Bacillus thuringiensis S1451 strain which have been previously shown to be toxic to S. frugiperda and A. grandis. The toxin gene (cry1Ia) was amplified by PCR, sequenced, and cloned into the genome of a baculovirus. The Cry1Ia protein was expressed in baculovirus infected insect cells, producing protein inclusions in infected cells. The Cry1Ia protein has used in bioassays against to S. frugiperda and A. grandis. Bioassays using the purified recombinant protein showed high toxicity to S. frugiperda and A. grandis larvae. Molecular modelling of the Cry1Ia protein translated from the DNA sequence obtained in this work, showed that this protein possibly posses a similar structure to the Cry3A protein. Ultrastructural analysis of midgut cells from A. grandis incubated with the Cry1Ia toxin, showed loss of microvilli integrity. The results indicate that the cry1Ia is a good candidate for the construction of transgenic plants resistant to these important cotton pests.

  10. Effects of temperature on the feeding behavior of Alabama argillacea (Hübner (Lepidoptera: Noctuidae on Bt and non-Bt cotton plants

    Directory of Open Access Journals (Sweden)

    FRANCISCO S. RAMALHO

    2017-12-01

    Full Text Available ABSTRACT The host acceptance behavior and environmental factors as temperature affect the feeding behavior of Lepidoptera pests. Thus, they must be considered in studies about the risk potential of resistance evolution. The current study sets the differences in the feeding behavior of neonate Alabama argillacea (Hübner (Lepidoptera: Noctuidae larvae exposed to Bt and non-Bt cotton plants, under different temperatures and time gap after hatching. Two cotton cultivars were used: the Bt (DP 404 BG - bollgard and the non-transformed isoline, DP 4049. We found that the feeding behavior of neonate A. argillacea is significantly different between Bt and non-Bt cotton. Based on the number of larvae with vegetal tissue in their gut found on the plant and in the organza as well as on the amount of vegetal tissue ingested by the larvae. A. argillacea shows feeding preference for non-Bt cotton plants, in comparison to that on the Bt. However, factors such as temperature and exposure time may affect detection capacity and plant abandonment by the larvae and it results in lower ingestion of vegetal tissue. Such results are relevant to handle the resistance of Bt cotton cultivars to A. argillacea and they also enable determining how the cotton seeds mix will be a feasible handling option to hold back resistance evolution in A. argillacea populations on Bt cotton, when it is compared to other refuge strategies. The results can also be useful to determine which refuge distribution of plants is more effective for handling Bt cotton resistance to A. argillacea.

  11. Molecular cloning of a cysteine proteinase cDNA from the cotton boll weevil Anthonomus grandis (Coleoptera: Curculionidae).

    Science.gov (United States)

    De Oliveira Neto, Osmundo Brilhante; Batista, João Aguiar Nogueira; Rigden, Daniel John; Franco, Octávio Luiz; Fragoso, Rodrigo Rocha; Monteiro, Ana Carolina Santos; Monnerat, Rose Gomes; Grossi-De-Sa, Maria Fátima

    2004-06-01

    The cotton boll weevil (Anthonomus grandis) causes severe cotton crop losses in North and South America. This report describes the presence of cysteine proteinase activity in the cotton boll weevil. Cysteine proteinase inhibitors from different sources were assayed against total A. grandis proteinases but, unexpectedly, no inhibitor tested was particularly effective. In order to screen for active inhibitors against the boll weevil, a cysteine proteinase cDNA (Agcys1) was isolated from A. grandis larvae using degenerate primers and rapid amplification of cDNA ends (RACE) techniques. Sequence analysis showed significant homologies with other insect cysteine proteinases. Northern blot analysis indicated that the mRNA encoding the proteinase was transcribed mainly in the gut of larvae. No mRNA was detected in neonatal larvae, pupae, or in the gut of the adult insect, suggesting that Agcys1 is an important cysteine proteinase for larvae digestion. The isolated gene will facilitate the search for highly active inhibitors towards boll weevil larvae that may provide a new opportunity to control this important insect pest.

  12. Greenhouse and field-based studies on the distribution of dimethoate in cotton and its effect on Tetranychus urticae by drip irrigation.

    Science.gov (United States)

    He, Jiangtao; Zhou, Lijuan; Yao, Qiang; Liu, Bo; Xu, Hanhong; Huang, Jiguang

    2018-01-01

    The two-spotted spider mite, Tetranychus urticae Koch is an important pest of cotton. We investigated the efficacy of dimethoate in controlling T. urticae by drip irrigation. Greenhouse and field experiments were carried out to determine the efficacy of dimethoate to T. urticae and the absorption and distribution of dimethoate in cotton. Greenhouse results showed that cotton leaves received higher amounts of dimethoate compared with cotton roots and stems, with higher amounts in young leaves compared with old leaves and cotyledon having the lowest amounts among leaves. Field results showed the efficacy of dimethoate to T. urticae by drip irrigation varied by volume of dripping water, soil pH and dimethoate dosage. Dimethoate applied at 3.00 kg ha -1 with 200 m 3  ha -1 water at weak acidic soil pH (5.70-6.70) through drip irrigation can obtain satisfactory control efficacy (81.49%, 7 days) to T. urticae, without negatively impacting on its natural enemy Neoseiulus cucumeris. The residue of dimethoate in all cotton seed samples were not detectable. These results demonstrate the effectiveness of applying dimethoate by drip irrigation for control of T. urticae on cotton. This knowledge could aid in the applicability of dimethoate by drip irrigation for field management of T. urticae populations. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. China's Cotton Policy and the Impact of China's WTO Accession and Bt Cotton Adoption on the Chinese and U.S. Cotton Sectors

    OpenAIRE

    Cheng Fang; Bruce A. Babcock

    2003-01-01

    In this paper we provide an analysis of China's cotton policy and develop a framework to quantify the impact of both China's World Trade Organization (WTO) accession and Bt (Bacillus thuringiensis) cotton adoption on Chinese and U.S. cotton sectors. We use a Chinese cotton sector model consisting of supply, demand, price linkages, and textiles output equations. A two-stage framework model provides gross cropping area and total area for cotton and major subsitute crops from nine cotton-produci...

  14. Impact of Bollgard cotton on Indian cotton production and Income of ...

    Indian Academy of Sciences (India)

    Impact of Bollgard cotton on Indian cotton production and Income of cotton farmers. Presentation made in the Seventy Second Annual Meeting Indian Academy of Sciences, Bangalore at Devi Ahilya Vishwavidyalaya Indore 11th November 2006.

  15. Detoxifying enzyme studies on cotton leafhopper, Amrasca biguttula biguttula (Ishida, resistance to neonicotinoid insecticides in field populations in Karnataka, India

    Directory of Open Access Journals (Sweden)

    Halappa Banakar

    2016-12-01

    Full Text Available The cotton leafhopper (Amrasca biguttula biguttula Ishida is considered to be an alarming insect pest causing both quantitative and qualitative loss in cotton. In situ bioassay studies were done and the role of detoxifying enzymes in conferring resistance to neonicotinoid groups of insecticides in low (MUD, medium (DVG, high (HVR and very high (GLB pesticide usage areas of Karnataka were determined. Bioassay studies showed that imidacloprid, thiamethoxam, acetamiprid, thiacloprid and clothianidin registered varying levels of resistance for all the locations studied. The resistance ratio was high in imidacloprid (3.35, 8.57, 9.15 and 12.27 fold respectively and the lowest in dinoferuran (1.86, 5.13, 6.71 and 9.88 fold respectively. Furthermore, the enzyme activity ratio (glutathione-S-transferase was relatively greater, and corresponded to the higher LC50 values of neonicotinoids for very high, high, medium and low pesticide usage areas. Our study suggested that the higher activity of the detoxifying enzyme in the resistance population of cotton leafhopper apparently has a significant role in endowing resistance to neonicotinoid groups of insecticides. However, this study recommends using neonicotinoids in cotton growing areas with caution.

  16. Effect of silicon and acibenzolar-s-methyl on colored cotton plants infested or not with Aphis gossypii Glover (Hemiptera, Aphididae

    Directory of Open Access Journals (Sweden)

    Eliana Alcantra

    2011-06-01

    Full Text Available Effect of silicon and acibenzolar-s-methyl on colored cotton plants infested or not with Aphis gossypii Glover (Hemiptera, Aphididae. The aphid Aphis gossypii is an insect pest that causes damage mainly at the beginning of the cotton plant development. The effect of resistance inductors silicon and acibenzolar-s-methyl (ASM on the development of colored cotton plants were researched in the presence and absence of A. gossypii. Three colored cotton cultivars were sown in pots and individually infested with 25 apterous aphids, 13 days after the application of the inductors. Fifteen days after plant emergence, the silicon was applied at a dosage equivalent to 3 t/ha and acibenzolar-s-methyl in 0.2% solution of the product BION 500®. After 21 days of infestation the following parameters were evaluated: plant height, stem diameter, dry matter of aerial part and root, and total number of aphids replaced. It was verified that the plant height was reduced in the presence of aphids and all variables were negatively affected by the application of ASM. However, silicon did not affect plant development.

  17. Impact of efficient refuge policies for Bt cotton in India on world cotton trade

    OpenAIRE

    Singla, Rohit; Johnson, Phillip N.; Misra, Sukant K.

    2010-01-01

    India is a major cotton producing country in the world along with the U.S. and China. A change in the supply of and demand for cotton in the Indian market has the potential to have an impact on world cotton trade. This study evaluates the implications of efficient Bt cotton refuge policies in India on world and U.S. cotton markets. It can be hypothesized that increased refuge requirements for Bt cotton varieties in India could decrease the world supply of cotton because of the lower yield pot...

  18. Cry1F resistance among lepidopteran pests: a model for improved resistance management?

    Science.gov (United States)

    Vélez, Ana M; Vellichirammal, Neetha Nanoth; Jurat-Fuentes, Juan Luis; Siegfried, Blair D

    2016-06-01

    The Cry1Fa protein from the bacterium Bacillus thuringiensis (Bt) is known for its potential to control lepidopteran pests, especially through transgenic expression in maize and cotton. The maize event TC1507 expressing the cry1Fa toxin gene became commercially available in the United States in 2003 for the management of key lepidopteran pests including the European corn borer, Ostrinia nubilalis, and the fall armyworm, Spodoptera frugiperda. A high-dose/refuge strategy has been widely adopted to delay evolution of resistance to event TC1507 and other transgenic Bt crops. Efficacy of this strategy depends on the crops expressing a high dose of the Bt toxin to targeted pests and adjacent refuges of non-Bt host plants serving as a source of abundant susceptible insects. While this strategy has proved effective in delaying O. nubilalis resistance, field-evolved resistance to event TC1507 has been reported in S. frugiperda populations in Puerto Rico, Brazil, and the southeastern United States. This paper examines available information on resistance to Cry1Fa in O. nubilalis and S. frugiperda and discusses how this information identifies opportunities to refine resistance management recommendations for Bt maize. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Survival and Development of Spodoptera frugiperda and Chrysodeixis includens (Lepidoptera: Noctuidae) on Bt Cotton and Implications for Resistance Management Strategies in Brazil.

    Science.gov (United States)

    Sorgatto, Rodrigo J; Bernardi, Oderlei; Omoto, Celso

    2015-02-01

    In Brazil, Spodoptera frugiperda (J. E. Smith) and Chrysodeixis includens (Walker) are important cotton pests and target of control of Bollgard II (Cry1Ac/Cry2Ab2) and WideStrike (Cry1Ac/Cry1F) cotton technologies. To subsidize an insect resistance management program, we conducted laboratory studies to evaluate the toxicity of these Bt cotton plants throughout larval development of S. frugiperda and C. includens. In bioassays with leaf disc, the efficacy of both Bt cotton plants against neonates was >80% for S. frugiperda and 100% for C. includens. However, S. frugiperda larvae that survived on Bt cotton had >76% of growth inhibition and stunting. In bioassays with S. frugiperda and C. includens larvae fed on non-Bt near-isoline during different time period (from 3 to 18 d) and then transferred to Bollgard II or WideStrike leaves showed that larval susceptibility decreased as larval age increased. For Bollgard II cotton, in all S. frugiperda instars, there were larvae that reached the pupal and adult stages. In contrast, on WideStrike cotton, a few larvae in fifth and sixth instar completed the biological cycle. For C. includens, some larvae in sixth instar originated adults in both Bt cotton plants. In conclusion, Bollgard II and WideStrike cotton technologies showed high efficacy against neonates of S. frugiperda and C. includens. However, the mortality of these species decreases as larval age increase, allowing insect survival in a possible seed mixture environment and favoring the resistance evolution. © The Author 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Dusky Cotton Bug Oxycarenus spp. (Hemiptera: Lygaeidae: Hibernating Sites and Management by using Plant Extracts under Laboratory Conditions

    Directory of Open Access Journals (Sweden)

    Abbas Muneer

    2015-09-01

    Full Text Available The dusky cotton bug, Oxycarenus spp., has now attained the status of a major pest of cotton crops that affects lint as well as the seed quality of cotton. Surveys were conducted to explore the hibernating sites in the districts Faisalabad, Multan and Bahawalpur. The efficacies of six different plant extracts, i.e. Neem (Azadirachta indica, Milkweed (Calotropis procera, Moringa (Moringa oleifera, Citrus (Citrus sinensis, Tobacco (Nicotiana tobacum and Castor (Ricinus communis were tested by using three different concentrations of each plant extract, i.e. 5, 2.5 and 1.5% under laboratory conditions at 25±2°C and 70±5% RH. The data were recorded 24, 48, 72 and 96 hours after treatment application. However, Psidium guajava, Azadirachta indica, Eucalyptus camaldulensis and Mangifera indica were graded as host plants heavily infested by Oxycarenus spp. Results (α≤0.05 indicated that increasing the concentration of extracts also increased the mortality. Nicotiana tobacum and Calotropis procera respectively displayed maximum 72 and 71, 84 and 80, 97 and 89% mortality at all concentrations, i.e. 1.25, 2.50 and 5.00%, after 96 hours of application. Two concentrations (2.5 and 5% are the most suitable for obtaining significant control of the dusky cotton bug.

  1. Inventaire préliminaire des ravageurs et des ennemis naturels du cotonnier du département de l'Ouémé (République du Bénin

    Directory of Open Access Journals (Sweden)

    Tchibozo, S.

    1995-01-01

    Full Text Available Preliminary Inventory of Pests and Natural Enemies on Cotton in Oueme Department, Benin. The cotton plant is attacked by thousand of insects pests whose natural enemies are not well known in some producing countries. In order to make an inventory of pests and natural enemies, a first work has been realized on cotton entomological fauna in Oueme Department during agricultural campaign 1993-1994. The results obtained, allowed us to list ail the pests, and their natural enemies met on cotton per locality. The main destructors are classified according to their relative importance. For each pest the frequency of natural enemies is assessed.

  2. Dictionary of Cotton

    Science.gov (United States)

    The Dictionary of Cotton has over 2,000 terms and definitions that were compiled by 33 researchers. It reflects the ongoing commitment of the International Cotton Advisory Committee, through its Technical Information Section, to the spread of knowledge about cotton to all those who have an interest ...

  3. The interaction of two-spotted spider mites, Tetranychus urticae Koch, with Cry protein production and predation by Amblyseius andersoni (Chant) in Cry1Ac/Cry2Ab cotton and Cry1F maize.

    Science.gov (United States)

    Crops producing insecticidal crystal (Cry) proteins from the bacterium, Bacillus thuringiensis (Bt), are an important tool for managing lepidopteran pests on cotton and maize. However, the effects of these Bt crops on non-target organisms, especially natural enemies that provide biological control s...

  4. Population genetic structure of the cotton bollworm Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in India as inferred from EPIC-PCR DNA markers.

    Science.gov (United States)

    Behere, Gajanan Tryambak; Tay, Wee Tek; Russell, Derek Alan; Kranthi, Keshav Raj; Batterham, Philip

    2013-01-01

    Helicoverpa armigera is an important pest of cotton and other agricultural crops in the Old World. Its wide host range, high mobility and fecundity, and the ability to adapt and develop resistance against all common groups of insecticides used for its management have exacerbated its pest status. An understanding of the population genetic structure in H. armigera under Indian agricultural conditions will help ascertain gene flow patterns across different agricultural zones. This study inferred the population genetic structure of Indian H. armigera using five Exon-Primed Intron-Crossing (EPIC)-PCR markers. Nested alternative EPIC markers detected moderate null allele frequencies (4.3% to 9.4%) in loci used to infer population genetic structure but the apparently genome-wide heterozygote deficit suggests in-breeding or a Wahlund effect rather than a null allele effect. Population genetic analysis of the 26 populations suggested significant genetic differentiation within India but especially in cotton-feeding populations in the 2006-07 cropping season. In contrast, overall pair-wise F(ST) estimates from populations feeding on food crops indicated no significant population substructure irrespective of cropping seasons. A Baysian cluster analysis was used to assign the genetic make-up of individuals to likely membership of population clusters. Some evidence was found for four major clusters with individuals in two populations from cotton in one year (from two populations in northern India) showing especially high homogeneity. Taken as a whole, this study found evidence of population substructure at host crop, temporal and spatial levels in Indian H. armigera, without, however, a clear biological rationale for these structures being evident.

  5. Ground-based hyperspectral remote sensing to discriminate biotic stress in cotton crop

    Science.gov (United States)

    Nigam, Rahul; Kot, Rajsi; Sandhu, Sandeep S.; Bhattacharya, Bimal K.; Chandi, Ravinder S.; Singh, Manjeet; Singh, Jagdish; Manjunath, K. R.

    2016-05-01

    natural enemies are ineffective and when weather and host plants favor outbreaks. Large colonies often develop on the undersides of leaves. The most common pest species such as greenhouse white fly (Trialeurodes vaporariorum) and sweet potato white fly (Bemisia tabaci) have a wide host range that includes many weeds and crops. White flies normally lay their tiny oblong eggs on the undersides of leaves. The eggs hatch, and the young white flies gradually increase in size through four nymphal stages called instars. The first nymphal stage (crawler) is barely visible even with a hand lens. The crawlers move around for several hours before settling to begin feeding. Later nymphal stages are immobile, oval, and flattened, with greatly reduced legs and antennae, like small scale insects. The winged adult emerges from the last nymphal stage (sometimes called a pupa, although whiteflies don't have a true complete metamorphosis). All stages feed by sucking plant juices from leaves and excreting excess liquid as drops of honeydew as they feed. White flies use their piercing, needle like mouthparts to suck sap from phloem, the food-conducting tissues in plant stems and leaves. Large populations can cause leaves to turn yellow, appear dry, or fall off plants. Like aphids, white flies excrete sugary liquid called honeydew, so leaves may be sticky or covered with black sooty mold that grows on honeydew. The honeydew attracts ants, which interfere with the activities of natural enemies that may control white flies and other pests. High white fly infestation was reported at several locations in Punjab during year 2015. The application of non-destructive methods to detect vegetation stress at an early stage of its development is very important for pest management in commercially important crops. Earlier few studies have been done to characterize reflectance spectra of nutrient stress nitrogen deficiency and irrigation management for cotton but no literature is available regarding

  6. Agrobacterium rhizogenes-induced cotton hairy root culture as an alternative tool for cotton functional genomics

    Science.gov (United States)

    Although well-accepted as the ultimate method for cotton functional genomics, Agrobacterium tumefaciens-mediated cotton transformation is not widely used for functional analyses of cotton genes and their promoters since regeneration of cotton in tissue culture is lengthy and labor intensive. In cer...

  7. Determination of Attributes in Cotton (Gossypium hirsutum L. Genotypes in Corn-Soybean Rotation Associated with Acid Amended Soils in the Colombian Eastern Plains

    Directory of Open Access Journals (Sweden)

    Luis Fernando Campuzano Duque

    2015-07-01

    Full Text Available For the last 15 years, Colombia has developed a research process leading to the expansion of its agricultural frontier at the flat well drained savannas of the Eastern Plains, by improving predominantly acid soils with liming to increase base saturation with depth, vertical liming —as its referred locally—, crop rotation with rice, corn, soybeans, and with the potential to include other crops like cotton in the rotation system. To achieve this, a pioneering research in Colombia was conducted to determine the adaptation of cotton in the acid conditions of the high plains improved sheets. An Agronomic evaluation test was developed using five elite genotypes of cotton in a design of a randomized complete block at four locations in soils with base saturation above 80 %. The results identified a genotype (LC-156, which presented an adaptation to the high plains, associated with an average yield of 2.2 t/ha of cottonseed, 1.5 t/ha of cotton fiber type medium-long, a percentage of fiber extraction above 36.0 %. The comparative advantage of this region for sustainable cotton production is given by the yield of cotton fiber —which ishigher than the national average—, to the 33.2 % reduction in production costs, the quality of long/medium-fiber destined for export and the absence of the pest insect of greatest economic impact in Colombia: the weevil (Anthonomus grandis Boheman.

  8. Optimal Cotton Insecticide Application Termination Timing: A Meta-Analysis.

    Science.gov (United States)

    Griffin, T W; Zapata, S D

    2016-08-01

    The concept of insecticide termination timing is generally accepted among cotton (Gossypium hirsutum) researchers; however, exact timings are often disputed. Specifically, there is uncertainty regarding the last economic insecticide application to control fruit-feeding pests including tarnished plant bug (Lygus lineolaris (Palisot de Beauvois)), boll weevil (Anthonomus grandis), bollworm (Helicoverpa zea), tobacco budworm (Heliothis virescens), and cotton fleahopper (Pseudatomoscelis seriatus). A systematic review of prior studies was conducted within a meta-analytic framework. Nine publicly available articles were amalgamated to develop an optimal timing principle. These prior studies reported 53 independent multiple means comparison field experiments for a total of 247 trial observations. Stochastic plateau theory integrated with econometric meta-analysis methodology was applied to the meta-database to determine the shape of the functional form of both the agronomic optimal insecticide termination timing and corresponding yield potential. Results indicated that current university insecticide termination timing recommendations are later than overall estimated timing suggested. The estimated 159 heat units (HU) after the fifth position above white flower (NAWF5) was found to be statistically different than the 194 HU termination used as the status quo recommended termination timing. Insecticides applied after 159 HU may have been applied in excess, resulting in unnecessary economic and environmental costs. Empirical results also suggested that extending the insecticide termination time by one unit resulted in a cotton lint yield increase of 0.27 kilograms per hectare up to the timing where the plateau began. Based on economic analyses, profit-maximizing producers may cease application as soon as 124 HU after NAWF5. These results provided insights useful to improve production systems by applying inputs only when benefits were expected to be in excess of the

  9. Dictionary of cotton: Picking & ginning

    Science.gov (United States)

    Cotton is an essential commodity for textiles and has long been an important item of trade in the world’s economy. Cotton is currently grown in over 100 countries by an estimated 100 producers. The basic unit of the cotton trade is the cotton bale which consists of approximately 500 pounds of raw c...

  10. Preliminary studies of pest constraints to cotton seedlings in a direct seeding mulch-based system in Cameroon

    NARCIS (Netherlands)

    Brevault, T.; Guibert, H.; Naudin, K.

    2009-01-01

    The present study evaluated the pest constraints of an innovative crop management system in Cameroon involving conservation tillage and direct seeding mulch-based strategies. We hypothesized that the presence of mulch (i) would support a higher density of phytophagous arthropods particularly

  11. Principles and practices of integrated pest management on cotton in the lower Rio Grande Valley of Texas

    Science.gov (United States)

    Sustainable agriculture is ecologically sound, economically viable, socially just, and humane. These four goals for sustainability can be applied to all aspects of any agricultural system, from production and marketing, to processing and consumption. Integrated Pest Management (IPM) may be conside...

  12. Nucleases as a barrier to gene silencing in the cotton boll weevil, Anthonomus grandis.

    Science.gov (United States)

    Almeida Garcia, Rayssa; Lima Pepino Macedo, Leonardo; Cabral do Nascimento, Danila; Gillet, François-Xavier; Moreira-Pinto, Clidia Eduarda; Faheem, Muhammad; Moreschi Basso, Angelina Maria; Mattar Silva, Maria Cristina; Grossi-de-Sa, Maria Fatima

    2017-01-01

    RNA interference (RNAi) approaches have been applied as a biotechnological tool for controlling plant insect pests via selective gene down regulation. However, the inefficiency of RNAi mechanism in insects is associated with several barriers, including dsRNA delivery and uptake by the cell, dsRNA interaction with the cellular membrane receptor and dsRNA exposure to insect gut nucleases during feeding. The cotton boll weevil (Anthonomus grandis) is a coleopteran in which RNAi-mediated gene silencing does not function efficiently through dsRNA feeding, and the factors involved in the mechanism remain unknown. Herein, we identified three nucleases in the cotton boll weevil transcriptome denoted AgraNuc1, AgraNuc2, and AgraNuc3, and the influences of these nucleases on the gene silencing of A. grandis chitin synthase II (AgraChSII) were evaluated through oral dsRNA feeding trials. A phylogenetic analysis showed that all three nucleases share high similarity with the DNA/RNA non-specific endonuclease family of other insects. These nucleases were found to be mainly expressed in the posterior midgut region of the insect. Two days after nuclease RNAi-mediated gene silencing, dsRNA degradation by the gut juice was substantially reduced. Notably, after nucleases gene silencing, the orally delivered dsRNA against the AgraChSII gene resulted in improved gene silencing efficiency when compared to the control (non-silenced nucleases). The data presented here demonstrates that A. grandis midgut nucleases are effectively one of the main barriers to dsRNA delivery and emphasize the need to develop novel RNAi delivery strategies focusing on protecting the dsRNA from gut nucleases and enhancing its oral delivery and uptake to crop insect pests.

  13. Both point mutations and low expression levels of the nicotinic acetylcholine receptor β1 subunit are associated with imidacloprid resistance in an Aphis gossypii (Glover) population from a Bt cotton field in China.

    Science.gov (United States)

    Chen, Xuewei; Li, Fen; Chen, Anqi; Ma, Kangsheng; Liang, Pingzhuo; Liu, Ying; Song, Dunlun; Gao, Xiwu

    2017-09-01

    Aphis gossypii Glover is a destructive pest of numerous crops throughout the world. Although the expansion of Bt cotton cultivation has helped to control some insect pests, the damage from cotton aphids has not been mitigated. The evolution of aphid resistance to imidacloprid has made its chemical control more difficult since its introduction in 1991. Field populations of A. gossypii that were collected from different transgenic (Bt) cotton planting areas of China in 2014 developed different levels of resistance to imidacloprid. The IMI_R strain has developed high resistance to imidacloprid with the resistance ratio >1200-fold. Compared with the susceptible IMI_S strain, the IMI_R strain also developed a high level cross resistance to sulfoxaflor and acetamiprid. The limited synergism with either PBO or DEF suggests that resistance may be due to the site mutation of molecular target rather than to enhanced detoxification. Three target-site mutations within the nicotinic acetylcholine receptor (nAChR) β1 subunit were detected in the IMI_R strain. The R81T mutation has been reported to be responsible for imidacloprid resistance in A. gossypii and M. persicae. Both V62I and K264E were first detected in A. gossypii. These point mutations are also present in field populations, suggesting that they play a role in the resistance to imidacloprid. Furthermore, the expression level of transcripts encoding β1 subunit was decreased significantly in the IMI_R strain compared with the IMI_S strain, suggesting that both point mutations and the down-regulation of nAChR β1 subunit expression may be involved in the resistance mechanism for imidacloprid in A. gossypii. These results should be useful for the management of imidacloprid-resistant cotton aphids in Bt cotton fields in China. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Losing Chlordimeform Use in Cotton Production. Its Effects on the Economy and Pest Resistance. Agricultural Economic Report Number 587.

    Science.gov (United States)

    Osteen, Craig; Suguiyama, Luis

    This report examines the economic implications of losing chlordimeform use on cotton and considers chlordimeform's role in managing the resistance of bollworms and tobacco budworms to synthetic pyrethroids. It estimates changes in prices, production, acreage, consumer expenditures, aggregate producer returns, regional crop effects, and returns to…

  15. Molecular cloning of alpha-amylases from cotton boll weevil, Anthonomus grandis and structural relations to plant inhibitors: an approach to insect resistance.

    Science.gov (United States)

    Oliveira-Neto, Osmundo B; Batista, João A N; Rigden, Daniel J; Franco, Octávio L; Falcão, Rosana; Fragoso, Rodrigo R; Mello, Luciane V; dos Santos, Roseane C; Grossi-de-Sá, Maria F

    2003-01-01

    Anthonomus grandis, the cotton boll weevil, causes severe cotton crop losses in North and South America. Here we demonstrate the presence of starch in the cotton pollen grains and young ovules that are the main A. grandis food source. We further demonstrate the presence of alpha-amylase activity, an essential enzyme of carbohydrate metabolism for many crop pests, in A. grandis midgut. Two alpha-amylase cDNAs from A. grandis larvae were isolated using RT-PCR followed by 5' and 3' RACE techniques. These encode proteins with predicted molecular masses of 50.8 and 52.7kDa, respectively, which share 58% amino acid identity. Expression of both genes is induced upon feeding and concentrated in the midgut of adult insects. Several alpha-amylase inhibitors from plants were assayed against A. grandis alpha-amylases but, unexpectedly, only the BIII inhibitor from rye kernels proved highly effective, with inhibitors generally active against other insect amylases lacking effect. Structural modeling of Amylag1 and Amylag2 showed that different factors seem to be responsible for the lack of effect of 0.19 and alpha-AI1 inhibitors on A. grandis alpha-amylase activity. This work suggests that genetic engineering of cotton to express alpha-amylase inhibitors may offer a novel route to A. grandis resistance.

  16. Cotton transformation via pollen tube pathway.

    Science.gov (United States)

    Wang, Min; Zhang, Baohong; Wang, Qinglian

    2013-01-01

    Although many gene transfer methods have been employed for successfully obtaining transgenic cotton, the major constraint in cotton improvement is the limitation of genotype because the majority of transgenic methods require plant regeneration from a single transformed cell which is limited by cotton tissue culture. Comparing with other plant species, it is difficult to induce plant regeneration from cotton; currently, only a limited number of cotton cultivars can be cultured for obtaining regenerated plants. Thus, development of a simple and genotype-independent genetic transformation method is particularly important for cotton community. In this chapter, we present a simple, cost-efficient, and genotype-independent cotton transformation method-pollen tube pathway-mediated transformation. This method uses pollen tube pathway to deliver transgene into cotton embryo sacs and then insert foreign genes into cotton genome. There are three major steps for pollen tube pathway-mediated genetic transformation, which include injection of -foreign genes into pollen tube, integration of foreign genes into plant genome, and selection of transgenic plants.

  17. The seesaw effect of winter temperature change on the recruitment of cotton bollworms Helicoverpa armigera through mismatched phenology.

    Science.gov (United States)

    Reddy, Gadi V P; Shi, Peijian; Hui, Cang; Cheng, Xiaofei; Ouyang, Fang; Ge, Feng

    2015-12-01

    Knowing how climate change affects the population dynamics of insect pests is critical for the future of integrated pest management. Rising winter temperatures from global warming can drive increases in outbreaks of some agricultural pests. In contrast, here we propose an alternative hypothesis that both extremely cold and warm winters can mismatch the timing between the eclosion of overwintering pests and the flowering of key host plants. As host plants normally need higher effective cumulative temperatures for flowering than insects need for eclosion, changes in flowering time will be less dramatic than changes in eclosion time, leading to a mismatch of phenology on either side of the optimal winter temperature. We term this the "seesaw effect." Using a long-term dataset of the Old World cotton bollworm Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in northern China, we tested this seesaw hypothesis by running a generalized additive model for the effects of the third generation moth in the preceding year, the winter air temperature, the number of winter days below a critical temperature and cumulative precipitation during winter on the demography of the overwintering moth. Results confirmed the existence of the seesaw effect of winter temperature change on overwintering populations. Pest management should therefore consider the indirect effect of changing crop phenology (whether due to greenhouse cultivation or to climate change) on pest outbreaks. As arthropods from mid- and high latitudes are actually living in a cooler thermal environment than their physiological optimum in contrast to species from lower latitudes, the effects of rising winter temperatures on the population dynamics of arthropods in the different latitudinal zones should be considered separately. The seesaw effect makes it more difficult to predict the average long-term population dynamics of insect pests at high latitudes due to the potential sharp changes in annual growth rates

  18. Increased frequency of pink bollworm resistance to Bt toxin Cry1Ac in China.

    Directory of Open Access Journals (Sweden)

    Peng Wan

    Full Text Available Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt kill some key insect pests, but evolution of resistance by pests can reduce their efficacy. The main approach for delaying pest adaptation to Bt crops uses non-Bt host plants as "refuges" to increase survival of susceptible pests. To delay evolution of pest resistance to transgenic cotton producing Bt toxin Cry1Ac, the United States and some other countries have required refuges of non-Bt cotton, while farmers in China have relied on "natural" refuges of non-Bt host plants other than cotton. The "natural" refuge strategy focuses on cotton bollworm (Helicoverpa armigera, the primary target of Bt cotton in China that attacks many crops, but it does not apply to another major pest, pink bollworm (Pectinophora gossypiella, which feeds almost entirely on cotton in China. Here we report data showing field-evolved resistance to Cry1Ac by pink bollworm in the Yangtze River Valley of China. Laboratory bioassay data from 51 field-derived strains show that the susceptibility to Cry1Ac was significantly lower during 2008 to 2010 than 2005 to 2007. The percentage of field populations yielding one or more survivors at a diagnostic concentration of Cry1Ac increased from 0% in 2005-2007 to 56% in 2008-2010. However, the median survival at the diagnostic concentration was only 1.6% from 2008 to 2010 and failure of Bt cotton to control pink bollworm has not been reported in China. The early detection of resistance reported here may promote proactive countermeasures, such as a switch to transgenic cotton producing toxins distinct from Cry1A toxins, increased planting of non-Bt cotton, and integration of other management tactics together with Bt cotton.

  19. Stable integration and expression of a cry1Ia gene conferring resistance to fall armyworm and boll weevil in cotton plants.

    Science.gov (United States)

    Silva, Carliane Rc; Monnerat, Rose; Lima, Liziane M; Martins, Érica S; Melo Filho, Péricles A; Pinheiro, Morganna Pn; Santos, Roseane C

    2016-08-01

    Boll weevil is a serious pest of cotton crop. Effective control involves applications of chemical insecticides, increasing the cost of production and environmental pollution. The current genetically modified Bt crops have allowed great benefits to farmers but show activity limited to lepidopteran pests. This work reports on procedures adopted for integration and expression of a cry transgene conferring resistance to boll weevil and fall armyworm by using molecular tools. Four Brazilian cotton cultivars were microinjected with a minimal linear cassette generating 1248 putative lines. Complete gene integration was found in only one line (T0-34) containing one copy of cry1Ia detected by Southern blot. Protein was expressed in high concentration at 45 days after emergence (dae), decreasing by approximately 50% at 90 dae. Toxicity of the cry protein was demonstrated in feeding bioassays revealing 56.7% mortality to boll weevil fed buds and 88.1% mortality to fall armyworm fed leaves. A binding of cry1Ia antibody was found in the midgut of boll weevils fed on T0-34 buds in an immunodetection assay. The gene introduced into plants confers resistance to boll weevil and fall armyworm. Transmission of the transgene occurred normally to T1 progeny. All plants showed phenotypically normal growth, with fertile flowers and abundant seeds. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  20. Boll weevil invasion process in Argentina

    Science.gov (United States)

    The boll weevil, Anthonomus grandis grandis Boheman, is the most destructive cotton pest in the Western Hemisphere. In 1993, the pest was reported in Argentina, and in 1994 boll weevils were captured in cotton fields in the Formosa Province on the border between Argentina and Paraguay. The pest ha...

  1. Identification of a New Cotton Disease Caused by an Atypical Cotton Leafroll Dwarf Virus in Argentina.

    Science.gov (United States)

    Agrofoglio, Yamila C; Delfosse, Verónica C; Casse, María F; Hopp, Horacio E; Kresic, Iván Bonacic; Distéfano, Ana J

    2017-03-01

    An outbreak of a new disease occurred in cotton (Gossypium hirsutum) fields in northwest Argentina starting in the 2009-10 growing season and is still spreading steadily. The characteristic symptoms of the disease included slight leaf rolling and a bushy phenotype in the upper part of the plant. In this study, we determined the complete nucleotide sequences of two independent virus genomes isolated from cotton blue disease (CBD)-resistant and -susceptible cotton varieties. This virus genome comprised 5,866 nucleotides with an organization similar to that of the genus Polerovirus and was closely related to cotton leafroll dwarf virus, with protein identity ranging from 88 to 98%. The virus was subsequently transmitted to a CBD-resistant cotton variety using Aphis gossypii and symptoms were successfully reproduced. To study the persistence of the virus, we analyzed symptomatic plants from CBD-resistant varieties from different cotton-growing fields between 2013 and 2015 and showed the presence of the same virus strain. In addition, a constructed full-length infectious cDNA clone from the virus caused disease symptoms in systemic leaves of CBD-resistant cotton plants. Altogether, the new leafroll disease in CBD-resistant cotton plants is caused by an atypical cotton leafroll dwarf virus.

  2. Selection of Bacillus thuringiensis strains toxic to cotton boll weevil (Anthonomus grandis, Coleoptera: Curculionidae) larvae.

    Science.gov (United States)

    Pérez, Melisa P; Sauka, Diego H; Onco, María I; Berretta, Marcelo F; Benintende, Graciela B

    Preliminary bioassays with whole cultures (WC) of 124 Bacillus thuringiensis strains were performed with neonate larvae of Anthonomus grandis, a major cotton pest in Argentina and other regions of the Americas. Three exotic and four native strains were selected for causing more than 50% mortality. All of them were β-exotoxin producers. The native strains shared similar morphology of parasporal crystals, similar protein pattern and identical insecticidal gene profiles. These features resembled Lepidoptera-toxic strains. Furthermore, these strains showed a Rep-PCR pattern identical to lepidoptericidal strain HD-1, suggesting that these strains may belong to serovar kurstaki. However, some differences were observed in the plasmid profiles and in the production of β-exotoxin. To determine the culture fractions where the insecticidal metabolites were present, bioassays including resuspended spore-crystal pellets, filtered supernatants (FS) were compared with those of WC. Both fractions tested showed some level of insecticidal activity. The results may suggest that the main toxic factors can be found in FS and could be directly correlated with the presence of β-exotoxin. Based on the bioassays with FS and autoclaved FS, the participation of thermolabile virulence factors such as Cry1I in toxicity is neither discarded. In the selected strains, β-exotoxin would be the major associated virulence factor; therefore, their use in biological control of A. grandis should be restricted. Nevertheless, these strains could be the source of genes (e.g., cry1Ia) to produce transgenic cotton plants resistant to this pest. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Fitness cost of resistance to Bt cotton linked with increased gossypol content in pink bollworm larvae.

    Directory of Open Access Journals (Sweden)

    Jennifer L Williams

    Full Text Available Fitness costs of resistance to Bacillus thuringiensis (Bt crops occur in the absence of Bt toxins, when individuals with resistance alleles are less fit than individuals without resistance alleles. As costs of Bt resistance are common, refuges of non-Bt host plants can delay resistance not only by providing susceptible individuals to mate with resistant individuals, but also by selecting against resistance. Because costs typically vary across host plants, refuges with host plants that magnify costs or make them less recessive could enhance resistance management. Limited understanding of the physiological mechanisms causing fitness costs, however, hampers attempts to increase costs. In several major cotton pests including pink bollworm (Pectinophora gossypiella, resistance to Cry1Ac cotton is associated with mutations altering cadherin proteins that bind this toxin in susceptible larvae. Here we report that the concentration of gossypol, a cotton defensive chemical, was higher in pink bollworm larvae with cadherin resistance alleles than in larvae lacking such alleles. Adding gossypol to the larval diet decreased larval weight and survival, and increased the fitness cost affecting larval growth, but not survival. Across cadherin genotypes, the cost affecting larval growth increased as the gossypol concentration of larvae increased. These results suggest that increased accumulation of plant defensive chemicals may contribute to fitness costs associated with resistance to Bt toxins.

  4. Superoleophobic cotton textiles

    NARCIS (Netherlands)

    Leng, B.; Shao, Z.; With, de G.; Ming, W.

    2009-01-01

    Common cotton textiles are hydrophilic and oleophilic in nature. Superhydrophobic cotton textiles have the potential to be used as self-cleaning fabrics, but they typically are not super oil-repellent. Poor oil repellency may easily compromise the self-cleaning property of these fabrics. Here, we

  5. 7 CFR 1205.319 - Cotton-producing region.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Cotton-producing region. 1205.319 Section 1205.319... Cotton Research and Promotion Order Definitions § 1205.319 Cotton-producing region. Cotton-producing region means each of the following groups of cotton-producing States: (a) Southeast Region: Alabama...

  6. Examining cotton in rotation with rice and cotton in rotation with other crops using natural experiment

    Science.gov (United States)

    Sun, Ling; Zhu, Zesheng

    2017-08-01

    This paper is to show the ability of remote sensing image analysis combined with statistical analysis to characterize the environmental risk assessment of cotton in rotation with rice and cotton in rotation with other crops in two ways: (1) description of rotation period of cotton in rotation with rice and cotton in rotation with other crops by the observational study or natural experiment; (2) analysis of rotation period calculation of cotton in rotation with rice and cotton in rotation with other crops. Natural experimental results show that this new method is very promising for determining crop rotation period for estimating regional averages of environmental risk. When it is applied to determining crop rotation period, two requested remote sensing images of regional crop are required at least.

  7. High Expression of Cry1Ac Protein in Cotton (Gossypium hirsutum by Combining Independent Transgenic Events that Target the Protein to Cytoplasm and Plastids.

    Directory of Open Access Journals (Sweden)

    Amarjeet Kumar Singh

    Full Text Available Transgenic cotton was developed using two constructs containing a truncated and codon-modified cry1Ac gene (1,848 bp, which was originally characterized from Bacillus thuringiensis subspecies kurstaki strain HD73 that encodes a toxin highly effective against many lepidopteran pests. In Construct I, the cry1Ac gene was cloned under FMVde, a strong constitutively expressing promoter, to express the encoded protein in the cytoplasm. In Construct II, the encoded protein was directed to the plastids using a transit peptide taken from the cotton rbcSIb gene. Genetic transformation experiments with Construct I resulted in a single copy insertion event in which the Cry1Ac protein expression level was 2-2.5 times greater than in the Bacillus thuringiensis cotton event Mon 531, which is currently used in varieties and hybrids grown extensively in India and elsewhere. Another high expression event was selected from transgenics developed with Construct II. The Cry protein expression resulting from this event was observed only in the green plant parts. No transgenic protein expression was observed in the non-green parts, including roots, seeds and non-green floral tissues. Thus, leucoplasts may lack the mechanism to allow entry of a protein tagged with the transit peptide from a protein that is only synthesized in tissues containing mature plastids. Combining the two events through sexual crossing led to near additive levels of the toxin at 4-5 times the level currently used in the field. The two high expression events and their combination will allow for effective resistance management against lepidopteran insect pests, particularly Helicoverpa armigera, using a high dosage strategy.

  8. Infestation of Anthonomus grandis (Coleoptera: Curculionidae on re-sprout of cotton plants

    Directory of Open Access Journals (Sweden)

    José Fernando Jurca Grigolli

    2015-06-01

    Full Text Available The destruction of cotton crop residues at the end of the crop cycle is a key strategy for the phytosanitary crop management, since its off-season re-sprout can provide sites for feeding and oviposition of pests such as the boll weevil. This study aimed to evaluate the re-sprout capacity of cotton cultivars, as well as their infestation by Anthonomus grandis. A randomized blocks design, in a 3 x 2 factorial arrangement, with three cultivars (FM 910, DeltaOPAL and NuOPAL, two mowing heights (10 cm and 20 cm and four replications, was used. Weekly evaluations were carried out for measuring the percentage of plant re-sprout for both mowing heights, percentage of flower buds infested by the boll weevil and number of adults per re-sprout. Plants mowed at 10 cm presented a lower sprout capacity and consequently less flower buds, reducing the boll weevil population density in the area, while plants mowed at 20 cm showed high re-sprouts rates, seven days after mowing. The FM 910 cultivar had the highest number of re-sprout plants, while the DeltaOPAL cultivar showed the highest number of flower buds and adults per plant, as well as the highest percentage of buds damaged by the boll weevil.

  9. Perspective of using the sterile insect technique for Tobacco Budworms Heliothis virescens (Lepidoptera: Noctuidae) and Cotton Bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) in cotton crop as an alternative method of control

    International Nuclear Information System (INIS)

    Haddad, Gianni Queiroz

    2017-01-01

    Since the 1950s, scientists have used ionizing radiation to sterilize insects, which are released in nature to mate, but without any progeny. Known as the sterile insect technique (TIE), this method of insect control has traditionally used ionizing radiation to sterilize insects, a technique that does not generate residues, and can act in synergy with the other techniques within integrated pest management. For several years, Brazil has been fighting against the increase of pests, introducing new tactics and techniques within the IPM programs, to overcome the resistance of chemical products, such as: reducing the residues of agrochemicals; For some important crops of our country, we have a wide spectrum of pests occurring from the beginning to the end of the harvest, one of them is the cotton crop and among the key pests of this crop, we have some extremely important caterpillars, among them Heliothis virescens and Helicoverpa armigera These species are morphologically similar, the second being identified a few years ago in Brazil. There are still no studies in Brazil using TIE as an additional tool for Lepidoptera, therefore the purpose of this study was to evaluate the effect of doses of gamma radiation in the different phases of the evolutionary cycle of Heliothis virescens and Helicoverpa armigera, as well as to evaluate the sterility in generation P And the ability of insects to irradiate with non-irradiated insects. The pupal phase presented the best result because 75 Gy achieved sterility in Heliothis virecens and 100 Gy sterilized Helicoverpa armigera, therefore it contemplated the phase and dose chosen to evaluate the competition between the irradiated insects and the normal insects of both species. Both Heliothis virecens and Helicoverpa armigera presented a satisfactory result, as the irradiated insects managed to significantly reduce the viability of the eggs in a ratio of 9: 1: 1. (author)

  10. The Impacts of U.S. Cotton Programs on the West and Central African Countries Cotton Export Earnings

    OpenAIRE

    Fadiga, Mohamadou L.; Mohanty, Samarendu; Pan, Suwen

    2005-01-01

    This study uses a stochastic simulation approach based on a partial equilibrium structural econometric model of the world fiber market to examine the effects of a removal of U.S. cotton programs on the world market. The effects on world cotton prices and African export earnings were analyzed. The results suggest that on average an elimination of U.S. cotton programs would lead to a marginal increase in the world cotton prices thus resulting in minimal gain for cotton exporting countries in Af...

  11. Thrips (Thysanoptera: Thripidae) mitigation in seedling cotton using strip tillage and winter cover crops.

    Science.gov (United States)

    Toews, Michael D; Tubbs, R Scott; Wann, Dylan Q; Sullivan, Dana

    2010-10-01

    Thrips are the most consistent insect pests of seedling cotton in the southeastern United States, where symptoms can range from leaf curling to stand loss. In a 2 year study, thrips adults and immatures were sampled at 14, 21 and 28 days after planting on cotton planted with a thiamethoxam seed treatment in concert with crimson clover, wheat or rye winter cover crops and conventional or strip tillage to investigate potential differences in thrips infestations. Densities of adult thrips, primarily Frankliniella fusca (Hinds), peaked on the first sampling date, whereas immature densities peaked on the second sampling date. Regardless of winter cover crop, plots that received strip tillage experienced significantly fewer thrips at each sampling interval. In addition, assessment of percentage ground cover 42 days after planting showed that there was more than twice as much ground cover in the strip-tilled plots compared with conventionally tilled plots. Correlation analyses showed that increased ground cover was inversely related to thrips densities that occurred on all three sampling dates in 2008 and the final sampling date in 2009. Growers who utilize strip tillage and a winter cover crop can utilize seed treatments for mitigation of early-season thrips infestation.

  12. Locally Grown: Examining Attitudes and Perceptions About Organic Cotton Production and Manufacturing Between Mississippi Cotton Growers and Consumers

    Directory of Open Access Journals (Sweden)

    Charles Freeman

    2016-06-01

    Full Text Available The purpose of this study is to examine attitudes and perceptions about organic cotton of Mississippi cotton growers and producers in comparison to fashion-conscious consumers, including advantages/disadvantages of growing and production processes, quality control, consumer preferences, and competitive price structures/profit margins. A sample size of 16 local Mississippi growers and/or producers and 44 undergraduate students at a mid-major Southeastern university were chosen to participate in the study. Instruments were developed based on current research and the definition of organic cotton production defined by the United States Department of Agriculture. Results indicate 75% of growers and producers do not perceive a quality difference between organic and conventionally grown cotton, while 72.7% of the consumers report organically grown cotton is capable of producing a higher quality product compared to conventionally grown cotton. Even with an increase in organic cotton prices (25- 40% higher premium, only 25% of growers and producers would be willing to convert, while a majority (52.3% of consumers would not be willing to spend more than 25% extra for an organically grown cotton product. Consumers indicate the negative effects of conventionally grown cotton, yet many report little knowledge about organic cotton production, while growers/producers immediately dismiss organically grown cotton as a retail marketing strategy.

  13. Superamphiphobic cotton fabrics with enhanced stability

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bi, E-mail: xubi@dhu.edu.cn [National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, Shanghai 201620 (China); Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620 (China); College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Ding, Yinyan; Qu, Shaobo [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Cai, Zaisheng, E-mail: zshcai@dhu.edu [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China)

    2015-11-30

    Highlights: • Superamphiphobic cotton fabrics were prepared. • Water and hexadecane contact angels reach to 164.4° and 156.3°, respectively. • Nanoporous organically modified silica alcogel particles were synthesized. • The superamphiphobic cotton fabrics exhibit enhanced stability against abrasion, laundering and acid. - Abstract: Superamphiphobic cotton fabrics were prepared by alternately depositing organically modified silica alcogel (ormosil) particles onto chitosan precoated cotton fabrics and subsequent 1H, 1H, 2H, 2H-perfluorooctyltrimethoxysilane (PFOTMS) modification. Transmission electron microscopy and scanning electron microscopy images reveal that the ormosil particles display a fluffy, sponge-like nanoporous structure, and the entire cotton fiber surface is covered with highly porous networks. PFOTMS acts as not only a modifier to lower the surface energy of the cotton fabric but also a binder to enhance the coating stability against abrasion and washing. The treated cotton fabrics show highly liquid repellency with the water, cooking oil and hexadecane contact angels reaching to 164.4°, 160.1° and 156.3°, respectively. Meanwhile, the treated cotton fabrics exhibit good abrasion resistance and high laundering durability, which can withstand 10,000 cycles of abrasion and 30 cycles of machine wash without apparently changing the superamphiphobicity. The superamphiphobic cotton fabric also shows high acid stability, and can withstand 98% H{sub 2}SO{sub 4}. Moreover, the superamphiphobic coating has almost no influence on the other physical properties of the cotton fabrics including tensile strength, whiteness and air permeability. This durable non-wetting surface may provide a wide range of new applications in the future.

  14. Sequential Sampling Plan of Anthonomus grandis (Coleoptera: Curculionidae) in Cotton Plants.

    Science.gov (United States)

    Grigolli, J F J; Souza, L A; Mota, T A; Fernandes, M G; Busoli, A C

    2017-04-01

    The boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), is one of the most important pests of cotton production worldwide. The objective of this work was to develop a sequential sampling plan for the boll weevil. The studies were conducted in Maracaju, MS, Brazil, in two seasons with cotton cultivar FM 993. A 10,000-m2 area of cotton was subdivided into 100 of 10- by 10-m plots, and five plants per plot were evaluated weekly, recording the number of squares with feeding + oviposition punctures of A. grandis in each plant. A sequential sampling plan by the maximum likelihood ratio test was developed, using a 10% threshold level of squares attacked. A 5% security level was adopted for the elaboration of the sequential sampling plan. The type I and type II error used was 0.05, recommended for studies with insects. The adjustment of the frequency distributions used were divided into two phases, so that the model that best fit to the data was the negative binomial distribution up to 85 DAE (Phase I), and from there the best fit was Poisson distribution (Phase II). The equations that define the decision-making for Phase I are S0 = -5.1743 + 0.5730N and S1 = 5.1743 + 0.5730N, and for the Phase II are S0 = -4.2479 + 0.5771N and S1 = 4.2479 + 0.5771N. The sequential sampling plan developed indicated the maximum number of sample units expected for decision-making is ∼39 and 31 samples for Phases I and II, respectively. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Efficacy of bio and synthetic pesticides against the American ...

    African Journals Online (AJOL)

    ACSS

    Cotton production in Uganda is limited by various factors among which insects pests are the most important. The key insect ... of cotton bollworm pests with special reference to the American bollworm. ..... cocoa farms against the brown Cocoa.

  16. U.S. Cotton Prices and the World Cotton Market: Forecasting and Structural Change

    OpenAIRE

    Isengildina-Massa, Olga; MacDonald, Stephen

    2009-01-01

    The purpose of this study was to analyze structural changes that took place in the cotton industry in recent years and develop a statistical model that reflects the current drivers of U.S. cotton prices. Legislative changes authorized the U.S. Department of Agriculture to resume publishing cotton price forecasts for the first time in 79 years. In addition, systematic problems have become apparent in the forecasting models used by USDA and elsewhere, highlighting the need for an updated review...

  17. The development of radiation-induced sterility for the management of lepidopterous maize stem bores:El dana saccharina walker (pyraldae) and sesmia calamistis hampson (noctuidae)

    International Nuclear Information System (INIS)

    Annoh, C. E

    2003-01-01

    Radio-sterilization study was conducted on the biology of two lepidopterous maize stem borers, Eldana saccharina Walker and Sesamia calamistis Hampson to induce inherited sterility for insect pest management programme in Ghana. Bioecology of the two borer species was also studied for a 3-year period, 1997-1999 at Medie, a predominantly maize growing community in the Ga District of Greater Accra Region, to determine the population dynamics and climatic factors influencing the population of the borer species. It was observed that Sesamia species usually attacked the young maize crop, with peak infestations occurring about 6-S weeks after emergence of the crop. Eldana species preferred mature maize with peak infestations around 10-12 weeks after emergence of the maize crop. Larval numbers of E. saccharina showed inverse relations with rainfall, r= - 0.5899; p= 0.043. Infestation levels of larvae of both species were relatively higher during the minor rainy season than the major season. Larvae and pupae of E. saccharina that developed separately on natural and artificial diets did not show significant difference in most of their biological parameters. In both borer species, pupal weights of natural dieters were slightly heavier than those of artificial dieters. Exposure of young pupae (less than 6 days old) of the two borer species to increasing doses of ionizing radiation, SO-ISO Gy, resulted in high percentage of deformity and un emerged adults. Mature pupae of 6-S days old were less susceptible to increased doses and exhibited fewer body deformities and unemerged adults. The mating capability of adults emerged from irradiated mature pupae of E. saccharina was not adversely affected. In the parent generation (P), fecundity and fertility decreased with increased doses of radiation for crosses involving irradiated males and normal females as well as irradiated females and normal males. While the treatment m the former crosses resulted in partial fertility (40% at 180

  18. The water footprint of cotton consumption: An assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries

    NARCIS (Netherlands)

    Chapagain, Ashok; Hoekstra, Arjen Ysbert; Savenije, H.H.G.; Gautam, R.

    2006-01-01

    The consumption of a cotton product is connected to a chain of impacts on the water resources in the countries where cotton is grown and processed. The aim of this paper is to assess the ‘water footprint’ of worldwide cotton consumption, identifying both the location and the character of the

  19. Separation and recycling of cotton from cotton/PET blends by depolymerization of PET catalyzed by bases and ionic liquids

    NARCIS (Netherlands)

    Bouwhuis, G.H. (Gerrit); Brinks, G.J. (Ger); Groeneveld, R.A.J. (Richard); Oelerich, J. (Jens)

    2014-01-01

    The recycling of post consumer cotton textile waste is highly requested, due to the high environmental impact of cotton production. Often cotton is mixed in blends with polyethylene terephthalate (PET). For the generation of high value products from recycled cotton, it essential that PET is

  20. The "Cotton Problem"

    OpenAIRE

    Baffes, John

    2005-01-01

    Cotton is an important cash crop in many developing economies, supporting the livelihoods of millions of poor households. In some countries it contributes as much as 40 percent of merchandise exports and more than 5 percent of gross domestic product (GDP). The global cotton market, however, has been subject to numerous policy interventions, to the detriment of nonsubsidized producers. This ...

  1. Tensile Properties of Single Jersey and 1×1 Rib Knitted Fabrics Made from 100% Cotton and Cotton/Lycra Yarns

    Directory of Open Access Journals (Sweden)

    Dereje Berihun Sitotaw

    2017-01-01

    Full Text Available The tensile properties such as tensile strength which is measured as breaking force in Newton (N and elongation percent (% at break of single jersey and 1×1 rib (knitted with full needles knitted fabrics made from 100% cotton and cotton/Lycra yarns (5% Lycra yarn content in 95% combed cotton yarn are investigated in this research. The sample fabrics are conditioned for 24 hours at 20±1°C temperature and 65±2% relative humidity before testing. Ten specimens (five for lengthwise and five for widthwise have been taken from each of the two knitted structures, those made from 100% cotton and cotton/Lycra (at 95/5 percent ratio blend yarns. According to the discussion and as found from the investigations, the tensile properties of single jersey and 1×1 rib knitted fabrics made from 100% cotton and cotton/Lycra yarns are significantly different from each other and both of the knitted fabrics have high elongation percent at break with cotton/Lycra blend yarns as compared to 100% cotton yarn. Knitted fabrics made from cotton/Lycra blended yarn have low breaking force and high elongation percent at break relative to knitted fabrics made from 100% cotton yarns.

  2. An integrated pest management program as a pests control strategy ...

    African Journals Online (AJOL)

    Phukubje, Justice

    The study was conducted using a survey methodology and data collection was ... prevention and pest control measures at UB-Library, .... on pest equally include the rapid production of the young ones ...... Handbook of research methods; A ...

  3. Biological control agent of larger black flour beetles (Coleoptera: Tenebrionidae): A nuisance pest developing in cotton gin trash piles.

    Science.gov (United States)

    Larger black flour beetles (LBFB), Cynaeus angustus, feed on saprophytic fungi found in gin trash piles, and become nuisance pests in homes and businesses. We examined the dose-response of three entomopathogenic nematode species (Steinernema carpocapsae, S. feltiae, and Heterorhabditis bacteriophora...

  4. The influence of the temperature at the intensity of the spread of the cotton bollworm (heliothis obsoleta fabr. = helicoverpa armigera hb.) as a pest of the peppers in the Strumica region

    OpenAIRE

    Spasov, Dusan; Spasova, Dragica; Ilievski, Mite; Atanasova, Biljana

    2015-01-01

    H. armigera is typical polyphagous insect which attacks: tomatoes, peppers, tobacco, maize, cotton, garlic, onions, cabbage, soy, beans and many other leguminous and pumpkin crops and various weed plants. The damages from the cotton bollworm have economic importance, especially when the species is in progradation. It is widespread all over the world, especially in warmer climates. The increase in the population of this cotton bollworm is associated with global warming.

  5. Salt Stress Effects on Secondary Metabolites of Cotton in Relation to Gene Expression Responsible for Aphid Development.

    Directory of Open Access Journals (Sweden)

    Qi Wang

    Full Text Available Many secondary metabolites have insecticidal efficacy against pests and may be affected by abiotic stress. However, little is known of how plants may respond to such stress as pertains the growth and development of pests. The objective of this study was to determine if and how salt stress on cotton plants affects the population dynamics of aphids. The NaCl treatment (50 mM, 100 mM, 150 mM and 200 mM increased contents of gossypol in cotton by 26.8-51.4%, flavonoids by 22.5-37.6% and tannic by 15.1-24.3% at 7-28 d after salt stress. Compared with non-stressed plants, the population of aphids on 150 and 200 mM NaCl stressed plants was reduced by 46.4 and 65.4% at 7d and by 97.3 and 100% at 14 days after infestation. Reductions in aphid population were possibly attributed to the elevated secondary metabolism under salt stress. A total of 796 clones for aphids transcriptome, 412 clones in the positive- library (TEST and 384 clones in the reverse-library (Ck, were obtained from subtracted cDNA libraries and sequenced. Gene ontology (GO functional classification and KEGG pathway analysis showed more genes related to fatty acid and lipid biosynthesis, and fewer genes related to carbohydrate metabolism, amino acid metabolism, energy metabolism and cell motility pathways in TEST than in Ck library, which might be the reason of aphids population reduction. A comparative analysis with qRT-PCR indicated high expression of transcripts CYP6A14, CYP6A13, CYP303A1, NADH dehydrogenase and fatty acid synthase in the TEST group. However, CYP307A1 and two ecdysone-induced protein genes were down regulated. The results indicate that genes of aphids related to growth and development can express at a higher level in reaction to the enhanced secondary metabolism in cotton under salinity stress. The expression of CYP307A1 was positively correlated with the population dynamics of aphids since it was involved in ecdysone synthesis.

  6. Pest Management Specialist (AFSC 56650).

    Science.gov (United States)

    Air Univ., Gunter AFS, Ala. Extension Course Inst.

    This eight-volume student text is designed for use by Air Force personnel enrolled in a self-study extension course for pest management specialists. Covered in the individual volumes are civil engineering; pest management (entomology, pest management planning and coordination, and safety and protective equipment); pest management chemicals and…

  7. Morphometrics of the Southern Green Stink Bug [Nezara viridula (L.) (Hemiptera: Pentatomidae)] Stylet Bundle

    Science.gov (United States)

    The southern green stink bug, Nezara viridula (L.) (Hemiptera: Pentatomidae), is a cosmopolitan pest of high-value cash crops, including cotton (Gossypium hirsutum L.; Malvales: Malvaceae). The pest can ingest and transmit disease-causing bacterial and fungal pathogens of cotton. We hypothesized t...

  8. The water footprint of cotton consumption

    NARCIS (Netherlands)

    Chapagain, Ashok; Hoekstra, Arjen Ysbert; Savenije, H.H.G.; Gautam, R.

    2005-01-01

    The consumption of a cotton product is connected to a chain of impacts on the water resources in the countries where cotton is grown and processed. The aim of this report is to assess the ‘water footprint’ of worldwide cotton consumption, identifying both the location and the character of the

  9. Response of successive three generations of cotton bollworm, Helicoverpa armigera (Hübner), fed on cotton bolls, under elevated CO2

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The growth, development and consumption of successive three generations of cotton bollworm, Helicoverpa armigera (Hübner), fed on cotton bolls grown under elevated CO2 (double-ambient vs. ambient) in open-top chambers were examined. Significant decreases in protein, total amino acid, water and nitrogen content and increases in free fatty acid were observed in cotton bolls. Changes in quality of cotton bolls affected the growth, development and food utilization of H. armigera. Significantly longer larval development duration in three successive generations and lower pupal weight of the second and third generations were observed in cotton bollworm fed on cotton bolls grown under elevated CO2. Significantly lower fecundity was also found in successive three generations of H. armigera fed on cotton bolls grown under elevated CO2. The consumption per larva occurred significant increase in successive three generations and frass per larva were also significantly increased during the second and third generations under elevated CO2. Significantly lower relative growth rate, efficiency of conversion of ingested food and significant higher relative consumption rate in successive three generations were observed in cotton bollworm fed on cotton bolls grown under elevated CO2. Significantly lower potential female fecundity, larval numbers and population consumption were found in the second and third generations of cotton bollworm fed on cotton bolls grown under elevated CO2. The integrative effect of higher larval mortality rate and lower adult fecundity resulted in significant decreases in potential population consumption in the latter two generations. The results show that elevated CO2 adversely affects cotton bolls quality, which indicates the potential population dynamics and potential population consumption of cotton bollworm will alleviate the harm to the plants in the future rising CO2 atmosphere.

  10. Sex Pheromone of the Cotton Mealybug, Phenacoccus solenopsis, with an Unusual Cyclobutane Structure.

    Science.gov (United States)

    Tabata, Jun; Ichiki, Ryoko T

    2016-11-01

    The cotton mealybug, Phenacoccus solenopsis, the distribution of which was formerly limited to Nearctic and Neotropical regions, recently invaded many countries in various regions including Asia, Africa, and the Pacific. More recently, P. solenopsis was newly recorded in Japan and is currently an emerging pest of agricultural crops. In this study, we determined the structure of a sex pheromone of P. solenopsis in order to develop an effective lure for monitoring this pest. From volatiles emitted by virgin adult females, we isolated a compound attractive to males. By means of coupled gas chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy, we identified this as (2,2-dimethyl-3-isopropylidenecyclobutyl)methyl 3-methylbut-2-enoate. This compound was synthesized and shown to be attractive to male P. solenopsis. Analysis by gas chromatography using an enantioselective stationary phase and polarimetry analyses of the natural pheromone and synthetic enantiomers showed the natural compound to be the (R)-(-)-enantiomer. This compound is an ester of maconelliol, which has an unusual cyclobutane structure found in sex pheromones of other mealybug species, and senecioic acid, also found in the pheromones of other mealybug species. However, this is the first example of the ester of maconelliol and senecioic acid as a natural product.

  11. Evaluation of cotton stalks destroyers

    OpenAIRE

    Bianchini, Aloisio; Borges, Pedro H. de M.

    2013-01-01

    The destruction of the cotton crop residues (cotton stalks) is a mandatory procedure in Brazil for prophylactic issues, but is a subject unexplored by the research and there are few studies that deal with this issue. However, this is not encouraged in recent decades, studies aimed at developing and evaluating equipment for this purpose. The present study had the objective to evaluate six methods for mechanical destruction of cotton crop residues. Each method was defined based on the principle...

  12. Cotton : Market setting, trade policies, and issues

    OpenAIRE

    Baffes, John

    2004-01-01

    The value of world cotton production in 2000-01 has been estimated at about $20 billion, down from $35 billion in 1996-97 when cotton prices were 50 percent higher. Although cotton's share in world merchandise trade is insignificant (about 0.12 percent), it is very important to a number of developing countries. Cotton accounts for approximately 40 percent of total merchandise export earnin...

  13. Comparison of susceptibility of pest Euschistus servus and predator Podisus maculiventris (Heteroptera: Pentatomidae) to selected insecticides.

    Science.gov (United States)

    Tillman, P Glynn; Mullinix, Benjamin G

    2004-06-01

    Susceptibility of the brown stink bug, Euschistus serous (Say), and the spined soldier bug, Podisus maculiventris (Say), to acetamiprid, cyfluthrin, dicrotophos, indoxacarb, oxamyl, and thiamethoxam, was compared in residual and oral toxicity tests. Generally, susceptibility of P. maculiventris to insecticides was significantly greater than or not significantly different from that of E. servus. Cyfluthrin and oxamyl were more toxic to the predator than to E. servus in residual and feeding tests, respectively. Dicrotophos is the only compound that exhibited both good residual and oral activity against E. servus, but even this toxicant was more toxic to the predator than to the pest in oral toxicity tests. Feeding on indoxacarb-treated food caused high mortality for both nymphs and adults of P. maculiventris. In contrast, E. servus was unaffected by feeding on food treated with this compound. Insecticide selectivity to P. maculiventris was detected only with acetamiprid for adults in residual toxicity tests and for nymphs in oral toxicity tests. Because insecticide selectivity to P. maculiventris was limited, it is extremely important to conserve P. maculiventris in cotton fields by applying these insecticides for control of brown stink bugs only when the pest reaches economic threshold.

  14. Carbon contributions from roots in cotton based rotations

    Science.gov (United States)

    Tan, D. K. Y.; Hulugalle, N. R.

    2012-04-01

    Most research on the decline in soil organic carbon (SOC) stocks in Australian cotton farming systems has focussed on the inputs from above-ground crop residues, with contribution from roots being less studied. This paper aims to outline the contribution of cotton roots and roots of other crops to soil carbon stocks in furrow-irrigated Vertisols in several cotton (Gossypium hirsutum L.)-based rotations. Data was collected from cotton-based rotation systems: cotton monoculture, cotton-vetch (Vicia benghalensis) Roth.), cotton-wheat (Triticum aestivum L.), cotton-wheat-vetch, cotton-corn, corn-corn, cotton-sorghum (Sorghum bicolor L.) and from BollgardTM II (Bt) and non-Bt cotton. Land management systems were permanent beds, with or without standing stubble, and conventional tillage. Root growth in the surface 0.10 m was measured with the core-break method, and that in the 0.10 to 1.0 m depth with a minirhizotron and I-CAP image capture system. These measurements were used to derive root C added to soil through intra-seasonal root death (Clost), C in roots remaining at the end of season (Croot), and total root C added to soil (Ctotal = Croot + Clost). Ctotal in non-Bt cotton (Sicot 80RRF, 0.9 t C/ha/year) was higher than in Bt cotton (Sicot 80RRF, 0.6 t C/ha/year). Overall, Ctotal from cotton roots ranges between 0.5 to 5 t C/ha/year, with Clost contributing 25-70%. Ctotal was greater with vetch than with wheat and was in the order of vetch in cotton-wheat-vetch (5.1 t C/ha/year) > vetch in cotton-vetch (1.9 t C/ha/year) > wheat in cotton-wheat (1.6 t C/ha/year) = wheat in cotton-wheat-vetch (1.7 t C/ha/year). Intra-seasonal root mortality accounted for 12% of total root carbon in vetch and 36% in wheat. Average corn Ctotal with monoculture was 9.3 t/ha and with cotton-corn 5.0 t/ha. Ctotal averaged between both treatments was, thus, of the order of 7.7 t C/ha/year and average Clost 0.04 t/ha/yr. Sorghum roots contributed less carbon with conventional tillage (8.2 t

  15. Cotton leaf curl Burewala virus with intact or mutant transcriptional activator proteins: complexity of cotton leaf curl disease.

    Science.gov (United States)

    Kumar, Jitendra; Gunapati, Samatha; Alok, Anshu; Lalit, Adarsh; Gadre, Rekha; Sharma, Naresh C; Roy, Joy K; Singh, Sudhir P

    2015-05-01

    Cotton leaf curl disease (CLCuD) is a serious disease of cotton on the Indian subcontinent. In the present study, three cotton leaf curl viruses, cotton leaf curl Burewala virus (CLCuBuV), cotton leaf curl Kokhran virus (CLCuKoV) and cotton leaf curl Multan virus (CLCuMV), and their associated satellites, cotton leaf curl Multan betasatellite (CLCuMB) and cotton leaf curl Multan alphasatellite (CLCuMA), were detected. CLCuBuV with either intact (CLCuBuV-1) or mutant (CLCuBuV-2) transcriptional activator protein (TrAP) were detected in different plants. Agroinoculation with CLCuBuV-1 or CLCuBuV-2 together with CLCuMB and CLCuMA, resulted in typical leaf curling and stunting of tobacco plants. Inoculation with CLCuKoV or an isolate of CLCuMV (CLCuMV-2), together with CLCuMB and CLCuMA, induced severe leaf curling, while the other isolate of CLCuMV (CLCuMV-1), which was recombinant in origin, showed mild leaf curling in tobacco. To investigate the effect of intact or mutant TrAP and also the recombination events, CLCuBuV-1, CLCuBuV-2, CLCuMV-1 or CLCuMV-2 together with the satellites (CLCuMA and CLCuMB) were transferred to cotton via whitefly-mediated transmission. Cotton plants containing CLCuBuV-1, CLCuBuV-2 or CLCuMV-2 together with satellites showed curling and stunting, whereas the plants having CLCuMV-1 and the satellites showed only mild and indistinguishable symptoms. CLCuBuV-1 (intact TrAP) showed severe symptoms in comparison to CLCuBuV-2 (mutant TrAP). The present study reveals that two types of CLCuBuV, one with an intact TrAP and the other with a mutant TrAP, exist in natural infection of cotton in India. Additionally, CLCuMuV-1, which has a recombinant origin, induces mild symptoms in comparison to the other CLCuMV isolates.

  16. Plant growth stage-specific injury and economic injury level for verde plant bug, Creontiades signatus (Hemiptera: Miridae), on cotton: effect of bloom period of infestation.

    Science.gov (United States)

    Brewer, Michael J; Anderson, Darwin J; Armstrong, J Scott

    2013-10-01

    Verde plant bugs, Creontiades signatus Distant (Hemiptera: Miridae), were released onto caged cotton, Cossypium hirsutum L., for a 1-wk period to characterize the effects of insect density and bloom period of infestation on cotton injury and yield in 2011 and 2012, Corpus Christi, TX. When plants were infested during early bloom (10-11 nodes above first white flower), a linear decline in fruit retention and boll load and a linear increase in boll injury were detected as verde plant bug infestation levels increased from an average of 0.5 to 4 bugs per plant. Lint and seed yield per plant showed a corresponding decline. Fruit retention, boll load, and yield were not affected on plants infested 1 wk later at peak bloom (8-9 nodes above first white flower), even though boll injury increased as infestation levels increased. Second-year testing verified boll injury but not yield loss, when infestations occurred at peak bloom. Incidence of cotton boll rot, known to be associated with verde plant bug feeding, was low to modest (verde plant bug were important contributors to yield decline, damage potential was greatest during the early bloom period of infestation, and a simple linear response best described the yield response-insect density relationship at early bloom. Confirmation that cotton after peak bloom was less prone to verde plant bug injury and an early bloom-specific economic injury level were key findings that can improve integrated pest management decision-making for dryland cotton, at least under low-rainfall growing conditions.

  17. Aggregation and Association of NDVI, Boll Injury, and Stink Bugs in North Carolina Cotton.

    Science.gov (United States)

    Reisig, Dominic D; Reay-Jones, F P F; Meijer, A D

    2015-01-01

    Sampling of herbivorous stink bugs in southeastern U.S. cotton remains problematic. Remote sensing was explored to improve sampling of these pests and associated boll injury. Two adjacent 14.5-ha cotton fields were grid sampled in 2011 and 2012 by collecting stink bug adults and bolls every week during the third, fourth, and fifth weeks of bloom. Satellite remote sensing data were collected during the third week of bloom during both years, and normalized difference vegetation index (NDVI) values were calculated. Stink bugs were spatially aggregated on the third week of bloom in 2011. Boll injury from stink bugs was spatially aggregated during the fourth week of bloom in 2012. The NDVI values were aggregated during both years. There was a positive association and correlation between stink bug numbers and NDVI values, as well as injured bolls and NDVI values, during the third week of bloom in 2011. During the third week of bloom in 2012, NDVI values were negatively correlated with stink bug numbers. During the fourth week of bloom in 2011, stink bug numbers and boll injury were both positively associated and correlated with NDVI values. During the fourth week of bloom in 2012, stink bugs were negatively correlated with NDVI values, and boll injury was negatively associated and correlated with NDVI values. This study suggests the potential of remote sensing as a tool to assist with sampling stink bugs in cotton, although more research is needed using NDVI and other plant measurements to predict stink bug injury. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  18. Pesticide-Induced Stress in Arthropod Pests for Optimized Integrated Pest Management Programs.

    Science.gov (United States)

    Guedes, R N C; Smagghe, G; Stark, J D; Desneux, N

    2016-01-01

    More than six decades after the onset of wide-scale commercial use of synthetic pesticides and more than fifty years after Rachel Carson's Silent Spring, pesticides, particularly insecticides, arguably remain the most influential pest management tool around the globe. Nevertheless, pesticide use is still a controversial issue and is at the regulatory forefront in most countries. The older generation of insecticide groups has been largely replaced by a plethora of novel molecules that exhibit improved human and environmental safety profiles. However, the use of such compounds is guided by their short-term efficacy; the indirect and subtler effects on their target species, namely arthropod pest species, have been neglected. Curiously, comprehensive risk assessments have increasingly explored effects on nontarget species, contrasting with the majority of efforts focused on the target arthropod pest species. The present review mitigates this shortcoming by hierarchically exploring within an ecotoxicology framework applied to integrated pest management the myriad effects of insecticide use on arthropod pest species.

  19. Modelling approach for biological control of insect pest by releasing infected pest

    International Nuclear Information System (INIS)

    Tan Yuanshun; Chen Lansun

    2009-01-01

    Models of biological control have a long history of theoretical development that have focused on the interactions between a predator and a prey. Here we have extended the classical epidemic model to include a continuous and impulsive pest control strategies by releasing the infected pests bred in laboratory. For the continuous model, the results imply that the susceptible pest goes to extinct if the threshold condition R 0 0 > 1, the positive equilibrium of continuous model is globally asymptotically stable. Similarly, the threshold condition which guarantees the global stability of the susceptible pest-eradication periodic solution is obtained for the model with impulsive control strategy. Consequently, based on the results obtained in this paper, the control strategies which maintain the pests below an acceptably low level are discussed by controlling the release rate and impulsive period. Finally, the biological implications of the results and the efficiency of two control strategies are also discussed

  20. Impacto do algodoeiro Bt na dinâmica populacional do pulgão-do-algodoeiro em casa de vegetação Impact of Bt cotton on the population dynamics of the cotton aphid in greenhouse

    Directory of Open Access Journals (Sweden)

    Edison Ryoiti Sujii

    2008-10-01

    cotton plants do not affect the population dynamics of A. gossypii, and do not increase its potential risk as pest.

  1. Processing and properties of PCL/cotton linter compounds

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, Elieber Barros; Franca, Danyelle Campos; Morais, Dayanne Diniz de Souza; Araujo, Edcleide Maria [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Departamento de Engenharia de Materiais; Rosa, Morsyleide de Freitas; Morais, Joao Paulo Saraiva [Embrapa Tropical Agroindustia, Fortaleza, CE (Brazil); Wellen, Renate Maria Ramos, E-mail: wellen.renate@gmail.com [Universidade Federal da Paraiaba (UFPB), Joao Pessoa, PB (Brazil)

    2017-03-15

    Biodegradable compounds of poly(ε-caprolactone) (PCL)/ cotton linter were melting mixed with filling content ranging from 1% to 5% w/w. Cotton linter is an important byproduct of textile industry; in this work it was used in raw state and after acid hydrolysis. According to the results of torque rheometry no decaying of viscosity took place during compounding, evidencing absence of breaking down in molecular weight. The thermal stability increased by 20% as observed in HDT for PCL/cotton nanolinter compounds. Adding cotton linter to PCL did not change its crystalline character as showed by XRD; however an increase in degree of crystallinity was observed by means of DSC. From mechanical tests in tension was observed an increase in ductility of PCL, and from mechanical tests in flexion an increase in elastic modulus upon addition of cotton linter, whereas impact strength presented lower values for PCL/cotton linter and PCL/cotton nanolinter compounds. SEM images showed that PCL presents plastic fracture and cotton linter has an interlacing fibril structure with high L/D ratio, which are in agreement with matrix/fibril morphology observed for PCL/cotton linter compounds. PCL/cotton linter compounds made in this work cost less than neat PCL matrix and presented improved properties making feasible its commercial use. (author)

  2. Vertebrate Pest Control. Sale Publication 4077.

    Science.gov (United States)

    Stimmann, M. W.; Clark, Dell O.

    This guide gives descriptions of common vertebrate pests and guidelines for using some common pesticides. The pests discussed are rats, mice, bats, moles, muskrats, ground squirrels, and gophers. Information is given for each pest on the type of damage the pest can do, the habitat and biology of the pest, and the most effective control methods.…

  3. Engineered disease resistance in cotton using RNA-interference to knock down cotton leaf curl kokhran virus-Burewala and cotton leaf curl Multan betasatellite

    Science.gov (United States)

    Cotton Leaf Curl virus Disease (CLCuD) has caused enormous losses in cotton (Gossypium hirsutum) production in Pakistan. RNA interference (RNAi) is an emerging technique that could knock out CLCuD by targeting different regions of the pathogen genome that are important for replication, transcription...

  4. Development and validation of SUCROS-Cotton : A potential crop growth simulation model for cotton

    NARCIS (Netherlands)

    Zhang, L.; Werf, van der W.; Cao, W.; Li, B.; Pan, X.; Spiertz, J.H.J.

    2008-01-01

    A model for the development, growth and potential production of cotton (SUCROS-Cotton) was developed. Particular attention was given to the phenological development of the plant and the plasticity of fruit growth in response to temperature, radiation, daylength, variety traits, and management. The

  5. Cotton trends in India

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Cotton trends in India. A crop of significant economic importance, valued at over Rs. 15000 Crs. Provides income to 60 million people. Crucial raw material for Rs 83000 Crores textile industry out of which Rs 45754 crores is exports. Approx. 20 Million acres of cotton provides ...

  6. Ergonomic Evaluation of Battery Powered Portable Cotton Picker

    Science.gov (United States)

    Dixit, A.; Manes, G. S.; Singh, A.; Prakash, A.; Mahal, J. S.

    2012-09-01

    Ergonomic evaluation of battery powered portable manual cotton picker was carried out on two subjects for three cotton varieties and was compared against manual method of picking. It is a hand operated machine and has a pair of chain with small sharp edged teeth and sprockets and is operated by a light weight 12 V battery. Cotton gets entangled with the chain and is collected and guided into the collection bag. Average heart rate, oxygen consumption, workload, energy expenditure was more in case of cotton picking by manual cotton picker as compared to manual picking for both the subjects for all three cotton variety types. Oxygen consumption varied from 0.81 to 0.97 l/min, workload varied from 36.32 to 46.16 W and energy expenditure varied from 16.83 to 20.33 kJ/min for both the subject in case of machine picking for all three cotton varieties. The maximum discomfort experienced by the subjects during picking cotton by manual cotton picker was in right wrist palm, right forearm, upper and lower back, left shoulder and in lower legs and both feet.

  7. Economics of area-wide pest control

    International Nuclear Information System (INIS)

    Mumford, J.D.

    2000-01-01

    Area-wide pest management is commonly practised throughout the world, probably much more so than is generally recognised (Lindquist 2000, Klassen 2000). Apart from highly publicised area-wide schemes such as the sterile insect technique (SIT) for fruit flies, pheromone disruption for cotton bollworms and classical biological control, there are many examples of actions such as concerted host plant eradication, enforced closed crop seasons, organised pesticide rotation for resistance management, coordination of resistant crop genotypes, etc., some going back several centuries, which should also be considered as area-wide practices. Each of these is faced with many of the economic issues generally associated with area-wide management which will be discussed below. In general, there are to be four major questions to answer in devising an area-wide pest management programme: 1) Should a particular pest be controlled locally or area-wide? 2) What is an appropriate area over which management should be attempted? 3) Within that area what form of control is most efficient? 4) What level of organisation should be used to get the job done? It should be noted that apart from clearly objective measures such as technical effectiveness (say, mortality) or cost efficiency (mortality per dollar), there are many subjective measures that come into the evaluation of area-wide control due to the element of risk (for example, in quarantine and eradication), the boundaries of externalities (for example, variable probabilities of pesticide drift under different conditions or target organism sensitivities) and time preferences for returns on capital investments (such as insect rearing facilities or research to develop pheromone technologies). As a result of these subjective components, it may sometimes be difficult to reach clearly agreed decisions based on objective economic analyses, even with a consensus on the data used. There are three general classes of economic problems in comparing

  8. 7 CFR 1427.1203 - Eligible ELS cotton.

    Science.gov (United States)

    2010-01-01

    ... OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COTTON Extra Long Staple (ELS) Cotton... must be either: (1) Baled lint, including baled lint classified by USDA's Agricultural Marketing..., under the provisions of this subpart, has been made available; (2) Imported ELS cotton; (3) Raw...

  9. Structural Pest Control.

    Science.gov (United States)

    Kahn, M. S.; Hoffman, W. M.

    This manual is designed for those who seek certification as pesticide applicators for industrial, institutional, structural, and health-related pest control. It is divided into six sections covering general pest control, wood-destroying organisms, bird control, fumigation, rodent control, and industrial weed control. The manual gives information…

  10. Energy usage for cotton ginning in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, S.A. [MARA Univ. of Technology, Shah Alam (Malaysia). Faculty of Applied Sciences; Southern Queensland Univ., Toowoomba, QLD (Australia). National Centre for Engineering in Agriculture; Chen, G.; Baillie, C.; Symes, T. [Southern Queensland Univ., Toowoomba, QLD (Australia). National Centre for Engineering in Agriculture

    2010-07-01

    This paper reported on a study that evaluated the energy consumption of cotton gins used in Australia. The average electricity use is 52.3 kWh per bale. In practicality, the electricity consumption for different gins is correlated linearly with the bale numbers produced. The cost of electricity is therefore important in cotton ginning operations. The power factor in all the gins monitored in this study was greater than 0.85. The study showed that the use of gas dryers was highly influenced by the cotton moisture and regulated drying temperature. In general, electricity and gas consumption comprised 61 and 39 per cent of total energy use respectively. The study showed that 60.38 kg of carbon dioxide are emitted for ginning each bale of cotton. This paper described a newly developed method for monitoring the energy performance in cotton gins. Detailed monitoring and analysis carried out at 2 gin sites revealed that electricity consumption is not influenced much by changes in trash content in the module, degree of moisture and lint quality. However, the cotton variety influences the energy consumption. Cotton handling constituted nearly 50 per cent of the power used in both gins.

  11. Engineering cotton (Gossypium hirsutum L.) for resistance to cotton leaf curl disease using viral truncated AC1 DNA sequences.

    Science.gov (United States)

    Hashmi, Jamil A; Zafar, Yusuf; Arshad, Muhammad; Mansoor, Shahid; Asad, Shaheen

    2011-04-01

    Several important biological processes are performed by distinct functional domains found on replication-associated protein (Rep) encoded by AC1 of geminiviruses. Two truncated forms of replicase (tAC1) gene, capable of expressing only the N-terminal 669 bp (5'AC1) and C-terminal 783 bp (3'AC1) nucleotides cloned under transcriptional control of the CaMV35S were introduced into cotton (Gossypium hirsutum L.) using LBA4404 strain of Agrobacterium tumefaciens to make use of an interference strategy for impairing cotton leaf curl virus (CLCuV) infection in transgenic cotton. Compared with nontransformed control, we observed that transgenic cotton plants overexpressing either N-terminal (5'AC1) or C-terminal (3'AC1) sequences confer resistance to CLCuV by inhibiting replication of viral genomic and β satellite DNA components. Molecular analysis by Northern blot hybridization revealed high transgene expression in early and late growth stages associated with inhibition of CLCuV replication. Of the eight T(1) transgenic lines tested, six had delayed and minor symptoms as compared to nontransformed control lines which developed disease symptoms after 2-3 weeks of whitefly-mediated viral delivery. Virus biological assay and growth of T(2) plants proved that transgenic cotton plants overexpressing 5'- and 3'AC1 displayed high resistance level up to 72, 81%, respectively, as compared to non-transformed control plants following inoculation with viruliferous whiteflies giving significantly high cotton seed yield. Progeny analysis of these plants by polymerase chain reaction (PCR), Southern blotting and virus biological assay showed stable transgene, integration, inheritance and cotton leaf curl disease (CLCuD) resistance in two of the eight transgenic lines having single or two transgene insertions. Transgenic cotton expressing partial AC1 gene of CLCuV can be used as virus resistance source in cotton breeding programs aiming to improve virus resistance in cotton crop.

  12. [Effects of cotton stalk biochar on microbial community structure and function of continuous cropping cotton rhizosphere soil in Xinjiang, China].

    Science.gov (United States)

    Gu, Mei-ying; Tang, Guang-mu; Liu, Hong-liang; Li, Zhi-qiang; Liu, Xiao-wei; Xu, Wan-li

    2016-01-01

    In this study, field trials were conducted to examine the effects of cotton stalk biochar on microbial population, function and structural diversity of microorganisms in rhizosphere soil of continuous cotton cropping field in Xinjiang by plate count, Biolog and DGGE methods. The experiment was a factorial design with four treatments: 1) normal fertilization with cotton stalk removed (NPK); 2) normal fertilization with cotton stalk powdered and returned to field (NPKS); 3) normal fertilization plus cotton stalk biochar at 22.50 t · hm⁻² (NPKB₁); and 4) normal fertilization plus cotton stalk biochar at 45.00 t · hm⁻² (NPKB₂). The results showed that cotton stalk biochar application obviously increased the numbers of bacteria and actinomycetes in the rhizospheric soil. Compared with NPK treatment, the number of fungi was significantly increased in the NPKB₁treatment, but not in the NPKB₂ treatment. However, the number of fungi was generally lower in the biochar amended (NPKB₁, NPKB₂) than in the cotton stalk applied plots (NPKS). Application of cotton stalk biochar increased values of AWCD, and significantly improved microbial richness index, suggesting that the microbial ability of utilizing carbohydrates, amino acids and carboxylic acids, especially phenolic acids was enhanced. The number of DGGE bands of NPKB₂ treatment was the greatest, with some species of Gemmatimonadetes, Acidobacteria, Proteobacteria and Actinobacteria being enriched. UPGMC Cluster analysis pointed out that bacterial communities in the rhizospheric soil of NPKB₂ treatment were different from those in the NPK, NPKS and NPKB₁treatments, which belonged to the same cluster. These results indicated that application of cotton stalk biochar could significantly increase microbial diversity and change soil bacterial community structure in the cotton rhizosphere soil, thus improving the health of soil ecosystem.

  13. Influence of Tencel/cotton blends on knitted fabric performance

    Directory of Open Access Journals (Sweden)

    Alaa Arafa Badr

    2016-09-01

    Full Text Available The requirements in terms of wearing comfort with sportswear, underwear and outerwear are widely linked to the use of new fibers. Today, Tencel fiber is one of the most important developments in regenerated cellulosic fiber. However, the relation between Tencel fiber properties and fabric characteristics has not been enough studied in the literature especially the influence of fiber materials on mechanical, Ultraviolet Protection Factor (UPF and absorption properties. Therefore, in this study, knitted fabric samples were manufactured with eight different yarns with two fabric types (single jersey and single jersey with Lycra. 30/1-Ne yarns from natural and regenerated cellulosic fibers: 50% Tencel-LF/50% cotton, 67% Tencel-LF/33% cotton, 67% Tencel-STD/33% cotton, 70% bamboo/30% cotton, 100% bamboo, 100% Modal, 100% Micro-Modal and 100% cotton were employed. Then, all the produced fabrics were subjected to five cycles laundering and then flat dried. The results show that 67% Tencel-LF/33% cotton has more flexural rigidity and withdrawing handle force than 67% Tencel-STD/33% cotton fabric, while 67% Tencel-STD/33% cotton has a merit of durability during bursting test. Blending Egyptian cotton fibers with bamboo and Tencel as in 70/30% bamboo/cotton and 50/50% Tencel-LF/cotton improve UPF of the produced fabric.

  14. Networking of integrated pest management

    NARCIS (Netherlands)

    Lamichhane, Jay Ram; Aubertot, Jean Noël; Begg, Graham; Birch, Andrew Nicholas E.; Boonekamp, Piet; Dachbrodt-Saaydeh, Silke; Hansen, Jens Grønbech; Hovmøller, Mogens Støvring; Jensen, Jens Erik; Jørgensen, Lise Nistrup; Kiss, Jozsef; Kudsk, Per; Moonen, Anna Camilla; Rasplus, Jean Yves; Sattin, Maurizio; Streito, Jean Claude; Messéan, Antoine

    2016-01-01

    Integrated pest management (IPM) is facing both external and internal challenges. External challenges include increasing needs to manage pests (pathogens, animal pests and weeds) due to climate change, evolution of pesticide resistance as well as virulence matching host resistance. The complexity

  15. Semiochemicals from herbivory induced cotton plants enhance the foraging behavior of the cotton boll weevil, Anthonomus grandis.

    Science.gov (United States)

    Magalhães, D M; Borges, M; Laumann, R A; Sujii, E R; Mayon, P; Caulfield, J C; Midega, C A O; Khan, Z R; Pickett, J A; Birkett, M A; Blassioli-Moraes, M C

    2012-12-01

    The boll weevil, Anthonomus grandis, has been monitored through deployment of traps baited with aggregation pheromone components. However, field studies have shown that the number of insects caught in these traps is significantly reduced during cotton squaring, suggesting that volatiles produced by plants at this phenological stage may be involved in attraction. Here, we evaluated the chemical profile of volatile organic compounds (VOCs) emitted by undamaged or damaged cotton plants at different phenological stages, under different infestation conditions, and determined the attractiveness of these VOCs to adults of A. grandis. In addition, we investigated whether or not VOCs released by cotton plants enhanced the attractiveness of the aggregation pheromone emitted by male boll weevils. Behavioral responses of A. grandis to VOCs from conspecific-damaged, heterospecific-damaged (Spodoptera frugiperda and Euschistus heros) and undamaged cotton plants, at different phenological stages, were assessed in Y-tube olfactometers. The results showed that volatiles emitted from reproductive cotton plants damaged by conspecifics were attractive to adults boll weevils, whereas volatiles induced by heterospecific herbivores were not as attractive. Additionally, addition of boll weevil-induced volatiles from reproductive cotton plants to aggregation pheromone gave increased attraction, relative to the pheromone alone. The VOC profiles of undamaged and mechanically damaged cotton plants, in both phenological stages, were not different. Chemical analysis showed that cotton plants produced qualitatively similar volatile profiles regardless of damage type, but the quantities produced differed according to the plant's phenological stage and the herbivore species. Notably, vegetative cotton plants released higher amounts of VOCs compared to reproductive plants. At both stages, the highest rate of VOC release was observed in A. grandis-damaged plants. Results show that A. grandis uses

  16. Area-wide management approach for tarnished plant bug in the Mississippi Delta

    Science.gov (United States)

    The tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), is the major insect pest of cotton, Gossypium hirsutum (L.), within the Mid-South region. From 2001 to 2012, the tarnished plant bug has been the number one insect pest of cotton in Louisiana and Mississippi in eleven and nine of those...

  17. Superhydrophobic cotton by fluorosilane modification

    CSIR Research Space (South Africa)

    Erasmus, E

    2009-12-01

    Full Text Available the treatment with fluorinated or silicon compounds)1-4 and by enhancing the surface roughness with a fractal structure5-8. Cotton, a cellulose-based material, that is greatly hydrophilic, is more benefited when made hydrophobic. Modification of cotton...

  18. Bioinspiration and Biomimicry: Possibilities for Cotton Byproducts

    Science.gov (United States)

    The byproducts from cotton gins have commonly been referred to as cotton gin trash or cotton gin waste primarily because the lint and seed were the main focus of the operation and the byproducts were a financial liability that did not have a consistent market. Even though the byproducts were called ...

  19. 40 CFR 152.5 - Pests.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Pests. 152.5 Section 152.5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PESTICIDE REGISTRATION AND CLASSIFICATION PROCEDURES General Provisions § 152.5 Pests. An organism is declared to be a pest...

  20. The biology of Meteorus gyrator (Hymenoptera: Braconidae), a solitary endoparasitoid of the tomato moth, Lacanobia oleracea (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Bell, H A; Marris, G C; Bell, J; Edwards, J P

    2000-08-01

    There is a need to identify potential biological control agents for use against lepidopterous pests in greenhouses. The solitary endoparasitoid Meteorus gyrator (Thunberg) attacks a range of macrolepidopterous larvae, including those of some important horticultural pest species. Laboratory trials designed to investigate the biology of M. gyrator on larvae of the tomato moth, Lacanobia oleracea Linnaeus, reveal that this parasitoid is capable of parasitizing all larval stages of its host, third instars being parasitized most frequently. Each female parasitoid lives for up to 40 days (at 25 degrees C), ovipositing into an average of 78 hosts. Preadult development is rapid ( approximately 2 weeks), and the sex ratio of offspring is 1:1. Parasitism by M. gyrator suppresses the growth of both early and late host instars, and there is a concomitant reduction in the amount of food consumed (overall feeding reduction over a 12 day period is 68%). Our results indicate that inoculative releases of M. gyrator could provide effective biological control of L. oleracea and other noctuid pests of greenhouses.

  1. Cotton fiber quality determined by fruit position, temperature and management

    OpenAIRE

    Wang, X.; Evers, J.B.; Zhang, L.; Mao, L.; Pan, X.; Li, Z.

    2013-01-01

    CottonXL is a tool to explore cotton fiber quality in relation to fruit position, to improve cotton quality by optimizing cotton plant structure, as well as to help farmers understand how the structure of the cotton plant determines crop growth and quality.

  2. Cross-resistance to purified Bt proteins, Bt corn and Bt cotton in a Cry2Ab2-corn resistant strain of Spodoptera frugiperda.

    Science.gov (United States)

    Yang, Fei; Kerns, David L; Head, Graham P; Price, Paula; Huang, Fangneng

    2017-12-01

    Gene-pyramiding by combining two or more dissimilar Bacillus thuringiensis (Bt) proteins into a crop has been used to delay insect resistance. The durability of gene-pyramiding can be reduced by cross-resistance. Fall armyworm, Spodoptera frugiperda, is a major target pest of the Cry2Ab2 protein used in pyramided Bt corn and cotton. Here, we provide the first experimental evaluation of cross-resistance in S. frugiperda selected with Cry2Ab2 corn to multiple Bt sources including purified Bt proteins, Bt corn and Bt cotton. Concentration - response bioassays showed that resistance ratios for Cry2Ab2-resistant (RR) relative to Cry2Ab2-susceptible (SS) S. frugiperda were -1.4 for Cry1F, 1.2 for Cry1A.105, >26.7 for Cry2Ab2, >10.0 for Cry2Ae and -1.1 for Vip3A. Larvae of Cry2Ab2-heterozygous (RS), SS and RR S. frugiperda were all susceptible to Bt corn and Bt cotton containing Cry1 (Cry1F or Cry1A.105) and/or Vip3A proteins. Pyramided Bt cotton containing Cry1Ac + Cry2Ab2 or Cry1Ab + Cry2Ae were also effective against SS and RS, but not RR. These findings suggest that Cry2Ab2-corn-selected S. frugiperda is not cross-resistant to Cry1F, Cry1A.105 or Vip3A protein, or corn and cotton plants containing these Bt proteins, but it can cause strong cross-resistance to Cry2Ae and Bt crops expressing similar Bt proteins. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Cotton for removal of aquatic oil spills

    International Nuclear Information System (INIS)

    Parker, H.W.; Fedler, C.B.; Heintz, C.E.; Nash, P.T.; Carr, D.L.; Lu, M.

    1992-01-01

    Raw cotton has considerable potential for selective removal of spilled oil and oil products from surface waters, since the natural waxes on the raw cotton make it preferentially oil wet. This potential was recognized in the early seventies at Texas Tech University. More recently other research workers have considered cotton as an adsorbent for spilled oil. The adsorbent market is now dominated by synthetic materials, such as air-blown polypropylene fiber, inorganic clays, and recycled paper and paper products. This paper further examines the potential of cotton in relation to these other adsorbents. Emphasis is placed on the potential for complete biodegradation of oil-soaked cotton adsorbents as a means avoiding the expense for incineration and/or the long-term environmental risk associated with placing the used adsorbents in landfills

  4. Vegetable Crop Pests. MEP 311.

    Science.gov (United States)

    Kantzes, James G.; And Others

    As part of a cooperative extension service series by the University of Maryland, this publication introduces the identification and control of common agricultural pests of vegetable crops. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests in the categories of insects,…

  5. Fruit Crop Pests. MEP 312.

    Science.gov (United States)

    Weaver, Leslie O.; And Others

    As part of a cooperative extension service series by the University of Maryland this publication introduces the identification and control of common agricultural pests of fruit crops. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests in the categories of insects, weeds,…

  6. The merging of two dynasties--identification of an African cotton leaf curl disease-associated begomovirus with cotton in Pakistan.

    Directory of Open Access Journals (Sweden)

    Muhammad Nouman Tahir

    Full Text Available Cotton leaf curl disease (CLCuD is a severe disease of cotton that occurs in Africa and Pakistan/northwestern India. The disease is caused by begomoviruses in association with specific betasatellites that differ between Africa and Asia. During survey of symptomatic cotton in Sindh (southern Pakistan Cotton leaf curl Gezira virus (CLCuGV, the begomovirus associated with CLCuD in Africa, was identified. However, the cognate African betasatellite (Cotton leaf curl Gezira betasatellite was not found. Instead, two Asian betasatellites, the CLCuD-associated Cotton leaf curl Multan betasatellite (CLCuMB and Chilli leaf curl betasatellite (ChLCB were identified. Inoculation of the experimental plant species Nicotiana benthamiana showed that CLCuGV was competent to maintain both CLCuMB and ChLCB. Interestingly, the enations typical of CLCuD were only induced by CLCuGV in the presence of CLCuMB. Also in infections involving both CLCuMB and ChLCB the enations typical of CLCuMB were less evident. This is the first time an African begomovirus has been identified on the Indian sub-continent, highlight the growing threat of begomoviruses and particularly the threat of CLCuD causing viruses to cotton cultivation in the rest of the world.

  7. Microbial contamination of water-soaked cotton gauze and its cause.

    Science.gov (United States)

    Oie, S; Yoshida, H; Kamiya, A

    2001-01-01

    Seven in-use cotton gauze samples and three cotton balls soaked in sterile distilled water in canisters were investigated 7 days after they were prepared in hospital. All samples were contaminated with bacteria including 10(6) to 10(7) colony forming units/ml of Pseudomonas aeruginosa. In vitro viability tests using cotton gauze and cotton balls soaked in sterile distilled water revealed rapid proliferation of P. aeruginosa, Serratia marcescens and Candida albicans. Since the cotton gauze and the cotton balls were soaked in water containing nutrients, such as protein and glucose, these materials may be readily contaminated with bacteria including P. aeruginosa. Thus, when using cotton gauze and cotton balls containing water, microbial contamination should be expected.

  8. Urban Pest Management. Selected Readings.

    Science.gov (United States)

    Cowles, Kathleen Letcher, Comp.; And Others

    These readings provide basic background information on urban integrated pest management and the development of Integrated Pest Management (IPM) programs for the control of rodents, cockroaches, and head lice. IPM is a decision-making process for deciding if pest supprssion treatments are needed, when they should be initiated, where they should be…

  9. Growth analysis of cotton crops infested with spider mites. I. Light interception and radiation-use efficiency

    International Nuclear Information System (INIS)

    Sadras, V.O.; Wilson, L.J.

    1997-01-01

    Two-spotted spider mites (Tetranychus urticae Koch) are important pests of cotton (Gossypium hirsutum L.). The effects of mites on cotton photosynthesis have been investigated at the leaf and cytological level but not at the canopy level. Our objective was to quantify the effects of timing and intensity of infestation by mites on cotton radiation-use efficiency (RUE). Leaf area, light interception, RUE, canopy temperature, and leaf nitrogen concentration (LNC) were assessed during two growing seasons in crops artificially infested with mites between 59 and 127 d after sowing. Normal and okra-leaf cultivars were compared. A mite index (MI = natural log of the area under the curve of mite number vs thermal time) was used to quantify the cumulative effects of mites on RUE, LNC, and canopy temperature. Crop growth reduction due to mites was greater in early- than in late-infested crops Growth reduction was primarily due to reductions in RUE, but in the more severe treatments accelerated leaf senescence and, hence. reduced light interception also contributed to reductions in crop growth. At a given date, infested okra-leaf crops usually had greater RUE than their normal-leaf counterparts. Both plant types, however. responded similarly to a given level of mite infestation. The ability of the okra-leaf cultivar to maintain greater RUE levels can be attributed. therefore, to its relative inhospitality for the development of mite colonies rather than to an intrinsically greater capacity to maintain photosynthesis under mite damage. Canopy temperature, LNC, and RUE showed a similar, biphasic pattern of response to Ml. In the first phase, response variables were almost unaffected by mites. In the second phase, there was a marked decline in RUE and LNC and a marked increase in canopy temperature with increasing MI. These results suggest (i) some degree of compensatory photosynthesis at low to moderate levels of mite infestation, and (ii) reductions in RUE of mite

  10. Single and multiple in-season measurements as indicators of at-harvest cotton boll damage caused by verde plant bug (Hemiptera: Miridae).

    Science.gov (United States)

    Brewer, Michael J; Armstrong, J Scott; Parker, Roy D

    2013-06-01

    The ability to monitor verde plant bug, Creontiades signatus Distant (Hemiptera: Miridae), and the progression of cotton, Gossypium hirsutum L., boll responses to feeding and associated cotton boll rot provided opportunity to assess if single in-season measurements had value in evaluating at-harvest damage to bolls and if multiple in-season measurements enhanced their combined use. One in-season verde plant bug density measurement, three in-season plant injury measurements, and two at-harvest damage measurements were taken in 15 cotton fields in South Texas, 2010. Linear regression selected two measurements as potentially useful indicators of at-harvest damage: verde plant bug density (adjusted r2 = 0.68; P = 0.0004) and internal boll injury of the carpel wall (adjusted r2 = 0.72; P = 0.004). Considering use of multiple measurements, a stepwise multiple regression of the four in-season measurements selected a univariate model (verde plant bug density) using a 0.15 selection criterion (adjusted r2 = 0.74; P = 0.0002) and a bivariate model (verde plant bug density-internal boll injury) using a 0.25 selection criterion (adjusted r2 = 0.76; P = 0.0007) as indicators of at-harvest damage. In a validation using cultivar and water regime treatments experiencing low verde plant bug pressure in 2011 and 2012, the bivariate model performed better than models using verde plant bug density or internal boll injury separately. Overall, verde plant bug damaging cotton bolls exemplified the benefits of using multiple in-season measurements in pest monitoring programs, under the challenging situation when at-harvest damage results from a sequence of plant responses initiated by in-season insect feeding.

  11. Radiation synthesis of silver nanostructures in cotton matrix

    International Nuclear Information System (INIS)

    Chmielewska, Dagmara; Sartowska, Bożena

    2012-01-01

    Cotton is one of the most popular natural fibres, composed mainly of cellulose, which finds a wide range of applications in paper, textile and health care products industry. Researchers have focused their interest on the synthesis of cotton nanocomposites, which enhances its mechanical, thermal and antimicrobial properties by the incorporation of various nanoparticles into the cotton matrix. Silver is one of the most popular antimicrobial agents with a wide spectrum of antibacterial and antifungal activity that results from a complex mechanism of its interactions with the cells of harmful microorganism. In this work, electron beam radiation was applied to synthesise silver nanostructures in cotton fibres. Investigations of the influence of the initial silver salt concentration on the size and distribution of the obtained silver nanostructures were carried out. A detailed characterisation of these nanocomposites with SEM-BSE and EDS methods was performed. TGA and DSC analyses were performed to assess the influence of different size silver nanoparticles and the effect of electron beam irradiation on the thermal properties of cotton fibres. A microbiological investigation to determine the antibacterial activity of Ag-cotton nanocomposites was carried out. - Highlights: ► Ag NPs embedded in cotton matrix were synthesised by electron beam irradiation. ► Concentration of silver salt solution influences on size of silver nanoparticles. ► Silver content as well as irradiation affect thermal properties of cotton fabrics. ► Ag-cotton nanocomposites exhibit antibacterial activity against bacteria and fungi.

  12. (Pleurotus pulmonarius) grown on cotton waste and cassava peel

    African Journals Online (AJOL)

    This work evaluated the yield of Pleurotus pulmonarius on different mixtures of cotton waste and cassava peel. P. pulmonarius demonstrated significantly higher colonization rate on cotton waste substrate (100 g cotton waste) 3 weeks after inoculation of spawn than any other substrate mixtures. Cotton waste had the ...

  13. Acoustical evaluation of carbonized and activated cotton nonwovens.

    Science.gov (United States)

    Jiang, N; Chen, J Y; Parikh, D V

    2009-12-01

    An activated carbon fiber nonwoven (ACF) was manufactured from a cotton nonwoven fabric. For the ACF acoustic application, a nonwoven composite of ACF with cotton nonwoven as a base layer was developed. Also produced were the composites of the cotton nonwoven base layer with a layer of glassfiber nonwoven, and the cotton nonwoven base layer with a layer of cotton fiber nonwoven. Their noise absorption coefficients and sound transmission loss were measured using the Brüel and Kjaer impedance tube instrument. Statistical significance of the differences between the composites was tested using the method of Duncan's grouping. The study concluded that the ACF composite exhibited a greater ability to absorb normal incidence sound waves than the composites with either glassfiber or cotton fiber. The analysis of sound transmission loss revealed that the three composites still obeyed the mass law of transmission loss. The composite with the surface layer of cotton fiber nonwoven possessed a higher fabric density and therefore showed a better sound insulation than the composites with glassfiber and ACF.

  14. Using cotton plant residue to produce briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Coates, W. [University of Arizona, Tucson, AZ (United States). Bioresources Research Facility

    2000-07-01

    In Arizona, cotton (Gossypium) plant residue left in the field following harvest must be buried to prevent it from serving as an overwintering site for insects such as the pink bollworm. Most tillage operations employed to incorporate the residue into the soil are energy intensive and often degrade soil structure. Trials showed that cotton plant residue could be incorporated with pecan shells to produce commercially acceptable briquettes. Pecan shell briquettes containing cotton residue rather than waste paper were slightly less durable, when made using equivalent weight mixtures and moisture contents. Proximate and ultimate analyses showed the only difference among briquette samples to be a higher ash content in those made using cotton plant residue. Briquettes made with paper demonstrated longer flame out time, and lower ash percentage, compared to those made with cotton plant residue. (author)

  15. Managing Pests in Schools

    Science.gov (United States)

    Provides basic information on integrated pest management in schools, including information on the components of an IPM program and guidance on how to get started. Includes identification and control of pests, educational resources, and contact information

  16. Unwelcome Guests: Extoic Forest Pests

    Science.gov (United States)

    Sun Jiang-Hua

    2002-01-01

    Exotic forest pests cost China and the United States billions of dollars each year. Current regulatory systems worldwide are over-whelmed with the increasing volume of international trade. Trade in nursery stock, wood products, pallets and dunnage have proven the most common means of transport for exotic forest pests. Despite our best efforts, pests such as chestnut...

  17. 7 CFR 27.21 - Preparation of samples of cotton.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Preparation of samples of cotton. 27.21 Section 27.21... REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Inspection and Samples § 27.21 Preparation of samples of cotton. The samples from each bale shall be prepared as specified in this section...

  18. STIFFNESS MODIFICATION OF COTTON IN CHITOSAN TREATMENT

    Directory of Open Access Journals (Sweden)

    CAMPOS Juan

    2017-05-01

    Full Text Available Chitosan is a biopolymer obtained from chitin, and among their most important aspects highlights its applications in a lot of industrial sectors due to its intrinsic properties, especially in the textile sector. In the last years, chitosan is widely used in the cotton and wool finishing processes due to its bond between them and its properties as an antifungical and antimicrobial properties. In this paper three different molecular weight chitosan are used in the finishing process of cotton to evaluate its influence in the surface properties modification. In order to evaluate the effect of the treatment with chitosan, flexural stiffness test is performed in warp and weft direction, and then the total value is calculated. The cotton fabric is treated with 5 g/L of different types of chitosan in an impregnation bath. This study shows the extent of surface properties modification of the cotton provided by three types of chitosan treatment. The results show that all types of chitosan modify the cotton flexural rigidity properties but the one which modifies it in a relevant manner is chitosan originated from shrimps. Chitosan, textile, flexural stiffnes, chitin, cotton.

  19. Inheritance and segregation of exogenous genes in transgenic cotton

    Indian Academy of Sciences (India)

    Three transgenic cotton varieties (lines) were chosen for the study of inheritance and segregation of foreign Bt (Bacillus thuringiensis toxin) and tfdA genes in cotton. The transformed cotton varieties CCRI 30 and NewCott 33B expressing the Bt cryIA gene, and cotton line TFD expressing the tfdA gene were crossed with ...

  20. Estimating potential stylet penetration of southern green stink bug (Hemiptera: Pentatomidae) - A mathematical modeling approach

    Science.gov (United States)

    Southern green stink bugs, Nezara viridula (L.), and related species are significant pests of cotton in the U.S. Cotton Belt. Using their stylets, adults introduce disease pathogens of cotton into cotton bolls, and preliminary data indicates nymphs can also ingest these pathogens. Data is lacking ...

  1. Integrated pest management

    International Nuclear Information System (INIS)

    LaBrecque, G.C.

    1981-01-01

    An effective Integrated Pest Management (IPM) programme requires a thorough knowledge of the biology of the target species, namely information on the dispersal, population densities and dynamics as well as the ecology of the natural enemies of the pest. Studies on these can be accomplished by radiolabelling techniques. In the event that conditions prevent the use of radioisotopes the insects can be labelled with either a rare earth or stable isotopes. All insects treated with the rare earths, once captured, are exposed to neutrons which produce radioactivity in the rare earths. There are two other approaches in the practical application of radiation to the problem of insect control: the exposure of insects to lethal doses of radiation and the release of sterile insects. The Insect and Pest Control Section contributes to all aspects of the sterile insect technique (SIT) and it is involved in the Agency's Coordinated Research Programme which permits scientists from the developing countries to meet to discuss agricultural problems and to devise means of solving crop-pest infestation problems by using isotopes and radiation. The success of radiation in insect pest control was underlined and reviewed at the international symposium on the sterile insect technique and the use of radiation in genetic insect control jointly organized by the FAO and the IAEA and held in the FRG in 1981. Another important action is the BICOT programme in Nigeria between the IAEA and the Government of Nigeria on the biological control of tsetse flies by SIT

  2. Integrated pest control

    International Nuclear Information System (INIS)

    Kassem, A.R.

    2009-01-01

    The hazards induced by pests are responsible for about 50% of the agricultural production. There are two types of methods for pest control. The traditional methods including chemical, biological, mechanical and physical methods. The modern methods depending on germs, phermones, hormones and genetic methods. The sterile insect technique is the most recent one and the more effective. It depends on the use of insect to destroy itself.

  3. A Pest of Importance

    Science.gov (United States)

    Potato cyst nematodes (PCN), G. rostochiensis and G. pallida, are internationally-recognized quarantine pests and considered the most devastating pests of potatoes worldwide. PCNs continue to spread throughout North America and were recently detected in Idaho (G. pallida) and Quebec and Alberta, Can...

  4. 75 FR 50847 - Cotton Program Changes for Upland Cotton, Adjusted World Price, and Active Shipping Orders

    Science.gov (United States)

    2010-08-18

    ... Cotton Program Changes for Upland Cotton, Adjusted World Price, and Active Shipping Orders AGENCY... Assistance Program (EAAP) and clarifying the definition of ``active shipping order.'' DATES: Effective Date... address that matter this rule amends in the payment calculation for semi-processed and reginned motes in 7...

  5. THE ELASTICITY OF EXPORT DEMAND FOR US COTTON

    OpenAIRE

    Paudel, Laxmi; Houston, Jack E.; Adhikari, Murali; Devkota, Nirmala

    2004-01-01

    There exist conflicting views among the researchers about the magnitudes of US cotton export demand elasticity, ranging from the highly inelastic to highly elastic. An Armington model was used to analyze the export demand elasticity of US Cotton. Our analysis confirms an elastic nature of US cotton export demand.

  6. 7 CFR 1427.23 - Cotton loan deficiency payments.

    Science.gov (United States)

    2010-01-01

    ..., DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COTTON Nonrecourse Cotton Loan and Loan... intentions to receive a loan deficiency payment on the identified commodity or (ii) A completed request for a... cotton based on a locked-in adjusted world price, provide identifying numbers for modules or other...

  7. Fourier transform infrared imaging of Cotton trash mixtures

    Science.gov (United States)

    There is much interest in the identification of trash types comingled with cotton lint. A good understanding of the specific trash types present can lead to the fabrication of new equipment which can identify and sort cotton trash found with cotton fiber. Conventional methods, including the High Vo...

  8. Insect Pests and Integrated Pest Management in Museums, Libraries and Historic Buildings.

    Science.gov (United States)

    Querner, Pascal

    2015-06-16

    Insect pests are responsible for substantial damage to museum objects, historic books and in buildings like palaces or historic houses. Different wood boring beetles (Anobium punctatum, Hylotrupes bajulus, Lyctus sp. or introduced species), the biscuit beetle (Stegobium paniceum), the cigarette beetle (Lasioderma serricorne), different Dermestides (Attagenus sp., Anthrenus sp., Dermestes sp., Trogoderma sp.), moths like the webbing clothes moth (Tineola bisselliella), Silverfish (Lepisma saccharina) and booklice (Psocoptera) can damage materials, objects or building parts. They are the most common pests found in collections in central Europe, but most of them are distributed all over the world. In tropical countries, termites, cockroaches and other insect pests are also found and result in even higher damage of wood and paper or are a commune annoyance in buildings. In this short review, an introduction to Integrated Pest Management (IPM) in museums is given, the most valuable collections, preventive measures, monitoring in museums, staff responsible for the IPM and chemical free treatment methods are described. In the second part of the paper, the most important insect pests occurring in museums, archives, libraries and historic buildings in central Europe are discussed with a description of the materials and object types that are mostly infested and damaged. Some information on their phenology and biology are highlighted as they can be used in the IPM concept against them.

  9. Gene cloning: exploring cotton functional genomics and genetic improvement

    Institute of Scientific and Technical Information of China (English)

    Diqiu LIU; Xianlong ZHANG

    2008-01-01

    Cotton is the most important natural fiber plant in the world. The genetic improvement of the quality of the cotton fiber and agricultural productivity is imperative under the situation of increasing consumption and rapid development of textile technology. Recently, the study of cotton molecular biology has progressed greatly. A lot of specifically or preferentially expressed cotton fiber genes were cloned and analyzed. On the other hand, identification of stress response genes expressed in cotton was performed by other research groups. The major stress factors were studied including the wilt pathogens Verticillium dahliae, Fusarium oxy-sporum f. sp. vasinfectum, bacterial blight, root-knot nematode, drought, and salt stress. What is more, a few genes related to the biosynthesis of gossypol, other sesquiterpene phytoalexins and the major seed oil fatty acids were isolated from cotton. In the present review, we focused on the major advances in cotton gene cloning and expression profiling in the recent years.

  10. Forest Pest Control. Sale Publication 4072.

    Science.gov (United States)

    Stimmann, M. W., Ed.

    The forest pests discussed in this guide are weeds, insects, diseases, and vertebrates. The guide gives information about types of forests, characteristics of common forest pests, pest control methods, pesticides and application equipment used in forestry, and environmental and human hazards. (Author/BB)

  11. Protein tyrosine phosphatase-PEST (PTP-PEST) regulates mast cell-activating signals in PTP activity-dependent and -independent manners.

    Science.gov (United States)

    Motohashi, Satoru; Koizumi, Karen; Honda, Reika; Maruyama, Atsuko; Palmer, Helen E F; Mashima, Keisuke

    2014-01-01

    Aggregation of the high-affinity IgE receptor (FcεRI) in mast cells leads to degranulation and production of numerous cytokines and lipid mediators that promote allergic inflammation. Tyrosine phosphorylation of proteins in response to FcεRI aggregation has been implicated in mast cell activation. Here, we determined the role of PTP-PEST (encoded by PTPN12) in the regulation of mast cell activation using the RBL-2H3 rat basophilic leukemia cell line as a model. PTP-PEST expression was significantly induced upon FcεRI-crosslinking, and aggregation of FcεRI induced the phosphorylation of PTP-PEST at Ser39, thus resulting in the suppression of PTP activity. By overexpressing a phosphatase-dead mutant (PTP-PEST CS) and a constitutively active mutant (PTP-PEST SA) in RBL-2H3 cells, we showed that PTP-PEST decreased degranulation and enhanced IL-4 and IL-13 transcription in FcεRI-crosslinked RBL-2H3 cells, but PTP activity of PTP-PEST was not necessary for this regulation. However, FcεRI-induced TNF-α transcription was increased by the overexpression of PTP-PEST SA and suppressed by the overexpression of PTP-PEST CS. Taken together, these results suggest that PTP-PEST is involved in the regulation of FcεRI-mediated mast cell activation through at least two different processes represented by PTP activity-dependent and -independent pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Sustainable Pest Management : Achievements and Challenges

    OpenAIRE

    World Bank

    2005-01-01

    The objective of this paper is to: (a) review World Bank's pest management activities during 1999-2004; (b) assess those in view of the changes in the external and internal contexts; (c) identify appropriate opportunities of engagement on pest and pesticide issues; and (d) suggest means to further promote sound pest management in the World Bank operations. The importance of sound pest management for sustainable agricultural production is being recognized by many developing countries. Many cou...

  13. 3rd stage seed-cotton cleaning system PM10 emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  14. 2nd stage seed-cotton cleaning system PM10 emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  15. 1st stage seed-cotton cleaning system PM10 emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  16. Significance of the tropical fire ant Solenopsis geminata (hymenoptera: formicidae) as part of the natural enemy complex responsible for successful biological control of many tropical irrigated rice pests.

    Science.gov (United States)

    Way, M J; Heong, K L

    2009-10-01

    The tropical fire ant Solenopsis geminata (Fabricius) often nests very abundantly in the earthen banks (bunds) around irrigated rice fields in the tropics. Where some farmers habitually drain fields to the mud for about 3-4 days, the ants can quickly spread up to about 20 m into the fields where they collect food, including pest prey such as the eggs and young of the apple snail Pomacea caniculata (Lamarck) and insects such as lepidopterous larvae and hoppers, notably Nilaparvata lugens (Stäl) the brown planthopper (Bph) and green leafhoppers Nephotettix spp. Even in drained fields, the activity of S. geminata is restricted by rainfall in the wet season. The relatively few ant workers that forage characteristically into drained fields and on to the transplanted clumps of rice plants (hills) kill the normally few immigrant Bph adults but are initially slower acting than other species of the natural enemy complex. However, larger populations of Bph are fiercely attacked and effectively controlled by rapidly recruited ant workers; whereas, in the absence of the ant, the other natural enemies are inadequate. In normal circumstances, there is no ant recruitment in response to initially small populations of immigrant Bph and no evidence of incompatibility between ant foragers and other natural enemies such as spiders. However, when many ants are quickly and aggressively recruited to attack large populations of Bph, they temporarily displace some spiders from infested hills. It is concluded that, in suitable weather conditions and even when insecticides kill natural enemies within the rice field, periodic drainage that enables S. geminata to join the predator complex is valuable for ant-based control of pests such as snails and Lepidoptera, and especially against relatively large populations of Bph. Drainage practices to benefit ants are fully compatible with recent research, which shows that periodic drainage combats problems of 'yield decline' in intensively irrigated

  17. Spatial Distribution of Eggs of Alabama argillacea Hübner and Heliothis virescens Fabricius (Lepidoptera: Noctuidae on Bt and non-BtCotton

    Directory of Open Access Journals (Sweden)

    TATIANA R. RODRIGUES

    2015-12-01

    Full Text Available ABSTRACT Among the options to control Alabama argillacea (Hübner, 1818 and Heliothis virescens (Fabricius, 1781 on cotton, insecticide spraying and biological control have been extensively used. The GM'Bt' cotton has been introduced as an extremely viable alternative, but it is yet not known how transgenic plants affect populations of organisms that are interrelated in an agroecosystem. For this reason, it is important to know how the spatial arrangement of pests and beneficial insect are affected, which may call for changes in the methods used for sampling these species. This study was conducted with the goal to investigate the pattern of spatial distribution of eggs of A. argillacea and H. virescens in DeltaOpalTM (non-Bt and DP90BTMBt cotton cultivars. Data were collected during the agricultural year 2006/2007 in two areas of 5,000 m2, located in in the district of Nova América, Caarapó municipality. In each sampling area, comprising 100 plots of 50 m2, 15 evaluations were performed on two plants per plot. The sampling consisted in counting the eggs. The aggregation index (variance/mean ratio, Morisita index and exponent k of the negative binomial distribution and chi-square fit of the observed and expected values to the theoretical frequency distribution (Poisson, Binomial and Negative Binomial Positive, showed that in both cultivars, the eggs of these species are distributed according to the aggregate distribution model, fitting the pattern of negative binomial distribution.

  18. Cover Crop Biomass Harvest Influences Cotton Nitrogen Utilization and Productivity

    Directory of Open Access Journals (Sweden)

    F. Ducamp

    2012-01-01

    Full Text Available There is a potential in the southeastern US to harvest winter cover crops from cotton (Gossypium hirsutum L. fields for biofuels or animal feed use, but this could impact yields and nitrogen (N fertilizer response. An experiment was established to examine rye (Secale cereale L. residue management (RM and N rates on cotton productivity. Three RM treatments (no winter cover crop (NC, residue removed (REM and residue retained (RET and four N rates for cotton were studied. Cotton population, leaf and plant N concentration, cotton biomass and N uptake at first square, and cotton biomass production between first square and cutout were higher for RET, followed by REM and NC. However, leaf N concentration at early bloom and N concentration in the cotton biomass between first square and cutout were higher for NC, followed by REM and RET. Seed cotton yield response to N interacted with year and RM, but yields were greater with RET followed by REM both years. These results indicate that a rye cover crop can be beneficial for cotton, especially during hot and dry years. Long-term studies would be required to completely understand the effect of rye residue harvest on cotton production under conservation tillage.

  19. 75 FR 38958 - Declaration of Prion as a Pest under FIFRA and Amendment of EPA's Regulatory Definition of Pests...

    Science.gov (United States)

    2010-07-07

    ... Prion as a Pest under FIFRA and Amendment of EPA's Regulatory Definition of Pests to Include Prion....e., proteinaceous infectious particle) a ``pest'' under the Federal Insecticide, Fungicide, and... is adding prion to the list of pests in EPA's regulations. This amendment, together with the formal...

  20. Effects of Different Densities of Cotton (Gossypium Hirsutum and Common Lambsquarter (Chenopodium Album on Some Cotton Growth Characteristics in Birjand Condition

    Directory of Open Access Journals (Sweden)

    M. Velayati

    2011-01-01

    Full Text Available Abstract Weeds are problematic plants in agroecosystems as a competitor for crops. In order to evaluate effects of cotton (Gossypium hirsutum and common lambsquarter (Chenopodium album densities on some crop growth indices, a study was conducted during 2006 in Experimental Station of Faculty of Agriculture, The University of Birjand as factorial experiment based on complete randomized block design with four replications. Three densities of cotton (6, 9 and 12 Pl.m-2 and four weed densities (0, 6, 9 and 12 Pl.m-2 were used to provide different weed interference levels. Indeed, three plots in each replication were intended to cultivation of lambsquarter alone at 6, 9 or 12 Pl.m-2. Results showed that crop growth rate (CGR of cotton was influenced by weed density, and its relative growth rate (RGR and net assimilation rate (NAR indicated a declining trend as weed density increased. Dry matter accumulation of cotton also was affected negatively by weed densities, as interference of lambsquarter at 6, 9 and 12 Pl.m-2 resulted to 35, 42 and 48 percent dry matter reduction, respectively, than weed-free treatment. Increasing of cotton density could partly compensate for negative impact of weed attendance on cotton growth. Thus, it seems higher plant densities can be used as a managing tool against weeds in cotton fields to avoid reduction of yield. Keywords: Cotton, Density, Weed, competition, Growth analysis

  1. 21 CFR 182.70 - Substances migrating from cotton and cotton fabrics used in dry food packaging.

    Science.gov (United States)

    2010-04-01

    ... used in dry food packaging. 182.70 Section 182.70 Food and Drugs FOOD AND DRUG ADMINISTRATION... used in dry food packaging. Substances migrating to food from cotton and cotton fabrics used in dry food packaging that are generally recognized as safe for their intended use, within the meaning of...

  2. Relay cropping of wheat (Triticum aestivum L.) in cotton (Gossypium hirsutum L.) improves the profitability of cotton-wheat cropping system in Punjab, Pakistan.

    Science.gov (United States)

    Sajjad, Aamer; Anjum, Shakeel Ahmad; Ahmad, Riaz; Waraich, Ejaz Ahmad

    2018-01-01

    Delayed sowing of wheat (Triticum aestivum L.) in cotton-based system reduces the productivity and profitability of the cotton-wheat cropping system. In this scenario, relay cropping of wheat in standing cotton might be a viable option to ensure the timely wheat sowing with simultaneous improvement in wheat yields and system profitability. This 2-year study (2012-2013 and 2013-2014) aimed to evaluate the influence of sowing dates and relay cropping combined with different management techniques of cotton sticks on the wheat yield, soil physical properties, and the profitability of the cotton-wheat system. The experiment consisted of five treatments viz. (S1) sowing of wheat at the 7th of November by conventional tillage (two disc harrows + one rotavator + two plankings) after the removal of cotton sticks, (S2) sowing of wheat at the 7th of November by conventional tillage (two disc harrows + two plankings) after the incorporation of cotton sticks in the field with a rotavator, (S3) sowing of wheat at the 7th of November as relay crop in standing cotton with broadcast method, (S4) sowing of wheat at the 15th of December by conventional tillage (two disc harrows + one rotavator + two plankings) after the removal of cotton sticks, and (S5) sowing of wheat at the 15th of December by conventional tillage (two disc harrows + two plankings) after the incorporation of cotton sticks in the field with a rotavator. The highest seed cotton yield was observed in the S5 treatment which was statistically similar with the S3 and S4 treatments; seed cotton yield in the S1 and S2 treatments has been the lowest in both years of experimentation. However, the S2 treatment produced substantially higher root length, biological yield, and grain yield of wheat than the other treatments. The lower soil bulk density at 0-10-cm depth was recorded in the S2 treatment which was statistically similar with the S5 treatment during both years of experimentation. The volumetric water contents, net

  3. Weed flora, yield losses and weed control in cotton crop

    OpenAIRE

    Jabran, Khawar

    2016-01-01

    Cotton (Gossypium spp.) is the most important fiber crop of world and provides fiber, oil, and animals meals. Weeds interfere with the growth activities of cotton plants and compete with it for resources. All kinds of weeds (grasses, sedges, and broadleaves) have been noted to infest cotton crop. Weeds can cause more than 30% decrease in cotton productivity. Several methods are available for weed control in cotton. Cultural control carries significance for weed control up to a certain extent....

  4. Increasing cotton stand establishment in soils prone to soil crusting

    Science.gov (United States)

    Many factors can contribute to poor cotton stand establishment, and cotton is notorious for its weak seedling vigor. Soil crusting can be a major factor hindering cotton seedling emergence in many of the cotton production regions of the US and the world. Crusting is mainly an issue in silty soils ...

  5. 7 CFR 28.107 - Original cotton standards and reserve sets.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Original cotton standards and reserve sets. 28.107... Standards Act Practical Forms of Cotton Standards § 28.107 Original cotton standards and reserve sets. (a) The containers of the original Universal Standards and other official cotton standards of the United...

  6. Cotton Production in Mali: Subsidies or Sustainable Development?

    Science.gov (United States)

    Moore, Lindsey

    2007-01-01

    Current trade rules concerning cotton subsidies are intricately linked with poverty and hunger in Mali. Over half of Mali's economy and over 30 million people depend directly on cotton. It is the main cash crop and the most important source of export revenue. Cotton also plays a key role in development policies and in the fight against poverty by…

  7. Genomic studies for drought tolerance in cotton (abstract)

    International Nuclear Information System (INIS)

    Mahboob-ur-Rehman; Ullah, I.; Asir, M.; Zafar, Y.; Malik, K.A.

    2005-01-01

    The cotton germplasm developed in Pakistan has not been screened comprehensively for their response to water stress, which is a pre-requisite in exploring different metabolic pathways, development of genome maps, isolation of genes etc. The objectives of the study were to identify drought tolerant/sensitive cotton genotypes, development of genetic linkage maps, and to identify the most robust DNA markers leading towards marker-assisted selection (MAS). A field trial was conducted to investigate variation in gas exchange parameters and productivity traits in 32 cotton cultivars/promising strains under water stress environment and to ascertain association among these physiological and productivity traits. Photosynthetic rate (P), stomatal conductance (gs) and transpiration rate (E) were significantly reduced under water stress. Substantial genotypic variation for gas exchange parameters especially photosynthetic rate were observed with a significant association with productivity traits under water-limited environment elucidating its use as an indirect selection criterion for seed cotton yield. Moreover, the genotypes FH-901 and CIM-1100 were found the most sensitive and tolerant cultivars, respectively. Four hundred eighty random primers were surveyed on different cotton genotypes involved in population development programs. Out of these, 32 polymorphic primers were identified which are being converted into sequence characterized amplified regions (SCARs). Similarly, 25 out of 150 microstatellite loci (SSRs) were polymorphic among the cotton genotypes. Amplified fragment length polymorphism (AFLP) fingerprinting technique is being exploited to search for additional polymorphisms. The study will have impact on cotton breeding programme by reducing span to develop drought tolerant cotton varieties. (author)

  8. Combining ability analysis in intraspecific f/sub 1/ diallel cross of upland cotton

    International Nuclear Information System (INIS)

    Khan, S.A.; Khan, N.U.; Mohammad, F.

    2011-01-01

    The research work comprised of combining ability and genetic variability in a 6 X 6 F1 diallel cross which was carried out during crop seasons 2008 and 2009 at Khyber Pakhtunkhwa Agricultural University, Peshawar, Pakistan. The parental genotypes (CIM-446, CIM-496, CIM-499, CIM-506, CIM-554 and CIM-707) were crossed in a complete diallel fashion during 2008. The 30 F1 hybrids and their parents were grown in a randomized complete block (RCB) design with three replications during 2009. Genotypes manifested significant (p less than or equal to 0.01) differences for days to first flowering, locules boll/sup -1/, seeds locule/sup -1/, lint % and seed cotton yield plant/sup -1/. The F1 hybrids showed significant increase over parents in mean values for all the traits. The correlation of seed cotton yield was significantly positive with majority of yield traits and negative with days to first flowering and lint %. Mean squares due to general (GCA) and specific combining ability (SCA) were highly significant for all the traits, except locules for GCA. Mean squares due to GCA were higher in magnitude than SCA for majority of the traits and their inheritance was mainly governed by additive type of gene action and partially by non-additive. Selection in such promising hybrids could be used in segregating generations, and also some specific cross combinations can be used for hybrid cotton production to increase the seed cotton yield. The best general combiners (CIM-446 and CIM-554) followed by CIM-496 and their utilization as one of the parents produced best specific F1 hybrids (CIM-446 X CIM-499, CIM-446 X CIM-554, CIM-496 X CIM-707 and CIM-506 X CIM-554) having valuable SCA determination and remarkable mean performance for most of the traits. Reciprocal crosses having prominent maternal effects also involved one of the general combiners for majority of the traits. The promising hybrids also exhibited earliness through which the crop can escape from pests attack and soil can

  9. Using Pesticides: Commercial Applicator Manual, Texas. Agricultural Pest Control - Field Crop Pest Control, Fruit and Vegetable Pest Control, Weed and Brush Control.

    Science.gov (United States)

    Texas A and M Univ., College Station. Texas Agricultural Extension Service.

    This document is designed to provide commercial pesticide applicators with practical information and regulations required by the Texas Department of Agriculture. The manual includes two major sections. The first section discusses labels and labeling, pesticides, aerial application, ground application, pesticide safety, pests and pest damage,…

  10. General Pest Control - Industrial. Manual 95.

    Science.gov (United States)

    Missouri Univ., Columbia. Agricultural Experiment Station.

    This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides in the general pest control category. The text discusses general, parasitic and miscellaneous pests such as ants, ticks, and spiders; fabric, wood-destroying, and grain pests such as beetles, termites, and…

  11. Profile of small interfering RNAs from cotton plants infected with the polerovirus Cotton leafroll dwarf virus

    Directory of Open Access Journals (Sweden)

    Schrago Carlos EG

    2011-08-01

    Full Text Available Abstract Background In response to infection, viral genomes are processed by Dicer-like (DCL ribonuclease proteins into viral small RNAs (vsRNAs of discrete sizes. vsRNAs are then used as guides for silencing the viral genome. The profile of vsRNAs produced during the infection process has been extensively studied for some groups of viruses. However, nothing is known about the vsRNAs produced during infections of members of the economically important family Luteoviridae, a group of phloem-restricted viruses. Here, we report the characterization of a population of vsRNAs from cotton plants infected with Cotton leafroll dwarf virus (CLRDV, a member of the genus Polerovirus, family Luteoviridae. Results Deep sequencing of small RNAs (sRNAs from leaves of CLRDV-infected cotton plants revealed that the vsRNAs were 21- to 24-nucleotides (nt long and that their sequences matched the viral genome, with higher frequencies of matches in the 3- region. There were equivalent amounts of sense and antisense vsRNAs, and the 22-nt class of small RNAs was predominant. During infection, cotton Dcl transcripts appeared to be up-regulated, while Dcl2 appeared to be down-regulated. Conclusions This is the first report on the profile of sRNAs in a plant infected with a virus from the family Luteoviridae. Our sequence data strongly suggest that virus-derived double-stranded RNA functions as one of the main precursors of vsRNAs. Judging by the profiled size classes, all cotton DCLs might be working to silence the virus. The possible causes for the unexpectedly high accumulation of 22-nt vsRNAs are discussed. CLRDV is the causal agent of Cotton blue disease, which occurs worldwide. Our results are an important contribution for understanding the molecular mechanisms involved in this and related diseases.

  12. Profile of small interfering RNAs from cotton plants infected with the polerovirus Cotton leafroll dwarf virus.

    Science.gov (United States)

    Silva, Tatiane F; Romanel, Elisson A C; Andrade, Roberto R S; Farinelli, Laurent; Østerås, Magne; Deluen, Cécile; Corrêa, Régis L; Schrago, Carlos E G; Vaslin, Maite F S

    2011-08-24

    In response to infection, viral genomes are processed by Dicer-like (DCL) ribonuclease proteins into viral small RNAs (vsRNAs) of discrete sizes. vsRNAs are then used as guides for silencing the viral genome. The profile of vsRNAs produced during the infection process has been extensively studied for some groups of viruses. However, nothing is known about the vsRNAs produced during infections of members of the economically important family Luteoviridae, a group of phloem-restricted viruses. Here, we report the characterization of a population of vsRNAs from cotton plants infected with Cotton leafroll dwarf virus (CLRDV), a member of the genus Polerovirus, family Luteoviridae. Deep sequencing of small RNAs (sRNAs) from leaves of CLRDV-infected cotton plants revealed that the vsRNAs were 21- to 24-nucleotides (nt) long and that their sequences matched the viral genome, with higher frequencies of matches in the 3- region. There were equivalent amounts of sense and antisense vsRNAs, and the 22-nt class of small RNAs was predominant. During infection, cotton Dcl transcripts appeared to be up-regulated, while Dcl2 appeared to be down-regulated. This is the first report on the profile of sRNAs in a plant infected with a virus from the family Luteoviridae. Our sequence data strongly suggest that virus-derived double-stranded RNA functions as one of the main precursors of vsRNAs. Judging by the profiled size classes, all cotton DCLs might be working to silence the virus. The possible causes for the unexpectedly high accumulation of 22-nt vsRNAs are discussed. CLRDV is the causal agent of Cotton blue disease, which occurs worldwide. Our results are an important contribution for understanding the molecular mechanisms involved in this and related diseases.

  13. Cotton contamination

    CSIR Research Space (South Africa)

    Van der Sluijs, MHJ

    2018-05-01

    Full Text Available This review focusses on physical forms of contaminant including the presence, prevention and/or removal of foreign bodies, stickiness and seed-coat fragments rather than the type and quantity of chemical residues that might be present in cotton...

  14. Minimization of operational impacts on spectrophotometer color measurements for cotton

    Science.gov (United States)

    A key cotton quality and processing property that is gaining increasing importance is the color of the cotton. Cotton fiber in the U.S. is classified for color using the Uster® High Volume Instrument (HVI), using the parameters Rd and +b. Rd and +b are specific to cotton fiber and are not typical ...

  15. Genetic diversity in upland cotton for cotton leaf curl virus disease, earliness and fiber quality

    International Nuclear Information System (INIS)

    Saeed, F.; Farooq, J.; Mahmood, A.; Hussain, T.

    2014-01-01

    In Pakistan during last two decades the major factor limiting cotton production is cotton leaf curl virus disease (CLCuD). For estimation of genetic diversity regarding CLCuD tolerance, fiber quality and some yield contributing traits, 101 cotton genotypes imported from USA were evaluated. Different statistical procedures like cluster, principle components (PC) and correlation analysis were employed to identify the suitable genotypes that can be further exploited in breeding programme. Significant associations were found between yield contributing trait, boll weight and fiber related trait, staple length. Earliness related traits, like days taken to 1 square and days taken to 1 flower had positive correlation with each other and both these traits also showed their positive association with ginning out turn. The negative significant correlation of CLCuD was obtained with monopodial branches, sympodial branches and plant height. Principal component (PC) analysis showed first five PCs having eigen value >1 explaining 67.8% of the total variation with days to st 1 square and flowering along with plant height and sympodia plant which were being the most important characters in PC1. Cluster analysis classified 101 accessions into five divergent groups. The genotypes in st cluster 1 only showed reasonable values for days to 1 square and flower, sympodia per plant, ginning out turn, staple length and fiber fineness and the genotypes in cluster 5 showed promising values for the traits like cotton leaf curl virus, ginning out turn and fiber fineness. The genotypes in cluster 1 and 5 may be combined to obtain desirable traits related to earliness and better disease tolerance. Scatter plot and tree diagrams demonstrated sufficient diversity among the cotton accessions for various traits and some extent of association between various clusters. It is concluded that diversity among the genotypes could be utilized for the development of CLCuD resistant lines with increased seed

  16. Response of cotton genotypes to boron under-b-adequate conditions

    International Nuclear Information System (INIS)

    Shah, J. A.; Sial, M. A.; Hassan, Z. U.; Rajpar, I.

    2015-01-01

    Balanced boron (B) application is well-known to enhance the cotton production; however, the narrow range between B-deficiency and toxicity levels makes it difficult to manage. Cotton genotypes extensively differ in their response to B requirements. The adequate dose of B for one genotype may be insufficient or even toxic to other genotype. The effects of boron (B) on seed cotton yield and its various yield associated traits were studied on 10 cotton genotypes of Pakistan. The pot studies were undertaken to categorize cotton genotypes using B-deficient (control) and B-adequate (2.0 kg B ha-1) levels arranged in CRD with four repeats. The results indicated that the seed cotton yield, yield attributes and B-uptake of genotypes were comparatively decreased in B-deficient stressed treatment. Genotype NIA-Ufaq exhibited wide range of adaptation and ranked as efficient-responsive, as it produced higher seed cotton yield under both B-regimes. SAU-2 and CIM-506 were highly-efficient and remaining all genotypes were medium-efficient. Genotype Sindh-1 produced low seed cotton yield under B deficient condition and ranked as low-efficient. B-efficient cotton genotypes can be grown in B deficient soils without B application. (author)

  17. 78 FR 68983 - Cotton Futures Classification: Optional Classification Procedure

    Science.gov (United States)

    2013-11-18

    ...-AD33 Cotton Futures Classification: Optional Classification Procedure AGENCY: Agricultural Marketing... regulations to allow for the addition of an optional cotton futures classification procedure--identified and... response to requests from the U.S. cotton industry and ICE, AMS will offer a futures classification option...

  18. MicroRNA expression profiling during upland cotton gland forming ...

    African Journals Online (AJOL)

    Jane

    2011-08-15

    Aug 15, 2011 ... 2Key Laboratory of Cotton Genetic Improvement, Cotton Research Institute of the Chinese Academy of Agricultural. Sciences, Ministry of ... terpenoid aldehyde biosynthesis pathway, genetic engineering and molecular breeding of cotton. ... toxic to non-ruminant animals and humans, which means that large ...

  19. Evaluating potassium-use-efficiency of five cotton genotypes of pakistan

    International Nuclear Information System (INIS)

    Hassan, Z.U.; Kubar, K.A.

    2014-01-01

    Potassium (K) deficiency in Pakistani soils has been recently reported as the major limiting factor affecting sustainable cotton production. The present study was conducted to envisage how K nutrition affect the growth, biomass production, yield and K-use-efficiency of five cotton genotypes, NIBGE-3701, NIBGE-1524 (Bt-transgenic), Sadori, Sindh-1 and SAU-2 (non-Bt conventional), commonly grown in Pakistan. All five genotypes were raised at deficient and adequate K levels, i.e. 0 and 60 kg K/sub 2/O ha-1, respectively. The experiment was performed in plastic pots following a completely randomized factorial design with three repeats. Adequate K nutrition significantly increased various plant growth traits and yield of all cotton genotypes under study, viz. number of sympodia (21%), number of leaves (34%), leaf dry biomass (30%), shoot dry biomass (31%), number of bolls (50%) and yield of seed cotton (92%). Substantial variations were observed among cotton genotypes for their K-use-efficiency and K-response-efficiency. Sadori and SAU-2 were screened as most K-use-efficient cotton genotypes, while Sindh-1 and SAU-2 were ranked as the most K-responsive cotton genotypes. Interestingly, Sadori did not respond to K nutrition. Moreover, Bt cotton genotypes accumulated more K as compared to non-Bt genotypes. The cotton genotype SAU-2 was identified as efficient-response genotype for better adaptation for both low- and high-K-input sustainable cotton agriculture systems. (author)

  20. A point mutation (L1015F) of the voltage-sensitive sodium channel gene associated with lambda-cyhalothrin resistance in Apolygus lucorum (Meyer-Dür) population from the transgenic Bt cotton field of China.

    Science.gov (United States)

    Zhen, Congai; Gao, Xiwu

    2016-02-01

    In China, the green mirid bug, Apolygus lucorum (Meyer-Dür), has caused severe economic damage to many kinds of crops, especially the cotton and jujubes. Pyrethroid insecticides have been widely used for controlling this pest in the transgenic Bt cotton field. Five populations of A. lucorum collected from cotton crops at different locations in China were evaluated for lambda-cyhalothrin resistance. The results showed that only the population collected from Shandong Province exhibited 30-fold of resistance to lambda-cyhalothrin. Neither PBO nor DEF had obvious synergism when compared the synergistic ratio between SS and RR strain which was originated from the Shandong population. Besides, there were no statistically significant differences (p>0.05) in the carboxylesterase, glutathione S-transferase, or 7-ethoxycoumarin O-deethylase activities between the Shandong population and the laboratory susceptible strain (SS). The full-length sodium channel gene named AlVSSC encoding 2028 amino acids was obtained by RT-PCR and rapid amplification of cDNA ends (RACE). One single point mutation L1015F in the AlVSSC was detected only in the Shandong population. Our results revealed that the L1015F mutation associated with pyrethroid resistance was identified in A. lucorum populations in China. These results will be useful for the rational chemical control of A. lucorum in the transgenic Bt cotton field. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Calibration of hydrological model with programme PEST

    Science.gov (United States)

    Brilly, Mitja; Vidmar, Andrej; Kryžanowski, Andrej; Bezak, Nejc; Šraj, Mojca

    2016-04-01

    PEST is tool based on minimization of an objective function related to the root mean square error between the model output and the measurement. We use "singular value decomposition", section of the PEST control file, and Tikhonov regularization method for successfully estimation of model parameters. The PEST sometimes failed if inverse problems were ill-posed, but (SVD) ensures that PEST maintains numerical stability. The choice of the initial guess for the initial parameter values is an important issue in the PEST and need expert knowledge. The flexible nature of the PEST software and its ability to be applied to whole catchments at once give results of calibration performed extremely well across high number of sub catchments. Use of parallel computing version of PEST called BeoPEST was successfully useful to speed up calibration process. BeoPEST employs smart slaves and point-to-point communications to transfer data between the master and slaves computers. The HBV-light model is a simple multi-tank-type model for simulating precipitation-runoff. It is conceptual balance model of catchment hydrology which simulates discharge using rainfall, temperature and estimates of potential evaporation. Version of HBV-light-CLI allows the user to run HBV-light from the command line. Input and results files are in XML form. This allows to easily connecting it with other applications such as pre and post-processing utilities and PEST itself. The procedure was applied on hydrological model of Savinja catchment (1852 km2) and consists of twenty one sub-catchments. Data are temporary processed on hourly basis.

  2. PEST reduces bias in forced choice psychophysics.

    Science.gov (United States)

    Taylor, M M; Forbes, S M; Creelman, C D

    1983-11-01

    Observers performed several different detection tasks using both the PEST adaptive psychophysical procedure and a fixed-level (method of constant stimuli) psychophysical procedure. In two experiments, PEST runs targeted at P (C) = 0.80 were immediately followed by fixed-level detection runs presented at the difficulty level resulting from the PEST run. The fixed-level runs yielded P (C) about 0.75. During the fixed-level runs, the probability of a correct response was greater when the preceding response was correct than when it was wrong. Observers, even highly trained ones, perform in a nonstationary manner. The sequential dependency data can be used to determine a lower bound for the observer's "true" capability when performing optimally; this lower bound is close to the PEST target, and well above the forced choice P (C). The observer's "true" capability is the measure used by most theories of detection performance. A further experiment compared psychometric functions obtained from a set of PEST runs using different targets with those obtained from blocks of fixed-level trials at different levels. PEST results were more stable across observers, performance at all but the highest signal levels was better with PEST, and the PEST psychometric functions had shallower slopes. We hypothesize that PEST permits the observer to keep track of what he is trying to detect, whereas in the fixed-level method performance is disrupted by memory failure. Some recently suggested "more virulent" versions of PEST may be subject to biases similar to those of the fixed-level procedures.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Producing Organic Cotton: A Toolkit - Crop Guide, Projekt guide, Extension tools

    OpenAIRE

    Eyhorn, Frank

    2005-01-01

    The CD compiles the following extension tools on organic cotton: Organic Cotton Crop Guide, Organic Cotton Training Manual, Soil Fertility Training Manual, Organic Cotton Project Guide, Record keeping tools, Video "Organic agriculture in the Nimar region", Photos for illustration.

  4. A facile method to fabricate superhydrophobic cotton fabrics

    Science.gov (United States)

    Zhang, Ming; Wang, Shuliang; Wang, Chengyu; Li, Jian

    2012-11-01

    A facile and novel method for fabricating superhydrophobic cotton fabrics is described in the present work. The superhydrophobic surface has been prepared by utilizing cationic poly (dimethyldiallylammonium chloride) and silica particles together with subsequent modification of (heptadecafluoro-1,1,2,2-tetradecyl) trimethoxysilane. The size distribution of silica particles was measured by Particle Size Analyzer. The cotton textiles before and after treatment were characterized by using scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The wetting behavior of cotton samples was investigated by water contact angle measurement. Moreover, the superhydrophobic durability of coated cotton textiles has been evaluated by exposure, immersion and washing tests. The results show that the treated cotton fabrics exhibited excellent chemical stability and outstanding non-wettability with the WCA of 155 ± 2°, which offers an opportunity to accelerate the large-scale production of superhydrophobic textiles materials for new industrial applications.

  5. Cotton responses to simulated insect damage: radiation-use efficiency, canopy architecture and leaf nitrogen content as affected by loss of reproductive organs

    International Nuclear Information System (INIS)

    Sadras, V.O.

    1996-01-01

    Key cotton pests feed preferentially on reproductive organs which are normally shed after injury. Loss of reproductive organs in cotton may decrease the rate of leaf nitrogen depletion associated with fruit growth and increase nitrogen uptake and reduction by extending the period of root and leaf growth compared with undamaged plants. Higher levels of leaf nitrogen resulting from more assimilation and less depletion could increase the photosynthetic capacity of damaged crops in relation to undamaged controls. To test this hypothesis, radiation-use efficiency (RUE = g dry matter per MJ of photosynthetically active radiation intercepted by the canopy) of crops in which flowerbuds and young fruits were manually removed was compared with that of undamaged controls. Removal of fruiting structures did not affect RUE when cotton was grown at low nitrogen supply and high plant density. In contrast, under high nitrogen supply and low plant density, fruit removal increased seasonal RUE by 20–27% compared to controls. Whole canopy measurements, however, failed to detect the expected variations in foliar nitrogen due to damage. Differences in RUE between damaged and undamaged canopies were in part associated with changes in plant and canopy structure (viz. internode number and length, canopy height, branch angle) that modified light distribution within the canopy. These structural responses and their influence on canopy light penetration and photosynthesis are synthetised in coefficients of light extinction (k) that were 10 to 30% smaller in damaged crops than in controls and in a positive correlation between RUE−1 and k for crops grown under favourable conditions (i.e. high nitrogen, low density). Changes in plant structure and their effects on canopy architecture and RUE should be considered in the analysis of cotton growth after damage by insects that induce abscission of reproductive organs. (author)

  6. Milkweed, stink bugs, and Georgia cotton

    Science.gov (United States)

    In peanut-cotton farmscapes in Georgia, stink bugs, i.e., Nezara viridula (L.)(Say) and Chinavia hilaris (Say), develop in peanut and then disperse at the crop-to-crop interface to feed on fruit in cotton. The main objective of this study was to examine the influence of a habitat of tropical milkwe...

  7. Ecosystem-Based Incorporation of Nectar-Producing Plants for Stink Bug Parasitoids

    Directory of Open Access Journals (Sweden)

    Glynn Tillman

    2017-06-01

    Full Text Available Adult parasitoids of pest insects rely on floral resources for survival and reproduction, but can be food-deprived in intensively managed agricultural systems lacking these resources. Stink bugs are serious pests for crops in southwest Georgia. Provisioning nectar-producing plants for parasitoids of stink bugs potentially can enhance biocontrol of these pests. Knowledge of spatial and temporal availability and distribution of stink bugs in host plants is necessary for appropriate timing and placement of flowering plants in agroecosystems. Stink bugs move between closely associated host plants throughout the growing season in response to deteriorating suitability of their host plants. In peanut-cotton farmscapes, stink bugs develop in peanut, and subsequently the adults disperse into adjacent cotton. Parasitism of Nezara viridula (L. adults by Trichopoda pennipes (F. at the peanut-cotton interface was significantly higher in cotton with a strip of milkweed or buckwheat between the two crops than in cotton alone. Milkweed and buckwheat also provided nectar to a wide range of insect pollinators. Monarch butterflies fed on milkweed. When placed between peanut and cotton, a strip of soybean was an effective trap crop for cotton, reducing economic damage. Incorporation of buckwheat near soybean enhanced parasitism of Euschistus servus (Say eggs by Telenomus podisi Ashmead in cotton. In conclusion, nectar provision enhances biocontrol of stink bugs, acts together with other management tactics for stink bug control, and aids in conservation of natural enemies, insect pollinators, and the monarch butterfly.

  8. Integrated nursery pest management

    Science.gov (United States)

    R. Kasten Dumroese

    2012-01-01

    What is integrated pest management? Take a look at the definition of each word to better understand the concept. Two of the words (integrated and management) are relatively straightforward. Integrated means to blend pieces or concepts into a unified whole, and management is the wise use of techniques to successfully accomplish a desired outcome. A pest is any biotic (...

  9. Fabrication of cotton fabric with superhydrophobicity and flame retardancy.

    Science.gov (United States)

    Zhang, Ming; Wang, Chengyu

    2013-07-25

    A simple and facile method for fabricating the cotton fabric with superhydrophobicity and flame retardancy is described in the present work. The cotton fabric with the maximal WCA of 160° has been prepared by the covalent deposition of amino-silica nanospheres and the further graft with (heptadecafluoro-1,1,2,2-tetradecyl) trimethoxysilane. The geometric microstructure of silica spheres was measured by transmission electron microscopy (TEM). The cotton textiles before and after treatment were characterized by using scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The wetting behavior of cotton samples was investigated by water contact angle measurement. Moreover, diverse performances of superhydrophobic cotton textiles have been evaluated as well. The results exhibited the outstanding superhydrophobicity, excellent waterproofing durability and flame retardancy of the cotton fabric after treatment, offering a good opportunity to accelerate the large-scale production of superhydrophobic textiles materials for new industrial applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Comparative metabolism of branched-chain amino acids to precursors of juvenile hormone biogenesis in corpora allata of lepidopterous versus nonlepidopterous insects

    Energy Technology Data Exchange (ETDEWEB)

    Brindle, P.A.; Schooley, D.A.; Tsai, L.W.; Baker, F.C.

    1988-08-05

    Comparative studies were performed on the role of branched-chain amino acids (BCAA) in juvenile hormone (JH) biosynthesis using several lepidopterous and nonlepidopterous insects. Corpora cardiaca-corpora allata complexes (CC-CA, the corpora allata being the organ of JH biogenesis) were maintained in culture medium containing a uniformly /sup 14/C-labeled BCAA, together with (methyl-/sup 3/H)methionine as mass marker for JH quantification. BCAA catabolism was quantified by directly analyzing the medium for the presence of /sup 14/C-labeled propionate and/or acetate, while JHs were extracted, purified by liquid chromatography, and subjected to double-label liquid scintillation counting. Our results indicate that active BCAA catabolism occurs within the CC-CA of lepidopterans, and this efficiently provides propionyl-CoA (from isoleucine or valine) for the biosynthesis of the ethyl branches of JH I and II. Acetyl-CoA, formed from isoleucine or leucine catabolism, is also utilized by lepidopteran CC-CA for biosynthesizing JH III and the acetate-derived portions of the ethyl-branched JHs. In contrast, CC-CA of nonlepidopterans fail to catabolize BCAA. Consequently, exogenous isoleucine or leucine does not serve as a carbon source for the biosynthesis of JH III by these glands, and no propionyl-CoA is produced for genesis of ethyl-branched JHs. This is the first observation of a tissue-specific metabolic difference which in part explains why these novel homosesquiterpenoids exist in lepidopterans, but not in nonlepidopterans.

  11. Comparative metabolism of branched-chain amino acids to precursors of juvenile hormone biogenesis in corpora allata of lepidopterous versus nonlepidopterous insects

    International Nuclear Information System (INIS)

    Brindle, P.A.; Schooley, D.A.; Tsai, L.W.; Baker, F.C.

    1988-01-01

    Comparative studies were performed on the role of branched-chain amino acids (BCAA) in juvenile hormone (JH) biosynthesis using several lepidopterous and nonlepidopterous insects. Corpora cardiaca-corpora allata complexes (CC-CA, the corpora allata being the organ of JH biogenesis) were maintained in culture medium containing a uniformly 14 C-labeled BCAA, together with [methyl- 3 H]methionine as mass marker for JH quantification. BCAA catabolism was quantified by directly analyzing the medium for the presence of 14 C-labeled propionate and/or acetate, while JHs were extracted, purified by liquid chromatography, and subjected to double-label liquid scintillation counting. Our results indicate that active BCAA catabolism occurs within the CC-CA of lepidopterans, and this efficiently provides propionyl-CoA (from isoleucine or valine) for the biosynthesis of the ethyl branches of JH I and II. Acetyl-CoA, formed from isoleucine or leucine catabolism, is also utilized by lepidopteran CC-CA for biosynthesizing JH III and the acetate-derived portions of the ethyl-branched JHs. In contrast, CC-CA of nonlepidopterans fail to catabolize BCAA. Consequently, exogenous isoleucine or leucine does not serve as a carbon source for the biosynthesis of JH III by these glands, and no propionyl-CoA is produced for genesis of ethyl-branched JHs. This is the first observation of a tissue-specific metabolic difference which in part explains why these novel homosesquiterpenoids exist in lepidopterans, but not in nonlepidopterans

  12. At-line cotton color measurements by portable color spectrophotometers

    Science.gov (United States)

    As a result of reports of cotton bales that had significant color changes from their initial Uster® High Volume Instrument (HVI™) color measurements, a program was implemented to measure cotton fiber color (Rd, +b) at-line in remote locations (warehouse, mill, etc.). The measurement of cotton fiber...

  13. 7 CFR 27.25 - Additional samples of cotton; drawing.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Additional samples of cotton; drawing. 27.25 Section... Samples § 27.25 Additional samples of cotton; drawing. In addition to the samples hereinbefore prescribed, separate samples, if desired, may be drawn and furnished to the owner of the cotton. ...

  14. DeepCotton: in-field cotton segmentation using deep fully convolutional network

    Science.gov (United States)

    Li, Yanan; Cao, Zhiguo; Xiao, Yang; Cremers, Armin B.

    2017-09-01

    Automatic ground-based in-field cotton (IFC) segmentation is a challenging task in precision agriculture, which has not been well addressed. Nearly all the existing methods rely on hand-crafted features. Their limited discriminative power results in unsatisfactory performance. To address this, a coarse-to-fine cotton segmentation method termed "DeepCotton" is proposed. It contains two modules, fully convolutional network (FCN) stream and interference region removal stream. First, FCN is employed to predict initially coarse map in an end-to-end manner. The convolutional networks involved in FCN guarantee powerful feature description capability, simultaneously, the regression analysis ability of neural network assures segmentation accuracy. To our knowledge, we are the first to introduce deep learning to IFC segmentation. Second, our proposed "UP" algorithm composed of unary brightness transformation and pairwise region comparison is used for obtaining interference map, which is executed to refine the coarse map. The experiments on constructed IFC dataset demonstrate that our method outperforms other state-of-the-art approaches, either in different common scenarios or single/multiple plants. More remarkable, the "UP" algorithm greatly improves the property of the coarse result, with the average amplifications of 2.6%, 2.4% on accuracy and 8.1%, 5.5% on intersection over union for common scenarios and multiple plants, separately.

  15. Problems and achievements of cotton (Gossypium Hirsutum L. weeds control

    Directory of Open Access Journals (Sweden)

    T. Barakova

    2017-09-01

    Full Text Available Abstract. Weed control in the cultivation of cotton is critical to the yield and quality of production. The influence of economically important weeds was studied. Chemical control is the most effective method of weed control in cotton but much of the information on it relates to primary weed infestation. Problems with primary weed infestation in cotton have been solved to a significant extent. The question of secondary weed infestation with annual and perennial graminaceous weeds during the period of cotton vegetation is also determined largely by the use of antigraminaceous herbicides. The data related to herbicides to effectively control secondary germinated broadleaf weeds in conventional technology for cotton growing are quite scarce, even globally. We are still seeking effective herbicides for control of these weeds in cotton crops. Studies on their influence on the sowing characteristics of cotton seed and the quality of cotton fiber are still insufficient. In the scientific literature there is not enough information on these questions. The combinations of herbicides, as well as their tank mixtures with fertilizers or plant growth regulators are more efficient than autonomous application. Often during their combined application higher synergistic effect on yield is produced. There is information about cotton cultivars resistant to glyphosate. These cultivars are GMO and they are banned within the European Union, including Bulgaria.

  16. Study of mungbean intercropping in cotton planted with different techniques

    International Nuclear Information System (INIS)

    Khan, M.B.; Khaliq, A.

    2004-01-01

    Bio-economic efficiency of different cotton-based intercropping systems was determined at the Agronomic Research Area, University of Agriculture, Faisalabad, (Pakistan) during 1996-1997 and 1997-98. Cotton cultivar NIAB-78 was planted in 80-cm apart single rows and 120-cm spaced double row strips with the help of a single row hand drill. Intercropping systems were cotton alone and cotton + mungbean. Experiment was laid out in a RCBD with split arrangements in four replications. Planting patterns were kept in main plots and intercropping systems in sub-plots. Inter crop was sown in the space between 80-cm apart single rows as well as 120-cm spaced double row strips. Competition functions like relative crowding coefficient, competitive ratio, aggressivity, land equivalent ratio and area time equivalent ratio were calculated for the assessment of the benefits of the intercropping. Partial budget was prepared for determining net field benefits of the systems under study. Growing of cotton in 120-cm spaced double row strips proved superior to 80-cm spaced single rows. Intercropping decreased the seed cotton production significantly in both years, however, inter crop not only covered this loss but also increased overall productivity. Higher net field benefit (NFB) was obtained from cotton + mungbean than sole cropping of cotton. Farmers with small land holdings, seriously constrained by low crop income can adopt the practice of intercropping of mungbean in cotton. (author)

  17. Fourier-transform imaging of cotton and botanical and field trash mixtures

    Science.gov (United States)

    Botanical and field cotton trash comingled with cotton lint can greatly reduce the marketability and quality of cotton. Trash can be found comingled with cotton lint during harvesting, ginning, and processing, thus this study is of interest. Attenuated Total Reflectance-Fourier Transform Infrared (A...

  18. A case to study population dynamics of bemisia tabaci and thrips tabaci on bt and non-bt cotton genotypes

    International Nuclear Information System (INIS)

    Akram, M.; Hussain, M.; Ahmed, S.; Hafeez, F.; Farooq, M.; Arshad, M.

    2013-01-01

    Studies were conducted to investigate the performance of eight bt and five non-bt cotton genotypes against whitefly and thrips and impact of abiotic factors on the population fluctuation of these sucking pests, at cotton research station, multan, during 2010 and 2011. The results exhibited that bt genotypes found more susceptible host for the whitefly and thirps than non-bt genotypes, during the course of years of study. Among bt genotypes, maximum and minimum temperature showed significant and positive effect on whitefly population whereas relative humidity exerted negative effect during 2010. During 2011, the effect of all the factors was non significant. On cumulative basis, there was positive correlation between population of whitefly and minimum temperature. But in case of non-bt, it has negative with maximum temperature whereas relative humidity had a positive effect on whitefly population. similar trend was observed for thrips population on bt varieties during both years but on non-bt varieties only minimum temperature exerted strong positive impact on thrips population. Hierarchical regression models for whitefly and thrips revealed that minimum temperature was the most important factor (Bt and non-Bt varieties). Maximum temperature was the major contributing factor for whitefly fluctuation on bt varieties during 2010. (author)

  19. A Practical Guide to Management of Common Pests in Schools. Integrated Pest Management.

    Science.gov (United States)

    Illinois State Dept. of Public Health, Springfield.

    This 3-part manual is designed to assist school officials understand the principles of Integrated Pest Management and aid them in implementing those principles into a comprehensive pest control program in their facilities. Developed for Illinois, this guide can be applied in part or in total to other areas of the country. Part 1 explains what an…

  20. 7 CFR 1427.174 - Maturity of seed cotton loans.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Maturity of seed cotton loans. 1427.174 Section 1427.174 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION... Maturity of seed cotton loans. Seed cotton loans mature on demand by CCC but no later than May 31 following...

  1. The preparation and antibacterial effects of dopa-cotton/AgNPs

    International Nuclear Information System (INIS)

    Xu Hong; Shi Xue; Ma Hui; Lv Yihang; Zhang Linping; Mao Zhiping

    2011-01-01

    Silver nanoparticles (AgNPs) have been known to have powerful antibacterial activity. In this paper, in situ generation of AgNPs on the surface of dopamine modified cotton fabrics (dopa-cotton/AgNPs) in aqueous solution under room temperature is presented. X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscope (FE-SEM) were used to analyze the surface chemical composition and the morphology of the modified cotton fabrics, respectively. The results indicated that the surface of cotton fabrics was successfully coated with polydopamine and AgNPs. The cotton fabrics with AgNPs showed durable antibacterial activity.

  2. A pest is a pest is a pest? The dilemma of neotropical leaf-cutting ants: Keystone taxa of natural ecosystems

    Science.gov (United States)

    Fowler, Harold G.; Pagani, Maria Inez; da Silva, Osvaldo Aulino; Forti, Luis Carlos; da Silva, Virgilio Pereira; de Vasconcelos, Heraldo Luis

    1989-11-01

    Leaf-cutting ants of the genera Acromyrmex and Atta are considered the principal polyphagous pests of the Neotropics Although some members of these genera are of economic importance, have a broad geographic distribution, and are extremely good colonizers, others are endemic and closely interact with native ecosystems. Control is generally practiced against any colony, irrespective of its taxonomic status. Indiscriminate control coupled with habitat destruction threatens endemic species with extinction, and, through habitat simplification, favors other pest species. As nests of Atta are large, having several square meters of nest surface, the endemic taxa can be easily used as environmental indicators for natural ecosystems Likewise, the pest species can be used to detect environmental disturbance As these ants are keystone species and easily identified by nonspecialists, efforts should be made to integrate these into viable conservation programs

  3. Farmer's knowledge and perception of horticultural insect pest ...

    African Journals Online (AJOL)

    Whilst 89% were aware of insect pest problems, only 35% used chemical treatment even though about 79% thought that pest damage ranged from mild to severe. Majority of the farmers adopt diverse number of traditional methods in pest control. Key words: Farmers, pests, horticultural crops, vegetable, control

  4. Genetic variation and phylogeographic structure of the cotton aphid, Aphis gossypii, based on mitochondrial DNA and microsatellite markers.

    Science.gov (United States)

    Wang, Xing-Ya; Yang, Xian-Ming; Lu, Bin; Zhou, Li-Hong; Wu, Kong-Ming

    2017-05-15

    Aphis gossypii, one of the most important agricultural pests in the world, can cause serious economic losses in the main crop-producing areas. To clarify issues such as the genetic differentiation, genetic structure, and demographic history of A. gossypii populations, we used 10 nuclear microsatellite loci (SSR) and two mitochondrial gene sequences (COI and Cytb) to investigate genetic diversity and population structure of A. gossypii populations that were collected from 33 sampling sites in China from different climatic zones. SSR and mtDNA data suggested low to moderate levels of genetic diversity. A star-shaped network of mtDNA haplotypes indicated that the maternal ancestor of China cotton aphids likely originated in Xinjiang. The POPTREE, STRUCTURE and principal coordinate analysis (PCoA) revealed two genetic clusters: an eastern and a western region group. Isolation by distance (IBD) results showed a positive correlation between geographic distance and genetic distance in the vast eastern region but not in the western region. Neutrality testing and mismatch distribution analysis provided strong evidence for a recent rapid expansion in most populations. Genetic bottleneck was not detected in A. gossypii populations of China. The present work can help us to develop strategies for managing this pest.

  5. Selection of housekeeping genes and demonstration of RNAi in cotton leafhopper, Amrasca biguttula biguttula (Ishida)

    Science.gov (United States)

    Gupta, Mridula; Pandher, Suneet; Kaur, Gurmeet; Rathore, Pankaj; Palli, Subba Reddy

    2018-01-01

    Amrasca biguttula biguttula (Ishida) commonly known as cotton leafhopper is a severe pest of cotton and okra. Not much is known on this insect at molecular level due to lack of genomic and transcriptomic data. To prepare for functional genomic studies in this insect, we evaluated 15 common housekeeping genes (Tub, B-Tub, EF alpha, GADPH, UbiCF, RP13, Ubiq, G3PD, VATPase, Actin, 18s, 28s, TATA, ETF, SOD and Cytolytic actin) during different developmental stages and under starvation stress. We selected early (1st and 2nd), late (3rd and 4th) stage nymphs and adults for identification of stable housekeeping genes using geNorm, NormFinder, BestKeeper and RefFinder software. Based on the different algorithms, RP13 and VATPase are identified as the most suitable reference genes for quantification of gene expression by reverse transcriptase quantitative PCR (RT-qPCR). Based on RefFinder which comprehended the results of three algorithms, RP13 in adults, Tubulin (Tub) in late nymphs, 28S in early nymph and UbiCF under starvation stress were identified as the most stable genes. We also developed methods for feeding double-stranded RNA (dsRNA) incorporated in the diet. Feeding dsRNA targeting Snf7, IAP, AQP1, and VATPase caused 56.17–77.12% knockdown of targeted genes compared to control and 16 to 48% mortality of treated insects when compared to control. PMID:29329327

  6. Selection of housekeeping genes and demonstration of RNAi in cotton leafhopper, Amrasca biguttula biguttula (Ishida.

    Directory of Open Access Journals (Sweden)

    Satnam Singh

    Full Text Available Amrasca biguttula biguttula (Ishida commonly known as cotton leafhopper is a severe pest of cotton and okra. Not much is known on this insect at molecular level due to lack of genomic and transcriptomic data. To prepare for functional genomic studies in this insect, we evaluated 15 common housekeeping genes (Tub, B-Tub, EF alpha, GADPH, UbiCF, RP13, Ubiq, G3PD, VATPase, Actin, 18s, 28s, TATA, ETF, SOD and Cytolytic actin during different developmental stages and under starvation stress. We selected early (1st and 2nd, late (3rd and 4th stage nymphs and adults for identification of stable housekeeping genes using geNorm, NormFinder, BestKeeper and RefFinder software. Based on the different algorithms, RP13 and VATPase are identified as the most suitable reference genes for quantification of gene expression by reverse transcriptase quantitative PCR (RT-qPCR. Based on RefFinder which comprehended the results of three algorithms, RP13 in adults, Tubulin (Tub in late nymphs, 28S in early nymph and UbiCF under starvation stress were identified as the most stable genes. We also developed methods for feeding double-stranded RNA (dsRNA incorporated in the diet. Feeding dsRNA targeting Snf7, IAP, AQP1, and VATPase caused 56.17-77.12% knockdown of targeted genes compared to control and 16 to 48% mortality of treated insects when compared to control.

  7. Agricultural pest control programmes, food security and safety | Eze ...

    African Journals Online (AJOL)

    Agricultural pest management control strategies are primarily concerned with food security and safety. Popular pest control methods include application of synthetic pesticides, biopesticides (plant extracts), non-chemical pest management and integrated pest management (IPM). The resistance of some of the pests to the ...

  8. Marketing policies and economic interests in the cotton sector of Kenya

    NARCIS (Netherlands)

    Dijkstra, T.

    1990-01-01

    This report, which is based on field research carried out in 1988, examines the marketing arrangements for raw cotton, cotton lint and cotton seed in Kenya, as well as the relationships and conflicts between the actors involved. The report starts with the history of cotton production and marketing

  9. 76 FR 32067 - Common Crop Insurance Regulations; Extra Long Staple Cotton Crop Provisions

    Science.gov (United States)

    2011-06-03

    ... ``Any AUP cotton'' and replacing it with the phrase ``Mature AUP cotton'' to clarify the AUP cotton must be mature in order to calculate a conversion factor between AUP cotton and ELS cotton. List of... dividing Price A by 85 percent of Price B. * * * * * (f) Mature AUP cotton harvested or appraised from...

  10. Genome-wide cloning, identification, classification and functional analysis of cotton heat shock transcription factors in cotton (Gossypium hirsutum).

    Science.gov (United States)

    Wang, Jun; Sun, Na; Deng, Ting; Zhang, Lida; Zuo, Kaijing

    2014-11-06

    Heat shock transcriptional factors (Hsfs) play important roles in the processes of biotic and abiotic stresses as well as in plant development. Cotton (Gossypium hirsutum, 2n=4x=(AD)2=52) is an important crop for natural fiber production. Due to continuous high temperature and intermittent drought, heat stress is becoming a handicap to improve cotton yield and lint quality. Recently, the related wild diploid species Gossypium raimondii genome (2n=2x=(D5)2=26) has been fully sequenced. In order to analyze the functions of different Hsfs at the genome-wide level, detailed characterization and analysis of the Hsf gene family in G. hirsutum is indispensable. EST assembly and genome-wide analyses were applied to clone and identify heat shock transcription factor (Hsf) genes in Upland cotton (GhHsf). Forty GhHsf genes were cloned, identified and classified into three main classes (A, B and C) according to the characteristics of their domains. Analysis of gene duplications showed that GhHsfs have occurred more frequently than reported in plant genomes such as Arabidopsis and Populus. Quantitative real-time PCR (qRT-PCR) showed that all GhHsf transcripts are expressed in most cotton plant tissues including roots, stems, leaves and developing fibers, and abundantly in developing ovules. Three expression patterns were confirmed in GhHsfs when cotton plants were exposed to high temperature for 1 h. GhHsf39 exhibited the most immediate response to heat shock. Comparative analysis of Hsfs expression differences between the wild-type and fiberless mutant suggested that Hsfs are involved in fiber development. Comparative genome analysis showed that Upland cotton D-subgenome contains 40 Hsf members, and that the whole genome of Upland cotton contains more than 80 Hsf genes due to genome duplication. The expression patterns in different tissues in response to heat shock showed that GhHsfs are important for heat stress as well as fiber development. These results provide an improved

  11. Cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae): Large scale rearing and the effect of gamma radiation on selected life history parameters of this pest in China

    International Nuclear Information System (INIS)

    Lu Daguang; Liu Xiaohui; Hu Jiangguo; Wang Endong; He Qiulan; Li Yongjun

    2002-01-01

    Effective large scale rearing of the cotton bollworm, Helicoverpa armigera (Huebner), has been developed in China. A 'celled unit' system was developed to replace the traditional test tube for cotton bollworm laboratory rearing. Larvae are reared at 26.5 deg. C, ∼ 70% RH, and a long day photoperiod of 14L:10D. Pupae are harvested at about day 20. Percent adult emergence is between 89-93%, and adult females lay an average of 768 eggs. Under this rearing system one generation is completed in 40-42 days and percent pupation is about 66-71%. Mature Helicoverpa armigera female and male pupae were treated with different doses of gamma radiation and out-crossed with untreated mates. Mating ability of both sexes was not affected by radiation. Treated females were highly sterile and laid significantly fewer eggs than untreated controls. Females treated with 300 Gy were completely sterile, while females treated with 250 Gy and 200 Gy still had minimal residual fertility. (author)

  12. Acute, sublethal, and combination effects of azadirachtin and Bacillus thuringiensis on the cotton bollworm, Helicoverpa armigera.

    Science.gov (United States)

    Abedi, Zahra; Saber, Moosa; Vojoudi, Samad; Mahdavi, Vahid; Parsaeyan, Ehsan

    2014-02-26

    The cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is a polyphagous and cosmopolitan insect pest that causes damage to various plants. In this study, the lethal and sublethal effects of azadirachtin and Bacillus thuringiensis Berliner sub sp . kurstaki (Bacillales: Bacillaceae) were evaluated on third instar H. armigera under laboratory conditions. The LC50 values of azadirachtin and Bt were 12.95 and 96.8 µg a.i./mL, respectively. A total mortality of 56.7% was caused on third instar larvae when LC20 values of the insecticides were applied in combination with each other. The LT50 values of azadirachtin and Bt were 4.8 and 3.6 days, respectively. The results of the sublethal study showed that the application of LC30 value of azadirachtin and Bt reduced the larval and pupal weight and increased larval and pupal duration of H. armigera. The longevity and fecundity of female adults were affected significantly by the insecticides. Female fecundity was reduced by the treatments, respectively. The lowest adult emergence ratio and pupation ratio were observed in the azadirachtin treatment. The results indicated that both insecticides have high potential for controlling of the pest. This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed.

  13. Towards integrated pest management in red clover seed production.

    Science.gov (United States)

    Lundin, Ola; Rundlöf, Maj; Smith, Henrik G; Bommarco, Riccardo

    2012-10-01

    The development of integrated pest management is hampered by lack of information on how insect pest abundances relate to yield losses, and how pests are affected by control measures. In this study, we develop integrated pest management tactics for Apion spp. weevils (Coleoptera: Brentidae) in seed production of red clover, Trifolium pratense L. We tested a method to forecast pest damage, quantified the relationship between pest abundance and yield, and evaluated chemical and biological pest control in 29 Swedish red clover fields in 2008 and 2011. Pest inflorescence abundance, which had a highly negative effect on yield, could be predicted with pan trap catches of adult pests. In 2008, chemical control with typically one application of pyrethroids was ineffective both in decreasing pest abundances and in increasing yields. In 2011, when chemical control included applications of the neonicotinoid thiacloprid, pest abundances decreased and yields increased considerably in treated field zones. A post hoc analysis indicated that using pyrethroids in addition to thiacloprid was largely redundant. Infestation rates by parasitoids was higher and reached average levels of around 40% in insecticide treated field zones in 2011, which is a level of interest for biological pest control. Based on the data presented, an economic threshold for chemical control is developed, and guidelines are provided on minimum effective chemical pest control.

  14. Orientation of cotton growers of multan district about heal hazards and pesticide use

    International Nuclear Information System (INIS)

    Haq, Q.U.; Hussain, R.; Ali, T.; Ahmad, M.

    2008-01-01

    Cotton growing farmers and cotton pickers are the twin pillars of cotton growing community. Cotton growing farmers (male) are involved in monitoring of quality and quantity of cotton crops by handsome usage of pesticides for better marketing of cotton crops. Whereas, cotton pickers (female) are involved in picking of cotton mainly. To assess their knowledge and source of knowledge about pesticides related health problems, the study was designed and conducted in 20 villages of district Multan selected by multistage random sampling technique. From the selected 20 villages, from the list bearing the villages, mouzas and union councils of district Multan, 220 cotton growers and 150 cotton pickers were selected by simple random sampling technique and interviewed through a reliable and validated interview schedule. The data collected were processed through Statistical Package for Social Sciences (SPSS). The results showed that 75% of cotton growing farmers were having orientation about side effects of pesticides whereas, almost 8% of cotton growers were having no knowledge about side effects of pesticides. (author)

  15. Trading biodiversity for pest problems

    Science.gov (United States)

    Recent shifts in agricultural practices have resulted in increased pesticide use, land use intensification, and landscape simplification, all of which threaten biodiversity in and near farms. Pests are major challenges to food security, and responses to pests can represent unintended socioeconomic a...

  16. Assessment of Bollgard II cotton pollen mediated transgenes flow to ...

    African Journals Online (AJOL)

    Assessment of Bollgard II cotton pollen mediated transgenes flow to conventional cotton in the farming conditions of Burkina ... This has led to experiment on Bt cotton from 2003 to 2007. ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  17. Elemental analysis of cotton by laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Schenk, Emily R.; Almirall, Jose R.

    2010-05-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied to the elemental characterization of unprocessed cotton. This research is important in forensic and fraud detection applications to establish an elemental fingerprint of U.S. cotton by region, which can be used to determine the source of the cotton. To the best of our knowledge, this is the first report of a LIBS method for the elemental analysis of cotton. The experimental setup consists of a Nd:YAG laser that operates at the fundamental wavelength as the LIBS excitation source and an echelle spectrometer equipped with an intensified CCD camera. The relative concentrations of elements Al, Ba, Ca, Cr, Cu, Fe, Mg, and Sr from both nutrients and environmental contributions were determined by LIBS. Principal component analysis was used to visualize the differences between cotton samples based on the elemental composition by region in the U.S. Linear discriminant analysis of the LIBS data resulted in the correct classification of >97% of the cotton samples by U.S. region and >81% correct classification by state of origin.

  18. CATEGORIZATION OF EXTRANEOUS MATTER IN COTTON USING MACHINE VISION SYSTEMS

    Science.gov (United States)

    The Cotton Trash Identification System (CTIS) was developed at the Southwestern Cotton Ginning Research Laboratory to identify and categorize extraneous matter in cotton. The CTIS bark/grass categorization was evaluated with USDA-Agricultural Marketing Service (AMS) extraneous matter calls assigned ...

  19. Pest repelling properties of ant pheromones

    DEFF Research Database (Denmark)

    Offenberg, Joachim

    2014-01-01

    Ants control pests via predation and physical deterrence; however, ant communication is based on chemical cues which may serve as warning signals to potential prey and other intruders. The presence of ant pheromones may, thus, be sufficient to repel pests from ant territories. This mini-review sh......-review shows that four out of five tested ant species deposit pheromones that repel herbivorous prey from their host plants.......Ants control pests via predation and physical deterrence; however, ant communication is based on chemical cues which may serve as warning signals to potential prey and other intruders. The presence of ant pheromones may, thus, be sufficient to repel pests from ant territories. This mini...

  20. Effects of saliva collection using cotton swabs on melatonin enzyme immunoassay.

    Science.gov (United States)

    Kozaki, Tomoaki; Lee, Soomin; Nishimura, Takayuki; Katsuura, Tetsuo; Yasukouchi, Akira

    2011-01-10

    Although various acceptable and easy-to-use devices have been used for saliva collection, cotton swabs are among the most common ones. Previous studies reported that cotton swabs yield a lower level of melatonin detection. However, this statistical method is not adequate for detecting an agreement between cotton saliva collection and passive saliva collection, and a test for bias is needed. Furthermore, the effects of cotton swabs have not been examined at lower melatonin level, a level at which melatonin is used for assessment of circadian rhythms, namely dim light melatonin onset (DLMO). In the present study, we estimated the effect of cotton swabs on the results of salivary melatonin assay using the Bland-Altman plot at lower level. Nine healthy males were recruited and each provided four saliva samples on a single day to yield a total of 36 samples. Saliva samples were directly collected in plastic tubes using plastic straws, and subsequently pipetted onto cotton swabs (cotton saliva collection) and into clear sterile tubes (passive saliva collection). The melatonin levels were analyzed in duplicate using commercially available ELISA kits. The mean melatonin concentration in cotton saliva collection samples was significantly lower than that in passive saliva collection samples at higher melatonin level (>6 pg/mL). The Bland-Altman plot indicated that cotton swabs causes relative and proportional biases in the assay results. For lower melatonin level (<6 pg/mL), although the BA plots didn't show proportional and relative biases, there was no significant correlation between passive and cotton saliva collection samples. Our findings indicate an interference effect of cotton swabs on the assay result of salivary melatonin at lower melatonin level. Cotton-based collection devices might, thus, not be suitable for assessment of DLMO.

  1. Chemical analysis of plasma-assisted antimicrobial treatment on cotton

    International Nuclear Information System (INIS)

    Kan, C W; Lam, Y L; Yuen, C W M; Luximon, A; Lau, K W; Chen, K S

    2013-01-01

    This paper explores the use of plasma treatment as a pretreatment process to assist the application of antimicrobial process on cotton fabric with good functional effect. In this paper, antimicrobial finishing agent, Microfresh Liquid Formulation 9200-200 (MF), and a binder (polyurethane dispersion, Microban Liquid Formulation R10800-0, MB) will be used for treating the cotton fabric for improving the antimicrobial property and pre-treatment of cotton fabric by plasma under atmospheric pressure will be employed to improve loading of chemical agents. The chemical analysis of the treated cotton fabric will be conducted by Fourier transform Infrared Spectroscopy.

  2. Global attractivity and permanence of a stage-structured pest management SI model with time delay and diseased pest impulsive transmission

    International Nuclear Information System (INIS)

    Jiao Jianjun; Meng Xinzhu; Chen Lansun

    2008-01-01

    In this paper, we consider a stage-structured pest management SI model with time delay and diseased pests impulsive transmission. We obtain the sufficient conditions of the global attractivity of pest-extinction boundary periodic solution and the permanence of the system. We also prove that all solutions of the system are uniformly ultimately bounded. Our results provide a reliable tactic basis for the practice of pest management

  3. Duration of plant damage by host larvae affects attraction of two parasitoid species (Microplitis croceipes and Cotesia marginiventris) to cotton: implications for interspecific competition.

    Science.gov (United States)

    Morawo, Tolulope; Fadamiro, Henry

    2014-12-01

    Volatile organic compounds (VOCs) released by herbivore-damaged plants can guide parasitoids to their hosts. The quantity and quality of VOC blends emitted by plants may be affected by the duration of plant damage by herbivores, which could have potential ramifications on the recruitment of competing parasitoids. We used two parasitoid species, Microplitis croceipes and Cotesia marginiventris (Hymenoptera: Braconidae), to address the question of whether duration of plant damage affects parasitoid use of plant VOCs for host location. Both wasp species are larval endoparasitoids of Heliothis virescens (Lepidoptera: Noctuidae), an important pest of cotton. Attraction of the two parasitoid species to odors emitted by undamaged (UD), fresh (6 h infestation) damage (FD), and old (24 h infestation) damage (OD) cotton plants infested by H. virescens larvae was investigated using a headspace volatile collection system coupled with four-choice olfactometer bioassay. Both sexes of M. croceipes showed a preference for FD- and OD-plant odors over UD-plants. On the other hand, more C. marginiventris females were attracted to UD- and FD-plants than to OD-plants. GC/MS analyses showed qualitative and quantitative differences in the VOC profiles of UD, FD, and OD-plants, which may explain the observed preferences of the parasitoids. These results suggest a temporal partitioning in the recruitment of M. croceipes and C. marginiventris to H. virescens-damaged cotton, and may have potential implications for interspecific competition between the two parasitoid species.

  4. [A New Pest of Amomum villosum in Xishuangbanna].

    Science.gov (United States)

    Peng, Jian-min; Wang, Yan-fang; Zhang, Li-xia; Li, Rong-ying; Ma, Xiao-jun

    2015-11-01

    To report a new pest of Amomum villosum and its distribution, occurrence regularity and damage situation, in order to provide reference for its control. Reared the pest larvae, observed the morphological characters, and made a preliminary investigation on its distribution, occurrence regularity and damage situation. Through macroscopic examination, the pest was identified as Anisodera rugulosa, which distributed in the main producing areas of Amomum villosum in Xishuangbanna, the pest larvae ate the inside of Amomum villosum fruit, which made the fruit formed holes, more seriously, it made the whole fruit rot black. The pest causes the fruit yield reduction of Amomum villosum. Pest control work needs to be carry out as soon as possible.

  5. 7 CFR 318.13-5 - Pest-free areas.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Pest-free areas. 318.13-5 Section 318.13-5 Agriculture... and the Territories § 318.13-5 Pest-free areas. Certain fruits or vegetables may be moved interstate provided that the fruits or vegetables originate from an area that is free of a specific pest or pests. In...

  6. 7 CFR 319.56-5 - Pest-free areas.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Pest-free areas. 319.56-5 Section 319.56-5 Agriculture..., DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Fruits and Vegetables § 319.56-5 Pest-free areas. As... provided that the fruits or vegetables originate from an area that is free of a specific pest or pests. In...

  7. Pest Prevalence and Evaluation of Community-Wide Integrated Pest Management for Reducing Cockroach Infestations and Indoor Insecticide Residues.

    Science.gov (United States)

    Zha, Chen; Wang, Changlu; Buckley, Brian; Yang, Ill; Wang, Desen; Eiden, Amanda L; Cooper, Richard

    2018-04-02

    Pest infestations in residential buildings are common, but community-wide pest survey data are lacking. Frequent insecticide applications for controlling indoor pests leave insecticide residues and pose potential health risks to residents. In this study, a community-wide pest survey was carried out in a housing complex consisting of 258 units in 40 buildings in New Brunswick, New Jersey. It was immediately followed by implementation of an integrated pest management (IPM) program in all the cockroach-infested apartments and two bed bug apartments with the goal of eliminating pest infestations, reducing pyrethroid residues, and increasing resident satisfaction with pest control services. The IPM-treated apartments were revisited and treated biweekly or monthly for 7 mo. Initial inspection found the top three pests and their infestation rates to be as follows: German cockroaches (Blattella germanica L. [Blattodea: Blattellidae]), 28%; rodents, 11%; and bed bugs (Cimex lectularius L. [Hemiptera: Cimicidae]), 8%. Floor wipe samples were collected in the kitchens and bedrooms of 20 apartments for pyrethroid residue analysis before the IPM implementation; 17 of the 20 apartments were resampled again at 7 mo. The IPM program reduced cockroach counts per apartment by 88% at 7 wk after initial treatment. At 7 mo, 85% of the cockroach infestations found in the initial survey were eliminated. The average number of pyrethroids detected decreased significantly from 6 ± 1 (mean ± SEM) and 5 ± 1 to 2 ± 1 and 3 ± 1 in the kitchens and bedrooms, respectively. The average concentrations of targeted pyrethroids residue also decreased significantly in the kitchens and bedrooms.

  8. Field Comparison of Fertigation Vs. Surface Irrigation of Cotton Crop

    International Nuclear Information System (INIS)

    Janat, M.

    2004-01-01

    Based on previous results of the same nature, one nitrogen rate 180 kg N ha -1 was tested under two-irrigation methods, surface irrigation and drip fertigation of cotton (Cultivar Rakka-5) for two consecutive seasons 2000 and 2001. The study aimed to answer various questions regarding the applicability of drip fertigation at farm level and the effect of its employment on yield and growth parameters, compared to surface irrigation. Nitrogen fertilizer was either injected in eight equally split applications for the drip fertigated cotton or divided in four unequally split applications as recommend by Ministry of Agriculture (20% before planting, 40% at thinning, 20% after 60 days from planting and 20% after 75 days after planting). 15 N labeled urea was used to evaluate nitrogen fertilizer efficiency. The experimental design was randomized block design with seven replicates. Results showed that drip fertigation led to water saving exceeding 50% in some cases. Field germination percentage was highly increased under drip- fertigated cotton relative to surface-irrigated cotton. Dry matter and seed cotton yield of surface-irrigated cotton was slightly higher than that of drip-fertigated cotton in the first growing season. The reason for that was due to the hot spill that occurred in the region, which exposed the cotton crop to water stress and consequently pushed the cotton into early flowering. Lint properties were not affected by the introduction of drip-fertigation. Actually some properties were improved relative to the standard properties identified by the cotton Bureau.Nitrogen uptake was slightly increased under drip fertigation whereas nitrogen use efficiencies were not constant along the growing seasons. The reason for that could be lateral leaching and root proliferation into the labeled and unlabeled subplots. Field water use efficiency was highly increased for both growing seasons under drip fertigation practice. The rate of field water use efficiencies

  9. Passive and active protection of cotton textiles

    NARCIS (Netherlands)

    Bochove, C. van

    1967-01-01

    In rotproofing of cotton a distinction is made between passive and active protection. In passive protection, the structure of the cotton fibre is modified in such a way that the fibre can longer be attacked. This modification of structure can be effected on different levels: microscopical,

  10. Management of insect pests using semiochemical traps

    DEFF Research Database (Denmark)

    Baroffio, C. A.; Guibert, V.; Richoz, P.

    2016-01-01

    multitrap for the economical management of both of these pests at the same time. This is one of the first approaches to pest management of non-lepidopteran insect pests of horticultural crops using semiochemicals in the EU, and probably the first to target multiple species from different insect orders...

  11. Optimal Application Timing of Pest Control Tactics in Nonautonomous Pest Growth Model

    OpenAIRE

    Zhang, Shujuan; Liang, Juhua; Tang, Sanyi

    2014-01-01

    Considering the effects of the living environment on growth of populations, it is unrealistic to assume that the growth rates of predator and prey are all constants in the models with integrated pest management (IPM) strategies. Therefore, a nonautonomous predator-prey system with impulsive effect is developed and investigated in the present work. In order to determine the optimal application timing of IPM tactics, the threshold value which guarantees the stability of pest-free periodic solut...

  12. Satellite-based monitoring of cotton evapotranspiration

    Science.gov (United States)

    Dalezios, Nicolas; Dercas, Nicholas; Tarquis, Ana Maria

    2016-04-01

    Water for agricultural use represents the largest share among all water uses. Vulnerability in agriculture is influenced, among others, by extended periods of water shortage in regions exposed to droughts. Advanced technological approaches and methodologies, including remote sensing, are increasingly incorporated for the assessment of irrigation water requirements. In this paper, remote sensing techniques are integrated for the estimation and monitoring of crop evapotranspiration ETc. The study area is Thessaly central Greece, which is a drought-prone agricultural region. Cotton fields in a small agricultural sub-catchment in Thessaly are used as an experimental site. Daily meteorological data and weekly field data are recorded throughout seven (2004-2010) growing seasons for the computation of reference evapotranspiration ETo, crop coefficient Kc and cotton crop ETc based on conventional data. Satellite data (Landsat TM) for the corresponding period are processed to estimate cotton crop coefficient Kc and cotton crop ETc and delineate its spatiotemporal variability. The methodology is applied for monitoring Kc and ETc during the growing season in the selected sub-catchment. Several error statistics are used showing very good agreement with ground-truth observations.

  13. Integrated nutrients management for 'desi' cotton

    International Nuclear Information System (INIS)

    Qazi, M.A.; Akram, M.; Ahmad, N.; Khattak, M.A.

    2007-01-01

    Intensive cropping with no return of crop residues and other organic inputs result in the loss of soil organic matter (SOM) and nutrient supply in (Desi) cotton-wheat cropping system in Pakistan. For appraisal of problem and finding solution to sustainability, we evaluated six treatments comprised of two fertilizer doses and three management techniques over a period of three years (2003-05) monitoring their effects on seed cotton yield and soil fertility. The techniques included chemical fertilizers, municipal solid waste manure (MSWM) integrated with chemical fertilizers in 1:4 ratios with, and without pesticides. The results revealed that cotton yields. Were enhanced by 19% due to site-specific fertilizer dose over conventional dose. Ignoring weeds control by means of herbicided application resulted in 5% decrease of seed cotton yield in IPNM technique positive effect of MSWM integration was noted on soil test phosphorus and SOM. Site-specific fertilizer application and integrated plant nutrient management by MSWM proved their suitability as the techniques not only improve soil quality in terms of sustained levels of organic matter and phosphorus but also provide a safe way of waste disposal. (author)

  14. Interactive effects of pests increase seed yield.

    Science.gov (United States)

    Gagic, Vesna; Riggi, Laura Ga; Ekbom, Barbara; Malsher, Gerard; Rusch, Adrien; Bommarco, Riccardo

    2016-04-01

    Loss in seed yield and therefore decrease in plant fitness due to simultaneous attacks by multiple herbivores is not necessarily additive, as demonstrated in evolutionary studies on wild plants. However, it is not clear how this transfers to crop plants that grow in very different conditions compared to wild plants. Nevertheless, loss in crop seed yield caused by any single pest is most often studied in isolation although crop plants are attacked by many pests that can cause substantial yield losses. This is especially important for crops able to compensate and even overcompensate for the damage. We investigated the interactive impacts on crop yield of four insect pests attacking different plant parts at different times during the cropping season. In 15 oilseed rape fields in Sweden, we estimated the damage caused by seed and stem weevils, pollen beetles, and pod midges. Pest pressure varied drastically among fields with very low correlation among pests, allowing us to explore interactive impacts on yield from attacks by multiple species. The plant damage caused by each pest species individually had, as expected, either no, or a negative impact on seed yield and the strongest negative effect was caused by pollen beetles. However, seed yield increased when plant damage caused by both seed and stem weevils was high, presumably due to the joint plant compensatory reaction to insect attack leading to overcompensation. Hence, attacks by several pests can change the impact on yield of individual pest species. Economic thresholds based on single species, on which pest management decisions currently rely, may therefore result in economically suboptimal choices being made and unnecessary excessive use of insecticides.

  15. Plant domestication slows pest evolution.

    Science.gov (United States)

    Turcotte, Martin M; Lochab, Amaneet K; Turley, Nash E; Johnson, Marc T J

    2015-09-01

    Agricultural practices such as breeding resistant varieties and pesticide use can cause rapid evolution of pest species, but it remains unknown how plant domestication itself impacts pest contemporary evolution. Using experimental evolution on a comparative phylogenetic scale, we compared the evolutionary dynamics of a globally important economic pest - the green peach aphid (Myzus persicae) - growing on 34 plant taxa, represented by 17 crop species and their wild relatives. Domestication slowed aphid evolution by 13.5%, maintained 10.4% greater aphid genotypic diversity and 5.6% higher genotypic richness. The direction of evolution (i.e. which genotypes increased in frequency) differed among independent domestication events but was correlated with specific plant traits. Individual-based simulation models suggested that domestication affects aphid evolution directly by reducing the strength of selection and indirectly by increasing aphid density and thus weakening genetic drift. Our results suggest that phenotypic changes during domestication can alter pest evolutionary dynamics. © 2015 John Wiley & Sons Ltd/CNRS.

  16. Exploring potential and opportunities for pakistan cotton export

    International Nuclear Information System (INIS)

    Afridi, G. S.; Tariq, S. A.

    2016-01-01

    Agriculture is the single largest shareholder to GDP an employment to labour force. It has major share in export but unfortunately unable to meet international standards. This study aims to analyze the pattern of Pakistan cotton export, and to explore sector's export potential and opportunities. This new research endeavor with well-tested analytical tools enabled the trade experts and policy makers to explore the answer of lackness for diversification in export, HS-2- digits aggregated data for cotton sub-sectors have been used with latest data from 2004 to 2013 for the panel 39 countries. Revealed comparative advantage (RCA) index and gravity model approach was employed considering country and time specific fixed effect. The RCA index revealed that cotton sub-sectors have comparative advantage in export and there is gradual gain in the competitiveness with time. The opportunity exists in the markets of low, lower-middle and upper middle income countries and countries those have fair trade (low tariff and non-tariff barriers) for cotton export. Greater export potential lies with malaysia, kenya jordan, thailand, mauritius, netherlands norway, Australia and russian federation for export of cotton, however, export potential for cotton has been exhausted with canada, france, india, iran and saudi arabia. The study provide the policy information that countries of Latin america, eastern europe, central asia and northern africa are virgin for export. Therefore, pakistan should penetrate in these markets for export of cotton and other agricultural products. cognizant to new trade theories, pakistan focus on quality to gain maximum trade volume in the markets of high income countries, Pakistan may develop trade agreement with ASEAN, SAFTA, and EU-27 for export of agricultural products. (author)

  17. Effects of saliva collection using cotton swabs on melatonin enzyme immunoassay

    Directory of Open Access Journals (Sweden)

    Katsuura Tetsuo

    2011-01-01

    Full Text Available Abstract Background Although various acceptable and easy-to-use devices have been used for saliva collection, cotton swabs are among the most common ones. Previous studies reported that cotton swabs yield a lower level of melatonin detection. However, this statistical method is not adequate for detecting an agreement between cotton saliva collection and passive saliva collection, and a test for bias is needed. Furthermore, the effects of cotton swabs have not been examined at lower melatonin level, a level at which melatonin is used for assessment of circadian rhythms, namely dim light melatonin onset (DLMO. In the present study, we estimated the effect of cotton swabs on the results of salivary melatonin assay using the Bland-Altman plot at lower level. Methods Nine healthy males were recruited and each provided four saliva samples on a single day to yield a total of 36 samples. Saliva samples were directly collected in plastic tubes using plastic straws, and subsequently pipetted onto cotton swabs (cotton saliva collection and into clear sterile tubes (passive saliva collection. The melatonin levels were analyzed in duplicate using commercially available ELISA kits. Results The mean melatonin concentration in cotton saliva collection samples was significantly lower than that in passive saliva collection samples at higher melatonin level (>6 pg/mL. The Bland-Altman plot indicated that cotton swabs causes relative and proportional biases in the assay results. For lower melatonin level ( Conclusion Our findings indicate an interference effect of cotton swabs on the assay result of salivary melatonin at lower melatonin level. Cotton-based collection devices might, thus, not be suitable for assessment of DLMO.

  18. Processing and Properties of PCL/Cotton Linter Compounds

    OpenAIRE

    Bezerra,Elieber Barros; França,Danyelle Campos; Morais,Dayanne Diniz de Souza; Rosa,Morsyleide de Freitas; Morais,João Paulo Saraiva; Araújo,Edcleide Maria; Wellen,Renate Maria Ramos

    2017-01-01

    Biodegradable compounds of poly(ε-caprolactone) (PCL)/ cotton linter were melting mixed with filling content ranging from 1% to 5% w/w. Cotton linter is an important byproduct of textile industry; in this work it was used in raw state and after acid hydrolysis. According to the results of torque rheometry no decaying of viscosity took place during compounding, evidencing absence of breaking down in molecular weight. The thermal stability increased by 20% as observed in HDT for PCL/cotton...

  19. Cycling of fertilizer and cotton crop residue nitrogen

    International Nuclear Information System (INIS)

    Rochester, I.J.; Constable, G.A.; MacLeod, D.A.

    1993-01-01

    Mineral nitrogen (N), nitrate and ammonium contents were monitored in N-fertilized soils supporting cotton crops to provide information on the nitrification, mineralization and immobilization processes operating in the soil. The relative contributions of fertilizer N, previous cotton crop residue N and indigenous soil N to the mineral N pools and to the current crop's N uptake were calculated. After N fertilizer (urea) application, the soil's mineral N content rose rapidly and subsequently declined at a slower rate. The recovery of 15 N-labelled urea as mineral N declined exponentially with time. Biological immobilization (and possibly denitrification to some extent) were believed to be the major processes reducing post-application soil mineral N content. Progressively less N was mineralized upon incubation of soil sampled through the growing season. Little soil N (either from urea or crop residue) was mineralized at crop maturity. Cycling of N was evident between the soil mineral and organic N pools throughout the cotton growing season. Considerable quantities of fertilizer N were immobilized by the soil micro biomass; immobilized N was remineralized and subsequently taken up by the cotton crop. A large proportion of the crop N was taken up in the latter part of the season when the soil mineral N content was low. It is suggested that much of the N taken up by cotton was derived from microbial sources, rather than crop residues. The application of cotton crop residue (stubble) slightly reduced the mineral N content in the soil by encouraging biological immobilization. 15 N was mineralized very slowly from the labelled crop residue and did not contribute significantly to the supply of N to the current crop. Recovery of labelled fertilizer N and labelled crop residue N by the cotton crop was 28% and 1%, respectively. In comparison, the apparent recovery of fertilizer N was 48%. Indigenous soil N contributed 68% of the N taken up by the cotton crop. 33 refs., 1 tab

  20. Relationship Between Piercing-Sucking Insect Control and Internal Lint and Seed Rot in Southeastern Cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Medrano, Enrique G; Bell, Alois A; Greene, Jeremy K; Roberts, Phillip M; Bacheler, Jack S; Marois, James J; Wright, David L; Esquivel, Jesus F; Nichols, Robert L; Duke, Sara

    2015-08-01

    In 1999, crop consultants scouting for stink bugs (Hemiptera spp.) in South Carolina discovered a formerly unobserved seed rot of cotton that caused yield losses ranging from 10 to 15% in certain fields. The disease has subsequently been reported in fields throughout the southeastern Cotton Belt. Externally, diseased bolls appeared undamaged; internally, green fruit contain pink to dark brown, damp, deformed lint, and necrotic seeds. In greenhouse experiments, we demonstrated transmission of the opportunistic bacterium Pantoea agglomerans by the southern green stink bug, Nezara viridula (L.). Here, green bolls were sampled from stink bug management plots (insecticide protected or nontreated) from four South Atlantic coast states (North Carolina, South Carolina, Georgia, and Florida) to determine disease incidence in the field and its association with piercing-sucking insects feeding. A logistic regression analysis of the boll damage data revealed that disease was 24 times more likely to occur (P = 0.004) in bolls collected from plots in Florida, where evidence of pest pressure was highest, than in bolls harvested in NC with the lowest detected insect pressure. Fruit from plots treated with insecticide, a treatment which reduced transmission agent numbers, were 4 times less likely to be diseased than bolls from unprotected sites (P = 0.002). Overall, punctured bolls were 125 times more likely to also have disease symptoms than nonpunctured bolls, irrespective of whether or not plots were protected with insecticides (P = 0.0001). Much of the damage to cotton bolls that is commonly attributed to stink bug feeding is likely the resulting effect of vectored pathogens. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  1. Integrated Management of Structural Pests in Schools.

    Science.gov (United States)

    Illinois State Dept. of Public Health, Springfield.

    The state of Illinois is encouraging schools to better inspect and evaluate the causes of their pest infestation problems through use of the Integrated Pest Management (IPM) guidelines developed by the Illinois Department of Public Health. This guide reviews the philosophy and organization of an IPM program for structural pests in schools,…

  2. Field and Forage Crop Pests. MEP 310.

    Science.gov (United States)

    Morgan, Omar, D.; And Others

    As part of a cooperative extension service series by the University of Maryland, this publication introduces the identification and control of common agricultural pests that can be found in field and forage crops. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests in the…

  3. Resilient modulus of black cotton soil

    Directory of Open Access Journals (Sweden)

    K.H. Mamatha

    2017-03-01

    Full Text Available Resilient modulus (MR values of pavement layers are the basic input parameters for the design of pavements with multiple layers in the current mechanistic empirical pavement design guidelines. As the laboratory determination of resilient modulus is costly, time consuming and cumbersome, several empirical models are developed for the prediction of resilient modulus for different regions of the world based on the database of resilient modulus values of local soils. For use of these relationships there is a need to verify the suitability of these models for local conditions. Expansive clay called black cotton soil (BC soil is found in several parts of India and is characterized by low strength and high compressibility. This soil shows swell – shrink behaviour upon wetting and drying and are problematic. The BC soil shows collapse behaviour on soaking and therefore the strength of the soil needs to be improved. Additive stabilization is found to be very effective in stabilizing black cotton soils and generally lime is used to improve the strength and durability of the black cotton soil. In this paper, the results of repeated load tests on black cotton soil samples for the determination of MR under soaked and unsoaked conditions at a relative compaction levels of 100% and 95% of both standard and modified proctor conditions are reported. The results indicate that the black cotton soil fails to meet the density requirement of the subgrade soil and shows collapse behaviour under soaked condition. To overcome this, lime is added as an additive to improve the strength of black cotton soil and repeated load tests were performed as per AASHTO T 307 - 99 for MR determination. The results have shown that the samples are stable under modified proctor condition with MR values ranging from 36 MPa to 388 MPa for a lime content of 2.5% and curing period ranging from 7 to 28 days. Also, it is observed that, the CBR based resilient modulus is not in agreement

  4. Changes in cotton gin energy consumption apportioned by ten functions

    Science.gov (United States)

    The public is concerned about air quality and sustainability. Cotton producers, gin owners and plant managers are concerned about rising energy prices. Both have an interest in cotton gin energy consumption trends. Changes in cotton gins’ energy consumption over the past fifty years, a period of ...

  5. Remote sensing techniques for monitoring the Rio Grande Valley cotton stalk destruction program

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, A.J.; Gerbermann, A.H.; Summy, K.R.; Anderson, G.L. (Department of Agriculture, Weslaco, TX (United States))

    1993-09-01

    Post harvest cotton (Gossypium hirsutum L.) stalk destruction is a cultural practice used in the Rio Grande Valley to suppress over wintering populations of boll weevils (Anthonomus grandis Boheman) without using chemicals. Consistent application of this practice could substantially reduce insecticide usage, thereby minimizing environmental hazards and increasing cotton production profits. Satellite imagery registered within a geographic information system was used to monitor the cotton stalk destruction program in the Rio Grande Valley. We found that cotton stalk screening procedures based on standard multispectral classification techniques could not reliably distinguish cotton from sorghum. Greenness screening for cotton plant stalks after the stalk destruction deadline was possible only where ground observations locating cotton fields were available. These findings indicate that a successful cotton stalk destruction monitoring program will require satellite images and earth referenced data bases showing cotton field locations.

  6. Diseases and pests in biomass production systems

    International Nuclear Information System (INIS)

    Royle, D.J.; Hunter, Tom; McNabb, H.S. Jr.

    1998-01-01

    The current status of disease and pest problems in willow and poplar biomass systems for energy within Canada, Sweden, the United Kingdom and the United States is described. The IEA Disease and Pest Activities within the recent Task XII (1995-1997), and previous Tasks since 1987, have provided outstanding opportunities for international co-operation which has served substantially to augment national research programmes. Work is described on recognizing different forms of an insect pest or pathogen and understanding the genetic basis of its variability, which is of fundamental importance in developing pest management strategies that exclude inputs of energy-rich materials such as pesticides. Options for more natural pest control are considered including breeding for resistance, plantation designs based on host genotype diversity and biological control 16 refs, 2 figs

  7. Effects of saliva collection using cotton swab on cortisol enzyme immunoassay.

    Science.gov (United States)

    Kozaki, Tomoaki; Hashiguchi, Nobuko; Kaji, Yumi; Yasukouchi, Akira; Tochihara, Yutaka

    2009-12-01

    Cotton swabs are among the most commonly used devices for collecting saliva, but various studies have reported that their use impacts the results of salivary cortisol assays. These studies, however, estimated this impact by comparing the average of the concentration and/or scatter plots. In the present study, we estimated the impact of cotton swabs on the results of salivary cortisol enzyme immunoassay (EIA) by Bland-Altman plot. Eight healthy males (aged 20-23 years) provided four saliva samples on different days to yield a total of 32 samples. Saliva samples were collected directly in plastic tubes using plastic straws and then pipetted onto cotton swabs (cotton saliva collection) and into clear sterile tubes (passive saliva collection). There was a lower correlation between cotton and passive saliva collection. Individually, four subjects showed a negative correlation between passive and cotton saliva collection. A Bland-Altman plot indicated that cotton swabs causes a proportional bias on the EIA assay result. Our findings indicate a considerable effect of using cotton swabs for saliva collection, and subject-specific variability in the impact. A Bland-Altman plot further suggests possible reasons for this effect.

  8. Molecular Markers and Cotton Genetic Improvement: Current Status and Future Prospects

    Directory of Open Access Journals (Sweden)

    Waqas Malik

    2014-01-01

    Full Text Available Narrow genetic base and complex allotetraploid genome of cotton (Gossypium hirsutum L. is stimulating efforts to avail required polymorphism for marker based breeding. The availability of draft genome sequence of G. raimondii and G. arboreum and next generation sequencing (NGS technologies facilitated the development of high-throughput marker technologies in cotton. The concepts of genetic diversity, QTL mapping, and marker assisted selection (MAS are evolving into more efficient concepts of linkage disequilibrium, association mapping, and genomic selection, respectively. The objective of the current review is to analyze the pace of evolution in the molecular marker technologies in cotton during the last ten years into the following four areas: (i comparative analysis of low- and high-throughput marker technologies available in cotton, (ii genetic diversity in the available wild and improved gene pools of cotton, (iii identification of the genomic regions within cotton genome underlying economic traits, and (iv marker based selection methodologies. Moreover, the applications of marker technologies to enhance the breeding efficiency in cotton are also summarized. Aforementioned genomic technologies and the integration of several other omics resources are expected to enhance the cotton productivity and meet the global fiber quantity and quality demands.

  9. 78 FR 24666 - Updates to the List of Plant Inspection Stations

    Science.gov (United States)

    2013-04-26

    ... 319 Coffee, Cotton, Fruits, Imports, Logs, Nursery stock, Plant diseases and pests, Quarantine..., laboratory facilities for pest and disease identification, and in some cases, provide facilities for...) division who inspect articles to ensure they are free of plant pests and diseases and otherwise comply with...

  10. cloudPEST - A python module for cloud-computing deployment of PEST, a program for parameter estimation

    Science.gov (United States)

    Fienen, Michael N.; Kunicki, Thomas C.; Kester, Daniel E.

    2011-01-01

    This report documents cloudPEST-a Python module with functions to facilitate deployment of the model-independent parameter estimation code PEST on a cloud-computing environment. cloudPEST makes use of low-level, freely available command-line tools that interface with the Amazon Elastic Compute Cloud (EC2(TradeMark)) that are unlikely to change dramatically. This report describes the preliminary setup for both Python and EC2 tools and subsequently describes the functions themselves. The code and guidelines have been tested primarily on the Windows(Registered) operating system but are extensible to Linux(Registered).

  11. Spatial and temporal distribution of cotton squares and small cotton bolls fallen on ground after damage by boll weevil and the efficiency of the equipment used to collect them

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Domingues da Silva

    Full Text Available ABSTRACT: In this study, we determined the spatial and temporal distribution of fallen cotton squares and small cotton bolls fallen damaged by boll weevil and the efficiency and time interval of the equipment used to collect cotton samples. Spatial and temporal distribution of cotton squares and small cotton bolls fallen on the soil damaged by boll weevil among cotton rows was determined in an experimental design of randomized blocks in a factorial arrangement of 4x3, represented by soil surface tracks located at 1-11cm, 12-22cm, 23-33cm, and 34-44cm away from the planting row of cotton plants 70, 85, and 100 days of age. Efficiency and collection time interval of the cotton samples fallen on the soil infested by boll weevil by plastic rakes that were straight or fan-shaped, big broom, collector instrument model CNPA and aspirator of leaves ‘Trapp’ were determined in randomized block design with five treatments, 10 repetitions for each. Results demonstrated that the collection of cotton samples must be performed with greater attention to soil strips located below the cotton top projection and aspirator ‘Trapp’ of leaves was more appropriate for the operation as it used less time of collection with similar efficiency to other available equipment.

  12. Forest pest management in a changing world

    Science.gov (United States)

    Andrew M. Liebhold

    2012-01-01

    The scope, context and science guiding forest pest management have evolved and are likely to continue changing into the future. Here, I present six areas of advice to guide practitioners in the implementation of forest pest management. First, human dimensions will continue to play a key role in most pest problems and should always be a primary consideration in...

  13. Boll weevil (Anthonomus grandis) population genomics as a tool for monitoring and management

    Science.gov (United States)

    Despite the success of eradication efforts across most of the cotton-producing regions of the U.S., the cotton boll weevil (Anthonomus grandis grandis Boheman) remains a major pest of cotton in much of the New World. The area along the Texas border with northern Mexico has been a particularly troub...

  14. Polyploidization altered gene functions in cotton (Gossypium spp.).

    Science.gov (United States)

    Xu, Zhanyou; Yu, John Z; Cho, Jaemin; Yu, Jing; Kohel, Russell J; Percy, Richard G

    2010-12-16

    Cotton (Gossypium spp.) is an important crop plant that is widely grown to produce both natural textile fibers and cottonseed oil. Cotton fibers, the economically more important product of the cotton plant, are seed trichomes derived from individual cells of the epidermal layer of the seed coat. It has been known for a long time that large numbers of genes determine the development of cotton fiber, and more recently it has been determined that these genes are distributed across At and Dt subgenomes of tetraploid AD cottons. In the present study, the organization and evolution of the fiber development genes were investigated through the construction of an integrated genetic and physical map of fiber development genes whose functions have been verified and confirmed. A total of 535 cotton fiber development genes, including 103 fiber transcription factors, 259 fiber development genes, and 173 SSR-contained fiber ESTs, were analyzed at the subgenome level. A total of 499 fiber related contigs were selected and assembled. Together these contigs covered about 151 Mb in physical length, or about 6.7% of the tetraploid cotton genome. Among the 499 contigs, 397 were anchored onto individual chromosomes. Results from our studies on the distribution patterns of the fiber development genes and transcription factors between the At and Dt subgenomes showed that more transcription factors were from Dt subgenome than At, whereas more fiber development genes were from At subgenome than Dt. Combining our mapping results with previous reports that more fiber QTLs were mapped in Dt subgenome than At subgenome, the results suggested a new functional hypothesis for tetraploid cotton. After the merging of the two diploid Gossypium genomes, the At subgenome has provided most of the genes for fiber development, because it continues to function similar to its fiber producing diploid A genome ancestor. On the other hand, the Dt subgenome, with its non-fiber producing D genome ancestor

  15. Insect pests of Eucalyptus and their control

    Energy Technology Data Exchange (ETDEWEB)

    Sen-Sarma, P K; Thakur, M L

    1983-12-01

    In India, about sixty odd species of insects have so far been recorded to be associated with Eucalyptus. Important pests are some xylophagous insects, sap suckers, defoliators and termites. Of these, stem and root borer, Celostrna scabrator Fabr, and some species of termites have been recognised as key pests, whereas Apogonia coriaces Waterhouse, Mimeta mundissima Walker (Coleoptera: Scarabaeidae), Agrotis ipsilon Hufnagel (Lepidoptera: Noctuidae), Brachytrypus portenosus Lichtenstein and Gymmogryllus humeralis Walker (Orthoptera: Gryllidae) are likely to become potential pests in Eucalyptus nurseries. In this paper available information on insect pests of Eucalyptus, their bioecology and control measures have been presented.

  16. A Grey Fuzzy Logic Approach for Cotton Fibre Selection

    Science.gov (United States)

    Chakraborty, Shankar; Das, Partha Protim; Kumar, Vidyapati

    2017-06-01

    It is a well known fact that the quality of ring spun yarn predominantly depends on various physical properties of cotton fibre. Any variation in these fibre properties may affect the strength and unevenness of the final yarn. Thus, so as to achieve the desired yarn quality and characteristics, it becomes imperative for the spinning industry personnel to identify the most suitable cotton fibre from a set of feasible alternatives in presence of several conflicting properties/attributes. This cotton fibre selection process can be modelled as a Multi-Criteria Decision Making (MCDM) problem. In this paper, a grey fuzzy logic-based approach is proposed for selection of the most apposite cotton fibre from 17 alternatives evaluated based on six important fibre properties. It is observed that the preference order of the top-ranked cotton fibres derived using the grey fuzzy logic approach closely matches with that attained by the past researchers which proves the application potentiality of this method in solving varying MCDM problems in textile industries.

  17. Holistic pest management [Chapter 15

    Science.gov (United States)

    Thomas D. Landis; Tara Luna; R. Kasten Dumroese

    2009-01-01

    As any experienced grower knows only too well, nursery management is a continuous process of solving problems. Murphy's Law of "anything that can go wrong, will go wrong" sounds as if it were meant for native plant production. One recurring problem is pests. Nursery managers have traditionally talked about "controlling" a pest. This approach...

  18. Using atmospheric pressure plasma treatment for treating grey cotton fabric.

    Science.gov (United States)

    Kan, Chi-Wai; Lam, Chui-Fung; Chan, Chee-Kooi; Ng, Sun-Pui

    2014-02-15

    Conventional wet treatment, desizing, scouring and bleaching, for grey cotton fabric involves the use of high water, chemical and energy consumption which may not be considered as a clean process. This study aims to investigate the efficiency of the atmospheric pressure plasma (APP) treatment on treating grey cotton fabric when compared with the conventional wet treatment. Grey cotton fabrics were treated with different combinations of plasma parameters with helium and oxygen gases and also through conventional desizing, scouring and bleaching processes in order to obtain comparable results. The results obtained from wicking and water drop tests showed that wettability of grey cotton fabrics was greatly improved after plasma treatment and yielded better results than conventional desizing and scouring. The weight reduction of plasma treated grey cotton fabrics revealed that plasma treatment can help remove sizing materials and impurities. Chemical and morphological changes in plasma treated samples were analysed by FTIR and SEM, respectively. Finally, dyeability of the plasma treated and conventional wet treated grey cotton fabrics was compared and the results showed that similar dyeing results were obtained. This can prove that plasma treatment would be another choice for treating grey cotton fabrics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Heterosis and correlation in interspecific and intraspecific hybrids of cotton.

    Science.gov (United States)

    Munir, S; Hussain, S B; Manzoor, H; Quereshi, M K; Zubair, M; Nouman, W; Shehzad, A N; Rasul, S; Manzoor, S A

    2016-06-24

    Interspecific and intraspecific hybrids show varying degrees of heterosis for yield and yield components. Yield-component traits have complex genetic relationships with each other. To determine the relationship of yield-component traits and fiber traits with seed cotton yield, six lines (Bt. CIM-599, CIM-573, MNH-786, CIM-554, BH-167, and GIZA-7) and three test lines (MNH-886, V4, and CIM-557) were crossed in a line x tester mating design. Heterosis was observed for seed cotton yield, fiber traits, and for other yield-component traits. Heterosis in interspecific hybrids for seed cotton yield was more prominent than in intraspecific hybrids. The interspecific hybrid Giza-7 x MNH-886 had the highest heterosis (114.77), while among intraspecific hybrids, CIM-554 x CIM-557 had the highest heterosis (61.29) for seed cotton yield. A major trait contributing to seed cotton yield was bolls/plant followed by boll weight. Correlation studies revealed that bolls/plant, boll weight, lint weight/boll, lint index, seed index, lint/seed, staple length, and staple strength were significantly and positively associated with seed cotton yield. Selection based on boll weight, boll number, lint weight/boll, and lint index will be helpful for improving cotton seed yield.

  20. PEST Analysis of Serbia

    OpenAIRE

    Ivan Stosic; Drasko Nikolic; Aleksandar Zdravkovic

    2012-01-01

    The main purpose of this paper is to examine the impact of the current Serbian macro-environment on the businesses through the implementation of PEST analysis as a framework for assessing general or macro environment in which companies are operating. The authors argue the elements in presented PEST analysis indicate that the current macro-environment is characterized by the dominance of threats and weaknesses with few opportunities and strengths. Consequently, there is a strong need for faste...

  1. Improving detection probabilities for pests in stored grain.

    Science.gov (United States)

    Elmouttie, David; Kiermeier, Andreas; Hamilton, Grant

    2010-12-01

    The presence of insects in stored grain is a significant problem for grain farmers, bulk grain handlers and distributors worldwide. Inspection of bulk grain commodities is essential to detect pests and thereby to reduce the risk of their presence in exported goods. It has been well documented that insect pests cluster in response to factors such as microclimatic conditions within bulk grain. Statistical sampling methodologies for grain, however, have typically considered pests and pathogens to be homogeneously distributed throughout grain commodities. In this paper, a sampling methodology is demonstrated that accounts for the heterogeneous distribution of insects in bulk grain. It is shown that failure to account for the heterogeneous distribution of pests may lead to overestimates of the capacity for a sampling programme to detect insects in bulk grain. The results indicate the importance of the proportion of grain that is infested in addition to the density of pests within the infested grain. It is also demonstrated that the probability of detecting pests in bulk grain increases as the number of subsamples increases, even when the total volume or mass of grain sampled remains constant. This study underlines the importance of considering an appropriate biological model when developing sampling methodologies for insect pests. Accounting for a heterogeneous distribution of pests leads to a considerable improvement in the detection of pests over traditional sampling models. Copyright © 2010 Society of Chemical Industry.

  2. Fiber quality challenges facing the cotton industry

    Science.gov (United States)

    The cotton industry is in the midst of an exciting time with increased domestic consumption, but also facing pressure from other crops and the global marketplace. In order to ensure the US cotton crop remains the fiber of choice for the world it is important to keep an eye on the challenges to fibe...

  3. Within canopy distribution of cotton seed N

    Science.gov (United States)

    Whole cotton seeds can be an important component of dairy rations. Nitrogen content of the seed is an important determinant of the feed value of the seed. Efforts to increase the seed value as feed will be enhanced with knowledge of the range and distribution of seed N within the cotton crop. This s...

  4. Global alteration of microRNAs and transposon-derived small RNAs in cotton (Gossypium hirsutum) during Cotton leafroll dwarf polerovirus (CLRDV) infection.

    Science.gov (United States)

    Romanel, Elisson; Silva, Tatiane F; Corrêa, Régis L; Farinelli, Laurent; Hawkins, Jennifer S; Schrago, Carlos E G; Vaslin, Maite F S

    2012-11-01

    Small RNAs (sRNAs) are a class of non-coding RNAs ranging from 20- to 40-nucleotides (nts) that are present in most eukaryotic organisms. In plants, sRNAs are involved in the regulation of development, the maintenance of genome stability and the antiviral response. Viruses, however, can interfere with and exploit the silencing-based regulatory networks, causing the deregulation of sRNAs, including small interfering RNAs (siRNAs) and microRNAs (miRNAs). To understand the impact of viral infection on the plant sRNA pathway, we deep sequenced the sRNAs in cotton leaves infected with Cotton leafroll dwarf virus (CLRDV), which is a member of the economically important virus family Luteoviridae. A total of 60 putative conserved cotton miRNAs were identified, including 19 new miRNA families that had not been previously described in cotton. Some of these miRNAs were clearly misregulated during viral infection, and their possible role in symptom development and disease progression is discussed. Furthermore, we found that the 24-nt heterochromatin-associated siRNAs were quantitatively and qualitatively altered in the infected plant, leading to the reactivation of at least one cotton transposable element. This is the first study to explore the global alterations of sRNAs in virus-infected cotton plants. Our results indicate that some CLRDV-induced symptoms may be correlated with the deregulation of miRNA and/or epigenetic networks.

  5. Various rates of k and Na influence growth, seed cotton yield and ionic ratio of two cotton varieties in soil culture

    International Nuclear Information System (INIS)

    Ali, L.; Maqsood, M.A.; Ashraf, M.

    2009-01-01

    Cotton is generally grown on alkaline calcareous soils in arid and semi-arid areas of the country. Sodium can interact with other earth cations like K, Ca and Mg. Therefore, a pot study was conducted to investigate the growth, yield and ionic response of two cotton varieties. Four levels of K and Na were developed after considering indigenous K, Na status in soil. The treatments of K+Na in mg/kg were adjusted as, 105+37.5, 135+30 135+37.5 and 105+30 (control). Control treatment represented indigenous K, Na status of soil. The experiment continued until maturity. Application of K and Na increased seed cotton yield and boll weight significantly (p<0.01). Both varieties varied non-significantly with respect to K:Na ratio in leaf. The beneficial effects of Na with K application over control on seed cotton yield and boll weight were greater in NIBGE-2 than in MNH-786. Increase in seed cotton yield was attributed to maximum boll weight of both varieties. Significant negative correlation (r= -0.89, - 0.76, n= 4) was found between K:Na ratio and K use efficiency in shoot of NIBGE-2 and MNH-786, respectively. (author)

  6. Global warming presents new challenges for maize pest management

    International Nuclear Information System (INIS)

    Diffenbaugh, Noah S; Krupke, Christian H; White, Michael A; Alexander, Corinne E

    2008-01-01

    It has been conjectured that global warming will increase the prevalence of insect pests in many agro-ecosystems. In this paper, we quantitatively assess four of the key pests of maize, one of the most important systems in North American grain production. Using empirically generated estimates of pest overwintering thresholds and degree-day requirements, along with climate change projections from a high-resolution climate model, we project potential future ranges for each of these pests in the United States. Our analysis suggests the possibility of increased winter survival and greater degree-day accumulations for each of the pests surveyed. We find that relaxed cold limitation could expand the range of all four pest taxa, including a substantial range expansion in the case of corn earworm (H. zea), a migratory, cold-intolerant pest. Because the corn earworm is a cosmopolitan pest that has shown resistance to insecticides, our results suggest that this expansion could also threaten other crops, including those in high-value areas of the western United States. Because managing significant additional pressure from this suite of established pests would require additional pest management inputs, the projected decreases in cold limitation and increases in heat accumulation have the potential to significantly alter the pest management landscape for North American maize production. Further, these range expansions could have substantial economic impacts through increased seed and insecticide costs, decreased yields, and the downstream effects of changes in crop yield variability.

  7. Coupled information diffusion--pest dynamics models predict delayed benefits of farmer cooperation in pest management programs.

    Science.gov (United States)

    Rebaudo, François; Dangles, Olivier

    2011-10-01

    Worldwide, the theory and practice of agricultural extension system have been dominated for almost half a century by Rogers' "diffusion of innovation theory". In particular, the success of integrated pest management (IPM) extension programs depends on the effectiveness of IPM information diffusion from trained farmers to other farmers, an important assumption which underpins funding from development organizations. Here we developed an innovative approach through an agent-based model (ABM) combining social (diffusion theory) and biological (pest population dynamics) models to study the role of cooperation among small-scale farmers to share IPM information for controlling an invasive pest. The model was implemented with field data, including learning processes and control efficiency, from large scale surveys in the Ecuadorian Andes. Our results predict that although cooperation had short-term costs for individual farmers, it paid in the long run as it decreased pest infestation at the community scale. However, the slow learning process placed restrictions on the knowledge that could be generated within farmer communities over time, giving rise to natural lags in IPM diffusion and applications. We further showed that if individuals learn from others about the benefits of early prevention of new pests, then educational effort may have a sustainable long-run impact. Consistent with models of information diffusion theory, our results demonstrate how an integrated approach combining ecological and social systems would help better predict the success of IPM programs. This approach has potential beyond pest management as it could be applied to any resource management program seeking to spread innovations across populations.

  8. Fiber sample presentation system for spectrophotometer cotton fiber color measurements

    Science.gov (United States)

    The Uster® High Volume Instrument (HVI) is used to class U.S. cotton for fiber color, yielding the industry accepted, cotton-specific color parameters Rd and +b. The HVI examines a 9 square inch fiber sample, and it is also used to test large AMS standard cotton “biscuits” or rectangles. Much inte...

  9. IMPROVED SPECTROPHOTOMETER FIBER SAMPLING SYSTEM FOR COTTON FIBER COLOR MEASUREMENTS

    Science.gov (United States)

    Cotton in the U.S. is classified for color using the Uster® High Volume Instrument (HVI), and the parameters Rd and +b are used to designate color grades for cotton fiber. However, Rd and +b are cotton-specific color parameters, and the need existed to demonstrate the relationships of Rd and +b to...

  10. Understanding the relationship between cotton fiber properties and non-cellulosic cell wall polysaccharides

    DEFF Research Database (Denmark)

    Rajasundaram, Dhivyaa; Runavot, Jean-Luc; Guo, Xiaoyuan

    2014-01-01

    cotton fibers, which are of both biological and industrial importance. To this end, we attempted to study cotton fiber characteristics together with glycan arrays using regression based approaches. Taking advantage of the comprehensive microarray polymer profiling technique (CoMPP), 32 cotton lines from...... different cotton species were studied. The glycan array was generated by sequential extraction of cell wall polysaccharides from mature cotton fibers and screening samples against eleven extensively characterized cell wall probes. Also, phenotypic characteristics of cotton fibers such as length, strength...

  11. Fungi and bacteria boost resistance to pests and diseases : endophytes a useful addition to pest control

    NARCIS (Netherlands)

    Messelink, G.

    2017-01-01

    More and more research is revealing that endophytes – microorganisms that live in the plant without harming it – can significantly boost a plant’s resistance to pests. These findings prompted researchers to investigate the potential of endophytes in pest control in greenhouse horticulture.

  12. Modern trends on development of cotton production and processing chain Uzbekistan

    OpenAIRE

    Abdimumin Alikulov

    2010-01-01

    The cotton production complex of Uzbekistan has high rating comparing other export oriented branches. Cotton fiber value in 2008 share made 12% from total export of the country. The paper observes some trends and policy developments in cotton industry development.

  13. Toxins for Transgenic Resistance to Hemipteran Pests

    Science.gov (United States)

    Chougule, Nanasaheb P.; Bonning, Bryony C.

    2012-01-01

    The sap sucking insects (Hemiptera), which include aphids, whiteflies, plant bugs and stink bugs, have emerged as major agricultural pests. The Hemiptera cause direct damage by feeding on crops, and in some cases indirect damage by transmission of plant viruses. Current management relies almost exclusively on application of classical chemical insecticides. While the development of transgenic crops expressing toxins derived from the bacterium Bacillus thuringiensis (Bt) has provided effective plant protection against some insect pests, Bt toxins exhibit little toxicity against sap sucking insects. Indeed, the pest status of some Hemiptera on Bt-transgenic plants has increased in the absence of pesticide application. The increased pest status of numerous hemipteran species, combined with increased prevalence of resistance to chemical insecticides, provides impetus for the development of biologically based, alternative management strategies. Here, we provide an overview of approaches toward transgenic resistance to hemipteran pests. PMID:22822455

  14. 7 CFR 205.271 - Facility pest management practice standard.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Facility pest management practice standard. 205.271... Requirements § 205.271 Facility pest management practice standard. (a) The producer or handler of an organic facility must use management practices to prevent pests, including but not limited to: (1) Removal of pest...

  15. 7 CFR 330.212 - Movement of plant pests by baggage.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Movement of plant pests by baggage. 330.212 Section... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FEDERAL PLANT PEST REGULATIONS; GENERAL; PLANT PESTS; SOIL, STONE, AND QUARRY PRODUCTS; GARBAGE Movement of Plant Pests § 330.212 Movement of plant pests by baggage...

  16. Quantification and characterization of cotton crop biomass residue

    Science.gov (United States)

    Cotton crop residual biomass remaining in the field after mechanical seed cotton harvest is not typically harvested and utilized off-site thereby generating additional revenue for producers. Recently, interest has increased in utilizing biomass materials as feedstock for the production of fuel and ...

  17. Governing the transnational organic cotton network from Benin

    NARCIS (Netherlands)

    Glin, L.C.; Mol, A.P.J.; Oosterveer, P.J.M.; Vodouhè, S.

    2012-01-01

    In this article, we attempt to conceptualize the historical development and the governance structure of the transnational organic cotton network from Benin. We aim to discover how the organic cotton production-consumption network is governed locally and internationally. Existing bodies of literature

  18. Zinc comprising coordination compounds as growth stimulants of cotton seeds

    International Nuclear Information System (INIS)

    Yusupov, Z.N.; Nurmatov, T.M.; Rakhimova, M.M.; Dzhafarov, M.I.; Nikolaeva, T.B.

    1991-01-01

    Present article is devoted to zinc comprising coordination compounds as growth stimulants of cotton seeds. The influence of zinc coordination compounds with physiologically active ligands on germinative energy and seed germination of cotton was studied. The biogical activity and effectiveness of zinc comprising coordination compounds at application them for humidification of cotton seeds was studied as well.

  19. Women cotton pickers perceptions about health hazards due to pesticide use in irrigated punjab

    International Nuclear Information System (INIS)

    Abbas, M.; Mehmood, I.; Bashir, A.; Hassan, S.

    2015-01-01

    In Pakistan, cotton crop has special importance from the perspective of largest employment generation both for males and females in the production and value chains. Cotton picking is primarily a female specific activity in all cropping zones of Pakistan. Women cotton pickers mostly belong to poor rural society involved in this labour force to feed their families. Cotton pickers in Pakistan face some serious health related problems due to heavy use of pesticides on cotton crop. The present study was designed to investigate the problem faced by women cotton pickers and their role in household decision making. Overall 150 women cotton pickers were interviewed from Bahawalnagar, Sahiwal and Vehari districts of cotton-wheat zone of the Punjab. Summary statistics of women cotton pickers' showed mean average age was 33 years and had 2.4 ears of formal schooling and 10 years of cotton picking experience. The main reasons for cotton picking reported were to reduce family financial burden (30%) followed by better access to food and resource (23%) and better education of children (21%). Majority of the respondents (97.33%) reported that the mode of payments of cotton picking was in cash and the most of the respondents (83.70%) reported that they got wages in time. Only few respondents (8.70%) were aware of health hazards due to pesticides and only 10% women wear protective clothes during cotton picking. Majority of the respondents (76%) wash their clothes after cotton picking whereas almost all the respondents wash their hand after cotton picking. The women cotton pickers faced health problem, tiredness (54.5%), mental disturbance (9.90%) and fatigue (8.00%). More than 58% women reported their involvement in household decision making regarding food and groceries while 30.6% women involved in decision about education of children. It is suggested that the female cotton pickers should be educated about the importance (in terms of disease treatment and long-run health costs

  20. Information on Pests in Schools and Their Control

    Science.gov (United States)

    Pests such as insects, rodents, fungi, and weeds can affect the school environment and the people who work and learn there. These pests can cause human health problems, and structural and plant damage. Know what pests you face before deciding on control.

  1. HVI Colorimeter and Color Spectrophotometer Relationships and Their Impacts on Developing "Traceable" Cotton Color Standards

    Science.gov (United States)

    Color measurements of cotton fiber and cotton textile products are important quality parameters. The Uster® High Volume Instrument (HVI) is an instrument used globally to classify cotton quality, including cotton color. Cotton color by HVI is based on two cotton-specific color parameters—Rd (diffuse...

  2. A theoretical approach on controlling agricultural pest by biological controls.

    Science.gov (United States)

    Mondal, Prasanta Kumar; Jana, Soovoojeet; Kar, T K

    2014-03-01

    In this paper we propose and analyze a prey-predator type dynamical system for pest control where prey population is treated as the pest. We consider two classes for the pest namely susceptible pest and infected pest and the predator population is the natural enemy of the pest. We also consider average delay for both the predation rate i.e. predation to the susceptible pest and infected pest. Considering a subsystem of original system in the absence of infection, we analyze the existence of all possible non-negative equilibria and their stability criteria for both the subsystem as well as the original system. We present the conditions for transcritical bifurcation and Hopf bifurcation in the disease free system. The theoretical evaluations are demonstrated through numerical simulations.

  3. Single-Wall Carbon Nanotube-Coated Cotton Yarn for Electrocardiography Transmission

    Directory of Open Access Journals (Sweden)

    Yuliang Zhao

    2018-03-01

    Full Text Available We fabricated a type of conductive fabric, specifically single-wall carbon nanotube-coated cotton yarns (SWNT-CYs, for electrocardiography (ECG signal transmission utilizing a “dipping and drying” method. The conductive cotton yarns were prepared by dipping cotton yarns in SWNTs (single-wall carbon nanotubes solutions and then drying them at room temperature—a simple process that shows consistency in successfully coating cotton yarns with conductive carbon nanotubes (CNTs. The influence of fabrication conditions on the conductivity properties of SWNT-CYs was investigated. The results demonstrate that our conductive yarns can transmit weak bio-electrical (i.e., ECG signals without significant attenuation and distortion. Our conductive cotton yarns, which combine the flexibility of conventional fabrics and the good conductivity of SWNTs, are promising materials for wearable electronics and sensor applications in the future.

  4. In vitro microbiologic evaluation of PTFE and cotton as spacer materials.

    Science.gov (United States)

    Paranjpe, Avina; Jain, Sumita; Alibhai, Karim J; Wadhwani, Chandur P; Darveau, Richard P; Johnson, James D

    2012-09-01

    To microbiologically evaluate the efficacy of cotton and polytetrafluoroethylene (PTFE) tape used as spacer materials. Twenty-six extracted human molars were restored using either cotton or PTFE tape as spacers under a standardized provisional restorative material (Cavit). The teeth were incubated for 7 days in a culture of Streptococcus gordonii or in liquid media alone. The spacers were removed and tested for bacterial contamination. The access cavities were also evaluated for bacterial contamination. Nine of 10 teeth with cotton spacers and one of 10 teeth with PTFE spacers were positive for S gordonii growth. The nine teeth in the cotton group also showed contamination of the access cavities. Even under optimal conditions, cotton spacers may cause leakage into the access cavities. Cotton fibers may serve as a route for bacterial contamination of the access cavities and root canal space. In contrast, PTFE tape did not provide an avenue for bacterial contamination.

  5. Correlations and Correlated Responses in Upland Cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Echekwu, CA.

    2001-01-01

    Full Text Available Plant breeders must be concerned with the total array of economic characters in their efforts to develop a crop variety acceptable to farmers. Their selection endeavours must therefore take into consideration how changes in one trait affect, simultaneously changes in other economic attributes. The importance of correlations and correlated responses is therefore self evident in plant breeding endeavours. In this study F3 progenies from a cross between two cotton lines SAMCOT-9 x Y422 were evaluated for two years and performance data were used to obtain correlations between nine agronomic and fibre quality traits in upland cotton. The results indicated that plant helght was significantly and positively correlated with seed cotton yield, number of sympodial and monopodial branches, seed index, fibre length and micronaire index. Positive and significant correlations were also obtained between : seed cotton yield, tint percent and fibre strength and fibre length. Significant negative correlations were obtained between : plant height and lint percent ; number of monopodial branches, sympodial branches and lint percent ; fibre length, fibre strength and micronaire index. The correlated responses in the other eight traits when selection was practiced for seed cotton yield in the present study shows that it might be more profitable to practice direct selection for seed cotton yield compared to selecting for seed cotton yield through any of the other traits.

  6. The cotton farming pipeline of Malawi and South Africa: Management implications

    Directory of Open Access Journals (Sweden)

    J. P. Grundling

    2008-12-01

    Full Text Available Purpose of the study: The purpose this paper is to identify and describe the characteristics and influences of the cotton farming pipeline in Malawi and South Africa. Problem investigated: A broad based approach was followed to investigate the cotton farming pipeline to identify the major driving forces of the cotton pipeline in each of the respective countries. Research approach: A qualitative field research approach was followed to compile data on cotton farming in Malawi and South Africa. Data was compiled upstream from input suppliers, downstream from ginners, cotton transport conveyors, cotton marketing managers and agricultural government officials as well as from farmers and agricultural organizations. Findings: In Malawi a family farming model is followed versus an industrial model of production in South Africa. Despite the differences in approach, the farmers in both countries are faced with similar problems. In this regard, an urgent rethinking of the technological conditions of production and the possibilities of technological change is needed. Recommendations: The research proposes that these countries can benefit from establishing institutions like agricultural co-operatives and mechanisms like the development of a free traffic mechanism of seed-cotton. Conclusion: The present research may assist in developing first layer managerial recommendations that could enhance the sustainability and co-existence of cotton farming in the two countries.

  7. Effect of low doses gamma irradiation of cotton seeds

    International Nuclear Information System (INIS)

    Al-Oudat, M.; Khalifa, Kh.

    1996-01-01

    Field experiments and then large scale application of irradiated cotton seeds (C.V. Aleppo-40) were carried out during three seasons (1986, 1987 and 1988) for field experiment at ACSAD Station in Dier-Ezzor and 1988, 1989 and 1990 for large scale application at Euphrate's Basin, Al-Ghab and Salamia, farmers farms. The above areas were selected as they represent major cotton production areas in Syria. The aims of the experiments were to study the effect of low doses of gamma irradiation 0, 5, 10, 20, 30, 40 and 50 Gy on cotton yield and to look for the optimum dose of gamma irradiation to obtain best results. The results show that, there were positive effect (P<0.95) for doses 5-30 Gy in increasing cotton yield. The highest increase was at dose of 10 Gy. which as 19.5% higher than control. For the large scale application using 10 Gy the increase in cotton yield varied from 10-39% compared to control. (author). 11 refs., 6 figs

  8. Insecticide-induced hormesis and arthropod pest management.

    Science.gov (United States)

    Guedes, Raul Narciso C; Cutler, G Christopher

    2014-05-01

    Ecological backlashes such as insecticide resistance, resurgence and secondary pest outbreaks are frequent problems associated with insecticide use against arthropod pest species. The last two have been particularly important in sparking interest in the phenomenon of insecticide-induced hormesis within entomology and acarology. Hormesis describes a biphasic dose-response relationship that is characterized by a reversal of response between low and high doses of a stressor (e.g. insecticides). Although the concept of insecticide-induced hormesis often does not receive sufficient attention, or has been subject to semantic confusion, it has been reported in many arthropod pest species and natural enemies, and has been linked to pest outbreaks and potential problems with insecticide resistance. The study of hormesis remains largely neglected in entomology and acarology. Here, we examined the concept of insecticide-induced hormesis in arthropods, its functional basis and potential fitness consequences, and its importance in arthropod pest management and other areas. © 2013 Society of Chemical Industry.

  9. Effect of cotton leaf-curl virus on the yield-components and fibre properties of cotton genotypes under varying plant spacing and nitrogen fertilizer

    International Nuclear Information System (INIS)

    Ahmad, S.; Hayat, K.; Ashraf, F.; Sadiq, M.A.

    2008-01-01

    Cotton leaf-curl virus (CLCu VB. Wala strain) is one of the major biotic constraints of cotton production in Punjab. Development of resistant cotton genotype is the most feasible, economical and effective method to combat this hazardous problem, but so far no resistant genotype has been reported. Therefore, the objective of this study was to compare yield and yield-components and fiber traits of different genotypes/varieties under different plant spacing and nitrogen fertilizer as a management strategy to cope with this viral disease. Field experiment was conducted during 2006-07 to evaluate the effect of genotype, plant spacing and nitrogen fertilizer on cotton. Five genotypes (MNH-786, MNH-789, MNH- 6070, CIM- 496, and BH-160), three plant-spacings (15, 30 and 45 cm) and three nitrogen fertilizer-levels (6.5, 8.6 and 11 bags Urea / ha) were studied. Results showed that significant differences exist for plant height, no. of bolls/m/sup -2/, seed-cotton yield (kg/ha) due to genotype, interaction of genotype with plant spacing and nitrogen fertilizer level. Whereas boll weight, ginning out-turn, staple length and fiber fineness were not affected significantly by the plant spacing and nitrogen fertilizer, the effect due to genotype was significant for these traits. CLCuV infestation varied significantly with genotypes, while all other factors, i.e., plant spacing and nitrogen fertilizers, have non-significant effect. As the major objective of cotton cultivation is production of lint for the country and seed- cotton yield for the farmers, it is noted that genotypes grown in narrow plant-spacing (15 cm) and higher nitrogen fertilizer level (11.0 bags of urea/ha) produced maximum seed-cotton yield under higher CLCu V infestation in case of CIM-496, MNH-789 and BH-I60, while the new strain MNH-6070 gave maximum yield under 30cm plant-spacing and 8.6 bags of urea/ha has the 2.3% CLCu V infestation was observed in this variety. From the present study, it is concluded that

  10. 7 CFR 28.8 - Classification of cotton; determination.

    Science.gov (United States)

    2010-01-01

    ... Standards Act Administrative and General § 28.8 Classification of cotton; determination. For the purposes of the Act, the classification of any cotton shall be determined by the quality of a sample in accordance... employees will determine all fiber property measurements using High Volume Instruments. The classification...

  11. Self-reported prevalence of pests in Dutch households and the use of the health belief model to explore householders’ intentions to engage in pest control

    Science.gov (United States)

    Lipman, Stefan A.

    2017-01-01

    Pests in the home are a health risk because they can be vectors for infectious disease, contribute to allergies and cause damage to buildings. The aims of this study were to record which categories of pests were reported in homes and to use a social cognition model, the health belief model, to investigate which psychological factors influence householders’ intentions to control pests. An online questionnaire was completed by 413 respondents between 11 September and 31 November 2015. A large majority of respondents reported pests in or around their home within the previous year. The prevalences were: flying insects 98%, crawling insects 85%, rodents 62%, birds 58%, and moles 20%. Regression analysis for the health belief model revealed that perceiving greater benefits and fewer barriers to pest control and expecting severe consequences of zoonotic infections predicted higher intention to control pests. Intentions towards pest control were not influenced by perceiving oneself as susceptible to catching a disease from pests or health motivation (striving towards a healthy lifestyle). Intentions to engage in pest control were lower for households reporting bird prevalence. The findings suggest that interventions aimed at improving the effectiveness of domestic pest control should focus on increasing the benefits that individuals associate with effective pest control, lowering barriers, and on underlining the severity of the diseases that pests may carry. PMID:29284047

  12. Self-reported prevalence of pests in Dutch households and the use of the health belief model to explore householders' intentions to engage in pest control.

    Science.gov (United States)

    Lipman, Stefan A; Burt, Sara A

    2017-01-01

    Pests in the home are a health risk because they can be vectors for infectious disease, contribute to allergies and cause damage to buildings. The aims of this study were to record which categories of pests were reported in homes and to use a social cognition model, the health belief model, to investigate which psychological factors influence householders' intentions to control pests. An online questionnaire was completed by 413 respondents between 11 September and 31 November 2015. A large majority of respondents reported pests in or around their home within the previous year. The prevalences were: flying insects 98%, crawling insects 85%, rodents 62%, birds 58%, and moles 20%. Regression analysis for the health belief model revealed that perceiving greater benefits and fewer barriers to pest control and expecting severe consequences of zoonotic infections predicted higher intention to control pests. Intentions towards pest control were not influenced by perceiving oneself as susceptible to catching a disease from pests or health motivation (striving towards a healthy lifestyle). Intentions to engage in pest control were lower for households reporting bird prevalence. The findings suggest that interventions aimed at improving the effectiveness of domestic pest control should focus on increasing the benefits that individuals associate with effective pest control, lowering barriers, and on underlining the severity of the diseases that pests may carry.

  13. Self-reported prevalence of pests in Dutch households and the use of the health belief model to explore householders' intentions to engage in pest control.

    Directory of Open Access Journals (Sweden)

    Stefan A Lipman

    Full Text Available Pests in the home are a health risk because they can be vectors for infectious disease, contribute to allergies and cause damage to buildings. The aims of this study were to record which categories of pests were reported in homes and to use a social cognition model, the health belief model, to investigate which psychological factors influence householders' intentions to control pests. An online questionnaire was completed by 413 respondents between 11 September and 31 November 2015. A large majority of respondents reported pests in or around their home within the previous year. The prevalences were: flying insects 98%, crawling insects 85%, rodents 62%, birds 58%, and moles 20%. Regression analysis for the health belief model revealed that perceiving greater benefits and fewer barriers to pest control and expecting severe consequences of zoonotic infections predicted higher intention to control pests. Intentions towards pest control were not influenced by perceiving oneself as susceptible to catching a disease from pests or health motivation (striving towards a healthy lifestyle. Intentions to engage in pest control were lower for households reporting bird prevalence. The findings suggest that interventions aimed at improving the effectiveness of domestic pest control should focus on increasing the benefits that individuals associate with effective pest control, lowering barriers, and on underlining the severity of the diseases that pests may carry.

  14. The prevalence of byssinosis among cotton workers in the north of Benin.

    Science.gov (United States)

    Hinson, A V; Schlünssen, V; Agodokpessi, G; Sigsgaards, T; Fayomi, B

    2014-10-01

    Cotton is the main agricultural export product in Benin. Cotton dust is thus present in the air during the handling and processing of cotton. This dust contains a mixture of substances including ground up plant matter, fibres, bacteria, fungi, soil, pesticides, noncotton matter, and other contaminants. While cotton processing is decreasing in industrialized countries, it is increasing in developing countries. Cotton processing, particularly in the early processes of spinning, can cause byssinosis. To determine the respiratory effects of cotton dust exposure among cotton mill workers in Benin. In a cross-sectional study, 109 workers exposed to cotton dust and 107 unexposed workers were studied. The International Commission on Occupational Health (ICOH) questionnaire was used for data collection on respiratory symptoms. For each worker, crossshift pulmonary function was performed with a dry spirometer. Based on the severity of respiratory symptoms and spirometry byssinosis was defined and classified according to the criteria of Schilling, et al. The mean ± SD age of the exposed and unexposed workers was 46.3 ± 7.8 and 37.0 ± 8.3 years, respectively (pcotton mill workers in Benin is high and needs prompt attention of health care workers and policymakers.

  15. Structure and properties of cotton fabrics treated with functionalized dialdehyde chitosan.

    Science.gov (United States)

    He, Xuemei; Tao, Ran; Zhou, Tianchi; Wang, Chunxia; Xie, Kongliang

    2014-03-15

    In this research, modified cotton fabrics were prepared by pad-dry-cure technique from the aldehyde chitosan solution containing 3-aminopropyltriethoxysilane (APTES) and 1,2-ethanediamine (EDA) respectively. The structural characterization of the modified cotton fabrics was performed by attenuated total reflection ATR, scanning electron microscopy (SEM) and thermogravimetry (TG) analysis and physical mechanical properties were measured. The adsorption kinetics of modified cotton fabrics were also investigated by using the pseudo first-order and pseudo second-order kinetic model. The dyeing rate constant k1, k2 and half adsorption time t1/2 were calculated, respectively. The results show that the mechanical properties of different modified cotton fabrics were improved, and the surface color depth values (K/S), UV index UPF and anti-wrinkle properties were better than those of untreated cotton. Dyeing kinetics data at different temperatures indicate that Direct Pink 12B up-take on the modified cotton fabrics fitted to pseudo second-order kinetic model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Efficacy of Cotton Root Destruction and Winter Cover Crops for Suppression of Hoplolaimus columbus.

    Science.gov (United States)

    Davis, R F; Baird, R E; McNeil, R D

    2000-12-01

    The efficacy of rye (Secale cereale) and wheat (Triticum aestivum) winter cover crops and cotton stalk and root destruction (i.e., pulling them up) were evaluated in field tests during two growing seasons for Hoplolaimus columbus management in cotton. The effect of removing debris from the field following root destruction also was evaluated. Wheat and rye produced similar amounts of biomass, and both crops produced more biomass (P Cover crops did not suppress H. columbus population levels or increase subsequent cotton yields. Cotton root destruction did not affect cotton stand or plant height the following year. Cotton root destruction lowered (P rye or wheat cover crop or cotton root destruction following harvest is ineffective for H. columbus management in cotton.

  17. Genome-wide functional analysis of cotton (Gossypium hirsutum in response to drought.

    Directory of Open Access Journals (Sweden)

    Yun Chen

    Full Text Available Cotton is one of the most important crops for its natural textile fibers in the world. However, it often suffered from drought stress during its growth and development, resulting in a drastic reduction in cotton productivity. Therefore, study on molecular mechanism of cotton drought-tolerance is very important for increasing cotton production. To investigate molecular mechanism of cotton drought-resistance, we employed RNA-Seq technology to identify differentially expressed genes in the leaves of two different cultivars (drought-resistant cultivar J-13 and drought-sensitive cultivar Lu-6 of cotton. The results indicated that there are about 13.38% to 18.75% of all the unigenes differentially expressed in drought-resistant sample and drought-sensitive control, and the number of differentially expressed genes was increased along with prolonged drought treatment. DEG (differentially expression gene analysis showed that the normal biophysical profiles of cotton (cultivar J-13 were affected by drought stress, and some cellular metabolic processes (including photosynthesis were inhibited in cotton under drought conditions. Furthermore, the experimental data revealed that there were significant differences in expression levels of the genes related to abscisic acid signaling, ethylene signaling and jasmonic acid signaling pathways between drought-resistant cultivar J-13 and drought-sensitive cultivar Lu-6, implying that these signaling pathways may participate in cotton response and tolerance to drought stress.

  18. Public Health Pest Control Category Manual.

    Science.gov (United States)

    Bowman, James S.; Turmel, Jon P.

    This manual provides information needed to meet the standards for pesticide applicator certification. It presents pest control guidelines for those organisms of public health significance. Fact sheets with line drawings discuss pests such as cockroaches, bedbugs, lice, ants, beetles, bats, birds, and rodents. (CS)

  19. Pest repellent properties of ant pheromones

    DEFF Research Database (Denmark)

    Offenberg, Joachim

    2012-01-01

    of ant pheromones may be sufficient to repel pest insects from ant territories. The study of ant semiochemicals is in its infancy, yet, evidence for their potential use in pest management is starting to build up. Pheromones from four of five tested ant species have been shown to deter herbivorous insect...... prey and competing ant species are also deterred by ant deposits, whereas ant symbionts may be attracted to them. Based on these promising initial findings, it seems advisable to further elucidate the signaling properties of ant pheromones and to test and develop their use in future pest management....

  20. Pilot scale cotton gin trash energy recovery

    Energy Technology Data Exchange (ETDEWEB)

    Harp, S.L. [Oklahoma State Univ., Stillwater, OK (United States)

    1993-12-31

    During the summer of 1992 a 520,000 kcal/h (2,064,400 Btu/hr) biomass combustor was installed at a cotton gin in southwestern Oklahoma. The gin has a capacity of approximately 35 bales per hour. Each bale of cotton ginned weighs about 227 kg (500 lb) and produces about 68 kg (150 lb) of trash. Therefore, this gin produces about 52,360 kg (115,500 lb) of trash per day during a typical ginning season. Approximately 2 million kg (4 million lb) of gin trash are produced at this site each year. Cotton must first be dried to about 3-5% moisture content before the ginning process is begun. To accomplish this at this gin, two six million Btu/hour direct fired gas heaters are used to heat air for drying the cotton. The biomass combustor was installed to operate in parallel with one of the heaters to supply heated air for the drying process. A pneumatic conveying system was installed to intercept a portion of the gin trash and divert it to the burner. The burner was operated during the 1992 ginning season, which lasted from September through November, with few problems.

  1. Pest Control in the School Environment:Adopting Integrated Pest Management

    Science.gov (United States)

    Learn about establishing a school IPM program, including developing an official IPM policy statement, setting roles for participants and pest management objectives, inspecting sites, setting action threshold, applying IPM strategies and evaluating results.

  2. Radiation degradation of short-cotton linters

    International Nuclear Information System (INIS)

    Ma Zue Teh; Zhou Rui Min

    1984-01-01

    Radiation degradation of short-cotton linters has been studied by using X-ray diffraction, an infrared spectrometer and a viscosimeter. Average molecular weight and crystallinity of short-cotton linters and the change of reducing sugar in γ-radiation degradation were examined. It was found that cellulosic saccharification in hydrolysis was enhanced with preirradiation of linter. This probably resulted from the radiation induced change of cellulosic structure. Sensitizers to promote radiation degradation effect were investigated. Carbon tetrachloride has been found to be effective. (author)

  3. Les hommes et la peste en France et dans les pays européens et méditerranéens: tomo I. La peste dans l'histoire e tomo II Les hommes face à la peste

    Directory of Open Access Journals (Sweden)

    Hilario Franco Júnior

    1977-09-01

    Full Text Available BIRABEN, Jean-Nöel. Les hommes et la peste en France et dans les pays européens et méditerranéens: tomo I. La peste dans l'histoire e tomo II Les hommes face à la peste. Paris: Mouton, 1975-1976. (primeiro parágrafo do texto Os dois volumes desta obra foram concebidos de maneiras diferentes, o primeiro com uma estrutura histórica, voltada para a evolução da peste através do tempo, o segundo examinando as diversas formas do homem encarar aquele flagelo. Inicialmente o autor faz uma introdução médico-epidemiológica, fornecendo certas noções importantes, e quase sempre desconhecidas do historiador e do demógrafo, para se seguir o desenvolvimento histórico da peste. Este é então examinado em três grandes momentos: a peste justiniana da Alta Idade Média, a Peste Negra do século XIV e a peste na Época Moderna, até seu desaparecimento do Ocidente na primeira metade do século XVIII. Depois de o ritmo sazonal da peste e seu reaparecimento cíclico terem sido estudados, a atenção de Biraben volta-se para as perdas humanas provocadas pela doença, bem como para o comportamento demográfico das populações em tempo de peste. O segundo volume começa com um interessante estudo das concepções antigas sobre a peste, vista dentre outras formas como resultado de castigo divino, de conjunção de planetas, de eclipses, ou da passagem de cometas. Analisa-se em seguida a luta contra a peste, que assumia duas formas: de um lado, magia, sacrifícios, exorcismos, uso de talismãs, preces, procissões, apelo a santos e outras crendices; de outro lado, com uma crescente importância, a presença cada vez mais constante das intervenções estatais, através de regulamentos sobre higiene, medidas contra o contágio, contra a difusão da peste de uma região para outras, recrutamento de pessoal especializado para tratar dos doentes, etc.

  4. 7 CFR 1427.16 - Movement and protection of warehouse-stored cotton.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Movement and protection of warehouse-stored cotton. 1427.16 Section 1427.16 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY... Cotton Loan and Loan Deficiency Payments § 1427.16 Movement and protection of warehouse-stored cotton. (a...

  5. Current university and USDA lab cotton contamination research

    Science.gov (United States)

    U.S. cotton is considered to have some of the lowest levels of contamination in the world. However, that reputation is in jeopardy as complaints of contamination from domestic and foreign mills are on the rise. Cotton contamination can be classified under four major categorizes: fabrics and strings ...

  6. cotton fabric 51

    African Journals Online (AJOL)

    DR. AMINU

    1Department of Chemistry, Federal College of Education, Kano – Nigeria. 2Department of ... its versatility were examined taken into consideration, the molecular structure. ... hemicelluloses, pectin, coloring matter and ash ... temperature for a fixed period of time. These processes rendered the cotton 99% cellulose in nature.

  7. Biological control of livestock pests: Pathogens

    Science.gov (United States)

    Interest in biological methods for livestock and poultry pest management is largely motivated by the development of resistance to most of the available synthetic pesticides by the major pests. There also has been a marked increase in organic systems, and those that promote animal welfare by reducing...

  8. Pest management in organic greenhouse horticulture

    NARCIS (Netherlands)

    Messelink, G.J.

    2017-01-01

    The management of pests is one of the major challenges in organic greenhouse cropping systems. In this paper, I summarize the currently most problematic and persistent, as well as the newly emerging pest species in organic tomato, sweet pepper, cucumber and aubergine crops in Europe. Furthermore, I

  9. Agricultural Animal Pest Control. Manual 90.

    Science.gov (United States)

    Missouri Univ., Columbia. Agricultural Experiment Station.

    This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides in the agricultural animal pest control category. The text discusses pesticide hazards, application techniques, and pests of livestock such as mosquitoes, flies, grubs and lice. (CS)

  10. Microbial control of arthropod pests of tropical tree fruits.

    Science.gov (United States)

    Dolinski, Claudia; Lacey, Lawrence A

    2007-01-01

    A multitude of insects and mites attack fruit crops throughout the tropics. The traditional method for controlling most of these pests is the application of chemical pesticides. Growing concern on the negative environmental effects has encouraged the development of alternatives. Inundatively and inoculatively applied microbial control agents (virus, bacteria, fungi, and entomopathogenic nematodes) have been developed as alternative control methods of a wide variety of arthropods including tropical fruit pests. The majority of the research and applications in tropical fruit agroecosystems has been conducted in citrus, banana, coconut, and mango. Successful microbial control initiatives of citrus pests and mites have been reported. Microbial control of arthropod pests of banana includes banana weevil, Cosmopolites sordidus Germar (Coleoptera: Curculionidae) (with EPNs and fungi) among others Oryctes rhinoceros (L.) is one of the most important pests of coconut and one of the most successful uses of non-occluded virus for classical biological control. Key pests of mango that have been controlled with microbial control agents include fruit flies (Diptera: Tephritidae) (with EPNs and fungi), and other pests. Also successful is the microbial control of arthropod pests of guava, papaya and pineapple. The challenge towards a broader application of entomopathogens is the development of successful combinations of entomopathogens, predators, and parasitoids along with other interventions to produce effective and sustainable pest management.

  11. Opportunities for microbial control of pulse crop pests

    Science.gov (United States)

    The insect pest complex in U.S. pulse crops is almost an “orphan” in terms of developed microbial control agents that the grower can use. There are almost no registered microbial pest control agents (MPCA) for the different pulse pests. In some cases a microbial is registered for use against specifi...

  12. Inheritance and segregation of exogenous genes in transgenic cotton

    Indian Academy of Sciences (India)

    1Key Laboratory of Cotton Genetic Improvement of the Ministry of Agriculture, Cotton Research Institute, Chinese. Academy of Agricultural Sciences, Anyang Henan 455 112, People's Republic of China. 2Institute ..... Athens, Greece. Xie D. X. ...

  13. The complete genome sequence of a virus associated with cotton blue disease, cotton leafroll dwarf virus, confirms that it is a new member of the genus Polerovirus.

    Science.gov (United States)

    Distéfano, Ana J; Bonacic Kresic, Ivan; Hopp, H Esteban

    2010-11-01

    Cotton blue disease is the most important virus disease of cotton in the southern part of America. The complete nucleotide sequence of the ssRNA genome of the cotton blue disease-associated virus was determined for the first time. It comprised 5,866 nucleotides, and the deduced genomic organization resembled that of members of the genus Polerovirus. Sequence homology comparison and phylogenetic analysis confirm that this virus (previous proposed name cotton leafroll dwarf virus) is a member of a new species within the genus Polerovirus.

  14. Conductive Cotton Textile from Safely Functionalized Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Mohammad Jellur Rahman

    2015-01-01

    Full Text Available Electroconductive cotton textile has been prepared by a simple dipping-drying coating technique using safely functionalized multiwalled carbon nanotubes (f-MWCNTs. Owing to the surface functional groups, the f-MWCNTs become strongly attached with the cotton fibers forming network armors on their surfaces. As a result, the textile exhibits enhanced electrical properties with improved thermal conductivity and therefore is demonstrated as a flexible electrothermal heating element. The fabricated f-MWCNTs/cotton textile can be heated uniformly from room temperature to ca. 100°C within few minutes depending on the applied voltage. The textile shows good thermal stability and repeatability during a long-term heating test.

  15. The Optimal Tax on Antebellum U.S. Cotton Exports

    OpenAIRE

    Douglas A. Irwin

    2001-01-01

    The United States produced about 80 percent of the world's cotton in the decades prior to the Civil War. How much monopoly power did the United States possess in the world cotton market and what would have been the effect of an optimal export tax? This paper estimates the elasticity of foreign demand for U.S. cotton exports and uses the elasticity in a simple partial equilibrium model to calculate the optimal export tax and its effect on prices, trade, and welfare. The results indicate that t...

  16. A diverse family of serine proteinase genes expressed in cotton boll weevil (Anthonomus grandis): implications for the design of pest-resistant transgenic cotton plants.

    Science.gov (United States)

    Oliveira-Neto, Osmundo B; Batista, João A N; Rigden, Daniel J; Fragoso, Rodrigo R; Silva, Rodrigo O; Gomes, Eliane A; Franco, Octávio L; Dias, Simoni C; Cordeiro, Célia M T; Monnerat, Rose G; Grossi-De-Sá, Maria F

    2004-09-01

    Fourteen different cDNA fragments encoding serine proteinases were isolated by reverse transcription-PCR from cotton boll weevil (Anthonomus grandis) larvae. A large diversity between the sequences was observed, with a mean pairwise identity of 22% in the amino acid sequence. The cDNAs encompassed 11 trypsin-like sequences classifiable into three families and three chymotrypsin-like sequences belonging to a single family. Using a combination of 5' and 3' RACE, the full-length sequence was obtained for five of the cDNAs, named Agser2, Agser5, Agser6, Agser10 and Agser21. The encoded proteins included amino acid sequence motifs of serine proteinase active sites, conserved cysteine residues, and both zymogen activation and signal peptides. Southern blotting analysis suggested that one or two copies of these serine proteinase genes exist in the A. grandis genome. Northern blotting analysis of Agser2 and Agser5 showed that for both genes, expression is induced upon feeding and is concentrated in the gut of larvae and adult insects. Reverse northern analysis of the 14 cDNA fragments showed that only two trypsin-like and two chymotrypsin-like were expressed at detectable levels. Under the effect of the serine proteinase inhibitors soybean Kunitz trypsin inhibitor and black-eyed pea trypsin/chymotrypsin inhibitor, expression of one of the trypsin-like sequences was upregulated while expression of the two chymotrypsin-like sequences was downregulated. Copyright 2004 Elsevier Ltd.

  17. Agricultural Plant Pest Control. Manual 93.

    Science.gov (United States)

    Missouri Univ., Columbia. Agricultural Experiment Station.

    This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides for the agricultural plant pest control category. The text discusses the insect pests including caterpillars, beetles, and soil inhabiting insects; diseases and nematodes; and weeds. Consideration is given…

  18. Identification and characterization of microRNAs in Asiatic cotton (Gossypium arboreum L..

    Directory of Open Access Journals (Sweden)

    Min Wang

    Full Text Available To date, no miRNAs have been identified in the important diploid cotton species although there are several reports on miRNAs in upland cotton. In this study, we identified 73 miRNAs, belonging to 49 families, from Asiatic cotton using a well-developed comparative genome-based homologue search. Several of the predicted miRNAs were validated using quantitative real time PCR (qRT-PCR. The length of miRNAs varied from 18 to 22 nt with an average of 20 nt. The length of miRNA precursors also varied from 46 to 684 nt with an average of 138 ±120 nt. For a majority of Asiatic cotton miRNAs, there is only one member per family; however, multiple members were identified for miRNA 156, 414, 837, 838, 1044, 1533, 2902, 2868, 5021 and 5142 families. Nucleotides A and U were dominant, accounted for 62.95%, in the Asiatic cotton pre-miRNAs. The Asiatic cotton pre-miRNAs had high negative minimal folding free energy (MFE and adjusted MFE (AMFE and high MFE index (MFEI. Many miRNAs identified in Asiatic cotton suggest that miRNAs also play a similar regulatory mechanism in diploid cotton.

  19. Insect pests of tea and their management.

    Science.gov (United States)

    Hazarika, Lakshmi K; Bhuyan, Mantu; Hazarika, Budhindra N

    2009-01-01

    Globally, 1031 species of arthropods are associated with the intensively managed tea Camellia sinensis (L.) O. Kuntze monoculture. All parts of the plant, leaf, stem, root, flower, and seed, are fed upon by at least one pest species, resulting in an 11%-55% loss in yield if left unchecked. There has been heavy use of organosynthetic pesticides since the 1950s to defend the plant against these pests, leading to rapid conversion of innocuous species into pests, development of resistance, and undesirable pesticide residues in made tea. As a result of importer and consumer concerns, pesticide residues have become a major problem for the tea industry. Integrated pest management (IPM) may help to overcome the overuse of pesticides and subsequent residues. We review the advances made in our understanding of the biology and ecology of major insect and mite pests of tea, host plant resistance, cultural practices, biocontrol measures, and need-based application of botanicals and safer pesticides to understand the present status of IPM and to identify future challenges to improvement.

  20. Fabrication of superhydrophobic cotton fabrics using crosslinking polymerization method

    Science.gov (United States)

    Jiang, Bin; Chen, Zhenxing; Sun, Yongli; Yang, Huawei; Zhang, Hongjie; Dou, Haozhen; Zhang, Luhong

    2018-05-01

    With the aim of removing and recycling oil and organic solvent from water, a facile and low-cost crosslinking polymerization method was first applied on surface modification of cotton fabrics for water/oil separation. Micro-nano hierarchical rough structure was constructed by triethylenetetramine (TETA) and trimesoyl chloride (TMC) that formed a polymeric layer on the surface of the fabric and anchored Al2O3 nanoparticles firmly between the fabric surface and the polymer layer. Superhydrophobic property was further obtained through self-assembly grafting of hydrophobic groups on the rough surface. The as-prepared cotton fabric exhibited superoleophilicity in atmosphere and superhydrophobicity both in atmosphere and under oil with the water contact angle of 153° and 152° respectively. Water/oil separation test showed that the as-prepared cotton fabric can handle with various oil-water mixtures with a high separation efficiency over 99%. More importantly, the separation efficiency remained above 98% over 20 cycles of reusing without losing its superhydrophobicity which demonstrated excellent reusability in oil/water separation process. Moreover, the as-prepared cotton fabric possessed good contamination resistance ability and self-cleaning property. Simulation washing process test showed the superhydrophobic cotton fabric maintained high value of water contact angle above 150° after 100 times washing, indicating great stability and durability. In summary, this work provides a brand-new way to surface modification of cotton fabric and makes it a promising candidate material for oil/water separation.

  1. Validating spatiotemporal predictions of an important pest of small grains.

    Science.gov (United States)

    Merrill, Scott C; Holtzer, Thomas O; Peairs, Frank B; Lester, Philip J

    2015-01-01

    Arthropod pests are typically managed using tactics applied uniformly to the whole field. Precision pest management applies tactics under the assumption that within-field pest pressure differences exist. This approach allows for more precise and judicious use of scouting resources and management tactics. For example, a portion of a field delineated as attractive to pests may be selected to receive extra monitoring attention. Likely because of the high variability in pest dynamics, little attention has been given to developing precision pest prediction models. Here, multimodel synthesis was used to develop a spatiotemporal model predicting the density of a key pest of wheat, the Russian wheat aphid, Diuraphis noxia (Kurdjumov). Spatially implicit and spatially explicit models were synthesized to generate spatiotemporal pest pressure predictions. Cross-validation and field validation were used to confirm model efficacy. A strong within-field signal depicting aphid density was confirmed with low prediction errors. Results show that the within-field model predictions will provide higher-quality information than would be provided by traditional field scouting. With improvements to the broad-scale model component, the model synthesis approach and resulting tool could improve pest management strategy and provide a template for the development of spatially explicit pest pressure models. © 2014 Society of Chemical Industry.

  2. Inventories of Asian textile producers, US cotton exports, and the exchange rate

    Directory of Open Access Journals (Sweden)

    Durmaz Nazif

    2014-01-01

    Full Text Available The present paper develops a model with US cotton exports depending on the stock-to-use ratio, trade weighted exchange rates, and the relative cotton prices. The role of inventories in cotton consumption is examined in five textile producing cotton importers, China, Indonesia, Thailand, South Korea, and Taiwan. Cotton inventory dynamics is diverse among Asian textile producers. Relative prices have negative effect in all markets as expected. Exchange rate elasticities show that effects should be examined for each separate market. Changes in rates of depreciation also have stronger effects than exchange rate. Results reveal that these countries are not all that homogenous.

  3. Polyploidization altered gene functions in cotton (Gossypium spp.)

    Science.gov (United States)

    Cotton fibers are seed trichomes derived from individual cells of the epidermal layer of the seed coat. It has been known for a long time that a large set of genes determine the development of cotton fiber, and more recently it has been determined that these genes are distributed across the At and ...

  4. Dynamic and Stochastic Structures of U.S. Cotton Exports and Mill Demand

    OpenAIRE

    Fadiga, Mohamadou L.

    2006-01-01

    This study employs a structural time-series method to model and estimate U.S. cotton exports and mill use. The results show that the stochastic process governing cotton export fluctuations is transitory, while the process pertaining to mill use has transitory, seasonal, and secular origins. The estimated structural relationships after accounting for the unobserved components indicate U.S. cotton exports respond directly to higher international price relative to domestic price of cotton, while...

  5. Textile industry can be less pollutant: introducing naturally colored cotton

    Directory of Open Access Journals (Sweden)

    Solimar Garcia

    2014-07-01

    Full Text Available 800x600 Studies in agribusiness and textile industry, both involved with the production of manufacturing fashion present insufficient development for new products that could represent water savings and reduction of chemical effluents, making this production chain a sustainable business. This paper introduces the colored and organic cotton as an alternative to foster colored cotton producing farmers and improving the concept of sustainability in the textile sector. Results show that the increase in the production of colored and organic cotton, may result in reduction of water use, and consequent reduction in the disposal of effluents in nature. As the colored and organic cotton is produced by small farmers, governmental agencies need to participate in the effort of improving its production and distribution, providing the needed infrastructure to meet the increasing market. This would slowly encourage the reduction of white cotton consumption in exchange for this naturally colored product. The water used, and consequent polluted discharge in the use of colored cotton in the textile industry might be reduced by 70%, assuming a reduction of environmental impact of 5% per year would represent expressive numbers in the next ten years. Normal 0 21 false false false ES X-NONE X-NONE

  6. ENTOMOLOGY - INSECTS AND OTHER PESTS IN FIELD CROPS

    Directory of Open Access Journals (Sweden)

    Marija Ivezić

    2009-12-01

    Full Text Available The academic textbook Entomology - Insects and other pests in field crops, describes the most important pests of field crops supported by many photographs. The textbook encompasses 15 chapters. Importance of entomology in intensive plant production is discussed in introductory chapter, in terms of increased threat of insects and other pests. Morphology, anatomy and physiology are given in the second and third chapter, while ways and phases of insect development are elaborated in the fourth chapter. The fifth chapter, overview of insect systematic is given. Polyphagous insects are described from the sixth to fourteenth chapter, as follows: pests of cereals, maize, sugar beet, sunflower, oil seed rape, soybean, forage crops and stored products. In the last chapter, principles of integrated pest management are described due to proper application of all control measures to obtain healthier food production.

  7. Thermal reduction of graphene-oxide-coated cotton for oil and organic solvent removal

    International Nuclear Information System (INIS)

    Hoai, Nguyen To; Sang, Nguyen Nhat; Hoang, Tran Dinh

    2017-01-01

    Highlights: • A new method for preparation of reduced-graphene-oxide (RGO) coated cotton is proposed. • The RGO-Cotton composites were carefully characterized using many modern techniques. • RGO-Cotton exhibited superhydrophobicity and superolephilicity. • RGO-Cotton sponges can absorb many types of oils and organic solvents and can be recycled. - Abstract: The reduced-graphene-oxide (RGO)-coated cotton sponge (RGO-Cot) was prepared by simply heating a graphene-oxide (GO)-coated cotton sponge, which was fabricated by dipping a commercial cotton sponge into a GO dispersion, under vacuum at 200 °C for 2 h. The thus prepared RGO-Cot sponges exhibited superhydrophobicity and superoleophilicity, with a water contact angle of 151°. These RGO-Cot sponges could be used for removal of many types of oils and organic solvents as they exhibit absorption capacities in the range of 22–45 times their weight and good absorption recyclability.

  8. Thermal reduction of graphene-oxide-coated cotton for oil and organic solvent removal

    Energy Technology Data Exchange (ETDEWEB)

    Hoai, Nguyen To, E-mail: hoaito@pvu.edu.vn; Sang, Nguyen Nhat; Hoang, Tran Dinh

    2017-02-15

    Highlights: • A new method for preparation of reduced-graphene-oxide (RGO) coated cotton is proposed. • The RGO-Cotton composites were carefully characterized using many modern techniques. • RGO-Cotton exhibited superhydrophobicity and superolephilicity. • RGO-Cotton sponges can absorb many types of oils and organic solvents and can be recycled. - Abstract: The reduced-graphene-oxide (RGO)-coated cotton sponge (RGO-Cot) was prepared by simply heating a graphene-oxide (GO)-coated cotton sponge, which was fabricated by dipping a commercial cotton sponge into a GO dispersion, under vacuum at 200 °C for 2 h. The thus prepared RGO-Cot sponges exhibited superhydrophobicity and superoleophilicity, with a water contact angle of 151°. These RGO-Cot sponges could be used for removal of many types of oils and organic solvents as they exhibit absorption capacities in the range of 22–45 times their weight and good absorption recyclability.

  9. THE WORLD TRADE ORGANIZATION AND SOUTHERN AGRICULTURE: THE COTTON PERSPECTIVE

    OpenAIRE

    Hudson, Darren

    2000-01-01

    The World Trade Organization (WTO) negotiations could have important implications for Southern Agriculture. This paper explores some of the issues surrounding the WTO negotiations for cotton. Specifically, this paper examines the impacts of the phase-out of the Multi-Fiber Arrangement (MFA) on the location of textile production and cotton trade flows. Generally, it is believed that the WTO negotiations will have little direct impact on cotton, but will have indirect impacts through textile po...

  10. King Cotton's Lasting Legacy of Poverty and Southern Region Contemporary Conditions

    Science.gov (United States)

    Guthrie, James W.; Peevely, Gary

    2010-01-01

    One hundred fifty years ago, cotton was considered as the king of all United States' agricultural exports. Cotton's dollar value far exceeded that of any other mid-19th-century United States trade item, much more than tobacco, fish, forest products, raw materials for manufacturing, or manufactured items. Indeed, in the mid-19th century, cotton was…

  11. Effect Of Bird Manure On Cotton Plants Grown On Soils Sampled ...

    African Journals Online (AJOL)

    Cotton plant had a better development and growth when bird manure was only applied to soil or combined with mineral fertilizer and when cotton was grown on a soil where the previous crops were cereals (maize or sorghum). Planting cotton on a soil where the previous crop grown was maize or sorghum had no significant ...

  12. Saussurea involucrata SiDhn2 gene confers tolerance to drought stress in upland cotton

    International Nuclear Information System (INIS)

    Liu, B.; Zhu, J.; Mu, J.; Zhu, J.; Liang, Z.; Zhang, L.

    2017-01-01

    Severe water shortage has long been acknowledged as one major limiting factor for global cotton production, and cultivation of cotton varieties with strong drought resistance is of important economic and social significances. In this study, the Xinjiang upland cotton variety Xinluzao 42 was transformed with the SiDhn2 gene by optimized agrobacterium transformation system. The integration of SiDhn2 gene into cotton genome was confirmed by PCR and Southern blot hybridization, and the drought resistance of transgenic and corresponding receptor cotton plants and their physiological indexes under drought stress were detailedly analyzed. Multiple physiological and biochemical indexes including soluble sugar content, free proline content, chlorophyll content, relative water content, net photosynthetic rate, transpiration rate, intercellular CO/sub 2/ concentration in transgenic cotton expressing SiDhn2 gene under drought stress were significantly higher than those of receptor cotton. More importantly, the transgenic cotton plants exhibited remarkably decreased boll abscission rate and highly increased seed yield, indicating the significant role of SiDhn2 gene in cotton drought resistance and its great application potential in agricultural production. (author)

  13. 19 CFR 12.31 - Plant pests.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Plant pests. 12.31 Section 12.31 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Wild Animals, Birds, and Insects § 12.31 Plant pests. The importation in a...

  14. Impact of climate change on insect pests of trees

    NARCIS (Netherlands)

    Moraal, L.G.; Jagers op Akkerhuis, L.; Jagers op Akkerhuis, G.A.J.M.

    2008-01-01

    There are many interactions and it is exetremely difficult to predict the impact of climate change on insect pests in the future, but we may expect an increase of certain primary pests as well as secondary pests and invasive species

  15. POLICY IMPLICATIONS OF TEXTILE TRADE MANAGEMENT AND THE U.S. COTTON INDUSTRY

    OpenAIRE

    Shui, Shangnan; Wohlgenant, Michael K.; Beghin, John C.

    1993-01-01

    This study investigates the effects on the U.S. cotton industry of textile trade liberalization using a multi-market equilibrium displacement model. The simulation results suggest that textile trade liberalization would induce small changes in the total demand for U.S. cotton but would affect considerable y U.S. cotton demand structure, making U. S, cotton growers more dependent on world markets. The welfare analyses reveal that textile trade liberalization would result in a small welfare los...

  16. Effects of nematicides on cotton root mycobiota.

    Science.gov (United States)

    Baird, R E; Carling, D E; Watson, C E; Scruggs, M L; Hightower, P

    2004-02-01

    Baseline information on the diversity and population densities of fungi collected from soil debris and cotton (Gossypium hirsutum L.) roots was determined. Samples were collected from Tifton, GA, and Starkville, MS containing cotton field soil treated with the nematicides 1,3-dichloroproprene (fumigant) and aldicarb (granules). A total of 10,550 and 13,450 fungal isolates were collected from these two study sites, respectively. Of this total, 34 genera of plant pathogenic or saprophytic species were identified. Pathogenic root fungi included Fusarium spp. (40% of all isolations), Macrophomina, Pythium, Rhizoctonia, and Sclerotium. Fusarium and Rhizoctonia were the most common fungal species identified and included F. oxysporum, F. verticillioides and F. solani, the three Fusarium species pathogenic on cotton plants. Population densities of Fusarium were not significantly different among locations or tissue types sampled. Macrophomina was isolated at greater numbers near the end of the growing seasons. Anastomosis groups of R. solani isolated from roots and soil debris included AG-3, -4, -7, 2-2, and -13 and anastomosis groups of binucleate Rhizoctonia included CAG-2, -3, and -5. Occurrences and frequency of isolations among sampling dates were not consistent. Fluctuations in the frequency of isolation of Rhizoctonia did not correspond with changes in frequency of isolation of the biological control fungus, Trichoderma. When individual or pooled frequencies of the mycobiota were compared to nematicide treatments, no specific trends occurred between treatments, application methods or rates. Results from this study show that use of 1,3-D and aldicarb in cotton fields does not significantly impact plant pathogenic fungi or saprophytic fungal populations. Thus cotton producers need not adjust seedling disease control measures when these two nematicides are used.

  17. Problem prevention and holistic pest management [Chapter 14

    Science.gov (United States)

    Thomas D. Landis; Tara Luna; R. Kasten Dumroese; Kim M. Wilkinson

    2014-01-01

    As any experienced grower knows only too well, nursery management is a continuous process of solving problems. One recurring problem is pests. In the past, nursery managers waited for an insect or disease to appear and then sprayed some toxic chemical to wipe out the pest or disease. This approach, however, also wipes out natural predators of the pest, resulting in an...

  18. Habitat functionality for the ecosystem service of pest control: reproduction and feeding sites of pests and natural enemies

    NARCIS (Netherlands)

    Bianchi, F.J.J.A.; Schellhorn, N.A.; Cunningham, S.A.

    2013-01-01

    1 Landscape management for enhanced natural pest control requires knowledge of the ecological function of the habitats present in the landscape mosaic. However, little is known about which habitat types in agricultural landscapes function as reproduction habitats for arthropod pests and predators

  19. Integrated Pest Management Intervention in Child Care Centers Improves Knowledge, Pest Control, and Practices.

    Science.gov (United States)

    Alkon, Abbey; Nouredini, Sahar; Swartz, Alicia; Sutherland, Andrew Mason; Stephens, Michelle; Davidson, Nita A; Rose, Roberta

    To reduce young children's exposure to pests and pesticides, an integrated pest management (IPM) intervention was provided for child care center staff. The 7-month IPM education and consultation intervention was conducted by trained nurse child care health consultants in 44 child care centers in California. IPM knowledge surveys were completed by child care staff, objective IPM assessments were completed by research assistants pre- and postintervention, and activity logs were completed by the nurses. There were significant increases in IPM knowledge for the child care staff who attended workshops. There were reductions in the prevalence of pests and increases in IPM practices at the postintervention compared with the preintervention time point. The nurses consulted an average of 5.4 hours per center. A nurse-led IPM intervention in child care centers can reduce exposure to harmful substances for young children attending child care centers. Copyright © 2016 National Association of Pediatric Nurse Practitioners. Published by Elsevier Inc. All rights reserved.

  20. 78 FR 54970 - Cotton Futures Classification: Optional Classification Procedure

    Science.gov (United States)

    2013-09-09

    ... Service 7 CFR Part 27 [AMS-CN-13-0043] RIN 0581-AD33 Cotton Futures Classification: Optional Classification Procedure AGENCY: Agricultural Marketing Service, USDA. ACTION: Proposed rule. SUMMARY: The... optional cotton futures classification procedure--identified and known as ``registration'' by the U.S...

  1. 78 FR 9330 - Revision of Regulations Defining Bona Fide Cotton Spot Markets

    Science.gov (United States)

    2013-02-08

    ... Cotton Spot Markets AGENCY: Agricultural Marketing Service, USDA. ACTION: Proposed rule. SUMMARY: The... bona fide cotton spot markets in order to assure consistency with the revised Cotton Research and Promotion Act. Updated bona fide spot market definitions will allow for published spot quotes to consider...

  2. Asymmetric Evolution and Expansion of the NAC Transcription Factor in Polyploidized Cotton

    Directory of Open Access Journals (Sweden)

    Kai Fan

    2018-01-01

    Full Text Available Polyploidy in Gossypium hirsutum conferred different properties from its diploid ancestors under the regulation of transcription factors. The NAC transcription factor is a plant-specific family that can be related to plant growth and development. So far, little is known about the NAC family in cotton. This study identified 495 NAC genes in three cotton species and investigated the evolution and expansion of different genome-derived NAC genes in cotton. We revealed 15 distinct NAC subfamilies in cotton. Different subfamilies had different gene proportions, expansion rate, gene loss rate, and orthologous exchange rate. Paleohexaploidization (35% and cotton-specific decaploidy (32% might have primarily led to the expansion of the NAC family in cotton. Half of duplication events in G. hirsutum were inherited from its diploid ancestor, and others might have occurred after interspecific hybridization. In addition, NAC genes in the At and Dt subgenomes displayed asymmetric molecular evolution, as evidenced by their different gene loss rates, orthologous exchange, evolutionary rates, and expression levels. The dominant duplication event was different during the cotton evolutionary history. Different genome-derived NACs might have interacted with each other, which ultimately resulted in morphogenetic evolution. This study delineated the expansion and evolutionary history of the NAC family in cotton and illustrated the different fates of NAC genes during polyploidization.

  3. Conductive Cotton Fabrics for Motion Sensing and Heating Applications

    Directory of Open Access Journals (Sweden)

    Mengyun Yang

    2018-05-01

    Full Text Available Conductive cotton fabric was prepared by coating single-wall carbon nanotubes (CNTs on a knitted cotton fabric surface through a “dip-and-dry” method. The combination of CNTs and cotton fabric was analyzed using scanning electron microscopy (SEM and Raman scattering spectroscopy. The CNTs coating improved the mechanical properties of the fabric and imparted conductivity to the fabric. The electromechanical performance of the CNT-cotton fabric (CCF was evaluated. Strain sensors made from the CCF exhibited a large workable strain range (0~100%, fast response and great stability. Furthermore, CCF-based strain sensors was used to monitor the real-time human motions, such as standing, walking, running, squatting and bending of finger and elbow. The CCF also exhibited strong electric heating effect. The flexible strain sensors and electric heaters made from CCF have potential applications in wearable electronic devices and cold weather conditions.

  4. Methylation-sensitive amplified polymorphism analysis of Verticillium wilt-stressed cotton (Gossypium).

    Science.gov (United States)

    Wang, W; Zhang, M; Chen, H D; Cai, X X; Xu, M L; Lei, K Y; Niu, J H; Deng, L; Liu, J; Ge, Z J; Yu, S X; Wang, B H

    2016-10-06

    In this study, a methylation-sensitive amplification polymorphism analysis system was used to analyze DNA methylation level in three cotton accessions. Two disease-sensitive near-isogenic lines, PD94042 and IL41, and one disease-resistant Gossypium mustelinum accession were exposed to Verticillium wilt, to investigate molecular disease resistance mechanisms in cotton. We observed multiple different DNA methylation types across the three accessions following Verticillium wilt exposure. These included hypomethylation, hypermethylation, and other patterns. In general, the global DNA methylation level was significantly increased in the disease-resistant accession G. mustelinum following disease exposure. In contrast, there was no significant difference in the disease-sensitive accession PD94042, and a significant decrease was observed in IL41. Our results suggest that disease-resistant cotton might employ a mechanism to increase methylation level in response to disease stress. The differing methylation patterns, together with the increase in global DNA methylation level, might play important roles in tolerance to Verticillium wilt in cotton. Through cloning and analysis of differently methylated DNA sequences, we were also able to identify several genes that may contribute to disease resistance in cotton. Our results revealed the effect of DNA methylation on cotton disease resistance, and also identified genes that played important roles, which may shed light on the future cotton disease-resistant molecular breeding.

  5. Agricultural Animal Pest Control. Bulletin 767.

    Science.gov (United States)

    Nolan, Maxcy P., Jr.

    Included in this training manual are descriptions and pictures of the following agricultural animal pests: mosquitoes, stable flies, horse flies and deer or yellow flies, house flies, horn flies, wound-infesting larvae, lice, mites, ticks, and bots and grubs. Information is given on the life-cycle and breeding habits of the pests. Methods of…

  6. Agricultural Plant Pest Control. Bulletin 763.

    Science.gov (United States)

    French, John C.; And Others

    This manual gives general information on plant pests and pesticides. First, the life-cycle and habits of some common insect pests are given. These include caterpillars, beetles and beetle larvae, and sucking insects. Next, plant diseases such as leaf diseases, wilts, root and crown rots, stem cankers, fruit rots, seed and seedling diseases, and…

  7. Comparative Analysis of Discovery Function of Cotton Future Price among Different Regions——A Case Study of Xinjiang

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Through comparative analysis, We research the relationship between cotton future price and cotton spot price in different regions, in order to formulate corresponding strategies in different regions under the new situation. We use ADF unit root test, E-G two-step cointegration test, Granger causality test, and other research methods in Eviews 5.0 statistical software, to empirically study the relationship between the cotton future price and cotton spot price in Xinjiang, the relationship between the cotton future price and cotton spot price in China. The results show that there is a long-term relationship between the cotton future price and cotton spot price in Xinjiang, between the cotton future price and cotton spot price in China; the cotton future price plays unidirectional role in guiding cotton spot price in Xinjiang and cotton spot price in China. The discovery function of cotton future price plays much greater role in the cotton market of China than in the cotton market of Xinjiang.

  8. Effect of Gamma Irradiation Doses on Some Chemical Characteristics of Cotton Seed Oil

    International Nuclear Information System (INIS)

    Saleh, O.I.

    2011-01-01

    Cotton Seeds c.v. Giza 85 (Gossypium hirsutum L.) were exposed to gamma irradiation doses of 0.5, 1.0 and 1.5 kGy to improve some chemical characteristics of cotton seed oil i.e. saturated and unsaturated fatty acids, gossypol and βsitosterol that were bound oil. The presented study showed that, the saturated fatty acids; lauric, palmitic and stearic increased when the cotton seeds were exposed to gamma irradiation doses of 0.5 up to 1.5 kGy, On the other hand, arachidic acid content decreased in all the irradiated treatments compared with untreated cotton seed. The unsaturated fatty acid oleic was increased in irradiated cotton seed samples compared with untreated one, while linoleic, the major unsaturated fatty acid decreased in irradiated cotton seed oil than untreated seeds. Gossypol and βsitosterol, bound oil, in irradiated cotton seeds increased gradually with gamma irradiated doses compared with untreated control samples

  9. An Assessment of Current Policy Initiatives in Zambia's Cotton Sector

    OpenAIRE

    Zulu, Ballard; Tschirley, David L.

    2004-01-01

    This paper assesses three of these policy initiatives: input credit provision for smallholder producers of selected cash crops including cotton, the proposed creation of a Cotton Board, and the emergence in 2003 of District Council levies as a point of conflict between local governments and cotton companies. The purpose of the paper is to provide guidance to public and private decision makers regarding key modifications which may need to be made to these policies to ensure continued healthy d...

  10. Cotton phenotyping with lidar from a track-mounted platform

    Science.gov (United States)

    French, Andrew N.; Gore, Michael A.; Thompson, Alison

    2016-05-01

    High-Throughput Phenotyping (HTP) is a discipline for rapidly identifying plant architectural and physiological responses to environmental factors such as heat and water stress. Experiments conducted since 2010 at Maricopa, Arizona with a three-fold sensor group, including thermal infrared radiometers, active visible/near infrared reflectance sensors, and acoustic plant height sensors, have shown the validity of HTP with a tractor-based system. However, results from these experiments also show that accuracy of plant phenotyping is limited by the system's inability to discriminate plant components and their local environmental conditions. This limitation may be overcome with plant imaging and laser scanning which can help map details in plant architecture and sunlit/shaded leaves. To test the capability for mapping cotton plants with a laser system, a track-mounted platform was deployed in 2015 over a full canopy and defoliated cotton crop consisting of a scanning LIDAR driven by Arduinocontrolled stepper motors. Using custom Python and Tkinter code, the platform moved autonomously along a pipe-track at 0.1 m/s while collecting LIDAR scans at 25 Hz (0.1667 deg. beam). These tests showed that an autonomous LIDAR platform can reduce HTP logistical problems and provide the capability to accurately map cotton plants and cotton bolls. A prototype track-mounted platform was developed to test the use of LIDAR scanning for High- Throughput Phenotyping (HTP). The platform was deployed in 2015 at Maricopa, Arizona over a senescent cotton crop. Using custom Python and Tkinter code, the platform moved autonomously along a pipe-track at cotton bolls.

  11. POTASSIUM FERTILIZATION AND SOIL MANAGEMENT SYSTEMS FOR COTTON CROPS

    Directory of Open Access Journals (Sweden)

    VITOR MARQUES VIDAL

    2017-01-01

    Full Text Available Cotton has great socio-economic importance due to its use in textile industry, edible oil and biodiesel production and animal feed. Thus, the objective of this work was to identify the best potassium rate and soil management for cotton crops and select among cultivars, the one that better develops in the climatic conditions of the Cerrado biome in the State of Goiás, Brazil. Thus, the effect of five potassium rates (100, 150, 200, 250 and 300 kg ha-1 of K2O and two soil management systems (no-till and conventional tillage on the growth, development and reproduction of four cotton cultivars (BRS-371, BRS-372, BRS-286 and BRS-201 was evaluated. The data on cotton growth and development were subjected to analysis of variance; the data on potassium rates were subjected to regression analysis; and the data on cultivars and soil management to mean test. The correlation between the vegetative and reproductive variables was also assessed. The conventional tillage system provides the best results for the herbaceous cotton, regardless of the others factors evaluated. The cultivar BRS-286 has the best results in the conditions evaluated. The cultivar BRS-371 under no-till system present the highest number of fruiting branches at a potassium rate of 105.5% and highest number of floral buds at a potassium rate of 96.16%. The specific leaf area was positively correlated with the number of bolls per plant at 120 days after emergence of the herbaceous cotton.

  12. Cotton Trade Liberalizations and Domestic Agricultural Policy Reforms: A Partial Equilibrium Analysis

    OpenAIRE

    Pan, Suwen; Fadiga, Mohamadou L.; Mohanty, Samarendu; Welch, Mark

    2006-01-01

    This paper analyzed the effects of trade liberalizing reforms in the world cotton market using a partial equilibrium model. The simulation results indicated that a removal of domestic subsidies and border tariffs for cotton would increase the amount of world cotton trade by an average of 4% in the next five years and world cotton prices by an average of 12% over the same time horizon. The findings indicated that under the liberalization policy, the United States would lose part of its export ...

  13. Isolation and characterization of gene sequences expressed in cotton fiber

    Directory of Open Access Journals (Sweden)

    Taciana de Carvalho Coutinho

    2016-06-01

    Full Text Available ABSTRACT Cotton fiber are tubular cells which develop from the differentiation of ovule epidermis. In addition to being one of the most important natural fiber of the textile group, cotton fiber afford an excellent experimental system for studying the cell wall. The aim of this work was to isolate and characterise the genes expressed in cotton fiber (Gossypium hirsutum L. to be used in future work in cotton breeding. Fiber of the cotton cultivar CNPA ITA 90 II were used to extract RNA for the subsequent generation of a cDNA library. Seventeen sequences were obtained, of which 14 were already described in the NCBI database (National Centre for Biotechnology Information, such as those encoding the lipid transfer proteins (LTPs and arabinogalactans (AGP. However, other cDNAs such as the B05 clone, which displays homology with the glycosyltransferases, have still not been described for this crop. Nevertheless, results showed that several clones obtained in this study are associated with cell wall proteins, wall-modifying enzymes and lipid transfer proteins directly involved in fiber development.

  14. Predicting Spatial Distribution of Key Honeybee Pests in Kenya Using Remotely Sensed and Bioclimatic Variables: Key Honeybee Pests Distribution Models

    Directory of Open Access Journals (Sweden)

    David M. Makori

    2017-02-01

    Full Text Available Bee keeping is indispensable to global food production. It is an alternate income source, especially in rural underdeveloped African settlements, and an important forest conservation incentive. However, dwindling honeybee colonies around the world are attributed to pests and diseases whose spatial distribution and influences are not well established. In this study, we used remotely sensed data to improve the reliability of pest ecological niche (EN models to attain reliable pest distribution maps. Occurrence data on four pests (Aethina tumida, Galleria mellonella, Oplostomus haroldi and Varroa destructor were collected from apiaries within four main agro-ecological regions responsible for over 80% of Kenya’s bee keeping. Africlim bioclimatic and derived normalized difference vegetation index (NDVI variables were used to model their ecological niches using Maximum Entropy (MaxEnt. Combined precipitation variables had a high positive logit influence on all remotely sensed and biotic models’ performance. Remotely sensed vegetation variables had a substantial effect on the model, contributing up to 40.8% for G. mellonella and regions with high rainfall seasonality were predicted to be high-risk areas. Projections (to 2055 indicated that, with the current climate change trend, these regions will experience increased honeybee pest risk. We conclude that honeybee pests could be modelled using bioclimatic data and remotely sensed variables in MaxEnt. Although the bioclimatic data were most relevant in all model results, incorporating vegetation seasonality variables to improve mapping the ‘actual’ habitat of key honeybee pests and to identify risk and containment zones needs to be further investigated.

  15. Forest nursery pest management in Cuba

    Science.gov (United States)

    Rene Alberto Lopez Castilla; Angela Duarte Casanova; Celia Guerra Rivero; Haylett Cruz Escoto; Natividad Triguero Issasi

    2002-01-01

    A systematic survey of methods to detect pests in forest nurseries before they damage plants was done. These surveys recorded the most important forest nursery pests during 18 years (from 1980 to 1998) and their geographical and temporal distribution in the principal enterprises in Cuba. Approximately a dozen insect species and three fungi species responsible for the...

  16. Converting pest insects into food

    DEFF Research Database (Denmark)

    Offenberg, Hans Joachim; Wiwatwittaya, Decha

    2010-01-01

    Canopy dwelling weaver ants (Oecophylla spp.) are used to control a variety of pests in a number of tropical tree crops. What is less familiar is the existence of commercial markets where these ants and their brood are sold for (i) human consumption, (ii) pet food or (iii) traditional medicine...... on management, 32-115 kg ant brood (mainly new queens) was harvested per ha per year without detrimental effect on colony survival and worker ant densities. This suggest that ant biocontrol and ant harvest can be sustainable integrated in plantations and double benefits derived. As ant production is fuelled...... by pest insects, problematic pests are converted into food and additional earnings. To assess the profitability of providing additional food for the ants, O. smaragdina food conversion efficiency (ECI) was estimated in the laboratory. This estimate suggests the feeding of weaver ants in ant farms...

  17. Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control.

    Science.gov (United States)

    Bianchi, F J J A; Booij, C J H; Tscharntke, T

    2006-07-22

    Agricultural intensification has resulted in a simplification of agricultural landscapes by the expansion of agricultural land, enlargement of field size and removal of non-crop habitat. These changes are considered to be an important cause of the rapid decline in farmland biodiversity, with the remaining biodiversity concentrated in field edges and non-crop habitats. The simplification of landscape composition and the decline of biodiversity may affect the functioning of natural pest control because non-crop habitats provide requisites for a broad spectrum of natural enemies, and the exchange of natural enemies between crop and non-crop habitats is likely to be diminished in landscapes dominated by arable cropland. In this review, we test the hypothesis that natural pest control is enhanced in complex patchy landscapes with a high proportion of non-crop habitats as compared to simple large-scale landscapes with little associated non-crop habitat. In 74% and 45% of the studies reviewed, respectively, natural enemy populations were higher and pest pressure lower in complex landscapes versus simple landscapes. Landscape-driven pest suppression may result in lower crop injury, although this has rarely been documented. Enhanced natural enemy activity was associated with herbaceous habitats in 80% of the cases (e.g. fallows, field margins), and somewhat less often with wooded habitats (71%) and landscape patchiness (70%). The similar contributions of these landscape factors suggest that all are equally important in enhancing natural enemy populations. We conclude that diversified landscapes hold most potential for the conservation of biodiversity and sustaining the pest control function.

  18. Pest control services

    Indian Academy of Sciences (India)

    2018-04-27

    Apr 27, 2018 ... for Pest Control Services” addressed to the Purchase In-charge / Executive Secretary,. Indian Academy of ... shall be evaluated on two stage evaluation process. After evaluating ... decision of IASc is final and unquestionable.

  19. Molecular and Biochemical Characterization of Cotton Epicuticular Wax in Defense Against Cotton Leaf Curl Disease.

    Science.gov (United States)

    Khan, Muhammad Azmat Ullah; Shahid, Ahmad Ali; Rao, Abdul Qayyum; Bajwa, Kamran Shehzad; Samiullah, Tahir Rehman; Muzaffar, Adnan; Nasir, Idrees Ahmad; Husnain, Tayyab

    2015-12-01

    Gossypium arboreumis resistant to Cotton leaf curl Burewala virus and its cognate Cotton leaf curl Multan beta satellite ( CLCuBuV and CLCuMB ). However, the G. arboreum wax deficient mutant (GaWM3) is susceptible to CLCuV . Therefore, epicuticular wax was characterized both quantitatively and qualitatively for its role as physical barrier against whitefly mediated viral transmission and co-related with the titer of each viral component (DNA-A, alphasatellite and betasatellite) in plants. The hypothesis was the CLCuV titer in cotton is dependent on the amount of wax laid down on plant surface and the wax composition. Analysis of the presence of viral genes, namely alphasatellite, betasatellite and DNA-A, via real-time PCR in cotton species indicated that these genes are detectable in G. hirsutum , G. harknessii and GaWM3, whereas no particle was detected in G. arboreum . Quantitative wax analysis revealed that G. arboreum contained 183 μg.cm -2 as compared to GaWM3 with only 95 μg.cm -2 . G. hirsutum and G. harknessii had 130 μg.cm -2 and 146 μg.cm -2 , respectively. The GCMS results depicted that Lanceol, cis was 45% in G. harknessii . Heptadecanoic acid was dominant in G. arboreum with 25.6%. GaWM3 had 18% 1,2,-Benenedicarboxylic acid. G. hirsutum contained 25% diisooctyl ester. The whitefly feeding assay with Nile Blue dye showed no color in whiteflies gut fed on G. arboreum . In contrast, color was observed in the rest of whiteflies. From results, it was concluded that reduced quantity as well as absence of (1) 3-trifluoroacetoxytetradecane, (2) 2-piperidinone,n-|4-bromo-n-butyl|, (3) 4-heptafluorobutyroxypentadecane, (4) Silane, trichlorodocosyl-, (5) 6- Octadecenoic acid, methyl ester, and (6) Heptadecanoicacid,16-methyl-,methyl ester in wax could make plants susceptible to CLCuV , infested by whiteflies.

  20. Flame retardant finishing of cotton fabric based on synergistic compounds containing boron and nitrogen.

    Science.gov (United States)

    Xie, Kongliang; Gao, Aiqin; Zhang, Yongsheng

    2013-10-15

    Boric acid and compound containing nitrogen, 2,4,6-tri[(2-hydroxy-3-trimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-HTAC) were used to finish cotton fabric. The flame retardant properties of the finished cotton fabrics and the synergetic effects of boron and nitrogen elements were investigated and evaluated by limited oxygen index (LOI) method. The mechanism of cross-linking reaction among cotton fiber, Tri-HTAC, and boric acid was discussed by FTIR and element analysis. The thermal stability and surface morphology of the finished cotton fabrics were investigated by thermogravimetric analysis (TGA) and scanning electron microscope (SEM), respectively. The finishing system of the mixture containing boron and nitrogen showed excellent synergistic flame retardancy for cotton fabric. The cotton fabric finished with mixture system had excellent flame retardancy. The LOI value of the treated cotton fabric increased over 27.5. Tri-HTAC could form covalent bonds with cellulose fiber and boric acid. The flame retardant cotton fabric showed a slight decrease in tensile strength and whiteness. The surface morphology of flame retardant cotton fiber was smooth. Copyright © 2013 Elsevier Ltd. All rights reserved.