WorldWideScience

Sample records for lentiviral short hairpin

  1. Lentiviral Delivery of a Vesicular Glutamate Transporter 1 (VGLUT1)-Targeting Short Hairpin RNA Vector Into the Mouse Hippocampus Impairs Cognition

    NARCIS (Netherlands)

    King, Madeleine V.; Kurian, Nisha; Qin, Si; Papadopoulou, Nektaria; Westerink, Ben H. C.; Cremers, Thomas I.; Epping-Jordan, Mark P.; Le Poul, Emmanuel; Ray, David E.; Fone, Kevin C. F.; Kendall, David A.; Marsden, Charles A.; Sharp, Tyson V.

    Glutamate is the principle excitatory neurotransmitter in the mammalian brain, and dysregulation of glutamatergic neurotransmission is implicated in the pathophysiology of several psychiatric and neurological diseases. This study utilized novel lentiviral short hairpin RNA (shRNA) vectors to target

  2. An optimized lentiviral vector system for conditional RNAi and efficient cloning of microRNA embedded short hairpin RNA libraries.

    Science.gov (United States)

    Adams, Felix F; Heckl, Dirk; Hoffmann, Thomas; Talbot, Steven R; Kloos, Arnold; Thol, Felicitas; Heuser, Michael; Zuber, Johannes; Schambach, Axel; Schwarzer, Adrian

    2017-09-01

    RNA interference (RNAi) and CRISPR-Cas9-based screening systems have emerged as powerful and complementary tools to unravel genetic dependencies through systematic gain- and loss-of-function studies. In recent years, a series of technical advances helped to enhance the performance of virally delivered RNAi. For instance, the incorporation of short hairpin RNAs (shRNAs) into endogenous microRNA contexts (shRNAmiRs) allows the use of Tet-regulated promoters for synchronous onset of gene knockdown and precise interrogation of gene dosage effects. However, remaining challenges include lack of efficient cloning strategies, inconsistent knockdown potencies and leaky expression. Here, we present a simple, one-step cloning approach for rapid and efficient cloning of miR-30 shRNAmiR libraries. We combined a human miR-30 backbone retaining native flanking sequences with an optimized all-in-one lentiviral vector system for conditional RNAi to generate a versatile toolbox characterized by higher doxycycline sensitivity, reduced leakiness and enhanced titer. Furthermore, refinement of existing shRNA design rules resulted in substantially improved prediction of powerful shRNAs. Our approach was validated by accurate quantification of the knockdown potency of over 250 single shRNAmiRs. To facilitate access and use by the scientific community, an online tool was developed for the automated design of refined shRNA-coding oligonucleotides ready for cloning into our system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Short Hairpin RNA (shRNA): Design, Delivery, and Assessment of Gene Knockdown

    Science.gov (United States)

    Moore, Chris B.; Guthrie, Elizabeth H.; Huang, Max Tze-Han; Taxman, Debra J.

    2013-01-01

    Shortly after the cellular mechanism of RNA interference (RNAi) was first described, scientists began using this powerful technique to study gene function. This included designing better methods for the successful delivery of small interfering RNAs (siRNAs) and short hairpin RNAs (shRNAs) into mammalian cells. While the simplest method for RNAi is the cytosolic delivery of siRNA oligonucleotides, this technique is limited to cells capable of transfection and is primarily utilized during transient in vitro studies. The introduction of shRNA into mammalian cells through infection with viral vectors allows for stable integration of shRNA and long-term knockdown of the targeted gene; however, several challenges exist with the implementation of this technology. Here we describe some well-tested protocols which should increase the chances of successful design, delivery, and assessment of gene knockdown by shRNA. We provide suggestions for designing shRNA targets and controls, a protocol for sequencing through the secondary structure of the shRNA hairpin structure, and protocols for packaging and delivery of shRNA lentiviral particles. Using real-time PCR and functional assays we demonstrate the successful knockdown of ASC, an inflammatory adaptor molecule. These studies demonstrate the practicality of including two shRNAs with different efficacies of knockdown to provide an additional level of control and to verify dose dependency of functional effects. Along with the methods described here, as new techniques and algorithms are designed in the future, shRNA is likely to include further promising application and continue to be a critical component of gene discovery. PMID:20387148

  4. Preclinical safety and efficacy of an anti–HIV-1 lentiviral vector containing a short hairpin RNA to CCR5 and the C46 fusion inhibitor

    Directory of Open Access Journals (Sweden)

    Orit Wolstein

    2014-01-01

    Full Text Available Gene transfer has therapeutic potential for treating HIV-1 infection by generating cells that are resistant to the virus. We have engineered a novel self-inactivating lentiviral vector, LVsh5/C46, using two viral-entry inhibitors to block early steps of HIV-1 cycle. The LVsh5/C46 vector encodes a short hairpin RNA (shRNA for downregulation of CCR5, in combination with the HIV-1 fusion inhibitor, C46. We demonstrate here the effective delivery of LVsh5/C46 to human T cell lines, peripheral blood mononuclear cells, primary CD4+ T lymphocytes, and CD34+ hematopoietic stem/progenitor cells (HSPC. CCR5-targeted shRNA (sh5 and C46 peptide were stably expressed in the target cells and were able to effectively protect gene-modified cells against infection with CCR5- and CXCR4-tropic strains of HIV-1. LVsh5/C46 treatment was nontoxic as assessed by cell growth and viability, was noninflammatory, and had no adverse effect on HSPC differentiation. LVsh5/C46 could be produced at a scale sufficient for clinical development and resulted in active viral particles with very low mutagenic potential and the absence of replication-competent lentivirus. Based on these in vitro results, plus additional in vivo safety and efficacy data, LVsh5/C46 is now being tested in a phase 1/2 clinical trial for the treatment of HIV-1 disease.

  5. Is TNF-a-targeted short hairpin RNA (shRNA) a novel potential therapeutic tool in psoriasis treatment?

    DEFF Research Database (Denmark)

    Stenderup, Karin; Jakobsen, Maria; Rosada, Cecilia

    2008-01-01

      TNF-α is a well known target in psoriasis treatment and biological treatments targeting TNF-a are already clinically used against psoriasis and psoriasis arthritis. Attention is however given to a novel therapeutic tool: RNA interference that controls gene silencing. This study investigates...... the efficiency of targeting TNF-a with specific short hairpin RNA (shRNA) and explores its potential in treating psoriasis. ShRNAs targeting human TNF-α mRNA were generated. Their efficiency in down-regulating TNF-a protein expression was evaluated using a Renilla luciferase screening-assay and a transient co...... TNF-a shRNA was used to transduce HEK293 cells and verify vector-derived TNF-a knockdown in vitro. In vivo, psoriasis skin was exposed to lentiviral TNF-a shRNAs by a single intra-dermal injection. Psoriasis skin for the in vivo study was obtained from psoriatic plaque skin biopsies that were...

  6. Dicer-independent processing of short hairpin RNAs

    NARCIS (Netherlands)

    Liu, Ying Poi; Schopman, Nick C. T.; Berkhout, Ben

    2013-01-01

    Short hairpin RNAs (shRNAs) are widely used to induce RNA interference (RNAi). We tested a variety of shRNAs that differed in stem length and terminal loop size and revealed strikingly different RNAi activities and shRNA-processing patterns. Interestingly, we identified a specific shRNA design that

  7. Short hairpin RNA-mediated knockdown of protein expression in Entamoeba histolytica

    Directory of Open Access Journals (Sweden)

    Singh Upinder

    2009-02-01

    Full Text Available Abstract Background Entamoeba histolytica is an intestinal protozoan parasite of humans. The genome has been sequenced, but the study of individual gene products has been hampered by the lack of the ability to generate gene knockouts. We chose to test the use of RNA interference to knock down gene expression in Entamoeba histolytica. Results An episomal vector-based system, using the E. histolytica U6 promoter to drive expression of 29-basepair short hairpin RNAs, was developed to target protein-encoding genes in E. histolytica. The short hairpin RNAs successfully knocked down protein levels of all three unrelated genes tested with this system: Igl, the intermediate subunit of the galactose- and N-acetyl-D-galactosamine-inhibitable lectin; the transcription factor URE3-BP; and the membrane binding protein EhC2A. Igl levels were reduced by 72%, URE3-BP by 89%, and EhC2A by 97%. Conclusion Use of the U6 promoter to drive expression of 29-basepair short hairpin RNAs is effective at knocking down protein expression for unrelated genes in Entamoeba histolytica, providing a useful tool for the study of this parasite.

  8. Short hairpin RNA-mediated knockdown of protein expression in Entamoeba histolytica.

    Science.gov (United States)

    Linford, Alicia S; Moreno, Heriberto; Good, Katelyn R; Zhang, Hanbang; Singh, Upinder; Petri, William A

    2009-02-17

    Entamoeba histolytica is an intestinal protozoan parasite of humans. The genome has been sequenced, but the study of individual gene products has been hampered by the lack of the ability to generate gene knockouts. We chose to test the use of RNA interference to knock down gene expression in Entamoeba histolytica. An episomal vector-based system, using the E. histolytica U6 promoter to drive expression of 29-basepair short hairpin RNAs, was developed to target protein-encoding genes in E. histolytica. The short hairpin RNAs successfully knocked down protein levels of all three unrelated genes tested with this system: Igl, the intermediate subunit of the galactose- and N-acetyl-D-galactosamine-inhibitable lectin; the transcription factor URE3-BP; and the membrane binding protein EhC2A. Igl levels were reduced by 72%, URE3-BP by 89%, and EhC2A by 97%. Use of the U6 promoter to drive expression of 29-basepair short hairpin RNAs is effective at knocking down protein expression for unrelated genes in Entamoeba histolytica, providing a useful tool for the study of this parasite.

  9. Short-term cytotoxic effects and long-term instability of RNAi delivered using lentiviral vectors

    Directory of Open Access Journals (Sweden)

    Kruithof Egbert KO

    2004-08-01

    Full Text Available Abstract Background RNA interference (RNAi can potently reduce target gene expression in mammalian cells and is in wide use for loss-of-function studies. Several recent reports have demonstrated that short double-stranded RNAs (dsRNAs, used to mediate RNAi, can also induce an interferon-based response resulting in changes in the expression of many interferon-responsive genes. Off-target gene silencing has also been described, bringing into question the validity of certain RNAi-based approaches for studying gene function. We have targeted the plasminogen activator inhibitor-2 (PAI-2 or SERPINB2 mRNA using lentiviral vectors for delivery of U6 promoter-driven PAI-2-targeted short hairpin RNA (shRNA expression. PAI-2 is reported to have anti-apoptotic activity, thus reduction of endogenous expression may be expected to make cells more sensitive to programmed cell death. Results As expected, we encountered a cytotoxic phenotype when targeting the PAI-2 mRNA with vector-derived shRNA. However, this predicted phenotype was a potent non-specific effect of shRNA expression, as functional overexpression of the target protein failed to rescue the phenotype. By decreasing the shRNA length or modifying its sequence we maintained PAI-2 silencing and reduced, but did not eliminate, cytotoxicity. ShRNA of 21 complementary nucleotides (21 mers or more increased expression of the oligoadenylate synthase-1 (OAS1 interferon-responsive gene. 19 mer shRNA had no effect on OAS1 expression but long-term selective pressure on cell growth was observed. By lowering lentiviral vector titre we were able to reduce both expression of shRNA and induction of OAS1, without a major impact on the efficacy of gene silencing. Conclusions Our data demonstrate a rapid cytotoxic effect of shRNAs expressed in human tumor cell lines. There appears to be a cut-off of 21 complementary nucleotides below which there is no interferon response while target gene silencing is maintained

  10. Lentiviral Vector Mediated Claudin1 Silencing Inhibits Epithelial to Mesenchymal Transition in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xianqi Zhao

    2015-06-01

    Full Text Available Breast cancer has a high incidence and mortality rate worldwide. Several viral vectors including lentiviral, adenoviral and adeno-associated viral vectors have been used in gene therapy for various forms of human cancer, and have shown promising effects in controlling tumor development. Claudin1 (CLDN1 is a member of the tetraspan transmembrane protein family that plays a major role in tight junctions and is associated with tumor metastasis. However, the role of CLDN1 in breast cancer is largely unexplored. In this study, we tested the therapeutic potential of silencing CLDN1 expression in two breast cancer (MDA-MB-231 and MCF7 cell lines using lentiviral vector mediated RNA interference. We found that a CLDN1 short hairpin (shRNA construct efficiently silenced CLDN1 expression in both breast cancer cell lines, and CLDN1 knockdown resulted in reduced cell proliferation, survival, migration and invasion. Furthermore, silencing CLDN1 inhibited epithelial to mesenchymal transition (EMT by upregulating the epithelial cell marker, E-cadherin, and downregulating mesenchymal markers, smooth muscle cell alpha-actin (SMA and Snai2. Our data demonstrated that lentiviral vector mediated CLDN1 RNA interference has great potential in breast cancer gene therapy by inhibiting EMT and controlling tumor cell growth.

  11. Neuron-specific RNA interference using lentiviral vectors

    DEFF Research Database (Denmark)

    Nielsen, Troels Tolstrup; Marion, Ingrid van; Hasholt, Lis

    2009-01-01

    BACKGROUND: Viral vectors have been used in several different settings for the delivery of small hairpin (sh) RNAs. However, most vectors have utilized ubiquitously-expressing polymerase (pol) III promoters to drive expression of the hairpin as a result of the strict requirement for precise...... transcriptional initiation and termination. Recently, pol II promoters have been used to construct vectors for RNA interference (RNAi). By embedding the shRNA into a micro RNA-context (miRNA) the endogenous miRNA processing machinery is exploited to achieve the mature synthetic miRNA (smiRNA), thereby expanding...... the possible promoter choices and eventually allowing cell type specific down-regulation of target genes. METHODS: In the present study, we constructed lentiviral vectors expressing smiRNAs under the control of pol II promoters to knockdown gene expression in cell culture and in the brain. RESULTS: We...

  12. A multicolor panel of novel lentiviral "gene ontology" (LeGO) vectors for functional gene analysis.

    Science.gov (United States)

    Weber, Kristoffer; Bartsch, Udo; Stocking, Carol; Fehse, Boris

    2008-04-01

    Functional gene analysis requires the possibility of overexpression, as well as downregulation of one, or ideally several, potentially interacting genes. Lentiviral vectors are well suited for this purpose as they ensure stable expression of complementary DNAs (cDNAs), as well as short-hairpin RNAs (shRNAs), and can efficiently transduce a wide spectrum of cell targets when packaged within the coat proteins of other viruses. Here we introduce a multicolor panel of novel lentiviral "gene ontology" (LeGO) vectors designed according to the "building blocks" principle. Using a wide spectrum of different fluorescent markers, including drug-selectable enhanced green fluorescent protein (eGFP)- and dTomato-blasticidin-S resistance fusion proteins, LeGO vectors allow simultaneous analysis of multiple genes and shRNAs of interest within single, easily identifiable cells. Furthermore, each functional module is flanked by unique cloning sites, ensuring flexibility and individual optimization. The efficacy of these vectors for analyzing multiple genes in a single cell was demonstrated in several different cell types, including hematopoietic, endothelial, and neural stem and progenitor cells, as well as hepatocytes. LeGO vectors thus represent a valuable tool for investigating gene networks using conditional ectopic expression and knock-down approaches simultaneously.

  13. Short, multiple-stranded β-hairpin peptides have antimicrobial potency with high selectivity and salt resistance.

    Science.gov (United States)

    Chou, Shuli; Shao, Changxuan; Wang, Jiajun; Shan, Anshan; Xu, Lin; Dong, Na; Li, Zhongyu

    2016-01-01

    The β-hairpin structure has been proposed to exhibit potent antimicrobial properties with low cytotoxicity, thus, multiple β-hairpin structures have been proved to be highly stable in structures containing tightly packed hydrophobic cores. The aim of this study was to develop peptide-based synthetic strategies for generating short, but effective AMPs as inexpensive antimicrobial agents. Multiple-stranded β-hairpin peptides with the same β-hairpin unit, (WRXxRW)n where n=1, 2, 3, or 4 and Xx represent the turn sequence, were synthesized, and their potential as antimicrobial agents was evaluated. Owning to the tightly packed hydrophobic core and paired Trp of this multiple-stranded β-hairpin structure, all the 12-residues peptides exhibited high cell selectivity towards bacterial cells over human red blood cells (hRBCs), and the peptide W2 exhibited stronger antimicrobial activities with the MIC values of 2-8μM against various tested bacteria. Not only that, but W2 also showed obvious synergy with streptomycin and chloramphenicol against Escherichia coli, and displayed synergy with ciprofloxacin against Staphylococcus aureus with the FICI values ⩽0.5. Fluorescence spectroscopy and electron microscopy analyses indicated that W2 kills microbial cells by permeabilizing the cell membrane and damaging membrane integrity. Collectively, based on the multiple β-hairpin peptides, the ability to develop libraries of short and effective peptides will be a powerful approach to the discovery of novel antimicrobial agents. We successfully screened a peptide W2 ((WRPGRW)2) from a series of multiple-stranded β-hairpin antimicrobial peptides based on the "S-shaped" motif that induced the formation of a globular structure, and Trp zipper was used to replace the disulfide bonds to reduce the cost of production. This novel structure applied to AMPs improved cell selectivity and salt stability. The findings of this study will promote the development of peptide

  14. Lentiviral-mediated RNAi targeting caspase-3 inhibits apoptosis induced by serum deprivation in rat endplate chondrocytes in vitro

    International Nuclear Information System (INIS)

    Ding, L.; Wu, J.P.; Xu, G.; Zhu, B.; Zeng, Q.M.; Li, D.F.; Lu, W.

    2014-01-01

    Current studies find that degenerated cartilage endplates (CEP) of vertebrae, with fewer diffusion areas, decrease nutrient supply and accelerate intervertebral disc degeneration. Many more apoptotic cells have been identified in degenerated than in normal endplates, and may be responsible for the degenerated grade. Previous findings suggest that inhibition of apoptosis is one possible approach to improve disc regeneration. It is postulated that inhibition of CEP cell apoptosis may be responsible for the regeneration of endplates. Caspase-3, involved in the execution phase of apoptosis, is a candidate for regulating the apoptotic process. In the present study, CEP cells were incubated in 1% fetal bovine serum. Activated caspases were detected to identify the apoptotic pathway, and apoptosis was quantified by flow cytometry. Lentiviral caspase-3 short hairpin RNA (shRNA) was employed to study its protective effects against serum deprivation. Silencing of caspase-3 expression was quantified by reverse transcription-polymerase chain reaction and Western blots, and inhibition of apoptosis was quantified by flow cytometry. Serum deprivation increased apoptosis of rat CEP cells through activation of a caspase cascade. Lentiviral caspase-3 shRNA was successfully transduced into CEP cells, and specifically silenced endogenous caspase-3 expression. Surviving cells were protected by the downregulation of caspase-3 expression and activation. Thus, lentiviral caspase-3 shRNA-mediated RNAi successfully silenced endogenous caspase-3 expression, preventing inappropriate or premature apoptosis

  15. Lentiviral-mediated RNAi targeting caspase-3 inhibits apoptosis induced by serum deprivation in rat endplate chondrocytes in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ding, L.; Wu, J.P. [Fudan University, Jinshan Hospital, Department of Orthopaedics, Shanghai, China, Department of Orthopaedics, Jinshan Hospital, Fudan University, Shanghai (China); Xu, G. [Fudan University, Jinshan Hospital, Center Laboratory, Shanghai, China, Center Laboratory, Jinshan Hospital, Fudan University, Shanghai (China); Zhu, B.; Zeng, Q.M.; Li, D.F.; Lu, W. [Fudan University, Jinshan Hospital, Department of Orthopaedics, Shanghai, China, Department of Orthopaedics, Jinshan Hospital, Fudan University, Shanghai (China)

    2014-05-09

    Current studies find that degenerated cartilage endplates (CEP) of vertebrae, with fewer diffusion areas, decrease nutrient supply and accelerate intervertebral disc degeneration. Many more apoptotic cells have been identified in degenerated than in normal endplates, and may be responsible for the degenerated grade. Previous findings suggest that inhibition of apoptosis is one possible approach to improve disc regeneration. It is postulated that inhibition of CEP cell apoptosis may be responsible for the regeneration of endplates. Caspase-3, involved in the execution phase of apoptosis, is a candidate for regulating the apoptotic process. In the present study, CEP cells were incubated in 1% fetal bovine serum. Activated caspases were detected to identify the apoptotic pathway, and apoptosis was quantified by flow cytometry. Lentiviral caspase-3 short hairpin RNA (shRNA) was employed to study its protective effects against serum deprivation. Silencing of caspase-3 expression was quantified by reverse transcription-polymerase chain reaction and Western blots, and inhibition of apoptosis was quantified by flow cytometry. Serum deprivation increased apoptosis of rat CEP cells through activation of a caspase cascade. Lentiviral caspase-3 shRNA was successfully transduced into CEP cells, and specifically silenced endogenous caspase-3 expression. Surviving cells were protected by the downregulation of caspase-3 expression and activation. Thus, lentiviral caspase-3 shRNA-mediated RNAi successfully silenced endogenous caspase-3 expression, preventing inappropriate or premature apoptosis.

  16. Lentiviral-mediated RNAi targeting caspase-3 inhibits apoptosis induced by serum deprivation in rat endplate chondrocytes in vitro

    Directory of Open Access Journals (Sweden)

    L. Ding

    2014-06-01

    Full Text Available Current studies find that degenerated cartilage endplates (CEP of vertebrae, with fewer diffusion areas, decrease nutrient supply and accelerate intervertebral disc degeneration. Many more apoptotic cells have been identified in degenerated than in normal endplates, and may be responsible for the degenerated grade. Previous findings suggest that inhibition of apoptosis is one possible approach to improve disc regeneration. It is postulated that inhibition of CEP cell apoptosis may be responsible for the regeneration of endplates. Caspase-3, involved in the execution phase of apoptosis, is a candidate for regulating the apoptotic process. In the present study, CEP cells were incubated in 1% fetal bovine serum. Activated caspases were detected to identify the apoptotic pathway, and apoptosis was quantified by flow cytometry. Lentiviral caspase-3 short hairpin RNA (shRNA was employed to study its protective effects against serum deprivation. Silencing of caspase-3 expression was quantified by reverse transcription-polymerase chain reaction and Western blots, and inhibition of apoptosis was quantified by flow cytometry. Serum deprivation increased apoptosis of rat CEP cells through activation of a caspase cascade. Lentiviral caspase-3 shRNA was successfully transduced into CEP cells, and specifically silenced endogenous caspase-3 expression. Surviving cells were protected by the downregulation of caspase-3 expression and activation. Thus, lentiviral caspase-3 shRNA-mediated RNAi successfully silenced endogenous caspase-3 expression, preventing inappropriate or premature apoptosis.

  17. Hairpin vortices in turbulent boundary layers

    International Nuclear Information System (INIS)

    Eitel-Amor, G; Schlatter, P; Flores, O

    2014-01-01

    The present work addresses the question whether hairpin vortices are a dominant feature of near-wall turbulence and which role they play during transition. First, the parent-offspring mechanism is investigated in temporal simulations of a single hairpin vortex introduced in a mean shear flow corresponding to turbulent channels and boundary layers up to Re τ = 590. Using an eddy viscosity computed from resolved simulations, the effect of a turbulent background is also considered. Tracking the vortical structure downstream, it is found that secondary hairpins are created shortly after initialization. Thereafter, all rotational structures decay, whereas this effect is enforced in the presence of an eddy viscosity. In a second approach, a laminar boundary layer is tripped to transition by insertion of a regular pattern of hairpins by means of defined volumetric forces representing an ejection event. The idea is to create a synthetic turbulent boundary layer dominated by hairpin-like vortices. The flow for Re τ < 250 is analysed with respect to the lifetime of individual hairpin-like vortices. Both the temporal and spatial simulations demonstrate that the regeneration process is rather short-lived and may not sustain once a turbulent background has formed. From the transitional flow simulations, it is conjectured that the forest of hairpins reported in former DNS studies is an outer layer phenomenon not being connected to the onset of near-wall turbulence.

  18. HIV-1 resistance conferred by siRNA cosuppression of CXCR4 and CCR5 coreceptors by a bispecific lentiviral vector

    Directory of Open Access Journals (Sweden)

    Akkina Ramesh

    2005-01-01

    Full Text Available Abstract Background RNA interference (RNAi mediated by small interfering RNAs (siRNAs has proved to be a highly effective gene silencing mechanism with great potential for HIV/AIDS gene therapy. Previous work with siRNAs against cellular coreceptors CXCR4 and CCR5 had shown that down regulation of these surface molecules could prevent HIV-1 entry and confer viral resistance. Since monospecific siRNAs targeting individual coreceptors are inadequate in protecting against both T cell tropic (X4 and monocyte tropic (R5 viral strains simultaneously, bispecific constructs with dual specificity are required. For effective long range therapy, the bispecific constructs need to be stably transduced into HIV-1 target cells via integrating viral vectors. Results To achieve this goal, lentiviral vectors incorporating both CXCR4 and CCR5 siRNAs of short hairpin design were constructed. The CXCR4 siRNA was driven by a U6 promoter whereas the CCR5 siRNA was driven by an H1 promoter. A CMV promoter driven EGFP reporter gene is also incorporated in the bispecific construct. High efficiency transduction into coreceptor expressing Magi and Ghost cell lines with a concomitant down regulation of respective coreceptors was achieved with lentiviral vectors. When the siRNA expressing transduced cells were challenged with X4 and R5 tropic HIV-1, they demonstrated marked viral resistance. HIV-1 resistance was also observed in bispecific lentiviral vector transduced primary PBMCs. Conclusions Both CXCR4 and CCR5 coreceptors could be simultaneously targeted for down regulation by a single combinatorial lentiviral vector incorporating respective anti-coreceptor siRNAs. Stable down regulation of both the coreceptors protects cells against infection by both X4 and R5 tropic HIV-1. Stable down regulation of cellular molecules that aid in HIV-1 infection will be an effective strategy for long range HIV gene therapy.

  19. Lentiviral Delivery of Proteins for Genome Engineering.

    Science.gov (United States)

    Cai, Yujia; Mikkelsen, Jacob Giehm

    2016-01-01

    Viruses have evolved to traverse cellular barriers and travel to the nucleus by mechanisms that involve active transport through the cytoplasm and viral quirks to resist cellular restriction factors and innate immune responses. Virus-derived vector systems exploit the capacity of viruses to ferry genetic information into cells, and now - more than three decades after the discovery of HIV - lentiviral vectors based on HIV-1 have become instrumental in biomedical research and gene therapies that require genomic insertion of transgenes. By now, the efficacy of lentiviral gene delivery to stem cells, cells of the immune system including T cells, hepatic cells, and many other therapeutically relevant cell types is well established. Along with nucleic acids, HIV-1 virions carry the enzymatic tools that are essential for early steps of infection. Such capacity to package enzymes, even proteins of nonviral origin, has unveiled new ways of exploiting cellular intrusion of HIV-1. Based on early findings demonstrating the packaging of heterologous proteins into virus particles as part of the Gag and GagPol polypeptides, we have established lentiviral protein transduction for delivery of DNA transposases and designer nucleases. This strategy for delivering genome-engineering proteins facilitates high enzymatic activity within a short time frame and may potentially improve the safety of genome editing. Exploiting the full potential of lentiviral vectors, incorporation of foreign protein can be combined with the delivery of DNA transposons or a donor sequence for homology-directed repair in so-called 'all-in-one' lentiviral vectors. Here, we briefly describe intracellular restrictions that may affect lentiviral gene and protein delivery and review the current status of lentiviral particles as carriers of tool kits for genome engineering.

  20. Short hairpin-loop-structured oligodeoxynucleotides reduce HSV-1 replication

    Directory of Open Access Journals (Sweden)

    Heinrich Jochen

    2009-04-01

    Full Text Available Abstract The Herpes simplex virus (HSV is known as an infectious agent and widespread in the human population. The symptoms of HSV infections can range from mild to life threatening, especially in immune-compromised individuals. HSV infections are commonly treated with the guanosine analogue Aciclovir, but reports of resistance are increasing. Efforts are made to establish single-stranded antisense oligodeoxynucleotides (as and small interfering ribonucleic acids (siRNAs for antiviral treatment. Recently, another class of short interfering nucleic acids, partially double-stranded hairpin loop-structured 54 mer oligodeoxynucleotides (ODNs, was shown to allow hydrolysis of HIV RNA by binding to the viral RNA. This leads to a substrate for the viral RNase H. To assess the potential of such ODNs for inhibition of HSV-1 replication, five partially double-stranded ODNs were designed based on the sequences of known siRNAs against HSV-1 with antiviral activity. Three of them are directed against early and two against leaky late genes. Primary human lung fibroblasts, MRC-5, and African green monkey kidney cells, Vero, were transfected with ODNs and subsequently infected. The effect on HSV-1 replication was determined by analyzing the virus titer in cell culture supernatants by quantitative PCR and plaque assays. An inhibitory effect was observed with all five selected ODNs, with two cases showing statistical significance in both cell types. The observed effect was sequence-specific and dose dependent. In one case the ODN was more efficient than a previously described siRNA directed against the same target site in the mRNA of UL5, a component of the helicase/primase complex. HSV-1 virions and ODNs can be applied simultaneously without transfection reagent, but at a 50-fold higher concentration to Vero cells with similar efficiencies. The results underline the potential of partially double-stranded hairpin loop-structured ODNs as antiviral agents.

  1. Short hairpin RNA interference therapy for ischemic heart disease

    Science.gov (United States)

    Huang, Mei; Chan, Denise; Jia, Fangjun; Xie, Xiaoyan; Li, Zongjin; Hoyt, Grant; Robbins, Robert C.; Chen, Xiaoyuan; Giaccia, Amato; Wu, Joseph C.

    2013-01-01

    Background During hypoxia, upregulation of hypoxia inducible factor-1 alpha (HIF-1α) transcriptional factor can activate several downstream angiogenic genes. However, HIF-1α is naturally degraded by prolyl hydroxylase-2 (PHD2) protein. Here we hypothesize that short hairpin RNA (shRNA) interference therapy targeting PHD2 can be used for treatment of myocardial ischemia and this process can be followed noninvasively by molecular imaging. Methods and Results PHD2 was cloned from mouse embryonic stem (ES) cells by comparing the homolog gene in human and rat. The best candidate shRNA sequence for inhibiting PHD2 was inserted into the pSuper vector driven by the H1 promoter, followed by a separate hypoxia response element (HRE)-incorporated promoter driving a firefly luciferase (Fluc) reporter gene. This construct was used to transfect mouse C2C12 myoblast cell line for in vitro confirmation. Compared to the control short hairpin scramble (shScramble) as control, inhibition of PHD2 increased levels of HIF-1α protein and several downstream angiogenic genes by >30% (P<0.01). Afterwards, shRNA targeting PHD2 (shPHD2) plasmid was injected intramyocardially following ligation of left anterior descending (LAD) artery in mice. Animals were randomized into shPHD2 group (n=20) versus shScramble sequence as control (n=20). Bioluminescence imaging detected transgene expression for 4–5 weeks. Echocardiographic study showed the shPHD2 group had improved fractional shortening compared with the shScramble group at week 4 (33.7%±1.9% vs. 28.4%±2.8%; P<0.05). Postmortem analysis showed increased presence of small capillaries and venules in the infarcted zones by CD31 staining. Finally, Western blot anlaysis of explanted hearts also confirm that animals treated with shPHD2 had significantly higher levels of HIF-1α protein. Conclusions This is the first study to image the biological role of shRNA therapy for improving cardiac function. Inhibition of PHD2 by shRNA led to

  2. Targeting of human interleukin-12B by small hairpin RNAs in xenografted psoriatic skin

    Directory of Open Access Journals (Sweden)

    Jakobsen Maria

    2011-02-01

    Full Text Available Abstract Background Psoriasis is a chronic inflammatory skin disorder that shows as erythematous and scaly lesions. The pathogenesis of psoriasis is driven by a dysregulation of the immune system which leads to an altered cytokine production. Proinflammatory cytokines that are up-regulated in psoriasis include tumor necrosis factor alpha (TNFα, interleukin-12 (IL-12, and IL-23 for which monoclonal antibodies have already been approved for clinical use. We have previously documented the therapeutic applicability of targeting TNFα mRNA for RNA interference-mediated down-regulation by anti-TNFα small hairpin RNAs (shRNAs delivered by lentiviral vectors to xenografted psoriatic skin. The present report aims at targeting mRNA encoding the shared p40 subunit (IL-12B of IL-12 and IL-23 by cellular transduction with lentiviral vectors encoding anti-IL12B shRNAs. Methods Effective anti-IL12B shRNAs are identified among a panel of shRNAs by potency measurements in cultured cells. The efficiency and persistency of lentiviral gene delivery to xenografted human skin are investigated by bioluminescence analysis of skin treated with lentiviral vectors encoding the luciferase gene. shRNA-expressing lentiviral vectors are intradermally injected in xenografted psoriatic skin and the effects of the treatment evaluated by clinical psoriasis scoring, by measurements of epidermal thickness, and IL-12B mRNA levels. Results Potent and persistent transgene expression following a single intradermal injection of lentiviral vectors in xenografted human skin is reported. Stable IL-12B mRNA knockdown and reduced epidermal thickness are achieved three weeks after treatment of xenografted psoriatic skin with lentivirus-encoded anti-IL12B shRNAs. These findings mimick the results obtained with anti-TNFα shRNAs but, in contrast to anti-TNFα treatment, anti-IL12B shRNAs do not ameliorate the psoriatic phenotype as evaluated by semi-quantitative clinical scoring and by

  3. Novel guanidinylated bioresponsive poly(amidoamines designed for short hairpin RNA delivery

    Directory of Open Access Journals (Sweden)

    Yu J

    2016-12-01

    Full Text Available Jiankun Yu,1 Jinmin Zhang,1 Haonan Xing,1 Yanping Sun,1 Zhen Yang,1 Tianzhi Yang,2 Cuifang Cai,1 Xiaoyun Zhao,3 Li Yang,1 Pingtian Ding1 1School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China; 2Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, ME, USA; 3Department of Microbiology and Cell Biology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China Abstract: Two different disulfide (SS-containing poly(amidoamine (PAA polymers were constructed using guanidino (Gua-containing monomers (ie, arginine [Arg] and agmatine [Agm] and N,N'-cystamine bisacrylamide (CBA by Michael-addition polymerization. In order to characterize these two Gua-SS-PAA polymers and investigate their potentials as short hairpin RNA (shRNA-delivery carriers, pSilencer 4.1-CMV FANCF shRNA was chosen as a model plasmid DNA to form complexes with these two polymers. The Gua-SS-PAAs and plasmid DNA complexes were determined with particle sizes less than 90 nm and positive ζ-potentials under 20 mV at nucleic acid:polymer weight ratios lower than 1:24. Bioresponsive release of plasmid DNA was observed from both newly constructed complexes. Significantly lower cytotoxicity was observed for both polymer complexes compared with polyethylenimine and Lipofectamine 2000, two widely used transfection reagents as reference carriers. Arg-CBA showed higher transfection efficiency and gene-silencing efficiency in MCF7 cells than Agm-CBA and the reference carriers. In addition, the cellular uptake of Arg-CBA in MCF7 cells was found to be higher and faster than Agm-CBA and the reference carriers. Similarly, plasmid DNA transport into the nucleus mediated by Arg-CBA was more than that by Agm-CBA and the reference carriers. The study suggested that guanidine and carboxyl introduced into Gua-SS-PAAs polymers resulted in a better nuclear localization effect, which played a key role in the

  4. Manipulating the cell differentiation through lentiviral vectors.

    Science.gov (United States)

    Coppola, Valeria; Galli, Cesare; Musumeci, Maria; Bonci, Désirée

    2010-01-01

    The manipulation of cell differentiation is important to create new sources for the treatment of degenerative diseases or solve cell depletion after aggressive therapy against cancer. In this chapter, the use of a tissue-specific promoter lentiviral vector to obtain a myocardial pure lineage from murine embryonic stem cells (mES) is described in detail. Since the cardiac isoform of troponin I gene product is not expressed in skeletal or other muscle types, short mouse cardiac troponin proximal promoter is used to drive reporter genes. Cells are infected simultaneously with two lentiviral vectors, the first expressing EGFP to monitor the transduction efficiency, and the other expressing a puromycin resistance gene to select the specific cells of interest. This technical approach describes a method to obtain a pure cardiomyocyte population and can be applied to other lineages of interest.

  5. Effect of specific silencing of EMMPRIN on the growth and cell cycle distribution of MCF-7 breast cancer cells.

    Science.gov (United States)

    Yang, X Q; Yang, J; Wang, R; Zhang, S; Tan, Q W; Lv, Q; Meng, W T; Mo, X M; Li, H J

    2015-12-02

    The extracellular matrix metalloproteinase inducer (EMMPRIN, CD147) is a member of the immunoglobulin family and shows increased expression in tumor cells. We examined the effect of RNAi-mediated EMMPRIN gene silencing induced by lentiviral on the growth and cycle distribution of MCF-7 breast cancer cells. Lentiviral expressing EMMPRIN-short hairpin RNA were packaged to infect MCF-7 cells. The inhibition efficiency of EMMPRIN was validated by real-time fluorescent quantitation polymerase chain reaction and western blotting. The effect of EMMPRIN on cell proliferation ability was detected using the MTT assay and clone formation experiments. Changes in cell cycle were detected by flow cytometry. EMMPRIN-short hairpin RNA-packaged lentiviral significantly down-regulated EMMPRIN mRNA and protein expression, significantly inhibited cell proliferation and in vitro tumorigenicity, and induced cell cycle abnormalities. Cells in the G0/G1 and G2/M phases were increased, while cells in the S phase were decreased after infection of MCF-7 cells for 3 days. The EMMPRIN gene facilitates breast cancer cell malignant proliferation by regulating cell cycle distribution and may be a molecular target for breast cancer gene therapy.

  6. Incorporation of a cationic aminopropyl chain in DNA hairpins: thermodynamics and hydration

    Science.gov (United States)

    Soto, Ana Maria; Kankia, Besik I.; Dande, Prasad; Gold, Barry; Marky, Luis A.

    2001-01-01

    We report on the physicochemical effects resulting from incorporating a 5-(3-aminopropyl) side chain onto a 2′-deoxyuridine (dU) residue in a short DNA hairpin. A combination of spectroscopy, calorimetry, density and ultrasound techniques were used to investigate both the helix–coil transition of a set of  hairpins with the following sequence: d(GCGACTTTTTGNCGC) [N = dU, deoxythymidine (dT) or 5-(3-aminopropyl)-2′-deoxyuridine (dU*)], and the interaction of each hairpin with Mg2+. All three molecules undergo two-state transitions with melting temperatures (TM) independent of strand concentration that indicates their intramolecular hairpin formation. The unfolding of each hairpin takes place with similar TM values of 64–66°C and similar thermodynamic profiles. The unfavorable unfolding free energies of 6.4–6.9 kcal/mol result from the typical compensation of unfavorable enthalpies, 36–39 kcal/mol, and favorable entropies of ∼110 cal/mol. Furthermore, the stability of each hairpin increases as the salt concentration increases, the TM-dependence on salt yielded slopes of 2.3–2.9°C, which correspond to counterion releases of 0.53 (dU and dT) and 0.44 (dU*) moles of Na+ per mole of hairpin. Absolute volumetric and compressibility measurements reveal that all three hairpins have similar hydration levels. The electrostatic interaction of Mg2+ with each hairpin yielded binding affinities in the order: dU > dT > dU*, and a similar release of 2–4 electrostricted water molecules. The main result is that the incorporation of the cationic 3-aminopropyl side chain in the major groove of the hairpin stem neutralizes some local negative charges yielding a hairpin molecule with lower charge density. PMID:11522834

  7. Engineering HIV-1-resistant T-cells from short-hairpin RNA-expressing hematopoietic stem/progenitor cells in humanized BLT mice.

    Directory of Open Access Journals (Sweden)

    Gene-Errol E Ringpis

    Full Text Available Down-regulation of the HIV-1 coreceptor CCR5 holds significant potential for long-term protection against HIV-1 in patients. Using the humanized bone marrow/liver/thymus (hu-BLT mouse model which allows investigation of human hematopoietic stem/progenitor cell (HSPC transplant and immune system reconstitution as well as HIV-1 infection, we previously demonstrated stable inhibition of CCR5 expression in systemic lymphoid tissues via transplantation of HSPCs genetically modified by lentiviral vector transduction to express short hairpin RNA (shRNA. However, CCR5 down-regulation will not be effective against existing CXCR4-tropic HIV-1 and emergence of resistant viral strains. As such, combination approaches targeting additional steps in the virus lifecycle are required. We screened a panel of previously published shRNAs targeting highly conserved regions and identified a potent shRNA targeting the R-region of the HIV-1 long terminal repeat (LTR. Here, we report that human CD4(+ T-cells derived from transplanted HSPC engineered to co-express shRNAs targeting CCR5 and HIV-1 LTR are resistant to CCR5- and CXCR4- tropic HIV-1-mediated depletion in vivo. Transduction with the combination vector suppressed CXCR4- and CCR5- tropic viral replication in cell lines and peripheral blood mononuclear cells in vitro. No obvious cytotoxicity or interferon response was observed. Transplantation of combination vector-transduced HSPC into hu-BLT mice resulted in efficient engraftment and subsequent stable gene marking and CCR5 down-regulation in human CD4(+ T-cells within peripheral blood and systemic lymphoid tissues, including gut-associated lymphoid tissue, a major site of robust viral replication, for over twelve weeks. CXCR4- and CCR5- tropic HIV-1 infection was effectively inhibited in hu-BLT mouse spleen-derived human CD4(+ T-cells ex vivo. Furthermore, levels of gene-marked CD4(+ T-cells in peripheral blood increased despite systemic infection with either

  8. Adeno-Associated Viral Vector-Mediated mTOR Inhibition by Short Hairpin RNA Suppresses Laser-Induced Choroidal Neovascularization

    Directory of Open Access Journals (Sweden)

    Tae Kwann Park

    2017-09-01

    Full Text Available Choroidal neovascularization (CNV is the defining characteristic feature of the wet subtype of age-related macular degeneration (AMD and may result in irreversible blindness. Based on anti-vascular endothelial growth factor (anti-VEGF, the current therapeutic approaches to CNV are fraught with difficulties, and mammalian target of rapamycin (mTOR has recently been proposed as a possible therapeutic target, although few studies have been conducted. Here, we show that a recombinant adeno-associated virus-delivered mTOR-inhibiting short hairpin RNA (rAAV-mTOR shRNA, which blocks the activity of both mTOR complex 1 and 2, represents a promising therapeutic approach for the treatment of CNV. Eight-week-old male C57/B6 mice were treated with the short hairpin RNA (shRNA after generating CNV lesions in the eyes via laser photocoagulation. The recombinant adeno-associated virus (rAAV delivery vehicle was able to effectively transduce cells in the inner retina, and significantly fewer inflammatory cells and less extensive CNV were observed in the animals treated with rAAV-mTOR shRNA when compared with control- and rAAV-scrambled shRNA-treated groups. Presumably related to the reduction of CNV, increased autophagy was detected in CNV lesions treated with rAAV-mTOR shRNA, whereas significantly fewer apoptotic cells detected in the outer nuclear layer around the CNV indicate that mTOR inhibition may also have neuroprotective effects. Taken together, these results demonstrate the therapeutic potential of mTOR inhibition, resulting from rAAV-mTOR shRNA activity, in the treatment of AMD-related CNV. Keywords: retinal neovascularization, choroidal neovascularization, adeno-associated virus, mTOR, RNA interference, mTOR shRNA, autophagy

  9. Short-hairpin RNA-mediated stable silencing of Grb2 impairs cell growth and DNA synthesis

    International Nuclear Information System (INIS)

    Di Fulvio, Mauricio; Henkels, Karen M.; Gomez-Cambronero, Julian

    2007-01-01

    Grb2 is an SH2-SH3 protein adaptor responsible for linking growth factor receptors with intracellular signaling cascades. To study the role of Grb2 in cell growth, we have generated a new COS7 cell line (COS7 shGrb2 ), based on RNAi technology, as null mutations in mammalian Grb2 genes are lethal in early development. This novel cell line continuously expresses a short hairpin RNA that targets endogenous Grb2. Stable COS7 shGrb2 cells had the shGrb2 integrated into the genomic DNA and carried on SiL construct (made refractory to the shRNA-mediated interference), but not with an SH2-deficient mutant (R86K). Thus, a viable knock-down and rescue protocol has demonstrated that Grb2 is crucial for cell proliferation

  10. Downregulation of mouse CCR3 by lentiviral shRNA inhibits proliferation and induces apoptosis of mouse eosinophils.

    Science.gov (United States)

    Zhu, Xin-Hua; Liao, Bing; Xu, Yi; Liu, Ke; Huang, Yun; Huang, Quan-Long; Liu, Yue-Hui

    2017-02-01

    RNA interference has been considered as an effective gene silencing method in basic and preclinical investigations. The aims of the present study were to construct a lentiviral vector expressing a short hairpin RNA (shRNA) targeting the murine CC chemokine receptor 3 (mCCR3), and to investigate its effects on the proliferation and apoptosis of mouse eosinophils. A recombinant lentiviral vector expressing four fragments of mouse CCR3 shRNA (pLVX‑mCCR3‑1+2+3+4‑shRNA) was constructed using subcloning techniques. This novel lentivirus was then packaged into 293T cells by co‑transduction with plasmids, including Baculo p35, pCMV R8.2 and VSV. The interference effects of the vector were verified using polymerase chain reaction (PCR) and western blot analyses. The effects of the interference on the proliferation and apoptosis of mouse eosinophils were investigated using 3‑(4,5‑dimethylthiazol‑2‑yl)‑5‑(3‑carboxymethoxyphenyl)‑2‑(4‑sulfophenyl)‑2H‑tetrazolium and terminal deoxynucleotidyl transferase dUTP nick end labeling methods, respectively. The results of the PCR and western blot analyses confirmed that the novel recombinant vector, pLVX‑mCCR3‑1+2+3+4‑shRNA, had high efficiency in inhibiting the mRNA and protein expression levels of mCCR3 in mouse eosinophils. The downregulation of mCCR3 significantly inhibited proliferation of the eosinophils. Furthermore, the present study found that the downregulation of mCCR3 significantly promoted apoptosis of the eosinophils. Therefore, the downregulation of mCCR3 led to the inhibition of proliferation and induction of apoptosis in mouse eosinophils. The predominant characteristics of allergic rhinitis are eosinophil infiltration and release of inflammatory mediators, which appear in a variety of clinical manifestations. The results of the present study indicate that mCCR3 silencing may serve as a putative approach for the treatment of allergic rhinitis.

  11. A Conserved Target Site in HIV-1 Gag RNA is Accessible to Inhibition by Both an HDV Ribozyme and a Short Hairpin RNA

    Directory of Open Access Journals (Sweden)

    Robert J Scarborough

    2014-01-01

    Full Text Available Antisense-based molecules targeting HIV-1 RNA have the potential to be used as part of gene or drug therapy to treat HIV-1 infection. In this study, HIV-1 RNA was screened to identify more conserved and accessible target sites for ribozymes based on the hepatitis delta virus motif. Using a quantitative screen for effects on HIV-1 production, we identified a ribozyme targeting a highly conserved site in the Gag coding sequence with improved inhibitory potential compared to our previously described candidates targeting the overlapping Tat/Rev coding sequence. We also demonstrate that this target site is highly accessible to short hairpin directed RNA interference, suggesting that it may be available for the binding of antisense RNAs with different modes of action. We provide evidence that this target site is structurally conserved in diverse viral strains and that it is sufficiently different from the human transcriptome to limit off-target effects from antisense therapies. We also show that the modified hepatitis delta virus ribozyme is more sensitive to a mismatch in its target site compared to the short hairpin RNA. Overall, our results validate the potential of a new target site in HIV-1 RNA to be used for the development of antisense therapies.

  12. Multi-resistance strategy for viral diseases and short hairpin RNA verification method in pigs

    Directory of Open Access Journals (Sweden)

    Jong-nam Oh

    2018-04-01

    Full Text Available Objective Foot and mouth disease (FMD and porcine reproductive and respiratory syndrome (PRRS are major diseases that interrupt porcine production. Because they are viral diseases, vaccinations are of only limited effectiveness in preventing outbreaks. To establish an alternative multi-resistant strategy against FMD virus (FMDV and PRRS virus (PRRSV, the present study introduced two genetic modification techniques to porcine cells. Methods First, cluster of differentiation 163 (CD163, the PRRSV viral receptor, was edited with the clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 technique. The CD163 gene sequences of edited cells and control cells differed. Second, short hairpin RNA (shRNAs were integrated into the cells. The shRNAs, targeting the 3D gene of FMDV and the open reading frame 7 (ORF7 gene of PRRSV, were transferred into fibroblasts. We also developed an in vitro shRNA verification method with a target gene expression vector. Results shRNA activity was confirmed in vitro with vectors that expressed the 3D and ORF7 genes in the cells. Cells containing shRNAs showed lower transcript levels than cells with only the expression vectors. The shRNAs were integrated into CD163-edited cells to combine the two techniques, and the viral genes were suppressed in these cells. Conclusion We established a multi-resistant strategy against viral diseases and an in vitro shRNA verification method.

  13. Miniature short hairpin RNA screens to characterize antiproliferative drugs.

    Science.gov (United States)

    Kittanakom, Saranya; Arnoldo, Anthony; Brown, Kevin R; Wallace, Iain; Kunavisarut, Tada; Torti, Dax; Heisler, Lawrence E; Surendra, Anuradha; Moffat, Jason; Giaever, Guri; Nislow, Corey

    2013-08-07

    The application of new proteomics and genomics technologies support a view in which few drugs act solely by inhibiting a single cellular target. Indeed, drug activity is modulated by complex, often incompletely understood cellular mechanisms. Therefore, efforts to decipher mode of action through genetic perturbation such as RNAi typically yields "hits" that fall into several categories. Of particular interest to the present study, we aimed to characterize secondary activities of drugs on cells. Inhibiting a known target can result in clinically relevant synthetic phenotypes. In one scenario, drug perturbation could, for example, improperly activate a protein that normally inhibits a particular kinase. In other cases, additional, lower affinity targets can be inhibited as in the example of inhibition of c-Kit observed in Bcr-Abl-positive cells treated with Gleevec. Drug transport and metabolism also play an important role in the way any chemicals act within the cells. Finally, RNAi per se can also affect cell fitness by more general off-target effects, e.g., via the modulation of apoptosis or DNA damage repair. Regardless of the root cause of these unwanted effects, understanding the scope of a drug's activity and polypharmacology is essential for better understanding its mechanism(s) of action, and such information can guide development of improved therapies. We describe a rapid, cost-effective approach to characterize primary and secondary effects of small-molecules by using small-scale libraries of virally integrated short hairpin RNAs. We demonstrate this principle using a "minipool" composed of shRNAs that target the genes encoding the reported protein targets of approved drugs. Among the 28 known reported drug-target pairs, we successfully identify 40% of the targets described in the literature and uncover several unanticipated drug-target interactions based on drug-induced synthetic lethality. We provide a detailed protocol for performing such screens and for

  14. Construction of lentiviral shRNA expression vector targeting ...

    African Journals Online (AJOL)

    DNA oligo was cloned into lentiviral expression vector, and then polymerase chain reaction (PCR) and sequencing analyses were conducted to verify the constructs. The verified vectors were co-transfected into 293FT cells that could produce lentiviral. shRNA lentiviruses from the selected constructs were propagated and ...

  15. Life extension of MAPS-2 by replacement of boiler hairpin type heat exchangers

    International Nuclear Information System (INIS)

    Tripathi, J.C.; Rastogi, S.K.; Rastogi, A.K.

    2006-01-01

    The steam generating equipment in MAPS-1 and 2 are Hairpin type comprises of eight boiler assemblies arranged in two banks of four boilers each. Each hairpin type heat exchangers consist of 195 Monel-400 tubes of 12.7 mm OD x 1.24 mm WT. One boiler assembly consists of eleven inverted U type heat exchangers (called hairpin type heat exchangers) mounted in parallel on inlet and outlet heavy water manifolds and connected to steam drum through individual short riser. Heavy water flows through these tubes where as feed water enters the shell at the bottom of one leg called pre-heat leg. After commissioning of MAPS-2 in 1985, five hairpins of MAPS-2 developed leak during the course of operation by the year 1999. Absence of physical access for health assessment of steam generator tube and lack of provision for tube sheet cleaning to remove the deposits on feed water side had caused pile and resulted in tube failures by under deposit pitting corrosion. All the 88 hairpins of MAPS-2 were replaced to extend the plant life when MAPS-2 was taken out of grid for En-masse Coolant Channel Replacement job (EMCCR) in the year 2001 - 03. The long shutdown of MAPS units for EMCCR was considered to be cost effective since unscheduled plant shut downs on account of tube leaks could be avoided. (author)

  16. Construction of RNAi lentiviral vector targeting mouse Islet-1 gene

    Directory of Open Access Journals (Sweden)

    Shen-shen ZHI

    2011-02-01

    Full Text Available Objective To construct and select RNAi lentiviral vectors that can silence mouse Islet-1 gene effectively.Methods Three groups of RNAi-target of mouse Islet-1 gene were designed,and corresponding shRNA oligo(sh1,sh2 and sh3 were synthesized,and then they were respectively inserted to the PLVTHM vector that had been digested by endonuclease.Agarose gel electrophoresis and sequencing were used to select and indentify the positive clones.The positive clones were extracted and then mixed with E.coli to amplify positive clones.The amplified clones were then infected into 293T along with the other 3 helper plasmids to produce lentiviral vector.After the construction of the lentiviral vector,plaque formation test was performed to determine the titer of lentiviral vector.The lentiviral vectors were then infected into C3H10T1/2 cells.The transfect efficiency of the lentiviral vectors was determined with flow cytometry with detection of green fluorescent protein(GFP.Q-PCR was employed to detect the RNAi efficiency of the lentiviral vectors.Results Agarose gel electrophoresis analysis showed that the clones with right gene at the target size were successfully established;gene sequencing showed that the right DNA fragments had been inserted;plaque formation test showed that the titer of the virus solution was 3.87×108TU/ml;the transfect efficiency of the lentiviral vector infected into C3H10T1/2 cells was 90.36%.All the 3 groups of shRNA targets(sh1,sh2 and sh3 showed an inhibitory effect on Islet-1 gene,and the sh1 showed the highest inhibitory effect(76.8%,as compared with that of normal cells(P < 0.05.Conclusion The RNAi lentiviral vector that can effectively silence the mouse Islet-1 gene has been constructed successfully,which may lay a foundation for further investigation of Islet-1 gene.

  17. RNA polymerase II mediated transcription from the polymerase III promoters in short hairpin RNA expression vector

    International Nuclear Information System (INIS)

    Rumi, Mohammad; Ishihara, Shunji; Aziz, Monowar; Kazumori, Hideaki; Ishimura, Norihisa; Yuki, Takafumi; Kadota, Chikara; Kadowaki, Yasunori; Kinoshita, Yoshikazu

    2006-01-01

    RNA polymerase III promoters of human ribonuclease P RNA component H1, human U6, and mouse U6 small nuclear RNA genes are commonly used in short hairpin RNA (shRNA) expression vectors due their precise initiation and termination sites. During transient transfection of shRNA vectors, we observed that H1 or U6 promoters also express longer transcripts enough to express several reporter genes including firefly luciferase, green fluorescent protein EGFP, and red fluorescent protein JRed. Expression of such longer transcripts was augmented by upstream RNA polymerase II enhancers and completely inhibited by downstream polyA signal sequences. Moreover, the transcription of firefly luciferase from human H1 promoter was sensitive to RNA polymerase II inhibitor α-amanitin. Our findings suggest that commonly used polymerase III promoters in shRNA vectors are also prone to RNA polymerase II mediated transcription, which may have negative impacts on their targeted use

  18. Hairpin-Hairpin Molecular Beacon Interactions for Detection of Survivin mRNA in Malignant SW480 Cells.

    Science.gov (United States)

    Ratajczak, Katarzyna; Krazinski, Bartlomiej E; Kowalczyk, Anna E; Dworakowska, Beata; Jakiela, Slawomir; Stobiecka, Magdalena

    2018-05-07

    Cancer biomarkers offer unique prospects for the development of cancer diagnostics and therapy. One of such biomarkers, protein survivin (Sur), exhibits strong antiapoptotic and proliferation-enhancing properties and is heavily expressed in multiple cancers. Thus, it can be utilized to provide new modalities for modulating the cell-growth rate, essential for effective cancer treatment. Herein, we have focused on the development of a new survivin-based cancer detection platform for colorectal cancer cells SW480 using a turn-on fluorescence oligonucleotide molecular beacon (MB) probe, encoded to recognize Sur messenger RNA (mRNA). Contrary to the expectations, we have found that both the complementary target oligonucleotide strands as well as the single- and double-mismatch targets, instead of exhibiting the anticipated simple random conformations, preferentially formed secondary structure motifs by folding into small-loop hairpin structures. Such a conformation may interfere with, or even undermine, the biorecognition process. To gain better understanding of the interactions involved, we have replaced the classical Tyagi-Kramer model of interactions between a straight target oligonucleotide strand and a hairpin MB with a new model to account for the hairpin-hairpin interactions as the biorecognition principle. A detailed mechanism of these interactions has been proposed. Furthermore, in experimental work, we have demonstrated an efficient transfection of malignant SW480 cells with SurMB probes containing a fluorophore Joe (SurMB-Joe) using liposomal nanocarriers. The green emission from SurMB-Joe in transfected cancer cells, due to the hybridization of the SurMB-Joe loop with Sur mRNA hairpin target, corroborates Sur overexpression. On the other hand, healthy human-colon epithelial cells CCD 841 CoN show only negligible expression of survivin mRNA. These experiments provide the proof-of-concept for distinguishing between the cancer and normal cells by the proposed

  19. Design and Potential of Non-Integrating Lentiviral Vectors

    Directory of Open Access Journals (Sweden)

    Aaron Shaw

    2014-01-01

    Full Text Available Lentiviral vectors have demonstrated promising results in clinical trials that target cells of the hematopoietic system. For these applications, they are the vectors of choice since they provide stable integration into cells that will undergo extensive expansion in vivo. Unfortunately, integration can have unintended consequences including dysregulated cell growth. Therefore, lentiviral vectors that do not integrate are predicted to have a safer profile compared to integrating vectors and should be considered for applications where transient expression is required or for sustained episomal expression such as in quiescent cells. In this review, the system for generating lentiviral vectors will be described and used to illustrate how alterations in the viral integrase or vector Long Terminal Repeats have been used to generate vectors that lack the ability to integrate. In addition to their safety advantages, these non-integrating lentiviral vectors can be used when persistent expression would have adverse consequences. Vectors are currently in development for use in vaccinations, cancer therapy, site-directed gene insertions, gene disruption strategies, and cell reprogramming. Preclinical work will be described that illustrates the potential of this unique vector system in human gene therapy.

  20. Quantitative analysis of lentiviral transgene expression in mice over seven generations.

    Science.gov (United States)

    Wang, Yong; Song, Yong-tao; Liu, Qin; Liu, Cang'e; Wang, Lu-lu; Liu, Yu; Zhou, Xiao-yang; Wu, Jun; Wei, Hong

    2010-10-01

    Lentiviral transgenesis is now recognized as an extremely efficient and cost-effective method to produce transgenic animals. Transgenes delivered by lentiviral vectors exhibited inheritable expression in many species including those which are refractory to genetic modification such as non-human primates. However, epigenetic modification was frequently observed in lentiviral integrants, and transgene expression found to be inversely correlated with methylation density. Recent data showed that about one-third lentiviral integrants exhibited hypermethylation and low expression, but did not demonstrate whether those integrants with high expression could remain constant expression and hypomethylated during long term germline transmission. In this study, using lentiviral eGFP transgenic mice as the experimental animals, lentiviral eGFP expression levels and its integrant numbers in genome were quantitatively analyzed by fluorescent quantitative polymerase-chain reaction (FQ-PCR), using the house-keeping gene ribosomal protein S18 (Rps18) and the single copy gene fatty acid binding protein of the intestine (Fabpi) as the internal controls respectively. The methylation densities of the integrants were quantitatively analyzed by bisulfite sequencing. We found that the lentiviral integrants with high expression exhibited a relative constant expression level per integrant over at least seven generations. Besides, the individuals containing these integrants exhibited eGFP expression levels which were positively and almost linearly correlated with the integrant numbers in their genomes, suggesting that no remarkable position effect on transgene expression of the integrants analyzed was observed. In addition, over seven generations the methylation density of these integrants did not increase, but rather decreased remarkably, indicating that these high expressing integrants were not subjected to de novo methylation during at least seven generations of germline transmission. Taken

  1. Transient β-hairpin formation in α-synuclein monomer revealed by coarse-grained molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hang; Ma, Wen [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Han, Wei [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Schulten, Klaus, E-mail: kschulte@ks.uiuc.edu [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2015-12-28

    Parkinson’s disease, originating from the intrinsically disordered peptide α-synuclein, is a common neurodegenerative disorder that affects more than 5% of the population above age 85. It remains unclear how α-synuclein monomers undergo conformational changes leading to aggregation and formation of fibrils characteristic for the disease. In the present study, we perform molecular dynamics simulations (over 180 μs in aggregated time) using a hybrid-resolution model, Proteins with Atomic details in Coarse-grained Environment (PACE), to characterize in atomic detail structural ensembles of wild type and mutant monomeric α-synuclein in aqueous solution. The simulations reproduce structural properties of α-synuclein characterized in experiments, such as secondary structure content, long-range contacts, chemical shifts, and {sup 3}J(H{sub N}H{sub C{sub α}})-coupling constants. Most notably, the simulations reveal that a short fragment encompassing region 38-53, adjacent to the non-amyloid-β component region, exhibits a high probability of forming a β-hairpin; this fragment, when isolated from the remainder of α-synuclein, fluctuates frequently into its β-hairpin conformation. Two disease-prone mutations, namely, A30P and A53T, significantly accelerate the formation of a β-hairpin in the stated fragment. We conclude that the formation of a β-hairpin in region 38-53 is a key event during α-synuclein aggregation. We predict further that the G47V mutation impedes the formation of a turn in the β-hairpin and slows down β-hairpin formation, thereby retarding α-synuclein aggregation.

  2. Prolonged Integration Site Selection of a Lentiviral Vector in the Genome of Human Keratinocytes.

    Science.gov (United States)

    Qian, Wei; Wang, Yong; Li, Rui-Fu; Zhou, Xin; Liu, Jing; Peng, Dai-Zhi

    2017-03-03

    BACKGROUND Lentiviral vectors have been successfully used for human skin cell gene transfer studies. Defining the selection of integration sites for retroviral vectors in the host genome is crucial in risk assessment analysis of gene therapy. However, genome-wide analyses of lentiviral integration sites in human keratinocytes, especially after prolonged growth, are poorly understood. MATERIAL AND METHODS In this study, 874 unique lentiviral vector integration sites in human HaCaT keratinocytes after long-term culture were identified and analyzed with the online tool GTSG-QuickMap and SPSS software. RESULTS The data indicated that lentiviral vectors showed integration site preferences for genes and gene-rich regions. CONCLUSIONS This study will likely assist in determining the relative risks of the lentiviral vector system and in the design of a safe lentiviral vector system in the gene therapy of skin diseases.

  3. The Role of XPG in Processing (CAGn/(CTGn DNA Hairpins

    Directory of Open Access Journals (Sweden)

    Hou Caixia

    2011-03-01

    Full Text Available Abstract Background During DNA replication or repair, disease-associated (CAGn/(CTGn expansion can result from formation of hairpin structures in the repeat tract of the newly synthesized or nicked DNA strand. Recent studies identified a nick-directed (CAGn/(CTGn hairpin repair (HPR system that removes (CAGn/(CTGn hairpins from human cells via endonucleolytic incisions. Because the process is highly similar to the mechanism by which XPG and XPF endonucleases remove bulky DNA lesions during nucleotide excision repair, we assessed the potential role of XPG in conducting (CAGn/(CTGn HPR. Results To determine if the XPG endonuclease is involved in (CAGn/(CTGn hairpin removal, two XPG-deficient cell lines (GM16024 and AG08802 were examined for their ability to process (CAGn/(CTGn hairpins in vitro. We demonstrated that the GM16024 cell line processes all hairpin substrates as efficiently as HeLa cells, and that the AG08802 cell line is partially defective in HPR. Analysis of repair intermediates revealed that nuclear extracts from both XPG-deficient lines remove CAG/CTG hairpins via incisions, but the incision products are distinct from those generated in HeLa extracts. We also show that purified recombinant XPG protein greatly stimulates HPR in XPG-deficient extracts by promoting an incision 5' to the hairpin. Conclusions Our results strongly suggest that 1 human cells possess multiple pathways to remove (CAGn/(CTGn hairpins located in newly synthesized (or nicked DNA strand; and 2 XPG, although not essential for (CAGn/(CTGn hairpin removal, stimulates HPR by facilitating a 5' incision to the hairpin. This study reveals a novel role for XPG in genome-maintenance and implicates XPG in diseases caused by trinucleotide repeat expansion.

  4. Construction of a novel lentiviral vector carrying human B-domain ...

    African Journals Online (AJOL)

    ... integration were detected in all cell lines after transfection. A novel lentiviral vector carrying human FVIII³BD was constructed, which was able to transfect different mammalian cell types accompanied by high-level activity. This lentiviral vector may provide a theoretical basis for the gene therapy of patients with hemophilia ...

  5. Lentiviral hematopoietic cell gene therapy for X-linked adrenoleukodystrophy.

    Science.gov (United States)

    Cartier, Nathalie; Hacein-Bey-Abina, Salima; Bartholomae, Cynthia C; Bougnères, Pierre; Schmidt, Manfred; Kalle, Christof Von; Fischer, Alain; Cavazzana-Calvo, Marina; Aubourg, Patrick

    2012-01-01

    X-linked adrenoleukodystrophy (X-ALD) is a severe genetic demyelinating disease caused by a deficiency in ALD protein, an adenosine triphosphate-binding cassette transporter encoded by the ABCD1 gene. When performed at an early stage of the disease, allogeneic hematopoietic stem cell transplantation (HCT) can arrest the progression of cerebral demyelinating lesions. To overcome the limitations of allogeneic HCT, hematopoietic stem cell (HSC) gene therapy strategy aiming to perform autologous transplantation of lentivirally corrected cells was developed. We demonstrated the preclinical feasibility of HSC gene therapy for ALD based on the correction of CD34+ cells from X-ALD patients using an HIV1-derived lentiviral vector. These results prompted us to initiate an HSC gene therapy trial in two X-ALD patients who had developed progressive cerebral demyelination, were candidates for allogeneic HCT, but had no HLA-matched donors or cord blood. Autologous CD34+ cells were purified from the peripheral blood after G-CSF stimulation, genetically corrected ex vivo with a lentiviral vector encoding wild-type ABCD1 cDNA, and then reinfused into the patients after they had received full myeloablative conditioning. Over 3 years of follow-up, the hematopoiesis remained polyclonal in the two patients treated with 7-14% of granulocytes, monocytes, and T and B lymphocytes expressing the lentivirally encoded ALD protein. There was no evidence of clonal dominance or skewing based on the retrieval of lentiviral insertion repertoire in different hematopoietic lineages by deep sequencing. Cerebral demyelination was arrested 14 and 16months, respectively, in the two treated patients, without further progression up to the last follow-up, a clinical outcome that is comparable to that observed after allogeneic HCT. Longer follow-up of these two treated patients and HSC gene therapy performed in additional ALD patients are however needed to evaluate the safety and efficacy of lentiviral HSC

  6. Characterization of a parallel-stranded DNA hairpin

    International Nuclear Information System (INIS)

    Germann, M.W.; Vogel, H.J.; Pon, R.T.; van de Sande, J.H.

    1989-01-01

    Recently, the authors have shown that synthetic DNA containing homooligomeric A-T base pairs can form a parallel-stranded intramolecular hairpin structure. In the present study, they have employed NMR and optical spectroscopy to investigate the structure of the parallel-stranded (PS) DNA hairpin 3'-d(T) 8 C 4 (A) 8 -3' and the related antiparallel (APS) hair 5'-d(T) 8 C 4 (A) 8 -3'. The parallel orientation of the strands in the PS oligonucleotide is achieved by introducing a 5'-5' phosphodiester linkage in the hairpin loop. Ultraviolet spectroscopic and fluorescence data of drug binding are consistent with the formation of PS and APS structures, respectively, in these two hairpins. Vacuum circular dichroism measurements in combination with theoretical CD calculations indicate that the PS structure forms a right-handed helix. 31 P NMR measurements indicate that the conformation of the phosphodiester backbone of the PS structure is not drastically different from that of the APS control. The presence of slowly exchanging imino protons at 14 ppm and the observation of nuclear Overhauser enhancement between imino protons and the AH-2 protons demonstrate that similar base pairing and base stacking between T and A residues occur in both hairpins. On the basis of NOESY measurements, they find that the orientation of the bases is in the anti region and that the sugar puckering is in the 2'-endo range. The results indicate a B-like conformation for each of the strands in the stem part of the PS hairpin and reverse Watson-Crick base pairing between the T and A residues. These data are consistent with a previously calculated structure for parallel-stranded DNA

  7. Generation of sequence signatures from DNA amplification fingerprints with mini-hairpin and microsatellite primers.

    Science.gov (United States)

    Caetano-Anollés, G; Gresshoff, P M

    1996-06-01

    DNA amplification fingerprinting (DAF) with mini-hairpins harboring arbitrary "core" sequences at their 3' termini were used to fingerprint a variety of templates, including PCR products and whole genomes, to establish genetic relationships between plant tax at the interspecific and intraspecific level, and to identify closely related fungal isolates and plant accessions. No correlation was observed between the sequence of the arbitrary core, the stability of the mini-hairpin structure and DAF efficiency. Mini-hairpin primers with short arbitrary cores and primers complementary to simple sequence repeats present in microsatellites were also used to generate arbitrary signatures from amplification profiles (ASAP). The ASAP strategy is a dual-step amplification procedure that uses at least one primer in each fingerprinting stage. ASAP was able to reproducibly amplify DAF products (representing about 10-15 kb of sequence) following careful optimization of amplification parameters such as primer and template concentration. Avoidance of primer sequences partially complementary to DAF product termini was necessary in order to produce distinct fingerprints. This allowed the combinatorial use of oligomers in nucleic acid screening, with numerous ASAP fingerprinting reactions based on a limited number of primer sequences. Mini-hairpin primers and ASAP analysis significantly increased detection of polymorphic DNA, separating closely related bermudagrass (Cynodon) cultivars and detecting putatively linked markers in bulked segregant analysis of the soybean (Glycine max) supernodulation (nitrate-tolerant symbiosis) locus.

  8. "Off-on" electrochemical hairpin-DNA-based genosensor for cancer diagnostics.

    Science.gov (United States)

    Farjami, Elaheh; Clima, Lilia; Gothelf, Kurt; Ferapontova, Elena E

    2011-03-01

    A simple and robust "off-on" signaling genosensor platform with improved selectivity for single-nucleotide polymorphism (SNP) detection based on the electronic DNA hairpin molecular beacons has been developed. The DNA beacons were immobilized onto gold electrodes in their folded states through the alkanethiol linker at the 3'-end, while the 5'-end was labeled with a methylene blue (MB) redox probe. A typical "on-off" change of the electrochemical signal was observed upon hybridization of the 27-33 nucleotide (nt) long hairpin DNA to the target DNA, in agreement with all the hitherto published data. Truncation of the DNA hairpin beacons down to 20 nts provided improved genosensor selectivity for SNP and allowed switching of the electrochemical genosensor response from the on-off to the off-on mode. Switching was consistent with the variation in the mechanism of the electron transfer reaction between the electrode and the MB redox label, for the folded beacon being characteristic of the electrochemistry of adsorbed species, while for the "open" duplex structure being formally controlled by the diffusion of the redox label within the adsorbate layer. The relative current intensities of both processes were governed by the length of the formed DNA duplex, potential scan rate, and apparent diffusion coefficient of the redox species. The off-on genosensor design used for detection of a cancer biomarker TP53 gene sequence favored discrimination between the healthy and SNP-containing DNA sequences, which was particularly pronounced at short hybridization times.

  9. An approach to the construction of tailor-made amphiphilic peptides that strongly and selectively bind to hairpin RNA targets.

    Science.gov (United States)

    Lee, Su Jin; Hyun, Soonsil; Kieft, Jeffrey S; Yu, Jaehoon

    2009-02-18

    The hairpin RNA motif is one of the most frequently observed secondary structures and is often targeted by therapeutic agents. An amphiphilic peptide with seven lysine and eight leucine residues and its derivatives were designed for use as ligands against RNA hairpin motifs. We hypothesized that variations in both the hydrophobic leucine-rich and hydrophilic lysine-rich spheres of these amphiphilic peptides would create extra attractive interactions with hairpin RNA targets. A series of alanine-scanned peptides were probed to identify the most influential lysine residues in the hydrophilic sphere. The binding affinities of these modified peptides with several hairpins, such as RRE, TAR from HIV, a short hairpin from IRES of HCV, and a hairpin from the 16S A-site stem from rRNA, were determined. Since the hairpin from IRES of HCV was the most susceptible to the initial series of alanine-scanned peptides, studies investigating how further variations in the peptides effect binding employed the IRES hairpin. Next, the important Lys residues were substituted by shorter chain amines, such as ornithine, to place the peptide deeper into the hairpin groove. In a few cases, a 70-fold improved binding was observed for peptides that contained the specifically located shorter amine side chains. To further explore changes in binding affinities brought about by alterations in the hydrophobic sphere, tryptophan residues were introduced in place of leucine. A few peptides with tryptophan in specific positions also displayed 70-fold improved binding affinities. Finally, double mutant peptides incorporating both specifically located shorter amine side chains in the hydrophilic region and tryptophan residues in the hydrophobic region were synthesized. The binding affinities of peptides containing the simple double modification were observed to be 80 times lower, and their binding specificities were increased 40-fold. The results of this effort provide important information about

  10. A dynamical mechanism for the hairpin diagram

    International Nuclear Information System (INIS)

    Chang Chaohsi; Guo Xinheng; Li Xueqian.

    1989-09-01

    Based on the non-valence quark-antiquark and gluon constituent structure of mesons we give a reasonable dynamical mechanism which can induce the hairpin diagram without violating the well-observed OZI rule. We calculate the hairpin amplitudes of D deg. → K-bar deg.η and K-bar deg.η' normalized by D deg. → K-bar deg.π deg. and have found that the hairpin diagram can give rise to substantial contribution to the decays where a meson with a SU(3) flavor singlet component is involved in the final state. In this scenario, we also obtain the branching ratio of D deg. → K-bar deg. φ as 0.55% in comparison with the experimental data of 0.83%. (autor). 33 refs, 3 figs

  11. Polyploidization without mitosis improves in vivo liver transduction with lentiviral vectors.

    Science.gov (United States)

    Pichard, Virginie; Couton, Dominique; Desdouets, Chantal; Ferry, Nicolas

    2013-02-01

    Lentiviral vectors are efficient gene delivery vehicles for therapeutic and research applications. In contrast to oncoretroviral vectors, they are able to infect most nonproliferating cells. In the liver, induction of cell proliferation dramatically improved hepatocyte transduction using all types of retroviral vectors. However, the precise relationship between hepatocyte division and transduction efficiency has not been determined yet. Here we compared gene transfer efficiency in the liver after in vivo injection of recombinant lentiviral or Moloney murine leukemia viral (MoMuLV) vectors in hepatectomized rats treated or not with retrorsine, an alkaloid that blocks hepatocyte division and induces megalocytosis. Partial hepatectomy alone resulted in a similar increase in hepatocyte transduction using either vector. In retrorsine-treated and partially hepatectomized rats, transduction with MoMuLV vectors dropped dramatically. In contrast, we observed that retrorsine treatment combined with partial hepatectomy increased lentiviral transduction to higher levels than hepatectomy alone. Analysis of nuclear ploidy in single cells showed that a high level of transduction was associated with polyploidization. In conclusion, endoreplication could be exploited to improve the efficiency of liver-directed lentiviral gene therapy.

  12. Identify Beta-Hairpin Motifs with Quadratic Discriminant Algorithm Based on the Chemical Shifts.

    Directory of Open Access Journals (Sweden)

    Feng YongE

    Full Text Available Successful prediction of the beta-hairpin motif will be helpful for understanding the of the fold recognition. Some algorithms have been proposed for the prediction of beta-hairpin motifs. However, the parameters used by these methods were primarily based on the amino acid sequences. Here, we proposed a novel model for predicting beta-hairpin structure based on the chemical shift. Firstly, we analyzed the statistical distribution of chemical shifts of six nuclei in not beta-hairpin and beta-hairpin motifs. Secondly, we used these chemical shifts as features combined with three algorithms to predict beta-hairpin structure. Finally, we achieved the best prediction, namely sensitivity of 92%, the specificity of 94% with 0.85 of Mathew's correlation coefficient using quadratic discriminant analysis algorithm, which is clearly superior to the same method for the prediction of beta-hairpin structure from 20 amino acid compositions in the three-fold cross-validation. Our finding showed that the chemical shift is an effective parameter for beta-hairpin prediction, suggesting the quadratic discriminant analysis is a powerful algorithm for the prediction of beta-hairpin.

  13. Lentiviral CRISPR/Cas9 vector mediated miR-21 gene editing inhibits the epithelial to mesenchymal transition in ovarian cancer cells.

    Science.gov (United States)

    Huo, Wenying; Zhao, Guannan; Yin, Jinggang; Ouyang, Xuan; Wang, Yinan; Yang, Chuanhe; Wang, Baojing; Dong, Peixin; Wang, Zhixiang; Watari, Hidemichi; Chaum, Edward; Pfeffer, Lawrence M; Yue, Junming

    2017-01-01

    CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats) mediated genome editing is a powerful approach for loss of function studies. Here we report that lentiviral CRISPR/Cas9 vectors are highly efficient in introducing mutations in the precursor miRNA sequence, thus leading to the loss of miRNA expression and function. We constructed four different lentiviral CRISPR/Cas9 vectors that target different regions of the precursor miR-21 sequence and found that these lentiviral CRISPR/Cas9 miR-21 gRNA vectors induced mutations in the precursor sequences as shown by DNA surveyor mutation assay and Sanger sequencing. Two miR-21 lentiviral CRISPR/Cas9 gRNA vectors were selected to probe miR-21 function in ovarian cancer SKOV3 and OVCAR3 cell lines. Our data demonstrate that disruption of pre-miR-21 sequences leads to reduced cell proliferation, migration and invasion. Moreover, CRISPR/Cas9-mediated miR-21 gene editing sensitizes both SKOV3 and OVCAR3 cells to chemotherapeutic drug treatment. Disruption of miR-21 leads to the inhibition of epithelial to mesenchymal transition (EMT) in both SKOV3 and OVCAR3 cells as evidenced by the upregulation of epithelial cell marker E-cadherin and downregulation of mesenchymal marker genes, vimentin and Snai2. The miR-21 target genes PDCD4 and SPRY2 were upregulated in cells transduced with miR-21gRNAs compared to controls. Our study indicates that lentiviral CRISPR/Cas9-mediated miRNA gene editing is an effective approach to address miRNA function, and disruption of miR-21 inhibits EMT in ovarian cancer cells.

  14. Hybridization chain reaction-based colorimetric aptasensor of adenosine 5'-triphosphate on unmodified gold nanoparticles and two label-free hairpin probes.

    Science.gov (United States)

    Gao, Zhuangqiang; Qiu, Zhenli; Lu, Minghua; Shu, Jian; Tang, Dianping

    2017-03-15

    This work designs a new label-free aptasensor for the colorimetric determination of small molecules (adenosine 5'-triphosphate, ATP) by using visible gold nanoparticles as the signal-generation tags, based on target-triggered hybridization chain reaction (HCR) between two hairpin DNA probes. The assay is carried out referring to the change in the color/absorbance by salt-induced aggregation of gold nanoparticles after the interaction with hairpins, gold nanoparticles and ATP. To construct such an assay system, two hairpin DNA probes with a short single-stranded DNA at the sticky end are utilized for interaction with gold nanoparticles. In the absence of target ATP, the hairpin DNA probes can prevent gold nanoparticles from the salt-induced aggregation through the interaction of the single-stranded DNA at the sticky end with gold nanoparticles. Upon target ATP introduction, the aptamer-based hairpin probe is opened to expose a new sticky end for the strand-displacement reaction with another complementary hairpin, thus resulting in the decreasing single-stranded DNA because of the consumption of hairpins. In this case, gold nanoparticles are uncovered owing to the formation of double-stranded DNA, which causes their aggregation upon addition of the salt, thereby leading to the change in the red-to-blue color. Under the optimal conditions, the HCR-based colorimetric assay presents good visible color or absorbance responses for the determination of target ATP at a concentration as low as 1.0nM. Importantly, the methodology can be further extended to quantitatively or qualitatively monitor other small molecules or biotoxins by changing the sequence of the corresponding aptamer. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The feasibility of incorporating Vpx into lentiviral gene therapy vectors

    Directory of Open Access Journals (Sweden)

    Samantha A McAllery

    2016-01-01

    Full Text Available While current antiretroviral therapy has significantly improved, challenges still remain in life-long targeting of HIV-1 reservoirs. Lentiviral gene therapy has the potential to deliver protective genes into the HIV-1 reservoir. However, inefficient reverse transcription (RT occurs in HIV-1 reservoirs during lentiviral gene delivery. The viral protein Vpx is capable of increasing lentiviral RT by antagonizing the restriction factor SAMHD1. Incorporating Vpx into lentiviral vectors could substantially increase gene delivery into the HIV-1 reservoir. The feasibility of this Vpx approach was tested in resting cell models utilizing macrophages and dendritic cells. Our results showed Vpx exposure led to increased permissiveness of cells over a period that exceeded 2 weeks. Consequently, significant lower potency of HIV-1 antiretrovirals inhibiting RT and integration was observed. When Vpx was incorporated with anti-HIV-1 genes inhibiting either pre-RT or post-RT stages of the viral life-cycle, transduction levels significantly increased. However, a stronger antiviral effect was only observed with constructs that inhibit pre-RT stages of the viral life cycle. In conclusion this study demonstrates a way to overcome the major delivery obstacle of gene delivery into HIV-1 reservoir cell types. Importantly, incorporating Vpx with pre-RT anti-HIV-1 genes, demonstrated the greatest protection against HIV-1 infection.

  16. On hairpin vortices in a transitional boundary layer

    Directory of Open Access Journals (Sweden)

    Uruba Václav

    2012-04-01

    Full Text Available In the presented paper the results of experiments on transitional boundary layer are presented. The boundary layer was generated on smooth flat wall with zero pressure gradient forming one side of the channel of rectangular cross section. The hairpin vortices, packets of hairpin vortices, turbulent spots and calmed regions were experimentally investigated using time-resolved PIV technique.

  17. Sequence-dependent unfolding kinetics of DNA hairpins studied by nanopore force spectroscopy

    International Nuclear Information System (INIS)

    Renner, Stephan; Bessonov, Andrey; Simmel, Friedrich C; Gerland, Ulrich

    2010-01-01

    Nanopore force spectroscopy is used to study the unzipping kinetics of two DNA hairpin molecules with a 12 base pair long stem containing two contiguous stretches of six GC and six AT base pairs in interchanged order. Even though the thermodynamic stabilities of the two structures are nearly the same, they differ greatly in their unzipping kinetics. When the GC segment has to be broken before the AT segment, the unfolding rate is orders of magnitude smaller than in the opposite case. We also investigated hairpins with stem regions consisting only of AT or GC base pairs. The pure AT hairpins translocate much faster than the other hairpins, whereas the pure GC hairpins translocate on similar timescales to the hairpins with only an initial GC segment. For each hairpin, nanopore force spectroscopy is performed for different loading rates and the resulting unzipping distributions are mathematically transformed to a master curve that yields the unfolding rate as a function of applied voltage. This is compared with a stochastic model of the unfolding process for the two sequences for different voltages. The results can be rationalized in terms of the different natures of the free energy landscapes for the unfolding process.

  18. An enzyme-catalyzed multistep DNA refolding mechanism in hairpin telomere formation.

    Directory of Open Access Journals (Sweden)

    Ke Shi

    Full Text Available Hairpin telomeres of bacterial linear chromosomes are generated by a DNA cutting-rejoining enzyme protelomerase. Protelomerase resolves a concatenated dimer of chromosomes as the last step of chromosome replication, converting a palindromic DNA sequence at the junctions between chromosomes into covalently closed hairpins. The mechanism by which protelomerase transforms a duplex DNA substrate into the hairpin telomeres remains largely unknown. We report here a series of crystal structures of the protelomerase TelA bound to DNA that represent distinct stages along the reaction pathway. The structures suggest that TelA converts a linear duplex substrate into hairpin turns via a transient strand-refolding intermediate that involves DNA-base flipping and wobble base-pairs. The extremely compact di-nucleotide hairpin structure of the product is fully stabilized by TelA prior to strand ligation, which drives the reaction to completion. The enzyme-catalyzed, multistep strand refolding is a novel mechanism in DNA rearrangement reactions.

  19. New World feline APOBEC3 potently controls inter-genus lentiviral transmission.

    Science.gov (United States)

    Konno, Yoriyuki; Nagaoka, Shumpei; Kimura, Izumi; Yamamoto, Keisuke; Kagawa, Yumiko; Kumata, Ryuichi; Aso, Hirofumi; Ueda, Mahoko Takahashi; Nakagawa, So; Kobayashi, Tomoko; Koyanagi, Yoshio; Sato, Kei

    2018-04-10

    The apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3; A3) gene family appears only in mammalian genomes. Some A3 proteins can be incorporated into progeny virions and inhibit lentiviral replication. In turn, the lentiviral viral infectivity factor (Vif) counteracts the A3-mediated antiviral effect by degrading A3 proteins. Recent investigations have suggested that lentiviral vif genes evolved to combat mammalian APOBEC3 proteins, and have further proposed that the Vif-A3 interaction may help determine the co-evolutionary history of cross-species lentiviral transmission in mammals. Here we address the co-evolutionary relationship between two New World felids, the puma (Puma concolor) and the bobcat (Lynx rufus), and their lentiviruses, which are designated puma lentiviruses (PLVs). We demonstrate that PLV-A Vif counteracts the antiviral action of APOBEC3Z3 (A3Z3) of both puma and bobcat, whereas PLV-B Vif counteracts only puma A3Z3. The species specificity of PLV-B Vif is irrespective of the phylogenic relationships of feline species in the genera Puma, Lynx and Acinonyx. We reveal that the amino acid at position 178 in the puma and bobcat A3Z3 is exposed on the protein surface and determines the sensitivity to PLV-B Vif-mediated degradation. Moreover, although both the puma and bobcat A3Z3 genes are polymorphic, their sensitivity/resistance to PLV Vif-mediated degradation is conserved. To the best of our knowledge, this is the first study suggesting that the host A3 protein potently controls inter-genus lentiviral transmission. Our findings provide the first evidence suggesting that the co-evolutionary arms race between lentiviruses and mammals has occurred in the New World.

  20. The human ankyrin 1 promoter insulator sustains gene expression in a β-globin lentiviral vector in hematopoietic stem cells

    Directory of Open Access Journals (Sweden)

    Zulema Romero

    Full Text Available Lentiviral vectors designed for the treatment of the hemoglobinopathies require the inclusion of regulatory and strong enhancer elements to achieve sufficient expression of the β-globin transgene. Despite the inclusion of these elements, the efficacy of these vectors may be limited by transgene silencing due to the genomic environment surrounding the integration site. Barrier insulators can be used to give more consistent expression and resist silencing even with lower vector copies. Here, the barrier activity of an insulator element from the human ankyrin-1 gene was analyzed in a lentiviral vector carrying an antisickling human β-globin gene. Inclusion of a single copy of the Ankyrin insulator did not affect viral titer, and improved the consistency of expression from the vector in murine erythroleukemia cells. The presence of the Ankyrin insulator element did not change transgene expression in human hematopoietic cells in short-term erythroid culture or in vivo in primary murine transplants. However, analysis in secondary recipients showed that the lentiviral vector with the Ankyrin element preserved transgene expression, whereas expression from the vector lacking the Ankyrin insulator decreased in secondary recipients. These studies demonstrate that the Ankyrin insulator may improve long-term β-globin expression in hematopoietic stem cells for gene therapy of hemoglobinopathies.

  1. Modeling the mechanism of CLN025 beta-hairpin formation

    Science.gov (United States)

    McKiernan, Keri A.; Husic, Brooke E.; Pande, Vijay S.

    2017-09-01

    Beta-hairpins are substructures found in proteins that can lend insight into more complex systems. Furthermore, the folding of beta-hairpins is a valuable test case for benchmarking experimental and theoretical methods. Here, we simulate the folding of CLN025, a miniprotein with a beta-hairpin structure, at its experimental melting temperature using a range of state-of-the-art protein force fields. We construct Markov state models in order to examine the thermodynamics, kinetics, mechanism, and rate-determining step of folding. Mechanistically, we find the folding process is rate-limited by the formation of the turn region hydrogen bonds, which occurs following the downhill hydrophobic collapse of the extended denatured protein. These results are presented in the context of established and contradictory theories of the beta-hairpin folding process. Furthermore, our analysis suggests that the AMBER-FB15 force field, at this temperature, best describes the characteristics of the full experimental CLN025 conformational ensemble, while the AMBER ff99SB-ILDN and CHARMM22* force fields display a tendency to overstabilize the native state.

  2. Structural and sequence features of two residue turns in beta-hairpins.

    Science.gov (United States)

    Madan, Bharat; Seo, Sung Yong; Lee, Sun-Gu

    2014-09-01

    Beta-turns in beta-hairpins have been implicated as important sites in protein folding. In particular, two residue β-turns, the most abundant connecting elements in beta-hairpins, have been a major target for engineering protein stability and folding. In this study, we attempted to investigate and update the structural and sequence properties of two residue turns in beta-hairpins with a large data set. For this, 3977 beta-turns were extracted from 2394 nonhomologous protein chains and analyzed. First, the distribution, dihedral angles and twists of two residue turn types were determined, and compared with previous data. The trend of turn type occurrence and most structural features of the turn types were similar to previous results, but for the first time Type II turns in beta-hairpins were identified. Second, sequence motifs for the turn types were devised based on amino acid positional potentials of two-residue turns, and their distributions were examined. From this study, we could identify code-like sequence motifs for the two residue beta-turn types. Finally, structural and sequence properties of beta-strands in the beta-hairpins were analyzed, which revealed that the beta-strands showed no specific sequence and structural patterns for turn types. The analytical results in this study are expected to be a reference in the engineering or design of beta-hairpin turn structures and sequences. © 2014 Wiley Periodicals, Inc.

  3. Metamorphosis of a Hairpin Vortex into a Young Turbulent Spot

    Science.gov (United States)

    Singer, Bart A.; Joslin, Ronald D.

    1995-01-01

    Direct numerical simulation was used to study the formation and growth of a hairpin vortex in a flat-plate boundary layer and its later development into a young turbulent spot. Fluid injection through a slit in the wall triggered the initial vortex. The legs of the vortex were stretched into a hairpin shape as it traveled downstream. Multiple hairpin vortex heads developed between the stretched legs. New vortices formed beneath the streamwise-elongated vortex legs. The continued development of additional vortices resulted in the formation of a traveling region of highly disturbed ow with an arrowhead shape similar to that of a turbulent spot.

  4. Gene therapy of Fanconi anemia: preclinical efficacy using lentiviral vectors.

    Science.gov (United States)

    Galimi, Francesco; Noll, Meenakshi; Kanazawa, Yoshiyuki; Lax, Timothy; Chen, Cindy; Grompe, Markus; Verma, Inder M

    2002-10-15

    Fanconi anemia (FA) is an inherited cancer susceptibility syndrome caused by mutations in a DNA repair pathway including at least 6 genes (FANCA, FANCC, FANCD2, FANCE, FANCF, and FANCG). The clinical course of the disease is dominated by progressive, life-threatening bone marrow failure and high incidence of acute myelogenous leukemia and solid tumors. Allogeneic bone marrow transplantation (BMT) is a therapeutic option but requires HLA-matched donors. Gene therapy holds great promise for FA, but previous attempts to use retroviral vectors in humans have proven ineffective given the impaired proliferation potential of human FA hematopoietic progenitors (HPCs). In this work, we show that using lentiviral vectors efficient genetic correction can be achieved in quiescent hematopoietic progenitors from Fanca(-/-) and Fancc(-/-) mice. Long-term repopulating HPCs were transduced by a single exposure of unfractionated bone marrow mononuclear cells to lentivectors carrying the normal gene. Notably, no cell purification or cytokine prestimulation was necessary. Resistance to DNA- damaging agents was fully restored by lentiviral transduction, allowing for in vivo selection of the corrected cells with nonablative doses of cyclophosphamide. This study strongly supports the use of lentiviral vectors for FA gene therapy in humans.

  5. Hybridization-based biosensor containing hairpin probes and use thereof

    Science.gov (United States)

    Miller, Benjamin L.; Strohsahl, Christopher M.

    2010-10-12

    A sensor chip that includes: a fluorescence quenching surface; a nucleic acid probe that contains first and second ends with the first end bound to the fluorescence quenching surface, and is characterized by being able to self-anneal into a hairpin conformation; and a first fluorophore bound to the second end of the first nucleic acid molecule. When the first nucleic acid molecule is in the hairpin conformation, the fluorescence quenching surface substantially quenches fluorescent emissions by the first fluorophore; and when the first nucleic acid molecule is in a non-hairpin conformation, fluorescent emissions by the fluorophore are substantially free of quenching by the fluorescence quenching surface. Various nucleic acid probes, methods of making the sensor chip, biological sensor devices that contain the sensor chip, and their methods of use are also disclosed.

  6. Staurosporine Increases Lentiviral Vector Transduction Efficiency of Human Hematopoietic Stem and Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Gretchen Lewis

    2018-06-01

    Full Text Available Lentiviral vector (LVV-mediated transduction of human CD34+ hematopoietic stem and progenitor cells (HSPCs holds tremendous promise for the treatment of monogenic hematological diseases. This approach requires the generation of a sufficient proportion of gene-modified cells. We identified staurosporine, a serine/threonine kinase inhibitor, as a small molecule that could be added to the transduction process to increase the proportion of genetically modified HSPCs by overcoming a LVV entry barrier. Staurosporine increased vector copy number (VCN approximately 2-fold when added to mobilized peripheral blood (mPB CD34+ cells prior to transduction. Limited staurosporine treatment did not affect viability of cells post-transduction, and there was no difference in in vitro colony formation compared to vehicle-treated cells. Xenotransplantation studies identified a statistically significant increase in VCN in engrafted human cells in mouse bone marrow at 4 months post-transplantation compared to vehicle-treated cells. Prostaglandin E2 (PGE2 is known to increase transduction efficiency of HSPCs through a different mechanism. Combining staurosporine and PGE2 resulted in further enhancement of transduction efficiency, particularly in short-term HSPCs. The combinatorial use of small molecules, such as staurosporine and PGE2, to enhance LVV transduction of human CD34+ cells is a promising method to improve transduction efficiency and subsequent potential therapeutic benefit of gene therapy drug products. Keywords: lentiviral, HSPC, transduction

  7. Efficient transduction of equine adipose-derived mesenchymal stem cells by VSV-G pseudotyped lentiviral vectors.

    Science.gov (United States)

    Petersen, Gayle F; Hilbert, Bryan; Trope, Gareth; Kalle, Wouter; Strappe, Padraig

    2014-12-01

    Equine adipose-derived mesenchymal stem cells (EADMSC) provide a unique cell-based approach for treatment of a variety of equine musculoskeletal injuries, via regeneration of diseased or damaged tissue, or the secretion of immunomodulatory molecules. These capabilities can be further enhanced by genetic modification using lentiviral vectors, which provide a safe and efficient method of gene delivery. We investigated the suitability of lentiviral vector technology for gene delivery into EADMSC, using GFP expressing lentiviral vectors pseudotyped with the G glycoprotein from the vesicular stomatitis virus (V-GFP) or, for the first time, the baculovirus gp64 envelope protein (G-GFP). In this study, we produced similarly high titre V-GFP and G-GFP lentiviral vectors. Flow cytometric analysis showed efficient transduction using V-GFP; however G-GFP exhibited a poor ability to transduce EADMSC. Transduction resulted in sustained GFP expression over four passages, with minimal effects on cell viability and doubling time, and an unaltered chondrogenic differentiation potential. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Construction of lentiviral shRNA expression vector targeting ...

    African Journals Online (AJOL)

    ajl yemi

    2011-10-26

    Oct 26, 2011 ... was then selected, while the titer of lentiviral packing PLD2-shRNA was 3.47 × 104 TU/ml and the virus was successfully ... MATERIALS AND METHODS .... such as: transfecting cells not only in mitotic active phase but also in ...

  9. A comparison of foamy and lentiviral vector genotoxicity in SCID-repopulating cells shows foamy vectors are less prone to clonal dominance

    Directory of Open Access Journals (Sweden)

    Elizabeth M Everson

    2016-01-01

    Full Text Available Hematopoietic stem cell (HSC gene therapy using retroviral vectors has immense potential, but vector-mediated genotoxicity limits use in the clinic. Lentiviral vectors are less genotoxic than gammaretroviral vectors and have become the vector of choice in clinical trials. Foamy retroviral vectors have a promising integration profile and are less prone to read-through transcription than gammaretroviral or lentiviral vectors. Here, we directly compared the safety and efficacy of foamy vectors to lentiviral vectors in human CD34+ repopulating cells in immunodeficient mice. To increase their genotoxic potential, foamy and lentiviral vectors with identical transgene cassettes with a known genotoxic spleen focus forming virus promoter were used. Both vectors resulted in efficient marking in vivo and a total of 825 foamy and 460 lentiviral vector unique integration sites were recovered in repopulating cells 19 weeks after transplantation. Foamy vector proviruses were observed less often near RefSeq gene and proto-oncogene transcription start sites than lentiviral vectors. The foamy vector group were also more polyclonal with fewer dominant clones (two out of six mice than the lentiviral vector group (eight out of eight mice, and only lentiviral vectors had integrants near known proto-oncogenes in dominant clones. Our data further support the relative safety of foamy vectors for HSC gene therapy.

  10. Identification of short hairpin RNA targeting foot-and-mouth disease virus with transgenic bovine fetal epithelium cells.

    Directory of Open Access Journals (Sweden)

    Hongmei Wang

    Full Text Available BACKGROUND: Although it is known that RNA interference (RNAi targeting viral genes protects experimental animals, such as mice, from the challenge of Foot-and-mouth disease virus (FMDV, it has not been previously investigated whether shRNAs targeting FMDV in transgenic dairy cattle or primary transgenic bovine epithelium cells will confer resistance against FMDV challenge. PRINCIPAL FINDING: Here we constructed three recombinant lentiviral vectors containing shRNA against VP2 (RNAi-VP2, VP3 (RNAi-VP3, or VP4 (RNAi-VP4 of FMDV, and found that all of them strongly suppressed the transient expression of a FLAG-tagged viral gene fusion protein in 293T cells. In BHK-21 cells, RNAi-VP4 was found to be more potent in inhibition of viral replication than the others with over 98% inhibition of viral replication. Therefore, recombinant lentiviral vector RNAi-VP4 was transfected into bovine fetal fibroblast cells to generate transgenic nuclear donor cells. With subsequent somatic cell cloning, we generated forty transgenic blastocysts, and then transferred them to 20 synchronized recipient cows. Three transgenic bovine fetuses were obtained after pregnant period of 4 months, and integration into chromosome in cloned fetuses was confirmed by Southern hybridization. The primary tongue epithelium cells of transgenic fetuses were isolated and inoculated with 100 TCID(50 of FMDV, and it was observed that shRNA significantly suppressed viral RNA synthesis and inhibited over 91% of viral replication after inoculation of FMDV for 48 h. CONCLUSION: RNAi-VP4 targeting viral VP4 gene appears to prevent primary epithelium cells of transgenic bovine fetus from FMDV infection, and it could be a candidate shRNA used for cultivation of transgenic cattle against FMDV.

  11. Non-Primate Lentiviral Vectors and Their Applications in Gene Therapy for Ocular Disorders

    Directory of Open Access Journals (Sweden)

    Vincenzo Cavalieri

    2018-06-01

    Full Text Available Lentiviruses have a number of molecular features in common, starting with the ability to integrate their genetic material into the genome of non-dividing infected cells. A peculiar property of non-primate lentiviruses consists in their incapability to infect and induce diseases in humans, thus providing the main rationale for deriving biologically safe lentiviral vectors for gene therapy applications. In this review, we first give an overview of non-primate lentiviruses, highlighting their common and distinctive molecular characteristics together with key concepts in the molecular biology of lentiviruses. We next examine the bioengineering strategies leading to the conversion of lentiviruses into recombinant lentiviral vectors, discussing their potential clinical applications in ophthalmological research. Finally, we highlight the invaluable role of animal organisms, including the emerging zebrafish model, in ocular gene therapy based on non-primate lentiviral vectors and in ophthalmology research and vision science in general.

  12. Lentiviral-Mediated Transgene Expression Can Potentiate Intestinal Mesenchymal-Epithelial Signaling

    Directory of Open Access Journals (Sweden)

    Kohn Aimee

    2009-01-01

    Full Text Available Abstract Mesenchymal-epithelial signaling is essential for the development of many organs and is often disrupted in disease. In this study, we demonstrate the use of lentiviral-mediated transgene delivery as an effective approach for ectopic transgene expression and an alternative to generation of transgenic animals. One benefit to this approach is that it can be used independently or in conjunction with established transgenic or knockout animals for studying modulation of mesenchymal-epithelial interactions. To display the power of this approach, we explored ectopic expression of a Wnt ligand in the mouse intestinal mesenchyme and demonstrate its functional influence on the adjacent epithelium. Our findings highlight the efficient use of lentiviral-mediated transgene expression for modulating mesenchymal-epithelial interactions in vivo.

  13. Lentiviral-Mediated Transgene Expression Can Potentiate Intestinal Mesenchymal-Epithelial Signaling

    Directory of Open Access Journals (Sweden)

    Dismuke Adria D

    2009-07-01

    Full Text Available Abstract Mesenchymal-epithelial signaling is essential for the development of many organs and is often disrupted in disease. In this study, we demonstrate the use of lentiviral-mediated transgene delivery as an effective approach for ectopic transgene expression and an alternative to generation of transgenic animals. One benefit to this approach is that it can be used independently or in conjunction with established transgenic or knockout animals for studying modulation of mesenchymal-epithelial interactions. To display the power of this approach, we explored ectopic expression of a Wnt ligand in the mouse intestinal mesenchyme and demonstrate its functional influence on the adjacent epithelium. Our findings highlight the efficient use of lentiviral-mediated transgene expression for modulating mesenchymal-epithelial interactions in vivo.

  14. The Drosophila Helicase MLE Targets Hairpin Structures in Genomic Transcripts.

    Directory of Open Access Journals (Sweden)

    Simona Cugusi

    2016-01-01

    Full Text Available RNA hairpins are a common type of secondary structures that play a role in every aspect of RNA biochemistry including RNA editing, mRNA stability, localization and translation of transcripts, and in the activation of the RNA interference (RNAi and microRNA (miRNA pathways. Participation in these functions often requires restructuring the RNA molecules by the association of single-strand (ss RNA-binding proteins or by the action of helicases. The Drosophila MLE helicase has long been identified as a member of the MSL complex responsible for dosage compensation. The complex includes one of two long non-coding RNAs and MLE was shown to remodel the roX RNA hairpin structures in order to initiate assembly of the complex. Here we report that this function of MLE may apply to the hairpins present in the primary RNA transcripts that generate the small molecules responsible for RNA interference. Using stocks from the Transgenic RNAi Project and the Vienna Drosophila Research Center, we show that MLE specifically targets hairpin RNAs at their site of transcription. The association of MLE at these sites is independent of sequence and chromosome location. We use two functional assays to test the biological relevance of this association and determine that MLE participates in the RNAi pathway.

  15. Lentiviral Vectors for Cancer Immunotherapy and Clinical Applications

    Directory of Open Access Journals (Sweden)

    David Escors

    2013-07-01

    Full Text Available The success of immunotherapy against infectious diseases has shown us the powerful potential that such a treatment offers, and substantial work has been done to apply this strategy in the fight against cancer. Cancer is however a fiercer opponent than pathogen-caused diseases due to natural tolerance towards tumour associated antigens and tumour-induced immunosuppression. Recent gene therapy clinical trials with viral vectors have shown clinical efficacy in the correction of genetic diseases, HIV and cancer. The first successful gene therapy clinical trials were carried out with onco(g-retroviral vectors but oncogenesis by insertional mutagenesis appeared as a serious complication. Lentiviral vectors have emerged as a potentially safer strategy, and recently the first clinical trial of patients with advanced leukemia using lentiviral vectors has proven successful. Additionally, therapeutic lentivectors have shown clinical efficacy for the treatment of HIV, X-linked adrenoleukodystrophy, and b-thalassaemia. This review aims at describing lentivectors and how they can be utilized to boost anti-tumour immune responses by manipulating the effector immune cells.

  16. Lentiviral Vectors for Cancer Immunotherapy and Clinical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Liechtenstein, Therese, E-mail: t.liechtenstein.12@ucl.ac.uk [University College London, 5 University Street, London, WC1E 6JF (United Kingdom); Perez-Janices, Noemi; Escors, David [University College London, 5 University Street, London, WC1E 6JF (United Kingdom); Navarrabiomed Fundacion Miguel Servet, 3 Irunlarrea St., Hospital Complex of Navarra, 31008 Pamplona, Navarra (Spain)

    2013-07-02

    The success of immunotherapy against infectious diseases has shown us the powerful potential that such a treatment offers, and substantial work has been done to apply this strategy in the fight against cancer. Cancer is however a fiercer opponent than pathogen-caused diseases due to natural tolerance towards tumour associated antigens and tumour-induced immunosuppression. Recent gene therapy clinical trials with viral vectors have shown clinical efficacy in the correction of genetic diseases, HIV and cancer. The first successful gene therapy clinical trials were carried out with onco(γ-)retroviral vectors but oncogenesis by insertional mutagenesis appeared as a serious complication. Lentiviral vectors have emerged as a potentially safer strategy, and recently the first clinical trial of patients with advanced leukemia using lentiviral vectors has proven successful. Additionally, therapeutic lentivectors have shown clinical efficacy for the treatment of HIV, X-linked adrenoleukodystrophy, and β-thalassaemia. This review aims at describing lentivectors and how they can be utilized to boost anti-tumour immune responses by manipulating the effector immune cells.

  17. Lentiviral Vectors for Cancer Immunotherapy and Clinical Applications

    International Nuclear Information System (INIS)

    Liechtenstein, Therese; Perez-Janices, Noemi; Escors, David

    2013-01-01

    The success of immunotherapy against infectious diseases has shown us the powerful potential that such a treatment offers, and substantial work has been done to apply this strategy in the fight against cancer. Cancer is however a fiercer opponent than pathogen-caused diseases due to natural tolerance towards tumour associated antigens and tumour-induced immunosuppression. Recent gene therapy clinical trials with viral vectors have shown clinical efficacy in the correction of genetic diseases, HIV and cancer. The first successful gene therapy clinical trials were carried out with onco(γ-)retroviral vectors but oncogenesis by insertional mutagenesis appeared as a serious complication. Lentiviral vectors have emerged as a potentially safer strategy, and recently the first clinical trial of patients with advanced leukemia using lentiviral vectors has proven successful. Additionally, therapeutic lentivectors have shown clinical efficacy for the treatment of HIV, X-linked adrenoleukodystrophy, and β-thalassaemia. This review aims at describing lentivectors and how they can be utilized to boost anti-tumour immune responses by manipulating the effector immune cells

  18. Large-scale production of lentiviral vector in a closed system hollow fiber bioreactor

    Directory of Open Access Journals (Sweden)

    Jonathan Sheu

    Full Text Available Lentiviral vectors are widely used in the field of gene therapy as an effective method for permanent gene delivery. While current methods of producing small scale vector batches for research purposes depend largely on culture flasks, the emergence and popularity of lentiviral vectors in translational, preclinical and clinical research has demanded their production on a much larger scale, a task that can be difficult to manage with the numbers of producer cell culture flasks required for large volumes of vector. To generate a large scale, partially closed system method for the manufacturing of clinical grade lentiviral vector suitable for the generation of induced pluripotent stem cells (iPSCs, we developed a method employing a hollow fiber bioreactor traditionally used for cell expansion. We have demonstrated the growth, transfection, and vector-producing capability of 293T producer cells in this system. Vector particle RNA titers after subsequent vector concentration yielded values comparable to lentiviral iPSC induction vector batches produced using traditional culture methods in 225 cm2 flasks (T225s and in 10-layer cell factories (CF10s, while yielding a volume nearly 145 times larger than the yield from a T225 flask and nearly three times larger than the yield from a CF10. Employing a closed system hollow fiber bioreactor for vector production offers the possibility of manufacturing large quantities of gene therapy vector while minimizing reagent usage, equipment footprint, and open system manipulation.

  19. [Construction of recombinant lentiviral vector of Tie2-RNAi and its influence on malignant melanoma cells in vitro].

    Science.gov (United States)

    Shan, Xiu-ying; Liu, Zhao-liang; Wang, Biao; Guo, Guo-xiang; Wang, Mei-shui; Zhuang, Fu-lian; Cai, Chuan-shu; Zhang, Ming-feng; Zhang, Yan-ding

    2011-07-01

    To construct lentivector carrying Tie2-Small interfering RNA (SiRNA), so as to study its influence on malignant melanoma cells. Recombinant plasmid pSilencer 1.0-U6-Tie2-siRNA and plasmid pNL-EGFP were digested with XbaI, ligated a target lentiviral transfer plasmid of pNL-EGFP-U6-Tie2-I or pNL-EGFP-U6-Tie2-II, and then the electrophoresis clones was sequenced. Plasmids of pNL-EGFP-U6-Tie2-I and pNL-EGFP-U6-Tie2-II were constructed and combined with pVSVG and pHelper, respectively, to constitute lentiviral vector system of three plasmids. The Lentiviral vector system was transfected into 293T cell to produce pNL-EGFP-U6-Tie2- I and pNL-EGFP-U6-Tie2-II lentivirus. Then the supernatant was collected to determine the titer. Malignant melanoma cells were infected by both lentiviruses and identified by Realtime RT-PCR to assess inhibitory efficiency. The recombinant lentiviral vectors of Tie2-RNAi were constructed successfully which were analyzed with restriction enzyme digestion and identified by sequencing. And the titer of lentiviral vector was 8.8 x 10(3)/ml, which was determined by 293T cell. The results of Realtime RT-PCR demonstrated that the lentiviral vectors of Tie2-RNAi could infect malignant melanoma cells and inhibit the expression of Tie2 genes in malignant melanoma cells (P0.05) between the two lentiviral vectors of Tie2-RNAi. Lentivector carrying Tie2-SiRNA can be constructed successfully and inhibit the expression of Tie2 gene in vitro significantly. The study will supply the theory basis for the further research on the inhibition of tumor growth in vivo.

  20. Construction of a novel lentiviral vector carrying human B-domain ...

    African Journals Online (AJOL)

    USER

    2010-03-29

    Mar 29, 2010 ... Construction of the lentiviral expression vector. Both self-inactivating (SIN) ..... activated partial thromboplastin time. Figure 4. Expression of ... 1 entry to an endocytic pathway and suppresses both the requirement for Nef and ...

  1. Effects of a mutation on the folding mechanism of a β-hairpin

    NARCIS (Netherlands)

    Juraszek, J.; Bolhuis, P.G.

    2009-01-01

    The folding mechanism of a protein is determined by its primary sequence. Yet, how the mechanism is changed by a mutation is still poorly understood, even for basic secondary structures such as β-hairpins. We perform an extensive simulation study of the effects of mutating the GB1 β-hairpin into

  2. Inhibition of HIV-1 lentiviral particles infectivity by Gynostemma ...

    African Journals Online (AJOL)

    These claims motivated the study in which the inhibition of viral vector infectivity of HeLa cells was assessed flow cytometrically by measuring the expression of green fluorescent protein (GFP) transgene incorporated in the lentiviral vector construct. An infectious VSV-G-pseudotyped, human immunodeficiency virus type ...

  3. Ex-Vivo Gene Therapy Using Lentiviral Mediated Gene Transfer Into Umbilical Cord Blood Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Hanieh Jalali

    2016-02-01

    Full Text Available Background Introduction of therapeutic genes into the injured site of nervous system can be achieved using transplantation of cellular vehicles containing desired gene. To transfer exogenous genes into the cellular vehicles, lentiviral vectors are one of interested vectors because of advantages such high transduction efficiency of dividing and non-dividing cells. Unrestricted somatic stem cells are subclasses of umbilical cord blood derived stem cells which are appreciate candidates to use as cellular vehicles for ex vivo gene therapy of nervous system. Objectives In current study we investigated the effect of lentiviral vector transduction on the neuronal related features of unrestricted somatic stem cells to indicate the probable and unwanted changes related to transduction procedure. Materials and Methods In this experimental study, lentiviral vector containing green fluorescent protein (GFP were transduced into unrestricted somatic stem cells and its effect was investigated with using MTT assay, qPCR and immunohistochemistry techniques. For statistical comparison of real time PCR results, REST software (2009, Qiagen was used. Results Obtained results showed lentiviral vector transduction did not have cytotoxic effects on unrestricted somatic stem cells and did not change neuronal differentiation capacity of them as well the expression of some neuronal related genes and preserved them in multilineage situation. Conclusions In conclusion, we suggested that lentiviral vectors could be proper vectors to transfer therapeutic gene into unrestricted somatic stem cells to provide a cellular vehicle for ex vivo gene therapy of nervous system disorders.

  4. A guide to approaching regulatory considerations for lentiviral-mediated gene therapies.

    Science.gov (United States)

    White, Michael; Whittaker, Roger; Stoll, Elizabeth Ann

    2017-06-12

    Lentiviral vectors are increasingly the gene transfer tool of choice for gene or cell therapies, with multiple clinical investigations showing promise for this viral vector in terms of both safety and efficacy. The third-generation vector system is well-characterized, effectively delivers genetic material and maintains long-term stable expression in target cells, delivers larger amounts of genetic material than other methods, is non-pathogenic and does not cause an inflammatory response in the recipient. This report aims to help academic scientists and regulatory managers negotiate the governance framework to achieve successful translation of a lentiviral vector-based gene therapy. The focus is on European regulations, and how they are administered in the United Kingdom, although many of the principles will be similar for other regions including the United States. The report justifies the rationale for using third-generation lentiviral vectors to achieve gene delivery for in vivo and ex vivo applications; briefly summarises the extant regulatory guidance for gene therapies, categorised as advanced therapeutic medicinal products (ATMPs); provides guidance on specific regulatory issues regarding gene therapies; presents an overview of the key stakeholders to be approached when pursuing clinical trials authorization for an ATMP; and includes a brief catalogue of the documentation required to submit an application for regulatory approval of a new gene therapy.

  5. Hairpin formation within the enhancer region of the human enkephalin gene

    International Nuclear Information System (INIS)

    McMurray, C.T.; Douglass, J.O.; Wilson, W.D.

    1991-01-01

    The 3',5'-cyclic adenosine monophosphate (cAMP)-inducible enhancer of the human enkephaline gene is located within an imperfect palindrom of 23 base pairs. The authors have found that a 23-base-pair oligonucleotide duplex containing the enhancer undergoes a reversible conformational transition from the duplex to two individual hairpin structures each formed from one strand of the duplex. Each individual hairpin forms with mismatched base pairs, one containing two GT pairs and the other containing two AC pairs. The conformational transition is stabilized by proton transfer to the hairpin containing AC mismatched pairs. The unique physical and thermodynamic properties of the enkephalin enhancer DNA suggest a model in which DNA secondary structure within the enhancer region plays and active role incAMP-inducible activation of the human enkephalin gene via formation of cruciform structures

  6. Hairpin formation within the enhancer region of the human enkephalin gene

    Energy Technology Data Exchange (ETDEWEB)

    McMurray, C.T.; Douglass, J.O. (Oregon Health Sciences Univ., Portland (United States)); Wilson, W.D. (Georgia State Univ., Atlanta (United States))

    1991-01-15

    The 3{prime},5{prime}-cyclic adenosine monophosphate (cAMP)-inducible enhancer of the human enkephaline gene is located within an imperfect palindrom of 23 base pairs. The authors have found that a 23-base-pair oligonucleotide duplex containing the enhancer undergoes a reversible conformational transition from the duplex to two individual hairpin structures each formed from one strand of the duplex. Each individual hairpin forms with mismatched base pairs, one containing two GT pairs and the other containing two AC pairs. The conformational transition is stabilized by proton transfer to the hairpin containing AC mismatched pairs. The unique physical and thermodynamic properties of the enkephalin enhancer DNA suggest a model in which DNA secondary structure within the enhancer region plays and active role incAMP-inducible activation of the human enkephalin gene via formation of cruciform structures.

  7. Short hairpin RNA targeting 2B gene of coxsackievirus B3 exhibits potential antiviral effects both in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Yao Hailan

    2012-08-01

    Full Text Available Abstract Background Coxsackievirus B3 is an important infectious agent of viral myocarditis, pancreatitis and aseptic meningitis, but there are no specific antiviral therapeutic reagents in clinical use. RNA interference-based technology has been developed to prevent the viral infection. Methods To evaluate the impact of RNA interference on viral replication, cytopathogenicity and animal survival, short hairpin RNAs targeting the viral 2B region (shRNA-2B expressed by a recombinant vector (pGCL-2B or a recombinant lentivirus (Lenti-2B were tansfected in HeLa cells or transduced in mice infected with CVB3. Results ShRNA-2B exhibited a significant effect on inhibition of viral production in HeLa cells. Furthermore, shRNA-2B improved mouse survival rate, reduced the viral tissues titers and attenuated tissue damage compared with those of the shRNA-NC treated control group. Lenti-2B displayed more effective role in inhibition of viral replication than pGCL-2B in vivo. Conclusions Coxsackievirus B3 2B is an effective target of gene silencing against coxsackievirus B3 infection, suggesting that shRNA-2B is a potential agent for further development into a treatment for enterviral diseases.

  8. (CAG)(n)-hairpin DNA binds to Msh2-Msh3 and changes properties of mismatch recognition.

    Science.gov (United States)

    Owen, Barbara A L; Yang, Zungyoon; Lai, Maoyi; Gajec, Maciej; Gajek, Maciez; Badger, John D; Hayes, Jeffrey J; Edelmann, Winfried; Kucherlapati, Raju; Wilson, Teresa M; McMurray, Cynthia T

    2005-08-01

    Cells have evolved sophisticated DNA repair systems to correct damaged DNA. However, the human DNA mismatch repair protein Msh2-Msh3 is involved in the process of trinucleotide (CNG) DNA expansion rather than repair. Using purified protein and synthetic DNA substrates, we show that Msh2-Msh3 binds to CAG-hairpin DNA, a prime candidate for an expansion intermediate. CAG-hairpin binding inhibits the ATPase activity of Msh2-Msh3 and alters both nucleotide (ADP and ATP) affinity and binding interfaces between protein and DNA. These changes in Msh2-Msh3 function depend on the presence of A.A mispaired bases in the stem of the hairpin and on the hairpin DNA structure per se. These studies identify critical functional defects in the Msh2-Msh3-CAG hairpin complex that could misdirect the DNA repair process.

  9. Crystal Structure of the Full-Length Feline Immunodeficiency Virus Capsid Protein Shows an N-Terminal β-Hairpin in the Absence of N-Terminal Proline

    Directory of Open Access Journals (Sweden)

    Christelle Folio

    2017-11-01

    Full Text Available Feline immunodeficiency virus (FIV is a member of the Retroviridae family. It is the causative agent of an acquired immunodeficiency syndrome (AIDS in cats and wild felines. Its capsid protein (CA drives the assembly of the viral particle, which is a critical step in the viral replication cycle. Here, the first atomic structure of full-length FIV CA to 1.67 Å resolution is determined. The crystallized protein exhibits an original tetrameric assembly, composed of dimers which are stabilized by an intermolecular disulfide bridge induced by the crystallogenesis conditions. The FIV CA displays a standard α-helical CA topology with two domains, separated by a linker shorter than other retroviral CAs. The β-hairpin motif at its amino terminal end, which interacts with nucleotides in HIV-1, is unusually long in FIV CA. Interestingly, this functional β-motif is formed in this construct in the absence of the conserved N-terminal proline. The FIV CA exhibits a cis Arg–Pro bond in the CypA-binding loop, which is absent in known structures of lentiviral CAs. This structure represents the first tri-dimensional structure of a functional, full-length FIV CA.

  10. Pathogenic effects of Rift Valley fever virus NSs gene are alleviated in cultured cells by expressed antiviral short hairpin RNAs.

    Science.gov (United States)

    Scott, Tristan; Paweska, Janusz T; Arbuthnot, Patrick; Weinberg, Marc S

    2012-01-01

    Rift Valley fever virus (RVFV), a member of the Bunyaviridae family, may cause severe hepatitis, encephalitis and haemorrhagic fever in humans. There are currently no available licensed vaccines or therapies to treat the viral infection in humans. RNA interference (RNAi)-based viral gene silencing offers a promising approach to inhibiting replication of this highly pathogenic virus. The small (S) segment of the RVFV tripartite genome carries the genetic determinates for pathogenicity during infection. This segment encodes the non-structural S (NSs) and essential nucleocapsid (N) genes. To advance RNAi-based inhibition of RVFV replication, we designed several Pol III short hairpin RNA (shRNA) expression cassettes against the NSs and N genes, including a multimerized plasmid vector that included four shRNA expression cassettes. Effective target silencing was demonstrated using full- and partial-length target reporter assays, and confirmed by western blot analysis of exogenous N and NSs expression. Small RNA northern blots showed detectable RNAi guide strand formation from single and multimerized shRNA constructs. Using a cell culture model of RVFV replication, shRNAs targeting the N gene decreased intracellular nucleocapsid protein concentration and viral replication. The shRNAs directed against the NSs gene reduced NSs protein concentrations and alleviated NSs-mediated cytotoxicity, which may be caused by host transcription suppression. These data are the first demonstration that RNAi activators have a potential therapeutic benefit for countering RVFV infection.

  11. Lentiviral Vector Gene Transfer to Porcine Airways

    Directory of Open Access Journals (Sweden)

    Patrick L Sinn

    2012-01-01

    Full Text Available In this study, we investigated lentiviral vector development and transduction efficiencies in well-differentiated primary cultures of pig airway epithelia (PAE and wild-type pigs in vivo. We noted gene transfer efficiencies similar to that observed for human airway epithelia (HAE. Interestingly, feline immunodeficiency virus (FIV-based vectors transduced immortalized pig cells as well as pig primary cells more efficiently than HIV-1–based vectors. PAE express TRIM5α, a well-characterized species-specific lentiviral restriction factor. We contrasted the restrictive properties of porcine TRIM5α against FIV- and HIV-based vectors using gain and loss of function approaches. We observed no effect on HIV-1 or FIV conferred transgene expression in response to porcine TRIM5α overexpression or knockdown. To evaluate the ability of GP64-FIV to transduce porcine airways in vivo, we delivered vector expressing mCherry to the tracheal lobe of the lung and the ethmoid sinus of 4-week-old pigs. One week later, epithelial cells expressing mCherry were readily detected. Our findings indicate that pseudotyped FIV vectors confer similar tropisms in porcine epithelia as observed in human HAE and provide further support for the selection of GP64 as an appropriate envelope pseudotype for future preclinical gene therapy studies in the porcine model of cystic fibrosis (CF.

  12. Design of a titering assay for lentiviral vectors utilizing direct extraction of DNA from transduced cells in microtiter plates

    Directory of Open Access Journals (Sweden)

    Michele E Murphy

    2016-01-01

    Full Text Available Using lentiviral vector products in clinical applications requires an accurate method for measuring transduction titer. For vectors lacking a marker gene, quantitative polymerase chain reaction is used to evaluate the number of vector DNA copies in transduced target cells, from which a transduction titer is calculated. Immune Design previously described an integration-deficient lentiviral vector pseudotyped with a modified Sindbis virus envelope for use in cancer immunotherapy (VP02, of the ZVex platform. Standard protocols for titering integration-competent lentiviral vectors employ commercial spin columns to purify vector DNA from transduced cells, but such columns are not optimized for isolation of extrachromosomal (nonintegrated DNA. Here, we describe a 96-well transduction titer assay in which DNA extraction is performed in situ in the transduction plate, yielding quantitative recovery of extrachromosomal DNA. Vector titers measured by this method were higher than when commercial spin columns were used for DNA isolation. Evaluation of the method's specificity, linear range, and precision demonstrate that it is suitable for use as a lot release assay to support clinical trials with VP02. Finally, the method is compatible with titering both integrating and nonintegrating lentiviral vectors, suggesting that it may be used to evaluate the transduction titer for any lentiviral vector.

  13. Adenoviral short hairpin RNA therapy targeting phosphodiesterase 5a relieves cardiac remodeling and dysfunction following myocardial infarction

    Science.gov (United States)

    Li, Longhu; Haider, Husnain Kh.; Wang, Linlin; Lu, Gang

    2012-01-01

    We previously showed that treatment with tadalafil, a long-acting phosphodiesterase-5a (PDE5a) inhibitor, effectively prevented adverse left ventricular (LV) remodeling of the infarcted heart. We hypothesized that short-hairpin RNA (shRNA) therapy targeting PDE5a would simulate the effects of pharmacological intervention for treatment of postinfarction LV remodeling and dysfunction. Experimental model of myocardial infarction was developed in female mice by permanent ligation of left coronary artery. Immediately after that, an adenoviral vector encoding for shRNA sequence targeting PDE5a (Ad-shPDE5a) was injected intramyocardially, which specifically inhibited PDE5a in the heart. Four weeks later, Ad-shPDE5a treated mice showed significant mitigation of the left ventricle (LV) dilatation and dysfunction as indicated by smaller LV cavity and more preserved ejection fraction and fractional shortening. Infarction size and fibrosis were significantly reduced in Ad-shPDE5a-treated mice. Additionally, more salvaged cardiomyocytes, significantly reduced collagen contents, and higher blood vessel density were observed in Ad-shPDE5a-treated mice. The cytoprotective effects of Ad-shPDE5a were demonstrated in vitro in Ad-shPDE5a transfected cardiomyocytes cultured under oxygen glucose deprivation. Among downstream mediators of PDE5a signaling, cyclic GMP (cGMP) and cGMP-dependent protein kinase G (PKG) were activated with concomitant reduction in caspase-3 activity. However, no significant change in PKA and cAMP activities were observed in Ad-shPDE5a-treated hearts. Inhibition with shRNA improved cardiac remodeling and dysfunction by reducing infarction size and cardiac fibrosis and increased cGMP and PKG activity. These findings suggest that PDE5 inhibition with Ad-shPDE5a is a novel approach for treatment of myocardial infarction. PMID:22447941

  14. A quasi-lentiviral green fluorescent protein reporter exhibits nuclear export features of late human immunodeficiency virus type 1 transcripts

    International Nuclear Information System (INIS)

    Graf, Marcus; Ludwig, Christine; Kehlenbeck, Sylvia; Jungert, Kerstin; Wagner, Ralf

    2006-01-01

    We have previously shown that Rev-dependent expression of HIV-1 Gag from CMV immediate early promoter critically depends on the AU-rich codon bias of the gag gene. Here, we demonstrate that adaptation of the green fluorescent protein (GFP) reporter gene to HIV codon bias is sufficient to turn this hivGFP RNA into a quasi-lentiviral message following the rules of late lentiviral gene expression. Accordingly, GFP expression was significantly decreased in transfected cells strictly correlating with reduced RNA levels. In the presence of the HIV 5' major splice donor, the hivGFP RNAs were stabilized in the nucleus and efficiently exported to the cytoplasm following fusion of the 3' Rev-responsive element (RRE) and coexpression of HIV-1 Rev. This Rev-dependent translocation was specifically inhibited by leptomycin B suggesting export via the CRM1-dependent pathway used by late lentiviral transcripts. In conclusion, this quasi-lentiviral reporter system may provide a new platform for developing sensitive Rev screening assays

  15. Short Hairpin RNA Silencing of PHD-2 Improves Neovascularization and Functional Outcomes in Diabetic Wounds and Ischemic Limbs.

    Directory of Open Access Journals (Sweden)

    Kevin J Paik

    Full Text Available The transcription factor hypoxia-inducible factor 1-alpha (HIF-1α is responsible for the downstream expression of over 60 genes that regulate cell survival and metabolism in hypoxic conditions as well as those that enhance angiogenesis to alleviate hypoxia. However, under normoxic conditions, HIF-1α is hydroxylated by prolyl hydroxylase 2, and subsequently degraded, with a biological half-life of less than five minutes. Here we investigated the therapeutic potential of inhibiting HIF-1α degradation through short hairpin RNA silencing of PHD-2 in the setting of diabetic wounds and limb ischemia. Treatment of diabetic mouse fibroblasts with shPHD-2 in vitro resulted in decreased levels of PHD-2 transcript demonstrated by qRT-PCR, higher levels of HIF-1α as measured by western blot, and higher expression of the downstream angiogenic genes SDF-1 and VEGFα, as measured by qRT-PCR. In vivo, shPHD-2 accelerated healing of full thickness excisional wounds in diabetic mice compared to shScr control, (14.33 ± 0.45 days vs. 19 ± 0.33 days and was associated with an increased vascular density. Delivery of shPHD-2 also resulted in improved perfusion of ischemic hind limbs compared to shScr, prevention of distal digit tip necrosis, and increased survival of muscle tissue. Knockdown of PHD-2 through shRNA treatment has the potential to stimulate angiogenesis through overexpression of HIF-1α and upregulation of pro-angiogenic genes downstream of HIF-1α, and may represent a viable, non-viral approach to gene therapy for ischemia related applications.

  16. Prolonged liver-specific transgene expression by a non-primate lentiviral vector

    International Nuclear Information System (INIS)

    Condiotti, Reba; Curran, Michael A.; Nolan, Garry P.; Giladi, Hilla; Ketzinel-Gilad, Mali; Gross, Eitan; Galun, Eithan

    2004-01-01

    Liver-directed gene therapy has the potential for treatment of numerous inherited diseases affecting metabolic functions. The aim of this study was to evaluate gene expression in hepatocytes using feline immunodeficiency virus-based lentiviral vectors, which may be potentially safer than those based on human immunodeficiency virus. In vitro studies revealed that gene expression was stable for up to 24 days post-transduction and integration into the host cell genome was suggested by Alu PCR and Southern blot analyses. Systemic in vivo administration of viral particles by the hydrodynamics method resulted in high levels of gene expression exclusively in the liver for over 7 months whereas injection of plasmid DNA by the same method led to transient expression levels. Our studies suggest that feline immunodeficiency-based lentiviral vectors specifically transduce liver cells and may be used as a novel vehicle of gene delivery for treatment of metabolic disease

  17. Strange temperature dependence of the folding rate of a 16-residue β-hairpin

    International Nuclear Information System (INIS)

    Xu Yao; Wang Ting; Gai Feng

    2006-01-01

    The folding/unfolding kinetics of a 16-residue β-hairpin that undergoes cold denaturation at ambient temperatures were investigated by time-resolved infrared spectroscopy coupled with the laser-induced temperature jump (T-jump) initiation method. We found that the relaxation kinetics of this β-hairpin following a T-jump, obtained by probing the amide I' band of the peptide backbone, show strange temperature dependence. At temperatures below approximately 35 deg. C where this β-hairpin mainly exhibits cold denaturation, the T-jump induced relaxation rate is ∼5 μs -1 , whereas at temperatures where heat denaturation takes place, the relaxation rate increases to ∼1 μs -1 . These results cannot be readily explained by a two-state folding model that has been used to describe the folding thermodynamics of this β-hairpin. In addition, these results suggest that the folding free energy barrier separating the cold-denatured state from the folded state is different from that separating the heat-denatured state from the folded state, coinciding with the idea that the mechanism leading to cold denaturation is different from that leading to heat denaturation

  18. Whirlwinds and hairpins in the atmospheric surface layer

    NARCIS (Netherlands)

    Oncley, Steven P.; Hartogensis, O.K.; Tong, Chenning

    2016-01-01

    Vortices in the atmospheric surface layer are characterized using observations at unprecedented resolution from a fixed array of 31 turbulence sensors. During the day, these vortices likely are dust devils, though no visual observations are available for confirmation. At night, hairpin vortices

  19. Hairpin-like fluorescent probe for imaging of NF-κB transcription factor activity.

    Science.gov (United States)

    Metelev, Valeri; Zhang, Surong; Tabatadze, David; Bogdanov, Alexei

    2011-04-20

    Three oligodeoxyribonucleotides (ODN) covalently labeled with near-infrared (NIR) fluorochromes were synthesized and characterized with a goal of comparing in vitro a hairpin-based and a duplex-based FRET probe designed for the detection of human recombinant NF-κB p50/p65 heterodimer binding to DNA. Using deoxyguanosine phosphoramidite with a phosphorus-linked aminoethylene (diethylene glycol) hydrophilic linker, we synthesized ODNs with internucleoside reactive sites. The hairpin loop amino linker was modified with IRDye 800CW (FRET acceptor), and the 3'-end was modified with Cy5.5 (FRET donor) using a dithio-linker. To obtain a duplex probe, we conjugated Cy5.5 and 800CW to complementary strands at the distance of ten base pairs in the resultant duplex. No quenching of dyes was observed in either probe. The FRET efficiency was higher in the duplex (71%) than in the hairpin (56%) due to a more favorable distance between the donor and the acceptor. However, the hairpin design allowed more precise ratiometric measurement of fluorescence intensity changes as a result of NF-κB p50/p65 binding to the probe. We determined that as a result of binding there was a statistically significant increase of fluorescence intensity of Cy5.5 (donor) due to a decrease of FRET if normalized by 800CW intensity measured independently of FRET. We conclude that the hairpin based probe design allows for the synthesis of a dual fluorescence imaging probe that renders signal changes that are simple to interpret and stoichiometrically correct for detecting transcription factor-DNA interactions.

  20. Linear Chromosome-generating System of Agrobacterium tumefaciens C58: Protelomerase Generates and Protects Hairpin Ends

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Wai Mun; DaGloria, Jeanne; Fox, Heather; Ruan, Qiurong; Tillou, John; Shi, Ke; Aihara, Hideki; Aron, John; Casjens, Sherwood (Utah); (UMM)

    2012-09-05

    Agrobacterium tumefaciens C58, the pathogenic bacteria that causes crown gall disease in plants, harbors one circular and one linear chromosome and two circular plasmids. The telomeres of its unusual linear chromosome are covalently closed hairpins. The circular and linear chromosomes co-segregate and are stably maintained in the organism. We have determined the sequence of the two ends of the linear chromosome thus completing the previously published genome sequence of A. tumefaciens C58. We found that the telomeres carry nearly identical 25-bp sequences at the hairpin ends that are related by dyad symmetry. We further showed that its Atu2523 gene encodes a protelomerase (resolvase) and that the purified enzyme can generate the linear chromosomal closed hairpin ends in a sequence-specific manner. Agrobacterium protelomerase, whose presence is apparently limited to biovar 1 strains, acts via a cleavage-and-religation mechanism by making a pair of transient staggered nicks invariably at 6-bp spacing as the reaction intermediate. The enzyme can be significantly shortened at both the N and C termini and still maintain its enzymatic activity. Although the full-length enzyme can uniquely bind to its product telomeres, the N-terminal truncations cannot. The target site can also be shortened from the native 50-bp inverted repeat to 26 bp; thus, the Agrobacterium hairpin-generating system represents the most compact activity of all hairpin linear chromosome- and plasmid-generating systems to date. The biochemical analyses of the protelomerase reactions further revealed that the tip of the hairpin telomere may be unusually polymorphically capable of accommodating any nucleotide.

  1. A Therapeutic Potential of Animal β-hairpin Antimicrobial Peptides.

    Science.gov (United States)

    Panteleev, Pavel V; Balandin, Sergey V; Ivanov, Vadim T; Ovchinnikova, Tatiana V

    2017-01-01

    Endogenous antimicrobial peptides (AMPs) are evolutionary ancient molecular factors of innate immunity that play the key role in host defense. Because of the low resistance rate, AMPs have caught extensive attention as possible alternatives to conventional antibiotics. Over the last years, it has become evident that biological functions of AMPs are beyond direct killing of microbial cells. This review focuses on a relatively small family of animal host defense peptides with the β-hairpin structure stabilized by disulfide bridges. Their small size, rigid structure, stability to proteases, and plethora of biological functions, including antibacterial, antifungal, antiviral, anticancer, endotoxin-binding, metabolism- and immune- modulating activities, make natural β-hairpin AMPs an attractive molecular basis for drug design. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. α-helix to β-hairpin transition of human amylin monomer

    Science.gov (United States)

    Singh, Sadanand; Chiu, Chi-cheng; Reddy, Allam S.; de Pablo, Juan J.

    2013-04-01

    The human islet amylin polypeptide is produced along with insulin by pancreatic islets. Under some circumstances, amylin can aggregate to form amyloid fibrils, whose presence in pancreatic cells is a common pathological feature of Type II diabetes. A growing body of evidence indicates that small, early stage aggregates of amylin are cytotoxic. A better understanding of the early stages of the amylin aggregation process and, in particular, of the nucleation events leading to fibril growth could help identify therapeutic strategies. Recent studies have shown that, in dilute solution, human amylin can adopt an α-helical conformation, a β-hairpin conformation, or an unstructured coil conformation. While such states have comparable free energies, the β-hairpin state exhibits a large propensity towards aggregation. In this work, we present a detailed computational analysis of the folding pathways that arise between the various conformational states of human amylin in water. A free energy surface for amylin in explicit water is first constructed by resorting to advanced sampling techniques. Extensive transition path sampling simulations are then employed to identify the preferred folding mechanisms between distinct minima on that surface. Our results reveal that the α-helical conformer of amylin undergoes a transformation into the β-hairpin monomer through one of two mechanisms. In the first, misfolding begins through formation of specific contacts near the turn region, and proceeds via a zipping mechanism. In the second, misfolding occurs through an unstructured coil intermediate. The transition states for these processes are identified. Taken together, the findings presented in this work suggest that the inter-conversion of amylin between an α-helix and a β-hairpin is an activated process and could constitute the nucleation event for fibril growth.

  3. Lentiviral vector mediated modification of mesenchymal stem cells & enhanced survival in an in vitro model of ischaemia.

    LENUS (Irish Health Repository)

    McGinley, Lisa

    2012-01-31

    INTRODUCTION: A combination of gene and cell therapies has the potential to significantly enhance the therapeutic value of mesenchymal stem cells (MSCs). The development of efficient gene delivery methods is essential if MSCs are to be of benefit using such an approach. Achieving high levels of transgene expression for the required period of time, without adversely affecting cell viability and differentiation capacity, is crucial. In the present study, we investigate lentiviral vector-mediated genetic modification of rat bone-marrow derived MSCs and examine any functional effect of such genetic modification in an in vitro model of ischaemia. METHODS: Transduction efficiency and transgene persistence of second and third generation rHIV-1 based lentiviral vectors were tested using reporter gene constructs. Use of the rHIV-pWPT-EF1-alpha-GFP-W vector was optimised in terms of dose, toxicity, cell species, and storage. The in vivo condition of ischaemia was modelled in vitro by separation into its associated constituent parts i.e. hypoxia, serum and glucose deprivation, in which the effect of therapeutic gene over-expression on MSC survival was investigated. RESULTS: The second generation lentiviral vector rHIV-pWPT-EF1-alpha-GFP-W, was the most efficient and provided the most durable transgene expression of the vectors tested. Transduction with this vector did not adversely affect MSC morphology, viability or differentiation potential, and transgene expression levels were unaffected by cryopreservation of transduced cells. Over-expression of HSP70 resulted in enhanced MSC survival and increased resistance to apoptosis in conditions of hypoxia and ischaemia. MSC differentiation capacity was significantly reduced after oxygen deprivation, but was preserved with HSP70 over-expression. CONCLUSIONS: Collectively, these data validate the use of lentiviral vectors for efficient in vitro gene delivery to MSCs and suggest that lentiviral vector transduction can facilitate

  4. Lentiviral vector mediated modification of mesenchymal stem cells & enhanced survival in an in vitro model of ischaemia

    LENUS (Irish Health Repository)

    McGinley, Lisa

    2011-03-07

    Abstract Introduction A combination of gene and cell therapies has the potential to significantly enhance the therapeutic value of mesenchymal stem cells (MSCs). The development of efficient gene delivery methods is essential if MSCs are to be of benefit using such an approach. Achieving high levels of transgene expression for the required period of time, without adversely affecting cell viability and differentiation capacity, is crucial. In the present study, we investigate lentiviral vector-mediated genetic modification of rat bone-marrow derived MSCs and examine any functional effect of such genetic modification in an in vitro model of ischaemia. Methods Transduction efficiency and transgene persistence of second and third generation rHIV-1 based lentiviral vectors were tested using reporter gene constructs. Use of the rHIV-pWPT-EF1-α-GFP-W vector was optimised in terms of dose, toxicity, cell species, and storage. The in vivo condition of ischaemia was modelled in vitro by separation into its associated constituent parts i.e. hypoxia, serum and glucose deprivation, in which the effect of therapeutic gene over-expression on MSC survival was investigated. Results The second generation lentiviral vector rHIV-pWPT-EF1-α-GFP-W, was the most efficient and provided the most durable transgene expression of the vectors tested. Transduction with this vector did not adversely affect MSC morphology, viability or differentiation potential, and transgene expression levels were unaffected by cryopreservation of transduced cells. Over-expression of HSP70 resulted in enhanced MSC survival and increased resistance to apoptosis in conditions of hypoxia and ischaemia. MSC differentiation capacity was significantly reduced after oxygen deprivation, but was preserved with HSP70 over-expression. Conclusions Collectively, these data validate the use of lentiviral vectors for efficient in vitro gene delivery to MSCs and suggest that lentiviral vector transduction can facilitate

  5. Development of a replication-competent lentivirus assay for dendritic cell-targeting lentiviral vectors

    Directory of Open Access Journals (Sweden)

    Daniel C Farley

    Full Text Available It is a current regulatory requirement to demonstrate absence of detectable replication-competent lentivirus (RCL in lentiviral vector products prior to use in clinical trials. Immune Design previously described an HIV-1-based integration-deficient lentiviral vector for use in cancer immunotherapy (VP02. VP02 is enveloped with E1001, a modified Sindbis virus glycoprotein which targets dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN expressed on dendritic cells in vivo. Vector enveloped with E1001 does not transduce T-cell lines used in standard HIV-1-based RCL assays, making current RCL testing formats unsuitable for testing VP02. We therefore developed a novel assay to test for RCL in clinical lots of VP02. This assay, which utilizes a murine leukemia positive control virus and a 293F cell line expressing the E1001 receptor DC-SIGN, meets a series of evaluation criteria defined in collaboration with US regulatory authorities and demonstrates the ability of the assay format to amplify and detect a hypothetical RCL derived from VP02 vector components. This assay was qualified and used to test six independent GMP production lots of VP02, in which no RCL was detected. We propose that the evaluation criteria used to rationally design this novel method should be considered when developing an RCL assay for any lentiviral vector.

  6. Efficient biotechnological approach for lentiviral transduction of induced pluripotent stem cells.

    Science.gov (United States)

    Zare, Mehrak; Soleimani, Masoud; Mohammadian, Mozhdeh; Akbarzadeh, Abolfazl; Havasi, Parvaneh; Zarghami, Nosratollah

    2016-01-01

    Induced pluripotent stem (iPS) cells are generated from differentiated adult somatic cells by reprogramming them. Unlimited self-renewal, and the potential to differentiate into any cell type, make iPS cells very promising candidates for basic and clinical research. Furthermore, iPS cells can be genetically manipulated for use as therapeutic tools. DNA can be introduced into iPS cells, using lentiviral vectors, which represent a helpful choice for efficient transduction and stable integration of transgenes. In this study, we compare two methods of lentiviral transduction of iPS cells, namely, the suspension method and the hanging drop method. In contrast to the conventional suspension method, in the hanging drop method, embryoid body (EB) formation and transduction occur concurrently. The iPS cells were cultured to form EBs, and then transduced with lentiviruses, using the conventional suspension method and the hanging drop method, to express miR-128 and green fluorescent protein (GFP). The number of transduced cells were assessed by fluorescent microscopy and flow cytometry. MTT assay and real-time PCR were performed to determine the cell viability and transgene expression, respectively. Morphologically, GFP+ cells were more detectable in the hanging drop method, and this finding was quantified by flow cytometric analysis. According to the results of the MTT assay, cell viability was considerably higher in the hanging drop method, and real-time PCR represented a higher relative expression of miR-128 in the iPS cells introduced with lentiviruses in drops. Altogether, it seems that lentiviral transduction of challenging iPS cells using the hanging drop method offers a suitable and sufficient strategy in their gene transfer, with less toxicity than the conventional suspension method.

  7. Multigenic lentiviral vectors for combined and tissue-specific expression of miRNA- and protein-based antiangiogenic factors

    Directory of Open Access Journals (Sweden)

    Anne Louise Askou

    Full Text Available Lentivirus-based gene delivery vectors carrying multiple gene cassettes are powerful tools in gene transfer studies and gene therapy, allowing coexpression of multiple therapeutic factors and, if desired, fluorescent reporters. Current strategies to express transgenes and microRNA (miRNA clusters from a single vector have certain limitations that affect transgene expression levels and/or vector titers. In this study, we describe a novel vector design that facilitates combined expression of therapeutic RNA- and protein-based antiangiogenic factors as well as a fluorescent reporter from back-to-back RNApolII-driven expression cassettes. This configuration allows effective production of intron-embedded miRNAs that are released upon transduction of target cells. Exploiting such multigenic lentiviral vectors, we demonstrate robust miRNA-directed downregulation of vascular endothelial growth factor (VEGF expression, leading to reduced angiogenesis, and parallel impairment of angiogenic pathways by codelivering the gene encoding pigment epithelium-derived factor (PEDF. Notably, subretinal injections of lentiviral vectors reveal efficient retinal pigment epithelium-specific gene expression driven by the VMD2 promoter, verifying that multigenic lentiviral vectors can be produced with high titers sufficient for in vivo applications. Altogether, our results suggest the potential applicability of combined miRNA- and protein-encoding lentiviral vectors in antiangiogenic gene therapy, including new combination therapies for amelioration of age-related macular degeneration.

  8. [Construction and identification of Nogo extra cellular peptide residues 1-40 gene lentiviral vector].

    Science.gov (United States)

    Yuan, Haifeng; Song, Yueming; Liu, Hao; Zhou, Chunguang; Kong, Qingquan; Liu, Liming; Gong, Quan

    2012-02-01

    To construct a lentiviral expression vector carrying Nogo extra cellular peptide residues 1-40 (NEP1-40) and to obtain NEP1-40 efficient and stable expression in mammalian cells. The DNA fragment of NEP1-40 coding sequence was amplified by PCR with designed primer from the cDNA library including NEP1-40 gene, and then subcloned into pGC-FU vector with in-fusion technique to generate the lentiviral expression vector, pGC-FU-NEP1-40. The positive clones were screened by PCR and the correct NEP1-40 was confirmed by sequencing. Recombinant lentiviruses were produced in 293T cells after the cotransfection of pGC-FU-NEP1-40, and packaging plasmids of pHelper 1.0 and pHelper 2.0. Green fluorescent protein (GFP) expression of infected 293T cells was observed to evaluate gene delivery efficiency. NEP1-40 protein expression in 293T cells was detected by Western blot. The lentiviral expression vector carrying NEP1-40 was successfully constructed by GFP observation, and NEP1-40 protein expression was detected in 293T cells by Western blot. The recombinant lentivirus pGC-FU-NEP1-40 is successfully constructed and it lays a foundation for further molecular function study of NEP 1-40.

  9. Comparison of lentiviral and sleeping beauty mediated αβ T cell receptor gene transfer.

    Directory of Open Access Journals (Sweden)

    Anne-Christine Field

    Full Text Available Transfer of tumour antigen-specific receptors to T cells requires efficient delivery and integration of transgenes, and currently most clinical studies are using gamma retroviral or lentiviral systems. Whilst important proof-of-principle data has been generated for both chimeric antigen receptors and αβ T cell receptors, the current platforms are costly, time-consuming and relatively inflexible. Alternative, more cost-effective, Sleeping Beauty transposon-based plasmid systems could offer a pathway to accelerated clinical testing of a more diverse repertoire of recombinant high affinity T cell receptors. Nucleofection of hyperactive SB100X transposase-mediated stable transposition of an optimised murine-human chimeric T cell receptor specific for Wilm's tumour antigen from a Sleeping Beauty transposon plasmid. Whilst transfer efficiency was lower than that mediated by lentiviral transduction, cells could be readily enriched and expanded, and mediated effective target cells lysis in vitro and in vivo. Integration sites of transposed TCR genes in primary T cells were almost randomly distributed, contrasting the predilection of lentiviral vectors for transcriptionally active sites. The results support exploitation of the Sleeping Beauty plasmid based system as a flexible and adaptable platform for accelerated, early-phase assessment of T cell receptor gene therapies.

  10. The PS1 hairpin of Mcm3 is essential for viability and for DNA unwinding in vitro.

    Directory of Open Access Journals (Sweden)

    Simon K W Lam

    Full Text Available The pre-sensor 1 (PS1 hairpin is found in ring-shaped helicases of the AAA+ family (ATPases associated with a variety of cellular activities of proteins and is implicated in DNA translocation during DNA unwinding of archaeal mini-chromosome maintenance (MCM and superfamily 3 viral replicative helicases. To determine whether the PS1 hairpin is required for the function of the eukaryotic replicative helicase, Mcm2-7 (also comprised of AAA+ proteins, we mutated the conserved lysine residue in the putative PS1 hairpin motif in each of the Saccharomyces cerevisiae Mcm2-7 subunits to alanine. Interestingly, only the PS1 hairpin of Mcm3 was essential for viability. While mutation of the PS1 hairpin in the remaining MCM subunits resulted in minimal phenotypes, with the exception of Mcm7 which showed slow growth under all conditions examined, the viable alleles were synthetic lethal with each other. Reconstituted Mcm2-7 containing Mcm3 with the PS1 mutation (Mcm3(K499A had severely decreased helicase activity. The lack of helicase activity provides a probable explanation for the inviability of the mcm3(K499A strain. The ATPase activity of Mcm2-7(3K499A was similar to the wild type complex, but its interaction with single-stranded DNA in an electrophoretic mobility shift assay and its associations in cells were subtly altered. Together, these findings indicate that the PS1 hairpins in the Mcm2-7 subunits have important and distinct functions, most evident by the essential nature of the Mcm3 PS1 hairpin in DNA unwinding.

  11. Tracking differentiating neural progenitors in pluripotent cultures using microRNA-regulated lentiviral vectors.

    Science.gov (United States)

    Sachdeva, Rohit; Jönsson, Marie E; Nelander, Jenny; Kirkeby, Agnete; Guibentif, Carolina; Gentner, Bernhard; Naldini, Luigi; Björklund, Anders; Parmar, Malin; Jakobsson, Johan

    2010-06-22

    In this study, we have used a microRNA-regulated lentiviral reporter system to visualize and segregate differentiating neuronal cells in pluripotent cultures. Efficient suppression of transgene expression, specifically in undifferentiated pluripotent cells, was achieved by using a lentiviral vector expressing a fluorescent reporter gene regulated by microRNA-292. Using this strategy, it was possible to track progeny from murine ES, human ES cells, and induced pluripotent stem cells as they differentiated toward the neural lineage. In addition, this strategy was successfully used to FACS purify neuronal progenitors for molecular analysis and transplantation. FACS enrichment reduced tumor formation and increased survival of ES cell-derived neuronal progenitors after transplantation. The properties and versatility of the microRNA-regulated vectors allows broad use of these vectors in stem cell applications.

  12. A four-way junction accelerates hairpin ribozyme folding via a discrete intermediate

    Science.gov (United States)

    Tan, Elliot; Wilson, Timothy J.; Nahas, Michelle K.; Clegg, Robert M.; Lilley, David M. J.; Ha, Taekjip

    2003-01-01

    The natural form of the hairpin ribozyme comprises two major structural elements: a four-way RNA junction and two internal loops carried by adjacent arms of the junction. The ribozyme folds into its active conformation by an intimate association between the loops, and the efficiency of this process is greatly enhanced by the presence of the junction. We have used single-molecule spectroscopy to show that the natural form fluctuates among three distinct states: the folded state and two additional, rapidly interconverting states (proximal and distal) that are inherited from the junction. The proximal state juxtaposes the two loop elements, thereby increasing the probability of their interaction and thus accelerating folding by nearly three orders of magnitude and allowing the ribozyme to fold rapidly in physiological conditions. Therefore, the hairpin ribozyme exploits the dynamics of the junction to facilitate the formation of the active site from its other elements. Dynamic interplay between structural elements, as we demonstrate for the hairpin ribozyme, may be a general theme for other functional RNA molecules. PMID:12883002

  13. Production of lentiviral vectors

    Directory of Open Access Journals (Sweden)

    Otto-Wilhelm Merten

    2016-01-01

    Full Text Available Lentiviral vectors (LV have seen considerably increase in use as gene therapy vectors for the treatment of acquired and inherited diseases. This review presents the state of the art of the production of these vectors with particular emphasis on their large-scale production for clinical purposes. In contrast to oncoretroviral vectors, which are produced using stable producer cell lines, clinical-grade LV are in most of the cases produced by transient transfection of 293 or 293T cells grown in cell factories. However, more recent developments, also, tend to use hollow fiber reactor, suspension culture processes, and the implementation of stable producer cell lines. As is customary for the biotech industry, rather sophisticated downstream processing protocols have been established to remove any undesirable process-derived contaminant, such as plasmid or host cell DNA or host cell proteins. This review compares published large-scale production and purification processes of LV and presents their process performances. Furthermore, developments in the domain of stable cell lines and their way to the use of production vehicles of clinical material will be presented.

  14. A rapid and efficient branched DNA hybridization assay to titer lentiviral vectors.

    Science.gov (United States)

    Nair, Ayyappan; Xie, Jinger; Joshi, Sarasijam; Harden, Paul; Davies, Joan; Hermiston, Terry

    2008-11-01

    A robust assay to titer lentiviral vectors is imperative to qualifying their use in drug discovery, target validation and clinical applications. In this study, a novel branched DNA based hybridization assay was developed to titer lentiviral vectors by quantifying viral RNA genome copy numbers from viral lysates without having to purify viral RNA, and this approach was compared with other non-functional (p24 protein ELISA and viral RT-qPCR) and a functional method (reporter gene expression) used commonly. The RT-qPCR method requires purification of viral RNA and the accuracy of titration therefore depends on the efficiency of purification; this requirement is ameliorated in the hybridization assay as RNA is measured directly in viral lysates. The present study indicates that the hybridization based titration assay performed on viral lysates was more accurate and has additional advantages of being rapid, robust and not dependent on transduction efficiency in different cell types.

  15. Lentiviral vectors in cancer immunotherapy.

    Science.gov (United States)

    Oldham, Robyn Aa; Berinstein, Elliot M; Medin, Jeffrey A

    2015-01-01

    Basic science advances in cancer immunotherapy have resulted in various treatments that have recently shown success in the clinic. Many of these therapies require the insertion of genes into cells to directly kill them or to redirect the host's cells to induce potent immune responses. Other analogous therapies work by modifying effector cells for improved targeting and enhanced killing of tumor cells. Initial studies done using γ-retroviruses were promising, but safety concerns centered on the potential for insertional mutagenesis have highlighted the desire to develop other options for gene delivery. Lentiviral vectors (LVs) have been identified as potentially more effective and safer alternative delivery vehicles. LVs are now in use in clinical trials for many different types of inherited and acquired disorders, including cancer. This review will discuss current knowledge of LVs and the applications of this viral vector-based delivery vehicle to cancer immunotherapy.

  16. The haloarchaeal MCM proteins: bioinformatic analysis and targeted mutagenesis of the β7-β8 and β9-β10 hairpin loops and conserved zinc binding domain cysteines.

    Science.gov (United States)

    Kristensen, Tatjana P; Maria Cherian, Reeja; Gray, Fiona C; MacNeill, Stuart A

    2014-01-01

    The hexameric MCM complex is the catalytic core of the replicative helicase in eukaryotic and archaeal cells. Here we describe the first in vivo analysis of archaeal MCM protein structure and function relationships using the genetically tractable haloarchaeon Haloferax volcanii as a model system. Hfx. volcanii encodes a single MCM protein that is part of the previously identified core group of haloarchaeal MCM proteins. Three structural features of the N-terminal domain of the Hfx. volcanii MCM protein were targeted for mutagenesis: the β7-β8 and β9-β10 β-hairpin loops and putative zinc binding domain. Five strains carrying single point mutations in the β7-β8 β-hairpin loop were constructed, none of which displayed impaired cell growth under normal conditions or when treated with the DNA damaging agent mitomycin C. However, short sequence deletions within the β7-β8 β-hairpin were not tolerated and neither was replacement of the highly conserved residue glutamate 187 with alanine. Six strains carrying paired alanine substitutions within the β9-β10 β-hairpin loop were constructed, leading to the conclusion that no individual amino acid within that hairpin loop is absolutely required for MCM function, although one of the mutant strains displays greatly enhanced sensitivity to mitomycin C. Deletions of two or four amino acids from the β9-β10 β-hairpin were tolerated but mutants carrying larger deletions were inviable. Similarly, it was not possible to construct mutants in which any of the conserved zinc binding cysteines was replaced with alanine, underlining the likely importance of zinc binding for MCM function. The results of these studies demonstrate the feasibility of using Hfx. volcanii as a model system for reverse genetic analysis of archaeal MCM protein function and provide important confirmation of the in vivo importance of conserved structural features identified by previous bioinformatic, biochemical and structural studies.

  17. The haloarchaeal MCM proteins: bioinformatic analysis and targeted mutagenesis of the β7-β8 and β9-β10 hairpin loops and conserved zinc binding domain cysteines

    Directory of Open Access Journals (Sweden)

    Tatjana P Kristensen

    2014-03-01

    Full Text Available The hexameric MCM complex is the catalytic core of the replicative helicase in eukaryotic and archaeal cells. Here we describe the first in vivo analysis of archaeal MCM protein structure and function relationships using the genetically tractable haloarchaeon Haloferax volcanii as a model system. Hfx. volcanii encodes a single MCM protein that is part of the previously identified core group of haloarchaeal MCM proteins. Three structural features of the N-terminal domain of the Hfx. volcanii MCM protein were targeted for mutagenesis: the β7-β8 and β9-β10 β-hairpin loops and putative zinc binding domain. Five strains carrying single point mutations in the β7-β8 β-hairpin loop were constructed, none of which displayed impaired cell growth under normal conditions or when treated with the DNA damaging agent mitomycin C. However, short sequence deletions within the β7-β8 β-hairpin were not tolerated and neither was replacement of the highly conserved residue glutamate 187 with alanine. Six strains carrying paired alanine substitutions within the β9-β10 β-hairpin loop were constructed, leading to the conclusion that no individual amino acid within that hairpin loop is absolutely required for MCM function, although one of the mutant strains displays greatly enhanced sensitivity to mitomycin C. Deletions of two or four amino acids from the β9-β10 β-hairpin were tolerated but mutants carrying larger deletions were inviable. Similarly, it was not possible to construct mutants in which any of the conserved zinc binding cysteines was replaced with alanine, underlining the likely importance of zinc binding for MCM function. The results of these studies demonstrate the feasibility of using Hfx. volcanii as a model system for reverse genetic analysis of archaeal MCM protein function and provide important confirmation of the in vivo importance of conserved structural features identified by previous bioinformatic, biochemical and structural

  18. Effects of secondary structure on pre-mRNA splicing: hairpins sequestering the 5' but not the 3' splice site inhibit intron processing in Nicotiana plumbaginifolia.

    Science.gov (United States)

    Liu, H X; Goodall, G J; Kole, R; Filipowicz, W

    1995-01-16

    We have performed a systematic study of the effect of artificial hairpins on pre-mRNA splicing in protoplasts of a dicot plant, Nicotiana plumbaginifolia. Hairpins with a potential to form 18 or 24 bp stems strongly inhibit splicing when they sequester the 5' splice site or are placed in the middle of short introns. However, similar 24 bp hairpins sequestering the 3' splice site do not prevent this site from being used as an acceptor. Utilization of the stem-located 3' site requires that the base of the stem is separated from the upstream 5' splice site by a minimum of approximately 45 nucleotides and that another 'helper' 3' splice site is present downstream of the stem. The results indicate that the spliceosome or factors associated with it may have a potential to unfold secondary structure present in the downstream portion of the intron, prior to or at the step of the 3' splice site selection. The finding that the helper 3' site is required for utilization of the stem-located acceptor confirms and extends previous observations, obtained with HeLa cell in vitro splicing systems, indicating that the 3' splice site may be recognized at least twice during spliceosome assembly.

  19. Fluorescence-based characterization of genetically encoded peptides that fold in live cells: progress toward a generic hairpin scaffold

    Science.gov (United States)

    Cheng, Zihao; Campbell, Robert E.

    2007-02-01

    Binding proteins suitable for expression and high affinity molecular recognition in the cytoplasm or nucleus of live cells have numerous applications in the biological sciences. In an effort to add a new minimal motif to the growing repertoire of validated non-immunoglobulin binding proteins, we have undertaken the development of a generic protein scaffold based on a single β-hairpin that can fold efficiently in the cytoplasm. We have developed a method, based on the measurement of fluorescence resonance energy transfer (FRET) between a genetically fused cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP), that allows the structural stability of recombinant β-hairpin peptides to be rapidly assessed both in vitro and in vivo. We have previously reported the validation of this method when applied to a 16mer tryptophan zipper β-hairpin. We now describe the use of this method to evaluate the potential of a designed 20mer β-hairpin peptide with a 3rd Trp/Trp cross-strand pair to function as a generic protein scaffold. Quantitative analysis of the FRET efficiency, resistance to proteolysis (assayed by loss of FRET), and circular dichroism spectra revealed that the 20mer peptide is significantly more tolerant of destabilizing mutations than the 16mer peptide. Furthermore, we experimentally demonstrate that the in vitro determined β-hairpin stabilities are well correlated with in vivo β-hairpin stabilities as determined by FRET measurements of colonies of live bacteria expressing the recombinant peptides flanked by CFP and YFP. Finally, we report on our progress to develop highly folded 24mer and 28mer β-hairpin peptides through the use of fluorescence-based library screening.

  20. Hairpin and duplex formation in DNA fragments CCAATTTTGG, CCAATTTTTTGG, and CCATTTTTGG: a proton NMR study

    International Nuclear Information System (INIS)

    Pramanik, P.; Kanhouwa, N.; Kan, L.

    1988-01-01

    Three DNA fragments, CCAATTTTGG (1), CCAATTTTTTGG (2), AND CCATTTTTGG (3), were studied by proton NMR spectroscopy in aqueous solution. All these oligodeoxyribonucleotides contain common sequences at the 5' and 3' ends (5'-CCA and TGG-3'). 2 as well as 3 forms only hairpin structures with four unpaired thymidylyl units, four and three base pair stems, respectively, in neutral solution under low and high NaCl concentrations. At high salt concentration the oligomer 1 forms a duplex structure with -TT- internal loop. On the other hand, the same oligomer forms a stable hairpin structure at low salt and low strand concentrations at pH 7. The hairpin structure of 1 has a stem containing only three base pairs (CCA x TGG) and a loop containing four nucleotides (-ATTT-) that includes a dissociated A x T base pair. The two secondary structures of 1 coexist in an aqueous solution containing 0.1 M NaCl, at pH 7. The equilibrium shifts to the hairpin side when the temperature is raised. The stabilities and base-stacking modes of all three oligonucleotides in tow different structures are reported

  1. A hairpin within YAP mRNA 3′UTR functions in regulation at post-transcription level

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yuen; Wang, Yuan; Feng, Jinyan; Feng, Guoxing; Zheng, Minying; Yang, Zhe; Xiao, Zelin; Lu, Zhanping [State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071 (China); Ye, Lihong [State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071 (China); Zhang, Xiaodong, E-mail: zhangxd@nankai.edu.cn [State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071 (China)

    2015-04-03

    The central dogma of gene expression is that DNA is transcribed into messenger RNAs, which in turn serve as the template for protein synthesis. Recently, it has been reported that mRNAs display regulatory roles that rely on their ability to compete for microRNA binding, independent of their protein-coding function. However, the regulatory mechanism of mRNAs remains poorly understood. Here, we report that a hairpin within YAP mRNA 3′untranslated region (3′UTR) functions in regulation at post-transcription level through generating endogenous siRNAs (esiRNAs). Bioinformatics analysis for secondary structure showed that YAP mRNA displayed a hairpin structure (termed standard hairpin, S-hairpin) within its 3′UTR. Surprisingly, we observed that the overexpression of S-hairpin derived from YAP 3′UTR (YAP-sh) increased the luciferase reporter activities of transcriptional factor NF-κB and AP-1 in 293T cells. Moreover, we identified that a fragment from YAP-sh, an esiRNA, was able to target mRNA 3′UTR of NF2 (a member of Hippo-signaling pathway) and YAP mRNA 3′UTR itself in hepatoma cells. Thus, we conclude that the YAP-sh within YAP mRNA 3′UTR may serve as a novel regulatory element, which functions in regulation at post-transcription level. Our finding provides new insights into the mechanism of mRNAs in regulatory function. - Highlights: • An S-hairpin within YAP mRNA 3′UTR possesses regulatory function. • YAP-sh acts as a regulatory element for YAP at post-transcription level. • YAP-sh-3p20, an esiRNA derived from YAP-sh, targets mRNAs of YAP and NF2. • YAP-sh-3p20 depresses the proliferation of HepG2 cells in vitro.

  2. A hairpin within YAP mRNA 3′UTR functions in regulation at post-transcription level

    International Nuclear Information System (INIS)

    Gao, Yuen; Wang, Yuan; Feng, Jinyan; Feng, Guoxing; Zheng, Minying; Yang, Zhe; Xiao, Zelin; Lu, Zhanping; Ye, Lihong; Zhang, Xiaodong

    2015-01-01

    The central dogma of gene expression is that DNA is transcribed into messenger RNAs, which in turn serve as the template for protein synthesis. Recently, it has been reported that mRNAs display regulatory roles that rely on their ability to compete for microRNA binding, independent of their protein-coding function. However, the regulatory mechanism of mRNAs remains poorly understood. Here, we report that a hairpin within YAP mRNA 3′untranslated region (3′UTR) functions in regulation at post-transcription level through generating endogenous siRNAs (esiRNAs). Bioinformatics analysis for secondary structure showed that YAP mRNA displayed a hairpin structure (termed standard hairpin, S-hairpin) within its 3′UTR. Surprisingly, we observed that the overexpression of S-hairpin derived from YAP 3′UTR (YAP-sh) increased the luciferase reporter activities of transcriptional factor NF-κB and AP-1 in 293T cells. Moreover, we identified that a fragment from YAP-sh, an esiRNA, was able to target mRNA 3′UTR of NF2 (a member of Hippo-signaling pathway) and YAP mRNA 3′UTR itself in hepatoma cells. Thus, we conclude that the YAP-sh within YAP mRNA 3′UTR may serve as a novel regulatory element, which functions in regulation at post-transcription level. Our finding provides new insights into the mechanism of mRNAs in regulatory function. - Highlights: • An S-hairpin within YAP mRNA 3′UTR possesses regulatory function. • YAP-sh acts as a regulatory element for YAP at post-transcription level. • YAP-sh-3p20, an esiRNA derived from YAP-sh, targets mRNAs of YAP and NF2. • YAP-sh-3p20 depresses the proliferation of HepG2 cells in vitro

  3. Lentiviral-Mediated Gene Therapy in Fanconi Anemia-A Mice Reveals Long-Term Engraftment and Continuous Turnover of Corrected HSCs.

    Science.gov (United States)

    Molina-Estevez, F Javier; Nowrouzi, Ali; Lozano, M Luz; Galy, Anne; Charrier, Sabine; von Kalle, Christof; Guenechea, Guillermo; Bueren, Juan A; Schmidt, Manfred

    2015-01-01

    Fanconi anemia is a DNA repair-deficiency syndrome mainly characterized by cancer predisposition and bone marrow failure. Trying to restore the hematopoietic function in these patients, lentiviral vector-mediated gene therapy trials have recently been proposed. However, because no insertional oncogenesis studies have been conducted so far in DNA repair-deficiency syndromes such as Fanconi anemia, we have carried out a genome-wide screening of lentiviral insertion sites after the gene correction of Fanca(-/-) hematopoietic stem cells (HSCs), using LAM-PCR and 454-pyrosequencing. Our studies first demonstrated that transduction of Fanca(-/-) HSCs with a lentiviral vector designed for clinical application efficiently corrects the phenotype of Fanconi anemia repopulating cells without any sign of toxicity. The identification of more than 6,500 insertion sites in primary and secondary recipients showed a polyclonal pattern of reconstitution, as well as a continuous turnover of corrected Fanca(-/-) HSC clones, without evidences of selection towards specific common integration sites. Taken together our data show, for the first time in a DNA repair-deficiency syndrome, that lentiviral vector-mediated gene therapy efficiently corrects the phenotype of affected HSCs and promotes a healthy pattern of clonal turnover in vivo. These studies will have a particular impact in the development of new gene therapy trials in patients affected by DNA repair syndromes, particularly in Fanconi anemia.

  4. Efficient immortalization of primary human cells by p16INK4a-specific short hairpin RNA or Bmi-1, combined with introduction of hTERT.

    Science.gov (United States)

    Haga, Kei; Ohno, Shin-ichi; Yugawa, Takashi; Narisawa-Saito, Mako; Fujita, Masatoshi; Sakamoto, Michiie; Galloway, Denise A; Kiyono, Tohru

    2007-02-01

    Activation of telomerase is sufficient for immortalization of some types of human cells but additional factors may also be essential. It has been proposed that stress imposed by inadequate culture conditions induces senescence due to accumulation of p16(INK4a). Here, we present evidence that many human cell types undergo senescence by activation of the p16(INK4a)/Rb pathway, and that introduction of Bmi-1 can inhibit p16(INK4a) expression and extend the life span of human epithelial cells derived from skin, mammary gland and lung. Introduction of p16(INK4a)-specific short hairpin RNA, as well as Bmi-1, suppressed p16(INK4a) expression in human mammary epithelial cells without promoter methylation, and extended their life span. Subsequent introduction of hTERT, the telomerase catalytic subunit, into cells with low p16(INK4a) levels resulted in efficient immortalization of three cell types without crisis or growth arrest. The majority of the human mammary epithelial cells thus immortalized showed almost normal ploidy as judged by G-banding and spectral karyotyping analysis. Our data suggest that inhibition of p16(INK4a) and introduction of hTERT can immortalize many human cell types with little chromosomal instability.

  5. Effect of a Dual Charge on the DNA-Conjugated Redox Probe on DNA Sensing by Short Hairpin Beacons Tethered to Gold Electrodes.

    Science.gov (United States)

    Kékedy-Nagy, László; Shipovskov, Stepan; Ferapontova, Elena E

    2016-08-16

    Charges of redox species can critically affect both the interfacial state of DNA and electrochemistry of DNA-conjugated redox labels and, as a result, the electroanalytical performance of those systems. Here, we show that the kinetics of electron transfer (ET) between the gold electrode and methylene blue (MB) label conjugated to a double-stranded (ds) DNA tethered to gold strongly depend on the charge of the MB molecule, and that affects the performance of genosensors exploiting MB-labeled hairpin DNA beacons. Positively charged MB binds to dsDNA via electrostatic and intercalative/groove binding, and this binding allows the DNA-mediated electrochemistry of MB intercalated into the duplex and, as a result, a complex mode of the electrochemical signal change upon hairpin hybridization to the target DNA, dominated by the "on-off" signal change mode at nanomolar levels of the analyzed DNA. When MB bears an additional carboxylic group, the negative charge provided by this group prevents intimate interactions between MB and DNA, and then the ET in duplexes is limited by the diffusion of the MB-conjugated dsDNA (the phenomenon first shown in Farjami , E. ; Clima , L. ; Gothelf , K. ; Ferapontova , E. E. Anal. Chem. 2011 , 83 , 1594 ) providing the robust "off-on" nanomolar DNA sensing. Those results can be extended to other intercalating redox probes and are of strategic importance for design and development of electrochemical hybridization sensors exploiting DNA nanoswitchable architectures.

  6. Gene transfer to primary corneal epithelial cells with an integrating lentiviral vector

    Directory of Open Access Journals (Sweden)

    Lauro Augusto de Oliveira

    2010-10-01

    Full Text Available PURPOSE: To evaluate the transfer of heterologous genes carrying a Green Fluorescent Protein (GFP reporter cassette to primary corneal epithelial cells ex vivo. METHODS: Freshly enucleated rabbit corneoscleral tissue was used to obtain corneal epithelial cell suspension via enzymatic digestion. Cells were plated at a density of 5×10³ cells/cm² and allowed to grow for 5 days (to 70-80% confluency prior to transduction. Gene transfer was monitored using fluorescence microscopy and fluorescence activated cell sorter (FACS. We evaluated the transduction efficiency (TE over time and the dose-response effect of different lentiviral particles. One set of cells were dual sorted by fluorescence activated cell sorter for green fluorescent protein expression as well as Hoechst dye exclusion to evaluate the transduction of potentially corneal epithelial stem cells (side-population phenotypic cells. RESULTS: Green fluorescent protein expressing lentiviral vectors were able to effectively transduce rabbit primary epithelial cells cultured ex vivo. Live cell imaging post-transduction demonstrated GFP-positive cells with normal epithelial cell morphology and growth. The transduction efficiency over time was higher at the 5th post-transduction day (14.1% and tended to stabilize after the 8th day. The number of transduced cells was dose-dependent, and at the highest lentivirus concentrations approached 7%. When double sorted by fluorescence activated cell sorter to isolate both green fluorescent protein positive and side population cells, transduced side population cells were identified. CONCLUSIONS: Lentiviral vectors can effectively transfer heterologous genes to primary corneal epithelial cells expanded ex vivo. Genes were stably expressed over time, transferred in a dose-dependence fashion, and could be transferred to mature corneal cells as well as presumable putative stem cells.

  7. A regenerative electrochemical biosensor for mercury(II) by using the insertion approach and dual-hairpin-based amplification

    International Nuclear Information System (INIS)

    Jia, Jing; Ling, Yu; Gao, Zhong Feng; Lei, Jing Lei; Luo, Hong Qun; Li, Nian Bing

    2015-01-01

    Highlights: • The dual-hairpin structure as a signal amplifier is label-free and handy. • The strategy uses the insertion approach to improve the hybridization efficiency. • This biosensor has a low detection limit (28 pM) for detection of Hg 2+ . • This biosensor can be easily regenerated by using L-cysteine. - Abstract: A simple and effective biosensor for Hg 2+ determination was investigated. The novel biosensor was prepared by the insertion approach that the moiety-labeled DNA inserted into a loosely packed cyclic-dithiothreitol (DTT) monolayer, improving the hybridization efficiency. Electrochemical impedance spectroscopy studies of two biosensors (single-hairpin and dual-hairpin structure DNA modified electrodes) used for Hg 2+ detection indicated that the dual-hairpin modified electrode had a larger electron transfer resistance change (ΔR ct ). Consequently, the dual-hairpin structure was used as a signal amplifier for the preparation of a selective Hg 2+ biosensor. This biosensor exhibited an excellent selectivity toward Hg 2+ over Cd 2+ , Pd 2+ , Co 2+ etc. Also, a linear relation was observed between the ΔR ct and Hg 2+ concentrations in a range from 0.1 nM to 5 μM with a detection limit of 28 pM under optimum conditions. Moreover, the biosensor can be reused by using L-cysteine and successfully applied for detecting Hg 2+ in real samples

  8. A novel bidirectional expression system for simultaneous expression of both the protein-coding genes and short hairpin RNAs in mammalian cells

    International Nuclear Information System (INIS)

    Hung, C.-F.; Cheng, T.-L.; Wu, R.-H.; Teng, C.-F.; Chang, W.-T.

    2006-01-01

    RNA interference (RNAi) is an extremely powerful and widely used gene silencing approach for reverse functional genomics and molecular therapeutics. In mammals, the conserved poly(ADP-ribose) polymerase 2 (PARP-2)/RNase P bidirectional control promoter simultaneously expresses both the PARP-2 protein and RNase P RNA by RNA polymerase II- and III-dependent mechanisms, respectively. To explore this unique bidirectional control system in RNAi-mediated gene silencing strategy, we have constructed two novel bidirectional expression vectors, pbiHsH1 and pbiMmH1, which contained the PARP-2/RNase P bidirectional control promoters from human and mouse, for simultaneous expression of both the protein-coding genes and short hairpin RNAs. Analyses of the dual transcriptional activities indicated that these two bidirectional expression vectors could not only express enhanced green fluorescent protein as a functional reporter but also simultaneously transcribe shLuc for inhibiting the firefly luciferase expression. In addition, to extend its utility for the establishment of inherited stable clones, we have also reconstructed this bidirectional expression system with the blasticidin S deaminase gene, an effective dominant drug resistance selectable marker, and examined both the selection and inhibition efficiencies in drug resistance and gene expression. Moreover, we have further demonstrated that this bidirectional expression system could efficiently co-regulate the functionally important genes, such as overexpression of tumor suppressor protein p53 and inhibition of anti-apoptotic protein Bcl-2 at the same time. In summary, the bidirectional expression vectors, pbiHsH1 and pbiMmH1, should provide a simple, convenient, and efficient novel tool for manipulating the gene function in mammalian cells

  9. RPA coordinates DNA end resection and prevents formation of DNA hairpins.

    Science.gov (United States)

    Chen, Huan; Lisby, Michael; Symington, Lorraine S

    2013-05-23

    Replication protein A (RPA) is an essential eukaryotic single-stranded DNA binding protein with a central role in DNA metabolism. RPA directly participates in DNA double-strand break repair by stimulating 5'-3' end resection by the Sgs1/BLM helicase and Dna2 endonuclease in vitro. Here we investigated the role of RPA in end resection in vivo, using a heat-inducible degron system that allows rapid conditional depletion of RPA in Saccharomyces cerevisiae. We found that RPA depletion eliminated both the Sgs1-Dna2- and Exo1-dependent extensive resection pathways and synergized with mre11Δ to prevent end resection. The short single-stranded DNA tails formed in the absence of RPA were unstable due to 3' strand loss and the formation of fold-back hairpin structures that required resection initiation and Pol32-dependent DNA synthesis. Thus, RPA is required to generate ssDNA, and also to protect ssDNA from degradation and inappropriate annealing that could lead to genome rearrangements. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. A regenerative electrochemical biosensor for mercury(II) by using the insertion approach and dual-hairpin-based amplification

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Jing; Ling, Yu; Gao, Zhong Feng [Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Lei, Jing Lei [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Luo, Hong Qun, E-mail: luohq@swu.edu.cn [Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Li, Nian Bing, E-mail: linb@swu.edu.cn [Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2015-09-15

    Highlights: • The dual-hairpin structure as a signal amplifier is label-free and handy. • The strategy uses the insertion approach to improve the hybridization efficiency. • This biosensor has a low detection limit (28 pM) for detection of Hg{sup 2+}. • This biosensor can be easily regenerated by using L-cysteine. - Abstract: A simple and effective biosensor for Hg{sup 2+} determination was investigated. The novel biosensor was prepared by the insertion approach that the moiety-labeled DNA inserted into a loosely packed cyclic-dithiothreitol (DTT) monolayer, improving the hybridization efficiency. Electrochemical impedance spectroscopy studies of two biosensors (single-hairpin and dual-hairpin structure DNA modified electrodes) used for Hg{sup 2+} detection indicated that the dual-hairpin modified electrode had a larger electron transfer resistance change (ΔR{sub ct}). Consequently, the dual-hairpin structure was used as a signal amplifier for the preparation of a selective Hg{sup 2+} biosensor. This biosensor exhibited an excellent selectivity toward Hg{sup 2+} over Cd{sup 2+}, Pd{sup 2+}, Co{sup 2+} etc. Also, a linear relation was observed between the ΔR{sub ct} and Hg{sup 2+} concentrations in a range from 0.1 nM to 5 μM with a detection limit of 28 pM under optimum conditions. Moreover, the biosensor can be reused by using L-cysteine and successfully applied for detecting Hg{sup 2+} in real samples.

  11. Non-Covalent Fluorescent Labeling of Hairpin DNA Probe Coupled with Hybridization Chain Reaction for Sensitive DNA Detection.

    Science.gov (United States)

    Song, Luna; Zhang, Yonghua; Li, Junling; Gao, Qiang; Qi, Honglan; Zhang, Chengxiao

    2016-04-01

    An enzyme-free signal amplification-based assay for DNA detection was developed using fluorescent hairpin DNA probes coupled with hybridization chain reaction (HCR). The hairpin DNAs were designed to contain abasic sites in the stem moiety. Non-covalent labeling of the hairpin DNAs was achieved when a fluorescent ligand was bound to the abasic sites through hydrogen bonding with the orphan cytosine present on the complementary strand, accompanied by quench of ligand fluorescence. As a result, the resultant probes, the complex formed between the hairpin DNA and ligand, showed almost no fluorescence. Upon hybridization with target DNA, the probe underwent a dehybridization of the stem moiety containing an abasic site. The release of ligand from the abasic site to the solution resulted in an effective fluorescent enhancement, which can be used as a signal. Compared with a sensing system without HCR, a 20-fold increase in the sensitivity was achieved using the sensing system with HCR. The fluorescent intensity of the sensing system increased with the increase in target DNA concentration from 0.5 nM to 100 nM. A single mismatched target ss-DNA could be effectively discriminated from complementary target DNA. Genotyping of a G/C single-nucleotide polymorphism of polymerase chain reaction (PCR) products was successfully demonstrated with the sensing system. Therefore, integrating HCR strategy with non-covalent labeling of fluorescent hairpin DNA probes provides a sensitive and cost-effective DNA assay. © The Author(s) 2016.

  12. Stabilization of a β-hairpin in monomeric Alzheimer's amyloid-β peptide inhibits amyloid formation

    Science.gov (United States)

    Hoyer, Wolfgang; Grönwall, Caroline; Jonsson, Andreas; Ståhl, Stefan; Härd, Torleif

    2008-01-01

    According to the amyloid hypothesis, the pathogenesis of Alzheimer's disease is triggered by the oligomerization and aggregation of the amyloid-β (Aβ) peptide into protein plaques. Formation of the potentially toxic oligomeric and fibrillar Aβ assemblies is accompanied by a conformational change toward a high content of β-structure. Here, we report the solution structure of Aβ(1–40) in complex with the phage-display selected affibody protein ZAβ3, a binding protein of nanomolar affinity. Bound Aβ(1–40) features a β-hairpin comprising residues 17–36, providing the first high-resolution structure of Aβ in β conformation. The positions of the secondary structure elements strongly resemble those observed for fibrillar Aβ. ZAβ3 stabilizes the β-sheet by extending it intermolecularly and by burying both of the mostly nonpolar faces of the Aβ hairpin within a large hydrophobic tunnel-like cavity. Consequently, ZAβ3 acts as a stoichiometric inhibitor of Aβ fibrillation. The selected Aβ conformation allows us to suggest a structural mechanism for amyloid formation based on soluble oligomeric hairpin intermediates. PMID:18375754

  13. Lentiviral transgenesis in mice via a simple method of viral concentration.

    Science.gov (United States)

    Cheng, Pei-Hsun; Chang, Yu-Fan; Mao, Su-Han; Lin, Hsiu-Lien; Chen, Chuan-Mu; Yang, Shang-Hsun

    2016-10-01

    Transgenic animals are important in vivo models for biological research. However, low transgenic rates are commonly reported in the literature. Lentiviral transgenesis is a promising method that has greater efficiency with regard to generating transgenic animals, although the transgenic rate of this approach is highly dependent on different transgenes and concentrated lentiviruses. In this study, we modified a method to concentrate lentiviruses using a table centrifuge, commonly available in most laboratories, and carried out analysis of the transgenic efficiency in mice. Based on 26 individual constructs and 627 live pups, we found that the overall transgenic rate was more than 30%, which is higher than obtained with pronuclear microinjection. In addition, we did not find any significant differences in transgenic efficiency when the size of inserts was less than 5000 bp. These results not only show that our modified method can successfully generate transgenic mice but also suggest that this approach could be generally applied to different constructs when the size of inserts is less than 5000 bp. It is anticipated that the results of this study can help encourage the wider laboratory use of lentiviral transgenesis in mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Inhibition of HIV Replication by Cyclic and Hairpin PNAs Targeting the HIV-1 TAR RNA Loop

    Science.gov (United States)

    Upert, Gregory; Di Giorgio, Audrey; Upadhyay, Alok; Manvar, Dinesh; Pandey, Nootan; Pandey, Virendra N.; Patino, Nadia

    2012-01-01

    Human immunodeficiency virus-1 (HIV-1) replication and gene expression entails specific interaction of the viral protein Tat with its transactivation responsive element (TAR), to form a highly stable stem-bulge-loop structure. Previously, we described triphenylphosphonium (TPP) cation-based vectors that efficiently deliver nucleotide analogs (PNAs) into the cytoplasm of cells. In particular, we showed that the TPP conjugate of a linear 16-mer PNA targeting the apical stem-loop region of TAR impedes Tat-mediated transactivation of the HIV-1 LTR in vitro and also in cell culture systems. In this communication, we conjugated TPP to cyclic and hairpin PNAs targeting the loop region of HIV-1 TAR and evaluated their antiviral efficacy in a cell culture system. We found that TPP-cyclic PNAs containing only 8 residues, showed higher antiviral potency compared to hairpin PNAs of 12 or 16 residues. We further noted that the TPP-conjugates of the 8-mer cyclic PNA as well as the 16-mer linear PNA displayed similar antiviral efficacy. However, cyclic PNAs were shown to be highly specific to their target sequences. This communication emphasizes on the importance of small constrained cyclic PNAs over both linear and hairpin structures for targeting biologically relevant RNA hairpins. PMID:23029603

  15. Inhibition of HIV Replication by Cyclic and Hairpin PNAs Targeting the HIV-1 TAR RNA Loop

    Directory of Open Access Journals (Sweden)

    Gregory Upert

    2012-01-01

    Full Text Available Human immunodeficiency virus-1 (HIV-1 replication and gene expression entails specific interaction of the viral protein Tat with its transactivation responsive element (TAR, to form a highly stable stem-bulge-loop structure. Previously, we described triphenylphosphonium (TPP cation-based vectors that efficiently deliver nucleotide analogs (PNAs into the cytoplasm of cells. In particular, we showed that the TPP conjugate of a linear 16-mer PNA targeting the apical stem-loop region of TAR impedes Tat-mediated transactivation of the HIV-1 LTR in vitro and also in cell culture systems. In this communication, we conjugated TPP to cyclic and hairpin PNAs targeting the loop region of HIV-1 TAR and evaluated their antiviral efficacy in a cell culture system. We found that TPP-cyclic PNAs containing only 8 residues, showed higher antiviral potency compared to hairpin PNAs of 12 or 16 residues. We further noted that the TPP-conjugates of the 8-mer cyclic PNA as well as the 16-mer linear PNA displayed similar antiviral efficacy. However, cyclic PNAs were shown to be highly specific to their target sequences. This communication emphasizes on the importance of small constrained cyclic PNAs over both linear and hairpin structures for targeting biologically relevant RNA hairpins.

  16. Discrimination among individual Watson–Crick base pairs at the termini of single DNA hairpin molecules

    Science.gov (United States)

    Vercoutere, Wenonah A.; Winters-Hilt, Stephen; DeGuzman, Veronica S.; Deamer, David; Ridino, Sam E.; Rodgers, Joseph T.; Olsen, Hugh E.; Marziali, Andre; Akeson, Mark

    2003-01-01

    Nanoscale α-hemolysin pores can be used to analyze individual DNA or RNA molecules. Serial examination of hundreds to thousands of molecules per minute is possible using ionic current impedance as the measured property. In a recent report, we showed that a nanopore device coupled with machine learning algorithms could automatically discriminate among the four combinations of Watson–Crick base pairs and their orientations at the ends of individual DNA hairpin molecules. Here we use kinetic analysis to demonstrate that ionic current signatures caused by these hairpin molecules depend on the number of hydrogen bonds within the terminal base pair, stacking between the terminal base pair and its nearest neighbor, and 5′ versus 3′ orientation of the terminal bases independent of their nearest neighbors. This report constitutes evidence that single Watson–Crick base pairs can be identified within individual unmodified DNA hairpin molecules based on their dynamic behavior in a nanoscale pore. PMID:12582251

  17. Transduction of liver cells by lentiviral vectors: analysis in living animals by fluorescence imaging

    NARCIS (Netherlands)

    Pfeifer, A.; Kessler, T.; Yang, M.; Baranov, E.; Kootstra, N.; Cheresh, D. A.; Hoffman, R. M.; Verma, I. M.

    2001-01-01

    Viral vectors based on lentiviruses, such as the human immunodeficiency virus, are able to transduce a broad spectrum of nondividing cells in vivo. This ability of lentiviral vectors makes them an attractive vehicle for gene transfer into the liver. In order to determine the requirements for

  18. Rapid lentiviral transduction preserves the engraftment potential of Fanca(-/-) hematopoietic stem cells.

    Science.gov (United States)

    Müller, Lars U W; Milsom, Michael D; Kim, Mi-Ok; Schambach, Axel; Schuesler, Todd; Williams, David A

    2008-06-01

    Fanconi anemia (FA) is a rare recessive syndrome, characterized by congenital anomalies, bone marrow failure, and predisposition to cancer. Two earlier clinical trials utilizing gamma-retroviral vectors for the transduction of autologous FA hematopoietic stem cells (HSCs) required extensive in vitro manipulation and failed to achieve detectable long-term engraftment of transduced HSCs. As a strategy for minimizing ex vivo manipulation, we investigated the use of a "rapid" lentiviral transduction protocol in a murine Fanca(-/-) model. Importantly, while this and most murine models of FA fail to completely mimic the human hematopoietic phenotype, we observed a high incidence of HSC transplant engraftment failure and low donor chimerism after conventional transduction (CT) of Fanca(-/-) donor cells. In contrast, rapid transduction (RT) of Fanca(-/-) HSCs preserved engraftment to the level achieved in wild-type cells, resulting in long-term multilineage engraftment of gene-modified cells. We also demonstrate the correction of the characteristic hypersensitivity of FA cells against the cross-linking agent mitomycin C (MMC), and provide evidence for the advantage of using pharmacoselection as a means of further increasing gene-modified cells after RT. Collectively, these data support the use of rapid lentiviral transduction for gene therapy in FA.

  19. A novel co-crystal structure affords the design of gain-of-function lentiviral integrase mutants in the presence of modified PSIP1/LEDGF/p75.

    Directory of Open Access Journals (Sweden)

    Stephen Hare

    2009-01-01

    Full Text Available Lens epithelium derived growth factor (LEDGF, also known as PC4 and SFRS1 interacting protein 1 (PSIP1 and transcriptional co-activator p75, is the cellular binding partner of lentiviral integrase (IN proteins. LEDGF accounts for the characteristic propensity of Lentivirus to integrate within active transcription units and is required for efficient viral replication. We now present a crystal structure containing the N-terminal and catalytic core domains (NTD and CCD of HIV-2 IN in complex with the IN binding domain (IBD of LEDGF. The structure extends the known IN-LEDGF interface, elucidating primarily charge-charge interactions between the NTD of IN and the IBD. A constellation of acidic residues on the NTD is characteristic of lentiviral INs, and mutations of the positively charged residues on the IBD severely affect interaction with all lentiviral INs tested. We show that the novel NTD-IBD contacts are critical for stimulation of concerted lentiviral DNA integration by LEDGF in vitro and for its function during the early steps of HIV-1 replication. Furthermore, the new structural details enabled us to engineer a mutant of HIV-1 IN that primarily functions only when presented with a complementary LEDGF mutant. These findings provide structural basis for the high affinity lentiviral IN-LEDGF interaction and pave the way for development of LEDGF-based targeting technologies for gene therapy.

  20. 2-Aminopurine hairpin probes for the detection of ultraviolet-induced DNA damage

    International Nuclear Information System (INIS)

    El-Yazbi, Amira F.; Loppnow, Glen R.

    2012-01-01

    Highlights: ► Molecular beacon with 2AP bases detects DNA damage in a simple mix-and-read assay. ► Molecular beacons with 2AP bases detect damage at a 17.2 nM limit of detection. ► The 2AP molecular beacon is linear over a 0–3.5 μM concentration range for damage. - Abstract: Nucleic acid exposure to radiation and chemical insults leads to damage and disease. Thus, detection and understanding DNA damage is important for elucidating molecular mechanisms of disease. However, current methods of DNA damage detection are either time-consuming, destroy the sample, or are too specific to be used for generic detection of damage. In this paper, we develop a fluorescence sensor of 2-aminopurine (2AP), a fluorescent analogue of adenine, incorporated in the loop of a hairpin probe for the quantification of ultraviolet (UV) C-induced nucleic acid damage. Our results show that the selectivity of the 2AP hairpin probe to UV-induced nucleic acid damage is comparable to molecular beacon (MB) probes of DNA damage. The calibration curve for the 2AP hairpin probe shows good linearity (R 2 = 0.98) with a limit of detection of 17.2 nM. This probe is a simple, fast and economic fluorescence sensor for the quantification of UV-induced damage in DNA.

  1. Incorporating double copies of a chromatin insulator into lentiviral vectors results in less viral integrants

    DEFF Research Database (Denmark)

    Nielsen, Troels T; Jakobsson, Johan; Rosenqvist, Nina

    2009-01-01

    BACKGROUND: Lentiviral vectors hold great promise as gene transfer vectors in gene therapeutic settings. However, problems related to the risk of insertional mutagenesis, transgene silencing and positional effects have stalled the use of such vectors in the clinic. Chromatin insulators are boundary...

  2. Adenovirus delivered short hairpin RNA targeting a conserved site in the 5' non-translated region inhibits all four serotypes of dengue viruses.

    Directory of Open Access Journals (Sweden)

    Anil Babu Korrapati

    Full Text Available BACKGROUND: Dengue is a mosquito-borne viral disease caused by four closely related serotypes of Dengue viruses (DENVs. This disease whose symptoms range from mild fever to potentially fatal haemorrhagic fever and hypovolemic shock, threatens nearly half the global population. There is neither a preventive vaccine nor an effective antiviral therapy against dengue disease. The difference between severe and mild disease appears to be dependent on the viral load. Early diagnosis may enable timely therapeutic intervention to blunt disease severity by reducing the viral load. Harnessing the therapeutic potential of RNA interference (RNAi to attenuate DENV replication may offer one approach to dengue therapy. METHODOLOGY/PRINCIPAL FINDINGS: We screened the non-translated regions (NTRs of the RNA genomes of representative members of the four DENV serotypes for putative siRNA targets mapping to known transcription/translation regulatory elements. We identified a target site in the 5' NTR that maps to the 5' upstream AUG region, a highly conserved cis-acting element essential for viral replication. We used a replication-defective human adenovirus type 5 (AdV5 vector to deliver a short-hairpin RNA (shRNA targeting this site into cells. We show that this shRNA matures to the cognate siRNA and is able to inhibit effectively antigen secretion, viral RNA replication and infectious virus production by all four DENV serotypes. CONCLUSION/SIGNIFICANCE: The data demonstrate the feasibility of using AdV5-mediated delivery of shRNAs targeting conserved sites in the viral genome to achieve inhibition of all four DENV serotypes. This paves the way towards exploration of RNAi as a possible therapeutic strategy to curtail DENV infection.

  3. Kinetics of end-to-end collision in short single-stranded nucleic acids.

    Science.gov (United States)

    Wang, Xiaojuan; Nau, Werner M

    2004-01-28

    A novel fluorescence-based method, which entails contact quenching of the long-lived fluorescent state of 2,3-diazabicyclo[2.2.2]-oct-2-ene (DBO), was employed to measure the kinetics of end-to-end collision in short single-stranded oligodeoxyribonucleotides of the type 5'-DBO-(X)n-dG with X = dA, dC, dT, or dU and n = 2 or 4. The fluorophore was covalently attached to the 5' end and dG was introduced as an efficient intrinsic quencher at the 3' terminus. The end-to-end collision rates, which can be directly related to the efficiency of intramolecular fluorescence quenching, ranged from 0.1 to 9.0 x 10(6) s(-1). They were strongly dependent on the strand length, the base sequence, as well as the temperature. Oligonucleotides containing dA in the backbone displayed much slower collision rates and significantly higher positive activation energies than strands composed of pyrimidine bases, suggesting a higher intrinsic rigidity of oligoadenylate. Comparison of the measured collision rates in short single-stranded oligodeoxyribonucleotides with the previously reported kinetics of hairpin formation indicates that the intramolecular collision is significantly faster than the nucleation step of hairpin closing. This is consistent with the configurational diffusion model suggested by Ansari et al. (Ansari, A.; Kuznetsov, S. V.; Shen, Y. Proc.Natl. Acad. Sci. USA 2001, 98, 7771-7776), in which the formation of misfolded loops is thought to slow hairpin formation.

  4. Feline Immunodeficiency Virus Cross-Species Transmission: Implications for Emergence of New Lentiviral Infections.

    Science.gov (United States)

    Lee, Justin; Malmberg, Jennifer L; Wood, Britta A; Hladky, Sahaja; Troyer, Ryan; Roelke, Melody; Cunningham, Mark; McBride, Roy; Vickers, Winston; Boyce, Walter; Boydston, Erin; Serieys, Laurel; Riley, Seth; Crooks, Kevin; VandeWoude, Sue

    2017-03-01

    Owing to a complex history of host-parasite coevolution, lentiviruses exhibit a high degree of species specificity. Given the well-documented viral archeology of human immunodeficiency virus (HIV) emergence following human exposures to simian immunodeficiency virus (SIV), an understanding of processes that promote successful cross-species lentiviral transmissions is highly relevant. We previously reported natural cross-species transmission of a subtype of feline immunodeficiency virus, puma lentivirus A (PLVA), between bobcats ( Lynx rufus ) and mountain lions ( Puma concolor ) for a small number of animals in California and Florida. In this study, we investigate host-specific selection pressures, within-host viral fitness, and inter- versus intraspecies transmission patterns among a larger collection of PLV isolates from free-ranging bobcats and mountain lions. Analyses of proviral and viral RNA levels demonstrate that PLVA fitness is severely restricted in mountain lions compared to that in bobcats. We document evidence of diversifying selection in three of six PLVA genomes from mountain lions, but we did not detect selection among 20 PLVA isolates from bobcats. These findings support the hypothesis that PLVA is a bobcat-adapted virus which is less fit in mountain lions and under intense selection pressure in the novel host. Ancestral reconstruction of transmission events reveals that intraspecific PLVA transmission has occurred among panthers ( Puma concolor coryi ) in Florida following the initial cross-species infection from bobcats. In contrast, interspecific transmission from bobcats to mountain lions predominates in California. These findings document outcomes of cross-species lentiviral transmission events among felids that compare to the emergence of HIV from nonhuman primates. IMPORTANCE Cross-species transmission episodes can be singular, dead-end events or can result in viral replication and spread in the new species. The factors that determine which

  5. [Lentivirus-mediated shRNA silencing of LAMP2A inhibits the proliferation of multiple myeloma cells].

    Science.gov (United States)

    Li, Lixuan; Li, Jia

    2015-05-01

    To study the effects of lentivirus-mediated short hairpin RNA (shRNA) silencing of lysosome-associated membrane protein type 2A (LAMP2A) expression on the proliferation of multiple myeloma cells. The constructed shRNA lentiviral vector was applied to infect human multiple myeloma cell line MM.1S, and stable expression cell line was obtained by puromycin screening. Western blotting was used to verify the inhibitory effect on LAMP2A protein expression. MTT assay was conducted to detect the effect of knocked-down LAMP2A on MM.1S cell proliferation, and the anti-tumor potency of suberoylanilide hydroxamic acid (SAHA) against the obtained MM.1S LAMP2A(shRNA) stable cell line. Lactate assay was performed to observe the impact of low LAMP2A expression on cell glycolysis. The stable cell line with low LAMP2A expression were obtained with the constructed human LAMP2A-shRNA lentiviral vector. Down-regulation of LAMP2A expression significantly inhibited MM.1S cell proliferation and enhanced the anti-tumor activity of SAHA. Interestingly, decreased LAMP2A expression also inhibited MM.1S cell lactic acid secretion. Down-regulation of LAMP2A expression could inhibit cell proliferation in multiple myeloma cells.

  6. Pseudotyped Lentiviral Vectors for Retrograde Gene Delivery into Target Brain Regions

    Directory of Open Access Journals (Sweden)

    Kenta Kobayashi

    2017-08-01

    Full Text Available Gene transfer through retrograde axonal transport of viral vectors offers a substantial advantage for analyzing roles of specific neuronal pathways or cell types forming complex neural networks. This genetic approach may also be useful in gene therapy trials by enabling delivery of transgenes into a target brain region distant from the injection site of the vectors. Pseudotyping of a lentiviral vector based on human immunodeficiency virus type 1 (HIV-1 with various fusion envelope glycoproteins composed of different combinations of rabies virus glycoprotein (RV-G and vesicular stomatitis virus glycoprotein (VSV-G enhances the efficiency of retrograde gene transfer in both rodent and nonhuman primate brains. The most recently developed lentiviral vector is a pseudotype with fusion glycoprotein type E (FuG-E, which demonstrates highly efficient retrograde gene transfer in the brain. The FuG-E–pseudotyped vector permits powerful experimental strategies for more precisely investigating the mechanisms underlying various brain functions. It also contributes to the development of new gene therapy approaches for neurodegenerative disorders, such as Parkinson’s disease, by delivering genes required for survival and protection into specific neuronal populations. In this review article, we report the properties of the FuG-E–pseudotyped vector, and we describe the application of the vector to neural circuit analysis and the potential use of the FuG-E vector in gene therapy for Parkinson’s disease.

  7. Robust Lentiviral Gene Delivery But Limited Transduction Capacity of Commonly Used Adeno-Associated Viral Serotypes in Xenotransplanted Human Skin.

    Science.gov (United States)

    Jakobsen, Maria; Askou, Anne Louise; Stenderup, Karin; Rosada, Cecilia; Dagnæs-Hansen, Frederik; Jensen, Thomas G; Corydon, Thomas J; Mikkelsen, Jacob Giehm; Aagaard, Lars

    2015-08-01

    Skin is an easily accessible organ, and therapeutic gene transfer to skin remains an attractive alternative for the treatment of skin diseases. Although we have previously documented potent lentiviral gene delivery to human skin, vectors based on adeno-associated virus (AAV) rank among the most promising gene delivery tools for in vivo purposes. Thus, we compared the potential usefulness of various serotypes of recombinant AAV vectors and lentiviral vectors for gene transfer to human skin in a xenotransplanted mouse model. Vector constructs encoding firefly luciferase were packaged in AAV capsids of serotype 1, 2, 5, 6, 8, and 9 and separately administered by intradermal injection in human skin transplants. For all serotypes, live bioimaging demonstrated low levels of transgene expression in the human skin graft, and firefly luciferase expression was observed primarily in neighboring tissue outside of the graft. In contrast, gene delivery by intradermally injected lentiviral vectors was efficient and led to extensive and persistent firefly luciferase expression within the human skin graft only. The study demonstrates the limited capacity of single-stranded AAV vectors of six commonly used serotypes for gene delivery to human skin in vivo.

  8. Breeding of transgenic cattle for human coagulation factor IX by a combination of lentiviral system and cloning.

    Science.gov (United States)

    Monzani, P S; Sangalli, J R; De Bem, T H C; Bressan, F F; Fantinato-Neto, P; Pimentel, J R V; Birgel-Junior, E H; Fontes, A M; Covas, D T; Meirelles, F V

    2013-02-28

    Recombinant coagulation factor IX must be produced in mammalian cells because FIX synthesis involves translational modifications. Human cell culture-based expression of human coagulation factor IX (hFIX) is expensive, and large-scale production capacity is limited. Transgenic animals may greatly increase the yield of therapeutic proteins and reduce costs. In this study, we used a lentiviral system to obtain transgenic cells and somatic cell nuclear transfer (SCNT) to produce transgenic animals. Lentiviral vectors carrying hFIX driven by 3 bovine β-casein promoters were constructed. Bovine epithelial mammary cells were transduced by lentivirus, selected with blasticidin, plated on extracellular matrix, and induced by lactogenic hormones; promoter activity was evaluated by quantitative PCR. Transcriptional activity of the 5.335-kb promoter was 6-fold higher than the 3.392- and 4.279-kb promoters, which did not significantly differ. Transgenic bovine fibroblasts were transduced with lentivirus carrying the 5.335-kb promoter and used as donor cells for SCNT. Cloned transgenic embryo production yielded development rates of 28.4%, similar to previous reports on cloned non-transgenic embryos. The embryos were transferred to recipient cows (N = 21) and 2 births of cloned transgenic cattle were obtained. These results suggest combination of the lentiviral system and cloning may be a good strategy for production of transgenic cattle.

  9. Turn stability in beta-hairpin peptides: Investigation of peptides containing 3:5 type I G1 bulge turns.

    Science.gov (United States)

    Blandl, Tamas; Cochran, Andrea G; Skelton, Nicholas J

    2003-02-01

    The turn-forming ability of a series of three-residue sequences was investigated by substituting them into a well-characterized beta-hairpin peptide. The starting scaffold, bhpW, is a disulfide-cyclized 10-residue peptide that folds into a stable beta-hairpin with two antiparallel strands connected by a two-residue reverse turn. Substitution of the central two residues with the three-residue test sequences leads to less stable hairpins, as judged by thiol-disulfide equilibrium measurements. However, analysis of NMR parameters indicated that each molecule retains a significant folded population, and that the type of turn adopted by the three-residue sequence is the same in all cases. The solution structure of a selected peptide with a PDG turn contained an antiparallel beta-hairpin with a 3:5 type I + G1 bulge turn. Analysis of the energetic contributions of individual turn residues in the series of peptides indicates that substitution effects have significant context dependence, limiting the predictive power of individual amino acid propensities for turn formation. The most stable and least stable sequences were also substituted into a more stable disulfide-cyclized scaffold and a linear beta-hairpin scaffold. The relative stabilities remained the same, suggesting that experimental measurements in the bhpW context are a useful way to evaluate turn stability for use in protein design projects. Moreover, these scaffolds are capable of displaying a diverse set of turns, which can be exploited for the mimicry of protein loops or for generating libraries of reverse turns.

  10. Structural and dynamic characterization of the upper part of the HIV-1 cTAR DNA hairpin

    OpenAIRE

    Zargarian, Loussin?; Kanevsky, Igor; Bazzi, Ali; Boynard, Jonathan; Chaminade, Fran?oise; Foss?, Philippe; Mauffret, Olivier

    2009-01-01

    First strand transfer is essential for HIV-1 reverse transcription. During this step, the TAR RNA hairpin anneals to the cTAR DNA hairpin; this annealing reaction is promoted by the nucleocapsid protein and involves an initial loop?loop interaction between the apical loops of TAR and cTAR. Using NMR and probing methods, we investigated the structural and dynamic properties of the top half of the cTAR DNA (mini-cTAR). We show that the upper stem located between the apical and the internal loop...

  11. Targeted genome editing by lentiviral protein transduction of zinc-finger and TAL-effector nucleases.

    Science.gov (United States)

    Cai, Yujia; Bak, Rasmus O; Mikkelsen, Jacob Giehm

    2014-04-24

    Future therapeutic use of engineered site-directed nucleases, like zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), relies on safe and effective means of delivering nucleases to cells. In this study, we adapt lentiviral vectors as carriers of designer nuclease proteins, providing efficient targeted gene disruption in vector-treated cell lines and primary cells. By co-packaging pairs of ZFN proteins with donor RNA in 'all-in-one' lentiviral particles, we co-deliver ZFN proteins and the donor template for homology-directed repair leading to targeted DNA insertion and gene correction. Comparative studies of ZFN activity in a predetermined target locus and a known nearby off-target locus demonstrate reduced off-target activity after ZFN protein transduction relative to conventional delivery approaches. Additionally, TALEN proteins are added to the repertoire of custom-designed nucleases that can be delivered by protein transduction. Altogether, our findings generate a new platform for genome engineering based on efficient and potentially safer delivery of programmable nucleases.DOI: http://dx.doi.org/10.7554/eLife.01911.001. Copyright © 2014, Cai et al.

  12. Introduction of optical reporter gene into cancer and immune cells using lentiviral vector

    International Nuclear Information System (INIS)

    Min, Jung Joon; Le, Uyenchi N.; Moon, Sung Min; Heo, Young Jun; Song, Ho Chun; Bom, Hee Seung; Kim, Yeon Soo

    2004-01-01

    For some applications such as gene therapy or reporter gene imaging, a gene has to be introduced into the organism of interest. Adenoviral vectors are capable of transducing both replicating and non-dividing cells. The adenoviral vectors do not integrate their DNA into host DNA, but do lead to an immune response. Lentiviruses belong to the retrovirus family and are capable of infecting both dividing and non-dividing cells. The human immunodeficiency virus (HIV) is an example of a lentavirus. A disabled HIV virus has been developed and could be used for in vivo gene delivery. A portion of the viral genome which encodes for accessory proteins canbe deleted without affecting production of the vector and efficiency of infection. Lentiviral delivery into various rodent tissues shows sustained expression of the transgene of up to six months. Furthermore, there seems to be little or no immune response with these vectors. These lentiviral vectors hold significant promise for in vivo gene delivery. We constructed lentiviral vector encoding firefly luciferase (Fluc) and eGFP. Fluc-eGFP fusion gene was inserted into multiple cloning sites of pLentiM1.3 vector. Reporter gene (Fluc-eGFP) was designed to be driven by murine CMV promoter with enhanced efficacy of transgene expression as compared to human CMV promoter. We transfected pLenti1.3-Fluc into human cervix cancer cell line (HeLa) and murine T lymphocytes. We also constructed adenovirus encoding Fluc and transfected to HeLa and T cells. This LentiM1.3-Fluc was transfected into HeLa cells and murine T lymphocytes in vitro, showing consistent expression of eGFP under the fluorescence microscopy from the 2nd day of transfection. Firefly luciferase reporter gene was not expressed in immune cells when it is mediated by adenovirus. Lentivirus was validated as a useful vector for both immune and cancer cells

  13. Inhibition of experimental lung metastasis by systemic lentiviral delivery of kallistatin

    International Nuclear Information System (INIS)

    Shiau, Ai-Li; Wu, Chao-Liang; Lee, Che-Hsin; Teo, Min-Li; Chen, Shin-Yao; Wang, Chrong-Reen; Hsieh, Jeng-Long; Chang, Meng-Ya; Chang, Chih-Jui; Chao, Julie; Chao, Lee

    2010-01-01

    Angiogenesis plays an important role in the development and progression of tumors. Kallistatin exerts anti-angiogenic and anti-inflammatory activities that may be effective in inhibiting tumor metastasis. We investigated the antitumor effect of lentivirus-mediated kallistatin gene transfer in a syngeneic murine tumor model. Lentiviral vector encoding kallistatin (LV-Kallistatin) was constructed. The expression of kallistatin was verified by enzyme-linked immunosorbent assay (ELISA), and the bioactivity of kallistatin was determined by using cell proliferation, migration, and invasion assays. In addition, antitumor effects of LV-Kallistatin were evaluated by the intravenous injection of virus into tumor-bearing mice. The conditioned medium from LV-Kallistatin-treated cells inhibited the migration and proliferation of endothelial cells. Meanwhile, it also reduced the migration and invasion of tumor cells. In the experimental lung metastatic model, tumor-bearing mice receiving LV-Kallistatin had lower tumor nodules and longer survival than those receiving control virus or saline. Moreover, the microvessel densities, the levels of vascular endothelial growth factor (VEGF), tumor necrosis factor (TNF)-α, and nuclear factor κB (NF-κB) transcriptional activity were reduced in the LV-Kallistatin-treated mice. Results of this study showed that systemic administration of lentiviral vectors encoding kallistatin inhibited the growth of metastatic tumor and prolonged the survival of tumor-bearing mice. These results suggest that gene therapy using lentiviruses carrying the kallistatin gene, which exerts anti-angiogenic and anti-inflammatory activities, represents a promising strategy for the treatment of lung cancer

  14. Production of germline transgenic prairie voles (Microtus ochrogaster) using lentiviral vectors.

    Science.gov (United States)

    Donaldson, Zoe R; Yang, Shang-Hsun; Chan, Anthony W S; Young, Larry J

    2009-12-01

    The study of alternative model organisms has yielded tremendous insights into the regulation of behavioral and physiological traits not displayed by more widely used animal models, such as laboratory rats and mice. In particular, comparative approaches often exploit species ideally suited for investigating specific phenomenon. For instance, comparative studies of socially monogamous prairie voles and polygamous meadow voles have been instrumental toward gaining an understanding of the genetic and neurobiological basis of social bonding. However, laboratory studies of less commonly used organisms, such as prairie voles, have been limited by a lack of genetic tools, including the ability to manipulate the genome. Here, we show that lentiviral vector-mediated transgenesis is a rapid and efficient approach for creating germline transgenics in alternative laboratory rodents. Injection of a green fluorescent protein (GFP)-expressing lentiviral vector into the perivitelline space of 23 single-cell embryos yielded three live offspring (13 %), one of which (33%) contained germline integration of a GFP transgene driven by the human ubiquitin-C promoter. In comparison, transfer of 23 uninjected embryos yielded six live offspring (26%). Green fluorescent protein is present in all tissues examined and is expressed widely in the brain. The GFP transgene is heritable and stably expressed until at least the F(2) generation. This technology has the potential to allow investigation of specific gene candidates in prairie voles and provides a general protocol to pursue germline transgenic manipulation in many different rodent species.

  15. Determination of low-energy structures of a small RNA hairpin using ...

    Indian Academy of Sciences (India)

    In this method, the history of the simulation is used to increase the probability of states less visited in the simulation. It has been found that using both energy and end-to-end distance as the biasing parameters in the simulation, the partially folded structure of the hairpin starting from random structures could be obtained.

  16. β-Hairpin of Islet Amyloid Polypeptide Bound to an Aggregation Inhibitor

    Science.gov (United States)

    Mirecka, Ewa A.; Feuerstein, Sophie; Gremer, Lothar; Schröder, Gunnar F.; Stoldt, Matthias; Willbold, Dieter; Hoyer, Wolfgang

    2016-01-01

    In type 2 diabetes, the formation of islet amyloid consisting of islet amyloid polypeptide (IAPP) is associated with reduction in β-cell mass and contributes to the failure of islet cell transplantation. Rational design of inhibitors of IAPP amyloid formation has therapeutic potential, but is hampered by the lack of structural information on inhibitor complexes of the conformationally flexible, aggregation-prone IAPP. Here we characterize a β-hairpin conformation of IAPP in complex with the engineered binding protein β-wrapin HI18. The β-strands correspond to two amyloidogenic motifs, 12-LANFLVH-18 and 22-NFGAILS-28, which are connected by a turn established around Ser-20. Besides backbone hydrogen bonding, the IAPP:HI18 interaction surface is dominated by non-polar contacts involving hydrophobic side chains of the IAPP β-strands. Apart from monomers, HI18 binds oligomers and fibrils and inhibits IAPP aggregation and toxicity at low substoichiometric concentrations. The IAPP β-hairpin can serve as a molecular recognition motif enabling control of IAPP aggregation. PMID:27641459

  17. Delivery of the Cre recombinase by a self-deleting lentiviral vector: efficient gene targeting in vivo

    NARCIS (Netherlands)

    Pfeifer, A.; Brandon, E. P.; Kootstra, N.; Gage, F. H.; Verma, I. M.

    2001-01-01

    The Cre recombinase (Cre) from bacteriophage P1 is an important tool for genetic engineering in mammalian cells. We constructed lentiviral vectors that efficiently deliver Cre in vitro and in vivo. Surprisingly, we found a significant reduction in proliferation and an accumulation in the G(2)/M

  18. In vivo knockdown of antisense non-coding mitochondrial RNAs by a lentiviral-encoded shRNA inhibits melanoma tumor growth and lung colonization.

    Science.gov (United States)

    Varas-Godoy, Manuel; Lladser, Alvaro; Farfan, Nicole; Villota, Claudio; Villegas, Jaime; Tapia, Julio C; Burzio, Luis O; Burzio, Veronica A; Valenzuela, Pablo D T

    2018-01-01

    The family of non-coding mitochondrial RNAs (ncmtRNA) is differentially expressed according to proliferative status. Normal proliferating cells express sense (SncmtRNA) and antisense ncmtRNAs (ASncmtRNAs), whereas tumor cells express SncmtRNA and downregulate ASncmtRNAs. Knockdown of ASncmtRNAs with oligonucleotides induces apoptotic cell death of tumor cells, leaving normal cells unaffected, suggesting a potential application for developing a novel cancer therapy. In this study, we knocked down the ASncmtRNAs in melanoma cell lines with a lentiviral-encoded shRNA approach. Transduction with lentiviral constructs targeted to the ASncmtRNAs induced apoptosis in murine B16F10 and human A375 melanoma cells in vitro and significantly retarded B16F10 primary tumor growth in vivo. Moreover, the treatment drastically reduced the number of lung metastatic foci in a tail vein injection assay, compared to controls. These results provide additional proof of concept to the knockdown of ncmtRNAs for cancer therapy and validate lentiviral-shRNA vectors for gene therapy. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Acyclic peptides incorporating the d-Phe-2-Abz turn motif: Investigations on antimicrobial activity and propensity to adopt β-hairpin conformations.

    Science.gov (United States)

    Cameron, Alan J; Varnava, Kyriakos G; Edwards, Patrick J B; Harjes, Elena; Sarojini, Vijayalekshmi

    2018-06-14

    Three linear peptides incorporating d-Phe-2-Abz as the turn motif are reported. Peptide 1, a hydrophobic β-hairpin, served as a proof of principle for the design strategy with both NMR and CD spectra strongly suggesting a β-hairpin conformation. Peptides 2 and 3, designed as amphipathic antimicrobials, exhibited broad spectrum antimicrobial activity, with potency in the nanomolar range against Staphylococcus aureus. Both compounds possess a high degree of selectivity, proving non-haemolytic at concentrations 500 to 800 times higher than their respective minimal inhibitory concentrations (MICs) against S. aureus. Peptide 2 induced cell membrane and cell wall disintegration in both S. aureus and Pseudomonas aeruginosa as observed by transmission electron microscopy. Peptide 2 also demonstrated moderate antifungal activity against Candida albicans with an MIC of 50 μM. Synergism was observed with sub-MIC levels of amphotericin B (AmB), leading to nanomolar MICs against C. albicans for peptide 2. Based on circular dichroism spectra, both peptides 2 and 3 appear to exist as a mixture of conformers with the β-hairpin as a minor conformer in aqueous solution, and a slight increase in hairpin population in 50% trifluoroethanol, which was more pronounced for peptide 3. NMR spectra of peptide 2 in a 1:1 CD 3 CN/H 2 O mixture and 30 mM deuterated sodium dodecyl sulfate showed evidence of an extended backbone conformation of the β-strand residues. However, inter-strand rotating frame Overhauser effects (ROE) could not be detected and a loosely defined divergent hairpin structure resulted from ROE structure calculation in CD 3 CN/H 2 O. The loosely defined hairpin conformation is most likely a result of the electrostatic repulsions between cationic strand residues which also probably contribute towards maintaining low haemolytic activity. Copyright © 2018 European Peptide Society and John Wiley & Sons, Ltd.

  20. [Construction of lentiviral mediated CyPA siRNA and its functions in non-small cell lung cancer].

    Science.gov (United States)

    FENG, Yan-ming; WU, Yi-ming; TU, Xin-ming; XU, Zheng-shun; WU, Wei-dong

    2010-02-01

    To construct a lentiviral-vector-mediated CyPA small interference RNA (siRNA) and study its function in non-small cell lung cancer. First, four target sequences were selected according to CyPA mRNA sequence, the complementary DNA contained both sense and antisense oligonucleotides were designed, synthesized and cloned into the pGCL-GFP vector, which contained U6 promoter and green fluorescent protein (GFP). The resulting lentiviral vector containing CyPA shRNA was named Lv-shCyPA, and it was confirmed by PCR and sequencing. Next, it was cotransfected by Lipofectamine 2000 along with pHelper1.0 and pHelper 2.0 into 293T cells to package lentivirus particles. At the same time, the packed virus infected non-small cell lung cancer cell (A549), the level of CyPA protein at 5 d after infection was detected by Western Blot to screen the target of CyPA. A549 were infected with Lv-shCyPA and grown as xenografts in severe combined immunodeficient mice. Cell cycle and apoptosis were measured by FCM. It was confirmed by PCR and DNA sequencing that lentiviral-vector-mediated CyPA siRNA (Lv-shCyPA) producing CyPA shRNA was constructed successfully. The titer of concentrated virus were 1 x 10(7) TU/ml. Flow cytometric analysis demonstrated G2-M phase (11.40% +/- 0.68%) was decreased relatively in A549/LvshCyPA compared with control groups (14.52% +/- 1.19%) (Ppathways may lead to new targeted therapies for non-small cell lung cancer.

  1. [Construction of the lentiviral expression vector for anti-p185(erbB2) mouse/human chimeric antibody].

    Science.gov (United States)

    Liu, Fang; Li, Li; Zhang, Wei; Wang, Qi

    2013-04-01

    This research was to construct the lentiviral expression vector for anti- p185(erbB2) mouse/human chimeric antibody and to determine the expression of the chimeric antibody gene in 293T cells transfected with this vector. The genes (vL and vH) coding light and heavy chain of variable regions of anti-p185(erbB2) mAb and the constant regions of human IgG1 (kappa and gamma1) were cloned with PCR method. The target genes were assembled by three-primers PCR method to obtain the chimeric light chain (L) and the chimeric heavy chain (H). Both chains inserted into the down stream and upper stream of IRES gene of the plasmid pVAX1/IRES respectively. We digested the plasmid pVAX1/ H-IRES-L with endoenzyme and subcloned H-IRES-L into the lentiviral vector pWPI. The enzyme digestion and sequence analysis showed that the lentiviral expression vector pWPI/H-IRES-L was constructed correctly. Then, it was transfected into 293T cells and after 48h, GFP protein expression in 293T cells were detected by fluorescent microscope and the chimeric antibody expression was detected by RT-PCR and direct ELISA. The results showed that after 293T cells were transfected with recombination plasmid, both light and heavy chains of the chimeric antibody genes could express together. The chimeric antibody expressed could bind to p185(erbB2) specifically. This research may lay a sound foundation for further study of anti-p185(erbB2) engineered antibody.

  2. Curcumin stably interacts with DNA hairpin through minor groove binding and demonstrates enhanced cytotoxicity in combination with FdU nucleotides.

    Science.gov (United States)

    Ghosh, Supratim; Mallick, Sumana; Das, Upasana; Verma, Ajay; Pal, Uttam; Chatterjee, Sabyasachi; Nandy, Abhishek; Saha, Krishna D; Maiti, Nakul Chandra; Baishya, Bikash; Suresh Kumar, G; Gmeiner, William H

    2018-03-01

    We report, based on biophysical studies and molecular mechanical calculations that curcumin binds DNA hairpin in the minor groove adjacent to the loop region forming a stable complex. UV-Vis and fluorescence spectroscopy indicated interaction of curcumin with DNA hairpin. In this novel binding motif, two ɣ H of curcumin heptadiene chain are closely positioned to the A 16 -H8 and A 17 -H8, while G 12 -H8 is located in the close proximity of curcumin α H. Molecular dynamics (MD) simulations suggest, the complex is stabilized by noncovalent forces including; π-π stacking, H-bonding and hydrophobic interactions. Nuclear magnetic resonance (NMR) spectroscopy in combination with molecular dynamics simulations indicated curcumin is bound in the minor groove, while circular dichroism (CD) spectra suggested minute enhancement in base stacking and a little change in DNA helicity, without significant conformational change of DNA hairpin structure. The DNA:curcumin complex formed with FdU nucleotides rather than Thymidine, demonstrated enhanced cytotoxicity towards oral cancer cells relative to the only FdU substituted hairpin. Fluorescence co-localization demonstrated stability of the complex in biologically relevant conditions, including its cellular uptake. Acridine orange/EtBr staining further confirmed the enhanced cytotoxic effects of the complex, suggesting apoptosis as mode of cell death. Thus, curcumin can be noncovalently complexed to small DNA hairpin for cellular delivery and the complex showed increased cytotoxicity in combination with FdU nucleotides, demonstrating its potential for advanced cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Eliminating HIV-1 Packaging Sequences from Lentiviral Vector Proviruses Enhances Safety and Expedites Gene Transfer for Gene Therapy.

    Science.gov (United States)

    Vink, Conrad A; Counsell, John R; Perocheau, Dany P; Karda, Rajvinder; Buckley, Suzanne M K; Brugman, Martijn H; Galla, Melanie; Schambach, Axel; McKay, Tristan R; Waddington, Simon N; Howe, Steven J

    2017-08-02

    Lentiviral vector genomic RNA requires sequences that partially overlap wild-type HIV-1 gag and env genes for packaging into vector particles. These HIV-1 packaging sequences constitute 19.6% of the wild-type HIV-1 genome and contain functional cis elements that potentially compromise clinical safety. Here, we describe the development of a novel lentiviral vector (LTR1) with a unique genomic structure designed to prevent transfer of HIV-1 packaging sequences to patient cells, thus reducing the total HIV-1 content to just 4.8% of the wild-type genome. This has been achieved by reconfiguring the vector to mediate reverse-transcription with a single strand transfer, instead of the usual two, and in which HIV-1 packaging sequences are not copied. We show that LTR1 vectors offer improved safety in their resistance to remobilization in HIV-1 particles and reduced frequency of splicing into human genes. Following intravenous luciferase vector administration to neonatal mice, LTR1 sustained a higher level of liver transgene expression than an equivalent dose of a standard lentivirus. LTR1 vectors produce reverse-transcription products earlier and start to express transgenes significantly quicker than standard lentiviruses after transduction. Finally, we show that LTR1 is an effective lentiviral gene therapy vector as demonstrated by correction of a mouse hemophilia B model. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Lentiviral Modulation of Wnt/β-Catenin Signaling Affects In Vivo LTP.

    Science.gov (United States)

    Ivanova, Olga Ya; Dobryakova, Yulia V; Salozhin, Sergey V; Aniol, Viktor A; Onufriev, Mikhail V; Gulyaeva, Natalia V; Markevich, Vladimir A

    2017-10-01

    Wnt signaling is involved in hippocampal development and synaptogenesis. Numerous recent studies have been focused on the role of Wnt ligands in the regulation of synaptic plasticity. Inhibitors and activators of canonical Wnt signaling were demonstrated to decrease or increase, respectively, in vitro long-term potentiation (LTP) maintenance in hippocampal slices (Chen et al. in J Biol Chem 281:11910-11916, 2006; Vargas et al. in J Neurosci 34:2191-2202, 2014, Vargas et al. in Exp Neurol 264:14-25, 2015). Using lentiviral approach to down- and up-regulate the canonical Wnt signaling, we explored whether Wnt/β-catenin signaling is critical for the in vivo LTP. Chronic suppression of Wnt signaling induced an impairment of in vivo LTP expression 14 days after lentiviral suspension injection, while overexpression of Wnt3 was associated with a transient enhancement of in vivo LTP magnitude. Both effects were related to the early phase LTP and did not affect LTP maintenance. A loss-of-function study demonstrated decreased initial paired pulse facilitation ratio, β-catenin, and phGSK-3β levels. A gain-of-function study revealed not only an increase in PSD-95, β-catenin, and Cyclin D1 protein levels, but also a reduced phGSK-3β level and enhanced GSK-3β kinase activity. These results suggest a presynaptic dysfunction predominantly underlying LTP impairment while postsynaptic modifications are primarily involved in transient LTP amplification. This study is the first demonstration of the involvement of Wnt/β-catenin signaling in synaptic plasticity regulation in an in vivo LTP model.

  5. Inhibition of experimental lung metastasis by systemic lentiviral delivery of kallistatin

    Directory of Open Access Journals (Sweden)

    Chao Julie

    2010-05-01

    Full Text Available Abstract Background Angiogenesis plays an important role in the development and progression of tumors. Kallistatin exerts anti-angiogenic and anti-inflammatory activities that may be effective in inhibiting tumor metastasis. We investigated the antitumor effect of lentivirus-mediated kallistatin gene transfer in a syngeneic murine tumor model. Methods Lentiviral vector encoding kallistatin (LV-Kallistatin was constructed. The expression of kallistatin was verified by enzyme-linked immunosorbent assay (ELISA, and the bioactivity of kallistatin was determined by using cell proliferation, migration, and invasion assays. In addition, antitumor effects of LV-Kallistatin were evaluated by the intravenous injection of virus into tumor-bearing mice. Results The conditioned medium from LV-Kallistatin-treated cells inhibited the migration and proliferation of endothelial cells. Meanwhile, it also reduced the migration and invasion of tumor cells. In the experimental lung metastatic model, tumor-bearing mice receiving LV-Kallistatin had lower tumor nodules and longer survival than those receiving control virus or saline. Moreover, the microvessel densities, the levels of vascular endothelial growth factor (VEGF, tumor necrosis factor (TNF-α, and nuclear factor κB (NF-κB transcriptional activity were reduced in the LV-Kallistatin-treated mice. Conclusion Results of this study showed that systemic administration of lentiviral vectors encoding kallistatin inhibited the growth of metastatic tumor and prolonged the survival of tumor-bearing mice. These results suggest that gene therapy using lentiviruses carrying the kallistatin gene, which exerts anti-angiogenic and anti-inflammatory activities, represents a promising strategy for the treatment of lung cancer.

  6. Expression of P190 and P210 BCR/ABL1 in normal human CD34(+) cells induces similar gene expression profiles and results in a STAT5-dependent expansion of the erythroid lineage

    DEFF Research Database (Denmark)

    Järås, Marcus; Johnels, Petra; Agerstam, Helena

    2009-01-01

    OBJECTIVE: The P190 and P210 BCR/ABL1 fusion genes are mainly associated with different types of hematologic malignancies, but it is presently unclear whether they are functionally different following expression in primitive human hematopoietic cells. MATERIALS AND METHODS: We investigated...... and systematically compared the effects of retroviral P190 BCR/ABL1 and P210 BCR/ABL1 expression on cell proliferation, differentiation, and global gene expression in human CD34(+) cells from cord blood. RESULTS: Expression of either P190 BCR/ABL1 or P210 BCR/ABL1 resulted in expansion of erythroid cells...... and stimulated erythropoietin-independent burst-forming unit-erythroid colony formation. By using a lentiviral anti-signal transducer and activator of transcription 5 (STAT5) short-hairpin RNA, we found that both P190 BCR/ABL1- and P210 BCR/ABL1-induced erythroid cell expansion were STAT5-dependent. Under...

  7. Role of the DIS hairpin in replication of human immunodeficiency virus type 1

    NARCIS (Netherlands)

    Berkhout, B.; van Wamel, J. L.

    1996-01-01

    The virion-associated genome of human immunodeficiency virus type 1 consists of a noncovalently linked dimer of two identical, unspliced RNA molecules. A hairpin structure within the untranslated leader transcript is postulated to play a role in RNA dimerization through base pairing of the

  8. Direct gene transfer in the Gottingen minipig CNS using stereotaxic lentiviral microinjections

    DEFF Research Database (Denmark)

    GLUD, AN; Hedegaard, Claus; Nielsen, Mette Slot

    2010-01-01

    We aim to induce direct viral mediated gene transfer in the substantia nigra (SN) of the Gottingen minipig using MRI guided stereotaxic injections of lentiviral vectors encoding enhanced green fluorescent protein (EGFP). Nine female Gottingen minipigs were injected unilaterally into the SN with 6...... per 2.5 microliters lentivirus capable of transducing cells and mediating expression of recombinant EGFP. The animals were euthanized after four (n=3) or twenty weeks (n=6). Fresh brain tissue from three animals was used for PCR. The remaining six brains were cryo- or paraffin...

  9. Latent Membrane Protein 1 as a molecular adjuvant for single-cycle lentiviral vaccines

    Directory of Open Access Journals (Sweden)

    Rahmberg Andrew R

    2011-05-01

    Full Text Available Abstract Background Molecular adjuvants are a promising method to enhance virus-specific immune responses and protect against HIV-1 infection. Immune activation by ligands for receptors such as CD40 can induce dendritic cell activation and maturation. Here we explore the incorporation of two CD40 mimics, Epstein Barr Virus gene LMP1 or an LMP1-CD40 chimera, into a strain of SIV that was engineered to be limited to a single cycle of infection. Results Full length LMP1 or the chimeric protein LMP1-CD40 was cloned into the nef-locus of single-cycle SIV. Human and Macaque monocyte derived macrophages and DC were infected with these viruses. Infected cells were analyzed for activation surface markers by flow cytometry. Cells were also analyzed for secretion of pro-inflammatory cytokines IL-1β, IL-6, IL-8, IL-12p70 and TNF by cytometric bead array. Conclusions Overall, single-cycle SIV expressing LMP1 and LMP1-CD40 produced a broad and potent TH1-biased immune response in human as well as rhesus macaque macrophages and DC when compared with control virus. Single-cycle SIV-LMP1 also enhanced antigen presentation by lentiviral vector vaccines, suggesting that LMP1-mediated immune activation may enhance lentiviral vector vaccines against HIV-1.

  10. Observation of hairpin defects in a nematic main-chain polyester

    Science.gov (United States)

    Li, M. H.; Brûlet, A.; Davidson, P.; Keller, P.; Cotton, J. P.

    1993-04-01

    The conformation of a main-chain liquid crystalline polyester in its oriented nematic phase has been determined by small-angle neutron scattering. The data are fitted by a model of rigid cylinder with orientational fluctuations. For a low degree of polymerization (~9) the chain is almost completely elongated in the direction of the nematic field. For a polymer 3 times longer, the existence of two hairpins is shown at high temperature; this number decreases with decreasing temperature.

  11. Inhibitors of MyD88-dependent proinflammatory cytokine production identified utilizing a novel RNA interference screening approach.

    Directory of Open Access Journals (Sweden)

    John S Cho

    2009-09-01

    Full Text Available The events required to initiate host defenses against invading pathogens involve complex signaling cascades comprised of numerous adaptor molecules, kinases, and transcriptional elements, ultimately leading to the production of proinflammatory cytokines, such as tumor necrosis factor alpha (TNF-alpha. How these signaling cascades are regulated, and the proteins and regulatory elements participating are still poorly understood.We report here the development a completely random short-hairpin RNA (shRNA library coupled with a novel forward genetic screening strategy to identify inhibitors of Toll-like receptor (TLR dependent proinflammatory responses. We developed a murine macrophage reporter cell line stably transfected with a construct expressing diphtheria toxin-A (DT-A under the control of the TNF-alpha-promoter. Stimulation of the reporter cell line with the TLR ligand lipopolysaccharide (LPS resulted in DT-A induced cell death, which could be prevented by the addition of an shRNA targeting the TLR adaptor molecule MyD88. Utilizing this cell line, we screened a completely random lentiviral short hairpin RNA (shRNA library for sequences that inhibited TLR-mediated TNF-alpha production. Recovery of shRNA sequences from surviving cells led to the identification of unique shRNA sequences that significantly inhibited TLR4-dependent TNF-alpha gene expression. Furthermore, these shRNA sequences specifically blocked TLR2 but not TLR3-dependent TNF-alpha production.Thus, we describe the generation of novel tools to facilitate large-scale forward genetic screens in mammalian cells and the identification of potent shRNA inhibitors of TLR2 and TLR4- dependent proinflammatory responses.

  12. Scalable Electrophysiological Investigation of iPS Cell-Derived Cardiomyocytes Obtained by a Lentiviral Purification Strategy

    Directory of Open Access Journals (Sweden)

    Stephanie Friedrichs

    2015-01-01

    Full Text Available Disease-specific induced pluripotent stem (iPS cells can be generated from patients and differentiated into functional cardiomyocytes for characterization of the disease and for drug screening. In order to obtain pure cardiomyocytes for automated electrophysiological investigation, we here report a novel non-clonal purification strategy by using lentiviral gene transfer of a puromycin resistance gene under the control of a cardiac-specific promoter. We have applied this method to our previous reported wild-type and long QT syndrome 3 (LQTS 3-specific mouse iPS cells and obtained a pure cardiomyocyte population. These cells were investigated by action potential analysis with manual and automatic planar patch clamp technologies, as well as by recording extracellular field potentials using a microelectrode array system. Action potentials and field potentials showed the characteristic prolongation at low heart rates in LQTS 3-specific, but not in wild-type iPS cell-derived cardiomyocytes. Hence, LQTS 3-specific cardiomyocytes can be purified from iPS cells with a lentiviral strategy, maintain the hallmarks of the LQTS 3 disease and can be used for automated electrophysiological characterization and drug screening.

  13. Genetic engineering of cell lines using lentiviral vectors to achieve antibody secretion following encapsulated implantation.

    Science.gov (United States)

    Lathuilière, Aurélien; Bohrmann, Bernd; Kopetzki, Erhard; Schweitzer, Christoph; Jacobsen, Helmut; Moniatte, Marc; Aebischer, Patrick; Schneider, Bernard L

    2014-01-01

    The controlled delivery of antibodies by immunoisolated bioimplants containing genetically engineered cells is an attractive and safe approach for chronic treatments. To reach therapeutic antibody levels there is a need to generate renewable cell lines, which can long-term survive in macroencapsulation devices while maintaining high antibody specific productivity. Here we have developed a dual lentiviral vector strategy for the genetic engineering of cell lines compatible with macroencapsulation, using separate vectors encoding IgG light and heavy chains. We show that IgG expression level can be maximized as a function of vector dose and transgene ratio. This approach allows for the generation of stable populations of IgG-expressing C2C12 mouse myoblasts, and for the subsequent isolation of clones stably secreting high IgG levels. Moreover, we demonstrate that cell transduction using this lentiviral system leads to the production of a functional glycosylated antibody by myogenic cells. Subsequent implantation of antibody-secreting cells in a high-capacity macroencapsulation device enables continuous delivery of recombinant antibodies in the mouse subcutaneous tissue, leading to substantial levels of therapeutic IgG detectable in the plasma.

  14. Design of a new hairpin DNAzyme: The activity controlled by TMPyP4

    African Journals Online (AJOL)

    Jane

    2011-08-01

    Aug 1, 2011 ... activity and increase cell toxicity (Abdelgany et al., 2007). The hairpin DNAzyme is a ... fixed concentration of 5×10-4M in 50 mM Tris-HCl buffer (pH= 7.5,. 25°C) with 10 mM ..... Functional nucleic acid sensors. Chem. Rev.

  15. DNA hairpin structures in solution: 500-MHz two-dimensional 1H NMR studies on d(CGCCGCAGC) and d(CGCCGTAGC)

    International Nuclear Information System (INIS)

    Gupta, G.; Sarma, M.H.; Sarma, R.H.

    1987-01-01

    A hairpin structure contains two conformationally distinct domains: a double-helical stem with Watson-Crick base pairs and a single-stranded loop that connects the two arms of the stem. By extensive 1D and 2D 500-MHz 1 H NMR studies in H 2 O and D 2 O, it has been demonstrated that the DNA oligomers d(CGCCGCAGC) and d(CGCCGTAGC) form hairpin structures under conditions of low concentration, 0.5 mM in DNA strand, and low salt (20 mM NaCl, pH 7). From examination of the nuclear Overhauser effect (NOE) between base protons H8/H6 and sugar protons H1' and H2'/H2'', it was concluded that in D(CGCCGCAGC) and d(CGCCCTAGC) all the nine nucleotides display average (C2'-endo,anti) geometry. The NMR data in conjunction with molecular model building and solvent accessibility studies were used to derive a working model for the hairpins

  16. Opening of the TAR hairpin in the HIV-1 genome causes aberrant RNA dimerization and packaging

    Directory of Open Access Journals (Sweden)

    Das Atze T

    2012-07-01

    Full Text Available Abstract Background The TAR hairpin is present at both the 5′ and 3′ end of the HIV-1 RNA genome. The 5′ element binds the viral Tat protein and is essential for Tat-mediated activation of transcription. We recently observed that complete TAR deletion is allowed in the context of an HIV-1 variant that does not depend on this Tat-TAR axis for transcription. Mutations that open the 5′ stem-loop structure did however affect the leader RNA conformation and resulted in a severe replication defect. In this study, we set out to analyze which step of the HIV-1 replication cycle is affected by this conformational change of the leader RNA. Results We demonstrate that opening the 5′ TAR structure through a deletion in either side of the stem region caused aberrant dimerization and reduced packaging of the unspliced viral RNA genome. In contrast, truncation of the TAR hairpin through deletions in both sides of the stem did not affect RNA dimer formation and packaging. Conclusions These results demonstrate that, although the TAR hairpin is not essential for RNA dimerization and packaging, mutations in TAR can significantly affect these processes through misfolding of the relevant RNA signals.

  17. Lentiviral Vector Design and Imaging Approaches to Visualize the Early Stages of Cellular Reprogramming

    OpenAIRE

    Warlich, Eva; Kuehle, Johannes; Cantz, Tobias; Brugman, Martijn H; Maetzig, Tobias; Galla, Melanie; Filipczyk, Adam A; Halle, Stephan; Klump, Hannes; Schöler, Hans R; Baum, Christopher; Schroeder, Timm; Schambach, Axel

    2011-01-01

    Induced pluripotent stem cells (iPSCs) can be derived from somatic cells by gene transfer of reprogramming transcription factors. Expression levels of these factors strongly influence the overall efficacy to form iPSC colonies, but additional contribution of stochastic cell-intrinsic factors has been proposed. Here, we present engineered color-coded lentiviral vectors in which codon-optimized reprogramming factors are co-expressed by a strong retroviral promoter that is rapidly silenced in iP...

  18. An amplified graphene oxide-based fluorescence aptasensor based on target-triggered aptamer hairpin switch and strand-displacement polymerization recycling for bioassays.

    Science.gov (United States)

    Hu, Kun; Liu, Jinwen; Chen, Jia; Huang, Yong; Zhao, Shulin; Tian, Jianniao; Zhang, Guohai

    2013-04-15

    An amplified graphene oxide (GO) based fluorescence aptasensor based on target-triggered aptamer hairpin switch and strand-displacement polymerization recycling is developed for bioassays. The dye-labeled single-strand DNA (aptamer hairpin) was adsorbed on the surface of GO, which result in the fluorescence quenching of dye, and exhibiting minimal background fluorescence. Upon the target, primer and polymerase, the stem of the aptamer hairpin was opened, and binds with the primer to triggers the circular target strand-displacement polymerization reaction, which produces huge amounts of duplex helixes DNA and lead to strong fluorescence emission due to shielding of nucelobases within its double-helix structure. During the polymerization reaction, the primer was extended, and target was displaced. And the displaced target recognizes and hybridizes with another hairpin probe, triggering the next round of polymerization reaction, and the circle process induces fluorescence signal amplification for the detection of analyte. To test the feasibility of the aptasensor systems, interferon-gamma (IFN-γ) was employed as a model analyte. A detection limit as low as 1.5 fM is obtained based on the GO aptasensor with a linear range of three orders of magnitude. The present method was successfully applied for the detection of IFN-γ in human plasma. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Hairpin structures in DNA containing arabinofuranosylcytosine. A combination of nuclear magnetic resonance and molecular dynamics

    International Nuclear Information System (INIS)

    Pieters, J.M.L.; de Vroom, E.; van der Marel, G.A.; van Boom, J.H.; Altona, C.; Koning, T.H.G.; Kaptein, R.

    1990-01-01

    Nuclear magnetic resonance (NMR) and model-building studies were carried out on the hairpin form of the octamer d(CG a CTAGCG) ( a C = arabinofuranosylcytosine), referred to as the TA compound. The nonexchangeable protons of the TA compound were assigned by means of nuclear Overhauser effect spectroscopy (NOESY) and correlated spectroscopy (COSY). Form a detailed analysis of the coupling data and of the NOESY spectra the following conclusions are reached: (i) the hairpin consists of a stem of three Watson-Crick type base pairs, and the two remaining residues, T(4) and dA(5), participate in a loop. (ii) All sugar rings show conformational flexibility although a strong preference for the S-type (C2'-endo) conformer is observed. (iii) The thymine does not stack upon the 3' side of the stem as expected, but swings into the minor groove. (iv) At the 5'-3' loop-stem junction a stacking discontinuity occurs as a consequence of a sharp turn in that part of the backbone, caused by the unusual β + and γ t torsion angles in residue dG(6). (v) The A base slides over the 5' side of the stem to stack upon the a C(3) residue at the 3' side of the stem in an antiparallel fashion. On the basis of J couplings and a set approximate proton-proton distances from NOE cross peaks, a model for the hairpin was constructed

  20. Multicistronic lentiviral vectors containing the FMDV 2A cleavage factor demonstrate robust expression of encoded genes at limiting MOI

    Directory of Open Access Journals (Sweden)

    Margison Geoffrey P

    2006-03-01

    Full Text Available Abstract Background A number of gene therapy applications would benefit from vectors capable of expressing multiple genes. In this study we explored the feasibility and efficiency of expressing two or three transgenes in HIV-1 based lentiviral vector. Bicistronic and tricistronic self-inactivating lentiviral vectors were constructed employing the internal ribosomal entry site (IRES sequence of encephalomyocarditis virus (EMCV and/or foot-and-mouth disease virus (FMDV cleavage factor 2A. We employed enhanced green fluorescent protein (eGFP, O6-methylguanine-DNA-methyltransferase (MGMT, and homeobox transcription factor HOXB4 as model genes and their expression was detected by appropriate methods including fluorescence microscopy, flow cytometry, immunocytochemistry, biochemical assay, and western blotting. Results All the multigene vectors produced high titer virus and were able to simultaneously express two or three transgenes in transduced cells. However, the level of expression of individual transgenes varied depending on: the transgene itself; its position within the construct; the total number of transgenes expressed; the strategy used for multigene expression and the average copy number of pro-viral insertions. Notably, at limiting MOI, the expression of eGFP in a bicistronic vector based on 2A was ~4 times greater than that of an IRES based vector. Conclusion The small and efficient 2A sequence can be used alone or in combination with an IRES for the construction of multicistronic lentiviral vectors which can express encoded transgenes at functionally relevant levels in cells containing an average of one pro-viral insert.

  1. Cyclophilin A interacts with diverse lentiviral capsids

    Directory of Open Access Journals (Sweden)

    Emerman Michael

    2006-10-01

    Full Text Available Abstract Background The capsid (CA protein of HIV-1 binds with high affinity to the host protein cyclophilin A (CypA. This binding positively affects some early stage of the viral life-cycle because prevention of binding either by drugs that occupy that active site of cyclophilin A, by mutation in HIV-1 CA, or RNAi that knocks down intracellular CypA level diminishes viral infectivity. The closely related lentivirus, SIVcpz also binds CypA, but it was thought that this interaction was limited to the HIV-1/SIVcpz lineage because other retroviruses failed to interact with CypA in a yeast two-hybrid assay. Results We find that diverse lentiviruses, FIV and SIVagmTAN also bind to CypA. Mutagenesis of FIV CA showed that an amino acid that is in a homologous position to the proline at amino acid 90 of HIV-1 CA is essential for FIV interactions with CypA. Conclusion These results demonstrate that CypA binding to lentiviruses is more widespread than previously thought and suggest that this interaction is evolutionarily important for lentiviral infection.

  2. Structural studies on an internal loop from a hairpin ribozyme

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Z.; SantaLucia, J. Jr.; Tinoco, I. Jr. [Univ. of California, Berkeley, CA (United States)

    1994-12-01

    Ribozymes, RNA enzymes, catalyze site-specific RNA cleavage and ligation reactions. We are studying the three-dimensional structure of a hairpin ribozyme derived from the minus strand of tobacco ring spot virus satellite RNA ((-)sTRSV), which has been engineering to specifically cleave the HIV-1 RNA. The minimum structure for the catalytic reaction involves a 50-nucleotide ribozyme and a 14-nucleotide substrate. The proposed secondary structure of the ribozyme-substrate complex consists of four short helices separated by two internal loops. The relatively large size (64-nucleotide) of the ribozyme-substrate complex presents formidable problems in solving the structure using NMR. Therefore we are studying smaller structural subunits of the complex. We are determining the high resolution structure of the symmetric internal loop involving the cleavage site and the flanking helices. One strand of the internal loop was selectively {sup 13}C-labeled at C8 of each purine and C6 of each pyrimidine. By using {sup 13}C-edited two-dimensional NMR, the proton NOESY spectrum was greatly simplified. This allowed unambiguous sequential proton resonance assignments along each strand. Three-dimensional {sup 1}-{sup 13}C HMQC-NOESY was used to further facilitate resonance assignments. We are also enzymatically synthesizing the entire 50-nucleotide ribozyme and will combine it with the {sup 13}C-labeled substrate. Through comparison of the NOE connectivities of the labeled nucleotides from the internal loop alone with those from the entire complex, the differences between the two structures can be elucidated.

  3. Melting of a beta-Hairpin Peptide Using Isotope-Edited 2D IR Spectroscopy and Simulations

    NARCIS (Netherlands)

    Smith, Adam W.; Lessing, Joshua; Ganim, Ziad; Peng, Chunte Sam; Tokmakoff, Andrei; Roy, Santanu; Jansen, Thomas L. C.; Knoester, Jasper

    2010-01-01

    Isotope-edited two-dimensional infrared spectroscopy has been used! to characterize the conformational heterogeneity of the beta-hairpin peptide TrpZip2 (17.2) across its thermal unfolding transition Four isotopologues were synthesized to probe hydrogen bonding and solvent exposure of the beta-turn

  4. Melting of a beta-hairpin peptide using isotope-edited 2D IR spectroscopy and simulations.

    NARCIS (Netherlands)

    Smith, A.W.; Lessing, J.; Ganim, Z.; Peng, C.S.; Tokmakoff, A.; Roy, S.; Jansen, T.L.Th.A.; Knoester, J.

    2010-01-01

    Isotope-edited two-dimensional infrared spectroscopy has been used to characterize the conformational heterogeneity of the beta-hairpin peptide TrpZip2 (TZ2) across its thermal unfolding transition. Four isotopologues were synthesized to probe hydrogen bonding and solvent exposure of the beta-turn

  5. Lentiviral-mediated transfer of CDNF promotes nerve regeneration and functional recovery after sciatic nerve injury in adult rats

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Lei; Liu, Yi; Zhao, Hua; Zhang, Wen; Guo, Ying-Jun; Nie, Lin, E-mail: chengleiyx@126.com

    2013-10-18

    Highlights: •CDNF was successfully transfected by a lentiviral vector into the distal sciatic nerve. •CDNF improved S-100, NF200 expression and nerve regeneration after sciatic injury. •CDNF improved the remyelination and thickness of the regenerated sciatic nerve. •CDNF improved gastrocnemius muscle weight and sciatic functional recovery. -- Abstract: Peripheral nerve injury is often followed by incomplete and unsatisfactory functional recovery and may be associated with sensory and motor impairment of the affected limb. Therefore, a novel method is needed to improve the speed of recovery and the final functional outcome after peripheral nerve injuries. This report investigates the effect of lentiviral-mediated transfer of conserved dopamine neurotrophic factor (CDNF) on regeneration of the rat peripheral nerve in a transection model in vivo. We observed notable overexpression of CDNF protein in the distal sciatic nerve after recombinant CDNF lentiviral vector application. We evaluated sciatic nerve regeneration after surgery using light and electron microscopy and the functional recovery using the sciatic functional index and target muscle weight. HE staining revealed better ordered structured in the CDNF-treated group at 8 weeks post-surgery. Quantitative analysis of immunohistochemistry of NF200 and S-100 in the CDNF group revealed significant improvement of axonal and Schwann cell regeneration compared with the control groups at 4 weeks and 8 weeks after injury. The thickness of the myelination around the axons in the CDNF group was significantly higher than in the control groups at 8 weeks post-surgery. The CDNF group displayed higher muscle weights and significantly increased sciatic nerve index values. Our findings suggest that CDNF gene therapy could provide durable and stable CDNF protein concentration and has the potential to enhance peripheral nerve regeneration, morphological and functional recovery following nerve injury, which suggests a

  6. Lentiviral-mediated transfer of CDNF promotes nerve regeneration and functional recovery after sciatic nerve injury in adult rats

    International Nuclear Information System (INIS)

    Cheng, Lei; Liu, Yi; Zhao, Hua; Zhang, Wen; Guo, Ying-Jun; Nie, Lin

    2013-01-01

    Highlights: •CDNF was successfully transfected by a lentiviral vector into the distal sciatic nerve. •CDNF improved S-100, NF200 expression and nerve regeneration after sciatic injury. •CDNF improved the remyelination and thickness of the regenerated sciatic nerve. •CDNF improved gastrocnemius muscle weight and sciatic functional recovery. -- Abstract: Peripheral nerve injury is often followed by incomplete and unsatisfactory functional recovery and may be associated with sensory and motor impairment of the affected limb. Therefore, a novel method is needed to improve the speed of recovery and the final functional outcome after peripheral nerve injuries. This report investigates the effect of lentiviral-mediated transfer of conserved dopamine neurotrophic factor (CDNF) on regeneration of the rat peripheral nerve in a transection model in vivo. We observed notable overexpression of CDNF protein in the distal sciatic nerve after recombinant CDNF lentiviral vector application. We evaluated sciatic nerve regeneration after surgery using light and electron microscopy and the functional recovery using the sciatic functional index and target muscle weight. HE staining revealed better ordered structured in the CDNF-treated group at 8 weeks post-surgery. Quantitative analysis of immunohistochemistry of NF200 and S-100 in the CDNF group revealed significant improvement of axonal and Schwann cell regeneration compared with the control groups at 4 weeks and 8 weeks after injury. The thickness of the myelination around the axons in the CDNF group was significantly higher than in the control groups at 8 weeks post-surgery. The CDNF group displayed higher muscle weights and significantly increased sciatic nerve index values. Our findings suggest that CDNF gene therapy could provide durable and stable CDNF protein concentration and has the potential to enhance peripheral nerve regeneration, morphological and functional recovery following nerve injury, which suggests a

  7. Efficient and sustained IGF-1 expression in the adipose tissue-derived stem cells mediated via a lentiviral vector.

    Science.gov (United States)

    Chen, Ting; Huang, Dangsheng; Chen, Guanghui; Yang, Tingshu; Yi, Jun; Tian, Miao

    2015-02-01

    The adipose tissue-derived stem cells (ADSCs) represent a significant area of the cell therapy. Genetic modification of ADSCs may further improve their therapeutic potential. Here, we aimed to generate a lentiviral vector expressing insulin-like growth factor-I (IGF-1) and investigate the impact of IGF-1 transduction on the properties of cultured ADSCs. Isolated rat ADSCs were assessed by flow cytometric analysis. IGF-1 was cloned and inserted into the pLenO-DCE plasmid to acquire pLenO-DCE-IGF-1 plasmid. Lentivirus was enveloped with pRsv-REV, pMDlg-pRRE and pMD2G plasmids in 293T cells. The ADSCs were transfected with the vectors. And then IGF-1-induced anti-apoptosis was evaluated by annexin V-FITC. Besides, proliferation of cells was detected by MTT assay and EdU. Moreover, Akt phosphorylation was evaluated by Western blotting analysis. Stable expression of IGF-1 in ADSCs was confirmed. ADSCs were positive for CD90 and CD29, but negative for CD31, CD34 and CD45. The transduction of IGF-1 to the ADSCs caused a dramatic increase in P-Akt expression. Over-expression of IGF-1 in ADSCs could improve the paracine of IGF-1 in a time-dependent manner, but could not promote the proliferation of ADSCs. This study indicated that lentiviral vectors offered a promising mean of delivering IGF-1 to the ADSCs. Lentiviral-mediated over-expression of therapeutic IGF-1 gene in ADSCs could prolong the anti-apoptosis effect of IGF-1, which might be induced by the activation of the PI3K/Akt pathway. And our data would improve the efficacy of ADSC-based therapies.

  8. Stable lentiviral transformation of CHO cells for the expression of the hemagglutinin H5 of avian influenza virus in suspension culture

    Directory of Open Access Journals (Sweden)

    Alaín González Pose

    2014-09-01

    Full Text Available Avian influenza virus H5N1 has caused extensive damage worldwide among poultry and humans. Effective expression systems are needed for the production of viral proteins required for monitoring this devastating disease. The present study deals with the establishment of a stable expression system for the hemagglutinin H5 (HAH5 of avian influenza virus using CHO cells in suspension culture transduced with a recombinant lentiviral vector. The synthetic gene coding the HAH5 protein was inserted in a lentiviral vector with the aim of performing a stable transduction of CHO cells. After the selection of recombinant clones, the one with the highest expression level was adapted to suspension culture and the HAH5 protein was purified by immunoaffinity chromatography from the culture supernatant. There were no significant differences when this protein, purified or direct from the culture supernatant of CHO or SiHa cells, was utilized in an immunologic assay using positive and negative sera as reference. It was also demonstrated that the HAH5 protein in its purified form is able to bind anti-HAH5 antibodies generated with proper and non-proper folded proteins. The results demonstrate that the CHO cell line stably transduced with a lentiviral vector coding the sequence of the HAH5 protein and cultured in suspension can be a suitable expression system to obtain this protein for diagnostic purpose in a consistent and reliable manner.

  9. Characterization of complete particles (VSV-G/SIN-GFP) and empty particles (VSV-G/EMPTY) in human immunodeficiency virus type 1-based lentiviral products for gene therapy: potential applications for improvement of product quality and safety.

    Science.gov (United States)

    Zhao, Yuan; Keating, Kenneth; Dolman, Carl; Thorpe, Robin

    2008-05-01

    Lentiviral vectors persist in the host and are therefore ideally suited for long-term gene therapy. To advance the use of lentiviral vectors in humans, improvement of their production, purification, and characterization has become increasingly important and challenging. In addition to cellular contaminants derived from packaging cells, empty particles without therapeutic function are the major impurities that compromise product safety and efficacy. Removal of empty particles is difficult because of their innate similarity in particle size and protein composition to the complete particles. We propose that comparison of the properties of lentiviral products with those of purposely expressed empty particles may reveal potential differences between empty and complete particles. For this, three forms of recombinant lentiviral samples, that is, recombinant vesicular stomatitis virus glycoprotein (VSV-G) proteins, empty particles (VSV-G/Empty), and complete particles (VSV-G/SIN-GFP) carrying viral RNA, were purified by size-exclusion chromatography (SEC). The SEC-purified samples were further analyzed by immunoblotting with six antibodies to examine viral and cellular proteins associated with the particles. This study has demonstrated, for the first time, important differences between VSV-G/Empty particles and complete VSV-G/SIN-GFP particles. Differences include the processing of Gag protein and the inclusion of cellular proteins in the particles. Our findings support the development of improved production, purification, and characterization methods for lentiviral products.

  10. Mutational analysis of an archaeal minichromosome maintenance protein exterior hairpin reveals critical residues for helicase activity and DNA binding

    Directory of Open Access Journals (Sweden)

    Brewster Aaron S

    2010-08-01

    Full Text Available Abstract Background The mini-chromosome maintenance protein (MCM complex is an essential replicative helicase for DNA replication in Archaea and Eukaryotes. While the eukaryotic complex consists of six homologous proteins (MCM2-7, the archaeon Sulfolobus solfataricus has only one MCM protein (ssoMCM, six subunits of which form a homohexamer. We have recently reported a 4.35Å crystal structure of the near full-length ssoMCM. The structure reveals a total of four β-hairpins per subunit, three of which are located within the main channel or side channels of the ssoMCM hexamer model generated based on the symmetry of the N-terminal Methanothermobacter thermautotrophicus (mtMCM structure. The fourth β-hairpin, however, is located on the exterior of the hexamer, near the exit of the putative side channels and next to the ATP binding pocket. Results In order to better understand this hairpin's role in DNA binding and helicase activity, we performed a detailed mutational and biochemical analysis of nine residues on this exterior β-hairpin (EXT-hp. We examined the activities of the mutants related to their helicase function, including hexamerization, ATPase, DNA binding and helicase activities. The assays showed that some of the residues on this EXT-hp play a role for DNA binding as well as for helicase activity. Conclusions These results implicate several current theories regarding helicase activity by this critical hexameric enzyme. As the data suggest that EXT-hp is involved in DNA binding, the results reported here imply that the EXT-hp located near the exterior exit of the side channels may play a role in contacting DNA substrate in a manner that affects DNA unwinding.

  11. Ethical considerations in the use of lentiviral vectors for genetic transfer.

    Science.gov (United States)

    Roy, I

    2001-11-01

    This chapter will outline the various concerns which have been raised in scientific, bioethics, and lay communities about the use of lentiviral vectors for purposes of gene therapy. Many of these concerns are ranged around gene therapy itself; others are concerns particular to using this sort of vector for genetic modification of human cells. These concerns are outlined within the chapter, and arguments are given in favor and against various approaches to these concerns. Lastly, it is noted throughout that at this stage of research into gene therapy, the most practical approach to these dilemmas is to maintain awareness of the ethical problems and provide information to those concerned with all aspects of the development of this set of technologies.

  12. Lentiviral gene transfer regenerates hematopoietic stem cells in a mouse model for Mpl-deficient aplastic anemia.

    Science.gov (United States)

    Heckl, Dirk; Wicke, Daniel C; Brugman, Martijn H; Meyer, Johann; Schambach, Axel; Büsche, Guntram; Ballmaier, Matthias; Baum, Christopher; Modlich, Ute

    2011-04-07

    Thpo/Mpl signaling plays an important role in the maintenance of hematopoietic stem cells (HSCs) in addition to its role in megakaryopoiesis. Patients with inactivating mutations in Mpl develop thrombocytopenia and aplastic anemia because of progressive loss of HSCs. Yet, it is unknown whether this loss of HSCs is an irreversible process. In this study, we used the Mpl knockout (Mpl(-/-)) mouse model and expressed Mpl from newly developed lentiviral vectors specifically in the physiologic Mpl target populations, namely, HSCs and megakaryocytes. After validating lineage-specific expression in vivo using lentiviral eGFP reporter vectors, we performed bone marrow transplantation of transduced Mpl(-/-) bone marrow cells into Mpl(-/-) mice. We show that restoration of Mpl expression from transcriptionally targeted vectors prevents lethal adverse reactions of ectopic Mpl expression, replenishes the HSC pool, restores stem cell properties, and corrects platelet production. In some mice, megakaryocyte counts were atypically high, accompanied by bone neo-formation and marrow fibrosis. Gene-corrected Mpl(-/-) cells had increased long-term repopulating potential, with a marked increase in lineage(-)Sca1(+)cKit(+) cells and early progenitor populations in reconstituted mice. Transcriptome analysis of lineage(-)Sca1(+)cKit(+) cells in Mpl-corrected mice showed functional adjustment of genes involved in HSC self-renewal.

  13. Lentiviral Vector-Mediated GFP/fluc gene introduction into primary mouse NK cells

    International Nuclear Information System (INIS)

    L, Thi Thanh Hoa; Tae, Seong Ho; Min, Jung Joon

    2007-01-01

    NK cell is a type of lymphocyte that has ability in defense against virus infection and some kinds of cancer diseases. Recently, using genetic engineering, studies about the roles and functions of NK cells have been developing. In this study, we used lentivirus-based vector encoding GFP/Fluc gene to transfer into primary mouse NK cells. This model is a tool in studying characteristics of NK cells. The lentivirus used in this study was a commercial one, named LentiM1.3-Fluc, encoding GFP and Flue reporter genes under the control of the murine cytomegalovirus (MCMV) promoter. LentiM1.3-Fluc was infected into freshly isolated mouse NK cells at 2 20 MOl by incubating or using spin infection. In the spin infection, we gently suspended NK cells in viral fluid, then centrifuged at 2000 rpm, 20 minutes at room temperature and incubated for 1 day. After 1 day, virus was discarded and NK cells were cultured in IL-2 with or without IL-12 supplemented media. Infected NK cells were monitored by using fluorescent microscope for GFP and IVIS machine for Fire-fly luciferase expression. The results showed that using spin infection had much effect on introducing lentiviral vector-mediated reporter gene into NK cells than the way without spin. Also, NK cells which were cultured in IL-2 and IL-12 added media expressed higher fluorescent and luminescent signals than those cultured in only IL-2 supplemented media. When these NK cells were injected subcutaneously in Balb/C mice, the imaging signal was observed transiently. Our study demonstrates that by using a simple method, mouse NK cells can be transfected by lentivirus. And this will be useful in studying biology and therapeutic potential of NK cells. However, we require developing alternative lentiviral vectors with different promoter for in vivo application

  14. Construction Of An Optimized Lentiviral Vector Containing Pdx-1 Gene For Transduction Of Stem Cells Towards Gene Therapy Diabetes Type 1

    Directory of Open Access Journals (Sweden)

    S Rahmati

    2013-02-01

    Full Text Available Abstract Background & aim: Nowadays, most of gene therapy protocols are performed by lentiviral vectors. One of the most important factors which is involved in pancreas development and transcription of insulin gene is pancreatic & duodenal homeobox 1 (PDX-1 transcription factor. The goal of this study was to optimize a lentiviral construct, containing pdx-1 gene, to transfect stem cells towards gene therapy of type-1 diabetes. Methods: In this experimental study, first, the pdx-1 gene was multiplied by PCR from pcDNA3.1-pdx-1 and cloned into pTG19-T vector. Then, pdx-1 was subcloned on upstream of IRES-EGFP gene into IRES2-EGFP vector. At the next step, the cloned parts of IRES-EGFP and pdx-1 were isolated and cloned into the lentiviral expression vector pSINTREM in upstream of TRE-CMV gene. After sequencing, final construct was transfected into HEK 293 cells and gene expression of pdx-1 was evaluated using flow cytometry analysis and reverse fluorescent microscopy. Results: Flow cytometry results and inverted fluorescent microscopy observing showed that pdx-1 and GFP genes are expressed in cells transfected with final recombinant construct. Conclusion: Regarding the design of this construct, to ensure long time expression with higher in vivo and in vitro expression efficiency for stem cells and also use of Tet on induced optimized system, it seems that the current construct can be among the best ones to transfect stem cells. Key words: Gene therapy, Diabetes, Stem cells

  15. Probing the Gaseous Structure of a β-Hairpin Peptide with H/D Exchange and Electron Capture Dissociation.

    Science.gov (United States)

    Straus, Rita N; Jockusch, Rebecca A

    2017-02-01

    An improved understanding of the extent to which native protein structure is retained upon transfer to the gas phase promises to enhance biological mass spectrometry, potentially streamlining workflows and providing fundamental insights into hydration effects. Here, we investigate the gaseous conformation of a model β-hairpin peptide using gas-phase hydrogen-deuterium (H/D) exchange with subsequent electron capture dissociation (ECD). Global gas-phase H/D exchange levels, and residue-specific exchange levels derived from ECD data, are compared among the wild type 16-residue peptide GB1p and several variants. High protection from H/D exchange observed for GB1p, but not for a truncated version, is consistent with the retention of secondary structure of GB1p in the gas phase or its refolding into some other compact structure. Four alanine mutants that destabilize the hairpin in solution show levels of protection similar to that of GB1p, suggesting collapse or (re)folding of these peptides upon transfer to the gas phase. These results offer a starting point from which to understand how a key secondary structural element, the β-hairpin, is affected by transfer to the gas phase. This work also demonstrates the utility of a much-needed addition to the tool set that is currently available for the investigation of the gaseous conformation of biomolecules, which can be employed in the future to better characterize gaseous proteins and protein complexes. Graphical Abstract ᅟ.

  16. A recombinant lentiviral PDGF-driven mouse model of proneural glioblastoma.

    Science.gov (United States)

    Rahme, Gilbert J; Luikart, Bryan W; Cheng, Chao; Israel, Mark A

    2018-02-19

    Mouse models of glioblastoma (GBM), the most aggressive primary brain tumor, are critical for understanding GBM pathology and can contribute to the preclinical evaluation of therapeutic agents. Platelet-derived growth factor (PDGF) signaling has been implicated in the development and pathogenesis of GBM, specifically the proneural subtype. Although multiple mouse models of PDGF-driven glioma have been described, they require transgenic mice engineered to activate PDGF signaling and/or impair tumor suppressor genes and typically represent lower-grade glioma. We designed recombinant lentiviruses expressing both PDGFB and a short hairpin RNA targeting Cdkn2a to induce gliomagenesis following stereotactic injection into the dentate gyrus of adult immunocompetent mice. We engineered these viruses to coexpress CreERT2 with PDGFB, allowing for deletion of floxed genes specifically in transduced cells, and designed another version of this recombinant lentivirus in which enhanced green fluorescent protein was coexpressed with PDGFB and CreERT2 to visualize transduced cells. The dentate gyrus of injected mice showed hypercellularity one week post-injection and subsequently developed bona fide tumors with the pathologic hallmarks of GBM leading to a median survival of 77 days post-injection. Transcriptomic analysis of these tumors revealed a proneural gene expression signature. Informed by the genetic alterations observed in human GBM, we engineered a novel mouse model of proneural GBM. While reflecting many of the advantages of transgenic mice, this model allows for the facile in vivo testing of gene function in tumor cells and makes possible the rapid production of large numbers of immunocompetent tumor-bearing mice for preclinical testing of therapeutics. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  17. Engineering Cellular Resistance to HIV-1 Infection In Vivo Using a Dual Therapeutic Lentiviral Vector

    Directory of Open Access Journals (Sweden)

    Bryan P Burke

    2015-01-01

    Full Text Available We described earlier a dual-combination anti-HIV type 1 (HIV-1 lentiviral vector (LVsh5/C46 that downregulates CCR5 expression of transduced cells via RNAi and inhibits HIV-1 fusion via cell surface expression of cell membrane-anchored C46 antiviral peptide. This combinatorial approach has two points of inhibition for R5-tropic HIV-1 and is also active against X4-tropic HIV-1. Here, we utilize the humanized bone marrow, liver, thymus (BLT mouse model to characterize the in vivo efficacy of LVsh5/C46 (Cal-1 vector to engineer cellular resistance to HIV-1 pathogenesis. Human CD34+ hematopoietic stem/progenitor cells (HSPC either nonmodified or transduced with LVsh5/C46 vector were transplanted to generate control and treatment groups, respectively. Control and experimental groups displayed similar engraftment and multilineage hematopoietic differentiation that included robust CD4+ T-cell development. Splenocytes isolated from the treatment group were resistant to both R5- and X4-tropic HIV-1 during ex vivo challenge experiments. Treatment group animals challenged with R5-tropic HIV-1 displayed significant protection of CD4+ T-cells and reduced viral load within peripheral blood and lymphoid tissues up to 14 weeks postinfection. Gene-marking and transgene expression were confirmed stable at 26 weeks post-transplantation. These data strongly support the use of LVsh5/C46 lentiviral vector in gene and cell therapeutic applications for inhibition of HIV-1 infection.

  18. Construction of a CD147 Lentiviral Expression Vector and Establishment of Its Stably Transfected A549 Cell Line

    Directory of Open Access Journals (Sweden)

    Shaoxing YANG

    2012-12-01

    Full Text Available Background and objective CD147, a type of transmembrane glycoprotein embedded on the surface of tumor cells, can promote tumor invasion and metastasis. This aim of this study is to construct a CD147 lentiviral expression vector, establish its stably transfected A549 cell line, and observe the effect of CD147 on MMP-9 proliferation as well as on the invasive ability of human lung adenocarcinoma cells. Methods Full-length CD147 gene was amplified by real-time polymerase chain reaction (RT-PCR, inserted into a pEGFP vector to construct pEGFP-CD147 and pEGFP vectors, and then transfected into 293FT cells to precede the lentivirus equipment package. Subsequently, we collected the lentivirus venom to infect the A549 cells and establish a stable, overexpressed cell line named A549-CD147. The mRNA expression of MMP-9 was examined by RT-PCR. The proliferation and invasive ability of the human lung cancer cells before and after transfection were examined by the CCK-8 and Transwell methods. Results A CD147 lentiviral expression vector (pEGFP-CD147 was successfully constructed by restrictive enzyme digestion and plasmid sequencing. RT-PCR and Western blot analyses revealed increased mRNA and protein expression of CD147 gene in cells transfected with pEGFP-CD147 compared with the control groups. Therefore, the A549-CD147 cell line was successfully established through the experiment. The mRNA expression of MMP-9 also significantly increased after the upregulation of CD147 expression. Meanwhile, CCK-8 and Transwell assays indicated that the proliferation and invasive ability significantly increased in the A549-CD147 cells. Conclusion A lentiviral CD147 expression vector and its A549 cell line (A549-CD14 were successfully constructed. CD147 overexpression upregulated the protein expression of MMP-9, and strengthened the proliferation and invasive ability of human lung adenocarcinoma cells.

  19. The mitochondrial genomes of sponges provide evidence for multiple invasions by Repetitive Hairpin-forming Elements (RHE

    Directory of Open Access Journals (Sweden)

    Lavrov Dennis V

    2009-12-01

    Full Text Available Abstract Background The mitochondrial (mt genomes of sponges possess a variety of features, which appear to be intermediate between those of Eumetazoa and non-metazoan opisthokonts. Among these features is the presence of long intergenic regions, which are common in other eukaryotes, but generally absent in Eumetazoa. Here we analyse poriferan mitochondrial intergenic regions, paying particular attention to repetitive sequences within them. In this context we introduce the mitochondrial genome of Ircinia strobilina (Lamarck, 1816; Demospongiae: Dictyoceratida and compare it with mtDNA of other sponges. Results Mt genomes of dictyoceratid sponges are identical in gene order and content but display major differences in size and organization of intergenic regions. An even higher degree of diversity in the structure of intergenic regions was found among different orders of demosponges. One interesting observation made from such comparisons was of what appears to be recurrent invasions of sponge mitochondrial genomes by repetitive hairpin-forming elements, which cause large genome size differences even among closely related taxa. These repetitive hairpin-forming elements are structurally and compositionally divergent and display a scattered distribution throughout various groups of demosponges. Conclusion Large intergenic regions of poriferan mt genomes are targets for insertions of repetitive hairpin- forming elements, similar to the ones found in non-metazoan opisthokonts. Such elements were likely present in some lineages early in animal mitochondrial genome evolution but were subsequently lost during the reduction of intergenic regions, which occurred in the Eumetazoa lineage after the split of Porifera. Porifera acquired their elements in several independent events. Patterns of their intra-genomic dispersal can be seen in the mt genome of Vaceletia sp.

  20. 1H and 31P resonance assignments and secondary structure of hairpin conformer of IA mismatched oligonucleotide d-GGTACIAGTACC

    International Nuclear Information System (INIS)

    Chary, K.V.R.; Rastogi, V.K.; Govil, Girjesh

    1994-01-01

    Almost complete 1 H and 31 P resonance assignments of two coexisting conformers, duplex and an hairpin, of d-GGTACIAGTACC at 1.25mM concentration and 305 K have been achieved. The results demonstrate that the hairpin conformer has a structure with two purines I6 and A7 forming a two-base loop on a B-DNA stem. Stacking is continued on the 5'-side of the loop, with the I6 stacked upon C5. The base A7, on the 3'-side of the loop stacks partially with I6. The glycosidic angle for G8 is in the anti domain and it maintains normal Watson-Crick base-pairing with the opposite C5. (author). 28 refs., 7 figs., 2 tabs

  1. A nonintegrative lentiviral vector-based vaccine provides long-term sterile protection against malaria.

    Directory of Open Access Journals (Sweden)

    Frédéric Coutant

    Full Text Available Trials testing the RTS,S candidate malaria vaccine and radiation-attenuated sporozoites (RAS have shown that protective immunity against malaria can be induced and that an effective vaccine is not out of reach. However, longer-term protection and higher protection rates are required to eradicate malaria from the endemic regions. It implies that there is still a need to explore new vaccine strategies. Lentiviral vectors are very potent at inducing strong immunological memory. However their integrative status challenges their safety profile. Eliminating the integration step obviates the risk of insertional oncogenesis. Providing they confer sterile immunity, nonintegrative lentiviral vectors (NILV hold promise as mass pediatric vaccine by meeting high safety standards. In this study, we have assessed the protective efficacy of NILV against malaria in a robust pre-clinical model. Mice were immunized with NILV encoding Plasmodium yoelii Circumsporozoite Protein (Py CSP and challenged with sporozoites one month later. In two independent protective efficacy studies, 50% (37.5-62.5 of the animals were fully protected (p = 0.0072 and p = 0.0008 respectively when compared to naive mice. The remaining mice with detectable parasitized red blood cells exhibited a prolonged patency and reduced parasitemia. Moreover, protection was long-lasting with 42.8% sterile protection six months after the last immunization (p = 0.0042. Post-challenge CD8+ T cells to CSP, in contrast to anti-CSP antibodies, were associated with protection (r = -0.6615 and p = 0.0004 between the frequency of IFN-g secreting specific T cells in spleen and parasitemia. However, while NILV and RAS immunizations elicited comparable immunity to CSP, only RAS conferred 100% of sterile protection. Given that a better protection can be anticipated from a multi-antigen vaccine and an optimized vector design, NILV appear as a promising malaria vaccine.

  2. Vibrational spectral simulation for peptides of mixed secondary structure: Method comparisons with the Trpzip model hairpin

    Czech Academy of Sciences Publication Activity Database

    Bouř, Petr; Keiderling, T. A.

    2005-01-01

    Roč. 109, - (2005), 23687-23697 ISSN 1089-5647 R&D Projects: GA AV ČR(CZ) IAA4055104 Grant - others:NSF(US) CHE03-16014 Institutional research plan: CEZ:AV0Z40550506 Keywords : VCD * trpzin model hairpin * peptides Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.679, year: 2003

  3. Identification of a key structural element for protein folding within beta-hairpin turns.

    Science.gov (United States)

    Kim, Jaewon; Brych, Stephen R; Lee, Jihun; Logan, Timothy M; Blaber, Michael

    2003-05-09

    Specific residues in a polypeptide may be key contributors to the stability and foldability of the unique native structure. Identification and prediction of such residues is, therefore, an important area of investigation in solving the protein folding problem. Atypical main-chain conformations can help identify strains within a folded protein, and by inference, positions where unique amino acids may have a naturally high frequency of occurrence due to favorable contributions to stability and folding. Non-Gly residues located near the left-handed alpha-helical region (L-alpha) of the Ramachandran plot are a potential indicator of structural strain. Although many investigators have studied mutations at such positions, no consistent energetic or kinetic contributions to stability or folding have been elucidated. Here we report a study of the effects of Gly, Ala and Asn substitutions found within the L-alpha region at a characteristic position in defined beta-hairpin turns within human acidic fibroblast growth factor, and demonstrate consistent effects upon stability and folding kinetics. The thermodynamic and kinetic data are compared to available data for similar mutations in other proteins, with excellent agreement. The results have identified that Gly at the i+3 position within a subset of beta-hairpin turns is a key contributor towards increasing the rate of folding to the native state of the polypeptide while leaving the rate of unfolding largely unchanged.

  4. Immune modulation by genetic modification of dendritic cells with lentiviral vectors.

    Science.gov (United States)

    Liechtenstein, Therese; Perez-Janices, Noemi; Bricogne, Christopher; Lanna, Alessio; Dufait, Inès; Goyvaerts, Cleo; Laranga, Roberta; Padella, Antonella; Arce, Frederick; Baratchian, Mehdi; Ramirez, Natalia; Lopez, Natalia; Kochan, Grazyna; Blanco-Luquin, Idoia; Guerrero-Setas, David; Breckpot, Karine; Escors, David

    2013-09-01

    Our work over the past eight years has focused on the use of HIV-1 lentiviral vectors (lentivectors) for the genetic modification of dendritic cells (DCs) to control their functions in immune modulation. DCs are key professional antigen presenting cells which regulate the activity of most effector immune cells, including T, B and NK cells. Their genetic modification provides the means for the development of targeted therapies towards cancer and autoimmune disease. We have been modulating with lentivectors the activity of intracellular signalling pathways and co-stimulation during antigen presentation to T cells, to fine-tune the type and strength of the immune response. In the course of our research, we have found unexpected results such as the surprising immunosuppressive role of anti-viral signalling pathways, and the close link between negative co-stimulation in the immunological synapse and T cell receptor trafficking. Here we review our major findings and put them into context with other published work. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Natural host genetic resistance to lentiviral CNS disease: a neuroprotective MHC class I allele in SIV-infected macaques.

    Directory of Open Access Journals (Sweden)

    Joseph L Mankowski

    Full Text Available Human immunodeficiency virus (HIV infection frequently causes neurologic disease even with anti-retroviral treatment. Although associations between MHC class I alleles and acquired immunodeficiency syndrome (AIDS have been reported, the role MHC class I alleles play in restricting development of HIV-induced organ-specific diseases, including neurologic disease, has not been characterized. This study examined the relationship between expression of the MHC class I allele Mane-A*10 and development of lentiviral-induced central nervous system (CNS disease using a well-characterized simian immunodeficiency (SIV/pigtailed macaque model. The risk of developing CNS disease (SIV encephalitis was 2.5 times higher for animals that did not express the MHC class I allele Mane-A*10 (P = 0.002; RR = 2.5. Animals expressing the Mane-A*10 allele had significantly lower amounts of activated macrophages, SIV RNA, and neuronal dysfunction in the CNS than Mane-A*10 negative animals (P<0.001. Mane-A*10 positive animals with the highest CNS viral burdens contained SIV gag escape mutants at the Mane-A*10-restricted KP9 epitope in the CNS whereas wild type KP9 sequences dominated in the brain of Mane-A*10 negative animals with comparable CNS viral burdens. These concordant findings demonstrate that particular MHC class I alleles play major neuroprotective roles in lentiviral-induced CNS disease.

  6. Hairpin stabilized fluorescent silver nanoclusters for quantitative detection of NAD+ and monitoring NAD+/NADH based enzymatic reactions.

    Science.gov (United States)

    Jain, Priyamvada; Chakma, Babina; Patra, Sanjukta; Goswami, Pranab

    2017-03-01

    A set of 90 mer long ssDNA candidates, with different degrees of cytosine (C-levels) (% and clusters) was analyzed for their function as suitable Ag-nanocluster (AgNC) nucleation scaffolds. The sequence (P4) with highest C-level (42.2%) emerged as the only candidate supporting the nucleation process as evident from its intense fluorescence peak at λ 660 nm . Shorter DNA subsets derived from P4 with only stable hairpin structures could support the AgNC formation. The secondary hairpin structures were confirmed by PAGE, and CD studies. The number of base pairs in the stem region also contributes to the stability of the hairpins. A shorter 29 mer sequence (Sub 3) (ΔG = -1.3 kcal/mol) with 3-bp in the stem of a 7-mer loop conferred highly stable AgNC. NAD + strongly quenched the fluorescence of Sub 3-AgNC in a concentration dependent manner. Time resolved photoluminescence studies revealed the quenching involves a combined static and dynamic interaction where the binding constant and number of binding sites for NAD + were 0.201 L mol -1 and 3.6, respectively. A dynamic NAD + detection range of 50-500 μM with a limit of detection of 22.3 μM was discerned. The NAD + mediated quenching of AgNC was not interfered by NADH, NADP + , monovalent and divalent ions, or serum samples. The method was also used to follow alcohol dehydrogenase and lactate dehydrogenase catalyzed physiological reactions in a turn-on and turn-off assay, respectively. The proposed method with ssDNA-AgNC could therefore be extended to monitor other NAD + /NADH based enzyme catalyzed reactions in a turn-on/turn-off approach. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Short communication: Effect of inhibition of fatty acid synthase on triglyceride accumulation and effect on lipid metabolism genes in goat mammary epithelial cells.

    Science.gov (United States)

    Zhu, J J; Luo, J; Sun, Y T; Shi, H B; Li, J; Wu, M; Yu, K; Haile, A B; Loor, J J

    2015-05-01

    The role of fatty acid synthase (FASN) on de novo fatty acid synthesis has been well established. In monogastrics, unlike acetyl-coenzyme A carboxylase, FASN is primarily controlled at the transcriptional level. However, no data exist on ruminant mammary cells evaluating effects of FASN knockdown on mRNA expression of lipogenic genes. Inhibition of FASN in mammary cells by C75-mediated interference, a synthetic inhibitor of FASN activity, and short hairpin RNA-mediated interference markedly reduced cellular triglyceride content at least in part by decreasing the expression of genes related to triglyceride synthesis (GPAT, AGPAT6, and DGAT2) and enhancing the expression of lipolysis-related genes (ATGL and HSL). Consistent with the markedly lower expression of genes related to lipid droplet formation and secretion (TIP47, ADFP, BTN1A1, and XDH), cellular lipid droplets also were reduced sharply after incubation with C75 or adenovirus-short-hairpin-RNA. The results underscored the essential role of FASN in the overall process of milk-fat formation in goat mammary epithelial cells. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Target-induced structure switching of hairpin aptamers for label-free and sensitive fluorescent detection of ATP via exonuclease-catalyzed target recycling amplification.

    Science.gov (United States)

    Xu, Yunying; Xu, Jin; Xiang, Yun; Yuan, Ruo; Chai, Yaqin

    2014-01-15

    In this work, we described the development of a new label-free, simple and sensitive fluorescent ATP sensing platform based on exonuclease III (Exo III)-catalyzed target recycling (ECTR) amplification and SYBR Green I indicator. The hairpin aptamer probes underwent conformational structure switching and re-configuration in the presence of ATP, which led to catalytic cleavage of the re-configured aptamers by Exo III to release ATP and to initiate the ECTR process. Such ECTR process resulted in the digestion of a significant number of the hairpin aptamer probes, leading to much less intercalation of SYBR Green I to the hairpin stems and drastic suppression of the fluorescence emission for sensitive ATP detection down to the low nanomolar level. Due to the highly specific affinity bindings between aptamers and ATP, the developed method exhibited excellent selectivity toward ATP against other analogous molecules. Besides, our ATP sensing approach used un-modified aptamer probes and could be performed in a "mix-and-detect" fashion in homogenous solutions. All these distinct advantages of the developed method thus made it hold great potential for the development of simple and robust sensing strategies for the detection of other small molecules. © 2013 Elsevier B.V. All rights reserved.

  9. One-step isothermal detection of multiple KRAS mutations by forming SNP specific hairpins on a gold nanoshell.

    Science.gov (United States)

    Chung, Chan Ho; Kim, Joong Hyun

    2018-04-24

    We developed a one-step isothermal method for typing multiple KRAS mutations using a designed set of primers to form a hairpin on a gold nanoshell upon being ligated by a SNP specific DNA ligase after binding of targets. As a result, we could detect as low as 20 attomoles of KRAS mutations within 1 h.

  10. Phenotypic correction of von Willebrand disease type 3 blood-derived endothelial cells with lentiviral vectors expressing von Willebrand factor

    Science.gov (United States)

    De Meyer, Simon F.; Vanhoorelbeke, Karen; Chuah, Marinee K.; Pareyn, Inge; Gillijns, Veerle; Hebbel, Robert P.; Collen, Désiré; Deckmyn, Hans; VandenDriessche, Thierry

    2006-01-01

    Von Willebrand disease (VWD) is an inherited bleeding disorder, caused by quantitative (type 1 and 3) or qualitative (type 2) defects in von Willebrand factor (VWF). Gene therapy is an appealing strategy for treatment of VWD because it is caused by a single gene defect and because VWF is secreted into the circulation, obviating the need for targeting specific organs or tissues. However, development of gene therapy for VWD has been hampered by the considerable length of the VWF cDNA (8.4 kb [kilobase]) and the inherent complexity of the VWF protein that requires extensive posttranslational processing. In this study, a gene-based approach for VWD was developed using lentiviral transduction of blood-outgrowth endothelial cells (BOECs) to express functional VWF. A lentiviral vector encoding complete human VWF was used to transduce BOECs isolated from type 3 VWD dogs resulting in high-transduction efficiencies (95.6% ± 2.2%). Transduced VWD BOECs efficiently expressed functional vector-encoded VWF (4.6 ± 0.4 U/24 hour per 106 cells), with normal binding to GPIbα and collagen and synthesis of a broad range of multimers resulting in phenotypic correction of these cells. These results indicate for the first time that gene therapy of type 3 VWD is feasible and that BOECs are attractive target cells for this purpose. PMID:16478886

  11. Resting lymphocyte transduction with measles virus glycoprotein pseudotyped lentiviral vectors relies on CD46 and SLAM

    International Nuclear Information System (INIS)

    Zhou Qi; Schneider, Irene C.; Gallet, Manuela; Kneissl, Sabrina; Buchholz, Christian J.

    2011-01-01

    The measles virus (MV) glycoproteins hemagglutinin (H) and fusion (F) were recently shown to mediate transduction of resting lymphocytes by lentiviral vectors. MV vaccine strains use CD46 or signaling lymphocyte activation molecule (SLAM) as receptor for cell entry. A panel of H protein mutants derived from vaccine strain or wild-type MVs that lost or gained CD46 or SLAM receptor usage were investigated for their ability to mediate gene transfer into unstimulated T lymphocytes. The results demonstrate that CD46 is sufficient for efficient vector particle association with unstimulated lymphocytes. For stable gene transfer into these cells, however, both MV receptors were found to be essential.

  12. HTS dual-band bandpass filters using stub-loaded hair-pin resonators for mobile communication systems

    Energy Technology Data Exchange (ETDEWEB)

    Sekiya, N., E-mail: nsekiya@yamanashi.ac.jp; Sugiyama, S.

    2014-09-15

    Highlights: • We have developed a HTS five-pole dual-band bandpass filter using stub-loaded hair-pin resonators. • The proposed dual-band BPF can independently control of the center frequency. • Flexibly adjustment of the bandwidth can be achieved by the H-shaped waveguide. • The proposed BPF is evaluated by simulation and measurement with good agreement. - Abstract: A HTS dual-band bandpass filter is developed to obtain sharp-cut off characteristics for mobile communication systems. The filter is composed of five stub-loaded hair-pin resonators with H-shaped waveguides between them. The main advantage of the proposed filter is to allow independent control of the center frequency of the first and second bands. The bandwidths can be flexibly adjusted using the H-shaped waveguide. An electromagnetic simulator was used to design and analyze the filter, which have a 3.5-GHz center frequency and a 70-MHz (2%) bandwidth for the first band and a 5.0-GHz center frequency and a 100-MHz (2%) bandwidth for the second band. The filter was fabricated using YBa{sub 2}Cu{sub 3}O{sub y} thin film on an Al{sub 2}O{sub 3} substrate. Ground plane was fabricated using Au thin film. The measured frequency responses of the filter tally well with the simulated ones.

  13. Packaging of HCV-RNA into lentiviral vector

    International Nuclear Information System (INIS)

    Caval, Vincent; Piver, Eric; Ivanyi-Nagy, Roland; Darlix, Jean-Luc; Pagès, Jean-Christophe

    2011-01-01

    Highlights: ► Description of HCV-RNA Core-D1 interactions. ► In vivo evaluation of the packaging of HCV genome. ► Determination of the role of the three basic sub-domains of D1. ► Heterologous system involving HIV-1 vector particles to mobilise HCV genome. ► Full length mobilisation of HCV genome and HCV-receptor-independent entry. -- Abstract: The advent of infectious molecular clones of Hepatitis C virus (HCV) has unlocked the understanding of HCV life cycle. However, packaging of the genomic RNA, which is crucial to generate infectious viral particles, remains poorly understood. Molecular interactions of the domain 1 (D1) of HCV Core protein and HCV RNA have been described in vitro. Since compaction of genetic information within HCV genome has hampered conventional mutational approach to study packaging in vivo, we developed a novel heterologous system to evaluate the interactions between HCV RNA and Core D1. For this, we took advantage of the recruitment of Vpr fusion-proteins into HIV-1 particles. By fusing HCV Core D1 to Vpr we were able to package and transfer a HCV subgenomic replicon into a HIV-1 based lentiviral vector. We next examined how deletion mutants of basic sub-domains of Core D1 influenced HCV RNA recruitment. The results emphasized the crucial role of the first and third basic regions of D1 in packaging. Interestingly, the system described here allowed us to mobilise full-length JFH1 genome in CD81 defective cells, which are normally refractory to HCV infection. This finding paves the way to an evaluation of the replication capability of HCV in various cell types.

  14. Optimal construction and delivery of dual-functioning lentiviral vectors for type I collagen-suppressed chondrogenesis in synovium-derived mesenchymal stem cells.

    Science.gov (United States)

    Zhang, Feng; Yao, Yongchang; Zhou, Ruijie; Su, Kai; Citra, Fudiman; Wang, Dong-An

    2011-06-01

    This study aims to deliver both transforming growth factor β3 (TGF-β3) and shRNA targeting type I collagen (Col I) by optimal construction and application of various dual-functioning lentiviral vectors to induce Col I-suppressed chondrogenesis in synovium-derived mesenchymal stem cells (SMSCs). We constructed four lentiviral vectors (LV-1, LV-2, LV-3 and LV-4) with various arrangements of the two expression cassettes in different positions and orientations. Col I inhibition efficiency and chondrogenic markers were assessed with qPCR, ELISA and staining techniques. Among the four vectors, LV-1 has two distant and reversely oriented cassettes, LV-2 has two distant and same-oriented cassettes, LV-3 has two proximal and reversely oriented cassettes, and LV-4 has two proximal and same-oriented cassettes. Col I and chondrogenic markers, including type II collagen (Col II), aggrecan and glycosaminoglycan (GAG), were examined in SMSCs cultured in 3-D alginate hydrogel. All of the four vectors showed distinct effects in Col I level as well as diverse inductive efficiencies in upregulation of the cartilaginous markers. Based on real-time PCR results, LV-1 was optimal towards Col I-suppressed chondrogenesis. LV-1 vector is competent to promote Col I-suppressed chondrogenesis in SMSCs.

  15. Proximity hybridization-regulated catalytic DNA hairpin assembly for electrochemical immunoassay based on in situ DNA template-synthesized Pd nanoparticles

    International Nuclear Information System (INIS)

    Zhou, Fuyi; Yao, Yao; Luo, Jianjun; Zhang, Xing; Zhang, Yu; Yin, Dengyang; Gao, Fenglei; Wang, Po

    2017-01-01

    Novel hybridization proximity-regulated catalytic DNA hairpin assembly strategy has been proposed for electrochemical immunoassay based on in situ DNA template-synthesized Pd nanoparticles as signal label. The DNA template-synthesized Pd nanoparticles were characterized with atomic force microscopic and X-ray photoelectron spectroscopy. The highly efficient electrocatalysis by DNA template synthesized Pd nanoparticles for NaBH 4 oxidation produced an intense detection signal. The label-free electrochemical method achieved the detection of carcinoembryonic antigen (CEA) with a linear range from 10 −15 to 10 −11  g mL −1 and a detection limit of 0.43 × 10 −15  g mL −1 . Through introducing a supersandwich reaction to increase the DNA length, the electrochemical signal was further amplified, leading to a detection limit of 0.52 × 10 −16  g mL −1 . And it rendered satisfactory analytical performance for the determination of CEA in serum samples. Furthermore, it exhibited good reproducibility and stability; meanwhile, it also showed excellent specificity due to the specific recognition of antigen by antibody. Therefore, the DNA template synthesized Pd nanoparticles based signal amplification approach has great potential in clinical applications and is also suitable for quantification of biomarkers at ultralow level. - Graphical abstract: A novel label-free and enzyme-free electrochemical immunoassay based on proximity hybridization-regulated catalytic DNA hairpin assemblies for recycling of the CEA. - Highlights: • A novel enzyme-free electrochemical immunosensor was developed for detection of CEA. • The signal amplification was based on catalytic DNA hairpin assembly and DNA-template-synthesized Pd nanoparticles. • The biosensor could detect CEA down to 0.52 × 10 −16  g mL −1 level with a dynamic range spanning 5 orders of magnitude.

  16. Cisplatin Targeting of Bacterial Ribosomal RNA Hairpins

    Directory of Open Access Journals (Sweden)

    Gayani N. P. Dedduwa-Mudalige

    2015-09-01

    Full Text Available Cisplatin is a clinically important chemotherapeutic agent known to target purine bases in nucleic acids. In addition to major deoxyribonucleic acid (DNA intrastrand cross-links, cisplatin also forms stable adducts with many types of ribonucleic acid (RNA including siRNA, spliceosomal RNAs, tRNA, and rRNA. All of these RNAs play vital roles in the cell, such as catalysis of protein synthesis by rRNA, and therefore serve as potential drug targets. This work focused on platination of two highly conserved RNA hairpins from E. coli ribosomes, namely pseudouridine-modified helix 69 from 23S rRNA and the 790 loop of helix 24 from 16S rRNA. RNase T1 probing, MALDI mass spectrometry, and dimethyl sulfate mapping revealed platination at GpG sites. Chemical probing results also showed platination-induced RNA structural changes. These findings reveal solvent and structural accessibility of sites within bacterial RNA secondary structures that are functionally significant and therefore viable targets for cisplatin as well as other classes of small molecules. Identifying target preferences at the nucleotide level, as well as determining cisplatin-induced RNA conformational changes, is important for the design of more potent drug molecules. Furthermore, the knowledge gained through studies of RNA-targeting by cisplatin is applicable to a broad range of organisms from bacteria to human.

  17. Integrase-Deficient Lentiviral Vector as an All-in-One Platform for Highly Efficient CRISPR/Cas9-Mediated Gene Editing

    Directory of Open Access Journals (Sweden)

    Pavel I. Ortinski

    2017-06-01

    Full Text Available The CRISPR/Cas9 systems have revolutionized the field of genome editing by providing unprecedented control over gene sequences and gene expression in many species, including humans. Lentiviral vectors (LVs are one of the primary delivery platforms for the CRISPR/Cas9 system due to their ability to accommodate large DNA payloads and sustain robust expression in a wide range of dividing and non-dividing cells. However, long-term expression of LV-delivered Cas9/guide RNA may lead to undesirable off-target effects characterized by non-specific RNA-DNA interactions and off-target DNA cleavages. Integrase-deficient lentiviral vectors (IDLVs present an attractive means for delivery of CRISPR/Cas9 components because: (1 they are capable of transducing a broad range of cells and tissues, (2 have superior packaging capacity compared to other vectors (e.g., adeno-associated viral vectors, and (3 they are expressed transiently and demonstrate very weak integration capability. In this manuscript, we aimed to establish IDLVs as a means for safe and efficient delivery of CRISPR/Cas9. To this end, we developed an all-in-one vector cassette with increased production efficacy and demonstrated that CRISPR/Cas9 delivered by the improved IDLV vectors can mediate rapid and robust gene editing in human embryonic kidney (HEK293T cells and post-mitotic brain neurons in vivo, via transient expression and with higher gene-targeting specificity than the corresponding integrase-competent vectors.

  18. Large-scale manufacture and characterization of a lentiviral vector produced for clinical ex vivo gene therapy application.

    Science.gov (United States)

    Merten, Otto-Wilhelm; Charrier, Sabine; Laroudie, Nicolas; Fauchille, Sylvain; Dugué, Céline; Jenny, Christine; Audit, Muriel; Zanta-Boussif, Maria-Antonietta; Chautard, Hélène; Radrizzani, Marina; Vallanti, Giuliana; Naldini, Luigi; Noguiez-Hellin, Patricia; Galy, Anne

    2011-03-01

    From the perspective of a pilot clinical gene therapy trial for Wiskott-Aldrich syndrome (WAS), we implemented a process to produce a lentiviral vector under good manufacturing practices (GMP). The process is based on the transient transfection of 293T cells in Cell Factory stacks, scaled up to harvest 50 liters of viral stock per batch, followed by purification of the vesicular stomatitis virus glycoprotein-pseudotyped particles through several membrane-based and chromatographic steps. The process leads to a 200-fold volume concentration and an approximately 3-log reduction in protein and DNA contaminants. An average yield of 13% of infectious particles was obtained in six full-scale preparations. The final product contained low levels of contaminants such as simian virus 40 large T antigen or E1A sequences originating from producer cells. Titers as high as 2 × 10(9) infectious particles per milliliter were obtained, generating up to 6 × 10(11) infectious particles per batch. The purified WAS vector was biologically active, efficiently expressing the genetic insert in WAS protein-deficient B cell lines and transducing CD34(+) cells. The vector introduced 0.3-1 vector copy per cell on average in CD34(+) cells when used at the concentration of 10(8) infectious particles per milliliter, which is comparable to preclinical preparations. There was no evidence of cellular toxicity. These results show the implementation of large-scale GMP production, purification, and control of advanced HIV-1-derived lentiviral technology. Results obtained with the WAS vector provide the initial manufacturing and quality control benchmarking that should be helpful to further development and clinical applications.

  19. Packaging of HCV-RNA into lentiviral vector

    Energy Technology Data Exchange (ETDEWEB)

    Caval, Vincent [INSERM U966, Universite Francois Rabelais de Tours, Faculte de Medecine, 10 Bd. Tonnelle, 37000 Tours (France); Piver, Eric [INSERM U966, Universite Francois Rabelais de Tours, Faculte de Medecine, 10 Bd. Tonnelle, 37000 Tours (France); Service de Biochimie et Biologie Moleculaire, CHRU de Tours (France); Ivanyi-Nagy, Roland; Darlix, Jean-Luc [LaboRetro, ENS-Lyon INSERM, U758, 46 Allee d' Italie, 69364 Lyon (France); Pages, Jean-Christophe, E-mail: jean-christophe.pages@univ-tours.fr [INSERM U966, Universite Francois Rabelais de Tours, Faculte de Medecine, 10 Bd. Tonnelle, 37000 Tours (France); Service de Biochimie et Biologie Moleculaire, CHRU de Tours (France)

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Description of HCV-RNA Core-D1 interactions. Black-Right-Pointing-Pointer In vivo evaluation of the packaging of HCV genome. Black-Right-Pointing-Pointer Determination of the role of the three basic sub-domains of D1. Black-Right-Pointing-Pointer Heterologous system involving HIV-1 vector particles to mobilise HCV genome. Black-Right-Pointing-Pointer Full length mobilisation of HCV genome and HCV-receptor-independent entry. -- Abstract: The advent of infectious molecular clones of Hepatitis C virus (HCV) has unlocked the understanding of HCV life cycle. However, packaging of the genomic RNA, which is crucial to generate infectious viral particles, remains poorly understood. Molecular interactions of the domain 1 (D1) of HCV Core protein and HCV RNA have been described in vitro. Since compaction of genetic information within HCV genome has hampered conventional mutational approach to study packaging in vivo, we developed a novel heterologous system to evaluate the interactions between HCV RNA and Core D1. For this, we took advantage of the recruitment of Vpr fusion-proteins into HIV-1 particles. By fusing HCV Core D1 to Vpr we were able to package and transfer a HCV subgenomic replicon into a HIV-1 based lentiviral vector. We next examined how deletion mutants of basic sub-domains of Core D1 influenced HCV RNA recruitment. The results emphasized the crucial role of the first and third basic regions of D1 in packaging. Interestingly, the system described here allowed us to mobilise full-length JFH1 genome in CD81 defective cells, which are normally refractory to HCV infection. This finding paves the way to an evaluation of the replication capability of HCV in various cell types.

  20. Pressure modulates the self-cleavage step of the hairpin ribozyme

    Science.gov (United States)

    Schuabb, Caroline; Kumar, Narendra; Pataraia, Salome; Marx, Dominik; Winter, Roland

    2017-03-01

    The ability of certain RNAs, denoted as ribozymes, to not only store genetic information but also catalyse chemical reactions gave support to the RNA world hypothesis as a putative step in the development of early life on Earth. This, however, might have evolved under extreme environmental conditions, including the deep sea with pressures in the kbar regime. Here we study pressure-induced effects on the self-cleavage of hairpin ribozyme by following structural changes in real-time. Our results suggest that compression of the ribozyme leads to an accelerated transesterification reaction, being the self-cleavage step, although the overall process is retarded in the high-pressure regime. The results reveal that favourable interactions between the reaction site and neighbouring nucleobases are strengthened under pressure, resulting therefore in an accelerated self-cleavage step upon compression. These results suggest that properly engineered ribozymes may also act as piezophilic biocatalysts in addition to their hitherto known properties.

  1. Effect of secondary structure on the thermodynamics and kinetics of PNA hybridization to DNA hairpins

    DEFF Research Database (Denmark)

    Kushon, S A; Jordan, J P; Seifert, J L

    2001-01-01

    The binding of a series of PNA and DNA probes to a group of unusually stable DNA hairpins of the tetraloop motif has been observed using absorbance hypochromicity (ABS), circular dichroism (CD), and a colorimetric assay for PNA/DNA duplex detection. These results indicate that both stable PNA...... structures in both target and probe molecules are shown to depress the melting temperatures and free energies of the probe-target duplexes. Kinetic analysis of hybridization yields reaction rates that are up to 160-fold slower than hybridization between two unstructured strands. The thermodynamic and kinetic...

  2. Evaluation of Lentiviral-Mediated Expression of Sodium Iodide Symporter in Anaplastic Thyroid Cancer and the Efficacy of In Vivo Imaging and Therapy

    Directory of Open Access Journals (Sweden)

    Chien-Chih Ke

    2011-01-01

    Full Text Available Anaplastic thyroid carcinoma (ATC is one of the most deadly cancers. With intensive multimodalities of treatment, the survival remains low. ATC is not sensitive to 131I therapy due to loss of sodium iodide symporter (NIS gene expression. We have previously generated a stable human NIS-expressing ATC cell line, ARO, and the ability of iodide accumulation was restored. To make NIS-mediated gene therapy more applicable, this study aimed to establish a lentiviral system for transferring hNIS gene to cells and to evaluate the efficacy of in vitro and in vivo radioiodide accumulation for imaging and therapy. Lentivirus containing hNIS cDNA were produced to transduce ARO cells which do not concentrate iodide. Gene expression, cell function, radioiodide imaging and treatment were evaluated in vitro and in vivo. Results showed that the transduced cells were restored to express hNIS and accumulated higher amount of radioiodide than parental cells. Therapeutic dose of 131I effectively inhibited the tumor growth derived from transduced cells as compared to saline-treated mice. Our results suggest that the lentiviral system efficiently transferred and expressed hNIS gene in ATC cells. The transduced cells showed a promising result of tumor imaging and therapy.

  3. The New Self-Inactivating Lentiviral Vector for Thalassemia Gene Therapy Combining Two HPFH Activating Elements Corrects Human Thalassemic Hematopoietic Stem Cells

    Science.gov (United States)

    Papanikolaou, Eleni; Georgomanoli, Maria; Stamateris, Evangelos; Panetsos, Fottes; Karagiorga, Markisia; Tsaftaridis, Panagiotis; Graphakos, Stelios

    2012-01-01

    Abstract To address how low titer, variable expression, and gene silencing affect gene therapy vectors for hemoglobinopathies, in a previous study we successfully used the HPFH (hereditary persistence of fetal hemoglobin)-2 enhancer in a series of oncoretroviral vectors. On the basis of these data, we generated a novel insulated self-inactivating (SIN) lentiviral vector, termed GGHI, carrying the Aγ-globin gene with the −117 HPFH point mutation and the HPFH-2 enhancer and exhibiting a pancellular pattern of Aγ-globin gene expression in MEL-585 clones. To assess the eventual clinical feasibility of this vector, GGHI was tested on CD34+ hematopoietic stem cells from nonmobilized peripheral blood or bone marrow from 20 patients with β-thalassemia. Our results show that GGHI increased the production of γ-globin by 32.9% as measured by high-performance liquid chromatography (p=0.001), with a mean vector copy number per cell of 1.1 and a mean transduction efficiency of 40.3%. Transduced populations also exhibited a lower rate of apoptosis and resulted in improvement of erythropoiesis with a higher percentage of orthochromatic erythroblasts. This is the first report of a locus control region (LCR)-free SIN insulated lentiviral vector that can be used to efficiently produce the anticipated therapeutic levels of γ-globin protein in the erythroid progeny of primary human thalassemic hematopoietic stem cells in vitro. PMID:21875313

  4. CCR5 Gene Disruption via Lentiviral Vectors Expressing Cas9 and Single Guided RNA Renders Cells Resistant to HIV-1 Infection

    Science.gov (United States)

    Liu, Jingjing; Zhang, Di; Kimata, Jason T.; Zhou, Paul

    2014-01-01

    CCR5, a coreceptor for HIV-1 entry, is a major target for drug and genetic intervention against HIV-1. Genetic intervention strategies have knocked down CCR5 expression levels by shRNA or disrupted the CCR5 gene using zinc finger nucleases (ZFN) or Transcription activator-like effector nuclease (TALEN). In the present study, we silenced CCR5 via CRISPR associated protein 9 (Cas9) and single guided RNAs (sgRNAs). We constructed lentiviral vectors expressing Cas9 and CCR5 sgRNAs. We show that a single round transduction of lentiviral vectors expressing Cas9 and CCR5 sgRNAs into HIV-1 susceptible human CD4+ cells yields high frequencies of CCR5 gene disruption. CCR5 gene-disrupted cells are not only resistant to R5-tropic HIV-1, including transmitted/founder (T/F) HIV-1 isolates, but also have selective advantage over CCR5 gene-undisrupted cells during R5-tropic HIV-1 infection. Importantly, using T7 endonuclease I assay we did not detect genome mutations at potential off-target sites that are highly homologous to these CCR5 sgRNAs in stably transduced cells even at 84 days post transduction. Thus we conclude that silencing of CCR5 via Cas9 and CCR5-specific sgRNAs could be a viable alternative strategy for engineering resistance against HIV-1. PMID:25541967

  5. Stabilization of the H,K-ATPase M5M6 membrane hairpin by K+ ions. Mechanistic significance for p2-type atpases.

    Science.gov (United States)

    Gatto, C; Lutsenko, S; Shin, J M; Sachs, G; Kaplan, J H

    1999-05-14

    The integral membrane protein, the gastric H,K-ATPase, is an alpha-beta heterodimer, with 10 putative transmembrane segments in the alpha-subunit and one such segment in the beta-subunit. All transmembrane segments remain within the membrane domain following trypsinization of the intact gastric H,K-ATPase in the presence of K+ ions, identified as M1M2, M3M4, M5M6, and M7, M8, M9, and M10. Removal of K+ ions from this digested preparation results in the selective loss of the M5M6 hairpin from the membrane. The release of the M5M6 fragment is directed to the extracellular phase as evidenced by the accumulation of the released M5M6 hairpin inside the sealed inside out vesicles. The stabilization of the M5M6 hairpin in the membrane phase by the transported cation as well as loss to the aqueous phase in the absence of the transported cation has been previously observed for another P2-type ATPase, the Na, K-ATPase (Lutsenko, S., Anderko, R., and Kaplan, J. H. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 7936-7940). Thus, the effects of the counter-transported cation on retention of the M5M6 segment in the membrane as compared with the other membrane pairs may be a general feature of P2-ATPase ion pumps, reflecting a flexibility of this region that relates to the mechanism of transport.

  6. Metschnikowia Species Share a Pool of Diverse rRNA Genes Differing in Regions That Determine Hairpin-Loop Structures and Evolve by Reticulation.

    Directory of Open Access Journals (Sweden)

    Matthias Sipiczki

    Full Text Available Modern taxonomy of yeasts is mainly based on phylogenetic analysis of conserved DNA and protein sequences. By far the most frequently used sequences are those of the repeats of the chromosomal rDNA array. It is generally accepted that the rDNA repeats of a genome have identical sequences due to the phenomenon of sequence homogenisation and can thus be used for identification and barcoding of species. Here we show that the rDNA arrays of the type strains of Metschnikowia andauensis and M. fructicola are not homogenised. Both have arrays consisting of diverse repeats that differ from each other in the D1/D2 domains by up to 18 and 25 substitutions. The variable sites are concentrated in two regions that correspond to back-folding stretches of hairpin loops in the predicted secondary structure of the RNA molecules. The substitutions do not alter significantly the overall hairpin-loop structure due to wobble base pairing at sites of C-T transitions and compensatory mutations in the complementary strand of the hairpin stem. The phylogenetic and network analyses of the cloned sequences revealed that the repeats had not evolved in a vertical tree-like way but reticulation might have shaped the rDNA arrays of both strains. The neighbour-net analysis of all cloned sequences of the type strains and the database sequences of different strains further showed that these species share a continuous pool of diverse repeats that appear to evolve by reticulate evolution.

  7. Binding, folding and insertion of a β-hairpin peptide at a lipid bilayer surface: Influence of electrostatics and lipid tail packing.

    Science.gov (United States)

    Reid, Keon A; Davis, Caitlin M; Dyer, R Brian; Kindt, James T

    2018-03-01

    Antimicrobial peptides (AMPs) act as host defenses against microbial pathogens. Here we investigate the interactions of SVS-1 (KVKVKVKV d P l PTKVKVKVK), an engineered AMP and anti-cancer β-hairpin peptide, with lipid bilayers using spectroscopic studies and atomistic molecular dynamics simulations. In agreement with literature reports, simulation and experiment show preferential binding of SVS-1 peptides to anionic over neutral bilayers. Fluorescence and circular dichroism studies of a Trp-substituted SVS-1 analogue indicate, however, that it will bind to a zwitterionic DPPC bilayer under high-curvature conditions and folds into a hairpin. In bilayers formed from a 1:1 mixture of DPPC and anionic DPPG lipids, curvature and lipid fluidity are also observed to promote deeper insertion of the fluorescent peptide. Simulations using the CHARMM C36m force field offer complementary insight into timescales and mechanisms of folding and insertion. SVS-1 simulated at an anionic mixed POPC/POPG bilayer folded into a hairpin over a microsecond, the final stage in folding coinciding with the establishment of contact between the peptide's valine sidechains and the lipid tails through a "flip and dip" mechanism. Partial, transient folding and superficial bilayer contact are seen in simulation of the peptide at a zwitterionic POPC bilayer. Only when external surface tension is applied does the peptide establish lasting contact with the POPC bilayer. Our findings reveal the influence of disruption to lipid headgroup packing (via curvature or surface tension) on the pathway of binding and insertion, highlighting the collaborative effort of electrostatic and hydrophobic interactions on interaction of SVS-1 with lipid bilayers. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Dynamics of bleomycin interaction with a strongly bound hairpin DNA substrate, and implications for cleavage of the bound DNA.

    Science.gov (United States)

    Bozeman, Trevor C; Nanjunda, Rupesh; Tang, Chenhong; Liu, Yang; Segerman, Zachary J; Zaleski, Paul A; Wilson, W David; Hecht, Sidney M

    2012-10-31

    Recent studies involving DNAs bound strongly by bleomycins have documented that such DNAs are degraded by the antitumor antibiotic with characteristics different from those observed when studying the cleavage of randomly chosen DNAs in the presence of excess Fe·BLM. In the present study, surface plasmon resonance has been used to characterize the dynamics of BLM B(2) binding to a strongly bound hairpin DNA, to define the effects of Fe(3+), salt, and temperature on BLM-DNA interaction. One strong primary DNA binding site, and at least one much weaker site, were documented. In contrast, more than one strong cleavage site was found, an observation also made for two other hairpin DNAs. Evidence is presented for BLM equilibration between the stronger and weaker binding sites in a way that renders BLM unavailable to other, less strongly bound DNAs. Thus, enhanced binding to a given site does not necessarily result in increased DNA degradation at that site; i.e., for strongly bound DNAs, the facility of DNA cleavage must involve other parameters in addition to the intrinsic rate of C-4' H atom abstraction from DNA sugars.

  9. Highly efficient retrograde gene transfer into motor neurons by a lentiviral vector pseudotyped with fusion glycoprotein.

    Directory of Open Access Journals (Sweden)

    Miyabi Hirano

    Full Text Available The development of gene therapy techniques to introduce transgenes that promote neuronal survival and protection provides effective therapeutic approaches for neurological and neurodegenerative diseases. Intramuscular injection of adenoviral and adeno-associated viral vectors, as well as lentiviral vectors pseudotyped with rabies virus glycoprotein (RV-G, permits gene delivery into motor neurons in animal models for motor neuron diseases. Recently, we developed a vector with highly efficient retrograde gene transfer (HiRet by pseudotyping a human immunodeficiency virus type 1 (HIV-1-based vector with fusion glycoprotein B type (FuG-B or a variant of FuG-B (FuG-B2, in which the cytoplasmic domain of RV-G was replaced by the corresponding part of vesicular stomatitis virus glycoprotein (VSV-G. We have also developed another vector showing neuron-specific retrograde gene transfer (NeuRet with fusion glycoprotein C type, in which the short C-terminal segment of the extracellular domain and transmembrane/cytoplasmic domains of RV-G was substituted with the corresponding regions of VSV-G. These two vectors afford the high efficiency of retrograde gene transfer into different neuronal populations in the brain. Here we investigated the efficiency of the HiRet (with FuG-B2 and NeuRet vectors for retrograde gene transfer into motor neurons in the spinal cord and hindbrain in mice after intramuscular injection and compared it with the efficiency of the RV-G pseudotype of the HIV-1-based vector. The main highlight of our results is that the HiRet vector shows the most efficient retrograde gene transfer into both spinal cord and hindbrain motor neurons, offering its promising use as a gene therapeutic approach for the treatment of motor neuron diseases.

  10. Expanding the peptide beta-turn in alphagamma hybrid sequences: 12 atom hydrogen bonded helical and hairpin turns.

    Science.gov (United States)

    Chatterjee, Sunanda; Vasudev, Prema G; Raghothama, Srinivasarao; Ramakrishnan, Chandrasekharan; Shamala, Narayanaswamy; Balaram, Padmanabhan

    2009-04-29

    Hybrid peptide segments containing contiguous alpha and gamma amino acid residues can form C(12) hydrogen bonded turns which may be considered as backbone expanded analogues of C(10) (beta-turns) found in alphaalpha segments. Exploration of the regular hydrogen bonded conformations accessible for hybrid alphagamma sequences is facilitated by the use of a stereochemically constrained gamma amino acid residue gabapentin (1-aminomethylcyclohexaneacetic acid, Gpn), in which the two torsion angles about C(gamma)-C(beta) (theta(1)) and C(beta)-C(alpha) (theta(2)) are predominantly restricted to gauche conformations. The crystal structures of the octapeptides Boc-Gpn-Aib-Gpn-Aib-Gpn-Aib-Gpn-Aib-OMe (1) and Boc-Leu-Phe-Val-Aib-Gpn-Leu-Phe-Val-OMe (2) reveal two distinct conformations for the Aib-Gpn segment. Peptide 1 forms a continuous helix over the Aib(2)-Aib(6) segment, while the peptide 2 forms a beta-hairpin structure stabilized by four cross-strand hydrogen bonds with the Aib-Gpn segment forming a nonhelical C(12) turn. The robustness of the helix in peptide 1 in solution is demonstrated by NMR methods. Peptide 2 is conformationally fragile in solution with evidence of beta-hairpin conformations being obtained in methanol. Theoretical calculations permit delineation of the various C(12) hydrogen bonded structures which are energetically feasible in alphagamma and gammaalpha sequences.

  11. Proximity hybridization-regulated catalytic DNA hairpin assembly for electrochemical immunoassay based on in situ DNA template-synthesized Pd nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Fuyi [School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116 (China); Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical College, 221004, Xuzhou (China); Yao, Yao; Luo, Jianjun; Zhang, Xing; Zhang, Yu; Yin, Dengyang [Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical College, 221004, Xuzhou (China); Gao, Fenglei, E-mail: jsxzgfl@sina.com [Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical College, 221004, Xuzhou (China); Wang, Po, E-mail: wangpo@jsnu.edu.cn [School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116 (China)

    2017-05-29

    Novel hybridization proximity-regulated catalytic DNA hairpin assembly strategy has been proposed for electrochemical immunoassay based on in situ DNA template-synthesized Pd nanoparticles as signal label. The DNA template-synthesized Pd nanoparticles were characterized with atomic force microscopic and X-ray photoelectron spectroscopy. The highly efficient electrocatalysis by DNA template synthesized Pd nanoparticles for NaBH{sub 4} oxidation produced an intense detection signal. The label-free electrochemical method achieved the detection of carcinoembryonic antigen (CEA) with a linear range from 10{sup −15} to 10{sup −11} g mL{sup −1} and a detection limit of 0.43 × 10{sup −15} g mL{sup −1}. Through introducing a supersandwich reaction to increase the DNA length, the electrochemical signal was further amplified, leading to a detection limit of 0.52 × 10{sup −16} g mL{sup −1}. And it rendered satisfactory analytical performance for the determination of CEA in serum samples. Furthermore, it exhibited good reproducibility and stability; meanwhile, it also showed excellent specificity due to the specific recognition of antigen by antibody. Therefore, the DNA template synthesized Pd nanoparticles based signal amplification approach has great potential in clinical applications and is also suitable for quantification of biomarkers at ultralow level. - Graphical abstract: A novel label-free and enzyme-free electrochemical immunoassay based on proximity hybridization-regulated catalytic DNA hairpin assemblies for recycling of the CEA. - Highlights: • A novel enzyme-free electrochemical immunosensor was developed for detection of CEA. • The signal amplification was based on catalytic DNA hairpin assembly and DNA-template-synthesized Pd nanoparticles. • The biosensor could detect CEA down to 0.52 × 10{sup −16} g mL{sup −1} level with a dynamic range spanning 5 orders of magnitude.

  12. Phe783, Thr797, and Asp804 in transmembrane hairpin M5-M6 of Na+,K+-ATPase play a key role in ouabain binding.

    Science.gov (United States)

    Qiu, Li Yan; Koenderink, Jan B; Swarts, Herman G P; Willems, Peter H G M; De Pont, Jan Joep H H M

    2003-11-21

    Ouabain is a glycoside that binds to and inhibits the action of Na+,K+-ATPase. Little is known, however, about the specific requirements of the protein surface for glycoside binding. Using chimeras of gastric H+,K+-ATPase and Na+,K+-ATPase, we demonstrated previously that the combined presence of transmembrane hairpins M3-M4 and M5-M6 of Na+,K+-ATPase in a backbone of H+,K+-ATPase (HN34/56) is both required and sufficient for high affinity ouabain binding. Since replacement of transmembrane hairpin M3-M4 by the N terminus up to transmembrane segment 3 (HNN3/56) resulted in a low affinity ouabain binding, hairpin M5-M6 seems to be essential for ouabain binding. To assess which residues of M5-M6 are required for ouabain action, we divided this transmembrane hairpin in seven parts and individually replaced these parts by the corresponding sequences of H+,K+-ATPase in chimera HN34/56. Three of these chimeras failed to bind ouabain following expression in Xenopus laevis oocytes. Altogether, these three chimeras contained 7 amino acids that were specific for Na+,K+-ATPase. Individual replacement of these 7 amino acids by the corresponding amino acids in H+,K+-ATPase revealed a dramatic loss of ouabain binding for F783Y, T797C, and D804E. As a proof of principle, the Na+,K+-ATPase equivalents of these 3 amino acids were introduced in different combinations in chimera HN34. The presence of all 3 amino acids appeared to be required for ouabain action. Docking of ouabain onto a three-dimensional-model of Na+,K+-ATPase suggests that Asp804, in contrast to Phe783 and Thr797, does not actually form part of the ouabain-binding pocket. Most likely, the presence of this amino acid is required for adopting of the proper conformation for ouabain binding.

  13. An O(n(5)) algorithm for MFE prediction of kissing hairpins and 4-chains in nucleic acids.

    Science.gov (United States)

    Chen, Ho-Lin; Condon, Anne; Jabbari, Hosna

    2009-06-01

    Efficient methods for prediction of minimum free energy (MFE) nucleic secondary structures are widely used, both to better understand structure and function of biological RNAs and to design novel nano-structures. Here, we present a new algorithm for MFE secondary structure prediction, which significantly expands the class of structures that can be handled in O(n(5)) time. Our algorithm can handle H-type pseudoknotted structures, kissing hairpins, and chains of four overlapping stems, as well as nested substructures of these types.

  14. Effects of Vector Backbone and Pseudotype on Lentiviral Vector-mediated Gene Transfer: Studies in Infant ADA-Deficient Mice and Rhesus Monkeys

    Science.gov (United States)

    Carbonaro Sarracino, Denise; Tarantal, Alice F; Lee, C Chang I.; Martinez, Michele; Jin, Xiangyang; Wang, Xiaoyan; Hardee, Cinnamon L; Geiger, Sabine; Kahl, Christoph A; Kohn, Donald B

    2014-01-01

    Systemic delivery of a lentiviral vector carrying a therapeutic gene represents a new treatment for monogenic disease. Previously, we have shown that transfer of the adenosine deaminase (ADA) cDNA in vivo rescues the lethal phenotype and reconstitutes immune function in ADA-deficient mice. In order to translate this approach to ADA-deficient severe combined immune deficiency patients, neonatal ADA-deficient mice and newborn rhesus monkeys were treated with species-matched and mismatched vectors and pseudotypes. We compared gene delivery by the HIV-1-based vector to murine γ-retroviral vectors pseudotyped with vesicular stomatitis virus-glycoprotein or murine retroviral envelopes in ADA-deficient mice. The vesicular stomatitis virus-glycoprotein pseudotyped lentiviral vectors had the highest titer and resulted in the highest vector copy number in multiple tissues, particularly liver and lung. In monkeys, HIV-1 or simian immunodeficiency virus vectors resulted in similar biodistribution in most tissues including bone marrow, spleen, liver, and lung. Simian immunodeficiency virus pseudotyped with the gibbon ape leukemia virus envelope produced 10- to 30-fold lower titers than the vesicular stomatitis virus-glycoprotein pseudotype, but had a similar tissue biodistribution and similar copy number in blood cells. The relative copy numbers achieved in mice and monkeys were similar when adjusted to the administered dose per kg. These results suggest that this approach can be scaled-up to clinical levels for treatment of ADA-deficient severe combined immune deficiency subjects with suboptimal hematopoietic stem cell transplantation options. PMID:24925206

  15. Effects of vector backbone and pseudotype on lentiviral vector-mediated gene transfer: studies in infant ADA-deficient mice and rhesus monkeys.

    Science.gov (United States)

    Carbonaro Sarracino, Denise; Tarantal, Alice F; Lee, C Chang I; Martinez, Michele; Jin, Xiangyang; Wang, Xiaoyan; Hardee, Cinnamon L; Geiger, Sabine; Kahl, Christoph A; Kohn, Donald B

    2014-10-01

    Systemic delivery of a lentiviral vector carrying a therapeutic gene represents a new treatment for monogenic disease. Previously, we have shown that transfer of the adenosine deaminase (ADA) cDNA in vivo rescues the lethal phenotype and reconstitutes immune function in ADA-deficient mice. In order to translate this approach to ADA-deficient severe combined immune deficiency patients, neonatal ADA-deficient mice and newborn rhesus monkeys were treated with species-matched and mismatched vectors and pseudotypes. We compared gene delivery by the HIV-1-based vector to murine γ-retroviral vectors pseudotyped with vesicular stomatitis virus-glycoprotein or murine retroviral envelopes in ADA-deficient mice. The vesicular stomatitis virus-glycoprotein pseudotyped lentiviral vectors had the highest titer and resulted in the highest vector copy number in multiple tissues, particularly liver and lung. In monkeys, HIV-1 or simian immunodeficiency virus vectors resulted in similar biodistribution in most tissues including bone marrow, spleen, liver, and lung. Simian immunodeficiency virus pseudotyped with the gibbon ape leukemia virus envelope produced 10- to 30-fold lower titers than the vesicular stomatitis virus-glycoprotein pseudotype, but had a similar tissue biodistribution and similar copy number in blood cells. The relative copy numbers achieved in mice and monkeys were similar when adjusted to the administered dose per kg. These results suggest that this approach can be scaled-up to clinical levels for treatment of ADA-deficient severe combined immune deficiency subjects with suboptimal hematopoietic stem cell transplantation options.

  16. Mutation in the β-hairpin of the Bordetella pertussis adenylate cyclase toxin modulates N-lobe conformation in calmodulin

    International Nuclear Information System (INIS)

    Springer, Tzvia I.; Goebel, Erich; Hariraju, Dinesh; Finley, Natosha L.

    2014-01-01

    Highlights: • Bordetella pertussis adenylate cyclase toxin modulates bi-lobal structure of CaM. • The structure and stability of the complex rely on intermolecular associations. • A novel mode of CaM-dependent activation of the adenylate cyclase toxin is proposed. - Abstract: Bordetella pertussis, causative agent of whooping cough, produces an adenylate cyclase toxin (CyaA) that is an important virulence factor. In the host cell, the adenylate cyclase domain of CyaA (CyaA-ACD) is activated upon association with calmodulin (CaM), an EF-hand protein comprised of N- and C-lobes (N-CaM and C-CaM, respectively) connected by a flexible tether. Maximal CyaA-ACD activation is achieved through its binding to both lobes of intact CaM, but the structural mechanisms remain unclear. No high-resolution structure of the intact CaM/CyaA-ACD complex is available, but crystal structures of isolated C-CaM bound to CyaA-ACD shed light on the molecular mechanism by which this lobe activates the toxin. Previous studies using molecular modeling, biochemical, and biophysical experiments demonstrate that CyaA-ACD’s β-hairpin participates in site-specific interactions with N-CaM. In this study, we utilize nuclear magnetic resonance (NMR) spectroscopy to probe the molecular association between intact CaM and CyaA-ACD. Our results indicate binding of CyaA-ACD to CaM induces large conformational perturbations mapping to C-CaM, while substantially smaller structural changes are localized primarily to helices I, II, and IV, and the metal-binding sites in N-CaM. Site-specific mutations in CyaA-ACD’s β-hairpin structurally modulate N-CaM, resulting in conformational perturbations in metal binding sites I and II, while no significant structural modifications are observed in C-CaM. Moreover, dynamic light scattering (DLS) analysis reveals that mutation of the β-hairpin results in a decreased hydrodynamic radius (R h ) and reduced thermal stability in the mutant complex. Taken together

  17. Mutation in the β-hairpin of the Bordetella pertussis adenylate cyclase toxin modulates N-lobe conformation in calmodulin

    Energy Technology Data Exchange (ETDEWEB)

    Springer, Tzvia I.; Goebel, Erich; Hariraju, Dinesh [Department of Microbiology, Miami University, Oxford, OH 45056 (United States); Finley, Natosha L., E-mail: finleynl@miamioh.edu [Department of Microbiology, Miami University, Oxford, OH 45056 (United States); Cell, Molecular, and Structural Biology Program, Miami University, Oxford, OH 45056 (United States)

    2014-10-10

    Highlights: • Bordetella pertussis adenylate cyclase toxin modulates bi-lobal structure of CaM. • The structure and stability of the complex rely on intermolecular associations. • A novel mode of CaM-dependent activation of the adenylate cyclase toxin is proposed. - Abstract: Bordetella pertussis, causative agent of whooping cough, produces an adenylate cyclase toxin (CyaA) that is an important virulence factor. In the host cell, the adenylate cyclase domain of CyaA (CyaA-ACD) is activated upon association with calmodulin (CaM), an EF-hand protein comprised of N- and C-lobes (N-CaM and C-CaM, respectively) connected by a flexible tether. Maximal CyaA-ACD activation is achieved through its binding to both lobes of intact CaM, but the structural mechanisms remain unclear. No high-resolution structure of the intact CaM/CyaA-ACD complex is available, but crystal structures of isolated C-CaM bound to CyaA-ACD shed light on the molecular mechanism by which this lobe activates the toxin. Previous studies using molecular modeling, biochemical, and biophysical experiments demonstrate that CyaA-ACD’s β-hairpin participates in site-specific interactions with N-CaM. In this study, we utilize nuclear magnetic resonance (NMR) spectroscopy to probe the molecular association between intact CaM and CyaA-ACD. Our results indicate binding of CyaA-ACD to CaM induces large conformational perturbations mapping to C-CaM, while substantially smaller structural changes are localized primarily to helices I, II, and IV, and the metal-binding sites in N-CaM. Site-specific mutations in CyaA-ACD’s β-hairpin structurally modulate N-CaM, resulting in conformational perturbations in metal binding sites I and II, while no significant structural modifications are observed in C-CaM. Moreover, dynamic light scattering (DLS) analysis reveals that mutation of the β-hairpin results in a decreased hydrodynamic radius (R{sub h}) and reduced thermal stability in the mutant complex. Taken

  18. Lentiviral Nef Proteins Utilize PAK2-Mediated Deregulation of Cofilin as a General Strategy To Interfere with Actin Remodeling▿ †

    Science.gov (United States)

    Stolp, Bettina; Abraham, Libin; Rudolph, Jochen M.; Fackler, Oliver T.

    2010-01-01

    Nef is an accessory protein and pathogenicity factor of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) which elevates virus replication in vivo. We recently described for HIV type 1SF2 (HIV-1SF2) the potent interference of Nef with T-lymphocyte chemotaxis via its association with the cellular kinase PAK2. Mechanistic analysis revealed that this interaction results in deregulation of the actin-severing factor cofilin and thus blocks the chemokine-mediated actin remodeling required for cell motility. However, the efficiency of PAK2 association is highly variable among Nef proteins from different lentiviruses, prompting us to evaluate the conservation of this actin-remodeling/cofilin-deregulating mechanism. Based on the analysis of a total of 17 HIV-1, HIV-2, and SIV Nef proteins, we report here that inhibition of chemokine-induced actin remodeling as well as inactivation of cofilin are strongly conserved activities of lentiviral Nef proteins. Of note, even for Nef variants that display only marginal PAK2 association in vitro, these activities require the integrity of a PAK2 recruitment motif and the presence of endogenous PAK2. Thus, reduced in vitro affinity to PAK2 does not indicate limited functionality of Nef-PAK2 complexes in intact HIV-1 host cells. These results establish hijacking of PAK2 for deregulation of cofilin and inhibition of triggered actin remodeling as a highly conserved function of lentiviral Nef proteins, supporting the notion that PAK2 association may be critical for Nef's activity in vivo. PMID:20147394

  19. Overexpression of thioredoxin in islets transduced by a lentiviral vector prolongs graft survival in autoimmune diabetic NOD mice

    Directory of Open Access Journals (Sweden)

    Sytwu Huey-Kang

    2009-08-01

    Full Text Available Abstract Pancreatic islet transplantation is considered an appropriate treatment to achieve insulin independence in type I diabetic patients. However, islet isolation and transplantation-induced oxidative stress and autoimmune-mediated destruction are still the major obstacles to the long-term survival of graft islets in this potential therapy. To protect islet grafts from inflammatory damage and prolong their survival, we transduced islets with an antioxidative gene thioredoxin (TRX using a lentiviral vector before transplantation. We hypothesized that the overexpression of TRX in islets would prolong islet graft survival when transplanted into diabetic non-obese diabetic (NOD mice. Methods Islets were isolated from NOD mice and transduced with lentivirus carrying TRX (Lt-TRX or enhanced green fluorescence protein (Lt-eGFP, respectively. Transduced islets were transplanted under the left kidney capsule of female diabetic NOD mice, and blood glucose concentration was monitored daily after transplantation. The histology of the islet graft was assessed at the end of the study. The protective effect of TRX on islets was investigated. Results The lentiviral vector effectively transduced islets without altering the glucose-stimulating insulin-secretory function of islets. Overexpression of TRX in islets reduced hydrogen peroxide-induced cytotoxicity in vitro. After transplantation into diabetic NOD mice, euglycemia was maintained for significantly longer in Lt-TRX-transduced islets than in Lt-eGFP-transduced islets; the mean graft survival was 18 vs. 6.5 days (n = 9 and 10, respectively, p Conclusion We successfully transduced the TRX gene into islets and demonstrated that these genetically modified grafts are resistant to inflammatory insult and survived longer in diabetic recipients. Our results further support the concept that the reactive oxygen species (ROS scavenger and antiapoptotic functions of TRX are critical to islet survival after

  20. Stabilization of the beta-hairpin in Mason-Pfizer monkey virus capsid protein- a critical step for infectivity

    Czech Academy of Sciences Publication Activity Database

    Obr, M.; Hadravová, Romana; Doležal, Michal; Křížová, Ivana; Papoušková, V.; Žídek, L.; Hrabal, R.; Ruml, T.; Rumlová, Michaela

    2014-01-01

    Roč. 11, Oct 30 (2014), 94/1-94/14 ISSN 1742-4690 R&D Projects: GA ČR(CZ) GA14-15326S; GA MŠk LO1302 Grant - others:GA MŠk(CZ) ED1.1.00/02.0068; Seventh Framework Programme of the European Union(XE) FP7-261863 Program:ED Institutional support: RVO:61388963 Keywords : retrovirus * assembly * M-PMV * capsid protein * maturation * beta-hairpin Subject RIV: EE - Microbiology, Virology Impact factor: 4.185, year: 2014 http://www.retrovirology.com/content/11/1/94

  1. Combinatorial pattern discovery approach for the folding trajectory analysis of a beta-hairpin.

    Directory of Open Access Journals (Sweden)

    Laxmi Parida

    2005-06-01

    Full Text Available The study of protein folding mechanisms continues to be one of the most challenging problems in computational biology. Currently, the protein folding mechanism is often characterized by calculating the free energy landscape versus various reaction coordinates, such as the fraction of native contacts, the radius of gyration, RMSD from the native structure, and so on. In this paper, we present a combinatorial pattern discovery approach toward understanding the global state changes during the folding process. This is a first step toward an unsupervised (and perhaps eventually automated approach toward identification of global states. The approach is based on computing biclusters (or patterned clusters-each cluster is a combination of various reaction coordinates, and its signature pattern facilitates the computation of the Z-score for the cluster. For this discovery process, we present an algorithm of time complexity c in RO((N + nm log n, where N is the size of the output patterns and (n x m is the size of the input with n time frames and m reaction coordinates. To date, this is the best time complexity for this problem. We next apply this to a beta-hairpin folding trajectory and demonstrate that this approach extracts crucial information about protein folding intermediate states and mechanism. We make three observations about the approach: (1 The method recovers states previously obtained by visually analyzing free energy surfaces. (2 It also succeeds in extracting meaningful patterns and structures that had been overlooked in previous works, which provides a better understanding of the folding mechanism of the beta-hairpin. These new patterns also interconnect various states in existing free energy surfaces versus different reaction coordinates. (3 The approach does not require calculating the free energy values, yet it offers an analysis comparable to, and sometimes better than, the methods that use free energy landscapes, thus validating the

  2. Combinatorial Pattern Discovery Approach for the Folding Trajectory Analysis of a beta-Hairpin.

    Directory of Open Access Journals (Sweden)

    2005-06-01

    Full Text Available The study of protein folding mechanisms continues to be one of the most challenging problems in computational biology. Currently, the protein folding mechanism is often characterized by calculating the free energy landscape versus various reaction coordinates, such as the fraction of native contacts, the radius of gyration, RMSD from the native structure, and so on. In this paper, we present a combinatorial pattern discovery approach toward understanding the global state changes during the folding process. This is a first step toward an unsupervised (and perhaps eventually automated approach toward identification of global states. The approach is based on computing biclusters (or patterned clusters-each cluster is a combination of various reaction coordinates, and its signature pattern facilitates the computation of the Z-score for the cluster. For this discovery process, we present an algorithm of time complexity cinRO((N + nm log n, where N is the size of the output patterns and (n x m is the size of the input with n time frames and m reaction coordinates. To date, this is the best time complexity for this problem. We next apply this to a beta-hairpin folding trajectory and demonstrate that this approach extracts crucial information about protein folding intermediate states and mechanism. We make three observations about the approach: (1 The method recovers states previously obtained by visually analyzing free energy surfaces. (2 It also succeeds in extracting meaningful patterns and structures that had been overlooked in previous works, which provides a better understanding of the folding mechanism of the beta-hairpin. These new patterns also interconnect various states in existing free energy surfaces versus different reaction coordinates. (3 The approach does not require calculating the free energy values, yet it offers an analysis comparable to, and sometimes better than, the methods that use free energy landscapes, thus validating the

  3. Stability of monomeric Cro variants: Isoenergetic transformation of a type I' to a type II' beta-hairpin by single amino acid replacements.

    Science.gov (United States)

    Mollah, A K M M; Stennis, Rhonda L; Mossing, Michael C

    2003-05-01

    The thermodynamic stabilities of three monomeric variants of the bacteriophage lambda Cro repressor that differ only in the sequence of two amino acids at the apex of an engineered beta-hairpin have been determined. The sequences of the turns are EVK-XX-EVK, where the two central residues are DG, GG, and GT, respectively. Standard-state unfolding free energies, determined from circular dichroism measurements as a function of urea concentration, range from 2.4 to 2.7 kcal/mole, while those determined from guanidine hydrochloride range from 2.8 to 3.3 kcal/mole for the three proteins. Thermal denaturation yields van't Hoff unfolding enthalpies of 36 to 40 kcal /mole at midpoint temperatures in the range of 53 to 58 degrees C. Extrapolation of the thermal denaturation free energies with heat capacities of 400 to 600 cal/mole deg gives good agreement with the parameters determined in denaturant titrations. As predicted from statistical surveys of amino acid replacements in beta-hairpins, energetic barriers to transformation from a type I' turn (DG) to a type II' turn (GT) can be quite small.

  4. UMG Lenti: novel lentiviral vectors for efficient transgene- and reporter gene expression in human early hematopoietic progenitors.

    Directory of Open Access Journals (Sweden)

    Emanuela Chiarella

    Full Text Available Lentiviral vectors are widely used to investigate the biological properties of regulatory proteins and/or of leukaemia-associated oncogenes by stably enforcing their expression in hematopoietic stem and progenitor cells. In these studies it is critical to be able to monitor and/or sort the infected cells, typically via fluorescent proteins encoded by the modified viral genome. The most popular strategy to ensure co-expression of transgene and reporter gene is to insert between these cDNAs an IRES element, thus generating bi-cistronic mRNAs whose transcription is driven by a single promoter. However, while the product of the gene located upstream of the IRES is generally abundantly expressed, the translation of the downstream cDNA (typically encoding the reporter protein is often inconsistent, which hinders the detection and the isolation of transduced cells. To overcome these limitations, we developed novel lentiviral dual-promoter vectors (named UMG-LV5 and -LV6 where transgene expression is driven by the potent UBC promoter and that of the reporter protein, EGFP, by the minimal regulatory element of the WASP gene. These vectors, harboring two distinct transgenes, were tested in a variety of human haematopoietic cell lines as well as in primary human CD34+ cells in comparison with the FUIGW vector that contains the expression cassette UBC-transgene-IRES-EGFP. In these experiments both UMG-LV5 and UMG-LV6 yielded moderately lower transgene expression than FUIGW, but dramatically higher levels of EGFP, thereby allowing the easy distinction between transduced and non-transduced cells. An additional construct was produced, in which the cDNA encoding the reporter protein is upstream, and the transgene downstream of the IRES sequence. This vector, named UMG-LV11, proved able to promote abundant expression of both transgene product and EGFP in all cells tested. The UMG-LVs represent therefore useful vectors for gene transfer-based studies in

  5. UMG Lenti: novel lentiviral vectors for efficient transgene- and reporter gene expression in human early hematopoietic progenitors.

    Science.gov (United States)

    Chiarella, Emanuela; Carrà, Giovanna; Scicchitano, Stefania; Codispoti, Bruna; Mega, Tiziana; Lupia, Michela; Pelaggi, Daniela; Marafioti, Maria G; Aloisio, Annamaria; Giordano, Marco; Nappo, Giovanna; Spoleti, Cristina B; Grillone, Teresa; Giovannone, Emilia D; Spina, Raffaella; Bernaudo, Francesca; Moore, Malcolm A S; Bond, Heather M; Mesuraca, Maria; Morrone, Giovanni

    2014-01-01

    Lentiviral vectors are widely used to investigate the biological properties of regulatory proteins and/or of leukaemia-associated oncogenes by stably enforcing their expression in hematopoietic stem and progenitor cells. In these studies it is critical to be able to monitor and/or sort the infected cells, typically via fluorescent proteins encoded by the modified viral genome. The most popular strategy to ensure co-expression of transgene and reporter gene is to insert between these cDNAs an IRES element, thus generating bi-cistronic mRNAs whose transcription is driven by a single promoter. However, while the product of the gene located upstream of the IRES is generally abundantly expressed, the translation of the downstream cDNA (typically encoding the reporter protein) is often inconsistent, which hinders the detection and the isolation of transduced cells. To overcome these limitations, we developed novel lentiviral dual-promoter vectors (named UMG-LV5 and -LV6) where transgene expression is driven by the potent UBC promoter and that of the reporter protein, EGFP, by the minimal regulatory element of the WASP gene. These vectors, harboring two distinct transgenes, were tested in a variety of human haematopoietic cell lines as well as in primary human CD34+ cells in comparison with the FUIGW vector that contains the expression cassette UBC-transgene-IRES-EGFP. In these experiments both UMG-LV5 and UMG-LV6 yielded moderately lower transgene expression than FUIGW, but dramatically higher levels of EGFP, thereby allowing the easy distinction between transduced and non-transduced cells. An additional construct was produced, in which the cDNA encoding the reporter protein is upstream, and the transgene downstream of the IRES sequence. This vector, named UMG-LV11, proved able to promote abundant expression of both transgene product and EGFP in all cells tested. The UMG-LVs represent therefore useful vectors for gene transfer-based studies in hematopoietic stem and

  6. Gene Transfer of Brain-derived Neurotrophic Factor (BDNF) Prevents Neurodegeneration Triggered by FXN Deficiency.

    Science.gov (United States)

    Katsu-Jiménez, Yurika; Loría, Frida; Corona, Juan Carlos; Díaz-Nido, Javier

    2016-05-01

    Friedreich's ataxia is a predominantly neurodegenerative disease caused by recessive mutations that produce a deficiency of frataxin (FXN). Here, we have used a herpesviral amplicon vector carrying a gene encoding for brain-derived neurotrophic factor (BDNF) to drive its overexpression in neuronal cells and test for its effect on FXN-deficient neurons both in culture and in the mouse cerebellum in vivo. Gene transfer of BDNF to primary cultures of mouse neurons prevents the apoptosis which is triggered by the knockdown of FXN gene expression. This neuroprotective effect of BDNF is also observed in vivo in a viral vector-based knockdown mouse cerebellar model. The injection of a lentiviral vector carrying a minigene encoding for a FXN-specific short hairpin ribonucleic acid (shRNA) into the mouse cerebellar cortex triggers a FXN deficit which is accompanied by significant apoptosis of granule neurons as well as loss of calbindin in Purkinje cells. These pathological changes are accompanied by a loss of motor coordination of mice as assayed by the rota-rod test. Coinjection of a herpesviral vector encoding for BDNF efficiently prevents both the development of cerebellar neuropathology and the ataxic phenotype. These data demonstrate the potential therapeutic usefulness of neurotrophins like BDNF to protect FXN-deficient neurons from degeneration.

  7. The cytoskeletal binding domain of band 3 is required for multiprotein complex formation and retention during erythropoiesis

    Science.gov (United States)

    Satchwell, Timothy J; Hawley, Bethan R; Bell, Amanda J; Ribeiro, M. Leticia; Toye, Ashley M

    2015-01-01

    Band 3 is the most abundant protein in the erythrocyte membrane and forms the core of a major multiprotein complex. The absence of band 3 in human erythrocytes has only been reported once, in the homozygous band 3 Coimbra patient. We used in vitro culture of erythroblasts derived from this patient, and separately short hairpin RNA-mediated depletion of band 3, to investigate the development of a band 3-deficient erythrocyte membrane and to specifically assess the stability and retention of band 3 dependent proteins in the absence of this core protein during terminal erythroid differentiation. Further, using lentiviral transduction of N-terminally green fluorescent protein-tagged band 3, we demonstrated the ability to restore expression of band 3 to normal levels and to rescue secondary deficiencies of key proteins including glycophorin A, protein 4.2, CD47 and Rh proteins arising from the absence of band 3 in this patient. By transducing band 3-deficient erythroblasts from this patient with band 3 mutants with absent or impaired ability to associate with the cytoskeleton we also demonstrated the importance of cytoskeletal connectivity for retention both of band 3 and of its associated dependent proteins within the reticulocyte membrane during the process of erythroblast enucleation. PMID:25344524

  8. Adipose-derived stem cells and BMP-2 delivery in chitosan-based 3D constructs to enhance bone regeneration in a rat mandibular defect model.

    Science.gov (United States)

    Fan, Jiabing; Park, Hyejin; Lee, Matthew K; Bezouglaia, Olga; Fartash, Armita; Kim, Jinku; Aghaloo, Tara; Lee, Min

    2014-08-01

    Reconstructing segmental mandiblular defects remains a challenge in the clinic. Tissue engineering strategies provide an alternative option to resolve this problem. The objective of the present study was to determine the effects of adipose-derived stem cells (ASCs) and bone morphogenetic proteins-2 (BMP-2) in three-dimensional (3D) scaffolds on mandibular repair in a small animal model. Noggin expression levels in ASCs were downregulated by a lentiviral short hairpin RNA strategy to enhance ASC osteogenesis (ASCs(Nog-)). Chitosan (CH) and chondroitin sulfate (CS), natural polysaccharides, were fabricated into 3D porous scaffolds, which were further modified with apatite coatings for enhanced cellular responses and efficient delivery of BMP-2. The efficacy of 3D apatite-coated CH/CS scaffolds supplemented with ASCs(Nog-) and BMP-2 were evaluated in a rat critical-sized mandibular defect model. After 8 weeks postimplantation, the scaffolds treated with ASCs(Nog-) and BMP-2 significantly promoted rat mandibular regeneration as demonstrated by micro-computerized tomography, histology, and immunohistochemistry, compared with the groups treated with ASCs(Nog-) or BMP-2 alone. These results suggest that our combinatorial strategy of ASCs(Nog-)+BMP-2 in 3D apatite microenvironments can significantly promote mandibular regeneration, and these may provide a potential tissue engineering approach to repair large bony defects.

  9. Water isotope effect on the thermostability of a polio viral RNA hairpin: A metadynamics study

    Science.gov (United States)

    Pathak, Arup K.; Bandyopadhyay, Tusar

    2017-04-01

    Oral polio vaccine is considered to be the most thermolabile of all the common childhood vaccines. Despite heavy water (D2O) having been known for a long time to stabilise attenuated viral RNA against thermodegradation, the molecular underpinnings of its mechanism of action are still lacking. Whereas, understanding the basis of D2O action is an important step that might reform the way other thermolabile drugs are stored and could possibly minimize the cold chain problem. Here using a combination of parallel tempering and well-tempered metadynamics simulation in light water (H2O) and in D2O, we have fully described the free energy surface associated with the folding/unfolding of a RNA hairpin containing a non-canonical basepair motif, which is conserved within the 3'-untranslated region of poliovirus-like enteroviruses. Simulations reveal that in heavy water (D2O) there is a considerable increase of the stability of the folded basin as monitored through an intramolecular hydrogen bond (HB), size, shape, and flexibility of RNA structures. This translates into a higher melting temperature in D2O by 41 K when compared with light water (H2O). We have explored the hydration dynamics of the RNA, hydration shell around the RNA surface, and spatial dependence of RNA-solvent collective HB dynamics in the two water systems. Simulation in heavy water clearly showed that D2O strengthens the HB network in the solvent, lengthens inter-residue water-bridge lifetime, and weakens dynamical coupling of the hairpin to its solvation environment, which enhances the rigidity of solvent exposed sites of the native configurations. The results might suggest that like other added osmoprotectants, D2O can act as a thermostabilizer when used as a solvent.

  10. Generation of a lentiviral vector producer cell clone for human Wiskott-Aldrich syndrome gene therapy

    Directory of Open Access Journals (Sweden)

    Matthew M Wielgosz

    Full Text Available We have developed a producer cell line that generates lentiviral vector particles of high titer. The vector encodes the Wiskott-Aldrich syndrome (WAS protein. An insulator element has been added to the long terminal repeats of the integrated vector to limit proto-oncogene activation. The vector provides high-level, stable expression of WAS protein in transduced murine and human hematopoietic cells. We have also developed a monoclonal antibody specific for intracellular WAS protein. This antibody has been used to monitor expression in blood and bone marrow cells after transfer into lineage negative bone marrow cells from WAS mice and in a WAS negative human B-cell line. Persistent expression of the transgene has been observed in transduced murine cells 12–20 weeks following transplantation. The producer cell line and the specific monoclonal antibody will facilitate the development of a clinical protocol for gene transfer into WAS protein deficient stem cells.

  11. Lentiviral vector-mediated genetic modification of human neural progenitor cells for ex vivo gene therapy.

    Science.gov (United States)

    Capowski, Elizabeth E; Schneider, Bernard L; Ebert, Allison D; Seehus, Corey R; Szulc, Jolanta; Zufferey, Romain; Aebischer, Patrick; Svendsen, Clive N

    2007-07-30

    Human neural progenitor cells (hNPC) hold great potential as an ex vivo system for delivery of therapeutic proteins to the central nervous system. When cultured as aggregates, termed neurospheres, hNPC are capable of significant in vitro expansion. In the current study, we present a robust method for lentiviral vector-mediated gene delivery into hNPC that maintains the differentiation and proliferative properties of neurosphere cultures while minimizing the amount of viral vector used and controlling the number of insertion sites per population. This method results in long-term, stable expression even after differentiation of the hNPC to neurons and astrocytes and allows for generation of equivalent transgenic populations of hNPC. In addition, the in vitro analysis presented predicts the behavior of transgenic lines in vivo when transplanted into a rodent model of Parkinson's disease. The methods presented provide a powerful tool for assessing the impact of factors such as promoter systems or different transgenes on the therapeutic utility of these cells.

  12. Eroding dipoles and vorticity growth for Euler flows in {{{R}}}^{3}: the hairpin geometry as a model for finite-time blowup

    Science.gov (United States)

    Childress, Stephen; Gilbert, Andrew D.

    2018-02-01

    A theory of an eroding ‘hairpin’ vortex dipole structure in three-dimensions is developed, extending our previous study of an axisymmetric eroding dipole without swirl. The axisymmetric toroidal dipole was found to lead to maximal growth of vorticity, as {t}4/3. The hairpin is here similarly proposed as a model to produce large ‘self-stretching’ of vorticity, with the possibility of finite-time blow-up. We derive a system of partial differential equations of ‘generalized’ form, involving contour averaging of a locally two-dimensional Euler flow. We do not attempt here to solve the system exactly, but point out that non-existence of physically acceptable solutions would most probably be a result of the axial flow. Because of the axial flow the vorticity distribution within the dipole eddies is no longer of the simple Sadovskii type (vorticity constant over a cross-section) obtained in the axisymmetric problem. Thus the solution of the system depends upon the existence of a larger class of propagating two-dimensional dipoles. The hairpin model is obtained by formal asymptotic analysis. As in the axisymmetric problem a local transformation to ‘shrinking’ coordinates is introduced, but now in a self-similar form appropriate to the study of a possible finite-time singularity. We discuss some properties of the model, including a study of the helicity and a first step in iterating toward a solution from the Sadovskii structure. We also present examples of two-dimensional propagating dipoles not previously studied, which have a vorticity profile consistent with our model. Although no rigorous results can be given, and analysis of the system is only partial, the formal calculations are consistent with the possibility of a finite time blowup of vorticity at a point of vanishing circulation of the dipole eddies, but depending upon the existence of the necessary two-dimensional propagating dipole. Our results also suggest that conservation of kinetic energy as

  13. Liquid crystal polymers: evidence of hairpin defects in nematic main chains, comparison with side chain polymers

    Science.gov (United States)

    Li, M. H.; Brûlet, A.; Keller, P.; Cotton, J. P.

    1996-09-01

    This article describes the conformation of two species of liquid crystalline polymers as revealed by small angle neutron scattering. The results obtained with side chain polymers are recalled. The procedure used to analyze the scattering data of main chains in the nematic phase is reported in this paper. It permits a demonstration of the existence of hairpins. Comparison of both polymer species shows that in the isotropic phase, the two polymers adopt a random coil conformation. In the nematic phase, the conformations are very different; the side chains behave as a melt of penetrable random coils whereas the main chains behave as a nematic phase of non penetrable cylinders.

  14. Polybrene inhibits human mesenchymal stem cell proliferation during lentiviral transduction.

    Directory of Open Access Journals (Sweden)

    Paul Lin

    Full Text Available Human mesenchymal stem cells (hMSCs can be engineered to express specific genes, either for their use in cell-based therapies or to track them in vivo over long periods of time. To obtain long-term expression of these genes, a lentivirus- or retrovirus-mediated cell transduction is often used. However, given that the efficiency with these viruses is typically low in primary cells, additives such as polybrene are always used for efficient viral transduction. Unfortunately, as presented here, exposure to polybrene alone at commonly used concentratons (1-8 µg/mL negatively impacts hMSC proliferation in a dose-dependent manner as measured by CyQUANT, EdU incorporation, and cell cycle analysis. This inhibition of proliferation was observable in culture even 3 weeks after exposure. Culturing the cells in the presence of FGF-2, a potent mitogen, did not abrogate this negative effect of polybrene. In fact, the normally sharp increase in hMSC proliferation that occurs during the first days of exposure to FGF-2 was absent at 4 µg/mL or higher concentrations of polybrene. Similarly, the effect of stimulating cell proliferation under simulated hypoxic conditions was also decreased when cells were exposed to polybrene, though overall proliferation rates were higher. The negative influence of polybrene was, however, reduced when the cells were exposed to polybrene for a shorter period of time (6 hr vs 24 hr. Thus, careful evaluation should be done when using polybrene to aid in lentiviral transduction of human MSCs or other primary cells, especially when cell number is critical.

  15. Analysis of cis and trans Requirements for DNA Replication at the Right-End Hairpin of the Human Bocavirus 1 Genome.

    Science.gov (United States)

    Shen, Weiran; Deng, Xuefeng; Zou, Wei; Engelhardt, John F; Yan, Ziying; Qiu, Jianming

    2016-09-01

    Parvoviruses are single-stranded DNA viruses that use the palindromic structures at the ends of the viral genome for their replication. The mechanism of parvovirus replication has been studied mostly in the dependoparvovirus adeno-associated virus 2 (AAV2) and the protoparvovirus minute virus of mice (MVM). Here, we used human bocavirus 1 (HBoV1) to understand the replication mechanism of bocaparvovirus. HBoV1 is pathogenic to humans, causing acute respiratory tract infections, especially in young children under 2 years old. By using the duplex replicative form of the HBoV1 genome in human embryonic kidney 293 (HEK293) cells, we identified the HBoV1 minimal replication origin at the right-end hairpin (OriR). Mutagenesis analyses confirmed the putative NS1 binding and nicking sites within the OriR. Of note, unlike the large nonstructural protein (Rep78/68 or NS1) of other parvoviruses, HBoV1 NS1 did not specifically bind OriR in vitro, indicating that other viral and cellular components or the oligomerization of NS1 is required for NS1 binding to the OriR. In vivo studies demonstrated that residues responsible for NS1 binding and nicking are within the origin-binding domain. Further analysis identified that the small nonstructural protein NP1 is required for HBoV1 DNA replication at OriR. NP1 and other viral nonstructural proteins (NS1 to NS4) colocalized within the viral DNA replication centers in both OriR-transfected cells and virus-infected cells, highlighting a direct involvement of NP1 in viral DNA replication at OriR. Overall, our study revealed the characteristics of HBoV1 DNA replication at OriR, suggesting novel characteristics of autonomous parvovirus DNA replication. Human bocavirus 1 (HBoV1) causes acute respiratory tract infections in young children. The duplex HBoV1 genome replicates in HEK293 cells and produces progeny virions that are infectious in well-differentiated airway epithelial cells. A recombinant AAV2 vector pseudotyped with an HBoV1

  16. Synthetic, structural mimetics of the β-hairpin flap of HIV-1 protease inhibit enzyme function.

    Science.gov (United States)

    Chauhan, Jay; Chen, Shen-En; Fenstermacher, Katherine J; Naser-Tavakolian, Aurash; Reingewertz, Tali; Salmo, Rosene; Lee, Christian; Williams, Emori; Raje, Mithun; Sundberg, Eric; DeStefano, Jeffrey J; Freire, Ernesto; Fletcher, Steven

    2015-11-01

    Small-molecule mimetics of the β-hairpin flap of HIV-1 protease (HIV-1 PR) were designed based on a 1,4-benzodiazepine scaffold as a strategy to interfere with the flap-flap protein-protein interaction, which functions as a gated mechanism to control access to the active site. Michaelis-Menten kinetics suggested our small-molecules are competitive inhibitors, which indicates the mode of inhibition is through binding the active site or sterically blocking access to the active site and preventing flap closure, as designed. More generally, a new bioactive scaffold for HIV-1PR inhibition has been discovered, with the most potent compound inhibiting the protease with a modest K(i) of 11 μM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Respiratory-aspirated 35-mm hairpin successfully retrieved with a Teflon® snare system under fluoroscopic guidance via a split endotracheal tube: a useful technique in cases of failed extraction by bronchoscopy and avoiding the need for a thoracotomy.

    Science.gov (United States)

    Gill, S S; Pease, R A; Ashwin, C J; Gill, S S; Tait, N P

    2012-09-01

    Respiratory foreign body aspiration (FBA) is a common global health problem requiring prompt recognition and early treatment to prevent potentially fatal complications. The majority of FBAs are due to organic objects and treatment is usually via either endoscopic or surgical extraction. FBA of a straight hairpin has been described as a unique entity in the literature, occurring most commonly in females, particularly during adolescence. In the process of inserting hairpins, the pins will typically be between the teeth with the head tilted backwards, while tying their hair with both hands. This position increases the risk of aspiration, particularly if there is any sudden coughing or laughing. To our knowledge, this is the first case report of a 35-mm straight metallic hairpin foreign body that has been successfully retrieved by a radiological snare system under fluoroscopic guidance. This was achieved with the use of a split endotracheal tube, and therefore avoided the need for a thoracotomy in an adolescent female patient.

  18. Detection of DNA damage by using hairpin molecular beacon probes and graphene oxide.

    Science.gov (United States)

    Zhou, Jie; Lu, Qian; Tong, Ying; Wei, Wei; Liu, Songqin

    2012-09-15

    A hairpin molecular beacon tagged with carboxyfluorescein in combination with graphene oxide as a quencher reagent was used to detect the DNA damage by chemical reagents. The fluorescence of molecular beacon was quenched sharply by graphene oxide; while in the presence of its complementary DNA the quenching efficiency decreased because their hybridization prevented the strong adsorbability of molecular beacon on graphene oxide. If the complementary DNA was damaged by a chemical reagent and could not form intact duplex structure with molecular beacon, more molecular beacon would adsorb on graphene oxide increasing the quenching efficiency. Thus, damaged DNA could be detected based on different quenching efficiencies afforded by damaged and intact complementary DNA. The damage effects of chlorpyrifos-methyl and three metabolites of styrene such as mandelieaeids, phenylglyoxylieaeids and epoxystyrene on DNA were studied as models. The method for detection of DNA damage was reliable, rapid and simple compared to the biological methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Thermodynamics and kinetics of RNA tertiary structure formation in the junctionless hairpin ribozyme.

    Science.gov (United States)

    White, Neil A; Hoogstraten, Charles G

    2017-09-01

    The hairpin ribozyme consists of two RNA internal loops that interact to form the catalytically active structure. This docking transition is a rare example of intermolecular formation of RNA tertiary structure without coupling to helix annealing. We have used temperature-dependent surface plasmon resonance (SPR) to characterize the thermodynamics and kinetics of RNA tertiary structure formation for the junctionless form of the ribozyme, in which loops A and B reside on separate molecules. We find docking to be strongly enthalpy-driven and to be accompanied by substantial activation barriers for association and dissociation, consistent with the structural reorganization of both internal loops upon complex formation. Comparisons with the parallel analysis of a ribozyme variant carrying a 2'-O-methyl modification at the self-cleavage site and with published data in other systems reveal a surprising diversity of thermodynamic signatures, emphasizing the delicate balance of contributions to the free energy of formation of RNA tertiary structure. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Effect of short-chain branching on interfacial polymer structure and dynamics under shear flow.

    Science.gov (United States)

    Jeong, Sohdam; Kim, Jun Mo; Cho, Soowon; Baig, Chunggi

    2017-11-22

    We present a detailed analysis on the effect of short-chain branches on the structure and dynamics of interfacial chains using atomistic nonequilibrium molecular dynamics simulations of confined polyethylene melts in a wide range of shear rates. The intrinsically fast random motions of the short branches constantly disturb the overall chain conformation, leading to a more compact and less deformed chain structure of the short-chain branched (SCB) polymer against the imposed flow field in comparison with the corresponding linear polymer. Moreover, such highly mobile short branches along the backbone of the SCB polymer lead to relatively weaker out-of-plane wagging dynamics of interfacial chains, with highly curvy backbone structures in the intermediate flow regime. In conjunction with the contribution of short branches (as opposed to that of the backbone) to the total interfacial friction between the chains and the wall, the SCB polymer shows a nearly constant behavior in the degree of slip (d s ) with respect to shear rate in the weak-to-intermediate flow regimes. On the contrary, in the strong flow regime where irregular chain rotation and tumbling dynamics occur via intensive dynamical collisions between interfacial chains and the wall, an enhancement effect on the chain detachment from the wall, caused by short branches, leads to a steeper increase in d s for the SCB polymer than for the linear polymer. Remarkably, the SCB chains at the interface exhibit two distinct types of rolling mechanisms along the backbone, with a half-dumbbell mesoscopic structure at strong flow fields, in addition to the typical hairpin-like tumbling behavior displayed by the linear chains.

  1. Interference RNA (RNAi)-based silencing of endogenous thrombopoietin receptor (Mpl) in Dami cells resulted in decreased hNUDC-mediated megakaryocyte proliferation and differentiation

    International Nuclear Information System (INIS)

    Pang, Shi-Feng; Li, Xiao-Kun; Zhang, Qiang; Yang, Fang; Xu, Peilin

    2009-01-01

    Recently our laboratory reported evidence showing that hNUDC acts as an additional cytokine for thrombopoietin receptor (Mpl). Previously known as the human homolog of a fungal nuclear migration protein, hNUDC plays a critical role in megakaryocyte differentiation and maturation. Here we sought to further clarify the hNUDC-Mpl ligand-receptor relationship by utilizing interference RNA (RNAi) to knockdown Mpl expression in a megakaryocyte cell line. We created U6 promoter driven constructs to express short hairpin RNAs (shRNA) with affinity for different sites on Mpl mRNA. By including Mpl-EGFP fusion protein in these constructs, we were able to effectively screen the shRNA that was most efficient in inhibiting Mpl mRNA expression. This shRNA was subsequently transferred into a lentivirus vector and transduced into Dami cells, a cell line which constitutively expresses endogenous Mpl. This lentiviral vector was also designed to simultaneously express EGFP to monitor transfection efficiency. Our results show that lentivirus can be used to effectively deliver shRNAs into Dami cells and cause specific inhibition of Mpl protein expression after transduction. Furthermore, we show the functional effects of shRNA-mediated Mpl silencing by demonstrating reduced hNUDC stimulated megakaryocyte proliferation and differentiation. Thus, the use of a RNAi knockdown strategy has allowed us to pinpoint the connection of hNUDC with Mpl in the regulation of megakaryocyte maturation.

  2. Mitochondrial Sirt3 supports cell proliferation by regulating glutamine-dependent oxidation in renal cell carcinoma

    International Nuclear Information System (INIS)

    Choi, Jieun; Koh, Eunjin; Lee, Yu Shin; Lee, Hyun-Woo; Kang, Hyeok Gu; Yoon, Young Eun; Han, Woong Kyu; Choi, Kyung Hwa; Kim, Kyung-Sup

    2016-01-01

    Clear cell renal carcinoma (RCC), the most common malignancy arising in the adult kidney, exhibits increased aerobic glycolysis and low mitochondrial respiration due to von Hippel-Lindau gene defects and constitutive hypoxia-inducible factor-α expression. Sirt3 is a major mitochondrial deacetylase that mediates various types of energy metabolism. However, the role of Sirt3 as a tumor suppressor or oncogene in cancer depends on cell types. We show increased Sirt3 expression in the mitochondrial fraction of human RCC tissues. Sirt3 depletion by lentiviral short-hairpin RNA, as well as the stable expression of the inactive mutant of Sirt3, inhibited cell proliferation and tumor growth in xenograft nude mice, respectively. Furthermore, mitochondrial pyruvate, which was used for oxidation in RCC, might be derived from glutamine, but not from glucose and cytosolic pyruvate, due to depletion of mitochondrial pyruvate carrier and the relatively high expression of malic enzyme 2. Depletion of Sirt3 suppressed glutamate dehydrogenase activity, leading to impaired mitochondrial oxygen consumption. Our findings suggest that Sirt3 plays a tumor-progressive role in human RCC by regulating glutamine-derived mitochondrial respiration, particularly in cells where mitochondrial usage of cytosolic pyruvate is severely compromised. -- Highlights: •Sirt3 is required for the maintenance of RCC cell proliferation. •Mitochondrial usage of cytosolic pyruvate is severely compromised in RCC. •Sirt3 supports glutamine-dependent oxidation in RCC.

  3. Advanced glycation end product-induced astrocytic differentiation of cultured neurospheres through inhibition of Notch-Hes1 pathway-mediated neurogenesis.

    Science.gov (United States)

    Guo, Yijing; Wang, Pin; Sun, Haixia; Cai, Rongrong; Xia, Wenqing; Wang, Shaohua

    2013-12-23

    This study aims to investigate the roles of the Notch-Hes1 pathway in the advanced glycation end product (AGE)-mediated differentiation of neural stem cells (NSCs). We prepared pLentiLox3.7 lentiviral vectors that express short hairpin RNA (shRNA) against Notch1 and transfected it into NSCs. Cell differentiation was analyzed under confocal laser-scanning microscopy. The percentage of neurons and astrocytes was quantified by normalizing the total number of TUJ1+ (Neuron-specific class III β-tubulin) and GFAP+ (Glial fibrillary acidic protein) cells to the total number of Hoechst 33342-labeled cell nuclei. The protein and gene expression of Notch-Hes1 pathway components was examined via western blot analysis and real-time PCR. After 1 week of incubation, we found that AGE-bovine serum albumin (BSA) (400 μg/mL) induced the astrocytic differentiation of cultured neurospheres and inhibited neuronal formation. The expression of Notch-Hes1 pathway components was upregulated in the cells in the AGE-BSA culture medium. Immunoblot analysis indicated that shRNA silencing of Notch1 expression in NSCs significantly increases neurogenesis and suppresses astrocytic differentiation in NSCs incubated with AGE-BSA. AGEs promote the astrocytic differentiation of cultured neurospheres by inhibiting neurogenesis through the Notch-Hes1 pathway, providing a potential therapeutic target for hyperglycemia-related cognitive deficits.

  4. Mitochondrial Sirt3 supports cell proliferation by regulating glutamine-dependent oxidation in renal cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jieun; Koh, Eunjin; Lee, Yu Shin; Lee, Hyun-Woo; Kang, Hyeok Gu [Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Institute of Genetic Science, Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Yoon, Young Eun; Han, Woong Kyu [Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Choi, Kyung Hwa [Department of Urology, CHA Bundang Medical Center, CHA University, Seongnam 463-712 (Korea, Republic of); Kim, Kyung-Sup, E-mail: KYUNGSUP59@yuhs.ac [Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Institute of Genetic Science, Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of)

    2016-06-03

    Clear cell renal carcinoma (RCC), the most common malignancy arising in the adult kidney, exhibits increased aerobic glycolysis and low mitochondrial respiration due to von Hippel-Lindau gene defects and constitutive hypoxia-inducible factor-α expression. Sirt3 is a major mitochondrial deacetylase that mediates various types of energy metabolism. However, the role of Sirt3 as a tumor suppressor or oncogene in cancer depends on cell types. We show increased Sirt3 expression in the mitochondrial fraction of human RCC tissues. Sirt3 depletion by lentiviral short-hairpin RNA, as well as the stable expression of the inactive mutant of Sirt3, inhibited cell proliferation and tumor growth in xenograft nude mice, respectively. Furthermore, mitochondrial pyruvate, which was used for oxidation in RCC, might be derived from glutamine, but not from glucose and cytosolic pyruvate, due to depletion of mitochondrial pyruvate carrier and the relatively high expression of malic enzyme 2. Depletion of Sirt3 suppressed glutamate dehydrogenase activity, leading to impaired mitochondrial oxygen consumption. Our findings suggest that Sirt3 plays a tumor-progressive role in human RCC by regulating glutamine-derived mitochondrial respiration, particularly in cells where mitochondrial usage of cytosolic pyruvate is severely compromised. -- Highlights: •Sirt3 is required for the maintenance of RCC cell proliferation. •Mitochondrial usage of cytosolic pyruvate is severely compromised in RCC. •Sirt3 supports glutamine-dependent oxidation in RCC.

  5. [Construction and expression of recombinant lentiviral vectors of AKT2,PDK1 and BAD].

    Science.gov (United States)

    Zhu, Jing; Chen, Bo-Jiang; Huang, Na; Li, Wei-Min

    2014-03-01

    To construct human protein kinase B (ATK2), phosphoinositide-dependent kinase 1 (PDK1) and bcl-2-associated death protein (BAD) lentiviral expression vector, and to determine their expressions in 293T cells. Total RNA was extracted from lung cancer tissues. The full-length coding regions of human ATK2, BAD and PDK1 cDNA were amplified via RT-PCR using specific primers, subcloned into PGEM-Teasy and then sequenced for confirmation. The full-length coding sequence was cut out with a specific restriction enzyme digest and subclone into pCDF1-MCS2-EF1-copGFP. The plasmids were transfected into 293T cells using the calcium phosphate method. The over expression of AKT2, BAD and PDK1 were detected by Western blot. AKT2, PDK1 and BAD were subcloned into pCDF1-MCS2-EF1-copGFP, with an efficiency of transfection of 100%, 95%, and 90% respectively. The virus titers were 6.7 x 10(6) PFU/mL in the supernatant. After infection, the proteins of AKT2, PDK1 and BAD were detected by Western blot. The lentivial vector pCDF1-MCS2-EF1-copGFP containing AKT2, BAD and PDK1 were successfully constructed and expressed in 293T cells.

  6. Differential RNAi responses of Nicotiana benthamiana individuals transformed with a hairpin-inducing construct during Plum pox virus challenge.

    Science.gov (United States)

    Montes, Christian; Castro, Álvaro; Barba, Paola; Rubio, Julia; Sánchez, Evelyn; Carvajal, Denisse; Aguirre, Carlos; Tapia, Eduardo; DelÍ Orto, Paola; Decroocq, Veronique; Prieto, Humberto

    2014-10-01

    Gene silencing and large-scale small RNA analysis can be used to develop RNA interference (RNAi)-based resistance strategies for Plum pox virus (PPV), a high impact disease of Prunus spp. In this study, a pPPViRNA hairpin-inducing vector harboring two silencing motif-rich regions of the PPV coat protein (CP) gene was evaluated in transgenic Nicotiana benthamiana (NB) plants. Wild-type NB plants infected with a chimeric PPV virus (PPV::GFP) exhibited affected leaves with mosaic chlorosis congruent to GFP fluorescence at 21 day post-inoculation; transgenic lines depicted a range of phenotypes from fully resistant to susceptible. ELISA values and GFP fluorescence intensities were used to select transgenic-resistant (TG-R) and transgenic-susceptible (TG-S) lines for further characterization of small interfering RNAs (siRNAs) by large-scale small RNA sequencing. In infected TG-S and untransformed (WT) plants, the observed siRNAs were nearly exclusively 21- and 22-nt siRNAs that targeted the whole PPV::GFP genome; 24-nt siRNAs were absent in these individuals. Challenged TG-R plants accumulated a full set of 21- to 24-nt siRNAs that were primarily associated with the selected motif-rich regions, indicating that a trans-acting siRNAs process prevented viral multiplication. BLAST analysis identified 13 common siRNA clusters targeting the CP gene. 21-nt siRNA sequences were associated with the 22-nt siRNAs and the scarce 23- and 24-nt molecules in TG-S plants and with most of the observed 22-, 23-, and 24-nt siRNAs in TG-R individuals. These results validate the use of a multi-hot spot silencing vector against PPV and elucidate the molecules by which hairpin-inducing vectors initiate RNAi in vivo.

  7. Lentiviral vectors containing mouse Csf1r control elements direct macrophage-restricted expression in multiple species of birds and mammals

    Directory of Open Access Journals (Sweden)

    Clare Pridans

    2014-01-01

    Full Text Available The development of macrophages requires signaling through the lineage-restricted receptor Csf1r. Macrophage-restricted expression of transgenic reporters based upon Csf1r requires the highly conserved Fms-intronic regulatory element (FIRE. We have created a lentiviral construct containing mouse FIRE and promoter. The lentivirus is capable of directing macrophage-restricted reporter gene expression in mouse, rat, human, pig, cow, sheep, and even chicken. Rat bone marrow cells transduced with the lentivirus were capable of differentiating into macrophages expressing the reporter gene in vitro. Macrophage-restricted expression may be desirable for immunization or immune response modulation, and for gene therapy for lysosomal storage diseases and some immunodeficiencies. The small size of the Csf1r transcription control elements will allow the insertion of large “cargo” for applications in gene therapy and vaccine delivery.

  8. Mechanism of feline immunodeficiency virus envelope glycoprotein-mediated fusion

    International Nuclear Information System (INIS)

    Garg, Himanshu; Fuller, Frederick J.; Tompkins, Wayne A.F.

    2004-01-01

    Feline immunodeficiency virus (FIV) shares remarkable homology to primate lentiviruses, human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). The process of lentiviral env glycoprotein-mediated fusion of membranes is essential for viral entry and syncytia formation. A detailed understanding of this phenomenon has helped identify new targets for antiviral drug development. Using a model based on syncytia formation between FIV env-expressing cells and a feline CD4+ T cell line we have studied the mechanism of FIV env-mediated fusion. Using this model we show that FIV env-mediated fusion mechanism and kinetics are similar to HIV env. Syncytia formation could be blocked by CXCR4 antagonist AMD3100, establishing the importance of this receptor in FIV gp120 binding. Interestingly, CXCR4 alone was not sufficient to allow fusion by a primary isolate of FIV, as env glycoprotein from FIV-NCSU 1 failed to induce syncytia in several feline cell lines expressing CXCR4. Syncytia formation could be inhibited at a post-CXCR4 binding step by synthetic peptide T1971, which inhibits interaction of heptad repeat regions of gp41 and formation of the hairpin structure. Finally, using site-directed mutagenesis, we also show that a conserved tryptophan-rich region in the membrane proximal ectodomain of gp41 is critical for fusion, possibly at steps post hairpin structure formation

  9. Stable suppression of myostatin gene expression in goat fetal fibroblast cells by lentiviral vector-mediated RNAi.

    Science.gov (United States)

    Patel, Utsav A; Patel, Amrutlal K; Joshi, Chaitanya G

    2015-01-01

    Myostatin (MSTN) is a secreted growth factor that negatively regulates skeletal muscle mass, and therefore, strategies to block myostatin-signaling pathway have been extensively pursued to increase the muscle mass in livestock. Here, we report a lentiviral vector-based delivery of shRNA to disrupt myostatin expression into goat fetal fibroblasts (GFFs) that were commonly used as karyoplast donors in somatic-cell nuclear transfer (SCNT) studies. Sh-RNA positive cells were screened by puromycin selection. Using real-time polymerase chain reaction (PCR), we demonstrated efficient knockdown of endogenous myostatin mRNA with 64% down-regulation in sh2 shRNA-treated GFF cells compared to GFF cells treated by control lentivirus without shRNA. Moreover, we have also demonstrated both the induction of interferon response and the expression of genes regulating myogenesis in GFF cells. The results indicate that myostatin-targeting siRNA produced endogenously could efficiently down-regulate myostatin expression. Therefore, targeted knockdown of the MSTN gene using lentivirus-mediated shRNA transgenics would facilitate customized cell engineering, allowing potential use in the establishment of stable cell lines to produce genetically engineered animals. © 2014 American Institute of Chemical Engineers.

  10. A study of the influence of charged residues on β-hairpin formation by nuclear magnetic resonance and molecular dynamics.

    Science.gov (United States)

    Makowska, Joanna; Zmudzińska, Wioletta; Uber, Dorota; Chmurzyński, Lech

    2014-12-01

    Chain reversals are often nucleation sites in protein folding. The β-hairpins of FBP28 WW domain and IgG are stable and have been proved to initiate the folding and are, therefore, suitable for studying the influence of charged residues on β-hairpin conformation. In this paper, we carried out NMR examination of the conformations in solution of two fragments from the FPB28 protein (PDB code: 1E0L) (N-terminal part) namely KTADGKT-NH2 (1E0L 12-18, D7) and YKTADGKTY-NH2 (1E0L 11-19, D9), one from the B3 domain of the protein G (PDB code: 1IGD), namely DDATKT-NH2 (1IGD 51-56) (Dag1), and three variants of Dag1 peptide: DVATKT-NH2 (Dag2), OVATKT-NH2 (Dag3) and KVATKT-NH2 (Dag4), respectively, in which the original charged residue were replaced with non-polar residues or modified charged residues. It was found that both the D7 and D9 peptides form a large fraction bent conformations. However, no hydrophobic contacts between the terminal Tyr residues of D9 occur, which suggests that the presence of a pair of like-charged residues stabilizes chain reversal. Conversely, only the Dag1 and Dag2 peptides exhibit some chain reversal; replacing the second aspartic-acid residue with a valine and the first one with a basic residue results in a nearly extended conformation. These results suggest that basic residues farther away in sequence can result in stabilization of chain reversal owing to screening of the non-polar core. Conversely, smaller distance in sequence prohibits this screening, while the presence oppositely-charged residues can stabilize a turn because of salt-bridge formation.

  11. Diclofenac inhibits tumor necrosis factor-α-induced nuclear factor-κB activation causing synergistic hepatocyte apoptosis.

    Science.gov (United States)

    Fredriksson, Lisa; Herpers, Bram; Benedetti, Giulia; Matadin, Quraisha; Puigvert, Jordi C; de Bont, Hans; Dragovic, Sanja; Vermeulen, Nico P E; Commandeur, Jan N M; Danen, Erik; de Graauw, Marjo; van de Water, Bob

    2011-06-01

    Drug-induced liver injury (DILI) is an important clinical problem. It involves crosstalk between drug toxicity and the immune system, but the exact mechanism at the cellular hepatocyte level is not well understood. Here we studied the mechanism of crosstalk in hepatocyte apoptosis caused by diclofenac and the proinflammatory cytokine tumor necrosis factor α (TNF-α). HepG2 cells were treated with diclofenac followed by TNF-α challenge and subsequent evaluation of necrosis and apoptosis. Diclofenac caused a mild apoptosis of HepG2 cells, which was strongly potentiated by TNF-α. A focused apoptosis machinery short interference RNA (siRNA) library screen identified that this TNF-α-mediated enhancement involved activation of caspase-3 through a caspase-8/Bid/APAF1 pathway. Diclofenac itself induced sustained activation of c-Jun N-terminal kinase (JNK) and inhibition of JNK decreased both diclofenac and diclofenac/TNF-α-induced apoptosis. Live cell imaging of GFPp65/RelA showed that diclofenac dampened the TNF-α-mediated nuclear factor kappaB (NF-κB) translocation oscillation in association with reduced NF-κB transcriptional activity. This was associated with inhibition by diclofenac of the TNF-α-induced phosphorylation of the inhibitor of NF-κB alpha (IκBα). Finally, inhibition of IκB kinase β (IKKβ) with BMS-345541 as well as stable lentiviral short hairpin RNA (shRNA)-based knockdown of p65/RelA sensitized hepatocytes towards diclofenac/TNF-α-induced cytotoxicity. Together, our data suggest a model whereby diclofenac-mediated stress signaling suppresses TNF-α-induced survival signaling routes and sensitizes cells to apoptosis. Copyright © 2011 American Association for the Study of Liver Diseases.

  12. Binding of HIV-1 gp41-directed neutralizing and non-neutralizing fragment antibody binding domain (Fab and single chain variable fragment (ScFv antibodies to the ectodomain of gp41 in the pre-hairpin and six-helix bundle conformations.

    Directory of Open Access Journals (Sweden)

    John M Louis

    Full Text Available We previously reported a series of antibodies, in fragment antigen binding domain (Fab formats, selected from a human non-immune phage library, directed against the internal trimeric coiled-coil of the N-heptad repeat (N-HR of HIV-1 gp41. Broadly neutralizing antibodies from that series bind to both the fully exposed N-HR trimer, representing the pre-hairpin intermediate state of gp41, and to partially-exposed N-HR helices within the context of the gp41 six-helix bundle. While the affinities of the Fabs for pre-hairpin intermediate mimetics vary by only 2 to 20-fold between neutralizing and non-neutralizing antibodies, differences in inhibition of viral entry exceed three orders of magnitude. Here we compare the binding of neutralizing (8066 and non-neutralizing (8062 antibodies, differing in only four positions within the CDR-H2 binding loop, in Fab and single chain variable fragment (ScFv formats, to several pre-hairpin intermediate and six-helix bundle constructs of gp41. Residues 56 and 58 of the mini-antibodies are shown to be crucial for neutralization activity. There is a large differential (≥ 150-fold in binding affinity between neutralizing and non-neutralizing antibodies to the six-helix bundle of gp41 and binding to the six-helix bundle does not involve displacement of the outer C-terminal helices of the bundle. The binding stoichiometry is one six-helix bundle to one Fab or three ScFvs. We postulate that neutralization by the 8066 antibody is achieved by binding to a continuum of states along the fusion pathway from the pre-hairpin intermediate all the way to the formation of the six-helix bundle, but prior to irreversible fusion between viral and cellular membranes.

  13. Specific interaction of the nonstructural protein NS1 of minute virus of mice (MVM) with [ACCA](2) motifs in the centre of the right-end MVM DNA palindrome induces hairpin-primed viral DNA replication.

    Science.gov (United States)

    Willwand, Kurt; Moroianu, Adela; Hörlein, Rita; Stremmel, Wolfgang; Rommelaere, Jean

    2002-07-01

    The linear single-stranded DNA genome of minute virus of mice (MVM) is replicated via a double-stranded replicative form (RF) intermediate DNA. Amplification of viral RF DNA requires the structural transition of the right-end palindrome from a linear duplex into a double-hairpin structure, which serves for the repriming of unidirectional DNA synthesis. This conformational transition was found previously to be induced by the MVM nonstructural protein NS1. Elimination of the cognate NS1-binding sites, [ACCA](2), from the central region of the right-end palindrome next to the axis of symmetry was shown to markedly reduce the efficiency of hairpin-primed DNA replication, as measured in a reconstituted in vitro replication system. Thus, [ACCA](2) sequence motifs are essential as NS1-binding elements in the context of the structural transition of the right-end MVM palindrome.

  14. Aspects of the epidemiology, research, and control of lentiviral infections of small ruminants and their relevance to Dutch sheep and goat farming.

    Science.gov (United States)

    van Maanen, C; Brinkhof, J M A; Moll, L; Colenbrander, B; Houwers, D J

    2010-08-15

    In 1862, the veterinarian Loman reported the first sheep in The Netherlands with symptoms associated with lentiviral infection, although at the time the symptoms were ascribed to ovine progressive pneumonia. In the following century, similar cases were reported by South African, French, American, and Icelandic researchers. Extensive research into the pathology, aetiology, and epidemiology of this slowly progressive and ultimately fatal disease was initiated in several countries, including the Netherlands. Studies of the causative agents--maedi visna virus (MVV) in sheep and caprine arthritis encephalitis virus (CAEV) in goats, comprising the heterogeneous group of the small ruminant lentiviruses (SRLV)--prompted the development of diagnostic methods and the initiation of disease control programmes in many European countries including the Netherlands, as a pioneer in 1982, and in the U.S.A. and Canada.

  15. Preclinical correction of human Fanconi anemia complementation group A bone marrow cells using a safety-modified lentiviral vector.

    Science.gov (United States)

    Becker, P S; Taylor, J A; Trobridge, G D; Zhao, X; Beard, B C; Chien, S; Adair, J; Kohn, D B; Wagner, J E; Shimamura, A; Kiem, H-P

    2010-10-01

    One of the major hurdles for the development of gene therapy for Fanconi anemia (FA) is the increased sensitivity of FA stem cells to free radical-induced DNA damage during ex vivo culture and manipulation. To minimize this damage, we have developed a brief transduction procedure for lentivirus vector-mediated transduction of hematopoietic progenitor cells from patients with Fanconi anemia complementation group A (FANCA). The lentiviral vector FancA-sW contains the phosphoglycerate kinase promoter, the FANCA cDNA, and a synthetic, safety-modified woodchuck post transcriptional regulatory element (sW). Bone marrow mononuclear cells or purified CD34(+) cells from patients with FANCA were transduced in an overnight culture on recombinant fibronectin peptide CH-296, in low (5%) oxygen, with the reducing agent, N-acetyl-L-cysteine (NAC), and a combination of growth factors, granulocyte colony-stimulating factor (G-CSF), Flt3 ligand, stem cell factor, and thrombopoietin. Transduced cells plated in methylcellulose in hypoxia with NAC showed increased colony formation compared with 21% oxygen without NAC (Pgene-corrected cells in patients with FANCA.

  16. Reversal of pathology in CHMP2B-mediated frontotemporal dementia patient cells using RNA interference

    DEFF Research Database (Denmark)

    Nielsen, Troels Tolstrup; Mizielinska, Sarah; Hasholt, Lis

    2012-01-01

    role in the pathogenesis of the disease. METHODS: In the present study, we used lentiviral vectors to efficiently knockdown CHMP2B by delivering microRNA embedded small hairpin RNAs. RESULTS: We show that CHMP2B can be efficiently knocked down in patient fibroblasts using an RNA interference approach......BACKGROUND: Frontotemporal dementia is the second most common form of young-onset dementia after Alzheimer's disease, and several genetic forms of frontotemporal dementia are known. A rare genetic variant is caused by a point mutation in the CHMP2B gene. CHMP2B is a component of the ESCRT......-III complex, which is involved in endosomal trafficking of proteins targeted for degradation in lysosomes. Mutations in CHMP2B result in abnormal endosomal structures in patient fibroblasts and patient brains, probably through a gain-of-function mechanism, suggesting that the endosomal pathway plays a central...

  17. Enzyme-free electrochemical detection of microRNA-21 using immobilized hairpin probes and a target-triggered hybridization chain reaction amplification strategy

    International Nuclear Information System (INIS)

    Liu, Hongying; Bei, Xiaoqiong; Xia, Qiuting; Fu, Yan; Zhang, Shi; Liu, Maochuan; Fan, Kai; Zhang, Mingzhen; Yang, Yong

    2016-01-01

    We describe a sensitive enzyme-free bioassay for the determination of microRNA-21. It is based on a combination of target-triggered hybridization chain reaction, tagging with CdTe quantum dots (QDs), and anodic stripping voltammetry. Firstly, a thiolated capture hairpin probe SH-HP1 was immobilized on the surface of a gold electrode. HP1 unfolds in the presence of microRNA-21. If hairpin probe 2 (HP2) is present, a HP1-HP2 complex will be formed which possesses an exposed stem of HP2, and microRNA is released in parallel. The released microRNA-21 triggers a hybridization chain reaction and this leads to form an exposed DNA segment of HP2 and cycle use microRNA-21. With the aid of assistant DNA A1 and A2, the exposed DNA segment of HP2 progressed to a long double strand. The strand is rich in CdTe QDs with the help of QDs-A1. Then, the attached QDs were dissolved with HNO 3 to give dissolved Cd(II) ions. Finally, the corresponding electrochemical current response of Cd(II) is monitored by anodic stripping voltammetry and used to quantify the concentration of microRNA-21. More microRNA-21 participated in this reaction increases the number of CdTe QDs, which results in increased electrochemical current. Thus, an ultrasensitive detection of microRNA-21 is accomplished by anodic stripping voltammetry. This gene assay displays a detection limit as low as 33 aM. It can discriminate between complementary DNA sequence and single-base mismatched DNA, indicating its high specificity. (author)

  18. Resonance hairpin and Langmuir probe-assisted laser photodetachment measurements of the negative ion density in a pulsed dc magnetron discharge

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, James W.; Dodd, Robert; You, S.-D.; Sirse, Nishant; Karkari, Shantanu Kumar [Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool (United Kingdom); National Centre for Plasma Science and Technology, Dublin City University, Dublin 9, Republic of Ireland (Ireland); National Centre for Plasma Science and Technology, Dublin City University, Dublin 9, Republic of Ireland and Institute for Plasma Research, Bhat Gandhinagar, Gujarat (India)

    2011-05-15

    The time-resolved negative oxygen ion density n{sub -} close to the center line in a reactive pulsed dc magnetron discharge (10 kHz and 50% duty cycle) has been determined for the first time using a combination of laser photodetachment and resonance hairpin probing. The discharge was operated at a power of 50 W in 70% argon and 30% oxygen gas mixtures at 1.3 Pa pressure. The results show that the O{sup -} density remains pretty constant during the driven phase of the discharge at values typically below 5x10{sup 14} m{sup -3}; however, in the off-time, the O{sup -} density grows reaching values several times those in the on-time. This leads to the negative ion fraction (or degree of electronegativity) {alpha}=n{sub -}/n{sub e} being higher in the off phase (maximum value {alpha}{approx}1) than in the on phase ({alpha}=0.05-0.3). The authors also see higher values of {alpha} at positions close to the magnetic null than in the more magnetized region of the plasma. This fractional increase in negative ion density during the off-phase is attributed to the enhanced dissociative electron attachment of highly excited oxygen molecules in the cooling plasma. The results show that close to the magnetic null the photodetached electron density decays quickly after the laser pulse, followed by a slow decay over a few microseconds governed by the negative ion temperature. However, in the magnetized regions of the plasma, this decay is more gradual. This is attributed to the different cross-field transport rates for electrons in these two regions. The resonance hairpin probe measurements of the photoelectron densities are compared directly to photoelectron currents obtained using a conventional Langmuir probe. There is good agreement in the general trends, particularly in the off-time.

  19. Adenovirus Detection by the cGAS/STING/TBK1 DNA Sensing Cascade

    Science.gov (United States)

    Lam, Eric; Stein, Saskia

    2014-01-01

    Adenovirus (Ad) infection triggers a cell-specific antiviral response following exposure of viral DNA to the intracellular compartment. A variety of DNA sensors (DAI, AIM2, DDx41, RNA polymerase [Pol] III, and IFI16 [p204]) have been identified in recent years; however, the DNA sensor involved in detection of adenovirus has not been established. Cyclic GMP-AMP synthase (cGAS), a DNA sensor that produces a cyclic guanine-adenine dinucleotide (cGAMP) inducer of STING, has been examined to determine its role in generating an antiadenoviral response. Short hairpin RNA (shRNA) lentiviral vectors targeting TBK1, STING, and cGAS were established in murine MS1 endothelial and RAW 264.7 macrophage cell lines. Knockdown of TBK1, STING, and cGAS results in a dramatic reduction in the activation of the primary antiviral response marker phosphorylated interferon (IFN) response factor 3 (IRF3) following exposure to adenovirus. Furthermore, activation of secondary type I IFN signaling targets (ptyrSTAT1 and ptyrSTAT2 [ptyrSTAT1/2]) was also compromised. Consistent with compromised activation of primary and secondary response markers, transcriptional activation of IRF3-responsive genes (beta IFN [IFN-β], ISG15, ISG54) and secondary response transcripts were diminished in cells knocked down in cGAS, STING, or TBK1. These data establish cGAS as the dominant cytosolic DNA sensor responsible for detection of internalized adenovirus leading to induction of the type I interferon antiviral cascade. PMID:24198409

  20. [Effect of DOT1L gene silence on proliferation of acute monocytic leukemia cell line THP-1].

    Science.gov (United States)

    Zhang, Yu-Juan; Li, Hua-Wen; Chang, Guo-Qiang; Zhang, Hong-Ju; Wang, Jian; Lin, Ya-Ni; Zhou, Jia-Xi; Li, Qing-Hua; Pang, Tian-Xiang

    2013-08-01

    This study was aimed to investigate the influence of short hairpin RNA (shRNA) on proliferation of human leukemia cell line THP-1. The shRNA targeting the site 732-752 of DOT1L mRNA was designed and chemically synthesized, then a single-vector lentiviral, tet-inducible shRNA-DOT1L system (Plko-Tet-On) was generated. Thereafter, the THP-1 cells with lentivirus were infected to create stable cell line with regulatable shRNA expression. The expression of DOT1L in the THP-1 cell line was assayed by RT-PCR. Effect of shRNA-DOT1L on the proliferation of THP-1 cells was detected with MTT method,and the change of colony forming potential of THP-1 cells was analyzed by colony forming unit test. Cell cycle distribution was tested by flow cytometry. The results indicated that the expression of DOT1L was statistically lower than that in the control groups. The proliferation and colony forming capacity of THP-1 cells were significantly inhibited. The percentage of cells at G0/G1 phase increased in THP-1/shRNA cells treated with Dox while the percentage of cells at S phase significantly decreased as compared with that in the control group. It is concluded that the shRNA targeting DOT1L can effectively inhibit the proliferation of acute monocytic leukemia cell line THP-1.

  1. Attenuated food anticipatory activity and abnormal circadian locomotor rhythms in Rgs16 knockdown mice.

    Directory of Open Access Journals (Sweden)

    Naoto Hayasaka

    Full Text Available Regulators of G protein signaling (RGS are a multi-functional protein family, which functions in part as GTPase-activating proteins (GAPs of G protein α-subunits to terminate G protein signaling. Previous studies have demonstrated that the Rgs16 transcripts exhibit robust circadian rhythms both in the suprachiasmatic nucleus (SCN, the master circadian light-entrainable oscillator (LEO of the hypothalamus, and in the liver. To investigate the role of RGS16 in the circadian clock in vivo, we generated two independent transgenic mouse lines using lentiviral vectors expressing short hairpin RNA (shRNA targeting the Rgs16 mRNA. The knockdown mice demonstrated significantly shorter free-running period of locomotor activity rhythms and reduced total activity as compared to the wild-type siblings. In addition, when feeding was restricted during the daytime, food-entrainable oscillator (FEO-driven elevated food-anticipatory activity (FAA observed prior to the scheduled feeding time was significantly attenuated in the knockdown mice. Whereas the restricted feeding phase-advanced the rhythmic expression of the Per2 clock gene in liver and thalamus in the wild-type animals, the above phase shift was not observed in the knockdown mice. This is the first in vivo demonstration that a common regulator of G protein signaling is involved in the two separate, but interactive circadian timing systems, LEO and FEO. The present study also suggests that liver and/or thalamus regulate the food-entrained circadian behavior through G protein-mediated signal transduction pathway(s.

  2. Protein phosphatase 5 promotes hepatocarcinogenesis through interaction with AMP-activated protein kinase.

    Science.gov (United States)

    Chen, Yao-Li; Hung, Man-Hsin; Chu, Pei-Yi; Chao, Tzu-I; Tsai, Ming-Hsien; Chen, Li-Ju; Hsiao, Yung-Jen; Shih, Chih-Ting; Hsieh, Feng-Shu; Chen, Kuen-Feng

    2017-08-15

    The serine-threonine protein phosphatase family members are known as critical regulators of various cellular functions, such as survival and transformation. Growing evidence suggests that pharmacological manipulation of phosphatase activity exhibits therapeutic benefits. Ser/Thr protein phosphatase 5 (PP5) is known to participate in glucocorticoid receptor (GR) and stress-induced signaling cascades that regulate cell growth and apoptosis, and has been shown to be overexpressed in various human malignant diseases. However, the role of PP5 in hepatocellular carcinoma (HCC) and whether PP5 may be a viable therapeutic target for HCC treatment are unknown. Here, by analyzing HCC clinical samples obtained from 215 patients, we found that overexpression of PP5 is tumor specific and associated with worse clinical outcomes. We further characterized the oncogenic properties of PP5 in HCC cells. Importantly, both silencing of PP5 with lentiviral-mediated short hairpin RNA (shRNA) and chemical inhibition of PP5 phosphatase activity using the natural compound cantharidin/norcantharidin markedly suppressed the growth of HCC cells and tumors in vitro and in vivo. Moreover, we identified AMP-activated protein kinase (AMPK) as a novel downstream target of oncogenic PP5 and demonstrated that the antitumor mechanisms underlying PP5 inhibition involve activation of AMPK signaling. Overall, our results establish a pathological function of PP5 in hepatocarcinogenesis via affecting AMPK signaling and suggest that PP5 inhibition is an attractive therapeutic approach for HCC. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Neuronal Orphan G-Protein Coupled Receptor Proteins Mediate Plasmalogens-Induced Activation of ERK and Akt Signaling.

    Directory of Open Access Journals (Sweden)

    Md Shamim Hossain

    Full Text Available The special glycerophospholipids plasmalogens (Pls are enriched in the brain and reported to prevent neuronal cell death by enhancing phosphorylation of Akt and ERK signaling in neuronal cells. Though the activation of Akt and ERK was found to be necessary for the neuronal cells survival, it was not known how Pls enhanced cellular signaling. To answer this question, we searched for neuronal specific orphan GPCR (G-protein coupled receptor proteins, since these proteins were believed to play a role in cellular signal transduction through the lipid rafts, where both Pls and some GPCRs were found to be enriched. In the present study, pan GPCR inhibitor significantly reduced Pls-induced ERK signaling in neuronal cells, suggesting that Pls could activate GPCRs to induce signaling. We then checked mRNA expression of 19 orphan GPCRs and 10 of them were found to be highly expressed in neuronal cells. The knockdown of these 10 neuronal specific GPCRs by short hairpin (sh-RNA lentiviral particles revealed that the Pls-mediated phosphorylation of ERK was inhibited in GPR1, GPR19, GPR21, GPR27 and GPR61 knockdown cells. We further found that the overexpression of these GPCRs enhanced Pls-mediated phosphorylation of ERK and Akt in cells. Most interestingly, the GPCRs-mediated cellular signaling was reduced significantly when the endogenous Pls were reduced. Our cumulative data, for the first time, suggest a possible mechanism for Pls-induced cellular signaling in the nervous system.

  4. MicroRNA 107 partly inhibits endothelial progenitor cells differentiation via HIF-1β.

    Directory of Open Access Journals (Sweden)

    Shu Meng

    Full Text Available Endothelial progenitor cells (EPCs play an important role in tissue repair after ischemic heart disease. In particular, the recovery of endothelial function is reliant on the ability and rate of EPCs differentiate into mature endothelial cells. The present study evaluated the effect of microRNA 107 (miR-107 on the mechanism of EPCs differentiation. EPCs were isolated from rats' bone marrow and miR-107 expression of EPCs in hypoxic and normoxic conditions were measured by real-time qualitative PCR. CD31 was analyzed by flow cytometry and eNOS was examined by real-time qualitative PCR and western blotting and these were used as markers of EPC differentiation. In order to reveal the mechanism, we used miR107 inhibitor and lentiviral vector expressing a short hairpin RNA (shRNA that targets miR-107 and hypoxia-inducible factor-1 β (HIF-1β to alter miR107 and HIF-1β expression. MiR-107 expression were increased in EPCs under hypoxic conditions. Up-regulation of miR-107 partly suppressed the EPCs differentiation induced in hypoxia, while down-regulation of miR-107 promoted EPC differentiation. HIF-1β was the target. This study indicated that miR-107 was up-regulated in hypoxia to prevent EPCs differentiation via its target HIF-1β. The physiological mechanisms of miR-107 must be evaluated if it is to be used as a potential anti-ischemia therapeutic regime.

  5. Safe and Effective Gene Therapy for Murine Wiskott-Aldrich Syndrome Using an Insulated Lentiviral Vector

    Directory of Open Access Journals (Sweden)

    Swati Singh

    2017-03-01

    Full Text Available Wiskott-Aldrich syndrome (WAS is a life-threatening immunodeficiency caused by mutations within the WAS gene. Viral gene therapy to restore WAS protein (WASp expression in hematopoietic cells of patients with WAS has the potential to improve outcomes relative to the current standard of care, allogeneic bone marrow transplantation. However, the development of viral vectors that are both safe and effective has been problematic. While use of viral transcriptional promoters may increase the risk of insertional mutagenesis, cellular promoters may not achieve WASp expression levels necessary for optimal therapeutic effect. Here we evaluate a self-inactivating (SIN lentiviral vector combining a chromatin insulator upstream of a viral MND (MPSV LTR, NCR deleted, dl587 PBS promoter driving WASp expression. Used as a gene therapeutic in Was−/− mice, this vector resulted in stable WASp+ cells in all hematopoietic lineages and rescue of T and B cell defects with a low number of viral integrations per cell, without evidence of insertional mutagenesis in serial bone marrow transplants. In a gene transfer experiment in non-human primates, the insulated MND promoter (driving GFP expression demonstrated long-term polyclonal engraftment of GFP+ cells. These observations demonstrate that the insulated MND promoter safely and efficiently reconstitutes clinically effective WASp expression and should be considered for future WAS therapy.

  6. Covalent Bonding of Pyrrolobenzodiazepines (PBDs) to Terminal Guanine Residues within Duplex and Hairpin DNA Fragments

    Science.gov (United States)

    Mantaj, Julia; Jackson, Paul J. M.; Karu, Kersti; Rahman, Khondaker M.; Thurston, David E.

    2016-01-01

    Pyrrolobenzodiazepines (PBDs) are covalent-binding DNA-interactive agents with growing importance as payloads in Antibody Drug Conjugates (ADCs). Until now, PBDs were thought to covalently bond to C2-NH2 groups of guanines in the DNA-minor groove across a three-base-pair recognition sequence. Using HPLC/MS methodology with designed hairpin and duplex oligonucleotides, we have now demonstrated that the PBD Dimer SJG-136 and the C8-conjugated PBD Monomer GWL-78 can covalently bond to a terminal guanine of DNA, with the PBD skeleton spanning only two base pairs. Control experiments with the non-C8-conjugated anthramycin along with molecular dynamics simulations suggest that the C8-substituent of a PBD Monomer, or one-half of a PBD Dimer, may provide stability for the adduct. This observation highlights the importance of PBD C8-substituents, and also suggests that PBDs may bind to terminal guanines within stretches of DNA in cells, thus representing a potentially novel mechanism of action at the end of DNA strand breaks. PMID:27055050

  7. Potent and reversible lentiviral vector restriction in murine induced pluripotent stem cells.

    Science.gov (United States)

    Geis, Franziska K; Galla, Melanie; Hoffmann, Dirk; Kuehle, Johannes; Zychlinski, Daniela; Maetzig, Tobias; Schott, Juliane W; Schwarzer, Adrian; Goffinet, Christine; Goff, Stephen P; Schambach, Axel

    2017-05-31

    Retroviral vectors are derived from wild-type retroviruses, can be used to study retrovirus-host interactions and are effective tools in gene and cell therapy. However, numerous cell types are resistant or less permissive to retrovirus infection due to the presence of active defense mechanisms, or the absence of important cellular host co-factors. In contrast to multipotent stem cells, pluripotent stem cells (PSC) have potential to differentiate into all three germ layers. Much remains to be elucidated in the field of anti-viral immunity in stem cells, especially in PSC. In this study, we report that transduction with HIV-1-based, lentiviral vectors (LV) is impaired in murine PSC. Analyses of early retroviral events in induced pluripotent stem cells (iPSC) revealed that the restriction is independent of envelope choice and does not affect reverse transcription, but perturbs nuclear entry and proviral integration. Proteasomal inhibition by MG132 could not circumvent the restriction. However, prevention of cyclophilin A (CypA) binding to the HIV-1 capsid via use of either a CypA inhibitor (cyclosporine A) or CypA-independent capsid mutants improved transduction. In addition, application of higher vector doses also increased transduction. Our data revealed a CypA mediated restriction in iPSC, which was acquired during reprogramming, associated with pluripotency and relieved upon subsequent differentiation. We showed that murine PSC and iPSC are less susceptible to LV. The block observed in iPSC was CypA-dependent and resulted in reduced nuclear entry of viral DNA and proviral integration. Our study helps to improve transduction of murine pluripotent cells with HIV-1-based vectors and contributes to our understanding of retrovirus-host interactions in PSC.

  8. Electronic Detection of DNA Hybridization by Coupling Organic Field-Effect Transistor-Based Sensors and Hairpin-Shaped Probes

    Directory of Open Access Journals (Sweden)

    Corrado Napoli

    2018-03-01

    Full Text Available In this paper, the electronic transduction of DNA hybridization is presented by coupling organic charge-modulated field-effect transistors (OCMFETs and hairpin-shaped probes. These probes have shown interesting properties in terms of sensitivity and selectivity in other kinds of assays, in the form of molecular beacons (MBs. Their integration with organic-transistor based sensors, never explored before, paves the way to a new class of low-cost, easy-to-use, and portable genetic sensors with enhanced performances. Thanks to the peculiar characteristics of the employed sensor, measurements can be performed at relatively high ionic strengths, thus optimizing the probes’ functionality without affecting the detection ability of the device. A complete electrical characterization of the sensor is reported, including calibration with different target concentrations in the measurement environment and selectivity evaluation. In particular, DNA hybridization detection for target concentration as low as 100 pM is demonstrated.

  9. Double transduction of a Cre/LoxP lentiviral vector: a simple method to generate kidney cell-specific knockdown mice.

    Science.gov (United States)

    Nam, Bo Young; Kim, Dong Ki; Park, Jung Tak; Kang, Hye-Young; Paeng, Jisun; Kim, Seonghun; Park, Jimin; Um, Jae Eun; Oh, Hyung Jung; Han, Seung Hyeok; Yoo, Tae-Hyun; Kang, Shin-Wook

    2015-12-15

    In a lentivirus-based gene delivery system, the incorporated gene is continuously expressed for a long time. In this study, we devised a simple way to knock down a specific gene in a kidney cell-specific pattern in adult mice by lentivirus-assisted transfer of short hairpin RNA (shRNA). Kidney collecting duct (CD)-specific aquaporin-3 (AQP3)-knockdown mice were generated by consecutive injection of Hoxb7-Cre-expressing lentivirus (LV-Hoxb7 Cre) and loxP-AQP3 shRNA-expressing lentivirus (LV-loxP shAQP3) in adult C57BL6/J mice. LV-Hoxb7 Cre was designed to express mCherry, while LV-loxP shAQP3 was designed with a floxed enhanced green fluorescent protein (EGFP)-tagged stop sequence, and thus EGFP would be expressed only in the absence of Cre recombination. In mice treated with LV-Hoxb7 Cre alone, mCherry protein expression, which indicates the presence of Cre recombinase, occurred only in CD cells. However, LV-loxP shAQP3 injection alone resulted in an increase in EGFP expression in all kidney cells, indicating the transcription of the floxed region. When LV-Hoxb7 Cre and LV-loxP shAQP3 were sequentially transduced, EGFP expression was attenuated while mCherry expression was sustained in CD cells, demonstrating a CD cell-specific recombination of the floxed region. AQP3 expression in mice injected with LV-Hoxb7 Cre or LV-loxP shAQP3 alone did not differ, but consecutive injection of LV-Hoxb7 Cre and LV-loxP shAQP3 significantly reduced AQP3 expression in CD cells. However, the expression levels of AQP3 were not altered in other cell types. Double transduction of Cre- and loxP-based lentivirus can easily generate kidney cell-specific knockdown mice, and this method might be applicable to other species. Copyright © 2015 the American Physiological Society.

  10. Visual detection of STAT5B gene expression in living cell using the hairpin DNA modified gold nanoparticle beacon.

    Science.gov (United States)

    Xue, Jianpeng; Shan, Lingling; Chen, Haiyan; Li, Yang; Zhu, Hongyan; Deng, Dawei; Qian, Zhiyu; Achilefu, Samuel; Gu, Yueqing

    2013-03-15

    Signal transducer and activator of transcription 5B (STAT5B) is an important protein in JAK-STAT signaling pathway that is responsible for the metastasis and proliferation of tumor cells. Determination of the STAT5B messenger Ribonucleic Acid (mRNA) relating to the STAT5B expression provides insight into the mechanism of tumor progression. In this study, we designed and used a special hairpin deoxyribonucleic acid (DNA) for human STAT5B mRNA to functionalize gold nanoparticles, which served as a beacon for detecting human STAT5B expression. Up to 90% quenching efficiency was achieved. Upon hybridizing with the target mRNA, the hairpin DNA modified gold nanoparticle beacons (hDAuNP beacons) release the fluorophores attached at 5' end of the oligonucleotide sequence. The fluorescence properties of the beacon before and after the hybridization with the complementary DNA were confirmed in vitro. The stability of hDAuNP beacons against degradation by DNase I and GSH indicated that the prepared beacon is stable inside cells. The detected fluorescence in MCF-7 cancer cells correlates with the specific STAT5B mRNA expression, which is consistent with the result from PCR measurement. Fluorescence microscopy showed that the hDAuNP beacons internalized in cells without using transfection agents, with intracellular distribution in the cytoplasm rather than the nucleus. The results demonstrated that this beacon could directly provide quantitative measurement of the intracellular STAT5B mRNA in living cells. Compared to the previous approaches, this beacon has advantages of higher target to background ratio of detection and an increased resistance to nuclease degradation. The strategy reported in this study is a promising approach for the intracellular measurement of RNA or protein expression in living cells, and has great potential in the study of drug screening and discovery. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Oviduct-Specific Expression of Human Neutrophil Defensin 4 in Lentivirally Generated Transgenic Chickens

    Science.gov (United States)

    Liu, Tongxin; Wu, Hanyu; Cao, Dainan; Li, Qingyuan; Zhang, Yaqiong; Li, Ning; Hu, Xiaoxiang

    2015-01-01

    The expression of oviduct-specific recombinant proteins in transgenic chickens is a promising technology for the production of therapeutic biologics in eggs. In this study, we constructed a lentiviral vector encoding an expression cassette for human neutrophil defensin 4 (HNP4), a compound that displays high activity against Escherichia coli, and produced transgenic chickens that expressed the recombinant HNP4 protein in egg whites. After the antimicrobial activity of the recombinant HNP4 protein was tested at the cellular level, a 2.8-kb ovalbumin promoter was used to drive HNP4 expression specifically in oviduct tissues. From 669 injected eggs, 218 chickens were successfully hatched. Ten G0 roosters, with semens identified as positive for the transgene, were mated with wild-type hens to generate G1 chickens. From 1,274 total offspring, fifteen G1 transgenic chickens were positive for the transgene, which was confirmed by PCR and Southern blotting. The results of the Southern blotting and genome walking indicated that a single copy of the HNP4 gene was integrated into chromosomes 1, 2, 3, 4, 6 and 24 of the chickens. As expected, HNP4 expression was restricted to the oviduct tissues, and the levels of both transcriptional and translational HNP4 expression varied greatly in transgenic chickens with different transgene insertion sites. The amount of HNP4 protein expressed in the eggs of G1 and G2 heterozygous transgenic chickens ranged from 1.65 μg/ml to 10.18 μg/ml. These results indicated that the production of transgenic chickens that expressed HNP4 protein in egg whites was successful. PMID:26020529

  12. Differentiation of Human Mesenchymal Stem Cells into Insulin Producing Cells by Using A Lentiviral Vector Carrying PDX1.

    Science.gov (United States)

    Allahverdi, Amir; Abroun, Saied; Jafarian, Arefeh; Soleimani, Masoud; Taghikhani, Mohammad; Eskandari, Fatemeh

    2015-01-01

    Type I diabetes is an immunologically-mediated devastation of insulin producing cells (IPCs) in the pancreatic islet. Stem cells that produce β-cells are a new promising tool. Adult stem cells such as mesenchymal stem cells (MSCs) are self renewing multi potent cells showing capabilities to differentiate into ectodermal, mesodermal and endodermal tissues. Pancreatic and duodenal homeobox factor 1 (PDX1) is a master regulator gene required for embryonic development of the pancreas and is crucial for normal pancreatic islets activities in adults. We induced the over-expression of the PDX1 gene in human bone marrow MSCs (BM-MSCs) by Lenti-PDX1 in order to generate IPCs. Next, we examine the ability of the cells by measuring insulin/c-peptide production and INSULIN and PDX1 gene expressions. After transduction, MSCs changed their morphology at day 5 and gradually differentiated into IPCs. INSULIN and PDX1 expressions were confirmed by real time polymerase chain reaction (RT-PCR) and immunostaining. IPC secreted insulin and C-peptide in the media that contained different glucose concentrations. MSCs differentiated into IPCs by genetic manipulation. Our result showed that lentiviral vectors could deliver PDX1 gene to MSCs and induce pancreatic differentiation.

  13. Fast and quantitative differentiation of single-base mismatched DNA by initial reaction rate of catalytic hairpin assembly.

    Science.gov (United States)

    Li, Chenxi; Li, Yixin; Xu, Xiao; Wang, Xinyi; Chen, Yang; Yang, Xiaoda; Liu, Feng; Li, Na

    2014-10-15

    The widely used catalytic hairpin assembly (CHA) amplification strategy generally needs several hours to accomplish one measurement based on the prevailingly used maximum intensity detection mode, making it less practical for assays where high throughput or speed is desired. To make the best use of the kinetic specificity of toehold domain for circuit reaction initiation, we developed a mathematical model and proposed an initial reaction rate detection mode to quantitatively differentiate the single-base mismatch. Using the kinetic mode, assay time can be reduced substantially to 10 min for one measurement with the comparable sensitivity and single-base mismatch differentiating ability as were obtained by the maximum intensity detection mode. This initial reaction rate based approach not only provided a fast and quantitative differentiation of single-base mismatch, but also helped in-depth understanding of the CHA system, which will be beneficial to the design of highly sensitive and specific toehold-mediated hybridization reactions. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Biological Applications of Designed Hairpin Peptides: As Antimicrobials and as Inhibitors of Amyloidogenesis

    Science.gov (United States)

    Sivanesam, Kalkena

    More than 40 diseases have been associated with the misfolding of peptides (or proteins) that form fibrils with a very specific morphology. These peptides classified as amyloidogenic peptides have been implicated in the development of Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, Hungtinton's Disease etc. To date, these diseases have no cure, only therapies that can ameliorate the symptoms to a degree. Inhibition of the amyloidogenesis of these peptides has been proposed as a possible treatment option. While small molecules have been heavily tested as inhibitors of amyloidogenesis, peptides have emerged as potential inhibitors. In this work, the ability of a set of designed hairpin peptides to inhibit the amyloidogenesis of two different systems, alpha-synuclein (implicated in Parkinson's Disease) and human amylin (implicated in Type II Diabetes) is tested. Using circular dichroism and thioflavin T fluorescence, the ability of these peptides to inhibit amyloidogenesis is tested. The binding loci of these inhibitors to alpha-synuclein are also explored. The use of peptides as antimicrobials on the other hand is not a novel concept. However, most antimicrobial peptides, both natural and designed, rely heavily on covalent stabilizations in order to maintain secondary structure. In this study, non-covalent stabilizations are applied to a couple of natural as well as designed antimicrobials in order to study the effects of secondary structure stabilization on biological activity.

  15. Towards a clinically relevant lentiviral transduction protocol for primary human CD34 hematopoietic stem/progenitor cells.

    Directory of Open Access Journals (Sweden)

    Michelle Millington

    2009-07-01

    Full Text Available Hematopoietic stem cells (HSC, in particular mobilized peripheral blood stem cells, represent an attractive target for cell and gene therapy. Efficient gene delivery into these target cells without compromising self-renewal and multi-potency is crucial for the success of gene therapy. We investigated factors involved in the ex vivo transduction of CD34(+ HSCs in order to develop a clinically relevant transduction protocol for gene delivery. Specifically sought was a protocol that allows for efficient transduction with minimal ex vivo manipulation without serum or other reagents of animal origin.Using commercially available G-CSF mobilized peripheral blood (PB CD34(+ cells as the most clinically relevant target, we systematically examined factors including the use of serum, cytokine combinations, pre-stimulation time, multiplicity of infection (MOI, transduction duration and the use of spinoculation and/or retronectin. A self-inactivating lentiviral vector (SIN-LV carrying enhanced green fluorescent protein (GFP was used as the gene delivery vehicle. HSCs were monitored for transduction efficiency, surface marker expression and cellular function. We were able to demonstrate that efficient gene transduction can be achieved with minimal ex vivo manipulation while maintaining the cellular function of transduced HSCs without serum or other reagents of animal origin.This study helps to better define factors relevant towards developing a standard clinical protocol for the delivery of SIN-LV into CD34(+ cells.

  16. Gene transfer to chicks using lentiviral vectors administered via the embryonic chorioallantoic membrane.

    Directory of Open Access Journals (Sweden)

    Gideon Hen

    Full Text Available The lack of affordable techniques for gene transfer in birds has inhibited the advancement of molecular studies in avian species. Here we demonstrate a new approach for introducing genes into chicken somatic tissues by administration of a lentiviral vector, derived from the feline immunodeficiency virus (FIV, into the chorioallantoic membrane (CAM of chick embryos on embryonic day 11. The FIV-derived vectors carried yellow fluorescent protein (YFP or recombinant alpha-melanocyte-stimulating hormone (α-MSH genes, driven by the cytomegalovirus (CMV promoter. Transgene expression, detected in chicks 2 days after hatch by quantitative real-time PCR, was mostly observed in the liver and spleen. Lower expression levels were also detected in the brain, kidney, heart and breast muscle. Immunofluorescence and flow cytometry analyses confirmed transgene expression in chick tissues at the protein level, demonstrating a transduction efficiency of ∼0.46% of liver cells. Integration of the viral vector into the chicken genome was demonstrated using genomic repetitive (CR1-PCR amplification. Viability and stability of the transduced cells was confirmed using terminal deoxynucleotidyl transferase (dUTP nick end labeling (TUNEL assay, immunostaining with anti-proliferating cell nuclear antigen (anti-PCNA, and detection of transgene expression 51 days post transduction. Our approach led to only 9% drop in hatching efficiency compared to non-injected embryos, and all of the hatched chicks expressed the transgenes. We suggest that the transduction efficiency of FIV vectors combined with the accessibility of the CAM vasculature as a delivery route comprise a new powerful and practical approach for gene delivery into somatic tissues of chickens. Most relevant is the efficient transduction of the liver, which specializes in the production and secretion of proteins, thereby providing an optimal target for prolonged study of secreted hormones and peptides.

  17. Antibody-directed lentiviral gene transduction for live-cell monitoring and selection of human iPS and hES cells.

    Directory of Open Access Journals (Sweden)

    Dai-tze Wu

    Full Text Available The identification of stem cells within a mixed population of cells is a major hurdle for stem cell biology--in particular, in the identification of induced pluripotent stem (iPS cells during the reprogramming process. Based on the selective expression of stem cell surface markers, a method to specifically infect stem cells through antibody-conjugated lentiviral particles has been developed that can deliver both visual markers for live-cell imaging as well as selectable markers to enrich for iPS cells. Antibodies recognizing SSEA4 and CD24 mediated the selective infection of the iPS cells over the parental human fibroblasts, allowing for rapid expansion of these cells by puromycin selection. Adaptation of the vector allows for the selective marking of human embryonic stem (hES cells for their removal from a population of differentiated cells. This method has the benefit that it not only identifies stem cells, but that specific genes, including positive and negative selection markers, regulatory genes or miRNA can be delivered to the targeted stem cells. The ability to specifically target gene delivery to human pluripotent stem cells has broad applications in tissue engineering and stem cell therapies.

  18. Phenotypic correction of Fanconi anemia cells in the murine bone marrow after carrier cell mediated delivery of lentiviral vector.

    Science.gov (United States)

    Chakkaramakkil Verghese, Santhosh; Goloviznina, Natalya A; Kurre, Peter

    2016-11-19

    Fanconi anemia (FA) is an autosomal-recessive disorder associated with hematopoietic failure and it is a candidate for hematopoietic stem cell (HSC)-directed gene therapy. However, the characteristically reduced HSC numbers found in FA patients, their ineffective mobilization from the marrow, and re-oxygenation damage during ex vivo manipulation have precluded clinical success using conventional in vitro approaches. We previously demonstrated that lentiviral vector (LV) particles reversibly attach to the cell surface where they gain protection from serum complement neutralization. We reasoned that cellular delivery of LV to the bone marrow niche could avoid detrimental losses during FA HSC mobilization and in vitro modification. Here, we demonstrate that a VSV-G pseudotyped lentivector, carrying the FANCC transgene, can be transmitted from carrier to bystander cells. In cell culture and transplantation models of FA, we further demonstrate that LV carrier cells migrate along SDF-1α gradients and transfer vector particles that stably integrate and phenotypically correct the characteristic DNA alkylator sensitivity in murine and human FA-deficient target bystander cells. Altogether, we demonstrate that cellular homing mechanisms can be harnessed for the functional phenotype correction in murine FA hematopoietic cells.

  19. Phenotypic correction of Fanconi anemia cells in the murine bone marrow after carrier cell mediated delivery of lentiviral vector

    Directory of Open Access Journals (Sweden)

    Santhosh Chakkaramakkil Verghese

    2016-11-01

    Full Text Available Abstract Fanconi anemia (FA is an autosomal-recessive disorder associated with hematopoietic failure and it is a candidate for hematopoietic stem cell (HSC-directed gene therapy. However, the characteristically reduced HSC numbers found in FA patients, their ineffective mobilization from the marrow, and re-oxygenation damage during ex vivo manipulation have precluded clinical success using conventional in vitro approaches. We previously demonstrated that lentiviral vector (LV particles reversibly attach to the cell surface where they gain protection from serum complement neutralization. We reasoned that cellular delivery of LV to the bone marrow niche could avoid detrimental losses during FA HSC mobilization and in vitro modification. Here, we demonstrate that a VSV-G pseudotyped lentivector, carrying the FANCC transgene, can be transmitted from carrier to bystander cells. In cell culture and transplantation models of FA, we further demonstrate that LV carrier cells migrate along SDF-1α gradients and transfer vector particles that stably integrate and phenotypically correct the characteristic DNA alkylator sensitivity in murine and human FA-deficient target bystander cells. Altogether, we demonstrate that cellular homing mechanisms can be harnessed for the functional phenotype correction in murine FA hematopoietic cells.

  20. Short template switch events explain mutation clusters in the human genome.

    Science.gov (United States)

    Löytynoja, Ari; Goldman, Nick

    2017-06-01

    Resequencing efforts are uncovering the extent of genetic variation in humans and provide data to study the evolutionary processes shaping our genome. One recurring puzzle in both intra- and inter-species studies is the high frequency of complex mutations comprising multiple nearby base substitutions or insertion-deletions. We devised a generalized mutation model of template switching during replication that extends existing models of genome rearrangement and used this to study the role of template switch events in the origin of short mutation clusters. Applied to the human genome, our model detects thousands of template switch events during the evolution of human and chimp from their common ancestor and hundreds of events between two independently sequenced human genomes. Although many of these are consistent with a template switch mechanism previously proposed for bacteria, our model also identifies new types of mutations that create short inversions, some flanked by paired inverted repeats. The local template switch process can create numerous complex mutation patterns, including hairpin loop structures, and explains multinucleotide mutations and compensatory substitutions without invoking positive selection, speculative mechanisms, or implausible coincidence. Clustered sequence differences are challenging for current mapping and variant calling methods, and we show that many erroneous variant annotations exist in human reference data. Local template switch events may have been neglected as an explanation for complex mutations because of biases in commonly used analyses. Incorporation of our model into reference-based analysis pipelines and comparisons of de novo assembled genomes will lead to improved understanding of genome variation and evolution. © 2017 Löytynoja and Goldman; Published by Cold Spring Harbor Laboratory Press.

  1. Interaction of Zn(II)bleomycin-A2 and Zn(II)peplomycin with a DNA hairpin containing the 5'-GT-3' binding site in comparison with the 5'-GC-3' binding site studied by NMR spectroscopy.

    Science.gov (United States)

    Follett, Shelby E; Ingersoll, Azure D; Murray, Sally A; Reilly, Teresa M; Lehmann, Teresa E

    2017-10-01

    Bleomycins are a group of glycopeptide antibiotics synthesized by Streptomyces verticillus that are widely used for the treatment of various neoplastic diseases. These antibiotics have the ability to chelate a metal center, mainly Fe(II), and cause site-specific DNA cleavage. Bleomycins are differentiated by their C-terminal regions. Although this antibiotic family is a successful course of treatment for some types of cancers, it is known to cause pulmonary fibrosis. Previous studies have identified that bleomycin-related pulmonary toxicity is linked to the C-terminal region of these drugs. This region has been shown to closely interact with DNA. We examined the binding of Zn(II)peplomycin and Zn(II)bleomycin-A 2 to a DNA hairpin of sequence 5'-CCAGTATTTTTACTGG-3', containing the binding site 5'-GT-3', and compared the results with those obtained from our studies of the same MBLMs bound to a DNA hairpin containing the binding site 5'-GC-3'. We provide evidence that the DNA base sequence has a strong impact in the final structure of the drug-target complex.

  2. Breast cancer cell cyclooxygenase-2 expression alters extracellular matrix structure and function and numbers of cancer associated fibroblasts.

    Science.gov (United States)

    Krishnamachary, Balaji; Stasinopoulos, Ioannis; Kakkad, Samata; Penet, Marie-France; Jacob, Desmond; Wildes, Flonne; Mironchik, Yelena; Pathak, Arvind P; Solaiyappan, Meiyappan; Bhujwalla, Zaver M

    2017-03-14

    Cyclooxygenase-2 (COX-2) is a critically important mediator of inflammation that significantly influences tumor angiogenesis, invasion, and metastasis. We investigated the role of COX-2 expressed by triple negative breast cancer cells in altering the structure and function of the extracellular matrix (ECM). COX-2 downregulation effects on ECM structure and function were investigated using magnetic resonance imaging (MRI) and second harmonic generation (SHG) microscopy of tumors derived from triple negative MDA-MB-231 breast cancer cells, and a derived clone stably expressing a short hairpin (shRNA) molecule downregulating COX-2. MRI of albumin-GdDTPA was used to characterize macromolecular fluid transport in vivo and SHG microscopy was used to quantify collagen 1 (Col1) fiber morphology. COX-2 downregulation decreased Col1 fiber density and altered macromolecular fluid transport. Immunohistochemistry identified significantly fewer activated cancer associated fibroblasts (CAFs) in low COX-2 expressing tumors. Metastatic lung nodules established by COX-2 downregulated cells were infrequent, smaller, and contained fewer Col1 fibers.COX-2 overexpression studies were performed with tumors derived from triple negative SUM-149 breast cancer cells lentivirally transduced to overexpress COX-2. SHG microscopy identified significantly higher Col1 fiber density in COX-2 overexpressing tumors with an increase of CAFs. These data expand upon the roles of COX-2 in shaping the structure and function of the ECM in primary and metastatic tumors, and identify the potential role of COX-2 in modifying the number of CAFs in tumors that may have contributed to the altered ECM.

  3. Viral-mediated knockdown of mGluR7 in the nucleus accumbens mediates excessive alcohol drinking and increased ethanol-elicited conditioned place preference in rats.

    Science.gov (United States)

    Bahi, Amine

    2013-10-01

    Whether metabotropic glutamate 7 (mGluR7) -activation enhances or diminishes the reinforcing properties of psychostimulants remains unclear. We have previously shown that systemic mGluR7 activation reduced alcohol consumption and preference as well as locomotor-stimulating and rewarding properties of ethanol. In this study, we further examined the contribution of mGluR7 on the effect of ethanol within the nucleus accumbens (NAcc), a neural target for many drugs of abuse. Using short hairpin RNA (shRNA)-expressing lentiviral vectors (LV) to alter locally the activity of mGluR7 in male rats, we have shown that blocking mGluR7 expression increased ethanol consumption and preference in a two-bottle choice drinking paradigm with no effect either on saccharin or on quinine used for taste discrimination. In addition, mGluR7 knockdown increases preference for environments previously paired with low doses of ethanol in the conditioned place preference (CPP) test, as it shifted the dose-response curve for ethanol CPP to the left, indicating alterations in the rewarding effects of alcohol. More importantly, mGluR7 blockade in the dorsal striatum (DS) neither affected ethanol consumption nor ethanol-elicited CPP. These results show that levels of mGluR7 in the NAcc regulate responsiveness to alcohol. Taken together, these findings clearly demonstrate that mGluR7 signaling within the NAcc is a key modulator of functional responses to ethanol and offer an important target for regulating the addictive effects of alcohol.

  4. Nestin upregulation characterizes vascular remodeling secondary to hypertension in the rat.

    Science.gov (United States)

    Tardif, Kim; Hertig, Vanessa; Duquette, Natacha; Villeneuve, Louis; El-Hamamsy, Ismail; Tanguay, Jean-François; Calderone, Angelino

    2015-05-15

    Proliferation and hypertrophy of vascular smooth muscle cells represent hallmark features of vessel remodeling secondary to hypertension. The intermediate filament protein nestin was recently identified in vascular smooth muscle cells and in other cell types directly participated in proliferation. The present study tested the hypothesis that vessel remodeling secondary to hypertension was characterized by nestin upregulation in vascular smooth muscle cells. Two weeks after suprarenal abdominal aorta constriction of adult male Sprague-Dawley rats, elevated mean arterial pressure increased the media area and thickness of the carotid artery and aorta and concomitantly upregulated nestin protein levels. In the normal adult rat carotid artery, nestin immunoreactivity was observed in a subpopulation of vascular smooth muscle cells, and the density significantly increased following suprarenal abdominal aorta constriction. Filamentous nestin was detected in cultured rat carotid artery- and aorta-derived vascular smooth muscle cells and an analogous paradigm observed in human aorta-derived vascular smooth muscle cells. ANG II and EGF treatment of vascular smooth muscle cells stimulated DNA and protein synthesis and increased nestin protein levels. Lentiviral short-hairpin RNA-mediated nestin depletion of carotid artery-derived vascular smooth muscle cells inhibited peptide growth factor-stimulated DNA synthesis, whereas protein synthesis remained intact. These data have demonstrated that vessel remodeling secondary to hypertension was characterized in part by nestin upregulation in vascular smooth muscle cells. The selective role of nestin in peptide growth factor-stimulated DNA synthesis has revealed that the proliferative and hypertrophic responses of vascular smooth muscle cells were mediated by divergent signaling events. Copyright © 2015 the American Physiological Society.

  5. Reliable and inexpensive expression of large, tagged, exogenous proteins in murine bone marrow-derived macrophages using a second generation lentiviral system

    Directory of Open Access Journals (Sweden)

    Matthew R. Miller

    2015-08-01

    Full Text Available Over the past two decades, researchers have struggled to efficiently express foreign DNA in primary macrophages, impeding research progress. The applications of lipofection, electroporation, microinjection, and viral-mediated transfer typically result in disruptions in macrophage differentiation and function, low expression levels of exogenous proteins, limited efficiency and high cell mortality. In this report, after extensive optimization, we present a method of expressing large tagged proteins at high efficiency, consistency, and low cost using lentiviral infection. This method utilizes laboratory-propagated second generation plasmids to produce efficient virus that can be stored for later use. The expression of proteins up to 150 kDa in size is achieved in 30–70% of cells while maintaining normal macrophage differentiation and morphology as determined by fluorescence microscopy and Western blot analysis. This manuscript delineates the reagents and methods used to produce lentivirus to express exogenous DNA in murine bone marrow-derived macrophages sufficient for single cell microscopy as well as functional assays requiring large numbers of murine bone marrow-derived macrophages.

  6. Pressure effect on the conformational equilibrium of [Leu]{sup 5}-enkephalin in water

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, A [Department of Environmental Engineering for Symbiosis, Soka University, 1-326 Tangi-cho, Hachioji, Tokyo, 192-8577 (Japan); Takekiyo, T; Yoshimura, Y [Department of Applied Chemistry, National Defence Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa, 239-8686 (Japan); Kato, M; Taniguchi, Y, E-mail: shimizu@soka.ac.j, E-mail: take214@nda.ac.j [Department of Applied Chemistry, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu, Shiga, 525-8577 (Japan)

    2010-03-01

    The conformational stability of [Leu]{sup 5}-enkephalin,Tyr-Gly-Gly-Phe-Leu, in water have been investigated under high pressure by FTIR spectroscopy. Three peaks at 1638, 1650, and 1680 cm{sup -1} were determined by second derivative FTIR spectra in the amide I' region of [Leu]{sup 5}-enkephalin. The peaks at 1637 and 1680 cm{sup -1} are assigned to the {beta}-strand and turn structures, respectively. These peaks mean that [Leu]{sup 5}-enkephalin takes a {beta}-hairpin-like structure in water. Moreover, the absorbance at 1638 cm{sup -1} increases with increasing pressure, and this change shows a sigmoidal curve. Thus, we concluded that [Leu]{sup 5}-enkephalin has the {beta}-hairpin-like and disordered structures in water. From the FTIR profile at high pressures, the {beta}-hairpin-like structure of [Leu]{sup 5}-enkephalin is stabilized by a high pressures. Our result shows that the folded structures such as {alpha}-helix and {beta}-hairpin structures of short peptide such as [Leu]{sup 5}-enkephalin are stabilized at high pressures.

  7. Function and anatomy of plant siRNA pools derived from hairpin transgenes

    Directory of Open Access Journals (Sweden)

    Lee Kevin AW

    2007-11-01

    Full Text Available Abstract Background RNA interference results in specific gene silencing by small-interfering RNAs (siRNAs. Synthetic siRNAs provide a powerful tool for manipulating gene expression but high cost suggests that novel siRNA production methods are desirable. Strong evolutionary conservation of siRNA structure suggested that siRNAs will retain cross-species function and that transgenic plants expressing heterologous siRNAs might serve as useful siRNA bioreactors. Here we report a detailed evaluation of the above proposition and present evidence regarding structural features of siRNAs extracted from plants. Results Testing the gene silencing capacity of plant-derived siRNAs in mammalian cells proved to be very challenging and required partial siRNA purification and design of a highly sensitive assay. Using the above assay we found that plant-derived siRNAs are ineffective for gene silencing in mammalian cells. Plant-derived siRNAs are almost exclusively double-stranded and most likely comprise a mixture of bona fide siRNAs and aberrant partially complementary duplexes. We also provide indirect evidence that plant-derived siRNAs may contain a hitherto undetected physiological modification, distinct from 3' terminal 2-O-methylation. Conclusion siRNAs produced from plant hairpin transgenes and extracted from plants are ineffective for gene silencing in mammalian cells. Thus our findings establish that a previous claim that transgenic plants offer a cost-effective, scalable and sustainable source of siRNAs is unwarranted. Our results also indicate that the presence of aberrant siRNA duplexes and possibly a plant-specific siRNA modification, compromises the gene silencing capacity of plant-derived siRNAs in mammalian cells.

  8. Prior Virus Exposure Alters the Long-Term Landscape of Viral Replication during Feline Lentiviral Infection

    Directory of Open Access Journals (Sweden)

    Sue VandeWoude

    2011-10-01

    Full Text Available We developed a feline model of lentiviral cross-species transmission using a puma lentivirus (PLV or FIVPco which infects domestic cats but does not cause disease. Infection with PLV protects cats from CD4+ T-cell decline caused by subsequent infection with virulent feline immunodeficiency virus (FIV. Previous studies implicate innate immune and/or cellular restriction mechanisms for FIV disease attenuation in PLV-infected cats. In this study, we evaluated viral infection and cytokine mRNA transcription in 12 different tissue reservoirs approximately five months post infection. We quantitated tissue proviral load, viral mRNA load and relative transcription of IL-10, IL-12p40 and IFNγ from tissues of cats exposed to FIV, PLV or both viruses and analyzed these parameters using a multivariate statistical approach. The distribution and intensity of FIV infection and IFNγ transcription differed between single and co-infected cats, characterized by higher FIV proviral loads and IFNγ expression in co-infected cat tissues. Variability in FIV mRNA load and IFNγ was significantly more constrained in co-infected versus singly infected cat tissues. Single-infected:co-infected ratios of FIV mRNA load compared to FIV proviral load indicated that active viral transcription was apparently inhibited during co-infection. These results indicate that previous PLV infection increases activation of tissue innate immunity and constrains the ability of FIV to productively infect tissue reservoirs of infection for months, independent of FIV proviral load, supporting a model in which innate immunity and/or modulation of target cell susceptibility play a key role in PLV-induced protection from FIV disease.

  9. Efficient Transduction of Feline Neural Progenitor Cells for Delivery of Glial Cell Line-Derived Neurotrophic Factor Using a Feline Immunodeficiency Virus-Based Lentiviral Construct

    Directory of Open Access Journals (Sweden)

    X. Joann You

    2011-01-01

    Full Text Available Work has shown that stem cell transplantation can rescue or replace neurons in models of retinal degenerative disease. Neural progenitor cells (NPCs modified to overexpress neurotrophic factors are one means of providing sustained delivery of therapeutic gene products in vivo. To develop a nonrodent animal model of this therapeutic strategy, we previously derived NPCs from the fetal cat brain (cNPCs. Here we use bicistronic feline lentiviral vectors to transduce cNPCs with glial cell-derived neurotrophic factor (GDNF together with a GFP reporter gene. Transduction efficacy is assessed, together with transgene expression level and stability during induction of cellular differentiation, together with the influence of GDNF transduction on growth and gene expression profile. We show that GDNF overexpressing cNPCs expand in vitro, coexpress GFP, and secrete high levels of GDNF protein—before and after differentiation—all qualities advantageous for use as a cell-based approach in feline models of neural degenerative disease.

  10. An adeno-associated viral vector transduces the rat hypothalamus and amygdala more efficient than a lentiviral vector

    Directory of Open Access Journals (Sweden)

    Vreugdenhil Erno

    2010-07-01

    Full Text Available Abstract Background This study compared the transduction efficiencies of an adeno-associated viral (AAV vector, which was pseudotyped with an AAV1 capsid and encoded the green fluorescent protein (GFP, with a lentiviral (LV vector, which was pseudotyped with a VSV-G envelop and encoded the discosoma red fluorescent protein (dsRed, to investigate which viral vector transduced the lateral hypothalamus or the amygdala more efficiently. The LV-dsRed and AAV1-GFP vector were mixed and injected into the lateral hypothalamus or into the amygdala of adult rats. The titers that were injected were 1 × 108 or 1 × 109 genomic copies of AAV1-GFP and 1 × 105 transducing units of LV-dsRed. Results Immunostaining for GFP and dsRed showed that AAV1-GFP transduced significantly more cells than LV-dsRed in both the lateral hypothalamus and the amygdala. In addition, the number of LV particles that were injected can not easily be increased, while the number of AAV1 particles can be increased easily with a factor 100 to 1000. Both viral vectors appear to predominantly transduce neurons. Conclusions This study showed that AAV1 vectors are better tools to overexpress or knockdown genes in the lateral hypothalamus and amygdala of adult rats, since more cells can be transduced with AAV1 than with LV vectors and the titer of AAV1 vectors can easily be increased to transduce the area of interest.

  11. Sindbis Virus-Pseudotyped Lentiviral Vectors Carrying VEGFR2-Specific Nanobody for Potential Transductional Targeting of Tumor Vasculature.

    Science.gov (United States)

    Ahani, Roshank; Roohvand, Farzin; Cohan, Reza Ahangari; Etemadzadeh, Mohammad Hossein; Mohajel, Nasir; Behdani, Mahdi; Shahosseini, Zahra; Madani, Navid; Azadmanesh, Kayhan

    2016-11-01

    Introduction of selectivity/specificity into viral-based gene delivery systems, such as lentiviral vectors (LVs), is crucial in their systemic administration for cancer gene therapy. The pivotal role of tumor-associated endothelial cells (TAECs) in tumor angiogenesis and overexpression of vascular endothelial growth factor receptor-2 (VEGFR2 or KDR) in TAECs makes them a potent target in cancer treatment. Herein, we report the development of VEGFR2-targeted LVs pseudotyped with chimeric sindbis virus E2 glycoprotein (cSVE2s). For this purpose, either sequence of a VEGFR2-specific nanobody or its natural ligand (VEGF 121 ) was inserted into the binding site of sindbis virus E2 glycoprotein. In silico modeling data suggested that the inserted targeting motifs were exposed in the context of cSVE2s. Western blot analysis of LVs indicated the incorporation of cSVE2s into viral particles. Capture ELISA demonstrated the specificity/functionality of the incorporated cSVE2s. Transduction of 293/KDR (expressing VEGFR2) or 293T cells (negative control) by constructed LVs followed by fluorescent microscopy and flow cytometric analyses indicated selective transduction of 293/KDR cells (30 %) by both targeting motifs compared to 293T control cells (1-2 %). These results implied similar targeting properties of VEGFR2-specific nanobody compared to the VEGF 121 and indicated the potential for transductional targeting of tumor vasculature by the nanobody displaying LVs.

  12. DNA interactions with a Methylene Blue redox indicator depend on the DNA length and are sequence specific.

    Science.gov (United States)

    Farjami, Elaheh; Clima, Lilia; Gothelf, Kurt V; Ferapontova, Elena E

    2010-06-01

    A DNA molecular beacon approach was used for the analysis of interactions between DNA and Methylene Blue (MB) as a redox indicator of a hybridization event. DNA hairpin structures of different length and guanine (G) content were immobilized onto gold electrodes in their folded states through the alkanethiol linker at the 5'-end. Binding of MB to the folded hairpin DNA was electrochemically studied and compared with binding to the duplex structure formed by hybridization of the hairpin DNA to a complementary DNA strand. Variation of the electrochemical signal from the DNA-MB complex was shown to depend primarily on the DNA length and sequence used: the G-C base pairs were the preferential sites of MB binding in the duplex. For short 20 nts long DNA sequences, the increased electrochemical response from MB bound to the duplex structure was consistent with the increased amount of bound and electrochemically readable MB molecules (i.e. MB molecules that are available for the electron transfer (ET) reaction with the electrode). With longer DNA sequences, the balance between the amounts of the electrochemically readable MB molecules bound to the hairpin DNA and to the hybrid was opposite: a part of the MB molecules bound to the long-sequence DNA duplex seem to be electrochemically mute due to long ET distance. The increasing electrochemical response from MB bound to the short-length DNA hybrid contrasts with the decreasing signal from MB bound to the long-length DNA hybrid and allows an "off"-"on" genosensor development.

  13. BoS: a large and diverse family of short interspersed elements (SINEs) in Brassica oleracea.

    Science.gov (United States)

    Zhang, Xiaoyu; Wessler, Susan R

    2005-05-01

    Short interspersed elements (SINEs) are nonautonomous non-LTR retrotransposons that populate eukaryotic genomes. Numerous SINE families have been identified in animals, whereas only a few have been described in plants. Here we describe a new family of SINEs, named BoS, that is widespread in Brassicaceae and present at approximately 2000 copies in Brassica oleracea. In addition to sharing a modular structure and target site preference with previously described SINEs, BoS elements have several unusual features. First, the head regions of BoS RNAs can adopt a distinct hairpin-like secondary structure. Second, with 15 distinct subfamilies, BoS represents one of the most diverse SINE families described to date. Third, several of the subfamilies have a mosaic structure that has arisen through the exchange of sequences between existing subfamilies, possibly during retrotransposition. Analysis of BoS subfamilies indicate that they were active during various time periods through the evolution of Brassicaceae and that active elements may still reside in some Brassica species. As such, BoS elements may be a valuable tool as phylogenetic makers for resolving outstanding issues in the evolution of species in the Brassicaceae family.

  14. Measles virus envelope pseudotyped lentiviral vectors transduce quiescent human HSCs at an efficiency without precedent.

    Science.gov (United States)

    Lévy, Camille; Amirache, Fouzia; Girard-Gagnepain, Anais; Frecha, Cecilia; Roman-Rodríguez, Francisco J; Bernadin, Ornellie; Costa, Caroline; Nègre, Didier; Gutierrez-Guerrero, Alejandra; Vranckx, Lenard S; Clerc, Isabelle; Taylor, Naomi; Thielecke, Lars; Cornils, Kerstin; Bueren, Juan A; Rio, Paula; Gijsbers, Rik; Cosset, François-Loïc; Verhoeyen, Els

    2017-10-24

    Hematopoietic stem cell (HSC)-based gene therapy trials are now moving toward the use of lentiviral vectors (LVs) with success. However, one challenge in the field remains: efficient transduction of HSCs without compromising their stem cell potential. Here we showed that measles virus glycoprotein-displaying LVs (hemagglutinin and fusion protein LVs [H/F-LVs]) were capable of transducing 100% of early-acting cytokine-stimulated human CD34 + (hCD34 + ) progenitor cells upon a single application. Strikingly, these H/F-LVs also allowed transduction of up to 70% of nonstimulated quiescent hCD34 + cells, whereas conventional vesicular stomatitis virus G (VSV-G)-LVs reached 5% at the most with H/F-LV entry occurring exclusively through the CD46 complement receptor. Importantly, reconstitution of NOD/SCIDγc -/- (NSG) mice with H/F-LV transduced prestimulated or resting hCD34 + cells confirmed these high transduction levels in all myeloid and lymphoid lineages. Remarkably, for resting CD34 + cells, secondary recipients exhibited increasing transduction levels of up to 100%, emphasizing that H/F-LVs efficiently gene-marked HSCs in the resting state. Because H/F-LVs promoted ex vivo gene modification of minimally manipulated CD34 + progenitors that maintained stemness, we assessed their applicability in Fanconi anemia, a bone marrow (BM) failure with chromosomal fragility. Notably, only H/F-LVs efficiently gene-corrected minimally stimulated hCD34 + cells in unfractionated BM from these patients. These H/F-LVs improved HSC gene delivery in the absence of cytokine stimulation while maintaining their stem cell potential. Thus, H/F-LVs will facilitate future clinical applications requiring HSC gene modification, including BM failure syndromes, for which treatment has been very challenging up to now.

  15. Disulfide-stabilized Helical Hairpin Structure and Activity of a Novel Antifungal Peptide EcAMP1 from Seeds of Barnyard Grass (Echinochloa crus-galli)*

    Science.gov (United States)

    Nolde, Svetlana B.; Vassilevski, Alexander A.; Rogozhin, Eugene A.; Barinov, Nikolay A.; Balashova, Tamara A.; Samsonova, Olga V.; Baranov, Yuri V.; Feofanov, Alexey V.; Egorov, Tsezi A.; Arseniev, Alexander S.; Grishin, Eugene V.

    2011-01-01

    This study presents purification, activity characterization, and 1H NMR study of the novel antifungal peptide EcAMP1 from kernels of barnyard grass Echinochloa crus-galli. The peptide adopts a disulfide-stabilized α-helical hairpin structure in aqueous solution and thus represents a novel fold among naturally occurring antimicrobial peptides. Micromolar concentrations of EcAMP1 were shown to inhibit growth of several fungal phytopathogens. Confocal microscopy revealed intensive EcAMP1 binding to the surface of fungal conidia followed by internalization and accumulation in the cytoplasm without disturbance of membrane integrity. Close spatial structure similarity between EcAMP1, the trypsin inhibitor VhTI from seeds of Veronica hederifolia, and some scorpion and cone snail toxins suggests natural elaboration of different functions on a common fold. PMID:21561864

  16. Disulfide-stabilized helical hairpin structure and activity of a novel antifungal peptide EcAMP1 from seeds of barnyard grass (Echinochloa crus-galli).

    Science.gov (United States)

    Nolde, Svetlana B; Vassilevski, Alexander A; Rogozhin, Eugene A; Barinov, Nikolay A; Balashova, Tamara A; Samsonova, Olga V; Baranov, Yuri V; Feofanov, Alexey V; Egorov, Tsezi A; Arseniev, Alexander S; Grishin, Eugene V

    2011-07-15

    This study presents purification, activity characterization, and (1)H NMR study of the novel antifungal peptide EcAMP1 from kernels of barnyard grass Echinochloa crus-galli. The peptide adopts a disulfide-stabilized α-helical hairpin structure in aqueous solution and thus represents a novel fold among naturally occurring antimicrobial peptides. Micromolar concentrations of EcAMP1 were shown to inhibit growth of several fungal phytopathogens. Confocal microscopy revealed intensive EcAMP1 binding to the surface of fungal conidia followed by internalization and accumulation in the cytoplasm without disturbance of membrane integrity. Close spatial structure similarity between EcAMP1, the trypsin inhibitor VhTI from seeds of Veronica hederifolia, and some scorpion and cone snail toxins suggests natural elaboration of different functions on a common fold.

  17. Single-Molecule Stochastic Resonance

    Directory of Open Access Journals (Sweden)

    K. Hayashi

    2012-08-01

    Full Text Available Stochastic resonance (SR is a well-known phenomenon in dynamical systems. It consists of the amplification and optimization of the response of a system assisted by stochastic (random or probabilistic noise. Here we carry out the first experimental study of SR in single DNA hairpins which exhibit cooperatively transitions from folded to unfolded configurations under the action of an oscillating mechanical force applied with optical tweezers. By varying the frequency of the force oscillation, we investigate the folding and unfolding kinetics of DNA hairpins in a periodically driven bistable free-energy potential. We measure several SR quantifiers under varied conditions of the experimental setup such as trap stiffness and length of the molecular handles used for single-molecule manipulation. We find that a good quantifier of the SR is the signal-to-noise ratio (SNR of the spectral density of measured fluctuations in molecular extension of the DNA hairpins. The frequency dependence of the SNR exhibits a peak at a frequency value given by the resonance-matching condition. Finally, we carry out experiments on short hairpins that show how SR might be useful for enhancing the detection of conformational molecular transitions of low SNR.

  18. Variability in assays used for detection of lentiviral infection in bobcats (Lynx rufus), pumas (Puma concolor), and ocelots (Leopardus pardalis)

    Science.gov (United States)

    Franklin, S.P.; Troyer, J.L.; TerWee, J.A.; Lyren, L.M.; Kays, R.W.; Riley, S.P.D.; Boyce, W.M.; Crooks, K.R.; VandeWoude, S.

    2007-01-01

    Although lentiviruses similar to feline immunodeficiency virus (FIV) are known to infect numerous felid species, the relative utility of assays used for detecting lentiviral infection has not been compared for many of these hosts. We tested bobcats (Lynx rufus), pumas (Felis concolor), and ocelots (Leopardus pardalis) for exposure to lentivirus using five different assays: puma lentivirus (PLV), African lion lentivirus (LLV), and domestic cat FIV-based immunoblots, a commercially available enzyme-linked immunosorbent assay (ELISA) kit, and nested polymerase chain reaction (PCR). Puma lentivirus immunoblots identified more seropositive individuals than the other antibody-detection assays. The commercial ELISA provided a fair ability to recognize seropositive samples when compared with PLV immunoblot for screening bobcats and ocelots, but not pumas. Polymerase chain reaction identified fewer positive samples than PLV immunoblot for all three species. Immunoblot results were equivalent whether the sample tested was serum, plasma, or whole blood. The results from this study and previous investigations suggest that the PLV immunoblot has the greatest ability to detect reactive samples when screening wild felids of North America and is unlikely to produce false positive results. However, the commercial ELISA kit may provide ap adequate alternative for screening of some species and is more easily adapted to field conditions. ?? Wildlife Disease Association 2007.

  19. A lentiviral vector with expression controlled by E2F-1: A potential tool for the study and treatment of proliferative diseases

    International Nuclear Information System (INIS)

    Strauss, Bryan E.; Patricio, Juliana Rotelli; Vieira de Carvalho, Anna Carolina; Bajgelman, Marcio C.

    2006-01-01

    We have constructed a lentiviral vector with expression limited to cells presenting active E2F-1 protein, a potential advantage for gene therapy of proliferative diseases. For the FE2FLW vector, the promoter region of the human E2F-1 gene was utilized to drive expression of luciferase cDNA, included as a reporter of viral expression. Primary, immortalized, and transformed cells were transduced with the FE2FLW vector and cell cycle alterations were induced with serum starvation/replacement, contact inhibition or drug treatment, revealing cell cycle-dependent changes in reporter activity. Forced E2F-1 expression, but not E2F-2 or E2F-3, increased reporter activity, indicating a major role for this factor in controlling expression from the FE2FLW virus. We show the utility of this vector as a reporter of E2F-1 and proliferation-dependent cellular alterations upon cytotoxic/cytostatic treatment, such as the introduction of tumor suppressor genes. We propose that the FE2FLW vector may be a starting point for the development of gene therapy strategies for proliferative diseases, such as cancer or restinosis

  20. Protective Effect of Klotho against Ischemic Brain Injury Is Associated with Inhibition of RIG-I/NF-κB Signaling

    Directory of Open Access Journals (Sweden)

    Hong-Jing Zhou

    2018-01-01

    Full Text Available Aging is the greatest independent risk factor for the occurrence of stroke and poor outcomes, at least partially through progressive increases in oxidative stress and inflammation with advanced age. Klotho is an antiaging gene, the expression of which declines with age. Klotho may protect against neuronal oxidative damage that is induced by glutamate. The present study investigated the effects of Klotho overexpression and knockdown by an intracerebroventricular injection of a lentiviral vector that encoded murine Klotho (LV-KL or rat Klotho short-hairpin RNA (LV-KL shRNA on cerebral ischemia injury and the underlying anti-neuroinflammatory mechanism. The overexpression of Klotho induced by LV-KL significantly improved neurobehavioral deficits and increased the number of live neurons in the hippocampal CA1 and caudate putamen subregions 72 h after cerebral hypoperfusion that was induced by transient bilateral common carotid artery occlusion (2VO in mice. The overexpression of Klotho significantly decreased the immunoreactivity of glial fibrillary acidic protein and ionized calcium binding adaptor molecule-1, the expression of retinoic-acid-inducible gene-I, the nuclear translocation of nuclear factor-κB, and the production of proinflammatory cytokines (tumor necrosis factor α and interleukin-6 in 2VO mice. The knockdown of Klotho mediated by LV-KL shRNA in the brain exacerbated neurological dysfunction and cerebral infarct after 22 h of reperfusion following 2 h middle cerebral artery occlusion in rats. These findings suggest that Klotho itself or enhancers of Klotho may compensate for its aging-related decline, thus providing a promising therapeutic approach for acute ischemic stroke during advanced age.

  1. Melatonin regulates CRE-dependent gene transcription underlying osteoblast proliferation by activating Src and PKA in parallel.

    Science.gov (United States)

    Tao, Lin; Zhu, Yue

    2018-01-01

    Several studies have indicated a relationship between melatonin and idiopathic scoliosis, including our previous work which demonstrated that melatonin can inhibit osteoblast proliferation; however, the mechanism remains unclear. Here, we utilized a MTT assay to show that melatonin significantly reduces osteoblast proliferation in a concentration-and time-dependent manner. Through a combination of techniques, including real-time PCR, MTT assays, immunofluorescence, and luciferase assays, we confirmed that melatonin-induced changes in phosphorylated cAMP response element-binding protein (CREB) reduced transcriptional activity in a melatonin receptor-dependent manner. Surprisingly, treatment of osteoblasts with the mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK) inhibitor PD98059 up-regulated other cascades upstream of CREB. We next treated cells with PKA and Src inhibitors and observed that melatonin can also activate the protein kinase A (PKA) and Src pathways. To examine whether Src is upstream from the cAMP-PKA pathway, we measured cAMP levels in response to melatonin with and without a Src inhibitor (PP2) and found that PP2 had no additional effect. Therefore, the transcription-dependent mechanisms involved in CREB phosphorylation, along with melatonin, activated Src via a parallel signaling pathway that was separate from that of PKA. Finally, we transfected osteoblasts with lentiviral CREB short hairpin (sh) RNAs and found a decrease in the expression of proliferating cell nuclear antigen (PCNA) and osteoblast proliferation. These results suggest that CREB and PCNA are downstream targets of melatonin signaling, and that the down-regulation of CREB, which is regulated via PKA and Src pathways, contributes to the melatonin-induced inhibition of osteoblast proliferation.

  2. Hairpin RNA Targeting Multiple Viral Genes Confers Strong Resistance to Rice Black-Streaked Dwarf Virus

    Directory of Open Access Journals (Sweden)

    Fangquan Wang

    2016-05-01

    Full Text Available Rice black-streaked dwarf virus (RBSDV belongs to the genus Fijivirus in the family of Reoviridae and causes severe yield loss in rice-producing areas in Asia. RNA silencing, as a natural defence mechanism against plant viruses, has been successfully exploited for engineering virus resistance in plants, including rice. In this study, we generated transgenic rice lines harbouring a hairpin RNA (hpRNA construct targeting four RBSDV genes, S1, S2, S6 and S10, encoding the RNA-dependent RNA polymerase, the putative core protein, the RNA silencing suppressor and the outer capsid protein, respectively. Both field nursery and artificial inoculation assays of three generations of the transgenic lines showed that they had strong resistance to RBSDV infection. The RBSDV resistance in the segregating transgenic populations correlated perfectly with the presence of the hpRNA transgene. Furthermore, the hpRNA transgene was expressed in the highly resistant transgenic lines, giving rise to abundant levels of 21–24 nt small interfering RNA (siRNA. By small RNA deep sequencing, the RBSDV-resistant transgenic lines detected siRNAs from all four viral gene sequences in the hpRNA transgene, indicating that the whole chimeric fusion sequence can be efficiently processed by Dicer into siRNAs. Taken together, our results suggest that long hpRNA targeting multiple viral genes can be used to generate stable and durable virus resistance in rice, as well as other plant species.

  3. Hairpin RNA Targeting Multiple Viral Genes Confers Strong Resistance to Rice Black-Streaked Dwarf Virus.

    Science.gov (United States)

    Wang, Fangquan; Li, Wenqi; Zhu, Jinyan; Fan, Fangjun; Wang, Jun; Zhong, Weigong; Wang, Ming-Bo; Liu, Qing; Zhu, Qian-Hao; Zhou, Tong; Lan, Ying; Zhou, Yijun; Yang, Jie

    2016-05-11

    Rice black-streaked dwarf virus (RBSDV) belongs to the genus Fijivirus in the family of Reoviridae and causes severe yield loss in rice-producing areas in Asia. RNA silencing, as a natural defence mechanism against plant viruses, has been successfully exploited for engineering virus resistance in plants, including rice. In this study, we generated transgenic rice lines harbouring a hairpin RNA (hpRNA) construct targeting four RBSDV genes, S1, S2, S6 and S10, encoding the RNA-dependent RNA polymerase, the putative core protein, the RNA silencing suppressor and the outer capsid protein, respectively. Both field nursery and artificial inoculation assays of three generations of the transgenic lines showed that they had strong resistance to RBSDV infection. The RBSDV resistance in the segregating transgenic populations correlated perfectly with the presence of the hpRNA transgene. Furthermore, the hpRNA transgene was expressed in the highly resistant transgenic lines, giving rise to abundant levels of 21-24 nt small interfering RNA (siRNA). By small RNA deep sequencing, the RBSDV-resistant transgenic lines detected siRNAs from all four viral gene sequences in the hpRNA transgene, indicating that the whole chimeric fusion sequence can be efficiently processed by Dicer into siRNAs. Taken together, our results suggest that long hpRNA targeting multiple viral genes can be used to generate stable and durable virus resistance in rice, as well as other plant species.

  4. Comparison of Cytotoxic Activity in Leukemic Lineages Reveals Important Features of β-Hairpin Antimicrobial Peptides.

    Science.gov (United States)

    Buri, Marcus V; Torquato, Heron F Vieira; Barros, Carlos Castilho; Ide, Jaime S; Miranda, Antonio; Paredes-Gamero, Edgar J

    2017-07-01

    Several reports described different modes of cell death triggered by antimicrobial peptides (AMPs) due to direct effects on membrane disruption, and more recently by apoptosis and necrosis-like patterns. Cytotoxic curves of four β-hairpin AMPs (gomesin, protegrin, tachyplesin, and polyphemusin) were obtained from several human leukemic lineages and normal monocytes and Two cell lines were then selected based on their cytotoxic sensitivity. One was sensitive to AMPs (K562) and the other resistant (KG-1) and their effect compared between these lineages. Thus, these lineages were chosen to further investigate biological features related with their cytotoxicities to AMPs. Stimulation with AMPs produced cell death, with activation of caspase-3, in K562 lineage. Increase on the fluidity of plasmatic membrane by reducing cholesterol potentiated cytotoxicity of AMPs in both lineages. Quantification of internal and external gomesin binding to the cellular membrane of both K562 and KG-1 cells showed that more peptide is accumulated inside of K562 cells. Additionally, evaluation of multi-drug resistant pumps activity showed that KG-1 has more activity than K562 lineage. A comparison of intrinsic gene patterns showed great differences between K562 and KG-1, but stimulation with gomesin promoted few changes in gene expression patterns. Differences in internalization process through the plasma membrane, multidrug resistance pumps activity, and gene expression pattern are important features to AMPs regulated cell death. J. Cell. Biochem. 118: 1764-1773, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Shortcomings of short hairpin RNA-based transgenic RNA interference in mouse oocytes

    Czech Academy of Sciences Publication Activity Database

    Sarnová, Lenka; Malík, Radek; Sedláček, Radislav; Svoboda, Petr

    2010-01-01

    Roč. 9, č. 8 (2010), s. 1-10 ISSN 1477-5751 R&D Project s: GA MŠk ME09039 Grant - others:EMBO SDIG(DE) project 1483 Institutional research plan: CEZ:AV0Z50520514 Keywords : transgenic RNAi * shRNA * oocyte Subject RIV: EB - Genetics ; Molecular Biology http://www.jnrbm.com/content/9/1/8

  6. Shortcomings of short hairpin RNA-based transgenic RNA interference in mouse oocytes

    Czech Academy of Sciences Publication Activity Database

    Sarnová, Lenka; Malík, Radek; Sedláček, Radislav; Svoboda, Petr

    2010-01-01

    Roč. 9, č. 8 (2010), s. 1-10 ISSN 1477-5751 R&D Projects: GA MŠk ME09039 Grant - others:EMBO SDIG(DE) project 1483 Institutional research plan: CEZ:AV0Z50520514 Keywords : transgenic RNAi * shRNA * oocyte Subject RIV: EB - Genetics ; Molecular Biology http://www.jnrbm.com/content/9/1/8

  7. The influence of junction conformation on RNA cleavage by the hairpin ribozyme in its natural junction form.

    Science.gov (United States)

    Thomson, J B; Lilley, D M

    1999-01-01

    In the natural form of the hairpin ribozyme the two loop-carrying duplexes that comprise the majority of essential bases for activity form two adjacent helical arms of a four-way RNA junction. In the present work we have manipulated the sequence around the junction in a way known to perturb the global folding properties. We find that replacement of the junction by a different sequence that has the same conformational properties as the natural sequence gives closely similar reaction rate and Arrhenius activation energy for the substrate cleavage reaction. By comparison, rotation of the natural sequence in order to alter the three-dimensional folding of the ribozyme leads to a tenfold reduction in the kinetics of cleavage. Replacement with the U1 four-way junction that is resistant to rotation into the antiparallel structure required to allow interaction between the loops also gives a tenfold reduction in cleavage rate. The results indicate that the conformation of the junction has a major influence on the catalytic activity of the ribozyme. The results are all consistent with a role for the junction in the provision of a framework by which the loops are presented for interaction in order to create the active form of the ribozyme. PMID:10024170

  8. Buckwheat trypsin inhibitor with helical hairpin structure belongs to a new family of plant defence peptides.

    Science.gov (United States)

    Oparin, Peter B; Mineev, Konstantin S; Dunaevsky, Yakov E; Arseniev, Alexander S; Belozersky, Mikhail A; Grishin, Eugene V; Egorov, Tsezi A; Vassilevski, Alexander A

    2012-08-15

    A new peptide trypsin inhibitor named BWI-2c was obtained from buckwheat (Fagopyrum esculentum) seeds by sequential affinity, ion exchange and reversed-phase chromatography. The peptide was sequenced and found to contain 41 amino acid residues, with four cysteine residues involved in two intramolecular disulfide bonds. Recombinant BWI-2c identical to the natural peptide was produced in Escherichia coli in a form of a cleavable fusion with thioredoxin. The 3D (three-dimensional) structure of the peptide in solution was determined by NMR spectroscopy, revealing two antiparallel α-helices stapled by disulfide bonds. Together with VhTI, a trypsin inhibitor from veronica (Veronica hederifolia), BWI-2c represents a new family of protease inhibitors with an unusual α-helical hairpin fold. The linker sequence between the helices represents the so-called trypsin inhibitory loop responsible for direct binding to the active site of the enzyme that cleaves BWI-2c at the functionally important residue Arg(19). The inhibition constant was determined for BWI-2c against trypsin (1.7×10(-1)0 M), and the peptide was tested on other enzymes, including those from various insect digestive systems, revealing high selectivity to trypsin-like proteases. Structural similarity shared by BWI-2c, VhTI and several other plant defence peptides leads to the acknowledgement of a new widespread family of plant peptides termed α-hairpinins.

  9. Lentiviral vectors and protocols for creation of stable hESC lines for fluorescent tracking and drug resistance selection of cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Hiroko Kita-Matsuo

    Full Text Available Developmental, physiological and tissue engineering studies critical to the development of successful myocardial regeneration therapies require new ways to effectively visualize and isolate large numbers of fluorescently labeled, functional cardiomyocytes.Here we describe methods for the clonal expansion of engineered hESCs and make available a suite of lentiviral vectors for that combine Blasticidin, Neomycin and Puromycin resistance based drug selection of pure populations of stem cells and cardiomyocytes with ubiquitous or lineage-specific promoters that direct expression of fluorescent proteins to visualize and track cardiomyocytes and their progenitors. The phospho-glycerate kinase (PGK promoter was used to ubiquitously direct expression of histone-2B fused eGFP and mCherry proteins to the nucleus to monitor DNA content and enable tracking of cell migration and lineage. Vectors with T/Brachyury and alpha-myosin heavy chain (alphaMHC promoters targeted fluorescent or drug-resistance proteins to early mesoderm and cardiomyocytes. The drug selection protocol yielded 96% pure cardiomyocytes that could be cultured for over 4 months. Puromycin-selected cardiomyocytes exhibited a gene expression profile similar to that of adult human cardiomyocytes and generated force and action potentials consistent with normal fetal cardiomyocytes, documenting these parameters in hESC-derived cardiomyocytes and validating that the selected cells retained normal differentiation and function.The protocols, vectors and gene expression data comprise tools to enhance cardiomyocyte production for large-scale applications.

  10. Simplified production and concentration of HIV-1-based lentiviral vectors using HYPERFlask vessels and anion exchange membrane chromatography

    Science.gov (United States)

    Kutner, Robert H; Puthli, Sharon; Marino, Michael P; Reiser, Jakob

    2009-01-01

    Background During the past twelve years, lentiviral (LV) vectors have emerged as valuable tools for transgene delivery because of their ability to transduce nondividing cells and their capacity to sustain long-term transgene expression in target cells in vitro and in vivo. However, despite significant progress, the production and concentration of high-titer, high-quality LV vector stocks is still cumbersome and costly. Methods Here we present a simplified protocol for LV vector production on a laboratory scale using HYPERFlask vessels. HYPERFlask vessels are high-yield, high-performance flasks that utilize a multilayered gas permeable growth surface for efficient gas exchange, allowing convenient production of high-titer LV vectors. For subsequent concentration of LV vector stocks produced in this way, we describe a facile protocol involving Mustang Q anion exchange membrane chromatography. Results Our results show that unconcentrated LV vector stocks with titers in excess of 108 transduction units (TU) per ml were obtained using HYPERFlasks and that these titers were higher than those produced in parallel using regular 150-cm2 tissue culture dishes. We also show that up to 500 ml of an unconcentrated LV vector stock prepared using a HYPERFlask vessel could be concentrated using a single Mustang Q Acrodisc with a membrane volume of 0.18 ml. Up to 5.3 × 1010 TU were recovered from a single HYPERFlask vessel. Conclusion The protocol described here is easy to implement and should facilitate high-titer LV vector production for preclinical studies in animal models without the need for multiple tissue culture dishes and ultracentrifugation-based concentration protocols. PMID:19220915

  11. Optimization of Critical Hairpin Features Allows miRNA-based Gene Knockdown Upon Single-copy Transduction

    Directory of Open Access Journals (Sweden)

    Renier Myburgh

    2014-01-01

    Full Text Available Gene knockdown using micro RNA (miRNA-based vector constructs is likely to become a prominent gene therapy approach. It was the aim of this study to improve the efficiency of gene knockdown through optimizing the structure of miRNA mimics. Knockdown of two target genes was analyzed: CCR5 and green fluorescent protein. We describe here a novel and optimized miRNA mimic design called mirGE comprising a lower stem length of 13 base pairs (bp, positioning of the targeting strand on the 5′ side of the miRNA, together with nucleotide mismatches in upper stem positions 1 and 12 placed on the passenger strand. Our mirGE proved superior to miR-30 in four aspects: yield of targeting strand incorporation into RNA-induced silencing complex (RISC; incorporation into RISC of correct targeting strand; precision of cleavage by Drosha; and ratio of targeting strand over passenger strand. A triple mirGE hairpin cassette targeting CCR5 was constructed. It allowed CCR5 knockdown with an efficiency of over 90% upon single-copy transduction. Importantly, single-copy expression of this construct rendered transduced target cells, including primary human macrophages, resistant to infection with a CCR5-tropic strain of HIV. Our results provide new insights for a better knockdown efficiency of constructs containing miRNA. Our results also provide the proof-of-principle that cells can be rendered HIV resistant through single-copy vector transduction, rendering this approach more compatible with clinical applications.

  12. High-throughput screening using pseudotyped lentiviral particles: a strategy for the identification of HIV-1 inhibitors in a cell-based assay.

    Science.gov (United States)

    Garcia, Jean-Michel; Gao, Anhui; He, Pei-Lan; Choi, Joyce; Tang, Wei; Bruzzone, Roberto; Schwartz, Olivier; Naya, Hugo; Nan, Fa-Jun; Li, Jia; Altmeyer, Ralf; Zuo, Jian-Ping

    2009-03-01

    Two decades after its discovery the human immunodeficiency virus (HIV) is still spreading worldwide and killing millions. There are 25 drugs formally approved for HIV currently on the market, but side effects as well as the emergence of HIV strains showing single or multiple resistances to current drug-therapy are causes for concern. Furthermore, these drugs target only 4 steps of the viral cycle, hence the urgent need for new drugs and also new targets. In order to tackle this problem, we have devised a cell-based assay using lentiviral particles to look for post-entry inhibitors of HIV-1. We report here the assay development, validation as well as confirmation of the hits using both wild-type and drug-resistant HIV-1 viruses. The screening was performed on an original library, rich in natural compounds and pure molecules from Traditional Chinese Medicine pharmacopoeia, which had never been screened for anti-HIV activity. The identified hits belong to four chemical sub-families that appear to be all non-nucleoside reverse transcriptase inhibitors (NNRTIs). Secondary tests with live viruses showed that there was good agreement with pseudotyped particles, confirming the validity of this approach for high-throughput drug screens. This assay will be a useful tool that can be easily adapted to screen for inhibitors of viral entry.

  13. Characteristics of lentiviral vectors harboring the proximal promoter of the vav proto-oncogene: a weak and efficient promoter for gene therapy.

    Science.gov (United States)

    Almarza, Elena; Río, Paula; Meza, Nestor W; Aldea, Montserrat; Agirre, Xabier; Guenechea, Guillermo; Segovia, José C; Bueren, Juan A

    2007-08-01

    Recent published data have shown the efficacy of gene therapy treatments of certain monogenic diseases. Risks of insertional oncogenesis, however, indicate the necessity of developing new vectors with weaker or cell-restricted promoters to minimize the trans-activation activity of integrated proviruses. We have inserted the proximal promoter of the vav proto-oncogene into self-inactivating lentiviral vectors (vav-LVs) and investigated the expression pattern and therapeutic efficacy of these vectors. Compared with other LVs frequently used in gene therapy, vav-LVs mediated a weak, though homogeneous and stable, expression in in vitro-cultured cells. Transplantation experiments using transduced mouse bone marrow and human CD34(+) cells confirmed the stable activity of the promoter in vivo. To investigate whether the weak activity of this promoter was compatible with a therapeutic effect, a LV expressing the Fanconi anemia A (FANCA) gene was constructed (vav-FANCA LV). Although this vector induced a low expression of FANCA, compared to the expression induced by a LV harboring the spleen focus-forming virus (SFFV) promoter, the two vectors corrected the phenotype of cells from a patient with FA-A with the same efficacy. We propose that self-inactivating vectors harboring weak promoters, such as the vav promoter, will improve the safety of gene therapy and will be of particular interest for the treatment of diseases where a high expression of the transgene is not required.

  14. In Vivo Knockout of the Vegfa Gene by Lentiviral Delivery of CRISPR/Cas9 in Mouse Retinal Pigment Epithelium Cells

    Directory of Open Access Journals (Sweden)

    Andreas Holmgaard

    2017-12-01

    Full Text Available Virus-based gene therapy by CRISPR/Cas9-mediated genome editing and knockout may provide a new option for treatment of inherited and acquired ocular diseases of the retina. In support of this notion, we show that Streptococcus pyogenes (Sp Cas9, delivered by lentiviral vectors (LVs, can be used in vivo to selectively ablate the vascular endothelial growth factor A (Vegfa gene in mice. By generating LVs encoding SpCas9 targeted to Vegfa, and in parallel the fluorescent eGFP marker protein, we demonstrate robust knockout of Vegfa that leads to a significant reduction of VEGFA protein in transduced cells. Three of the designed single-guide RNAs (sgRNAs induce in vitro indel formation at high frequencies (44%–93%. A single unilateral subretinal injection facilitates RPE-specific localization of the vector and disruption of Vegfa in isolated eGFP+ RPE cells obtained from mice five weeks after LV administration. Notably, sgRNA delivery results in the disruption of Vegfa with an in vivo indel formation efficacy of up to 84%. Sequencing of Vegfa-specific amplicons reveals formation of indels, including 4-bp deletions and 2-bp insertions. Taken together, our data demonstrate the capacity of lentivirus-delivered SpCas9 and sgRNAs as a developing therapeutic path in the treatment of ocular diseases, including age-related macular degeneration.

  15. Pretransplant mobilization with granulocyte colony-stimulating factor improves B-cell reconstitution by lentiviral vector gene therapy in SCID-X1 mice.

    Science.gov (United States)

    Huston, Marshall W; Riegman, Adriaan R A; Yadak, Rana; van Helsdingen, Yvette; de Boer, Helen; van Til, Niek P; Wagemaker, Gerard

    2014-10-01

    Hematopoietic stem cell (HSC) gene therapy is a demonstrated effective treatment for X-linked severe combined immunodeficiency (SCID-X1), but B-cell reconstitution and function has been deficient in many of the gene therapy treated patients. Cytoreductive preconditioning is known to improve HSC engraftment, but in general it is not considered for SCID-X1 since the poor health of most of these patients at diagnosis and the risk of toxicity preclude the conditioning used in standard bone marrow stem cell transplantation. We hypothesized that mobilization of HSC by granulocyte colony-stimulating factor (G-CSF) should create temporary space in bone marrow niches to improve engraftment and thereby B-cell reconstitution. In the present pilot study supplementing our earlier preclinical evaluation (Huston et al., 2011), Il2rg(-/-) mice pretreated with G-CSF were transplanted with wild-type lineage negative (Lin(-)) cells or Il2rg(-/-) Lin(-) cells transduced with therapeutic IL2RG lentiviral vectors. Mice were monitored for reconstitution of lymphocyte populations, level of donor cell chimerism, and antibody responses as compared to 2 Gy total body irradiation (TBI), previously found effective in promoting B-cell reconstitution. The results demonstrate that G-CSF promotes B-cell reconstitution similar to low-dose TBI and provides proof of principle for an alternative approach to improve efficacy of gene therapy in SCID patients without adverse effects associated with cytoreductive conditioning.

  16. Simplified lentivirus vector production in protein-free media using polyethylenimine-mediated transfection.

    Science.gov (United States)

    Kuroda, Hitoshi; Kutner, Robert H; Bazan, Nicolas G; Reiser, Jakob

    2009-05-01

    During the past 12 years, lentiviral vectors have emerged as valuable tools for transgene delivery because of their ability to transduce nondividing cells and their capacity to sustain long-term transgene expression. Despite significant progress, the production of high-titer high-quality lentiviral vectors is cumbersome and costly. The most commonly used method to produce lentiviral vectors involves transient transfection using calcium phosphate (CaP)-mediated precipitation of plasmid DNAs. However, inconsistencies in pH can cause significant batch-to-batch variations in lentiviral vector titers, making this method unreliable. This study describes optimized protocols for lentiviral vector production based on polyethylenimine (PEI)-mediated transfection, resulting in more consistent lentiviral vector stocks. To achieve this goal, simple production methods for high-titer lentiviral vector production involving transfection of HEK 293T cells immediately after plating were developed. Importantly, high titers were obtained with cell culture media lacking serum or other protein additives altogether. As a consequence, large-scale lentiviral vector stocks can now be generated with fewer batch-to-batch variations and at reduced costs and with less labor compared to the standard protocols.

  17. In Vitro Generation of IL-35-expressing Human Wharton's Jelly-derived Mesenchymal Stem Cells Using Lentiviral Vector.

    Science.gov (United States)

    Amari, Afshin; Ebtekar, Massoumeh; Moazzeni, Seyed Mohammad; Soleimani, Masoud; Mohammadi Amirabad, Leila; Tahoori, Mohammad Taher; Massumi, Mohammad

    2015-08-01

    Human Wharton's Jelly-derived Mesenchymal Stem Cells (hWJ-MSCs) are easily available cells without transplant rejection problems or ethical concerns compared to bone-marrow-derived MSCs for prospective clinical applications. These cells display immunosuppressive properties and may be able to play an important role in autoimmune disorders. Regulatory T-cells (Treg) are important to prevent autoimmune disease development. Interleukin 35 (IL-35) induces the proliferation of Treg cell populations and reduces the activity of T helper 17 (Th17) and T helper 1 (Th1) cells, which play a central role in initiation of inflammation and autoimmune disease. Recent studies identified IL-35 as a new inhibitory cytokine required for the suppressive function of Treg cells. We created IL-35-producing hWJ-MSCs as a good vehicle for reduction of inflammation and autoimmune diseases. We isolated hWJ-MSCs based on explant culture. HWJ-MSCs were transduced at MOI=50 (Multiplicity of Infection) with lentiviral particles harboring murine Interleukin 35 (mIL-35). Expression of IL-35 in hWJ-MSCs was quantified by an IL-35 ELISA kit. IL-35 bioactivity was analyzed by inhibiting the proliferation of mouse splenocytes using CFSE cell proliferation kit. Frequency of CD4+CD25+CD127 low/neg Foxp3+ Treg cells was measured by flow cytometry. There was an up to 85% GFP positive transduction rate, and the cells successfully released a high level of mIL-35 protein (750 ng/ml). IL-35 managed to inhibit CD4+ T cell proliferation with PHA, and improved the frequency of Treg cells. Our data suggest that transduced hWJ-MSCs overexpressing IL-35 may provide a useful approach for basic research on gene therapy for autoimmune disorders.

  18. Effective in vivo and ex vivo gene transfer to intestinal mucosa by VSV-G-pseudotyped lentiviral vectors

    Directory of Open Access Journals (Sweden)

    Kasahara Noriyuki

    2010-05-01

    Full Text Available Abstract Background Gene transfer to the gastrointestinal (GI mucosa is a therapeutic strategy which could prove particularly advantageous for treatment of various hereditary and acquired intestinal disorders, including inflammatory bowel disease (IBD, GI infections, and cancer. Methods We evaluated vesicular stomatitis virus glycoprotein envelope (VSV-G-pseudotyped lentiviral vectors (LV for efficacy of gene transfer to both murine rectosigmoid colon in vivo and human colon explants ex vivo. LV encoding beta-galactosidase (LV-β-Gal or firefly-luciferase (LV-fLuc reporter genes were administered by intrarectal instillation in mice, or applied topically for ex vivo transduction of human colorectal explant tissues from normal individuals. Macroscopic and histological evaluations were performed to assess any tissue damage or inflammation. Transduction efficiency and systemic biodistribution were evaluated by real-time quantitative PCR. LV-fLuc expression was evaluated by ex vivo bioluminescence imaging. LV-β-Gal expression and identity of transduced cell types were examined by histochemical and immunofluorescence staining. Results Imaging studies showed positive fLuc signals in murine distal colon; β-Gal-positive cells were found in both murine and human intestinal tissue. In the murine model, β-Gal-positive epithelial and lamina propria cells were found to express cytokeratin, CD45, and CD4. LV-transduced β-Gal-positive cells were also seen in human colorectal explants, consisting mainly of CD45, CD4, and CD11c-positive cells confined to the LP. Conclusions We have demonstrated the feasibility of LV-mediated gene transfer into colonic mucosa. We also identified differential patterns of mucosal gene transfer dependent on whether murine or human tissue was used. Within the limitations of the study, the LV did not appear to induce mucosal damage and were not distributed beyond the distal colon.

  19. OCT4A contributes to the stemness and multi-potency of human umbilical cord blood-derived multipotent stem cells (hUCB-MSCs)

    International Nuclear Information System (INIS)

    Seo, Kwang-Won; Lee, Sae-Rom; Bhandari, Dilli Ram; Roh, Kyoung-Hwan; Park, Sang-Bum; So, Ah-Young; Jung, Ji-Won; Seo, Min-Soo; Kang, Soo-Kyung; Lee, Yong-Soon; Kang, Kyung-Sun

    2009-01-01

    The OCT4A gene, a POU homeodomain transcription factor, has been shown to be expressed in embryonic stem cells (ESC) as well as hUCB-MSCs. In this study, the roles played by OCT4A in hUCB-MSCs were determined by stably inhibiting OCT4A with lenti-viral vector-based small hairpin RNA (shRNA). A decreased rate of cell proliferation was observed in OCT4-inhibited hUCB-MSCs. Down-regulation of CCNA2 expression in OCT4-inhibited hUCB-MSCs was confirmed by RT-PCR and real-time RT-PCR analysis in three genetically independent hUCB-MSC clones. Adipogenic differentiation was also suppressed in OCT4-inhibited hUCB-MSCs. The up-regulation of DTX1 and down-regulation of HDAC1, 2, and 4 expressions may be related to this differentiation deformity. The expression of other transcription factors, including SOX2, REX1 and c-MYC, was also affected by OCT4 inhibition in hUCB-MSCs. In conclusion, these finding suggest that OCT4A performs functionally conserved roles in hUCB-MSCs, making its expression biologically important for ex vivo culture of hUCB-MSCs.

  20. OCT4A contributes to the stemness and multi-potency of human umbilical cord blood-derived multipotent stem cells (hUCB-MSCs)

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Kwang-Won; Lee, Sae-Rom; Bhandari, Dilli Ram; Roh, Kyoung-Hwan; Park, Sang-Bum; So, Ah-Young; Jung, Ji-Won; Seo, Min-Soo [Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University 151-742, Seoul (Korea, Republic of); Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University 151-742, Seoul (Korea, Republic of); Kang, Soo-Kyung [Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University 151-742, Seoul (Korea, Republic of); Laboratory of Biotechnology, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University 151-742, Seoul (Korea, Republic of); Lee, Yong-Soon [Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University 151-742, Seoul (Korea, Republic of); Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University 151-742, Seoul (Korea, Republic of); Kang, Kyung-Sun, E-mail: kangpub@snu.ac.kr [Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University 151-742, Seoul (Korea, Republic of); Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University 151-742, Seoul (Korea, Republic of)

    2009-06-19

    The OCT4A gene, a POU homeodomain transcription factor, has been shown to be expressed in embryonic stem cells (ESC) as well as hUCB-MSCs. In this study, the roles played by OCT4A in hUCB-MSCs were determined by stably inhibiting OCT4A with lenti-viral vector-based small hairpin RNA (shRNA). A decreased rate of cell proliferation was observed in OCT4-inhibited hUCB-MSCs. Down-regulation of CCNA2 expression in OCT4-inhibited hUCB-MSCs was confirmed by RT-PCR and real-time RT-PCR analysis in three genetically independent hUCB-MSC clones. Adipogenic differentiation was also suppressed in OCT4-inhibited hUCB-MSCs. The up-regulation of DTX1 and down-regulation of HDAC1, 2, and 4 expressions may be related to this differentiation deformity. The expression of other transcription factors, including SOX2, REX1 and c-MYC, was also affected by OCT4 inhibition in hUCB-MSCs. In conclusion, these finding suggest that OCT4A performs functionally conserved roles in hUCB-MSCs, making its expression biologically important for ex vivo culture of hUCB-MSCs.

  1. Alpha-CaMKII plays a critical role in determining the aggressive behavior of human osteosarcoma.

    Science.gov (United States)

    Daft, Paul G; Yuan, Kaiyu; Warram, Jason M; Klein, Michael J; Siegal, Gene P; Zayzafoon, Majd

    2013-04-01

    Osteosarcoma is among the most frequently occurring primary bone tumors, primarily affecting adolescents and young adults. Despite improvements in osteosarcoma treatment, more specific molecular targets are needed as potential therapeutic options. One target of interest is α-Ca(2+)/calmodulin-dependent protein kinase II (α-CaMKII), a ubiquitous mediator of Ca(2+)-linked signaling, which has been shown to regulate tumor cell proliferation and differentiation. Here, we investigate the role of α-CaMKII in the growth and tumorigenicity of human osteosarcoma. We show that α-CaMKII is highly expressed in primary osteosarcoma tissue derived from 114 patients, and is expressed in varying levels in different human osteosarcoma (OS) cell lines [MG-63, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)/HOS, and 143B). To examine whether α-CaMKII regulates osteosarcoma tumorigenic properties, we genetically inhibited α-CaMKII in two osteosarcoma cell lines using two different α-CaMKII shRNAs delivered by lentiviral vectors and overexpressed α-CaMKII by retrovirus. The genetic deletion of α-CaMKII by short hairpin RNA (shRNA) in MG-63 and 143B cells resulted in decreased proliferation (50% and 41%), migration (22% and 25%), and invasion (95% and 90%), respectively. The overexpression of α-CaMKII in HOS cells resulted in increased proliferation (240%), migration (640%), and invasion (10,000%). Furthermore, α-CaMKII deletion in MG-63 cells significantly reduced tumor burden in vivo (65%), whereas α-CaMKII overexpression resulted in tumor formation in a previously nontumor forming osteosarcoma cell line (HOS). Our results suggest that α-CaMKII plays a critical role in determining the aggressive phenotype of osteosarcoma, and its inhibition could be an attractive therapeutic target to combat this devastating adolescent disease. ©2013 AACR.

  2. Knock-Down of Endogenous Bornavirus-Like Nucleoprotein 1 Inhibits Cell Growth and Induces Apoptosis in Human Oligodendroglia Cells

    Directory of Open Access Journals (Sweden)

    Peng He

    2016-03-01

    Full Text Available Endogenous bornavirus-like nucleoprotein elements (EBLNs have been discovered in the genomes of various animals including humans, whose functions have been seldom studied. To explore the biological functions of human EBLNs, we constructed a lentiviral vector expressing a short-hairpin RNA against human EBLN1, which successfully inhibited EBLN1 expression by above 80% in infected human oligodendroglia cells (OL cells. We found that EBLN1 silencing suppressed cell proliferation, induced G2/M phase arrest, and promoted apoptosis in OL cells. Gene expression profiling demonstrated that 1067 genes were up-regulated, and 2004 were down-regulated after EBLN1 silencing. The top 10 most upregulated genes were PI3, RND3, BLZF1, SOD2, EPGN, SBSN, INSIG1, OSMR, CREB3L2, and MSMO1, and the top 10 most-downregulated genes were KRTAP2-4, FLRT2, DIDO1, FAT4, ESCO2, ZNF804A, SUV420H1, ZC3H4, YAE1D1, and NCOA5. Pathway analysis revealed that these differentially expressed genes were mainly involved in pathways related to the cell cycle, the mitogen-activated protein kinase pathway, p53 signaling, and apoptosis. The gene expression profiles were validated by using quantitative reverse transcription polymerase chain reaction (RT-PCR for detecting these 20 most-changed genes. Three genes closely related to glioma, RND3, OSMR, and CREB3L2, were significantly upregulated and might be the key factors in EBLN1 regulating the proliferation and apoptosis of OL cells. This study provides evidence that EBLN1 plays a key role in regulating cell life and death, thereby opening several avenues of investigation regarding EBLN1 in the future.

  3. The integrated endoplasmic reticulum stress response in Leishmania amazonensis macrophage infection: the role of X-box binding protein 1 transcription factor.

    Science.gov (United States)

    Dias-Teixeira, Karina Luiza; Calegari-Silva, Teresa Cristina; dos Santos, Guilherme R R M; Vitorino Dos Santos, José; Lima, Carolina; Medina, Jorge Mansur; Aktas, Bertal Huseyin; Lopes, Ulisses G

    2016-04-01

    Endoplasmic reticulum (ER) stress triggers the integrated ER-stress response (IERSR) that ensures cellular survival of ER stress and represents a primordial form of innate immunity. We investigated the role of IERSR duringLeishmania amazonensisinfection. Treatment of RAW 264.7 infected macrophages with the ER stress-inducing agent thapsigargin (TG; 1 μM) increasedL. amazonensisinfectivity in an IFN1-α receptor (IFNAR)-dependent manner. In Western blot assays, we showed thatL. amazonensisactivates the inositol-requiring enzyme (IRE1)/ X-box binding protein (XBP)-1-splicing arms of the IERSR in host cells. In chromatin immunoprecipitation (ChIP) assays, we showed an increased occupancy of enhancer and promoter sequences for theIfnbgene by XBP1 in infected RAW 264.7 cells. Knocking down XBP1 expression by transducing RAW 264.7 cells with the short hairpin XBP1 lentiviral vector significantly reduced the parasite proliferation associated with impaired translocation of phosphorylated IFN regulatory transcription factor (IRF)-3 to the nucleus and a decrease in IFN1-β expression. Knocking down XBP1 expression also increased NO concentration, as determined by Griess reaction and reduced the expression of antioxidant genes, such as heme oxygenase (HO)-1, that protect parasites from oxidative stress. We conclude thatL. amazonensisactivation of XBP1 plays a critical role in infection by protecting the parasites from oxidative stress and increasing IFN1-β expression.-Dias-Teixeira, K. L., Calegari-Silva, T. C., Dos Santos, G. R. R. M., Vitorino dos Santos, J., Lima, C., Medina, J. M., Aktas, B. H., Lopes, U. G. The integrated endoplasmic reticulum stress response inLeishmania amazonensismacrophage infection: the role of X-box binding protein 1 transcription factor. © FASEB.

  4. Curcumin ameliorates dopaminergic neuronal oxidative damage via activation of the Akt/Nrf2 pathway.

    Science.gov (United States)

    Cui, Qunli; Li, Xin; Zhu, Hongcan

    2016-02-01

    Parkinson's disease (PD) is an age-related complex neurodegenerative disease that affects ≤ 80% of dopaminergic neurons in the substantia nigra pars compacta (SNpc). It has previously been suggested that mitochondrial dysfunction, oxidative stress and oxidative damage underlie the pathogenesis of PD. Curcumin, which is a major active polyphenol component extracted from the rhizomes of Curcuma longa (Zingiberaceae), has been reported to exert neuroprotective effects on an experimental model of PD. The present study conducted a series of in vivo experiments, in order to investigate the effects of curcumin on behavioral deficits, oxidative damage and related mechanisms. The results demonstrated that curcumin was able to significantly alleviate motor dysfunction and increase suppressed tyrosine hydroxylase (TH) activity in the SNpc of rotenone (ROT)-injured rats. Biochemical measurements indicated that rats pretreated with curcumin exhibited increased glutathione (GSH) levels, and reduced reactive oxygen species activity and malondialdehyde content. Mechanistic studies demonstrated that curcumin significantly restored the expression levels of heme oxygenase-1 and quinone oxidoreductase 1, thus ameliorating ROT-induced damage in vivo, via the phosphorylation of Akt and nuclear factor erythroid 2-related factor 2 (Nrf2). Further studies indicated that the Akt/Nrf2 signaling pathway was associated with the protective role of curcumin in ROT-treated rats. Inhibiting the Akt/Nrf2 pathway using a lentiviral vector containing Nrf2-specific short hairpin RNA, or the phosphoinositide 3-kinase inhibitor LY294002, markedly reduced the expression levels of TH and GSH, ultimately attenuating the neuroprotective effects of curcumin against oxidative damage. These results indicated that curcumin was able to significantly ameliorate ROT-induced dopaminergic neuronal oxidative damage in the SNpc of rats via activation of the Akt/Nrf2 signaling pathway.

  5. Advanced glycation end products promote the proliferation and migration of primary rat vascular smooth muscle cells via the upregulation of BAG3.

    Science.gov (United States)

    Li, Cunshu; Chang, Ye; Li, Yuan; Chen, Shuang; Chen, Yintao; Ye, Ning; Dai, Dongxue; Sun, Yingxian

    2017-05-01

    The present study was aimed to investigate the role of reactive oxygen species (ROS) on advanced glycation end product (AGE)-induced proliferation and migration of vascular smooth muscle cells (VSMCs) and whether Bcl-2‑associated athanogene 3 (BAG3) is involved in the process. Primary rat VSMCs were extracted and cultured in vitro. Cell viability was detected by MTT assay and cell proliferation was detected by EdU incorporation assay. Cell migration was detected by wound healing and Transwell assays. BAG3 was detected using qPCR and western blot analysis. Transcriptional and translational inhibitors (actinomycin D and cycloheximide, respectively) were used to study the effect of AGEs on the expression of BAG3 in VSMCs. Lentiviral plasmids containing short hairpin RNA (shRNA) against rat BAG3 or control shRNA were transduced into VSMCs. Cellular ROS were detected by 2',7'-dichlorofluorescein diacetate (DCFH-DA) staining. Mitochondrial membrane potential was detected by tetramethylrhodamine methyl ester (TMRE) staining. AGEs significantly increased the expression of BAG3 in a dose-and time-dependent manner. Furthermore, AGEs mainly increased the expression of BAG3 mRNA by increasing the RNA synthesis rather than inhibiting the RNA translation. BAG3 knockdown reduced the proliferation and migration of VSMCs induced by AGEs. BAG3 knockdown reduced the generation of ROS and sustained the mitochondrial membrane potential of VSMCs. Reduction of ROS production by N-acetylcysteine (NAC), a potent antioxidant, also reduced the proliferation and migration of VSMCs. On the whole, the present study demonstrated for the first time that AGEs could increase ROS production and promote the proliferation and migration of VSMCs by upregulating BAG3 expression. This study indicated that BAG3 should be considered as a potential target for the prevention and/or treatment of vascular complications of diabetes.

  6. Macrophages control vascular stem/progenitor cell plasticity through tumor necrosis factor-α-mediated nuclear factor-κB activation.

    Science.gov (United States)

    Wong, Mei Mei; Chen, Yikuan; Margariti, Andriani; Winkler, Bernhard; Campagnolo, Paola; Potter, Claire; Hu, Yanhua; Xu, Qingbo

    2014-03-01

    Vascular lineage differentiation of stem/progenitor cells can contribute to both tissue repair and exacerbation of vascular diseases such as in vein grafts. The role of macrophages in controlling vascular progenitor differentiation is largely unknown and may play an important role in graft development. This study aims to identify the role of macrophages in vascular stem/progenitor cell differentiation and thereafter elucidate the mechanisms that are involved in the macrophage- mediated process. We provide in vitro evidence that macrophages can induce endothelial cell (EC) differentiation of the stem/progenitor cells while simultaneously inhibiting their smooth muscle cell differentiation. Mechanistically, both effects were mediated by macrophage-derived tumor necrosis factor-α (TNF-α) via TNF-α receptor 1 and canonical nuclear factor-κB activation. Although the overexpression of p65 enhanced EC (or attenuated smooth muscle cell) differentiation, p65 or TNF-α receptor 1 knockdown using lentiviral short hairpin RNA inhibited EC (or rescued smooth muscle cell) differentiation in response to TNF-α. Furthermore, TNF-α-mediated EC differentiation was driven by direct binding of nuclear factor-κB (p65) to specific VE-cadherin promoter sequences. Subsequent experiments using an ex vivo decellularized vessel scaffold confirmed an increase in the number of ECs and reduction in smooth muscle cell marker expression in the presence of TNF-α. The lack of TNF-α in a knockout mouse model of vein graft decreased endothelialization and significantly increased thrombosis formation. Our study highlights the role of macrophages in directing vascular stem/progenitor cell lineage commitment through TNF-α-mediated TNF-α receptor 1 and nuclear factor-κB activation that is likely required for endothelial repair in vascular diseases such as vein graft.

  7. Deep Sequence Analysis of AgoshRNA Processing Reveals 3’ A Addition and Trimming

    Directory of Open Access Journals (Sweden)

    Alex Harwig

    2015-01-01

    Full Text Available The RNA interference (RNAi pathway, in which microprocessor and Dicer collaborate to process microRNAs (miRNA, was recently expanded by the description of alternative processing routes. In one of these noncanonical pathways, Dicer action is replaced by the Argonaute2 (Ago2 slicer function. It was recently shown that the stem-length of precursor-miRNA or short hairpin RNA (shRNA molecules is a major determinant for Dicer versus Ago2 processing. Here we present the results of a deep sequence study on the processing of shRNAs with different stem length and a top G·U wobble base pair (bp. This analysis revealed some unexpected properties of these so-called AgoshRNA molecules that are processed by Ago2 instead of Dicer. First, we confirmed the gradual shift from Dicer to Ago2 processing upon shortening of the hairpin length. Second, hairpins with a stem larger than 19 base pair are inefficiently cleaved by Ago2 and we noticed a shift in the cleavage site. Third, the introduction of a top G·U bp in a regular shRNA can promote Ago2-cleavage, which coincides with a loss of Ago2-loading of the Dicer-cleaved 3’ strand. Fourth, the Ago2-processed AgoshRNAs acquire a short 3’ tail of 1–3 A-nucleotides (nt and we present evidence that this product is subsequently trimmed by the poly(A-specific ribonuclease (PARN.

  8. Deep Sequence Analysis of AgoshRNA Processing Reveals 3' A Addition and Trimming.

    Science.gov (United States)

    Harwig, Alex; Herrera-Carrillo, Elena; Jongejan, Aldo; van Kampen, Antonius Hubertus; Berkhout, Ben

    2015-07-14

    The RNA interference (RNAi) pathway, in which microprocessor and Dicer collaborate to process microRNAs (miRNA), was recently expanded by the description of alternative processing routes. In one of these noncanonical pathways, Dicer action is replaced by the Argonaute2 (Ago2) slicer function. It was recently shown that the stem-length of precursor-miRNA or short hairpin RNA (shRNA) molecules is a major determinant for Dicer versus Ago2 processing. Here we present the results of a deep sequence study on the processing of shRNAs with different stem length and a top G·U wobble base pair (bp). This analysis revealed some unexpected properties of these so-called AgoshRNA molecules that are processed by Ago2 instead of Dicer. First, we confirmed the gradual shift from Dicer to Ago2 processing upon shortening of the hairpin length. Second, hairpins with a stem larger than 19 base pair are inefficiently cleaved by Ago2 and we noticed a shift in the cleavage site. Third, the introduction of a top G·U bp in a regular shRNA can promote Ago2-cleavage, which coincides with a loss of Ago2-loading of the Dicer-cleaved 3' strand. Fourth, the Ago2-processed AgoshRNAs acquire a short 3' tail of 1-3 A-nucleotides (nt) and we present evidence that this product is subsequently trimmed by the poly(A)-specific ribonuclease (PARN).

  9. Lentiviral-mediated targeted NF-kappaB blockade in dorsal spinal cord glia attenuates sciatic nerve injury-induced neuropathic pain in the rat.

    Science.gov (United States)

    Meunier, Alice; Latrémolière, Alban; Dominguez, Elisa; Mauborgne, Annie; Philippe, Stéphanie; Hamon, Michel; Mallet, Jacques; Benoliel, Jean-Jacques; Pohl, Michel

    2007-04-01

    Neuropathic pain developing after peripheral nerve injury is associated with altered neuronal and glial cell functions in the spinal cord. Activated glia produces algogenic mediators, exacerbating pain. Among the different intracellular pathways possibly involved in the modified glial function, the nuclear factor kappaB (NF-kappaB) system is of particular interest, as numerous genes encoding inflammation- and pain-related molecules are controlled by this transcription factor. NF-kappaB is a pleiotropic factor also involved in central nervous system homeostasy. To study its role in chronic pain, it is thus essential to inhibit the NF-kappaB pathway selectively in activated spinal glial cells. Here, we show that when restricted to spinal cord and targeted to glial cells, lentiviral vector-mediated delivery of NF-kappaB super- repressor IkappaBalpha resulted in an inhibition of the NF-kappaB pathway activated in the rat spinal cord after sciatic nerve injury (chronic constriction injury, CCI). Concomitantly, IkappaBalpha overproduction prevented the enhanced expression of interleukin-6 and of inducible nitric oxide synthase associated with chronic constriction injury and resulted in prolonged antihyperalgesic and antiallodynic effects. These data show that targeted blockade of NF-kappaB activity in spinal glia efficiently alleviates pain behavior in CCI rats, demonstrating the active participation of the glial NF-kappaB pathway in the development of neuropathic pain after peripheral nerve injury.

  10. Combination of the clustered regularly interspaced short palindromic repeats (CRISPR)-associated 9 technique with the piggybac transposon system for mouse in utero electroporation to study cortical development.

    Science.gov (United States)

    Cheng, Man; Jin, Xubin; Mu, Lili; Wang, Fangyu; Li, Wei; Zhong, Xiaoling; Liu, Xuan; Shen, Wenchen; Liu, Ying; Zhou, Yan

    2016-09-01

    In utero electroporation (IUE) is commonly used to study cortical development of cerebrum by downregulating or overexpressing genes of interest in neural progenitor cells (NPCs) of small mammals. However, exogenous plasmids are lost or diluted over time. Furthermore, gene knockdown based on short-hairpin RNAs may exert nonspecific effects that lead to aberrant neuronal migration. Genomic engineering by the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system has great research and therapeutic potentials. Here we integrate the CRISPR/Cas9 components into the piggyBac (PB) transposon system (the CRISPR/Cas9-PB toolkit) for cortical IUEs. The mouse Sry-related HMG box-2 (Sox2) gene was selected as the target for its application. Most transduced cortical NPCs were depleted of SOX2 protein as early as 3 days post-IUE, whereas expressions of SOX1 and PAX6 remained intact. Furthermore, both the WT Cas9 and the D10A nickase mutant Cas9n showed comparable knockout efficiency. Transduced cortical cells were purified with fluorescence-activated cell sorting, and effective gene editing at the Sox2 loci was confirmed. Thus, application of the CRISPR/Cas9-PB toolkit in IUE is a promising strategy to study gene functions in cortical NPCs and their progeny. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. siRNA-mediated Erc gene silencing suppresses tumor growth in Tsc2 mutant renal carcinoma model.

    Science.gov (United States)

    Imamura, Osamu; Okada, Hiroaki; Takashima, Yuuki; Zhang, Danqing; Kobayashi, Toshiyuki; Hino, Okio

    2008-09-18

    Silencing of gene expression by small interfering RNAs (siRNAs) is rapidly becoming a powerful tool for genetic analysis and represents a potential strategy for therapeutic product development. However, there are no reports of systemic delivery of siRNAs for stable treatment except short hairpin RNAs (shRNAs). On the other hand, there are many reports of systemic delivery of siRNAs for transient treatment using liposome carriers and others. With regard to shRNAs, a report showed fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Therefore, we decided to use original siRNA microspheres instead of shRNA for stable treatment of disease. In this study, we designed rat-specific siRNA sequences for Erc/mesothelin, which is a tumor-specific gene expressed in the Eker (Tsc2 mutant) rat model of hereditary renal cancer and confirmed the efficacy of gene silencing in vitro. Then, by using siRNA microspheres, we found that the suppression of Erc/mesothelin caused growth inhibition of Tsc2 mutant renal carcinoma cells in tumor implantation experiments in mice.

  12. Hairpin DNA-Templated Silver Nanoclusters as Novel Beacons in Strand Displacement Amplification for MicroRNA Detection.

    Science.gov (United States)

    Zhang, Jingpu; Li, Chao; Zhi, Xiao; Ramón, Gabriel Alfranca; Liu, Yanlei; Zhang, Chunlei; Pan, Fei; Cui, Daxiang

    2016-01-19

    MicroRNA (miRNA) biomarkers display great potential for cancer diagnosis and prognosis. The development of rapid and specific methods for miRNA detection has become a hotspot. Herein, hairpin DNA-templated silver nanoclusters (AgNCs/HpDNA) were prepared and integrated into strand-displacement amplification (SDA) as a novel beacon for miRNA detection. The light-up platform was established based on guanine (G)-rich fluorescence enhancement that essentially converted the excitation/emission pair of AgNCs/HpDNAs from a shorter wavelength to a longer wavelength, and then achieved fluorescent enhancement at longer wavelength. On the basis of the validation of the method, the single and duplex detection were conducted in two plasma biomarkers (miR-16-5p and miR-19b-3p) for the diagnosis of gastric cancer. The probe (AgNCs/RED 16(7s)C) utilized for miR-16-5p detection adopted a better conformation with high specificity to recognize single-base mismatches by producing dramatically opposite signals (increase or decrease at 580 nm ex/640 nm em) while the probe (AgNCs/GRE 19b(5s)C) for miR-19b-3p generated dual signals (increase at 490 nm ex/570 nm em and decrease at 430 nm ex/530 nm em) with bright fluorescence in one reaction during the amplification, but unexpectedly was partially digested. This is for the first time to allow the generation of enhanced fluorescent AgNCs and the target recognition integrated into a single process, which offers great opportunity for specific miRNA detection in an easy and rapid way.

  13. Expression of self-complementary hairpin RNA under the control of the rolC promoter confers systemic disease resistance to plum pox virus without preventing local infection.

    Science.gov (United States)

    Pandolfini, Tiziana; Molesini, Barbara; Avesani, Linda; Spena, Angelo; Polverari, Annalisa

    2003-06-25

    Homology-dependent selective degradation of RNA, or post-transcriptional gene silencing (PTGS), is involved in several biological phenomena, including adaptative defense mechanisms against plant viruses. Small interfering RNAs mediate the selective degradation of target RNA by guiding a multicomponent RNAse. Expression of self-complementary hairpin RNAs within two complementary regions separated by an intron elicits PTGS with high efficiency. Plum pox virus (PPV) is the etiological agent of sharka disease in Drupaceae, although it can also be transmitted to herbaceous species (e.g. Nicotiana benthamiana). Once inside the plant, PPV is transmitted via plasmodesmata from cell to cell, and at longer distances, via phloem. The rolC promoter drives expression in phloem cells. RolC expression is absent in both epidermal and mesophyll cells. The aim of the present study was to confer systemic disease resistance without preventing local viral infection. In the ihprolC-PP197 gene (intron hair pin rolC PPV 197), a 197 bp sequence homologous to the PPV RNA genome (from base 134 to 330) was placed as two inverted repeats separated by the DNA sequence of the rolA intron. This hairpin construct is under the control of the rolC promoter.N. benthamiana plants transgenic for the ihprolC-PP197 gene contain siRNAs homologous to the 197 bp sequence. The transgenic progeny of ihprolC-PP197 plants are resistant to PPV systemic infection. Local infection is unaffected. Most (80%) transgenic plants are virus free and symptomless. Some plants (20%) contain virus in uninoculated apical leaves; however they show only mild symptoms of leaf mottling. PPV systemic resistance cosegregates with the ihprolC-PP197 transgene and was observed in progeny plants of all independent transgenic lines analyzed. SiRNAs of 23-25 nt homologous to the PPV sequence used in the ihprolC-PP197 construct were detected in transgenic plants before and after inoculation. Transitivity of siRNAs was observed in

  14. How short RNAs impact the human ribonuclease Dicer activity: putative regulatory feedback-loops and other RNA-mediated mechanisms controlling microRNA processing.

    Science.gov (United States)

    Koralewska, Natalia; Hoffmann, Weronika; Pokornowska, Maria; Milewski, Marek; Lipinska, Andrea; Bienkowska-Szewczyk, Krystyna; Figlerowicz, Marek; Kurzynska-Kokorniak, Anna

    2016-01-01

    Ribonuclease Dicer plays a pivotal role in RNA interference pathways by processing long double-stranded RNAs and single-stranded hairpin RNA precursors into small interfering RNAs (siRNAs) and microRNAs (miRNAs), respectively. While details of Dicer regulation by a variety of proteins are being elucidated, less is known about non-protein factors, e.g. RNA molecules, that may influence this enzyme's activity. Therefore, we decided to investigate the question of whether the RNA molecules can function not only as Dicer substrates but also as its regulators. Our previous in vitro studies indicated that the activity of human Dicer can be influenced by short RNA molecules that either bind to Dicer or interact with its substrates, or both. Those studies were carried out with commercial Dicer preparations. Nevertheless, such preparations are usually not homogeneous enough to carry out more detailed RNA-binding studies. Therefore, we have established our own system for the production of human Dicer in insect cells. In this manuscript, we characterize the RNA-binding and RNA-cleavage properties of the obtained preparation. We demonstrate that Dicer can efficiently bind single-stranded RNAs that are longer than ~20-nucleotides. Consequently, we revisit possible scenarios of Dicer regulation by single-stranded RNA species ranging from ~10- to ~60-nucleotides, in the context of their binding to this enzyme. Finally, we show that siRNA/miRNA-sized RNAs may affect miRNA production either by binding to Dicer or by participating in regulatory feedback-loops. Altogether, our studies suggest a broad regulatory role of short RNAs in Dicer functioning.

  15. Lentiviral-mediated Targeted NF-κB Blockade in Dorsal Spinal Cord Glia Attenuates Sciatic Nerve Injury-induced Neuropathic Pain in the Rat.

    Science.gov (United States)

    Meunier, Alice; Latrémolière, Alban; Dominguez, Elisa; Mauborgne, Annie; Philippe, Stéphanie; Hamon, Michel; Mallet, Jacques; Benoliel, Jean-Jacques; Pohl, Michel

    2007-04-01

    Neuropathic pain developing after peripheral nerve injury is associated with altered neuronal and glial cell functions in the spinal cord. Activated glia produces algogenic mediators, exacerbating pain. Among the different intracellular pathways possibly involved in the modified glial function, the nuclear factor κB (NF-κB) system is of particular interest, as numerous genes encoding inflammation- and pain-related molecules are controlled by this transcription factor. NF-κB is a pleiotropic factor also involved in central nervous system homeostasy. To study its role in chronic pain, it is thus essential to inhibit the NF-κB pathway selectively in activated spinal glial cells. Here, we show that when restricted to spinal cord and targeted to glial cells, lentiviral vector-mediated delivery of NF-κB super- repressor IκBα resulted in an inhibition of the NF-κB pathway activated in the rat spinal cord after sciatic nerve injury (chronic constriction injury, CCI). Concomitantly, IκBα overproduction prevented the enhanced expression of interleukin-6 and of inducible nitric oxide synthase associated with chronic constriction injury and resulted in prolonged antihyperalgesic and antiallodynic effects. These data show that targeted blockade of NF-κB activity in spinal glia efficiently alleviates pain behavior in CCI rats, demonstrating the active participation of the glial NF-κB pathway in the development of neuropathic pain after peripheral nerve injury. Copyright © 2007 The American Society of Gene Therapy. Published by Elsevier Inc. All rights reserved.

  16. Structure and conformational dynamics of the domain 5 RNA hairpin of a bacterial group II intron revealed by solution nuclear magnetic resonance and molecular dynamics simulations.

    Science.gov (United States)

    Pechlaner, Maria; Sigel, Roland K O; van Gunsteren, Wilfred F; Dolenc, Jožica

    2013-10-08

    Nuclear magnetic resonance (NMR) nuclear Overhauser enhancement (NOE) data obtained for a 35-nucleotide RNA segment of a bacterial group II intron indicate a helical hairpin structure in which three parts, a terminal pentaloop, a bulge, and a G-A mismatch, display no Watson-Crick base pairing. The 668 NOE upper distance bounds for atom pairs are insufficient to uniquely determine the conformation of these segments. Therefore, molecular dynamics simulations including time-averaged distance restraints have been used to obtain a conformational ensemble compatible with the observed NMR data. The ensemble shows alternating hydrogen bonding patterns for the mentioned segments. In particular, in the pentaloop and in the bulge, the hydrogen bonding networks correspond to distinct conformational clusters that could not be captured by using conventional single-structure refinement techniques. This implies that, to obtain a realistic picture of the conformational ensemble of such flexible biomolecules, it is necessary to properly account for the conformational variability in the structure refinement of RNA fragments.

  17. CLEC4M慢病毒载体的构建及其在K562细胞中的表达

    Directory of Open Access Journals (Sweden)

    WANG Yuanyuan

    2014-06-01

    Full Text Available ObjectiveTo construct the lentiviral vector encoding CLEC4M and prepare K-562 cells with stable overexpression of CLEC4M. MethodsThe gene sequence of normal CLEC4M was cloned by RT-PCR and then inserted into GV166 vector to construct GV166-CLEC4M lentiviral expression vector, and then lentiviral packaging was performed by transfection of 293T cells. The obtained lentiviral liquid was used to infect human leukemia cell line K-562. Real-time PCR and Western blot were used to detect the overexpression of CLEC4M in K-562 cells. ResultsSequencing showed that the recombinant lentiviral expression plasmid GV166-CLEC4M was successfully constructed. Lentiviruses could efficiently infect K-562 cells, according to real-time PCR. CLEC4M was successfully over-expressed in K-562 cells at mRNA and protein levels. ConclusionThe construction of lentiviral vector encoding CLEC4M lays a foundation for further study of CLEC4M gene involved in HCV entry into host cells.

  18. A new system for parallel drug screening against multiple-resistant HIV mutants based on lentiviral self-inactivating (SIN vectors and multi-colour analyses

    Directory of Open Access Journals (Sweden)

    Prokofjeva Maria M

    2013-01-01

    Full Text Available Abstract Background Despite progress in the development of combined antiretroviral therapies (cART, HIV infection remains a significant challenge for human health. Current problems of cART include multi-drug-resistant virus variants, long-term toxicity and enormous treatment costs. Therefore, the identification of novel effective drugs is urgently needed. Methods We developed a straightforward screening approach for simultaneously evaluating the sensitivity of multiple HIV gag-pol mutants to antiviral drugs in one assay. Our technique is based on multi-colour lentiviral self-inactivating (SIN LeGO vector technology. Results We demonstrated the successful use of this approach for screening compounds against up to four HIV gag-pol variants (wild-type and three mutants simultaneously. Importantly, the technique was adapted to Biosafety Level 1 conditions by utilising ecotropic pseudotypes. This allowed upscaling to a large-scale screening protocol exploited by pharmaceutical companies in a successful proof-of-concept experiment. Conclusions The technology developed here facilitates fast screening for anti-HIV activity of individual agents from large compound libraries. Although drugs targeting gag-pol variants were used here, our approach permits screening compounds that target several different, key cellular and viral functions of the HIV life-cycle. The modular principle of the method also allows the easy exchange of various mutations in HIV sequences. In conclusion, the methodology presented here provides a valuable new approach for the identification of novel anti-HIV drugs.

  19. Lentiviral gene ontology (LeGO) vectors equipped with novel drug-selectable fluorescent proteins: new building blocks for cell marking and multi-gene analysis.

    Science.gov (United States)

    Weber, K; Mock, U; Petrowitz, B; Bartsch, U; Fehse, B

    2010-04-01

    Vector-encoded fluorescent proteins (FPs) facilitate unambiguous identification or sorting of gene-modified cells by fluorescence-activated cell sorting (FACS). Exploiting this feature, we have recently developed lentiviral gene ontology (LeGO) vectors (www.LentiGO-Vectors.de) for multi-gene analysis in different target cells. In this study, we extend the LeGO principle by introducing 10 different drug-selectable FPs created by fusing one of the five selection marker (protecting against blasticidin, hygromycin, neomycin, puromycin and zeocin) and one of the five FP genes (Cerulean, eGFP, Venus, dTomato and mCherry). All tested fusion proteins allowed both fluorescence-mediated detection and drug-mediated selection of LeGO-transduced cells. Newly generated codon-optimized hygromycin- and neomycin-resistance genes showed improved expression as compared with their ancestors. New LeGO constructs were produced at titers >10(6) per ml (for non-concentrated supernatants). We show efficient combinatorial marking and selection of various cells, including mesenchymal stem cells, simultaneously transduced with different LeGO constructs. Inclusion of the cytomegalovirus early enhancer/chicken beta-actin promoter into LeGO vectors facilitated robust transgene expression in and selection of neural stem cells and their differentiated progeny. We suppose that the new drug-selectable markers combining advantages of FACS and drug selection are well suited for numerous applications and vector systems. Their inclusion into LeGO vectors opens new possibilities for (stem) cell tracking and functional multi-gene analysis.

  20. Folding very short peptides using molecular dynamics.

    Directory of Open Access Journals (Sweden)

    Bosco K Ho

    2006-04-01

    Full Text Available Peptides often have conformational preferences. We simulated 133 peptide 8-mer fragments from six different proteins, sampled by replica-exchange molecular dynamics using Amber7 with a GB/SA (generalized-Born/solvent-accessible electrostatic approximation to water implicit solvent. We found that 85 of the peptides have no preferred structure, while 48 of them converge to a preferred structure. In 85% of the converged cases (41 peptides, the structures found by the simulations bear some resemblance to their native structures, based on a coarse-grained backbone description. In particular, all seven of the beta hairpins in the native structures contain a fragment in the turn that is highly structured. In the eight cases where the bioinformatics-based I-sites library picks out native-like structures, the present simulations are largely in agreement. Such physics-based modeling may be useful for identifying early nuclei in folding kinetics and for assisting in protein-structure prediction methods that utilize the assembly of peptide fragments.

  1. Specific Inhibition of SRC Kinase Impairs Malignant Glioma Growth In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Hanna Stedt

    2012-01-01

    Full Text Available Malignant glioma is a severe cancer with a poor prognosis. Local occurrence and rare metastases of malignant glioma make it a suitable target for gene therapy. Several studies have demonstrated the importance of Src kinase in different cancers. However, these studies have focused mainly on Src-deficient mice or pharmacological inhibitors of Src. In this study we have used Src small hairpin RNAs (shRNAs in a lentiviral backbone to mimic a long-term stable treatment and determined the role of Src in tumor tissues. Efficacy of Src shRNAs was confirmed in vitro demonstrating up to 90% target gene inhibition. In a mouse malignant glioma model, Src shRNA tumors were almost 50-fold smaller in comparison to control tumors and had significantly reduced vascularity. In a syngenic rat intracranial glioma model, Src shRNA-transduced tumors were smaller and these rats had a survival benefit over the control rats. In vivo treatment was enhanced by chemotherapy and histone deacetylase inhibition. Our results emphasise the importance of Src in tumorigenesis and demonstrate that it can be efficiently inhibited in vitro and in vivo in two independent malignant glioma models. In conclusion, Src is a potential target for RNA interference-mediated treatment of malignant glioma.

  2. Expression of self-complementary hairpin RNA under the control of the rolC promoter confers systemic disease resistance to plum pox virus without preventing local infection

    Directory of Open Access Journals (Sweden)

    Spena Angelo

    2003-06-01

    Full Text Available Abstract Background Homology-dependent selective degradation of RNA, or post-transcriptional gene silencing (PTGS, is involved in several biological phenomena, including adaptative defense mechanisms against plant viruses. Small interfering RNAs mediate the selective degradation of target RNA by guiding a multicomponent RNAse. Expression of self-complementary hairpin RNAs within two complementary regions separated by an intron elicits PTGS with high efficiency. Plum pox virus (PPV is the etiological agent of sharka disease in Drupaceae, although it can also be transmitted to herbaceous species (e.g. Nicotiana benthamiana. Once inside the plant, PPV is transmitted via plasmodesmata from cell to cell, and at longer distances, via phloem. The rolC promoter drives expression in phloem cells. RolC expression is absent in both epidermal and mesophyll cells. The aim of the present study was to confer systemic disease resistance without preventing local viral infection. Results In the ihprolC-PP197 gene (intron hair pin rolC PPV 197, a 197 bp sequence homologous to the PPV RNA genome (from base 134 to 330 was placed as two inverted repeats separated by the DNA sequence of the rolA intron. This hairpin construct is under the control of the rolC promoter.N. benthamiana plants transgenic for the ihprolC-PP197 gene contain siRNAs homologous to the 197 bp sequence. The transgenic progeny of ihprolC-PP197 plants are resistant to PPV systemic infection. Local infection is unaffected. Most (80% transgenic plants are virus free and symptomless. Some plants (20% contain virus in uninoculated apical leaves; however they show only mild symptoms of leaf mottling. PPV systemic resistance cosegregates with the ihprolC-PP197 transgene and was observed in progeny plants of all independent transgenic lines analyzed. SiRNAs of 23–25 nt homologous to the PPV sequence used in the ihprolC-PP197 construct were detected in transgenic plants before and after inoculation

  3. Counter-propagating dual-trap optical tweezers based on linear momentum conservation

    International Nuclear Information System (INIS)

    Ribezzi-Crivellari, M.; Huguet, J. M.; Ritort, F.

    2013-01-01

    We present a dual-trap optical tweezers setup which directly measures forces using linear momentum conservation. The setup uses a counter-propagating geometry, which allows momentum measurement on each beam separately. The experimental advantages of this setup include low drift due to all-optical manipulation, and a robust calibration (independent of the features of the trapped object or buffer medium) due to the force measurement method. Although this design does not attain the high-resolution of some co-propagating setups, we show that it can be used to perform different single molecule measurements: fluctuation-based molecular stiffness characterization at different forces and hopping experiments on molecular hairpins. Remarkably, in our setup it is possible to manipulate very short tethers (such as molecular hairpins with short handles) down to the limit where beads are almost in contact. The setup is used to illustrate a novel method for measuring the stiffness of optical traps and tethers on the basis of equilibrium force fluctuations, i.e., without the need of measuring the force vs molecular extension curve. This method is of general interest for dual trap optical tweezers setups and can be extended to setups which do not directly measure forces.

  4. Matrix Metallopeptidase 14 Plays an Important Role in Regulating Tumorigenic Gene Expression and Invasion Ability of HeLa Cells.

    Science.gov (United States)

    Zhang, Ying-Hui; Wang, Juan-Juan; Li, Min; Zheng, Han-Xi; Xu, Lan; Chen, You-Guo

    2016-03-01

    The objectives of this study were to investigate the functional effect of matrix metallopeptidase 14 (MMP14) on cell invasion in cervical cancer cells (HeLa line) and to study the underlying molecular mechanisms. Expression vector of short hairpin RNA targeting MMP14 was treated in HeLa cells, and then, transfection efficiency was verified by a florescence microscope. Transwell assay was used to investigate cell invasion ability in HeLa cells. Quantitative polymerase chain reaction and Western blotting analysis were used to detect the expression of MMP14 and relative factors in messenger RNA and protein levels, respectively. Matrix metallopeptidase 14 short hairpin RNA expression vector transfection obviously decreased MMP14 expression in messenger RNA and protein levels. Down-regulation of MMP14 suppressed invasion ability of HeLa cells and reduced transforming growth factor β1 and vascular endothelial growth factor B expressions. Furthermore, MMP14 knockdown decreased bone sialoprotein and enhanced forkhead box protein L2 expression in both RNA and protein levels. Matrix metallopeptidase 14 plays an important role in regulating invasion of HeLa cells. Matrix metallopeptidase 14 knockdown contributes to attenuating the malignant phenotype of cervical cancer cell.

  5. Counter-propagating dual-trap optical tweezers based on linear momentum conservation

    Energy Technology Data Exchange (ETDEWEB)

    Ribezzi-Crivellari, M.; Huguet, J. M. [Small Biosystems Lab, Dept. de Fisica Fonamental, Universitat de Barcelona, Avda. Diagonal 647, 08028 Barcelona (Spain); Ritort, F. [Small Biosystems Lab, Dept. de Fisica Fonamental, Universitat de Barcelona, Avda. Diagonal 647, 08028 Barcelona (Spain); Ciber-BBN de Bioingenieria, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid (Spain)

    2013-04-15

    We present a dual-trap optical tweezers setup which directly measures forces using linear momentum conservation. The setup uses a counter-propagating geometry, which allows momentum measurement on each beam separately. The experimental advantages of this setup include low drift due to all-optical manipulation, and a robust calibration (independent of the features of the trapped object or buffer medium) due to the force measurement method. Although this design does not attain the high-resolution of some co-propagating setups, we show that it can be used to perform different single molecule measurements: fluctuation-based molecular stiffness characterization at different forces and hopping experiments on molecular hairpins. Remarkably, in our setup it is possible to manipulate very short tethers (such as molecular hairpins with short handles) down to the limit where beads are almost in contact. The setup is used to illustrate a novel method for measuring the stiffness of optical traps and tethers on the basis of equilibrium force fluctuations, i.e., without the need of measuring the force vs molecular extension curve. This method is of general interest for dual trap optical tweezers setups and can be extended to setups which do not directly measure forces.

  6. Comparison of Human Sodium/Iodide Symporter (hNIS) Gene Expressions between Lentiviral and Adenoviral Vectors in Rat Mesenchymal Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, So Yeon; Lee, Won Woo; Kim, Hyun Joo; Chung, June Key; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of); Kim, Sung Jin; Lee, Heui Ran [Medical Research Center, Seoul National University, Seoul (Korea, Republic of)

    2008-10-15

    Quantitative comparison of transgene expression within stem cells between lentivirus and adenovirusmediated delivery systems has not been reported. Here, we evaluated the human sodium iodide symporter (hNIS) gene expression in rat mesenchymal stem cell (rMSC) transduced by lentivirus or adenovirus, and compared the hNIS expression quantitatively between the two delivery systems. Lentiviral-mediated hNIS expressing rMSC (lenti-hNIS-rMSC) was constructed by cloning hNIS gene into pLenti6/UbC/V5-DEST (Invitrogen) to obtain pLenti-hNIS, transducing rMSC with the pLenti-hNIS, and selecting with blasticidin for 3 weeks. Recombinant adenovirus expressing hNIS gene (Rad-hNIS) was produced by homologous recombination and transduction efficiency of Rad-hNIS into rMSC evaluated by Rad-GFP was 19.1{+-}4.7%, 54.0{+-}6.4%, 85.7{+-}8.7%, and 98.4{+-}1.3% at MOI 1, 5, 20, and 100, respectively. The hNIS expressions in lenti-hNIS-rMSC or adeno-hNIS-rMSC were assessed by immunocytochemistry, western blot, and I-125 uptake. Immunocytochemistry and western blot analyses revealed that hNIS expressions in lenti-hNIS-rMSC were greater than those in adeno-hNIS-rMSC at MOI 20 but lower than at MOI 50. However in vitro I-125 uptake test demonstrated that iodide uptake in lenti-hNIS-rMSC (29,704{+-}6,659 picomole/10{sup 6} cells) was greater than that in adeno-hNIS-rMSC at MOI 100 (6,168{+-}2,134 picomole/10{sup 6} cells). Despite lower amount of expressed protein, hNIS function in rMSC was greater by lentivirus than by adenovirus mediated expression. Stem cell tracking using hNIS as a reporter gene should be conducted in consideration of relative vector efficiency for transgene expression.

  7. Efficient delivery of Cre-recombinase to neurons in vivo and stable transduction of neurons using adeno-associated and lentiviral vectors

    Directory of Open Access Journals (Sweden)

    Sablitzky Fred

    2004-01-01

    Full Text Available Abstract Background Inactivating genes in vivo is an important technique for establishing their function in the adult nervous system. Unfortunately, conventional knockout mice may suffer from several limitations including embryonic or perinatal lethality and the compensatory regulation of other genes. One approach to producing conditional activation or inactivation of genes involves the use of Cre recombinase to remove loxP-flanked segments of DNA. We have studied the effects of delivering Cre to the hippocampus and neocortex of adult mice by injecting replication-deficient adeno-associated virus (AAV and lentiviral (LV vectors into discrete regions of the forebrain. Results Recombinant AAV-Cre, AAV-GFP (green fluorescent protein and LV-Cre-EGFP (enhanced GFP were made with the transgene controlled by the cytomegalovirus promoter. Infecting 293T cells in vitro with AAV-Cre and LV-Cre-EGFP resulted in transduction of most cells as shown by GFP fluorescence and Cre immunoreactivity. Injections of submicrolitre quantities of LV-Cre-EGFP and mixtures of AAV-Cre with AAV-GFP into the neocortex and hippocampus of adult Rosa26 reporter mice resulted in strong Cre and GFP expression in the dentate gyrus and moderate to strong labelling in specific regions of the hippocampus and in the neocortex, mainly in neurons. The pattern of expression of Cre and GFP obtained with AAV and LV vectors was very similar. X-gal staining showed that Cre-mediated recombination had occurred in neurons in the same regions of the brain, starting at 3 days post-injection. No obvious toxic effects of Cre expression were detected even after four weeks post-injection. Conclusion AAV and LV vectors are capable of delivering Cre to neurons in discrete regions of the adult mouse brain and producing recombination.

  8. Identification of boiler tube leak in PHWR by measuring short lived radioisotope Iodine-134 in boiler water using gamma spectrometric techniques

    International Nuclear Information System (INIS)

    Pal, P.K.; Bohra, R.C.

    2015-01-01

    The boiler tube made up of Monel-400 of RAPS-2 has failed on few occasions. Due to the failure of boiler tube, the active heavy water enters into boiler and feed water leading to contamination of radioactivity in secondary water circuit. The identification of boiler tube failure was done by measuring gamma ray activity of Iodine-134 in the boiler water with sample using gamma spectrometry with high purity germanium detector. In order to increase the sensitivity of the method 5 liters of Boiler water sample was passed through a plastic column containing 40 ml of anion resin and 10 ml of activated charcoal to capture the isotopes of Iodine in the anionic form and molecular form. Samples were collected from all 8 Boilers of RAPS-2. The activity of 134 I was shown only by Boiler - 5. No other boilers showed any activity of 134 I. This indicated that Boiler - 5 had leaky tubes. The leaky hairpin of boiler - 5 was identified by measuring Tritium and IP in the riser and down comer of all 10 HXs. On the basis of Tritium and IP result, HX-7 was identified as leaky hairpin. (author)

  9. Structure of the USP15 N-terminal domains: a β-hairpin mediates close association between the DUSP and UBL domains.

    Science.gov (United States)

    Harper, Stephen; Besong, Tabot M D; Emsley, Jonas; Scott, David J; Dreveny, Ingrid

    2011-09-20

    Ubiquitin specific protease 15 (USP15) functions in COP9 signalosome mediated regulation of protein degradation and cellular signaling through catalyzing the ubiquitin deconjugation reaction of a discrete number of substrates. It influences the stability of adenomatous polyposis coli, IκBα, caspase-3, and the human papillomavirus type 16 E6. USP15 forms a subfamily with USP4 and USP11 related through a shared presence of N-terminal "domain present in ubiquitin specific proteases" (DUSP) and "ubiquitin-like" (UBL) domains (DU subfamily). Here we report the 1.5 Å resolution crystal structure of the human USP15 N-terminal domains revealing a 80 Å elongated arrangement with the DU domains aligned in tandem. This architecture is generated through formation of a defined interface that is dominated by an intervening β-hairpin structure (DU finger) that engages in an intricate hydrogen-bonding network between the domains. The UBL domain is closely related to ubiquitin among β-grasp folds but is characterized by the presence of longer loop regions and different surface characteristics, indicating that this domain is unlikely to act as ubiquitin mimic. Comparison with the related murine USP4 DUSP-UBL crystal structure reveals that the main DU interdomain contacts are conserved. Analytical ultracentrifugation, small-angle X-ray scattering, and gel filtration experiments revealed that USP15 DU is monomeric in solution. Our data provide a framework to advance study of the structure and function of the DU subfamily. © 2011 American Chemical Society

  10. shRNA-seq data analysis with edgeR [v1; ref status: indexed, http://f1000r.es/38s

    Directory of Open Access Journals (Sweden)

    Zhiyin Dai

    2014-04-01

    Full Text Available Pooled short hairpin RNA sequencing (shRNA-seq screens are becoming increasingly popular in functional genomics research, and there is a need to establish optimal analysis tools to handle such data. Our open-source shRNA processing pipeline in edgeR provides a complete analysis solution for shRNA-seq screen data, that begins with the raw sequence reads and ends with a ranked lists of candidate shRNAs for downstream biological validation. We first summarize the raw data contained in a fastq file into a matrix of counts (samples in the columns, hairpins in the rows with options for allowing mismatches and small shifts in hairpin position. Diagnostic plots, normalization and differential representation analysis can then be performed using established methods to prioritize results in a statistically rigorous way, with the choice of either the classic exact testing methodology or a generalized linear modelling that can handle complex experimental designs. A detailed users’ guide that demonstrates how to analyze screen data in edgeR along with a point-and-click implementation of this workflow in Galaxy are also provided. The edgeR package is freely available from http://www.bioconductor.org.

  11. Short (

    NARCIS (Netherlands)

    Telleman, Gerdien; den Hartog, Laurens

    2013-01-01

    Aim: This systematic review assessed the implant survival rate of short (<10 mm) dental implants installed in partially edentulous patients. A case report of a short implant in the posterior region have been added. Materials and methods: A search was conducted in the electronic databases of MEDLINE

  12. Orphan nuclear receptor TLX activates Wnt/β-catenin signalling to stimulate neural stem cell proliferation and self-renewal

    Science.gov (United States)

    Qu, Qiuhao; Sun, Guoqiang; Li, Wenwu; Yang, Su; Ye, Peng; Zhao, Chunnian; Yu, Ruth T.; Gage, Fred H.; Evans, Ronald M.; Shi, Yanhong

    2010-01-01

    The nuclear receptor TLX (also known as NR2E1) is essential for adult neural stem cell self-renewal; however, the molecular mechanisms involved remain elusive. Here we show that TLX activates the canonical Wnt/β-catenin pathway in adult mouse neural stem cells. Furthermore, we demonstrate that Wnt/β-catenin signalling is important in the proliferation and self-renewal of adult neural stem cells in the presence of epidermal growth factor and fibroblast growth factor. Wnt7a and active β-catenin promote neural stem cell self-renewal, whereas the deletion of Wnt7a or the lentiviral transduction of axin, a β-catenin inhibitor, led to decreased cell proliferation in adult neurogenic areas. Lentiviral transduction of active β-catenin led to increased numbers of type B neural stem cells in the subventricular zone of adult brains, whereas deletion of Wnt7a or TLX resulted in decreased numbers of neural stem cells retaining bromodeoxyuridine label in the adult brain. Both Wnt7a and active β-catenin significantly rescued a TLX (also known as Nr2e1) short interfering RNA-induced deficiency in neural stem cell proliferation. Lentiviral transduction of an active β-catenin increased cell proliferation in neurogenic areas of TLX-null adult brains markedly. These results strongly support the hypothesis that TLX acts through the Wnt/β-catenin pathway to regulate neural stem cell proliferation and self-renewal. Moreover, this study suggests that neural stem cells can promote their own self-renewal by secreting signalling molecules that act in an autocrine/paracrine mode. PMID:20010817

  13. Orphan nuclear receptor TLX activates Wnt/beta-catenin signalling to stimulate neural stem cell proliferation and self-renewal.

    Science.gov (United States)

    Qu, Qiuhao; Sun, Guoqiang; Li, Wenwu; Yang, Su; Ye, Peng; Zhao, Chunnian; Yu, Ruth T; Gage, Fred H; Evans, Ronald M; Shi, Yanhong

    2010-01-01

    The nuclear receptor TLX (also known as NR2E1) is essential for adult neural stem cell self-renewal; however, the molecular mechanisms involved remain elusive. Here we show that TLX activates the canonical Wnt/beta-catenin pathway in adult mouse neural stem cells. Furthermore, we demonstrate that Wnt/beta-catenin signalling is important in the proliferation and self-renewal of adult neural stem cells in the presence of epidermal growth factor and fibroblast growth factor. Wnt7a and active beta-catenin promote neural stem cell self-renewal, whereas the deletion of Wnt7a or the lentiviral transduction of axin, a beta-catenin inhibitor, led to decreased cell proliferation in adult neurogenic areas. Lentiviral transduction of active beta-catenin led to increased numbers of type B neural stem cells in the subventricular zone of adult brains, whereas deletion of Wnt7a or TLX resulted in decreased numbers of neural stem cells retaining bromodeoxyuridine label in the adult brain. Both Wnt7a and active beta-catenin significantly rescued a TLX (also known as Nr2e1) short interfering RNA-induced deficiency in neural stem cell proliferation. Lentiviral transduction of an active beta-catenin increased cell proliferation in neurogenic areas of TLX-null adult brains markedly. These results strongly support the hypothesis that TLX acts through the Wnt/beta-catenin pathway to regulate neural stem cell proliferation and self-renewal. Moreover, this study suggests that neural stem cells can promote their own self-renewal by secreting signalling molecules that act in an autocrine/paracrine mode.

  14. Stable Toll-Like Receptor 10 Knockdown in THP-1 Cells Reduces TLR-Ligand-Induced Proinflammatory Cytokine Expression

    Directory of Open Access Journals (Sweden)

    Hai Van Le

    2016-06-01

    Full Text Available Toll-like receptor 10 (TLR10 is the only orphan receptor whose natural ligand and function are unknown among the 10 human TLRs. In this study, to test whether TLR10 recognizes some known TLR ligands, we established a stable TLR10 knockdown human monocytic cell line THP-1 using TLR10 short hairpin RNA lentiviral particle and puromycin selection. Among 60 TLR10 knockdown clones that were derived from each single transduced cell, six clones were randomly selected, and then one of those clones, named E7, was chosen for the functional study. E7 exhibited approximately 50% inhibition of TLR10 mRNA and protein expression. Of all the TLRs, only the expression of TLR10 changed significantly in this cell line. Additionally, phorbol 12-myristate 13-acetate-induced macrophage differentiation of TLR10 knockdown cells was not affected in the knockdown cells. When exposed to TLR ligands, such as synthetic diacylated lipoprotein (FSL-1, lipopolysaccharide (LPS, and flagellin, significant induction of proinflammatory cytokine gene expression including Interleukin-8 (IL-8, Interleukin-1 beta (IL-1β, Tumor necrosis factor-alpha (TNF-α and Chemokine (C–C Motif Ligand 20 (CCL20 expression, was found in the control THP-1 cells, whereas the TLR10 knockdown cells exhibited a significant reduction in the expression of IL-8, IL-1β, and CCL20. TNF-α was the only cytokine for which the expression did not decrease in the TLR10 knockdown cells from that measured in the control cells. Analysis of putative binding sites for transcription factors using a binding-site-prediction program revealed that the TNF-α promoter does not have putative binding sites for AP-1 or c-Jun, comprising a major transcription factor along with NF-κB for TLR signaling. Our results suggest that TLR10 is involved in the recognition of FSL-1, LPS, and flagellin and TLR-ligand-induced expression of TNF-α does not depend on TLR10.

  15. Stable Toll-Like Receptor 10 Knockdown in THP-1 Cells Reduces TLR-Ligand-Induced Proinflammatory Cytokine Expression.

    Science.gov (United States)

    Le, Hai Van; Kim, Jae Young

    2016-06-01

    Toll-like receptor 10 (TLR10) is the only orphan receptor whose natural ligand and function are unknown among the 10 human TLRs. In this study, to test whether TLR10 recognizes some known TLR ligands, we established a stable TLR10 knockdown human monocytic cell line THP-1 using TLR10 short hairpin RNA lentiviral particle and puromycin selection. Among 60 TLR10 knockdown clones that were derived from each single transduced cell, six clones were randomly selected, and then one of those clones, named E7, was chosen for the functional study. E7 exhibited approximately 50% inhibition of TLR10 mRNA and protein expression. Of all the TLRs, only the expression of TLR10 changed significantly in this cell line. Additionally, phorbol 12-myristate 13-acetate-induced macrophage differentiation of TLR10 knockdown cells was not affected in the knockdown cells. When exposed to TLR ligands, such as synthetic diacylated lipoprotein (FSL-1), lipopolysaccharide (LPS), and flagellin, significant induction of proinflammatory cytokine gene expression including Interleukin-8 (IL-8), Interleukin-1 beta (IL-1β), Tumor necrosis factor-alpha (TNF-α) and Chemokine (C-C Motif) Ligand 20 (CCL20) expression, was found in the control THP-1 cells, whereas the TLR10 knockdown cells exhibited a significant reduction in the expression of IL-8, IL-1β, and CCL20. TNF-α was the only cytokine for which the expression did not decrease in the TLR10 knockdown cells from that measured in the control cells. Analysis of putative binding sites for transcription factors using a binding-site-prediction program revealed that the TNF-α promoter does not have putative binding sites for AP-1 or c-Jun, comprising a major transcription factor along with NF-κB for TLR signaling. Our results suggest that TLR10 is involved in the recognition of FSL-1, LPS, and flagellin and TLR-ligand-induced expression of TNF-α does not depend on TLR10.

  16. Incorrect dosage of IQSEC2, a known intellectual disability and epilepsy gene, disrupts dendritic spine morphogenesis

    Science.gov (United States)

    Hinze, S J; Jackson, M R; Lie, S; Jolly, L; Field, M; Barry, S C; Harvey, R J; Shoubridge, C

    2017-01-01

    There is considerable genetic and phenotypic heterogeneity associated with intellectual disability (ID), specific learning disabilities, attention-deficit hyperactivity disorder, autism and epilepsy. The intelligence quotient (IQ) motif and SEC7 domain containing protein 2 gene (IQSEC2) is located on the X-chromosome and harbors mutations that contribute to non-syndromic ID with and without early-onset seizure phenotypes in both sexes. Although IQ and Sec7 domain mutations lead to partial loss of IQSEC2 enzymatic activity, the in vivo pathogenesis resulting from these mutations is not known. Here we reveal that IQSEC2 has a key role in dendritic spine morphology. Partial loss-of-function mutations were modeled using a lentiviral short hairpin RNA (shRNA) approach, which achieved a 57% knockdown of Iqsec2 expression in primary hippocampal cell cultures from mice. Investigating gross morphological parameters after 8 days of in vitro culture (8DIV) identified a 32% reduction in primary axon length, in contrast to a 27% and 31% increase in the number and complexity of dendrites protruding from the cell body, respectively. This increase in dendritic complexity and spread was carried through dendritic spine development, with a 34% increase in the number of protrusions per dendritic segment compared with controls at 15DIV. Although the number of dendritic spines had normalized by 21DIV, a reduction was noted in the number of immature spines. In contrast, when modeling increased dosage, overexpression of wild-type IQSEC2 led to neurons with shorter axons that were more compact and displayed simpler dendritic branching. Disturbances to dendritic morphology due to knockdown of Iqsec2 were recapitulated in neurons from Iqsec2 knockout mice generated in our laboratory using CRISPR/Cas9 technology. These observations provide evidence of dosage sensitivity for IQSEC2, which normally escapes X-inactivation in females, and links these disturbances in expression to alterations in

  17. APC/β-catenin-rich complexes at membrane protrusions regulate mammary tumor cell migration and mesenchymal morphology

    International Nuclear Information System (INIS)

    Odenwald, Matthew A; Prosperi, Jenifer R; Goss, Kathleen H

    2013-01-01

    The APC tumor suppressor is mutated or downregulated in many tumor types, and is prominently localized to punctate clusters at protrusion tips in migratory cells, such as in astrocytes where it has been implicated in directed cell motility. Although APC loss is considered an initiating event in colorectal cancer, for example, it is less clear what role APC plays in tumor cell motility and whether loss of APC might be an important promoter of tumor progression in addition to initiation. The localization of APC and β-catenin was analyzed in multiple cell lines, including non-transformed epithelial lines treated with a proteasome inhibitor or TGFβ to induce an epithelial-to-mesenchymal transition (EMT), as well as several breast cancer lines, by immunofluorescence. APC expression was knocked down in 4T07 mammary tumor cells using lentiviral-mediated delivery of APC-specific short-hairpin (sh) RNAs, and assessed using quantitative (q) reverse-transcriptase (RT)-PCR and western blotting. Tumor cell motility was analyzed by performing wound-filling assays, and morphology via immunofluorescence (IF) and phase-contrast microscopy. Additionally, proliferation was measured using BrdU incorporation, and TCF reporter assays were performed to determine β-catenin/TCF-mediated transcriptional activity. APC/β-catenin-rich complexes were observed at protrusion ends of migratory epithelial cells treated with a proteasome inhibitor or when EMT has been induced and in tumor cells with a mesenchymal, spindle-like morphology. 4T07 tumor cells with reduced APC levels were significantly less motile and had a more rounded morphology; yet, they did not differ significantly in proliferation or β-catenin/TCF transcriptional activity. Furthermore, we found that APC/β-catenin-rich complexes at protrusion ends were dependent upon an intact microtubule cytoskeleton. These findings indicate that membrane protrusions with APC/β-catenin-containing puncta control the migratory potential and

  18. Low Immunogenic Endothelial Cells Maintain Morphological and Functional Properties Required for Vascular Tissue Engineering.

    Science.gov (United States)

    Lau, Skadi; Eicke, Dorothee; Carvalho Oliveira, Marco; Wiegmann, Bettina; Schrimpf, Claudia; Haverich, Axel; Blasczyk, Rainer; Wilhelmi, Mathias; Figueiredo, Constança; Böer, Ulrike

    2018-03-01

    The limited availability of native vessels suitable for the application as hemodialysis shunts or bypass material demands new strategies in cardiovascular surgery. Tissue-engineered vascular grafts containing autologous cells are considered ideal vessel replacements due to the low risk of rejection. However, endothelial cells (EC), which are central components of natural blood vessels, are difficult to obtain from elderly patients of poor health. Umbilical cord blood represents a promising alternative source for EC, but their allogeneic origin corresponds with the risk of rejection after allotransplantation. To reduce this risk, the human leukocyte antigen class I (HLA I) complex was stably silenced by lentiviral vector-mediated RNA interference (RNAi) in EC from peripheral blood and umbilical cord blood and vein. EC from all three sources were transduced by 93.1% ± 4.8% and effectively, HLA I-silenced by up to 67% compared to nontransduced (NT) cells or transduced with a nonspecific short hairpin RNA, respectively. Silenced EC remained capable to express characteristic endothelial surface markers such as CD31 and vascular endothelial cadherin important for constructing a tight barrier, as well as von Willebrand factor and endothelial nitric oxide synthase important for blood coagulation and vessel tone regulation. Moreover, HLA I-silenced EC were still able to align under unidirectional flow, to take up acetylated low-density lipoprotein, and to form capillary-like tube structures in three-dimensional fibrin gels similar to NT cells. In particular, addition of adipose tissue-derived mesenchymal stem cells significantly improved tube formation capability of HLA I-silenced EC toward long and widely branched vascular networks necessary for prevascularizing vascular grafts. Thus, silencing HLA I by RNAi represents a promising technique to reduce the immunogenic potential of EC from three different sources without interfering with EC-specific morphological and

  19. TRB3 reverses chemotherapy resistance and mediates crosstalk between endoplasmic reticulum stress and AKT signaling pathways in MHCC97H human hepatocellular carcinoma cells.

    Science.gov (United States)

    Li, Yang; Zhu, Danxi; Hou, Lidan; Hu, Bin; Xu, Min; Meng, Xiangjun

    2018-01-01

    Tribbles homolog 3 (TRB3), a type of pseudokinase that contains a consensus serine/threonine kinase catalytic core structure, is upregulated in hepatocellular carcinoma. However, the effect of TRB3 expression in hepatocellular carcinoma and the molecular mechanisms underlying TRB3-mediated effects on tumorigenesis in hepatocellular carcinoma have not been fully elucidated. The present study focused on the effect of TRB3 expression in MHCC97H hepatocellular carcinoma cells and investigated the underlying molecular mechanisms in MHCC97H cells. In the present study, it was revealed that TRB3 was significantly overexpressed in the MHCC97H hepatocellular carcinoma cell compared with L-02 normal hepatic cells. Under endoplasmic reticulum (ER) stress induced by thapsigargin and tunicamycin, the levels of TRB3, CCAAT/enhancer binding protein homologous protein (CHOP), protein kinase B (AKT) and phosphorylated (p)AKT expression were upregulated. Furthermore, when the expression of TRB3 was silenced by short hairpin (sh)RNA, the survival of MHCC97H hepatocellular carcinoma cells was increased. Notably, following transduction with lentiviral containing TRB3-shRNA, cell survival also increased after treatment with chemotherapy drug cisplatin. The present study demonstrated that knockdown of CHOP by shRNA was able to reduce TRB3 expression, and the knockdown of TRB3 markedly increased the level of pAKT. TRB3 was overexpressed in MHCC97H hepatocellular carcinoma cells, particularly under endoplasmic reticulum stress. Knockdown of TRB3 was able to increase cell survival. Therefore, TRB3 expression may induce apoptosis and reverse resistance to chemotherapy in MHCC97H hepatic carcinoma cells. The present study suggests that TRB3 is a key molecule that mediates the crosstalk between ER stress and AKT signal pathways. Furthermore, the present study may provide further insight into the cancer biology of hepatocellular carcinoma and the development of anticancer drugs targeting the ER

  20. APC/β-catenin-rich complexes at membrane protrusions regulate mammary tumor cell migration and mesenchymal morphology

    Science.gov (United States)

    2013-01-01

    Background The APC tumor suppressor is mutated or downregulated in many tumor types, and is prominently localized to punctate clusters at protrusion tips in migratory cells, such as in astrocytes where it has been implicated in directed cell motility. Although APC loss is considered an initiating event in colorectal cancer, for example, it is less clear what role APC plays in tumor cell motility and whether loss of APC might be an important promoter of tumor progression in addition to initiation. Methods The localization of APC and β-catenin was analyzed in multiple cell lines, including non-transformed epithelial lines treated with a proteasome inhibitor or TGFβ to induce an epithelial-to-mesenchymal transition (EMT), as well as several breast cancer lines, by immunofluorescence. APC expression was knocked down in 4T07 mammary tumor cells using lentiviral-mediated delivery of APC-specific short-hairpin (sh) RNAs, and assessed using quantitative (q) reverse-transcriptase (RT)-PCR and western blotting. Tumor cell motility was analyzed by performing wound-filling assays, and morphology via immunofluorescence (IF) and phase-contrast microscopy. Additionally, proliferation was measured using BrdU incorporation, and TCF reporter assays were performed to determine β-catenin/TCF-mediated transcriptional activity. Results APC/β-catenin-rich complexes were observed at protrusion ends of migratory epithelial cells treated with a proteasome inhibitor or when EMT has been induced and in tumor cells with a mesenchymal, spindle-like morphology. 4T07 tumor cells with reduced APC levels were significantly less motile and had a more rounded morphology; yet, they did not differ significantly in proliferation or β-catenin/TCF transcriptional activity. Furthermore, we found that APC/β-catenin-rich complexes at protrusion ends were dependent upon an intact microtubule cytoskeleton. Conclusions These findings indicate that membrane protrusions with APC/β-catenin-containing puncta

  1. Downregulation of microRNA-130a contributes to endothelial progenitor cell dysfunction in diabetic patients via its target Runx3.

    Directory of Open Access Journals (Sweden)

    Shu Meng

    Full Text Available Dysfunction of endothelial progenitor cells (EPCs contributes to diabetic vascular disease. MicroRNAs (miRs have emerged as key regulators of diverse cellular processes including angiogenesis. We recently reported that miR-126, miR-130a, miR-21, miR-27a, and miR-27b were downregulated in EPCs from type II diabetes mellitus (DM patients, and downregulation of miR-126 impairs EPC function. The present study further explored whether dysregulated miR-130a were also related to EPC dysfunction. EPCs were cultured from peripheral blood mononuclear cells of diabetic patients and healthy controls. Assays on EPC function (proliferation, migration, differentiation, apoptosis, and colony and tubule formation were performed. Bioinformatics analyses were used to identify the potential targets of miR-130a in EPCs. Gene expression of miR-103a and Runx3 was measured by real-time PCR, and protein expression of Runx3, extracellular signal-regulated kinase (ERK, vascular endothelial growth factor (VEGF and Akt was measured by Western blotting. Runx3 promoter activity was measured by luciferase reporter assay. A miR-130a inhibitor or mimic and lentiviral vectors expressing miR-130a, or Runx3, or a short hairpin RNA targeting Runx3 were transfected into EPCs to manipulate miR-130a and Runx3 levels. MiR-130a was decreased in EPCs from DM patients. Anti-miR-130a inhibited whereas miR-130a overexpression promoted EPC function. miR-130a negatively regulated Runx3 (mRNA, protein and promoter activity in EPCs. Knockdown of Runx3 expression enhanced EPC function. MiR-130a also upregulated protein expression of ERK/VEGF and Akt in EPCs. In conclusion, miR-130a plays an important role in maintaining normal EPC function, and decreased miR-130a in EPCs from DM contributes to impaired EPC function, likely via its target Runx3 and through ERK/VEGF and Akt pathways.

  2. Effective relief of neuropathic pain by adeno-associated virus-mediated expression of a small hairpin RNA against GTP cyclohydrolase 1

    Directory of Open Access Journals (Sweden)

    Chang Jin

    2009-11-01

    Full Text Available Abstract Background Recent studies show that transcriptional activation of GTP cyclohydrolase I (GCH1 in dorsal root ganglia (DRG is significantly involved in the development and persistency of pain symptoms. We thus hypothesize that neuropathic pain may be attenuated by down-regulation of GCH1 expression, and propose a gene silencing system for this purpose. Results To interrupt GCH1 synthesis, we designed a bidirectional recombinant adeno-associated virus encoding both a small hairpin RNA against GCH1 and a GFP reporter gene (rAAV-shGCH1. After rAAV-shGCH1 was introduced into the sciatic nerve prior to or following pain-inducing surgery, therapeutic efficacy and the underlying mechanisms were subsequently validated in animal models. The GFP expression data indicates that rAAV effectively delivered transgenes to DRG. Subsequently reduced GCH1 expression was evident from immunohistochemistry and western-blotting analysis. Along with the down-regulation of GCH1, the von Frey test correspondingly indicated a sharp decline in pain symptoms upon both pre- and post-treatment with rAAV-shGCH1. Interestingly, GCH1 down-regulation additionally led to decreased microglial activation in the dorsal horn, implying an association between pain attenuation and reduced inflammation. Conclusion Therefore, the data suggests that GCH1 levels can be reduced by introducing rAAV-shGCH1, leading to pain relief. Based on the results, we propose that GCH1 modulation may be developed as a clinically applicable gene therapy strategy to treat neuropathic pain.

  3. Importance of the short cytoplasmic domain of the feline immunodeficiency virus transmembrane glycoprotein for fusion activity and envelope glycoprotein incorporation into virions

    International Nuclear Information System (INIS)

    Celma, Cristina C.P.; Paladino, Monica G.; Gonzalez, Silvia A.; Affranchino, Jose L.

    2007-01-01

    The mature form of the envelope (Env) glycoprotein of lentiviruses is a heterodimer composed of the surface (SU) and transmembrane (TM) subunits. Feline immunodeficiency virus (FIV) possesses a TM glycoprotein with a cytoplasmic tail of approximately 53 amino acids which is unusually short compared with that of the other lentiviral glycoproteins (more than 100 residues). To investigate the relevance of the FIV TM cytoplasmic domain to Env-mediated viral functions, we characterized the biological properties of a series of Env glycoproteins progressively shortened from the carboxyl terminus. All the mutant Env proteins were efficiently expressed in feline cells and processed into the SU and TM subunits. Deletion of 5 or 11 amino acids from the TM C-terminus did not significantly affect Env surface expression, fusogenic activity or Env incorporation into virions, whereas removal of 17 or 23 residues impaired Env-mediated cell-to-cell fusion. Further truncation of the FIV TM by 29 residues resulted in an Env glycoprotein that was poorly expressed at the cell surface, exhibited only 20% of the wild-type Env fusogenic capacity and was inefficiently incorporated into virions. Remarkably, deletion of the TM C-terminal 35 or 41 amino acids restored or even enhanced Env biological functions. Indeed, these mutant Env glycoproteins bearing cytoplasmic domains of 18 or 12 amino acids were found to be significantly more fusogenic than the wild-type Env and were efficiently incorporated into virions. Interestingly, truncation of the TM cytoplasmic domain to only 6 amino acids did not affect Env incorporation into virions but abrogated Env fusogenicity. Finally, removal of the entire TM cytoplasmic tail or deletion of as many as 6 amino acids into the membrane-spanning domain led to a complete loss of Env functions. Our results demonstrate that despite its relatively short length, the FIV TM cytoplasmic domain plays an important role in modulating Env-mediated viral functions

  4. Natural short sleeper

    Science.gov (United States)

    Sleep - natural short sleeper ... 7 to 9 hours of sleep each night. Short sleepers sleep less than 75% of what is normal for their age. Natural short sleepers are different from people who chronically do ...

  5. Striatal modulation of BDNF expression using microRNA124a-expressing lentiviral vectors impairs ethanol-induced conditioned-place preference and voluntary alcohol consumption.

    Science.gov (United States)

    Bahi, Amine; Dreyer, Jean-Luc

    2013-07-01

    Alcohol abuse is a major health, economic and social concern in modern societies, but the exact molecular mechanisms underlying ethanol addiction remain elusive. Recent findings show that small non-coding microRNA (miRNA) signaling contributes to complex behavioral disorders including drug addiction. However, the role of miRNAs in ethanol-induced conditioned-place preference (CPP) and voluntary alcohol consumption has not yet been directly addressed. Here, we assessed the expression profile of miR124a in the dorsal striatum of rats upon ethanol intake. The results show that miR124a was downregulated in the dorso-lateral striatum (DLS) following alcohol drinking. Then, we identified brain-derived neurotrophic factor (BDNF) as a direct target of miR124a. In fact, BDNF mRNA was upregulated following ethanol drinking. We used lentiviral vector (LV) gene transfer technology to further address the role of miR124a and its direct target BDNF in ethanol-induced CPP and alcohol consumption. Results reveal that stereotaxic injection of LV-miR124a in the DLS enhances ethanol-induced CPP as well as voluntary alcohol consumption in a two-bottle choice drinking paradigm. Moreover, miR124a-silencer (LV-siR124a) as well as LV-BDNF infusion in the DLS attenuates ethanol-induced CPP as well as voluntary alcohol consumption. Importantly, LV-miR124a, LV-siR124a and LV-BDNF have no effect on saccharin and quinine intake. Our findings indicate that striatal miR124a and BDNF signaling have crucial roles in alcohol consumption and ethanol conditioned reward. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Comparison of Human Sodium/Iodide Symporter (hNIS) Gene Expressions between Lentiviral and Adenoviral Vectors in Rat Mesenchymal Stem Cells

    International Nuclear Information System (INIS)

    Park, So Yeon; Lee, Won Woo; Kim, Hyun Joo; Chung, June Key; Kim, Sang Eun; Kim, Sung Jin; Lee, Heui Ran

    2008-01-01

    Quantitative comparison of transgene expression within stem cells between lentivirus and adenovirusmediated delivery systems has not been reported. Here, we evaluated the human sodium iodide symporter (hNIS) gene expression in rat mesenchymal stem cell (rMSC) transduced by lentivirus or adenovirus, and compared the hNIS expression quantitatively between the two delivery systems. Lentiviral-mediated hNIS expressing rMSC (lenti-hNIS-rMSC) was constructed by cloning hNIS gene into pLenti6/UbC/V5-DEST (Invitrogen) to obtain pLenti-hNIS, transducing rMSC with the pLenti-hNIS, and selecting with blasticidin for 3 weeks. Recombinant adenovirus expressing hNIS gene (Rad-hNIS) was produced by homologous recombination and transduction efficiency of Rad-hNIS into rMSC evaluated by Rad-GFP was 19.1±4.7%, 54.0±6.4%, 85.7±8.7%, and 98.4±1.3% at MOI 1, 5, 20, and 100, respectively. The hNIS expressions in lenti-hNIS-rMSC or adeno-hNIS-rMSC were assessed by immunocytochemistry, western blot, and I-125 uptake. Immunocytochemistry and western blot analyses revealed that hNIS expressions in lenti-hNIS-rMSC were greater than those in adeno-hNIS-rMSC at MOI 20 but lower than at MOI 50. However in vitro I-125 uptake test demonstrated that iodide uptake in lenti-hNIS-rMSC (29,704±6,659 picomole/10 6 cells) was greater than that in adeno-hNIS-rMSC at MOI 100 (6,168±2,134 picomole/10 6 cells). Despite lower amount of expressed protein, hNIS function in rMSC was greater by lentivirus than by adenovirus mediated expression. Stem cell tracking using hNIS as a reporter gene should be conducted in consideration of relative vector efficiency for transgene expression

  7. Short philtrum

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003302.htm Short philtrum To use the sharing features on this page, please enable JavaScript. A short philtrum is a shorter than normal distance between ...

  8. Idiopathic short stature

    Directory of Open Access Journals (Sweden)

    Vlaški Jovan

    2013-01-01

    Full Text Available Growth is a complex process and the basic characteristic of child- hood growth monitoring provides insight into the physiological and pathological events in the body. Statistically, the short stature means departure from the values of height for age and sex (in a particular environment, which is below -2 standard deviation score, or less than -2 standard deviation, i.e. below the third percentile. Advances in molecular genetics have contributed to the improvement of diagnostics in endocrinology. Analysis of patients’ genotypes should not be performed before taking a classical history, detailed clinical examination and appropriate tests. In patients with idiopathic short stature specific causes are excluded, such as growth hormone deficiency, Turner syndrome, short stature due to low birth weight, intrauterine growth retardation, small for gestational age, dysmorphology syndromes and chronic childhood diseases. The exclusion of abovementioned conditions leaves a large number of children with short stature whose etiology includes patients with genetic short stature or familial short stature and those who are low in relation to genetic potential, and who could also have some unrecognized endocrine defect. Idiopathic short stature represents a short stature of unknown cause of heterogeneous etiology, and is characterized by a normal response of growth hormone during stimulation tests (>10 ng/ml or 20 mJ/l, without other disorders, of normal body mass and length at birth. In idiopathic short stature standard deviation score rates <-2.25 (-2 to -3 or <1.2 percentile. These are also criteria for the initiation of growth hormone therapy. In children with short stature there is also the presence of psychological and social suffering. Goals of treatment with growth hormone involve achieving normal height and normal growth rate during childhood.

  9. Screening the sequence selectivity of DNA-binding molecules using a gold nanoparticle-based colorimetric approach.

    Science.gov (United States)

    Hurst, Sarah J; Han, Min Su; Lytton-Jean, Abigail K R; Mirkin, Chad A

    2007-09-15

    We have developed a novel competition assay that uses a gold nanoparticle (Au NP)-based, high-throughput colorimetric approach to screen the sequence selectivity of DNA-binding molecules. This assay hinges on the observation that the melting behavior of DNA-functionalized Au NP aggregates is sensitive to the concentration of the DNA-binding molecule in solution. When short, oligomeric hairpin DNA sequences were added to a reaction solution consisting of DNA-functionalized Au NP aggregates and DNA-binding molecules, these molecules may either bind to the Au NP aggregate interconnects or the hairpin stems based on their relative affinity for each. This relative affinity can be measured as a change in the melting temperature (Tm) of the DNA-modified Au NP aggregates in solution. As a proof of concept, we evaluated the selectivity of 4',6-diamidino-2-phenylindone (an AT-specific binder), ethidium bromide (a nonspecific binder), and chromomycin A (a GC-specific binder) for six sequences of hairpin DNA having different numbers of AT pairs in a five-base pair variable stem region. Our assay accurately and easily confirmed the known trends in selectivity for the DNA binders in question without the use of complicated instrumentation. This novel assay will be useful in assessing large libraries of potential drug candidates that work by binding DNA to form a drug/DNA complex.

  10. Short-circuit logic

    NARCIS (Netherlands)

    Bergstra, J.A.; Ponse, A.

    2010-01-01

    Short-circuit evaluation denotes the semantics of propositional connectives in which the second argument is only evaluated if the first argument does not suffice to determine the value of the expression. In programming, short-circuit evaluation is widely used. A short-circuit logic is a variant of

  11. Replication slippage of the thermophilic DNA polymerases B and D from the Euryarchaeota Pyrococcus abyssi

    Directory of Open Access Journals (Sweden)

    Melissa G. eCastillo-Lizardo

    2014-08-01

    Full Text Available Replication slippage or slipped-strand mispairing involves the misalignment of DNA strands during the replication of repeated DNA sequences, and can lead to genetic rearrangements such as microsatellite instability. Here, we show that PolB and PolD replicative DNA polymerases from the archaeal model Pyrococcus abyssi (Pab slip in vitro during replication of a single-stranded DNA template carrying a hairpin structure and short direct repeats. We find that this occurs in both their wild-type (exo+ and exonuclease deficient (exo- forms. The slippage behavior of PabPolB and PabPolD, probably due to limited strand displacement activity, resembles that observed for the high fidelity Pyrococcus furiosus (Pfu DNA polymerase. The presence of PabPCNA inhibited PabPolB and PabPolD slippage. We propose a model whereby PabPCNA stimulates strand displacement activity and polymerase progression through the hairpin, thus permitting the error-free replication of repetitive sequences.

  12. A purely nonlinear route to transition approaching the edge of chaos in a boundary layer

    International Nuclear Information System (INIS)

    Cherubini, S; De Palma, P; Robinet, J-Ch; Bottaro, A

    2012-01-01

    The understanding of transition in shear flows has recently progressed along new paradigms based on the central role of coherent flow structures and their nonlinear interactions. We follow such paradigms to identify, by means of a nonlinear optimization of the energy growth at short time, the initial perturbation which most easily induces transition in a boundary layer. Moreover, a bisection procedure has been used to identify localized flow structures living on the edge of chaos, found to be populated by hairpin vortices and streaks. Such an edge structure appears to act as a relative attractor for the trajectory of the laminar base state perturbed by the initial finite-amplitude disturbances, mediating the route to turbulence of the flow, via the triggering of a regeneration cycle of Λ and hairpin structures at different space and time scales. These findings introduce a new, purely nonlinear scenario of transition in a boundary-layer flow. (paper)

  13. A unique dual recognition hairpin probe mediated fluorescence amplification method for sensitive detection of uracil-DNA glycosylase and endonuclease IV activities.

    Science.gov (United States)

    Wu, Yushu; Yan, Ping; Xu, Xiaowen; Jiang, Wei

    2016-03-07

    Uracil-DNA glycosylase (UDG) and endonuclease IV (Endo IV) play cooperative roles in uracil base-excision repair (UBER) and inactivity of either will interrupt the UBER to cause disease. Detection of UDG and Endo IV activities is crucial to evaluate the UBER process in fundamental research and diagnostic application. Here, a unique dual recognition hairpin probe mediated fluorescence amplification method was developed for sensitively and selectively detecting UDG and Endo IV activities. For detecting UDG activity, the uracil base in the probe was excised by the target enzyme to generate an apurinic/apyrimidinic (AP) site, achieving the UDG recognition. Then, the AP site was cleaved by a tool enzyme Endo IV, releasing a primer to trigger rolling circle amplification (RCA) reaction. Finally, the RCA reaction produced numerous repeated G-quadruplex sequences, which interacted with N-methyl-mesoporphyrin IX to generate an enhanced fluorescence signal. Alternatively, for detecting Endo IV activity, the uracil base in the probe was first converted into an AP site by a tool enzyme UDG. Next, the AP site was cleaved by the target enzyme, achieving the Endo IV recognition. The signal was then generated and amplified in the same way as those in the UDG activity assay. The detection limits were as low as 0.00017 U mL(-1) for UDG and 0.11 U mL(-1) for Endo IV, respectively. Moreover, UDG and Endo IV can be well distinguished from their analogs. This method is beneficial for properly evaluating the UBER process in function studies and disease prognoses.

  14. DICER-LIKE2 plays a primary role in transitive silencing of transgenes in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Sizolwenkosi Mlotshwa

    2008-03-01

    Full Text Available Dicer-like (DCL enzymes play a pivotal role in RNA silencing in plants, processing the long double-stranded RNA (dsRNA that triggers silencing into the primary short interfering RNAs (siRNAs that mediate it. The siRNA population can be augmented and silencing amplified via transitivity, an RNA-dependent RNA polymerase (RDR-dependent pathway that uses the target RNA as substrate to generate secondary siRNAs. Here we report that Arabidopsis DCL2-but not DCL4-is required for transitivity in cell-autonomous, post-transcriptional silencing of transgenes. An insertion mutation in DCL2 blocked sense transgene-induced silencing and eliminated accumulation of the associated RDR-dependent siRNAs. In hairpin transgene-induced silencing, the dcl2 mutation likewise eliminated accumulation of secondary siRNAs and blocked transitive silencing, but did not block silencing mediated by primary siRNAs. Strikingly, in all cases, the dcl2 mutation eliminated accumulation of all secondary siRNAs, including those generated by other DCL enzymes. In contrast, mutations in DCL4 promoted a dramatic shift to transitive silencing in the case of the hairpin transgene and enhanced silencing induced by the sense transgene. Suppression of hairpin and sense transgene silencing by the P1/HC-Pro and P38 viral suppressors was associated with elimination of secondary siRNA accumulation, but the suppressors did not block processing of the stem of the hairpin transcript into primary siRNAs. Thus, these viral suppressors resemble the dcl2 mutation in their effects on siRNA biogenesis. We conclude that DCL2 plays an essential, as opposed to redundant, role in transitive silencing of transgenes and may play a more important role in silencing of viruses than currently thought.

  15. Gene delivery to pancreatic exocrine cells in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    Houbracken Isabelle

    2012-10-01

    Full Text Available Abstract Background Effective gene transfer to the pancreas or to pancreatic cells has remained elusive although it is essential for studies of genetic lineage tracing and modulation of gene expression. Different transduction methods and viral vectors were tested in vitro and in vivo, in rat and mouse pancreas. Results For in vitro transfection/transduction of rat exocrine cells lipofection reagents, adenoviral vectors, and Mokola- and VSV-G pseudotyped lentiviral vectors were used. For in vivo transduction of mouse and rat pancreas adenoviral vectors and VSV-G lentiviral vectors were injected into the parenchymal tissue. Both lipofection of rat exocrine cell cultures and transduction with Mokola pseudotyped lentiviral vectors were inefficient and resulted in less than 4% EGFP expressing cells. Adenoviral transduction was highly efficient but its usefulness for gene delivery to rat exocrine cells in vitro was hampered by a drastic increase in cell death. In vitro transduction of rat exocrine cells was most optimal with VSV-G pseudotyped lentiviral vectors, with stable transgene expression, no significant effect on cell survival and about 40% transduced cells. In vivo, pancreatic cells could not be transduced by intra-parenchymal administration of lentiviral vectors in mouse and rat pancreas. However, a high efficiency could be obtained by adenoviral vectors, resulting in transient transduction of mainly exocrine acinar cells. Injection in immune-deficient animals diminished leukocyte infiltration and prolonged transgene expression. Conclusions In summary, our study remarkably demonstrates that transduction of pancreatic exocrine cells requires lentiviral vectors in vitro but adenoviral vectors in vivo.

  16. Label-free and enzyme-free detection of transcription factors with graphene oxide fluorescence switch-based multifunctional G-quadruplex-hairpin probe.

    Science.gov (United States)

    Zhu, Desong; Wang, Lei; Xu, Xiaowen; Jiang, Wei

    2016-01-15

    Transcription factors (TFs) play pivotal roles in the regulation of a variety of essential cellular processes and some of them have been recognized as potential diagnostic markers and therapeutic targets of some diseases. Sensitive and accurate detection of TFs is of great importance to better understanding their roles in gene regulation and evaluation of disease state. Here, we developed a simple, label-free and enzyme-free new fluorescent strategy for the detection of TFs by graphene oxide (GO) fluorescence switch-based multifunctional G-quadruplex-hairpin probe (MGHP). The MGHP possessed of three functions simultaneously, adsorbing onto GO with the loop part, binding to target with the stem part and serving as signal carrier with the terminal G-quadruplex. First, the MGHP was adsorbed quickly to GO. Next, the TF bound to the stem part of MGHP to form a huge target-MGHP complex, which led to desorption of the complex from GO. Finally, NMM was inserted into G-quadruplex in the complex to yield an enhanced fluorescence response. The GO used here, as a fluorescence switch, could quickly and efficiently quench the fluorescence of NMM inserted into the MGHP absorbed on the GO, guaranteeing a high signal-to-noise ratio. Sensitive detection of purified NF-κB p50 and HeLa cell nuclear extracts were achieved with detection limits of 0.2nM and 7.8ng/µL, respectively. Moreover, this proposed strategy could be used to screen inhibitors of NF-κB p50 activity. The strategy proposed here might offer a new potential approach for reliable quantification of TFs in clinical diagnostics and treatment research of some diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. A lentiviral sponge for miR-101 regulates RanBP9 expression and amyloid precursor protein metabolism in hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Christian eBarbato

    2014-02-01

    Full Text Available Neurodegeneration associated with amyloid β (Aβ peptide accumulation, synaptic loss, and memory impairment are pathophysiological features of Alzheimer's disease (AD. Numerous microRNAs regulate amyloid precursor protein (APP expression and metabolism. We previously reported that miR-101 is a negative regulator of APP expression in cultured hippocampal neurons. In this study, a search for predicted APP metabolism-associated miR-101 targets led to the identification of a conserved miR-101 binding site within the 3’ untranslated region (UTR of the mRNA encoding Ran-binding protein 9 (RanBP9. RanBP9 increases APP processing by β-amyloid converting enzyme 1 (BACE1, secretion of soluble APPβ (sAPPβ, and generation of Aβ. MiR-101 significantly reduced reporter gene expression when co-transfected with a RanBP9 3'-UTR reporter construct, while site-directed mutagenesis of the predicted miR-101 target site eliminated the reporter response. To investigate the effect of stable inhibition of miR-101 both in vitro and in vivo, a microRNA sponge was developed to bind miR-101 and derepress its targets. Four tandem bulged miR-101 responsive elements (REs, located downstream of the enhanced green fluorescence protein (EGFP open reading frame and driven by the synapsin promoter, were placed in a lentiviral vector to create the pLSyn-miR-101 sponge. Delivery of the sponge to primary hippocampal neurons significantly increased both APP and RanBP9 expression, as well as sAPPβ levels in the conditioned medium. Importantly, silencing of endogenous RanBP9 reduced sAPPβ levels in miR-101 sponge-containing hippocampal cultures, indicating that miR-101 inhibition may increase amyloidogenic processing of APP by RanBP9. Lastly, the impact of miR-101 on its targets was demonstrated in vivo by intrahippocampal injection of the pLSyn-miR-101 sponge into C57BL6 mice. This study thus provides the basis for studying the consequences of long-term miR-101 inhibition on

  18. Comparison of human sodium iodide symporter (hNIS) gene expression between lentiviral and adenoviral vectors in rat mesenchymal stem cell

    International Nuclear Information System (INIS)

    Park, So Yeon; Lee, Won Woo; Kim, Sung Jin; Lee, Heui Ran; Kim, Hyun Joo; Chung, June Key; Kim, Sang Eun

    2007-01-01

    Quantitative comparison of transgene expression within stem cells between lentivirus and adenovirus-mediated delivery systems has not been done. Here, we evaluated the human sodium iodide symporter (hNIS) gene expression in rat mesenchymal stem cell (rMSC) transduced by lentivirus or adenovirus, and compared the hNIS expression quantitatively between the two delivery systems. Lentiviral-mediated stably hNIS expressing rMSC (lenti-hNIS-rMSC) was constructed by cloning the hNIS gene into pLenti6/UbC/V5-DEST (Invitrogen) to obtain pLenti-hNIS, transducing rMSC with the pLenti-hNIS, and selecting with blasticidin for 3 weeks. Recombinant adenovirus expressing hNIS gene (Rad-hNIS) was produced by homologous recombination and Rad-hNIS transduced rMSC (adeno-hNIS-rMSC) was evaluated for the hNIS expression 48 hours post infection at MOI 1, 5, 20, 50, and 100. The hNIS expression in lenti-hNIS-rMSC or adeno-hNIS-rMSC was assessed by immunocytochemistry, western blot, and I-125 uptake. Immunocytochemistry using mono-clonal anti-hNIS antibody revealed that intensity of hNIS immunoreactivity in lenti-hNIS-rMSC was greater than that in adeno-hNIS-rMSC at MOl 20 but lower than that at MOl 50. Western blot analysis also showed that lenti-hNIS-rMSC was intermediate between adeno-hNIS-rMSCs at MOl 20 and 50 in hNIS expression. However in vitro I-125 uptake test demonstrated that iodide uptake in lenti-hNIS-rMSC (297046659 picomole/106 cells) was greater than that in adeno-hNIS-rMSC at MOI 100 (61682134 picomole/106 cells). These results suggest that lentivirus mediated hNIS expression is greater in terms of hNIS function but lower in terms of hNIS protein amount than adenovirus mediated hNIS expression 48 hours post infection. Stem cell tracking using hNIS as a reporter gene should be conducted in consideration of relative viral efficiency of transgene expression

  19. Short bowel syndrome

    International Nuclear Information System (INIS)

    Engels, L.G.J.B.

    1983-01-01

    This thesis describes some aspects of short bowel syndrome. When approximately 1 m or less small bowel is retained after extensive resection, a condition called short bowel syndrome is present. Since the advent of parenteral nutrition, the prognosis of patients with a very short bowel has dramatically improved. Patients with 40 to 100 cm remaining jejunum and/or ileum can generally be maintained with oral nutrition due to increased absorption of the small bowel remnant as result of intestinal adaptation. This study reports clinical, biochemical and nutritional aspects of short bowel patients on oral or parenteral nutrition, emphasizing data on absorption of various nutrients and on bone metabolism. Furthermore, some technical apsects concerning long-term parenteral nutrition are discussed. (Auth.)

  20. Transitional and turbulent flat-plate boundary layers with heat transfer

    Science.gov (United States)

    Wu, Xiaohua; Moin, Parviz

    2010-11-01

    We report on our direct numerical simulation of two incompressible, nominally zero-pressure-gradient flat-plate boundary layers from momentum thickness Reynolds number 80 to 1950. Heat transfer between the constant-temperature solid surface and the free-stream is also simulated with molecular Prandtl number=1. Throughout the entire flat-plate, the ratio of Stanton number and skin-friction St/Cfdeviates from the exact Reynolds analogy value of 0.5 by less than 1.5%. Turbulent Prandtl number t peaks at the wall. Preponderance of hairpin vortices is observed in both the transitional and turbulent regions of the boundary layers. In particular, the internal structure of merged turbulent spots is hairpin forest; the internal structure of infant turbulent spots is hairpin packet. Numerous hairpin vortices are readily detected in both the near-wall and outer regions of the boundary layers up to momentum thickness Reynolds number 1950. This suggests that the hairpin vortices in the turbulent region are not simply the aged hairpin forests convected from the upstream transitional region. Temperature iso-surfaces in the companion thermal boundary layers are found to be a useful tracer in identifying hairpin vortex structures.

  1. Shortness of Breath

    Science.gov (United States)

    ... filled with air (called pneumotho- rax), it will hinder expansion of the lung, resulting in shortness of ... of Chest Physi- cians. Shortness of Breath: Patient Education. http: / / www. onebreath. org/ document. doc? id= 113. ...

  2. Short Stature

    DEFF Research Database (Denmark)

    Christesen, Henrik Boye Thybo; Pedersen, Birgitte Tønnes; Pournara, Effie

    2016-01-01

    -scale, non-interventional, multinational study. The patient cohort consisted of 5996 short pediatric patients diagnosed with growth hormone deficiency (GHD), Turner syndrome (TS) or born small for gestational age (SGA). The proportions of children with baseline height standard deviation score (SDS) below......The use of appropriate growth standards/references is of significant clinical importance in assessing the height of children with short stature as it may determine eligibility for appropriate therapy. The aim of this study was to determine the impact of using World Health Organization (WHO) instead...... of national growth standards/references on height assessment in short children. Data were collected from routine clinical practice (1998-2014) from nine European countries that have available national growth references and were enrolled in NordiNet® International Outcome Study (IOS) (NCT00960128), a large...

  3. Partial Correction of Psoriasis upon Genetic Knock-Down of Human TNF-α by Lentivirus-Encoded shRNAs in a Xenograft Mouse Model

    DEFF Research Database (Denmark)

    Jakobsen, Maria; Stenderup, Karin; Rosada, Cecilia

    samples treated with irrelevant shRNAs, were selected and cloned into lentiviral vectors. The lentiviral vectors expressing TNF- shRNAs were used to transduce HEK-293 cells and verify vector-derived knock-down of stable TNF- expression in vitro. The most efficient TNF- -directed shRNA, which in cell lines...

  4. Delivering the Goods for Genome Engineering and Editing.

    Science.gov (United States)

    Skipper, Kristian Alsbjerg; Mikkelsen, Jacob Giehm

    2015-08-01

    A basic understanding of genome evolution and the life and impact of microorganisms, like viruses and bacteria, has been fundamental in the quest for efficient genetic therapies. The expanding tool box for genetic engineering now contains transposases, recombinases, and nucleases, all created from naturally occurring genome-modifying proteins. Whereas conventional gene therapies have sought to establish sustained expression of therapeutic genes, genomic tools are needed only in a short time window and should be delivered to cells ideally in a balanced "hit-and-run" fashion. Current state-of-the-art delivery strategies are based on intracellular production of protein from transfected plasmid DNA or in vitro-transcribed RNA, or from transduced viral templates. Here, we discuss advantages and challenges of intracellular production strategies and describe emerging approaches based on the direct delivery of protein either by transfer of recombinant protein or by lentiviral protein transduction. With focus on adapting viruses for protein delivery, we describe the concept of "all-in-one" lentiviral particles engineered to codeliver effector proteins and donor sequences for DNA transposition or homologous recombination. With optimized delivery methods-based on transferring DNA, RNA, or protein-it is no longer far-fetched that researchers in the field will indeed deliver the goods for somatic gene therapies.

  5. [Shunt and short circuit].

    Science.gov (United States)

    Rangel-Abundis, Alberto

    2006-01-01

    Shunt and short circuit are antonyms. In French, the term shunt has been adopted to denote the alternative pathway of blood flow. However, in French, as well as in Spanish, the word short circuit (court-circuit and cortocircuito) is synonymous with shunt, giving rise to a linguistic and scientific inconsistency. Scientific because shunt and short circuit made reference to a phenomenon that occurs in the field of the physics. Because shunt and short circuit are antonyms, it is necessary to clarify that shunt is an alternative pathway of flow from a net of high resistance to a net of low resistance, maintaining the stream. Short circuit is the interruption of the flow, because a high resistance impeaches the flood. This concept is applied to electrical and cardiovascular physiology, as well as to the metabolic pathways.

  6. Microprocessor Activity Controls Differential miRNA Biogenesis In Vivo

    Directory of Open Access Journals (Sweden)

    Thomas Conrad

    2014-10-01

    Full Text Available In miRNA biogenesis, pri-miRNA transcripts are converted into pre-miRNA hairpins. The in vivo properties of this process remain enigmatic. Here, we determine in vivo transcriptome-wide pri-miRNA processing using next-generation sequencing of chromatin-associated pri-miRNAs. We identify a distinctive Microprocessor signature in the transcriptome profile from which efficiency of the endogenous processing event can be accurately quantified. This analysis reveals differential susceptibility to Microprocessor cleavage as a key regulatory step in miRNA biogenesis. Processing is highly variable among pri-miRNAs and a better predictor of miRNA abundance than primary transcription itself. Processing is also largely stable across three cell lines, suggesting a major contribution of sequence determinants. On the basis of differential processing efficiencies, we define functionality for short sequence features adjacent to the pre-miRNA hairpin. In conclusion, we identify Microprocessor as the main hub for diversified miRNA output and suggest a role for uncoupling miRNA biogenesis from host gene expression.

  7. Detecting short circuits during assembly

    Science.gov (United States)

    Deboo, G. J.

    1980-01-01

    Detector circuit identifies shorts between bus bars of electronic equipment being wired. Detector sounds alarm and indicates which planes are shorted. Power and ground bus bars are scanned continuously until short circuit occurs.

  8. The subgenomic promoter of brome mosaic virus folds into a stem-loop structure capped by a pseudo-triloop that is structurally similar to the triloop of the genomic promoter

    DEFF Research Database (Denmark)

    Skov, J.; Gaudin, M.; Podbevsek, P.

    2012-01-01

    In brome mosaic virus, both the replication of the genomic (+)-RNA strands and the transcription of the subgenomic RNA are carried out by the viral replicase. The production of (-)-RNA strands is dependent on the formation of an AUA triloop in the stem-loop C (SLC) hairpin in the 3'-untranslated...... region of the (+)-RNA strands. Two alternate hypotheses have been put forward for the mechanism of subgenomic RNA transcription. One posits that transcription commences by recognition of at least four key nucleotides in the subgenomic promoter by the replicase. The other posits that subgenomic...... transcription starts by binding of the replicase to a hairpin formed by the subgenomic promoter that resembles the minus strand promoter hairpin SLC. In this study, we have determined the three-dimensional structure of the subgenomic promoter hairpin using NMR spectroscopy. The data show that the hairpin...

  9. Angiotensin II induces apoptosis in intestinal epithelial cells through the AT2 receptor, GATA-6 and the Bax pathway

    International Nuclear Information System (INIS)

    Sun, Lihua; Wang, Wensheng; Xiao, Weidong; Liang, Hongyin; Yang, Yang; Yang, Hua

    2012-01-01

    Highlights: ► Ang II-induced apoptosis in intestinal epithelial cell through AT2 receptor. ► The apoptosis process involves in the Bax/Bcl-2 intrinsic pathway. ► GATA-6 short hairpin RNA reduced Bax expression, but not Bcl-2. ► GATA-6 may play a critical role in apoptosis in response to the Ang II challenge. -- Abstract: Angiotensin II (Ang II) has been shown to play an important role in cell apoptosis. However, the mechanisms of Ang-II-induced apoptosis in intestinal epithelial cells are not fully understood. GATA-6 is a zinc finger transcription factor expressed in the colorectal epithelium, which directs cell proliferation, differentiation and apoptosis. In the present study we investigated the underlying mechanism of which GATA-6 affects Ang-II induced apoptosis in intestinal epithelial cells. The in vitro intestinal epithelial cell apoptosis model was established by co-culturing Caco-2 cells with Ang II. Pretreatment with Angiotensin type 2 (AT2) receptor antagonist, PD123319, significantly reduced the expression of Bax and prevented the Caco-2 cells apoptosis induced by Ang II. In addition, Ang II up-regulated the expression of GATA-6. Interestingly, GATA-6 short hairpin RNA prevented Ang II-induced intestinal epithelial cells apoptosis and reduced the expression of Bax, but not Bcl-2. Taken together, the present study suggests that Angiotensin II promotes apoptosis in intestinal epithelial cells through GATA-6 and the Bax pathway in an AT2 receptor-dependent manner.

  10. Studying of cellular interaction of hairpin-like peptide EcAMP1 from barnyard grass (Echinochloa crusgalli L.) seeds with plant pathogenic fungus Fusarium solani using microscopy techniques.

    Science.gov (United States)

    Vasilchenko, Alexey S; Yuryev, Mikhail; Ryazantsev, Dmitry Yu; Zavriev, Sergey K; Feofanov, Alexey V; Grishin, Eugene V; Rogozhin, Eugene A

    2016-11-01

    An interaction of recombinant hairpin-like cationic peptide EcAMP1 with conidia of plant pathogenic fungus Fusarium solani at the cellular level was studied by a combination of microscopic methods. EcAMP1 is from barnyard grass (Echinochloa crusgalli L.), and obtained by heterologous expression in Escherichia coli system. As a result, a direct relationship between hyphal growth inhibition and increasing active peptide concentration, time of incubation and fungal physiological condition has been determined. Dynamics of accumulation and redistribution of the peptide studied on fungal cellular cover and inside the conidia cells has been shown. The dynamics are dependent on time of coupling, as well as, a dissimilarity of EcAMP1 binding with cover of fungal conidia and its stepwise accumulation and diffuse localization in the cytoplasm. Correlation between structural disruption of fungal conidia and the presence of morphological changes has also been found. The correlation was found under the influence of peptide high concentrations at concentrations above 32 μM. The results indicate the presence of a binding of EcAMP1 with the surface of fungal conidia, thus, demonstrating a main specificity for its antifungal action at the cellular level. These results, however, cannot exclude the existence of attendant EcAMP1 action based on its intracellular localization on some specific targets. SCANNING 38:591-598, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  11. A functional and transcriptomic analysis of NET1 bioactivity in gastric cancer

    LENUS (Irish Health Repository)

    Bennett, Gayle

    2011-02-01

    Abstract Background NET1, a RhoA guanine exchange factor, is up-regulated in gastric cancer (GC) tissue and drives the invasive phenotype of this disease. In this study, we aimed to determine the role of NET1 in GC by monitoring the proliferation, motility and invasion of GC cells in which NET1 has been stably knocked down. Additionally, we aimed to determine NET1-dependent transcriptomic events that occur in GC. Methods An in vitro model of stable knockdown of NET1 was achieved in AGS human gastric adenocarcinoma cells via lentiviral mediated transduction of short-hairpin (sh) RNA targeting NET1. Knockdown was assessed using quantitative PCR. Cell proliferation was assessed using an MTS assay and cell migration was assessed using a wound healing scratch assay. Cell invasion was assessed using a transwell matrigel invasion assay. Gene expression profiles were examined using affymetrix oligonucleotide U133A expression arrays. A student\\'s t test was used to determine changes of statistical significance. Results GC cells were transduced with NET1 shRNA resulting in a 97% reduction in NET1 mRNA (p < 0.0001). NET1 knockdown significantly reduced the invasion and migration of GC cells by 94% (p < 0.05) and 24% (p < 0.001) respectively, while cell proliferation was not significantly altered following NET1 knockdown. Microarray analysis was performed on non-target and knockdown cell lines, treated with and without 10 μM lysophosphatidic acid (LPA) allowing us to identify NET1-dependent, LPA-dependent and NET1-mediated LPA-induced gene transcription. Differential gene expression was confirmed by quantitative PCR. Shortlisted NET1-dependent genes included STAT1, TSPAN1, TGFBi and CCL5 all of which were downregulatd upon NET1 downregulation. Shortlisted LPA-dependent genes included EGFR and PPARD where EGFR was upregulated and PPARD was downregulated upon LPA stimulation. Shortlisted NET1 and LPA dependent genes included IGFR1 and PIP5K3. These LPA induced genes were

  12. A functional and transcriptomic analysis of NET1 bioactivity in gastric cancer

    International Nuclear Information System (INIS)

    Bennett, Gayle; Sadlier, Denise; Doran, Peter P; MacMathuna, Padraic; Murray, David W

    2011-01-01

    NET1, a RhoA guanine exchange factor, is up-regulated in gastric cancer (GC) tissue and drives the invasive phenotype of this disease. In this study, we aimed to determine the role of NET1 in GC by monitoring the proliferation, motility and invasion of GC cells in which NET1 has been stably knocked down. Additionally, we aimed to determine NET1-dependent transcriptomic events that occur in GC. An in vitro model of stable knockdown of NET1 was achieved in AGS human gastric adenocarcinoma cells via lentiviral mediated transduction of short-hairpin (sh) RNA targeting NET1. Knockdown was assessed using quantitative PCR. Cell proliferation was assessed using an MTS assay and cell migration was assessed using a wound healing scratch assay. Cell invasion was assessed using a transwell matrigel invasion assay. Gene expression profiles were examined using affymetrix oligonucleotide U133A expression arrays. A student's t test was used to determine changes of statistical significance. GC cells were transduced with NET1 shRNA resulting in a 97% reduction in NET1 mRNA (p < 0.0001). NET1 knockdown significantly reduced the invasion and migration of GC cells by 94% (p < 0.05) and 24% (p < 0.001) respectively, while cell proliferation was not significantly altered following NET1 knockdown. Microarray analysis was performed on non-target and knockdown cell lines, treated with and without 10 μM lysophosphatidic acid (LPA) allowing us to identify NET1-dependent, LPA-dependent and NET1-mediated LPA-induced gene transcription. Differential gene expression was confirmed by quantitative PCR. Shortlisted NET1-dependent genes included STAT1, TSPAN1, TGFBi and CCL5 all of which were downregulatd upon NET1 downregulation. Shortlisted LPA-dependent genes included EGFR and PPARD where EGFR was upregulated and PPARD was downregulated upon LPA stimulation. Shortlisted NET1 and LPA dependent genes included IGFR1 and PIP5K3. These LPA induced genes were downregulated in NET1 knockdown cells

  13. Structural characterization of an intermolecular RNA–RNA interaction involved in the transcription regulation element of a bipartite plant virus

    OpenAIRE

    Guenther, Richard H.; Sit, Tim L.; Gracz, Hanna S.; Dolan, Michael A.; Townsend, Hannah L.; Liu, Guihua; Newman, Winnell H.; Agris, Paul F.; Lommel, Steven A.

    2004-01-01

    The 34-nucleotide trans-activator (TA) located within the RNA-2 of Red clover necrotic mosaic virus folds into a simple hairpin. The eight-nucleotide TA loop base pairs with eight complementary nucleotides in the TA binding sequence (TABS) of the capsid protein subgenomic promoter on RNA-1 and trans-activates subgenomic RNA synthesis. Short synthetic oligoribonucleotide mimics of the RNA-1 TABS and the RNA-2 TA form a weak 1:1 bimolecular complex in vitro with a Ka of 5.3 × 104 M–1. Ka determ...

  14. Newnes short wave listening handbook

    CERN Document Server

    Pritchard, Joe

    2013-01-01

    Newnes Short Wave Listening Handbook is a guide for starting up in short wave listening (SWL). The book is comprised of 15 chapters that discuss the basics and fundamental concepts of short wave radio listening. The coverage of the text includes electrical principles; types of signals that can be heard in the radio spectrum; and using computers in SWL. The book also covers SWL equipment, such as receivers, converters, and circuits. The text will be of great use to individuals who want to get into short wave listening.

  15. Short-term flow induced crystallization in isotactic polypropylene : how short is short?

    NARCIS (Netherlands)

    Ma, Z.; Balzano, L.; Portale, G.; Peters, G.W.M.

    2013-01-01

    The so-called "short-term flow" protocol is widely applied in experimental flow-induced crystallization studies on polymers in order to separate the nucleation and subsequent growth processes [Liedauer et al. Int. Polym. Proc. 1993, 8, 236–244]. The basis of this protocol is the assumption that

  16. Imaging in short stature.

    Science.gov (United States)

    Chaudhary, Vikas; Bano, Shahina

    2012-09-01

    Short stature can be a sign of disease, disability, and social stigma causing psychological stress. It is important to have an early diagnosis and treatment. Short stature may result from skeletal dysplasias, endocrine disorders, may be familial, or may be the result of malnutrition and chronic illnesses. A team effort of the healthcare professionals like pediatricians, endocrinologists, radiologists, and pathologists is required to diagnose, treat and monitor various pathological conditions associated with growth abnormality. In this review, we have discussed the role of imaging in diagnosing and characterizing various pathological conditions associated with short stature.

  17. Cell short circuit, preshort signature

    Science.gov (United States)

    Lurie, C.

    1980-01-01

    Short-circuit events observed in ground test simulations of DSCS-3 battery in-orbit operations are analyzed. Voltage signatures appearing in the data preceding the short-circuit event are evaluated. The ground test simulation is briefly described along with performance during reconditioning discharges. Results suggest that a characteristic signature develops prior to a shorting event.

  18. Conformational adaptation of Asian macaque TRIMCyp directs lineage specific antiviral activity.

    Directory of Open Access Journals (Sweden)

    Laura M J Ylinen

    2010-08-01

    Full Text Available TRIMCyps are anti-retroviral proteins that have arisen independently in New World and Old World primates. All TRIMCyps comprise a CypA domain fused to the tripartite domains of TRIM5alpha but they have distinct lentiviral specificities, conferring HIV-1 restriction in New World owl monkeys and HIV-2 restriction in Old World rhesus macaques. Here we provide evidence that Asian macaque TRIMCyps have acquired changes that switch restriction specificity between different lentiviral lineages, resulting in species-specific alleles that target different viruses. Structural, thermodynamic and viral restriction analysis suggests that a single mutation in the Cyp domain, R69H, occurred early in macaque TRIMCyp evolution, expanding restriction specificity to the lentiviral lineages found in African green monkeys, sooty mangabeys and chimpanzees. Subsequent mutations have enhanced restriction to particular viruses but at the cost of broad specificity. We reveal how specificity is altered by a scaffold mutation, E143K, that modifies surface electrostatics and propagates conformational changes into the active site. Our results suggest that lentiviruses may have been important pathogens in Asian macaques despite the fact that there are no reported lentiviral infections in current macaque populations.

  19. Importance of specific nucleotides in the folding of the natural form of the hairpin ribozyme.

    Science.gov (United States)

    Wilson, T J; Zhao, Z Y; Maxwell, K; Kontogiannis, L; Lilley, D M

    2001-02-20

    The hairpin ribozyme in its natural context consists of two loops in RNA duplexes that are connected as arms of a four-way helical junction. Magnesium ions induce folding into the active conformation in which the two loops are in proximity. In this study, we have investigated nucleotides that are important to this folding process. We have analyzed the folding in terms of the cooperativity and apparent affinity for magnesium ions as a function of changes in base sequence and functional groups, using fluorescence resonance energy transfer. Our results suggest that the interaction between the loops is the sum of a number of component interactions. Some sequence variants such as A10U, G+1A, and C25U exhibit loss of cooperativity and reduced affinity of apparent magnesium ion binding. These variants are also very impaired in ribozyme cleavage activity. Nucleotides A10, G+1, and C25 thus appear to be essential in creating the conformational environment necessary for ion binding. The double variant G+1A/C25U exhibits a marked recovery of both folding and catalytic activity compared to either individual variant, consistent with the proposal of a triple-base interaction among A9, G+1, and C25 [Pinard, R., Lambert, D., Walter, N. G., Heckman, J. E., Major, F., and Burke, J. M. (1999) Biochemistry 38, 16035-16039]. However, substitution of A9 leads to relatively small changes in folding properties and cleavage activity, and the double variant G+1DAP/C25U (DAP is 2,6-diaminopurine), which could form an isosteric triple-base interaction, exhibits folding and cleavage activities that are both very impaired compared to those of the natural sequence. Our results indicate an important role for a Watson--Crick base pair between G+1 and C25; this may be buttressed by an interaction with A9, but the loss of this has less significant consequences for folding. 2'-Deoxyribose substitution leads to folding with reduced magnesium ion affinity in the following order: unmodified RNA > dA9

  20. Overexpression of mutant ataxin-3 in mouse cerebellum induces ataxia and cerebellar neuropathology.

    Science.gov (United States)

    Nóbrega, Clévio; Nascimento-Ferreira, Isabel; Onofre, Isabel; Albuquerque, David; Conceição, Mariana; Déglon, Nicole; de Almeida, Luís Pereira

    2013-08-01

    Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is a fatal, dominant neurodegenerative disorder caused by the polyglutamine-expanded protein ataxin-3. Clinical manifestations include cerebellar ataxia and pyramidal signs culminating in severe neuronal degeneration. Currently, there is no therapy able to modify disease progression. In the present study, we aimed at investigating one of the most severely affected brain regions in the disorder--the cerebellum--and the behavioral defects associated with the neuropathology in this region. For this purpose, we injected lentiviral vectors encoding full-length human mutant ataxin-3 in the mouse cerebellum of 3-week-old C57/BL6 mice. We show that circumscribed expression of human mutant ataxin-3 in the cerebellum mediates within a short time frame--6 weeks, the development of a behavioral phenotype including reduced motor coordination, wide-based ataxic gait, and hyperactivity. Furthermore, the expression of mutant ataxin-3 resulted in the accumulation of intranuclear inclusions, neuropathological abnormalities, and neuronal death. These data show that lentiviral-based expression of mutant ataxin-3 in the mouse cerebellum induces localized neuropathology, which is sufficient to generate a behavioral ataxic phenotype. Moreover, this approach provides a physiologically relevant, cost-effective and time-effective animal model to gain further insights into the pathogenesis of MJD and for the evaluation of experimental therapeutics of MJD.

  1. Sequence swapping does not result in conformation swapping for the beta4/beta5 and beta8/beta9 beta-hairpin turns in human acidic fibroblast growth factor.

    Science.gov (United States)

    Kim, Jaewon; Lee, Jihun; Brych, Stephen R; Logan, Timothy M; Blaber, Michael

    2005-02-01

    The beta-turn is the most common type of nonrepetitive structure in globular proteins, comprising ~25% of all residues; however, a detailed understanding of effects of specific residues upon beta-turn stability and conformation is lacking. Human acidic fibroblast growth factor (FGF-1) is a member of the beta-trefoil superfold and contains a total of five beta-hairpin structures (antiparallel beta-sheets connected by a reverse turn). beta-Turns related by the characteristic threefold structural symmetry of this superfold exhibit different primary structures, and in some cases, different secondary structures. As such, they represent a useful system with which to study the role that turn sequences play in determining structure, stability, and folding of the protein. Two turns related by the threefold structural symmetry, the beta4/beta5 and beta8/beta9 turns, were subjected to both sequence-swapping and poly-glycine substitution mutations, and the effects upon stability, folding, and structure were investigated. In the wild-type protein these turns are of identical length, but exhibit different conformations. These conformations were observed to be retained during sequence-swapping and glycine substitution mutagenesis. The results indicate that the beta-turn structure at these positions is not determined by the turn sequence. Structural analysis suggests that residues flanking the turn are a primary structural determinant of the conformation within the turn.

  2. Kinetic Self-Assembly of DNA Tiles and Bricks

    Science.gov (United States)

    2016-08-26

    dis- placement branch. The hairpin template strand t- b is computationally predicted to pair predominantly with the hairpin stem complement (iii...stopper, the hairpin stem can close ,. , again to displace the new strand . , .. The details of the CRH probe are important to optimal func- m... stem . Because the repressing domain b (Figure 1 B) does not possess complemen- tary bases to the start codon, the cognate trigger strand in turn does

  3. Short-circuit impedance measurement

    DEFF Research Database (Denmark)

    Pedersen, Knud Ole Helgesen; Nielsen, Arne Hejde; Poulsen, Niels Kjølstad

    2003-01-01

    Methods for estimating the short-circuit impedance in the power grid are investigated for various voltage levels and situations. The short-circuit impedance is measured, preferably from naturally occurring load changes in the grid, and it is shown that such a measurement system faces different...

  4. Imaging in short stature

    Directory of Open Access Journals (Sweden)

    Vikas Chaudhary

    2012-01-01

    Full Text Available Short stature can be a sign of disease, disability, and social stigma causing psychological stress. It is important to have an early diagnosis and treatment. Short stature may result from skeletal dysplasias, endocrine disorders, may be familial, or may be the result of malnutrition and chronic illnesses. A team effort of the healthcare professionals like pediatricians, endocrinologists, radiologists, and pathologists is required to diagnose, treat and monitor various pathological conditions associated with growth abnormality. In this review, we have discussed the role of imaging in diagnosing and characterizing various pathological conditions associated with short stature.

  5. The Short Selling Regulation in the EU: Assessing the Authorization Granted for ESMA to Prohibit Short Selling

    Directory of Open Access Journals (Sweden)

    Matias Huhtilainen

    2017-07-01

    Full Text Available The paper discusses the renewed short selling regulation (Regulation (EU No 236/2012 in the European Union. The focus is on the provisions that deal with prohibiting short selling in exceptional market circumstances. The Regulation further enforces certain obligations to report and disclose short positions. It is concluded that banning short selling is not an effective tool to contain extreme price volatility. The difference-in-differences regression and repeated measures GLM were used to test whether short selling bans were successful in containing volatility of those Spanish and Italian stocks that were subject to two back-to-back prohibitions during the years 2011-2013. The results are consistent with the majority of previous research, suggesting that the effectiveness of short sale constraints in reducing volatility is limited at best. Furthermore, there are evidence of counterproductive effects: constraints on short selling may actually increase volatility as well as deteriorate liquidity. However, based on theory and previous studies, reporting and disclosure requirements shall be favored provided they improve market efficiency as well as supervisory work of regulatory bodies.This paper discusses the renewed short selling regulation (Regulation (EU No 236/2012 in the European Union. The focus is on the provisions that deal with prohibiting short selling in exceptional market circumstances. The Regulation further enforces certain obligations to report and disclose short positions. It is concluded that banning short selling is not an effective tool to contain extreme price volatility. The difference-in-differences regression and repeated measures GLM were used to test whether short selling bans were successful in containing volatility of those Spanish and Italian stocks that were subject to two back-to-back prohibitions during the years 2011-2013. The results are consistent with the majority of previous research, suggesting that the

  6. "Fate: The short film"

    OpenAIRE

    Maya Quintana, Jennifer

    2014-01-01

    "Fate: The Short Film" is a four minute short film which reflects the idea that nobody can escape from the fate. It has a good picture and sound quality with an understandable message for all public and with the collaboration of actors, filmmaker, stylist, script advisor and media technician.

  7. Superconducting cyclotron magnet coil short

    International Nuclear Information System (INIS)

    Mallory, M.L.; Blosser, H.G.; Clark, D.J.; Launer, H.; Lawton, D.; Miller, P.; Resmini, F.

    1982-01-01

    In February 1981, a short circuit appeared in the superconducting coil of the K500 cyclotron. The short is resistive in character and therefore has no effect on steady state operation of the magnet. The resistance of the short varies, sometimes being below threshold of detection as a heat load on the cooling system and sometimes being significant. The resistance under certain conditions shows approximately cyclic phenomena with time constants in the range of seconds and other approximately cyclic phenomena which correlate with gross operating parameters of the magnet (shifting current from one coil to another at high field and lowering and raising the liquid helium level). A number of diagnostic studies of the short have been made, using 1) an array of flux sensing loops to sense the magnetic effect of the short, 2) voltage comparisons between upper and lower sections of the coil, 3) comparisons of forces in the nine member coil support system and 4) the effect of the short on the thermal charactersitics of the coil. Insulation failure or a metal chip shorting out turns have been explored in some detail but a convincing determination of the exact cause of the short may never be available, (even the extreme step of unwinding the coil having a significant probability that an imperfection with the observed characteristics would pass unnoticed). Analysis of the characteristics of the short indicated that the most serious consequence would be failure of the coils mechanical support system in the event that the magnet was quickly discharged, as in a dump or quench. To deal with this hazard, the support system has been modified by installing solid supports which prevent the coil from moving by an amount sufficient to damage the support system. We have also reexamined the data and calculations used in the original coil design and have made some additional measurements of the properties of the materials (yield strength, friction coefficient, Young's modulus) used in the

  8. Intravenous delivery of HIV-based lentiviral vectors preferentially transduces F4/80+ and Ly-6C+ cells in spleen, important target cells in autoimmune arthritis.

    Directory of Open Access Journals (Sweden)

    Ben T van den Brand

    Full Text Available Antigen presenting cells (APCs play an important role in arthritis and APC specific gene therapeutic targeting will enable intracellular modulation of cell activity. Viral mediated overexpression is a potent approach to achieve adequate transgene expression levels and lentivirus (LV is useful for sustained expression in target cells. Therefore, we studied the feasibility of lentiviral mediated targeting of APCs in experimental arthritis. Third generation VSV-G pseudotyped self-inactivating (SIN-LV were injected intravenously and spleen cells were analyzed with flow cytometry for green fluorescent protein (GFP transgene expression and cell surface markers. Collagen-induced arthritis (CIA was induced by immunization with bovine collagen type II in complete Freund's adjuvant. Effect on inflammation was monitored macroscopically and T-cell subsets in spleen were analyzed by flow cytometry. Synovium from arthritic knee joints were analyzed for proinflammatory cytokine expression. Lentiviruses injected via the tail vein preferentially infected the spleen and transduction peaks at day 10. A dose escalating study showed that 8% of all spleen cells were targeted and further analysis showed that predominantly Ly6C+ and F4/80+ cells in spleen were targeted by the LV. To study the feasibility of blocking TAK1-dependent pathways by this approach, a catalytically inactive mutant of TAK1 (TAK1-K63W was overexpressed during CIA. LV-TAK1-K63W significantly reduced incidence and arthritis severity macroscopically. Further histological analysis showed a significant decrease in bone erosion in LV-TAK1-K63W treated animals. Moreover, systemic Th17 levels were decreased by LV-TAK1-K63W treatment in addition to diminished IL-6 and KC production in inflamed synovium. In conclusion, systemically delivered LV efficiently targets monocytes and macrophages in spleen that are involved in autoimmune arthritis. Moreover, this study confirms efficacy of TAK1 targeting in

  9. Measurement of short bunches

    International Nuclear Information System (INIS)

    Wang, D.X.

    1996-01-01

    In recent years, there has been increasing interest in short electron bunches for different applications such as short wavelength FELs, linear colliders, and advanced accelerators such as laser or plasma wakefield accelerators. One would like to meet various requirements such as high peak current, low momentum spread, high luminosity, small ratio of bunch length to plasma wavelength, and accurate timing. Meanwhile, recent development and advances in RF photoinjectors and various bunching schemes make it possible to generate very short electron bunches. Measuring the longitudinal profile and monitoring bunch length are critical to understand the bunching process and longitudinal beam dynamics, and to commission and operate such short bunch machines. In this paper, several commonly used measurement techniques for subpicosecond bunches and their relative advantages and disadvantages are discussed. As examples, bunch length related measurements at Jefferson Lab are presented. At Jefferson Lab, bunch lengths as short as 84 fs have been systematically measured using a zero-phasing technique. A highly sensitive Coherent Synchrotron Radiation (CSR) detector has been developed to noninvasively monitor bunch length for low charge bunches. Phase transfer function measurements provide a means of correcting RF phase drifts and reproducing RF phases to within a couple of tenths of a degree. The measurement results are in excellent agreement with simulations. A comprehensive bunch length control scheme is presented. (author)

  10. Measurement of short bunches

    International Nuclear Information System (INIS)

    Wang, D.X.

    1996-01-01

    In recent years, there has been increasing interest in short electron bunches for different applications such as short wavelength FELs, linear colliders, and advanced accelerators such as laser or plasma wakefield accelerators. One would like to meet various requirements such as high peak current, low momentum spread, high luminosity, small ratio of bunch length to plasma wavelength, and accurate timing. Meanwhile, recent development and advances in RF photoinjectors and various bunching schemes make it possible to generate very short electron bunches. Measuring the longitudinal profile and monitoring bunch length are critical to understand the bunching process and longitudinal beam dynamics, and to commission and operate such short bunch machines. In this paper, several commonly used measurement techniques for subpicosecond bunches and their relative advantages and disadvantages are discussed. As examples, bunch length related measurements at Jefferson lab are presented. At Jefferson Lab, bunch lengths s short as 84 fs have been systematically measured using a zero-phasing technique. A highly sensitive Coherent Synchrotron Radiation (CSR) detector has been developed to noninvasively monitor bunch length for low charge bunches. Phase transfer function measurements provide a means of correcting RF phase drifts and reproducing RF phases to within a couple of tenths of a degree. The measurement results are in excellent agreement with simulations. A comprehensive bunch length control scheme is presented

  11. Short notice inspections

    International Nuclear Information System (INIS)

    Pouchkarev, V.

    1998-01-01

    For 30 years the IAEA safeguards system have evolved and have been strengthened by the regular introduction of new methods and techniques, improving both its effectiveness and efficiency. The member States of the IAEA have indicated their willingness to accept new obligations and associated technical measure that greatly strengthen the nuclear safeguards system. One element of this is the extent to which the IAEA inspectors have physical access to relevant locations for the purpose of providing independent verification of the exclusively peaceful intent of a State nuclear program. The Protocol to Safeguards granted new legal authority with respect to information on, and short notice inspector access to, all buildings on a nuclear site and administrative agreements that improve the process of designating inspectors and IAEA access to modern means of communication. This report is a short description of unannounced or short notice inspections as measures on which the new strengthened and cost efficient system will be based

  12. Short wavelength FELS

    International Nuclear Information System (INIS)

    Sheffield, R.L.

    1991-01-01

    The generation of coherent ultraviolet and shorter wavelength light is presently limited to synchrotron sources. The recent progress in the development of brighter electron beams enables the use of much lower energy electron rf linacs to reach short-wavelengths than previously considered possible. This paper will summarize the present results obtained with synchrotron sources, review proposed short- wavelength FEL designs and then present a new design which is capable of over an order of magnitude higher power to the extreme ultraviolet. 17 refs., 10 figs

  13. Short wavelength FELS

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, R.L.

    1991-01-01

    The generation of coherent ultraviolet and shorter wavelength light is presently limited to synchrotron sources. The recent progress in the development of brighter electron beams enables the use of much lower energy electron rf linacs to reach short-wavelengths than previously considered possible. This paper will summarize the present results obtained with synchrotron sources, review proposed short- wavelength FEL designs and then present a new design which is capable of over an order of magnitude higher power to the extreme ultraviolet. 17 refs., 10 figs.

  14. "Short Courses Shouldn't Be Short-Lived!" Enhancing Longer-Term Impact of Short English as a Foreign Language INSET Initiatives in China

    Science.gov (United States)

    Yan, Chunmei; He, Chuanjun

    2015-01-01

    Short in-service teacher development (INSET) programmes have been globally used as a form of teacher development, but their impact has been under question. This study sought to examine teacher participants' perceptions of short INSET programmes to come up with better solutions to enhancing their effect on teachers' professional learning. A…

  15. SHORT COMMUNICATION

    African Journals Online (AJOL)

    PROF P.T. KAYE

    . SHORT COMMUNICATION. Formation and Structural Analysis of Novel Dibornyl Ethers. Perry T. Kaye*, Andrew R. Duggan, Joseph M. Matjila, Warner E. Molema, and. Swarnam S. Ravindran. Department of Chemistry, Rhodes University, Grahamstown, ...

  16. Structural models of the membrane anchors of envelope glycoproteins E1 and E2 from pestiviruses

    International Nuclear Information System (INIS)

    Wang, Jimin; Li, Yue; Modis, Yorgo

    2014-01-01

    The membrane anchors of viral envelope proteins play essential roles in cell entry. Recent crystal structures of the ectodomain of envelope protein E2 from a pestivirus suggest that E2 belongs to a novel structural class of membrane fusion machinery. Based on geometric constraints from the E2 structures, we generated atomic models of the E1 and E2 membrane anchors using computational approaches. The E1 anchor contains two amphipathic perimembrane helices and one transmembrane helix; the E2 anchor contains a short helical hairpin stabilized in the membrane by an arginine residue, similar to flaviviruses. A pair of histidine residues in the E2 ectodomain may participate in pH sensing. The proposed atomic models point to Cys987 in E2 as the site of disulfide bond linkage with E1 to form E1–E2 heterodimers. The membrane anchor models provide structural constraints for the disulfide bonding pattern and overall backbone conformation of the E1 ectodomain. - Highlights: • Structures of pestivirus E2 proteins impose constraints on E1, E2 membrane anchors. • Atomic models of the E1 and E2 membrane anchors were generated in silico. • A “snorkeling” arginine completes the short helical hairpin in the E2 membrane anchor. • Roles in pH sensing and E1–E2 disulfide bond formation are proposed for E1 residues. • Implications for E1 ectodomain structure and disulfide bonding pattern are discussed

  17. The human lipodystrophy gene product Berardinelli-Seip congenital lipodystrophy 2/seipin plays a key role in adipocyte differentiation.

    Science.gov (United States)

    Chen, Weiqin; Yechoor, Vijay K; Chang, Benny Hung-Junn; Li, Ming V; March, Keith L; Chan, Lawrence

    2009-10-01

    Mutations in the Berardinelli-Seip congenital lipodystrophy 2 gene (BSCL2) are the underlying defect in patients with congenital generalized lipodystrophy type 2. BSCL2 encodes a protein called seipin, whose function is largely unknown. In this study, we investigated the role of Bscl2 in the regulation of adipocyte differentiation. Bscl2 mRNA is highly up-regulated during standard hormone-induced adipogenesis in 3T3-L1 cells in vitro. However, this up-regulation does not occur during mesenchymal stem cell (C3H10T1/2 cells) commitment to the preadipocyte lineage. Knockdown of Bscl2 by short hairpin RNA in C3H10T1/2 cells has no effect on bone morphogenetic protein-4-induced preadipocyte commitment. However, knockdown in 3T3-L1 cells prevents adipogenesis induced by a standard hormone cocktail, but adipogenesis can be rescued by the addition of peroxisome proliferator-activated receptor-gamma agonist pioglitazone at an early stage of differentiation. Interestingly, pioglitazone-induced differentiation in the absence of standard hormone is not associated with up-regulated Bscl2 expression. On the other hand, short hairpin RNA-knockdown of Bscl2 largely blocks pioglitazone-induced adipose differentiation. These experiments suggest that Bscl2 may be essential for normal adipogenesis; it works upstream or at the level of peroxisome proliferator-activated receptor-gamma, enabling the latter to exert its full activity during adipogenesis. Loss of Bscl2 function thus interferes with the normal transcriptional cascade of adipogenesis during fat cell differentiation, resulting in near total loss of fat or lipodystrophy.

  18. CD44 is involved in mineralization of dental pulp cells.

    Science.gov (United States)

    Chen, Kuan-Liang; Huang, Yu-Yuan; Lung, Jrhau; Yeh, Ying-Yi; Yuan, Kuo

    2013-03-01

    CD44 is a transmembrane glycoprotein with various biological functions. Histologic studies have shown that CD44 is strongly expressed in odontoblasts at the appositional stage of tooth development. We investigated whether CD44 is involved in the mineralization of dental pulp cells. Ten human third molars with incomplete root formation were collected and processed for immunohistochemistry of CD44. Dental pulp cells isolated from another 5 human third molars were assayed for their viability, alkaline phosphatase activity, and alizarin red staining in vitro after silencing stably their expression of CD44 by using the short hairpin RNA technique. The CD44 knockdown cells were cultured on a collagen sponge and transplanted subcutaneously into the dorsal surfaces of immunocompromised mice. After 6 weeks, the subcutaneous tissues were processed for alizarin red staining and immunohistochemistry of human specific antigen. The dental pulp cells transduced with control short hairpin RNA were used as the control in all assays. CD44 is expressed in odontogenic cells with active mineral deposition during tooth development. Odontoblasts in the root ends of immature teeth express a stronger CD44 signal compared with those in the crown portion. When CD44 expression was stably suppressed in dental pulp cells, their mineralization activities were substantially decreased in both in vitro and in vivo assays. CD44 may play a crucial role in the initial mineralization of tooth-associated structures. However, further studies are required to clarify the underlying mechanisms. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Structural models of the membrane anchors of envelope glycoproteins E1 and E2 from pestiviruses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jimin, E-mail: jimin.wang@yale.edu; Li, Yue; Modis, Yorgo, E-mail: yorgo.modis@yale.edu

    2014-04-15

    The membrane anchors of viral envelope proteins play essential roles in cell entry. Recent crystal structures of the ectodomain of envelope protein E2 from a pestivirus suggest that E2 belongs to a novel structural class of membrane fusion machinery. Based on geometric constraints from the E2 structures, we generated atomic models of the E1 and E2 membrane anchors using computational approaches. The E1 anchor contains two amphipathic perimembrane helices and one transmembrane helix; the E2 anchor contains a short helical hairpin stabilized in the membrane by an arginine residue, similar to flaviviruses. A pair of histidine residues in the E2 ectodomain may participate in pH sensing. The proposed atomic models point to Cys987 in E2 as the site of disulfide bond linkage with E1 to form E1–E2 heterodimers. The membrane anchor models provide structural constraints for the disulfide bonding pattern and overall backbone conformation of the E1 ectodomain. - Highlights: • Structures of pestivirus E2 proteins impose constraints on E1, E2 membrane anchors. • Atomic models of the E1 and E2 membrane anchors were generated in silico. • A “snorkeling” arginine completes the short helical hairpin in the E2 membrane anchor. • Roles in pH sensing and E1–E2 disulfide bond formation are proposed for E1 residues. • Implications for E1 ectodomain structure and disulfide bonding pattern are discussed.

  20. Shorts due to diagnostic leads

    International Nuclear Information System (INIS)

    Ellis, J.F.; Lubell, M.S.; Pillsbury, R.D.; Shen, S.S.; Thome, R.J.; Walstrom, P.L.

    1985-01-01

    The superconducting toroidal field coils that are being tested in the Large Coil Test Facility (LCTF) are heavily instrumented. General Electric coil, a lead wire of an internal sensor became shorted across an estimated three or four turns of the pancake winding. This short occurred during the final stages of the winding fabrication and was not accessible for repair. Resistance, voltage gradient, and transient voltage decay measurements were performed to characterize the short and the magnetic damping of the large steel bobbin and outer structural ring. The 32-gage wire causing the short was estimated to be about 10 cm long, with a resistance of 55 mΩ. As a safety measure, we decided to burn out the shorted wire at room temperature before installing the coil in LCTF. Tests were made to determine the energy needed to vaporize a small wire. Computer calculations indicated that within the voltage limits set for the coil, it was not feasible to burn out the wire by rapidly dumping the coil from a low-current dc charge-up. We accomplished the burnout by applying 800 V at 3.25 A, and 60 Hz for about 1 s. Transient voltage decay measurements made after the burnout and compared with those made before the attempt confirmed that the short had indeed been opened

  1. Observations of short gamma-ray bursts.

    Science.gov (United States)

    Fox, Derek B; Roming, Peter W A

    2007-05-15

    We review recent observations of short-hard gamma-ray bursts and their afterglows. The launch and successful ongoing operations of the Swift satellite, along with several localizations from the High-Energy Transient Explorer mission, have provoked a revolution in short-burst studies: first, by quickly providing high-quality positions to observers; and second, via rapid and sustained observations from the Swift satellite itself. We make a complete accounting of Swift-era short-burst localizations and proposed host galaxies, and discuss the implications of these observations for the distances, energetics and environments of short bursts, and the nature of their progenitors. We then review the physical modelling of short-burst afterglows: while the simplest afterglow models are inadequate to explain the observations, there have been several notable successes. Finally, we address the case of an unusual burst that threatens to upset the simple picture in which long bursts are due to the deaths of massive stars, and short bursts to compact-object merger events.

  2. Parallel implicit Multigrid Method for Direct Numerical Simulation of Time-Dependent Compressible Turbulent Flow Around Flight Vehicles

    National Research Council Canada - National Science Library

    Liu, Chaoqun

    1999-01-01

    .... Four transitional stages are observed: the linear and weakly nonlinear growth, the appearance of staggered A-vortex patterns, the evolution of A-vortex into hairpin vortex, the breakdown of hairpin vortical structures...

  3. Short communication

    African Journals Online (AJOL)

    abp

    2017-09-04

    Sep 4, 2017 ... Face-to-face interviews were conducted using a standardized ... Short communication. Open Access ... clinic during the time of the study and were invited to participate in the study. .... consume them. This is another ...

  4. Osborne Reynolds pipe flow: Direct simulation from laminar through gradual transition to fully developed turbulence.

    Science.gov (United States)

    Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J; Baltzer, Jon R

    2015-06-30

    The precise dynamics of breakdown in pipe transition is a century-old unresolved problem in fluid mechanics. We demonstrate that the abruptness and mysteriousness attributed to the Osborne Reynolds pipe transition can be partially resolved with a spatially developing direct simulation that carries weakly but finitely perturbed laminar inflow through gradual rather than abrupt transition arriving at the fully developed turbulent state. Our results with this approach show during transition the energy norms of such inlet perturbations grow exponentially rather than algebraically with axial distance. When inlet disturbance is located in the core region, helical vortex filaments evolve into large-scale reverse hairpin vortices. The interaction of these reverse hairpins among themselves or with the near-wall flow when they descend to the surface from the core produces small-scale hairpin packets, which leads to breakdown. When inlet disturbance is near the wall, certain quasi-spanwise structure is stretched into a Lambda vortex, and develops into a large-scale hairpin vortex. Small-scale hairpin packets emerge near the tip region of the large-scale hairpin vortex, and subsequently grow into a turbulent spot, which is itself a local concentration of small-scale hairpin vortices. This vortex dynamics is broadly analogous to that in the boundary layer bypass transition and in the secondary instability and breakdown stage of natural transition, suggesting the possibility of a partial unification. Under parabolic base flow the friction factor overshoots Moody's correlation. Plug base flow requires stronger inlet disturbance for transition. Accuracy of the results is demonstrated by comparing with analytical solutions before breakdown, and with fully developed turbulence measurements after the completion of transition.

  5. SHORT COMMUNICATION

    African Journals Online (AJOL)

    a

    ______. *Corresponding author. E-mail: vani_chem@yahoo.com. SHORT COMMUNICATION. OXIDATION OF L-CYSTINE BY CHROMIUM(VI) - A KINETIC STUDY. Kalyan Kumar Adari, Annapurna Nowduri and Vani Parvataneni*. Department of Inorganic and Analytical Chemistry, School of Chemistry, Andhra University,.

  6. TECHNICAL AND PRACTICAL IMPLICATIONS OF SHORT SELLING

    Directory of Open Access Journals (Sweden)

    Radu BORES

    2016-07-01

    Full Text Available This paper aims at providing insight into some of the implication of short selling for markets, investors as well as regulators. Findings show that capital flows are adversely affected by strict regulation and bans of short sales, while market liquidity, and bid-ask spread can be improved by allowing short selling. Additionally portfolios that incorporate short selling strategies can have lower volatility in returns. The informational content of short sales can provide important feedback for informed investors and lead to better price discovery.

  7. 46 CFR 15.725 - Sailing short.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Sailing short. 15.725 Section 15.725 Shipping COAST... Limitations and Qualifying Factors § 15.725 Sailing short. Whenever a vessel is deprived of the service of a... vessel is sufficiently manned for the voyage. A report of sailing short must be filed in writing with the...

  8. Short-sale Constraints and Credit Runs

    DEFF Research Database (Denmark)

    Venter, Gyuri

    ), creditors with high private signals are more lenient to roll over debt, and a bank with lower asset quality remains solvent. This leads to higher allocative efficiency in the real economy. My result thus implies that the decrease in average informativeness due to short-sale constraints can be more than......This paper studies how short-sale constraints affect the informational efficiency of market prices and the link between prices and economic activity. I show that under short-sale constraints security prices contain less information. However, short-sale constraints increase the informativeness...... the price of an asset the bank holds. I show that short-selling constraints in the financial market lead to the revival of self-fulfilling beliefs about the beliefs and actions of others, and create multiple equilibria. In the equilibrium where agents rely more on public information (i.e., the price...

  9. Imaging in short stature

    OpenAIRE

    Vikas Chaudhary; Shahina Bano

    2012-01-01

    Short stature can be a sign of disease, disability, and social stigma causing psychological stress. It is important to have an early diagnosis and treatment. Short stature may result from skeletal dysplasias, endocrine disorders, may be familial, or may be the result of malnutrition and chronic illnesses. A team effort of the healthcare professionals like pediatricians, endocrinologists, radiologists, and pathologists is required to diagnose, treat and monitor various pathological conditions ...

  10. libgapmis: extending short-read alignments.

    Science.gov (United States)

    Alachiotis, Nikolaos; Berger, Simon; Flouri, Tomáš; Pissis, Solon P; Stamatakis, Alexandros

    2013-01-01

    A wide variety of short-read alignment programmes have been published recently to tackle the problem of mapping millions of short reads to a reference genome, focusing on different aspects of the procedure such as time and memory efficiency, sensitivity, and accuracy. These tools allow for a small number of mismatches in the alignment; however, their ability to allow for gaps varies greatly, with many performing poorly or not allowing them at all. The seed-and-extend strategy is applied in most short-read alignment programmes. After aligning a substring of the reference sequence against the high-quality prefix of a short read--the seed--an important problem is to find the best possible alignment between a substring of the reference sequence succeeding and the remaining suffix of low quality of the read--extend. The fact that the reads are rather short and that the gap occurrence frequency observed in various studies is rather low suggest that aligning (parts of) those reads with a single gap is in fact desirable. In this article, we present libgapmis, a library for extending pairwise short-read alignments. Apart from the standard CPU version, it includes ultrafast SSE- and GPU-based implementations. libgapmis is based on an algorithm computing a modified version of the traditional dynamic-programming matrix for sequence alignment. Extensive experimental results demonstrate that the functions of the CPU version provided in this library accelerate the computations by a factor of 20 compared to other programmes. The analogous SSE- and GPU-based implementations accelerate the computations by a factor of 6 and 11, respectively, compared to the CPU version. The library also provides the user the flexibility to split the read into fragments, based on the observed gap occurrence frequency and the length of the read, thereby allowing for a variable, but bounded, number of gaps in the alignment. We present libgapmis, a library for extending pairwise short-read alignments. We

  11. A designated centre for people with disabilities operated by COPE Foundation, Cork

    LENUS (Irish Health Repository)

    McGinley, Lisa

    2011-03-07

    Abstract Introduction A combination of gene and cell therapies has the potential to significantly enhance the therapeutic value of mesenchymal stem cells (MSCs). The development of efficient gene delivery methods is essential if MSCs are to be of benefit using such an approach. Achieving high levels of transgene expression for the required period of time, without adversely affecting cell viability and differentiation capacity, is crucial. In the present study, we investigate lentiviral vector-mediated genetic modification of rat bone-marrow derived MSCs and examine any functional effect of such genetic modification in an in vitro model of ischaemia. Methods Transduction efficiency and transgene persistence of second and third generation rHIV-1 based lentiviral vectors were tested using reporter gene constructs. Use of the rHIV-pWPT-EF1-α-GFP-W vector was optimised in terms of dose, toxicity, cell species, and storage. The in vivo condition of ischaemia was modelled in vitro by separation into its associated constituent parts i.e. hypoxia, serum and glucose deprivation, in which the effect of therapeutic gene over-expression on MSC survival was investigated. Results The second generation lentiviral vector rHIV-pWPT-EF1-α-GFP-W, was the most efficient and provided the most durable transgene expression of the vectors tested. Transduction with this vector did not adversely affect MSC morphology, viability or differentiation potential, and transgene expression levels were unaffected by cryopreservation of transduced cells. Over-expression of HSP70 resulted in enhanced MSC survival and increased resistance to apoptosis in conditions of hypoxia and ischaemia. MSC differentiation capacity was significantly reduced after oxygen deprivation, but was preserved with HSP70 over-expression. Conclusions Collectively, these data validate the use of lentiviral vectors for efficient in vitro gene delivery to MSCs and suggest that lentiviral vector transduction can facilitate

  12. Rapid In Vivo Validation of Tumor Suppressor Gene Function in Prostate Cancer Progression

    Science.gov (United States)

    2016-07-01

    identification of the best sgRNA sequences and accelerated our ability to move to the in vivo studies proposed in Aim2. Our goal was to use CRISPR / Cas ...and to initiate prostate cancer in the mouse after injection of lentiviral particles expressing CRISPR / Cas components and Cre recombinase. Our initial...in vivo Our goal was to use CRISPR / Cas lentiviral transduction of the adult prostate to inactivate p53 or Rb. We aimed to recapitulate the effects of

  13. Short communication

    NARCIS (Netherlands)

    Pantophlet, Andre J.; Gilbert, M.S.; Gerrits, W.J.J.; Vonk, R.J.

    2017-01-01

    Heavy veal calves (4-6 mo old) often develop problems with insulin sensitivity. This could lead to metabolic disorders and impaired animal growth performance. Studies in various animal species have shown that the supplementation of short-chain fructo-oligosaccharides (scFOS) can improve insulin

  14. Worst Asymmetrical Short-Circuit Current

    DEFF Research Database (Denmark)

    Arana Aristi, Iván; Holmstrøm, O; Grastrup, L

    2010-01-01

    In a typical power plant, the production scenario and the short-circuit time were found for the worst asymmetrical short-circuit current. Then, a sensitivity analysis on the missing generator values was realized in order to minimize the uncertainty of the results. Afterward the worst asymmetrical...

  15. Short circuit in deep brain stimulation.

    Science.gov (United States)

    Samura, Kazuhiro; Miyagi, Yasushi; Okamoto, Tsuyoshi; Hayami, Takehito; Kishimoto, Junji; Katano, Mitsuo; Kamikaseda, Kazufumi

    2012-11-01

    The authors undertook this study to investigate the incidence, cause, and clinical influence of short circuits in patients treated with deep brain stimulation (DBS). After the incidental identification of a short circuit during routine follow-up, the authors initiated a policy at their institution of routinely evaluating both therapeutic impedance and system impendence at every outpatient DBS follow-up visit, irrespective of the presence of symptoms suggesting possible system malfunction. This study represents a report of their findings after 1 year of this policy. Implanted DBS leads exhibiting short circuits were identified in 7 patients (8.9% of the patients seen for outpatient follow-up examinations during the 12-month study period). The mean duration from DBS lead implantation to the discovery of the short circuit was 64.7 months. The symptoms revealing short circuits included the wearing off of therapeutic effect, apraxia of eyelid opening, or dysarthria in 6 patients with Parkinson disease (PD), and dystonia deterioration in 1 patient with generalized dystonia. All DBS leads with short circuits had been anchored to the cranium using titanium miniplates. Altering electrode settings resulted in clinical improvement in the 2 PD cases in which patients had specific symptoms of short circuits (2.5%) but not in the other 4 cases. The patient with dystonia underwent repositioning and replacement of a lead because the previous lead was located too anteriorly, but did not experience symptom improvement. In contrast to the sudden loss of clinical efficacy of DBS caused by an open circuit, short circuits may arise due to a gradual decrease in impedance, causing the insidious development of neurological symptoms via limited or extended potential fields as well as shortened battery longevity. The incidence of short circuits in DBS may be higher than previously thought, especially in cases in which DBS leads are anchored with miniplates. The circuit impedance of DBS

  16. Validating a Cantonese short version of the Zarit Burden Interview (CZBI-Short) for dementia caregivers.

    Science.gov (United States)

    Tang, Jennifer Yee-Man; Ho, Andy Hau-Yan; Luo, Hao; Wong, Gloria Hoi-Yan; Lau, Bobo Hi-Po; Lum, Terry Yat-Sang; Cheung, Karen Siu-Lan

    2016-09-01

    The present study aimed to develop and validate a Cantonese short version of the Zarit Burden Interview (CZBI-Short) for Hong Kong Chinese dementia caregivers. The 12-item Zarit Burden Interview (ZBI) was translated into spoken Cantonese and back-translated by two bilingual research assistants and face validated by a panel of experts. Five hundred Chinese dementia caregivers showing signs of stress reported their burden using the translated ZBI and rated their depressive symptoms, overall health, and care recipients' physical functioning and behavioral problems. The factor structure of the translated scale was identified using principal component analysis and confirmatory factor analysis; internal consistency and item-total correlations were assessed; and concurrent validity was tested by correlating the ZBI with depressive symptoms, self-rated health, and care recipients' physical functioning and behavioral problems. The principal component analysis resulted in 11 items loading on a three-factor model comprised role strain, self-criticism, and negative emotion, which accounted for 59% of the variance. The confirmatory factor analysis supported the three-factor model (CZBI-Short) that explained 61% of the total variance. Cronbach's alpha (0.84) and item-total correlations (rho = 0.39-0.71) indicated CZBI-Short had good reliability. CZBI-Short showed correlations with depressive symptoms (r = 0.50), self-rated health (r = -0.26) and care recipients' physical functioning (r = 0.18-0.26) and disruptive behaviors (r = 0.36). The 12-item CZBI-Short is a concise, reliable, and valid instrument to assess burden in Chinese dementia caregivers in clinical and social care settings.

  17. Terbium fluorescence as a sensitive, inexpensive probe for UV-induced damage in nucleic acids

    International Nuclear Information System (INIS)

    El-Yazbi, Amira F.; Loppnow, Glen R.

    2013-01-01

    Graphical abstract: -- Highlights: •Simple, inexpensive, mix-and-read assay for positive detection of DNA damage. •Recognition of undamaged DNA via hybridization to a hairpin probe. •Terbium(III) fluorescence reports the amount of damage by binding to ssDNA. •Tb/hairpin is a highly selective and sensitive fluorescent probe for DNA damage. -- Abstract: Much effort has been focused on developing methods for detecting damaged nucleic acids. However, almost all of the proposed methods consist of multi-step procedures, are limited, require expensive instruments, or suffer from a high level of interferences. In this paper, we present a novel simple, inexpensive, mix-and-read assay that is generally applicable to nucleic acid damage and uses the enhanced luminescence due to energy transfer from nucleic acids to terbium(III) (Tb 3+ ). Single-stranded oligonucleotides greatly enhance the Tb 3+ emission, but duplex DNA does not. With the use of a DNA hairpin probe complementary to the oligonucleotide of interest, the Tb 3+ /hairpin probe is applied to detect ultraviolet (UV)-induced DNA damage. The hairpin probe hybridizes only with the undamaged DNA. However, the damaged DNA remains single-stranded and enhances the intrinsic fluorescence of Tb 3+ , producing a detectable signal directly proportional to the amount of DNA damage. This allows the Tb 3+ /hairpin probe to be used for sensitive quantification of UV-induced DNA damage. The Tb 3+ /hairpin probe showed superior selectivity to DNA damage compared to conventional molecular beacons probes (MBs) and its sensitivity is more than 2.5 times higher than MBs with a limit of detection of 4.36 ± 1.2 nM. In addition, this probe is easier to synthesize and more than eight times cheaper than MBs, which makes its use recommended for high-throughput, quantitative analysis of DNA damage

  18. Targeted Knock-Down of miR21 Primary Transcripts Using snoMEN Vectors Induces Apoptosis in Human Cancer Cell Lines.

    Directory of Open Access Journals (Sweden)

    Motoharu Ono

    Full Text Available We have previously reported an antisense technology, 'snoMEN vectors', for targeted knock-down of protein coding mRNAs using human snoRNAs manipulated to contain short regions of sequence complementarity with the mRNA target. Here we characterise the use of snoMEN vectors to target the knock-down of micro RNA primary transcripts. We document the specific knock-down of miR21 in HeLa cells using plasmid vectors expressing miR21-targeted snoMEN RNAs and show this induces apoptosis. Knock-down is dependent on the presence of complementary sequences in the snoMEN vector and the induction of apoptosis can be suppressed by over-expression of miR21. Furthermore, we have also developed lentiviral vectors for delivery of snoMEN RNAs and show this increases the efficiency of vector transduction in many human cell lines that are difficult to transfect with plasmid vectors. Transduction of lentiviral vectors expressing snoMEN targeted to pri-miR21 induces apoptosis in human lung adenocarcinoma cells, which express high levels of miR21, but not in human primary cells. We show that snoMEN-mediated suppression of miRNA expression is prevented by siRNA knock-down of Ago2, but not by knock-down of Ago1 or Upf1. snoMEN RNAs colocalise with Ago2 in cell nuclei and nucleoli and can be co-immunoprecipitated from nuclear extracts by antibodies specific for Ago2.

  19. Targeted Knock-Down of miR21 Primary Transcripts Using snoMEN Vectors Induces Apoptosis in Human Cancer Cell Lines.

    Science.gov (United States)

    Ono, Motoharu; Yamada, Kayo; Avolio, Fabio; Afzal, Vackar; Bensaddek, Dalila; Lamond, Angus I

    2015-01-01

    We have previously reported an antisense technology, 'snoMEN vectors', for targeted knock-down of protein coding mRNAs using human snoRNAs manipulated to contain short regions of sequence complementarity with the mRNA target. Here we characterise the use of snoMEN vectors to target the knock-down of micro RNA primary transcripts. We document the specific knock-down of miR21 in HeLa cells using plasmid vectors expressing miR21-targeted snoMEN RNAs and show this induces apoptosis. Knock-down is dependent on the presence of complementary sequences in the snoMEN vector and the induction of apoptosis can be suppressed by over-expression of miR21. Furthermore, we have also developed lentiviral vectors for delivery of snoMEN RNAs and show this increases the efficiency of vector transduction in many human cell lines that are difficult to transfect with plasmid vectors. Transduction of lentiviral vectors expressing snoMEN targeted to pri-miR21 induces apoptosis in human lung adenocarcinoma cells, which express high levels of miR21, but not in human primary cells. We show that snoMEN-mediated suppression of miRNA expression is prevented by siRNA knock-down of Ago2, but not by knock-down of Ago1 or Upf1. snoMEN RNAs colocalise with Ago2 in cell nuclei and nucleoli and can be co-immunoprecipitated from nuclear extracts by antibodies specific for Ago2.

  20. Infantile Short Bowel Syndrome: short and long term evaluation

    NARCIS (Netherlands)

    J.F. Olieman (Joanne)

    2009-01-01

    textabstractInfantile short bowel syndrome is a condition which is characterized by malabsorption of nutrients, as a result of congenital intestinal shortening or massive small bowel resection. Survival rates have improved over the years, but morbidity remains high and clinical management of these

  1. Yeast Interacting Proteins Database: YNL189W, YGL175C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ait as prey (0) YGL175C SAE2 Endonuclease that processes hairpin DNA structures w... (0) Prey ORF YGL175C Prey gene name SAE2 Prey description Endonuclease that processes hairpin DNA structures

  2. Congenital Short QT Syndrome

    Directory of Open Access Journals (Sweden)

    Charles Antzelevitch

    2004-04-01

    Full Text Available Long QT intervals in the ECG have long been associated with sudden cardiac death. The congenital long QT syndrome was first described in individuals with structurally normal hearts in 1957.1 Little was known about the significance of a short QT interval. In 1993, after analyzing 6693 consecutive Holter recordings Algra et al concluded that an increased risk of sudden death was present not only in patients with long QT interval, but also in patients with short QT interval (<400 ms.2 Because this was a retrospective analysis, further evaluation of the data was not possible. It was not until 2000 that a short-QT syndrome (SQTS was proposed as a new inherited clinical syndrome by Gussak et al.3 The initial report was of two siblings and their mother all of whom displayed persistently short QT interval. The youngest was a 17 year old female presenting with several episodes of paroxysmal atrial fibrillation requiring electrical cardioversion.3 Her QT interval measured 280 msec at a heart rate of 69. Her 21 year old brother displayed a QT interval of 272 msec at a heart rate of 58, whereas the 51 year old mother showed a QT of 260 msec at a heart rate of 74. The authors also noted similar ECG findings in another unrelated 37 year old patient associated with sudden cardiac death.

  3. Proton-Coupled Electron Transfer and a Tyrosine-Histidine Pair in a Photosystem II-Inspired β-Hairpin Maquette: Kinetics on the Picosecond Time Scale.

    Science.gov (United States)

    Pagba, Cynthia V; McCaslin, Tyler G; Chi, San-Hui; Perry, Joseph W; Barry, Bridgette A

    2016-02-25

    Photosystem II (PSII) and ribonucleotide reductase employ oxidation and reduction of the tyrosine aromatic ring in radical transport pathways. Tyrosine-based reactions involve either proton-coupled electron transfer (PCET) or electron transfer (ET) alone, depending on the pH and the pKa of tyrosine's phenolic oxygen. In PSII, a subset of the PCET reactions are mediated by a tyrosine-histidine redox-driven proton relay, YD-His189. Peptide A is a PSII-inspired β-hairpin, which contains a single tyrosine (Y5) and histidine (H14). Previous electrochemical characterization indicated that Peptide A conducts a net PCET reaction between Y5 and H14, which have a cross-strand π-π interaction. The kinetic impact of H14 has not yet been explored. Here, we address this question through time-resolved absorption spectroscopy and 280-nm photolysis, which generates a neutral tyrosyl radical. The formation and decay of the neutral tyrosyl radical at 410 nm were monitored in Peptide A and its variant, Peptide C, in which H14 is replaced by cyclohexylalanine (Cha14). Significantly, both electron transfer (ET, pL 11, L = lyonium) and PCET (pL 9) were accelerated in Peptide A and C, compared to model tyrosinate or tyrosine at the same pL. Increased electronic coupling, mediated by the peptide backbone, can account for this rate acceleration. Deuterium exchange gave no significant solvent isotope effect in the peptides. At pL 9, but not at pL 11, the reaction rate decreased when H14 was mutated to Cha14. This decrease in rate is attributed to an increase in reorganization energy in the Cha14 mutant. The Y5-H14 mechanism in Peptide A is reminiscent of proton- and electron-transfer events involving YD-H189 in PSII. These results document a mechanism by which proton donors and acceptors can regulate the rate of PCET reactions.

  4. Innovation: study of 'ultra-short' time reactions

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    This short article presents the new Elyse facility of Orsay-Paris 11 university for the study of ultra-short chemical and biochemical phenomena. Elyse uses the 'pump-probe' technique which consists in two perfectly synchronized electron and photon pulses. It comprises a 3 to 9 MeV electron accelerator with a HF gun photo-triggered with a laser. Elyse can initiate reactions using ultra-short electron pulses (radiolysis) or ultra-short photon pulses (photolysis). (J.S.)

  5. Short-Selling, Leverage and Systemic Risk

    OpenAIRE

    Pais, Amelia; Stork, Philip A.

    2013-01-01

    During the Global Financial Crisis, regulators imposed short-selling bans to protect financial institutions. The rationale behind the bans was that “bear raids”, driven by short-sellers, would increase the individual and systemic risk of financial institutions, especially for institutions with high leverage. This study uses Extreme Value Theory to estimate the effect of short-selling on financial institutions’ individual and systemic risks in France, Italy and Spain; it also analyses the rela...

  6. Lentiviral transgenic microRNA-based shRNA suppressed mouse cytochromosome P450 3A (CYP3A expression in a dose-dependent and inheritable manner.

    Directory of Open Access Journals (Sweden)

    Yong Wang

    Full Text Available Cytochomosome P450 enzymes (CYP are heme-containing monooxygenases responsible for oxidative metabolism of many exogenous and endogenous compounds including drugs. The species difference of CYP limits the extent to which data obtained from animals can be translated to humans in pharmacodynamics or pharmacokinetics studies. Transgenic expression of human CYP in animals lacking or with largely reduced endogenous CYP counterparts is recognized as an ideal strategy to correct CYP species difference. CYP3A is the most abundant CYP subfamily both in human and mammals. In this study, we designed a microRNA-based shRNA (miR-shRNA simultaneously targeting four members of mouse CYP3A subfamily (CYP3A11, CYP3A16, CYP3A41 and CYP3A44, and transgenic mice expressing the designed miR-shRNA were generated by lentiviral transgenesis. Results showed that the CYP3A expression level in transgenic mice was markedly reduced compared to that in wild type or unrelated miR-shRNA transgenic mice, and was inversely correlated to the miR-shRNA expression level. The CYP3A expression levels in transgenic offspring of different generations were also remarkably lower compared to those of controls, and moreover the inhibition rate of CYP3A expression remained comparable over generations. The ratio of the targeted CYP3A transcriptional levels was comparable between knockdown and control mice of the same gender as detected by RT-PCR DGGE analysis. These data suggested that transgenic miR-shRNA suppressed CYP3A expression in a dose-dependent and inheritable manner, and transcriptional levels of the targeted CYP3As were suppressed to a similar extent. The observed knockdown efficacy was further confirmed by enzymatic activity analysis, and data showed that CYP3A activities in transgenic mice were markedly reduced compared to those in wild-type or unrelated miR-shRNA transgenic controls (1.11±0.71 vs 5.85±1.74, 5.9±2.4; P<0.01. This work laid down a foundation to further knock

  7. Congenital Short QT Syndrome

    Directory of Open Access Journals (Sweden)

    Lia Crotti

    2010-02-01

    Full Text Available The Short QT Syndrome is a recently described new genetic disorder, characterized by abnormally short QT interval, paroxysmal atrial fibrillation and life threatening ventricular arrhythmias. This autosomal dominant syndrome can afflict infants, children, or young adults; often a remarkable family background of cardiac sudden death is elucidated. At electrophysiological study, short atrial and ventricular refractory periods are found, with atrial fibrillation and polymorphic ventricular tachycardia easily induced by programmed electrical stimulation. Gain of function mutations in three genes encoding K+ channels have been identified, explaining the abbreviated repolarization seen in this condition: KCNH2 for Ikr (SQT1, KCNQ1 for Iks (SQT2 and KCNJ2 for Ik1 (SQT3. The currently suggested therapeutic strategy is an ICD implantation, although many concerns exist for asymptomatic patients, especially in pediatric age. Pharmacological treatment is still under evaluation; quinidine has shown to prolong QT and reduce the inducibility of ventricular arrhythmias, but awaits additional confirmatory clinical data.

  8. Large short-baseline νμ disappearance

    International Nuclear Information System (INIS)

    Giunti, Carlo; Laveder, Marco

    2011-01-01

    We analyze the LSND, KARMEN, and MiniBooNE data on short-baseline ν μ →ν e oscillations and the data on short-baseline ν e disappearance obtained in the Bugey-3 and CHOOZ reactor experiments in the framework of 3+1 antineutrino mixing, taking into account the MINOS observation of long-baseline ν μ disappearance and the KamLAND observation of very-long-baseline ν e disappearance. We show that the fit of the data implies that the short-baseline disappearance of ν μ is relatively large. We obtain a prediction of an effective amplitude sin 2 2θ μμ > or approx. 0.1 for short-baseline ν μ disappearance generated by 0.2 2 2 , which could be measured in future experiments.

  9. Short Review

    DEFF Research Database (Denmark)

    Lynnerup, Niels; Rühli, Frank

    2015-01-01

    modality in ancient mummy research. The aim of this short review is to address the advantages and pitfalls of this particular technique for such unique samples. We recommend that when results of X-ray examination of mummies are presented, the specific recording data should be listed, and any given finds...

  10. On-Demand Cell Internal Short Circuit Device

    Science.gov (United States)

    Darcy, Eric; Keyser, Matthew

    2014-01-01

    A device implantable in Li-ion cells that can generate a hard internal short circuit on-demand by exposing the cell to 60?C has been demonstrated to be valuable for expanding our understanding of cell responses. The device provides a negligible impact to cell performance and enables the instigation of the 4 general categories of cell internal shorts to determine relative severity and cell design susceptibility. Tests with a 18650 cell design indicates that the anode active material short to the aluminum cathode current collector tends to be more catastrophic than the 3 other types of internal shorts. Advanced safety features (such as shutdown separators) to prevent or mitigate the severity of cell internal shorts can be verified with this device. The hard short success rate achieved to date in 18650 cells is about 80%, which is sufficient for using these cells in battery assemblies for field-failure-relevant, cell-cell thermal runaway propagation verification tests

  11. The novel as short story

    Directory of Open Access Journals (Sweden)

    Kirk Schlueter

    2013-06-01

    Full Text Available In recent history, the novel has been thought of and defined primarily as a long prose narrative. However, this has not been the case historically, as the original meaning of "novel" was for "a piece of news" or "a short story or novella." Returning to this original definition, I propose a new way of viewing the work known contemporarily as the novel as a collection, or sequence, of united short stories rather than a single indivisible work, with the component short stories or novellas comprising the sequence renamed as "novels." A brief examination of several classic works traditionally considered novels serves to illustrate how this change in definition will affect reading.

  12. Short sales, differences of opinion and fundamental value

    NARCIS (Netherlands)

    Brounen, Dirk; Porras Prado, M.; Ling, D.C.

    2013-01-01

    This study explores the role of short sale constraints in explaining the variation in premiums to Net Asset Value (NAV) in REIT pricing. We use proprietary information on short sales between June 2006 and September 2008 to examine how short sales and short sale constraints affect the variation in

  13. Polyethylene glycol-mediated colorectal cancer chemoprevention: roles of epidermal growth factor receptor and Snail.

    Science.gov (United States)

    Wali, Ramesh K; Kunte, Dhananjay P; Koetsier, Jennifer L; Bissonnette, Marc; Roy, Hemant K

    2008-09-01

    Polyethylene glycol (PEG) is a clinically widely used agent with profound chemopreventive properties in experimental colon carcinogenesis. We reported previously that Snail/beta-catenin signaling may mediate the suppression of epithelial proliferation by PEG, although the upstream events remain unclear. We report herein the role of epidermal growth factor receptor (EGFR), a known mediator of Snail and overexpressed in approximately 80% of human colorectal cancers, on PEG-mediated antiproliferative and hence antineoplastic effects in azoxymethane (AOM) rats and HT-29 colon cancer cells. AOM rats were randomized to either standard diet or one with 10% PEG-3350 and euthanized 8 weeks later. The colonic samples were subjected to immunohistochemical or Western blot analyses. PEG decreased mucosal EGFR by 60% (P PEG effects were obtained in HT-29 cells. PEG suppressed EGFR protein via lysosmal degradation with no change in mRNA levels. To show that EGFR antagonism per se was responsible for the antiproliferative effect, we inhibited EGFR by either pretreating cells with gefitinib or stably transfecting with EGFR-short hairpin RNA and measured the effect of PEG on proliferation. In either case, PEG effect was blunted, suggesting a vital role of EGFR. Flow cytometric analysis revealed that EGFR-short hairpin RNA cells, besides having reduced membrane EGFR, also expressed low Snail levels (40%), corroborating a strong association. Furthermore, in EGFR silenced cells, PEG effect on EGFR or Snail was muted, similar to that on proliferation. In conclusion, we show that EGFR is the proximate membrane signaling molecule through which PEG initiates antiproliferative activity with Snail/beta-catenin pathway playing the central intermediary function.

  14. Towards Antiviral shRNAs Based on the AgoshRNA Design.

    Directory of Open Access Journals (Sweden)

    Ying Poi Liu

    Full Text Available RNA interference (RNAi can be induced by intracellular expression of a short hairpin RNA (shRNA. Processing of the shRNA requires the RNaseIII-like Dicer enzyme to remove the loop and to release the biologically active small interfering RNA (siRNA. Dicer is also involved in microRNA (miRNA processing to liberate the mature miRNA duplex, but recent studies indicate that miR-451 is not processed by Dicer. Instead, this miRNA is processed by the Argonaute 2 (Ago2 protein, which also executes the subsequent cleavage of a complementary mRNA target. Interestingly, shRNAs that structurally resemble miR-451 can also be processed by Ago2 instead of Dicer. The key determinant of these "AgoshRNA" molecules is a relatively short basepaired stem, which avoids Dicer recognition and consequently allows alternative processing by Ago2. AgoshRNA processing yields a single active RNA strand, whereas standard shRNAs produce a duplex with guide and passenger strands and the latter may cause adverse off-target effects. In this study, we converted previously tested active anti-HIV-1 shRNA molecules into AgoshRNA. We tested several designs that could potentially improve AgoshRNA activity, including extension of the complementarity between the guide strand and the mRNA target and reduction of the thermodynamic stability of the hairpins. We demonstrate that active AgoshRNAs can be generated. However, the RNAi activity is reduced compared to the matching shRNAs. Despite reduced RNAi activity, comparison of an active AgoshRNA and the matching shRNA in a sensitive cell toxicity assay revealed that the AgoshRNA is much less toxic.

  15. Short- circuit tests of circuit breakers

    OpenAIRE

    Chorovský, P.

    2015-01-01

    This paper deals with short-circuit tests of low voltage electrical devices. In the first part of this paper, there are described basic types of short- circuit tests and their principles. Direct and indirect (synthetic) tests with more details are described in the second part. Each test and principles are explained separately. Oscilogram is obtained from short-circuit tests of circuit breakers at laboratory. The aim of this research work is to propose a test circuit for performing indirect test.

  16. Short-range fundamental forces

    International Nuclear Information System (INIS)

    Antoniadis, I.; Baessler, S.; Buchner, M.; Fedorov, V.V.; Hoedl, S.; Nesvizhevsky, V.V.; Pignol, G.; Protasov, K.V.; Lambrecht, A.; Reynaud, S.; Sobolev, Y.

    2010-01-01

    We consider theoretical motivations to search for extra short-range fundamental forces as well as experiments constraining their parameters. The forces could be of two types: 1) spin-independent forces; 2) spin-dependent axion-like forces. Different experimental techniques are sensitive in respective ranges of characteristic distances. The techniques include measurements of gravity at short distances, searches for extra interactions on top of the Casimir force, precision atomic and neutron experiments. We focus on neutron constraints, thus the range of characteristic distances considered here corresponds to the range accessible for neutron experiments

  17. Catapults fall short

    Science.gov (United States)

    Gibson, Marcus

    2018-01-01

    In reply to the news story "UK Catapults fall short, claims review of technology centres", which describes an independent review that criticized the management of the UK's network of technology innovation centres.

  18. The molecular variability analysis of the RNA 3 of fifteen isolates of Prunus necrotic ringspot virus sheds light on the minimal requirements for the synthesis of its subgenomic RNA.

    Science.gov (United States)

    Aparicio, Frederic; Pallás, Vicente

    2002-01-01

    The nucleotide sequences of the RNA 3 of fifteen isolates of Prunus necrotic ringspot virus (PNRSV) varying in the symptomatology they cause in six different Prunus spp. were determined. Analysis of the molecular variability has allowed, in addition to study the phylogenetic relationships among them, to evaluate the minimal requirements for the synthesis of the subgenomic RNA in Ilarvirus genus and their comparison to other members of the Bromoviridae family. Computer assisted comparisons led recently to Jaspars (Virus Genes 17, 233-242, 1998) to propose that a hairpin structure in viral minus strand RNA is required for subgenomic promoter activity of viruses from at least two, and possibly all five, genera in the family of Bromoviridae. For PNRSV and Apple mosaic virus two stable hairpins were proposed whereas for the rest of Ilarviruses and the other four genera of the Bromoviridae family only one stable hairpin was predicted. Comparative analysis of this region among the fifteen PNRSV isolates characterized in this study revealed that two of them showed a 12-nt deletion that led to the disappearance of the most proximal hairpin to the initiation site. Interestingly, the only hairpin found in these two isolates is very similar in primary and secondary structure to the one previously shown in Brome mosaic virus to be required for the synthesis of the subgenomic RNA. In this hairpin, the molecular diversity was concentrated mostly at the loop whereas compensatory mutations were observed at the base of the stem strongly suggesting its functional relevance. The evolutionary implications of these observations are discussed.

  19. Generation of induced pluripotent stem cells (iPSCs) from an Alzheimer's disease patient carrying a L150P mutation in PSEN-1

    DEFF Research Database (Denmark)

    Tubsuwan, Alisa; Pires, Carlota; Rasmussen, Mikkel A.

    2016-01-01

    Induced pluripotent stem cells (iPSCs) were generated from skin fibroblasts isolated from a 58-year old male with a L150P mutation in the presenilin 1 (PSEN-1) gene, which is responsible for the majority of familial cases of Alzheimer's disease (AD). The iPSC swere established by co......-electroporation with episomal plasmids containing hOCT4, hSOX2, hL-MYC, hKLF4, hNANOG, hLIN28, and short hairpin RNA against TP53. The iPSCs contained the specific heterozygous mutation c.449C>T, had normal karyotype, expressed the expected pluripotency genes and displayed in vitro differentiation potential to the three germ...

  20. Hierarchically assembled DNA origami tubules with reconfigurable chirality

    International Nuclear Information System (INIS)

    Chen, Haorong; Cha, Tae-Gon; Pan, Jing; Choi, Jong Hyun

    2013-01-01

    The dynamic reconfiguration of a hierarchically assembled tubular structure is demonstrated using the DNA origami technique. Short cylindrical DNA origami monomers are synthesized and linked into elongated tubules, which can then be disassembled via toehold-mediated strand displacement. The disassembled subunits are subsequently linked into tubules of a different chirality. The reconfiguration is performed with the subunits carrying dumbbell hairpin DNA oligonucleotides or gold nanoparticles (AuNPs). The reconfiguration of higher order origami structures presented here is useful for constructing dynamic nanostructures that exceed the size limit of single DNA origami and may facilitate the study of molecular or particle interactions by tuning their relative distance and organization. (paper)

  1. Short-term memory and dual task performance

    Science.gov (United States)

    Regan, J. E.

    1982-01-01

    Two hypotheses concerning the way in which short-term memory interacts with another task in a dual task situation are considered. It is noted that when two tasks are combined, the activity of controlling and organizing performance on both tasks simultaneously may compete with either task for a resource; this resource may be space in a central mechanism or general processing capacity or it may be some task-specific resource. If a special relationship exists between short-term memory and control, especially if there is an identity relationship between short-term and a central controlling mechanism, then short-term memory performance should show a decrement in a dual task situation. Even if short-term memory does not have any particular identity with a controlling mechanism, but both tasks draw on some common resource or resources, then a tradeoff between the two tasks in allocating resources is possible and could be reflected in performance. The persistent concurrence cost in memory performance in these experiments suggests that short-term memory may have a unique status in the information processing system.

  2. Monte Carlo simulation of AB-copolymers with saturating bonds

    DEFF Research Database (Denmark)

    Chertovich, A.C.; Ivanov, V.A.; Khokhlov, A.R.

    2003-01-01

    Structural transitions in a single AB-copolymer chain where saturating bonds can be formed between A- and B-units are studied by means of Monte Carlo computer simulations using the bond fluctuation model. Three transitions are found, coil-globule, coil-hairpin and globule-hairpin, depending...

  3. Short communication

    African Journals Online (AJOL)

    UPuser

    Short communication. Polymorphisms of the CAST gene in the Meishan and five other pig populations in China. Q.S. Wang. 1. , Y.C. Pan. 1#. , L.B. Sun. 2 and H. Meng. 1. 1 Department of Animal Science, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai. 201101, P.R. China. 2 Shanghai Institute of ...

  4. Short-term memory across eye blinks.

    Science.gov (United States)

    Irwin, David E

    2014-01-01

    The effect of eye blinks on short-term memory was examined in two experiments. On each trial, participants viewed an initial display of coloured, oriented lines, then after a retention interval they viewed a test display that was either identical or different by one feature. Participants kept their eyes open throughout the retention interval on some blocks of trials, whereas on others they made a single eye blink. Accuracy was measured as a function of the number of items in the display to determine the capacity of short-term memory on blink and no-blink trials. In separate blocks of trials participants were instructed to remember colour only, orientation only, or both colour and orientation. Eye blinks reduced short-term memory capacity by approximately 0.6-0.8 items for both feature and conjunction stimuli. A third, control, experiment showed that a button press during the retention interval had no effect on short-term memory capacity, indicating that the effect of an eye blink was not due to general motoric dual-task interference. Eye blinks might instead reduce short-term memory capacity by interfering with attention-based rehearsal processes.

  5. Short-cut math

    CERN Document Server

    Kelly, Gerard W

    1984-01-01

    Clear, concise compendium of about 150 time-saving math short-cuts features faster, easier ways to add, subtract, multiply, and divide. Each problem includes an explanation of the method. No special math ability needed.

  6. Slow transition of the Osborne Reynolds pipe flow: A direct numerical simulation study.

    Science.gov (United States)

    Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J.; Baltzer, Jon R.

    2015-11-01

    Osborne Reynolds' pipe transition experiment marked the onset of fundamental turbulence research, yet the precise dynamics carrying the laminar state to fully-developed turbulence has been quite elusive. Our spatially-developing direct numerical simulation of this problem reveals interesting connections with theory and experiments. In particular, during transition the energy norms of localized, weakly finite inlet perturbations grow exponentially, rather than algebraically, with axial distance, in agreement with the edge-state based temporal results of Schneider et al. (PRL, 034502, 2007). When inlet disturbance is the core region, helical vortex filaments evolve into large-scale reverse hairpin vortices. The interaction of these reverse hairpins among themselves or with the near-wall flow produces small-scale hairpin packets. When inlet disturbance is near the wall, optimally positioned quasi-spanwise structure is stretched into a Lambda vortex, which grows into a turbulent spot of concentrated small-scale hairpin vortices. Waves of hairpin-like structures were observed by Mullin (Ann. Rev. Fluid Mech., Vol.43, 2011) in their experiment with very weak blowing and suction. This vortex dynamics is broadly analogous to that in the boundary layer bypass transition and in the secondary instability and breakdown stage of natural transition. Further details of our simulation are reported in Wu et al. (PNAS, 1509451112, 2015).

  7. Cinematic diamonds : narrative storytelling strategies in short fiction film

    OpenAIRE

    Cantell, Saara (kirjoittaja); Jeremiah, Fleur (kääntäjä)

    2012-01-01

    Saara Cantell proposes and discusses alternative ways of approaching short film. This book emphasizes short film as an independent and challenging cinematic art form of its own right. The "mystery" of short film is approached by examining the aesthetics of other short forms, The structural parallels between e.g. jokes and short films, as well as narrative strategies found in poetry, offer meaningful references. The research consists of both the analysis of selected short films and the five sh...

  8. Why do short term workers have high mortality?

    DEFF Research Database (Denmark)

    Kolstad, Henrik; Olsen, Jørn

    1999-01-01

    or violence, the rate ratios for short term employment were 2.30 (95% Cl 1.74-3.06) and 1.86 (95% Cl 1.35-2.56), respectively. An unhealthy lifestyle may also be a determinant of short term employment. While it is possible in principle to adjust for lifestyle factors if proper data are collected, the health......Increased mortality is often reported among workers in short term employment. This may indicate either a health-related selection process or the presence of different lifestyle or social conditions among short term workers. The authors studied these two aspects of short term employment among 16...

  9. Minimalism in the modern short story

    Directory of Open Access Journals (Sweden)

    A Razi

    2009-09-01

    Full Text Available Short story has recently become the focus of attention in the late decades in Iran. The expanding value of writing short story is actually a reasonable outcome of the dominance of minimalism- a movement which is based upon simplicity and shortness. Minimalist writers, leaving out redundant features of narration, mainly focus on essentialities through applying a variety of techniques such as cuttings from the interesting moments of real life, evading introduction, applying inter-referents, choice of words, short stanzas and sentences and so on. Looking upon critic’s opinion about such a tendency over the past and present, this article will come up with a brief explanation of the properties of such stories. Finally a sample story “candles will never go dead” will be analyzed and discussed in the lights of such techniques.

  10. Short-term incentive schemes for hospital managers

    Directory of Open Access Journals (Sweden)

    Lucas Malambe

    2013-10-01

    Full Text Available Orientation: Short-term incentives, considered to be an extrinsic motivation, are commonly used to motivate performance. This study explored hospital managers’ perceptions of short term incentives in maximising performance and retention. Research purpose: The study explored the experiences, views and perceptions of private hospital managers in South Africa regarding the use of short-term incentives to maximise performance and retention, as well as the applicability of the findings to public hospitals. Motivation for the study: Whilst there is an established link between performance reward schemes and organisational performance, there is little understanding of the effects of short term incentives on the performance and retention of hospital managers within the South African context. Research design, approach, and method: The study used a qualitative research design: interviews were conducted with a purposive sample of 19 hospital managers, and a thematic content analysis was performed. Main findings: Short-term incentives may not be the primary motivator for hospital managers, but they do play a critical role in sustaining motivation. Participants indicated that these schemes could also be applicable to public hospitals. Practical/managerial implications: Hospital managers are inclined to be more motivated by intrinsic than extrinsic factors. However, hospital managers (as middle managers also seem to be motivated by short-term incentives. A combination of intrinsic and extrinsic motivators should thus be used to maximise performance and retention. Contribution/value-add: Whilst the study sought to explore hospital managers’ perceptions of short-term incentives, it also found that an adequate balance between internal and external motivators is key to implementing an effective short-term incentive scheme.

  11. Short fusion

    CERN Multimedia

    2002-01-01

    French and UK researchers are perfecting a particle accelerator technique that could aid the quest for fusion energy or make X-rays that are safer and produce higher-resolution images. Led by Dr Victor Malka from the Ecole Nationale Superieure des Techniques Avancees in Paris, the team has developed a better way of accelerating electrons over short distances (1 page).

  12. The Long and the Short of It: The Use of Short Films in the German Classroom

    Science.gov (United States)

    Sundquist, John

    2010-01-01

    This article focuses on the benefits of using short film in the German classroom at the secondary or post-secondary level. The article addresses a number of characteristics of short films that lend themselves well to the classroom, including their abbreviated length, artistic innovation, and compact storytelling. In addition to discussing specific…

  13. Numerical challenges of short range wake field calculations

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Thomas; Gjonaj, Erion; Weiland, Thomas [Technische Universitaet Darmstadt (Germany). Institut fuer Theorie Elektromagnetischer Felder (TEMF)

    2011-07-01

    For present and future accelerator projects with ultra short bunches the accurate and reliable calculation of short range wake fields is an important issue. However, the numerical calculation of short range wake fields is a numerical challenging task. The presentation gives an overview over the numerical challenges and techniques for short range wake field calculations. Finally, some simulation results obtained by the program PBCI developed at the TU Darmstadt are presented.

  14. Short-Term Intercultural Psychotherapy: Ethnographic Inquiry

    Science.gov (United States)

    Seeley, Karen M.

    2004-01-01

    This article examines the challenges specific to short-term intercultural treatments and recently developed approaches to intercultural treatments based on notions of cultural knowledge and cultural competence. The article introduces alternative approaches to short-term intercultural treatments based on ethnographic inquiry adapted for clinical…

  15. Towards short wavelengths FELs workshop

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Winick, H.

    1993-01-01

    This workshop was caged because of the growing perception in the FEL source community that recent advances have made it possible to extend FEL operation to wavelengths about two orders of magnitude shorter than the 240 nm that has been achieved to date. In addition short wavelength FELs offer the possibilities of extremely high peak power (several gigawatts) and very short pulses (of the order of 100 fs). Several groups in the USA are developing plans for such short wavelength FEL facilities. However, reviewers of these plans have pointed out that it would be highly desirable to first carry out proof-of-principle experiments at longer wavelengths to increase confidence that the shorter wavelength devices will indeed perform as calculated. The need for such experiments has now been broadly accepted by the FEL community. Such experiments were the main focus of this workshop as described in the following objectives distributed to attendees: (1) Define measurements needed to gain confidence that short wavelength FELs will perform as calculated. (2) List possible hardware that could be used to carry out these measurements in the near term. (3) Define a prioritized FEL physics experimental program and suggested timetable. (4) Form collaborative teams to carry out this program

  16. Towards short wavelengths FELs workshop

    Science.gov (United States)

    Ben-Zvi, I.; Winick, H.

    1993-11-01

    This workshop was caged because of the growing perception in the FEL source community that recent advances have made it possible to extend FEL operation to wavelengths about two orders of magnitude shorter than the 240 nm that has been achieved to date. In addition short wavelength FEL's offer the possibilities of extremely high peak power (several gigawatts) and very short pulses (of the order of 100 fs). Several groups in the USA are developing plans for such short wavelength FEL facilities. However, reviewers of these plans have pointed out that it would be highly desirable to first carry out proof-of-principle experiments at longer wavelengths to increase confidence that the shorter wavelength devices will indeed perform as calculated. The need for such experiments has now been broadly accepted by the FEL community. Such experiments were the main focus of this workshop as described in the following objectives distributed to attendees: (1) Define measurements needed to gain confidence that short wavelength FEL's will perform as calculated. (2) List possible hardware that could be used to carry out these measurements in the near term. (3) Define a prioritized FEL physics experimental program and suggested timetable. (4) Form collaborative teams to carry out this program.

  17. Tester Detects Steady-Short Or Intermittent-Open Circuits

    Science.gov (United States)

    Anderson, Bobby L.

    1990-01-01

    Momentary open circuits or steady short circuits trigger buzzer. Simple, portable, lightweight testing circuit sounds long-duration alarm when it detects steady short circuit or momentary open circuit in coaxial cable or other two-conductor transmission line. Tester sensitive to discontinuities lasting 10 microseconds or longer. Used extensively for detecting intermittent open shorts in accelerometer and extensometer cables. Also used as ordinary buzzer-type continuity checker to detect steady short or open circuits.

  18. Short Communication

    African Journals Online (AJOL)

    huis

    Short Communication. QTL analysis of production traits on SSC3 in a Large White×Meishan pig resource family. B. Zuo. 1. , Y.Z. Xiong. 1#. , Y.H. Su. 2. , C.Y. Deng. 1. , M.G. Lei. 1. , F.E. Li. 1. , R. Zheng. 1 and S.W. Jiang. 1. 1 Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & Key Lab of Agricultural ...

  19. 33 CFR 401.1 - Short title.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Short title. 401.1 Section 401.1 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations § 401.1 Short title. These regulations may be cited as the...

  20. The Demonstration of Short-Term Consolidation.

    Science.gov (United States)

    Jolicoeur, Pierre; Dell'Acqua, Roberto

    1998-01-01

    Results of seven experiments involving 112 college students or staff using a dual-task approach provide evidence that encoding information into short-term memory involves a distinct process termed short-term consolidation (STC). Results suggest that STC has limited capacity and that it requires central processing mechanisms. (SLD)