WorldWideScience

Sample records for leonid meteor storms

  1. Leonid storm research

    CERN Document Server

    Rietmeijer, Frans; Brosch, Noah; Fonda, Mark

    2000-01-01

    This book will appeal to all researchers that have an interest in the current Leonid showers It contains over forty research papers that present some of the first observational results of the November 1999 Leonid meteor storm, the first storm observed by modern observing techniques The book is a first glimpse of the large amount of information obtained during NASA's Leonid Multi-Instrument Aircraft Campaign and groundbased campaigns throughout the world It provides an excellent overview on the state of meteor shower research for any professional researcher or amateur meteor observer interested in studies of meteors and meteoroids and their relation to comets, the origin of life on Earth, the satellite impact hazard issue, and upper atmosphere studies of neutral atom chemistry, the formation of meteoric debris, persistent trains, airglow, noctilucent clouds, sprites and elves

  2. In situ measurements of sub-meter plasma waves over low-latitude ionosphere during Leonid-99 meteor storm

    Directory of Open Access Journals (Sweden)

    S. P. Gupta

    2004-06-01

    Full Text Available In situ probe measurements of plasma parameters were carried out on 18 and 20 November 1999 from Sriharikota, India, a low-latitude rocket launching station to investigate the effect of a Leonid meteor storm. Results obtained on plasma waves using a high frequency Langmuir probe are discussed. The characteristics of the sub-meter scale size plasma waves observed for the first time during Leonid meteor storm are presented. Based on the results obtained from both the rocket flights and comparison with the results obtained from previous rocket flights from the same location, it appears these sub-meter waves are associated with intense meteoric activity. A possible mechanism based on the dependence of the meteoric activity and its limitations are discussed.

  3. Lorentz-Shaped Comet Dust Trail Cross Section from New Hybrid Visual and Video Meteor Counting Technique - Implications for Future Leonid Storm Encounters

    Science.gov (United States)

    Jenniskens, Peter; Crawford, Chris; Butow, Steven J.; Nugent, David; Koop, Mike; Holman, David; Houston, Jane; Jobse, Klaas; Kronk, Gary

    2000-01-01

    A new hybrid technique of visual and video meteor observations was developed to provide high precision near real-time flux measurements for satellite operators from airborne platforms. A total of 33,000 Leonids. recorded on video during the 1999 Leonid storm, were watched by a team of visual observers using a video head display and an automatic counting tool. The counts reveal that the activity profile of the Leonid storm is a Lorentz profile. By assuming a radial profile for the dust trail that is also a Lorentzian, we make predictions for future encounters. If that assumption is correct, we passed 0.0003 AU deeper into the 1899 trailet than expected during the storm of 1999 and future encounters with the 1866 trailet will be less intense than. predicted elsewhere.

  4. Photometry of 1998/1999 Persistent Trails from Leonid Meteors

    Science.gov (United States)

    Milster, S. P.; Grime, B.; Drummond, J.; Fugate, R.; Kane, T. J.; Liu, A.; Papen, C. S.; Kelly, M. C.; Kruschwitz, C.

    2000-05-01

    Surface brightness and line emission rates are derived for two persistent trails from the 1998 and 1999 Leonid meteor showers. The trails are optically thin, and in places appear as cylinders with a very dark center. This center is roughly as wide as the bright emission walls, but is as dark as the sky background. This situation is not in agreement with the simple hollow-cylinder model of shell burning. The data was acquired at the Starfire Optical Range on Kirtland AFB. The instruments were guided by a human observer onto the lingering trails of the meteors. A 5 degree wide Xybion camera, attached to the headring of the telescope, recorded the scene. The University of Illinois' sodium lidar determined the distance to the persistent trails. A 200-W copper vapor laser (CVL) was also used in an attempt to measure back-scatter from particulates in the contrails of the Leonids. Almost all of the meteors that produced lingering trails greatly enhanced the naturally occurring sodium layer at 100 km. The lingering trails generally appeared as evanescent smoke rings that evolved rather quickly, with the path of the meteor marked by a double walled, optically thin tube. A 15-minute highlight video will be presented showing the evolution of the lingering trails as well as the lidar and the CVL probing them.

  5. Observations of Leonid Meteors Using a Mid-Wave Infrared Imaging Spectrograph

    Science.gov (United States)

    Rossano, George S.; Russell, Ray W.; Lynch, David K.; Tessensohn, Ted K.; Warren, David; Jenniskens, Peter

    We report broadband 3-5.5 µm detections of two Leonid meteors observed during the 1998 Leonid Multi-Instrument Aircraft Campaign. Each meteor was detected at only one position along their trajectory just prior to the point of maximum light emission. We describe the particular aspects of the Aerospace Corp. Mid-wave Infra-Red Imaging Spectrograph (MIRIS) developed for the observation of short duration transient events that impact its ability to detect Leonid meteors. This instrument had its first deployment during the 1998 Leonid MAC. We infer from our observations that the mid-wave IR light curves of two Leonid meteors differed from the visible light curve. At the points of detection, the infrared emission in the MIRIS passband was 25 +/- 4 times that at optical wavelengths for both meteors. In addition, we find an upper limit of 800 K for the solid body temperature of the brighter meteor we observed, at the point in the trajectory where we made our mid-wave IR detection.

  6. Activity of the Leonid meteor shower on 2009 November 17

    Czech Academy of Sciences Publication Activity Database

    Koten, Pavel; Borovička, Jiří; Kokhirova, G.I.

    2011-01-01

    Roč. 528, April (2011), A94/1-A94/4 ISSN 0004-6361 R&D Projects: GA ČR GA205/09/1302 Institutional research plan: CEZ:AV0Z10030501 Keywords : meteor ites * meteor s * meteor oids Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.587, year: 2011

  7. Catalogue of Meteor Showers and Storms in Korean History

    Directory of Open Access Journals (Sweden)

    Sang-Hyeon Ahn

    2004-03-01

    Full Text Available We present a more complete and accurate catalogue of astronomical records for meteor showers and meteor storms appeared in primary official Korean history books, such as Samguk-sagi, Koryo-sa, Seungjeongwon-ilgi, and Choson-Wangjo-Sillok. So far the catalogue made by Imoto and Hasegawa in 1958 has been widely used in the international astronomical society. The catalogue is based on a report by Sekiguchi in 1917 that is mainly based on secondary history books. We observed that the catalogue has a number of errors in either dates or sources of the records. We have thoroughly checked the primary official history books, instead of the secondary ones, in order to make a corrected and extended catalogue. The catalogue contains 25 records of meteor storms, four records of intense meteor-showers, and five records of usual showers in Korean history. We also find that some of those records seem to correspond to some presently active meteor showers such as the Leonids, the Perseids, and the ¥ç-Aquarids-Orionids pair. However, a large number of those records do not correspond to such present showers. This catalogue we obtained can be useful for various astrophysical studies in the future.

  8. An ET Origin for Stratospheric Particles Collected during the 1998 Leonids Meteor Shower

    Science.gov (United States)

    Noever, David A.; Phillips, James A.; Horack, John M.; Jerman, Gregory; Myszka, Ed

    1999-01-01

    On 17 November 1998, a helium-filled weather balloon was launched into tfle strato- sphere, equipped with a xerogel microparticle collector. The three-hour flight was designed to sample the dust environment in the stratosphere during the Leonid meteor shower, and possibly to capture Leonid meteoroids. Environmental Scanning Election Microscope analyses of the returned collectors revealed the capture of a -30-pm particle. with a smooth, multigranular shape, and partially melted, translucent rims; similar to known Antarctic micrometeorites. Energy-dispersive X-ray Mass Spectroscopy shows en- riched concentrations of the non-volatile elements, Mg, Al, and Fe. The particle possesses a high magnesium to iron ratio of 2.96, similar to that observed in 1998 Leonids meteors (Borovicka, et al. 1999) and sharply higher than the ratio expected for typical material from the earth's crust. A statistical nearest-neighbor analysis of the abundance ratios Mg/Si, Al/Si, and Fe/Si demonstrates that the particle is most similar in composition to cosmic spherules captured during airplane flights throucrh the stratosphere. The mineralogical class is consistent with a stony (S) type of silicates. olivine [(Mg, Fe)2SiO4] and pyroxene [(Mg,Fe)SiO3]-or oxides, herecynite [(Fe,Mg) Al2O4]. Attribution to the debris stream of the Leonids' parent body, comet Tempel-Tuttle, would make it the first such material from beyond the orbit of Uranus positively identified on Earth.

  9. Leonid Shower Probe of Aerothermochemistry in Meteoric Plasmas and Implication for the Origin of Life

    Science.gov (United States)

    Jenniskens, Peter S. I.; Packan, D.; Laux, C.; Wilson, Mike; Boyd, I. D.; Kruger, C. H.; Popova, O.; Fonda, M.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The rarefied and high Mach number (up to 270) of the flow field of a typical meteoroid as it enters the Earth's atmosphere implies conditions of ablation and atmospheric chemistry that have proven to be as difficult to grasp as the proverbial shooting star. An airborne campaign was organized to study these processes during an intense Leonid shower. A probe of molecular band emission now demonstrates that the flash of light from a common meteor originates in the wake of the object rather than in the meteor head. A new theoretical approach using the direct simulation Monte Carlo technique demonstrates that the ablation process is critical in heating the air in that wake. Air molecules impinge on a dense cloud of ablated material in front of the meteoroid head into an extended wake that has the observed excitation temperatures. These processes determine what extraterrestrial materials may have been delivered to Earth at the time of the origin of life.

  10. Thermal Infrared Spectroscopy of the Leonid Meteor Parent Body, Comet Tempel-Tuttle

    Science.gov (United States)

    Lynch, D. K.; Russell, R. W.; Sitko, M.

    1998-09-01

    We report 3 - 13 micron spectroscopyy of comet 55P/Tempel-Tuttle on Feb 8 and 9 1998 UT (roughly three weeks before perihelion) using the NASA Infrared Telescope Facility and The Aerospace Corporation Broadband Array Spectrograph System (BASS) with a 3.2 arc second diameter beam. The spectra on both nights were very similar (within the formal errors), suggesting little, if any, night-to-night variation. The spectra showed a relatively smooth continuum that was well-fit from 3 to 13 microns by a 330 K grey body. This is considerably higher than than the black body radiative equilibrium temperature of 273 K. Significant features (such as the crystalline olivine 11.3 micron feature seen in comet Hale-Bopp) were noticeably absent. This is only one of a very few comets that have exhibited this grey-body continuum type of spectral shape, and the implications of this shape (on particle size, composition, thermal history, for example) will be explored. Because the dust from this comet forms the Leonid meteors, its properties are of particular interest to the meteor and spacecraft communities.

  11. Observations on Stratospheric-Mesospheric-Thermospheric temperatures using Indian MST radar and co-located LIDAR during Leonid Meteor Shower (LMS

    Directory of Open Access Journals (Sweden)

    R. Selvamurugan

    2002-11-01

    Full Text Available The temporal and height statistics of the occurrence of meteor trails during the Leonid meteor shower revealed the capability of the Indian MST radar to record large numbers of meteor trails. The distribution of radio meteor trails due to a Leonid meteor shower in space and time provided a unique opportunity to construct the height profiles of lower thermospheric temperatures and winds, with good time and height resolution. There was a four-fold increase in the meteor trails observed during the LMS compared to a typical non-shower day. The temperatures were found to be in excellent continuity with the temperature profiles below the radio meteor region derived from the co-located Nd-Yag LIDAR and the maximum height of the temperature profile was extended from the LIDAR to ~110 km. There are, how-ever, some significant differences between the observed profiles and the CIRA-86 model profiles. The first results on the meteor statistics and neutral temperature are presented and discussed below.  Key words. Atmospheric composition and structure (pres-sure, density, and temperature History of geophysics (at-mospheric sciences Meteorology and atmospheric dynamics (middle atmosphere dynamics

  12. Sporadic-E associated with the Leonid meteor shower event of November 1998 over low and equatorial latitudes

    Directory of Open Access Journals (Sweden)

    H. Chandra

    2001-01-01

    Full Text Available Rapid radio soundings were made over Ahmedabad, a low latitude station during the period 16–20 November 1998 to study the sporadic-E layer associated with the Leonid shower activity using the KEL Aerospace digital ionosonde. Hourly ionograms for the period 11 November to 24 November were also examined during the years from 1994 to 1998. A distinct increase in sporadic-E layer occurrence is noticed on 17, 18 and 19 November from 1996 to 1998. The diurnal variations  of  f0Es and fbEs also show significantly enhanced values for the morning hours of 18 and 19 November 1998. The ionograms clearly show strong sporadic-E reflections at times of peak shower activity with multiple traces in the altitude range of 100–140 km in few ionograms. Sporadic-E layers with multiple structures in altitude are also seen in some of the ionograms (quarter hourly at Thumba, situated near the magnetic equator. Few of ionograms recorded at Kodaikanal, another equatorial station, also show sporadic- E reflections in spite of the transmitter power being significantly lower. These new results highlighting the effect of intense meteor showers in the equatorial and low latitude E-region are presented.Key words. Ionosphere (equatorial ionosphere – Radio science (ionospheric physics

  13. Sporadic-E associated with the Leonid meteor shower event of November 1998 over low and equatorial latitudes

    Directory of Open Access Journals (Sweden)

    H. Chandra

    Full Text Available Rapid radio soundings were made over Ahmedabad, a low latitude station during the period 16–20 November 1998 to study the sporadic-E layer associated with the Leonid shower activity using the KEL Aerospace digital ionosonde. Hourly ionograms for the period 11 November to 24 November were also examined during the years from 1994 to 1998. A distinct increase in sporadic-E layer occurrence is noticed on 17, 18 and 19 November from 1996 to 1998. The diurnal variations 
    of  f0Es and fbEs also show significantly enhanced values for the morning hours of 18 and 19 November 1998. The ionograms clearly show strong sporadic-E reflections at times of peak shower activity with multiple traces in the altitude range of 100–140 km in few ionograms. Sporadic-E layers with multiple structures in altitude are also seen in some of the ionograms (quarter hourly at Thumba, situated near the magnetic equator. Few of ionograms recorded at Kodaikanal, another equatorial station, also show sporadic- E reflections in spite of the transmitter power being significantly lower. These new results highlighting the effect of intense meteor showers in the equatorial and low latitude E-region are presented.

    Key words. Ionosphere (equatorial ionosphere – Radio science (ionospheric physics

  14. Crowdsourcing, the great meteor storm of 1833, and the founding of meteor science.

    Science.gov (United States)

    Littmann, Mark; Suomela, Todd

    2014-06-01

    Yale science professor Denison Olmsted used crowdsourcing to gather observations from across the United States of the unexpected deluge of meteors on 13 November 1833--more than 72,000/h. He used these observations (and newspaper accounts and correspondence from scientists) to make a commendably accurate interpretation of the meteor storm, overturning 2100 years of erroneous teachings about shooting stars and establishing meteor science as a new branch of astronomy. Olmsted's success was substantially based on his use of newspapers and their practice of news pooling to solicit observations from throughout the country by lay and expert observers professionally unaffiliated with Yale College and him. In today's parlance, Olmsted was a remarkably successful early practitioner of scientific crowdsourcing, also known as citizen science. He may have been the first to use mass media for crowdsourcing in science. He pioneered many of the citizen-science crowdsourcing practices that are still in use today: an open call for citizen participation, a clearly defined task, a large geographical distribution for gathering data and a rapid response to opportunistic events. Olmsted's achievement is not just that he used crowdsourcing in 1833 but that crowdsourcing helped him to advance science significantly. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. 1997 Leonid Shower From Space

    Science.gov (United States)

    Jenniskens, Peter; Nugent, David; Murthy, Jayant; Tedesco, Ed; DeVincenzi, Donal L. (Technical Monitor)

    2000-01-01

    In November 1997, the Midcourse Space Experiment satellite (MSX) was deployed to observe the Leonid shower from space. The shower lived up to expectations, with abundant bright fireballs. Twenty-nine meteors were detected by a wide-angle, visible wavelength, camera near the limb of the Earth in a 48-minute interval, and three meteors by the narrow field camera. This amounts to a meteoroid influx of 5.5 +/- 0.6 10(exp -5)/sq km hr for masses greater than 0.3 gram. The limiting magnitude for limb observations of Leonid meteors was measured at M(sub v) = -1.5 magn The Leonid shower magnitude population index was 1.6 +/- 0.2 down to M(sub v) = -7 magn., with no sign of an upper mass cut-off.

  16. A synthetical index of the potential threats about intense activities of meteors

    Science.gov (United States)

    Wu, Guang-jie

    2006-10-01

    In the present age, several techniques for the application to the observation of meteors and meteor showers have been developed in modern meteor astronomy. The initial definition for a meteor storm based on the visual observation with a Zenithal Hourly Rate of above 1000 seems insufficient now, since it only means a storm or burst of meteors in numbers and means that an eyewitness could have a chance to see a spectacular meteor show. Up to now, peoples have also recorded the meteoric flashes on the Moon during the Leonid meteor showers. Especially, the increasing activities of mankind in space for scientific, commercial and military purposes, have led to an increase in the problems concerning the safety of the satellites, space stations and astronauts. How the intense activity of a meteor storm is defined and forecast, some new points of view are needed. In this paper, several aspects about the intensity of the meteor storm are analyzed, including the number, mass, impulse, energy, electric charge, different purposes and different physical meanings. Finally, a synthetical index denoting the activity and potential threat of an intense meteor shower is suggested.

  17. Generation of a severe convective ionospheric storm under stable Rayleigh–Taylor conditions: triggering by meteors?

    Directory of Open Access Journals (Sweden)

    M. C. Kelley

    2016-02-01

    Full Text Available Here we report on four events detected using the Jicamarca Radio Observatory (JRO over an 18-year period, in which huge convective ionospheric storms (CISs occur in a stable ionosphere. We argue that these rare events could be initiated by meteor-induced electric fields. The meteor-induced electric fields map to the bottomside of the F region, causing radar echoes and a localized CIS. If and when a localized disturbance reaches 500 km, we argue that it becomes two-dimensionally turbulent and cascades structure to both large and small scales. This leads to long-lasting structure and, almost certainly, to scintillations over a huge range of latitudes some ±15° wide and to 3 m irregularities, which backscatter the VHF radar waves. These structures located at high altitudes are supported by vortices shed by the upwelling bubble in a vortex street.

  18. Video Observations of the 2006 Leonid Outburst

    Czech Academy of Sciences Publication Activity Database

    Koten, Pavel; Borovička, Jiří; Spurný, Pavel; Evans, S.; Štork, Rostislav; Elliott, A.

    2008-01-01

    Roč. 102, 1-4 (2008), s. 151-156 ISSN 0167-9295. [Meteoroids 2007. Barcelona, 11.06.2007-15.06.2007] R&D Projects: GA AV ČR KJB300030502 Institutional research plan: CEZ:AV0Z10030501 Keywords : meteors * meteor showers * Leonids Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.033, year: 2008

  19. Anomalous enhancement in daytime 40-kHz signal amplitude accompanied by geomagnetic storms, earthquakes and meteor showers

    Directory of Open Access Journals (Sweden)

    B. K. De

    1995-10-01

    Full Text Available Anomalous propagational characteristics, daytime signal levels greater than night-time, were observed. The amplitude records of a 40-kHz signal propagated over a distance of 5100 km from Sanwa, Japan to Calcutta along a low-latitude path show higher signal strength at midday compared to the midnight level on days preceded by principal geomagnetic storms, earthquakes and major meteor showers. This is explained by the increased ionization in the D-region following geophysical events. The storm after-effects only have a duration of a single day in this low-latitude path.

  20. A meteoric nightglow

    International Nuclear Information System (INIS)

    Gadsden, M.

    1980-01-01

    The original reports of sky glows during spectacular meteor showers in the nineteenth century leave some doubt whether the observers might not simply have been over-enthusiastic. The nightglow photometric data available for the sole spectacular shower so far in the twentieth century are against there being any noticeable atmospheric effects resulting from the deposition of the meteoric material; calculations confirm previously published conclusions that sunlight scattered from the meteor stream might be visible near the radiant or the anti-radiant but, with the sole exception of one observer of the 1833 Leonids, no reports have been made of such an area of light. (author)

  1. Video and photographic spectroscopy of 1998 and 2001 Leonid persistent trains from 300 to 930 nm

    Czech Academy of Sciences Publication Activity Database

    Abe, S.; Ebizuka, N.; Murayama, H.; Ohtsuka, K.; Sugimoto, S.; Yamamoto, M.; Yano, H.; Watanabe, J.; Borovička, Jiří

    2005-01-01

    Roč. 95, 1-4 (2005), s. 265-277 ISSN 0167-9295. [Meteoroids 2004. London, Ontario, 16.08.2004-20.08.2004] Institutional research plan: CEZ:AV0Z1003909 Keywords : airglow * Leonid meteor * shower Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.975, year: 2005

  2. Ondřejov radar observations of Leonid shower activity in 2000-2002

    Czech Academy of Sciences Publication Activity Database

    Pecina, Petr; Pecinová, Drahomíra

    2004-01-01

    Roč. 426, č. 3 (2004), s. 1111-1117 ISSN 0004-6361 R&D Projects: GA AV ČR KSK3012103 Institutional research plan: CEZ:AV0Z1003909 Keywords : Leonid meteor * radar observations Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.694, year: 2004

  3. Meteor Showers.

    Science.gov (United States)

    Kronk, Gary W.

    1988-01-01

    Described are the history, formation, and observing techniques of meteors and comets. Provided are several pictures, diagrams, meteor organizations and publications, and meteor shower observation tables. (YP)

  4. PF191012 Myszyniec - highest Orionid meteor ever recorded

    Science.gov (United States)

    Olech, A.; Żołaḑek, P.; Wiśniewski, M.; Fietkiewicz, K.; Maciejewski, M.; Tymiński, Z.; Krzyżanowski, T.; Krasnowski, M.; Kwinta, M.; Myszkiewicz, M.; Polakowski, K.; Zarȩba, P.

    2013-09-01

    On the night of Oct. 18/19, 2012, at 00:23 UT, a -14.7 mag Orionid fireball occurred over northeastern Poland. The precise orbit and atmospheric trajectory of the event are presented, based on the data collected by five video stations and one photographic Polish Fireball Network station. The beginning height of the meteor is 168.4 ± 0.6 km, which makes the PF191012 Myszyniec fireball the highest ever observed, well-documented meteor not belonging to the Leonid shower. The ablation became the dominant source of light of the meteor at a height of around 115 km. The thermalization of sputtered particles is suggested to be the source of radiation above that value. The transition height of 115 km is 10-15 km below the transition heights derived for Leonids and might suggest that the material of Leonids is more fragile and probably has smaller bulk density than that of Orionids.

  5. Evolution of two periodic meteoroid streams: The Perseids and Leonids

    Science.gov (United States)

    Brown, Peter Gordon

    Observations and modelling of the Perseid and Leonid meteoroid streams are presented and discussed. The Perseid stream is found to consist of three components: a weak background component, a core component and an outburst component. The particle distribution is identical for the outburst and core populations. Original visual accounts of the Leonid stream from 1832-1997 are analyzed to determine the time and magnitude of the peak for 32 Leonid returns in this interval. Leonid storms are shown to follow a gaussian flux profile, to occur after the perihelion passage of 55P/Tempel-Tuttle and to have a width/particle density relationship consistent with IRAS cometary trail results. Variations in the width of the 1966 Leonid storm as a function of meteoroid mass are as expected based on the Whipple ejection velocity formalism. Four major models of cometary meteoroid ejection are developed and used to simulate plausible starting conditions for the formation of the Perseid and Leonid streams. Initial ejection velocities strongly influence Perseid stream development for the first five revolutions after ejection, at which point planetary perturbations and radiation effects become important for further development. The minimum distance between the osculating orbit of 109P/Swift-Tuttle and the Earth was found to be the principle determinant of any subsequent delivery of meteoroids to Earth. Systematic shifts in the location of the outburst component of the Perseids were shown to be due to the changing age of the primary meteoroid population making up the outbursts. The outburst component is due to distant, direct planetary perturbations from Jupiter and Saturn shifting nodal points inward relative to the comet. The age of the core population of the stream is found to be (25 +/- 10) × 10 3 years while the total age of the stream is in excess of 10 5 years. The primary sinks for the stream are hyperbolic ejection and attainment of sungrazing states due to perturbations from

  6. Modeling of the Atmospheric Response to the Leonid Meteor Showers

    National Research Council Canada - National Science Library

    McNeil, William

    1998-01-01

    ... showers of recent years. The model allows for ablation, deposition, diffusion and chemical dynamics, thereby permitting the computation of the modifications in the layers due to the showers in a self-consistent manner, based...

  7. The activity of autumn meteor showers in 2006-2008

    Science.gov (United States)

    Kartashova, Anna

    2015-03-01

    The purpose of meteor observations in INASAN is the study of meteor showers, as the elements of the migrant substance of the Solar System, and estimation of risk of hazardous collisions of spacecrafts with the particles of streams. Therefore we need to analyze the meteor events with brightness of up to 8 m, which stay in meteoroid streams for a long time and can be a hazardous for the spacecraft. The results of our single station TV observations of autumn meteor showers for the period from 2006 to 2008 are presented. The high-sensitive hybrid camera (the system with coupled of the Image Intensifier) FAVOR with limiting magnitude for meteors about 9m. . .10m in the field of view 20 × 18 was used for observations. In 2006-2008 from October to November more than 3 thousand of meteors were detected, 65% from them have the brightness from 6m to 9m. The identification with autumn meteor showers (Orionids, Taurids, Draconids, Leonids) was carried out. In order to estimate the density of the influx of meteor matter to the Earth for these meteor showers the Index of meteor activity (IMA) was calculated. The IMA distribution for the period 2006 - 2008 is given. The distributions of autumn meteor showers (the meteors with brightness of up to 8 m) by stellar magnitude from 2006 to 2008 are also presented.

  8. Slow Meteors

    Science.gov (United States)

    Dubs, Martin; Sposetti, Stefano; Spinner, Roger; Booz, Beat

    2017-04-01

    Slow meteors are studied with video observations and spectroscopy. A comparison of their orbits and spectra points to a common origin. Although they do not belong to some meteor stream, they deserve to be studied in more detail. The present paper tries to make a first attempt to characterize the common properties of this class of meteors.

  9. Malaysian meteoric water line

    International Nuclear Information System (INIS)

    Md Shahid Ayub

    2006-01-01

    The quest for Malaysian meteoric water line began in 1981 when environmental isotope hydrology was introduced. In the 1980, and with the establishment of three stations at Pengkalan Chepa, Kepala Batas and Kuah, the Malaysian Meteoric Water Line acquired then was δD = 8δ 18 O + 12.68. With the addition of another four stations, by the end of 1990s, the Malaysian Meteoric Water Line for the decade was established as δD = 8 δ 18 O + 11.76. Taking the overall result between 1980 and mid 2000s the Malaysian Meteoric Water Line was established as δD = 8 δ 18 O + 13.255 and the weighted mean precipitation is (-7.64, -46.74). In establishing this meteoric water line it was observed that the higher altitude station manifested poorer stable isotopes content as compared to lower altitude station. It was also observed that as the amount of rain increased, the stable isotopes content would decrease and vice versa. The effect is reversed when the amount is due to monsoon rains and tropical storms. (Author)

  10. Retinal meteor.

    Science.gov (United States)

    Venkatesh, Ramesh; Gurav, Prachi; Dave, Prachi Abhishek; Roy, Sankhadeep

    2017-09-01

    We describe a case of a 65-year old man diagnosed with retinal vasoproliferative tumour secondary to posterior uveitis. The fluorescein angiography shows an interesting meteor-like leak emanating from the tumour and rising towards the superior retina in the later frames of the angiogram. Pictorially, we call it the "Retinal Meteor" and also describe the possible mechanism for this pattern of leakage.

  11. The Effect of Major Meteor Streams on the Total Ozone in the Earth's Atmosphere

    Science.gov (United States)

    Gorbanev, Yu. M.; Stogneeva, I. A.; Shestopalov, V. A.; Knyazkova, E. F.; Kimakovskaya, I. I.; Kimakovskay, S. R.; Golubaev, A. V.

    The correlation between the total ozone and activity of major meteor streams, such as the Perseids, Geminids, Leonids and Orionids, has been found using the Total Ozone Mapping Spectrometer (TOMS) measurements of the global ozone distribution over the periods 1978 - 1993 and 1996 - 2001. The autocorrelation analysis of the total ozone time series for the period of about 20 years has confirmed the existence of regular changes in the ozone levels at the peaks of meteor shower activity. It has been established that TO decreases after the dates of peak activity of meteor streams (e.g. the Perseids) or during the whole periods of meteor shower activity (e.g. the Geminids, Orionids and Leonids). The analysis of the total ozone distribution (in the Southern and Northern Hemispheres), as well as the local distribution of ozone (over the selected surface area of several hundred square kilometres), was performed during the Leonid meteor shower in 1999. The atmospheric zones for which the ozone distribution pattern can be described as a result of interaction between the meteor shower material and the ozone layer were localised by applying the TOMS data. Such zones correspond to the regions where the highest Leonid activity has been observed. According to the radar observations (conducted in Kazan, Russian Federation), three activity maxima of the 1988 Geminid shower were reported: on the nights of 7th, 12th and 14th December, 1988. The TO decrease was observed on the same dates. Thus, the analysis of the TO changes during the periods of intense meteor shower's activity enables to preliminary assess the maximum overall decline in the total ozone concentration which makes about 5 DU over two weeks. From the results obtained it can be inferred that the ozone layer can be used as an indicator of the interaction between the meteoric material and the Earth's atmosphere.

  12. The 2018 Meteor Shower Activity Forecast for Earth Orbit

    Science.gov (United States)

    Moorhead, Althea; Cooke, Bill; Moser, Danielle

    2017-01-01

    A number of meteor showers - the Ursids, Perseids, Leonids, eta Aquariids, Orionids, Draconids, and Andromedids - are predicted to exhibit increased rates in 2018. However, no major storms are predicted, and none of these enhanced showers outranks the typical activity of the Arietids, Southern delta Aquariids, and Geminids at small particle sizes. The MSFC stream model1 predicts higher than usual activity for the Ursid meteor shower in December 2018. While we expect an increase in activity, rates will fall short of the shower's historical outbursts in 1945 and 1986 when the zenithal hourly rate (ZHR) exceeded 100. Instead, the expected rate for 2018 is around 70. The Perseids, Leonids, eta Aquariids, and Orionids are expected to show mild enhancements over their baseline activity level in 2018. In the case of the Perseids, we may see an additional peak in activity a few hours before the traditional peak, but we do not expect activity levels as high as those seen in 2016 and 2017. The eta Aquariids and Orionids, which belong to a single meteoroid stream generated by comet 1P/Halley, are thought to have a 12-year activity cycle and are currently increasing in activity from year to year. Finally, we may see minor outbursts of the Draconids and Andromedids in 2018. Both showers have been difficult to model and have produced unexpected outbursts in recent years (the Draconids in 2012 and the Andromedids in 2011 and 2013). The Andromedids may produce two peaks, both of which are listed in Table 2. This document is designed to supplement spacecraft risk assessments that incorporate an annual averaged meteor shower flux (as is the case with all NASA meteoroid models). Results are presented relative to this baseline and are weighted to a constant kinetic energy. Two showers - the Daytime Arietids (ARI) and the Geminids (GEM) - attain flux levels approaching that of the baseline meteoroid environment for 0.1-cm-equivalent meteoroids. This size is the threshold for structural

  13. The beginning heights and light curves of high-altitude meteors

    Czech Academy of Sciences Publication Activity Database

    Koten, Pavel; Spurný, Pavel; Borovička, Jiří; Evans, S.; Elliott, A.; Betlem, H.; Štork, Rostislav; Jobse, K.

    2006-01-01

    Roč. 41, č. 9 (2006), s. 1305-1320 ISSN 1086-9379 R&D Projects: GA ČR GP205/02/P038 Institutional research plan: CEZ:AV0Z10030501 Keywords : bright Leonid meteors * atmospheric trajectories Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.524, year: 2006

  14. The 2014 May Camelopardalid Meteor Shower

    Science.gov (United States)

    Cooke, Bill; Moser, Danielle

    2014-01-01

    On May 24, 2014 Earth will encounter multiple streams of debris laid down by Comet 209P LINEAR. This will likely produce a new meteor shower, never before seen. Rates predicted to be from 100 to 1000 meteors per hour between 2 and 4 AM EDT, so we are dealing with a meteor outburst, potentially a storm. Peak rate of 200 per hour best current estimate. Difficult to calibrate models due to lack of past observations. Models indicate mm size particles in stream, so potential risk to Earth orbiting spacecraft.

  15. Meteor Beliefs Project: ``Year of Meteors''

    Science.gov (United States)

    McBeath, Alastair; Drobnock, George J.; Gheorghe, Andrei Dorian

    2011-10-01

    We present a discussion linking ideas from a modern music album by Laura Veirs back to a turbulent time in American history 150 years ago, which inspired poet Walt Whitman to compose his poem "Year of Meteors", and the meteor beliefs of the period around 1859-1860, when collection of facts was giving way to analyses and theoretical explanations in meteor science.

  16. The Meteor Meter.

    Science.gov (United States)

    Eggensperger, Martin B.

    2000-01-01

    Introduces the Meteor Scatter Project (MSP) in which high school students build an automated meteor observatory and learn to monitor meteor activity. Involves students in activities such as radio frequency survey, antenna design, antenna construction, manual meteor counts, and computer board configuration and installation. (YDS)

  17. Venemaast saab pehme impeerium / Leonid Gozman ; interv. Vallo Toomet

    Index Scriptorium Estoniae

    Gozman, Leonid

    2003-01-01

    Venemaa Ühendatud Energiasüsteemide juhatuse liige Leonid Gozman vastab küsimustele, mis puudutavad riske äriajamisel Venemaaga, Eesti liitumist EL-iga, Kremli suhtumist Venemaa oligarhidesse, varanduslikku kihistumist, poliitilist arengut Venemaal

  18. Leonid Isaakovich Mandelstam research, teaching, life

    CERN Document Server

    Pechenkin, Alexander

    2014-01-01

    This biography of the famous Soviet physicist Leonid Isaakovich Mandelstam (1889-1944), who became a Professor at Moscow State University in 1925, describes his contributions to both physics and technology, as well as discussing the scientific community which formed around him, usually called the Mandelstam school. Mandelstam’s life story is thereby placed in its proper cultural context. The following more general issues are taken under consideration: the impact of German scientific culture on Russian science; the problems and fates of Russian intellectuals during the revolutionary and post-revolutionary years; the formation of the Soviet Academy of Sciences; and transformation of the system of higher education in the USSR during the 1920's and 1930's.The author shows that Mandelstam’s fundamental writings and his lectures notes allow to reconstruct his philosophy of science and his approach to the social and ethical functions of science and science education. That reconstruction is enhanced through exten...

  19. Charles Olivier and the rise of meteor science

    CERN Document Server

    Taibi, Richard

    2017-01-01

    This fascinating portrait of an amateur astronomy movement tells the story of how Charles Olivier recruited a hard-working cadre of citizen scientists to rehabilitate the study of meteors. By 1936, Olivier and members of his American Meteor Society had succeeded in disproving an erroneous idea about meteor showers. Using careful observations, they restored the public’s trust in predictions about periodic showers and renewed respect for meteor astronomy among professional astronomers in the United States. Charles Olivier and his society of observers who were passionate about watching for meteors in the night sky left a major impact on the field. In addition to describing Olivier’s career and describing his struggles with competitive colleagues in a hostile scientific climate, the author provides biographies of some of the scores of women and men of all ages who aided Olivier in making shower observations, from the Leonids and Perseids and others. Half of these amateur volunteers were from 13 to 25 years of...

  20. Search for Extraterrestrial Origin of Atmospheric Trace Molecules Radio Sub-MM Observations During The Leonids

    Science.gov (United States)

    Depois, D.; Ricaud, P.; Lautie, N.; Schneider, N.; Jacq, T.; Biver, N.; Lis, D.; Chamberlain, R.; Phillips, T.; Miller, M.; hide

    2000-01-01

    HCN is a minor constituent of the Earth atmosphere, with a typical volume mixing ratio around 10(exp -10) HCN per air molecule. At present, the main source of HCN in the lower atmosphere is expected to be biomass burning. The atmospheric HCN has been observed since 1981, first in the infrared, then at microwave radio frequencies. Globally, above 30 km, HCN measurements are in excess of model predictions based on standard photochemistry and biomass burning as the only HCN source. This excess has been explained by: 1) ion-catalyzed reactions in the entire stratosphere, involving CH.3CN as a precursor and/or 2) a high altitude source as a result of chemical production from the methyl radical CH3, or from injection or production by meteors. HCN is a minor constituent of cometary ices. HCN polymers or copolymers have been suggested as constituents of cometary refractory organic matter, and would thus be present in the incoming meteoroids, if these polymers survived their stay in interplanetary space after ejection. HCN may also be created from the CN radical decomposition product of organic carbon, after reaction with hydrogen-bearing molecules. To test the hypothesis of HCN input by meteoroids or the formation in the upper atmosphere from meteoric ablation products, we decided to monitor the HCN submillimeter lines around a major shower: the Leonids.

  1. Video Observation of the Leonids 2001 Activity

    Czech Academy of Sciences Publication Activity Database

    Lin, C.L.; Abe, S.; Koten, Pavel; Yang, I.-Ch.

    2012-01-01

    Roč. 64, č. 1 (2012), 6/1-6/6 ISSN 0004-6264 Institutional research plan: CEZ:AV0Z10030501 Keywords : comet 55P/Tempel-Tuttle * interplanetary medium * meteor s Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.439, year: 2012

  2. Calibration-free quantitative elemental analysis of meteor plasma using reference laser-induced breakdown spectroscopy of meteorite samples

    Science.gov (United States)

    Ferus, Martin; Koukal, Jakub; Lenža, Libor; Srba, Jiří; Kubelík, Petr; Laitl, Vojtěch; Zanozina, Ekaterina M.; Váňa, Pavel; Kaiserová, Tereza; Knížek, Antonín; Rimmer, Paul; Chatzitheodoridis, Elias; Civiš, Svatopluk

    2018-03-01

    Aims: We aim to analyse real-time Perseid and Leonid meteor spectra using a novel calibration-free (CF) method, which is usually applied in the laboratory for laser-induced breakdown spectroscopic (LIBS) chemical analysis. Methods: Reference laser ablation spectra of specimens of chondritic meteorites were measured in situ simultaneously with a high-resolution laboratory echelle spectrograph and a spectral camera for meteor observation. Laboratory data were subsequently evaluated via the CF method and compared with real meteor emission spectra. Additionally, spectral features related to airglow plasma were compared with the spectra of laser-induced breakdown and electric discharge in the air. Results: We show that this method can be applied in the evaluation of meteor spectral data observed in real time. Specifically, CF analysis can be used to determine the chemical composition of meteor plasma, which, in the case of the Perseid and Leonid meteors analysed in this study, corresponds to that of the C-group of chondrites.

  3. Elemental Abundances in Leonid and Perseid Meteoroids

    Czech Academy of Sciences Publication Activity Database

    Borovička, Jiří

    2005-01-01

    Roč. 95, 1-4 (2005), s. 245-253 ISSN 0167-9295. [Meteoroids 2004. London, Ontario, 16.08.2004-20.08.2004] R&D Projects: GA ČR GA205/02/0982 Institutional research plan: CEZ:AV0Z1003909 Keywords : meteors * meteoroids * spectroscopy Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.975, year: 2005

  4. Meteor observation by the Kyoto meteor radar

    International Nuclear Information System (INIS)

    Kato, S.; Tsuda, T.

    1987-01-01

    The Kyoto Meteor Radar is a monostatic coherent pulsed Doppler radar operating on the frequency of 31.57 MH. The system is computer controlled and uses radio interferometry for echo height determination. The antenna, an improvement, can be directed either to the north or the east. The system has been continuously collecting data on winds at meteor heights by radar observation. The meteor echo rate was also measured, the echo rate distribution with height and the daily variation in height integrated echo rate are discussed. Investigations of atmospheric tides are being pursued by cooperative observations. A novel approach to the study of gravity waves was attempted using the meteor radar which is able to detect the horizontal propagation of the waves by observing the changing phase through the region illuminated by the radar

  5. Radar observation of the Leonids in 1998 and 1999

    Czech Academy of Sciences Publication Activity Database

    Šimek, Miloš; Pecina, Petr

    2001-01-01

    Roč. 365, č. 3 (2001), s. 622-626 ISSN 0004-6361 R&D Projects: GA AV ČR KSK1003601 Keywords : comets * Leonids Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.790, year: 2000

  6. New type of radiation of bright Leonid meteors above 130 km

    Czech Academy of Sciences Publication Activity Database

    Spurný, Pavel; Betlem, H.; Jobse, K.; Koten, Pavel; van't Leven, J.

    2000-01-01

    Roč. 35, č. 5 (2000), s. 1109-1115 ISSN 0026-1114 R&D Projects: GA ČR GA205/00/1727; GA ČR GA205/99/0146; GA AV ČR KSK1003601 Institutional research plan: CEZ:AV0Z1003909 Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.168, year: 2000

  7. Meteor Streams of Comet Encke. Taurid Meteor Complex

    OpenAIRE

    Klacka, Jozef

    1999-01-01

    Application of the theoretical results of the author are presented for the case of meteor streams of comet Encke. Theoretical determination of meteor orbit for comet Encke, as a parent body, is presented. Four significant theoretical meteor streams, corresponding to Tauds N, Tauds S, $\\beta$ Tauds and $\\xi$ Perds are found. The meteor stream membership criterion is applied to the photographic orbits of The IAU Meteor Data Center in Lund: Taurid meteor stream is found for several possible area...

  8. Meteor trail spectra

    International Nuclear Information System (INIS)

    Ovezgeldyev, O.G.; Mukhamednazarov, S.; Shafiev, R.I.; Maltsev, N.V.

    1987-01-01

    Meteor radiation appears as a result of collisions between meteoroid atoms and air molecules. Depending on duration, this radiation is usually divided into the following types: radiation of the meteor head; radiation of a coma surrounding or immediately following the meteor head; radiation of a trail formed as a result of fragments lagging behind or by the afterglow; and radiation of a meteor train forming from a tail as a result of various chemical and dynamical processes. To investigate physical processes caused by each of the above types, it is necessary to obtain the corresponding experimental data. The physical processes of the radiation and the measurement of the experimental data is discussed

  9. MWR, Meteor Wind Radars

    Science.gov (United States)

    Roper, R. G.

    1984-01-01

    The requirements of a state of the art meteor wind radar, and acceptable comprises in the interests of economy, are detailed. Design consideration of some existing and proposed radars are discussed. The need for international cooperation in mesopause level wind measurement, such as that being fostered by the MAP GLOBMET (Global Meteor Observations System) project, is emphasized.

  10. Thyroid storm

    Science.gov (United States)

    Thyrotoxic storm; Hyperthyroid storm; Accelerated hyperthyroidism; Thyroid crisis; Thyrotoxicosis - thyroid storm ... Thyroid storm occurs due to a major stress such as trauma, heart attack , or infection. In rare ...

  11. Bolidozor radio meteor detection network

    OpenAIRE

    Jakub Kákona; Martin Kákona

    2015-01-01

    Radio meteor detection networks could improve knowledge about meteors under daylight or inconvenient weather conditions. We present novel approach to the meteor detection system. Hardware described in this poster has unique features for time synchronization of multiple nodes, therefore meteor trajectory calculation is possible in case of appropriate network deployment.

  12. Dynamics of meteor streams

    International Nuclear Information System (INIS)

    Babadjanov, P.B.; Obrubov, YU.U.

    1987-01-01

    The overwhelming majority of meteor streams are generally assumed to be formed due to the decay of comets. The most effective process of the release of solid particles from a cometary nucleus is their ejection by sublimating gases when the comet approaches the Sun. The results of investigation of the Geminids and Quadrantids meteor stream evolution show that under the influence of planetary perturbations, the stream may originally be flat but then thicken depending on the variation range of orbital inclinations. Eventually, due to planetary perturbations, a meteor stream may take such a shape as to cause the start of several active showers at different solar longitudes

  13. Optical electronics for meteor observations

    International Nuclear Information System (INIS)

    Shafiev, R.I.; Mukhamednazarov, S.; Atamas, I.A.

    1987-01-01

    Spectral observations of meteors have been carried out for several years using an optical electronics facility. Interest has centered on faint meteors and their trails in the period of intensive meteor showers. Over 800 meteors were registered during the observation period, with spectrograms obtained for 170 of these. A total of 86 meteors were photographed from two sites and for 25 of these spectrograms of the meteors as well as their trails were obtained. All meteors have undergone routine processing in order to determine atmospheric characteristics. Results are discussed

  14. 76 FR 21743 - Indigo Logistics, LLC, Liliya Ivanenko, and Leonid Ivanenko-Possible Violations of Section 19 of...

    Science.gov (United States)

    2011-04-18

    ... FEDERAL MARITIME COMMISSION [Docket No. 11-06] Indigo Logistics, LLC, Liliya Ivanenko, and Leonid... Order of Investigation and Hearing entitled Indigo Logistics, LLC; Liliya Ivanenko; and Leonid Ivanenko... instituted to determine: (1) Whether Indigo Logistics, LLC, Liliya Ivanenko, and Leonid Ivanenko violated...

  15. Mass distribution of meteoroids obtained by a meteor forward-scattered (MFS) radar method

    International Nuclear Information System (INIS)

    Cevolani, G.; Gabucci, M.

    1996-01-01

    The cumulative distributions of the number vs. duration of echoes belonging to main meteor showers (Lyrids, η-Aquarids, δ-Aquarids, Perseids, Orionids, Leonids, Geminids) and sporadic background were investigated using a forward-scattered (FS) continuous-wave (CW) meteor radar link operational during 1992-95 over the long baseline Bologna-Lecce in Italy. The trend of the mass distribution of particles in the quoted meteoroid streams was derived, and the values of the mass index s were compared for each meteor population with the steady-state condition (s<11/6): It was found that the mass index s generally increases towards long duration echoes, but many of the observed meteor streams appear to have unstable populations. The values of the mass index of the sporadic complex are generally higher (2.07<=s<=2.57) than the corresponding ones of meteor showers in the range of echo durations 0.1<=T<=10 s. This is a possible consequence of longer lasting FS signals, indicating a shift of the mass distribution function vs, higher echo durations. Moreover,non-gravitational forces in connection with solar radiation pressure, Poynting-Robertson effect, solar-wind particle streaming, mutual collisions, etc., appear to be responsible for the observed widespread radiants and for unstable populations in the meteoroid stream

  16. New meteor showers – yes or not?

    Science.gov (United States)

    Koukal, Jakub

    2018-01-01

    The development of meteor astronomy associated with the development of CCD technology is reflected in a huge increase in databases of meteor orbits. It has never been possible before in the history of meteor astronomy to examine properties of meteors or meteor showers. Existing methods for detecting new meteor showers seem to be inadequate in these circumstances. The spontaneous discovery of new meteor showers leads to ambiguous specifications of new meteor showers. There is a duplication of already discovered meteor showers and a division of existing meteor showers based on their own criteria. The analysis in this article considers some new meteor showers in the IAU MDC database.

  17. On coagulation process in meteor trails

    International Nuclear Information System (INIS)

    Bergkhanov, M.

    1988-01-01

    Structure of the meteors processes of collisions of paricles formd after interaction of meteoric matter with the Earth atmosphere are shortly described. Equation describing coagulation in meteor trails is obtained. Primary and secondary particles of meteor nature, representing the source of polydisperse aerosol, exist in meteor zone. Coagulation in meteor trails can be referred to Brownian one

  18. Martian Meteor Crater

    Science.gov (United States)

    2004-01-01

    20 February 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a fairly young meteor impact crater on Mars that is about the same size ( 1 kilometer; 0.62 miles) as the famous Meteor Crater in northern Arizona, U.S.A. Like the Arizona crater, boulders of ejected bedrock can be seen on the crater's ejecta blanket and in the crater itself. This crater is located in the Aethiopis region of Mars near 4.7oN, 224.1oW. Sunlight illuminates the scene from the lower left.

  19. Meteor observation from space - The Smart Panoramical Optical Sensor (SPOSH)

    Science.gov (United States)

    Koschny, D.; di Martino, M.; Oberst, J.

    The European Space Agency (ESA) is funding two parallel studies for a ``Smart Panoramic Optical Head''. The main goal is to develop the technology for a space-qualified, very light-sensitive camera with a wide field of view, both from the hardware and the software side. The scientific application is to allow imaging of phenomena on the dark side of planets or moons, e.g. lightning flashes from thunderstorms or electrical discharges in sand storms, meteors, impact flashes, aurorae, etc. This paper will concentrate on the potential of this camera for the study of meteors from an orbit around a planet.

  20. Video Meteor Fluxes

    Science.gov (United States)

    Campbell-Brown, M. D.; Braid, D.

    2011-01-01

    The flux of meteoroids, or number of meteoroids per unit area per unit time, is critical for calibrating models of meteoroid stream formation and for estimating the hazard to spacecraft from shower and sporadic meteors. Although observations of meteors in the millimetre to centimetre size range are common, flux measurements (particularly for sporadic meteors, which make up the majority of meteoroid flux) are less so. It is necessary to know the collecting area and collection time for a given set of observations, and to correct for observing biases and the sensitivity of the system. Previous measurements of sporadic fluxes are summarized in Figure 1; the values are given as a total number of meteoroids striking the earth in one year to a given limiting mass. The Gr n et al. (1985) flux model is included in the figure for reference. Fluxes for sporadic meteoroids impacting the Earth have been calculated for objects in the centimeter size range using Super-Schmidt observations (Hawkins & Upton, 1958); this study used about 300 meteors, and used only the physical area of overlap of the cameras at 90 km to calculate the flux, corrected for angular speed of meteors, since a large angular speed reduces the maximum brightness of the meteor on the film, and radiant elevation, which takes into account the geometric reduction in flux when the meteors are not perpendicular to the horizontal. They bring up corrections for both partial trails (which tends to increase the collecting area) and incomplete overlap at heights other than 90 km (which tends to decrease it) as effects that will affect the flux, but estimated that the two effects cancelled one another. Halliday et al. (1984) calculated the flux of meteorite-dropping fireballs with fragment masses greater than 50 g, over the physical area of sky accessible to the MORP fireball cameras, counting only observations in clear weather. In the micron size range, LDEF measurements of small craters on spacecraft have been used to

  1. [Leonid Arbusow (1882-1951) und die Erforschung des mittelalterlichen Livland] / Dennis Hormuth

    Index Scriptorium Estoniae

    Hormuth, Dennis, 1979-

    2015-01-01

    Arvustus: Leonid Arbusow (1882-1951) und die Erforschung des mittelalterlichen Livland / Ilgvars Misāns und Klaus Neitmann (Hg.). Köln [etc.] : Böhlau, 2014. (Quellen und Studien zur baltischen Geschichte ; Bd. 24)

  2. Russian Revolutions, Lenin and Trotzky in a Book by Leonid Dobronravov (Donitch)

    Science.gov (United States)

    Gaina, Alex

    Some reflections concerning the role of Communist Party in the development of sciences and arts in the Soviet Union, following from the book by Leonid Dobronravov (Donitch)(Russian Revolution) and writings by Gennady Gorelik are given.

  3. The meteoric night-glow

    International Nuclear Information System (INIS)

    Baggaley, W.J.

    1977-01-01

    There exist well-documented accounts of the observations of enhanced night-glow associated with spectacular meteor shower displays. Possible mechanisms responsible for this elusive phenomenon are examined. It is shown that the observed emission is not a direct consequence of the influx of meteors on the Earth but rather has its source in scattering of solar radiation by interplanetary micrometeoroids which form the dense dustclouds ejected by the parent comets of the associated meteor streams. (author)

  4. Meteors in Australian Aboriginal Dreamings

    Science.gov (United States)

    Hamacher, Duane W.; Norris, Ray P.

    2010-06-01

    We present a comprehensive analysis of Australian Aboriginal accounts of meteors. The data used were taken from anthropological and ethnographic literature describing oral traditions, ceremonies, and Dreamings of 97 Aboriginal groups representing all states of modern Australia. This revealed common themes in the way meteors were viewed between Aboriginal groups, focusing on supernatural events, death, omens, and war. The presence of such themes around Australia was probably due to the unpredictable nature of meteors in an otherwise well-ordered cosmos.

  5. Current trends in meteor spectroscopy

    International Nuclear Information System (INIS)

    Millman, P.H.

    1983-01-01

    In the post-war period, a general interest in the upper atmosphere led to the development of more efficient meteor cameras and later, electronic image-intensification systems recording on video tape. As a result several thousand meteor spectra are now available. In this paper, the general nature of meteor spectra is discussed as is the resolution in these spectra, the height and velocity of the meteor stream, the chemical abundance and photometric techniques for the determination of absolute luminosities in the spectrum lines. (Auth.)

  6. Meteors and how to observe them

    CERN Document Server

    Lunsford, Robert

    2009-01-01

    No two meteor showers are alike, and their variation depends on current conditions and the observer's location. This introduction to the art of meteor observing explains how best to view meteor activity under all conditions and from all locations.

  7. Meteor Beliefs Project: Meteoric references in Ovid's Metamorphoses

    Science.gov (United States)

    Gheorghe, A. D.; McBeath, A.

    2003-10-01

    Three sections of Ovid's Metamorphoses are examined, providing further information on meteoric beliefs in ancient Roman times. These include meteoric imagery among the portents associated with the death of Julius Caesar, which we mentioned previously from the works of William Shakespeare (McBeath and Gheorghe, 2003b).

  8. The EISCAT meteor code

    Directory of Open Access Journals (Sweden)

    G. Wannberg

    2008-08-01

    Full Text Available The EISCAT UHF system has the unique capability to determine meteor vector velocities from the head echo Doppler shifts measured at the three sites. Since even meteors spending a very short time in the common volume produce analysable events, the technique lends itself ideally to mapping the orbits of meteors arriving from arbitrary directions over most of the upper hemisphere.

    A radar mode optimised for this application was developed in 2001/2002. A specially selected low-sidelobe 32-bit pseudo-random binary sequence is used to binary phase shift key (BPSK the transmitted carrier. The baud-length is 2.4 μs and the receiver bandwidth is 1.6 MHz to accommodate both the resulting modulation bandwidth and the target Doppler shift. Sampling is at 0.6 μs, corresponding to 90-m range resolution. Target range and Doppler velocity are extracted from the raw data in a multi-step matched-filter procedure. For strong (SNR>5 events the Doppler velocity standard deviation is 100–150 m/s. The effective range resolution is about 30 m, allowing very accurate time-of-flight velocity estimates. On average, Doppler and time-of-flight (TOF velocities agree to within about one part in 103. Two or more targets simultaneously present in the beam can be resolved down to a range separation <300 m as long as their Doppler shifts differ by more than a few km/s.

  9. Meteors, meteorites and cosmic dust

    International Nuclear Information System (INIS)

    Lebedinets, V.N.

    1987-01-01

    The problem of meteorite origin and meteorite composition is discussed. Nowadays, most scientists suppose that the giant Oort cloud consisting of ice comet nuclei is the sourse of the meteor matter. A principle unity of the matter of meteorites falling to the Earth and cosmic dust is noted as well as that of meteorite bodies evaporating in the atmosphere and bearing meteors and bodies

  10. Asteroids, Comets, Meteors 2014

    Science.gov (United States)

    Muinonen, K.; Penttilä, A.; Granvik, M.; Virkki, A.; Fedorets, G.; Wilkman, O.; Kohout, T.

    2014-08-01

    Asteroids, Comets, Meteors focuses on the research of small Solar System bodies. Small bodies are the key to understanding the formation and evolution of the Solar System, carrying signals from pre-solar times. Understanding the evolution of the Solar System helps unveil the evolution of extrasolar planetary systems. Societally, small bodies will be important future resources of minerals. The near-Earth population of small bodies continues to pose an impact hazard, whether it be small pieces of falling meteorites or larger asteroids or cometary nuclei capable of causing global environmental effects. The conference series entitled ''Asteroids, Comets, Meteors'' constitutes the leading international series in the field of small Solar System bodies. The first three conferences took place in Uppsala, Sweden in 1983, 1985, and 1989. The conference is now returning to Nordic countries after a quarter of a century. After the Uppsala conferences, the conference has taken place in Flagstaff, Arizona, U.S.A. in 1991, Belgirate, Italy in 1993, Paris, France in 1996, Ithaca, New York, U.S.A. in 1999, in Berlin, Germany in 2002, in Rio de Janeiro, Brazil in 2005, in Baltimore, Maryland, U.S.A. in 2008, and in Niigata, Japan in 2012. ACM in Helsinki, Finland in 2014 will be the 12th conference in the series.

  11. Hydrogen emission in meteors as a potential marker for the exogenous delivery of organics and water

    Science.gov (United States)

    Jenniskens, Peter; Mandell, Avram M.

    2004-01-01

    We detected hydrogen Balmer-alpha (H(alpha)) emission in the spectra of bright meteors and investigated its potential use as a tracer for exogenous delivery of organic matter. We found that it is critical to observe the meteors with high enough spatial resolution to distinguish the 656.46 nm H(alpha) emission from the 657.46 nm intercombination line of neutral calcium, which was bright in the meteor afterglow. The H(alpha) line peak stayed in constant ratio to the atmospheric emissions of nitrogen during descent of the meteoroid. If all of the hydrogen originates in the Earth's atmosphere, the hydrogen atoms are expected to have been excited at T = 4400 K. In that case, we measured an H(2)O abundance in excess of 150 +/- 20 ppm at 80-90 km altitude (assuming local thermodynamic equilibrium in the air plasma). This compares with an expected water bound in meteoroid minerals) could have caused the observed H(alpha) emission, but only if the line is excited in a hot T approximately 10000 K plasma component that is unique to meteoric ablation vapor emissions such as Si(+). Assuming that the Si(+) lines of the Leonid spectrum would need the same hot excitation conditions, and a typical [H]/[C] = 1 in cometary refractory organics, we calculated an abundance ratio [C]/[Si] = 3.9 +/- 1.4 for the dust of comet 55P/Tempel-Tuttle. This range agreed with the value of [C]/[Si] = 4.4 measured for comet 1P/Halley dust. Unless there is 10 times more water vapor in the upper atmosphere than expected, we conclude that a significant fraction of the hydrogen atoms in the observed meteor plasma originated in the meteoroid.

  12. C-H Hot Bands in the Near-IR Emission Spectra of Leonids

    Science.gov (United States)

    Freund, F. T.; Scoville, J.; Holm, R.; Seelemann, R.; Freund, M. M.

    2002-01-01

    The reported infrared (IR) emission spectra from 1999 Leonid fireballs show a 3.4 micron C-H emission band and unidentified bands at longer wavelengths. Upon atmospheric entry, the Leonid meteorites were flash-heated to temperatures around 2400K, which would destroy any organics on the surface of the meteorite grains. We propose that the nu(sub )CH emission band in the Leonid emission spectra arises from matrix-embedded C(sub n)-H-O entities that are protected from instant pyrolysis. Our model is based on IR absorption nu(sub )CH bands, which we observed in laboratory-grown MgO and natural olivine single crystals, where they arise from C(sub n)-H-O units imbedded in the mineral matrix, indicative of aliphatic -CH2- and -CH3 organics. Instead of being pyrolyzed, the C(sub n)-H-O entities in the Leonid trails become vibrationally excited to higher levels n = 1, 2, 3 etc. During de-excitation they emit at 3.4 microns, due to the (0 => 1) transition, and at longer wavelengths, due to hot bands. As a first step toward verifying this hypothesis we measured the C-H vibrational manifold of hexane (C6H14). The calculated positions of the (2 => l ) , (3 => 2), and possibly (4 => 3) hot bands agree with the Leonid emission bands at 3.5, 3.8 and 4.l microns.

  13. Infrasound detection of meteors

    Directory of Open Access Journals (Sweden)

    M.N. ElGabry

    2017-06-01

    The signals of these three meteors were detected by the infrasound sensors of the International Monitoring System (IMS of the Comprehensive Test Ban Treaty Organization (CTBTO. The progressive Multi Channel Technique is applied to the signals in order to locate these infrasound sources. Correlation of the recorded signals in the collocated elements of each array enables to calculate the delays at the different array element relative to a reference one as a way to estimate the azimuth and velocity of the coming infrasound signals. The meteorite infrasound signals show a sudden change in pressure with azimuth due to its track variation at different heights in the atmosphere. Due to movement of the source, a change in azimuth with time occurs. Our deduced locations correlate well with those obtained from the catalogues of the IDC of the CTBTO.

  14. Artificial meteor test towards: On-demand meteor shower

    Science.gov (United States)

    Abe, S.; Okajima, L.; Sahara, H.; Watanabe, T.; Nojiri, Y.; Nishizono, T.

    2016-01-01

    An arc-heated wind tunnel is widely used for ground-based experiments to simulate environments of the planetary atmospheric entry under hypersonic and high-temperature conditions. In order to understand details of a meteor ablation such as temperature, composition ratio and fragmentation processes, the artificial meteor test was carried out using a JAXA/ISAS arc-heated wind tunnel. High-heating rate around 30 MW/m2 and High-enthalpy conditions, 10000 K arc-heated flow at velocity around 6 km/s were provided. Newly developed artificial metallic meteoroids and real meteorites such as Chelyabinsk were used for the ablation test. The data obtained by near-ultraviolet and visible spectrograph (200 and 1100nm) and high-speed camera (50 μs) have been examined to develop more efficient artificial meteor materials. We will test artificial meteors from a small satellite in 2018.

  15. Review of amateur meteor research

    Science.gov (United States)

    Rendtel, Jürgen

    2017-09-01

    Significant amounts of meteor astronomical data are provided by amateurs worldwide, using various methods. This review concentrates on optical data. Long-term meteor shower analyses based on consistent data are possible over decades (Orionids, Geminids, κ-Cygnids) and allow combination with modelling results. Small and weak structures related to individual stream filaments of cometary dust have been analysed in both major and minor showers (Quadrantids, September ε-Perseids), providing feedback to meteoroid ejection and stream evolution processes. Meteoroid orbit determination from video meteor networks contributes to the improvement of the IAU meteor data base. Professional-amateur cooperation also concerns observations and detailed analysis of fireball data, including meteorite ground searches.

  16. Meteor magnitudes and enduring trains

    International Nuclear Information System (INIS)

    Baggaley, W.J.

    1978-01-01

    Using data associated with the sodium nightglow, it is possible to determine the minimum masses of meteoroids which might be expected to produce long-lived meteor trains. Such a procedure yields meteors having visual magnitudes in the range -2 to -5 depending on velocity. Since such values are in good accord with observation, the procedure provides important evidence regarding the source of enduring-train luminosity. (author)

  17. Meteor showers an annotated catalog

    CERN Document Server

    Kronk, Gary W

    2014-01-01

    Meteor showers are among the most spectacular celestial events that may be observed by the naked eye, and have been the object of fascination throughout human history. In “Meteor Showers: An Annotated Catalog,” the interested observer can access detailed research on over 100 annual and periodic meteor streams in order to capitalize on these majestic spectacles. Each meteor shower entry includes details of their discovery, important observations and orbits, and gives a full picture of duration, location in the sky, and expected hourly rates. Armed with a fuller understanding, the amateur observer can better view and appreciate the shower of their choice. The original book, published in 1988, has been updated with over 25 years of research in this new and improved edition. Almost every meteor shower study is expanded, with some original minor showers being dropped while new ones are added. The book also includes breakthroughs in the study of meteor showers, such as accurate predictions of outbursts as well ...

  18. Observations of meteor-head echoes using the Jicamarca 50MHz radar in interferometer mode

    Directory of Open Access Journals (Sweden)

    J. L. Chau

    2004-01-01

    Full Text Available We present results of recent observations of meteor-head echoes obtained with the high-power large-aperture Jicamarca 50MHz radar (11.95°S, 76.87°W in an interferometric mode. The large power-aperture of the system allows us to record more than 3000 meteors per hour in the small volume subtended by the 1° antenna beam, albeit when the cluttering equatorial electrojet (EEJ echoes are not present or are very weak. The interferometry arrangement allows the determination of the radiant (trajectory and speed of each meteor. It is found that the radiant distribution of all detected meteors is concentrated in relative small angles centered around the Earth's Apex as it transits over the Jicamarca sky, i.e. around the corresponding Earth heading for the particular observational day and time, for all seasons observed so far. The dispersion around the Apex is ~18° in a direction transverse to the Ecliptic plane and only 8.5° in heliocentric longitude in the Ecliptic plane both in the Earth inertial frame of reference. No appreciable interannual variability has been observed. Moreover, no population related to the optical (larger meteors Leonid showers of 1998-2002 is found, in agreement with other large power-aperture radar observations. A novel cross-correlation detection technique (adaptive match-filtering is used in combination with a 13 baud Barker phase-code. The technique allows us to get good range resolution (0.75km without any sensitivity deterioration for the same average power, compared to the non-coded long pulse scheme used at other radars. The matching Doppler shift provides an estimation of the velocity within a pulse with the same accuracy as if a non-coded pulse of the same length had been used. The velocity distribution of the meteors is relatively narrow and centered around 60kms-1. Therefore most of the meteors have an almost circular retrograde orbit around the Sun. Less than 8% of the velocities correspond to interstellar orbits

  19. Learning Storm

    CERN Document Server

    Jain, Ankit

    2014-01-01

    If you are a Java developer who wants to enter into the world of real-time stream processing applications using Apache Storm, then this book is for you. No previous experience in Storm is required as this book starts from the basics. After finishing this book, you will be able to develop not-so-complex Storm applications.

  20. Leonid Breznev and Richard Nixon examine plaques presented by Skylab crew

    Science.gov (United States)

    1973-01-01

    Leonid I. Breznev, General Secretary of the Communist Party, Union of Soviet Socialist Republics, and President Richard M. Nixon, during ceremonies at the Western White House in San Clemente, California, examine plaques presented by Skylab astronauts Charles Conrad Jr., center; Joseph P. Kerwin, second from right; and Paul J. Weitz, left.

  1. Leonid fireball above the BeNeLux 2017 November 19, 02h29m UT

    Science.gov (United States)

    Roggemans, Paul; Johannink, Carl; Biets, Jean-Marie; Breukers, Martin; Haas, Robert; Jobse, Klaas

    2018-01-01

    A brilliant Leonid fireball of magnitude -8 occurred right above the center of the CAMS BeNeLux network on 2017 November 19, 02h29m09s UT. It was captured by 7 CAMS cameras and several all-sky stations. The impressive event was also captured on color video by Klaas Jobse with the Astronomy!Projects Oostkapelle.

  2. Lastevihkaja Daniil Harms ja puuslik Leonid Iljitš Brežnev / Vaapo Vaher

    Index Scriptorium Estoniae

    Vaher, Vaapo, 1945-

    2011-01-01

    Tutvustus: Harms, Daniil. Väljapudunevad vanaeided / tõlkinud Ilona Martson ja Rein Saluri. Tallinn : Tänapäev, 2011 ; Bourget, Paul. Õpilane / tõlkinud Kattri Ezzoubi. Tallinn : Eesti Raamat, 2011 ; Mletšin, Leonid. Brežnev. Tallinn : Varrak, 2011

  3. A fast meteor detection algorithm

    Science.gov (United States)

    Gural, P.

    2016-01-01

    A low latency meteor detection algorithm for use with fast steering mirrors had been previously developed to track and telescopically follow meteors in real-time (Gural, 2007). It has been rewritten as a generic clustering and tracking software module for meteor detection that meets both the demanding throughput requirements of a Raspberry Pi while also maintaining a high probability of detection. The software interface is generalized to work with various forms of front-end video pre-processing approaches and provides a rich product set of parameterized line detection metrics. Discussion will include the Maximum Temporal Pixel (MTP) compression technique as a fast thresholding option for feeding the detection module, the detection algorithm trade for maximum processing throughput, details on the clustering and tracking methodology, processing products, performance metrics, and a general interface description.

  4. Spectrophotometric study of five bright meteors

    International Nuclear Information System (INIS)

    Saidov, K.Kh.; Zolowa, O.F.

    1971-01-01

    The results of 200 spectrophotometric study of five bright meteors and indentification of spectral lines are given. Distribution of energy for different points of the paths of meteors is found. Masses of meteor particles are determined on the base of integrated curves of brightness

  5. Meteor Beliefs Project: Meteors in the Maori astronomical traditions of New Zealand

    Science.gov (United States)

    Britton, Tui R.; Hamacher, Duane W.

    2014-02-01

    We review the literature for perceptions of meteors in the Maori culture of Aotearoa or New Zealand. We examine representations of meteors in religion, story, and ceremony. We find that meteors are sometimes personified as gods or children, or are seen as omens of death and destruction. The stories we found highlight the broad perception of meteors found throughout the Maori culture, and note that some early scholars conflated the terms comet and meteor.

  6. Catalogue of representative meteor spectra

    Czech Academy of Sciences Publication Activity Database

    Vojáček, Vlastimil; Borovička, Jiří; Koten, Pavel; Spurný, Pavel; Štork, Rostislav

    2015-01-01

    Roč. 580, August (2015), A67/1-A67/31 ISSN 0004-6361 R&D Projects: GA ČR(CZ) GAP209/11/1382 Institutional support: RVO:67985815 Keywords : meteorites * meteors * meteoroids Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  7. Meteors Without Borders: a global campaign

    Science.gov (United States)

    Heenatigala, T.

    2012-01-01

    "Meteors Without Borders" is a global project, organized by Astronomers Without Borders and launched during the Global Astronomy Month in 2010 for the Lyrid meteor shower. The project focused on encouraging amateur astronomy groups to hold public outreach events for major meteor showers, conduct meteor-related classroom activities, photography, poetry and art work. It also uses social-media platforms to connect groups around the world to share their observations and photography, live during the events. At the International Meteor Conference 2011, the progress of the project was presented along with an extended invitation for collaborations for further improvements of the project.

  8. Determination of the Meteor Limiting Magnitude

    Science.gov (United States)

    Kingery, A.; Blaauw, R.; Cooke, W. J.

    2016-01-01

    The limiting meteor magnitude of a meteor camera system will depend on the camera hardware and software, sky conditions, and the location of the meteor radiant. Some of these factors are constants for a given meteor camera system, but many change between meteor shower or sporadic source and on both long and short timescales. Since the limiting meteor magnitude ultimately gets used to calculate the limiting meteor mass for a given data set, it is important to have an understanding of these factors and to monitor how they change throughout the night, as a 0.5 magnitude uncertainty in limiting magnitude translates to a uncertainty in limiting mass by a factor of two.

  9. FeO "Orange Arc" Emission Detected in Optical Spectrum of Leonid Persistent Trains

    Science.gov (United States)

    Jenniskens, Peter; Lacey, Matt; Allan, Beverly J.; Self, Daniel E.; Plane, John M. C.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    We report the detection of a broad continuum emission dominating the visual spectrum of a Leonid persistent train. A comparison with laboratory spectra of FeO 1 "orange arc" emission at I mbar shows a general agreement of the band position and shape. The detection of FeO confirms the classical mechanism of metal atom catalyzed recombination of ozone and oxygen atoms as the driving force behind optical emission from persistent trains. Sodium and iron atoms are now confirmed catalysts.

  10. Collecting Comet Samples by ER-2 Aircraft: Cosmic Dust Collection During the Draconid Meteor Shower in October 2012

    Science.gov (United States)

    Bastien, Ron; Burkett, P. J.; Rodriquez, M.; Frank, D.; Gonzalez, C.; Robinson, G.-A.; Zolensky, M.; Brown, P.; Campbell-Brown, M.; Broce, S.; hide

    2014-01-01

    Many tons of dust grains, including samples of asteroids and comets, fall from space into the Earth's atmosphere each day. NASA periodically collects some of these particles from the Earth's stratosphere using sticky collectors mounted on NASA's high-flying aircraft. Sometimes, especially when the Earth experiences a known meteor shower, a special opportunity is presented to associate cosmic dust particles with a known source. NASA JSC's Cosmic Dust Collection Program has made special attempts to collect dust from particular meteor showers and asteroid families when flights can be planned well in advance. However, it has rarely been possible to make collections on very short notice. In 2012, the Draconid meteor shower presented that opportunity. The Draconid meteor shower, originating from Comet 21P/Giacobini-Zinner, has produced both outbursts and storms several times during the last century, but the 2012 event was not predicted to be much of a show. Because of these predictions, the Cosmic Dust team had not targeted a stratospheric collection effort for the Draconids, despite the fact that they have one of the slowest atmospheric entry velocities (23 km/s) of any comet shower, and thus offer significant possibilities of successful dust capture. However, radar measurements obtained by the Canadian Meteor Orbit Radar during the 2012 Draconids shower indicated a meteor storm did occur October 8 with a peak at 16:38 (+/-5 min) UTC for a total duration of approximately 2 hours.

  11. Increasing Geminid meteor shower activity

    Science.gov (United States)

    Ryabova, G. O.; Rendtel, J.

    2018-03-01

    Mathematical modelling has shown that activity of the Geminid meteor shower should rise with time, and that was confirmed by analysis of visual observations 1985-2016. We do not expect any outburst activity of the Geminid shower in 2017, even though the asteroid (3200) Phaethon has a close approach to Earth in December of 2017. A small probability to observe dust ejected at perihelia 2009-2016 still exists.

  12. Radar meteor rates and atmospheric density changes

    International Nuclear Information System (INIS)

    Ellyett, C.D.; Kennewell, J.A.

    1980-01-01

    It has been suggested that variations of the atmospheric scale height at meteor ablation altitudes could be responsible for the recorded correlations between radar meteor rates and solar activity. A quantitative examination of a theoretical treatment by Kaiser (personal communication) is reported which shows that his suggestion is certainly plausible and gives details of the necessary scale height changes as a function of the meteor mass exponent. (U.K.)

  13. New radio meteor detecting and logging software

    Science.gov (United States)

    Kaufmann, Wolfgang

    2017-08-01

    A new piece of software ``Meteor Logger'' for the radio observation of meteors is described. It analyses an incoming audio stream in the frequency domain to detect a radio meteor signal on the basis of its signature, instead of applying an amplitude threshold. For that reason the distribution of the three frequencies with the highest spectral power are considered over the time (3f method). An auto notch algorithm is developed to prevent the radio meteor signal detection from being jammed by a present interference line. The results of an exemplary logging session are discussed.

  14. Leonid Vital'evich Kantorovich (on the 100th anniversary of his birth)

    Science.gov (United States)

    Vershik, Anatolii M.; Kutateladze, Semen S.; Novikov, Sergei P.

    2012-06-01

    The 19th of January 2012 was the 100th anniversary of the birth of Leonid Vital'evich Kantorovich, an outstanding mathematician and economist of international fame. A child prodigy, who graduated from the university at 18 and became a professor at 20, an academician in the mathematical sciences and a laureate of the Nobel Prize in economics, - these are extraordinary circumstances of his life. They are remarkable in themselves, but also the results he achieved were exceptional and immensely impressive, and the younger generations of researchers, first and foremost mathematicians and economists, must know about them.

  15. Radar meteors range distribution model. I. Theory

    Czech Academy of Sciences Publication Activity Database

    Pecinová, Drahomíra; Pecina, Petr

    2007-01-01

    Roč. 37, č. 2 (2007), s. 83-106 ISSN 1335-1842 R&D Projects: GA ČR GA205/03/1405 Institutional research plan: CEZ:AV0Z10030501 Keywords : physics of meteors * radar meteors * range distribution Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  16. Global variation of meteor trail plasma turbulence

    Directory of Open Access Journals (Sweden)

    L. P. Dyrud

    2011-12-01

    Full Text Available We present the first global simulations on the occurrence of meteor trail plasma irregularities. These results seek to answer the following questions: when a meteoroid disintegrates in the atmosphere, will the resulting trail become plasma turbulent? What are the factors influencing the development of turbulence? and how do these trails vary on a global scale? Understanding meteor trail plasma turbulence is important because turbulent meteor trails are visible as non-specular trails to coherent radars. Turbulence also influences the evolution of specular radar meteor trails; this fact is important for the inference of mesospheric temperatures from the trail diffusion rates, and their usage for meteor burst communication. We provide evidence of the significant effect that neutral atmospheric winds and ionospheric plasma density have on the variability of meteor trail evolution and on the observation of non-specular meteor trails. We demonstrate that trails are far less likely to become and remain turbulent in daylight, explaining several observational trends for non-specular and specular meteor trails.

  17. System for accurate ranging of meteor trails

    International Nuclear Information System (INIS)

    Tshebotaryov, R.P.; Sidorin, V.N.

    1970-01-01

    The necessity of precise ranging of meteor trails is emphasised possible methods are considered. A scheme with a non ius circular trace and intensity indication giving an unique for meteor radar accuracy ± 50 m is described in detail. Results are given of experimental and practical work of the system

  18. Magnetic Storms in October 2003

    Science.gov (United States)

    Panasyuk, M. I.; Solar Extreme Events in 2003 Collaboration SEE-2003; Kuznetsov, S. N.; Lazutin, L. L.; Avdyushin, S. I.; Alexeev, I. I.; Ammosov, P. P.; Antonova, A. E.; Baishev, D. G.; Belenkaya, E. S.; Beletsky, A. B.; Belov, A. V.; Benghin, V. V.; Bobrovnikov, S. Yu.; Bondarenko, V. A.; Boyarchuk, K. A.; Veselovsky, I. S.; Vyushkova, T. Yu.; Gavrilieva, G. A.; Gaidash, S. P.; Ginzburg, E. A.; Denisov, Yu. I.; Dmitriev, A. V.; Zherebtsov, G. A.; Zelenyi, L. M.; Ivanov-Kholodny, G. S.; Kalegaev, V. V.; Kanonidi, Kh. D.; Kleimenova, N. G.; Kozyreva, O. V.; Kolomiitsev, O. P.; Krasheninnikov, I. A.; Krivolutsky, A. A.; Kropotkin, A. P.; Kuminov, A. A.; Leshchenko, L. N.; Mar'in, B. V.; Mitrikas, V. G.; Mikhalev, A. V.; Mullayarov, V. A.; Muravieva, E. A.; Myagkova, I. N.; Petrov, V. M.; Petrukovich, A. A.; Podorolsky, A. N.; Pudovkin, M. I.; Samsonov, S. N.; Sakharov, Ya. A.; Svidsky, P. M.; Sokolov, V. D.; Soloviev, S. I.; Sosnovets, E. N.; Starkov, G. V.; Starostin, L. I.; Tverskaya, L. V.; Teltsov, M. V.; Troshichev, O. A.; Tsetlin, V. V.; Yushkov, B. Yu.

    2004-09-01

    Preliminary results of an analysis of satellite and ground-based measurements during extremely strong magnetic storms at the end of October 2003 are presented, including some numerical modeling. The geosynchronous satellites Ekspress-A2 and Ekspress-A3, and the low-altitude polar satellites Coronas-F and Meteor-3M carried out measurements of charged particles (electrons, protons, and ions) of solar and magnetospheric origin in a wide energy range. Disturbances of the geomagnetic field caused by extremely high activity on the Sun were studied at more than twenty magnetic stations from Lovozero (Murmansk region) to Tixie (Sakha-Yakutia). Unique data on the dynamics of the ionosphere, riometric absorption, geomagnetic pulsations, and aurora observations at mid-latitudes are obtained.

  19. Russia - Africa. Klondike of Interaction. Interview with Leonid L. Fituni, Institute of African Studies

    Directory of Open Access Journals (Sweden)

    Ol'ga Gerasimova

    2016-12-01

    Full Text Available Professor Leonid L. Fituni was born on the 27th of September 1953. He graduated from the Moscow State Institute of International Relations, MFA of the USSR in 1975. He is Deputy Director of the Institute for African Studies of the Russian Academy of Sciences. Concurrently, he heads the Center for Strategic and Global Studies there. He is the author of 18 books and about 300 articles, is fluent in English, French and Arabic. Interview with Doctor of Economics, Professor L.L. Fituni is devoted to the most topical issues of Russian-African relations, as well as key features of interaction in historical perspective. According to Leonid Leonidovich, at the moment we can not say that these relations are at their peak, however, there can be traced a certain rise in the past decade. Professor also touches upon Russian debt relief to African countries and the presence of Russian business on the African continent. L.L. Fituni in details describes the economic potential of African countries and the prospects for cooperation with Russia. Particular attention is paid to the world scientific schools of African research and training in this area, including the national school of African studies.

  20. Implementing the Zone of Proximal Development: From the Pedagogical Experiment to the Developmental Education System of Leonid Zankov

    Science.gov (United States)

    Guseva, Liudmila G.; Solomonovich, Mark

    2017-01-01

    This article overviews the theoretical and applied works of the psychologist and pedagogue Leonid Zankov. Zankov's model of teaching is based on Vygotsky's theory that appropriate teaching methods stimulate cognitive development, whose core notion is the Zone of Proximal Development. This educational psychology research was verified by large scale…

  1. PROBLEM OF LATENT MASS UNDER RADIATION OF METEORS

    OpenAIRE

    Smirnov, V. A.

    2017-01-01

    The date on absolute spectrophotometry of meteor spectrograms permit to estimate the number of radiating particles for different brightness of meteor. Methods of nonradiation meteor mass estimation are given. Comparison of observed numbers of radiating concentration with know data of artificial cosmic sample will allow to get the coefficients for calculation the nonradiating meteor mass.

  2. The KUT meteor radar: An educational low cost meteor observation system by radio forward scattering

    Science.gov (United States)

    Madkour, W.; Yamamoto, M.

    2016-01-01

    The Kochi University of Technology (KUT) meteor radar is an educational low cost observation system built at Kochi, Japan by successive graduate students since 2004. The system takes advantage of the continuous VHF- band beacon signal emitted from Fukui National College of Technology (FNCT) for scientific usage all over Japan by receiving the forward scattered signals. The system uses the classical forward scattering setup similar to the setup described by the international meteor organization (IMO), gradually developed from the most basic single antenna setup to the multi-site meteor path determination setup. The primary objective is to automate the observation of the meteor parameters continuously to provide amounts of data sufficient for statistical analysis. The developed software system automates the observation of the astronomical meteor parameters such as meteor direction, velocity and trajectory. Also, automated counting of meteor echoes and their durations are used to observe mesospheric ozone concentration by analyzing the duration distribution of different meteor showers. The meteor parameters observed and the methodology used for each are briefly summarized.

  3. Meteor shower activity derived from meteor watching public campaign in Japan

    Science.gov (United States)

    Ishizaki, Masaharu; Watanabe, Jun-ichi; Sato, Mikiya

    2017-09-01

    We have carried out a meteor watching public campaigns from 2004 for major meteor showers in the case of appropriate observing condition as one of the outreach programs conducted by National Astronomical Observatory of Japan. We received a huge number of the reports on meteor counts from the general public participants. The results sometimes show similar time variation of the hourly rates derived from the data collected by skilled observers. In this paper, some of the results are presented showing that such campaigns have a potential to extract scientific result related to the meteor showers mainly due to the large number of the data collected by unskilled observers.

  4. Detection of a persistent meteoric metal layer in the Martian atmosphere

    Science.gov (United States)

    Crismani, M. M. J.; Schneider, N. M.; Plane, J. M. C.; Evans, J. S.; Jain, S. K.; Chaffin, M. S.; Carrillo-Sanchez, J. D.; Deighan, J. I.; Yelle, R. V.; Stewart, A. I. F.; McClintock, W.; Clarke, J.; Holsclaw, G. M.; Stiepen, A.; Montmessin, F.; Jakosky, B. M.

    2017-06-01

    Interplanetary dust particles sporadically enter planetary atmospheres at orbital velocities and ablate as collisions occur with ambient gases to produce a persistent layer of metallic atoms (for example, Fe, Mg, Na) in their upper atmospheres. Such layers are well studied at Earth, but have not been directly detected elsewhere in the Solar System. Here we report the detection of a meteoric layer consisting of Mg+ ions near an altitude of 90 km in the Martian atmosphere from ultraviolet remote sensing observations by NASA's MAVEN spacecraft. We observe temporal variability in the Mg+ layer over the course of a Martian year, moving up and down in altitude seasonally and in response to dust storms, and displaying diurnal fluctuations in density. We also find that most meteor showers do not significantly perturb this layer, which constrains the fluence of eleven observed Martian meteor showers to less than our estimated global dust flux. The persistence and variability of the Mg+ layer are difficult to explain with existing models and reconcile with other transient layers of ions observed in the Martian ionosphere. We suggest that the transient layers are not sourced from the persistent Mg+ layer and thus not derived from meteoric material, but are ambient ions produced by some unknown mechanism.

  5. A Meteor Shower Origin for Martian Methane

    Science.gov (United States)

    Fries, M.; Christou, A.; Archer, D.; Conrad, P.; Cooke, W.; Eigenbrode, J.; ten Kate, I. L.; Matney, M.; Niles, P.; Sykes, M.; Steele, A.; Treiman, A.

    2015-07-01

    We present and discuss the hypothesis that martian methane arises from a meteor shower source. Infall material produces methane by UV photolysis, generating localized plumes that occur after Mars/comet orbit interactions. This hypothesis is testable.

  6. Meteor Shower Forecasting for Spacecraft Operations

    Science.gov (United States)

    Moorhead, Althea V.; Cooke, William J.; Campbell-Brown, Margaret D.

    2017-01-01

    Although sporadic meteoroids are a much greater hazard to spacecraft than shower meteoroids in general, meteor showers can significantly increase the risk of damage over short time periods. Because showers are brief, it is sometimes possible to mitigate the risk operationally, which requires accurate predictions of shower activity. NASA's Meteoroid Environment Office generates an annual meteor shower forecast that describes the variations in the near-Earth meteoroid flux produced by meteor showers, which presents the shower flux both in absolute terms and relative to the sporadic ux. The shower forecast incorporates model predictions of annual variations in shower activity and quotes fluxes to several limiting particle kinetic energies. In this work, we describe our forecasting methods, compare them to actual observations, and highlight recent improvements to the temporal pro les based on flux measurements from the Canadian Meteor Orbit Radar (CMOR).

  7. Monte Carlo modeling and meteor showers

    International Nuclear Information System (INIS)

    Kulikova, N.V.

    1987-01-01

    Prediction of short lived increases in the cosmic dust influx, the concentration in lower thermosphere of atoms and ions of meteor origin and the determination of the frequency of micrometeor impacts on spacecraft are all of scientific and practical interest and all require adequate models of meteor showers at an early stage of their existence. A Monte Carlo model of meteor matter ejection from a parent body at any point of space was worked out by other researchers. This scheme is described. According to the scheme, the formation of ten well known meteor streams was simulated and the possibility of genetic affinity of each of them with the most probable parent comet was analyzed. Some of the results are presented

  8. Analysis of ALTAIR 1998 Meteor Radar Data

    Science.gov (United States)

    Zinn, J.; Close, S.; Colestock, P. L.; MacDonell, A.; Loveland, R.

    2011-01-01

    We describe a new analysis of a set of 32 UHF meteor radar traces recorded with the 422 MHz ALTAIR radar facility in November 1998. Emphasis is on the velocity measurements, and on inferences that can be drawn from them regarding the meteor masses and mass densities. We find that the velocity vs altitude data can be fitted as quadratic functions of the path integrals of the atmospheric densities vs distance, and deceleration rates derived from those fits all show the expected behavior of increasing with decreasing altitude. We also describe a computer model of the coupled processes of collisional heating, radiative cooling, evaporative cooling and ablation, and deceleration - for meteors composed of defined mixtures of mineral constituents. For each of the cases in the data set we ran the model starting with the measured initial velocity and trajectory inclination, and with various trial values of the quantity mPs 2 (the initial mass times the mass density squared), and then compared the computed deceleration vs altitude curves vs the measured ones. In this way we arrived at the best-fit values of the mPs 2 for each of the measured meteor traces. Then further, assuming various trial values of the density Ps, we compared the computed mass vs altitude curves with similar curves for the same set of meteors determined previously from the measured radar cross sections and an electrostatic scattering model. In this way we arrived at estimates of the best-fit mass densities Ps for each of the cases. Keywords meteor ALTAIR radar analysis 1 Introduction This paper describes a new analysis of a set of 422 MHz meteor scatter radar data recorded with the ALTAIR High-Power-Large-Aperture radar facility at Kwajalein Atoll on 18 November 1998. The exceptional accuracy/precision of the ALTAIR tracking data allow us to determine quite accurate meteor trajectories, velocities and deceleration rates. The measurements and velocity/deceleration data analysis are described in Sections

  9. Some features of evolution of meteor streams

    International Nuclear Information System (INIS)

    Babadzhanov, P.B.; Obrubov, Y.V.

    1983-01-01

    It is shown that a number of features of meteor showers such as the correlation of orbital semimajor axes and longitudes of the ascending nodes with meteor magnitudes, the restriction of visibility periods and the displacement of maximum activity dates is explained by the joint influence of planetary perturbations, the Poynting-Robertson effect and its corpuscular analogue, light pressure and ejection velocities of different mass meteoroids from cometary nuclei. (orig.)

  10. METEOR v1.0 - User's Guide

    International Nuclear Information System (INIS)

    Palomo, E.

    1994-01-01

    This script is a User's Guide for the software package METEOR for statistical analysis of meteorological data series. The original version of METEOR have been developed by Ph.D. Elena Palomo, CIEMAT-IER, GIMASE. It is built by linking programs and routines written in FORTRAN 77 and it adds the graphical capabilities of GNUPLOT. The shape of this toolbox was designed following the criteria of modularity, flexibility and agility criteria. All the input, output and analysis options are structured in three main menus: i) the first is aimed to evaluate the quality of the data set; ii) the second is aimed for pre-processing of the data; and iii) the third is aimed towards the statistical analyses and for creating the graphical outputs. Actually the information about METEOR is constituted by three documents written in spanish: 1) METEOR v1.0: User's guide; 2) METEOR v1.0: A usage example; 3) METEOR v1.0: Design and structure of the software package. (Author)

  11. Geomagnetic Storm Sudden Commencements

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Storm Sudden Commencements (ssc) 1868 to present: STORM1 and STORM2 Lists: (Some text here is taken from the International Association of Geomagnetism and Aeronomy...

  12. State-of-the-art meteor observing

    Science.gov (United States)

    Campbell-Brown, M.

    2014-07-01

    Meteors are an excellent way to sample the local population of small asteroidal and cometary material. Various methods are used to calculate the trajectory, energy, mass and orbit of meteoroids which collide with the atmosphere. Optical methods, including photographic and video observations, can provide information on how meteoroids ablate in the atmosphere, and from this their chemical and physical properties can be inferred. New observing systems have higher resolution than ever before, allowing details as small as a few meters to be distinguished in some cases (e.g. Weryk et al. 2013), and some optical systems are equipped with spectral detectors which allow the atomic composition of the meteoroids to be obtained. Computer automation of both the observing and data reduction process has become much more practical recently. Meteor patrol radars are capable of observing thousands of meteor orbits every day, allowing the details of the distribution of meteoroids at 1 au to be found (e.g. Brown et al. 2010). Radars can operate in daylight and through clouds, providing observations when optical methods fail. High power, large aperture radars allow the ionization curves of very small meteors to be used in the same way as optical light curves, and can also produce precise orbits for meteoroids (Kero et al. 2012). Other methods used to observe meteors, including infrasound, can estimate their position in the atmosphere and their energy, and are particularly useful for very bright fireballs (Ens et al., 2012). Recent advances in meteor observing techniques will be reviewed, including the systematic tracking of meteors with computer guided mirrors and a telescope, and multistation patrol radar observations.

  13. Advances in Meteoroid and Meteor Science

    CERN Document Server

    Trigo-Rodríguez, J. M; Llorca, J; Janches, D

    2008-01-01

    This volume is a compilation of articles that summarize the most recent results in meteor, meteoroid and related fields presented at the Meteoroids 2007 conference held at the impressive CosmoCaixa Science Museum in Barcelona, Spain. The conference took place between the 11th and the 15th of June and was organized by the Institute of Space Sciences (Consejo Superior de Investigaciones Científicas, CSIC) and the Institut d'Estudis Espacials de Catalunya (IEEC). Researchers in meteor science and supporting fields representing more than 20 countries participated at this international conference. The papers contained in this volume underwent the rigorous refereeing process, and they are good examples of the continuous progress being made in this research field. Technological advances in meteor and metoroid detection, the ever-increasing sophistication of computer modeling, and the proliferation of autonomous monitoring stations continue to create new niches for exciting research on meteoroids and their parent bo...

  14. Meteor Beliefs Project: Notes from Coleridge and Doré

    Science.gov (United States)

    McBeath, Alastair

    2006-10-01

    Some meteorically-relevant lines from Coleridge's poem `The Rime of the Ancient Mariner' are discussed, presented with three of Dore's engraved illustrations to the poem, by way of concluding this Meteor Beliefs Project Hallowe'en Special.

  15. Solar noise storms

    CERN Document Server

    Elgaroy, E O

    2013-01-01

    Solar Noise Storms examines the properties and features of solar noise storm phenomenon. The book also presents some theories that can be used to gain a better understanding of the phenomenon. The coverage of the text includes topics that cover the features and behavior of noise storms, such as the observable features of noise storms; the relationship between noise storms and the observable features on the sun; and ordered behavior of storm bursts in the time-frequency plane. The book also covers the spectrum, polarization, and directivity of noise storms. The text will be of great use to astr

  16. In Situ Measurements of Meteoric Ions

    Science.gov (United States)

    Grebowsky, Joseph M.; Aiken, Arthur C.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Extraterrestrial material is the source of metal ions in the Earth's atmosphere, Each year approx. 10(exp 8) kg of material is intercepted by the Earth. The origin of this material is predominantly solar orbiting interplanetary debris from comets or asteroids that crosses the Earth's orbit. It contains a very small amount of interstellar material. On occasion the Earth passes through enhanced amounts of debris associated with the orbit of a decaying comet. This leads to enhanced meteor shower displays for up to several days. The number flux of shower material is typically several times the average sporadic background influx of material. Meteoric material is some of the earliest material formed in the solar system. By studying the relative elemental abundances of atmospheric metal ions, information can be gained on the chemical composition of cometary debris and the chemical makeup of the early solar system. Using in situ sampling with rocket-borne ion mass spectrometers; there have been approximately 50 flights that made measurements of the metal ion abundances at attitudes between 80 and 130 km. It is this altitude range where incoming meteoric particles am ablated, the larger ones giving rise to visible meteor. displays. In several rocket measurements isotopic ratios of different atomic ion mass components and metal molecular ion concentrations have been determined and used to identify unambiguously the measured species and to investigate the processes controlling the metal ion distributions The composition of the Earth's ionosphere was first sampled by an ion mass spectrometer flown an a rocket in 1956. In 1958 a rocket-borne ion spectrometer identified, fbr the first time, a layer of metal ions near 95 km. These data were interpreted as evidence of an extraterrestrial rather than a terrestrial source. Istomin predicted: "It seems probable that with some improvement in the method that analysis of the ion composition in the E-region may be used for determining

  17. The return of the Andromedids meteor shower

    OpenAIRE

    Wiegert, Paul A.; Brown, Peter G.; Weryk, Robert J.; Wong, Daniel K.

    2012-01-01

    The Andromedid meteor shower underwent spectacular outbursts in 1872 and 1885, producing thousands of visual meteors per hour and described as `stars fell like rain' in Chinese records of the time. The shower originates from comet 3D/Biela whose disintegration in the mid-1800's is linked to the outbursts, but the shower has been weak or absent since the late 19th Century. This shower returned in December 2011 with a zenithal hourly rate of approximately 50, the strongest return in over a hund...

  18. Modern Meteor Science An Interdisciplinary View

    CERN Document Server

    Hawkes, Robert; Brown, Peter

    2005-01-01

    This volume represents a blend of leading edge research and authoritative reviews in meteor science. It provides a comprehensive view of meteoroid research including the dynamics, sources and distribution of these bodies, and their chemistry and physical processes in the interplanetary medium and the Earth’s atmosphere. Techniques for investigation of meteor phenomena in the book include conventional and large aperture radar systems, spacecraft detection, optical systems, spectral measurements, and laboratory based interplanetary dust particle studies. The book will be of interest to researchers and students in astronomy, astrophysics, cosmochemistry, space engineering and space science. Cover photograph was taken by Masayuki Toda.

  19. Meteor wind observation at Kyoto Station

    International Nuclear Information System (INIS)

    Kato, S.; Aso, T.; Tsuda, T.

    1979-01-01

    Meteor wind observation at Kyoto Station has now collected a fairly large amount of data enough to enable to know the basic dynamic state at meteor heights over the station. Tidal and prevailing winds have been detected and their behavior seems now well understood on daily and seasonal basis. A comparison with observations at other stations suggests classical tidal theory to be relevant to explain the average state. Deviations from the mean present problems on the existence of various causes including hydromagnetic effects. Gravity waves would be an interesting subject in future study. (author)

  20. 47 CFR 90.250 - Meteor burst communications.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Meteor burst communications. 90.250 Section 90... PRIVATE LAND MOBILE RADIO SERVICES Non-Voice and Other Specialized Operations § 90.250 Meteor burst communications. Meteor burst communications may be authorized for the use of private radio stations subject to...

  1. The 2014 KCG Meteor Outburst: Clues to a Parent Body

    Czech Academy of Sciences Publication Activity Database

    Moorhead, A.V.; Brown, P. G.; Spurný, Pavel; Cooke, W.; Shrbený, Lukáš

    2015-01-01

    Roč. 150, č. 4 (2015), 122/1-122/13 ISSN 0004-6256 Institutional support: RVO:67985815 Keywords : meteor ites * meteor s * meteor oids Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.617, year: 2015

  2. Predictions of the meteor radiant point associated with a comet

    International Nuclear Information System (INIS)

    Hasegawa, Ichiro

    1990-01-01

    Under the condition of equal heliocentric distances on the ecliptic plane, predictions of cometary meteor orbit and its radiant point are presented and discussed in terms of meteor observations. Some adjustment methods regarding the parent cometary orbit in order to fulfill the proposed conditions for the apparition of meteor streams are also presented. (author)

  3. Meteor Shower Activity Derived from "Meteor Watching Public-Campaign" in Japan

    Science.gov (United States)

    Sato, M.; Watanabe, J.

    2011-01-01

    We tried to analyze activities of meteor showers from accumulated data collected by public campaigns for meteor showers which were performed as outreach programs. The analyzed campaigns are Geminids (in 2007 and 2009), Perseids (in 2008 and 2009), Quadrantids (in 2009) and Orionids (in 2009). Thanks to the huge number of reports, the derived time variations of the activities of meteor showers is very similar to those obtained by skilled visual observers. The values of hourly rates are about one-fifth (Geminids 2007) or about one-fourth (Perseids 2008) compared with the data of skilled observers, mainly due to poor observational sites such as large cities and urban areas, together with the immature skill of participants in the campaign. It was shown to be highly possible to estimate time variation in the meteor shower activity from our campaign.

  4. All-sky Meteor Orbit System AMOS and preliminary analysis of three unusual meteor showers

    Czech Academy of Sciences Publication Activity Database

    Tóth, J.; Kornoš, L.; Zigo, P.; Gajdoš, Š.; Kalmančok, D.; Világi, J.; Šimon, J.; Vereš, P.; Šilha, J.; Buček, M.; Galád, Adrián; Rusňák, P.; Hrábek, P.; Ďuriš, F.; Rudawska, R.

    2015-01-01

    Roč. 118, December (2015), s. 102-106 ISSN 0032-0633 Institutional support: RVO:67985815 Keywords : meteor * meteorite * meteoroid streams Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.942, year: 2015

  5. STS-87 Payload Specialist Leonid Kadenyuk chats with NASA Administrator Daniel Goldin shortly after

    Science.gov (United States)

    1997-01-01

    STS-87 Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine (NSAU), at left, chats with NASA Administrator Daniel Goldin shortly after the landing of Columbia at Kennedy Space Center. Looking on is back-up Payload Specialist Yaroslav Pustovyi, also of NSAU. STS-87 concluded its mission with a main gear touchdown at 7:20:04 a.m. EST Dec. 5, at KSC's Shuttle Landing Facility Runway 33, drawing the 15-day, 16-hour and 34- minute-long mission of 6.5 million miles to a close. Also onboard the orbiter were Commander Kevin Kregel; Pilot Steven Lindsey; and Mission Specialists Winston Scott, Kalpana Chawla, Ph.D., and Takao Doi, Ph.D., of the National Space Development Agency of Japan. During the 88th Space Shuttle mission, the crew performed experiments on the United States Microgravity Payload-4 and pollinated plants as part of the Collaborative Ukrainian Experiment. This was the 12th landing for Columbia at KSC and the 41st KSC landing in the history of the Space Shuttle program.

  6. MSFC Stream Model Preliminary Results: Modeling Recent Leonid and Perseid Encounters

    Science.gov (United States)

    Cooke, William J.; Moser, Danielle E.

    2004-01-01

    The cometary meteoroid ejection model of Jones and Brown (1996b) was used to simulate ejection from comets 55P/Tempel-Tuttle during the last 12 revolutions, and the last 9 apparitions of 109P/Swift-Tuttle. Using cometary ephemerides generated by the Jet Propulsion Laboratory s (JPL) HORIZONS Solar System Data and Ephemeris Computation Service, two independent ejection schemes were simulated. In the first case, ejection was simulated in 1 hour time steps along the comet s orbit while it was within 2.5 AU of the Sun. In the second case, ejection was simulated to occur at the hour the comet reached perihelion. A 4th order variable step-size Runge-Kutta integrator was then used to integrate meteoroid position and velocity forward in time, accounting for the effects of radiation pressure, Poynting-Robertson drag, and the gravitational forces of the planets, which were computed using JPL s DE406 planetary ephemerides. An impact parameter was computed for each particle approaching the Earth to create a flux profile, and the results compared to observations of the 1998 and 1999 Leonid showers, and the 1993 and 2004 Perseids.

  7. NCDC Storm Events Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Storm Data is provided by the National Weather Service (NWS) and contain statistics on personal injuries and damage estimates. Storm Data covers the United States of...

  8. Interferometric Meteor Head Echo Observations using the Southern Argentina Agile Meteor Radar (SAAMER)

    Science.gov (United States)

    Janches, D.; Hocking, W.; Pifko, S.; Hormaechea, J. L.; Fritts, D. C.; Brunini, C; Michell, R.; Samara, M.

    2013-01-01

    A radar meteor echo is the radar scattering signature from the free-electrons in a plasma trail generated by entry of extraterrestrial particles into the atmosphere. Three categories of scattering mechanisms exist: specular, nonspecular trails, and head-echoes. Generally, there are two types of radars utilized to detect meteors. Traditional VHF meteor radars (often called all-sky1radars) primarily detect the specular reflection of meteor trails traveling perpendicular to the line of sight of the scattering trail, while High Power and Large Aperture (HPLA) radars efficiently detect meteor head-echoes and, in some cases, non-specular trails. The fact that head-echo measurements can be performed only with HPLA radars limits these studies in several ways. HPLA radars are very sensitive instruments constraining the studies to the lower masses, and these observations cannot be performed continuously because they take place at national observatories with limited allocated observing time. These drawbacks can be addressed by developing head echo observing techniques with modified all-sky meteor radars. In addition, the fact that the simultaneous detection of all different scattering mechanisms can be made with the same instrument, rather than requiring assorted different classes of radars, can help clarify observed differences between the different methodologies. In this study, we demonstrate that such concurrent observations are now possible, enabled by the enhanced design of the Southern Argentina Agile Meteor Radar (SAAMER) deployed at the Estacion Astronomica Rio Grande (EARG) in Tierra del Fuego, Argentina. The results presented here are derived from observations performed over a period of 12 days in August 2011, and include meteoroid dynamical parameter distributions, radiants and estimated masses. Overall, the SAAMER's head echo detections appear to be produced by larger particles than those which have been studied thus far using this technique.

  9. Implementing the Zone of Proximal Development: From the Pedagogical Experiment to the Developmental Education System of Leonid Zankov

    Directory of Open Access Journals (Sweden)

    Liudmila G. GUSEVA

    2017-06-01

    Full Text Available This article overviews the theoretical and applied works of the psychologist and pedagogue Leonid Zankov. Zankov’s model of teaching is based on Vygotsky’s theory that appropriate teaching methods stimulate cognitive development, whose core notion is the Zone of Proximal Development. This educational psychology research was verified by large scale pedagogical experiments conducted in 1970s at public schools in Russia. Over several decades L.V. Zankov with co-workers and followers created the comprehensive system of developmental education for elementary school. The Zankov education system is used now at public schools in Russia. Its main principles and properties are described.

  10. Implementing the zone of proximal development: From the pedagogical experiment to the developmental education system of Leonid Zankov

    Directory of Open Access Journals (Sweden)

    Liudmila G. Guseva

    2017-06-01

    Full Text Available This article overviews the theoretical and applied works of the psychologist and pedagogue Leonid Zankov. Zankov’s model of teaching is based on Vygotsky’s theory that appropriate teaching methods stimulate cognitive development, whose core notion is the Zone of Proximal Development. This educational psychology research was verified by large scale pedagogical experiments conducted in 1970s at public schools in Russia. Over several decades L.V. Zankov with co-workers and followers created the comprehensive system of developmental education for elementary school. The Zankov education system is used now at public schools in Russia. Its main principles and properties are described.

  11. Data processing of records of meteoric echoes

    Science.gov (United States)

    Dolinský, P.

    2016-01-01

    The data obtained in the period from 4 November 2014 to 31 July 2014 by our receiving and recording system was statistically processed. The system records meteoric echoes from the TV transmitter Lviv 49.739583 MHz (N49.8480° E24.0369°, Ukraine) using a 4-element Yagi antenna with horizontal polarization (elevation of 0° and azimuth of 60°), receiver ICOM R-75 in the CW mode, and a computer with a recording using HROFFT v1.0.0f. The main goal was to identify weak showers in these data. Mayor or strong showers are visible without processing (referred at IMC2015, Mistelbach). To find or to identify weaker showers is more difficult. Not all echoes are meteoric echoes, but also ionospheric echoes or lightning disturbances are present.

  12. Multicolor photometry of a meteor with flares

    International Nuclear Information System (INIS)

    Benyukh, V.V.

    1980-01-01

    In various spectral regions the intensity variations are studied along the track of a base meteor with three flares having the character of spherical explosion. The concentration of radiating atoms in the flare is estimated. In the moment of the first flare there was a sharp intensity increase in the red region of spectrum. In two other flares the radiation in the interval 4400-4700 A is predominated. During all the three flares which continued 0.04 s, the meteoric body lost 40% of its initial mass. The concentration of Mg 2 atoms (4481 A) which gave the main contribution into the intensity of the third, brightest flare in blue spectral region, is found to be 1x10 11 cm -3

  13. Characterizing the 2016 Perseid Meteor Shower Outburst

    Science.gov (United States)

    Blaauw, R. C.; Moser, D. E.; Ehlert, S. R.; Kingery, A. M.; Molau, S.; Schult, C.; Stober, G.

    2017-01-01

    The Perseid meteor shower has been observed for millennia and known for its visually spectacular meteors and occasional outbursts. The Perseids were expected to outburst in 2016, primarily due to particles released during the 1862 and 1479 revolutions of Comet Swift-Tuttle. NASA's Meteoroid Environment Office predicted the timing, strength and duration of the outburst for spacecraft risk using the MSFC Meteoroid Stream Model. A double peak was predicted, with an outburst displaying a ZHR of 210 +/- 50 at 00:30 UTC Aug 12, and a traditional peak approximately 12 hours later with rates still heightened from the outburst. Video, visual, and radar observations taken worldwide by various entities were used to characterize the shower and compare to predictions.

  14. Meteor detection on ST (MST) radars

    International Nuclear Information System (INIS)

    Avery, S.K.

    1987-01-01

    The ability to detect radar echoes from backscatter due to turbulent irregularities of the radio refractive index in the clear atmosphere has lead to an increasing number of established mesosphere - stratosphere - troposphere (MST or ST) radars. Humidity and temperature variations are responsible for the echo in the troposphere and stratosphere and turbulence acting on electron density gradients provides the echo in the mesosphere. The MST radar and its smaller version, the ST radar, are pulsed Doppler radars operating in the VHF - UHF frequency range. These echoes can be used to determine upper atmosphere winds at little extra cost to the ST radar configuration. In addition, the meteor echoes can supplement mesospheric data from an MST radar. The detection techniques required on the ST radar for delineating meteor echo returns are described

  15. A Global Atmospheric Model of Meteoric Iron

    Science.gov (United States)

    Feng, Wuhu; Marsh, Daniel R.; Chipperfield, Martyn P.; Janches, Diego; Hoffner, Josef; Yi, Fan; Plane, John M. C.

    2013-01-01

    The first global model of meteoric iron in the atmosphere (WACCM-Fe) has been developed by combining three components: the Whole Atmosphere Community Climate Model (WACCM), a description of the neutral and ion-molecule chemistry of iron in the mesosphere and lower thermosphere (MLT), and a treatment of the injection of meteoric constituents into the atmosphere. The iron chemistry treats seven neutral and four ionized iron containing species with 30 neutral and ion-molecule reactions. The meteoric input function (MIF), which describes the injection of Fe as a function of height, latitude, and day, is precalculated from an astronomical model coupled to a chemical meteoric ablation model (CABMOD). This newly developed WACCM-Fe model has been evaluated against a number of available ground-based lidar observations and performs well in simulating the mesospheric atomic Fe layer. The model reproduces the strong positive correlation of temperature and Fe density around the Fe layer peak and the large anticorrelation around 100 km. The diurnal tide has a significant effect in the middle of the layer, and the model also captures well the observed seasonal variations. However, the model overestimates the peak Fe+ concentration compared with the limited rocket-borne mass spectrometer data available, although good agreement on the ion layer underside can be obtained by adjusting the rate coefficients for dissociative recombination of Fe-molecular ions with electrons. Sensitivity experiments with the same chemistry in a 1-D model are used to highlight significant remaining uncertainties in reaction rate coefficients, and to explore the dependence of the total Fe abundance on the MIF and rate of vertical transport.

  16. Meteors, space aliens, and other exotic encounters

    Science.gov (United States)

    Tom. Hofacker

    1998-01-01

    Exotics have had a big impact on our environment. If you do not think so, just look at how many people believe that humans would not exist on this planet were it not for exotics. This belief centers on two main theories: (1) that humans could not have evolved were it not for a huge meteor from outer space striking the earth resulting in extinction of the dinasours, the...

  17. Structural peculiarities of the Quadrantid meteor shower

    Science.gov (United States)

    Isamutdinov, Sh. O.; Chebotarev, R. P.

    1987-01-01

    Systematic radio observations to investigate the Quadrantid meteor shower structure are regularly carried out. They have now been conducted annually in the period of its maximum activity, January 1 to 6, since 1966. The latest results of these investigations are presented, on the basis of 1981 to 1984 data obtained using new equipment with a limiting sensitivity of +7.7 sup m which make it possible to draw some conclusions on the Quadrantids shower structure both for transverse and lengthwise directions.

  18. Impact mechanics at Meteor Crater, Arizona

    Science.gov (United States)

    Shoemaker, Eugene Merle

    1959-01-01

    Meteor Crator is a bowl-shaped depression encompassed by a rim composed chiefly of debris stacked in layers of different composition. Original bedrock stratigraphy is preserved, inverted, in the debris. The debris rests on older disturbed strata, which are turned up at moderate to steep angles in the wall of the crater and are locally overturned near the contact with the debris. These features of Meteor Crater correspond closely to those of a crater produced by nuclear explosion where depth of burial of the device was about 1/5 the diameter of the resultant crater. Studies of craters formed by detonation of nuclear devices show that structures of the crater rims are sensitive to the depth of explosion scaled to the yield of the device. The structure of Meteor Crater is such as would be produced by a very strong shock originating about at the level of the present crater floor, 400 feet below the original surface. At supersonic to hypersonic velocity an impacting meteorite penetrates the ground by a complex mechanism that includes compression of the target rocks and the meteorite by shock as well as hydrodynamic flow of the compressed material under high pressure and temperature. The depth of penetration of the meteorite, before it loses its integrity as a single body, is a function primarily of the velocity and shape of the meteorite and the densities and equations of state of the meteorite and target. The intensely compressed material then becomes dispersed in a large volume of breccia formed in the expanding shock wave. An impact velocity of about 15 km/sec is consonant with the geology of Meteor Crater in light of the experimental equation of state of iron and inferred compressibility of the target rocks. The kinetic energy of the meteorite is estimated by scaling to have been from 1.4 to 1.7 megatons TNT equivalent.

  19. Definitions of terms in meteor astronomy

    Science.gov (United States)

    Koschny, Detlef; Borovicka, Jiri

    2017-10-01

    Over the last year, the IAU commission F1 (Meteors, Meteorites and Interplanetary Dust) has discussed and agreed a new definition of terminology related to our field of interest. It is available online at this link: https://www.iau.org/static/science/scientific_bodies/commissions/f1/meteordefinitions_approved.pdf. For your convenience it is reproduced here. Please keep these definitions in mind in any future communications about our topic.

  20. THE RETURN OF THE ANDROMEDIDS METEOR SHOWER

    International Nuclear Information System (INIS)

    Wiegert, Paul A.; Brown, Peter G.; Weryk, Robert J.; Wong, Daniel K.

    2013-01-01

    The Andromedid meteor shower underwent spectacular outbursts in 1872 and 1885, producing thousands of visual meteors per hour and described as ''stars fell like rain'' in Chinese records of the time. The shower originates from comet 3D/Biela whose disintegration in the mid-1800's is linked to the outbursts, but the shower has been weak or absent since the late 19th century. This shower returned in 2011 December with a zenithal hourly rate of approximately 50, the strongest return in over a hundred years. Some 122 probable Andromedid orbits were detected by the Canadian Meteor Orbit Radar while one possible brighter Andromedid member was detected by the Southern Ontario Meteor Network and several single station possible Andromedids by the Canadian Automated Meteor Observatory. The shower outburst occurred during 2011 December 3-5. The radiant at R.A. +18° and decl. +56° is typical of the ''classical'' Andromedids of the early 1800s, whose radiant was actually in Cassiopeia. Numerical simulations of the shower were necessary to identify it with the Andromedids, as the observed radiant differs markedly from the current radiant associated with that shower. The shower's orbital elements indicate that the material involved was released before 3D/Biela's breakup prior to 1846. The observed shower in 2011 had a slow geocentric speed (V G = 16 km s –1 ) and was comprised of small particles: the mean measured mass from the radar is ∼5 × 10 –7 kg, corresponding to radii of 0.5 mm at a bulk density of 1000 kg m –3 . Numerical simulations of the parent comet indicate that the meteoroids of the 2011 return of the Andromedids shower were primarily ejected during 3D/Biela's 1649 perihelion passage. The orbital characteristics, radiant, and timing as well as the absence of large particles in the streamlet are all broadly consistent with simulations. However, simulations of the 1649 perihelion passage necessitate going back five Lyapunov times (which is only 25 yr for the

  1. Meteor radar signal processing and error analysis

    Science.gov (United States)

    Kang, Chunmei

    Meteor wind radar systems are a powerful tool for study of the horizontal wind field in the mesosphere and lower thermosphere (MLT). While such systems have been operated for many years, virtually no literature has focused on radar system error analysis. The instrumental error may prevent scientists from getting correct conclusions on geophysical variability. The radar system instrumental error comes from different sources, including hardware, software, algorithms and etc. Radar signal processing plays an important role in radar system and advanced signal processing algorithms may dramatically reduce the radar system errors. In this dissertation, radar system error propagation is analyzed and several advanced signal processing algorithms are proposed to optimize the performance of radar system without increasing the instrument costs. The first part of this dissertation is the development of a time-frequency waveform detector, which is invariant to noise level and stable to a wide range of decay rates. This detector is proposed to discriminate the underdense meteor echoes from the background white Gaussian noise. The performance of this detector is examined using Monte Carlo simulations. The resulting probability of detection is shown to outperform the often used power and energy detectors for the same probability of false alarm. Secondly, estimators to determine the Doppler shift, the decay rate and direction of arrival (DOA) of meteors are proposed and evaluated. The performance of these estimators is compared with the analytically derived Cramer-Rao bound (CRB). The results show that the fast maximum likelihood (FML) estimator for determination of the Doppler shift and decay rate and the spatial spectral method for determination of the DOAs perform best among the estimators commonly used on other radar systems. For most cases, the mean square error (MSE) of the estimator meets the CRB above a 10dB SNR. Thus meteor echoes with an estimated SNR below 10dB are

  2. Multi-Year CMOR Observations of the Geminid Meteor Shower

    Science.gov (United States)

    Webster, A. R.; Jones, J.

    2011-01-01

    The three-station Canadian Meteor Orbit Radar (CMOR) is used here to examine the Geminid meteor shower with respect to variation in the stream properties including the flux and orbital elements over the period of activity in each of the consecutive years 2005 2008 and the variability from year to year. Attention is given to the appropriate choice and use of the D-criterion in the separating the shower meteors from the sporadic background.

  3. Double station observations of telescopic meteors in Mykolaiv

    Science.gov (United States)

    Kulichenko, M. O.; Shulga, O. V.; Sybiryakova, Ye. S.; Kozyryev, Ye. S.

    2017-02-01

    Meteor research using TV CCD unintensified techniques was started in 2011 in Nikolaev astronomical observatory (RI "NAO"). The method of meteor registration is based on the combined observation method developed at RI "NAO". The main accent of the research is made on the precise astrometry and meteoroid orbits calculation. In 2013 first double station meteors with low baseline were observed. Estimation of uncertainties of visible radiant equatorial coordinates, geocentric velocity and heliocentric meteoroid orbit parameters was carried out.

  4. The Contributions of Leonid M. Parfenov to the Tectonics of Eastern Russia

    Science.gov (United States)

    Prokopiev, A. V.; Fujita, K.; Stone, D. B.

    2004-12-01

    Leonid M. Parfenov (1937-2002) was the leading force behind theinterpretation of northeast Russia in the context of plate tectonics. Originally interested in Precambrian geology, he conducted his early field work in southern Siberia in the 1960s. He was exposed to plate tectonics at Liverpool University in 1970 and published the first mobilistic reconstructions of the Precambrian in Russia in 1973. Starting in 1971, he began to systematically conduct field work and accumulate geologic data on what is now considered the accretionary collage of northeast Russia. With colleague Boris A. Natal'in, he published a series of papers on the tectonic evolution of eastern Russia starting in 1977, with a doctoral dissertation on "Comparative Tectonics and Evolution History of Mesozoides of Northeast Asia" in 1983. His work became known in the west with his publication in 1978 in the Journal of Physics of the Earth on "Geodynamics of the North-Eastern Asia in the Mesozoic and Cenozoic Time and the Nature of Volcanic Belt" in which the volcanic belts of eastern Russia were interpreted in the context of subduction zones. From the mid-1980s to his death, he concentrated on understanding the evolution of the fold belts of eastern Yakutia. Parfenov immediately became a proponent of terrane analysis as it evolved in the early 1980s and was the primary mover in developing the terrane map of northeast Russia in the late 1990s. In 1990, he developed joint programs with the University of Alaska Fairbanks and Michigan State University, and later with Stanford University and the U.S. Geological Survey, opening eastern Russia to western scientists. His life's work was synthesized in a monograph entitled "Tectonics, Geodynamics, and metallogenesis of the Territory of the Sakha Republic (Yakutia)" published in Russian in 2001 and currently being prepared in English translation. As a result of his efforts we now have a basic understanding of the plate tectonic evolution of northeast Russia as

  5. A Global Model of Meteoric Sodium

    Science.gov (United States)

    Marsh, Daniel R.; Janches, Diego; Feng, Wuhu; Plane, John M. C.

    2013-01-01

    A global model of sodium in the mesosphere and lower thermosphere has been developed within the framework of the National Center for Atmospheric Research's Whole Atmosphere Community Climate Model (WACCM). The standard fully interactive WACCM chemistry module has been augmented with a chemistry scheme that includes nine neutral and ionized sodium species. Meteoric ablation provides the source of sodium in the model and is represented as a combination of a meteoroid input function (MIF) and a parameterized ablation model. The MIF provides the seasonally and latitudinally varying meteoric flux which is modeled taking into consideration the astronomical origins of sporadic meteors and considers variations in particle entry angle, velocity, mass, and the differential ablation of the chemical constituents. WACCM simulations show large variations in the sodium constituents over time scales from days to months. Seasonality of sodium constituents is strongly affected by variations in the MIF and transport via the mean meridional wind. In particular, the summer to winter hemisphere flow leads to the highest sodium species concentrations and loss rates occurring over the winter pole. In the Northern Hemisphere, this winter maximum can be dramatically affected by stratospheric sudden warmings. Simulations of the January 2009 major warming event show that it caused a short-term decrease in the sodium column over the polar cap that was followed by a factor of 3 increase in the following weeks. Overall, the modeled distribution of atomic sodium in WACCM agrees well with both ground-based and satellite observations. Given the strong sensitivity of the sodium layer to dynamical motions, reproducing its variability provides a stringent test of global models and should help to constrain key atmospheric variables in this poorly sampled region of the atmosphere.

  6. Fractals and magnetic storm

    Directory of Open Access Journals (Sweden)

    T.-W. Wang

    1996-09-01

    Full Text Available Fractal theory is applied in a quantitative analysis of geomagnetic storms. Fractal dimensions (D of the attractor for storm data from the Beijing observatory (40.0°N, 116.2°E using several time intervals are calculated. A maximum value of 1.4 has been obtained for a geomagnetic storm; on quite days the dimension is only slightly larger than 0.5. Data from two storms are analyzed here. Results show that a combination of both D and the magnetic index, k, can perhaps describe the degree of solar disturbance better than the single parameter k.

  7. Radar meteors range distribution model. IV. Ionization coefficient

    Czech Academy of Sciences Publication Activity Database

    Pecinová, Drahomíra; Pecina, Petr

    2008-01-01

    Roč. 38, č. 1 (2008), s. 12-20 ISSN 1335-1842 R&D Projects: GA ČR GA205/03/1405 Institutional research plan: CEZ:AV0Z10030501 Keywords : physics of meteors * radar meteors * range distribution Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  8. Meteoric Impact and Ion Density Calculation in the Nighttime ...

    Indian Academy of Sciences (India)

    Bhavin

    2013-11-08

    Nov 8, 2013 ... Pandya, B. M., and S. A. Haider (2012), Meteor impact perturbation in the lower ionosphere of Mars: MGS observations,. Planet. Space Sci., 63, 105-109, doi: 10.1016/j.pss.2011.09.013. Page 6. Pandya, B. M., and S. A. Haider (2012), Meteor impact perturbation in the lower ionosphere of Mars: MGS ...

  9. Meteor Showers of the Earth-crossing Asteroids

    Science.gov (United States)

    Pulat, Babadzhanov; Gulchekhra, Kokhirova

    2015-03-01

    The results of search for meteor showers associated with the asteroids crossing the Earthfs orbit and moving on comet-like orbits are given. It was shown that among 2872 asteroids discovered till 1.01.2005 and belonging to the Apollo and Amor groups, 130 asteroids have associated meteor showers and, therefore, are the extinct cometary nuclei.

  10. Goals, technique and equipment of meteor study in Russia

    Science.gov (United States)

    Kartashova, A.; Bagrov, A. V.; Bolgova, G. T.; Kruchkov, S. V.; Leonov, V. A.; Mazurov, V. A.

    2013-09-01

    Institute of Astronomy RAS is one of the science institutes in the Russian Federation providing systematic optical meteor observations and supervises several meteor groups in our country. The main tasks of our investigations are dedicated to study meteoroid nature as well as meteoroid streams and meteoroid population in the Solar System. In the XXI century we in Russia carry out the reconstruction of our meteor astronomy due to possibilities of new meteor observation equipment (more powerful than were used before as visual and photographic methods) had made possible to select more interesting goals. First of our task is investigation of meteoroid streams crossing the Earth's orbit, and character of meteoroid distributions along of them. The multi stations meteor monitoring from located in the both hemispheres of the Earth can help in this study. According to the analysis of the evolution of meteor orbits, the compact and long lived meteoroid streams consist mainly from large particles. The observation equipment (cheap TV-cameras) with low limiting magnitude we use for gathering observational data. On the other hand, the observations of weak meteors are needed for new meteor shower indication (or confirmation of known meteor shower). The more effective way to do it is comparison of individual meteor orbits parameters (then calculation of radiants of meteor showers). The observations of space debris (as the meteors with low velocity - less 11.2 km/s) can be taking up within this task. The combination of high sensitive TV-cameras WATEC and super-fast lenses COMPUTAR are widely used for meteor TV-monitoring. The TVsystems for round-year meteor observations are fixed and are permanently oriented to the zenith area (the patrol camera - PatrolCa). The mobile TV-cameras (MobileCa) are used for double station observations (if it is possible) and located not far from main cameras PatrolCa (20-30 km). The mobile TVcameras observe 90% of main PatrolCa cameras FOV at altitudes

  11. Modeling Meteor Flares for Spacecraft Safety

    Science.gov (United States)

    Ehlert, Steven

    2017-01-01

    NASA's Meteoroid Environment Office (MEO) is tasked with assisting spacecraft operators and engineers in quantifying the threat the meteoroid environment poses to their individual missions. A more complete understanding of the meteoroid environment for this application requires extensive observations. One manner by which the MEO observes meteors is with dedicated video camera systems that operate nightly. Connecting the observational data from these video cameras to the relevant physical properties of the ablating meteoroids, however, is subject to sizable observational and theoretical uncertainties. Arguably the most troublesome theoretical uncertainty in ablation is a model for the structure of meteoroids, as observations clearly show behaviors wholly inconsistent with meteoroids being homogeneous spheres. Further complicating the interpretation of the observations in the context of spacecraft risk is the ubiquitous process of fragmentation and the flares it can produce, which greatly muddles any attempts to estimating initial meteoroid masses. In this talk a method of estimating the mass distribution of fragments in flaring meteors using high resolution video observations will be dis- cussed. Such measurements provide an important step in better understanding of the structure and fragmentation process of the parent meteoroids producing these flares, which in turn may lead to better constraints on meteoroid masses and reduced uncertainties in spacecraft risk.

  12. Analysis Procedures for Two Station Television Meteors

    Science.gov (United States)

    Hawkes, R. L.; Mason, K. I.; Fleming, D. E. B.; Stultz, C. T.

    1993-01-01

    This paper describes techniques for trajectory, light curve and orbital analysis of image intensified television meteors recorded at two stations. It will be argued that simple partial screen reference star fitting is preferable to higher order whole screen fits, and that only modest improvements in accuracy result from additional reference stars. The coordinate transformations and triangulation procedures are expressed exclusively in vector-matrix format. A simulation program has been developed for estimation of probable errors in radiants, heights and speeds. Heights accurate to about 0.2 km can be obtained even with moderate (26 km) baselines. Because of the difficulty in defining a common fiducial point for the meteor head in different frames, velocities are usually in error by at least several percent. One technique for obtaining photometric measures from the digitized sequences will be described - accuracies of the order of +-0.20M can be obtained in a relative sense, with absolute accuracies no worse than double that value. The techniques are illustrated with actual two station data.

  13. First results on video meteors from Crete, Greece

    Science.gov (United States)

    Maravelias, G.

    2012-01-01

    This work presents the first systematic video meteor observations from a, forthcoming permanent, station in Crete, Greece, operating as the first official node within the International Meteor Organization's Video Network. It consists of a Watec 902 H2 Ultimate camera equipped with a Panasonic WV-LA1208 (focal length 12mm, f/0.8) lens running MetRec. The system operated for 42 nights during 2011 (August 19-December 30, 2011) recording 1905 meteors. It is significantly more performant than a previous system used by the author during the Perseids 2010 (DMK camera 21AF04.AS by The Imaging Source, CCTV lens of focal length 2.8 mm, UFO Capture v2.22), which operated for 17 nights (August 4-22, 2010) recording 32 meteors. Differences - according to the author's experience - between the two softwares (MetRec, UFO Capture) are discussed along with a small guide to video meteor hardware.

  14. Processing method and results of meteor shower radar observations

    International Nuclear Information System (INIS)

    Belkovich, O.I.; Suleimanov, N.I.; Tokhtasjev, V.S.

    1987-01-01

    Studies of meteor showers permit the solving of some principal problems of meteor astronomy: to obtain the structure of a stream in cross section and along its orbits; to retrace the evolution of particle orbits of the stream taking into account gravitational and nongravitational forces and to discover the orbital elements of its parent body; to find out the total mass of solid particles ejected from the parent body taking into account physical and chemical evolution of meteor bodies; and to use meteor streams as natural probes for investigation of the average characteristics of the meteor complex in the solar system. A simple and effective method of determining the flux density and mass exponent parameter was worked out. This method and its results are discussed

  15. Assessing storm erosion hazards

    NARCIS (Netherlands)

    Ranasinghe, Ranasinghe W M R J B; Callaghan, D.; Ciavola, Paolo; Coco, Giovanni

    2017-01-01

    The storm erosion hazard on coasts is usually expressed as an erosion volume and/or associated episodic coastline retreat. The accurate assessment of present-day and future storm erosion volumes is a key task for coastal zone managers, planners and engineers. There are four main approaches that can

  16. The MAGIC meteoric smoke particle sampler

    Science.gov (United States)

    Hedin, Jonas; Giovane, Frank; Waldemarsson, Tomas; Gumbel, Jörg; Blum, Jürgen; Stroud, Rhonda M.; Marlin, Layne; Moser, John; Siskind, David E.; Jansson, Kjell; Saunders, Russell W.; Summers, Michael E.; Reissaus, Philipp; Stegman, Jacek; Plane, John M. C.; Horányi, Mihály

    2014-10-01

    Between a few tons to several hundred tons of meteoric material enters the Earth's atmosphere each day, and most of this material is ablated and vaporized in the 70-120 km altitude region. The subsequent chemical conversion, re-condensation and coagulation of this evaporated material are thought to form nanometre sized meteoric smoke particles (MSPs). These smoke particles are then subject to further coagulation, sedimentation and global transport by the mesospheric circulation. MSPs have been proposed as a key player in the formation and evolution of ice particle layers around the mesopause region, i.e. noctilucent clouds (NLC) and polar mesosphere summer echoes (PMSE). MSPs have also been implicated in mesospheric heterogeneous chemistry to influence the mesospheric odd oxygen/odd hydrogen (Ox/HOx) chemistry, to play an important role in the mesospheric charge balance, and to be a significant component of stratospheric aerosol and enhance the depletion of O3. Despite their apparent importance, little is known about the properties of MSPs and none of the hypotheses can be verified without direct evidence of the existence, altitude and size distribution, shape and elemental composition. The aim of the MAGIC project (Mesospheric Aerosol - Genesis, Interaction and Composition) was to develop an instrument and analysis techniques to sample for the first time MSPs in the mesosphere and return them to the ground for detailed analysis in the laboratory. MAGIC meteoric smoke particle samplers have been flown on several sounding rocket payloads between 2005 and 2011. Several of these flights concerned non-summer mesosphere conditions when pure MSP populations can be expected. Other flights concerned high latitude summer conditions when MSPs are expected to be contained in ice particles in the upper mesosphere. In this paper we present the MAGIC project and describe the MAGIC MSP sampler, the measurement procedure and laboratory analysis. We also present the attempts to

  17. METEOR v1.0 - A usage example

    International Nuclear Information System (INIS)

    Palomo, E.

    1994-01-01

    This script describes a detailed example of the use of the software package METEOR for statistical analysis of meteorological data series. A real spanish meteorological data set is chosen to show the capabilities of METEOR. Output files and resultant plots provided of their interpretations are compiled in three appendixes. The original version of METEOR have been developed by Ph. D.Elena Palomo, CIEMAT-IER, GIASE. It is built by linking programs and routines written in FORTRAN 77 and it adds the graphical capabilities of GNUPLOT. The shape of this toolbox was designed following the criteria of modularity, flexibility and agility criteria. All the input, output and analysis options are structured in three main menus: i) the first is aimed to evaluate the quality of the data set; ii) the second is aimed for pre-processing of the data; and iii) the third is aimed towards the statistical analyses and for creating the graphical outputs. Actually the information about METEOR is constituted by three documents written is spanish: 1) METEOR v1.0: User's guide; 2) METEOR v1.0: A usage example; 3) METEOR v1 .0: Design and structure of the software package. (Author)

  18. Two-station television observations of Perseid meteors

    International Nuclear Information System (INIS)

    Hapgood, M.; Rothwell, P.; Royrvik, O.

    1982-01-01

    The predictions of the dustball meteor ablation theory of Hawkes and Jones (Mon. Not. R. Astr. Soc. 1975, 173, 339) have been tested using data from two-station television observations of meteors made during the 1977 and 1978 displays of the Perseid meteor shower. The meteor velocities and the heights at which each meteor began and ended, together with the heights of maximum brightness, were determined for 39 Perseid meteors in the magnitude range Msub(v) = +4 to -2. The beginning heights (hsub(B)) were found to be independent of meteor magnitude; they ranged from 105 to 115 km, with a mean value of hsub(B) = 110 +- 1 km. The end heights (hsub(E)) and the heights of maximum brightness (hsub(M)) were independent of meteor magnitude only up to a critical magnitude Msub(v) = 0 (corresponding to a meteoroid of critical mass of the order of 2 x 10 - 4 kg). Their mean values were hsub(E) = 99 +- 1 km and hsub(M) = 103 +- 1 km respectively. For meteors brighter than Msub(v) = 0, hsub(E) and hsub(M) were, on average, significantly lower than these mean levels, in good qualitative agreement with dustball theory. By assuming that, at the critical mass, dustball meteoroids disintegrate into their constituent grains just before ablation starts, it is found that 3 - 9 x 10 5 J kg - 1 is required to disintegrate Perseid dustball material. This value is several times lower than the value adopted by Hawkes and Jones (1 - 6 x 10 6 J kg - 1 ), suggesting that Perseid material is weaker than the material considered in the theory of dustball ablation. (author)

  19. Comet P/Machholtz and the Quadrantid meteor stream

    International Nuclear Information System (INIS)

    Mcintosh, B.A.

    1990-01-01

    Attention is drawn to the suggestive similarities between the calculated perturbation behavior of Comet P/Machholtz 1986 VIII, on the one hand, and on the other those of the Quadrantid, Delta Aquarid, and Arietid meteor streams. There appears to be adequate evidence for the formation by the Comets P/Machholtz and 1491-I, together with the three meteor streams, of a related complex controlled by Jupiter's gravitational perturbations; there is no comparably compelling information, however, bearing on the questions of parent-offspring or sibling relationships among these comets and meteor streams. 13 refs

  20. New approaches to some methodological problems of meteor science

    International Nuclear Information System (INIS)

    Meisel, D.D.

    1987-01-01

    Several low cost approaches to continuous radioscatter monitoring of the incoming meteor flux are described. Preliminary experiments were attempted using standard time frequency stations WWVH and CHU (on frequencies near 15 MHz) during nighttime hours. Around-the-clock monitoring using the international standard aeronautical beacon frequency of 75 MHz was also attempted. The techniques are simple and can be managed routinely by amateur astronomers with relatively little technical expertise. Time series analysis can now be performed using relatively inexpensive microcomputers. Several algorithmic approaches to the analysis of meteor rates are discussed. Methods of obtaining optimal filter predictions of future meteor flux are also discussed

  1. Diuble Station Observation of Telescopic Meteors in Mykolaiv

    Directory of Open Access Journals (Sweden)

    Kulichenko, M.O.

    2017-01-01

    Full Text Available Meteor research using TV CCD unintensified techniques was started in 2011 in Nikolaev astronomical observatory (RI «NAO». The method of meteor registration is based on the combined observation method developed at RI «NAO». The main accent of the research is made on the precise astrometry and meteoroid orbits calculation. In 2013 first double station meteors with low baseline were observed. Estimation of uncertainties of visible radiant equatorial coordinates, geocentric velocity and heliocentric meteoroid orbit parameters was carried out.

  2. Double station observation of faint meteors in Nikolaev

    Science.gov (United States)

    Kulichenko, Mykola; Shulga, Alexandr; Sybiryakova, Yevgeniya

    2016-07-01

    Meteor research using TV CCD unintensified techniques was started in 2011 in Nikolaev astronomical observatory (RI NAO). The method of meteor registration is based on combined observation method developed at RI NAO. The main accent of the research is made on precise astrometry and meteoroid orbits calculation. In 2013 first double station meteors with low baseline were observed. The accuracy of visible radiant estimation is 0.7" with baseline 5 km, and less 0.5" with baseline 11.8 km. The accuracy of velocity and height estimation is 0.5 km/s and 1-2 km.

  3. METEOR v1.0 - A usage example; METEOR v1.0 - Un ejemplo de uso

    Energy Technology Data Exchange (ETDEWEB)

    Palomo, E.

    1994-07-01

    This script describes a detailed example of the use of the software package METEOR for statistical analysis of meteorological data series. A real spanish meteorological data set is chosen to show the capabilities of METEOR. Output files and resultant plots provided of their interpretations are compiled in three appendixes. The original version of METEOR have been developed by Ph. D.Elena Palomo, CIEMAT-IER, GIASE. It is built by linking programs and routines written in FORTRAN 77 and it adds the graphical capabilities of GNUPLOT. The shape of this toolbox was designed following the criteria of modularity, flexibility and agility criteria. All the input, output and analysis options are structured in three main menus: i) the first is aimed to evaluate the quality of the data set; ii) the second is aimed for pre-processing of the data; and iii) the third is aimed towards the statistical analyses and for creating the graphical outputs. Actually the information about METEOR is constituted by three documents written is spanish: 1) METEOR v1.0: User's guide; 2) METEOR v1.0: A usage example; 3) METEOR v1 .0: Design and structure of the software package. (Author)

  4. Storm Data Publication

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 'Storm Data and Unusual Weather Phenomena' is a monthly publication containing a chronological listing, by state, of hurricanes, tornadoes, thunderstorms, hail,...

  5. Observations of overdense Quadrantid radio meteors and the variation of the position of stream maxima with meteor magnitude

    International Nuclear Information System (INIS)

    Hughes, D.W.; Taylor, I.W.

    1977-01-01

    Quadrantid across-stream activity profiles are presented for meteors of magnitudes (M) 4.3, 3.8, 3.3, 2.9 and 2.3, based on observations of overdense meteor trails. Not only does the profile become less symmetrical for brighter meteors but also the solar longitude of the stream maximum varies. Radar observations at Sheffield indicate that this variation is of the form: solar longitude = (283.24 +- 0.04) - (0.109 +- 0.010)M through the range 2.3 < M < 7.2. (author)

  6. A confidence index for forecasting of meteor showers

    Science.gov (United States)

    Vaubaillon, Jeremie

    2017-09-01

    The forecasting of meteor showers is currently very good at predicting the timing of meteor outbursts, but still needs further work regarding the level of a given shower. Moreover, uncertainties are rarely provided, leaving the end user (scientist, space agency or the public) with no way to evaluate how much the prediction is trustworthy. A confidence index for the forecasting of meteor showers is presented. It allows one to better understand how a specific forecasting has been performed. In particular, it underlines the role of our current knowledge of the parent body, its past orbit and past activity. The role of close encounters with planets for the time period considered is quantified as well. This confidence index is a first step towards better constrained forecasting of future meteor showers.

  7. TOMS/Meteor-3 Ground Station Overpass Data V008

    Data.gov (United States)

    National Aeronautics and Space Administration — This data product contains TOMS/Meteor-3 Ground Station Overpass Data Version 8 in ASCII format. The overpass data files contain the data derived from the...

  8. Density variations of meteor flux along the Earth's orbit

    International Nuclear Information System (INIS)

    Svetashkova, N.T.

    1987-01-01

    No model of distribution of meteor substance is known to explain the observed diurnal and annual variations of meteor rates, if that distribution is assumed to be constant during the year. Differences between the results of observations and the prediction of diurnal variation rates leads to the conclusion that the density of the orbits of meteor bodies changes with the motion of the Earth along its orbit. The distributions of the flux density over the celestial sphere are obtained by the method described previously by Svetashkova, 1984. The results indicate that the known seasonal and latitudinal variations of atmospheric conditions does not appear to significantly affect the value of the mean flux density of meteor bodies and the matter influx onto the Earth

  9. Reconstructing the orbit of the Chelyabinsk meteor using satellite observations

    DEFF Research Database (Denmark)

    Proud, Simon Richard

    2013-01-01

    The large number of objects in a range of orbits around the Sun means that some will inevitably intersect the Earth, becoming a meteor. These objects are commonly comet fragments or asteroids. To determine the type of a particular meteor requires knowledge of its trajectory and orbital path...... that is typically estimated by using ground-based observations such as images or radar measurements. A lack of data can, however, make this difficult and create large uncertainties in the reconstructed orbit. Here I show a new method for estimating a meteor's trajectory, and hence allowing computation of the orbit......, based upon measurements from satellite sensors. The meteor that fell on 15 February 2013 is used as an example and the resulting orbit is in broad agreement with estimates from other observations. This new technique represents an alternative method for trajectory determination that may be particularly...

  10. Expected Increase of Activity of Eta Aquariids Meteor Shower

    Science.gov (United States)

    Kulikova, N. V.; Chepurova, V. M.

    2018-04-01

    Analysis of the results of modeling disintegration of Comet 1P/Halley after its flare in 1991 has allowed us to predict an increase of the activity of the associated Eta Aquariids meteor shower in April-May 2018.

  11. Intercomparison of radar meteor velocity corrections using different ionization coefficients

    Science.gov (United States)

    Williams, E. R.; Wu, Y.-J.; Chau, J.; Hsu, R.-R.

    2017-06-01

    Sensitive long-wavelength radar observations of absolute velocity never previously published from Jicamarca are brought to bear on the long-standing problem of radar detection of slow-moving meteors. Attention is devoted to evaluating the ionization coefficient β(V) in the critically important velocity range of 11-20 km/s in recent laboratory measurements of Thomas et al. (2016). Theoretical predictions for β(V) based on the laboratory data, on Jones (1997), on Janches et al. (2014), and on Verniani and Hawkins (1964) are used to correct the incoming meteor velocities measured with the sensitive Jicamarca high-power, large-aperture radar operating at 6 m wavelength. All corrected distributions are consistent with the predictions of the Nesvorný model in showing pronounced monotonic increases down to the escape velocity (11 km/s). Such distributions may be essential to explaining the pronounced ledge in nighttime electron density and the rapid disappearance of electrons in meteor trails in the altitude range of 80-85 km.Plain Language SummaryIncoming meteors from space cannot be detected with radars unless the medium around the meteor is strongly ionized. In this study, the distribution of meteor velocities that are detected by the sensitive Jicamarca radar is corrected following theoretical models for the ionization coefficient, a measure of what fraction of the ablated meteor atoms are ionized. The results show that when the distribution of velocities is corrected, one is left with a large population of meteors that are entering the Earth's atmosphere close to the escape speed for the solar system which is 11 km/s.

  12. Automatic Video System for Continues Monitoring of the Meteor Activity

    Czech Academy of Sciences Publication Activity Database

    Koten, Pavel; Fliegel, K.; Vítek, S.; Páta, P.

    2011-01-01

    Roč. 108, č. 1 (2011), s. 69-76 ISSN 0167-9295 R&D Projects: GA ČR GA205/09/1302 Grant - others:GA ČR(CZ) GAP102/10/1320 Institutional research plan: CEZ:AV0Z10030501 Keywords : meteor * meteor showers * instrumentation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.667, year: 2011

  13. Meteor Beliefs Project: Spears of GodSpears of God

    Science.gov (United States)

    Hendrix, Howard V.; McBeath, Alastair; Gheorghe, Andrei Dorian

    2012-04-01

    A selection of genuine or supposedly sky-fallen objects from real-world sources, a mixture of weapons, tools and "magical" objects of heavenly provenance, are drawn from their re-use in the near-future science-fiction novel Spears of God by author Howard V Hendrix, with additional discussion. The book includes other meteoric and meteoritic items too, some of which have been the subject of previous Meteor Beliefs Project examinations.

  14. Origin of meteor swarms of the Arietid and Geminid types

    International Nuclear Information System (INIS)

    Lebedinets, V.N.

    1985-01-01

    The author proposes a physical mechanism for the formation of meteor swarms on orbits of small size and very small perihelion distance, similar to the orbits of Arietid and Geminid meteor swarms, which are rarely encountered among the larger bodies of the solar system, and he justifies the mechanism mathematically. He shows that comets can transfer to such orbits from orbits of large size during evaporation of their ice nuclei under the action of reactive drag

  15. Measurements of the ionization heights of sporadic radio-meteors

    International Nuclear Information System (INIS)

    Baggaley, W.J.; Webb, T.H.

    1980-01-01

    The echo heights and echo point ionization densities of 4587 sporadic radio-meteors have been determined using a calibrated interferometric height-finding system. Over the height interval 92 to 96 km no association was found between height and ionization but, for radio-meteors ablating above and below this region, significant and opposite trends exist in the data. It is suggested that this could be evidence for the influx of two distinct meteoroid populations. (author)

  16. Meteoroid streams identification amongst 231 Southern hemisphere video meteors

    Czech Academy of Sciences Publication Activity Database

    Jopek, J.; Koten, Pavel; Pecina, Petr

    2010-01-01

    Roč. 404, č. 2 (2010), s. 867-875 ISSN 0035-8711 R&D Projects: GA ČR GA205/00/1728; GA ČR GA205/09/1302 Institutional research plan: CEZ:AV0Z10030501 Keywords : meteor s * meteor oids * data analysis Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.888, year: 2010

  17. The 2014 KCG Meteor Outburst: Clues to a Parent Body

    Science.gov (United States)

    Moorhead, Althea V.; Brown, Peter G.; Spurny, Pavel; Cooke, William J.

    2015-01-01

    The Kappa Cygnid (KCG) meteor shower exhibited unusually high activity in 2014, producing ten times the typical number of meteors. The shower was detected in both radar and optical systems and meteoroids associated with the outburst spanned at least five decades in mass. In total, the Canadian Meteor Orbit Radar, European Network, and NASA All Sky and Southern Ontario Meteor Network produced thousands of KCG meteor trajectories. Using these data, we have undertaken a new and improved characterization of the dynamics of this little-studied, variable meteor shower. The Cygnids have a di use radiant and a significant spread in orbital characteristics, with multiple resonances appearing to play a role in the shower dynamics. We conducted a new search for parent bodies and found that several known asteroids are orbitally similar to the KCGs. N-body simulations show that the two best parent body candidates readily transfer meteoroids to the Earth in recent centuries, but neither produces an exact match to the KCG radiant, velocity, and solar longitude. We nevertheless identify asteroid 2001 MG1 as a promising parent body candidate.

  18. Green corona, geomagnetic activity and radar meteor rates

    International Nuclear Information System (INIS)

    Prikryl, P.

    1979-01-01

    The short-term dependence of radar meteor rates on geomagnetic activity and/or central meridian passage (CMP) of bright or faint green corona regions is studied. A superimposed-epoch analysis was applied to radar meteor observations from the Ottawa patrol radar (Springhill, Ont.) and Ksub(p)-indices of geomagnetic activity for the period 1963 to 1967. During the minimum of solar activity (1963 to 1965) the CMP of bright coronal regions was followed by the maximum in the daily rates of persistent meteor echoes (>=4s), and the minimum in the daily sums of Ksub(p)-indices whereas the minimum or the maximum, respectively, occurs after the CMP of faint coronal regions. The time delay between the CMP of coronal structures and the corresponding maxima or minima is found to be 3 to 4 days. However, for the period immediately after the minimum of solar activity (1966 to 1967) the above correlation with the green corona is void both for the geomagnetic activity and radar meteor rates. An inverse correlation was found between the radar meteor rates and the geomagnetic activity irrespective of the solar activity. The observed effect can be ascribed to the solar-wind-induced ''geomagnetic'' heating of the upper atmosphere and to the subsequent change in the density gradient in the meteor zone. (author)

  19. On extreme geomagnetic storms

    Directory of Open Access Journals (Sweden)

    Cid Consuelo

    2014-01-01

    Full Text Available Extreme geomagnetic storms are considered as one of the major natural hazards for technology-dependent society. Geomagnetic field disturbances can disrupt the operation of critical infrastructures relying on space-based assets, and can also result in terrestrial effects, such as the Quebec electrical disruption in 1989. Forecasting potential hazards is a matter of high priority, but considering large flares as the only criterion for early-warning systems has demonstrated to release a large amount of false alarms and misses. Moreover, the quantification of the severity of the geomagnetic disturbance at the terrestrial surface using indices as Dst cannot be considered as the best approach to give account of the damage in utilities. High temporal resolution local indices come out as a possible solution to this issue, as disturbances recorded at the terrestrial surface differ largely both in latitude and longitude. The recovery phase of extreme storms presents also some peculiar features which make it different from other less intense storms. This paper goes through all these issues related to extreme storms by analysing a few events, highlighting the March 1989 storm, related to the Quebec blackout, and the October 2003 event, when several transformers burnt out in South Africa.

  20. METEOR v1.0 - User's Guide; METEOR v1.0 - Guia de Usuarios

    Energy Technology Data Exchange (ETDEWEB)

    Palomo, E.

    1994-07-01

    This script is a User's Guide for the software package METEOR for statistical analysis of meteorological data series. The original version of METEOR have been developed by Ph.D. Elena Palomo, CIEMAT-IER, GIMASE. It is built by linking programs and routines written in FORTRAN 77 and it adds the graphical capabilities of GNUPLOT. The shape of this toolbox was designed following the criteria of modularity, flexibility and agility criteria. All the input, output and analysis options are structured in three main menus: i) the first is aimed to evaluate the quality of the data set; ii) the second is aimed for pre-processing of the data; and iii) the third is aimed towards the statistical analyses and for creating the graphical outputs. Actually the information about METEOR is constituted by three documents written in spanish: 1) METEOR v1.0: User's guide; 2) METEOR v1.0: A usage example; 3) METEOR v1.0: Design and structure of the software package. (Author)

  1. Storm Warning Service

    Science.gov (United States)

    1993-01-01

    A Huntsville meteorologist of Baron Services, Inc. has formed a commercial weather advisory service. Weather information is based on data from Marshall Space Flight Center (MSFC) collected from antennas in Alabama and Tennessee. Bob Baron refines and enhances MSFC's real time display software. Computer data is changed to audio data for radio transmission, received by clients through an antenna and decoded by computer for display. Using his service, clients can monitor the approach of significant storms and schedule operations accordingly. Utilities and emergency management officials are able to plot a storm's path. A recent agreement with two other companies will promote continued development and marketing.

  2. Storm and cloud dynamics

    CERN Document Server

    Cotton, William R

    1992-01-01

    This book focuses on the dynamics of clouds and of precipitating mesoscale meteorological systems. Clouds and precipitating mesoscale systems represent some of the most important and scientifically exciting weather systems in the world. These are the systems that produce torrential rains, severe winds including downburst and tornadoes, hail, thunder and lightning, and major snow storms. Forecasting such storms represents a major challenge since they are too small to be adequately resolved by conventional observing networks and numerical prediction models.Key Features* Key Highlight

  3. A Study of Ionospheric Storm Association with Intense Geomagnetic Storms

    Science.gov (United States)

    Okpala, K. C.

    2017-12-01

    The bulk association between ionospheric storms and geomagnetic storms have been studied. Hemispheric features of seasonal variation of ionospheric storms in the mid-latitude were also investigated. 188 intense geomagnetic storms (Dst ≤100nT) that occurred during solar cycle 22 and 23 were considered, of which 143 were observed to be identified with an ionospheric storm. Individual ionospheric storms were identified as maximum deviations of the F2 layer peak electron density from quiet time values. Only ionospheric storms that could clearly be associated with the peak of a geomagnetic storms were considered. Data from two mid-latitude ionosonde stations; one in the northern hemisphere (i.e Moscow) and the other in the southern hemisphere (Grahamstown) were used to study ionospheric condition at the time of the individual geomagnetic storms. Results show hemispheric and latitudinal differences in the intensity and nature of ionospheric storms association with different types of geomagnetic storms. These results are significant for our present understanding of the mechanisms which drive the changes in electron density during different types of ionospheric storms.

  4. Severe storms forecast systems

    Science.gov (United States)

    Kaplan, M.; Zack, J.

    1980-01-01

    Two research tasks are described: (1) the improvement and enhancement of an existing mesoscale numerical simulation system, and (2) numerical diagnostic studies associated with an individual case of severe storm development (April 10, 1979 in the Red River Valley of Texas and Oklahoma).

  5. Dave Storm esitleb singlit

    Index Scriptorium Estoniae

    2002-01-01

    7. märtsil klubis Spirit ja 8. märtsil klubis Terminal presenteerib tallinlane DJ Dave Storm oma uut singlit "Ride", millel teeb laulmisega kaasa ameeriklane Charlie C. Singelplaadi annab peadselt välja Inglise plaadifirma Refunkt

  6. California's Perfect Storm

    Science.gov (United States)

    Bacon, David

    2010-01-01

    The United States today faces an economic crisis worse than any since the Great Depression of the 1930s. Nowhere is it sharper than in the nation's schools. Last year, California saw a perfect storm of protest in virtually every part of its education system. K-12 teachers built coalitions with parents and students to fight for their jobs and their…

  7. Magnetic Storms in Brazil

    Science.gov (United States)

    Pinheiro, K.; Siqueira, F.

    2013-05-01

    Magnetic storms result from atypical processes generated in the Sun, the interaction between the solar wind and the Earth's magnetosphere and the energization of particles in the magnetosphere. As consequence, magnetic storms may cause problems on radio communication, in satellites, GPS imprecision and induce geomagnetic induced currents that my cause saturation and damage of transformers. Magnetic storms are measured in magnetic observatories, where it is possible to observe large variations in the horizontal magnetic field. These variations are most visible in equatorial or low-latitude magnetograms. In this work, we use low latitude dataset from three magnetic observatories in Brazil: Vassouras (Rio de Janeiro) that presents data since 1915, Tatuoca (Pará) since 1957 and data from a new magnetic observatory that was installed in Pantanal (Brazil) on the 22nd October 2012. Vassouras and Pantanal observatories are in the region of the South Atlantic Magnetic Anomaly. External magnetic field interactions in this region are poorly known due to the lack of magnetic data. Tatuoca observatory is located in another important geomagnetic region: the equatorial electrojet. In this work we present the data processing of the recent geomagnetic time series in Pantanal Observatory and its comparison with Vassouras and Tatuoca observatories in Brazil. We analyse the main characteristics of magnetic storms in these observatories, as the sudden commencement and their duration.

  8. Multi-instrumental observations of the 2014 Ursid meteor outburst

    Science.gov (United States)

    Moreno-Ibáñez, Manuel; Trigo-Rodríguez, Josep M.; Madiedo, José María; Vaubaillon, Jérémie; Williams, Iwan P.; Gritsevich, Maria; Morillas, Lorenzo G.; Blanch, Estefanía; Pujols, Pep; Colas, François; Dupouy, Philippe

    2017-06-01

    The Ursid meteor shower is an annual shower that usually shows little activity. However, its Zenith hourly rate sometimes increases, usually either when its parent comet, 8P/Tuttle, is close to its perihelion or its aphelion. Outbursts when the comet is away from perihelion are not common and outbursts when the comet is close to aphelion are extremely rare. The most likely explanation offered to date is based on the orbital mean motion resonances. The study of the aphelion outburst of 2000 December provided a means of testing that hypothesis. A new aphelion outburst was predicted for 2014 December. The SPanish Meteor Network, in collaboration with the French Fireball Recovery and InterPlanetary Observation Network, set up a campaign to monitor this outburst and eventually retrieve orbital data that expand and confirm previous preliminary results and predictions. Despite unfavourable weather conditions over the south of Europe over the relevant time period, precise trajectories from multistation meteor data recorded over Spain were obtained, as well as orbital and radiant information for four Ursid meteors. The membership of these four meteors to the expected dust trails that were to provoke the outburst is discussed, and we characterize the origin of the outburst in the dust trail produced by the comet in the year ad 1392.

  9. Division F Commission 22: Meteors, Meteorites, and Interplanetary Dust

    Science.gov (United States)

    Jenniskens, Peter; Borovička, Jiří; Watanabe, Jun-Ichi; Jopek, Tadeusz; Abe, Shinsuke; Consolmagno, Guy J.; Ishiguro, Masateru; Janches, Diego; Ryabova, Galina O.; Vaubaillon, Jérémie; Zhu, Jin

    2016-04-01

    Commission 22 (Meteors, Meteorites and Interplanetary Dust) was established at the first IAU General Assembly held in Rome in 1922, with William Frederick Denning as its first President. Denning was an accountant by profession, but as an amateur astronomer he contributed extensively to meteor science. Commission 22 thus established a pattern that has continued to this day that non-professional astronomers were welcomed and valued and could play a significant role in its affairs. The field of meteors, meteorites and interplanetary dust has played a disproportional role in the astronomical perception of the general public through the majestic displays of our annual meteor showers. Those in the field deployed many techniques uncommon in other fields of astronomy, studying the ``vermin of space'', the small solid bodies that pervade interplanetary space and impact Earth's atmosphere, the surface of the Moon, and that of our satellites in orbit. Over time, the field has tackled a wide array of problems, from predicting the encounter with meteoroid streams, to the origin of our meteorites and the nature of the zodiacal cloud. Commission 22 has played an important role in organizing the field through dedicated meetings, a data centre, and working groups that developed professional-amateur relationships and that organized the nomenclature of meteor showers. The contribution of Commission 22 to the field is perhaps most readily seen in the work of the presidents that followed in the footsteps of Denning.

  10. Improving Photometric Calibration of Meteor Video Camera Systems

    Science.gov (United States)

    Ehlert, Steven; Kingery, Aaron; Suggs, Robert

    2017-01-01

    We present the results of new calibration tests performed by the NASA Meteoroid Environment Office (MEO) designed to help quantify and minimize systematic uncertainties in meteor photometry from video camera observations. These systematic uncertainties can be categorized by two main sources: an imperfect understanding of the linearity correction for the MEO's Watec 902H2 Ultimate video cameras and uncertainties in meteor magnitudes arising from transformations between the Watec camera's Sony EX-View HAD bandpass and the bandpasses used to determine reference star magnitudes. To address the first point, we have measured the linearity response of the MEO's standard meteor video cameras using two independent laboratory tests on eight cameras. Our empirically determined linearity correction is critical for performing accurate photometry at low camera intensity levels. With regards to the second point, we have calculated synthetic magnitudes in the EX bandpass for reference stars. These synthetic magnitudes enable direct calculations of the meteor's photometric flux within the camera bandpass without requiring any assumptions of its spectral energy distribution. Systematic uncertainties in the synthetic magnitudes of individual reference stars are estimated at approx. 0.20 mag, and are limited by the available spectral information in the reference catalogs. These two improvements allow for zero-points accurate to 0.05 - 0.10 mag in both filtered and unfiltered camera observations with no evidence for lingering systematics. These improvements are essential to accurately measuring photometric masses of individual meteors and source mass indexes.

  11. Devolatilization or melting of carbonates at Meteor Crater, AZ?

    Science.gov (United States)

    Hörz, F.; Archer, P. D.; Niles, P. B.; Zolensky, M. E.; Evans, M.

    2015-06-01

    We have investigated the carbonates in the impact melts and in a monolithic clast of highly shocked Coconino sandstone of Meteor Crater, AZ to evaluate whether melting or devolatilization is the dominant response of carbonates during high-speed meteorite impact. Both melt- and clast-carbonates are calcites that have identical crystal habits and that contain anomalously high SiO2 and Al2O3. Also, both calcite occurrences lack any meteoritic contamination, such as Fe or Ni, which is otherwise abundantly observed in all other impact melts and their crystallization products at Meteor Crater. The carbon and oxygen isotope systematics for both calcite deposits suggest a low temperature environment (impact melts, yield 100 wt% element totals by EMPA, suggesting complete loss of CO2. The target dolomite decomposed into MgO, CaO, and CO2; the CO2 escaped and the CaO and MgO combined with SiO2 from coexisting quartz and FeO from the impactor to produce the dominant impact melt at Meteor Crater. Although confined to Meteor Crater, these findings are in stark contrast to Osinski et al. (2008) who proposed that melting of carbonates, rather than devolatilization, is the dominant process during hypervelocity impact into carbonate-bearing targets, including Meteor Crater.

  12. Meteoric 10Be in soil profiles - A global meta-analysis

    Science.gov (United States)

    Graly, Joseph A.; Bierman, Paul R.; Reusser, Lucas J.; Pavich, Milan J.

    2010-01-01

    In order to assess current understanding of meteoric 10Be dynamics and distribution in terrestrial soils, we assembled a database of all published meteoric 10Be soil depth profiles, including 104 profiles from 27 studies in globally diverse locations, collectively containing 679 individual measurements. This allows for the systematic comparison of meteoric 10Be concentration to other soil characteristics and the comparison of profile depth distributions between geologic settings. Percent clay, 9Be, and dithionite-citrate extracted Al positively correlate to meteoric 10Be in more than half of the soils where they were measured, but the lack of significant correlation in other soils suggests that no one soil factor controls meteoric 10Be distribution with depth. Dithionite-citrate extracted Fe and cation exchange capacity are only weakly correlated to meteoric 10Be. Percent organic carbon and pH are not significantly related to meteoric 10Be concentration when all data are complied.The compilation shows that meteoric 10Be concentration is seldom uniform with depth in a soil profile. In young or rapidly eroding soils, maximum meteoric 10Be concentrations are typically found in the uppermost 20 cm. In older, more slowly eroding soils, the highest meteoric 10Be concentrations are found at depth, usually between 50 and 200 cm. We find that the highest measured meteoric 10Be concentration in a soil profile is an important metric, as both the value and the depth of the maximum meteoric 10Be concentration correlate with the total measured meteoric 10Be inventory of the soil profile.In order to refine the use of meteoric 10Be as an estimator of soil erosion rate, we compare near-surface meteoric 10Be concentrations to total meteoric 10Be soil inventories. These trends are used to calibrate models of meteoric 10Be loss by soil erosion. Erosion rates calculated using this method vary based on the assumed depth and timing of erosional events and on the reference data selected.

  13. Linear feature detection algorithm for astronomical surveys - II. Defocusing effects on meteor tracks

    Science.gov (United States)

    Bektešević, Dino; Vinković, Dejan; Rasmussen, Andrew; Ivezić, Željko

    2018-03-01

    Given the current limited knowledge of meteor plasma micro-physics and its interaction with the surrounding atmosphere and ionosphere, meteors are a highly interesting observational target for high-resolution wide-field astronomical surveys. Such surveys are capable of resolving the physical size of meteor plasma heads, but they produce large volumes of images that need to be automatically inspected for possible existence of long linear features produced by meteors. Here, we show how big aperture sky survey telescopes detect meteors as defocused tracks with a central brightness depression. We derive an analytic expression for a defocused point source meteor track and use it to calculate brightness profiles of meteors modelled as uniform brightness discs. We apply our modelling to meteor images as seen by the Sloan Digital Sky Survey and Large Synoptic Survey Telescope telescopes. The expression is validated by Monte Carlo ray-tracing simulations of photons travelling through the atmosphere and the Large Synoptic Survey Telescope telescope optics. We show that estimates of the meteor distance and size can be extracted from the measured full width at half-maximum and the strength of the central dip in the observed brightness profile. However, this extraction becomes difficult when the defocused meteor track is distorted by the atmospheric seeing or contaminated by a long-lasting glowing meteor trail. The full width at half-maximum of satellite tracks is distinctly narrower than meteor values, which enables removal of a possible confusion between satellites and meteors.

  14. Temporal and Spatial Variation of Meteor Flux in Radio Data

    Science.gov (United States)

    Powell, Charles; Veljkovicl, Kristina

    2017-08-01

    The variation of hourly detection counts from almost 350 radio meteor detection stations is analysed to determine the effect of year, time of day, and latitude on observations, as well as discussions of annual and monthly variations. Results indicate a significant increase in hourly detection counts in 2009-2010, supporting previous hypotheses of correlation between radio meteor detection rates and solar activity. Annual increases in meteor rates during summer months are noted, with no clear explanation. Monthly variations are not significant. The effect of latitude on detection counts is significant for years 2005-2016. For 12 of 17 considered years, night-time detection counts are greater than day-time counts, likely due to changes in ionospheric structure at night.

  15. French Meteor Network for High Precision Orbits of Meteoroids

    Science.gov (United States)

    Atreya, P.; Vaubaillon, J.; Colas, F.; Bouley, S.; Gaillard, B.; Sauli, I.; Kwon, M. K.

    2011-01-01

    There is a lack of precise meteoroids orbit from video observations as most of the meteor stations use off-the-shelf CCD cameras. Few meteoroids orbit with precise semi-major axis are available using film photographic method. Precise orbits are necessary to compute the dust flux in the Earth s vicinity, and to estimate the ejection time of the meteoroids accurately by comparing them with the theoretical evolution model. We investigate the use of large CCD sensors to observe multi-station meteors and to compute precise orbit of these meteoroids. An ideal spatial and temporal resolution to get an accuracy to those similar of photographic plates are discussed. Various problems faced due to the use of large CCD, such as increasing the spatial and the temporal resolution at the same time and computational problems in finding the meteor position are illustrated.

  16. On the period of the Geminid meteor stream

    International Nuclear Information System (INIS)

    Jones, J.

    1978-01-01

    A new method has been devised for analysing the periodicities from year to year in meteor-shower activity. This appears to give more reproducible results than have been previously obtained and the orbital period of Geminid radio meteors is found to be close to 1.49 yr, a value consistent with the decrease in period of faint meteors and also with the systematic change of solar longitude at maximum shower activity with decreasing meteoroid size. When interpreted in terms of the Poynting-Robertson effect, these data indicate a stream age of 4.7 x 10 3 yr which is sufficiently long to explain the lack of very large concentrations of particles in the stream. (author)

  17. An Automatic Video Meteor Observation Using UFO Capture at the Showa Station

    Science.gov (United States)

    Fujiwara, Y.; Nakamura, T.; Ejiri, M.; Suzuki, H.

    2012-05-01

    The goal of our study is to clarify meteor activities in the southern hemi-sphere by continuous optical observations with video cameras with automatic meteor detection and recording at Syowa station, Antarctica.

  18. Physics-Based Modeling of Meteor Entry and Breakup

    Science.gov (United States)

    Prabhu, Dinesh K.; Agrawal, Parul; Allen, Gary A., Jr.; Bauschlicher, Charles W., Jr.; Brandis, Aaron M.; Chen, Yih-Kang; Jaffe, Richard L.; Palmer, Grant E.; Saunders, David A.; Stern, Eric C.; hide

    2015-01-01

    A new research effort at NASA Ames Research Center has been initiated in Planetary Defense, which integrates the disciplines of planetary science, atmospheric entry physics, and physics-based risk assessment. This paper describes work within the new program and is focused on meteor entry and breakup.Over the last six decades significant effort was expended in the US and in Europe to understand meteor entry including ablation, fragmentation and airburst (if any) for various types of meteors ranging from stony to iron spectral types. These efforts have produced primarily empirical mathematical models based on observations. Weaknesses of these models, apart from their empiricism, are reliance on idealized shapes (spheres, cylinders, etc.) and simplified models for thermal response of meteoritic materials to aerodynamic and radiative heating. Furthermore, the fragmentation and energy release of meteors (airburst) is poorly understood.On the other hand, flight of human-made atmospheric entry capsules is well understood. The capsules and their requisite heatshields are designed and margined to survive entry. However, the highest speed Earth entry for capsules is 13 kms (Stardust). Furthermore, Earth entry capsules have never exceeded diameters of 5 m, nor have their peak aerothermal environments exceeded 0.3 atm and 1 kW/sq cm. The aims of the current work are: (i) to define the aerothermal environments for objects with entry velocities from 13 to 20 kms; (ii) to explore various hypotheses of fragmentation and airburst of stony meteors in the near term; (iii) to explore the possibility of performing relevant ground-based tests to verify candidate hypotheses; and (iv) to quantify the energy released in airbursts. The results of the new simulations will be used to anchor said risk assessment analyses. With these aims in mind, state-of-the-art entry capsule design tools are being extended for meteor entries. We describe: (i) applications of current simulation tools to

  19. An Operational Autonomous Meteor Detector: Development Issues and Early Results

    Science.gov (United States)

    Gural, P. S.

    1997-06-01

    A real-time computer-based meteor detector has been in operation by the author in the United States since February 1997. Operating in a completely autonomous mode it has successfully detected several meteors, numerous artificial satellites, and aircraft since its inception. Since the computer system is based on an Intel 486 microprocessor and operates at half the pixel resolution available from a CCD camera, it is believed with the faster computers on the market today, a full resolution system is realizable. A proposal to fund the building of such a system is in the works at this time.

  20. The METEOR trial: no rush to repair a torn meniscus.

    Science.gov (United States)

    Hwang, Yong Gil; Kwoh, C Kent

    2014-04-01

    It is uncertain whether arthroscopic partial meniscectomy is better than physical therapy in patients who have a symptomatic torn meniscus on top of osteoarthritis of the knee. The Meniscal Repair in Osteoarthritis Research (METEOR) trial concluded that physical therapy is acceptable at first, and that surgery is not routinely needed. In patients assigned to physical therapy who eventually needed surgery, the delay resulting from a trial of conservative management did not impair outcomes at 12 months from the initial presentation. Here, we analyze the background, design, findings, and clinical implications of the METEOR trial.

  1. Assessment of storm forecast

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos Antonio; Hahmann, Andrea N.; Huus Bjerge, Martin

    at analysing the ability of existing forecast tools to predict storms at the Horns Rev 2 wind farm. The focus will be on predicting the time where the wind turbine will need to shut down to protect itself, e.g. the time where wind speed exceeds 25 m/s. At the same time, the planned shut-down should cost...... storms was analysed based on historical meteorological data available at Risø DTU and dynamically down-scaled to the Horns Rev 2 wind farm level. This solution was chosen due to the lack of measurements. Moreover, since the project started, there were four events during which Horns Rev 2 wind farm...

  2. Modeling storm waves

    International Nuclear Information System (INIS)

    Benoit, M.; Marcos, F.; Teisson, Ch.

    1999-01-01

    Nuclear power stations located on the coast take the water they use to cool their circuits from the sea. The water intake and discharge devices must be able to operate in all weathers, notably during extreme storms, with waves 10 m high and over. To predict the impact of the waves on the equipment, they are modeled digitally from the moment they form in the middle of the ocean right up to the moment they break on the shore. (authors)

  3. Ice storm `98

    Energy Technology Data Exchange (ETDEWEB)

    Soulard, F.; Trant, D.; Filoso, J.; Van Wesenbeeck, P. [Statistics Canada, Ottawa, ON (Canada). Environment Statistics Program

    1998-12-31

    As much as 100 millimeters of freezing rain fell on central and eastern Canada between January 4 to 10, 1998. This study concentrates on Canada`s St. Lawrence River Valley where total precipitation exceeded 73 mm in Kingston, 85 mm in Ottawa and 100 mm in areas south of Montreal. By comparison, the largest previously recorded ice storms left between 30 and 40 mm of ice. A state of emergency was declared for the affected regions. 56 per cent of Quebec`s population and 11 per cent of Ontario`s population were affected by the storm. Over 1000 power transmission towers collapsed and more than 30,000 wooden utility poles were brought down. In Quebec, nearly 1.4 million customers were left without electricity. In Ontario that number was about 230,000. While some manufacturers benefited directly from the storm, including makers of hydro and telephone poles, batteries and specialized electrical equipment, the overall economic losses for Montreal and Ottawa were high as estimates run to $585 million and $114 million, respectively. Almost 5 million sugar maple taps in Quebec and Ontario were located and suffered some damage in the affected areas. Nearly one-quarter (274,000) of all dairy cows were also located in the affected areas. Since in the absence of electricity they could not be milked, many of them suffered from mastitis. Many succumbed, others that survived may never attain their former level of productivity. As of June 1998, over 600,000 insurance claims totaling one billion dollars had been filed by Canadian households and businesses from the area affected by the ice storm.1 fig.

  4. Noise storm coordinated observations

    International Nuclear Information System (INIS)

    Elgaroey, Oe.; Tlamicha, A.

    1983-01-01

    The usually accepted bipolar model of noise storm centers is irrelevant for the present observations. An alternative model has been proposed in which the different sources of a noise storm center are located in different flux tubes connecting active regions with their surroundings. Radio emission is observed from the wide, descending branch of the flux tubes, opposite to the flaring site. The relation between the sense of circular polarization of the radio emission and the magnetic polarity, has been more precisely defined. The radiation is in the ordinary mode with respect to the underlying large scale photospheric magnetic polarity. Thus the ''irregular'' polarity of noice storm center ''B'' is explained. As regards center ''C'', one should note that although the observed radio emission is polarized in the ordinary mode with respect to the leading spot of region HR 17653, center ''C'' is not situated in flux tubes originating from the leading part of this region according to the proposed model. Rather, the radio sources are located in the wide and descending part of flux tubes connecting a large, quiet area of south magnetic polarity with the following part of the region HR 17653 (of north magnetic polarity). Thus it is the polarity of the extended area which determines the polarization of the radio emission. The observed polarization should result rather from the emission process than from complicated conditions of propagation for the radio waves

  5. Spectroscopic Observations of the 2011 Draconids Meteor Shower

    Czech Academy of Sciences Publication Activity Database

    Rudawska, R.; Zender, J.; Jenniskens, P.; Vaubaillon, J.; Koten, Pavel; Margonis, A.; Toth, J.; McAuliffe, J.; Koschny, D.

    2014-01-01

    Roč. 112, 1-4 (2014), s. 45-57 ISSN 0167-9295 R&D Projects: GA ČR GA205/09/1302 Institutional support: RVO:67985815 Keywords : meteorites * meteors * meteoroids Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.667, year: 2014

  6. The 2011 Draconids: The First European Airborne Meteor Observation Campaign

    Czech Academy of Sciences Publication Activity Database

    Vaubaillon, J.; Koten, Pavel; Margonis, A.; Toth, J.; Rudawska, R.; Gritsevich, M.; Zender, J.; McAuliffe, J.; Pautet, D.; Jenniskens, P.; Koschny, D.; Colas, F.; Bouley, S.; Maquet, L.; Leroy, A.; Lecacheux, J.; Borovička, Jiří; Watanabe, J.; Oberst, J.

    2015-01-01

    Roč. 114, 3-4 (2015), s. 137-157 ISSN 0167-9295 R&D Projects: GA ČR GA14-25251S Institutional support: RVO:67985815 Keywords : meteors * Draconids * 21P/Giacobini-Zinner Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.659, year: 2015

  7. Building single-page web apps with meteor

    CERN Document Server

    Vogelsteller, Fabian

    2015-01-01

    If you are a web developer with basic knowledge of JavaScript and want to take on Web 2.0, build real-time applications, or simply want to write a complete application using only JavaScript and HTML/CSS, this is the book for you.This book is based on Meteor 1.0.

  8. CAMS newly detected meteor showers and the sporadic background

    Science.gov (United States)

    Jenniskens, P.; Nénon, Q.; Gural, P. S.; Albers, J.; Haberman, B.; Johnson, B.; Morales, R.; Grigsby, B. J.; Samuels, D.; Johannink, C.

    2016-03-01

    The Cameras for Allsky Meteor Surveillance (CAMS) video-based meteoroid orbit survey adds 60 newly identified showers to the IAU Working List of Meteor Showers (numbers 427, 445-446, 506-507, and part of 643-750). 28 of these are also detected in the independent SonotaCo survey. In total, 230 meteor showers and shower components are identified in CAMS data, 177 of which are detected in at least two independent surveys. From the power-law size frequency distribution of detected showers, we extrapolate that 36% of all CAMS-observed meteors originated from ∼700 showers above the N = 1 per 110,000 shower limit. 71% of mass falling to Earth from streams arrives on Jupiter-family type orbits. The transient Geminids account for another 15%. All meteoroids not assigned to streams form a sporadic background with highest detected numbers from the apex source, but with 98% of mass falling in from the antihelion source. Even at large ∼7-mm sizes, a Poynting-Robertson drag evolved population is detected, which implies that the Grün et al. collisional lifetimes at these sizes are underestimated by about a factor of 10. While these large grains survive collisions, many fade on a 104-y timescale, possibly because they disintegrate into smaller particles by processes other than collisions, leaving a more resilient population to evolve.

  9. Feasibility Study Utilizing Meteor Burst Communications for Vessel Monitoring

    Science.gov (United States)

    1981-11-01

    4. EQUIPMENT The two meteor burst systems considered are the AMBCS with its Master Station located at Anchorage and an existing mobile government owned...requirement. However, since the mobile government owned system was specifi- cally designed for flight following applications, the transi- tion to ship

  10. Optical Meteor Fluxes and Application to the 2015 Perseids

    Science.gov (United States)

    Blaauw, R. C.; Campbell-Brown, M.; Kingery, A.

    2016-01-01

    This paper outlines new methods to measure optical meteor fluxes for showers and sporadic sources. Many past approaches have found the collecting area of a detector at a fixed 100 km altitude, but this approach considers the full volume, finding the area in two km height intervals based on the position of the shower or sporadic source radiant and the population's velocity. Here, the stellar limiting magnitude is found every 10 minutes during clear periods and converted to a limiting meteor magnitude for the shower or sporadic source having fluxes measured, which is then converted to a limiting mass. The final output is a mass limited flux for meteor showers or sporadic sources. Presented are the results of these flux methods as applied to the 2015 Perseid meteor shower as seen by the Meteoroid Environment Office's eight wide-field cameras. The peak Perseid flux on the night of August 13, 2015, was measured to be 0.002989 meteoroids/km2/hr down to 0.00051 grams, corresponding to a ZHR of 100.7.

  11. Dispersion of meteor trails in the geomagnetic field.

    Science.gov (United States)

    Robson, R E

    2001-02-01

    A meteor trail is modeled by a long column of weakly ionized plasma, whose dispersion is controlled by the geomagnetic field and the requirement to maintain effective space charge neutrality. First we consider scattering of a radar signal from an underdense trail and derive an expression for the amplitude of the backscattered signal as a function of time. Then, starting from the basic momentum balance equations for electrons and ions in a partially ionized plasma, we require divergences of ion and electron fluxes to be equal, plus assume equality of the flux components along the magnetic field direction. The analysis is really applicable to a whole range of plasma problems, although we focus upon meteor trails for now. It is found that charged particle densities satisfy a diffusion equation and we obtain an expression for the ambipolar diffusion tensor and expressions for the ambipolar electric field, valid for arbitrary relative orientations of the magnetic field and meteor trail axis. Results are somewhat different from previous analyses in the meteor literature.

  12. The 2017 Meteor Shower Activity Forecast for Earth Orbit

    Science.gov (United States)

    Moorhead, Althea; Cooke, Bill; Moser, Danielle

    2017-01-01

    Most meteor showers will display typical activity levels in 2017. Perseid activity is expected to be higher than normal but less than in 2016; rates may reach 80% of the peak ZHR in 2016. Despite this enhancement, the Perseids rank 4th in flux for 0.04-cm-equivalent meteoroids: the Geminids (GEM), Daytime Arietids (ARI), and Southern delta Aquariids (SDA) all produce higher fluxes. Aside from heightened Perseid activity, the 2017 forecast includes a number of changes. In 2016, the Meteoroid Environment Office used 14 years of shower flux data to revisit the activity profiles of meteor showers included in the annual forecast. Both the list of showers and the shape of certain major showers have been revised. The names and three-letter shower codes were updated to match those in the International Astronomical Union (IAU) Meteor Data Center, and a number of defunct or insignificant showers were removed. The most significant of these changes are the increased durations of the Daytime Arietid (ARI) and Geminid (GEM) meteor showers. This document is designed to supplement spacecraft risk assessments that incorporate an annual averaged meteor shower flux (as is the case with all NASA meteor models). Results are presented relative to this baseline and are weighted to a constant kinetic energy. Two showers - the Daytime Arietids (ARI) and the Geminids (GEM) - attain flux levels approaching that of the baseline meteoroid environment for 0.1-cm-equivalent meteoroids. This size is the threshold for structural damage. These two showers, along with the Quadrantids (QUA) and Perseids (PER), exceed the baseline flux for 0.3-cm-equivalent particles, which is near the limit for pressure vessel penetration. Please note, however, that meteor shower fluxes drop dramatically with increasing particle size. As an example, the Arietids contribute a flux of about 5x10(exp -6) meteoroids m(exp -2) hr-1 in the 0.04-cm-equivalent range, but only 1x10(exp -8) meteoroids m(sub -2) hr-1 for the 0

  13. Lightning location relative to storm structure in a supercell storm and a multicell storm

    Science.gov (United States)

    Ray, Peter S.; Macgorman, Donald R.; Rust, W. David; Taylor, William L.; Rasmussen, Lisa Walters

    1987-01-01

    Relationships between lightning location and storm structure are examined for one radar volume scan in each of two mature, severe storms. One of these storms had characteristics of a supercell storm, and the other was a multicell storm. Data were analyzed from dual-Doppler radar and dual-VHF lightning-mapping systems. The distributions of VHF impulse sources were compared with radar reflectivity, vertical air velocity, and their respective gradients. In the supercell storm, lightning tended to occur along streamlines above and down-shear of the updraft and reflectivity cores; VHF impulse sources were most concentrated in reflectivities between 30 and 40 dBZ and were distributed uniformly with respect to updraft speed. In the multicell storm, on the other hand, lightning tended to coincide with the vertical reflectivity and updraft core and with the diverging streamlines near the top of the storm. The results suggest that the location of lightning in these severe storms were most directly associated with the wind field structure relative to updraft and reflectivity cores. Since the magnitude and vertical shear of the environmental wind are fundamental in determining the reflectivity and wind field structure of a storm, it is suggested that these environmental parameters are also fundamental in determining lightning location.

  14. Video and photometric observations of a sprite in coincidence with a meteor-triggered jet event

    International Nuclear Information System (INIS)

    Suszcynsky, D. M.; Strabley, R.; Roussel-Dupre, R.; Symbalisty, E. M. D.; Armstrong, R. A.; Lyons, W. A.; Taylor, M.

    1999-01-01

    Video and photometric observations of a meteor-triggered ''jet'' event in association with the occurrence of a sprite were collected during the SPRITES '98 campaign. The event raises interest in the question of possible meteoric triggering of upper atmospheric transients as originally suggested by Muller [1995]. The event consisted of three stages: (1) the observation of a moderately bright meteor, (2) the development of a sprite in the immediate vicinity of the meteor as the meteor reached no lower than ∼70 km altitude, and (3) a slower-forming jet of luminosity that appeared during the late stages of the sprite and propagated back up the ionization trail of the meteor. The event is analyzed in terms of its geometry, its relevance to the meteor, and the implications to existing theories for sprite formation. (c) 1999 American Geophysical Union

  15. Influence of storm characteristics on soil erosion and storm runoff

    Science.gov (United States)

    Johnny M. III Grace

    2008-01-01

    Unpaved forest roads can be major sources of sediment from forested watersheds. Storm runoff from forest roads are a concern due to their potential delivery of sediments and nutrients to stream systems resulting in degraded water quality. The volume and sediment concentrations of stormwater runoff emanating from forest roads can be greatly influenced by storm...

  16. Dynamical Model for the Zodiacal Cloud and Sporadic Meteors

    Science.gov (United States)

    Nesvorný, David; Janches, Diego; Vokrouhlický, David; Pokorný, Petr; Bottke, William F.; Jenniskens, Peter

    2011-12-01

    The solar system is dusty, and would become dustier over time as asteroids collide and comets disintegrate, except that small debris particles in interplanetary space do not last long. They can be ejected from the solar system by Jupiter, thermally destroyed near the Sun, or physically disrupted by collisions. Also, some are swept by the Earth (and other planets), producing meteors. Here we develop a dynamical model for the solar system meteoroids and use it to explain meteor radar observations. We find that the Jupiter Family Comets (JFCs) are the main source of the prominent concentrations of meteors arriving at the Earth from the helion and antihelion directions. To match the radiant and orbit distributions, as measured by the Canadian Meteor Orbit Radar (CMOR) and Advanced Meteor Orbit Radar (AMOR), our model implies that comets, and JFCs in particular, must frequently disintegrate when reaching orbits with low perihelion distance. Also, the collisional lifetimes of millimeter particles may be longer (gsim 105 yr at 1 AU) than postulated in the standard collisional models (~104 yr at 1 AU), perhaps because these chondrule-sized meteoroids are stronger than thought before. Using observations of the Infrared Astronomical Satellite to calibrate the model, we find that the total cross section and mass of small meteoroids in the inner solar system are (1.7-3.5) × 1011 km2 and ~4 × 1019 g, respectively, in a good agreement with previous studies. The mass input required to keep the zodiacal cloud in a steady state is estimated to be ~104-105 kg s-1. The input is up to ~10 times larger than found previously, mainly because particles released closer to the Sun have shorter collisional lifetimes and need to be supplied at a faster rate. The total mass accreted by the Earth in particles between diameters D = 5 μm and 1 cm is found to be ~15,000 tons yr-1 (factor of two uncertainty), which is a large share of the accretion flux measured by the Long Term Duration

  17. DYNAMICAL MODEL FOR THE ZODIACAL CLOUD AND SPORADIC METEORS

    International Nuclear Information System (INIS)

    Nesvorný, David; Vokrouhlický, David; Pokorný, Petr; Bottke, William F.; Janches, Diego; Jenniskens, Peter

    2011-01-01

    The solar system is dusty, and would become dustier over time as asteroids collide and comets disintegrate, except that small debris particles in interplanetary space do not last long. They can be ejected from the solar system by Jupiter, thermally destroyed near the Sun, or physically disrupted by collisions. Also, some are swept by the Earth (and other planets), producing meteors. Here we develop a dynamical model for the solar system meteoroids and use it to explain meteor radar observations. We find that the Jupiter Family Comets (JFCs) are the main source of the prominent concentrations of meteors arriving at the Earth from the helion and antihelion directions. To match the radiant and orbit distributions, as measured by the Canadian Meteor Orbit Radar (CMOR) and Advanced Meteor Orbit Radar (AMOR), our model implies that comets, and JFCs in particular, must frequently disintegrate when reaching orbits with low perihelion distance. Also, the collisional lifetimes of millimeter particles may be longer (∼> 10 5 yr at 1 AU) than postulated in the standard collisional models (∼10 4 yr at 1 AU), perhaps because these chondrule-sized meteoroids are stronger than thought before. Using observations of the Infrared Astronomical Satellite to calibrate the model, we find that the total cross section and mass of small meteoroids in the inner solar system are (1.7-3.5) × 10 11 km 2 and ∼4 × 10 19 g, respectively, in a good agreement with previous studies. The mass input required to keep the zodiacal cloud in a steady state is estimated to be ∼10 4 -10 5 kg s –1 . The input is up to ∼10 times larger than found previously, mainly because particles released closer to the Sun have shorter collisional lifetimes and need to be supplied at a faster rate. The total mass accreted by the Earth in particles between diameters D = 5 μm and 1 cm is found to be ∼15,000 tons yr –1 (factor of two uncertainty), which is a large share of the accretion flux measured by the

  18. The MAGIC Meteoric Smoke Particle Sampler - Description and Results

    Science.gov (United States)

    Hedin, J.

    2013-12-01

    Between a few to several hundred tons of meteoric material enters the Earth's atmosphere each day, and much of this material ablates in the 70 -130 km region of the atmosphere. Already in the early 1960's it was suggested that meteoroid ablation products could recondense and form solid nanometer-scale smoke particles in the altitude range of the mesosphere and lower thermosphere (MLT). These so-called meteoric smoke particles (MSPs) are then subject to further coagulation, sedimentation, and transport by the mesospheric meridional circulation which in turn determines the latitudinal and seasonal variation of the MSP distribution. MSPs have been suggested to be important for a variety of atmospheric phenomena: 1. they are the most likely candidate for the nuclei of mesospheric ice particles (NLC and PMSE); 2. they provide surface area on which heterogeneous chemical reactions take place and may influence, for example, the water vapor distribution and Ox/HOx chemistry in the mesosphere; 3. they act as ultimate sink in mesospheric metal chemistry by scavenging various gas-phase products of meteoric ablation; 4. they can significantly influence the ionospheric D-region charge balance by scavenging free electrons and positive ions; and 5. they may be involved in the formation of NAT particles in polar stratospheric clouds and the destruction of ozone. Given the above points, it is obvious that there is a large scientific interest in the properties and global distribution of MSPs. Basic information about MSP properties is today available from optical occultation measurements (AIM/SOFIE) and, more indirectly, from in-situ measurements of the charged particle population. In order to understand the role of meteoric smoke particles in the mesosphere and their impact on that environment their presence must be certified and their physical characterization (number density, size distribution, shape, composition etc.) determined. A way to obtain maximum information about particle

  19. Character of meteoric leaks in the salt mines of south Louisiana, U.S.A.

    Science.gov (United States)

    Kumar, Madhurendu B.

    1983-10-01

    The brine leaks of salt mines of south Louisiana are of two genetic categories: meteoric and non-meteoric (connate/formation water type), as established essentially on the basis of oxygen- and hydrogen-isotope analyses. This paper highlights the hydrochemical aspects of those mine leaks and develops simple non-isotopic criteria to differentiate the meteoric leaks from the non-meteoric. The meteoric leaks of the salt mines generally occur down to a depth level of 214 m (700 ft.) (below mean sea level) below which the leaks are mostly non-meteoric. The meteoric brine is essentially Na1bCl in type, reflecting the mineralogy of almost pure halite (with ˜ 1-2% anhydrite) of the Gulf (of Mexico) Coast dome salt. The meteoric leaks are distinctly different from the non-meteoric leaks on the log-log plots of chloride concentrations vs. those of Ca 2+, Mg 2+, K +, Sr + and Br -, in all of which the meteoric brines are conspicuously low. This study is potentially useful in the development of a mine or crypt in salt dome(s) under consideration for possible nuclear-waste isolation in the Gulf Coast region.

  20. Ice storms and forest impacts.

    Science.gov (United States)

    Irland, L C

    2000-11-15

    Ice storms, or icing events, are important meteorological disturbances affecting forests over a surprisingly large portion of the USA. A broad belt extending from east Texas to New England experiences major ice storms at least once a decade; and truly major events occur in the heart of this belt once or twice a century. In the areas most affected, icing events are a factor that shapes stand composition, structure, and condition over wide areas. Impacts of individual storms are highly patchy and variable, and depend on the nature of the storm. Impacts also depend on how (or if) forest managers conduct subsequent salvage cuttings. Important research needs remain to be considered by the forest ecology and meteorology communities. At present, how ice storm frequency and severity may change with future climate change is unknown.

  1. Development of the mesospheric Na layer at 69° N during the Geminids meteor shower 2010

    Directory of Open Access Journals (Sweden)

    T. Dunker

    2013-01-01

    Full Text Available The ECOMA sounding rocket campaign in 2010 was performed to investigate the charge state and number density of meteoric smoke particles during the Geminids meteor shower in December 2010. The ALOMAR Na lidar contributed to the campaign with measurements of sodium number density, temperature and line-of-sight wind between 80 and 110 km altitude over Andøya in northern Norway. This paper investigates a possible connection between the Geminids meteor shower and the mesospheric sodium layer. We compare with data from a meteor radar and from a rocket-borne in situ particle instrument on three days. Our main result is that the sodium column density is smaller during the Geminids meteor shower than the winter average at the same latitude. Moreover, during two of the three years considered, the sodium column density decreased steadily during these three weeks of the year. Both the observed decrease of Na column density by 30% and of meteoric smoke particle column density correlate well with a corresponding decrease of sporadic meteor echoes. We found no correlation between Geminids meteor flux rates and sodium column density, nor between sporadic meteors and Na column density (R = 0.25. In general, we found the Na column density to be at very low values for winter, between 1.8 and 2.6 × 1013 m−2. We detected two meteor trails containing sodium, on 13 December 2010 at 87.1 km and on 19 December 2010 at 84 km. From these meteor trails, we estimate a global meteoric Na flux of 121 kg d−1 and a global total meteoric influx of 20.2 t d−1.

  2. Listening to sounds from an exploding meteor and oceanic waves

    Science.gov (United States)

    Evers, L. G.; Haak, H. W.

    Low frequency sound (infrasound) measurements have been selected within the Comprehensive Nuclear-Test-Ban Treaty (CTBT) as a technique to detect and identify possible nuclear explosions. The Seismology Division of the Royal Netherlands Meteorological Institute (KNMI) operates since 1999 an experimental infrasound array of 16 micro-barometers. Here we show the rare detection and identification of an exploding meteor above Northern Germany on November 8th, 1999 with data from the Deelen Infrasound Array (DIA). At the same time, sound was radiated from the Atlantic Ocean, South of Iceland, due to the atmospheric coupling of standing ocean waves, called microbaroms. Occurring with only 0.04 Hz difference in dominant frequency, DIA proved to be able to discriminate between the physically different sources of infrasound through its unique lay-out and instruments. The explosive power of the meteor being 1.5 kT TNT is in the range of nuclear explosions and therefore relevant to the CTBT.

  3. A new interpretation of the meteoric water line

    International Nuclear Information System (INIS)

    Wetzel, K.

    1988-01-01

    Simple Rayleigh condensation and Rayleigh evaporation models for evaluating correlation between the isotopic composition of hydrogen and oxygen in meteoric water are analysed in terms of influences of accumulation of conversion products, of mixing of vapour and liquid phases, of extension or contraction, respectively. The effect of simultaneous conversion in both directions can be taken into account by introducing the relative amounts η and (1-η) of condensation and evaporation. The model yields m 7.82 and q = 8.90 instead of the empirically found values m = 8.08 +- 0.80 and q = 9.57 +- 0.62 in the meteoric water line δD = mδ 18 O + q and a satisfactory understanding of the corresponding δD - δ 18 O correlations of the Northern and the Southern hemisphere with their different quantitative proportions of ocean and land masses. (author)

  4. Investigations of characteristics of solar cosmic radiation by ''Meteor'' satellites

    International Nuclear Information System (INIS)

    Pereyaslova, N.K.; Nazarova, M.N.; Petrenko, I.E.

    1983-01-01

    Within the period from 1969 to 1978, 73 proton events of solar cosmic radiation (SCR) in which the proton flux (Esub(p) > 5 MeV) in the event maximum exceed approximatly 10 protonxcm -2 s -1 have been investigated at the ''Meteor'' satellite in high-latitude regions of the Earth magnetosphere. A considerable asymmetry of proton fluxes is detected. A considerable effect on the SCR space-and-time characteristics is produced by a large-scale interplanetary magnetic field. To study SCR spectral distributions, data are considered on proton fluxes within energy ranges from 5 to 90 MeV (''Meteor'' satellite) and from 10 to 60 MeV (''Explorer'' satellite). The spectra are approximated by the power law. Results of investigations have shown that there is connection between the SCR space-and-time and spectral characteristics and the direction and structure of the solar magnetic fields, the interplanetary space and the geomagnetic field

  5. Planetary science: Meteor Crater formed by low-velocity impact.

    Science.gov (United States)

    Melosh, H J; Collins, G S

    2005-03-10

    Meteor Crater in Arizona was the first terrestrial structure to be widely recognized as a meteorite impact scar and has probably been more intensively studied than any other impact crater on Earth. We have discovered something surprising about its mode of formation--namely that the surface-impact velocity of the iron meteorite that created Meteor Crater was only about 12 km s(-1). This is close to the 9.4 km s(-1) minimum originally proposed but far short of the 15-20 km s(-1) that has been widely assumed--a realization that clears up a long-standing puzzle about why the crater does not contain large volumes of rock melted by the impact.

  6. Spectral, Photometric, and Dynamic Analysis of Eight Draconid Meteors

    Czech Academy of Sciences Publication Activity Database

    Borovička, Jiří; Koten, Pavel; Shrbený, Lukáš; Štork, Rostislav; Hornoch, Kamil

    2014-01-01

    Roč. 113, 1-4 (2014), s. 15-31 ISSN 0167-9295 R&D Projects: GA ČR(CZ) GAP209/11/1382; GA ČR GPP209/11/P651; GA ČR GA205/09/1302 Institutional support: RVO:67985815 Keywords : meteors * meteoroids * Draconids Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.667, year: 2014

  7. Atmospheric trajectories and light curves of shower meteors

    Czech Academy of Sciences Publication Activity Database

    Koten, Pavel; Borovička, Jiří; Spurný, Pavel; Betlem, H.; Evans, S.

    2004-01-01

    Roč. 428, č. 2 (2004), s. 683-690 ISSN 0004-6361 R&D Projects: GA ČR GP205/02/P038; GA ČR GA205/02/0982; GA ČR GA205/03/1404 Institutional research plan: CEZ:AV0Z1003909 Keywords : meteors * meteoroids * general-comets Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.694, year: 2004

  8. Various meteor scenes III: Recurrent showers and some minor showers

    Science.gov (United States)

    Koseki, Masahiro

    2015-02-01

    Meteor activities vary widely from year to year. We study here the June Bootids (JBO), τ-Herculids (TAH), and Andromedids (AND) which are basic examples for the recurrent nature of meteor showers. Half a century has passed since well-known photographic or radar meteor showers were detected. It is necessary to note that some `established' IAU showers are historical ones and we cannot always see them. We find the historical trace of AND by video and four distinct activities in the area of JBC (=JBO+TAH). Meteor showers look different by different observational techniques. Many minor showers in the IAU list have been detected only by observations stored for many days and many years; visual observations in a single night cannot perceive them naturally. We studied the φ-Piscids (PPS), χ-Taurids (CTA), γ-Ursae Minorids (GUM), η-Pegasids (ETP), and α-Sextantids (ASX) as examples and found they have not been recognized by visual observers at all. It is noteworthy that some of them have possible identifications in the IAU list and in preceding observations or reports. The difference in search methods makes the situations much more complicated. The five minor showers we studied here do not have confirmations by all observational techniques. Geobased search (radiant point, time of the observation, and possibly geocentric velocity) may overlook showers which are dispersed in radiant position. A search using the D-criterion is dependent on the presumption of a spherical distribution in the orbital space and may not represent the real distribution, or may overestimate the accuracy of the observations and lead to subdividing the showers into several parts. We must use these search methods properly.

  9. Association between meteor showers and asteroids using multivariate criteria

    Science.gov (United States)

    Dumitru, B. A.; Birlan, M.; Popescu, M.; Nedelcu, D. A.

    2017-10-01

    Context. Meteoroid streams are fragments of matter produced by comets or asteroids which intersects the orbit of Earth. Meteor showers are produced when Earth intersects these streams of matter. The discoveries of active asteroids and extinct comets open a new view of the relation between these objects as possible parent bodies at the origin of meteor showers. Aims: The aim of this work is to identify the asteroids that can produce or re-populate meteoroid streams by determining the similarity of their orbits and orbital evolution over 10 000 yr. Methods: The identification was carried out by evaluating several well known D-criteria metrics, the orbits being taken from the IAU Meteor Data Center database and from IAU Minor Planet Center. Finally, we analyzed the physical properties and the orbital stability (in the Lyapunov time sense) of the candidates as well as their possible relationship with meteorites. Results: 206 near-Earth asteroids (NEAs) were associated as possible parent bodies with 28 meteor showers, according to at least two of the criterion used. 50 of them satisfied all the criteria. Notable finds are: binary asteroid 2000UG11 associated with Andromedids (AND), while the tumbling asteroid (4179)Toutatis could be associated with October Capricornids (OCC). Other possible good candidates are 2004TG10, 2008EY5, 2010CF55, 2010TU149 and 2014OY1. These objects have low albedo, therefore can be primitive objects. Asteroid 2007LW19 which is a fast rotator and most probably has monolithic structure and so its physical characteristic does not support the association found based on the dynamical criteria.

  10. Advanced Meteor radar at Tirupati: System details and first results

    Science.gov (United States)

    Sunkara, Eswaraiah; Gurubaran, Subramanian; Sundararaman, Sathishkumar; Venkat Ratnam, Madineni; Karanam, Kishore Kumar; Eethamakula, Kosalendra; Vijaya Bhaskara Rao, S.

    An advanced meteor radar viz., Enhanced Meteor Detection Radar (EMDR) operating at 35.25 MHz is installed at Sri Venkateswara University (SVU), Tirupati (13.63oN, 79.4oE), India, in the month of August 2013. Present communication describes the need for the meteor radar at present location, system description, its measurement techniques, its variables and comparison of measured mean winds with contemporary radars over the Indian region. The present radar site is selected to fill the blind region of Gadanki (13.5oN, 79.2oE) MST radar, which covers mesosphere and lower thermosphere (MLT) region (70-110 km). By modifying the receiving antenna structure and elements, this radar is capable of providing accurate wind information between 70 and 110 km unlike other similar radars. Height covering region is extended by increasing the meteor counting capacity by modifying the receiving antenna structure and elements and hence its wind estimation limits extended below and above of 80 and 100 km, respectively. In the present study, we also made comparison of horizontal winds in the MLT region with those measured by similar and different (MST and MF radars) techniques over the Indian region including the model (HWM 07) data sets. The comparison showed a very good agreement between the overlapping altitudes (82-98 km) of different radars. Zonal winds compared very well as that of meridional winds. The observed discrepancies and limitations in the wind measurement are discussed. This new radar is expected to play important role in understanding the vertical and lateral coupling by forming a unique local network.

  11. Improvement of software for analysis of visual meteor data

    Science.gov (United States)

    Veljković, K.; Ivanović, I.

    2015-01-01

    In this paper, we present improvements made on our software for the analysis of visual meteor data. R package MetFns received major updates. Selection filters and algorithms for calculation of zenithal hourly rate and population index, as well as accompanying graphics, are corrected and their performance is improved. Web application MetRApp contains a completely remade user interface and some new features. Also, calculation performances are optimized.

  12. Geomagnetic storm forecasting service StormFocus: 5 years online

    Science.gov (United States)

    Podladchikova, Tatiana; Petrukovich, Anatoly; Yermolaev, Yuri

    2018-04-01

    Forecasting geomagnetic storms is highly important for many space weather applications. In this study, we review performance of the geomagnetic storm forecasting service StormFocus during 2011-2016. The service was implemented in 2011 at SpaceWeather.Ru and predicts the expected strength of geomagnetic storms as measured by Dst index several hours ahead. The forecast is based on L1 solar wind and IMF measurements and is updated every hour. The solar maximum of cycle 24 is weak, so most of the statistics are on rather moderate storms. We verify quality of selection criteria, as well as reliability of real-time input data in comparison with the final values, available in archives. In real-time operation 87% of storms were correctly predicted while the reanalysis running on final OMNI data predicts successfully 97% of storms. Thus the main reasons for prediction errors are discrepancies between real-time and final data (Dst, solar wind and IMF) due to processing errors, specifics of datasets.

  13. Radon progeny in hydro-meteors at the earth's surface

    International Nuclear Information System (INIS)

    Voltaggio, M.

    2008-01-01

    During atmospheric thermal inversions, dew and hoarfrost concentrate gamma emitting radionuclides of the short-lived 222 Rn progeny ( 214 Pb and 214 Bi), causing an increase in the total natural gamma background from the ground. To highlight this phenomenon, a volcanic zone of high 222 Rn flux was studied during the winter season 2010-11. High-specific short-lived radon progeny activities up to 122 Bq g -1 were detected in hydro-meteors forming at the earth's surface (ESHs), corresponding to a mean increase of up to 17 % of the normal gamma background value. A theoretical model, depending on radon flux from soil and predicting the radon progeny concentrations in hydro-meteors forming at the ESHs is presented. The comparison between model and field data shows a good correspondence. Around nuclear power plants or in nuclear facilities that use automatic NaI or CsI total gamma spectroscopy systems for monitoring radioactive contamination, hydro-meteors forming at the ESHs in sites with a high radon flux could represent a relevant source of false alarms of radioactive contamination. (authors)

  14. Don Quixote --- a possible parent body of a meteor shower

    Science.gov (United States)

    Rudawska, R.; Vaubaillon, J.

    2014-07-01

    This talk addresses the topic of meteoroid stream parent body in relation to meteor showers observed on the Earth. We carry out a further search to investigate the possibility of meteor shower observations caused by particles ejected from (3552) Don Quixote. The (3552) Don Quixote asteroid was discovered in 1983 as an Amor asteroid. The Tisserand parameter for the orbit has a value of 2.315 with respect to Jupiter, which indicates a comet-like orbit. The diameter of the object calculated from the absolute magnitude, is in the range of 12.3--24.5 km. It all makes Don Quixote a good candidate for a short-period comet among known near-Earth objects, which the recently observed cometary activity confirms [1]. We have investigated the orbital evolution of the meteoroid stream originated from Don Quixote. If the object was active in the past, it might be a parent body for a meteor shower observed on the Earth. The model for the generation and evolution of the meteoroid stream in the Solar System is taken from [2]. The asteroid's orbital elements and physical properties are taken from the JPL horizons website. The ejections of meteoroids from the asteroid surface took place when the asteroid was passing its perihelion between 5000 B.C. and 2013 A.D. Next, the orbits of ejected meteoroids were integrated to the year 2050. If a meteoroid is sufficiently close to the Earth, its orbital parameters are saved and compared with known showers.

  15. ARkStorm: A West Coast Storm Scenario

    Science.gov (United States)

    Cox, D. A.; Jones, L. M.; Ralph, F. M.; Dettinger, M. D.; Porter, K.; Perry, S. C.; Barnard, P. L.; Hoover, D.; Wills, C. J.; Stock, J. D.; Croyle, W.; Ferris, J. C.; Plumlee, G. S.; Alpers, C. N.; Miller, M.; Wein, A.; Rose, A.; Done, J.; Topping, K.

    2009-12-01

    The United Stated Geological Survey (USGS) Multi-Hazards Demonstration Project (MHDP) is preparing a new emergency-preparedness scenario, called ARkStorm, to address massive U.S. West Coast storms analogous to those that devastated California in 1861-62. Storms of this magnitude are projected to become more frequent and intense as a result of climate change. The MHDP has assembled experts from the National Oceanic and Atmospheric Administration (NOAA), USGS, Scripps Institute of Oceanography, the State of California, California Geological Survey, the University of Colorado, the National Center for Atmospheric Research, and other organizations to design the large, but scientifically plausible, hypothetical scenario storm that would provide emergency responders, resource managers, and the public a realistic assessment of what is historically possible. The ARkStorm patterns the 1861 - 1862 historical events but uses modern modeling methods and data from large storms in 1969 and 1986. The ARkStorm draws heat and moisture from the tropical Pacific, forming Atmospheric Rivers (ARs) that grow in size, gain speed, and with a ferocity equal to hurricanes, slam into the U.S. West Coast for several weeks. Using sophisticated weather models and expert analysis, precipitation, snowlines, wind, and pressure data the modelers will characterize the resulting floods, landslides, and coastal erosion and inundation. These hazards will then be translated into the infrastructural, environmental, agricultural, social, and economic impacts. Consideration will be given to catastrophic disruptions to water supplies resulting from impacts on groundwater pumping, seawater intrusion, water supply degradation, and land subsidence. Possible climate-change forces that could exacerbate the problems will also be evaluated. In contrast to the recent U.S. East and Gulf Coast hurricanes, only recently have scientific and technological advances documented the ferocity and strength of possible future

  16. Meteor observations with Mini-Mega-TORTORA wide-field monitoring system

    Science.gov (United States)

    Karpov, S.; Orekhova, N.; Beskin, G.; Biryukov, A.; Bondar, S.; Ivanov, E.; Katkova, E.; Perkov, A.; Sasyuk, V.

    2016-12-01

    Here we report on the results of meteor observations with 9-channel Mini-Mega-TORTORA (MMT-9) optical monitoring system with the wide field and high temporal resolution. During the first 1.5 years of operation more than 90 thousands of meteors have been detected, at a rate of 300-350 per night, with durations from 0.1 to 2.5 seconds and angular velocities up to 38 degrees per second. The faintest detected meteors have peak brightnesses about 10 mag, while the majority have them ranging from 4 to 8 mag. Some of the meteors have been observed in BVR filters simultaneously. Color variations along the trail for them have been determined. The parameters of the detected meteors have been published online. The database also includes data from 10 thousands of meteors detected by our previous FAVOR camera during 2006-2009.

  17. Modelling a short-wake meteor as a single or fragmenting body

    Science.gov (United States)

    Campbell-Brown, M.

    2017-09-01

    An attempt is made to model a meteor observed with the Canadian Automated Meteor Observatory tracking system using a single body model. This meteor showed only very faint wake, implying that fragmentation was not important. Previous attempts to model the meteor with models of fragmenting meteors had overpredicted the amount of wake seen. A single-body, non-homogeneous ablation code was developed, but proved unsuccessful at matching the observed light curve of the meteor, even after a thorough search of parameter space. A model of a meteoroid fragmenting in many small bursts of small fragments was developed in an attempt to match both the light curve and the observed wake, and it succeeded in producing a qualitative fit to the light curve and to the high-resolution wake.

  18. Long-Term Continuous Double Station Observation of Faint Meteor Showers.

    Science.gov (United States)

    Vítek, Stanislav; Páta, Petr; Koten, Pavel; Fliegel, Karel

    2016-09-14

    Meteor detection and analysis is an essential topic in the field of astronomy. In this paper, a high-sensitivity and high-time-resolution imaging device for the detection of faint meteoric events is presented. The instrument is based on a fast CCD camera and an image intensifier. Two such instruments form a double-station observation network. The MAIA (Meteor Automatic Imager and Analyzer) system has been in continuous operation since 2013 and has successfully captured hundreds of meteors belonging to different meteor showers, as well as sporadic meteors. A data processing pipeline for the efficient processing and evaluation of the massive amount of video sequences is also introduced in this paper.

  19. Fractal Fragmentation triggered by meteor impact: The Ries Crater (Germany)

    Science.gov (United States)

    Paredes Marino, Joali; Perugini, Diego; Rossi, Stefano; Kueppers, Ulrich

    2015-04-01

    FRACTAL FRAGMENTATION TRIGGERED BY METEOR IMPACT: THE RIES CRATER (GERMANY) Joali Paredes (1), Stefano Rossi (1), Diego Perugini (1), Ulrich Kueppers (2) 1. Department of Physics and Geology, University of Perugia, Italy 2. Department of Earth and Environmental Sciences, University of Munich, Germany The Nördlinger Ries is a large circular depression in western Bavaria, Germany. The depression was caused by a meteor impact, which occurred about 14.3 million-14.5 million years ago. The original crater rim had an estimated diameter of 24 kilometers. Computer modeling of the impact event indicates that the impact or probably had diameters of about 1.5 kilometers and impacted the target area at an angle around 30 to 50 degrees from the surface in a west- southwest to east-northeast direction. The impact velocity is thought to have been about 20 km/s. The meteor impact generated extensive fragmentation of preexisting rocks. In addition, melting of these rocks also occurred. The impact melt was ejected at high speed provoking its extensive fragmentation. Quenched melt fragments are ubiquitous in the outcrops. Here we study melt fragment size distributions with the aim of understanding the style of melt fragmentation during ejection and to constrain the rheological properties of such melts. Digital images of suevite (i.e. the rock generated after deposition and diagenesis of ash and fragments produced by the meteor impact) were obtained using a high-resolution optical scanner. Successively, melt fragments were traced by image analysis and the images segmented in order to obtain binary images on which impact melt fragments are in black color, embedded on a white background. Hence, the size of fragments was determined by image analysis. Fractal fragmentation theory has been applied to fragment size distributions of melt fragments in the Ries crater. Results indicate that melt fragments follow fractal distributions indicating that fragmentation of melt generated by the

  20. Instrument for the detection of meteors in the infrared

    Science.gov (United States)

    Svedhem, H.; Koschny, D.; Ter Haar, J.

    2014-07-01

    The flux of interplanetary particles in the size range 2 mm to 20 m is poorly constrained due to insufficient data --- the larger bodies may be observed remotely by ground-based or space-based telescopes and the smaller particles are measured by in-situ impact detectors in space or by meteor cameras from ground. An infrared video rate imager in Earth orbit would enable a systematic characterization for an extended period, day and night, of the flux in this range by monitoring the bright meteor/fireball generated during atmospheric entry. Due to the low flux of meteoroids in this range a very large detector is required. With this method a large portion of the Earth atmosphere is in fact used as a huge detector. Such an instrument has never flown in Earth orbit. The only sensors of a similar kind fly on US defense satellites for monitoring launches of ballistic missiles. The data from these sensors, however, is largely inaccessible to scientists. The knowledge on emission of light by meteors/bolides at infrared wavelengths is very limited while it can be suspected that the continuum emission from meteors/bolides have stronger emission at infrared wavelengths than in the visible due to the likely low temperatures of these events. At the same time line emission is dominating over the continuum in the visible so it is not clear how this will compare with the continuum in the infrared. We have developed a bread-board version of an IR video rate camera, the SPOSH-IR. The instrument is based on an earlier technology development, SPOSH --- Smart Panoramic Optical Sensor Head, for operation in the visible range, but with the sensor replaced by a cooled IR detector and new infrared optics. The earlier work has proven the concept of the instrument and of automatic detection of meteors/bolides in the visible wavelength range. The new hardware has been built by Jena-Optronik, Jena, Germany and has been tested during several meteor showers in the Netherlands and at ESA's OGS

  1. Detection and Characterisation of Meteors as a Big Data Citizen Science project

    Science.gov (United States)

    Gritsevich, M.

    2017-12-01

    Out of a total around 50,000 meteorites currently known to science, the atmospheric passage was recorded instrumentally in only 30 cases with the potential to derive their atmospheric trajectories and pre-impact heliocentric orbits. Similarly, while the observations of meteors, add thousands of new entries per month to existing databases, it is extremely rare they lead to meteorite recovery. Meteor studies thus represent an excellent example of the Big Data citizen science project, where progress in the field largely depends on the prompt identification and characterisation of meteor events as well as on extensive and valuable contributions by amateur observers. Over the last couple of decades technological advancements in observational techniques have yielded drastic improvements in the quality, quantity and diversity of meteor data, while even more ambitious instruments are about to become operational. This empowers meteor science to boost its experimental and theoretical horizons and seek more advanced scientific goals. We review some of the developments that push meteor science into the Big Data era that requires more complex methodological approaches through interdisciplinary collaborations with other branches of physics and computer science. We argue that meteor science should become an integral part of large surveys in astronomy, aeronomy and space physics, and tackle the complexity of micro-physics of meteor plasma and its interaction with the atmosphere. The recent increased interest in meteor science triggered by the Chelyabinsk fireball helps in building the case for technologically and logistically more ambitious meteor projects. This requires developing new methodological approaches in meteor research, with Big Data science and close collaboration between citizen science, geoscience and astronomy as critical elements. We discuss possibilities for improvements and promote an opportunity for collaboration in meteor science within the currently

  2. Gorodskoje jaitso / Leonid Surkov

    Index Scriptorium Estoniae

    Surkov, Leonid

    1998-01-01

    Tallinna linna kaunistavatest ausammastest ja dekoratiivskulptuuridest ning Rävala pst-le Hoiupanga uue hoone ette planeeritud dekoratiivskulptuuri projektide konkursi võidutöödest : I koha sai Angela Orgussaare töö "Urban Egg", mis artikli autori arvates ei pääse antud kohal mõjule.

  3. Meteor matter interaction with the Earth's atmosphere and the ionospheric E-region structure

    International Nuclear Information System (INIS)

    Alimov, O.

    1987-01-01

    The exploration of the ionospheric E region is a pressing problem, both in the applied and fundamental studies. Results are presented of an investigation: (1) to estimate the meteor ionization contribution to the night time E layer and influx; (2) to study the phenomenon of intensive sporadic layer formation following cessation of meteor stream activity; and (3) to access the role of metallic ions of meteor origin in the diurnal and seasonal variations in the occurrence probabilities of midlatitude E/sub s/. The contribution was evaluated of meteor matter, Lyman radiation and corpuscular particles to the electron concentration of the night E region. Results are discussed

  4. METEOR v1.0 - Design and structure of the software package; METEOR v1.0 - Estructura y modulos informaticos

    Energy Technology Data Exchange (ETDEWEB)

    Palomo, E.

    1994-07-01

    This script describes the structure and the separated modules of the software package METEOR for the statistical analysis of meteorological data series. It contains a systematic description of the subroutines of METEOR and, also, of the required shape for input and output files. The original version of METEOR have been developed by Ph.D. Elena Palomo, CIEMAT-IER, GIMASE. It is built by linking programs and routines written in FORTRAN 77 and it adds thc graphical capabilities of GNUPLOT. The shape of this toolbox was designed following the criteria of modularity, flexibility and agility criteria. All the input, output and analysis options are structured in three main menus: i) the first is aimed to evaluate the quality of the data set; ii) the second is aimed for pre-processing of the data; and iii) the third is aimed towards the statistical analyses and for creating the graphical outputs. Actually the information about METEOR is constituted by three documents written in spanish: 1) METEOR v1.0: User's guide; 2) METEOR v1.0: A usage example; 3) METEOR v 1.0: Design and structure of the software package. (Author)

  5. Regarding Electrified Martian Dust Storms

    Science.gov (United States)

    Farrell, W. M.

    2017-06-01

    We examine the dynamic competition between dust devil/storm charging currents and dissipating atmospheric currents. A question: Can high-current lightning be a dissipation product of this competition? Most likely not but there are exceptions.

  6. US Weather Bureau Storm Reports

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Bureau and US Army Corps and other reports of storms from 1886-1955. Hourly precipitation from recording rain gauges captured during heavy rain, snow,...

  7. Global differences between moderate and large storms

    Science.gov (United States)

    Valek, P. W.; Buzulukova, N.; Fok, M. C. H.; Goldstein, J.; Keesee, A. M.; McComas, D. J.; Perez, J. D.

    2015-12-01

    The current solar maximum has been relatively quiet compared to previous solar cycles. Whereas numerous moderate storms (Dst minutes). Here we will present the differences seen between moderate storms and the two large storms of 17 March 2015 (Dst 30 keV) and high (30 to > 100 keV) energy ranges, and describe how the inner magnetosphere evolves during storm time.

  8. Magnetic storms and induction hazards

    Science.gov (United States)

    Love, Jeffrey J.; Rigler, E. Joshua; Pulkkinen, Antti; Balch, Christopher

    2014-01-01

    Magnetic storms are potentially hazardous to the activities and technological infrastructure of modern civilization. This reality was dramatically demonstrated during the great magnetic storm of March 1989, when surface geoelectric fields, produced by the interaction of the time-varying geomagnetic field with the Earth's electrically conducting interior, coupled onto the overlying Hydro-Québec electric power grid in Canada. Protective relays were tripped, the grid collapsed, and about 9 million people were temporarily left without electricity [Bolduc, 2002].

  9. Kinematic Characteristics of Meteor Showers by Results of the Combined Radio-Television Observations

    Science.gov (United States)

    Narziev, Mirhusen

    2016-07-01

    One of the most important tasks of meteor astronomy is the study of the distribution of meteoroid matter in the solar system. The most important component to address this issue presents the results of measurements of the velocities, radiants, and orbits of both showers and sporadic meteors. Radiant's and orbits of meteors for different sets of data obtained as a result of photographic, television, electro-optical, video, Fireball Network and radar observations have been measured repeatedly. However, radiants, velocities and orbits of shower meteors based on the results of combined radar-optical observations have not been sufficiently studied. In this paper, we present a methods for computing the radiants, velocities, and orbits of the combined radar-TV meteor observations carried out at HisAO in 1978-1980. As a result of the two-year cycle of simultaneous TV-radar observations 57 simultaneous meteors have been identified. Analysis of the TV images has shown that some meteor trails appeared as dashed lines. Among the simultaneous meteors of d-Aquariids 10 produced such dashed images, and among the Perseids there were only 7. Using a known method, for such fragmented images of simultaneous meteors - together with the measured radar distance, trace length, and time interval between the segments - allowed to determine meteor velocity using combined method. In addition, velocity of the same meteors was measured using diffraction and radar range-time methods based on the results of radar observation. It has been determined that the mean values of meteoroid velocity based on the combined radar-TV observations are greater in 1 ÷ 3 km / c than the averaged velocity values measured using only radar methods. Orbits of the simultaneously observed meteors with segmented photographic images were calculated on the basis of the average velocity observed using the combined radar-TV method. The measured results of radiants velocities and orbital elements of individual meteors

  10. Knut Lundmark, meteors and an early Swedish crowdsourcing experiment.

    Science.gov (United States)

    Kärnfelt, Johan

    2014-10-01

    Mid twentieth century meteor astronomy demanded the long-term compilation of observations made by numerous individuals over an extensive geographical area. Such a massive undertaking obviously required the participation of more than just professional astronomers, who often sought to expand their ranks through the use of amateurs that had a basic grasp of astronomy as well as the night sky, and were thus capable of generating first-rate astronomical reports. When, in the 1920s, renowned Swedish astronomer Knut Lundmark turned his attention to meteor astronomy, he was unable to rely even upon this solution. In contrast to many other countries at the time, Sweden lacked an organized amateur astronomy and thus contained only a handful of competent amateurs. Given this situation, Lundmark had to develop ways of engaging the general public in assisting his efforts. To his advantage, he was already a well-established public figure who had published numerous popular science articles and held talks from time to time on the radio. During the 1930s, this prominence greatly facilitated his launching of a crowdsourcing initiative for the gathering of meteor observations. This paper consists of a detailed discussion concerning the means by which Lundmark's initiative disseminated astronomical knowledge to the general public and encouraged a response that might directly contribute to the advancement of science. More precisely, the article explores the manner in which he approached the Swedish public, the degree to which that public responded and the extent to which his efforts were successful. The primary aim of this exercise is to show that the apparently recent Internet phenomenon of 'crowdsourcing', especially as it relates to scientific research, actually has a pre-Internet history that is worth studying. Apart from the fact that this history is interesting in its own right, knowing it can provide us with a fresh vantage point from which to better comprehend and appreciate

  11. Report on radio observation of meteors (Iža, Slovakia)

    Science.gov (United States)

    Dolinský, Peter; Dorotovič, Ivan; Vidovenec, Marian

    2014-02-01

    During the period from 1 to 17 August 2014 meteors were experimentally registered using radio waves. This experiment was conducted in the village of Iža, Slovakia. Its main objective was to test the technical equipment intended for continuous registration of meteor echoes, which will be located in the Slovak Central Observatory in Hurbanovo. These tests are an indirect continuation of previous experiments of observation of meteor showers using the technology available in Hurbanovo at the end of the 20th and the beginning of the 21st century. The device consists of two independent receiver systems. One recorded echoes of the transmitter Graves 143.050 MHz (N47.3480° E5.5151°, France) and the second one recorded echoes of the TV transmitter Lviv 49.739583 MHz (N49.8480° E24.0369°, Ukraine). The apparatus for tracking radio echoes of the transmitter Graves consists of a 9-element Yagi antenna with vertical polarization (oriented with an elevation of 0° at azimuth 270°), the receiver Yaesu VR-5000 in CW mode, and a computer with registration using the program HROFFT v1.0.0f. The second apparatus recording the echoes of the transmitter Lviv consists of a LP (log-periodic) antenna with horizontal polarization (elevation of 0° and azimuth of 90°), the receiver ICOM R-75 in the CW mode, and also a computer with registration using HROFFT v1.0.0f. A total of about 78000 echoes have been registered during around 700 hours of registration. Probably not all of them are caused by meteors. These data were statistically processed and compared with visual observations in the IMO database. Planned own visual observations could not be performed due to unfavourable weather conditions lasting from 4 to 13 August 2014. The registered data suggest that observations were performed in the back-scatter mode in this configuration and not in the planned forward-scatter mode. Deeper analysis and longer data sets are, however, necessary to calibrate the observation system and this will

  12. Results of Lunar Impact Observations During Geminid Meteor Shower Events

    Science.gov (United States)

    Suggs, R. J.; Suggs, R. M.

    2015-01-01

    the lunar environment associated with larger lunar impactors, but also provides statistical data for verification and improving meteoroid prediction models. Current meteoroid models indicate that the Moon is struck by a sporadic meteoroid with a mass greater than 1 kg over 260 times per year. This number is very uncertain since observations for objects in this mass range are few. Factors of several times, higher or lower, are easily possible. Meteor showers are also present to varying degrees at certain times of the year. The Earth experiences meteor showers when encountering the debris left behind by comets, which is also the case with 2 the Moon. During such times, the rate of shower meteoroids can greatly exceed that of the sporadic background rate for larger meteoroids. Looking for meteor shower impacts on the Moon at about the same time as they occur on Earth will yield important data that can be fed into meteor shower forecasting models, which can then be used to predict times of greater meteoroid hazard on the Moon. The Geminids are one such meteor shower of interest. The Geminids are a major meteor shower that occur in December with a peak intensity occurring usually during the 13th and 14th of the month and appearing to come from a radiant in the constellation Gemini. The Geminids are interesting in that the parent body of the debris stream is an asteroid, which along with the Quadrantids, are the only major meteor showers not originating from a comet. The Geminids parent body, 3200 Phaethon, is about 5 km in diameter and has an orbit that has a 22deg inclination which intersects the main asteroid belt and has a perihelion less than half of Mercury's perihelion distance. Thus, its orbit crosses those of Mars, Earth, Venus, and Mercury. The Geminid debris stream is by far the most massive as compared to the others. When the Earth passes through the stream in mid-December, a peak intensity of approx. equal 120 meteors per hour can be seen. Because of the

  13. Automated Meteor Detection by All-Sky Digital Camera Systems

    Czech Academy of Sciences Publication Activity Database

    Suk, Tomáš; Šimberová, Stanislava

    2017-01-01

    Roč. 120, č. 3 (2017), s. 189-215 ISSN 0167-9295 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985815 ; RVO:67985556 Keywords : meteor detection * autonomous fireball observatories * fish- eye camera * Hough transformation Subject RIV: IN - Informatics, Computer Science; BN - Astronomy, Celestial Mechanics, Astrophysics (ASU-R) OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8); Astronomy (including astrophysics,space science) (ASU-R) Impact factor: 0.875, year: 2016

  14. Catastrophic winter storms. An escalating problem

    Energy Technology Data Exchange (ETDEWEB)

    Changnon, S.A. [Changnon Climatologist, Mahomet, IL 61853 (United States)

    2007-09-15

    Winter storms are a major weather problem in the USA and their losses have been rapidly increasing. A total of 202 catastrophic winter storms, each causing more than $1 million in damages, occurred during 1949-2003, and their losses totaled $35.2 billion (2003 dollars). Catastrophic winter storms occurred in most parts of the contiguous USA, but were concentrated in the eastern half of the nation where 88% of all storm losses occurred. They were most frequent in the Northeast climate district (95 storms), and were least frequent in the West district (14 catastrophic storms). The annual average number of storms is 3.7 with a 1-year high of 9 storms, and 1 year had no storms. Temporal distributions of storms and their losses exhibited considerable spatial variability across the nation. For example, when storms were very frequent in the Northeast, they were infrequent elsewhere, a result of spatial differences in storm-producing synoptic weather conditions over time. The time distribution of the nation's 202 storms during 1949-2003 had a sizable downward trend, whereas the nation's storm losses had a major upward trend for the 55-year period. This increase over time in losses, given the decrease in storm incidences, was a result of significant temporal increases in storm sizes and storm intensities. Increases in storm intensities were small in the northern sections of the nation, but doubled across the southern two-thirds of the nation, reflecting a climatic shift in conditions producing intense winter storms.

  15. Radar meteors range distribution model. II. Shower flux density and mass distribution index

    Czech Academy of Sciences Publication Activity Database

    Pecinová, Drahomíra; Pecina, Petr

    2007-01-01

    Roč. 37, č. 2 (2007), s. 107-124 ISSN 1335-1842 R&D Projects: GA ČR GA205/03/1405 Institutional research plan: CEZ:AV0Z10030501 Keywords : physics of meteors * radar meteors * range distribution Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  16. Radar meteors range distribution model. III. Ablation, shape-density and self-similarity parameters

    Czech Academy of Sciences Publication Activity Database

    Pecinová, Drahomíra; Pecina, Petr

    2007-01-01

    Roč. 37, č. 3 (2007), s. 147-160 ISSN 1335-1842 R&D Projects: GA ČR GA205/03/1405 Institutional research plan: CEZ:AV0Z10030501 Keywords : physics of meteors * radar meteors * range distribution Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  17. Optical observations of enhanced activity of the 2005 Draconid meteor shower

    Czech Academy of Sciences Publication Activity Database

    Koten, Pavel; Borovička, Jiří; Spurný, Pavel; Štork, Rostislav

    2007-01-01

    Roč. 466, č. 2 (2007), s. 729-735 ISSN 0004-6361 R&D Projects: GA AV ČR KJB300030502; GA ČR GA205/05/0543 Institutional research plan: CEZ:AV0Z10030501 Keywords : meteors * meteor shower s * Draconids Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.259, year: 2007

  18. Variations in meteor heights at 22.7°S during solar cycle 23

    Science.gov (United States)

    Lima, L. M.; Araújo, L. R.; Alves, E. O.; Batista, P. P.; Clemesha, B. R.

    2015-10-01

    The meteor radar measurements obtained at Cachoeira Paulista (22.7°S), Brazil, have been used to study a possible relationship between meteor echo height variations and solar flux during solar cycle 23. A good concordance between the normalized values of the annual mean of the meteor peak heights and F10.7 solar radio flux and Mg_II solar indexes have been observed during declining phase of the solar cycle 23. After eliminating the solar activity influence, the annual mean of the meteor echo peak heights showed a linear decrease of 30 m/year when Mg_II solar index is used and 38 m/year when F10.7 solar radio flux is used. When the trend is eliminated the relationship between meteor peak heights and F10.7 solar flux indicate a trend of 672 m/100 sfu (sfu-solar flux unit). The meteor amplitude signals and the decay time drops after mid-2004, which may be attributed to the decreasing of the electron density in the meteor trails. The meteor echo peak height decrease has been interpreted as being caused by a reduction in air density in the upper atmosphere.

  19. PMN-Portuguese Meteor Network and OLA-Observatório do Lago Alqueva agreement

    Science.gov (United States)

    Saraiva, C.

    2018-01-01

    The PMN-Portuguese Meteor Network has two new video meteor detecting systems at OLA- Observartório do Lago Alqueva, situated at the South East Portuguese territory with a pristine night sky and more than 290 clear nights each year.

  20. Atmospheric deceleration and light curves of Draconid meteors and implications for the structure of cometary dust

    Czech Academy of Sciences Publication Activity Database

    Borovička, Jiří; Spurný, Pavel; Koten, Pavel

    2007-01-01

    Roč. 473, č. 2 (2007), s. 661-672 ISSN 0004-6361 R&D Projects: GA ČR GA205/05/0543; GA AV ČR KJB300030502 Institutional research plan: CEZ:AV0Z10030501 Keywords : meteor * meteor oid * comet Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.259, year: 2007

  1. Determination of the optimal values for the parameters of radio meteors

    International Nuclear Information System (INIS)

    Kostylev, K.K.; Alferova, T.G.

    1985-01-01

    The authors present previously published data from studies of the amplitude time characteristics of the echo signals from underdense meteor trails analyzed by nonlinear optimization logarithms, and they use these results to confirm the hypothesis that small meteor particles experience significant braking in the earth's atmosphere

  2. Complex of techniques for radio-echo studies of meteors in Dushanbe

    International Nuclear Information System (INIS)

    Tshebotaryov, R.P.; Sidorin, V.N.; Polushkin, G.A.; Bibarsov, R.Sh.; Isamutdinov, Sh.O.; Kolmakov, V.M.

    1970-01-01

    A complex of techniques made at the Astrophysical Institute of Academy of Science for the determination of coordinates, heights, radians and velocities of meteors and for research in physics of meteors and upper atmosphere is described. Brief data's on the work of the complex are given

  3. Comparing Eyewitness-Derived Trajectories of Bright Meteors to Ground Truth Data

    Science.gov (United States)

    Moser, D. E.

    2016-01-01

    The NASA Meteoroid Environment Office (MEO) is the only US government agency tasked with analyzing meteors of public interest. When queried about a meteor observed over the United States, the MEO must respond with a characterization of the trajectory, orbit, and size within a few hours. Using observations from meteor networks like the NASA All Sky Fireball Network or the Southern Ontario Meteor Network, such a characterization is often easy. If found, casual recordings from the public and stationary web cameras can be used to roughly analyze a meteor if the camera's location can be identified and its imagery calibrated. This technique was used with great success in the analysis of the Chelyabinsk meteorite fall. But if the event is outside meteor network coverage, if an insufficient number of videos are found, or if the imagery cannot be geolocated or calibrated, a timely assessment can be difficult if not impossible. In this situation, visual reports made by eyewitnesses may be the only resource available. This has led to the development of a tool to quickly calculate crude meteor trajectories from eyewitness reports made to the American Meteor Society. The output is illustrated in Figure 1. A description of the tool, example case studies, and a comparison to ground truth data observed by the NASA All Sky Fireball Network will be presented.

  4. Tormenta tiroidea Thyroid storm

    Directory of Open Access Journals (Sweden)

    Lisette Leal Curí

    2012-12-01

    Full Text Available La tormenta tiroidea es una de las situaciones más críticas entre las emergencias endocrinas y tiene una significativa mortalidad. La etiología más común de tirotoxicosis es la enfermedad de Graves y el factor precipitante que predomina es la infección. Clínicamente se caracteriza por la disfunción de varios sistemas (termorregulador, nervioso central, gastrointestinal y cardiovascular, con niveles de hormonas tiroideas libres o totales por encima de los valores normales. El tratamiento debe tener un enfoque multidisciplinario, e incluye medidas de soporte en unidades de cuidados intensivos, normalización de la temperatura corporal, reducción de la producción y liberación de hormonas tiroideas, con antitiroideos de síntesis y yodo respectivamente, bloqueo de los efectos periféricos mediante la administración de beta-bloqueadores, y corrección del factor desencadenante. Una vez que el paciente se encuentra estable es necesario planificar una terapia definitiva que impida la recurrencia futura de la crisis tirotóxica.The thyroid storm is one of the most critical situations in the endocrine emergencies and exhibits a significant mortality rate. The most common etiology of thyrotoxicosis is Graves' disease and the predominant precipitating factor is infection. The clinical characteristics are dysfunction of several systems (heat-regulator, central nervous, gastrointestinal and cardiovascular, and levels of total or free thyroid hormones that exceed the normal values. The treatment must be multidisciplinary and include support measures in intensive care units, normalization of body temperature, reduction of the production and the release of thyroid hormones by using synthesis and iodine anti-thyroid products respectively, blockade of the peripheral effects through administration of Beta-blockers and correction of the unleashing factor. Once the patients are stabilized, it is necessary to plan the final therapy that will prevent the

  5. Martian Atmospheric Methane Plumes from Meteor Shower Infall: A Hypothesis

    Science.gov (United States)

    Fries, M.; Christou, A.; Archer, D.; Conrad, P.; Cooke, W.; Eigenbrode, J.; ten Kate, I. L.; Matney, M.; Niles, P.; Sykes, M.

    2016-01-01

    Methane plumes in the martian atmosphere have been detected using Earth-based spectroscopy, the Planetary Fourier Spectrometer on the ESA Mars Express mission, and the NASA Mars Science Laboratory. The methane's origin remains a mystery, with proposed sources including volcanism, exogenous sources like impacts and interplanetary dust, aqueous alteration of olivine in the presence of carbonaceous material, release from ancient deposits of methane clathrates, and/or biological activity. To date, none of these phenomena have been found to reliably correlate with the detection of methane plumes. An additional source exists, however: meteor showers could generate martian methane via UV pyrolysis of carbon-rich infall material. We find a correlation between the dates of Mars/cometary orbit encounters and detections of methane on Mars. We hypothesize that cometary debris falls onto Mars during these interactions, depositing freshly disaggregated meteor shower material in a regional concentration. The material generates methane via UV photolysis, resulting in a localized "plume" of short-lived methane.

  6. The Working Group on Meteor Showers Nomenclature: a History, Current Status and a Call for Contributions

    Science.gov (United States)

    Jopek, T. J.; Jenniskens, P. M.

    2011-01-01

    During the IAU General Assembly in Rio de Janeiro in 2009, the members of Commission 22 established the Working Group on Meteor Shower Nomenclature, from what was formerly the Task Group on Meteor Shower Nomenclature. The Task Group had completed its mission to propose a first list of established meteor showers that could receive officially names. At the business meeting of Commission 22 the list of 64 established showers was approved and consequently officially accepted by the IAU. A two-step process is adopted for showers to receive an official name from the IAU: i) before publication, all new showers discussed in the literature are first added to the Working List of Meteor Showers, thereby receiving a unique name, IAU number and three-letter code; ii) all showers which come up to the verification criterion are selected for inclusion in the List of Established Meteor Showers, before being officially named at the next IAU General Assembly.

  7. Meteor studies in the framework of the JEM-EUSO program

    Science.gov (United States)

    Abdellaoui, G.; Abe, S.; Acheli, A.; Adams, J. H.; Ahmad, S.; Ahriche, A.; Albert, J.-N.; Allard, D.; Alonso, G.; Anchordoqui, L.; Andreev, V.; Anzalone, A.; Aouimeur, W.; Arai, Y.; Arsene, N.; Asano, K.; Attallah, R.; Attoui, H.; Ave Pernas, M.; Bacholle, S.; Bakiri, M.; Baragatti, P.; Barrillon, P.; Bartocci, S.; Batsch, T.; Bayer, J.; Bechini, R.; Belenguer, T.; Bellotti, R.; Belov, A.; Belov, K.; Benadda, B.; Benmessai, K.; Berlind, A. A.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Bisconti, F.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Bobik, P.; Bogomilov, M.; Bonamente, M.; Boudaoud, R.; Bozzo, E.; Briggs, M. S.; Bruno, A.; Caballero, K. S.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Capel, F.; Caramete, A.; Caramete, L.; Carlson, P.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellina, A.; Castellini, G.; Catalano, C.; Catalano, O.; Cellino, A.; Chikawa, M.; Chiritoi, G.; Christl, M. J.; Connaughton, V.; Conti, L.; Cordero, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Dagoret-Campagne, S.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Di Martino, M.; Djemil, T.; Djenas, S. A.; Dulucq, F.; Dupieux, M.; Dutan, I.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Eser, J.; Fang, K.; Fenu, F.; Fernández-González, S.; Fernández-Soriano, J.; Ferrarese, S.; Finco, D.; Flamini, M.; Fornaro, C.; Fouka, M.; Franceschi, A.; Franchini, S.; Fuglesang, C.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; García-Ortega, E.; Garipov, G.; Gascón, E.; Geary, J.; Gelmini, G.; Genci, J.; Giraudo, G.; Gonchar, M.; González Alvarado, C.; Gorodetzky, P.; Guarino, F.; Guehaz, R.; Guzmán, A.; Hachisu, Y.; Haiduc, M.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Hidber, W.; Higashide, K.; Ikeda, D.; Ikeda, H.; Inoue, N.; Inoue, S.; Isgrò, F.; Itow, Y.; Jammer, T.; Joven, E.; Judd, E. G.; Jung, A.; Jochum, J.; Kajino, F.; Kajino, T.; Kalli, S.; Kaneko, I.; Kang, D.; Kanouni, F.; Karadzhov, Y.; Karczmarczyk, J.; Karus, M.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Kedadra, A.; Khales, H.; Khrenov, B. A.; Kim, Jeong-Sook; Kim, Soon-Wook; Kim, Sug-Whan; Kleifges, M.; Klimov, P. A.; Kolev, D.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; Lacombe, M.; Lachaud, C.; Lahmar, H.; Lakhdari, F.; Larsson, O.; Lee, J.; Licandro, J.; Lim, H.; López Campano, L.; Maccarone, M. C.; Mackovjak, S.; Mahdi, M.; Maravilla, D.; Marcelli, L.; Marcos, J. L.; Marini, A.; Martens, K.; Martín, Y.; Martinez, O.; Masciantonio, G.; Mase, K.; Matev, R.; Matthews, J. N.; Mebarki, N.; Medina-Tanco, G.; Mehrad, L.; Mendoza, M. A.; Merino, A.; Mernik, T.; Meseguer, J.; Messaoud, S.; Micu, O.; Mimouni, J.; Miyamoto, H.; Miyazaki, Y.; Mizumoto, Y.; Modestino, G.; Monaco, A.; Monnier-Ragaigne, D.; Morales de los Ríos, J. A.; Moretto, C.; Morozenko, V. S.; Mot, B.; Murakami, T.; Nadji, B.; Nagano, M.; Nagata, M.; Nagataki, S.; Nakamura, T.; Napolitano, T.; Nardelli, A.; Naumov, D.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Painter, W.; Panasyuk, M. I.; Panico, B.; Parizot, E.; Park, I. H.; Park, H. W.; Pastircak, B.; Patzak, T.; Paul, T.; Pennypacker, C.; Perdichizzi, M.; Pérez-Grande, I.; Perfetto, F.; Peter, T.; Picozza, P.; Pierog, T.; Pindado, S.; Piotrowski, L. W.; Piraino, S.; Placidi, L.; Plebaniak, Z.; Pliego, S.; Pollini, A.; Popescu, E. M.; Prat, P.; Prévôt, G.; Prieto, H.; Putis, M.; Rabanal, J.; Radu, A. A.; Rahmani, M.; Reardon, P.; Reyes, M.; Rezazadeh, M.; Ricci, M.; Rodríguez Frías, M. D.; Ronga, F.; Roth, M.; Rothkaehl, H.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez Cano, G.; Sagawa, H.; Sahnoune, Z.; Saito, A.; Sakaki, N.; Sakata, M.; Salazar, H.; Sanchez, J. C.; Sánchez, J. L.; Santangelo, A.; Santiago Crúz, L.; Sanz-Andrés, A.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, H.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Segreto, A.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shibata, T.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Siemieniec-Oziȩbło, G.; Sledd, J.; Słomińska, K.; Sobey, A.; Stan, I.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tahi, H.; Tajima, F.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Talai, M. C.; Tenzer, C.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Traïche, M.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tymieniecka, T.; Uchihori, Y.; Unger, M.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Vankova, G.; Vigorito, C.; Villaseñor, L.; Vlcek, B.; von Ballmoos, P.; Vrabel, M.; Wada, S.; Watanabe, J.; Watanabe, S.; Watts, J., Jr.; Weber, M.; Weigand Muñoz, R.; Weindl, A.; Weiler, T. J.; Wibig, T.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yamamoto, Y.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, S.; Young, R.; Zgura, I. S.; Zotov, M. Yu.; Zuccaro Marchi, A.

    2017-09-01

    We summarize the state of the art of a program of UV observations from space of meteor phenomena, a secondary objective of the JEM-EUSO international collaboration. Our preliminary analysis indicates that JEM-EUSO, taking advantage of its large FOV and good sensitivity, should be able to detect meteors down to absolute magnitude close to 7. This means that JEM-EUSO should be able to record a statistically significant flux of meteors, including both sporadic ones, and events produced by different meteor streams. Being unaffected by adverse weather conditions, JEM-EUSO can also be a very important facility for the detection of bright meteors and fireballs, as these events can be detected even in conditions of very high sky background. In the case of bright events, moreover, exhibiting some persistence of the meteor train, preliminary simulations show that it should be possible to exploit the motion of the ISS itself and derive at least a rough 3D reconstruction of the meteor trajectory. Moreover, the observing strategy developed to detect meteors may also be applied to the detection of nuclearites, exotic particles whose existence has been suggested by some theoretical investigations. Nuclearites are expected to move at higher velocities than meteoroids, and to exhibit a wider range of possible trajectories, including particles moving upward after crossing the Earth. Some pilot studies, including the approved Mini-EUSO mission, a precursor of JEM-EUSO, are currently operational or in preparation. We are doing simulations to assess the performance of Mini-EUSO for meteor studies, while a few meteor events have been already detected using the ground-based facility EUSO-TA.

  8. Diurnal and annual variations of meteor rates at the arctic circle

    Directory of Open Access Journals (Sweden)

    W. Singer

    2004-01-01

    Full Text Available Meteors are an important source for (a the metal atoms of the upper atmosphere metal layers and (b for condensation nuclei, the existence of which are a prerequisite for the formation of noctilucent cloud particles in the polar mesopause region. For a better understanding of these phenomena, it would be helpful to know accurately the annual and diurnal variations of meteor rates. So far, these rates have been little studied at polar latitudes. Therefore we have used the 33 MHz meteor radar of the ALOMAR observatory at 69° N to measure the meteor rates at this location for two full annual cycles. This site, being within 3° of the Arctic circle, offers in addition an interesting capability: The axis of its antenna field points (almost towards the North ecliptic pole once each day of the year. In this particular viewing direction, the radar monitors the meteoroid influx from (almost the entire ecliptic Northern hemisphere. We report on the observed diurnal variations (averaged over one month of meteor rates and their significant alterations throughout the year. The ratio of maximum over minimum meteor rates throughout one diurnal cycle is in January and February about 5, from April through December 2.3±0.3. If compared with similar measurements at mid-latitudes, our expectation, that the amplitude of the diurnal variation is to decrease towards the North pole, is not really borne out. Observations with the antenna axis pointing towards the North ecliptic pole showed that the rate of deposition of meteoric dust is substantially larger during the Arctic NLC season than the annual mean deposition rate. The daylight meteor showers of the Arietids, Zeta Perseids, and Beta Taurids supposedly contribute considerably to the June maximum of meteor rates. We note, though, that with the radar antenna pointing as described above, all three meteor radiants are close to the local horizon but all three radiants were detected.

  9. Radar observations of meteor trails, and their interpretation using Fresnel holography: a new tool in meteor science

    Directory of Open Access Journals (Sweden)

    W. G. Elford

    2004-01-01

    Full Text Available A Fresnel transform technique has been developed at Adelaide to analyse radar meteor echoes detected in the transverse mode. The genesis for this technique was the study of the structure of the scattering ionization immediately behind the head of the trail, in order to deduce the degree of fragmentation of the ablating meteoroid. The technique has been remarkably successful in not only giving insight into the fragmentation of meteoroids, but also revealing other significant features of the trails including diffusion, lateral motion of the trail during formation due to wind drift, and phase of the scattered signal in the vicinity of the head of the trail. A serendipitous outcome of the analysis is the measurement of the speed and deceleration of the meteoroid producing the trail to a precision far exceeding that available from any other method applied to transverse scatter data. Examples of the outcomes of the technique applied to meteor echoes obtained with a 54MHz narrow beam radar are presented.

  10. Space storms as natural hazards

    Directory of Open Access Journals (Sweden)

    L. I. Dorman

    2008-04-01

    Full Text Available Eruptive activity of the Sun produces a chain of extreme geophysical events: high-speed solar wind, magnetic field disturbances in the interplanetary space and in the geomagnetic field and also intense fluxes of energetic particles. Space storms can potentially destroy spacecrafts, adversely affect astronauts and airline crew and human health on the Earth, lead to pipeline breaking, melt electricity transformers, and discontinue transmission. In this paper we deal with two consequences of space storms: (i rise in failures in the operation of railway devices and (ii rise in myocardial infarction and stroke incidences.

  11. Development of a Remote Monitoring System Using Meteor Burst Technology

    International Nuclear Information System (INIS)

    Ewanic, M.A.; Dunstan, M.T.; Reichhardt, D.K.

    2006-01-01

    Monitoring the cleanup and closure of contaminated sites requires extensive data acquisition, processing, and storage. At remote sites, the task of monitoring often becomes problematical due to the lack of site infrastructure (i.e., electrical power lines, telephone lines, etc.). MSE Technology Applications, Inc. (MSE) has designed an economical and efficient remote monitoring system that will handle large amounts of data; process the data, if necessary; and transmit this data over long distances. Design criteria MSE considered during the development of the remote monitoring system included: the ability to handle multiple, remote sampling points with independent sampling frequencies; robust (i.e., less susceptible to moisture, heat, and cold extremes); independent of infrastructure; user friendly; economical; and easy to expand system capabilities. MSE installed and tested a prototype system at the Mike Mansfield Advanced Technology Center (MMATC), Butte, Montana, in June 2005. The system MSE designed and installed consisted of a 'master' control station and two remote 'slave' stations. Data acquired at the two slave stations were transmitted to the master control station, which then transmits a complete data package to a ground station using meteor burst technology. The meteor burst technology has no need for hardwired land-lines or man-made satellites. Instead, it uses ionized particles in the Earth's atmosphere to propagate a radio signal. One major advantage of the system is that it can be configured to accept data from virtually any type of device, so long as the signal from the device can be read and recorded by a standard data-logger. In fact, MSE has designed and built an electrical resistivity monitoring system that will be powered and controlled by the meteor burst system components. As sites move through the process of remediation and eventual closure, monitoring provides data vital to the successful long term management of the site. The remote

  12. Space Storms and Space Weather Hazards

    National Research Council Canada - National Science Library

    Daglis, I. A

    2001-01-01

    ... were: to provide a systematic overview and rigorous introduction to the physics of space storms; to review recent spacecraft measurements that have provided new insight into the dynamics and effects of space storms...

  13. Patterns of Storm Injury and Tree Response

    Science.gov (United States)

    Kevin Smith; Walter Shortle; Kenneth Dudzik

    2001-01-01

    The ice storm of January 1998 in the northeastern United States and adjacent Canada was an extreme example of severe weather that injures trees every year. Broken branches, split branch forks, and snapped stems are all examples of storm injury.

  14. A MATLAB-based planar array design assistant package with applications to meteor radar systems

    Science.gov (United States)

    Kang, C.; Palo, S.

    Interferometric techniques are commonly used in all-sky meteor radar systems for meteor location determination Essentially interferometric techniques use the phase information recorded from different receiving antennas to estimate the elevation and azimuth of the meteors Prior efforts have been made to determine an antenna geometry that improves the performance of meteor radar systems For example Hocking and Thayaparan 1997 used four antennas typically spaced by 1 5 to 3 wavelengths to locate the meteors Jones 1992 and Hocking 1997 presented an antenna geometry using a 5 element array with minimum antenna spacing of 2 wavelengths to estimate the direction of arrival DOA of the meteors By spacing the antennas more than 2 wavelength apart these array geometries were successful in reducing the electromagnetic coupling effect between the antennas which can introduce errors in the estimation of meteor locations Without a clear metric for performance it is difficult to compare geometries In this work a MATLAB planar antenna array package mainly designed for visualization of the direction of arrival DOA estimation performance of arbitrary user designed antenna array is presented Performance comparisons of nominal array geometries are also provided Several metrics are available in this package in an effort to provide the user with a comprehensive examination of an array s performance The metrics are the Cramer-Rao bound CRB which is the minimum variance that can be obtained for any unbiased estimator the co-array the

  15. Performance of D-Parameters in Isolating Meteor Showers from the Sporadic Background

    Science.gov (United States)

    Moorhead, Althea

    2016-01-01

    It is often necessary to draw a division between meteor showers and the sporadic meteor complex in order to study these components of the meteoroid environment. Meteor showers persist for less than a season and are composed of members with a greater-than-average degree of orbital similarity. The level of orbital similarity is often quantified using so-called D-parameters; a D-parameter cutoff may be employed to define or extract a shower. Depending on the study, this cutoff value may be chosen based on the size of the data-set, the percentage of sporadic meteors within the data-set, or the inclination of the shower in question. We argue that the cutoff value should also reject the strength of the shower compared to the local sporadic background. We therefore present a method for determining, on a per-shower basis, the D-parameter cutoff that limits the false-positive rate to an acceptable percentage. If the false-positive rate exceeds this percentage regardless of cutoff value, we deem the shower to be undetectable in our data. We apply this method to optical meteor observations from the NASA All-Sky and Southern Ontario Meteor Networks and present the detectable meteor showers and their characteristics.

  16. METEOR v1.0 - Design and structure of the software package

    International Nuclear Information System (INIS)

    Palomo, E.

    1994-01-01

    This script describes the structure and the separated modules of the software package METEOR for the statistical analysis of meteorological data series. It contains a systematic description of the subroutines of METEOR and, also, of the required shape for input and output files. The original version of METEOR have been developed by Ph.D. Elena Palomo, CIEMAT-IER, GIMASE. It is built by linking programs and routines written in FORTRAN 77 and it adds thc graphical capabilities of GNUPLOT. The shape of this toolbox was designed following the criteria of modularity, flexibility and agility criteria. All the input, output and analysis options are structured in three main menus: i) the first is aimed to evaluate the quality of the data set; ii) the second is aimed for pre-processing of the data; and iii) the third is aimed towards the statistical analyses and for creating the graphical outputs. Actually the information about METEOR is constituted by three documents written in spanish: 1) METEOR v1.0: User's guide; 2) METEOR v1.0: A usage example; 3) METEOR v 1.0: Design and structure of the software package. (Author)

  17. Stochastic Optical Reconstruction Microscopy (STORM).

    Science.gov (United States)

    Xu, Jianquan; Ma, Hongqiang; Liu, Yang

    2017-07-05

    Super-resolution (SR) fluorescence microscopy, a class of optical microscopy techniques at a spatial resolution below the diffraction limit, has revolutionized the way we study biology, as recognized by the Nobel Prize in Chemistry in 2014. Stochastic optical reconstruction microscopy (STORM), a widely used SR technique, is based on the principle of single molecule localization. STORM routinely achieves a spatial resolution of 20 to 30 nm, a ten-fold improvement compared to conventional optical microscopy. Among all SR techniques, STORM offers a high spatial resolution with simple optical instrumentation and standard organic fluorescent dyes, but it is also prone to image artifacts and degraded image resolution due to improper sample preparation or imaging conditions. It requires careful optimization of all three aspects-sample preparation, image acquisition, and image reconstruction-to ensure a high-quality STORM image, which will be extensively discussed in this unit. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  18. New aspects in single-body meteor physics

    Science.gov (United States)

    Pecina, P.; Ceplecha, Z.

    1983-03-01

    An exact analytical solution of the atmospheric meteoroid single-body problem is presented expressing the distance along the trajectory as a function of time, which yields a least-square fit of the observed trajectory, and analytical expressions for the velocity at the point of maximum deceleration are derived. These results are used to determine the ablation coefficient from observations. These methods are applied to 17 Prairie Network fireballs observed below the maximum deceleration point and to the Innisfree fireball, and the results are found to be superior to the ones obtained with the usual interpolation formula. A model of luminous efficiencies for small velocities and for masses up to several hundred grams based on data on Innisfree and on artificial rocketry meteors is proposed and applied to separate the shape-density coefficient from the meteoroid mass.

  19. Automated Meteor Detection by All-Sky Digital Camera Systems

    Science.gov (United States)

    Suk, Tomáš; Šimberová, Stanislava

    2017-12-01

    We have developed a set of methods to detect meteor light traces captured by all-sky CCD cameras. Operating at small automatic observatories (stations), these cameras create a network spread over a large territory. Image data coming from these stations are merged in one central node. Since a vast amount of data is collected by the stations in a single night, robotic storage and analysis are essential to processing. The proposed methodology is adapted to data from a network of automatic stations equipped with digital fish-eye cameras and includes data capturing, preparation, pre-processing, analysis, and finally recognition of objects in time sequences. In our experiments we utilized real observed data from two stations.

  20. Earth-viewing satellite perspectives on the Chelyabinsk meteor event.

    Science.gov (United States)

    Miller, Steven D; Straka, William C; Bachmeier, A Scott; Schmit, Timothy J; Partain, Philip T; Noh, Yoo-Jeong

    2013-11-05

    Large meteors (or superbolides [Ceplecha Z, et al. (1999) Meteoroids 1998:37-54]), although rare in recorded history, give sobering testimony to civilization's inherent vulnerability. A not-so-subtle reminder came on the morning of February 15, 2013, when a large meteoroid hurtled into the Earth's atmosphere, forming a superbolide near the city of Chelyabinsnk, Russia, ∼1,500 km east of Moscow, Russia [Ivanova MA, et al. (2013) Abstracts of the 76th Annual Meeting of the Meteoritical Society, 5366]. The object exploded in the stratosphere, and the ensuing shock wave blasted the city of Chelyabinsk, damaging structures and injuring hundreds. Details of trajectory are important for determining its specific source, the likelihood of future events, and potential mitigation measures. Earth-viewing environmental satellites can assist in these assessments. Here we examine satellite observations of the Chelyabinsk superbolide debris trail, collected within minutes of its entry. Estimates of trajectory are derived from differential views of the significantly parallax-displaced [e.g., Hasler AF (1981) Bull Am Meteor Soc 52:194-212] debris trail. The 282.7 ± 2.3° azimuth of trajectory, 18.5 ± 3.8° slope to the horizontal, and 17.7 ± 0.5 km/s velocity derived from these satellites agree well with parameters inferred from the wealth of surface-based photographs and amateur videos. More importantly, the results demonstrate the general ability of Earth-viewing satellites to provide valuable insight on trajectory reconstruction in the more likely scenario of sparse or nonexistent surface observations.

  1. Measurement of momentum flux using two meteor radars in Indonesia

    Directory of Open Access Journals (Sweden)

    N. Matsumoto

    2016-03-01

    Full Text Available Two nearly identical meteor radars were operated at Koto Tabang (0.20° S, 100.32° E, West Sumatra, and Biak (1.17° S, 136.10° E, West Papua, in Indonesia, separated by approximately 4000 km in longitude on the Equator. The zonal and meridional momentum flux, u′w′ and v′w′, where u, v, and w are the eastward, northward, and vertical wind velocity components, respectively, were estimated at 86 to 94 km altitudes using the meteor radar data by applying a method proposed by Hocking (2005. The observed u′w′ at the two sites agreed reasonably well at 86, 90, and 94 km during the observation periods when the data acquisition rate was sufficiently large enough. Variations in v′w′ were consistent between 86, 90, and 94 km altitudes at both sites. The climatological variation in the monthly averaged u′w′ and v′w′ was investigated using the long-term radar data at Koto Tabang from November 2002 to November 2013. The seasonal variations in u′w′ and v′w′ showed a repeatable semiannual and annual cycles, respectively. u′w′ showed eastward values in February–April and July–September and v′w′ was northward in June to August at 90–94 km, both of which were generally anti-phase with the mean zonal and meridional winds, having the same periodicity. Our results suggest the usefulness of the Hocking method.

  2. Shoreline resilience to individual storms and storm clusters on a meso-macrotidal barred beach

    NARCIS (Netherlands)

    Angnuureng, Donatus Bapentire; Almar, Rafael; Senechal, Nadia; Castelle, Bruno; Addo, Kwasi Appeaning; Marieu, Vincent; Ranasinghe, Roshanka

    2017-01-01

    This study investigates the impact of individual storms and storm clusters on shoreline recovery for the meso-to macrotidal, barred Biscarrosse beach in SW France, using 6 years of daily video observations. While the study area experienced 60 storms during the 6-year study period, only 36 storms

  3. MSFC Stream Model Preliminary Results: Modeling the 1998-2002 Leonid Encounters and the 1993,1994, and 2004 Perseid Encounters

    Science.gov (United States)

    Moser, D. E.; Cooke, W. J.

    2004-01-01

    The cometary meteoroid ejection models of Jones (1996) and Crifo (1997) were used to simulate ejection from comets 55P/Tempel-Tuttle during the last 12 revolutions, and the 1862, 1737, and 161 0 apparitions of 1 OSP/Swift-Tuttle. Using cometary ephemerides generated by the JPL HORIZONS Solar System Data and Ephemeris Computation Service, ejection was simulated in 1 hour time steps while the comet was within 2.5 AU of the Sun. Also simulated was ejection occurring at the hour of perihelion passage. An RK4 variable step integrator was then used to integrate meteoroid position and velocity forward in time, accounting for the effects of radiation pressure, Poynting-Robertson drag, and the gravitational forces of the planets, which were computed using JPL's DE406 planetary ephemerides. An impact parameter is computed for each particle approaching the Earth, and the results are compared to observations of the 1998-2002 Leonid showers, and the 1993-1 994 Perseids. A prediction for Earth's encounter with the Perseid stream in 2004 is also presented.

  4. Autonomous spectrographic system to analyse the main elements of fireballs and meteors

    Science.gov (United States)

    Espartero, Francisco Ángel; Martínez, Germán; Frías, Marta; Montes Moya, Francisco Simón; Castro-Tirado, Alberto Javier

    2018-01-01

    We present a meteor observation system based on imaging CCD cameras, wide-field optics and a diffraction grating. This system is composed of two independent spectrographs with different configurations, which allows us to capture images of fireballs and meteors with several fields of view and sensitivities. The complete set forms a small autonomous observatory, comprised of a sealed box with a sliding roof, weather station and computers for data storing and reduction. Since 2014, several meteors have been studied using this facility, such as the Alcalá la Real fireball recorded on 30 September 2016.

  5. Developing Dynamic Single Page Web Applications Using Meteor : Comparing JavaScript Frameworks: Blaze and React

    OpenAIRE

    Yetayeh, Asabeneh

    2017-01-01

    This paper studies Meteor which is a JavaScript full-stack framework to develop interactive single page web applications. Meteor allows building web applications entirely in JavaScript. Meteor uses Blaze, React or AngularJS as a view layer and Node.js and MongoDB as a back-end. The main purpose of this study is to compare the performance of Blaze and React. A multi-user Blaze and React web applications with similar HTML and CSS were developed. Both applications were deployed on Heroku’s w...

  6. Don Quixote-A possible parent body of a meteor shower

    Science.gov (United States)

    Rudawska, Regina; Vaubaillon, Jeremie

    2015-12-01

    Asteroid 3552 Don Quixote (1983 SA) orbits the Sun on an orbit that resembles that of a short-period comet. This, together with its recently observed cometary activity, makes it a good candidate for a parent body of a meteor shower. Model calculations show that the particles originated from Don Quixote pass close enough to Earth orbit to search for a meteor shower activity. Corresponding meteor showers were found in CAMS (Rudawska and Jenniskens, 2014) and EDMOND (Kornoš et al., 2014) video observations. The κ Lyrids and August μ Draconids (IAU#464 and IAU#470, respectively), a similarly inclined stream active in the summer, are associated with 3552 Don Quixote.

  7. Meteoric 10Be as a tool to investigate human induced soil fluxes: a conceptual model

    Science.gov (United States)

    Campforts, Benjamin; Govers, Gerard; Vanacker, Veerle; De Vente, Joris; Boix-Fayos, Carolina; Minella, Jean; Baken, Stijn; Smolders, Erik

    2014-05-01

    The use of meteoric 10Be as a tool to understand long term landscape behavior is becoming increasingly popular. Due its high residence time, meteoric 10Be allows in principle to investigate in situ erosion rates over time scales exceeding the period studied with classical approaches such as 137Cs. The use of meteoric 10Be strongly contributes to the traditional interpretation of sedimentary archives which cannot be unequivocally coupled to sediment production and could provide biased information over longer time scales (Sadler, 1981). So far, meteoric 10Be has successfully been used in geochemical fingerprinting of sediments, to date soil profiles, to assess soil residence times and to quantify downslope soil fluxes using accumulated 10Be inventories along a hill slope. However, less attention is given to the potential use of the tracer to directly asses human induced changes in soil fluxes through deforestation, cultivation and reforestation. A good understanding of the processes governing the distribution of meteoric 10Be both within the soil profile and at landscape scale is essential before meteoric 10Be can be successfully applied to assess human impact. We developed a spatially explicit 2D-model (Be2D) in order to gain insight in meteoric 10Be movement along a hillslope that is subject to human disturbance. Be2D integrates both horizontal soil fluxes and vertical meteoric 10Be movement throughout the soil prolife. Horizontal soil fluxes are predicted using (i) well studied geomorphical laws for natural erosion and soil formation as well as (ii) human accelerated water and tillage erosion. Vertical movement of meteoric 10Be throughout the soil profile is implemented by inserting depth dependent retardation calculated using experimentally determined partition coefficients (Kd). The model was applied to different environments such as (i) the Belgian loess belt, characterized by aeolian deposits enriched in inherited meteoric 10Be, (ii) highly degraded and stony

  8. Magnetic Storms at Mars and Earth

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Falkenberg, Thea Vilstrup

    In analogy with magnetic storms at the Earth, periods of significantly enhanced global magnetic activity also exist at Mars. The extensive database of magnetic measurements from Mars Global Surveyor (MGS), covering almost an entire solar cycle, is used in combination with geomagnetic activity...... indices at Earth to compare the occurrence of magnetic storms at Mars and Earth. Based on superposed epochs analysis the time-development of typical magnetic storms at Mars and Earth is described. In contradiction to storms at Earth, most magnetic storms at Mars are found to be associated...... with heliospheric current sheet crossings, where the IMF changes polarity. While most storms at the Earth occur due to significant southward excursions of the IMF associated with CMEs, at Mars most storms seem to be associated with the density enhancement of the heliospheric current sheet. Density enhancements...

  9. SAGE III Meteor-3M L2 Lunar Event Species Profiles (HDF-EOS) V003

    Data.gov (United States)

    National Aeronautics and Space Administration — SAGE III Meteor-3M L2 Lunar Event Species Profiles are Level 2 data files containing all the species products for a single lunar event. The Stratospheric Aerosol and...

  10. SAGE III Meteor-3M L2 Monthly Cloud Presence Data (HDF-EOS) V003

    Data.gov (United States)

    National Aeronautics and Space Administration — SAGE III Meteor-3M L2 Monthly Cloud Presence Data are monthly data files coincident with solar event granules that provides information about cloud presence during...

  11. SAGE III Meteor-3M L2 Solar Event Species Profiles (HDF-EOS) V004

    Data.gov (United States)

    National Aeronautics and Space Administration — SAGE III Meteor-3M L2 Solar Event Species Profiles are Level 2 data files containing all the species products for a single solar event. The Stratospheric Aerosol and...

  12. SAGE III Meteor-3M L2 Solar Event Species Profiles (Native) V004

    Data.gov (United States)

    National Aeronautics and Space Administration — SAGE III Meteor-3M L2 Solar Event Species Profiles are Level 2 data files containing all the species products for a single solar event. The Stratospheric Aerosol and...

  13. TOMS Meteor-3 Ground Station Overpass Data V008 (TOMSM3OVP) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — This data product contains TOMS/Meteor-3 Ground Station Overpass Data Version 8 in ASCII format. The overpass data files contain the data derived from the...

  14. SAGE III Meteor-3M L2 Monthly Cloud Presence Data (Native) V003

    Data.gov (United States)

    National Aeronautics and Space Administration — SAGE III Meteor-3M L2 Monthly Cloud Presence Data are monthly data files coincident with solar event granules that provides information about cloud presence during...

  15. Study on meteoric particle destruction when passing through the Earth, Mars and Venus atmospheres

    International Nuclear Information System (INIS)

    Apshtejn, Eh.Z.; Pilyugin, N.N.; Vartanyan, N.V.

    1982-01-01

    A problem of a meteoric particle motion with provision for its nonstationary heating up and change of a form due to evaporation in rarefied layers of the Earth, Mars and Venus atmospheres is investigated. Numerical calculations are performed for a series of stone particles with sizes of approximately 1 mm at initial inlet velocity of 15 km/s 0 <= 60 km/s and inlet angles of 10-90 deg. The particle mass carrying away, temperature of particles, luminescence intensity, and meteoric trace electron concentration in successive time periods during the motion along the trajectory are determined. A comparison of the physical theory of met rites with the known approximate solutions and observations is conducted for the Earth atmosphere. Some peculiarities of meteoric particle destruction in different atmospheres are pointed out. Some methods of atmospheric parameter recovery according to observations of meteoric particle motion are proposed on the base of calculated dependences

  16. Meteor Shower Forecast Improvements from a Survey of All-Sky Network Observations

    Science.gov (United States)

    Moorhead, Althea V.; Sugar, Glenn; Brown, Peter G.; Cooke, William J.

    2015-01-01

    Meteoroid impacts are capable of damaging spacecraft and potentially ending missions. In order to help spacecraft programs mitigate these risks, NASA's Meteoroid Environment Office (MEO) monitors and predicts meteoroid activity. Temporal variations in near-Earth space are described by the MEO's annual meteor shower forecast, which is based on both past shower activity and model predictions. The MEO and the University of Western Ontario operate sister networks of all-sky meteor cameras. These networks have been in operation for more than 7 years and have computed more than 20,000 meteor orbits. Using these data, we conduct a survey of meteor shower activity in the "fireball" size regime using DBSCAN. For each shower detected in our survey, we compute the date of peak activity and characterize the growth and decay of the shower's activity before and after the peak. These parameters are then incorporated into the annual forecast for an improved treatment of annual activity.

  17. SAGE III Meteor-3M L1B Solar Event Transmission Data (Native) V004

    Data.gov (United States)

    National Aeronautics and Space Administration — SAGE III Meteor-3M L1B Solar Event Transmission Data are Level 1B pixel group transmission profiles for a single solar event. The Stratospheric Aerosol and Gas...

  18. Identification of Emission Lines in a Meteor Spectrum Obtained on August 2, 2011

    Czech Academy of Sciences Publication Activity Database

    Mozgova, A.M.; Borovička, Jiří; Spurný, Pavel; Churyumov, K. I.

    2015-01-01

    Roč. 28, č. 2 (2015), s. 289-292 ISSN 1810-4215 Institutional support: RVO:67985815 Keywords : meteor s * spectra * line identification Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  19. Nucleation of nitric acid hydrates in polar stratospheric clouds by meteoric material

    Science.gov (United States)

    James, Alexander D.; Brooke, James S. A.; Mangan, Thomas P.; Whale, Thomas F.; Plane, John M. C.; Murray, Benjamin J.

    2018-04-01

    Heterogeneous nucleation of crystalline nitric acid hydrates in polar stratospheric clouds (PSCs) enhances ozone depletion. However, the identity and mode of action of the particles responsible for nucleation remains unknown. It has been suggested that meteoric material may trigger nucleation of nitric acid trihydrate (NAT, or other nitric acid phases), but this has never been quantitatively demonstrated in the laboratory. Meteoric material is present in two forms in the stratosphere: smoke that results from the ablation and re-condensation of vapours, and fragments that result from the break-up of meteoroids entering the atmosphere. Here we show that analogues of both materials have a capacity to nucleate nitric acid hydrates. In combination with estimates from a global model of the amount of meteoric smoke and fragments in the polar stratosphere we show that meteoric material probably accounts for NAT observations in early season polar stratospheric clouds in the absence of water ice.

  20. SAGE III Meteor-3M L2 Lunar Event Species Profiles (Native) V003

    Data.gov (United States)

    National Aeronautics and Space Administration — SAGE III Meteor-3M L2 Lunar Event Species Profiles are Level 2 data files containing all the species products for a single lunar event. The Stratospheric Aerosol and...

  1. On the influence of neutral turbulence on ambipolar diffusivities deduced from meteor trail expansion

    Directory of Open Access Journals (Sweden)

    C. M. Hall

    Full Text Available By measuring fading times of radar echoes from underdense meteor trails, it is possible to deduce the ambipolar diffusivities of the ions responsible for these radar echoes. It could be anticipated that these diffusivities increase monotonically with height akin to neutral viscosity. In practice, this is not always the case. Here, we investigate the capability of neutral turbulence to affect the meteor trail diffusion rate.

    Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; turbulence

  2. Results of the IMO Video Meteor Network - June 2017, and effective collection area study

    Science.gov (United States)

    Molau, Sirko; Crivello, Stefano; Goncalves, Rui; Saraiva, Carlos; Stomeo, Enrico; Kac, Javor

    2017-12-01

    Over 18000 meteors were recorded by the IMO Video Meteor Network cameras during more than 7100 hours of observing time during 2017 June. The June Bootids were not detectable this year. Nearly 50 Daytime Arietids were recorded in 2017, and a first flux density profile for this shower in the optical domain is calculated, using video data from the period 2011-2017. Effective collection area of video cameras is discussed in more detail.

  3. On the change of the density of meteoric streams due to planetary disturbances

    International Nuclear Information System (INIS)

    Emel'yanenko, V.V.

    1985-01-01

    The method of estimation for the change of the local spatial density of meteor streams due to planetary perturbations is worked out. An evolution of the density of some meteoric streams along their orbits is studied by taking into consideration the perturbations of Jupiter. It is shown that either decrease or considerable temporary increase of the local density caused by planetary perturbantions is possible. The examples of stable periodic variations of the stream's density are given

  4. The total mass and structure of the meteor stream associated with Comet Halley

    International Nuclear Information System (INIS)

    Hajduk, A.

    1982-01-01

    The meteor stream associated with Comet Halley has been studied by the author on the basis of a long series of visual and radar observations during the Eta Aquarid and Orionid meteor shower periods. It appeared that the stream exhibited inhomogeneities in both directions, across it and along the orbit. A stable zone of higher density and variable filaments have been detected. The total mass of the stream was determined at 5x10 14 kg. (Auth.)

  5. Double station observation of Draconid meteor outburst from two moving aircraft

    Czech Academy of Sciences Publication Activity Database

    Koten, Pavel; Vaubaillon, J.; Margonis, A.; Toth, J.; Ďuriš, F.; McAulliffe, J.; Oberst, J.

    2015-01-01

    Roč. 118, December (2015), s. 112-119 ISSN 0032-0633 R&D Projects: GA ČR GA14-25251S; GA ČR(CZ) GAP209/11/1382; GA MŠk 7AMB13FR006 Institutional support: RVO:67985815 Keywords : meteor s * meteor showers * Draconids Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.942, year: 2015

  6. On the influence of neutral turbulence on ambipolar diffusivities deduced from meteor trail expansion

    Directory of Open Access Journals (Sweden)

    C. M. Hall

    2002-11-01

    Full Text Available By measuring fading times of radar echoes from underdense meteor trails, it is possible to deduce the ambipolar diffusivities of the ions responsible for these radar echoes. It could be anticipated that these diffusivities increase monotonically with height akin to neutral viscosity. In practice, this is not always the case. Here, we investigate the capability of neutral turbulence to affect the meteor trail diffusion rate.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; turbulence

  7. Dependences of Ratio of the Luminosity to Ionization on Velocity and Chemical Composition of Meteors

    Science.gov (United States)

    Narziev, M.

    2011-01-01

    On the bases of results simultaneous photographic and radio echo observations, the results complex radar and television observations of meteors and also results of laboratory modeling of processes of a luminescence and ionization, correlation between of luminous intensity Ip to linear electronic density q from of velocities and chemical structure are investigated. It is received that by increasing value of velocities of meteors and decrease of nuclear weight of substance of particles, lg Ip/q decreased more than one order.

  8. A first report on meteor-generated seismic signals as detected by the SANSN

    Directory of Open Access Journals (Sweden)

    Frederick Roelofse

    2013-05-01

    Full Text Available A bright meteor with an apparent magnitude of -18 was seen over large parts of southern Africa at ~23:00 South African Standard Time on 21 November 2009. Here we discuss the eye-witness accounts related to the meteor as well as the seismic signals generated by the meteor's passage through the atmosphere as detected by the Mussina seismograph station forming part of the South African National Seismograph Network. Two signals were identified on the seismogram; the first arrival is interpreted as a precursor coupled seismic wave and the second, which arrived ~138 s after the first, as a directly coupled airwave. The meteor is thought to have entered the atmosphere close to Mussina shortly before 22:55.06 local time, from where it proceeded in a westerly to northwesterly direction with an elevation angle not exceeding 43°. Our results presented here dispel the beliefs of many observers who thought that the meteor must have made landfall very close to their localities. In addition, this contribution documents the first instance of meteor-related seismic signals recorded by the South African National Seismograph Network.

  9. Variation of sporadic meteor activity during the 23. cycle of solar activity

    International Nuclear Information System (INIS)

    Porubcan, V.; Zigo, P.; Cevolani, G.; Rozboril, J.; Pupillo, G.

    2009-01-01

    Analyses of the influence of solar activity on sporadic meteor counts based on visual and radar meteor observations present rather contradictory results, indicating a possible variation of the sporadic meteor counts with a solar activity, with the maximum in observed meteor rates occurring from zero up to about five years after the solar activity maximum. With this perspective, in the present paper observations of the sporadic meteor background, obtained by a forward-scatter radio system for meteor observation operating along the Bologna (Italy)-Modra (Slovakia) baseline in 1996-2007, are analysed and discussed. The activity curves of all echoes and their variations indicate a correlation with solar activity in the 23. solar cycle represented by the solar relative number R (corr. coef. 0.71), as well as with the solar coronal index C1 (corr. coef. 0.73). The mass distribution exponent s and its variations (with corr. coef. against R and C1, 0.12 and 0.25, respectively) does not show a correlation consistent with solar activity and, from the viewpoint of s, suggest the existence of a relatively stable population of sporadic background meteoroids in the surroundings of the Earth's orbit during the investigated period.

  10. An investigation of the structure of the southern hemisphere radio-meteor streams

    International Nuclear Information System (INIS)

    Roux, D.G.

    1988-01-01

    Current knowledge of the Solar System, with a particular emphasis on the systems of interplanetary objects, is reviewed, and the theory of meteors and the reflection of radio waves from meteoric ionization is then discussed. A description of the meteor radar is given and a method of calibrating the antenna beam is developed. The main project comprises two parts: A general survey of the radar echo-rate for 20 major and minor meteor streams and the sporadic meteor background, conducted from Grahamstown over the period 1986 April to 1988 January, is described. Definite shower activity was observed for all of the major and some of the minor showers. A method of recovering meteor radiant distributions from the distribution of echo direction was developed. A technique of compensating for possible distortions of the resulting radiant maps, which may arise due to the anisotropic antenna beam was devised. This involved a system of echo-weighting. Radiant maps which showed considerably less distortion were obtained without the weighting procedure. It is concluded that, although the method in its present form introduces spurious features into the maps, the principle is sound and should eventually be refined to produce the desired compensation. 71 refs., 165 figs., 2 tabs

  11. Mesospheric winds measurements using three meteor radars in Brazil

    Science.gov (United States)

    Batista, Paulo; Clemesha, Barclay; Fátima Andrioli, Vânia; Paulino, Ana Roberta; Buriti, Ricardo; Schuch, Nelson Jorge

    Three meteor radars of the SkiYmet type have been installed in Brazil covering low, tropical and sub-tropical latitudes. The first at Cachoeira Paulista(22.7 S, 45.0 W) started in march 1999, the second at Cariri(7.4 S, 36.5 W) in May, 2005, and the last one at Santa Maria( 29.7 S, 53.8 W) in December, 2005. Coincident periods of measurements permitted the determination of the Mean Winds, Planetary Waves, Tides and Gravity Wave Variances for these different latitudes and their comparison. Amplitude and phase structures are similar for Cachoeira Paulista and Santa Maria, but differ from the near-equatorial site Cariri. Also the Lunar Semidiurnal Tides have been studied at the three sites for the period January 2005 to December 2008. Amplitudes between 1 and 8 m/s were determined with the meridional winds being larger than the zonal in the three sites. Wind measurements have been used also as subsidiary data in the studies involving the sodium layer and the mesospheric airglow though lidar, photometers and imagers.

  12. Low latitude southern hemisphere mesospheric dynamics from meteor radars measurements

    Science.gov (United States)

    Batista, Paulo; Schuch, Nelson Jorge; Clemesha, Barclay; Buriti, Ricardo; Paulino, Ana Roberta; Guharay, Amitava; Andrioli, Vania Fatima

    Three meteor radars of the SkiYmet type have been installed in Brazil covering low, tropical and sub-tropical latitudes. The first at Cachoeira Paulista(22.7° S, 45.0° W) started in march 1999, the second at Cariri(7.4° S, 36.5° W) in May, 2005, and the last one at Santa Maria( 29.7° S, 53.8° W) in December, 2005. Data obtained in coincident periods of measurements permitted the determination of the Mean Winds, Planetary Waves, Tides and Gravity Wave Variances for these different latitudes and the comparison of them. Amplitude and phase structures are similar for Cachoeira Paulista and Santa Maria, but differ from the near-equatorial site Cariri. Also the Lunar Semidiurnal Tides have been studied at the three sites for the period January 2005 to December 2008. Amplitudes between 1 and 8 m/s were determined with the meridional winds being larger than the zonal in the three sites. It is found that northern hemisphere SSW’s affect the QTDW , and the Solar and Lunar tides at southern low latitudes but the 2002 southern hemisphere major SSW had a small effect in tropical MLT. Wind measurements have also been used to study Kelvin waves, terdiurnal Tide and QTDW variability. In this presentation we summarize the main results obtained.

  13. Novel Experimental Simulations of the Atmospheric Injection of Meteoric Metals

    Energy Technology Data Exchange (ETDEWEB)

    Gómez Martín, J. C.; Bones, D. L.; Carrillo-Sánchez, J. D.; James, A. D.; Plane, J. M. C. [School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom); Trigo-Rodríguez, J. M. [Meteorites, Minor Bodies and Planetary Science Group, Institute of Space Sciences (CSIC-IEEC). Campus UAB, C/Can Magrans s/n, E-08193 Cerdanyola del Vallés (Barcelona) (Spain); Fegley, B. Jr., E-mail: J.M.C.Plane@leeds.ac.uk [Washington University, St. Louis, MO (United States)

    2017-02-20

    A newly developed laboratory, Meteoric Ablation Simulator (MASI), is used to test model predictions of the atmospheric ablation of interplanetary dust particles (IDPs) with experimental Na, Fe, and Ca vaporization profiles. MASI is the first laboratory setup capable of performing time-resolved atmospheric ablation simulations, by means of precision resistive heating and atomic laser-induced fluorescence detection. Experiments using meteoritic IDP analogues show that at least three mineral phases (Na-rich plagioclase, metal sulfide, and Mg-rich silicate) are required to explain the observed appearance temperatures of the vaporized elements. Low melting temperatures of Na-rich plagioclase and metal sulfide, compared to silicate grains, preclude equilibration of all the elemental constituents in a single melt. The phase-change process of distinct mineral components determines the way in which Na and Fe evaporate. Ca evaporation is dependent on particle size and on the initial composition of the molten silicate. Measured vaporized fractions of Na, Fe, and Ca as a function of particle size and speed confirm differential ablation (i.e., the most volatile elements such as Na ablate first, followed by the main constituents Fe, Mg, and Si, and finally the most refractory elements such as Ca). The Chemical Ablation Model (CABMOD) provides a reasonable approximation to this effect based on chemical fractionation of a molten silicate in thermodynamic equilibrium, even though the compositional and geometric description of IDPs is simplistic. Improvements in the model are required in order to better reproduce the specific shape of the elemental ablation profiles.

  14. PRISMA, Italian network for meteors and atmospheric studies

    Science.gov (United States)

    Gardiol, D.; Cellino, A.; Di Martino, M.

    2016-01-01

    The aim of the PRISMA project is to develop the Italian participation in a network of European observing facilities whose primary targets are bright meteors (the so-called bolides and fireballs) and the recovery of meteorites. Several all-sky cameras have been recently installed in France (FRIPON project), and we propose to do the same in Italy, interconnecting the Italian network with the French one. Such a network is of great interest for the studies of interplanetary bodies and the dynamical and physical evolution of the population of small bodies of the Solar System and for the studies of collected meteorites. Those eventually recovered will be classified and investigated from the petrologic, genetic and evolutionary points of view, analyzed for their spectral characteristics and compared with known asteroids. The possibility to measure the radioactivity of samples shortly after the fall using gamma-ray spectrometers available in the Osservatorio Astrofisico di Torino laboratories, will allow us to reveal the presence of short-lived cosmogenic radioisotopes. PRISMA is also very suitable for the purposes of atmospheric studies. This includes the statistics of cloud coverage and lightning frequencies, as well as the comparison of the optical depth measured using satellites and PRISMA cameras.

  15. Computational Modeling of Meteor-Generated Ground Pressure Signatures

    Science.gov (United States)

    Nemec, Marian; Aftosmis, Michael J.; Brown, Peter G.

    2017-01-01

    We present a thorough validation of a computational approach to predict infrasonic signatures of centimeter-sized meteoroids. We assume that the energy deposition along the meteor trail is dominated by atmospheric drag and simulate the steady, inviscid flow of air in thermochemical equilibrium to compute the meteoroid's near-body pressure signature. This signature is then propagated through a stratified and windy atmosphere to the ground using a methodology adapted from aircraft sonic-boom analysis. An assessment of the numerical accuracy of the near field and the far field solver is presented. The results show that when the source of the signature is the cylindrical Mach-cone, the simulations closely match the observations. The prediction of the shock rise-time, the zero-peak amplitude of the waveform, and the duration of the positive pressure phase are consistently within 10% of the measurements. Uncertainty in the shape of the meteoroid results in a poorer prediction of the trailing part of the waveform. Overall, our results independently verify energy deposition estimates deduced from optical observations.

  16. [Abdominal spasms, meteorism, diarrhea: fructose intolerance, lactose intolerance or IBS?].

    Science.gov (United States)

    Litschauer-Poursadrollah, Margaritha; El-Sayad, Sabine; Wantke, Felix; Fellinger, Christina; Jarisch, Reinhart

    2012-12-01

    Meteorism, abdominal spasms, diarrhea, casually obstipation, flatulence and nausea are symptoms of fructose malabsorption (FIT) and/or lactose intolerance (LIT), but are also symptoms of irritable bowel syndrome (IBS). Therefore these diseases should be considered primarily in patients with digestive complaints. For diagnosis an H(2)-breath test is used.In 1,935 patients (526 m, 1,409 f) a fructose intolerance test and in 1,739 patients (518 m,1,221 f) a lactose intolerance test was done.FIT is found more frequently than LIT (57 versus 52 % in adults (p intolerance (HIT). Headache (ca. 10 %), fatigue (ca. 5 %) and dizziness (ca. 3 %) may occur after the test, irrespective whether the test was positive or negative.In more than 2/3 of patients a diet reduced in fructose or lactose may lead to improvement or remission of these metabolic disorders. IBS, which is often correlated with FIT (183/221 patients = 83 %), can be improved by relevant but also not relevant diets indicating that irritable bowel disease seems to be caused primarily by psychological disorders.

  17. The Use of D-Criteria to Assess Meteor Shower Significance

    Science.gov (United States)

    Moorhead, Althea V.

    2017-01-01

    In theory, a meteor shower can be distinguished from the sporadic meteor background by its short duration and orbital similarity. In practice, the duration and strength of a shower and the orbital similarity between its constituent meteors varies widely between showers. Further complicating matters is the anisotropy of the sporadic background. These combined factors make it difficult to distinguish between shower and sporadic meteors with a single, static set of criteria. The orbital similarity, or D-, parameters are often used to assess the relationship between meteors [1,2,3]. The more dissimilar two orbits are, the higher their computed D value will be; generally, meteors are considered related if their D-parameter falls below some cutoff value [4]. However, this approach will include some sporadic meteors, and when a weak shower lies near a sporadic source, the false positive rate for shower association can be quite high. Additionally, this cutoff approach does not assess whether the shower itself is significant. We present a method for using D-parameters to extract showers from a dataset that automatically takes shower strength into account and tests for significance [5]. We accomplish this by calculating the false positive rate for shower association using "shower analogs," which are identical to the original shower except in solar longitude. This method is applied to a set of more than 30,000 meteors detected by the NASA All-Sky Fireball Network [6] and the Southern Ontario Meteor Network (SOMN) [7]. We previously detected 29 showers in our data using this method [5]; now, with another year of data, we have several additional detections. Figure 1 presents one example: the 2016 July gamma Draconid outburst. There are several benefits to using our method. First, it provides a test of shower significance (see Fig. 2 for an example of a non-detection). Second, it quantifies the probability that a meteor belongs to a given shower as a function of D

  18. Ten years of METEOR (an international rheumatoid arthritis registry): development, research opportunities and future perspectives.

    Science.gov (United States)

    Bergstra, Sytske Anne; Machado, Pedro M M C; van den Berg, Rosaline; Landewé, Robert B M; Huizinga, Tom W J

    2016-01-01

    Ten years ago, the METEOR tool was developed to simulate treatment-to-target and create an international research database. The development of the METEOR tool and database, research opportunities and future perspectives are described. The METEOR tool is a free, online, internationally available tool in which daily practice visits of all rheumatoid arthritis patients visiting a rheumatologist can be registered. In the tool, disease characteristics, patient- and physician-reported outcomes and prescribed treatment could be entered. These can be subsequently displayed in powerful graphics, facilitating treatment decisions and patient-physician interactions. An upload facility is also available, by which data from local electronic health record systems or registries can be integrated into the METEOR database. This is currently being actively used in, among other countries, the Netherlands, Portugal and India. Since an increasing number of hospitals use electronic health record systems, the upload facility is being actively used by an increasing number of sites, enabling them to benefit from the benchmark and research opportunities of METEOR. Enabling a connection between local registries and METEOR is a well established but time-consuming process for which an IT-specialist of METEOR and the local registry are necessary. However, once this process has been finished, data can be uploaded regularly and relatively easily according to a pre-specified format. The METEOR database currently contains data from >39,000 patients and >200,000 visits, from 32 different countries and is ever increasing. Continuous efforts are being undertaken to increase the quality of data in the database. Since METEOR was founded 10 years ago, many rheumatologists worldwide have used the METEOR tool to follow-up their patients and improve the quality of care they provide to their patients. Combined with uploaded data, this has led to an extensive growth of the database. It now offers a unique

  19. Be2D: A model to understand the distribution of meteoric 10Be in soilscapes

    Science.gov (United States)

    Campforts, Benjamin; Vanacker, Veerle; Vanderborght, Jan; Govers, Gerard

    2016-04-01

    Cosmogenic nuclides have revolutionised our understanding of earth surface process rates. They have become one of the standard tools to quantify soil production by weathering, soil redistribution and erosion. Especially Beryllium-10 has gained much attention due to its long half-live and propensity to be relatively conservative in the landscape. The latter makes 10Be an excellent tool to assess denudation rates over the last 1000 to 100 × 103 years, bridging the anthropogenic and geological time scale. Nevertheless, the mobility of meteoric 10Be in soil systems makes translation of meteoric 10Be inventories into erosion and deposition rates difficult. Here we present a coupled soil hillslope model, Be2D, that is applied to synthetic and real topography to address the following three research questions. (i) What is the influence of vertical meteoric Be10 mobility, caused by chemical mobility, clay translocation and bioturbation, on its lateral redistribution over the soilscape, (ii) How does vertical mobility influence erosion rates and soil residence times inferred from meteoric 10Be inventories and (iii) To what extent can a tracer with a half-life of 1.36 Myr be used to distinguish between natural and human-disturbed soil redistribution rates? The model architecture of Be2D is designed to answer these research questions. Be2D is a dynamic model including physical processes such as soil formation, physical weathering, clay migration, bioturbation, creep, overland flow and tillage erosion. Pathways of meteoric 10Be mobility are simulated using a two step approach which is updated each timestep. First, advective and diffusive mobility of meteoric 10Be is simulated within the soil profile and second, lateral redistribution because of lateral soil fluxes is calculated. The performance and functionality of the model is demonstrated through a number of synthetic and real model runs using existing datasets of meteoric 10Be from case-studies in southeastern US. Brute

  20. An Orbital Meteoroid Stream Survey Using the Southern Argentina Agile Meteor Radar (SAAMER) Based on a Wavelet Approach

    Science.gov (United States)

    Pokorny, P.; Janches, D.; Brown, P. G.; Hormaechea, J. L.

    2017-01-01

    Over a million individually measured meteoroid orbits were collected with the Southern Argentina Agile MEteor Radar (SAAMER) between 2012-2015. This provides a robust statistical database to perform an initial orbital survey of meteor showers in the Southern Hemisphere via the application of a 3D wavelet transform. The method results in a composite year from all 4 years of data, enabling us to obtain an undisturbed year of meteor activity with more than one thousand meteors per day. Our automated meteor shower search methodology identified 58 showers. Of these showers, 24 were associated with previously reported showers from the IAU catalogue while 34 showers are new and not listed in the catalogue. Our searching method combined with our large data sample provides unprecedented accuracy in measuring meteor shower activity and description of shower characteristics in the Southern Hemisphere. Using simple modeling and clustering methods we also propose potential parent bodies for the newly discovered showers.

  1. Extreme Geomagnetic Storms – 1868–2010

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Lefèvre, L.; Dumbović, M.

    2016-01-01

    , and associated identifications ofForbush decreases as well as satellite measurements of energetic proton fluxes in the near-Earth space environment. From this we find, among other results, that the extreme storms arevery strongly correlated with the occurrence of interplanetary shocks (91 – 100......We present the first large statistical study of extreme geomagnetic storms basedon historical data from the time period 1868 – 2010. This article is the first of two companionpapers. Here we describe how the storms were selected and focus on their near-Earth characteristics.The second article......-known geomagnetic indices, such as theKp and Dcx/Dst index. This reveals that neither Kp nor Dcx/Dst provide a comprehensivegeomagnetic measure of the extreme storms. We rank the storms by including long seriesof single magnetic observatory data. The top storms on the rank list are the New York Railroadstorm...

  2. The electric storm of November 1882

    Science.gov (United States)

    Love, Jeffrey J.

    2018-01-01

    In November 1882, an intense magnetic storm related to a large sunspot group caused widespread interference to telegraph and telephone systems and provided spectacular and unusual auroral displays. The (ring current) storm time disturbance index for this storm reached maximum −Dst ≈ 386 nT, comparable to Halloween storm of 29–31 October 2003, but from 17 to 20 November the aa midlatitude geomagnetic disturbance index averaged 214.25 nT, the highest 4 day level of disturbance since the beginning of aa index in 1868. This storm contributed to scientists' understanding of the reality of solar‐terrestrial interaction. Past occurrences of magnetic storms, like that of November 1882, can inform modern evaluations of the deleterious effects that a magnetic superstorm might have on technological systems of importance to society.

  3. Validation of Storm Water Management Model Storm Control Measures Modules

    Science.gov (United States)

    Simon, M. A.; Platz, M. C.

    2017-12-01

    EPA's Storm Water Management Model (SWMM) is a computational code heavily relied upon by industry for the simulation of wastewater and stormwater infrastructure performance. Many municipalities are relying on SWMM results to design multi-billion-dollar, multi-decade infrastructure upgrades. Since the 1970's, EPA and others have developed five major releases, the most recent ones containing storm control measures modules for green infrastructure. The main objective of this study was to quantify the accuracy with which SWMM v5.1.10 simulates the hydrologic activity of previously monitored low impact developments. Model performance was evaluated with a mathematical comparison of outflow hydrographs and total outflow volumes, using empirical data and a multi-event, multi-objective calibration method. The calibration methodology utilized PEST++ Version 3, a parameter estimation tool, which aided in the selection of unmeasured hydrologic parameters. From the validation study and sensitivity analysis, several model improvements were identified to advance SWMM LID Module performance for permeable pavements, infiltration units and green roofs, and these were performed and reported herein. Overall, it was determined that SWMM can successfully simulate low impact development controls given accurate model confirmation, parameter measurement, and model calibration.

  4. Moving the Force: Desert Storm and Beyond

    Science.gov (United States)

    1994-12-01

    Desert Shield~ Desert Storm, we could have met our airlift deployment requirements 20 to 35 percent faster. ~° Similar analyses of the Somalian Restore...DATE DEC 1994 2. REPORT TYPE 3. DATES COVERED - 4. TITLE AND SUBTITLE Moving The Force: Desert Storm and Beyond 5a. CONTRACT NUMBER 5b...MOVING THE FORCE: Desert Storm and Beyond SCOTT W. CONRAD McNair Paper 32 December 1994 INSTITUTE FOR NATIONAL STRATEGIC STUDIES NATIONAL DEFENSE

  5. Modeling Storm Surges Using Discontinuous Galerkin Methods

    Science.gov (United States)

    2016-06-01

    STATEMENT Approved for public release; distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words ) Storm surges have a...model. One of the governing systems of equations used to model storm surges’ effects is the Shallow Water Equations (SWE). In this thesis, we solve the...fundamental truth, we found the error norm of the implicit method to be minimal. This study focuses on the impacts of a simulated storm surge in La Push

  6. Ice storms in a changing climate

    OpenAIRE

    McNitt, Jennifer M.

    2016-01-01

    Approved for public release; distribution is unlimited Ice storms can cause billions of dollars' worth of damage to energy infrastructure, towers, surrounding trees (that could further damage electrical structures), and transportation, and can cause deaths--either due to exposure to subfreezing temperatures or vehicular accidents. An increase in global temperatures, due to climate change, could affect the frequency, intensity, and geographic location of ice storms. Three known ice storm ca...

  7. Is the Dst Index Sufficient to Define All Geospace Storms?

    Science.gov (United States)

    Borovsky, Joseph E.; Shprits, Yuri Y.

    2017-11-01

    The purpose of this commentary is (1) to raise awareness about some shortcomings of the use of the Dst index to identify storms, to gauge storm intensity, and to represent storm time space-weather phenomena and (2) to initiate discussions about different types of storms and about improved identifiers for different types of storms.

  8. On the mid-latitude ionospheric storm association with intense geomagnetic storms

    Science.gov (United States)

    Okpala, Kingsley Chukwudi; Ogbonna, Chinasa Edith

    2018-04-01

    The bulk association between ionospheric storms and geomagnetic storms has been studied. Hemispheric features of seasonal variation of ionospheric storms in the mid-latitude were also investigated. 188 intense geomagnetic storms (Dst ≤ 100 nT) that occurred during solar cycles 22 and 23 were considered, of which 143 were observed to be identified with an ionospheric storm. Individual ionospheric storms were identified as maximum deviations of the F2 layer peak electron density from quiet time values. Only ionospheric storms that could clearly be associated with the peak of a geomagnetic storm were considered. Data from two mid-latitude ionosonde stations; one in the northern hemisphere (i.e. Moscow) and the other in the southern hemisphere (Grahamstown) were used to study ionospheric conditions at the time of the individual geomagnetic storms. Results show hemispheric and latitudinal differences in the intensity and nature of ionospheric storms association with different types of geomagnetic storms. These results are significant for our present understanding of the mechanisms which drive the changes in electron density during different types of ionospheric storms.

  9. Proxy records of Holocene storm events in coastal barrier systems: Storm-wave induced markers

    Science.gov (United States)

    Goslin, Jérôme; Clemmensen, Lars B.

    2017-10-01

    Extreme storm events in the coastal zone are one of the main forcing agents of short-term coastal system behavior. As such, storms represent a major threat to human activities concentrated along the coasts worldwide. In order to better understand the frequency of extreme events like storms, climate science must rely on longer-time records than the century-scale records of instrumental weather data. Proxy records of storm-wave or storm-wind induced activity in coastal barrier systems deposits have been widely used worldwide in recent years to document past storm events during the last millennia. This review provides a detailed state-of-the-art compilation of the proxies available from coastal barrier systems to reconstruct Holocene storm chronologies (paleotempestology). The present paper aims (I) to describe the erosional and depositional processes caused by storm-wave action in barrier and back-barrier systems (i.e. beach ridges, storm scarps and washover deposits), (ii) to understand how storm records can be extracted from barrier and back-barrier sedimentary bodies using stratigraphical, sedimentological, micro-paleontological and geochemical proxies and (iii) to show how to obtain chronological control on past storm events recorded in the sedimentary successions. The challenges that paleotempestology studies still face in the reconstruction of representative and reliable storm-chronologies using these various proxies are discussed, and future research prospects are outlined.

  10. Spring Dust Storm Smothers Beijing

    Science.gov (United States)

    2002-01-01

    A few days earlier than usual, a large, dense plume of dust blew southward and eastward from the desert plains of Mongolia-quite smothering to the residents of Beijing. Citizens of northeastern China call this annual event the 'shachenbao,' or 'dust cloud tempest.' However, the tempest normally occurs during the spring time. The dust storm hit Beijing on Friday night, March 15, and began coating everything with a fine, pale brown layer of grit. The region is quite dry; a problem some believe has been exacerbated by decades of deforestation. According to Chinese government estimates, roughly 1 million tons of desert dust and sand blow into Beijing each year. This true-color image was made using two adjacent swaths (click to see the full image) of data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), flying aboard the OrbView-2 satellite, on March 17, 2002. The massive dust storm (brownish pixels) can easily be distinguished from clouds (bright white pixels) as it blows across northern Japan and eastward toward the open Pacific Ocean. The black regions are gaps between SeaWiFS' viewing swaths and represent areas where no data were collected. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  11. Coastal storm monitoring in Virginia

    Science.gov (United States)

    Wicklein, Shaun M.; Bennett, Mark

    2014-01-01

    Coastal communities in Virginia are prone to flooding, particularly during hurricanes, nor’easters, and other coastal low-pressure systems. These weather systems affect public safety, personal and public property, and valuable infrastructure, such as transportation, water and sewer, and electric-supply networks. Local emergency managers, utility operators, and the public are tasked with making difficult decisions regarding evacuations, road closures, and post-storm recovery efforts as a result of coastal flooding. In coastal Virginia these decisions often are made on the basis of anecdotal knowledge from past events or predictions based on data from monitoring sites located far away from the affected area that may not reflect local conditions. Preventing flood hazards, such as hurricane-induced storm surge, from becoming human disasters requires an understanding of the relative risks that flooding poses to specific communities. The risk to life and property can be very high if decisions about evacuations and road closures are made too late or not at all.

  12. A Meteoric Water Budget for the Arctic Ocean

    Science.gov (United States)

    Alkire, Matthew B.; Morison, James; Schweiger, Axel; Zhang, Jinlun; Steele, Michael; Peralta-Ferriz, Cecilia; Dickinson, Suzanne

    2017-12-01

    A budget of meteoric water (MW = river runoff, net precipitation minus evaporation, and glacial meltwater) over four regions of the Arctic Ocean is constructed using a simple box model, regional precipitation-evaporation estimates from reanalysis data sets, and estimates of import and export fluxes derived from the literature with a focus on the 2003-2008 period. The budget indicates an approximate/slightly positive balance between MW imports and exports (i.e., no change in storage); thus, the observed total freshwater increase observed during this time period likely resulted primarily from changes in non-MW freshwater components (i.e., increases in sea ice melt or Pacific water and/or a decrease in ice export). Further, our analysis indicates that the MW increase observed in the Canada Basin resulted from a spatial redistribution of MW over the Arctic Ocean. Mean residence times for MW were estimated for the Western Arctic (5-7 years), Eastern Arctic (3-4 years), and Lincoln Sea (1-2 years). The MW content over the Siberian shelves was estimated (˜14,000 km3) based on a residence time of 3.5 years. The MW content over the entire Arctic Ocean was estimated to be ≥44,000 km3. The MW export through Fram Strait consisted mostly of water from the Eastern Arctic (3,237 ± 1,370 km3 yr-1) whereas the export through the Canadian Archipelago was nearly equally derived from both the Western Arctic (1,182 ± 534 km3 yr-1) and Lincoln Sea (972 ± 391 km3 yr-1).

  13. Chemistry of cometary meteoroids from video-tape records of meteor spectra

    Science.gov (United States)

    Millman, P. M.

    1982-01-01

    The chemistry of the cometary meteoroids was studied by closed circuit television observing systems. Vidicon cameras produce basic data on standard video tape and enable the recording of the spectra of faint shower meteors, consequently the chemical study is extended to smaller particles and we have a larger data bank than is available from the more conventional method of recording meteor spectra by photography. The two main problems in using video tape meteor spectrum records are: (1) the video tape recording has a much lower resolution than the photographic technique; (2) video tape is relatively new type of data storage in astronomy and the methods of quantitative photometry have not yet been fully developed in the various fields where video tape is used. The use of the most detailed photographic meteor spectra to calibrate the video tape records and to make positive identification of the more prominent chemical elements appearing in the spectra may solve the low resolution problem. Progress in the development of standard photometric techniques for the analysis of video tape records of meteor spectra is reported.

  14. METEOR: An Enterprise Health Informatics Environment to Support Evidence-Based Medicine.

    Science.gov (United States)

    Puppala, Mamta; He, Tiancheng; Chen, Shenyi; Ogunti, Richard; Yu, Xiaohui; Li, Fuhai; Jackson, Robert; Wong, Stephen T C

    2015-12-01

    The aim of this paper is to propose the design and implementation of next-generation enterprise analytics platform developed at the Houston Methodist Hospital (HMH) system to meet the market and regulatory needs of the healthcare industry. For this goal, we developed an integrated clinical informatics environment, i.e., Methodist environment for translational enhancement and outcomes research (METEOR). The framework of METEOR consists of two components: the enterprise data warehouse (EDW) and a software intelligence and analytics (SIA) layer for enabling a wide range of clinical decision support systems that can be used directly by outcomes researchers and clinical investigators to facilitate data access for the purposes of hypothesis testing, cohort identification, data mining, risk prediction, and clinical research training. Data and usability analysis were performed on METEOR components as a preliminary evaluation, which successfully demonstrated that METEOR addresses significant niches in the clinical informatics area, and provides a powerful means for data integration and efficient access in supporting clinical and translational research. METEOR EDW and informatics applications improved outcomes, enabled coordinated care, and support health analytics and clinical research at HMH. The twin pressures of cost containment in the healthcare market and new federal regulations and policies have led to the prioritization of the meaningful use of electronic health records in the United States. EDW and SIA layers on top of EDW are becoming an essential strategic tool to healthcare institutions and integrated delivery networks in order to support evidence-based medicine at the enterprise level.

  15. The extra-atmospheric masses of small meteoric fireballs from the Prairie and the Canadian camera networks.

    Science.gov (United States)

    Popelenskaya, N.

    2007-08-01

    Existing methods of definition of extra-atmospheric masses of small meteoric bodies according to supervision of their movement in an atmosphere contain the certain arbitrariness. Vigorous attempts to overcome a divergence of results of calculations on the basis of various approaches often lead to physically incorrect conclusions. The output consists in patient accumulation of estimations and calculations for gradual elimination uncertainties. The equations of meteoric physics include two dimensionless parameters - factor ablation ? and factor of braking ?. In work are cited the data processing supervision of small meteors Prairie and Canadian networks, by a finding of values of parameters ? and ? with use of a method of the least squares. Also values of heights blackout a meteor which turn out from conditions of full destruction or final braking with use of the received values of ? and ? are considered. In prevailing number of supervision for considered meteors braking is insignificant. Results of calculations of height of blackout meteors confirm suitability of the approximations used in work for the description of movement of small meteors. In work results of calculation of extra-atmospheric masses with use of factor of braking for meteoric bodies of the spherical form with density of an ice and a stone are presented. On the basis of the received results discrepancy of photometric masses to values of masses of the input, received on observable braking proves to be true. In most cases received magnitude of masses essentially less photometric masses. Processing of supervision of small meteors Prairie and Canadian camera networks has shown, that the so-called photometric mass mismatches values of mass of the input, defined on observable braking. Acceptance of photometric value as the mass defining braking of a body, leads to obviously underestimated values of density of substance meteoric body. The further researches on specification of interpretation of supervision

  16. Storm Sewage Dilution in Smaller Streams

    DEFF Research Database (Denmark)

    Larsen, Torben; Vestergaard, Kristian

    1987-01-01

    A numerical model has been used to show how dilution in smaller streams can be effected by unsteady hydraulic conditions caused by a storm sewage overflow.......A numerical model has been used to show how dilution in smaller streams can be effected by unsteady hydraulic conditions caused by a storm sewage overflow....

  17. Storm real-time processing cookbook

    CERN Document Server

    Anderson, Quinton

    2013-01-01

    A Cookbook with plenty of practical recipes for different uses of Storm.If you are a Java developer with basic knowledge of real-time processing and would like to learn Storm to process unbounded streams of data in real time, then this book is for you.

  18. Reconnaissance level study Mississippi storm surge barrier

    NARCIS (Netherlands)

    Van Ledden, M.; Lansen, A.J.; De Ridder, H.A.J.; Edge, B.

    2012-01-01

    This paper reports a reconnaissance level study of a storm surge barrier in the Mississippi River. Historical hurricanes have shown storm surge of several meters along the Mississippi River levees up to and upstream of New Orleans. Future changes due to sea level rise and subsidence will further

  19. Predicting the occurrence of super-storms

    Directory of Open Access Journals (Sweden)

    N. Srivastava

    2005-11-01

    Full Text Available A comparative study of five super-storms (Dst<-300 nT of the current solar cycle after the launch of SoHO, to identify solar and interplanetary variables that influence the magnitude of resulting geomagnetic storms, is described. Amongst solar variables, the initial speed of a CME is considered the most reliable predictor of the strength of the associated geomagnetic storm because fast mass ejections are responsible for building up the ram pressure at the Earth's magnetosphere. However, although most of the super-storms studied were associated with high speed CMEs, the Dst index of the resulting geomagnetic storms varied between -300 to -472 nT. The most intense storm of 20 November 2003, (Dst ~ -472 nT had its source in a comparatively smaller active region and was associated with a relatively weaker, M-class flare while all other super-storms had their origins in large active regions and were associated with strong X-class flares. However, this superstorm did not show any associated extraordinary solar and interplanetary characteristics. The study also reveals the challenge in the reliable prediction of the magnitude of a geomagnetic storm from solar and interplanetary variables.

  20. Predicting the occurrence of super-storms

    Directory of Open Access Journals (Sweden)

    N. Srivastava

    2005-11-01

    Full Text Available A comparative study of five super-storms (Dst<-300 nT of the current solar cycle after the launch of SoHO, to identify solar and interplanetary variables that influence the magnitude of resulting geomagnetic storms, is described. Amongst solar variables, the initial speed of a CME is considered the most reliable predictor of the strength of the associated geomagnetic storm because fast mass ejections are responsible for building up the ram pressure at the Earth's magnetosphere. However, although most of the super-storms studied were associated with high speed CMEs, the Dst index of the resulting geomagnetic storms varied between -300 to -472 nT. The most intense storm of 20 November 2003, (Dst ~ -472 nT had its source in a comparatively smaller active region and was associated with a relatively weaker, M-class flare while all other super-storms had their origins in large active regions and were associated with strong X-class flares. However, this superstorm did not show any associated extraordinary solar and interplanetary characteristics. The study also reveals the challenge in the reliable prediction of the magnitude of a geomagnetic storm from solar and interplanetary variables.

  1. Space Storm as a Dynamical Phase Transition

    Science.gov (United States)

    Wanliss, J. A.

    2006-12-01

    Fluctuations of the DST index were analyzed for several magnetic storms preceded by more than a week of extremely quiet conditions to establish that there is a rapid and unidirectional change in the Hurst scaling exponent at the time of storm onset. That is, the transition is accompanied by the specific signature of a rapid unidirectional change in the temporal fractal scaling of fluctuations in DST, signaling the formation of a new dynamical phase (or mode) which is considerably more organized than the background state. We compare these results to a model of multifractional Brownian motion and suggest that the relatively sudden change from a less correlated to a more correlated pattern of multiscale fluctuations at storm onset can be characterized in terms of nonequilibrium dynamical phase transitions. Initial results show that a dynamical transition in solar wind VBs is correlated with the storm onset for intense storms, suggesting that the transition observed in DST is of external solar wind origin, rather than internal magnetospheric origin. On the other hand, some results show a dynamical transition in solar wind scaling exponents not matched in DST. As well, we also present results for small storms where there is a strong dynamical transition in DST without a similar changes in the VBs scaling statistics. The results for small storms seem to reduce the importance of the solar wind fluctuations but the evidence for the intense storms seems to point to the solar wind as being responsible for providing the scale free properties in the DST fluctuations.

  2. Radio observation of meteors at the Slovak Central Observatory in Hurbanovo

    Science.gov (United States)

    Dolinský, P.

    2015-01-01

    From 4 November 2014, we started registration of meteors using radio waves at the Slovak Central Observatory in Hurbanovo. Our system records meteoric echoes from the TV transmitter Lviv 49.739583 MHz (N49.8480° E24.0369°, Ukraine), using a 4-element Yagi antenna with horizontal polarization (elevation of 0° and azimuth of 60°), receiver ICOM R-75 in the CW mode, and a computer with registration using HROFFT v1.0.0f. Received data were statistically processed and compared with shower activity. Not all of the echoes have meteoric origin, but are caused also by ionospheric Es layer. Registrations are also disturbed by lightning.

  3. The Innisfree meteorite: Dynamical history of the orbit - Possible family of meteor bodies

    Science.gov (United States)

    Galibina, I. V.; Terent'eva, A. K.

    1987-09-01

    Evolution of the Innisfree meteorite orbit caused by secular perturbations is studied over the time interval of 500000 yrs (from the current epoch backwards). Calculations are made by the Gauss-Halphen-Gorjatschew method taking into account perturbations from the four outer planets - Jupiter, Saturn, Uranus and Neptune. In the above mentioned time interval the meteorite orbit has undergone no essential transformations. The Innisfree orbit intersected in 91 cases the Earth orbit and in 94 - the Mars orbit. A system of small and large meteor bodies (producing ordinary meteors and fireballs) which may be genetically related to the Innisfree meteorite has been found, i.e. there probably exists an Innisfree family of meteor bodies.

  4. The MeTeOR trial (Meniscal Tear in Osteoarthritis Research): rationale and design features.

    Science.gov (United States)

    Katz, Jeffrey N; Chaisson, Christine E; Cole, Brian; Guermazi, Ali; Hunter, David J; Jones, Morgan; Levy, Bruce A; Mandl, Lisa A; Martin, Scott; Marx, Robert G; Safran-Norton, Clare; Roemer, Frank W; Skoniecki, Debra; Solomon, Daniel H; Spindler, Kurt P; Wright, John; Wright, Rick W; Losina, Elena

    2012-11-01

    This paper presents the rationale and design features of the MeTeOR Trial (Meniscal Tear in Osteoarthritis Research; Clinical Trials.gov NCT00597012). MeTeOR is an NIH-funded seven-center prospective randomized controlled trial (RCT) designed to establish the efficacy of arthroscopic partial meniscectomy combined with a standardized physical therapy program as compared with a standardized physical therapy program alone in patients with a symptomatic meniscal tear in the setting of mild to moderate knee osteoarthritic change (OA). The design and execution of a trial that compares surgery with a nonoperative treatment strategy presents distinctive challenges. The goal of this paper is to provide the clinical rationale for MeTeOR and to highlight salient design features, with particular attention to those that present clinical and methodologic challenges. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. About Catalogue of Orbit and Atmospheric Trajectory of 4500 Radio Meteors Brighter +5m

    Science.gov (United States)

    Narziev, M.; Tshebotaryov, P.

    2017-09-01

    Published by this time the majority of catalogues of a radiant, speeds and elements of orbits of meteors, basically, are based on a interpretation of the given radio observations by diffraction-time a method. However the given method is applicable for processing of 15-25 % of observed meteors that leads to loss of the most part of an observed material. Besides, the error of measurement of an antiaircraft corner of a radiant σZr with increase in a corner to 60°÷70 ° will be increased in 2-3 times, and at the further increase in a corner the error grows even faster, so measurements lose meaning. In 1968-1970 in action period of the Soviet equatorial meteor expedition to Somalia, simultaneously and radio observations of meteors in HisAO from four points have been resulted. For interpretation of the radar data the bearing-time method radio method developed and applied for the first time in Tajikistan is used. This approximately twice increases number of the measured radiant and speeds. What's more, the error of measurement of an antiaircraft corner does not depend on antiaircraft distance of a radiant. The velocity of meteor is determined by the bearing-time method, and by the diffraction picture. In the catalogue along with a radiant, speeds and elements of orbits, for the first time the height, value of linear electronic density, radio magnitude and masses of each of 4500 radio meteors registered since December 1968 till May, 1969 are resulted.

  6. An Initial Meteoroid Stream Survey in the Southern Hemisphere Using the Southern Argentina Agile Meteor Radar (SAAMER)

    Science.gov (United States)

    Janches, D.; Hormaechea, J. L.; Brunini, C.; Hocking, W.; Fritts, D. C.

    2013-01-01

    We present in this manuscript a 4 year survey of meteor shower radiants utilizing the Southern Argentina Agile Meteor Radar (SAAMER). SAAMER, which operates at the southern most region of South America, is a new generation SKiYMET system designed with significant differences from typical meteor radars including high transmitted power and an 8-antenna transmitting array enabling large detected rates at low zenith angles. We applied the statistical methodology developed by Jones and Jones (Jones, J., Jones, W. [2006]. Month. Not. R. Astron. Soc. 367, 1050-1056) to the data collected each day and compiled the results into 1 composite representative year at 1 resolution in Solar Longitude. We then search for enhancements in the activity which last for at least 3 days and evolve temporally as is expected from a meteor shower. Using this methodology, we have identified in our data 32 shower radiants, two of which were not part of the IAU commission 22 meteor shower working list. Recently, SAAMER's capabilities were enhanced by adding two remote stations to receive meteor forward scatter signals from meteor trails and thus enable the determination of meteoroid orbital parameters. SAAMER started recording orbits in January 2012 and future surveys will focus on the search for unknown meteor streams, in particular in the southern ecliptic sky.

  7. Identification of Optical Component of North Toroidal Source of Sporadic Meteors and its Origin

    Science.gov (United States)

    Hashimoto, T.; Watanabe, J.; Sato, M.; Ishiguro, M.

    2011-01-01

    We succeeded to identify the North Toroidal source by optical observations performed by the SonotaCo Network, which is a TV observation network coordinated by Japanese amateurs. This source has been known only for radar observations until now. The orbits of the optical meteors in the North Toroidal source are relatively large eccentricity and semi-major axis, compared with those of the radar meteors. In this paper, we report the characteristics of this North Toroidal source detected by optical observations, and discuss the possible origin and evolution of this source.

  8. Siderophile element fractionation in meteor crater impact glasses and metallic spherules

    Science.gov (United States)

    Mittlefehldt, David W.; See, T. H.; Scott, E. R. D.

    1993-01-01

    Meteor Crater, Arizona provides an opportunity to study, in detail, elemental fractionation processes occurring during impacts through the study of target rocks, meteorite projectile and several types of impact products. We have performed EMPA and INAA on target rocks, two types of impact glass and metallic spherules from Meteor Crater. Using literature data for the well studied Canyon Diablo iron we can show that different siderophite element fractionations affected the impact glasses than affected the metallic spherules. The impact glasses primarily lost Au, while the metallic spherules lost Fe relative to other siderophile elements.

  9. Predicting severe winter coastal storm damage

    Energy Technology Data Exchange (ETDEWEB)

    Hondula, David M; Dolan, Robert, E-mail: hondula@virginia.edu [Department of Environmental Sciences, University of Virginia, PO Box 400123, Charlottesville, VA 22903 (United States)

    2010-07-15

    Over the past 40 years residents of, and visitors to, the North Carolina coastal barrier islands have experienced the destructive forces of several 'named' extratropical storms. These storms have caused large-scale redistributions of sand and loss of coastal structures and infrastructure. While most of the population living on the islands are familiar with the wintertime storms, the damage and scars of the 'super northeasters'-such as the Ash Wednesday storm of 7 March 1962, and the Halloween storm of 1989-are slipping away from the public's memory. In this research we compared the damage zones of the 1962 Ash Wednesday storm, as depicted on aerial photographs taken after the storm, with photos taken of the same areas in 2003. With these high-resolution aerial photos we were able to estimate the extent of new development which has taken place along the Outer Banks of North Carolina since 1962. Three damage zones were defined that extend across the islands from the ocean landward on the 1962 aerial photos: (1) the zone of almost total destruction on the seaward edge of the islands where the storm waves break; (2) the zone immediately inland where moderate structural damage occurs during severe storms; and (3) the zone of flood damage at the landward margin of the storm surge and overwash. We considered the rate of coastal erosion, the rate of development, and increases in property values as factors which may contribute to changing the financial risk for coastal communities. In comparing the values of these four factors with the 1962 damage data, we produced a predicted dollar value for storm damage should another storm of the magnitude of the 1962 Ash Wednesday storm occur in the present decade. This model also provides an opportunity to estimate the rate of increase in the potential losses through time as shoreline erosion continues to progressively reduce the buffer between the development and the edge of the sea. Our data suggest that the

  10. Predicting severe winter coastal storm damage

    International Nuclear Information System (INIS)

    Hondula, David M; Dolan, Robert

    2010-01-01

    Over the past 40 years residents of, and visitors to, the North Carolina coastal barrier islands have experienced the destructive forces of several 'named' extratropical storms. These storms have caused large-scale redistributions of sand and loss of coastal structures and infrastructure. While most of the population living on the islands are familiar with the wintertime storms, the damage and scars of the 'super northeasters'-such as the Ash Wednesday storm of 7 March 1962, and the Halloween storm of 1989-are slipping away from the public's memory. In this research we compared the damage zones of the 1962 Ash Wednesday storm, as depicted on aerial photographs taken after the storm, with photos taken of the same areas in 2003. With these high-resolution aerial photos we were able to estimate the extent of new development which has taken place along the Outer Banks of North Carolina since 1962. Three damage zones were defined that extend across the islands from the ocean landward on the 1962 aerial photos: (1) the zone of almost total destruction on the seaward edge of the islands where the storm waves break; (2) the zone immediately inland where moderate structural damage occurs during severe storms; and (3) the zone of flood damage at the landward margin of the storm surge and overwash. We considered the rate of coastal erosion, the rate of development, and increases in property values as factors which may contribute to changing the financial risk for coastal communities. In comparing the values of these four factors with the 1962 damage data, we produced a predicted dollar value for storm damage should another storm of the magnitude of the 1962 Ash Wednesday storm occur in the present decade. This model also provides an opportunity to estimate the rate of increase in the potential losses through time as shoreline erosion continues to progressively reduce the buffer between the development and the edge of the sea. Our data suggest that the losses along the North

  11. Predicting severe winter coastal storm damage

    Science.gov (United States)

    Hondula, David M.; Dolan, Robert

    2010-07-01

    Over the past 40 years residents of, and visitors to, the North Carolina coastal barrier islands have experienced the destructive forces of several 'named' extratropical storms. These storms have caused large-scale redistributions of sand and loss of coastal structures and infrastructure. While most of the population living on the islands are familiar with the wintertime storms, the damage and scars of the 'super northeasters'—such as the Ash Wednesday storm of 7 March 1962, and the Halloween storm of 1989—are slipping away from the public's memory. In this research we compared the damage zones of the 1962 Ash Wednesday storm, as depicted on aerial photographs taken after the storm, with photos taken of the same areas in 2003. With these high-resolution aerial photos we were able to estimate the extent of new development which has taken place along the Outer Banks of North Carolina since 1962. Three damage zones were defined that extend across the islands from the ocean landward on the 1962 aerial photos: (1) the zone of almost total destruction on the seaward edge of the islands where the storm waves break; (2) the zone immediately inland where moderate structural damage occurs during severe storms; and (3) the zone of flood damage at the landward margin of the storm surge and overwash. We considered the rate of coastal erosion, the rate of development, and increases in property values as factors which may contribute to changing the financial risk for coastal communities. In comparing the values of these four factors with the 1962 damage data, we produced a predicted dollar value for storm damage should another storm of the magnitude of the 1962 Ash Wednesday storm occur in the present decade. This model also provides an opportunity to estimate the rate of increase in the potential losses through time as shoreline erosion continues to progressively reduce the buffer between the development and the edge of the sea. Our data suggest that the losses along the

  12. Preliminary Results of the Observations of a Meteor Shower of Comet C/2012 s1 (ison) in January 2014

    Science.gov (United States)

    Golubaev, A. V.; Bryukhanov, I. S.; Tabolich, A.; Tabolich, V.; Akulich, D.; Kulakovskaya, A.; Mechinsky, V. A.; Sergey, I. M.

    2014-05-01

    Dedicated researches on detection of possible meteoric activity in January 2014 connected with remains of comet C/2012 S1 (ISON) have been conducted. This work is based on the observational material obtained at different points of the Earth by means of 10 CCD cameras equipped with >-like lenses (> camera) and FM radio observations. 43 meteor events were revealed by viewing 54,000 images from 10 to 17 January 2014. As a result of position measurements of CCD images, coordinates of the meteor radiant were found: α_{R}=156°, δ_{R}=+38°. During this period (January 08 to January 24, 2014) an increase in the meteor activity above the level of the sporadic meteor background has been confirmed by FM-radio observations in Molodechno (Belarus) and Jaen (Spain)

  13. Preliminary results of observations in January, 2014 of a meteor shower of comet C/2012 S1 (ISON)

    Science.gov (United States)

    Golubaev, A.; Brukhanov, I.; Tabolich, A.; Tabolich, T.; Kulakovskaya, A.; Sergey, I.

    2014-07-01

    Special research on the detection of possible meteoric activity in January 2014 connected with the remains of the comet C/2012 S1 (ISON) are conducted. This work is based on the observational material received in various points on the Earth, by means of CCD cameras (10 CCD cameras), equipped with lenses like ''Fish eye'' (All-sky camera) and radio observations in the FM range. 43 meteor phenomena were revealed during viewing of 54,000 images on January 17, 2014. As a result of position measurements of images and calculations coordinates of a meteor radiant were received: α_{R}=156 deg, δ_{R}= +38 deg (Fig. 1). During this period (January 08-24, 2014) increase of meteor activity over the level of a sporadic meteor background is confirmed by FM-radio observations in Molodechno (Belarus) and Jaen (Spain) (Fig. 2a,b).

  14. Geometric effects of ICMEs on geomagnetic storms

    Science.gov (United States)

    Cho, KyungSuk; Lee, Jae-Ok

    2017-04-01

    It has been known that the geomagnetic storm is occurred by the interaction between the Interplanetary Coronal Mass Ejection (ICME) and the Earth's magnetosphere; especially, the southward Bz component of ICME is thought as the main trigger. In this study, we investigate the relationship between Dst index and solar wind conditions; which are the southward Bz, electric field (VBz), and time integral of electric field as well as ICME parameters derived from toroidal fitting model in order to find what is main factor to the geomagnetic storm. We also inspect locations of Earth in ICMEs to understand the geometric effects of the Interplanetary Flux Ropes (IFRs) on the geomagnetic storms. Among 59 CDAW ICME lists, we select 30 IFR events that are available by the toroidal fitting model and classify them into two sub-groups: geomagnetic storms associated with the Magnetic Clouds (MCs) and the compression regions ahead of the MCs (sheath). The main results are as follows: (1) The time integral of electric field has a higher correlation coefficient (cc) with Dst index than the other parameters: cc=0.85 for 25 MC events and cc=0.99 for 5 sheath events. (2) The sheath associated intense storms (Dst ≤-100nT) having usually occur at flank regions of ICMEs while the MC associated intense storms occur regardless of the locations of the Earth in ICMEs. The strength of a geomagnetic storm strongly depends on electric field of IFR and durations of the IFR passages through the Earth.

  15. On shock waves and the role of hyperthermal chemistry in the early diffusion of overdense meteor trains

    Science.gov (United States)

    Silber, Elizabeth A.; Hocking, Wayne K.; Niculescu, Mihai L.; Gritsevich, Maria; Silber, Reynold E.

    2017-08-01

    Studies of meteor trails have until now been limited to relatively simple models, with the trail often being treated as a conducting cylinder, and the head (if considered at all) treated as a ball of ionized gas. In this article, we bring the experience gleaned from other fields to the domain of meteor studies, and adapt this prior knowledge to give a much clearer view of the microscale physics and chemistry involved in meteor-trail formation, with particular emphasis on the first 100 or so milliseconds of the trail formation. We discuss and examine the combined physicochemical effects of meteor-generated and ablationally amplified cylindrical shock waves that appear in the ambient atmosphere immediately surrounding the meteor train, as well as the associated hyperthermal chemistry on the boundaries of the high temperature post-adiabatically expanding meteor train. We demonstrate that the cylindrical shock waves produced by overdense meteors are sufficiently strong to dissociate molecules in the ambient atmosphere when it is heated to temperatures in the vicinity of 6000 K, which substantially alters the considerations of the chemical processes in and around the meteor train. We demonstrate that some ambient O2, along with O2 that comes from the shock dissociation of O3, survives the passage of the cylindrical shock wave, and these constituents react thermally with meteor metal ions, thereby subsequently removing electrons from the overdense meteor train boundary through fast, temperature-independent, dissociative recombination governed by the second Damköhler number. Possible implications for trail diffusion and lifetimes are discussed.

  16. Classification of beach response to extreme storms

    Science.gov (United States)

    Burvingt, Olivier; Masselink, Gerd; Russell, Paul; Scott, Tim

    2017-10-01

    Extreme storms are responsible for rapid changes to coastlines worldwide. During the 2013/14 winter, the west coast of Europe experienced a sequence of large, storm-induced wave events, representing the most energetic period of waves in the last 60 years. The southwest coast of England underwent significant geomorphological change during that period, but exhibited a range of spatially variable and complex morphological responses, despite being subjected to the same storm sequence. Here, we use the 2013/14 storm response along the southwest coast of England as a natural field laboratory and explain this variability in storm response through the introduction and evaluation of a new classification of how sandy and gravel beaches respond to extreme storms. Cluster analysis was conducted using an unique data set of pre- and post-storm airborne Light Detection and Ranging (LiDAR) data from 157 beach sites based on the net volumetric change (dQnet) and a novel parameter, the longshore variation index (LVI) which quantifies the alongshore morphological variability in beach response. Four main beach response types were identified: (1) fully exposed beaches that experienced large and alongshore uniform sediment losses (dQnet ≈ 100 m3·m- 1); (2) semi-exposed beaches that experienced medium alongshore uniform sediment losses (dQnet ≈ 50 m3·m- 1); (3) sheltered short beaches that experienced limited net sediment change and alongshore variability in beach response; and (4) sheltered long beaches that experienced considerable alongshore variability in beach response and large gross sediment change, but limited net sediment change. The key factors in determining the type of beach response are: exposure to the storm waves, angle of storm wave approach and the degree to which the beach is embayed. These factors are universally applicable on many exposed coastlines worldwide, so the response classification presented here is expected to be widely applicable.

  17. Coupling between the lower and middle atmosphere observed during a very severe cyclonic storm 'Madi'

    Science.gov (United States)

    Hima Bindu, H.; Venkat Ratnam, M.; Yesubabu, V.; Narayana Rao, T.; Eswariah, S.; Naidu, C. V.; Vijaya Bhaskara Rao, S.

    2018-04-01

    Synoptic-scale systems like cyclones can generate broad spectrum of waves, which propagate from its source to the middle atmosphere. Coupling between the lower and middle atmosphere over Tirupati (13.6°N, 79.4°E) is studied during a very severe cyclonic storm 'Madi' (06-13 December 2013) using Weather Research and Forecast (WRF) model assimilated fields and simultaneous meteor radar observations. Since high temporal and spatial measurements are difficult to obtain during these disturbances, WRF model simulations are obtained by assimilating conventional and satellite observations using 3DVAR technique. The obtained outputs are validated for their consistency in predicting cyclone track and vertical structure by comparing them with independent observations. The good agreement between the assimilated outputs and independent observations prompted us to use the model outputs to investigate the gravity waves (GWs) and tides over Tirupati. GWs with the periods 1-5 h are observed with clear downward phase propagation in the lower stratosphere. These upward propagating waves obtained from the model are also noticed in the meteor radar horizontal wind observations in the MLT region (70-110 km). Interestingly, enhancement in the tidal activity in both the zonal and meridional winds in the mesosphere and lower thermosphere (MLT) region is noticed during the peak cyclonic activity except the suppression of semi-diurnal tide in meridional wind. A very good agreement in the tidal activity is also observed in the horizontal winds in the troposphere and lower stratosphere from the WRF model outputs and ERA5. These results thus provide evidence on the vertical coupling of lower and middle atmosphere induced by the tropical cyclone.

  18. Effects of probiotics on the faecal production of hydrogen and methane in patients with meteorism

    DEFF Research Database (Denmark)

    Schrøder, Julie Bernstorf; Jespersen, Lene; Westermann, Peter

    Meteorism is a dominating problem in the western world, especially in women. The condition is very difficult to quantify, and effective and documented therapies are not avaiable. We wanted to develop a method for measuring anaerobic production of hydrogen and methane in faeces, and to correlate t...

  19. Dynamical modeling validation of parent bodies associated with newly discovered CMN meteor showers

    Czech Academy of Sciences Publication Activity Database

    Šegon, D.; Vaubaillon, J.; Gural, P.S.; Vida, D.; Andreić, Z.; Korlević, K.; Skokić, Ivica

    2017-01-01

    Roč. 598, February (2017), A15/1-A15/13 E-ISSN 1432-0746 Institutional support: RVO:67985815 Keywords : meteorites * meteors * meteoroids Subject RIV: BN - Astronomy , Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 5.014, year: 2016

  20. Double station observation of Draconid meteor outburst from two moving aircraft

    Science.gov (United States)

    Koten, Pavel; Vaubaillon, Jeremie; Margonis, Anastasios; Tóth, Juraj; Ďuriš, František; McAulliffe, Jonathan; Oberst, Jürgen

    2015-12-01

    A Draconid meteor shower outburst was observed from the boards of two scientific aircraft on 8 October 2011. In this paper we report the results of this double station experiment. The beginning and terminal heights are similar to other Draconid observations and confirm the fragile nature of the meteoroids. From the distribution function of terminal heights, a critical mass was found to be about 3.5 g. A behaviour of the terminal heights changes at this point. Light curves of Draconid meteors show great variability with a maximum of the F-number distribution around 0.35, which also confirms fragility of the material. Observed radiants of the meteors are in agreement with the theoretical model. Although encounters with two different filaments were predicted, it is impossible to distinguish between them from the radiants as well as the orbital data. Despite the complications with the data processing the airborne mission shows that such double station experiment is possible and provides valuable insight into meteor structure and dynamics.

  1. Meteoric precipitation at Yucca Mountain, Nevada: Chemical and stable isotope analyses, 2006-09

    Science.gov (United States)

    Moscati, Richard J.; Scofield, Kevin M.

    2011-01-01

    Meteoric precipitation samples collected in 2006-09 at Yucca Mountain, Nevada, were analyzed for chemistry and stable isotope composition. Precipitation is the major source of infiltration to the unsaturated zone and of recharge to the saturated zone at Yucca Mountain.

  2. An analysis of the physical, chemical, optical, and historical impacts of the 1908 Tunguska meteor fall

    Science.gov (United States)

    Turco, R. P.; Toon, O. B.; Park, C.; Whitten, R. C.; Pollack, J. B.; Noerdlinger, P.

    1982-01-01

    An analysis is presented of the physical characteristics and photochemical aftereffects of the 1908 Tunguska explosive cometary meteor, whose physical manifestations are consistent with a five million ton object's entry into the earth's atmosphere at 40 km/sec. Aerodynamic calculations indicate that the shock waves emanating from the falling meteor could have generated up to 30 million tons of nitric oxide in the stratosphere and mesosphere. A fully interactive one-dimensional chemical-kinetics model of atmospheric trace constituents is used to estimate the photochemical consequences of such a large NO injection. The 35-45% hemispherical ozone depletion predicted by the model is in keeping with the 30 + or - 15% ozone variation reported for the first year after the Tunguska fall. Attention is also given to the optical anomalies which followed the event for indications of NO(x)-O(x) chemiluminescent emissions, NO2 solar absorption, and meteoric dust turbidity, along with possible climate changes due to the nearly one million tons of pulverized dust deposited in the mesosphere and stratosphere by the meteor.

  3. The New Meteor Radar at Penn State: Design and First Observations

    Science.gov (United States)

    Urbina, J.; Seal, R.; Dyrud, L.

    2011-01-01

    In an effort to provide new and improved meteor radar sensing capabilities, Penn State has been developing advanced instruments and technologies for future meteor radars, with primary objectives of making such instruments more capable and more cost effective in order to study the basic properties of the global meteor flux, such as average mass, velocity, and chemical composition. Using low-cost field programmable gate arrays (FPGAs), combined with open source software tools, we describe a design methodology enabling one to develop state-of-the art radar instrumentation, by developing a generalized instrumentation core that can be customized using specialized output stage hardware. Furthermore, using object-oriented programming (OOP) techniques and open-source tools, we illustrate a technique to provide a cost-effective, generalized software framework to uniquely define an instrument s functionality through a customizable interface, implemented by the designer. The new instrument is intended to provide instantaneous profiles of atmospheric parameters and climatology on a daily basis throughout the year. An overview of the instrument design concepts and some of the emerging technologies developed for this meteor radar are presented.

  4. Long-Term Continuous Double Station Observation of Faint Meteor Showers

    Czech Academy of Sciences Publication Activity Database

    Vítek, S.; Páta, P.; Koten, Pavel; Fliegel, K.

    2016-01-01

    Roč. 16, č. 9 (2016), 1493/1-1493/10 ISSN 1424-8220 R&D Projects: GA ČR GA14-25251S Institutional support: RVO:67985815 Keywords : faint meteor shower * meteoroid * CCD camera Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.677, year: 2016

  5. In situ 10Be-26Al exposure ages at Meteor Crater, Arizona

    Science.gov (United States)

    Nishiizumi, K.; Kohl, C.P.; Shoemaker, E.M.; Arnold, J.R.; Klein, J.; Fink, D.; Middleton, R.

    1991-01-01

    A new method of dating the surface exposure of rocks from in situ production of 10Be and 26Al has been applied to determine the age of Meteor Crater, Arizona. A lower bound on the crater age of 49,200 ?? 1,700 years has been obtained by this method. ?? 1991.

  6. Effects of probiotics on the faecal production of hydrogen and methane in patients with meteorism

    DEFF Research Database (Denmark)

    Schrøder, Julie Bernstorf; Jespersen, Lene; Westermann, Peter

    Meteorism is a dominating problem in the western world, especially in women. The condition is very difficult to quantify, and effective and documented therapies are not avaiable. We wanted to develop a method for measuring anaerobic production of hydrogen and methane in faeces, and to correlate...

  7. ''Meteor 2'' programme for calculation of environment irradiation under nuclear power plant normal operating conditions

    International Nuclear Information System (INIS)

    Oppermann, R.; Kryuger, F.V.; Prior, Kh.

    1976-01-01

    A ''Meteor 2'' program developed for the BESM-6 electronic computer is described. The program permits to estimate radiation effect under nuclear power plant normal operation conditions. The calculations are carried out depending on the quantity and composition of the release activity, a ventilating pipe height, meteorological conditions as well as taking into account radioactive substance decay. The program permits to calculate the following values in the vicinity of radioactive product release point: a local distribution of a mean dose spread factor; a local distribution of a mean dose of inhalation irradiation for various human organs (the whole body, thyroid gland, bones, alimentary canal, lungs) and separate population groups; a local distribution of a mean dose of external beta radiation; a local distribution of a mean dose of external gamma radiation. The program includes the main ''Meteor'' program and 3 subprograms of DOBER, DABER and DABOR and is written in the FORTRAN language. The ''Meteor'' program organizes the data input and output of some separate subprograms. The DOBER subprogram determines the spread factor, the inhalation irradiation dose for separate organs and the external beta radiation dose. The DABER subprogram determines the external gamma radiation dose in the approximation of homogeneous distribution of a source in the vicinity of the calculation point. The DABOR subprogram is the second program for the calculating the external irradiation dose. The examples of using the ''Meteor'' program are given [ru

  8. MU head echo observations of the 2010 Geminids: radiant, orbit, and meteor flux observing biases

    Directory of Open Access Journals (Sweden)

    J. Kero

    2013-03-01

    Full Text Available We report Geminid meteor head echo observations with the high-power large-aperture (HPLA Shigaraki middle and upper atmosphere (MU radar in Japan (34.85° N, 136.10° E. The MU radar observation campaign was conducted from 13 December 2010, 08:00 UTC to 15 December, 20:00 UTC and resulted in 48 h of radar data. A total of ~ 270 Geminids were observed among ~ 8800 meteor head echoes with precisely determined orbits. The Geminid head echo activity is consistent with an earlier peak than the visual Geminid activity determined by the International Meteor Organization (IMO. The observed flux of Geminids is a factor of ~ 3 lower than the previously reported flux of the 2009 Orionids measured with an identical MU~radar setup. We use the observed flux ratio to discuss the relation between the head echo mass–velocity selection effect, the mass distribution indices of meteor showers and the mass threshold of the MU radar.

  9. Comparing eyewitness-derived trajectories of bright meteors to instrumentally-observed data

    Science.gov (United States)

    Moser, D. E.

    2017-09-01

    The NASA Meteoroid Environment Office (MEO) is often called upon to analyze meteors of public interest observed over the United States. Data from meteor networks are often utilized to accomplish this, as are recordings from the general public. When these methods fail, eyewitness reports are the only resource which can be leveraged. The MEO developed a tool to crudely calculate the trajectories of bright meteors from the eyewitness reports submitted to the American Meteor Society. The tool was tested on eyewitness data for 33 cases and compared to observed data from the NASA All Sky Fireball Network. The tool performed better for cases with more than 75 eyewitness reports than those with fewer than 75, by almost a factor of two across all metrics except for the end height. For these cases, the eyewitness-derived trajectory was about 50 km from the observed trajectory, the radiant was within 15°, and the speed was within 20% of that observed on average. A description of the tool, example case studies, and general trends are described.

  10. The challenge associated with the robust computation of meteor velocities from video and photographic records

    Science.gov (United States)

    Egal, A.; Gural, P. S.; Vaubaillon, J.; Colas, F.; Thuillot, W.

    2017-09-01

    The CABERNET project was designed to push the limits for obtaining accurate measurements of meteoroids orbits from photographic and video meteor camera recordings. The discrepancy between the measured and theoretic orbits of these objects heavily depends on the semi-major axis determination, and thus on the reliability of the pre-atmospheric velocity computation. With a spatial resolution of 0.01° per pixel and a temporal resolution of up to 10 ms, CABERNET should be able to provide accurate measurements of velocities and trajectories of meteors. To achieve this, it is necessary to improve the precision of the data reduction processes, and especially the determination of the meteor's velocity. In this work, most of the steps of the velocity computation are thoroughly investigated in order to reduce the uncertainties and error contributions at each stage of the reduction process. The accuracy of the measurement of meteor centroids is established and results in a precision of 0.09 pixels for CABERNET, which corresponds to 3.24‧‧. Several methods to compute the velocity were investigated based on the trajectory determination algorithms described in Ceplecha (1987) and Borovicka (1990), as well as the multi-parameter fitting (MPF) method proposed by Gural (2012). In the case of the MPF, many optimization methods were implemented in order to find the most efficient and robust technique to solve the minimization problem. The entire data reduction process is assessed using simulated meteors, with different geometrical configurations and deceleration behaviors. It is shown that the multi-parameter fitting method proposed by Gural(2012)is the most accurate method to compute the pre-atmospheric velocity in all circumstances. Many techniques that assume constant velocity at the beginning of the path as derived from the trajectory determination using Ceplecha (1987) or Borovicka (1990) can lead to large errors for decelerating meteors. The MPF technique also allows one to

  11. Storm Water BMP Tool Implementation Testing

    Science.gov (United States)

    2017-12-01

    Under project 2015-ORIL 7, a screening tool was developed to assist Local communities with selecting post-construction storm water best management practices (BMPs) to comply with the Ohio Environmental Protection Agencys (Ohio EPA) statewide Const...

  12. Joint Typhoon Warning Center (JTWC) Storm Wallets

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Joint Typhoon Warning Center (JTWC) is responsible for typhoon forecasts and warnings for the Western Pacific and Indian Ocean basins. After each storm, the JTWC...

  13. Geomagnetic storms, super-storms, and their impacts on GPS-based navigation systems

    Science.gov (United States)

    Astafyeva, E.; Yasyukevich, Yu.; Maksikov, A.; Zhivetiev, I.

    2014-07-01

    Using data of GPS receivers located worldwide, we analyze the quality of GPS performance during four geomagnetic storms of different intensity: two super-storms and two intense storms. We show that during super-storms the density of GPS Losses-of-Lock (LoL) increases up to 0.25% at L1 frequency and up to 3% at L2 frequency, and up to 0.15% (at L1) and 1% (at L2) during less intense storms. Also, depending on the intensity of the storm time ionospheric disturbances, the total number of total electron content (TEC) slips can exceed from 4 to 40 times the quiet time level. Both GPS LoL and TEC slips occur during abrupt changes of SYM-H index of geomagnetic activity, i.e., during the main phase of geomagnetic storms and during development of ionospheric storms. The main contribution in the total number of GPS LoL was found to be done by GPS sites located at low and high latitudes, whereas the area of numerous TEC slips seemed to mostly correspond to the boundary of the auroral oval, i.e., region with intensive ionospheric irregularities. Our global maps of TEC slips show where the regions with intense irregularities of electron density occur during geomagnetic storms and will let us in future predict appearance of GPS errors for geomagnetically disturbed conditions.

  14. Space storm as a phase transition

    Science.gov (United States)

    Wanliss, J. A.; Dobias, P.

    2007-04-01

    Fluctuations of the SYM-H index were analyzed for several space storms preceded by more than a week of extremely quiet conditions to establish that there was a rapid and unidirectional change in the Hurst scaling exponent at the time of storm onset. That is, the transition was accompanied by the specific signature of a rapid unidirectional change in the temporal fractal scaling of fluctuations in SYM-H, signaling the formation of a new dynamical phase (or mode) which was considerably more organized than the background state. We compare these results to a model of multifractional Brownian motion and suggest that the relatively sudden change from a less correlated to a more correlated pattern of multiscale fluctuations at storm onset can be characterized in terms of nonequilibrium dynamical phase transitions. The results show that a dynamical transition in solar wind VB is correlated with the storm onset for intense storms, suggesting that the dynamical transition observed in SYM-H is of external solar wind origin, rather than internal magnetospheric origin. However, some results showed a dynamical transition in solar wind scaling exponents not matched by similar transitions in SYM-H. In other instances, we observed some small storms where there was a strong dynamical transition in SYM-H without similar changes in the VB scaling statistics, suggesting that changes were due to internal magnetospheric processes. In summary, the results for intense storms points to the solar wind as being responsible for providing the scale free properties in the SYM-H fluctuations but the evidence for small storms clearly limit the importance of the solar wind fluctuations; their interaction is more complex than simple causality.

  15. EVIDENCE FOR COMET STORMS IN METEORITE AGES

    Energy Technology Data Exchange (ETDEWEB)

    Perlmutter, S.; Muller, R.A.

    1987-10-01

    Clustering of cosmic-ray exposure ages of H chondritic meteorites occurs at 7 {+-} 3 and 30 {+-} 6 Myr ago. There is independent evidence that comet storms have occurred at the same times, based on the fossil record of family and genus extinctions, impact craters and glass, and geomagnetic reversals. We suggest that H chondrites were formed by the impact of shower comets on asteroids. The duration of the most recent comet shower was {le} 4 Myr, in agreement with storm theory.

  16. Meteor head echo polarization at 930 MHz studied with the EISCAT UHF HPLA radar

    Directory of Open Access Journals (Sweden)

    G. Wannberg

    2011-06-01

    Full Text Available The polarization characteristics of 930-MHz meteor head echoes have been studied for the first time, using data obtained in a series of radar measurements carried out with the tristatic EISCAT UHF high power, large aperture (HPLA radar system in October 2009. An analysis of 44 tri-static head echo events shows that the polarization of the echo signal recorded by the Kiruna receiver often fluctuates strongly on time scales of tens of microseconds, illustrating that the scattering process is essentially stochastic. On longer timescales (> milliseconds, more than 90 % of the recorded events show an average polarization signature that is independent of meteor direction of arrival and echo strength and equal to that of an incoherent-scatter return from underdense plasma filling the tristatic observation volume. This shows that the head echo plasma targets scatter isotropically, which in turn implies that they are much smaller than the 33-cm wavelength and close to spherically symmetric, in very good agreement with results from a previous EISCAT UHF study of the head echo RCS/meteor angle-of-incidence relationship. Significant polarization is present in only three events with unique target trajectories. These all show a larger effective target cross section transverse to the trajectory than parallel to it. We propose that the observed polarization may be a signature of a transverse charge separation plasma resonance in the region immediately behind the meteor head, similar to the resonance effects previously discussed in connection with meteor trail echoes by Herlofson, Billam and Browne, Jones and Jones and others.

  17. Dynamics of Dust Particles Released from Oort Cloud Comets and Their Contribution to Radar Meteors

    Science.gov (United States)

    Nesvorny, David; Vokrouhlicky, David; Pokorny, Petr; Janches, Diego

    2012-01-01

    The Oort Cloud Comets (OCCs), exemplified by the Great Comet of 1997 (Hale-Bopp), are occasional visitors from the heatless periphery of the solar system. Previous works hypothesized that a great majority of OCCs must physically disrupt after one or two passages through the inner solar system, where strong thermal gradients can cause phase transitions or volatile pressure buildup. Here we study the fate of small debris particles produced by OCC disruptions to determine whether the imprints of a hypothetical population of OCC meteoroids can be found in the existing meteor radar data. We find that OCC particles with diameters D or approx. 1 mm have a very low Earth-impact probability. The intermediate particle sizes, D approx. 100 microns represent a sweet spot. About 1% of these particles orbitally evolve by Poynting-Robertson drag to reach orbits with semimajor axis a approx. 1 AU. They are expected to produce meteors with radiants near the apex of the Earth s orbital motion. We find that the model distributions of their impact speeds and orbits provide a good match to radar observations of apex meteors, except for the eccentricity distribution, which is more skewed toward e approx. 1 in our model. Finally, we propose an explanation for the long-standing problem in meteor science related to the relative strength of apex and helion/antihelion sources. As we show in detail, the observed trend, with the apex meteors being more prominent in observations of highly sensitive radars, can be related to orbital dynamics of particles released on the long-period orbits.

  18. Total Lightning Activity Associated with Tornadic Storms

    Science.gov (United States)

    Goodman, Steven J.; Buechler, Dennis; Hodanish, Stephen; Sharp, David; Williams, Earle; Boldi, Bob; Matlin, Anne; Weber, Mark

    1999-01-01

    Severe storms often have high flash rates (in excess of one flash per second) and are dominated by intracloud lightning activity. In addition to the extraordinary flash rates, there is a second distinguishing lightning characteristic of severe storms that seems to be important. When the total lightning history is examined, one finds sudden increases in the lightning rate, which we refer to as lightning "jumps," that precede the occurrence of severe weather by ten or more minutes. These jumps are typically 30-60 flashes/min, and are easily identified as anomalously large derivatives in the flash rate. This relationship is associated with updraft intensification and updraft strength is an important factor in storm severity (through the accumulation of condensate aloft and the stretching of vorticity). In several cases, evidence for diminishment of midlevel rotation and the descent of angular momentum from aloft is present prior to the appearance of the surface tornado. Based on our experience with severe and tornadic storms in Central Florida, we believe the total lightning may augment the more traditional use of NEXRAD radars and storm spotters. However, a more rigorous relation of these jumps to storm kinematics is needed if we are to apply total lightning in a decision tree that leads to improved warning lead times and decreased false alarm rates.

  19. Non-storm water discharges technical report

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, S.

    1994-07-01

    Lawrence Livermore National Laboratory (LLNL) submitted a Notice of Intent to the California State Water Resources Control Board (hereafter State Board) to discharge storm water associated with industrial activities under the California General Industrial Activity Storm Water National Pollutant Elimination System Discharge Permit (hereafter General Permit). As required by the General Permit, LLNL provided initial notification of non-storm water discharges to the Central Valley Regional Water Quality Control Board (hereafter Regional Board) on October 2, 1992. Additional findings and progress towards corrective actions were reported in subsequent annual monitoring reports. LLNL was granted until March 27, 1995, three years from the Notice of Intent submission date, to eliminate or permit the non-storm water discharges. On May 20, 1994, the Regional Board issued Waste Discharge Requirements (WDR Board Order No. 94-131, NPDES No. CA0081396) to LLNL for discharges of non-contact cooling tower wastewater and storm water related to industrial activities. As a result of the issuance of WDR 94-131, LLNL rescinded its coverage under the General Permit. WDR 94-131 allowed continued non-storm water discharges and requested a technical report describing the discharges LLNL seeks to permit. For the described discharges, LLNL anticipates the Regional Board will either waive Waste Discharge Requirements as allowed for in The Water Quality Control Plan for the California Regional Water Quality Control Board, Central Valley Region (hereafter Basin Plan) or amend Board Order 94-131 as appropriate.

  20. Subtropical Dust Storms and Downslope Wind Events

    Science.gov (United States)

    Pokharel, Ashok Kumar; Kaplan, Michael L.; Fiedler, Stephanie

    2017-10-01

    We performed detailed mesoscale observational analyses and Weather Research and Forecasting (WRF) model simulations to study the terrain-induced downslope winds that generated dust-emitting winds at the beginning of three strong subtropical dust storms in three distinctly different regions of North Africa and the Arabian Peninsula. We revisit the Harmattan dust storm of 2 March 2004, the Saudi dust storm of 9 March 2009, and the Bodélé Depression dust storm of 8 December 2011 and use high-resolution WRF modeling to assess the dynamical processes during the onset of the storms in more depth. Our results highlight the generation of terrain-induced downslope winds in response to the transition of the atmospheric flow from a subcritical to supercritical state in all three cases. These events precede the unbalanced adjustment processes in the lee of the mountain ranges that produced larger-scale dust aerosol mobilization and transport. We see that only the higher-resolution data sets can resolve the mesoscale processes, which are mainly responsible for creating strong low-level terrain-induced downslope winds leading to the initial dust storms.

  1. Tsena, ravnaja zhizni / Leonid Stolovitsh

    Index Scriptorium Estoniae

    Stolovitš, Leonid, 1929-2013

    2003-01-01

    Saksa arhitektuuriteoreetikust ja graafikust Kurt Magritzist ja tema fashismivastase sisuga graafikast ja joonistustest aastatest 1933-1945. 1966. a. mais oli K. Magritzi graafika näitus Tartu Kunstimuuseumis

  2. The METEOR initiative: the way forward for optimal, worldwide data integration to improve care for RA patients.

    Science.gov (United States)

    van den Berg, R; van der Heijde, D; Landewé, R; van Lambalgen, K; Huizinga, T

    2014-01-01

    The METEOR (Measurement of Efficacy of Treatment in the 'Era of Outcome' in Rheumatology) initiative aims at improving care for RA patients by assisting rheumatologists in strict monitoring and tight control of disease activity. The state of the art of the METEOR initiative, the technical organisation of the database and future perspectives are described. RA patients are followed in the daily practice setting; (follow-up) visits are registered via the tool or upload facility. The METEOR tool is an easy-to-use, stand-alone, web-based program free available to rheumatologists worldwide. The upload facility is developed to meet the wish of many local registries to upload their data into the METEOR database to benefit from benchmark and research facilities without giving up their own registries. Rheumatologists will always have access to full patient details of their own patients. Yet, patient identifying data are stored in an encrypted manner in the METEOR database in order to provide full patient anonymity to all other users. While the tool can be used without IT involvement, the upload facility requires IT support. The incorporation of local registries into the METEOR database is time consuming, requires endeavours as well as technical support of both the local registries and the METEOR organisation, however, the combination of the tool and the upload facility has enabled the successful creation of a strong research database with real life data of 35,000 RA patients with more than 140,000 visits from all over the world! The METEOR database offers the unique opportunity to study daily practice care as well as dedicated research questions in worldwide real life setting. Moreover, the METEOR's collective experience can be accessed by those who think about initiating patient registries for all sorts of purposes. Consequently, these well-designed registries may help in treating RA patients even more successfully in future.

  3. Solar Wind Disturbances Related to Geomagnetic Storms

    Science.gov (United States)

    Tan, A.; Lyatsky, W. B.

    2001-12-01

    We used the superposed epoch method to reconstruct a typical behavior of solar wind parameters before and during strong isolated geomagnetic storms. For this analysis we used 130 such geomagnetic storms during the period of 1966-2000. The results obtained show that a typical disturbance in the solar wind responsible for geomagnetic storm generation is associated with the propagation of high-speed plasma flow compressing ambient solar wind plasma and interplanetary magnetic field (IMF) ahead of this high-speed flow. This gives rise to enhanced magnetic field, plasma density, plasma turbulence and temperature, which start to increase several hours before geomagnetic storm onset. However, the IMF Bz (responsible for geomagnetic storm onset) starts to increase significantly later (approximately 6-7 hours after maximal variations in plasma density and IMF By). The time delay between peaks in IMF Bz and plasma density (and IMF By) may be a result of draping of high-speed plasma streams with ambient magnetic field in the (z-y) plane as discussed by some authors. This leads to an increase first in plasma density and IMF By ahead of a high-speed flow, which is followed by an increase in IMF Bz. This simple model allows us to predict that the probability for geomagnetic storm generation should depend on which edge of a high-speed flow encounters the Earth's magnetosphere. The probability for geomagnetic storm generation is expected to be maximal when the flow encounters the magnetosphere by its north-west edge for negative IMF By and south-west edge for positive IMF By.

  4. Analysis of Storm Surge in Hong Kong

    Science.gov (United States)

    Kao, W. H.

    2017-12-01

    A storm surge is a type of coastal flood that is caused by low-pressure systems such as tropical cyclones. Storm surges caused by tropical cyclones can be very powerful and damaging, as they can flood coastal areas, and even destroy infrastructure in serious cases. Some serious cases of storm surges leading to more than thousands of deaths include Hurricane Katrina (2005) in New Orleans and Typhoon Haiyan (2013) in Philippines. Hong Kong is a coastal city that is prone to tropical cyclones, having an average of 5-6 tropical cyclones entering 500km range of Hong Kong per year. Storm surges have seriously damaged Hong Kong in the past, causing more than 100 deaths by Typhoon Wanda (1962), and leading to serious damage to Tai O and Cheung Chau by Typhoon Hagupit (2008). To prevent economic damage and casualties from storm surges, accurately predicting the height of storm surges and giving timely warnings to citizens is very important. In this project, I will be analyzing how different factors affect the height of storm surge, mainly using data from Hong Kong. These factors include the windspeed in Hong Kong, the atmospheric pressure in Hong Kong, the moon phase, the wind direction, the intensity of the tropical cyclone, distance between the tropical cyclone and Hong Kong, the direction of the tropical cyclone relative to Hong Kong, the speed of movement of the tropical cyclone and more. My findings will also be compared with cases from other places, to see if my findings also apply for other places.

  5. The StoRM Certification Process

    International Nuclear Information System (INIS)

    Ronchieri, Elisabetta; Dibenedetto, Michele; Zappi, Riccardo; Dal Pra, Stefano; Aiftimiei, Cristina; Traldi, Sergio

    2011-01-01

    StoRM is an implementation of the SRM interface version 2.2 used by all Large Hadron Collider (LHC) experiments and non-LHC experiments as SRM endpoint at different Tiers of Worldwide LHC Computing Grid. The complexity of its services and the demand of experiments and users are increasing day by day. The growing needs in terms of service level by the StoRM users communities make it necessary to design and implement a more effective testing procedure to quickly and reliably validate new StoRM candidate releases both in code side (for example via test units, and schema valuator) and in final product software (for example via functionality tests, and stress tests). Testing software service is a very critical quality activity performed in a very ad-hoc informal manner by developers, testers and users of StoRM up to now. In this paper, we describe the certification mechanism used by StoRM team to increase the robustness and reliability of the StoRM services. Various typologies of tests, such as quality, installation, configuration, functionality, stress and performance, defined on the base of a set of use cases gathered as consequence of the collaboration among the StoRM team, experiments and users, are illustrated. Each typology of test is either increased or decreased easily from time to time. The proposed mechanism is based on a new configurable testsuite. This is executed by the certification team, who is responsible for validating the release candidate package as well as bug fix (or patch) package, given a certain testbed that considers all possible use cases. In correspondence of each failure, the package is given back to developers waiting for validating a new package.

  6. Insights into Meteoric 10Be Dynamics and Climate Stability along the Hawaiian Kohala Climosequence

    Science.gov (United States)

    Dixon, J. L.; Chadwick, O.

    2017-12-01

    We measure meteoric 10Be in soils across a well-studied climate gradient spanning Kohala, Hawaii to provide new understanding of the isotope behavior in soils and constraints on nuclide delivery rates to Earth's surface. Annual rainfall across the Kohala climogradient varies from 16 - 300 cm, with Hawaiian soils reflecting evolution over the past 150 ka, the nominal age of the volcanic parent material. We analyzed a sequence of nine soil profiles for meteoric 10Be and compared with previously measured data on soil chemistry and dust fluxes. In the Kohala system, soil inventories of 10Be span 40-300 x 109 atom/cm2 and generally increase linearly with rainfall, consistent with precipitation-driven fluxes and the high retention of 10Be in clay-rich soil horizons. However, nuclide inventories dramatically decrease for soils at rainfall >140 cm/y. The observed decrease corresponds with other strong changes in weathering intensity across the climate gradient, associated with previously studied and recognized pedogenic thresholds. These thresholds represent abrupt transitions in soil chemistry related to increased throughflow of soil solutions, decreases in base saturation and pH, and the destruction of phyllosilicates and replacement with amorphous oxyhydroxides. Meteoric-derived ages, based on 10Be-flux estimates and measured inventories are uniform for dry soils ( 60ka), but far less than the known substrate age (150ka), indicating that actual delivery rates are lower than predicted from current models in this region. Despite the offset in predicted and substrate ages, the consistency in pattern suggests that the rainfall gradient over the 150 thousand years of soil development has not deviated significantly from its present structure. Furthermore, based on clear 10Be losses in soils with high moisture availability, our results indicate meteoric 10Be may not be a robust tracer of soil age and movement in systems with high rainfall and weathering intensity and low soil

  7. Mesospheric temperatures estimated from the meteor radar observations at Mohe, China

    Science.gov (United States)

    Liu, Libo; Liu, Huixin; Chen, Yiding; Le, Huijun

    2017-04-01

    In this work, we report the estimation of mesospheric temperatures at 90 km height from the observations of the VHF all-sky meteor radar operated at Mohe (53.5 °N, 122.3° E), China, since August 2011. The kinetic temperature profiles retrieved from the observations of Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) onboard the Thermosphere, Ionosphere, Mesosphere, Energetics, and Dynamics (TIMED) satellite are processed to provide the temperature (TSABER) and temperature gradient (dT/dh) at 90 km height. Based on the SABER temperature profile data an empirical dT/dh model is developed for the Mohe latitude. First, we derive the temperatures from the meteor decay times (Tmeteor) and the Mohe dT/dh model gives prior information of temperature gradients. Secondly, the full-width of half maximum (FWHM) of the meteor height profiles is calculated and further used to deduce the temperatures (TFWHM) based on the strong linear relationship between FWHM and TSABER. The temperatures at 90 km deduced from the decay times (Tmeteor) and from the meteor height distributions (TFWHM) at Mohe are validated/calibrated with TSABER. The temperatures present a considerable annual variation, being maximum in winter and minimum in summer. Harmonic analyses reveal that the temperatures have an annual variation consistent with TSABER. Our work suggests that the FWHM has a good performance in routine estimation of the temperatures. It should be pointed out that the slope of FWHM and TSABER is 10.1 at Mohe, which is different from that of 15.71 at King Sejong (62.2° S, 58.8° E) station. Acknowledgments The TIMED/SABER kinetic temperature (version 2.0) data are provided by the SABER team through http://saber.gats-inc.com/. The temperatures from the NRLMSISE-00 model are calculated using Aerospace Blockset toolbox of MATLAB (2016a). This research was supported by National Natural Science Foundation of China (41231065, 41321003). We acknowledge the use of meteor radar

  8. The determination of parameters of the upper atmosphere by the radio-meteor measurements

    Science.gov (United States)

    Shamukov, Damir; Fahrutdinova, Antonina; Nugmanov, Ildus

    Study of the parameters of the upper atmosphere on the basis of amplitude-time characteristics of meteor ionization. Together with various methods meteor observations (optical, photographic, visual, spectral, television), the most effective modern method of studying meteors means is radar. The development of modern radar technology allows us to apply this tool to monitor meteors. This method allows to determine the parameters of temperature and atmospheric pressure. Actual issue is the development of methods of determining the coefficient of ambipolar diffusion, pressure, density and temperature of the atmosphere in the meteor zone. Graph of amplitude-time characteristic has the exponential form. This fact allows to determine the coefficient of ambipolar diffusion. New algorithm for estimation of the ambipolar diffusion coefficient based on a set of statistical methods and techniques of digital signal processing. There are decomposition of data on singular values and Prony's method. This method of modeling the sample data as a linear combination of exponential. Prony’s method approximates the amplitude-time characteristics of using a deterministic exponential model. Input data is amplitude-time characteristics of the meteor trail x[1]…x[N]. The method allows to estimate x[n] p-membered exponential model: begin{center} x[n]=Sigma2A_{k}exp[a _{k}(n-1)]Cos[2Pif_{k}(n-1)T+Fi_{k}] (1) end{center} 1<=n<=N, T - time range in seconds, A_{k} and a_{k} - amplitude and damping coefficient, f_{k} and Fi_{k} - frequency and initial phase. The equation describing the decay of radio signal: begin{center} A=A_{0}exp(-16Pi^{2}$D_{a}t/λ (2) ). (2) lambdaλ - radar wavelength. The output of the algorithm - the ambipolar diffusion coefficient values D_{a}. begin{center} T=0.5lnD-T_{0}+mg/2kT_{0} (3) Last equation allows to obtain temperature values using the coefficient of ambipolar diffusion depends on the height.

  9. The Application of New Optical Meteor Flux Routines to the 2014 May Camelopardalid Outburst

    Science.gov (United States)

    Blaauw, Rhiannon; Campbell-Brown, Margaret; Kingery, Aaron

    2015-01-01

    NASA's Meteoroid Environment Office (MEO) is charged with monitoring the meteoroid environment in near-Earth space for the protection of satellites and spacecraft. The MEO has recently established eight wide-field meteor cameras, four cameras each at two separate stations to calculate automated meteor fluxes in the millimeter size range. Each camera consists of a 17 mm focal length Schneider lens on a Watec 902H2 Ultimate CCD video camera, producing a 21.7 x 15.5 degree field of view. This configuration has a limiting meteor magnitude of about +5. One station is located at Marshall Space Flight Center in Huntsville, Alabama and the other is 31.8 kilometers away at a school in Decatur, Alabama. Both single-station and double-station fluxes are calculated every morning using data from the previous night. The flux algorithms employed here differ from others currently in use in that they do not assume a single height for all meteors observed in the common camera volume. In the MEO system, the volume is broken up into a set of height intervals, with the collecting areas determined by the position of the active shower or sporadic source radiant. The flux per height interval is calculated and summed to obtain the total meteor flux. As the mass is also computed from the photometry, a mass flux can also be calculated. First, a weather algorithm indicates if sky conditions are clear enough to calculate fluxes, at which point a limiting magnitude algorithm is employed. The limiting magnitude algorithm performs a fit of stellar magnitudes versus camera intensities. The stellar limiting magnitude is derived from this and converted to a limiting meteor magnitude for the active shower or sporadic source. The fluxes are scaled to an average limiting magnitude throughout the night and zenithal hourly rate (ZHR's) are output daily along with flux values. In addition to this process, results will be presented as applied to the 2014 May Camelopardalid outburst, using data from several

  10. Lunar Regolith Maturity Controlled By Ilmenite Content And Micro-Meteor Flux Variability

    Science.gov (United States)

    Schmitt, H. H.

    2013-12-01

    Synthesis of Is/FeO maturity indexes for Apollo 17 regolith samples in the valley of Taurus-Littrow on the Moon indicate that high levels of ilmenite in the samples significantly reduces the level of this indicator of space exposure. The analysis, along with consideration of regolith glass characteristics, also discloses that micro-meteor fluxes vary over geologic time, presumably in response to significant impact events in the Asteroid Belt. Surface samples of ilmenite-poor, silicate-rich regolith have about 80-90% higher maturity indexes than surface samples of ilmenite-rich, basaltic regolith of comparable exposure. For comparison of the history of various regolith exposures to the space environment, Taurus-Littrow's light mantle avalanche deposit, the youngest large area stratigraphic unit, provides a specific time horizon. For at least the last ~110 million years, the currently estimated age of the light mantle avalanche, most near surface (upper 1-5cm) regolith has had approximately the same exposure to micro-meteors. The surface of the largely ilmenite-rich basalt fill in the valley has been exposed to space at least as long or possibly 30 million years longer than the light mantle, based on exposure ages for large boulder ejecta in the Camelot cluster of craters. High apparent maturity (Is/FeO >80), however, exists only on three types of regolith surfaces: (1) the North Massif apron (e.g., 77431), (2) the light mantle avalanche deposit (e.g., 72161), and (3) low ilmenite basalt (e.g., 72150). Only intermediate to low maturity (Is/FeO Crater as a unit stratigraphically overlying the orange ash, has exceptionally low maturity (8% agglutinates and Is/FeO = 5) but an unusually high amount of "ropy" glass (14-18%). (Ropy glass normally constitutes less than on percent of new Taurus-Littrow regolith. It forms within fresh impact craters as a result of macro-meteor impacts, but the current flux of micro-meteors disaggregates such glass within a million years or

  11. Healthcare4VideoStorm: Making Smart Decisions Based on Storm Metrics

    Directory of Open Access Journals (Sweden)

    Weishan Zhang

    2016-04-01

    Full Text Available Storm-based stream processing is widely used for real-time large-scale distributed processing. Knowing the run-time status and ensuring performance is critical to providing expected dependability for some applications, e.g., continuous video processing for security surveillance. The existing scheduling strategies’ granularity is too coarse to have good performance, and mainly considers network resources without computing resources while scheduling. In this paper, we propose Healthcare4Storm, a framework that finds Storm insights based on Storm metrics to gain knowledge from the health status of an application, finally ending up with smart scheduling decisions. It takes into account both network and computing resources and conducts scheduling at a fine-grained level using tuples instead of topologies. The comprehensive evaluation shows that the proposed framework has good performance and can improve the dependability of the Storm-based applications.

  12. Thyrotoxicosis and Choledocholithiasis Masquerading as Thyroid Storm

    Directory of Open Access Journals (Sweden)

    Christian L. Horn

    2017-01-01

    Full Text Available A 26-year-old female, thirteen months postpartum, presented to the emergency department for four weeks of epigastric abdominal pain, pruritus, new onset jaundice, and 11.3 kgs (25 lbs unintentional weight loss. On examination, she was afebrile, tachycardic, alert, and oriented and had jaundice with scleral icterus. Labs were significant for undetectable TSH, FT4 that was too high to measure, and elevated total bilirubin, direct bilirubin, alkaline phosphatase, and transaminases. Abdominal ultrasound revealed cholelithiasis without biliary ductal dilation. Treatment for presumed thyroid storm was initiated. Further work-up with magnetic resonance cholangiopancreatography (MRCP revealed an obstructing cholelith within the distal common bile duct. With the presence of choledocholithiasis explaining the jaundice and abdominal pain, plus the absence of CNS alterations, the diagnosis of thyroid storm was revised to thyrotoxicosis complicated by choledocholithiasis. Endoscopic retrograde cholangiopancreatogram (ERCP with sphincterotomy was performed to alleviate the biliary obstruction, with prompt symptomatic improvement. Thyroid storm is a rare manifestation of hyperthyroidism with a high rate of morbidity and mortality. The diagnosis of thyroid storm is based on clinical examination, and abnormal thyroid function tests do not correlate with disease severity. Knowledge of the many manifestations of thyroid storm will facilitate a quick and accurate diagnosis and treatment.

  13. Mathematical modeling of tornadoes and squall storms

    Directory of Open Access Journals (Sweden)

    Sergey A. Arsen’yev

    2011-04-01

    Full Text Available Recent advances in modeling of tornadoes and twisters consist of significant achievements in mathematical calculation of occurrence and evolution of a violent F5-class tornado on the Fujita scale, and four-dimensional mathematical modeling of a tornado with the fourth coordinate time multiplied by its characteristic velocity. Such a tornado can arise in a thunderstorm supercell filled with turbulent whirlwinds. A theory of the squall storms is proposed. The squall storm is modeled by running perturbation of the temperature inversion on the lower boundary of cloudiness. This perturbation is induced by the action of strong, hurricane winds in the upper and middle troposphere, and looks like a running solitary wave (soliton; which is developed also in a field of pressure and velocity of a wind. If a soliton of a squall storm gets into the thunderstorm supercell then this soliton is captured by supercell. It leads to additional pressure fall of air inside a storm supercell and stimulate amplification of wind velocity here. As a result, a cyclostrophic balance inside a storm supercell generates a tornado. Comparison of the radial distribution of wind velocity inside a tornado calculated by using the new formulas and equations with radar observations of the wind velocity inside Texas Tornado Dummit in 1995 and inside the 3 May 1999 Oklahoma City Tornado shows good correspondence.

  14. SAGE III Meteor-3M L1B Solar Event Transmission Data (HDF-EOS) V004

    Data.gov (United States)

    National Aeronautics and Space Administration — SAGE III Meteor-3M L1B Solar Event Transmission Data are Level 1B pixel group transmission profiles for a single solar event. The Stratospheric Aerosol and Gas...

  15. Examples of storm impacts on barrier islands: Chapter 4

    Science.gov (United States)

    Plant, Nathaniel G.; Doran, Kara; Stockdon, Hilary F.

    2017-01-01

    This chapter focuses on the morphologic variability of barrier islands and on the differences in storm response. It describes different types of barrier island response to individual storms, as well as the integrated response of barrier islands to many storms. The chapter considers case study on the Chandeleur Island chain, where a decadal time series of island elevation measurements have documented a wide range of barrier island responses to storms and long-term processes that are representative of barrier island behaviour at many other locations. These islands are low elevation, extremely vulnerable to storms and exhibit a diversity of storm responses. Additionally, this location experiences a moderately high rate of relative sea-level rise, increasing its vulnerability to the combined impacts of storms and long-term erosional processes. Understanding how natural processes, including storm impacts and intervening recovery periods interact with man-made restoration processes is also broadly relevant to understand the natural and human response to future storms.

  16. The Meteor and Fireball Network of the Sociedad Malagueña de Astronomía

    Science.gov (United States)

    Aznar, J. C.; Castellón, A.; Gálvez, F.; Martínez, E.; Troughton, B.; Núñez, J. M.; Villalba, F.

    2016-12-01

    One of the most active fields in which has been dedicated the Málaga Astronomical Society (SMA) is the meteors and meteor showers. Since 2006 the SMA refers parts of visual observations and photographic detections from El Pinillo station (Torremolinos, Spain). In 2013 it was decided to give an extra boost to get a camera network that allowed the calculation of the atmospheric trajectory of a meteoroid and, where possible, obtaining the orbital elements.

  17. Effect of ionic composition of meteor trace on its relaxation time in the presence of external electric field

    International Nuclear Information System (INIS)

    Klimov, M.P.; Lyatskaya, A.M.

    1989-01-01

    The dissipation of meteor trace as the function of ionic composition and electric field is investigated numerically. Critical values of electric field E 1 and E 2 are determined. At E 1 the dissipation process is similar to the diffusion one; lifetimes are proportional to diffusion coefficient. At E 1 2 - the dissipation process falls into two phases with different character of lifetime dependence on meteor trace mass. At E>E 2 lifetime does not depend on the electric field

  18. Meteor observations of forward-scattered FM-radio echo in Busan (Korea)

    Science.gov (United States)

    Kim, K.-M.; Cho, M.; Kim, T.; Hong, J.; Kang, Y.-W.; Ahn, S.-H.; Lee, S. H.; Song, I.-O.

    2015-01-01

    The detection system of forward-scattered FM-radio signals has been newly set up in Korea Science Academy of KAIST in Busan, Korea. The meteor observations using a 2.5m-long Yagi antenna have been carried out since May, 2015. The radio station we use is the NHK broadcasting station (85.20MHz) located in Hokkaido, Japan which is approximately 1,400 km away from Busan and is well below the local horizon. The detection is successfully running, and we examine the observed data reliability by simply checking long-lasting echoes. An additional observing station is being installed in the nearby city of Ulsan to make a cross-check. We analyze the results to find the diurnal and daily variation of the meteor rates. We are planning to pursue long-term observations in order to educate students.

  19. Turkish meteor surveillance systems and network: Impact craters and meteorites database

    Science.gov (United States)

    Unsalan, O.; Ozel, M. E.; Derman, I. E.; Terzioglu, Z.; Kaygisiz, E.; Temel, T.; Topoyan, D.; Solmaz, A.; Yilmaz Kocahan, O.; Esenoglu, H. H.; Emrahoglu, N.; Yilmaz, A.; Yalcinkaya, B. O.

    2014-07-01

    In our project, we aim toward constructing Turkish Meteor Surveillance Systems and Network in Turkey. For this goal, video observational systems from SonotaCo (Japan) were chosen. Meteors are going to be observed with the specific cameras, their orbits will be calculated by the software from SonotaCo, and the places where they will be falling / impacting will be examined by field trips. The collected meteorites will be investigated by IR-Raman Spectroscopic techniques and SEM-EDX analyses in order to setup a database. On the other hand, according to our Prime Ministry Ottoman Archives, there are huge amounts of reports of falls for the past centuries. In order to treat these data properly, it is obvious that processing systems should be constructed and developed.

  20. Pacific Northwest Storms Situation Report # 7

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-12-21

    Despite a small storm that came through the area last night with wind gusts peaking at 45 MPH, progress continues to be made in restoring power to customers who lost power during the December 14-15 storms which hit the Pacific Northwest region. Currently, 95,971 customers remain without power, down from 1.8 million customers. The wind storm which affected the area yesterday was not as bad as previously expected, with the majority of the customer outages in the BC Hydro region, and 3,000 additional customer outages in the Puget Sound Energy service area. The customers without power represent 5 percent of customers in the affected utility service areas of Washington. The majority of customers without power are served by Puget Sound Energy, BC Hydro, and Seattle City Light.

  1. SEP's during Halloween storms and space weather

    Science.gov (United States)

    Hady, Ahmed; Saleh, Ahmed

    2014-05-01

    The solar energetic particles (SEP's) could be accelerated to higher energies of order of MeV per nucleon. A modified model for SEP's acceleration has been given and applied for Halloween storms event during the decline phase of solar cycle 23. The estimated values of the solar magnetic field during the solar particle event were introduced. The solar magnetic field describes a sophisticated feature of discrete sectors/regions over the period that starts from 28 October 2003 to 4 November 2003. The applications of the suggested model on the solar particle event show that a homogeneous structure is in agreement with the observations. The SEP and CME events lead to severe effects in geo-space and on earth, such as power blackouts, disruption of communications, and damage to satellites. Daily Geomagnetic storm changes, during Halloween storms were studied

  2. The assessment of Urban Storm Inundation

    Science.gov (United States)

    Setyandito, Oki; Wijayanti, Yureana; Alwan, Muhammad; Chayati, Cholilul; Meilani

    2017-12-01

    A Sustainable and integrated plan in order to solve urban storm inundation problem, is an urgent issue in Indonesia. A reliable and complete datasets of urban storm inundation area in Indonesia should become its basis to give clear description of inundation area for formulating the best solution. In this study, Statistics Indonesia data in thirty three provinces were assessed during 2000 until 2012 providing data series of urban flood area, flood frequency and land cover changes. Drainage system condition in big cities should be well understood to ensure its infrastructure condition and performance. If inundation occurred, it can be concluded that there is drainage system problem. Inundation data is also important for drainage system design process in the future. The study result is provided estimation of urban storm inundation area based on calculation of Statistics Indonesia data. Moreover, this study is preceded by analyzing and reviewing the capacity of existing drainage channel, using case study of Mataram, West Nusa Tenggara. Rainfall data was obtained from three rainfall stations surround Mataram City. The storm water quantity was calculated using three different approaches as follows: 1) Rational Method; 2) Summation of existing inundation and surface run off discharge; 3) Discharge calculation from existing channel dimensions. After that, the result of these approaches was compared. The storm water quantity gap was concluded as quantity of inundation. The result shows that 36% of drainage channel in Brenyok Kanan River sub system could not accommodate the storm water runoff in this area, which causing inundation. The redesign of drainage channel using design discharge from Rational Method approach should be performed. Within area with the lowest level topography, a construction of detention or storage pond is essential to prevent inundation in this area. Furthermore, the benefits and drawbacks of the statistics database are discussed. Recommendations

  3. Is electric charge separation the main process for kinetic energy transformation into the meteor phenomenon?

    Czech Academy of Sciences Publication Activity Database

    Spurný, Pavel; Ceplecha, Zdeněk

    2008-01-01

    Roč. 489, č. 1 (2008), s. 449-454 ISSN 0004-6361 R&D Projects: GA ČR GA205/08/0411 Grant - others:EU(XE) MRTN-CT-2006-035519 Institutional research plan: CEZ:AV0Z10030501 Keywords : meteors * meteoroids Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.153, year: 2008

  4. Search for faint meteors on the orbits of Pribram and Neuschwanstein meteorites

    Czech Academy of Sciences Publication Activity Database

    Koten, Pavel; Vaubaillon, J.; Čapek, David; Vojáček, Vlastimil; Spurný, Pavel; Štork, Rostislav; Colas, F.

    2014-01-01

    Roč. 239, September (2014), s. 244-252 ISSN 0019-1035 R&D Projects: GA ČR GA205/09/1302; GA MŠk 7AMB13FR006 Grant - others:UK(CZ) SVV-26089 Institutional support: RVO:67985815 Keywords : meteors * meteorites * interplanetary dust Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.038, year: 2014

  5. Radar observations of Taurid complex meteor showers in 2003: activity and mass distribution

    Czech Academy of Sciences Publication Activity Database

    Pecina, Petr; Pecinová, Drahomíra; Porubčan, V.; Toth, J.

    2005-01-01

    Roč. 95, 1-4 (2005), s. 681-688 ISSN 0167-9295. [Meteoroids 2004. London, Ontario, 16.08.2004-20.08.2004] R&D Projects: GA ČR GA205/03/1405 Institutional research plan: CEZ:AV0Z1003909 Keywords : Taurid complex * meteor showers * activity Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.975, year: 2005

  6. Bangs and meteors from the quiet comet 15P/Finlay

    Czech Academy of Sciences Publication Activity Database

    Ye, Q.Z.; Brown, P. G.; Bell, Ch.; Gao, X.; Mašek, Martin; Hui, M.T.

    2015-01-01

    Roč. 814, č. 1 (2015), s. 1-10, č. článku 79. ISSN 0004-637X R&D Projects: GA MŠk(CZ) LG13007 EU Projects: European Commission(XE) 283783 - GLORIA Institutional support: RVO:68378271 Keywords : comets * 15P/Finlay * meteorites * meteors * meteoroids Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 5.909, year: 2015

  7. On the new belt of relativistic electrons at L=1.9 according to Meteor data

    International Nuclear Information System (INIS)

    Ginzburg, E.A.; Malyshev, A.B.; Pustosvetov, V.P.

    1993-01-01

    On the base of regular observations of energetic particle fluxes by means of the 'Meteor' satellite apparatus is found the new phenomenon - the narrow belt of trapped relativistic electrons with the maximum at L=1.8-1.9. Continuous observations permit to obtain elaborate information on the features of the belt spatial structure, its dynamics and energy spectra with the moment of its generation 24.3.1991

  8. Meteoroid orbits from video meteors. The case of the Geminid stream

    Czech Academy of Sciences Publication Activity Database

    Hajduková jr., M.; Koten, Pavel; Kornoš, L.; Toth, J.

    2017-01-01

    Roč. 143, SI (2017), s. 89-98 ISSN 0032-0633. [Meteoroids 2016. Nordwijk, 06.06.2016-10.06.2016] R&D Projects: GA ČR GA14-25251S Institutional support: RVO:67985815 Keywords : meteors * meteoroid orbits * meteoroid streams Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 1.892, year: 2016

  9. Adaptive mesh refinement for storm surge

    KAUST Repository

    Mandli, Kyle T.

    2014-03-01

    An approach to utilizing adaptive mesh refinement algorithms for storm surge modeling is proposed. Currently numerical models exist that can resolve the details of coastal regions but are often too costly to be run in an ensemble forecasting framework without significant computing resources. The application of adaptive mesh refinement algorithms substantially lowers the computational cost of a storm surge model run while retaining much of the desired coastal resolution. The approach presented is implemented in the GeoClaw framework and compared to ADCIRC for Hurricane Ike along with observed tide gauge data and the computational cost of each model run. © 2014 Elsevier Ltd.

  10. Two-dimensional computer simulation of hypervelocity impact cratering: some preliminary results for Meteor Crater, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, J.B.; Burton, D.E.; Cunningham, M.E.; Lettis, L.A. Jr.

    1978-04-01

    A computational approach used for subsurface explosion cratering has been extended to hypervelocity impact cratering. Meteor (Barringer) Crater, Arizona, was selected for our first computer simulation because it was the most thoroughly studied. It is also an excellent example of a simple, bowl-shaped crater and is one of the youngest terrestrial impact craters. Shoemaker estimates that the impact occurred about 20,000 to 30,000 years ago (Roddy (1977)). Initial conditions for this calculation included a meteorite impact velocity of 15 km/s. meteorite mass of 1.57E + 08 kg, with a corresponding kinetic energy of 1.88E + 16 J (4.5 megatons). A two-dimensional Eulerian finite difference code called SOIL was used for this simulation of a cylindrical iron projectile impacting at normal incidence into a limestone target. For this initial calculation a Tillotson equation-of-state description for iron and limestone was used with no shear strength. A color movie based on this calculation was produced using computer-generated graphics. Results obtained for this preliminary calculation of the formation of Meteor Crater, Arizona, are in good agreement with Meteor Crater Measurements.

  11. Two-dimensional computer simulation of hypervelocity impact cratering: some preliminary results for Meteor Crater, Arizona

    International Nuclear Information System (INIS)

    Bryan, J.B.; Burton, D.E.; Cunningham, M.E.; Lettis, L.A. Jr.

    1978-04-01

    A computational approach used for subsurface explosion cratering has been extended to hypervelocity impact cratering. Meteor (Barringer) Crater, Arizona, was selected for our first computer simulation because it was the most thoroughly studied. It is also an excellent example of a simple, bowl-shaped crater and is one of the youngest terrestrial impact craters. Shoemaker estimates that the impact occurred about 20,000 to 30,000 years ago [Roddy (1977)]. Initial conditions for this calculation included a meteorite impact velocity of 15 km/s. meteorite mass of 1.57E + 08 kg, with a corresponding kinetic energy of 1.88E + 16 J (4.5 megatons). A two-dimensional Eulerian finite difference code called SOIL was used for this simulation of a cylindrical iron projectile impacting at normal incidence into a limestone target. For this initial calculation a Tillotson equation-of-state description for iron and limestone was used with no shear strength. A color movie based on this calculation was produced using computer-generated graphics. Results obtained for this preliminary calculation of the formation of Meteor Crater, Arizona, are in good agreement with Meteor Crater Measurements

  12. Meteor Observational Data Visualisation in the Equatorial Coordinate System Using Information Technology

    Science.gov (United States)

    Golovashchenko, V. A.; Kolomiyets, S. V.

    As a result of dynamic evolution of IT industry and astronomical research in the XXI century, which have resulted in obtaining large and complex data sets known as Big Data (e.g. data from the European Space Agency missions, such as GAIA mission, etc.), as well as due to rapid development of computer technologies, astronomy and computer science have become closely linked to each other. In the XXI century, Information technology has become an essential part of understanding the world around. This paper presents a solution to the problem of meteor data representation in the second equatorial coordinate (RA-Dec) system using Information Technology. Such a visualisation solution is needed to analyse the results of experiments based on the radar observations conducted in 1972-1978 (stage 1 - the data obtained in 1972 comprise 10,247 meteor orbits), which have been accumulated and stored in the Meteor Database of the Kharkiv National University of Radio Electronics (KNURE). A sample set of data with their characteristics and details about their delivery has been presented by (Kashcheyev & Tkachuk, 1980). An electronic calculator application was developed by employing the model of data visualisation in the form of celestial hemispheres using the object-oriented programming language C#.

  13. Telescopic and meteor observation of `Oumuamua, the first known interstellar asteroid

    Science.gov (United States)

    Ye, Quan-Zhi

    2018-04-01

    1I/2017 U1 ('Oumuamua), a recently discovered asteroid in a hyperbolic orbit, is the first macroscopic object of extrasolar origin identified in the solar system. I will present imaging and spectroscopic observations of 'Oumuamua as well as a search of meteor activity potentially linked to this object using the Canadian Meteor Orbit Radar. We find that 'Oumuamua exhibits a moderate spectral gradient of 10%+-6% per 100 nm, a value lower than that of outer solar system bodies, indicative of a formation and/or previous residence in a warmer environment. Imaging observation and spectral line analysis show no evidence that 'Oumuamua is presently active. Negative meteor observation is as expected, since ejection driven by sublimation of commonly known cometary species such as CO requires an extreme ejection speed of ~40 m/s at ~100 au in order to reach the Earth. No obvious candidate stars are proposed as the point of origin for 'Oumuamua. Given a mean free path of ~109 ly in the solar neighborhood, 'Oumuamua has likely spent a very long time in interstellar space before encountering the solar system.

  14. Eureka, 80° N, SKiYMET meteor radar temperatures compared with Aura MLS values

    Directory of Open Access Journals (Sweden)

    C. E. Meek

    2013-07-01

    Full Text Available The meteor trail echo decay rates are analysed on-site to provide daily temperatures near 90 km. In order to get temperatures from trail decay times, either knowledge of the pressure or the background temperature height gradient near 90 km is required (Hocking, 1999. Hocking et al. (2004 have developed an empirical 90 km temperature gradient model depending only on latitude and time of year, which is used in the SKiYMET on-site meteor temperature analysis. Here we look at the sensitivity of the resulting temperature to the assumed gradient and compare it and the temperatures with daily AuraMLS averages near Eureka. Generally there is good agreement between radar and satellite for winter temperatures and their short-term variations. However there is a major difference in mid-summer both in the temperatures and the gradients. Increased turbulence in summer, which may overwhelm the ambipolar diffusion even at 90 km, is likely a major factor. These differences are investigated by generating ambipolar-controlled decay times from satellite pressure and temperature data at a range of heights and comparing with radar measurements. Our study suggests it may be possible to use these data to estimate eddy diffusion coefficients at heights below 90 km. Finally the simple temperature analysis (using satellite pressures, and a standard meteor wind analysis are used to compare mean diurnal variations of temperature (T with those of zonal wind (U and meridional wind (V in composite multi-year monthly intervals.

  15. Meteor showers associated with the low-albedo Near-Earth Asteroid 2000 PG3

    Science.gov (United States)

    Babadzhanov, P. B.

    Using mid infrared and visible photometry, Fernandez et al. (2001) derived new effective radius and geometric albedo for NEO 2000 PG_3, moving on comet-like orbit, equal to 3.08 km and 0.021 accordingly. We investigated the orbital evolution of 2000 PG_3 under gravitational action of six planets (Mercury to Saturn) over one cycle of variation of perihelion argument. According to the method published (see e.g. Babadzhanov 2001), the theoretical geocentric radiants and velocities of four possible meteor showers associated with this object are determined. Using published data, the theoretically predicted showers are identified with the observed ones, namely, night-time Northern and Southern δ-Piscids, and associations 35 and 41 from the catalogue of Kashcheev et al. (1967). The character of the orbit and low albedo of 2000 PG_3, and the existence of observed meteor showers associated with 2000 PG_3 provide evidence supporting the conjecture that this object may be of cometary nature. References Babadzhanov, P.B. 2001, A&A 371, 329-335 Fernandez, Y.R., Jewitt, D.C., & Shepard, S.S. 2001, AphJ 553: L197-L200 Kashcheev, B.L., Lebedinets, V.N., & Lagutin, M.F. 1967, Meteoric Phenomena in the Earth atmosphere, Nauka. Moscow

  16. Gravity wave momentum fluxes studies using OH imager, Na Lidar and meteor radar

    Science.gov (United States)

    Andrioli, Vania Fatima; Clemesha, Barclay; Batista, Paulo

    In this paper we have used atmospheric data, from 80 to 100 km altitude, measured by three different equipments for studying gravity wave activity. An OH CCD imager and a meteor radar located at Cachoeira Paulista (22.7 ° S, 45 ° W) were used together with a sodium lidar operating at São José dos Campos (23.1 ° S, 45.9 °W). We have used two years of data from 2007 to 2008 with 28 days of simultaneous data, totalizing 148 hours of observations. In an earlier presentation we inferred mean momentum fluxes and variances by using Hocking’s (2005) analysis of the meteor radar data and compared the variances values with the ones derived from Na lidar temperature profiles. The main objective of the present work is a comparison between the momentum fluxes inferred by using Hocking’s (2005) analysis of the meteor radar data and those derived from imaging data using the Swenson and Gardner (1998) model. This is an analytical model that relates the intensity perturbation of the OH emission to the relative perturbation in the atmospheric density. And then applying the GW polarization relations it is possible to compute the vertical energy and momentum fluxes due to waves seen in the OH emission.This analysis will make possible a comprehensive study of the momentum flux and variance due to GW over this region.

  17. Meteor Film Recording with Digital Film Cameras with large CMOS Sensors

    Science.gov (United States)

    Slansky, P. C.

    2016-12-01

    In this article the author combines his professional know-how about cameras for film and television production with his amateur astronomy activities. Professional digital film cameras with high sensitivity are still quite rare in astronomy. One reason for this may be their costs of up to 20 000 and more (camera body only). In the interim, however,consumer photo cameras with film mode and very high sensitivity have come to the market for about 2 000 EUR. In addition, ultra-high sensitive professional film cameras, that are very interesting for meteor observation, have been introduced to the market. The particular benefits of digital film cameras with large CMOS sensors, including photo cameras with film recording function, for meteor recording are presented by three examples: a 2014 Camelopardalid, shot with a Canon EOS C 300, an exploding 2014 Aurigid, shot with a Sony alpha7S, and the 2016 Perseids, shot with a Canon ME20F-SH. All three cameras use large CMOS sensors; "large" meaning Super-35 mm, the classic 35 mm film format (24x13.5 mm, similar to APS-C size), or full format (36x24 mm), the classic 135 photo camera format. Comparisons are made to the widely used cameras with small CCD sensors, such as Mintron or Watec; "small" meaning 12" (6.4x4.8 mm) or less. Additionally, special photographic image processing of meteor film recordings is discussed.

  18. Using Wide-Field Meteor Cameras to Actively Engage Students in Science

    Science.gov (United States)

    Kuehn, D. M.; Scales, J. N.

    2012-08-01

    Astronomy has always afforded teachers an excellent topic to develop students' interest in science. New technology allows the opportunity to inexpensively outfit local school districts with sensitive, wide-field video cameras that can detect and track brighter meteors and other objects. While the data-collection and analysis process can be mostly automated by software, there is substantial human involvement that is necessary in the rejection of spurious detections, in performing dynamics and orbital calculations, and the rare recovery and analysis of fallen meteorites. The continuous monitoring allowed by dedicated wide-field surveillance cameras can provide students with a better understanding of the behavior of the night sky including meteors and meteor showers, stellar motion, the motion of the Sun, Moon, and planets, phases of the Moon, meteorological phenomena, etc. Additionally, some students intrigued by the possibility of UFOs and "alien visitors" may find that actual monitoring data can help them develop methods for identifying "unknown" objects. We currently have two ultra-low light-level surveillance cameras coupled to fish-eye lenses that are actively obtaining data. We have developed curricula suitable for middle or high school students in astronomy and earth science courses and are in the process of testing and revising our materials.

  19. Radiative heat exchange of a meteor body in the approximation of radiant heat conduction

    International Nuclear Information System (INIS)

    Pilyugin, N.N.; Chernova, T.A.

    1986-01-01

    The problem of the thermal and dynamic destruction of large meteor bodies moving in planetary atmospheres is fundamental for the clarification of optical observations and anomalous phenomena in the atmosphere, the determination of the physicochemical properties of meteoroids, and the explanation of the fall of remnants of large meteorites. Therefore, it is important to calculate the coefficient of radiant heat exchange (which is the determining factor under these conditions) for large meteor bodies as they move with hypersonic velocities in an atmosphere. The solution of this problem enables one to find the ablation of a meteorite during its aerodynamic heating and to determine the initial conditions for the solution of problems of the breakup of large bodies and their subsequent motion and ablation. Hypersonic flow of an inviscid gas stream over an axisymmetric blunt body is analyzed with allowance for radiative transfer in a thick-thin approximation. The gas-dynamic problem of the flow of an optically thick gas over a large body is solved by the method of asymptotic joined expansions, using a hypersonic approximation and local self-similarity. An equation is obtained for the coefficient of radiant heat exchange and the peculiarities of such heat exchange for meteor bodies of large size are noted

  20. A meteor shockwave event recorded at seismic and infrasound stations in northern Taiwan

    Science.gov (United States)

    Kumar, Utpal; Chao, Benjamin F.; Hsieh, Yikai; Chang, Emmy T. Y.

    2017-12-01

    Three mysterious explosion sounds were heard in the coastal towns of Tamsui, west of Taipei in northern Taiwan, in the early evening of December 5, 2013. The event left clear signals that are identified in the recordings of 12 regional seismometers and 3 infrasound sensors and processed by means of travel time analysis. The apparent velocity of 330 m/s of the signals confirms that the energy transmission was through the atmosphere, and the characteristics of the waveforms suggest the meteor-generated shockwaves. We use the graphical method as well as the Genetic Algorithm optimization approach to constrain the trajectory of the meteor and to locate its projected intercept with the ground—(25.33 N, 121.26 E), approximately 20 km off the coast of Tamsui. The trajectory has azimuth (measured from north in a map view in the clockwise direction) of 303° and (near-vertical) elevation angle of 70°. From the observed period of 1.3 s at the maximum amplitude of the infrasound signal, we estimate by conventional scaling law that the meteor in question had impact energy on the order of 5 × 1010 J (equivalent to an earthquake of local magnitude 4) or roughly a size of 0.5 m across.

  1. Evidence from spectra of bright fireballs. [self absorption effects in meteor radiation

    Science.gov (United States)

    Ceplecha, Z.

    1973-01-01

    Spectral data with dispersions from 11 to 94 A/mm on 4 fireballs of actual brightness of -4 to -12 magnitude and with velocities of about 30 km/s at 70 to 80 km heights are used for studies of meteor radiation problems. The radiation of fireballs is found to be strongly affected by self absorption. But if the emission curve of growth is used for correction of the self absorption of Fe I lines, a great discrepancy between spectral data and efficiency data for total Fe I light is found. If one assumes that the self absorption is superposed on another effect, a decrease of the dimensions of the radiating volume with increasing lower potential, the spectral data on Fe I lines will be in agreement with the luminous efficiency of total Fe I meteor radiation. Formulas for emission curve of growth and Boltzmann distribution including this effect are derived. This effect is important for fireballs brighter than about -1 or -2 magnitude, while self absorption seems to be important even for fainter meteors.

  2. Improved analysis of all-sky meteor radar measurements of gravity wave variances and momentum fluxes

    Directory of Open Access Journals (Sweden)

    V. F. Andrioli

    2013-05-01

    Full Text Available The advantages of using a composite day analysis for all-sky interferometric meteor radars when measuring mean winds and tides are widely known. On the other hand, problems arise if this technique is applied to Hocking's (2005 gravity wave analysis for all-sky meteor radars. In this paper we describe how a simple change in the procedure makes it possible to use a composite day in Hocking's analysis. Also, we explain how a modified composite day can be constructed to test its ability to measure gravity wave momentum fluxes. Test results for specified mean, tidal, and gravity wave fields, including tidal amplitudes and gravity wave momentum fluxes varying strongly with altitude and/or time, suggest that the modified composite day allows characterization of monthly mean profiles of the gravity wave momentum fluxes, with good accuracy at least at the altitudes where the meteor counts are large (from 89 to 92.5 km. In the present work we also show that the variances measured with Hocking's method are often contaminated by the tidal fields and suggest a method of empirical correction derived from a simple simulation model. The results presented here greatly increase our confidence because they show that our technique is able to remove the tide-induced false variances from Hocking's analysis.

  3. D/H of late Miocene meteoric waters in Western Australia: Paleoenvironmental conditions inferred from the δD of (U-Th)/He-dated CID goethite

    Science.gov (United States)

    Yapp, Crayton J.; Shuster, David L.

    2017-09-01

    Nineteen (U-Th)/He ages were determined for eight samples from a core drilled in an ore-grade channel iron deposit (CID) of the Robe Pisolite (Robe Formation) of Mesa J in Western Australia. With one exception, uncorrected ages of the analyzed aliquots range from 6.7(±0.4) Ma to 30.2(±3.1) Ma, while molar ratios of Th/U range from 0.42 to 5.06. The exception is an aliquot with an apparent age of 2.7 Ma and Th/U of 5.70. A three-component mixing model involving one generation of goethite and two generations of hematite suggests that the age of crystallization of the oolitic goethites is ∼7(±1) Ma. If so, the goethites have effectively been closed systems for ∼7 million years and should preserve a stable hydrogen isotope record of late Miocene rainfall in the vicinity of Mesa J. Cenozoic movement of the Australian continent had placed Mesa J and environs in the subtropics at a paleolatitude of about 29 °S during the late Miocene. Al-adjusted δD values of oolitic goethite in the eight CID samples range from -153‰ to -146‰ and imply that the δD of the late Miocene meteoric waters ranged from -61‰ to -53‰, with an average of -56‰. These relatively negative δD values might indicate that near-coastal, late Miocene rain was derived primarily from summer-season tropical cyclones with storm tracks that extended into the subtropics of western Australia. The postulated late Miocene tropical cyclones would have occurred more often and/or exhibited greater intensity at a paleolatitude of 29 °S than is the case for modern sites at approximately 30 °S on the west coast of Australia (e.g., Perth). Higher fluxes of meteoric water in the Miocene summers would have facilitated dissolution and removal of BIF-sourced silica with concomitant enrichment in oxidized Fe. Moreover, wetter late Miocene summers could have promoted multiple cycles of microbially mediated dissolution and recrystallization of Fe(III) oxides in the aerobic systems. The oolitic textures may

  4. Ambilpolar Electric Field and Diffusive Cooling of Electrons in Meteor Trails

    Science.gov (United States)

    Pasko, V. P.; Kelley, M. C.

    2017-12-01

    Kelley and Price [GRL, 44, 2987, 2017] recently indicated that ambipolar electric fields may play a role in dynamics of dense plasmas generated by meteors. In the present work we discuss time dynamics of relaxation of electron temperature in meteor trails under relatively common conditions when meteor trail diffusion is not affected by the geomagnetic field (i.e., at low altitudes where both electrons and ions are not magnetized, or at higher altitudes in the plane defined by the trail and magnetic field when meteor trail is not aligned with the geomagnetic field [Ceplecha et al., Space Sci. Rev., 84, 327, 1998, and references therein]). The rate of ambipolar diffusion is a function of temperature and pressure [e.g., Hocking et al., Ann. Geophys., 34, 1119, 2016; Silber et al., Mon. Not. RAS, 469, 1869, 2017] and there is a significant spectroscopic evidence of initial plasma temperatures in meteor trails on the order 4400 deg K [Jennikens et al., Astrobiology, 4, 81, 2004]. For a representative altitude of 105 km chosen for our studies the results are consistent with previous analysis conducted in [Baggeley and Webb, J. Atm. Terr. Phys., 39, 1399, 1977; Ceplecha et al., 1998] indicating that the electron temperature remains elevated for significant time durations measured in tens of milliseconds. Our results indicate that in terms of their magnitudes the ambipolar electric fields can exceed the critical breakdown field of air, consistent with ideas expressed by Kelley and Price [GRL, 44, 2987, 2017], however, under considered conditions these fields lead to acceleration of electron cooling, with electron temperatures falling below the ambient air temperature (below 224 deg K at 105 km altitude). These effects are referred to as diffusive cooling [e.g., Rozhansky and Tsendin, Transport phenomena in partially ionized plasma, Taylor & Francis, 2001, p. 449] and represent a process in which diffusing electrons move against the force acting on them from ambipolar

  5. Revised interpretations of stable C and O patterns in carbonate rocks resulting from meteoric diagenesis

    Science.gov (United States)

    Swart, Peter K.; Oehlert, Amanda M.

    2018-02-01

    A positive correlation between the δ13C and δ18O values of carbonate rocks is a screening tool widely used to identify the overprint of meteoric diagenesis on the original isotopic composition of a sample. In particular, it has been suggested that systematic change from negative to positive δ13C and δ18O values with increasing depth in the core is an indicator of alteration within the zone of mixing between meteoric and marine waters. In this paper, we propose that such covariance is not generated within the traditionally defined mixing zone, and that positive correlations between δ13C and δ18O values in marine carbonates are not necessarily indicators of meteoric alteration. This new interpretation is based on data collected from the shallow sub-surface of the Bahamas, a region unequivocally influenced by meteoric waters to depths of at least 200 m below the current sediment-water interface. The classic interpretation of the diagenetic environments, based on changes in the δ13C and δ18O values, would suggest the maximum penetration of freshwater occurs between 65 and 100 m below seafloor. Below these depths, a strong positive covariation between the δ13C and δ18O values exists, and would traditionally be defined as the mixing zone. However, based upon known changes in sea level, the penetration of the freshwater lens extends significantly below this limit. We contend that the zone showing covariance of δ13C and δ18O values is actually altered within the freshwater lens, and not the mixing zone as previously proposed. The co-varying trend in δ13C and δ18O values is the result of diagenetic processes occurring at the interface between vadose and phreatic zones. Significantly greater rates of recrystallization and neomorphism are driven by the increased rates of oxidation of organic matter at this transition with progressively less alteration occurring with increasing depth. As sea level oscillates, the position of this interface moves through the

  6. Geomagnetic storm under laboratory conditions: randomized experiment

    Science.gov (United States)

    Gurfinkel, Yu I.; Vasin, A. L.; Pishchalnikov, R. Yu; Sarimov, R. M.; Sasonko, M. L.; Matveeva, T. A.

    2017-10-01

    The influence of the previously recorded geomagnetic storm (GS) on human cardiovascular system and microcirculation has been studied under laboratory conditions. Healthy volunteers in lying position were exposed under two artificially created conditions: quiet (Q) and storm (S). The Q regime playbacks a noise-free magnetic field (MF) which is closed to the natural geomagnetic conditions on Moscow's latitude. The S regime playbacks the initially recorded 6-h geomagnetic storm which is repeated four times sequentially. The cardiovascular response to the GS impact was assessed by measuring capillary blood velocity (CBV) and blood pressure (BP) and by the analysis of the 24-h ECG recording. A storm-to-quiet ratio for the cardio intervals (CI) and the heart rate variability (HRV) was introduced in order to reveal the average over group significant differences of HRV. An individual sensitivity to the GS was estimated using the autocorrelation function analysis of the high-frequency (HF) part of the CI spectrum. The autocorrelation analysis allowed for detection a group of subjects of study which autocorrelation functions (ACF) react differently in the Q and S regimes of exposure.

  7. Fine structure in fast drift storm bursts

    International Nuclear Information System (INIS)

    McConnell, D.; Ellis, G.R.A.

    1981-01-01

    Recent observations with high time resolution of fast drift storm (FDS) solar bursts are described. A new variety of FDS bursts characterised by intensity maxima regularly placed in the frequency domain is reported. Possible interpretations of this are mentioned and the implications of the short duration of FDS bursts are discussed. (orig.)

  8. Coastal Storm Hazards from Virginia to Maine

    Science.gov (United States)

    2015-11-01

    iii Figures and Tables ...Appendix E: NACCS Expanded List of Historical TCs..................................................... 201 ERDC/CHL TR-15-5 vi Figures and Tables ... synoptic time series of astronomical tide, water level, surge (NTR), wind speed, and atmospheric pressure for storm screening

  9. Okla. Tornado Renews Debate on Storm Safety

    Science.gov (United States)

    Shah, Nirvi

    2013-01-01

    As soon as the winds that left seven students in Moore, Okla., dead last month had calmed, and more storms blew through the same area less than two weeks later, questions about the safety of schools in a region labeled Tornado Alley rose amid the rubble. While better design of new schools and thorough emergency training and practice may be in…

  10. Developing Design Storm Hydrographs for Small Tropical ...

    African Journals Online (AJOL)

    Hydrographs are vital tools in the design and construction of water-control structures in urban and rural systems. The purpose of this study was to explore the development of design storm hydrographs for the small tropical catchment with limited data. In this study, Clark's Unit Hydrograph method was used to develop ...

  11. The effect of geomagnetic storms on suicide

    African Journals Online (AJOL)

    QuickSilver

    Department of Psychiatry, Faculty of Health Science, University of the Witwatersrand Medical School,. 2. Department of Psychiatry, University of Melbourne, Geelong, Victoria, Australia ... that electric storms cause homing pigeons to lose their sense of direction.10 It is also known that bees11, bacteria and snails orien-.

  12. Tree recovery from ice storm injury

    Science.gov (United States)

    Kevin T. Smith

    2015-01-01

    Ice storms are part of nature, particularly in northeastern North America. The combination of air and surface temperatures, precipitation, and wind that result in damaging layers of ice is very specific, occurring infrequently at any given location. Across the region however, damaging ice is formed in fragmented areas every year. Occasionally as in December 2013 and...

  13. Global mortality from storm surges is decreasing

    Science.gov (United States)

    Bouwer, Laurens M.; Jonkman, Sebastiaan N.

    2018-01-01

    Changes in society’s vulnerability to natural hazards are important to understand, as they determine current and future risks, and the need to improve protection. Very large impacts including high numbers of fatalities occur due to single storm surge flood events. Here, we report on impacts of global coastal storm surge events since the year 1900, based on a compilation of events and data on loss of life. We find that over the past, more than eight thousand people are killed and 1.5 million people are affected annually by storm surges. The occurrence of very substantial loss of life (>10 000 persons) from single events has however decreased over time. Moreover, there is a consistent decrease in event mortality, measured by the fraction of exposed people that are killed, for all global regions, except South East Asia. Average mortality for storm surges is slightly higher than for river floods, but lower than for flash floods. We also find that for the same coastal surge water level, mortality has decreased over time. This indicates that risk reduction efforts have been successful, but need to be continued with projected climate change, increased rates of sea-level rise and urbanisation in coastal zones.

  14. Tornadic storm avoidance behavior in breeding songbirds

    Science.gov (United States)

    Streby, Henry M.; Kramer, Gunnar R.; Peterson, Sean M.; Lehman, Justin A.; Buehler, David A.; Andersen, David E.

    2015-01-01

    Migration is a common behavior used by animals of many taxa to occupy different habitats during different periods. Migrant birds are categorized as either facultative (i.e., those that are forced to migrate by some proximal cue, often weather) or obligate (i.e., those that migrate on a regular cycle). During migration, obligate migrants can curtail or delay flights in response to inclement weather or until favorable winds prevail, and they can temporarily reorient or reverse direction when ecological or meteorological obstacles are encountered. However, it is not known whether obligate migrants undertake facultative migrations and make large-scale movements in response to proximal cues outside of their regular migration periods. Here, we present the first documentation of obligate long-distance migrant birds undertaking a facultative migration, wherein breeding golden-winged warblers (Vermivora chrysoptera) carrying light-level geolocators performed a >1,500 km 5-day circumvention of a severe tornadic storm. The birds evacuated their breeding territories >24 hr before the arrival of the storm and atmospheric variation associated with it. The probable cue, radiating >1,000 km from tornadic storms, perceived by birds and influencing bird behavior and movements, is infrasound (i.e., sound below the range of human hearing). With the predicted increase in severity and frequency of similar storms as anthropogenic climate change progresses, understanding large-scale behavioral responses of animals to such events will be an important objective of future research.

  15. Derivation of a planetary ionospheric storm index

    Directory of Open Access Journals (Sweden)

    T. L. Gulyaeva

    2008-09-01

    Full Text Available The planetary ionospheric storm index, Wp, is deduced from the numerical global ionospheric GPS-IONEX maps of the vertical total electron content, TEC, for more than half a solar cycle, 1999–2008. The TEC values are extracted from the 600 grid points of the map at latitudes 60° N to 60° S with a step of 5° and longitudes 0° to 345° E with a step of 15° providing the data for 00:00 to 23:00 h of local time. The local effects of the solar radiant energy are filtered out by normalizing of the TEC in terms of the solar zenith angle χ at a particular time and the local noon value χ0. The degree of perturbation, DTEC, is computed as log of TEC relative to quiet reference median for 27 days prior to the day of observation. The W-index map is generated by segmentation of DTEC with the relevant thresholds specified earlier for foF2 so that 1 or −1 stands for the quiet state, 2 or −2 for the moderate disturbance, 3 or −3 for the moderate ionospheric storm, and 4 or −4 for intense ionospheric storm at each grid point of the map. The planetary ionospheric storm Wp index is obtained from the W-index map as a latitudinal average of the distance between maximum positive and minimum negative W-index weighted by the latitude/longitude extent of the extreme values on the map. The threshold Wp exceeding 4.0 index units and the peak value Wpmax≥6.0 specify the duration and the power of the planetary ionosphere-plasmasphere storm. It is shown that the occurrence of the Wp storms is growing with the phase of the solar cycle being twice as much as the number of the magnetospheric storms with Dst≤−100 nT and Ap≥100 nT.

  16. Derivation of a planetary ionospheric storm index

    Directory of Open Access Journals (Sweden)

    T. L. Gulyaeva

    2008-09-01

    Full Text Available The planetary ionospheric storm index, Wp, is deduced from the numerical global ionospheric GPS-IONEX maps of the vertical total electron content, TEC, for more than half a solar cycle, 1999–2008. The TEC values are extracted from the 600 grid points of the map at latitudes 60° N to 60° S with a step of 5° and longitudes 0° to 345° E with a step of 15° providing the data for 00:00 to 23:00 h of local time. The local effects of the solar radiant energy are filtered out by normalizing of the TEC in terms of the solar zenith angle χ at a particular time and the local noon value χ0. The degree of perturbation, DTEC, is computed as log of TEC relative to quiet reference median for 27 days prior to the day of observation. The W-index map is generated by segmentation of DTEC with the relevant thresholds specified earlier for foF2 so that 1 or −1 stands for the quiet state, 2 or −2 for the moderate disturbance, 3 or −3 for the moderate ionospheric storm, and 4 or −4 for intense ionospheric storm at each grid point of the map. The planetary ionospheric storm Wp index is obtained from the W-index map as a latitudinal average of the distance between maximum positive and minimum negative W-index weighted by the latitude/longitude extent of the extreme values on the map. The threshold Wp exceeding 4.0 index units and the peak value Wpmax≥6.0 specify the duration and the power of the planetary ionosphere-plasmasphere storm. It is shown that the occurrence of the Wp storms is growing with the phase of the solar cycle being twice as much as the number of the magnetospheric storms with Dst≤−100 nT and Ap≥100 nT.

  17. METEOR Trial Reports on the Effect of Rosuvastatin on Progression of Carotid Intima-Media Thickness in Low-Risk Individuals with Subclinical Atherosclerosis.

    Science.gov (United States)

    Haddad, Rudy M; Ballantyne, Christie M

    2010-06-01

    The data from the METEOR trial show that asymptomatic low-risk patients treated with rosuvastatin have a reduction in progression of carotid intima-media thickness (CIMT) over 2 years versus placebo. ORIGINAL ARTICLE: Crouse JR 3rd, Raichlen JS, Riley WA, et al; METEOR Study Group. Effect of rosuvastatin on progression of carotid intima-media thickness in low-risk individuals with subclinical atherosclerosis: the METEOR Trial. JAMA. 2007;297(12):1344-1353.

  18. Total Lightning and Radar Storm Characteristics Associated with Severe Storms in Central Florida

    Science.gov (United States)

    Goodman, Steven J; Raghavan, R.; Buechler, Dennis; Hodanish, S.; Sharp, D.; Williams, E.; Boldi, B.; Matlin, A.; Weber, M.

    1998-01-01

    This paper examines the three dimensional characteristics of lightning flashes and severe storms observed in Central Florida during 1997-1998. The lightning time history of severe and tornadic storms were captured during the on-going ground validation campaign supporting the Lightning Imaging Sensor (LIS) experiment on the Tropical Rainfall Measuring Mission (TRMM). The ground validation campaign is a collaborative experiment that began in 1997 and involves scientists at the Global Hydrology and Climate Center, MIT/Lincoln Laboratories, and the NWS Forecast Office at Melbourne, FL. Lightning signatures that may provide potential early warning of severe storms are being evaluated by the forecasters at the NWS/MLB office. Severe storms with extreme flash rates sometimes exceeding 300 per minute and accompanying rapid increases in flash rate prior to the onset of the severe weather (hall, damaging winds, tornadoes) have been reported by Hodanish et al. and Williams et al. (1998-this conference). We examine the co-evolving changes in storm structure (mass, echo top, shear, latent heat release) and kinematics associated with these extreme and rapid flash rate changes over time. The flash frequency and density are compared with the three dimensional radar reflectivity structure of the storm to help interpret the possible mechanisms producing the extreme and rapidly increasing flash rates. For two tornadic storms examined thus far, we find the burst of lightning is associated with the development of upper level rotation in the storm. In one case, the lightning burst follows the formation of a bounded weak echo region (BWER). The flash rates diminish with time as the rotation develops to the ground in conjunction with the decent of the reflectivity core. Our initial findings suggest the dramatic increase of flash rates is associated with a sudden and dramatic increase in storm updraft intensity which we hypothesize is stretching vertical vorticity as well as enhancing the

  19. No Calm After the Storm: A Systematic Review of Human Health Following Flood and Storm Disasters.

    Science.gov (United States)

    Saulnier, Dell D; Brolin Ribacke, Kim; von Schreeb, Johan

    2017-10-01

    Introduction How the burden of disease varies during different phases after floods and after storms is essential in order to guide a medical response, but it has not been well-described. The objective of this review was to elucidate the health problems following flood and storm disasters. A literature search of the databases Medline (US National Library of Medicine, National Institutes of Health; Bethesda, Maryland USA); Cinahl (EBSCO Information Services; Ipswich, Massachusetts USA); Global Health (EBSCO Information Services; Ipswich, Massachusetts USA); Web of Science Core Collection (Thomson Reuters; New York, New York USA); Embase (Elsevier; Amsterdam, Netherlands); and PubMed (National Center for Biotechnology Information, National Institutes of Health; Bethesda, Maryland USA) was conducted in June 2015 for English-language research articles on morbidity or mortality and flood or storm disasters. Articles on mental health, interventions, and rescue or health care workers were excluded. Data were extracted from articles that met the eligibility criteria and analyzed by narrative synthesis. The review included 113 studies. Poisonings, wounds, gastrointestinal infections, and skin or soft tissue infections all increased after storms. Gastrointestinal infections were more frequent after floods. Leptospirosis and diabetes-related complications increased after both. The majority of changes occurred within four weeks of floods or storms. Health changes differently after floods and after storms. There is a lack of data on the health effects of floods alone, long-term changes in health, and the strength of the association between disasters and health problems. This review highlights areas of consideration for medical response and the need for high-quality, systematic research in this area. Saulnier DD , Brolin Ribacke K , von Schreeb J . No calm after the storm: a systematic review of human health following flood and storm disasters. Prehosp Disaster Med. 2017;32(5):568-579.

  20. Surviving the storm: two cases of thyroid storm successfully treated with plasmapheresis

    OpenAIRE

    Carhill, Aubrey; Gutierrez, Absalon; Lakhia, Ronak; Nalini, Ramaswami

    2012-01-01

    Thyroid storm is a rare, but critical, illness that can lead to multiorgan failure and carries a high death rate. The following case series describes two adult men with Graves’ disease who presented in thyroid storm and either failed or could not tolerate conventional medical management. However, both patients responded well to plasmapheresis, which resulted in clinical and biochemical stabilisation of their disease processes. The treatment option of plasmapheresis should be considered as a s...

  1. Motivations and sensation seeking characteristics of recreational storm chasers

    Science.gov (United States)

    Shuangyu Xu; Sonja Wilhelm Stanis; Carla Barbieri; Jiawen. Chen

    2012-01-01

    Little is known about recreational storm chasing, a type of risk recreation that has increased in popularity since the 1990s. This study was conducted to understand factors associated with participation in recreational storm chasing in the United States. Particularly, this study assessed the motivations and sensation seeking attributes of recreational storm chasers, as...

  2. Spotter's Guide for Identifying and Reporting Severe Local Storms.

    Science.gov (United States)

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    This guide is designed to assist personnel working in the National Weather Service's Severe Local Storm Spotter Networks in identifying and reporting severe local storms. Provided are pictures of cloud types for severe storms including tornadoes, hail, thunder, lightning, heavy rains, and waterspouts. Instructions for key indications to watch for…

  3. Marine boundary layer characteristics during a cyclonic storm over ...

    Indian Academy of Sciences (India)

    The response of the cyclonic storm is clearly evident from the ship observations when the ship was within the distance of 600–800 km from the cyclonic storm. This study explores why. the whole atmosphere from surface to 500 hPa had become warm and moist during the cyclonic storm period as compared to before and ...

  4. Statistical Relationship between Sawtooth Oscillations and Geomagnetic Storms

    Directory of Open Access Journals (Sweden)

    Jae-Hun Kim

    2008-06-01

    Full Text Available We have investigated a statistical relationship between sawtooth oscillations and geomagnetic storms during 2000-2004. First of all we selected a total of 154 geomagnetic storms based on the Dst index, and distinguished between different drivers such as Coronal Mass Ejection (CME and Co-rotating Interaction Region (CIR. Also, we identified a total of 48 sawtooth oscillation events based on geosynchronous energetic particle data for the same 2000-2004 period. We found that out of the 154 storms identified, 47 storms indicated the presence of sawtooth oscillations. Also, all but one sawtooth event identified occurred during a geomagnetic storm interval. It was also found that sawtooth oscillation events occur more frequently for storms driven by CME (˜62% than for storms driven by CIR (˜30%. In addition, sawtooth oscillations occurred mainly (˜82% in the main phase of storms for CME-driven storms while they occurred mostly (˜78% during the storm recovery phase for CIR-driven storms. Next we have examined the average characteristics of the Bz component of IMF, and solar wind speed, which were the main components for driving geomagnetic storm. We found that for most of the sawtooth events, the IMF Bz corresponds to --15 to 0 nT and the solar wind speed was in the range of 400˜700 km/s. We found that there was a weak tendency that the number of teeth for a given sawtooth event interval was proportional to the southward IMF Bz magnitude.

  5. Overview of the ARkStorm scenario

    Science.gov (United States)

    Porter, Keith; Wein, Anne; Alpers, Charles N.; Baez, Allan; Barnard, Patrick L.; Carter, James; Corsi, Alessandra; Costner, James; Cox, Dale; Das, Tapash; Dettinger, Mike; Done, James; Eadie, Charles; Eymann, Marcia; Ferris, Justin; Gunturi, Prasad; Hughes, Mimi; Jarrett, Robert; Johnson, Laurie; Le-Griffin, Hanh Dam; Mitchell, David; Morman, Suzette; Neiman, Paul; Olsen, Anna; Perry, Suzanne; Plumlee, Geoffrey; Ralph, Martin; Reynolds, David; Rose, Adam; Schaefer, Kathleen; Serakos, Julie; Siembieda, William; Stock, Jonathan; Strong, David; Wing, Ian Sue; Tang, Alex; Thomas, Pete; Topping, Ken; Wills, Chris; Jones, Lucile

    2011-01-01

    The U.S. Geological Survey, Multi Hazards Demonstration Project (MHDP) uses hazards science to improve resiliency of communities to natural disasters including earthquakes, tsunamis, wildfires, landslides, floods and coastal erosion. The project engages emergency planners, businesses, universities, government agencies, and others in preparing for major natural disasters. The project also helps to set research goals and provides decision-making information for loss reduction and improved resiliency. The first public product of the MHDP was the ShakeOut Earthquake Scenario published in May 2008. This detailed depiction of a hypothetical magnitude 7.8 earthquake on the San Andreas Fault in southern California served as the centerpiece of the largest earthquake drill in United States history, involving over 5,000 emergency responders and the participation of over 5.5 million citizens. This document summarizes the next major public project for MHDP, a winter storm scenario called ARkStorm (for Atmospheric River 1,000). Experts have designed a large, scientifically realistic meteorological event followed by an examination of the secondary hazards (for example, landslides and flooding), physical damages to the built environment, and social and economic consequences. The hypothetical storm depicted here would strike the U.S. West Coast and be similar to the intense California winter storms of 1861 and 1862 that left the central valley of California impassible. The storm is estimated to produce precipitation that in many places exceeds levels only experienced on average once every 500 to 1,000 years. Extensive flooding results. In many cases flooding overwhelms the state's flood-protection system, which is typically designed to resist 100- to 200-year runoffs. The Central Valley experiences hypothetical flooding 300 miles long and 20 or more miles wide. Serious flooding also occurs in Orange County, Los Angeles County, San Diego, the San Francisco Bay area, and other

  6. Lightning and precipitation history of a microburst-producing storm

    Science.gov (United States)

    Goodman, Steven J.; Buechler, Dennis E.; Wright, Patrick D.; Rust, W. David

    1988-01-01

    Quantitative measurements of the lightning and precipitation life cycle of a microburst-producing storm are discussed. The storm, which occurred on July 20, 1986 at Huntsville, Alabama, was studied using Doppler radar data. The storm produced 116 flashes, 6 of which were discharges to the ground. It is suggested that an abrupt decrease in the total flash rates is associated with storm collapse, and serves as a precursor to the arrival of the maximum microburst outflows at the surface. Ice-phase precipitation is shown to be an important factor in both the formation of the strong downdraft and the electrification of the storm.

  7. Large-scale coastal impact induced by a catastrophic storm

    DEFF Research Database (Denmark)

    Fruergaard, Mikkel; Andersen, Thorbjørn Joest; Johannessen, Peter N

    Catastrophic storms and storm surges induce rapid and substantial changes along sandy barrier coasts, potentially causing severe environmental and economic damage. Coastal impacts of modern storms are associated with washover deposition, dune erosion, barrier breaching, and coastline and shoreface...... erosion. Little is however known about the impact of major storms and their post-storm coastal recovery on geologic and historic evolution of barrier systems. We apply high-resolution optically stimulated luminescence dating on a barrier system in the Wadden Sea (Denmark) and show that 5 to 8 meters...... of marine sand accumulated in an aggrading-prograding shoal and on a prograding shoreface during and within 3 to 4 decades (“healing phase”) after the most destructive storm documented for the Wadden Sea. Furthermore, we show that the impact of this storm caused large-scale shoreline erosion and barrier...

  8. Isotopic characteristic of meteoric water and groundwater in Ahaggar massif (central Sahara)

    International Nuclear Information System (INIS)

    Saighi, O.; Michelot, J.L.; Filly, A.

    2001-01-01

    The mean contents of both oxygen-18 and deuterium in precipitation from the Ahaggar massif (central Sahara) are: δ 18 O = -3 per mille and 2 H = -15 per mille. The heterogeneity in meteoric events and the great scattering of these isotopic contents can be ascribed to the origins and the histories of air masses. The main contribution comes from the inflow of the Guinean monsoon during summer months. During winter, the N/W winds, arriving in the area from the Moroccan coast, provide some rains. The deuterium excess of these precipitation are up to +10 per mille, indicating that the air masses generating these rains are supplied by the recycling of the continental air moisture. Groundwater resources are produced in some little phreatic aquifers, which are recharged by sporadic wadi floods. Aquifer zones that are the most favourable are located in the valleys and occur as three overlying levels of unequal importance: the alluvial aquifer, the weathered zone of the underlying substratum and the deep aquifer of fissured basement. The alluvial aquifer contain weakly mineralised water (0.3 g/l). Their stable isotopes contents (δ 18 O∼ -2.7 per mille) and 14 C activity of them (> 100 pmc) are comparable to present meteoric water, allowing modern meteoric waters to be identified. The weathered zone groundwater's are more mineralised (0.8 g/l) and its isotopic contents (δ 18 O∼ -4.2 per mille) and intermediate radiocarbon activity, prove their old water component. The basement's groundwater are more mineralised (> 1 g/l) and their very depleted isotopic contents (δ 18 O∼ -9 per mille) diverge clearly from the present precipitation. Furthermore, the absence of 3 H and 14 C activity of them, prove an old heritage, resulting from recharge during the last humid episode of the Holocene. (author)

  9. A time-resolved model of the mesospheric Na layer: constraints on the meteor input function

    Directory of Open Access Journals (Sweden)

    J. M. C. Plane

    2004-01-01

    Full Text Available A time-resolved model of the Na layer in the mesosphere/lower thermosphere region is described, where the continuity equations for the major sodium species Na, Na+ and NaHCO3 are solved explicity, and the other short-lived species are treated in steady-state. It is shown that the diurnal variation of the Na layer can only be modelled satisfactorily if sodium species are permanently removed below about 85 km, both through the dimerization of NaHCO3 and the uptake of sodium species on meteoric smoke particles that are assumed to have formed from the recondensation of vaporized meteoroids. When the sensitivity of the Na layer to the meteoroid input function is considered, an inconsistent picture emerges. The ratio of the column abundance of Na+ to Na is shown to increase strongly with the average meteoroid velocity, because the Na is injected at higher altitudes. Comparison with a limited set of Na+ measurements indicates that the average meteoroid velocity is probably less than about 25 km s-1, in agreement with velocity estimates from conventional meteor radars, and considerably slower than recent observations made by wide aperture incoherent scatter radars. The Na column abundance is shown to be very sensitive to the meteoroid mass input rate, and to the rate of vertical transport by eddy diffusion. Although the magnitude of the eddy diffusion coefficient in the 80–90 km region is uncertain, there is a consensus between recent models using parameterisations of gravity wave momentum deposition that the average value is less than 3×105 cm2 s-1. This requires that the global meteoric mass input rate is less than about 20 td-1, which is closest to estimates from incoherent scatter radar observations. Finally, the diurnal variation in the meteoroid input rate only slight perturbs the Na layer, because the residence time of Na in the layer is several days, and diurnal effects are effectively averaged out.

  10. Infiltration of meteoric water in the South Tibetan Detachment (Mount Everest, Himalaya): When and why?

    Science.gov (United States)

    Gébelin, Aude; Jessup, Micah J.; Teyssier, Christian; Cosca, Michael A.; Law, Richard D.; Brunel, Maurice; Mulch, Andreas

    2017-04-01

    The South Tibetan Detachment (STD) in the Himalayan orogen juxtaposes low-grade Tethyan Himalayan sequence sedimentary rocks over high-grade metamorphic rocks of the Himalayan crystalline core. We document infiltration of meteoric fluids into the STD footwall at 17-15 Ma, when recrystallized hydrous minerals equilibrated with low-δD (meteoric) water. Synkinematic biotite collected over 200 m of structural section in the STD mylonitic footwall (Rongbuk Valley, near Mount Everest) record high-temperature isotopic exchange with D-depleted water (δDwater = -150 ± 5‰) that infiltrated the ductile segment of the detachment most likely during mylonitic deformation, although later isotopic exchange cannot be definitively excluded. These minerals also reveal a uniform pattern of middle Miocene (15 Ma) 40Ar/39Ar plateau ages. The presence of low-δD meteoric water in the STD mylonitic footwall is further supported by hornblende and chlorite with very low δD values of -183‰ and -162‰, respectively. The δD values in the STD footwall suggest that surface-derived fluids were channeled down to the brittle-ductile transition. Migration of fluids from the Earth's surface to the active mylonitic detachment footwall may have been achieved by fluid flow along steep normal faults that developed during synconvergent extension of the upper Tethyan Himalayan plate. High heat flow helped sustain buoyancy-driven fluid convection over the timescale of detachment tectonics. Low δD values in synkinematic fluids are indicative of precipitation-derived fluids sourced at high elevation and document that the ground surface above this section of the STD had already attained similar-to-modern topographic elevations in the middle Miocene.

  11. DUSTER: collection of meteoric CaO and carbon smoke particles in the upper stratosphere .

    Science.gov (United States)

    Della Corte, V.; Rietmeijer, F. J. M.; Rotundi, A.; Ferrari, M.; Palumbo, P.

    Nanometer- to micrometer-size particles present in the upper stratosphere are a mixture of terrestrial and extra-terrestrial origins. They can be extraterrestrial particles condensed after meteor ablation. Meteoric dust in bolides is occasionally deposited into the lower stratosphere around 20 km altitude. Nanometer CaO and pure carbon smoke particles were collected at 38 km altitude in the upper stratosphere in the Arctic during June 2008 using DUSTER (Dust in the Upper Stratosphere Tracking Experiment and Retrieval), a balloon-borne instrument for the non-destructive collection of solid particles between 200 nm to 40 microns. We report the collection of micron sized CaCO_3 (calcite) grains. Their morphologies show evidence of melting and condensation after vaporization suggest at temperatures of approximately 3500 K. The formation environment of the collected grains was probably a dense dust cloud formed by the disintegration of a carbonaceous meteoroid during deceleration in the Earth� atmosphere. For the first time, DUSTER collected meteor ablation products that were presumably associated with the disintegration of a bolide crossing the Earth's atmosphere. The collected mostly CaO and pure carbon nanoparticles from the debris cloud of a fireball, included: 1) intact fragments; 2) quenched melted grains; and 3) vapor phase condensation products. The DUSTER project was funded by the Italian Space Agency (ASI), PRIN2008/MIUR (Ministero dell'Istruzione dell'Universitá e della Ricerca), PNRA 2013(Piano Nazionale Ricerca Antartide). CNES graciously provided this flight opportunity. We thank E. Zona and S. Inarta at the Laboratorio di Fisica Cosmica INAF, Osservatorio Astronomico di Capodimonte-Universitá di Napoli Parthenope. F.J.M.R. was supported by grant NNX07AI39G from the NASA Cosmochemistry Program. We thank three anonymous reviewers who assisted us in introducing our new instrument.

  12. Measurements of meteor smoke particles during the ECOMA-2006 campaign: 2. Results

    Science.gov (United States)

    Strelnikova, Irina; Rapp, Markus; Strelnikov, Boris; Baumgarten, Gerd; Brattli, Alvin; Svenes, Knut; Hoppe, Ulf-Peter; Friedrich, Martin; Gumbel, Jörg; Williams, Bifford P.

    2009-03-01

    The first sounding rocket of the European ECOMA-project (ECOMA, Existence and Charge state Of Meteoric smoke particles in the middle Atmosphere) was launched on 8 September 2006. Measurements with a new particle detector described in the companion paper by Rapp and Strelnikova [2008. Measurements of meteor smoke particles during the ECOMA-2006 campaign: 1. Particle detection by active photoionization. Journal of Atmospheric and Solar-Terrestrial Physics, this issue, doi:10.1016/j.jastp.2008.06.002] clearly showed meteor smoke particle (MSP) signatures in both data channels. The data channels measure particles directly impacting on the detector electrode and photoelectrons from the particles actively created using ionization by the UV-photons of a xenon-flashlamp. Measured photoelectron currents resemble model expectations of the shape of the MSP layer almost perfectly, whereas derived number densities in the altitude range 60-90 km are larger than model results by about a factor of 5. Given the large uncertainties inherent to both model and the analysis of our measurements (e.g., the composition of the particles is not known and must be assumed) we consider this a satisfactory agreement and proof that MSPs do extend throughout the entire mesosphere as predicted by models. The measurements of direct particle impacts revealed a confined layer of negative charge between 80 and 90 km. This limited altitude range, however, is quantitatively shown to be the consequence of the aerodynamics of the rocket flight and does not have any geophysical origin. Measured charge signatures are consistent with expectations of particle charging given our own measurements of the background ionization. Unfortunately, however, a contamination of these measurements from triboelectric charging cannot be excluded at this stage.

  13. Luminous Efficiency of Hypervelocity Meteoroid Impacts on the Moon Derived from the 2015 Geminid Meteor Shower

    Science.gov (United States)

    Moser, D. E.; Suggs, R. M.; Ehlert, S. R.

    2017-01-01

    Meteoroids cannot be observed directly because of their small size. In-situ measurements of the meteoroid environment are rare and have very small collecting areas. The Moon, in contrast, has a large collecting area and therefore can be used as a large meteoroid detector for gram-kilogram sized particles. Meteoroids striking the Moon create an impact flash observable by Earth-based telescopes. Their kinetic energy is converted to luminous energy with some unknown luminous efficiency ?(v), which is likely a function of meteoroid velocity (among other factors). This luminous efficiency is imperative to calculating the kinetic energy and mass of the meteoroid, as well as meteoroid fluxes, and it cannot be determined in the laboratory at meteoroid speeds and sizes due to mechanical constraints. Since laboratory simulations fail to resolve the luminous efficiency problem, observations of the impact flash itself must be utilized. Meteoroids associated with specific meteor showers have known speed and direction, which simplifies the determination of the luminous efficiency. NASA has routinely monitored the Moon for impact flashes since early 2006 [1]. During this time, several meteor showers have produced multiple impact flashes on the Moon, yielding a sufficient sample of impact flashes with which to perform a luminous efficiency analysis similar to that outlined in Bellot Rubio et al. [2, 3] and further described by Moser et al. [4], utilizing Earth-based measurements of the shower flux and mass index. The Geminid meteor shower has produced the most impact flashes in the NASA dataset to date with over 80 detections. More than half of these Geminids were recorded in 2015 (locations pictured in Fig. 1), and may represent the largest single-shower impact flash sample known. This work analyzes the 2015 Geminid lunar impacts and calculates their luminous efficiency. The luminous efficiency is then applied to calculate the kinetic energies and mass-es of these shower

  14. Near-Earth Asteroids as Possible Parent Bodies of Meteor Streams

    Directory of Open Access Journals (Sweden)

    M.G. Sokolova

    2016-12-01

    Full Text Available The genetic relationship of meteor streams with near-Earth asteroids (NEAs is being actively studied. A genetic link with the asteroid is possible only for streams in which meteoroids have the geocentric speed smaller than 50 km/s, thereby meaning the proportionality of their orbits with the orbits of asteroids. To date, there are about 40 such orphan streams with unknown parent bodies. In the paper, NEA groups (Aten, Apollo, Amor, and Atira have been considered from the perspective of possible search for the parent bodies of meteor streams among them. The groups have been compared based on the following parameters: eccentricity of asteroid orbits, as well as size and chemical composition of asteroids. Currently, it is considered that the surface of asteroids with elongated orbits is subjected to temperature fall: it is heated in perihelion and cooled in aphelion. Due to small orbital periods around the Sun (about 2–4 years, this may lead to formation of meteoroid clusters. Therefore, comparison of asteroids by their orbit shape and physicochemical parameters enables us to distinguish between NEA groups of asteroids and the Apollo group as most probable candidates to search for the parent bodies of meteor streams among NEAs. Unfortunately, finding physicochemical parameters poses great difficulties, since they are only detectable for some asteroids. At the same time, it is impossible to study asteroids dynamics, evolution, and relation with other bodies of the Solar system, as well as to realistically assess the impact of NEAs and products of their disintegration collision with the Earth and to develop systems of anti-asteroid protection without knowing the following parameters of asteroids: mineralogical composition, density, size, and accurate mass.

  15. Implementing planetary meteor impact craters as high gain radio frequency dish reflector antennas

    Science.gov (United States)

    Taylor, Travis S.

    Future ventures back to the Moon, Mars, or the outer planets and natural solar system objects would benefit fiom high bandwidth communications capabilities that enable faster data transfer rates to and fiom the spacecraft. However, communication links for such missions are limited by the antenna aperture size, transceiver power, and range between the space vehicle communications system and the receiving systems on Earth. This dissertation proposes a novel approach for using naturally occurring meteor impact craters as the parabolic dish reflector for radio frequency antennas. Analysis and experimentation shows that for long radio wavelengths that meteor impact craters appear very similar in geometry to dish antennas. There are many craters on the lunar surface that fit very closely to dish geometries. Some of these craters are as large as 100 kilometers in diameter. The calculated data transmission rate achievable from such an antenna configuration is many times greater than currently available long range space communications systems. Preliminary experiments conducted using manmade craters demonstrated the possibility of the concept. A 20 m diameter crater was dug and implemented in a complex radio telescope configuration with receiver systems at multiple wavelengths. The electronic components were all inexpensive hobbyist components or homemade. The radio telescope system was successful in detecting radio signals from the Sun and from the Crab Nebula. Sidereal motion of the astronomical sources matched exactly to the time lapse of the detected signals. Further analysis suggests that this concept could be implemented in near-term missions to the Moon with currently available technology. Analysis suggests that a spacecraft orbiting the Moon at 100 km altitude could use very large craters as reflector dishes. Terrestrial based experiments using impact craters like the one in Meteor Crater, Arizona could be conducted to determine the impact of soil reflectivity

  16. Novel Applications of Meteoric- and In Situ-Produced Beryllium-10 in the East Antarctic

    Science.gov (United States)

    Valletta, Rachel D.

    This work comprises three novel applications of in situ- and meteoric-produced beryllium-10 (Be-10) in East Antarctica. Sampled deposits cover a wide spatiotemporal transect through the Dry Valleys, from an inland, middle elevation location of Quaternary age, to a mid-valley, high elevation location of Miocene age, and finally to an offshore, submarine location of Pliocene age. Each research chapter we present is a unique project unto itself, but all chapters utilize the cosmogenic radionuclide Be-10. In the first application, we present "Difference Dating,'' a new approach to date glacial moraines in regions where traditional exposure age dating is fraught with complications. Difference Dating allows for the construction of deglaciation chronologies in regions where they are frequently precluded by inheritance issues. We use Difference Dating to constrain the ages of Quaternary moraines in an alpine glacial cirque, Wright Valley, Dry Valleys. The second and third applications use meteoric-produced Be-10 in two different depositional settings. In marine sediments, we recast the Be-10/Be-9 ratio as a proxy for East Antarctic Ice Sheet freshwater discharge during mid-Pliocene interglacials. Using this record, we suggest that zones of deep water formation may be significant in funneling Be into the global thermohaline circulation belt. We also apply the meteoric-produced Be-10 system to paleolake sediments, where extremely low concentrations are used to construct an age model extending to 14-17.5 Ma. This range is commensurate with lake sediment deposition during the Middle Miocene Climatic Optimum, a rare Antarctic terrestrial deposit of this globally significant warming event.

  17. On Meteoric Dust Particles in the Near-Earth Space Environment

    Science.gov (United States)

    Mahmoudian, Alireza; Farahani, Majid Mazraeh Ei; Mohebalhojeh, Ali R.; Scales, Wayne

    2016-07-01

    Over 40 metric tons of meteoric dust enters the earth's atmosphere every day. This dust settles and creates natural dust layers in the altitude ranges between 80 and 100 kilometers which spans the earth's upper mesosphere to lower thermosphere. The dust layers in the lower atmosphere have a great impact on climate, human health as well as communication and navigation signals. The main goal of this study is the role of meteoric smoke particles on the formation of Polar Mesospheric Clouds (PMC). Recent rocket experiments have detected the presence of these particles. Since these dust layers are immersed in the earth's upper atmosphere, they become charged due to collection of electrons and ions from the earth's ionospheric plasma. Noctilucent Clouds NLCs are a fascinating visual manifestation of these dust layers. So-called Polar Mesospheric Summer Echoes PMSEs are radar echoes that are a direct consequence of the sub-visible charged dust that exists at altitudes above NLC regions. Polar Mesospheric Summer Echoes (PMSE) are strong echoes that have been typically observed in the frequency range from 50MHz to 1.3GHz and in the altitude about 85km. Unlike PMSE, Polar mesospheric winter echoes (PMWE) are less known. PMWE appear at a lower altitude and is weaker in comparison with PMSE. The focus of this study is on meteoric smoke particles and how they affect PMWE source region. Parameters associated with smoke dust particles such as size distribution, charging characteristics, density and positive or negative charge will be considered. The second part of this presentation will be on the effect of gravity waves on PMC. Full coupling to a turbulent neutral field with a statistical analysis will be discussed. Impact of a neutral turbulence driving field on small amplitude plasma fluctuations in such a configuration and some of the important consequences will be also presented. This has important consequences for electric field and potential measurements on rocket probes as

  18. Weathering a Perfect Storm from Space

    Science.gov (United States)

    Love, Jeffrey J.

    2016-01-01

    Extreme space-weather events — intense solar and geomagnetic storms — have occurred in the past: most recently in 1859, 1921 and 1989. So scientists expect that, sooner or later, another extremely intense spaceweather event will strike Earth again. Such storms have the potential to cause widespread interference with and damage to technological systems. A National Academy of Sciences study projects that an extreme space-weather event could end up costing the American economy more than $1 trillion. The question now is whether or not we will take the actions needed to avoid such expensive consequences. Let’s assume that we do. Below is an imagined scenario of how, sometime in the future, an extreme space-weather event might play out.

  19. Storm: lightning-fast resource management

    Energy Technology Data Exchange (ETDEWEB)

    Frachtenberg, E. (Eitan); Petrini, F. (Fabrizio); Fernández, J. C. (Juan C.); Pakin, S. D. (Scott D.); Coll, S. (Salvador)

    2002-01-01

    Although workstation clusters are a common platform for high-performance computing (HPC), they remain more difficult to manage than sequential systems or even symmetric multiprocessors. Furthermore, as cluster sizes increase, the quality of the resource-management subsystem - essentially, all of the code that runs on a cluster other than the applications - increasingly impacts application efficiency. In this paper, we present STORM, a resource-management framework designed for scalability and performance. The key innovation behind STORMis a software architecture that enables resource management to exploit low-level network features. As a result of this HPC-application-like design, STORM is orders of magnitude faster than the best reported results in the literature on two sample resource-management functions: job launching and process scheduling.

  20. Storm impacts on small barrier islands

    DEFF Research Database (Denmark)

    Kroon, Aart; Fruergaard, Mikkel

    The shorelines of the Baltic Sea and the inner coastal waters in Denmark consist of many barrier islands. These sandy barrier islands were mainly formed in the Holocene and are still very dynamic. The present day changes in the morphology are dominantly governed by storm waves and associated high...... water levels. These storms induce collision, overwash or inundation of the barrier crest and generate wash-over fans and barrier breaching. In this presentation, we focus on the present-day morphologic evolution of these barrier islands, couple these to extreme events, and we will predict the potential...... changes in this evolution due to changes in the climate and associated sea levels. We analyzed the morphologic evolution of a series of barrier islands over the last decades using maps, aerial photographs and satellite images. This decadal morphologic evolution was coupled to the frequency and intensity...

  1. Multi-Instrument Observations of Bright Meteors in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Spurný, Pavel; Borovička, Jiří; Koten, Pavel

    2005-01-01

    Roč. 95, 1-4 (2005), s. 569-278 ISSN 0167-9295. [Meteoroids 2004. London, Ontario, 16.08.2004-20.08.2004] R&D Projects: GA ČR GA205/03/1404; GA ČR GA205/02/0982; GA ČR GP205/02/P038 Institutional research plan: CEZ:AV0Z1003909 Keywords : bright meteors * observational techniques Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.975, year: 2005

  2. Seasonal and diurnal variability of the meteor flux at high latitudes observed using PFISR

    Science.gov (United States)

    Sparks, J. J.; Janches, D.; Nicolls, M. J.; Heinselman, C. J.

    2009-05-01

    We report in this and a companion paper [Fentzke, J.T., Janches, D., Sparks, J.J., 2008. Latitudinal and seasonal variability of the micrometeor input function: A study using model predictions and observations from Arecibo and PFISR. Journal of Atmospheric and Solar-Terrestrial Physics, this issue, doi:10.1016/j.jastp.2008.07.015] a complete seasonal study of the micrometeor input function (MIF) at high latitudes using meteor head-echo radar observations performed with the Poker Flat Incoherent Scatter Radar (PFISR). This flux is responsible for a number of atmospheric phenomena; for example, it could be the source of meteoric smoke that is thought to act as condensation nuclei in the formation of ice particles in the polar mesosphere. The observations presented here were performed for full 24-h periods near the summer and winter solstices and spring and autumn equinoxes, times at which the seasonal variability of the MIF is predicted to be large at high latitudes [Janches, D., Heinselman, C.J., Chau, J.L., Chandran, A., Woodman, R., 2006. Modeling of the micrometeor input function in the upper atmosphere observed by High Power and Large Aperture Radars, JGR, 11, A07317, doi:10.1029/2006JA011628]. Precise altitude and radar instantaneous line-of-sight (radial) Doppler velocity information are obtained for each of the hundreds of events detected every day. We show that meteor rates, altitude, and radial velocity distributions have a large seasonal dependence. This seasonal variability can be explained by a change in the relative location of the meteoroid sources with respect to the observer. Our results show that the meteor flux into the upper atmosphere is strongly anisotropic and its characteristics must be accounted for when including this flux into models attempting to explain related aeronomical phenomena. In addition, the measured acceleration and received signal strength distribution do not seem to depend on season; which may suggest that these observed

  3. Meteor Crater: An Analog for Using Landforms to Reconstruct Past Hydrologic Conditions

    Science.gov (United States)

    Palucis, M. C.; Dietrich, W. E.; Howard, A. D.; Nishiizumi, K.; Caffee, M. W.; Kring, D. A.

    2015-12-01

    Recent work suggests that debris flow activity has occurred on Mars in the last few million years during high orbital obliquities, but estimating the amount and frequency of liquid water needed to generate these types of flows is still poorly constrained. While it is relatively common to estimate water amounts needed to produce landforms on Mars, such as gullies or alluvial fans, this is something rarely done on Earth. Consequently, there is little field data on the linkage between climate (snowmelt or rainfall events) and the amount of runoff needed to produce specific volumes of sediment in a landform. Here, we present field and modeling data from Meteor Crater, which is a ~50,000 year old impact crater in northern Arizona (USA). Though it is very well preserved, it has developed gullies along its inner wall, similar in form to many gullies on Mars. Meteor Crater, similar to many Martian craters, has also gone through a change in a climate based on the ~30 m of lake sediments on its now dry floor, and what has eroded from its walls has deposited on its floor, making it a closed system. We show using LiDAR-derived topographic data and field observations that debris flows, likely generated by runoff entrainment into talus bordering bedrock cliffs of the crater walls, drove erosion and deposition processes at Meteor Crater. Cosmogenic dating of levee deposits indicates that debris flows ceased in the early Holocene, synchronous with regional drying. For a water-to-rock ratio of 0.3 at the time of transport, which is based on data from rotating drum experiments, it would have taken ~150,000 m3 of water to transport the estimated ~500,000 m3 of debris flow deposits found at the surface of the crater floor. This extensive erosion would require less than 0.4 m of total runoff over the 0.35 km2 upslope source area of the crater, or ~26 mm of runoff per debris flow event. Much more runoff did occur however, as evidenced by lake deposits on the crater floor and Holocene

  4. Environmental Modeling of Storm Water Channels

    OpenAIRE

    L. Grinis

    2014-01-01

    Turbulent flow in complex geometries receives considerable attention due to its importance in many engineering applications. It has been the subject of interest for many researchers. Some of these interests include the design of storm water channels. The design of these channels requires testing through physical models. The main practical limitation of physical models is the so called “scale effect”, that is, the fact that in many cases only primary physical mechanisms can be correctly repres...

  5. Modeling the ocean effect of geomagnetic storms

    DEFF Research Database (Denmark)

    Olsen, Nils; Kuvshinov, A.

    2004-01-01

    At coastal sites, geomagnetic variations for periods shorter than a few days are strongly distorted by the conductivity of the nearby sea-water. This phenomena, known as the ocean (or coast) effect, is strongest in the magnetic vertical component. We demonstrate the ability to predict the ocean...... if the oceans are considered. Our analysis also indicates a significant local time asymmetry (i.e., contributions from spherical harmonics other than P-I(0)), especially during the main phase of the storm....

  6. Elliptical magnetic clouds and geomagnetic storms

    Czech Academy of Sciences Publication Activity Database

    Antoniadou, I.; Geranios, A.; Vandas, Marek; Panagopoulou, M.; Zacharopoulou, O.; Malandraki, O.

    2008-01-01

    Roč. 56, 3-4 (2008), s. 492-500 ISSN 0032-0633 R&D Projects: GA AV ČR 1QS300120506; GA ČR GA205/06/0875 Institutional research plan: CEZ:AV0Z10030501 Keywords : magnetic clouds * geomagnetic storms * solar wind Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.506, year: 2008

  7. Coastal ecosystems for protection against storm surge

    Digital Repository Service at National Institute of Oceanography (India)

    Mascarenhas, A.

    reservoirs. Channels, lakes, ponds and marshes distribute flood waters, whereas natural topographic depressions can store large volumes of surge water (Fig.2). Unfortunately, such settings are fast diminishing as structures are being located in reclaimed... Hazards", Spl. Vol. of IGC O.P. Varma, G.V. Rajamanickam & Eugene Wilson (eds.), Ind. Geol. Cong., 2010, pp. 135-145. 9 Coastal Ecosystems for Protection against Storm Surge Antonio Mascarenhas National Institute of Oceanography, Dona Paula-403004 (Goa...

  8. Auroral precipitating energy during long magnetic storms

    Science.gov (United States)

    Cardoso, F. R.; Alves, M. V.; Parks, G. K.; Fillingim, M. O.; Simões Junior, F. J. R.; Costa Junior, E.; Koga, D.

    2017-06-01

    The power energy input carried by precipitating electrons into the auroral zone is an important parameter for understanding the solar wind-magnetosphere energy transfer processes and magnetic storms triggering. Some magnetic storms present a peculiar long recovery phase, lasting for many days or even weeks, which can be associated with the intense and long-duration auroral activity named HILDCAA (High Intensity Long Duration Continuous AE Activity). The auroral energy input during HILDCAAs has been pointed out as an essential key issue, although there have been very few quantitative studies on this topic. In the present work, we have estimated the auroral electron precipitating energy during the events of long (LRP) and short (SRP) storm recovery phase. The energy has been calculated from the images produced by the Ultraviolet Imager (UVI) on board the Polar satellite. In order to obtain accurate energy values, we developed a dayglow estimate method to remove solar contamination from the UVI images, before calculating the energy. We compared the UVI estimate to the Hemispheric Power (HP), to the empirical power obtained from the AE index, and to the solar wind input power. Our results showed that the UVI electron precipitating power for the LRP events presented a quasiperiodic fluctuation, which has been confirmed by the other estimates. We found that the LRP events are a consequence of a directly driven system, where there is no long-term energy storage in the magnetosphere, and the auroral electrojets during these events are directly affected by the electron precipitating power.

  9. CALCULATION: PRECIPITATION CHARACTERISITICS FOR STORM WATER MANAGEMENT

    International Nuclear Information System (INIS)

    D. Ambos

    2000-01-01

    This Calculation is intended to satisfy engineering requirements for maximum 60-minute precipitation amounts for 50 and 100-year return periods at and near Yucca Mountain. This data requirement is documented in the ''Interface Control Document for Support Operations to Surface Facilities Operations Functional and Organizational Interfaces'' (CRWMS M and O 1998a). These developed data will supplement the information on 0.1 hour to 6-hour (in 0.1-hour increments) probable maximum precipitation (PMP) presented in the report, ''Precipitation Design Criteria for Storm Water Management'' (CRWMS M and O 1998b). The Reference Information Base (RIB) item, Precipitation ''Characteristics for Storm Water Management'' (M09902RIB00045 .OOO), was developed based on CRWMS M and O (1998b) and will be supplemented (via revision) with the information developed in this Calculation. The ''Development Plan for the Calculation: Precipitation Characteristics for Storm Water Management'' (CRWMS M and O 2000) was prepared in accordance with AP-2.l3Q, ''Technical Product Development Planning''. This calculation was developed in accordance with AP-3.12Q, Rev. O/ICN 2

  10. Geomagnetic storm effects on GPS based navigation

    Directory of Open Access Journals (Sweden)

    P. V. S. Rama Rao

    2009-05-01

    Full Text Available The energetic events on the sun, solar wind and subsequent effects on the Earth's geomagnetic field and upper atmosphere (ionosphere comprise space weather. Modern navigation systems that use radio-wave signals, reflecting from or propagating through the ionosphere as a means of determining range or distance, are vulnerable to a variety of effects that can degrade the performance of the navigational systems. In particular, the Global Positioning System (GPS that uses a constellation of earth orbiting satellites are affected due to the space weather phenomena.

    Studies made during two successive geomagnetic storms that occurred during the period from 8 to 12 November 2004, have clearly revealed the adverse affects on the GPS range delay as inferred from the Total Electron Content (TEC measurements made from a chain of seven dual frequency GPS receivers installed in the Indian sector. Significant increases in TEC at the Equatorial Ionization anomaly crest region are observed, resulting in increased range delay during the periods of the storm activity. Further, the storm time rapid changes occurring in TEC resulted in a number of phase slips in the GPS signal compared to those on quiet days. These phase slips often result in the loss of lock of the GPS receivers, similar to those that occur during strong(>10 dB L-band scintillation events, adversely affecting the GPS based navigation.

  11. Local time and cutoff rigidity dependences of storm time increase associated with geomagnetic storms

    International Nuclear Information System (INIS)

    Kudo, S.; Wada, M.; Tanskanen, P.; Kodama, M.

    1987-01-01

    The cosmic ray increases due to considerable depressions of cosmic ray cutoff rigidity during large geomagnetic storms are investigated. Data from a worldwide network of cosmic ray neutron monitors are analyzed for 17 geomagnetic storms which occurred in the quiet phase of the solar activity cycle during 1966-1978. As expected from the longitudinal asymmetry of the low-altitude geomagnetic field during large geomagnetic storms, a significant local time dependence of the increment in the cosmic ray during large geomagnetic storms, a significant local time dependence of the increment in the cosmic ray intensity is obtained. It is shown that the maximum phases of the local time dependence occur at around 1800 LT and that the amplitudes of the local time dependence are consistent with presently available theoretical estimates. The dependence of the increment on the cutoff rigidity is obtained for both the local time dependent part and the local time independent part of the storm time increase. The local time independent part, excluding the randomizing local time dependent part, shows a clear-cut dependence on cutoff rigidity which is consistent with theoretical estimates

  12. TOMS/Meteor-3 Total Column Ozone Daily L3 Global 1x1.25 deg Lat/Lon Grid V008

    Data.gov (United States)

    National Aeronautics and Space Administration — This data product contains TOMS/Meteor-3 Total Column Ozone Daily L3 Global 1x1.25 deg Lat/Lon Grid Version 8 data in ASCII format. (The shortname for this Meteor-3...

  13. TOMS/Meteor-3 UV Reflectivity Daily L3 Global 1x1.25 deg Lat/Lon Grid V008

    Data.gov (United States)

    National Aeronautics and Space Administration — This data product contains TOMS/Meteor-3 UV Reflectivity Daily L3 Global 1x1.25 deg Lat/Lon Grid Version 8 data in ASCII format. (The shortname for this Meteor-3...

  14. Early diagenesis driven by widespread meteoric infiltration of a Central European carbonate ramp: A reinterpretation of the Upper Muschelkalk

    Science.gov (United States)

    Adams, Arthur; Diamond, Larryn W.

    2017-12-01

    Meteoric diagenesis of carbonate ramps is often difficult to interpret and can commonly be confused with other coinciding diagenetic processes. The Middle Triassic Upper Muschelkalk of Switzerland provides an insightful case in which the effects of several overprinting diagenetic environments, including matrix dolomitization, can be clearly unravelled. Previous studies suggested that diagenesis took place in connate marine waters, with later meteoric waters being invoked to explain recrystallization of dolomite. In this study, diagenetic analyses (C-O stable isotope ratios, thin-section point counting, cathodoluminescence and UV-fluorescence microscopy) of calcitic bioclastic samples have revealed that early diagenesis (pre-stylolitization) and the accompanying porosity evolution did not occur exclusively in the presence of marine fluids. Five sequential stages of diagenesis have been identified: marine, shallow burial, mixing-zone, meteoric and dolomitization. Marine diagenesis induced precipitation of bladed and inclusion-rich syntaxial cements that fluoresce strongly under UV-light. Both cements account for a mean 7.5 vol% reduction in the porosity of bioclastic beds. Shallow burial diagenesis likely induced mouldic porosity and associated fluorescent dog-tooth cementation. Based on light oxygen isotope and elevated strontium isotope ratios, matrix aragonite-calcite neomorphism is interpreted to have occurred in a mixture of marine and meteoric fluids. The combination of shallow burial and mixing-zone processes reduced porosity on average by 4.8 vol%. Evidence for subsequent meteoric diagenesis is found in abundant dog-tooth and blocky calcite cements that have mean δ18OVPDB of - 9.36‰ and no signs of recrystallization. These meteoric cements reduced porosity by a further 13.4 vol%. Percolation of meteoric water through the ramp was driven by hydraulic gradients on an adjacent basement high, which was exposed by a cycle of early Ladinian regressions

  15. Meteoric Be-10 from Sirius Group suggests high elevation McMurdo Dry Valleys permanently frozen since 6 Ma

    DEFF Research Database (Denmark)

    Dickinson, Warren W.; Schiller, Martin; Ditchburn, Bob G.

    2012-01-01

    A long-standing debate concerning Neogene Antarctic climate in the McMurdo Dry Valleys relies largely on evidence from landscape evolution, glacial modeling and stratigraphy. We provide new evidence from meteoric Be for the onset of frozen, hyper-arid conditions on a high elevation (1840m......) interfluve at Table Mountain. A simple decay model for the co-occurrence of meteoric Be and illuviated clay in cores of ice-cemented glacial sediments indicates that the clays were actively migrating down from the surface in a warm climate until the system froze between 6 and 9Ma. Although this age range may...

  16. Examine Precipitation Extremes in Terms of Storm Properties

    Science.gov (United States)

    Jiang, P.; Yu, Z.; Chen, L.; Gautam, M. R.; Acharya, K.

    2017-12-01

    The increasing potential of the extreme precipitation is of significant societal concern. Changes in precipitation extremes have been mostly examined using extreme precipitation indices or Intensity-Duration-Frequency (IDF) analyses, which often fail to reveal the characteristics of an integrated precipitation event. In this study, we will examine the precipitation extremes in terms of storm properties including storm duration, storm intensity, total storm precipitation, and within storm pattern. Single storm event will be identified and storm properties will be determined based on the hourly precipitation time series in the selected locations in southwest United States. Three types of extreme precipitation event will be recognized using the criteria as (1) longest storm duration; (2) Highest storm intensity; and (3) largest total precipitation over a storm. The trend and variation of extreme precipitation events will be discussed for each criterion. Based on the comparisons of the characteristics of extreme precipitation events identified using different criteria, we will provide guidelines for choosing proper criteria for extreme precipitation analysis in specific location.

  17. Extreme value modelling of storm damage in Swedish forests

    Directory of Open Access Journals (Sweden)

    A. Bengtsson

    2007-09-01

    Full Text Available Forests cover about 56% of the land area in Sweden and forest damage due to strong winds has been a recurring problem. In this paper we analyse recorded storm damage in Swedish forests for the years 1965–2007. During the period 48 individual storm events with a total damage of 164 Mm³ have been reported with the severe storm on 8 to 9 January 2005, as the worst with 70 Mm³ damaged forest. For the analysis, storm damage data has been normalised to account for the increase in total forest volume over the period.

    We show that, within the framework of statistical extreme value theory, a Poisson point process model can be used to describe these storm damage events. Damage data supports a heavy-tailed distribution with great variability in damage for the worst storm events. According to the model, and in view of available data, the return period for a storm with damage in size of the severe storm of January 2005 is approximately 80 years, i.e. a storm with damage of this magnitude will happen, on average, once every eighty years.

    To investigate a possible temporal trend, models with time-dependent parameters have been analysed but give no conclusive evidence of an increasing trend in the normalised storm damage data for the period. Using a non-parametric approach with a kernel based local-likelihood method gives the same result.

  18. Two-dimensional computer simulation of hypervelocity impact cratering: some preliminary results for Meteor Crater, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, J.B.; Burton, D.E.; Cunningham, M.E.; Lettis, L.A. Jr.

    1978-06-01

    A computational approach used for subsurface explosion cratering was extended to hypervelocity impact cratering. Meteor (Barringer) Crater, Arizona, was selected for the first computer simulation because it is one of the most thoroughly studied craters. It is also an excellent example of a simple, bowl-shaped crater and is one of the youngest terrestrial impact craters. Initial conditions for this calculation included a meteorite impact velocity of 15 km/s, meteorite mass of 1.67 x 10/sup 8/ kg, with a corresponding kinetic energy of 1.88 x 10/sup 16/ J (4.5 megatons). A two-dimensional Eulerian finite difference code called SOIL was used for this simulation of a cylindrical iron projectile impacting at normal incidence into a limestone target. For this initial calculation, a Tillotson equation-of-state description for iron and limestone was used with no shear strength. Results obtained for this preliminary calculation of the formation of Meteor Crater are in good agreement with field measurements. A color movie based on this calculation was produced using computer-generated graphics. 19 figures, 5 tables, 63 references.

  19. Estimation of surface UV levels based on Meteor-3/TOMS ozone data

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, Y.A. [Central Aerological Observatory, Moscow (Russian Federation); Geogdzhaev, I.V. [Moscow Inst. of Physics and Technology, Moscow (Russian Federation); Khattatov, V.U. [Central Aerological Observatory, Moscow (Russian Federation)

    1995-12-31

    The major consequence of ozone layer depletion for the environment is an increase of harmful ultraviolet (UV) radiation on the Earth surface and in the upper ocean. This implies the importance of environmental UV monitoring. Since the direct global monitoring is not currently possible, indirect estimations of surface UV levels may be used based on satellite ozone data (Madronich, S. 1992). Total Ozone Mapping Spectrometer (TOMS) on board the METEOR-3 satellite provided regular set of data for such estimates. During the time of its operation (August, 1991 - December, 1994) the instrument registered several ozone hole events over Antarctica, when ozone levels dropped by as much as 60 % from their unperturbed values. Probably even more alarming ozone depletions were observed over highly populated regions of middle latitudes of northern hemisphere. Radiative transfer modeling was used to convert METEOR-3/TOMS daily ozone values into regional and global maps of biologically active UV. Calculations demonstrate the effect on surface UV levels produced by ozone hole over Antarctica and ozone depletions over the territory of Russia (March, 1994). UV contour lines deviate from the normal appearance which is determined by growing southward solar elevation. UV contour lines are almost perpendicular to the ozone ones in the ozone depletions areas. The 30 % ozone depletion, over Siberia caused more than 30 % increase in noontime erythemal UV levels, which is equivalent to 10-15 degrees southward latitude displacement. Higher UV radiation increases were found in ozone hole over South America (October 1992) equivalent to about 20 degrees southward displacement

  20. Meteoric smoke fallout over the Holocene epoch revealed by iridium and platinum in Greenland ice.

    Science.gov (United States)

    Gabrielli, Paolo; Barbante, Carlo; Plane, John M C; Varga, Anita; Hong, Sungmin; Cozzi, Giulio; Gaspari, Vania; Planchon, Frédéric A M; Cairns, Warren; Ferrari, Christophe; Crutzen, Paul; Cescon, Paolo; Boutron, Claude F

    2004-12-23

    An iridium anomaly at the Cretaceous/Tertiary boundary layer has been attributed to an extraterrestrial body that struck the Earth some 65 million years ago. It has been suggested that, during this event, the carrier of iridium was probably a micrometre-sized silicate-enclosed aggregate or the nanophase material of the vaporized impactor. But the fate of platinum-group elements (such as iridium) that regularly enter the atmosphere via ablating meteoroids remains largely unknown. Here we report a record of iridium and platinum fluxes on a climatic-cycle timescale, back to 128,000 years ago, from a Greenland ice core. We find that unexpectedly constant fallout of extraterrestrial matter to Greenland occurred during the Holocene, whereas a greatly enhanced input of terrestrial iridium and platinum masked the cosmic flux in the dust-laden atmosphere of the last glacial age. We suggest that nanometre-sized meteoric smoke particles, formed from the recondensation of ablated meteoroids in the atmosphere at altitudes >70 kilometres, are transported into the winter polar vortices by the mesospheric meridional circulation and are preferentially deposited in the polar ice caps. This implies an average global fallout of 14 +/- 5 kilotons per year of meteoric smoke during the Holocene.

  1. Biometeorological forecasts for health surveillance and prevention of meteor-tropic effects

    Science.gov (United States)

    Lecha Estela, Luis B.

    2017-09-01

    An early method of biometeorological forecasts was developed for Cuba during the late 90s. It was based on the relationship between the daily occurrence of massive health crisis and the magnitude of the 24-h differences of partial density of oxygen in the air (PODA index). Ten years later, applying new technological facilities, a new model was developed in order to offer operational biometeorological forecast to Cuban health institutions. After a satisfactory validation process, the official bioforecast service to health institutions in Villa Clara province began on February of 2012. The effectiveness had different success levels: for the bronchial asthma crisis (94%), in the hypertensive crisis (88%), with the cerebrovascular illnesses (85%), as well as migraines (82%) and in case of cardiovascular diseases (75%) were acceptable. Since 2008, the application of the model was extended to other regions of the world, including some national applications. Furthermore, it allowed the beginning of regional monitoring of meteor-tropic effects, following the occurrence and movement of areas with higher weather contrasts, defined according to the normalized scale of PODA index. The paper describes the main regional results already available, with emphasis in the observed meteor-tropic effects increasing in all regions during recent years. It coincides with the general increase of energy imbalance in the whole climate system. Finally, the paper describes the current development of new global biometeorological forecast services.

  2. A Bright Lunar Impact Flash Linked to the Virginid Meteor Complex

    Science.gov (United States)

    Moser, D. E.; Suggs, R. M.; Suggs, R. J.

    2015-01-01

    Since early 2006, NASA's Marshall Space Flight Center (MSFC) has observed over 330 impact flashes on the Moon, produced by meteoroids striking the lunar surface. On 17 March 2013 at 03:50:54.312 UTC, the brightest flash of a 9-year routine observing campaign was observed by two 0.35 m telescopes at MSFC. The camera onboard the Lunar Reconnaissance Orbiter (LRO), a NASA spacecraft mapping the Moon from lunar orbit, discovered the fresh crater associated with this impact [1] approximately 3 km from the location predicted by a newly developed geolocation technique [2]. The meteoroid impactor responsible for this event may have been part of a stream of large particles encountered by the Earth/Moon associated with the Virginid Meteor Complex, as evidenced by a cluster of five fireballs seen in Earth's atmosphere on the same night by the NASA All Sky Fireball Network [3] and the Southern Ontario Meteor Network [4]. Crater size calculations based on assumptions derived from fireball measurements yielded an estimated crater diameter of 10-23 m rim-to-rim using the Holsapple [5] and Gault [6] models, a result consistent with the observed crater measured to be 18 m across. This is the first time a lunar impact flash has been associated with fireballs in Earth's atmosphere and an observed crater.

  3. Biometeorological forecasts for health surveillance and prevention of meteor-tropic effects.

    Science.gov (United States)

    Lecha Estela, Luis B

    2017-09-13

    An early method of biometeorological forecasts was developed for Cuba during the late 90s. It was based on the relationship between the daily occurrence of massive health crisis and the magnitude of the 24-h differences of partial density of oxygen in the air (PODA index). Ten years later, applying new technological facilities, a new model was developed in order to offer operational biometeorological forecast to Cuban health institutions. After a satisfactory validation process, the official bioforecast service to health institutions in Villa Clara province began on February of 2012. The effectiveness had different success levels: for the bronchial asthma crisis (94%), in the hypertensive crisis (88%), with the cerebrovascular illnesses (85%), as well as migraines (82%) and in case of cardiovascular diseases (75%) were acceptable. Since 2008, the application of the model was extended to other regions of the world, including some national applications. Furthermore, it allowed the beginning of regional monitoring of meteor-tropic effects, following the occurrence and movement of areas with higher weather contrasts, defined according to the normalized scale of PODA index. The paper describes the main regional results already available, with emphasis in the observed meteor-tropic effects increasing in all regions during recent years. It coincides with the general increase of energy imbalance in the whole climate system. Finally, the paper describes the current development of new global biometeorological forecast services.

  4. Two-dimensional computer simulation of hypervelocity impact cratering: some preliminary results for Meteor Crater, Arizona

    International Nuclear Information System (INIS)

    Bryan, J.B.; Burton, D.E.; Cunningham, M.E.; Lettis, L.A. Jr.

    1978-06-01

    A computational approach used for subsurface explosion cratering was extended to hypervelocity impact cratering. Meteor (Barringer) Crater, Arizona, was selected for the first computer simulation because it is one of the most thoroughly studied craters. It is also an excellent example of a simple, bowl-shaped crater and is one of the youngest terrestrial impact craters. Initial conditions for this calculation included a meteorite impact velocity of 15 km/s, meteorite mass of 1.67 x 10 8 kg, with a corresponding kinetic energy of 1.88 x 10 16 J (4.5 megatons). A two-dimensional Eulerian finite difference code called SOIL was used for this simulation of a cylindrical iron projectile impacting at normal incidence into a limestone target. For this initial calculation, a Tillotson equation-of-state description for iron and limestone was used with no shear strength. Results obtained for this preliminary calculation of the formation of Meteor Crater are in good agreement with field measurements. A color movie based on this calculation was produced using computer-generated graphics. 19 figures, 5 tables, 63 references

  5. Meteor cookbook

    CERN Document Server

    Strack, Isaac

    2015-01-01

    This book is meant for developers of all experience levels looking to create mobile and full-stack web applications in JavaScript. Many of the simple recipes can easily be followed by less-experienced developers, while some of the advanced recipes will require extensive knowledge of existing web, mobile, and server technologies. Any application or enterprise web developer looking to create full-stack JavaScript-based apps will benefit from the recipes and concepts covered in this book.

  6. Cardiorespiratory Failure in Thyroid Storm: Case Report and Literature Review.

    Science.gov (United States)

    Nai, Qiang; Ansari, Mohammad; Pak, Stella; Tian, Yufei; Amzad-Hossain, Mohammed; Zhang, Yanhong; Lou, Yali; Sen, Shuvendu; Islam, Mohammed

    2018-04-01

    Thyroid storm is a potentially fatal manifestation of thyrotoxicosis. Cardiopulmonary failure is the most common cause of death in thyroid storm. Clinicians should keep in mind that thyroid storm complicated with cardiopulmonary failure can be the first presentation of thyrotoxicosis. As early intervention is associated with improved patient outcome, prompt diagnosis based on clinical grounds is of paramount importance in the management of thyrotoxicosis. A high index of suspicion and the ability of early recognition of impending thyroid storm depends on a thorough knowledge of both the typical and atypical clinical features of this illness. Herein, we report a case of thyroid storm presenting as cardiopulmonary failure in a 51-year-old woman with undiagnosed Grave's disease. Additionally, we review the pathophysiology of cardiopulmonary failure associated with thyrotoxicosis and various treatment modalities for thyroid storm.

  7. Radar Reflectivity Derived Rain-storm Characteristics over Northern Thailand

    Directory of Open Access Journals (Sweden)

    Pakdee Chantraket

    2013-07-01

    Full Text Available The radar data analysis in this study were to extract the radar reflectivity to individual rain-storms and present the study on rain-storm characteristics with their crucial features in northern Thailand over 80 days between April and August 2012. This study classified the two seasonal variations of rain-storm characteristics derived from Thunderstorm Identification and Tracking Analysis and Nowcasting (TITAN algorithm including 11 variables of storm numbers, duration, volume, mass, sizes, maximum reflectivity and movement in the data set. Additionally, the study also evaluated statistically the relationship between storm characteristics and standard instability indices including lift index (LI and convective available potential energy (CAPE. It can be seen that in summer season had a smaller number of storms but the storms were of longer average duration, greater maximum reflectivity as well as larger areas, volume and mass. Most rain-storms in both summer and rainy seasons were less than 2 hours and the storm altitudes (base to top height were between around 2 and 8 km MSL. The storm velocity was not exceeding 20 km/hr and their movement was southeasterly wind accordingly along the north-south mountain ranges in northern Thailand. Storm area was the most important factor determining the convective weather in the large scale environment during summer season since it was illustrated the strongest correlation in both LI (negative; -0.67 and CAPE (positive; 0.65. Alternatively, the storm duration was the most important variable in wet season, which was exhibited the strongest correlation (0.68 with CAPE as well; moreover, no such strong correlation was found for LI.

  8. East Coast storm surges provide unique climate record

    Science.gov (United States)

    Zhang, Keqi; Douglas, Bruce C.; Leatherman, Stephen P.

    Coastal storms repeatedly hit the U.S. East Coast, costing many billions of dollars in losses. In 1992 Hurricane Andrew alone caused about $35-40 billion in damage. In addition to property damage, coastal storms are the major contributors to beach and dune erosion, overwash processes, and the opening of tidal inlets on barrier islands. What changes, if any, can we expect in coastal storm activity and intensity as global temperatures rise?

  9. Results of storm activity registration in the Kola Peninsula

    Directory of Open Access Journals (Sweden)

    Burtsev A. V.

    2015-12-01

    Full Text Available Results of storm activity registration processing in the Kola Peninsula during 2013-2014 have been given. Considerable fluctuations of storm activity and unevenness of lightning discharges distribution across the region territory have been noted. It has been proposed to use a cloud-to-ground discharge density indicator taking into account their distribution in the region at an assessment of lightning protection efficiency of power generation facilities in areas with low thunder-storms intensity

  10. Lightning parameterization in a storm electrification model

    Science.gov (United States)

    Helsdon, John H., Jr.; Farley, Richard D.; Wu, Gang

    1988-01-01

    The parameterization of an intracloud lightning discharge has been implemented in our Storm Electrification Model. The initiation, propagation direction, termination and charge redistribution of the discharge are approximated assuming overall charge neutrality. Various simulations involving differing amounts of charge transferred have been done. The effects of the lightning-produced ions on the hydrometeor charges, electric field components and electrical energy depend strongly on the charge transferred. A comparison between the measured electric field change of an actual intracloud flash and the field change due to the simulated discharge show favorable agreement.

  11. DRDC Support to Exercise Cyber Storm III

    Science.gov (United States)

    2011-10-01

    Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale, 2011 Abstract This paper...commandants des centres d’opérations. L’ampleur du travail des analystes variait en fonction de chacun des centres d’opérations et de son niveau de ...commandement et contrôle (C2) fourni par RDDC lors de l’exercice Cyber Storm III qui s’est déroulé en septembre 2010. Il décrit ce qui s’est produit, qui était

  12. Hindcasting of storm waves using neural networks

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, S.; Mandal, S.

    Department NN neural network net i weighted sum of the inputs of neuron i o k network output at kth output node P total number of training pattern s i output of neuron i t k target output at kth output node 1. Introduction Severe storms occur in Bay of Bengal... useful in the planning and maintenance of marine activities. Wave hindcasting is a non-real time application of numerical wave models in the broad field of climatology. Just as weather conditions, w ij weight from neuron j to neuron i YM Young’s model h a...

  13. Space storms and radiation causes and effects

    CERN Document Server

    Schrijver, Carolus J

    2010-01-01

    Heliophysics is a fast-developing scientific discipline that integrates studies of the Sun's variability, the surrounding heliosphere, and the environment and climate of planets. The Sun is a magnetically variable star and for planets with intrinsic magnetic fields, planets with atmospheres, or planets like Earth with both, there are profound consequences. This 2010 volume, the second in this series of three heliophysics texts, integrates the many aspects of space storms and the energetic radiation associated with them - from causes on the Sun to effects in planetary environments. It reviews t

  14. From pre-storm activity to magnetic storms: a transition described in terms of fractal dynamics

    Directory of Open Access Journals (Sweden)

    G. Balasis

    2006-12-01

    Full Text Available We show that distinct changes in scaling parameters of the Dst index time series occur as an intense magnetic storm approaches, revealing a gradual reduction in complexity. The remarkable acceleration of energy release – manifested in the increase in susceptibility – couples to the transition from anti-persistent (negative feedback to persistent (positive feedback behavior and indicates that the occurence of an intense magnetic storm is imminent. The main driver of the Dst index, the VBSouth electric field component, does not reveal a similar transition to persistency prior to the storm. This indicates that while the magnetosphere is mostly driven by the solar wind the critical feature of persistency in the magnetosphere is the result of a combination of solar wind and internal magnetospheric activity rather than solar wind variations alone. Our results suggest that the development of an intense magnetic storm can be studied in terms of "intermittent criticality" that is of a more general character than the classical self-organized criticality phenomena, implying the predictability of the magnetosphere.

  15. Anticipating environmental and environmental-health implications of extreme storms: ARkStorm scenario

    Science.gov (United States)

    Plumlee, Geoffrey S.; Alpers, Charles N.; Morman, Suzette A.; San Juan, Carma A.

    2016-01-01

    The ARkStorm Scenario predicts that a prolonged winter storm event across California would cause extreme precipitation, flooding, winds, physical damages, and economic impacts. This study uses a literature review and geographic information system-based analysis of national and state databases to infer how and where ARkStorm could cause environmental damages, release contamination from diverse natural and anthropogenic sources, affect ecosystem and human health, and cause economic impacts from environmental-remediation, liability, and health-care costs. Examples of plausible ARkStorm environmental and health concerns include complex mixtures of contaminants such as petroleum, mercury, asbestos, persistent organic pollutants, molds, and pathogens; adverse physical and contamination impacts on riverine and coastal marine ecosystems; and increased incidences of mold-related health concerns, some vector-borne diseases, and valley fever. Coastal cities, the San Francisco Bay area, the Sacramento-San Joaquin River Delta, parts of the Central Valley, and some mountainous areas would likely be most affected. This type of screening analysis, coupled with follow-up local assessments, can help stakeholders in California and disaster-prone areas elsewhere better plan for, mitigate, and respond to future environmental disasters.

  16. From pre-storm activity to magnetic storms: a transition described in terms of fractal dynamics

    Directory of Open Access Journals (Sweden)

    G. Balasis

    2006-12-01

    Full Text Available We show that distinct changes in scaling parameters of the Dst index time series occur as an intense magnetic storm approaches, revealing a gradual reduction in complexity. The remarkable acceleration of energy release – manifested in the increase in susceptibility – couples to the transition from anti-persistent (negative feedback to persistent (positive feedback behavior and indicates that the occurence of an intense magnetic storm is imminent. The main driver of the Dst index, the VBSouth electric field component, does not reveal a similar transition to persistency prior to the storm. This indicates that while the magnetosphere is mostly driven by the solar wind the critical feature of persistency in the magnetosphere is the result of a combination of solar wind and internal magnetospheric activity rather than solar wind variations alone. Our results suggest that the development of an intense magnetic storm can be studied in terms of "intermittent criticality" that is of a more general character than the classical self-organized criticality phenomena, implying the predictability of the magnetosphere.

  17. Dynamic interactions between coastal storms and salt marshes: A review

    Science.gov (United States)

    Leonardi, Nicoletta; Carnacina, Iacopo; Donatelli, Carmine; Ganju, Neil Kamal; Plater, Andrew James; Schuerch, Mark; Temmerman, Stijn

    2018-01-01

    This manuscript reviews the progresses made in the understanding of the dynamic interactions between coastal storms and salt marshes, including the dissipation of extreme water levels and wind waves across marsh surfaces, the geomorphic impact of storms on salt marshes, the preservation of hurricanes signals and deposits into the sedimentary records, and the importance of storms for the long term survival of salt marshes to sea level rise. A review of weaknesses, and strengths of coastal defences incorporating the use of salt marshes including natural, and hybrid infrastructures in comparison to standard built solutions is then presented. Salt marshes are effective in dissipating wave energy, and storm surges, especially when the marsh is highly elevated, and continuous. This buffering action reduces for storms lasting more than one day. Storm surge attenuation rates range from 1.7 to 25 cm/km depending on marsh and storms characteristics. In terms of vegetation properties, the more flexible stems tend to flatten during powerful storms, and to dissipate less energy but they are also more resilient to structural damage, and their flattening helps to protect the marsh surface from erosion, while stiff plants tend to break, and could increase the turbulence level and the scour. From a morphological point of view, salt marshes are generally able to withstand violent storms without collapsing, and violent storms are responsible for only a small portion of the long term marsh erosion. Our considerations highlight the necessity to focus on the indirect long term impact that large storms exerts on the whole marsh complex rather than on sole after-storm periods. The morphological consequences of storms, even if not dramatic, might in fact influence the response of the system to normal weather conditions during following inter-storm periods. For instance, storms can cause tidal flats deepening which in turn promotes wave energy propagation, and exerts a long term detrimental

  18. Dynamic interactions between coastal storms and salt marshes: A review

    Science.gov (United States)

    Leonardi, Nicoletta; Carnacina, Iacopo; Donatelli, Carmine; Ganju, Neil K.; Plater, Andrew James; Schuerch, Mark; Temmerman, Stijn

    2018-01-01

    This manuscript reviews the progresses made in the understanding of the dynamic interactions between coastal storms and salt marshes, including the dissipation of extreme water levels and wind waves across marsh surfaces, the geomorphic impact of storms on salt marshes, the preservation of hurricanes signals and deposits into the sedimentary records, and the importance of storms for the long term survival of salt marshes to sea level rise. A review of weaknesses, and strengths of coastal defences incorporating the use of salt marshes including natural, and hybrid infrastructures in comparison to standard built solutions is then presented.Salt marshes are effective in dissipating wave energy, and storm surges, especially when the marsh is highly elevated, and continuous. This buffering action reduces for storms lasting more than one day. Storm surge attenuation rates range from 1.7 to 25 cm/km depending on marsh and storms characteristics. In terms of vegetation properties, the more flexible stems tend to flatten during powerful storms, and to dissipate less energy but they are also more resilient to structural damage, and their flattening helps to protect the marsh surface from erosion, while stiff plants tend to break, and could increase the turbulence level and the scour. From a morphological point of view, salt marshes are generally able to withstand violent storms without collapsing, and violent storms are responsible for only a small portion of the long term marsh erosion.Our considerations highlight the necessity to focus on the indirect long term impact that large storms exerts on the whole marsh complex rather than on sole after-storm periods. The morphological consequences of storms, even if not dramatic, might in fact influence the response of the system to normal weather conditions during following inter-storm periods. For instance, storms can cause tidal flats deepening which in turn promotes wave energy propagation, and exerts a long term

  19. Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR): final results from a randomised, open-label, phase 3 trial

    DEFF Research Database (Denmark)

    Choueiri, Toni K; Escudier, Bernard; Powles, Thomas

    2016-01-01

    BACKGROUND: Cabozantinib is an oral inhibitor of tyrosine kinases including MET, VEGFR, and AXL. The randomised phase 3 METEOR trial compared the efficacy and safety of cabozantinib versus the mTOR inhibitor everolimus in patients with advanced renal cell carcinoma who progressed after previous...

  20. Search for OH(A–X) and detection of N2+(B–X) in ultraviolet meteor spectrum

    Czech Academy of Sciences Publication Activity Database

    Abe, S.; Ebizuka, N.; Yano, H.; Watanabe, J.; Borovička, Jiří

    2007-01-01

    Roč. 39, č. 4 (2007), s. 538-543 ISSN 0273-1177 Institutional research plan: CEZ:AV0Z10030501 Keywords : astrobiology * comets * meteor s Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.774, year: 2007