WorldWideScience

Sample records for lensless optical correlator

  1. Lensless Imaging and Sensing.

    Science.gov (United States)

    Ozcan, Aydogan; McLeod, Euan

    2016-07-11

    High-resolution optical microscopy has traditionally relied on high-magnification and high-numerical aperture objective lenses. In contrast, lensless microscopy can provide high-resolution images without the use of any focusing lenses, offering the advantages of a large field of view, high resolution, cost-effectiveness, portability, and depth-resolved three-dimensional (3D) imaging. Here we review various approaches to lensless imaging, as well as its applications in biosensing, diagnostics, and cytometry. These approaches include shadow imaging, fluorescence, holography, superresolution 3D imaging, iterative phase recovery, and color imaging. These approaches share a reliance on computational techniques, which are typically necessary to reconstruct meaningful images from the raw data captured by digital image sensors. When these approaches are combined with physical innovations in sample preparation and fabrication, lensless imaging can be used to image and sense cells, viruses, nanoparticles, and biomolecules. We conclude by discussing several ways in which lensless imaging and sensing might develop in the near future.

  2. Phase recovery and lensless imaging by iterative methods in optical, X-ray and electron diffraction.

    Science.gov (United States)

    Spence, J C H; Weierstall, U; Howells, M

    2002-05-15

    Thomas Young's quantitative analysis of interference effects provided the confidence needed to revive the wave theory of light, and firmly established the concept of phase in optics. Phase plays a similarly fundamental role in matter-wave interferometry, for which the field-emission electron microscope provides ideal instrumentation. The wave-particle duality is vividly demonstrated by experimental 'Young's fringes' using coherent electron beams under conditions in which the flight time is less than the time between particle emission. A brief historical review is given of electron interferometry and holography, including the Aharonov-Bohm effect and the electron Sagnac interferometer. The simultaneous development of phase-contrast imaging at subnanometre spatial resolution has greatly deepened our understanding of atomic processes in biology, materials science and condensed-matter physics, while electron holography has become a routine tool for the mapping of electrostatic and magnetic fields in materials on a nanometre scale. The encoding of phase information in scattered farfield intensities is discussed, and non-interferometric, non-crystallographic methods for phase retrieval are reviewed in relationship to electron holography. Examples of phase measurement and diffraction-limited imaging using the hybrid input-output iterative algorithm are given, including simulations for soft X-ray imaging, and new experimental results for coherent electron and visible-light scattering. Image reconstruction is demonstrated from experimental electron and visible-light Fraunhofer diffraction patterns. The prospects this provides for lensless imaging using particles for which no lenses exist (such as neutrons, condensates, coherent atom beams and X-rays) are discussed. These new interactions can be expected to provide new information, perhaps, for example, in biology, with the advantage of less damage to samples.

  3. Surpassing digital holography limits by lensless object scanning holography.

    Science.gov (United States)

    Micó, Vicente; Ferreira, Carlos; García, Javier

    2012-04-23

    We present lensless object scanning holography (LOSH) as a fully lensless method, capable of improving image quality in reflective digital Fourier holography, by means of an extremely simplified experimental setup. LOSH is based on the recording and digital post-processing of a set of digital lensless holograms and results in a synthetic image with improved resolution, field of view (FOV), signal-to-noise ratio (SNR), and depth of field (DOF). The superresolution (SR) effect arises from the generation of a synthetic aperture (SA) based on the linear movement of the inspected object. The same scanning principle enlarges the object FOV. SNR enhancement is achieved by speckle suppression and coherent artifacts averaging due to the coherent addition of the multiple partially overlapping bandpass images. And DOF extension is performed by digital refocusing to different object's sections. Experimental results showing an impressive image quality improvement are reported for a one-dimensional reflective resolution test target. © 2012 Optical Society of America

  4. Emerging Correlation Optics

    DEFF Research Database (Denmark)

    Angelsky, Oleg V.; Gbur, Gregory J.; Polyanskii, Peter

    2012-01-01

    This feature issue of Applied Optics contains a series of selected papers reflecting the state-of-the-art of correlation optics and showing synergetics between the theoretical background and experimental techniques.......This feature issue of Applied Optics contains a series of selected papers reflecting the state-of-the-art of correlation optics and showing synergetics between the theoretical background and experimental techniques....

  5. Machine Learning Based Single-Frame Super-Resolution Processing for Lensless Blood Cell Counting

    Directory of Open Access Journals (Sweden)

    Xiwei Huang

    2016-11-01

    Full Text Available A lensless blood cell counting system integrating microfluidic channel and a complementary metal oxide semiconductor (CMOS image sensor is a promising technique to miniaturize the conventional optical lens based imaging system for point-of-care testing (POCT. However, such a system has limited resolution, making it imperative to improve resolution from the system-level using super-resolution (SR processing. Yet, how to improve resolution towards better cell detection and recognition with low cost of processing resources and without degrading system throughput is still a challenge. In this article, two machine learning based single-frame SR processing types are proposed and compared for lensless blood cell counting, namely the Extreme Learning Machine based SR (ELMSR and Convolutional Neural Network based SR (CNNSR. Moreover, lensless blood cell counting prototypes using commercial CMOS image sensors and custom designed backside-illuminated CMOS image sensors are demonstrated with ELMSR and CNNSR. When one captured low-resolution lensless cell image is input, an improved high-resolution cell image will be output. The experimental results show that the cell resolution is improved by 4×, and CNNSR has 9.5% improvement over the ELMSR on resolution enhancing performance. The cell counting results also match well with a commercial flow cytometer. Such ELMSR and CNNSR therefore have the potential for efficient resolution improvement in lensless blood cell counting systems towards POCT applications.

  6. Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring

    KAUST Repository

    Wu, Yichen

    2017-08-31

    Optical compound microscope has been a major tool in biomedical imaging for centuries. Its performance relies on relatively complicated, bulky and expensive lenses and alignment mechanics. In contrast, the lensless microscope digitally reconstructs microscopic images of specimens without using any lenses, as a result of which it can be made much smaller, lighter and lower-cost. Furthermore, the limited space-bandwidth product of objective lenses in a conventional microscope can be significantly surpassed by a lensless microscope. Such lensless imaging designs have enabled high-resolution and high-throughput imaging of specimens using compact, portable and cost-effective devices to potentially address various point-of-care, global-health and telemedicine related challenges. In this review, we discuss the operation principles and the methods behind lensless digital holographic on-chip microscopy. We also go over various applications that are enabled by cost-effective and compact implementations of lensless microscopy, including some recent work on air quality monitoring, which utilized machine learning for high-throughput and accurate quantification of particulate matter in air. Finally, we conclude with a brief future outlook of this computational imaging technology.

  7. Multispectral digital lensless holographic microscopy: from femtosecond laser to white light LED

    Science.gov (United States)

    Garcia-Sucerquia, J.

    2015-04-01

    The use of femtosecond laser radiation and super bright white LED in digital lensless holographic microscopy is presented. For the ultrafast laser radiation two different configurations of operation of the microscope are presented and the dissimilar performance of each one analyzed. The microscope operating with a super bright white light LED in combination with optical filters shows very competitive performance as it is compared with more expensive optical sources. The broadband emission of both radiation sources allows the multispectral imaging of biological samples to obtain spectral responses and/or full color images of the microscopic specimens; sections of the head of a Drosophila melanogaster fly are imaged in this contribution. The simple, solid, compact, lightweight, and reliable architecture of digital lensless holographic microscopy operating with broadband light sources to image biological specimens exhibiting micrometer-sized details is evaluated in the present contribution.

  8. Defocusing effects of lensless ghost imaging and ghost diffraction with partially coherent sources

    Science.gov (United States)

    Zhou, Shuang-Xi; Sheng, Wei; Bi, Yu-Bo; Luo, Chun-Ling

    2018-04-01

    The defocusing effect is inevitable and degrades the image quality in the conventional optical imaging process significantly due to the close confinement of the imaging lens. Based on classical optical coherent theory and linear algebra, we develop a unified formula to describe the defocusing effects of both lensless ghost imaging (LGI) and lensless ghost diffraction (LGD) systems with a partially coherent source. Numerical examples are given to illustrate the influence of defocusing length on the quality of LGI and LGD. We find that the defocusing effects of the test and reference paths in the LGI or LGD systems are entirely different, while the LGD system is more robust against defocusing than the LGI system. Specifically, we find that the imaging process for LGD systems can be viewed as pinhole imaging, which may find applications in ultra-short-wave band imaging without imaging lenses, e.g. x-ray diffraction and γ-ray imaging.

  9. Planar optical correlators integrated with binary optical lens.

    Science.gov (United States)

    Xu, Ping; Hong, Chunquan; Cheng, Guanxiao; Zhou, Liang; Sun, Zhilong

    2015-03-09

    Planar optical correlators (POCs) can achieve smaller volume of optical system and hence have important applications to identify dynamic targets in complex scenarios. POCs, however, generally have serious astigmatism and optical efficiency loss introduced by its refractive lens with a zigzag optical beam. To conquer the disadvantages of POCs, we propose a type of binary optical planar-integrated optical correlator. The correlator incorporates two pieces of reflective binary optical lens as Fourier transform lens and one spatial light modulator as a programmable filter. The off-axis aberrations commonly occurred in POCs can be corrected by using reflective binary optical lens instead of refractive lens. As a model of hybrid numerical-optical correlator using optoelectronic interface, the proposal is helpful to improve the integration and flexibility and robustness of POCs.

  10. Changing image of correlation optics: introduction

    DEFF Research Database (Denmark)

    Angelsky, Oleg V.; Desyatnikov, Anton S.; Gbur, Gregory J.

    2016-01-01

    This feature issue of Applied Optics contains a series of selected papers reflecting recent progress of correlation optics and illustrating current trends in vector singular optics, internal energy flows at light fields, optical science of materials, and new biomedical applications of lasers. (C...

  11. Changing image of correlation optics: introduction.

    Science.gov (United States)

    Angelsky, Oleg V; Desyatnikov, Anton S; Gbur, Gregory J; Hanson, Steen G; Lee, Tim; Miyamoto, Yoko; Schneckenburger, Herbert; Wyant, James C

    2016-04-20

    This feature issue of Applied Optics contains a series of selected papers reflecting recent progress of correlation optics and illustrating current trends in vector singular optics, internal energy flows at light fields, optical science of materials, and new biomedical applications of lasers.

  12. Experimental Investigation of Quality of Lensless Ghost Imaging with Pseudo-Thermal Light

    International Nuclear Information System (INIS)

    Xia, Shen; Yan-Feng, Bai; Tao, Qin; Shen-Sheng, Han

    2008-01-01

    Factors influencing the quality of lensless ghost imaging are investigated. According to the experimental results, we find that the imaging quality is determined by the number of independent sub light sources on the imaging plane of the reference arm. A qualitative picture based on advanced wave optics is presented to explain the physics behind the experimental phenomena. The present results will be helpful to provide a basis for improving the quality of ghost imaging systems in future works. (fundamental areas of phenomenology(including applications))

  13. CORRELATION BETWEEN MORPHOLOGICAL, OPTICAL AND ...

    African Journals Online (AJOL)

    Mgina

    (1), where B is a constant and n depends on the type of transition. For the indirect allowed, direct forbidden and direct allowed transition the values of n are 2, ... Energy (eV). RF. DC1. DC2. DC3. Figure 4;. The plot of (h)2 with energy h for the determination of optical bandgaps of. ZnO:Al/ZnO double layers for RF, DC 1, DC2 ...

  14. Dual template optical correlator for pattern recognition

    Science.gov (United States)

    Chin, Freddie Y. H.; Somekh, Michael G.; Valera, M. S.; Crowe, John A.

    1992-08-01

    A new coherent optical correlator system has been developed for intended application to breast cancer screening. Such a system must have an inherent capability to deal with patterns that have high degrees of similarity between the desired and rejected classes, due to the overall similarity between benign and malignant cells. Consequently, effort has been directed toward achieving this goal. This paper presents an optical configuration that contains two coherent optical processors (COPs) working in parallel and utilizes phase-stepping detection at the output to multiply the two correlation signals. It is shown how this scheme offers an excellent compromise between good discrimination and immunity from noise added in the input plane

  15. Antiferromagnetic noise correlations in optical lattices

    DEFF Research Database (Denmark)

    Bruun, Niels Bohr International Academy, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark, Georg Morten; Syljuåsen, F. T.; Pedersen, K. G. L.

    2009-01-01

    We analyze how noise correlations probed by time-of-flight experiments reveal antiferromagnetic (AF) correlations of fermionic atoms in two-dimensional and three-dimensional optical lattices. Combining analytical and quantum Monte Carlo calculations using experimentally realistic parameters, we s...

  16. Thin wetting film lens-less imaging

    International Nuclear Information System (INIS)

    Allier, C.P.; Poher, V.; Coutard, J.G.; Hiernard, G.; Dinten, J.M.

    2011-01-01

    Lens-less imaging has recently attracted a lot of attention as a compact, easy-to-use method to image or detect biological objects like cells, but failed at detecting micron size objects like bacteria that often do not scatter enough light. In order to detect single bacterium, we have developed a method based on a thin wetting film that produces a micro-lens effect. Compared with previously reported results, a large improvement in signal to noise ratio is obtained due to the presence of a micro-lens on top of each bacterium. In these conditions, standard CMOS sensors are able to detect single bacterium, e.g. E. coli, Bacillus subtilis and Bacillus thuringiensis, with a large signal to noise ratio. This paper presents our sensor optimization to enhance the SNR; improve the detection of sub-micron objects; and increase the imaging FOV, from 4.3 mm 2 to 12 mm 2 to 24 mm 2 , which allows the detection of bacteria contained in 0.5 μl to 4 μl to 10 μl, respectively. (authors)

  17. Multi-angle lensless digital holography for depth resolved imaging on a chip

    Science.gov (United States)

    Su, Ting-Wei; Isikman, Serhan O.; Bishara, Waheb; Tseng, Derek; Erlinger, Anthony; Ozcan, Aydogan

    2010-01-01

    A multi-angle lensfree holographic imaging platform that can accurately characterize both the axial and lateral positions of cells located within multi-layered micro-channels is introduced. In this platform, lensfree digital holograms of the micro-objects on the chip are recorded at different illumination angles using partially coherent illumination. These digital holograms start to shift laterally on the sensor plane as the illumination angle of the source is tilted. Since the exact amount of this lateral shift of each object hologram can be calculated with an accuracy that beats the diffraction limit of light, the height of each cell from the substrate can be determined over a large field of view without the use of any lenses. We demonstrate the proof of concept of this multi-angle lensless imaging platform by using light emitting diodes to characterize various sized microparticles located on a chip with sub-micron axial and lateral localization over ~60 mm2 field of view. Furthermore, we successfully apply this lensless imaging approach to simultaneously characterize blood samples located at multi-layered micro-channels in terms of the counts, individual thicknesses and the volumes of the cells at each layer. Because this platform does not require any lenses, lasers or other bulky optical/mechanical components, it provides a compact and high-throughput alternative to conventional approaches for cytometry and diagnostics applications involving lab on a chip systems. PMID:20588819

  18. Scale tunable telediffractometer: use in optical correlation

    Science.gov (United States)

    Vallmitjana, Santiago; Juvells, Ignacio P.; Bosch, Salvador; de F. Moneo, J. R.

    1990-07-01

    When a large scale Fourier transform is required, the main disadvantage in the classical architecture for optical Fourier transforiing (froi front to back focal planes of a lens) is its length. If special detectors (CCD caDera), spatial sodulators (light valve) or filters (iiquid crystal iodulator) are to be used, the size of the transfora has to iatch the size of the active eleient of the device. When perforiirig optical correlation, the final length of the set up will be about four times the focal length of the two lenses (if they are equal).

  19. Dynamically reconfigurable multiple beam illumination based on optical correlation

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin; Dam, Jeppe Seidelin

    2009-01-01

    We adapt concepts from optical correlation and optical pattern recognition to propose a method for generating reconfigurable multiple spots with high efficiency. The generated spots correspond to the correlation spikes in optical pattern recognition. In pattern recognition, optimizing...... reconfigurable optical patterns with high efficiency for optical micromanipulation and other applications....

  20. Biometric Image Recognition Based on Optical Correlator

    Directory of Open Access Journals (Sweden)

    David Solus

    2017-01-01

    Full Text Available The aim of this paper is to design a biometric images recognition system able to recognize biometric images-eye and DNA marker. The input scenes are processed by user-friendly software created in C# programming language and then are compared with reference images stored in database. In this system, Cambridge optical correlator is used as an image comparator based on similarity of images in the recognition phase.

  1. Visible light optical coherence correlation spectroscopy.

    Science.gov (United States)

    Broillet, Stephane; Szlag, Daniel; Bouwens, Arno; Maurizi, Lionel; Hofmann, Heinrich; Lasser, Theo; Leutenegger, Marcel

    2014-09-08

    Optical coherence correlation spectroscopy (OCCS) allows studying kinetic processes at the single particle level using the backscattered light of nanoparticles. We extend the possibilities of this technique by increasing its signal-to-noise ratio by a factor of more than 25 and by generalizing the method to solutions containing multiple nanoparticle species. We applied these improvements by measuring protein adsorption and formation of a protein monolayer on superparamagnetic iron oxide nanoparticles under physiological conditions.

  2. Second-harmonic illumination to enhance multispectral digital lensless holographic microscopy.

    Science.gov (United States)

    Mendoza-Yero, Omel; Carbonell-Leal, Miguel; Lancis, Jesús; Garcia-Sucerquia, Jorge

    2016-03-01

    Multispectral digital lensless holographic microscopy (MDLHM) operating with second-harmonic illumination is shown. Added to the improvement of the spatial resolution of the previously reported MDLHM operating with near-infrared illumination, this second-harmonic MDLHM shows promise as a tool to study the behavior of biological samples under a broad spectral illumination. This illumination is generated by focusing a highly spatially coherent ultrashort pulsed radiation into an uncoated Type 1 β-BaB2O4 (BBO) nonlinear crystal. The second-harmonic MDLHM allows achieving multispectral images of biological samples with enhanced micrometer spatial resolution. The illumination wavelength of the second-harmonic MDLHM can be tuned by displacing a focusing optics with respect to a pinhole; spatially resolved information at different wavelengths of the sample can then be retrieved.

  3. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications.

    Science.gov (United States)

    Mudanyali, Onur; Tseng, Derek; Oh, Chulwoo; Isikman, Serhan O; Sencan, Ikbal; Bishara, Waheb; Oztoprak, Cetin; Seo, Sungkyu; Khademhosseini, Bahar; Ozcan, Aydogan

    2010-06-07

    Despite the rapid progress in optical imaging, most of the advanced microscopy modalities still require complex and costly set-ups that unfortunately limit their use beyond well equipped laboratories. In the meantime, microscopy in resource-limited settings has requirements significantly different from those encountered in advanced laboratories, and such imaging devices should be cost-effective, compact, light-weight and appropriately accurate and simple to be usable by minimally trained personnel. Furthermore, these portable microscopes should ideally be digitally integrated as part of a telemedicine network that connects various mobile health-care providers to a central laboratory or hospital. Toward this end, here we demonstrate a lensless on-chip microscope weighing approximately 46 grams with dimensions smaller than 4.2 cm x 4.2 cm x 5.8 cm that achieves sub-cellular resolution over a large field of view of approximately 24 mm(2). This compact and light-weight microscope is based on digital in-line holography and does not need any lenses, bulky optical/mechanical components or coherent sources such as lasers. Instead, it utilizes a simple light-emitting-diode (LED) and a compact opto-electronic sensor-array to record lensless holograms of the objects, which then permits rapid digital reconstruction of regular transmission or differential interference contrast (DIC) images of the objects. Because this lensless incoherent holographic microscope has orders-of-magnitude improved light collection efficiency and is very robust to mechanical misalignments it may offer a cost-effective tool especially for telemedicine applications involving various global health problems in resource limited settings.

  4. Compact, Light-weight and Cost-effective Microscope based on Lensless Incoherent Holography for Telemedicine Applications

    Science.gov (United States)

    Mudanyali, Onur; Tseng, Derek; Oh, Chulwoo; Isikman, Serhan O.; Sencan, Ikbal; Bishara, Waheb; Oztoprak, Cetin; Seo, Sungkyu; Khademhosseini, Bahar; Ozcan, Aydogan

    2010-01-01

    Despite the rapid progress in optical imaging, most of the advanced microscopy modalities still require complex and costly set-ups that unfortunately limit their use beyond well equipped laboratories. In the meantime, microscopy in resource-limited settings has requirements significantly different from those encountered in advanced laboratories, and such imaging devices should be cost-effective, compact, light-weight and appropriately accurate and simple to be usable by minimally trained personnel. Furthermore, these portable microscopes should ideally be digitally integrated as part of a telemedicine network that connects various mobile health-care providers to a central laboratory or hospital. Toward this end, here we demonstrate a lensless on-chip microscope weighing ~46 grams with dimensions smaller than 4.2cm × 4.2cm × 5.8cm that achieves sub-cellular resolution over a large field of view of ~24 mm2. This compact and light-weight microscope is based on digital in-line holography and does not need any lenses, bulky optical/mechanical components or coherent sources such as lasers. Instead, it utilizes a simple light-emitting-diode (LED) and a compact opto-electronic sensor-array to record lensless holograms of the objects, which then permits rapid digital reconstruction of regular transmission or differential interference contrast (DIC) images of the objects. Because this lensless incoherent holographic microscope has orders-of-magnitude improved light collection efficiency and is very robust to mechanical misalignments it may offer a cost-effective tool especially for telemedicine applications involving various global health problems in resource limited settings. PMID:20401422

  5. Lensless microscope based on iterative in-line holographic reconstruction

    Science.gov (United States)

    Wu, Jigang

    2014-11-01

    We propose a lensless microscopic imaging technique based on iteration algorithm with known constraint for image reconstruction in digital in-line holography. In our method, we introduce a constraint on the sample plane as known part in the lensless microscopy for iteration algorithm in order to eliminate the twin-image effect of holography and thus lead to better performance on microscopic imaging. We evaluate our method by numerical simulation and built a prototype in-line holographic imaging system and demonstrated its capability by preliminary experiments. In our proposed setup, a carefully designed photomask used to hold the sample is under illumination of a coherent light source. The in-line hologram is then recorded by a CMOS sensor. In the reconstruction, the known information of the illumination beam and the photomask is used as constraints in the iteration process. The improvement of image quality because of suppression of twin-images can be clearly seen by comparing the images obtained by direct holographic reconstruction and our iterative method.

  6. Achromatic optical correlator for white light pattern recognition

    Science.gov (United States)

    Chao, Tien-Hsin; Liu, Hua-Kuang; Chen, Ming; Cai, Luzhong

    1987-01-01

    An achromatic optical correlator using spatially multiplexed achromatic matched spatial filters (MSFs) for white light optical pattern recognition is presented. The MSF array is synthesizd using a monochromatic laser and its achromaticity is achieved by adjusting the scale and spatial carrier frequency of each MSF to accommodate the wavelength variations in white light correlation detections. Systems analysis and several experimental results showing the correlation peak intensity using white-light illumination are presented.

  7. Optical-Correlator Neural Network Based On Neocognitron

    Science.gov (United States)

    Chao, Tien-Hsin; Stoner, William W.

    1994-01-01

    Multichannel optical correlator implements shift-invariant, high-discrimination pattern-recognizing neural network based on paradigm of neocognitron. Selected as basic building block of this neural network because invariance under shifts is inherent advantage of Fourier optics included in optical correlators in general. Neocognitron is conceptual electronic neural-network model for recognition of visual patterns. Multilayer processing achieved by iteratively feeding back output of feature correlator to input spatial light modulator and updating Fourier filters. Neural network trained by use of characteristic features extracted from target images. Multichannel implementation enables parallel processing of large number of selected features.

  8. 'Ivory': Optomechanical modeling of an optical image correlator

    Science.gov (United States)

    Hatheway, Alson E.

    2005-09-01

    "Ivory" is a computer code that generates Optomechanical Constraint Equations (OCE) from the optical physical prescription data. The OCE predict the translation, rotation and size change of an optical image from the motions, temperature changes and other factors affecting the optical elements forming the image. An airborne optical image correlator has been designed and built for UAV applications. Commercially available optical components were used throughout. The centerpiece of the mechanical design was control of the manufacturing and assembly tolerances to assure precise alignment and stable image registration for high performance operation. Control was maintained during the design and manufacturing process by the use of optomechanical models based upon the Optomechanical Constraint Equations (OCE). The equations provided a comprehensive optomechanical model that related the critical optical functions (images and diffraction patterns) to the translation and rotation (dimensions and tolerances) of all the piece-parts. The equations also modeled the thermal and wavelength stability of the correlator. Engineers may generate the OCE by longhand calculations or in a computer spreadsheet. For larger optical systems this can be very time consuming. Ivory automates the generation of the OCE for the engineer making timely and accurate calculations of the image registration errors possible, even for very complex optical systems. This paper shows the application of the OCE to a variety of challenges in the optical image correlator: athermalization, alignment procedures, optical and mechanical tolerance budgets, optimizing the folded geometry and sizing alignment mechanisms.

  9. Lensless high-resolution photoacoustic imaging scanner for in vivo skin imaging

    Science.gov (United States)

    Ida, Taiichiro; Iwazaki, Hideaki; Omuro, Toshiyuki; Kawaguchi, Yasushi; Tsunoi, Yasuyuki; Kawauchi, Satoko; Sato, Shunichi

    2018-02-01

    We previously launched a high-resolution photoacoustic (PA) imaging scanner based on a unique lensless design for in vivo skin imaging. The design, imaging algorithm and characteristics of the system are described in this paper. Neither an optical lens nor an acoustic lens is used in the system. In the imaging head, four sensor elements are arranged quadrilaterally, and by checking the phase differences for PA waves detected with these four sensors, a set of PA signals only originating from a chromophore located on the sensor center axis is extracted for constructing an image. A phantom study using a carbon fiber showed a depth-independent horizontal resolution of 84.0 ± 3.5 µm, and the scan direction-dependent variation of PA signals was about ± 20%. We then performed imaging of vasculature phantoms: patterns of red ink lines with widths of 100 or 200 μm formed in an acrylic block co-polymer. The patterns were visualized with high contrast, showing the capability for imaging arterioles and venues in the skin. Vasculatures in rat burn models and healthy human skin were also clearly visualized in vivo.

  10. HyperCube: A Small Lensless Position Sensing Device for the Tracking of Flickering Infrared LEDs.

    Science.gov (United States)

    Raharijaona, Thibaut; Mignon, Paul; Juston, Raphaël; Kerhuel, Lubin; Viollet, Stéphane

    2015-07-08

    An innovative insect-based visual sensor is designed to perform active marker tracking. Without any optics and a field-of-view of about 60°, a novel miniature visual sensor is able to locate flickering markers (LEDs) with an accuracy much greater than the one dictated by the pixel pitch. With a size of only 1 cm3 and a mass of only 0.33 g, the lensless sensor, called HyperCube, is dedicated to 3D motion tracking and fits perfectly with the drastic constraints imposed by micro-aerial vehicles. Only three photosensors are placed on each side of the cubic configuration of the sensing device, making this sensor very inexpensive and light. HyperCube provides the azimuth and elevation of infrared LEDs flickering at a high frequency (>1 kHz) with a precision of 0.5°. The minimalistic design in terms of small size, low mass and low power consumption of this visual sensor makes it suitable for many applications in the field of the cooperative flight of unmanned aerial vehicles and, more generally, robotic applications requiring active beacons. Experimental results show that HyperCube provides useful angular measurements that can be used to estimate the relative position between the sensor and the flickering infrared markers.

  11. HyperCube: A Small Lensless Position Sensing Device for the Tracking of Flickering Infrared LEDs

    Directory of Open Access Journals (Sweden)

    Thibaut Raharijaona

    2015-07-01

    Full Text Available An innovative insect-based visual sensor is designed to perform active marker tracking. Without any optics and a field-of-view of about 60°, a novel miniature visual sensor is able to locate flickering markers (LEDs with an accuracy much greater than the one dictated by the pixel pitch. With a size of only 1 cm3 and a mass of only 0.33 g, the lensless sensor, called HyperCube, is dedicated to 3D motion tracking and fits perfectly with the drastic constraints imposed by micro-aerial vehicles. Only three photosensors are placed on each side of the cubic configuration of the sensing device, making this sensor very inexpensive and light. HyperCube provides the azimuth and elevation of infrared LEDs flickering at a high frequency (>1 kHz with a precision of 0.5°. The minimalistic design in terms of small size, low mass and low power consumption of this visual sensor makes it suitable for many applications in the field of the cooperative flight of unmanned aerial vehicles and, more generally, robotic applications requiring active beacons. Experimental results show that HyperCube provides useful angular measurements that can be used to estimate the relative position between the sensor and the flickering infrared markers.

  12. Correlator receiver architecture with PnpN optical thyristor operating as optical hard-limiter

    Science.gov (United States)

    Kang, Tae-Gu; Ho Lee, Su; Park, Soonchul

    2011-07-01

    We propose novel correlator receiver architecture with a PnpN optical thyristor operating as optical hard-limiter, and demonstrate a multiple-access interference rejection of the proposed correlator receiver. The proposed correlator receiver is composed of the 1×2 splitter, optical delay line, 2×1 combiner, and fabricated PnpN optical thyristor. The proposed correlator receiver enhances the system performance because it excludes some combinations of multiple-access interference patterns from causing errors as in optical code-division multiple access systems with conventional optical receiver shown in all previous works. It is found that the proposed correlator receiver can fully reject the interference signals generated by decoding processing and multiple access for two simultaneous users.

  13. Cross-correlation interference effects in multiaccess optical communications

    Science.gov (United States)

    Peterson, G. D.; Gardner, C. S.

    1981-03-01

    An analysis is presented of the cross correlation between user codes in an optical code-division multiple-access communication system. The system model is a multiaccess satellite repeater, where the uplink and downlink channels are direct-detection optical-polarization modulation links. The error probability is obtained in terms of the cross correlation between the intended and interfering user codes. It is demonstrated that the system error rate can be minimized by the use of code sequences in which the normalized second moment of the cross correlation between codes is small.

  14. Optical correlation algorithm for reconstructing phase skeleton of complex optical fields for solving the phase problem

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Gorsky, M. P.; Hanson, Steen Grüner

    2014-01-01

    We propose an optical correlation algorithm illustrating a new general method for reconstructing the phase skeleton of complex optical fields from the measured two-dimensional intensity distribution. The core of the algorithm consists in locating the saddle points of the intensity distribution an...

  15. Digital optical correlator x-ray telescope alignment monitoring system

    Science.gov (United States)

    Lis, Tomasz; Gaskin, Jessica; Jasper, John; Gregory, Don A.

    2018-01-01

    The High-Energy Replicated Optics to Explore the Sun (HEROES) program is a balloon-borne x-ray telescope mission to observe hard x-rays (˜20 to 70 keV) from the sun and multiple astrophysical targets. The payload consists of eight mirror modules with a total of 114 optics that are mounted on a 6-m-long optical bench. Each mirror module is complemented by a high-pressure xenon gas scintillation proportional counter. Attached to the payload is a camera that acquires star fields and then matches the acquired field to star maps to determine the pointing of the optical bench. Slight misalignments between the star camera, the optical bench, and the telescope elements attached to the optical bench may occur during flight due to mechanical shifts, thermal gradients, and gravitational effects. These misalignments can result in diminished imaging and reduced photon collection efficiency. To monitor these misalignments during flight, a supplementary Bench Alignment Monitoring System (BAMS) was added to the payload. BAMS hardware comprises two cameras mounted directly to the optical bench and rings of light-emitting diodes (LEDs) mounted onto the telescope components. The LEDs in these rings are mounted in a predefined, asymmetric pattern, and their positions are tracked using an optical/digital correlator. The BAMS analysis software is a digital adaption of an optical joint transform correlator. The aim is to enhance the observational proficiency of HEROES while providing insight into the magnitude of mechanically and thermally induced misalignments during flight. Results from a preflight test of the system are reported.

  16. Neural network post-processing of grayscale optical correlator

    Science.gov (United States)

    Lu, Thomas T; Hughlett, Casey L.; Zhoua, Hanying; Chao, Tien-Hsin; Hanan, Jay C.

    2005-01-01

    In this paper we present the use of a radial basis function neural network (RBFNN) as a post-processor to assist the optical correlator to identify the objects and to reject false alarms. Image plane features near the correlation peaks are extracted and fed to the neural network for analysis. The approach is capable of handling large number of object variations and filter sets. Preliminary experimental results are presented and the performance is analyzed.

  17. Biopolymer-based material used in optical image correlation

    Czech Academy of Sciences Publication Activity Database

    Mysliwiec, J.; Kochalska, Anna; Miniewicz, A.

    2008-01-01

    Roč. 47, č. 11 (2008), s. 1902-1906 ISSN 0003-6935 Institutional research plan: CEZ:AV0Z40500505 Keywords : biopolymer * DNA * optical correlation Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.763, year: 2008

  18. Brillouin optical correlation domain analysis in composite material beams

    DEFF Research Database (Denmark)

    Stern, Yonatan; London, Yosef; Preter, Eyal

    2017-01-01

    with optical fiber sensors. In this work, we report high-resolution distributed Brillouin sensing over standard fibers that are embedded in composite structures. A phase-coded, Brillouin optical correlation domain analysis (B-OCDA) protocol was employed, with spatial resolution of 2 cm and sensitivity of 1 °K......) estimating the stiffness and Young’s modulus of a composite beam; and (c) distributed strain measurements across the surfaces of a model wing of an unmanned aerial vehicle. The measurements are supported by the predictions of structural analysis calculations. The results illustrate the potential added values...

  19. Residual strain sensor using Al-packaged optical fiber and Brillouin optical correlation domain analysis.

    Science.gov (United States)

    Choi, Bo-Hun; Kwon, Il-Bum

    2015-03-09

    We propose a distributed residual strain sensor that uses an Al-packaged optical fiber for the first time. The residual strain which causes Brillouin frequency shifts in the optical fiber was measured using Brillouin optical correlation domain analysis with 2 cm spatial resolution. We quantified the Brillouin frequency shifts in the Al-packaged optical fiber by the tensile stress and compared them for a varying number of Al layers in the optical fiber. The Brillouin frequency shift of an optical fiber with one Al layer had a slope of 0.038 MHz/με with respect to tensile stress, which corresponds to 78% of that for an optical fiber without Al layers. After removal of the stress, 87% of the strain remained as residual strain. When different tensile stresses were randomly applied, the strain caused by the highest stress was the only one detected as residual strain. The residual strain was repeatedly measured for a time span of nine months for the purpose of reliability testing, and there was no change in the strain except for a 4% reduction, which is within the error tolerance of the experiment. A composite material plate equipped with our proposed Al-packaged optical fiber sensor was hammered for impact experiment and the residual strain in the plate was successfully detected. We suggest that the Al-packaged optical fiber can be adapted as a distributed strain sensor for smart structures, including aerospace structures.

  20. Read-only high accuracy volume holographic optical correlator

    Science.gov (United States)

    Zhao, Tian; Li, Jingming; Cao, Liangcai; He, Qingsheng; Jin, Guofan

    2011-10-01

    A read-only volume holographic correlator (VHC) is proposed. After the recording of all of the correlation database pages by angular multiplexing, a stand-alone read-only high accuracy VHC will be separated from the VHC recording facilities which include the high-power laser and the angular multiplexing system. The stand-alone VHC has its own low power readout laser and very compact and simple structure. Since there are two lasers that are employed for recording and readout, respectively, the optical alignment tolerance of the laser illumination on the SLM is very sensitive. The twodimensional angular tolerance is analyzed based on the theoretical model of the volume holographic correlator. The experimental demonstration of the proposed read-only VHC is introduced and discussed.

  1. Correlative Stochastic Optical Reconstruction Microscopy and Electron Microscopy

    Science.gov (United States)

    Kim, Doory; Deerinck, Thomas J.; Sigal, Yaron M.; Babcock, Hazen P.; Ellisman, Mark H.; Zhuang, Xiaowei

    2015-01-01

    Correlative fluorescence light microscopy and electron microscopy allows the imaging of spatial distributions of specific biomolecules in the context of cellular ultrastructure. Recent development of super-resolution fluorescence microscopy allows the location of molecules to be determined with nanometer-scale spatial resolution. However, correlative super-resolution fluorescence microscopy and electron microscopy (EM) still remains challenging because the optimal specimen preparation and imaging conditions for super-resolution fluorescence microscopy and EM are often not compatible. Here, we have developed several experiment protocols for correlative stochastic optical reconstruction microscopy (STORM) and EM methods, both for un-embedded samples by applying EM-specific sample preparations after STORM imaging and for embedded and sectioned samples by optimizing the fluorescence under EM fixation, staining and embedding conditions. We demonstrated these methods using a variety of cellular targets. PMID:25874453

  2. Robust intravascular optical coherence elastography by line correlations

    International Nuclear Information System (INIS)

    Soest, Gijs van; Mastik, Frits; Jong, Nico de; Steen, Anton F W van der

    2007-01-01

    We present a new method for intravascular optical coherence elastography, which is robust against motion artefacts. It employs the correlation between adjacent lines, instead of subsequent frames. Pressure to deform the tissue is applied synchronously with the line scan rate of the optical coherence tomography (OCT) instrument. The viability of the method is demonstrated with a simulation study. We find that the root mean square (rms) error of the displacement estimate is 0.55 μm, and the rms error of the strain is 0.6%. It is shown that high-strain spots in the vessel wall, such as observed at the sites of vulnerable atherosclerotic lesions, can be detected with the technique

  3. Principles of femtosecond X-ray/optical cross-correlation with X-ray induced transient optical reflectivity in solids

    Science.gov (United States)

    Eckert, S.; Beye, M.; Pietzsch, A.; Quevedo, W.; Hantschmann, M.; Ochmann, M.; Ross, M.; Minitti, M. P.; Turner, J. J.; Moeller, S. P.; Schlotter, W. F.; Dakovski, G. L.; Khalil, M.; Huse, N.; Föhlisch, A.

    2015-02-01

    The discovery of ultrafast X-ray induced optical reflectivity changes enabled the development of X-ray/optical cross correlation techniques at X-ray free electron lasers worldwide. We have now linked through experiment and theory the fundamental excitation and relaxation steps with the transient optical properties in finite solid samples. Therefore, we gain a thorough interpretation and an optimized detection scheme of X-ray induced changes to the refractive index and the X-ray/optical cross correlation response.

  4. Principles of femtosecond X-ray/optical cross-correlation with X-ray induced transient optical reflectivity in solids

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, S., E-mail: sebastian.eckert@helmholtz-berlin.de, E-mail: martin.beye@helmholtz-berlin.de; Beye, M., E-mail: sebastian.eckert@helmholtz-berlin.de, E-mail: martin.beye@helmholtz-berlin.de; Pietzsch, A.; Quevedo, W.; Hantschmann, M. [Institute for Methods and Instrumentation in Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Ochmann, M.; Huse, N. [Institute for Nanostructure and Solid State Physics, University of Hamburg, Jungiusstr. 11, 20355 Hamburg, Germany and Max Planck Institute for the Structure and Dynamics of Matter, Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg (Germany); Ross, M.; Khalil, M. [Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195 (United States); Minitti, M. P.; Turner, J. J.; Moeller, S. P.; Schlotter, W. F.; Dakovski, G. L. [LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Föhlisch, A. [Institute for Methods and Instrumentation in Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam (Germany)

    2015-02-09

    The discovery of ultrafast X-ray induced optical reflectivity changes enabled the development of X-ray/optical cross correlation techniques at X-ray free electron lasers worldwide. We have now linked through experiment and theory the fundamental excitation and relaxation steps with the transient optical properties in finite solid samples. Therefore, we gain a thorough interpretation and an optimized detection scheme of X-ray induced changes to the refractive index and the X-ray/optical cross correlation response.

  5. Strongly correlated Fermi-Bose mixtures in disordered optical lattices

    International Nuclear Information System (INIS)

    Sanchez-Palencia, L; Ahufinger, V; Kantian, A; Zakrzewski, J; Sanpera, A; Lewenstein, M

    2006-01-01

    We investigate theoretically the low-temperature physics of a two-component ultracold mixture of bosons and fermions in disordered optical lattices. We focus on the strongly correlated regime. We show that, under specific conditions, composite fermions, made of one fermion plus one bosonic hole, form. The composite picture is used to derive an effective Hamiltonian whose parameters can be controlled via the boson-boson and the boson-fermion interactions, the tunnelling terms and the inhomogeneities. We finally investigate the quantum phase diagram of the composite fermions and show that it corresponds to the formation of Fermi glasses, spin glasses and quantum percolation regimes

  6. Strongly correlated Fermi-Bose mixtures in disordered optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Palencia, L [Laboratoire Charles Fabry de l' Institut d' Optique, CNRS and Universite Paris-Sud XI, Bat 503, Centre scientifique, F-91403 Orsay Cedex (France); Ahufinger, V [ICREA and Grup d' optica, Departament de FIsica, Universitat Autonoma de Barcelona, E-08193 Belaterra (Barcelona) (Spain); Kantian, A [Institut fuer Theoretische Physik, Universitaet Innsbruck, A-6020 Innsbruck (Austria); Zakrzewski, J [Instytut Fizyki imienia Mariana Smoluchowskiego i Centrum Badan Ukladow Zlozonych imienia Marka Kaca, Uniwersytet Jagiellonski, ulica Reymonta 4, PL-30-059 Krakow (Poland); Sanpera, A [ICREA and Grup de FIsica Teorica, Departament de FIsica, Universitat Autonoma de Barcelona, E-08193 Belaterra (Barcelona) (Spain); Lewenstein, M [ICREA and ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la TecnologIa, E-08860 Castelldefels (Barcelona) (Spain); Institut fuer Theoretische Physik, Universitaet Hannover, D-30167 Hannover (Germany)

    2006-05-28

    We investigate theoretically the low-temperature physics of a two-component ultracold mixture of bosons and fermions in disordered optical lattices. We focus on the strongly correlated regime. We show that, under specific conditions, composite fermions, made of one fermion plus one bosonic hole, form. The composite picture is used to derive an effective Hamiltonian whose parameters can be controlled via the boson-boson and the boson-fermion interactions, the tunnelling terms and the inhomogeneities. We finally investigate the quantum phase diagram of the composite fermions and show that it corresponds to the formation of Fermi glasses, spin glasses and quantum percolation regimes.

  7. Correlation of the retinal histology with the optic coherence tomography

    International Nuclear Information System (INIS)

    Hernández Cunill, Margarita; Masó Semanat, Eulogio

    2016-01-01

    A descriptive and cross-sectional study of 53 patients, assisted in the Ophthalmology Service of 'Dr. Juan Bruno Zayas Alfonso' Teaching General Hospital in Santiago de Cuba, was carried out from January to December, 2011, aimed at describing the correlation between the retinal tissular structure of those affected and the image obtained by the optic coherence tomograph. The obtained information was processed by means of the SPSS statistical program version 11.5. The patients older than 70 years; hypertension and diabetes mellitus prevailed as personal pathological history and there were not significant differences between both sexes. The most frequent found tomographic patterns were serum neuroepitelial detachment and cystic macular edema. The comparison and evaluation of the hiporreflectivity and hiperreflectivity lines of the tomograph and the different layers of the retinal tissular architecture evidenced the possibility to correlate both of them and achieve a more comprehensive understanding of the macular damage. (author)

  8. Optical Coherence Tomography in Optic Nerve Hypoplasia: Correlation With Optic Disc Diameter, Nerve Fiber Layer Thickness, and Visual Function.

    Science.gov (United States)

    Kelly, John P; Baran, Francine; Phillips, James O; Weiss, Avery H

    2017-12-15

    The correlation between optic disc diameters (DDs) with average retinal nerve fiber layer thickness (RNFLT) and visual function in children with optic nerve hypoplasia (ONH) having nystagmus is unknown. Data were obtained from a retrospective review of 28 children (mean age: 9.4 years; ±5.1). Optic DD was defined as the maximal horizontal opening of Bruch membrane with spectral optical coherence tomography combined with a confocal laser ophthalmoscope. Average RNFLT was obtained from circumpapillary b-scans. RNFLT was also remeasured at eccentricities that were proportionate with DD to rule out potential sampling artifacts. Visual function was assessed by visual acuity at last follow-up and by visual evoked potentials (VEP) in 11 patients. The eye with the larger DD, which had better visual acuity, was analyzed to exclude potential effects of amblyopia. DD was correlated with average RNFLT (r = 0.61), visual acuity (r = 0.32), and VEPs (r = 0.66). The relationship between RNFLT and DD was as follows: average RNFLT (μm) = 0.074 * DD (μm) - 18.8. RNFLT also correlated with the ratio of horizontal optic DD to macula-disc-margin distance (DD:DM; r = 0.59). RNFLT measured at eccentricities proportionate with DD showed progressive decrease in thickness only for DDs <1,100 μm. All patients with DD <1,000 μm had subnormal visual acuity, whereas those with DD <1,200 μm had subnormal VEPs. DD correlates with average RNFLT and with visual function in children with ONH. Using OCT imaging, DD can be obtained in children with nystagmus and provides objective information.

  9. Lensless Photoluminescence Hyperspectral Camera Employing Random Speckle Patterns.

    Czech Academy of Sciences Publication Activity Database

    Žídek, Karel; Denk, Ondřej; Hlubuček, Jiří

    2017-01-01

    Roč. 7, č. 1 (2017), č. článku 15309. ISSN 2045-2322 R&D Projects: GA MŠk(CZ) LO1206; GA ČR(CZ) GJ17-26284Y Institutional support: RVO:61389021 Keywords : compressed sensing * photoluminescence imaging * laser speckles * single-pixel camera Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 4.259, year: 2016 https://www.nature.com/articles/s41598-017-14443-4

  10. Correlation between optical emission spectra and the process ...

    Indian Academy of Sciences (India)

    Growth of the good quality PCD inside a MPCVD ... increase in the CH4 concentration up to 0.8% of the total gas mixture, and then the line intensities decreases with .... quality PCD growth. 2.3 Optical emission spectroscopy (OES). Optical emission spectrometer consists of sub-components like optical fibre, slit, optical filter,.

  11. Correlation between optical coherence tomography parameters and retinal sensitivity in idiopathic intracranial hypertension

    Directory of Open Access Journals (Sweden)

    Dalia H Khalil

    2015-01-01

    GCC and RNFL thickness abnormalities assessed by optical coherence tomography in IIH patients were quantitatively correlated with visual field sensitivity losses and can be definitively useful to quantify optic nerve damage.

  12. Strongly-correlated ultracold atoms in optical lattices

    International Nuclear Information System (INIS)

    Dao, Tung-Lam

    2008-01-01

    This thesis is concerned with the theoretical study of strongly correlated quantum states of ultra-cold fermionic atoms trapped in optical lattices. This field has grown considerably in recent years, following the experimental progress made in cooling and controlling atomic gases, which has led to the observation of the first Bose-Einstein condensation (in 1995). The trapping of these gases in optical lattices has opened a new field of research at the interface between atomic physics and condensed matter physics. The observation of the transition from a superfluid to a Mott insulator for bosonic atoms paved the way for the study of strongly correlated phases and quantum phase transitions in these systems. Very recently, the investigation of the Mott insulator state of fermionic atoms provides additional motivation to conduct such theoretical studies. This thesis can be divided broadly into two types of work: - On the one hand, we have proposed a new type of spectroscopy to measure single-particle correlators and associated physical observables in these strongly correlated states. - On the other hand, we have studied the ground state of the fermionic Hubbard model under different conditions (mass imbalance, population imbalance) by using analytical techniques and numerical simulations. In a collaboration with J. Dalibard and C. Salomon (LKB at the ENS Paris) and I. Carusotto (Trento, Italy), we have proposed and studied a novel spectroscopic method for the measurement and characterization of single particle excitations (in particular, the low energy excitations, namely the quasiparticles) in systems of cold fermionic atoms, with energy and momentum resolution. This type of spectroscopy is an analogue of angular-resolved photoemission in solid state physics (ARPES). We have shown, via simple models, that this method of measurement can characterize quasiparticles not only in the 'conventional' phases such as the weakly interacting gas in the lattice or in Fermi

  13. Surface shape measurement by multi-illumination lensless Fourier transform digital holographic interferometry

    Science.gov (United States)

    Dong, Jun; Jia, Shuhai; Jiang, Chao

    2017-11-01

    This paper presents a multi-illumination lensless Fourier transform digital holographic interferometry method for surface shape measurement. In this method, the interference phases with different effective synthetic wavelengths are obtained by tilting the illumination angle several times, and all are wrapped. A Fourier-transform demodulation algorithm employing all these wrapped phases simultaneously is used to determine the object surface shape. No phase unwrapping procedure is required, and the shape information of each point is calculated independently, thereby offering great flexibility for measuring objects with discontinuities surface, such as holes, steps and gaps. Experimental results demonstrate the validity of the principle.

  14. Transverse correlations in triphoton entanglement: Geometrical and physical optics

    International Nuclear Information System (INIS)

    Wen Jianming; Rubin, Morton H.; Shih Yanhua; Xu, P.

    2007-01-01

    The transverse correlation of triphoton entanglement generated within a single crystal is analyzed. Among many interesting features of the transverse correlation, they arise from the spectral function F of the triphoton state produced in the parametric processes. One consequence of transverse effects of entangled states is quantum imaging, which is theoretically studied in photon counting measurements. Klyshko's two-photon advanced-wave picture is found to be applicable to the multiphoton entanglement with some modifications. We found that in the two-photon coincidence counting measurement by using triphoton entanglement, although the Gaussian thin lens equation (GTLE) holds, the imaging shown in coincidences is obscure and has a poor quality. This is because of tracing the remaining transverse modes in the untouched beam. In the triphoton imaging experiments, two kinds of cases have been examined. For the case that only one object with one thin lens is placed in the system, we found that the GTLE holds as expected in the triphoton coincidences and the effective distance between the lens and imaging plane is the parallel combination of two distances between the lens and two detectors weighted by wavelengths, which behaves as the parallel combination of resistors in the electromagnetism theory. Only in this case, a point-point correspondence for forming an image is well-accomplished. However, when two objects or two lenses are inserted in the system, though the GTLEs are well-satisfied, in general a point-point correspondence for imaging cannot be established. Under certain conditions, two blurred images may be observed in the coincidence counts. We have also studied the ghost interference-diffraction experiments by using double slits as apertures in triphoton entanglement. It was found that when two double slits are used in two optical beams, the interference-diffraction patterns show unusual features compared with the two-photon case. This unusual behavior is a

  15. Simple concept for a wide-field lensless digital holographic microscope using a laser diode

    Directory of Open Access Journals (Sweden)

    Adinda-Ougba A.

    2015-09-01

    Full Text Available Wide-field, lensless digital holographic microscopy is a new microscopic imaging technique for telemedicine and for resource limited setting [1]. In this contribution we propose a very simple wide-field lensless digital holographic microscope using a laser diode. It is based on in-line digital holography which is capable to provide amplitude and phase images of a sample resulting from numerical reconstruction. The numerical reconstruction consists of the angular spectrum propagation method together with a phase retrieval algorithm. Amplitude and phase images of the sample with a resolution of ∽2 µm and with ∽24 mm2 field of view are obtained. We evaluate our setup by imaging first the 1951 USAF resolution test chart to verify the resolution. Second, we record holograms of blood smear and diatoms. The individual specimen can be easily identified after the numerical reconstruction. Our system is a very simple, compact and low-cost possibility of realizing a microscope capable of imaging biological samples. The availability of the phase provide topographic information of the sample extending the application of this system to be not only for biological sample but also for transparent microstructure. It is suitable for fault detection, shape and roughness measurements of these structures.

  16. Reconstruction of on-axis lensless Fourier transform digital hologram with the screen division method

    Science.gov (United States)

    Jiang, Hongzhen; Liu, Xu; Liu, Yong; Li, Dong; Chen, Zhu; Zheng, Fanglan; Yu, Deqiang

    2017-10-01

    An effective approach for reconstructing on-axis lensless Fourier Transform digital hologram by using the screen division method is proposed. Firstly, the on-axis Fourier Transform digital hologram is divided into sub-holograms. Then the reconstruction result of every sub-hologram is obtained according to the position of corresponding sub-hologram in the hologram reconstruction plane with Fourier transform operation. Finally, the reconstruction image of on-axis Fourier Transform digital hologram can be acquired by the superposition of the reconstruction result of sub-holograms. Compared with the traditional reconstruction method with the phase shifting technology, in which multiple digital holograms are required to record for obtaining the reconstruction image, this method can obtain the reconstruction image with only one digital hologram and therefore greatly simplify the recording and reconstruction process of on-axis lensless Fourier Transform digital holography. The effectiveness of the proposed method is well proved with the experimental results and it will have potential application foreground in the holographic measurement and display field.

  17. Optical time-domain analog pattern correlator for high-speed real-time image recognition.

    Science.gov (United States)

    Kim, Sang Hyup; Goda, Keisuke; Fard, Ali; Jalali, Bahram

    2011-01-15

    The speed of image processing is limited by image acquisition circuitry. While optical pattern recognition techniques can reduce the computational burden on digital image processing, their image correlation rates are typically low due to the use of spatial optical elements. Here we report a method that overcomes this limitation and enables fast real-time analog image recognition at a record correlation rate of 36.7 MHz--1000 times higher rates than conventional methods. This technique seamlessly performs image acquisition, correlation, and signal integration all optically in the time domain before analog-to-digital conversion by virtue of optical space-to-time mapping.

  18. Feasibility study of parallel optical correlation-decoding analysis of lightning

    Energy Technology Data Exchange (ETDEWEB)

    Descour, M.R. [Univ. of Arizona, Tucson, AZ (United States); Sweatt, W.C.; Elliott, G.R.; Yee, M.L. [Sandia National Labs, Albuquerque, NM (United States)] [and others

    1996-08-01

    The optical correlator described in this report is intended to serve as an attention-focusing processor. The objective is to narrowly bracket the range of a parameter value that characterizes the correlator input. The input is a waveform collected by a satellite-borne receiver. In the correlator, this waveform is simultaneously correlated with an ensemble of ionosphere impulse-response functions, each corresponding to a different total-electron-count (TEC) value. We have found that correlation is an effective method of bracketing the range of TEC values likely to be represented by the input waveform. High accuracy in a computational sense is not required of the correlator. Binarization of the impulse-response functions and the input waveforms prior to correlation results in a lower correlation-peak-to-background-fluctuation (signal-to-noise) ratio than the peak that is obtained when all waveforms retain their grayscale values. The results presented in this report were obtained by means of an acousto-optic correlator previously developed at SNL as well as by simulation. An optical-processor architecture optimized for 1D correlation of long waveforms characteristic of this application is described. Discussions of correlator components, such as optics, acousto-optic cells, digital micromirror devices, laser diodes, and VCSELs are included.

  19. Correlation and squeezing for optical transistor and intensity for router applications in Pr3+:YSO.

    Science.gov (United States)

    Khan, Ghulam Abbas; Li, Changbiao; Raza, Faizan; Ahmed, Noor; Mahesar, Abdul Rasheed; Ahmed, Irfan; Zhang, Yanpeng

    2017-06-14

    We realized an optical transistor and router utilizing multi-order fluorescence and spontaneous parametric four-wave mixing. Specifically, the optical routing action was derived from the results of splitting in the intensity signal due to a dressing effect, whereas the transistor as a switch and amplifier was realized by a switching correlation and squeezing via a nonlinear phase. A substantial enhancement of the optical contrast was observed for switching applications using correlation and squeezing contrary to the intensity signal. Moreover, the controlling parameters were also configured to devise a control mechanism for the optical transistor and router.

  20. Correlation between surface microstructure and optical properties of porous silicon

    Directory of Open Access Journals (Sweden)

    Saeideh Rhramezani Sani

    2007-12-01

    Full Text Available   We have studied the effect of increasing porosity and its microstructure surface variation on the optical and dielectric properties of porous silicon. It seems that porosity, as the surface roughness within the range of a few microns, shows quantum effect in the absorption and reflection process of porous silicon. Optical constants of porous silicon at normal incidence of light with wavelength in the range of 250-3000 nm have been calculated by Kramers-Kroning method. Our experimental analysis shows that electronic structure and dielectric properties of porous silicon are totally different from silicon. Also, it shows that porous silicon has optical response in the visible region. This difference was also verified by effective media approximation (EMA.

  1. Correlations between Optical Variability and Physical Parameters of ...

    Indian Academy of Sciences (India)

    Abstract. Optical variability is an important feature of quasars. Taking advantage of a larger sample of 7658 quasars from SDSS Stripe 82 and relatively more photometric data points for each quasar, we estimate their variability amplitudes and divide the sample into small bins of various parameters. An anticorrelation ...

  2. Electro-optic correlator for large-format microwave interferometry: Up-conversion and correlation stages performance analysis

    Science.gov (United States)

    Ortiz, D.; Casas, Francisco J.; Ruiz-Lombera, R.; Mirapeix, J.

    2017-04-01

    In this paper, a microwave interferometer prototype with a near-infra-red optical correlator is proposed as a solution to get a large-format interferometer with hundreds of receivers for radio astronomy applications. A 10 Gbits/s Lithium Niobate modulator has been tested as part of an electro-optic correlator up-conversion stage that will be integrated in the interferometer prototype. Its internal circuitry consists of a single-drive modulator biased by a SubMiniature version A (SMA) connector allowing to up-convert microwave signals with bandwidths up to 12.5 GHz to the near infrared band. In order to characterize it, a 12 GHz tone and a bias voltage were applied to the SMA input using a polarization tee. Two different experimental techniques to stabilize the modulator operation point in its minimum optical carrier output power are described. The best achieved results showed a rather stable spectrum in amplitude and wavelength at the output of the modulator with an optical carrier level 23 dB lower than the signal of interest. On the other hand, preliminary measurements were made to analyze the correlation stage, using 4f and 6f optical configurations to characterize both the antenna/fiber array configuration and the corresponding point spread function.

  3. Precipitable water vapor and 212 GHz atmospheric optical depth correlation at El Leoncito site

    Science.gov (United States)

    Cassiano, Marta M.; Cornejo Espinoza, Deysi; Raulin, Jean-Pierre; Giménez de Castro, Carlos G.

    2018-03-01

    Time series of precipitable water vapor (PWV) and 212 GHz atmospheric optical depth were obtained in CASLEO (Complejo Astronómico El Leoncito), at El Leoncito site, Argentinean Andes, for the period of 2011-2013. The 212 GHz atmospheric optical depth data were derived from measurements by the Solar Submillimeter Telescope (SST) and the PWV data were obtained by the AERONET CASLEO station. The correlation between PWV and 212 GHz optical depth was analyzed for the whole period, when both parameters were simultaneously available. A very significant correlation was observed. Similar correlation was found when data were analyzed year by year. The results indicate that the correlation of PWV versus 212 GHz optical depth could be used as an indirect estimation method for PWV, when direct measurements are not available.

  4. The Correlation between Subjective and Objective Visual Function Test in Optic Neuropathy Patients

    Directory of Open Access Journals (Sweden)

    Ungsoo Kim

    2012-10-01

    Full Text Available Purpose: To investigate the correlation between visual acuity and quantitative measurements of visual evoked potentials (VEP, optical coherence tomography (OCT, and visual field test (VF in optic neuropathy patients. Methods: We evaluated 28 patients with optic neuropathy. Patients who had pale disc, visual acuity of less than 0.5 and abnormal visual field defect were included. At the first visit, we performed visual acuity and VF as subjective methods and OCT and VEP as objective methods. In the spectral domain OCT, rim volume, average and temporal quadrant retinal nerve fiber layer (RNFL thickness were measured. And pattern VEP (N75, P100, N135 latency, and P100 amplitude and Humphrey 24-2 visual field test (mean deviation and pattern standard deviation were obtained. Using Spearman's correlation coefficient, the correlation between visual acuity and various techniques were assessed. Results: Visual acuity was most correlated with the mean deviation of Humphrey perimetry.

  5. Electrophysiological and Anatomical Correlates of Spinal Cord Optical Coherence Tomography.

    Science.gov (United States)

    Giardini, Mario E; Zippo, Antonio G; Valente, Maurizio; Krstajic, Nikola; Biella, Gabriele E M

    2016-01-01

    Despite the continuous improvement in medical imaging technology, visualizing the spinal cord poses severe problems due to structural or incidental causes, such as small access space and motion artifacts. In addition, positional guidance on the spinal cord is not commonly available during surgery, with the exception of neuronavigation techniques based on static pre-surgical data and of radiation-based methods, such as fluoroscopy. A fast, bedside, intraoperative real-time imaging, particularly necessary during the positioning of endoscopic probes or tools, is an unsolved issue. The objective of our work, performed on experimental rats, is to demonstrate potential intraoperative spinal cord imaging and probe guidance by optical coherence tomography (OCT). Concurrently, we aimed to demonstrate that the electromagnetic OCT irradiation exerted no particular effect at the neuronal and synaptic levels. OCT is a user-friendly, low-cost and endoscopy-compatible photonics-based imaging technique. In particular, by using a Fourier-domain OCT imager, operating at 850 nm wavelength and scanning transversally with respect to the spinal cord, we have been able to: 1) accurately image tissue structures in an animal model (muscle, spine bone, cerebro-spinal fluid, dura mater and spinal cord), and 2) identify the position of a recording microelectrode approaching and inserting into the cord tissue 3) check that the infrared radiation has no actual effect on the electrophysiological activity of spinal neurons. The technique, potentially extendable to full three-dimensional image reconstruction, shows prospective further application not only in endoscopic intraoperative analyses and for probe insertion guidance, but also in emergency and adverse situations (e.g. after trauma) for damage recognition, diagnosis and fast image-guided intervention.

  6. Inducing spin-dependent tunneling to probe magnetic correlations in optical lattices

    DEFF Research Database (Denmark)

    Pedersen, Kim Georg Lind; Andersen, Brian Møller; Bruun, Georg Morten

    2012-01-01

    We suggest a simple experimental method for probing antiferromagnetic spin correlations of two-component Fermi gases in optical lattices. The method relies on a spin selective Raman transition to excite atoms of one spin species to their first excited vibrational mode where the tunneling is large....... The resulting difference in the tunneling dynamics of the two spin species can then be exploited, to reveal the spin correlations by measuring the number of doubly occupied lattice sites at a later time. We perform quantum Monte Carlo simulations of the spin system and solve the optical lattice dynamics...... numerically to show how the timed probe can be used to identify antiferromagnetic spin correlations in optical lattices....

  7. Size distribution of extracellular vesicles by optical correlation techniques.

    Science.gov (United States)

    Montis, Costanza; Zendrini, Andrea; Valle, Francesco; Busatto, Sara; Paolini, Lucia; Radeghieri, Annalisa; Salvatore, Annalisa; Berti, Debora; Bergese, Paolo

    2017-10-01

    Understanding the colloidal properties of extracellular vesicles (EVs) is key to advance fundamental knowledge in this field and to develop effective EV-based diagnostics, therapeutics and devices. Determination of size distribution and of colloidal stability of purified EVs resuspended in buffered media is a complex and challenging issue - because of the wide range of EV diameters (from 30 to 2000nm), concentrations of interest and membrane properties, and the possible presence of co-isolated contaminants with similar size and densities, such as protein aggregates and fat globules - which is still waiting to be fully addressed. We report here a fully detailed protocol for accurate and robust determination of the size distribution and stability of EV samples which leverages a dedicated combination of Fluorescence Correlation Spectroscopy (FCS) and Dynamic Light Scattering (DLS). The theoretical background, critical experimental steps and data analysis procedures are thoroughly presented and finally illustrated through the representative case study of EV formulations obtained from culture media of B16 melanoma cells, a murine tumor cell line used as a model for human skin cancers. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Enhanced resolution in lensless in-line holographic microscope by data interpolation and iterative reconstruction

    Science.gov (United States)

    Feng, Shaodong; Wang, Mingjun; Wu, Jigang

    2017-11-01

    In a compact lensless in-line holographic microscope, the imaging resolution is generally limited by the sensor pixel size because of the short sample-to-sensor distance. To overcome this problem, we propose to use data interpolation based on iteration with only two intensity measurements to enhance the resolution in holographic reconstruction. We did numerical simulations using the U.S. air force target as the sample and showed that data interpolation in the acquired in-line hologram can be used to enhance the reconstruction resolution. The imaging resolution and contrast can be further improved by combining data interpolation with iterative holographic reconstruction using only two hologram measurements acquired by slightly changing the sample-to-sensor distance while recording the in-line holograms. The two in-line hologram intensity measurements were used as a priori constraint in the iteration process according to the Gerchberg-Saxton algorithm for phase retrieval. The iterative reconstruction results showed that the iteration between the sample plane and the sensor planes can refine the interpolated data and thus further improve the resolution as well as the imaging contrast. Besides numerical simulation, we also experimentally demonstrated the enhancement of imaging resolution and contrast by imaging the U.S. air force target and a microscope slide of filamentous algae.

  9. Colony fingerprint for discrimination of microbial species based on lensless imaging of microcolonies.

    Directory of Open Access Journals (Sweden)

    Yoshiaki Maeda

    Full Text Available Detection and identification of microbial species are crucial in a wide range of industries, including production of beverages, foods, cosmetics, and pharmaceuticals. Traditionally, colony formation and its morphological analysis (e.g., size, shape, and color with a naked eye have been employed for this purpose. However, such a conventional method is time consuming, labor intensive, and not very reproducible. To overcome these problems, we propose a novel method that detects microcolonies (diameter 10-500 μm using a lensless imaging system. When comparing colony images of five microorganisms from different genera (Escherichia coli, Salmonella enterica, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans, the images showed obvious different features. Being closely related species, St. aureus and St. epidermidis resembled each other, but the imaging analysis could extract substantial information (colony fingerprints including the morphological and physiological features, and linear discriminant analysis of the colony fingerprints distinguished these two species with 100% of accuracy. Because this system may offer many advantages such as high-throughput testing, lower costs, more compact equipment, and ease of automation, it holds promise for microbial detection and identification in various academic and industrial areas.

  10. Colony fingerprint for discrimination of microbial species based on lensless imaging of microcolonies

    Science.gov (United States)

    Maeda, Yoshiaki; Dobashi, Hironori; Sugiyama, Yui; Saeki, Tatsuya; Lim, Tae-kyu; Harada, Manabu; Matsunaga, Tadashi; Yoshino, Tomoko

    2017-01-01

    Detection and identification of microbial species are crucial in a wide range of industries, including production of beverages, foods, cosmetics, and pharmaceuticals. Traditionally, colony formation and its morphological analysis (e.g., size, shape, and color) with a naked eye have been employed for this purpose. However, such a conventional method is time consuming, labor intensive, and not very reproducible. To overcome these problems, we propose a novel method that detects microcolonies (diameter 10–500 μm) using a lensless imaging system. When comparing colony images of five microorganisms from different genera (Escherichia coli, Salmonella enterica, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans), the images showed obvious different features. Being closely related species, St. aureus and St. epidermidis resembled each other, but the imaging analysis could extract substantial information (colony fingerprints) including the morphological and physiological features, and linear discriminant analysis of the colony fingerprints distinguished these two species with 100% of accuracy. Because this system may offer many advantages such as high-throughput testing, lower costs, more compact equipment, and ease of automation, it holds promise for microbial detection and identification in various academic and industrial areas. PMID:28369067

  11. Multilayer pixel super-resolution lensless in-line holographic microscope with random sample movement.

    Science.gov (United States)

    Wang, Mingjun; Feng, Shaodong; Wu, Jigang

    2017-10-06

    We report a multilayer lensless in-line holographic microscope (LIHM) with improved imaging resolution by using the pixel super-resolution technique and random sample movement. In our imaging system, a laser beam illuminated the sample and a CMOS imaging sensor located behind the sample recorded the in-line hologram for image reconstruction. During the imaging process, the sample was moved by hand randomly and the in-line holograms were acquired sequentially. Then the sample image was reconstructed from an enhanced-resolution hologram obtained from multiple low-resolution in-line holograms by applying the pixel super-resolution (PSR) technique. We studied the resolution enhancement effects by using the U.S. Air Force (USAF) target as the sample in numerical simulation and experiment. We also showed that multilayer pixel super-resolution images can be obtained by imaging a triple-layer sample made with the filamentous algae on the middle layer and microspheres with diameter of 2 μm on the top and bottom layers. Our pixel super-resolution LIHM provides a compact and low-cost solution for microscopic imaging and is promising for many biomedical applications.

  12. Resolution enhancement method for lensless in-line holographic microscope with spatially-extended light source.

    Science.gov (United States)

    Feng, Shaodong; Wu, Jigang

    2017-10-02

    We propose a resolution enhancement method for lensless in-line holographic microscope (LIHM) with spatially-extended light source, where the resolution is normally deteriorated by the insufficient spatial coherence of the illumination. In our LIHM setup, a light-emitting diode (LED), which was a spatially-extended light source, directly illuminated the sample, and the in-line hologram were recorded by a CMOS imaging sensor located behind the sample. In our holographic reconstruction process, the in-line hologram was first deconvoled with a properly resized image of the LED illumination area, and then back-propagated with scalar diffraction formula to reconstruct the sample image. We studied the hologram forming process and showed that the additional deconvolution process besides normal scalar diffraction reconstruction in LIHM can effectively enhance the imaging resolution. The resolution enhancements capability was calibrated by numerical simulations and imaging experiments with the U.S. air force target as the sample. We also used our LIHM to image the wing of a green lacewing to further demonstrate the capability of our methods for practical imaging applications. Our methods provide a way for LIHM to achieve satisfactory resolution with less stringent requirement for spatial coherence of the source and could reduce the cost for compact imaging system.

  13. High-Resolution X-Ray Lensless Imaging by Differential Holographic Encoding

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Diling [Stanford Univ., CA (United States). Dept. of Applied Physics; SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Inst. for Material and Energy Science; Guizar-Sicairos, Manuel [Univ. of Rochester, NY (United States). Inst. of Optics; Wu, Benny [Stanford Univ., CA (United States). Dept. of Applied Physics; SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Inst. for Material and Energy Science; Scherz, Andreas [SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Inst. for Material and Energy Science; Acremann, Yves [SLAC National Accelerator Lab., Menlo Park, CA (United States). Photon Ultrafast Laser Science and Engineering Inst. (PULSE); Tyliszczak, Tolek [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Fischer, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Center for X-ray Optics; Friedenberger, Nina [Universitat Duisburg-Essen (Germany). Dept. of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE); Ollefs, Katharina [Universitat Duisburg-Essen (Germany). Dept. of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE); Farle, Michael [Universitat Duisburg-Essen (Germany). Dept. of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE); Fienup, James R. [Univ. of Rochester, NY (United States). Inst. of Optics; Stöhr, Joachim [SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)

    2010-07-01

    X-ray free electron lasers (X-FELs) will soon offer femtosecond pulses of laterally coherent x-rays with sufficient intensity to record single-shot coherent scattering patterns for nanoscale imaging. Pulse trains created by split and- delay techniques even open the door for cinematography on unprecedented nanometer length and femtosecond time scales. A key to real space ultrafast motion pictures is fast and reliable inversion of the recorded reciprocal space scattering patterns. Here we for the first time demonstrate in the x-ray regime the power of a novel technique for lensless high resolution imaging, previously suggested by Guizar-Sicairos and Fienup termed holography with extended reference by autocorrelation linear differential operation, HERALD0. We have achieved superior resolution over conventional x-ray Fourier transform holography (FTH) without sacrifices in SNR or significant increase in algorithmic complexity. By combining images obtained from individual sharp features on an extended reference, we further show that the resolution can be even extended beyond the reference fabrication limits. Direct comparison to iterative phase retrieval image reconstruction and images recorded with state of-the-art zone plate microscopes is presented. Our results demonstrate the power of HERALDO as a favorable candidate for robust inversion of single-shot coherent scattering patterns.

  14. High resolution x-ray lensless imaging by differential holographic encoding

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, D.; Guizar-Sicairos, M.; Wu, B.; Scherz, A.; Acremann, Y.; Tylisczcak, T.; Fischer, P.; Friedenberger, N.; Ollefs, K.; Farle, M.; Fienup, J. R.; Stohr, J.

    2009-11-02

    X-ray free electron lasers (X-FEL{sub s}) will soon offer femtosecond pulses of laterally coherent x-rays with sufficient intensity to record single-shot coherent scattering patterns for nanoscale imaging. Pulse trains created by splitand-delay techniques even open the door for cinematography on unprecedented nanometer length and femtosecond time scales. A key to real space ultrafast motion pictures is fast and reliable inversion of the recorded reciprocal space scattering patterns. Here we for the first time demonstrate in the x-ray regime the power of a novel technique for lensless high resolution imaging, previously suggested by Guizar-Sicairos and Fienup termed holography with extended reference by autocorrelation linear differential operation, HERALD0. We have achieved superior resolution over conventional x-ray Fourier transform holography (FTH) without sacrifices in SNR or significant increase in algorithmic complexity. By combining images obtained from individual sharp features on an extended reference, we further show that the resolution can be even extended beyond the reference fabrication limits. Direct comparison to iterative phase retrieval image reconstruction and images recorded with stateof- the-art zone plate microscopes is presented. Our results demonstrate the power of HERALDO as a favorable candidate for robust inversion of single-shot coherent scattering patterns.

  15. Enhanced resolution for amplitude object in lensless inline holographic microscope with grating illumination

    Science.gov (United States)

    Feng, Shaodong; Wang, Mingjun; Wu, Jigang

    2017-09-01

    In a compact digital lensless inline holographic microscope (LIHM), where the sample-to-sensor distance is short, the imaging resolution is often limited by sensor pixel size instead of the system numerical aperture. We propose to solve this problem by applying data interpolation with an iterative holographic reconstruction method while using grating illumination in the LIHM system. In the system setup, the Talbot self-image of a Ronchi grating was used to illuminate the sample, and the inline hologram was recorded by a CMOS imaging sensor located behind the sample. The hologram was then upsampled by data interpolation before the reconstruction process. In the iterative holographic reconstruction, the sample support was defined by the bright areas of the grating illumination pattern and was used as constraint. A wide-field image can also be obtained by shifting the grating illumination pattern. Furthermore, we assumed that the sample was amplitude object, i.e., no obvious phase change was caused by the sample, which provided additional constraint to refine the interpolated data values. Besides improved resolution, the iterative holographic reconstruction also helped to reduce the twin-image background. We demonstrated the effectiveness of our method with simulation and imaging experiment by using the USAF target and polystyrene microspheres with 1 μm diameter as the sample.

  16. Gradient Correlation Method for the Stabilization of Inversion Results of Aerosol Microphysical Properties Retrieved from Profiles of Optical Data

    Directory of Open Access Journals (Sweden)

    Kolgotin Alexei

    2016-01-01

    Full Text Available Correlation relationships between aerosol microphysical parameters and optical data are investigated. The results show that surface-area concentrations and extinction coefficients are linearly correlated with a correlation coefficient above 0.99 for arbitrary particle size distribution. The correlation relationships that we obtained can be used as constraints in our inversion of optical lidar data. Simulation studies demonstrate a significant stabilization of aerosol microphysical data products if we apply the gradient correlation method in our traditional regularization technique.

  17. Noise-immune complex correlation for optical coherence angiography based on standard and Jones matrix optical coherence tomography.

    Science.gov (United States)

    Makita, Shuichi; Kurokawa, Kazuhiro; Hong, Young-Joo; Miura, Masahiro; Yasuno, Yoshiaki

    2016-04-01

    This paper describes a complex correlation mapping algorithm for optical coherence angiography (cmOCA). The proposed algorithm avoids the signal-to-noise ratio dependence and exhibits low noise in vasculature imaging. The complex correlation coefficient of the signals, rather than that of the measured data are estimated, and two-step averaging is introduced. Algorithms of motion artifact removal based on non perfusing tissue detection using correlation are developed. The algorithms are implemented with Jones-matrix OCT. Simultaneous imaging of pigmented tissue and vasculature is also achieved using degree of polarization uniformity imaging with cmOCA. An application of cmOCA to in vivo posterior human eyes is presented to demonstrate that high-contrast images of patients' eyes can be obtained.

  18. The role of correlation functions in the theory of optical wave fields

    NARCIS (Netherlands)

    Schouten, H.; Visser, T.D.

    2008-01-01

    We discuss the fundamental role of correlation functions in optical wave fields. These functions determine important properties such as the spectrum, the state of polarization, and the state of coherence of light. These properties generally change on propagation, even when the field travels through

  19. A long-term optical-X-ray correlation in 4U 1957+11

    NARCIS (Netherlands)

    Russell, D.M.; Lewis, F.; Roche, P.; Clark, J.S.; Breedt, E.; Fender, R.P.

    2010-01-01

    Three years of optical monitoring of the low-mass X-ray binary (LMXB) 4U 1957+11 is presented. The source was observed in V, R and i bands using the Faulkes Telescopes North and South. The light curve is dominated by long-term variations which are correlated (at the >3σ level) with the soft X-ray

  20. Quantum simulation of correlated-hopping models with fermions in optical lattices

    NARCIS (Netherlands)

    Liberto, M. Di; Creffield, C. E.; Japaridze, G. I.; Smith, C. Morais

    2014-01-01

    By using a modulated magnetic field in a Feshbach resonance for ultracold fermionic atoms in optical lattices, we show that it is possible to engineer a class of models usually referred to as correlated-hopping models. These models differ from the Hubbard model in exhibiting additional

  1. Quantum correlation control for two semiconductor microcavities connected by an optical fiber

    Science.gov (United States)

    Mohamed, A.-B. A.; Eleuch, H.

    2017-06-01

    We explore the quantum correlations for two coupled quantum wells. Each quantum well is inside a semiconductor microcavity. The two cavities are connected by an optical fiber. The study of quantum correlations, namely the geometric quantum discord, measurement-induced non-locality and negativity, reveals sudden death and sudden birth phenomena. These effects depend not only on the initial states, coupling strengths of the cavity-fiber and cavity-exciton constants, but also on the dissipation rates of the semiconductor microcavities. We show that the coupling constants control the quantum correlations.

  2. Interferences, ghost images and other quantum correlations according to stochastic optics

    International Nuclear Information System (INIS)

    Fonseca da Silva, Luciano; Dechoum, Kaled

    2012-01-01

    There are an extensive variety of experiments in quantum optics that emphasize the non-local character of the coincidence measurements recorded by spatially separated photocounters. These are the cases of ghost image and other interference experiments based on correlated photons produced in, for instance, the process of parametric down-conversion or photon cascades. We propose to analyse some of these correlations in the light of stochastic optics, a local formalism based on classical electrodynamics with added background fluctuations that simulate the vacuum field of quantum electrodynamics, and raise the following question: can these experiments be used to distinguish between quantum entanglement and classical correlations? - Highlights: ► We analyse some quantum correlations in the light of stochastic optics. ► We study how vacuum fluctuations can rule quantum correlations. ► Many criteria cannot be considered a boundary between quantum and classical theories. ► Non-locality is a misused term in relation to many observed experiments.

  3. Erbium-based optical coherent transient correlator for the 1.5-micron communication bands

    Science.gov (United States)

    Harris, Todd Louis

    2001-08-01

    Correlators are needed in communications, memory, and signal processing applications to perform cross- correlations for tasks such as address-header decoding for data-packet switching, spread spectrum and code division multiple access communication, associative memory, database searching, and pattern recognition. Correlators based on optical coherent transients, Fourier theory, and holography can potentially perform real-time correlations with multi-phase encoded information at gigahertz bandwidths, a capability conventional electronics lack. The first operation of spatial-spectral holographic correlators in the 1.5-gm communication bands was demonstrated at 1536 nm using Er3+:Y 2SiO5 and the correlator processed multi-phase encoded optical pulses. Real-time decoding of 20-bit binary-phase-shift key encoded address-header pulses is demonstrated using stimulated photon echoes in a phase-matched crossed-beam configuration; this function is required for coherent transient optical data routing and packet switching. Optical 30-symbol quadriphase-shift keyed (QPSK) and binary-phase-shift keyed (BPSK) codes were processed, and the results demonstrated the ability of such correlators to process QPSK codes and BPSK codes with the same apparatus. The high-fidelity correlations exhibit the low sidelobe characteristics expected for the codes used. The 4I15/2 and 4I13/2 crystal field levels of 0.005% Er3+:Y2O3 were measured by absorption and laser excited fluorescence on oriented samples. Site selective fluorescence distinguished transitions of Er3+ in crystallographic sites of C2 and C3i symmetry. The paramagnetic g-tensors for ions in sites of C2 symmetry were measured by orientation dependent Zeeman absorption spectroscopy. For the lowest crystal field level of 4I15/2 the g-tensor principal x-axis in the (100) plane is tipped +2.06° from [001] and principal g-values are: gz = 11.93, gx = 1.603, and gy = 4.711. For the lowest crystal field level of 4I13/2 the g

  4. On the structural-optical correlations in radiation-modified chalcogenide glasses

    Science.gov (United States)

    Kavetskyy, T.; Kaban, I.; Shpotyuk, O.; Hoyer, W.; Tsmots, V.

    2011-04-01

    In this work, we report our recent results on the y-irradiation-induced structural transformations in the Ge-Sb-S glasses as observed from the structural studies using high-energy synchrotron x-ray diffraction and extended x-ray absorption fine structure spectroscopy in comparison with the optical measurements using VIS/IR spectroscopy techniques. The structural-optical correlations in the radiation-induced effects are established. The structural changes upon irradiation are explained in the frames of the concept of coordination topological defects formation.

  5. In situ micro-focused X-ray beam characterization with a lensless camera using a hybrid pixel detector

    International Nuclear Information System (INIS)

    Kachatkou, Anton; Marchal, Julien; Silfhout, Roelof van

    2014-01-01

    Position and size measurements of a micro-focused X-ray beam, using an X-ray beam imaging device based on a lensless camera that collects radiation scattered from a thin foil placed in the path of the beam at an oblique angle, are reported. Results of studies on micro-focused X-ray beam diagnostics using an X-ray beam imaging (XBI) instrument based on the idea of recording radiation scattered from a thin foil of a low-Z material with a lensless camera are reported. The XBI instrument captures magnified images of the scattering region within the foil as illuminated by the incident beam. These images contain information about beam size, beam position and beam intensity that is extracted during dedicated signal processing steps. In this work the use of the device with beams for which the beam size is significantly smaller than that of a single detector pixel is explored. The performance of the XBI device equipped with a state-of-the-art hybrid pixel X-ray imaging sensor is analysed. Compared with traditional methods such as slit edge or wire scanners, the XBI micro-focused beam characterization is significantly faster and does not interfere with on-going experiments. The challenges associated with measuring micrometre-sized beams are described and ways of optimizing the resolution of beam position and size measurements of the XBI instrument are discussed

  6. Real-valued composite filters for correlation-based optical pattern recognition

    Science.gov (United States)

    Rajan, P. K.; Balendra, Anushia

    1992-01-01

    Advances in the technology of optical devices such as spatial light modulators (SLMs) have influenced the research and growth of optical pattern recognition. In the research leading to this report, the design of real-valued composite filters that can be implemented using currently available SLMs for optical pattern recognition and classification was investigated. The design of real-valued minimum average correlation energy (RMACE) filter was investigated. Proper selection of the phase of the output response was shown to reduce the correlation energy. The performance of the filter was evaluated using computer simulations and compared with the complex filters. It was found that the performance degraded only slightly. Continuing the above investigation, the design of a real filter that minimizes the output correlation energy and the output variance due to noise was developed. Simulation studies showed that this filter had better tolerance to distortion and noise compared to that of the RMACE filter. Finally, the space domain design of RMACE filter was developed and implemented on the computer. It was found that the sharpness of the correlation peak was slightly reduced but the filter design was more computationally efficient than the complex filter.

  7. Optic Nerve Sheath Diameter Increase on Ascent to High Altitude: Correlation With Acute Mountain Sickness.

    Science.gov (United States)

    Kanaan, Nicholas C; Lipman, Grant S; Constance, Benjamin B; Holck, Peter S; Preuss, James F; Williams, Sarah R

    2015-09-01

    Elevated optic nerve sheath diameter on sonography is known to correlate with increased intracranial pressure and is observed in acute mountain sickness. This study aimed to determine whether optic nerve sheath diameter changes on ascent to high altitude are associated with acute mountain sickness incidence. Eighty-six healthy adults enrolled at 1240 m (4100 ft), drove to 3545 m (11,700 ft) and then hiked to and slept at 3810 m (12,500 ft). Lake Louise Questionnaire scores and optic nerve sheath diameter measurements were taken before, the evening of, and the morning after ascent. The incidence of acute mountain sickness was 55.8%, with a mean Lake Louise Questionnaire score ± SD of 3.81 ± 2.5. The mean maximum optic nerve sheath diameter increased on ascent from 5.58 ± 0.79 to 6.13 ± 0.73 mm, a difference of 0.91 ± 0.55 mm (P = .09). Optic nerve sheath diameter increased at high altitude regardless of acute mountain sickness diagnosis; however, compared to baseline values, we observed a significant increase in diameter only in those with a diagnosis of acute mountain sickness (0.57 ± 0.77 versus 0.21 ± 0.76 mm; P = .04). This change from baseline, or Δ optic nerve sheath diameter, was associated with twice the odds of developing acute mountain sickness (95% confidence interval, 1.08-3.93). The mean optic nerve sheath diameter increased on ascent to high altitude compared to baseline values, but not to a statistically significant degree. The magnitude of the observed Δ optic nerve sheath diameter was positively associated with acute mountain sickness diagnosis. No such significant association was found between acute mountain sickness and diameter elevation above standard cutoff values, limiting the utility of sonography as a diagnostic tool. © 2015 by the American Institute of Ultrasound in Medicine.

  8. Avoiding disentanglement of multipartite entangled optical beams with a correlated noisy channel

    Science.gov (United States)

    Deng, Xiaowei; Tian, Caixing; Su, Xiaolong; Xie, Changde

    2017-03-01

    A quantum communication network can be constructed by distributing a multipartite entangled state to space-separated nodes. Entangled optical beams with highest flying speed and measurable brightness can be used as carriers to convey information in quantum communication networks. Losses and noises existing in real communication channels will reduce or even totally destroy entanglement. The phenomenon of disentanglement will result in the complete failure of quantum communication. Here, we present the experimental demonstrations on the disentanglement and the entanglement revival of tripartite entangled optical beams used in a quantum network. We experimentally demonstrate that symmetric tripartite entangled optical beams are robust in pure lossy but noiseless channels. In a noisy channel, the excess noise will lead to the disentanglement and the destroyed entanglement can be revived by the use of a correlated noisy channel (non-Markovian environment). The presented results provide useful technical references for establishing quantum networks.

  9. A Correlation of Spectral Lag Evolution with Prompt Optical Emission in GRBs?

    Science.gov (United States)

    Stamatikos, Michael; Ukwatta, Tilan N.; Sakamoto, Taka; Dhuga, Kalvir S.

    2008-10-01

    We report on observations of correlated behavior between the prompt γ-ray and optical emission from GRB 080319B, which (i) strongly suggest that they occurred within the same astrophysical source region and (ii) indicate that their respective radiation mechanisms were most likely dynamically coupled. Our preliminary results, based upon a new cross-correlation function (CCF) methodology for determining the time-resolved spectral lag, are summarized as follows. First, the evolution in the arrival offset of prompt γ-ray photon counts between Swift-BAT 15-25 keV and 50-100 keV energy bands (intrinsic γ-ray spectral lag) appears to be anti-correlated with the arrival offset between prompt 15-350 keV γ-rays and the optical emission observed by TORTORA (extrinsic γ-ray/optical lag), thus effectively partitioning the burst into two main episodes at ~T+28+/-2 sec. Second, prompt optical emission is nested within intervals of both (a) trivial intrinsic γ-ray spectral lag (~T+12+/-2 and ~T+50+/-2 sec) with (b) discontinuities in the hard to soft evolution of the photon index for a power law fit to 15-150 keV Swift-BAT data (~T+8+/-2 and ~T+48+/-1 sec), both of which coincide with the rise (~T+10+/-1 sec) and decline (~T+50+/-1 sec) of prompt optical emission. This potential discovery, robust across heuristic permutations of BAT energy channels and varying temporal bin resolution, provides the first observational evidence for an implicit connection between spectral lag and the dynamics of shocks in the context of canonical fireball phenomenology.

  10. The Correlation of Spectral Lag Evolution with Prompt Optical Emission in GRB 080319B

    Science.gov (United States)

    Stamatikos, Michael; Ukwatta, Tilan N.; Sakamoto, Takanori; Dhuga, Kalvir S.; Toma, Kenji; Pe'Er, Asaf; Mészáros, Peter; Band, David L.; Norris, Jay P.; Barthelmy, Scott D.; Gehrels, Neil

    2009-05-01

    We report on observations of correlated behavior between the prompt γ-ray and optical emission from GRB 080319B, which confirm that (i) they occurred within the same astrophysical source region and (ii) their respective radiation mechanisms were dynamically coupled. Our results, based upon a new cross-correlation function (CCF) methodology for determining the time-resolved spectral lag, are summarized as follows. First, the evolution in the arrival offset of prompt γ-ray photon counts between Swift-BAT 15-25 keV and 50-100 keV energy bands (intrinsic γ-ray spectral lag) appears to be anti-correlated with the arrival offset between prompt 15-350 keV γ-rays and the optical emission observed by TORTORA (extrinsic optical/γ-ray spectral lag), thus effectively partitioning the burst into two main episodes at ~T+28+/-2 sec. Second, the rise and decline of prompt optical emission at ~T+10+/-1 sec and ~T+50+/-1 sec, respectively, both coincide with discontinuities in the hard to soft evolution of the photon index for a power law fit to 15-150 keV Swift-BAT data at ~T+8+/-2 sec and ~T+48+/-1 sec. These spectral energy changes also coincide with intervals whose time-resolved spectral lag values are consistent with zero, at ~T+12+/-2 sec and ~T+50+/-2 sec. These results, which are robust across heuristic permutations of Swift-BAT energy channels and varying temporal bin resolution, have also been corroborated via independent analysis of Konus-Wind data. This potential discovery may provide the first observational evidence for an implicit connection between spectral lags and GRB emission mechanisms in the context of canonical fireball phenomenology. Future work includes exploring a subset of bursts with prompt optical emission to probe the unique or ubiquitous nature of this result.

  11. Correlated x-ray and optical time variability of TT arietis

    International Nuclear Information System (INIS)

    Jensen, K.A.; Cordova, F.A.; Middleditch, J.; Mason, K.O.; Grauer, A.D.; Horne, K.; Gomer, R.

    1983-01-01

    Simultaneous X-ray and optical photometry of the cataclysmic variable TT Arietis has revealed correlated X-ray and opticl variability over a broad range of time scales. Large amplitude X-ray flickering with a time scale of approx.1000 s persists for the entire observation, is present at all orbital phases, and is correlated with optical flickering. The X-ray flickering is delayed by approx.1 minute with respect to the optical flickering. Transient hard X-ray oscillations with periods approx.32 s, approx.12 s, and approx.9 s and transient optical oscillations with periods approx.32 s and approx.12 s are observed. There is a modulation of the X-ray flux with a period consistent with the orbital period of approximately 200 minutes, but there is no apparent modulation of the X-ray spectrum. The optical flux is modulated with a similar period and may lag the X-ray modulation by approx.0.1 in phase. An X-ray photoelectric absorption event with a duration of about 1000 s is observed. An optical flux decrease of shorter duration (approx.500 s) occurs at the same time. The X-ray spectrum is well fitted by a thermal bremsstrahlung plus Gaunt factor model with kT> or approx. =10 keV, N/sub H/ = 1-2 x 10 21 cm -2 , and a received flux of approx.2 x 10 -11 ergs cm -2 s -1 between 0.2 and 4 keV. The results of our observations suggest that the hard X-ray emission from TT Ari may be produced in a corona above and below the inner accretion disk

  12. CHARACTERIZATION AND CORRELATION OF "JAMPOL DOTS" ON ADAPTIVE OPTICS WITH FOVEAL GRANULARITY ON CONVENTIONAL FUNDUS IMAGING.

    Science.gov (United States)

    Onishi, Alex C; Roberts, Philipp K; Jampol, Lee M; Nesper, Peter L; Fawzi, Amani A

    2017-11-22

    To describe features characteristic of multiple evanescent white dot syndrome (MEWDS) using adaptive optics scanning laser ophthalmoscopy (AOSLO). Six women (seven eyes) who presented with MEWDS between June 2014 and April 2017 underwent ophthalmologic examinations and multimodal imaging including infrared, AOSLO, and spectral domain optical coherence tomography. Bright hyperreflective lesions on AOSLO throughout the course of MEWDS could be correlated to the hyperreflective dots of foveal granularity on infrared imaging without apparent corresponding changes on spectral domain optical coherence tomography. During the acute phase of MEWDS, extrafoveal hyperreflective dots were also visible on AOSLO and infrared and were associated with accumulations of hyperreflective material above the retinal pigment epithelium on spectral domain optical coherence tomography. Foveal granularity on conventional fundus imaging could be correlated with hyperreflective lesions visible on AOSLO. We hypothesize that these hyperreflective lesions, "Jampol dots," are the foveal corollaries of the same process associated with the classic "dot" lesions in MEWDS. Based on the intact photoreceptor mosaic on AOSLO, we surmise that this material is accumulating at the level of the retinal pigment epithelium.

  13. Effects of frequency correlation in linear optical entangling gates operated with independent photons

    International Nuclear Information System (INIS)

    Barbieri, M.

    2007-01-01

    Bose-Einstein coalescence of independent photons at the surface of a beam splitter is the physical process that allows linear optical quantum gates to be built. When distinct parametric down-conversion events are used as an independent photon source, distinguishability arises form the energy correlation of each photon with its twin. We derive upper bound for the entanglement which can be generated under these conditions

  14. A High Dynamic Range Acousto-Optic Image Correlator For Real-Time Pattern Recognition

    Science.gov (United States)

    Money, Perry A.; Stalker, K. T.

    1988-08-01

    The architecture and experimental results for an incoherent acousto-optic image correlator suitable for real-time applications are presented. In the basic architecture, each time a line of the raster-scanned input image is fed into the acousto-optic device (AOD), all rows of a digitally stored reference image are read into the system using an array of light emitting diodes (LEDs). Thus, the required two-dimensional correlation is performed as a series of multi-channel 1-D time-integrations in x (performed in the AOD) combined with a multi-channel correlation in y (perpendicular to the AOD axis) using a modified CCD. The LED array and detector modifications which markedly increase the dynamic range are discussed as well as the correlator design. Further, a novel memory for storing the reference object is described for rapidly changing templates. Experimental results indicate the architecture is useful for applications in the areas of character recognition and target identification.

  15. Optical Measurement Techniques for Rocket Engine Testing and Component Applications: Digital Image Correlation and Dynamic Photogrammetry

    Science.gov (United States)

    Gradl, Paul

    2016-01-01

    NASA Marshall Space Flight Center (MSFC) has been advancing dynamic optical measurement systems, primarily Digital Image Correlation, for extreme environment rocket engine test applications. The Digital Image Correlation (DIC) technology is used to track local and full field deformations, displacement vectors and local and global strain measurements. This technology has been evaluated at MSFC through lab testing to full scale hotfire engine testing of the J-2X Upper Stage engine at Stennis Space Center. It has been shown to provide reliable measurement data and has replaced many traditional measurement techniques for NASA applications. NASA and AMRDEC have recently signed agreements for NASA to train and transition the technology to applications for missile and helicopter testing. This presentation will provide an overview and progression of the technology, various testing applications at NASA MSFC, overview of Army-NASA test collaborations and application lessons learned about Digital Image Correlation.

  16. Correlation between the optical coherence tomography and electroretinogram in retinal vein occlusion macular edema

    Directory of Open Access Journals (Sweden)

    Ya Xu

    2014-11-01

    Full Text Available AIM: To evaluate the correlation between retinal thickness and photopic flash electroretinogram(ERGparameters(Cone a-wave, Cone b-wave, and 30Hz flickerin patients with central retinal vein occlusion(CRVOand macular edema. METHODS: A total of 25 patients(25 CRVO eyes and 25 unaffected fellow eyeswith CRVO underwent the examination of optical coherence tomography(OCTand photopic falsh ERG. The amplitude and implicit time of the ERG parameters were extracted from the ERG traces. Retinal thicknesses were measured by OCT in nine macular subfields. Then the correlations between ERG parameters and macular morphological parameters were analyzed. RESULTS: The Cone b-wave and 30Hz flicker implicit time were correlated with macular retinal thickness in seven out of nine subfields, excluding the temporal subfields. CONCLUSION: The retinal thickness of the macular edema may be associated with inner retinal function in CRVO patients.

  17. Accounting for PMD Temporal Correlation During Lightpath Set Up in Transparent Optical Networks

    DEFF Research Database (Denmark)

    Sambo, Nicola; Secondini, Marco; Andriolli, Nicola

    2010-01-01

    stochastic characteristics. Moreover, PMD depends on time-variant factors, such as the temperature and the fiber stress. When implementing a dynamic GMPLS-controlled transparent optical network, the GMPLS protocol suite must take into account physical impairment information in order to establish lightpaths...... that the instantaneous DGD is not detrimental. Additionally, given PMD temporal correlation properties, once that the instantaneous DGD is not detrimental, it continues to be not detrimental within considerable time ranges. Therefore, more accurate models can be implemented in the GMPLS control plane to account for PMD....... In this paper we propose a novel lightpath provisioning scheme based on a PMD prediction model which accounts for PMD temporal correlation properties. The proposed PMD-temporal-correlation (PTC) based lightpath provisioning scheme is compared with a scheme based on a classical PMD model. Simulation results show...

  18. Micro-electro-fluidic grids for nematodes: a lens-less, image-sensor-less approach for on-chip tracking of nematode locomotion.

    Science.gov (United States)

    Liu, Peng; Martin, Richard J; Dong, Liang

    2013-02-21

    This paper reports on the development of a lens-less and image-sensor-less micro-electro-fluidic (MEF) approach for real-time monitoring of the locomotion of microscopic nematodes. The technology showed promise for overcoming the constraint of the limited field of view of conventional optical microscopy, with relatively low cost, good spatial resolution, and high portability. The core of the device was microelectrode grids formed by orthogonally arranging two identical arrays of microelectrode lines. The two microelectrode arrays were spaced by a microfluidic chamber containing a liquid medium of interest. As a nematode (e.g., Caenorhabditis elegans) moved inside the chamber, the invasion of part of its body into some intersection regions between the microelectrodes caused changes in the electrical resistance of these intersection regions. The worm's presence at, or absence from, a detection unit was determined by a comparison between the measured resistance variation of this unit and a pre-defined threshold resistance variation. An electronic readout circuit was designed to address all the detection units and read out their individual electrical resistances. By this means, it was possible to obtain the electrical resistance profile of the whole MEF grid, and thus, the physical pattern of the swimming nematode. We studied the influence of a worm's body on the resistance of an addressed unit. We also investigated how the full-frame scanning and readout rates of the electronic circuit and the dimensions of a detection unit posed an impact on the spatial resolution of the reconstructed images of the nematode. Other important issues, such as the manufacturing-induced initial non-uniformity of the grids and the electrotaxic behaviour of nematodes, were also studied. A drug resistance screening experiment was conducted by using the grids with a good resolution of 30 × 30 μm(2). The phenotypic differences in the locomotion behaviours (e.g., moving speed and oscillation

  19. Weighted cross-correlation based variational optical flow for gastric flow analysis in ultrasonic videos.

    Science.gov (United States)

    Chen, Chaojie; Wang, Yuanyuan; Yu, Jinhua; Zhou, Zhuyu; Shen, Li; Chen, Yaqing

    2013-05-01

    Estimating the fluid motion in ultrasonic videos is a crucial step in the analysis of duodenogastric reflux. Severe image noise and illumination changes in the pyloric region (the region of interest) challenge the accurate estimation of gastric flow. In this paper, the authors propose an illumination-robust optical flow method based on the weighted cross-correlation. Cross-correlation was combined with the variational optical method framework as an illumination-robust local feature identifier. In consideration of accuracy near edges, they constructed visual similarity weights according to the characteristics of ultrasonic images. A processing procedure containing coarse-to-fine step and refinement was designed to get the final results. They tested the proposed method on synthetic and real ultrasonic images and compared it with other three optical flow methods. For quantitative evaluation, two metrics of angular and amplitude error were used. The synthetic results demonstrate that the proposed method performs better on ultrasonic images, with angular error of 4.1° and amplitude error of 3.3%. In qualitative comparison, the proposed method kept the motion field smooth in the homogeneous region while preserving edge information. When they used the results of the proposed method to judge the gastric flow direction, the automatic judgments agreed well with visual observation. The proposed method is a good tool for image velocimetry in ultrasonic images. It provides promising results to estimate the motion of gastric flow in ultrasonic videos.

  20. Optical Antenna-Based Fluorescence Correlation Spectroscopy to Probe the Nanoscale Dynamics of Biological Membranes.

    Science.gov (United States)

    Winkler, Pamina M; Regmi, Raju; Flauraud, Valentin; Brugger, Jürgen; Rigneault, Hervé; Wenger, Jérôme; García-Parajo, María F

    2018-01-04

    The plasma membrane of living cells is compartmentalized at multiple spatial scales ranging from the nano- to the mesoscale. This nonrandom organization is crucial for a large number of cellular functions. At the nanoscale, cell membranes organize into dynamic nanoassemblies enriched by cholesterol, sphingolipids, and certain types of proteins. Investigating these nanoassemblies known as lipid rafts is of paramount interest in fundamental cell biology. However, this goal requires simultaneous nanometer spatial precision and microsecond temporal resolution, which is beyond the reach of common microscopes. Optical antennas based on metallic nanostructures efficiently enhance and confine light into nanometer dimensions, breaching the diffraction limit of light. In this Perspective, we discuss recent progress combining optical antennas with fluorescence correlation spectroscopy (FCS) to monitor microsecond dynamics at nanoscale spatial dimensions. These new developments offer numerous opportunities to investigate lipid and protein dynamics in both mimetic and native biological membranes.

  1. Computational wavelength resolution for in-line lensless holography: phase-coded diffraction patterns and wavefront group-sparsity

    Science.gov (United States)

    Katkovnik, Vladimir; Shevkunov, Igor; Petrov, Nikolay V.; Egiazarian, Karen

    2017-06-01

    In-line lensless holography is considered with a random phase modulation at the object plane. The forward wavefront propagation is modelled using the Fourier transform with the angular spectrum transfer function. The multiple intensities (holograms) recorded by the sensor are random due to the random phase modulation and noisy with Poissonian noise distribution. It is shown by computational experiments that high-accuracy reconstructions can be achieved with resolution going up to the two thirds of the wavelength. With respect to the sensor pixel size it is a super-resolution with a factor of 32. The algorithm designed for optimal superresolution phase/amplitude reconstruction from Poissonian data is based on the general methodology developed for phase retrieval with a pixel-wise resolution in V. Katkovnik, "Phase retrieval from noisy data based on sparse approximation of object phase and amplitude", http://www.cs.tut.fi/ lasip/DDT/index3.html.

  2. A correlative optical microscopy and scanning electron microscopy approach to locating nanoparticles in brain tumors.

    Science.gov (United States)

    Kempen, Paul J; Kircher, Moritz F; de la Zerda, Adam; Zavaleta, Cristina L; Jokerst, Jesse V; Mellinghoff, Ingo K; Gambhir, Sanjiv S; Sinclair, Robert

    2015-01-01

    The growing use of nanoparticles in biomedical applications, including cancer diagnosis and treatment, demands the capability to exactly locate them within complex biological systems. In this work a correlative optical and scanning electron microscopy technique was developed to locate and observe multi-modal gold core nanoparticle accumulation in brain tumor models. Entire brain sections from mice containing orthotopic brain tumors injected intravenously with nanoparticles were imaged using both optical microscopy to identify the brain tumor, and scanning electron microscopy to identify the individual nanoparticles. Gold-based nanoparticles were readily identified in the scanning electron microscope using backscattered electron imaging as bright spots against a darker background. This information was then correlated to determine the exact location of the nanoparticles within the brain tissue. The nanoparticles were located only in areas that contained tumor cells, and not in the surrounding healthy brain tissue. This correlative technique provides a powerful method to relate the macro- and micro-scale features visible in light microscopy with the nanoscale features resolvable in scanning electron microscopy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Hybrid optical CDMA-FSO communications network under spatially correlated gamma-gamma scintillation.

    Science.gov (United States)

    Jurado-Navas, Antonio; Raddo, Thiago R; Garrido-Balsells, José María; Borges, Ben-Hur V; Olmos, Juan José Vegas; Monroy, Idelfonso Tafur

    2016-07-25

    In this paper, we propose a new hybrid network solution based on asynchronous optical code-division multiple-access (OCDMA) and free-space optical (FSO) technologies for last-mile access networks, where fiber deployment is impractical. The architecture of the proposed hybrid OCDMA-FSO network is thoroughly described. The users access the network in a fully asynchronous manner by means of assigned fast frequency hopping (FFH)-based codes. In the FSO receiver, an equal gain-combining technique is employed along with intensity modulation and direct detection. New analytical formalisms for evaluating the average bit error rate (ABER) performance are also proposed. These formalisms, based on the spatially correlated gamma-gamma statistical model, are derived considering three distinct scenarios, namely, uncorrelated, totally correlated, and partially correlated channels. Numerical results show that users can successfully achieve error-free ABER levels for the three scenarios considered as long as forward error correction (FEC) algorithms are employed. Therefore, OCDMA-FSO networks can be a prospective alternative to deliver high-speed communication services to access networks with deficient fiber infrastructure.

  4. Electron microscopy of primary cell cultures in solution and correlative optical microscopy using ASEM

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Kazumi; Kinoshita, Takaaki [Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577 (Japan); Uemura, Takeshi [Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Motohashi, Hozumi [Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai 980-8575 (Japan); Watanabe, Yohei; Ebihara, Tatsuhiko [Biomedical Research Institute, National Institute of Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566 (Japan); Nishiyama, Hidetoshi [JEOL Ltd., 1-2 Musashino 3-chome, Akishima, Tokyo 196-8558 (Japan); Sato, Mari [Biomedical Research Institute, National Institute of Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566 (Japan); Suga, Mitsuo [JEOL Ltd., 1-2 Musashino 3-chome, Akishima, Tokyo 196-8558 (Japan); Maruyama, Yuusuke; Tsuji, Noriko M. [Biomedical Research Institute, National Institute of Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566 (Japan); Yamamoto, Masayuki [Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575 (Japan); Nishihara, Shoko, E-mail: shoko@soka.ac.jp [Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577 (Japan); Sato, Chikara, E-mail: ti-sato@aist.go.jp [Biomedical Research Institute, National Institute of Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566 (Japan)

    2014-08-01

    Correlative light-electron microscopy of cells in a natural environment of aqueous liquid facilitates high-throughput observation of protein complex formation. ASEM allows the inverted SEM to observe the wet sample from below, while an optical microscope observes it from above quasi-simultaneously. The disposable ASEM dish with a silicon nitride (SiN) film window can be coated variously to realize the primary-culture of substrate-sensitive cells in a few milliliters of culture medium in a stable incubator environment. Neuron differentiation, neural networking, proplatelet-formation and phagocytosis were captured by optical or fluorescence microscopy, and imaged at high resolution by gold-labeled immuno-ASEM with/without metal staining. Fas expression on the cell surface was visualized, correlated to the spatial distribution of F-actin. Axonal partitioning was studied using primary-culture neurons, and presynaptic induction by GluRδ2-N-terminus-linked fluorescent magnetic beads was correlated to the presynaptic-marker Bassoon. Further, megakaryocytes secreting proplatelets were captured, and P-selectins with adherence activity were localized to some of the granules present by immuno-ASEM. The phagocytosis of lactic acid bacteria by dendritic cells was also imaged. Based on these studies, ASEM correlative microscopy promises to allow the study of various mesoscopic-scale dynamics in the near future. - Highlights: • In situ correlative light electron microscopy of samples in open solution by ASEM. • Primary cultures for in-solution CLEM by developing SiN-film coating methods • First visualization of fluorescent magnetic beads in aqueous solution by CLEM. • Presynaptic induction of neurons by GluRδ2-N-terminus-coated beads studied by CLEM. • Axonal partitioning, bacterial phagocytosis, platelet formation imaged by CLEM.

  5. Electron microscopy of primary cell cultures in solution and correlative optical microscopy using ASEM

    International Nuclear Information System (INIS)

    Hirano, Kazumi; Kinoshita, Takaaki; Uemura, Takeshi; Motohashi, Hozumi; Watanabe, Yohei; Ebihara, Tatsuhiko; Nishiyama, Hidetoshi; Sato, Mari; Suga, Mitsuo; Maruyama, Yuusuke; Tsuji, Noriko M.; Yamamoto, Masayuki; Nishihara, Shoko; Sato, Chikara

    2014-01-01

    Correlative light-electron microscopy of cells in a natural environment of aqueous liquid facilitates high-throughput observation of protein complex formation. ASEM allows the inverted SEM to observe the wet sample from below, while an optical microscope observes it from above quasi-simultaneously. The disposable ASEM dish with a silicon nitride (SiN) film window can be coated variously to realize the primary-culture of substrate-sensitive cells in a few milliliters of culture medium in a stable incubator environment. Neuron differentiation, neural networking, proplatelet-formation and phagocytosis were captured by optical or fluorescence microscopy, and imaged at high resolution by gold-labeled immuno-ASEM with/without metal staining. Fas expression on the cell surface was visualized, correlated to the spatial distribution of F-actin. Axonal partitioning was studied using primary-culture neurons, and presynaptic induction by GluRδ2-N-terminus-linked fluorescent magnetic beads was correlated to the presynaptic-marker Bassoon. Further, megakaryocytes secreting proplatelets were captured, and P-selectins with adherence activity were localized to some of the granules present by immuno-ASEM. The phagocytosis of lactic acid bacteria by dendritic cells was also imaged. Based on these studies, ASEM correlative microscopy promises to allow the study of various mesoscopic-scale dynamics in the near future. - Highlights: • In situ correlative light electron microscopy of samples in open solution by ASEM. • Primary cultures for in-solution CLEM by developing SiN-film coating methods • First visualization of fluorescent magnetic beads in aqueous solution by CLEM. • Presynaptic induction of neurons by GluRδ2-N-terminus-coated beads studied by CLEM. • Axonal partitioning, bacterial phagocytosis, platelet formation imaged by CLEM

  6. A fiber optic sensor for ophthalmic refractive diagnostics

    Science.gov (United States)

    Ansari, Rafat R.; Dhadwal, Harbans S.; Campbell, Melanie C. W.; Dellavecchia, Michael A.

    1992-04-01

    This paper demonstrates the application of a lensless fiber optic spectrometer (sensor) to study the onset of cataracts. This new miniaturized and rugged fiber optic probe is based upon dynamic light scattering (DLS) principles. It has no moving parts, no apertures, and requires no optical alignment. It is flexible and easy to use. Results are presented for cold-induced cataract in excised bovine eye lenses, and aging effects in excised human eye lenses. The device can be easily incorporated into a slit-lamp apparatus (ophthalmoscope) for complete eye diagnostics.

  7. Scanning, non-contact, hybrid broadband diffuse optical spectroscopy and diffuse correlation spectroscopy system

    OpenAIRE

    Johansson, Johannes D.; Mireles, Miguel; Morales-Dalmau, Jordi; Farzam, Parisa; Martínez-Lozano, Mar; Casanovas, Oriol; Durduran, Turgut

    2016-01-01

    A scanning system for small animal imaging using non-contact, hybrid broadband diffuse optical spectroscopy (ncDOS) and diffuse correlation spectroscopy (ncDCS) is presented. The ncDOS uses a two-dimensional spectrophotometer retrieving broadband (610-900 nm) spectral information from up to fifty-seven source-detector distances between 2 and 5 mm. The ncDCS data is simultaneously acquired from four source-detector pairs. The sample is scanned in two dimensions while tracking variations in hei...

  8. Entanglement-enhanced information transfer through strongly correlated systems and its application to optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Yang Song [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom); Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026 (China); Bayat, Abolfazl; Bose, Sougato [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

    2011-08-15

    We show that the inherent entanglement of the ground state of strongly correlated systems can be exploited for both classical and quantum communications. Our strategy is based on a single-qubit rotation that encodes information in the entangled nature of the ground state. In classical communication, our mechanism conveys more than one bit of information in each shot, just as dense coding does, without demanding long-range entanglement. In our scheme for quantum communication, the quality is higher than the widely studied attaching scenarios. Moreover, we propose to implement this way of communication in optical lattices.

  9. Parallel encryption for multi-channel images based on an optical joint transform correlator

    Science.gov (United States)

    Liu, Jie; Bai, Tingzhu; Shen, Xueju; Dou, Shuaifeng; Lin, Chao; Cai, Jianjun

    2017-08-01

    We propose an optical encryption method allowing the parallel encryption for multi-channel images based on a joint transform correlator (JTC). Distinguished from the conventional multi-image encryption methods, our proposed cryptosystem can encrypt multi-channel images simultaneously into a single ciphertext, which also can be used to recover arbitrary original images with corresponding keys. This method can achieve the compressed storage of ciphertext. In order to avoid the cross talk between multi-channel images, we restrict the respective joint power spectrum (JPS) into a specific area with optimized phase masks and split the multiple JPS by controlling the position of single JPS using the linear phase shifts. All of these operations are realized by optimizing and designing the phase masks which can be flexibly reconfigured on the spatial light modulator (SLM), leading to a feasible optical implementation with no increase of optical hardware and complexity. Computer simulations provide the validation for it. Experimental implementation is performed in a JTC-based cryptosystem to further verify the feasibility of our proposed method.

  10. How to tune quantum correlations with an intracavity photonic crystal in an optical parametric oscillator

    Science.gov (United States)

    Garcia-March, Miguel; de Castro, Maria; Gomila, Damia; Zambrini, Roberta

    2011-05-01

    We study the effect of periodic modulations on the quantum correlations of light in a nonlinear optical system, considering an intracavity photonic crystal in a type I optical parametric oscillator (OPO). We use a few modes linear approximation below threshold to obtain analytical expressions for the correlations comparing them with numerical results obtained from Langevin equations below (and also above) threshold. First, we find that the parametric threshold can be either raised or lowered through the amplitude of the photonic crystal, due to the interplay of two competing mechanism, i.e, inhibition of the signal spatial instability and the imprint of a spatial modulation on the pump favouring the instability process. Second, we find that, above threshold, the break of translational invariance provides a mechanism to reduce the quadrature quantum fluctuations leading to squeezing over a larger range of quadrature angles. Finally, inseparable and EPR entangled spatial beams are found in the presence of the PC. Funded by FISICOS (FIS2007-60327), CoQuSys (200450E566), MEC, Fulbright Commision, and FECYT.

  11. SEGMENTATION AND CORRELATION OF OPTICAL COHERENCE TOMOGRAPHY AND X-RAY IMAGES FOR BREAST CANCER DIAGNOSTICS

    Directory of Open Access Journals (Sweden)

    JONATHAN G. SUN

    2013-04-01

    Full Text Available Pre-operative X-ray mammography and intraoperative X-ray specimen radiography are routinely used to identify breast cancer pathology. Recent advances in optical coherence tomography (OCT have enabled its use for the intraoperative assessment of surgical margins during breast cancer surgery. While each modality offers distinct contrast of normal and pathological features, there is an essential need to correlate image-based features between the two modalities to take advantage of the diagnostic capabilities of each technique. We compare OCT to X-ray images of resected human breast tissue and correlate different tissue features between modalities for future use in real-time intraoperative OCT imaging. X-ray imaging (specimen radiography is currently used during surgical breast cancer procedures to verify tumor margins, but cannot image tissue in situ. OCT has the potential to solve this problem by providing intraoperative imaging of the resected specimen as well as the in situ tumor cavity. OCT and micro-CT (X-ray images are automatically segmented using different computational approaches, and quantitatively compared to determine the ability of these algorithms to automatically differentiate regions of adipose tissue from tumor. Furthermore, two-dimensional (2D and three-dimensional (3D results are compared. These correlations, combined with real-time intraoperative OCT, have the potential to identify possible regions of tumor within breast tissue which correlate to tumor regions identified previously on X-ray imaging (mammography or specimen radiography.

  12. ANATOMICAL CORRELATES TO THE BANDS SEEN IN THE OUTER RETINA BY OPTICAL COHERENCE TOMOGRAPHY

    Science.gov (United States)

    SPAIDE, RICHARD F.; CURCIO, CHRISTINE A.

    2013-01-01

    Purpose To evaluate the validity of commonly used anatomical designations for the four hyperreflective outer retinal bands seen in current-generation optical coherence tomography, a scale model of outer retinal morphology was created using published information for direct comparison with optical coherence tomography scans. Methods Articles and books concerning histology of the outer retina from 1900 until 2009 were evaluated, and data were used to create a scale model drawing. Boundaries between outer retinal tissue compartments described by the model were compared with intensity variations of representative spectral-domain optical coherence tomography scans using longitudinal reflectance profiles to determine the region of origin of the hyperreflective outer retinal bands. Results This analysis showed a high likelihood that the spectral-domain optical coherence tomography bands attributed to the external limiting membrane (the first, innermost band) and to the retinal pigment epithelium (the fourth, outermost band) are correctly attributed. Comparative analysis showed that the second band, often attributed to the boundary between inner and outer segments of the photoreceptors, actually aligns with the ellipsoid portion of the inner segments. The third band corresponded to an ensheathment of the cone outer segments by apical processes of the retinal pigment epithelium in a structure known as the contact cylinder. Conclusion Anatomical attributions and subsequent pathophysiologic assessments pertaining to the second and third outer retinal hyperreflective bands may not be correct. This analysis has identified testable hypotheses for the actual correlates of the second and third bands. Nonretinal pigment epithelium contributions to the fourth band (e.g., Bruch membrane) remain to be determined. PMID:21844839

  13. Correlation between optical, chemical and micro-structural parameters of high-rank coals and graphite

    Energy Technology Data Exchange (ETDEWEB)

    Marques, M.; Flores, D.; Guedes, A.; Rodrigues, S. [Departamento e Centro de Geologia, Faculdade de Ciencias, Universidade do Porto, Porto (Portugal); Suarez-Ruiz, I. [Instituto Nacional del Carbon (INCAR-CSIC), Oviedo (Spain)

    2009-01-31

    In order to identify the parameters that best characterize the chemical and structural evolution of organic matter during coalification, the relationships between optical, chemical and micro-structural parameters in high-rank coals and natural graphite were studied. The samples include anthracites from Penarroya-Belmez-Espiel Basin (Spain), Douro Basin (Portugal), and Alto Chicama Basin (Peru); and natural graphite from Canada, Mozambique, and Austria. Correlations between the following optical parameters were assessed: vitrinite random reflectance (R{sub r}), Reflectance Indicating Surfaces (RIS) axis (R{sub MAX}, R{sub INT} and R{sub MIN}), and RIS parameters (R{sub am}, R{sub ev} and R{sub st}), as well as B{sub w} and AI anisotropy parameters. Furthermore, the chemical parameters used were chosen according to their significant variation in coals, namely volatile matter, carbon, and hydrogen contents calculated in dry ash free basis (VM{sub daf}, C{sub daf}, H{sub daf}), as well as the H/C atomic ratio. Structural organization was characterized by micro-Raman spectroscopy and XRD. Raman parameters used were the full width at half maximum (FWHM) and position of G and D1 bands on the first-order Raman spectrum, and the ID1/IG intensity area ratio. The selected XRD parameters were interlayer spacing d{sub 002}, and crystallite sizes L{sub a} and L{sub c}. Results show that: (i) R{sub MAX} RIS axis seems to correlate best with chemical and micro-structural parameters; (ii) for the majority of studied samples, H{sub daf} and H/C atomic ratio are the only chemical parameters with significant correlations with R{sub MAX}; (iii) the FWHM of the G band of Raman spectrum shows good linear correlation with the XRD parameter d{sub 002}; and, (iv) structural organization of carbon materials, as measured by trends in their optical and crystalline parameters, is influenced by their hydrogen content (daf basis) and therefore by the H/C atomic ratio. (author)

  14. CROSS-CORRELATION BETWEEN X-RAY AND OPTICAL/NEAR-INFRARED BACKGROUND INTENSITY FLUCTUATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell-Wynne, Ketron; Cooray, Asantha [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Xue, Yongquan [CAS Key Laboratory for Researches in Galaxies and Cosmology, Center for Astrophysics, Department of Astronomy, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026 (China); Luo, Bin [School of Astronomy and Space Science, Nanjing University, Nanjing, 210093 (China); Brandt, William [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA, 16802 (United States); Koekemoer, Anton [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2016-12-01

    Angular power spectra of optical and infrared background anisotropies at wavelengths between 0.5 and 5 μ m are a useful probe of faint sources present during reionization, in addition to faint galaxies and diffuse signals at low redshift. The cross-correlation of these fluctuations with backgrounds at other wavelengths can be used to separate some of these signals. A previous study on the cross-correlation between X-ray and Spitzer fluctuations at 3.6 μ m and 4.5 μ m has been interpreted as evidence for direct collapse black holes present at z  > 12. Here we return to this cross-correlation and study its wavelength dependence from 0.5 to 4.5 μ m using Hubble and Spitzer data in combination with a subset of the 4 Ms Chandra observations in GOODS-S/ECDFS. Our study involves five Hubble bands at 0.6, 0.7, 0.85, 1.25, and 1.6 μ m, and two Spitzer -IRAC bands at 3.6 μ m and 4.5 μ m. We confirm the previously seen cross-correlation between 3.6 μ m (4.5 μ m) and X-rays with 3.7 σ (4.2 σ ) and 2.7 σ (3.7 σ ) detections in the soft [0.5–2] keV and hard [2–8] keV X-ray bands, respectively, at angular scales above 20 arcsec. The cross-correlation of X-rays with Hubble is largely anticorrelated, ranging between the levels of 1.4 σ –3.5 σ for all the Hubble and X-ray bands. This lack of correlation in the shorter optical/NIR bands implies the sources responsible for the cosmic infrared background at 3.6 and 4.5 μ m are at least partly dissimilar to those at 1.6 μ m and shorter.

  15. Multifocal electroretinogram in normal emmetropic subjects: Correlation with optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Rajvardhan Azad

    2012-01-01

    Full Text Available Aim of the Study: To establish the normative database for multifocal electroretinogram (mfERG parameters in a normal emmetropic population. To correlate the data so obtained with the central macular thickness obtained using the optical coherence tomography (OCT scan. Materials and Methods: mfERG data were obtained from 222 eyes of 111 emmetropic subjects. The amplitude (nv/deg 2 and implicit times (ms of the first-order kernel mfERG responses (N1, P1, and N2 waves were obtained and grouped into five rings (Ring 1: Central 2°, Ring 2: 2-5°, Ring 3: 5-10°, Ring 4: 10-15°, Ring 5: >15°. The central macular thickness (CMT was obtained using the macular thickness scan protocol of the OCT. Results: The mfERG data obtained were used to create a normative database. The amplitudes of the mfERG waves were maximum in the fovea and progressively decreased with increasing eccentricity (P = 0.0001. The latencies of the P1 and N2 waves were longest in the central ring and progressively shortened with eccentricity (P = 0.0001. No statistically significant correlations were observed between central ring 1 parameters and the CMT. Conclusion: This study establishes normative database for mfERG parameters in an emmetropic population. No statistically significant correlation was noted between CMT and mfERG parameters.

  16. Intracranial pressure (ICP) and optic nerve subarachnoid space pressure (ONSP) correlation in the optic nerve chamber: the Beijing Intracranial and Intraocular Pressure (iCOP) study.

    Science.gov (United States)

    Hou, Ruowu; Zhang, Zheng; Yang, Diya; Wang, Huaizhou; Chen, Weiwei; Li, Zhen; Sang, Jinghong; Liu, Sumeng; Cao, Yiwen; Xie, Xiaobin; Ren, Ruojin; Zhang, Yazhuo; Sabel, Bernhard A; Wang, Ningli

    2016-03-15

    Because a lowered intracranial pressure (ICP) is a possible mechanism of optic neuropathy, we wished to study the CSF dynamics in the optic nerve chamber by recording possible changes in the optic nerve subarachnoid space pressure (ONSP) and the impact on it when acutely lowering ICP. In eight normal dogs pressure probes were implanted in the left brain ventricle, lumbar cistern, optic nerve subarachnoid space and in the anterior eye chamber. Following CSF shunting from the brain ventricle we monitored changes of ICP, lumbar cistern pressure (LCP), ONSP and intraocular pressure (IOP). At baseline, the pressures were different with ICP>LCP>ONSP but correlated with each other (PICP (PICP gradually decreased in a linear fashion together with the ONSP ("ICP-depended zone"). But when the ICP fell below a critical breakpoint, ICP and ONSP became uncoupled and ONSP remained constant despite further ICP decline ("ICP-independent zone"). Because the parallel decline of ICP and ONSP breaks down when ICP decreases below a critical breakpoint, we interpret this as a sign of CSF communication arrest between the intracranial and optic nerve SAS. This may be caused by obstructions of either CSF inflow through the optic canal or outflow into the intra-orbital cavity. This CSF exchange arrest may be a contributing factor to optic nerve damage and the optic nerve chamber syndrome which may influence the loss of vision or its restoration. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Advanced optical correlation and digital methods for pattern matching—50th anniversary of Vander Lugt matched filter

    Science.gov (United States)

    Millán, María S.

    2012-10-01

    On the verge of the 50th anniversary of Vander Lugt’s formulation for pattern matching based on matched filtering and optical correlation, we acknowledge the very intense research activity developed in the field of correlation-based pattern recognition during this period of time. The paper reviews some domains that appeared as emerging fields in the last years of the 20th century and have been developed later on in the 21st century. Such is the case of three-dimensional (3D) object recognition, biometric pattern matching, optical security and hybrid optical-digital processors. 3D object recognition is a challenging case of multidimensional image recognition because of its implications in the recognition of real-world objects independent of their perspective. Biometric recognition is essentially pattern recognition for which the personal identification is based on the authentication of a specific physiological characteristic possessed by the subject (e.g. fingerprint, face, iris, retina, and multifactor combinations). Biometric recognition often appears combined with encryption-decryption processes to secure information. The optical implementations of correlation-based pattern recognition processes still rely on the 4f-correlator, the joint transform correlator, or some of their variants. But the many applications developed in the field have been pushing the systems for a continuous improvement of their architectures and algorithms, thus leading towards merged optical-digital solutions.

  18. Strongly correlated quasi-one-dimensional bands: Ground states, optical absorption, and phonons

    International Nuclear Information System (INIS)

    Campbell, D.K.; Gammel, J.T.; Loh, E.Y. Jr.

    1989-01-01

    Using the Lanczos method for exact diagonalization on systems up to 14 sites, combined with a novel ''phase randomization'' technique for extracting more information from these small systems, we investigate several aspects of the one-dimensional Peierls-Hubbard Hamiltonian, in the context of trans-polyacetylene: the dependence of the ground state dimerization on the strength of the electron-electron interactions, including the effects of ''off-diagonal'' Coulomb terms generally ignored in the Hubbard model; the phonon vibrational frequencies and dispersion relations, and the optical absorption properties, including the spectrum of absorptions as a function of photon energy. These three different observables provide considerable insight into the effects of electron-electron interactions on the properties of real materials and thus into the nature of strongly correlated electron systems. 29 refs., 11 figs

  19. Correlation between structure and optical properties of Si-based alloys deposited by PECVD

    Energy Technology Data Exchange (ETDEWEB)

    Giangregorio, M.M. [Institute of Inorganic Methodologies and of Plasmas IMIP-CNR and INSTM-UdR Bari via Orabona, 4-70126 Bari (Italy)]. E-mail: michelaria@hotmail.com; Losurdo, M. [Institute of Inorganic Methodologies and of Plasmas IMIP-CNR and INSTM-UdR Bari via Orabona, 4-70126 Bari (Italy); Sacchetti, A. [Institute of Inorganic Methodologies and of Plasmas IMIP-CNR and INSTM-UdR Bari via Orabona, 4-70126 Bari (Italy); Capezzuto, P. [Institute of Inorganic Methodologies and of Plasmas IMIP-CNR and INSTM-UdR Bari via Orabona, 4-70126 Bari (Italy); Bruno, G. [Institute of Inorganic Methodologies and of Plasmas IMIP-CNR and INSTM-UdR Bari via Orabona, 4-70126 Bari (Italy)

    2006-07-26

    Si-based thin films, including {mu}c-Si, Si{sub 1-x}Ge {sub x} and Si{sub 1-x}C {sub x} alloys, have been deposited by plasma enhanced chemical vapor deposition (PECVD) using SiF{sub 4}:H{sub 2}:He, SiF{sub 4}:GeH{sub 4}:H{sub 2} and SiF{sub 4}:CH{sub 4}:H{sub 2} plasmas, respectively. When SiF{sub 4} is used as Si-precursor, it is found that a low flux of CH{sub 4} or GeH{sub 4} results in incorporation of C and Ge in alloys as high as 30%. Correlations between microstructure and optical properties of films are investigated using spectroscopic ellipsometry. The role of fluorine atoms in the growth chemistry and material microstructure is discussed.

  20. MRI of optic tract lesions: Review and correlation with visual field defects

    International Nuclear Information System (INIS)

    Fadzli, F.; Ramli, N.; Ramli, N.M.

    2013-01-01

    Visual field defects are a conglomerate of patterns of visual impairment derived from diseases affecting the optic nerve as it extends from the globe to the visual cortex. They are complex signs requiring perimetry or visual confrontation for delineation and are associated with diverse aetiologies. This review considers the chiasmatic and post-chiasmatic causes of visual disturbances, with an emphasis on magnetic resonance imaging (MRI) techniques. Newer MRI sequences are considered, such as diffusion-tensor imaging. MRI images are correlated with perimetric findings in order to demonstrate localization of lesions in the visual pathway. This may serve as a valuable reference tool to clinicians and radiologists in the early diagnostic process of differentiating causes of various visual field defects in daily practice

  1. Inelastic light scattering to probe strongly correlated bosons in optical lattices

    International Nuclear Information System (INIS)

    Fort, Chiara; Fabbri, Nicole; Fallani, Leonardo; Clement, David; Inguscio, Massimo

    2011-01-01

    We have used inelastic light scattering to study correlated phases of an array of one-dimensional interacting Bose gases. In the linear response regime, the observed spectra are proportional to the dynamic structure factor. In particular we have investigated the superfluid to Mott insulator crossover loading the one-dimensional gases in an optical lattice and monitoring the appearance of an energy gap due to finite particle-hole excitation energy. We attribute the low frequency side of the spectra to the presence of some superfluid and normal phase fraction between the Mott insulator regions with different fillings produced in the inhomogeneous systems. In the Mott phase we also investigated excitations to higher excited bands of the optical lattice, the spectra obtained in this case being connected to the single particle spectral function. In one-dimensional systems the effect of thermal fluctuations and interactions is enhanced by the reduced dimensionality showing up in the dynamic structure factor. We measured the dynamic structure factor of an array of one-dimensional bosonic gases pointing out the effect of temperature-induced phase fluctuations in reducing the coherence length of the system.

  2. Correlation between polarization sensitive optical coherence tomography and second harmonic generation microscopy in skin.

    Science.gov (United States)

    Le, Viet-Hoan; Lee, Seunghun; Kim, Bumju; Yoon, Yeoreum; Yoon, Calvin J; Chung, Wan Kyun; Kim, Ki Hean

    2015-07-01

    Both polarization sensitive optical coherence tomography (PS-OCT) and second harmonic generation (SHG) microscopy are 3D optical imaging methods providing information related to collagen in the skin. PS-OCT provides birefringence information which is due to the collagen composition of the skin. SHG microscopy visualizes collagen fibers in the skin based on their SHG property. These two modalities have been applied to the same skin pathologies associated with collagen changes, but their relationship has not been examined. In this study, we tried to find the relationship by imaging the same skin samples with both modalities. Various parts of the normal rat skin and burn damaged skin were imaged ex vivo, and their images were analyzed both qualitatively and quantitatively. PS-OCT images were analyzed to obtain tissue birefringence. SHG images were analyzed to obtain collagen orientation indices by applying 2D Fourier transform. The skin samples having higher birefringence values had higher collagen orientation indices, and a linear correlation was found between them. Burn damaged skin showed decreases in both parameters compared to the control skins. This relationship between the bulk and microscopic properties of skin may be useful for further skin studies.

  3. Quantitative Analysis of Lens Nuclear Density Using Optical Coherence Tomography (OCT with a Liquid Optics Interface: Correlation between OCT Images and LOCS III Grading

    Directory of Open Access Journals (Sweden)

    You Na Kim

    2016-01-01

    Full Text Available Purpose. To quantify whole lens and nuclear lens densities using anterior-segment optical coherence tomography (OCT with a liquid optics interface and evaluate their correlation with Lens Opacities Classification System III (LOCS III lens grading and corrected distance visual acuity (BCVA. Methods. OCT images of the whole lens and lens nucleus of eyes with age-related nuclear cataract were analyzed using ImageJ software. The lens grade and nuclear density were represented in pixel intensity units (PIU and correlations between PIU, BCVA, and LOCS III were assessed. Results. Forty-seven eyes were analyzed. The mean whole lens and lens nuclear densities were 26.99 ± 5.23 and 19.43 ± 6.15 PIU, respectively. A positive linear correlation was observed between lens opacities (R2 = 0.187, p<0.01 and nuclear density (R2 = 0.316, p<0.01 obtained from OCT images and LOCS III. Preoperative BCVA and LOCS III were also positively correlated (R2 = 0.454, p<0.01. Conclusions. Whole lens and lens nuclear densities obtained from OCT correlated with LOCS III. Nuclear density showed a higher positive correlation with LOCS III than whole lens density. OCT with a liquid optics interface is a potential quantitative method for lens grading and can aid in monitoring and managing age-related cataracts.

  4. Optical pattern recognition architecture implementing the mean-square error correlation algorithm

    Science.gov (United States)

    Molley, Perry A.

    1991-01-01

    An optical architecture implementing the mean-square error correlation algorithm, MSE=.SIGMA.[I-R].sup.2 for discriminating the presence of a reference image R in an input image scene I by computing the mean-square-error between a time-varying reference image signal s.sub.1 (t) and a time-varying input image signal s.sub.2 (t) includes a laser diode light source which is temporally modulated by a double-sideband suppressed-carrier source modulation signal I.sub.1 (t) having the form I.sub.1 (t)=A.sub.1 [1+.sqroot.2m.sub.1 s.sub.1 (t)cos (2.pi.f.sub.o t)] and the modulated light output from the laser diode source is diffracted by an acousto-optic deflector. The resultant intensity of the +1 diffracted order from the acousto-optic device is given by: I.sub.2 (t)=A.sub.2 [+2m.sub.2.sup.2 s.sub.2.sup.2 (t)-2.sqroot.2m.sub.2 (t) cos (2.pi.f.sub.o t] The time integration of the two signals I.sub.1 (t) and I.sub.2 (t) on the CCD deflector plane produces the result R(.tau.) of the mean-square error having the form: R(.tau.)=A.sub.1 A.sub.2 {[T]+[2m.sub.2.sup.2.multidot..intg.s.sub.2.sup.2 (t-.tau.)dt]-[2m.sub.1 m.sub.2 cos (2.tau.f.sub.o .tau.).multidot..intg.s.sub.1 (t)s.sub.2 (t-.tau.)dt]} where: s.sub.1 (t) is the signal input to the diode modulation source: s.sub.2 (t) is the signal input to the AOD modulation source; A.sub.1 is the light intensity; A.sub.2 is the diffraction efficiency; m.sub.1 and m.sub.2 are constants that determine the signal-to-bias ratio; f.sub.o is the frequency offset between the oscillator at f.sub.c and the modulation at f.sub.c +f.sub.o ; and a.sub.o and a.sub.1 are constant chosen to bias the diode source and the acousto-optic deflector into their respective linear operating regions so that the diode source exhibits a linear intensity characteristic and the AOD exhibits a linear amplitude characteristic.

  5. Correlation between optic nerve head parameters and retinal nerve fibre layer thickness measured by spectral-domain optical coherence tomography in myopic eyes.

    Science.gov (United States)

    Hwang, Young H; Kim, Yong Y

    2012-01-01

      To evaluate the correlation between optic nerve head parameters and retinal nerve fiber layer thickness measured by Cirrus HD spectral-domain optical coherence tomography (Cirrus HD-OCT; Carl Zeiss Meditec) in healthy myopic eyes.   Cross-sectional study.   One hundred and sixty-one right eyes from 161 healthy young myopic subjects.   Optic nerve head parameters and retinal nerve fiber layer thickness were measured with the Cirrus HD-OCT. The distance between optic disc margin and scan circle (disc margin-to-scan distance) was measured on the Cirrus HD-OCT en-face optic nerve head image with aid of National Institutes of Health ImageJ image-analysis software (developed by Wayne Rasbands, National Institutes of Health, Bethesda, MD).   The correlations among optic nerve head parameters, retinal nerve fibre layer thickness and the disc margin-to-scan distance were evaluated with and without adjustment of the magnification effect.   Without correction of the magnification effect, the thicker average retinal nerve fiber layer was correlated with greater rim area and lower degree of myopia (P fibre layer was associated with greater disc area and greater rim area in univariate and multivariate analyses (P ≤ 0.028); however, degrees of myopia and the disc margin-to-scan distance were not significantly associated with average RNFL thickness (P ≥ 0.104).   Thicker average retinal nerve fibre layer thickness was associated with greater rim and disc areas. Disc margin-to-scan distance was not significantly correlated with average retinal nerve fibre layer thickness in healthy myopic eyes. © 2012 The Authors. Clinical and Experimental Ophthalmology © 2012 Royal Australian and New Zealand College of Ophthalmologists.

  6. Quantum key distribution with an efficient countermeasure against correlated intensity fluctuations in optical pulses

    Science.gov (United States)

    Yoshino, Ken-ichiro; Fujiwara, Mikio; Nakata, Kensuke; Sumiya, Tatsuya; Sasaki, Toshihiko; Takeoka, Masahiro; Sasaki, Masahide; Tajima, Akio; Koashi, Masato; Tomita, Akihisa

    2018-03-01

    Quantum key distribution (QKD) allows two distant parties to share secret keys with the proven security even in the presence of an eavesdropper with unbounded computational power. Recently, GHz-clock decoy QKD systems have been realized by employing ultrafast optical communication devices. However, security loopholes of high-speed systems have not been fully explored yet. Here we point out a security loophole at the transmitter of the GHz-clock QKD, which is a common problem in high-speed QKD systems using practical band-width limited devices. We experimentally observe the inter-pulse intensity correlation and modulation pattern-dependent intensity deviation in a practical high-speed QKD system. Such correlation violates the assumption of most security theories. We also provide its countermeasure which does not require significant changes of hardware and can generate keys secure over 100 km fiber transmission. Our countermeasure is simple, effective and applicable to wide range of high-speed QKD systems, and thus paves the way to realize ultrafast and security-certified commercial QKD systems.

  7. Broad-band spectral studies of optical lightnings and possible correlation with solar activity

    International Nuclear Information System (INIS)

    Bhat, C.L.; Sapru, M.L.; Kaul, R.K.; Razdan, H.

    1984-01-01

    Optical pulses from lightning discharges have been recorded in a ground-based experiment, meant primarily for the detection of cosmic X- and γ-ray bursts through the atmospheric fluorescence technique. It is shown that the spectral ratio Asub(v)/Asub(y), i.e. the ratio of pulse amplitudes in the violet to that in yellow wavelength bands (3400-4300 A and 4400-6000 A respectively) provides a good indication of the lightning channel temperature, the range of derived temperatures extending from 5.000 K to 60.000 K. Based on the distribution of observed Asub(v)/Asub(y) values on a daily basis, it has been possible to separate the observed lightning activity into two classes. One class of event is shown to be correlated with the peaking of the global atmospheric electric field and occurs preferentially on days when the ground-level cosmic ray intensity shows a significant decrease in association with an increase in geomagnetic activity. The results are discussed in terms of the contemporary views regarding solar control of atmospheric electricity and the various sun-weather correlations reported earlier. (author)

  8. Analyses of the correlation between dermal and blood carotenoids in female cattle by optical methods.

    Science.gov (United States)

    Klein, Julia; Darvin, Maxim E; Meinke, Martina C; Schweigert, Florian J; Müller, Kerstin E; Lademann, Jürgen

    2013-06-01

    Herd health programs for the maintenance of welfare and productivity in cattle need efficient tools for monitoring the health of individual animals. Recent reports demonstrate that the oxidative status is related to various stress conditions in dairy cows. Biomarkers, among other carotenoids, could serve as indicators of stress originating from the environment (e.g., heat stress or sun radiation) or from the animal itself (e.g., disease). To date, only invasive in vitro tests are available to assess the oxidative status in cattle. The present study compares the results of optical noninvasive in vivo measurements of dermal carotenoids in cattle udder skin using an LED-based miniaturized spectroscopic system (MSS) with those obtained by photometric analysis of beta carotene in whole blood samples using a portable device. Correlations between the concentrations of dermal and blood carotenoids were calculated under consideration of the nutritional status of the animals. Significant correlation (R = 0.86) was found for cattle with a moderate to obese body condition. Thus, the blood and skin concentrations of the marker substance beta carotene are comparable under stable stress conditions of the cattle. This demonstrates that the MSS is suitable for noninvasive assessment of dermal carotenoid concentrations in cattle.

  9. Correlation of Optic Nerve Microcirculation with Papillomacular Bundle Structure in Treatment Naive Normal Tension Glaucoma

    Directory of Open Access Journals (Sweden)

    Wataru Kobayashi

    2014-01-01

    Full Text Available Purpose. To assess the association between optic nerve head (ONH microcirculation, central papillomacular bundle (CPB structure, and visual function in eyes with treatment naive normal tension glaucoma (NTG. Methods. This study included 40 eyes of 40 patients with NTG and 20 eyes of 20 normal patients. We used laser speckle flowgraphy (LSFG to measure mean blur rate (MBR in all eyes and calculated the ratio of MBR in the horizontal quadrants of tissue area ONH (temporal/nasal ratio of MBR in the tissue area: T/N MT. Clinical findings also included retinal nerve fiber layer thickness (RNFLT and ganglion cell complex thickness (GCCT in the CPB and macular areas, best-corrected visual acuity (BCVA, mean deviation (MD, and refractive error. Results. T/N MT was correlated with both BCVA and MD. The OCT parameters most highly correlated with T/N MT were macular RNFLT and mid-CPB RNFLT. Furthermore, T/N MT, mid-CPB RNFLT, and macular RNFLT were higher in NTG than in normal eyes. A discrimination analysis revealed that T/N MT and refractive error were independent factors indicating NTG. Conclusions. Our results suggest that T/N MT is a candidate biomarker of NTG. Furthermore, T/N MT reflects visual function, including acuity and sensitivity, and CPB structure.

  10. Analyses of the correlation between dermal and blood carotenoids in female cattle by optical methods

    Science.gov (United States)

    Klein, Julia; Darvin, Maxim E.; Meinke, Martina C.; Schweigert, Florian J.; Müller, Kerstin E.; Lademann, Jürgen

    2013-06-01

    Herd health programs for the maintenance of welfare and productivity in cattle need efficient tools for monitoring the health of individual animals. Recent reports demonstrate that the oxidative status is related to various stress conditions in dairy cows. Biomarkers, among other carotenoids, could serve as indicators of stress originating from the environment (e.g., heat stress or sun radiation) or from the animal itself (e.g., disease). To date, only invasive in vitro tests are available to assess the oxidative status in cattle. The present study compares the results of optical noninvasive in vivo measurements of dermal carotenoids in cattle udder skin using an LED-based miniaturized spectroscopic system (MSS) with those obtained by photometric analysis of beta carotene in whole blood samples using a portable device. Correlations between the concentrations of dermal and blood carotenoids were calculated under consideration of the nutritional status of the animals. Significant correlation (R=0.86) was found for cattle with a moderate to obese body condition. Thus, the blood and skin concentrations of the marker substance beta carotene are comparable under stable stress conditions of the cattle. This demonstrates that the MSS is suitable for noninvasive assessment of dermal carotenoid concentrations in cattle.

  11. High-accuracy optical extensometer based on coordinate transform in two-dimensional digital image correlation

    Science.gov (United States)

    Lv, Zeqian; Xu, Xiaohai; Yan, Tianhao; Cai, Yulong; Su, Yong; Zhang, Qingchuan

    2018-01-01

    In the measurement of plate specimens, traditional two-dimensional (2D) digital image correlation (DIC) is challenged by two aspects: (1) the slant optical axis (misalignment of the optical camera axis and the object surface) and (2) out-of-plane motions (including translations and rotations) of the specimens. There are measurement errors in the results measured by 2D DIC, especially when the out-of-plane motions are big enough. To solve this problem, a novel compensation method has been proposed to correct the unsatisfactory results. The proposed compensation method consists of three main parts: 1) a pre-calibration step is used to determine the intrinsic parameters and lens distortions; 2) a compensation panel (a rigid panel with several markers located at known positions) is mounted to the specimen to track the specimen's motion so that the relative coordinate transformation between the compensation panel and the 2D DIC setup can be calculated using the coordinate transform algorithm; 3) three-dimensional world coordinates of measuring points on the specimen can be reconstructed via the coordinate transform algorithm and used to calculate deformations. Simulations have been carried out to validate the proposed compensation method. Results come out that when the extensometer length is 400 pixels, the strain accuracy reaches 10 με no matter out-of-plane translations (less than 1/200 of the object distance) nor out-of-plane rotations (rotation angle less than 5°) occur. The proposed compensation method leads to good results even when the out-of-plane translation reaches several percents of the object distance or the out-of-plane rotation angle reaches tens of degrees. The proposed compensation method has been applied in tensile experiments to obtain high-accuracy results as well.

  12. Retinal atrophy correlates with fMRI response in patients with recovered optic neuritis

    DEFF Research Database (Denmark)

    Fuglø, D; Kallenbach, K; Tsakiri, A

    2011-01-01

    We wanted to investigate if retinal nerve fiber layer thickness (RNFLT) measured by optical coherence tomography (OCT) might be a good marker of acute and chronic changes in the afferent visual pathway following acute optic neuritis (ON)....

  13. Retinal atrophy correlates with fMRI response in patients with recovered optic neuritis

    DEFF Research Database (Denmark)

    Fuglø, D; Kallenbach, K; Tsakiri, A

    2011-01-01

    We wanted to investigate if retinal nerve fiber layer thickness (RNFLT) measured by optical coherence tomography (OCT) might be a good marker of acute and chronic changes in the afferent visual pathway following acute optic neuritis (ON).......We wanted to investigate if retinal nerve fiber layer thickness (RNFLT) measured by optical coherence tomography (OCT) might be a good marker of acute and chronic changes in the afferent visual pathway following acute optic neuritis (ON)....

  14. First principles electron-correlated calculations of optical absorption in magnesium clusters★

    Science.gov (United States)

    Shinde, Ravindra; Shukla, Alok

    2017-11-01

    In this paper, we report large-scale configuration interaction (CI) calculations of linear optical absorption spectra of various isomers of magnesium clusters Mgn (n = 2-5), corresponding to valence transitions. Geometry optimization of several low-lying isomers of each cluster was carried out using coupled-cluster singles doubles (CCSD) approach, and these geometries were subsequently employed to perform ground and excited state calculations using either the full-CI (FCI) or the multi-reference singles-doubles configuration interaction (MRSDCI) approach, within the frozen-core approximation. Our calculated photoabsorption spectrum of magnesium dimer (Mg2) is in excellent agreement with the experiments both for peak positions, and intensities. Owing to the sufficiently inclusive electron-correlation effects, these results can serve as benchmarks against which future experiments, as well as calculations performed using other theoretical approaches, can be tested. Supplementary material in the form of one pdf fille available from the Journal web page at http://https://doi.org/10.1140/epjd/e2017-80356-6.

  15. Advanced optical correlation and digital methods for pattern matching—50th anniversary of Vander Lugt matched filter

    International Nuclear Information System (INIS)

    Millán, María S

    2012-01-01

    On the verge of the 50th anniversary of Vander Lugt’s formulation for pattern matching based on matched filtering and optical correlation, we acknowledge the very intense research activity developed in the field of correlation-based pattern recognition during this period of time. The paper reviews some domains that appeared as emerging fields in the last years of the 20th century and have been developed later on in the 21st century. Such is the case of three-dimensional (3D) object recognition, biometric pattern matching, optical security and hybrid optical–digital processors. 3D object recognition is a challenging case of multidimensional image recognition because of its implications in the recognition of real-world objects independent of their perspective. Biometric recognition is essentially pattern recognition for which the personal identification is based on the authentication of a specific physiological characteristic possessed by the subject (e.g. fingerprint, face, iris, retina, and multifactor combinations). Biometric recognition often appears combined with encryption–decryption processes to secure information. The optical implementations of correlation-based pattern recognition processes still rely on the 4f-correlator, the joint transform correlator, or some of their variants. But the many applications developed in the field have been pushing the systems for a continuous improvement of their architectures and algorithms, thus leading towards merged optical–digital solutions. (review article)

  16. Correlation of spectral domain optical coherence tomography findings in acute central serous chorioretinopathy with visual acuity

    Directory of Open Access Journals (Sweden)

    Nair U

    2012-11-01

    Full Text Available Unnikrishnan Nair,1 Sunil Ganekal,2 Manoj Soman,1 KGR Nair11Chaithanya Eye Hospital and Research Institute, Trivandrum, Kerala, India; 2Nayana Super Specialty Eye Hospital and Research Center, Davangere, Karnataka, IndiaPurpose: To evaluate the structural changes in the acute phase of central serous chorioretinopathy and after its resolution, using spectral domain optical coherence tomography, to correlate these tomographic changes with visual acuity (VA.Method: This was a prospective study of 100 consecutive patients with acute central serous chorioretinopathy. It was based on presenting the best-corrected VA, divided into three groups (Group 1, n = 36, VA 6/6; Group 2, n = 49, VA 6/9–6/18; Group 3, n = 15, VA > 6/18. All patients underwent fundus evaluation followed by fluorescein angiography and spectral domain optical coherence tomography.Results: The mean age of the patients was 40 ± 7.17 years. The mean log MAR VA was 0.176 ± 0.0185. Single pigment epithelial detachment (PED, and multiple discrete and multiple confluent PEDs were seen in 21%, 17%, and 32% of the eyes, respectively. The location of the PED was subfoveal in 35% of the eyes. The presence of subretinal fibrin and a rough undersurface of the neurosensory retina were noted in 61% and 64% of the eyes, respectively. On en-face scanning, a break in the walls of the PED and overlying fibrin were seen in 32.8% and 45% of the eyes, respectively. The mean subretinal fluid height at the fovea was 279.11 ± 148.78 µ. The mean outer nuclear layer thickness during the active stage was 95.10 µ and during the resolved stage, it was 77.69 µ (P = 0.012. The average photoreceptor lengths were 73.1 µ, 84.6 µ, and 94.9 µ in groups 1, 2, and 3, respectively, in the acute phase; and 69.5 µ, 70.8 µ, and 61.6 µ, respectively, after resolution (P = 0.013, P = 0.010, and P = 0.011.Conclusion: In the acute phase of the disease, poorer VA showed statistically significant association with

  17. A Fast, Portable, Fiber Optic Spectrofluorometer for Eddy Correlation Flux Measurement in the Aquatic Environment

    Science.gov (United States)

    Hu, I. H.; Senft-Grupp, S.; Hemond, H.

    2014-12-01

    The measurement of chemical fluxes between natural waters and their benthic sediments by most existing methods, such as benthic chambers and sediment core incubations, is slow, cumbersome, and often inaccurate. One promising new method for determining benthic fluxes is eddy correlation (EC), a minimally invasive, in situ technique based on high-speed velocity and concentration measurements. Widespread application of EC to a large range of chemicals of interest is currently limited, however, by the availability of rapid, high-resolution chemical sensors capable of precisely measuring concentrations at a point location and at sufficient speed (several Hz). A proof of concept spectrofluorometry instrument has been created that is capable of high-frequency concentration measurements of naturally fluorescent substances. Designed with the EC application in mind, the system utilizes optical fibers to transmit excitation and emission light, enabling in situ measurements at high spatial resolution. Emitted fluorescence light is passed through a tunable monochromator before reaching a photomultiplier tube; photons are quantified by a custom miniaturized, low-power photon counting circuit board. Preliminary results indicate that individual measurements made at 100 Hz of a 10 ppm humic acid solution were precise within 10%, thus yielding a precision of the order of +/- 1% in a second. Used in an EC system, this instrument will enable flux measurements of substances such as naturally occurring fluorescent dissolved organic material (FDOM). Measurement of fluxes of FDOM is significant in its own right, and also will allow the indirect measurement of the numerous other chemical fluxes that are associated with FDOM by using tracer techniques. The use of a tunable monochromator not only allows flexibility in detection wavelength, but also enables full wavelength scans of the emission spectrum, making the spectrofluorometer a dual-function device capable of both characterizing the

  18. Correlating optical, microwave and thermal remote sensing signals with groundwater head measurement time series

    Science.gov (United States)

    Sutanudjaja, E. H.; de Jong, S.; van Geer, F.; Bierkens, M. F.

    2010-12-01

    Due to global climate change, population growth and an ever increasing demand for fresh water, monitoring groundwater changes over large areas becomes very important. Current groundwater monitoring still heavily depends on groundwater head data that are often not available for large parts of the non-western world. Consequently, groundwater assessment, especially for large areas comprising several aquifers and basins, is very complex and not very accurate. The main research question of this study is to check whether optical, microwave and thermal remote sensing signals carry information on groundwater levels. The advantage of remote sensing data is that it provides synoptic overview of semi-quantitative maps of surface properties, such as vegetation, surface temperature, and soil moisture signals, where we seek the relation with shallow groundwater tables. In this study, we analyze and compare groundwater head measurement data and various remote sensing signals. Our datasets comprise over 5000 groundwater head measurement points in the Rhine-Meuse basin. These groundwater head data are compared to the signals of soil moisture (AMSR-E and ERS), thermal (MODIS land surface temperature) and vegetation (MODIS NDVI, LAI and FPAR). We investigated the correlation among these variables by performing straightforward statistical analyses, such as scatter-plots, multiple regression techniques and analyses of temporal variability between the variables. Results show that particularly the soil moisture demonstrates significant relations with groundwater depth, specifically for shallow water table depths and areas with sparse vegetation. We argue that remote sensing signals should be considered as important information for groundwater assessment in data-poor environments.

  19. Harmful intrusion detection algorithm of optical fiber pre-warning system based on correlation of orthogonal polarization signals

    Science.gov (United States)

    Bi, Fukun; Feng, Chong; Qu, Hongquan; Zheng, Tong; Wang, Chonglei

    2017-09-01

    At present, advanced researches of optical fiber intrusion measurement are based on the constant false alarm rate (CFAR) algorithm. Although these conventional methods overcome the interference of non-stationary random signals, there are still a large number of false alarms in practical applications. This is because there is no specific study on orthogonal polarization signals of false alarm and intrusion. In order to further reduce false alarms, we analyze the correlation of optical fiber signals using birefringence of single-mode fiber. This paper proposes the harmful intrusion detection algorithm based on the correlation of two orthogonal polarization signals. The proposed method uses correlation coefficient to distinguish false alarms and intrusions, which can decrease false alarms. Experiments on real data, which are collected from the practical environment, demonstrate that the difference in correlation is a robust feature. Furthermore, the results show that the proposed algorithm can reduce the false alarms and ensure the detection performance when it is used in optical fiber pre-warning system (OFPS).

  20. Strange metal from Gutzwiller correlations in infinite dimensions: Transverse transport, optical response, and rise of two relaxation rates

    Science.gov (United States)

    Ding, Wenxin; Žitko, Rok; Shastry, B. Sriram

    2017-09-01

    Using two approaches to strongly correlated systems, the extremely correlated Fermi liquid theory and the dynamical mean field theory, we compute the transverse transport coefficients, namely, the Hall constants RH and Hall angles θH, and the longitudinal and transverse optical response of the U =∞ Hubbard model in the limit of infinite dimensions. We focus on two successive low-temperature regimes, the Gutzwiller-correlated Fermi liquid (GCFL) and the Gutzwiller-correlated strange metal (GCSM). We find that the Hall angle cotθH is proportional to T2 in the GCFL regime, while upon warming into the GCSM regime it first passes through a downward bend and then continues as T2. Equivalently, RH is weakly temperature dependent in the GCFL regime, but becomes strongly temperature dependent in the GCSM regime. Drude peaks are found for both the longitudinal optical conductivity σx x(ω ) and the optical Hall angles tanθH(ω ) below certain characteristic energy scales. By comparing the relaxation rates extracted from fitting to the Drude formula, we find that in the GCFL regime there is a single relaxation rate controlling both longitudinal and transverse transport, while in the GCSM regime two different relaxation rates emerge. We trace the origin of this behavior to the dynamical particle-hole asymmetry of the Dyson self-energy, arguably a generic feature of doped Mott insulators.

  1. Hybrid optical CDMA-FSO communications network under spatially correlated gamma-gamma scintillation

    DEFF Research Database (Denmark)

    Jurado-Navas, Antonio; Raddo, Thiago R.; Garrido-Balsells, José María

    2016-01-01

    In this paper, we propose a new hybrid network solution based on asynchronous optical code-division multiple-access (OCDMA) and free-space optical (FSO) technologies for last-mile access networks, where fiber deployment is impractical. The architecture of the proposed hybrid OCDMA-FSO network is ...

  2. Correlation of polishing-induced shallow subsurface damages with laser-induced gray haze damages in fused silica optics

    Science.gov (United States)

    He, Xiang; Zhao, Heng; Wang, Gang; Zhou, Peifan; Ma, Ping

    2016-08-01

    Laser-induced damage in fused silica optics greatly restricts the performances of laser facilities. Gray haze damage, which is always initiated on ceria polished optics, is one of the most important damage morphologies in fused silica optics. In this paper, the laser-induced gray haze damages of four fused silica samples polished with CeO2, Al2O3, ZrO2, and colloidal silica slurries are investigated. Four samples all present gray haze damages with much different damage densities. Then, the polishing-induced contaminant and subsurface damages in four samples are analyzed. The results reveal that the gray haze damages could be initiated on the samples without Ce contaminant and are inclined to show a tight correlation with the shallow subsurface damages.

  3. Real-Time Distributed Strain Monitoring of a Railway Bridge during Train Passage by Using a Distributed Optical Fiber Sensor Based on Brillouin Optical Correlation Domain Analysis

    Directory of Open Access Journals (Sweden)

    Hyuk-Jin Yoon

    2016-01-01

    Full Text Available This study demonstrates the monitoring of distributed strain of rail and girder of a railway bridge occurring during train passage over the bridge’s entire section on a real-time basis by applying a developed distributed optical fiber sensor based on Brillouin Optical Correlation Domain Analysis (BOCDA. The distributed optical fiber sensor system and an algorithm to control as well as to analyze Brillouin gain spectrum signals were also developed. A single-mode optical fiber was attached in the longitudinal direction on the rail and the lower flange of the girder to be used as a sensing fiber of the BOCDA system. Changes in the girder’s strain at the center point of the bridge during the passage of a commercial train were measured at 9 Hz, and the accuracy of this measurement was validated by comparing the measured data with the data from strain gauge. In addition, the distributed strain of a girder and the rail with a length of 40.26 m was measured in real time with a spatial resolution of 31.1 cm. Based on the results of the rail’s strain distribution, the study could identify the location where excessive strain occurred due to an influence of unsupported sleepers on girder of the bridge.

  4. Optics

    CERN Document Server

    Mathieu, Jean Paul

    1975-01-01

    Optics, Parts 1 and 2 covers electromagnetic optics and quantum optics. The first part of the book examines the various of the important properties common to all electromagnetic radiation. This part also studies electromagnetic waves; electromagnetic optics of transparent isotropic and anisotropic media; diffraction; and two-wave and multi-wave interference. The polarization states of light, the velocity of light, and the special theory of relativity are also examined in this part. The second part is devoted to quantum optics, specifically discussing the classical molecular theory of optical p

  5. Study on internal to surface fingerprint correlation using optical coherence tomography and internal fingerprint extraction

    CSIR Research Space (South Africa)

    Darlow, LN

    2015-11-01

    Full Text Available Surface fingerprint scanners are limited to a two-dimensional representation of the fingerprint topography, and thus, are vulnerable to fingerprint damage, distortion, and counterfeiting. Optical coherence tomography (OCT) scanners are able to image...

  6. Correlation of free-space optics link attenuation with sonic temperature

    Czech Academy of Sciences Publication Activity Database

    Chládová, Zuzana; Fišer, Ondřej; Brázda, Vladimír; Svoboda, Jaroslav

    2013-01-01

    Roč. 52, č. 3 (2013) ISSN 0091-3286 R&D Projects: GA ČR(CZ) GAP102/11/1376 Institutional support: RVO:68378289 Keywords : free-space optics * atmospheric attenuation * water vapor * free-space optics design Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.958, year: 2013 http://opticalengineering.spiedigitallibrary.org/article.aspx?articleid=1667062

  7. Coded aperture systems as non-conventional lensless imagers for the visible and infrared

    Science.gov (United States)

    Slinger, Chris; Gordon, Neil; Lewis, Keith; McDonald, Gregor; McNie, Mark; Payne, Doug; Ridley, Kevin; Strens, Malcolm; De Villiers, Geoff; Wilson, Rebecca

    2007-10-01

    Coded aperture imaging (CAI) has been used extensively at gamma- and X-ray wavelengths, where conventional refractive and reflective techniques are impractical. CAI works by coding optical wavefronts from a scene using a patterned aperture, detecting the resulting intensity distribution, then using inverse digital signal processing to reconstruct an image. This paper will consider application of CAI to the visible and IR bands. Doing so has a number of potential advantages over existing imaging approaches at these longer wavelengths, including low mass, low volume, zero aberrations and distortions and graceful failure modes. Adaptive coded aperture (ACAI), facilitated by the use of a reconfigurable mask in a CAI configuration, adds further merits, an example being the ability to implement agile imaging modes with no macroscopic moving parts. However, diffraction effects must be considered and photon flux reductions can have adverse consequences on the image quality achievable. An analysis of these benefits and limitations is described, along with a description of a novel micro optical electro mechanical (MOEMS) microshutter technology for use in thermal band infrared ACAI systems. Preliminary experimental results are also presented.

  8. Correlated X-ray/UV/optical emission and short-term variability in a Seyfert 1 galaxy NGC 4593

    Science.gov (United States)

    Pal, Main; Naik, Sachindra

    2018-03-01

    We present a detailed multifrequency analysis of an intense monitoring programme of Seyfert 1 galaxy NGC 4593 over a duration of nearly for a month with Swift observatory. We used 185 pointings to study the variability in six ultraviolet/optical and two soft (0.3-1.5 keV) and hard X-ray (1.5-10 keV) bands. The amplitude of the observed variability is found to decrease from high energy to low energy (X-ray to optical) bands. Count-count plots of ultraviolet/optical bands with hard X-rays clearly suggest the presence of a mixture of two major components: (i) highly variable component such as hard X-ray emission, and (ii) slowly varying disc-like component. The variations observed in the ultraviolet/optical emission are strongly correlated with the hard X-ray band. Cross-correlation analysis provides the lags for the longer wavelengths compared to the hard X-rays. Such lags clearly suggest that the changes in the ultraviolet/optical bands follow the variations in the hard X-ray band. This implies that the observed variation in longer wavelengths is due to X-ray reprocessing. Though, the measured lag spectrum (lag versus wavelength) is well described by λ4/3 as expected from the standard disc model, the observed lags are found to be longer than the predicted values from standard disc model. This implies that the actual size of the disc of NGC 4593 is larger than the estimated size of standard thin disc as reported in active galactic nuclei such as NGC 5548 and Fairall 9.

  9. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Ninth Edition Optics: Ninth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommen

  10. Correlation Wave-Front Sensing Algorithms for Shack-Hartmann-Based Adaptive Optics using a Point Source

    International Nuclear Information System (INIS)

    Poynee, L A

    2003-01-01

    Shack-Hartmann based Adaptive Optics system with a point-source reference normally use a wave-front sensing algorithm that estimates the centroid (center of mass) of the point-source image 'spot' to determine the wave-front slope. The centroiding algorithm suffers for several weaknesses. For a small number of pixels, the algorithm gain is dependent on spot size. The use of many pixels on the detector leads to significant propagation of read noise. Finally, background light or spot halo aberrations can skew results. In this paper an alternative algorithm that suffers from none of these problems is proposed: correlation of the spot with a ideal reference spot. The correlation method is derived and a theoretical analysis evaluates its performance in comparison with centroiding. Both simulation and data from real AO systems are used to illustrate the results. The correlation algorithm is more robust than centroiding, but requires more computation

  11. Correlations between optical properties, microstructure, and processing conditions of Aluminum nitride thin films fabricated by pulsed laser deposition

    International Nuclear Information System (INIS)

    Baek, Jonghoon; Ma, James; Becker, Michael F.; Keto, John W.; Kovar, Desiderio

    2007-01-01

    Aluminum nitride (AlN) films were deposited using pulsed laser deposition (PLD) onto sapphire (0001) substrates with varying processing conditions (temperature, pressure, and laser fluence). We have studied the dependence of optical properties, structural properties and their correlations for these AlN films. The optical transmission spectra of the produced films were measured, and a numerical procedure was applied to accurately determine the optical constants for films of non-uniform thickness. The microstructure and texture of the films were studied using various X-ray diffraction techniques. The real part of the refractive index was found to not vary significantly with processing parameters, but absorption was found to be strongly dependent on the deposition temperature and the nitrogen pressure in the deposition chamber. We report that low optical absorption, textured polycrystalline AlN films can be produced by PLD on sapphire substrates at both low and high laser fluence using a background nitrogen pressure of 6.0 x 10 -2 Pa (4.5 x 10 -4 Torr) of 99.9% purity

  12. Correlated fast X-ray and optical variability in the black-hole candidate XTE J1118+480.

    Science.gov (United States)

    Kanbach, G; Straubmeier, C; Spruit, H C; Belloni, T

    2001-11-08

    Black holes become visible when they accrete gas, a common source of which is a close stellar companion. The standard theory for this process (invoking a 'thin accretion disk') does not explain some spectacular phenomena associated with these systems, such as their X-ray variability and relativistic outflows, indicating some lack of understanding of the actual physical conditions. Simultaneous observations at multiple wavelengths can provide strong constraints on these conditions. Here we report simultaneous high-time-resolution X-ray and optical observations of the transient source XTE J1118+480, which show a strong but puzzling correlation between the emissions. The optical emission rises suddenly following an increase in the X-ray output, but with a dip 2-5 seconds in advance of the X-rays. This result is not easy to understand within the simplest model of the optical emission, where the light comes from reprocessed X-rays. It is probably more consistent with an earlier suggestion that the optical light is cyclosynchrotron emission that originates in a region about 20,000 km from the black hole. We propose that the time dependence is evidence for a relatively slow (<0.1c), magnetically controlled outflow.

  13. Endoscopic detection of cancer with lensless radioluminescence imaging and machine vision.

    Science.gov (United States)

    Türkcan, Silvan; Naczynski, Dominik J; Nolley, Rosalie; Sasportas, Laura S; Peehl, Donna M; Pratx, Guillem

    2016-08-01

    Complete removal of residual tumor tissue during surgical resection improves patient outcomes. However, it is often difficult for surgeons to delineate the tumor beyond its visible boundary. This has led to the development of intraoperative detectors that can image radiotracers accumulated within tumors, thus facilitating the removal of residual tumor tissue during surgical procedures. We introduce a beta imaging system that converts the beta radiation from the radiotracer into photons close to the decay origin through a CdWO4 scintillator and does not use any optical elements. The signal is relayed onto an EMCCD chip through a wound imaging fiber. The sensitivity of the device allows imaging of activity down to 100 nCi and the system has a resolution of at least 500 μm with a field of view of 4.80 × 6.51 mm. Advances in handheld beta cameras have focused on hardware improvements, but we apply machine vision to the recorded images to extract more information. We automatically classify sample regions in human renal cancer tissue ex-vivo into tumor or benign tissue based on image features. Machine vision boosts the ability of our system to distinguish tumor from healthy tissue by a factor of 9 ± 3 and can be applied to other beta imaging probes.

  14. Optical coherence tomography imaging of psoriasis vulgaris: correlation with histology and disease severity

    DEFF Research Database (Denmark)

    Morsy, Hanan; Kamp, Søren; Thrane, Lars

    2010-01-01

    Epidermal thickness (ET) has been suggested as a surrogate measure of psoriasis severity. Optical coherence tomography (OCT) is a recent imaging technology that provides real-time skin images to a depth of 1.8 mm with a micrometre resolution. OCT may provide an accurate in vivo measure of ET. It ...

  15. Correlation of optical properties with the fractal microstructure of black molybdenum coatings

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, Enrique; Gonzalez, Federico [Area de Energia, Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Mexico, D.F. 09340 (Mexico); Rodriguez, Eduardo [Area de Computacion y Sistemas, Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Mexico, D.F. 09340 (Mexico); Alvarez-Ramirez, Jose, E-mail: jjar@xanum.uam.mx [Area de Energia, Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Mexico, D.F. 09340 (Mexico)

    2010-01-01

    Coating is commonly used for improving the optical properties of surfaces for solar collector applications. The coating morphology depends on the deposition conditions, and this determines the final optical characteristics. Coating morphologies are irregular and of fractal nature, so a suitable approach for its characterization should use methods borrowed from fractal analysis. The aim of this work is to study the fractal characteristics of black molybdenum coatings on copper and to relate the fractal parameters to the optical properties. To this end, coating surfaces were prepared via immersion in a solution of ammonium paramolybdate for different deposition periods. The fractal analysis was carried out for SEM and AFM images of the coating surface and the fractal properties were obtained with a recently developed high-dimensional extension of the well-known detrended fluctuation analysis (DFA). The most salient parameter drawn from the application of the DFA is the Hurst index, a parameter related to the roughness of the coating surface, and the multifractality index, which is related to the non-linearity features of the coating morphology. The results showed that optical properties, including absorptance and emittance, are decreasing functions of the Hurst and multifractality indices. This suggests that coating surfaces with high absorptance and emittance values are related to complex coating morphologies conformed within a non-linear structure.

  16. X-ray pulse preserving single-shot optical cross-correlation method for improved experimental temporal resolution

    International Nuclear Information System (INIS)

    Beye, M.; Krupin, O.; Hays, G.; Jong, S. de; Lee, S.; Coffee, R.; Holmes, M. R.; Fry, A. R.; White, W. E.; Bostedt, C.; Schlotter, W. F.; Reid, A. H.; Rupp, D.; Lee, W.-S.; Scherz, A. O.; Chuang, Y.-D.; Cryan, J. P.; Glownia, J. M.; Foehlisch, A.; Durr, H. A.

    2012-01-01

    We measured the relative arrival time between an optical pulse and a soft x-ray pulse from a free-electron laser. This femtosecond cross-correlation measurement was achieved by observing the change in optical reflectivity induced through the absorption of a fraction of the x-ray pulse. The main x-ray pulse energy remained available for an independent pump-probe experiment where the sample may be opaque to soft x-rays. The method was employed to correct the two-pulse delay data from a canonical pump-probe experiment and demonstrate 130 ± 20 fs (FWHM) temporal resolution. We further analyze possible timing jitter sources and point to future improvements.

  17. Longitudinal correlation properties of an optical field with broad angular and frequency spectra and their manifestation in interference microscopy

    International Nuclear Information System (INIS)

    Lyakin, D V; Ryabukho, V P

    2013-01-01

    The results of theoretical and experimental studies of the longitudinal correlation properties of an optical field with broad angular and frequency spectra and manifestations of these properties in interference microscopy are presented. The joint and competitive influence of the angular and frequency spectra of the object-probing field on the longitudinal resolution and on the amplitude of the interference microscope signals from the interfaces between the media inside a multilayer object is demonstrated. The method of compensating the so-called defocusing effect that arises in the interference microscopy using objectives with a large numerical aperture is experimentally demonstrated, which consists in using as a light source in the interference microscope an illuminating interferometer with a frequency-broadband light source. This method of compensation may be used as the basis of simultaneous determination of geometric thickness and refractive index of media forming a multilayer object. (optical fields)

  18. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Eighth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommended for engineering st

  19. Correlation methods in optical metrology with state-of-the-art x-ray mirrors

    Science.gov (United States)

    Yashchuk, Valeriy V.; Centers, Gary; Gevorkyan, Gevork S.; Lacey, Ian; Smith, Brian V.

    2018-01-01

    The development of fully coherent free electron lasers and diffraction limited storage ring x-ray sources has brought to focus the need for higher performing x-ray optics with unprecedented tolerances for surface slope and height errors and roughness. For example, the proposed beamlines for the future upgraded Advance Light Source, ALS-U, require optical elements characterized by a residual slope error of square) and height error of scanning strategy (AOSS) technique. This allows a significant improvement in the accuracy and capacity of the measurements via suppression of the instrumental low frequency noise, temporal drift, and systematic error in a single measurement run. Practically speaking, implementation of the AOSS technique leads to an increase of the measurement accuracy, as well as the capacity of ex situ metrology by a factor of about four. The developed method is general and applicable to a broad spectrum of high accuracy measurements.

  20. Correlations in photon-numbers and integrated intensities in parametric processes involving three optical fields

    Czech Academy of Sciences Publication Activity Database

    Peřina, Jan; Křepelka, Jaromír; Peřina ml., Jan; Bondani, M.; Allevi, A.; Andreoni, A.

    2009-01-01

    Roč. 53, č. 3 (2009), 373-382 ISSN 1434-6060 R&D Projects: GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : parametric process * three-mode state * sub-Poisson statistics * conditional measurement Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.420, year: 2009

  1. Measurement and correlation of the solubility of gossypol acetic acid and gossypol acetic acid of optical activity in different solvents

    Science.gov (United States)

    Zhang, B.; Tang, H.; Liu, X. Y.; Zhai, X.; Yao, X. C.

    2018-01-01

    The equilibrium method was used to measure the solubility of gossypol acetic acid and gossypol acetic acid of optical activity in isopropyl alcohol, ethanol, acetic acid and ethyl acetate at temperature from 288.15 to 315.15. The Empirical equation and the Apelblat equation model were adopted to correlate the experimental data. For gossypol acetic acid, the root-mean-square deviations (RMSD) were observed in the range of 0.023-4.979 and 0.0112-0.614 for the Empirical equation and the Apelblat equation, respectively. For gossypol acetic acid of optical activity, the RMSD were observed in the range of 0.021-2.211 and 0.021-2.243 for the Empirical equation and the Apelblat equation, individually. And the maximum relative average deviation was 7.5%. Both equations offered an accurate mathematical expression of the experimental results. The calculated solubility showed a good relationship with the experimental solubility for most of solvents. This study provided valuable datas not only for optimizing the process of purification of gossypol acetic acid of optical activity in industry but also for further theoretical studies.

  2. THE JET POWER AND EMISSION-LINE CORRELATIONS OF RADIO-LOUD OPTICALLY SELECTED QUASARS

    International Nuclear Information System (INIS)

    Punsly, Brian; Zhang Shaohua

    2011-01-01

    In this Letter, the properties of the extended radio emission form Sloan Digital Sky Survey Data Release 7 quasars with 0.4 20-30 kpc). The frequency of quasars with FR II level extended radio emission is ∼2.3% and >0.4% of quasars have FR I level extended radio emission. The lower limit simply reflects the flux density limit of the survey. The distribution of the long-term time-averaged jet powers of these quasars, Q-bar , has a broad peak ∼3 x 10 44 erg s -1 that turns over below 10 44 erg s -1 and sources above 10 45 erg s -1 are extremely rare. It is found that the correlation between the bolometric (total thermal) luminosity of the accretion flow, L bol , and Q-bar is not strong. The correlation of Q-bar with narrow line luminosity is stronger than the correlation with broad line luminosity and the continuum luminosity. It is therefore concluded that previous interpretations of correlations of Q-bar with narrow line strengths in radio galaxies as a direct correlation of jet power and accretion power have been overstated. It is explained why this interpretation mistakenly overlooks the sizeable fraction of sources with weak accretion luminosity and powerful jets discovered by Ogle et al.

  3. Retinal nerve fibre layer thickness correlates with brain white matter damage in multiple sclerosis: a combined optical coherence tomography and diffusion tensor imaging study.

    Science.gov (United States)

    Scheel, Michael; Finke, Carsten; Oberwahrenbrock, Timm; Freing, Alina; Pech, Luisa-Maria; Schlichting, Jeremias; Sömmer, Carina; Wuerfel, Jens; Paul, Friedemann; Brandt, Alexander U

    2014-12-01

    We investigated the association of retinal nerve fibre layer thickness (RNFL) with white matter damage assessed by diffusion tensor imaging (DTI). Forty-four MS patients and 30 healthy subjects underwent optical coherence tomography. DTI was analysed with a voxel-based whole brain and region-based analysis of optic radiation, corpus callosum and further white matter. Correlations between RNFL, fractional anisotropy (FA) and other DTI-based parameters were assessed in patients and controls. RNFL correlated with optic radiation FA, but also with corpus callosum and remaining white matter FA. Our findings demonstrate that RNFL changes indicate white matter damage exceeding the visual pathway. © The Author(s), 2014.

  4. Versatile soft X-ray-optical cross-correlator for ultrafast applications

    Directory of Open Access Journals (Sweden)

    Daniel Schick

    2016-09-01

    eV up to the hard X-ray regime based on a molybdenum-silicon superlattice. The cross-correlation is done by probing intensity and position changes of superlattice Bragg peaks caused by photoexcitation of coherent phonons. This approach is applicable for a wide range of X-ray photon energies as well as for a broad range of excitation wavelengths and requires no external fields or changes of temperature. Moreover, the cross-correlator can be employed on a 10 ps or 100 fs time scale featuring up to 50% total X-ray reflectivity and transient signal changes of more than 20%.

  5. Correlation of morphological pattern of optical coherence tomography in diabetic macular edema with systemic risk factors in middle aged males.

    Science.gov (United States)

    Ghosh, Sambuddha; Bansal, Preeti; Shejao, Harsha; Hegde, Raghuraj; Roy, Debesh; Biswas, Shyamapada

    2015-02-01

    To study correlation of different optical coherence tomography (OCT) patterns of diabetic macular edema (DME) with systemic risk factors. Institutional cross-sectional double-masked non-interventional study with 330 eyes of middle-aged male type 2 diabetes patients with DME. Various systemic parameters were measured. Diffuse retinal thickening (DRT), cystoid and serous patterns of DME were identified on OCT. Comparison between DRT versus non-DRT and serous versus non-serous eyes was done in respect to systemic parameters. Correlation of serous and DRT pattern was tested with systemic parameters above and below specified values. Mean age was 54.4 ± 7.1 years. Mean duration of diabetes was 8.7 ± 4.2 years. Mean serum globulin level was significantly higher (p = 0.018) in serous compared to non-serous group. Prevalence of serous DME was significantly high in those with serum globulin level >3.5 gm/dl (prevalence ratio = 3.01, p = 0.040). Significant correlation of central macular thickness was observed with duration of diabetes (p = 0.002, r = 0.440).Visual acuity (logMAR) was correlated significantly with HbA1C (p = 0.031, r = 0.305). Increased serum globulin, a positive phase reactant of inflammation, was found significant independent risk factor for development of serous DME. This study did not identify any modifiable systemic factor for any of the OCT patterns in DME.

  6. Correlation between structural, optical and electrical properties anf the suitability of phase change alloys

    Energy Technology Data Exchange (ETDEWEB)

    Woda, Michael; Steimer, Christoph; Wamwangi, Daniel; Wuttig, Matthias [I. Insitute of Physics (IA), RWTH Aachen University, 52056 Aachen (Germany)

    2007-07-01

    Phase change random access memory (PCRAM) is a very promising candidate to replace Flash memories employed in the non-volatile storage sector. In the active region of this emerging memory, a phase change material is found. This class of materials is already used in rewritable optical data storage. In both application areas the reversible switching between the amorphous and the crystalline state by short current or laser pulses, respectively is used to store data. A key question that has not yet been answered regards the optimum choice of materials for phase change recording. We present a material selection strategy which classifies carefully chosen alloys, being representative for a larger selection of phase change materials, regarding their suitability for non-volatile storage applications. XRD and XRR measurements reveal structural properties of the as-deposited, amorphous and the crystalline state, the corresponding local bond arrangements and the change of film density. Ellipsometry measurements determine the optical contrast of the samples while the temperature dependent resistivity is measured by four point probe experiments. Finally the electrical switching behaviour is tested in nanometer size test cells to validate the full functionality of the chosen materials.

  7. Significant correlations between optic nerve head microcirculation and visual field defects and nerve fiber layer loss in glaucoma patients with myopic glaucomatous disk

    Directory of Open Access Journals (Sweden)

    Yokoyama Y

    2011-12-01

    Full Text Available Yu Yokoyama, Naoko Aizawa, Naoki Chiba, Kazuko Omodaka, Masahiko Nakamura, Takaaki Otomo, Shunji Yokokura, Nobuo Fuse, Toru NakazawaDepartment of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, JapanBackground: Eyes with glaucoma are characterized by optic neuropathy with visual field defects in the areas corresponding to the optic disk damage. The exact cause for the glaucomatous optic neuropathy has not been determined. Myopia has been shown to be a risk factor for glaucoma. The purpose of this study was to determine whether a significant correlation existed between the microcirculation of the optic disk and the visual field defects and the retinal nerve fiber layer thickness (RNFLT in glaucoma patients with myopic optic disks.Methods: Sixty eyes of 60 patients with myopic disks were studied; 36 eyes with glaucoma (men:women = 19:17 and 24 eyes with no ocular diseases (men:women = 14:10. The mean deviation (MD determined by the Humphrey field analyzer, and the peripapillary RNFLT determined by the Stratus-OCT were compared between the two groups. The ocular circulation was determined by laser speckle flowgraphy (LSFG, and the mean blur rate (MBR was compared between the two groups. The correlations between the RNFLT and MBR of the corresponding areas of the optic disk and between MD and MBR of the optic disk in the glaucoma group were determined by simple regression analyses.Results: The average MBR for the entire optic disk was significantly lower in the glaucoma group than that in the control group. The differences of the MBR for the tissue in the superior, inferior, and temporal quadrants of the optic disk between the two groups were significant. The MBR for the entire optic disk was significantly correlated with the MD (r = 0.58, P = 0.0002 and the average RNFLT (r = 0.53, P = 0.0008. The tissue MBR of the optic disk was significantly correlated with the RNFLT in the superior, inferior, and temporal quadrants

  8. Nonequilibrium steady states in correlated electron systems - Photoinduced insulator-metal transition and optical response

    International Nuclear Information System (INIS)

    Tsuji, Naoto; Oka, Takashi; Aoki, Hideo

    2010-01-01

    To reveal the nature of the photoinduced insulator-metal transition, we show that an exact analysis of the Falicov-Kimball model subject to external ac electric fields becomes possible with Floquet's method combined with the nonequilibrium dynamical mean-field theory. The nonequilibrium steady state that appears during irradiation of a pump light is shown to be determined if the dissipation in a certain heat-bath model is introduced. This has enabled us to predict that novel features characteristic of the photoexcited steady states, i.e., negative weight (gain) in the low-energy region and dip structures around the photon energy of the pump light, should be observed in the optical conductivity. Special emphasis is put on the role of dissipation, for which we elaborate the dependence of the steady state on the strength of dissipation and the temperature of the heat bath.

  9. Controlling Correlated Tunneling and Superexchange Interactions with ac-Driven Optical Lattices

    International Nuclear Information System (INIS)

    Chen, Yu-Ao; Nascimbene, Sylvain; Aidelsburger, Monika; Atala, Marcos; Trotzky, Stefan; Bloch, Immanuel

    2011-01-01

    The dynamical control of tunneling processes of single particles plays a major role in science ranging from Shapiro steps in Josephson junctions to the control of chemical reactions via light in molecules. Here we show how such control can be extended to the regime of correlated tunneling of strongly interacting particles. Through a periodic modulation of a biased tunnel contact, we have been able to coherently control single-particle and correlated two-particle hopping processes. We have furthermore been able to extend this control to superexchange spin interactions in the presence of a magnetic-field gradient. Such photon-assisted superexchange processes constitute a novel approach to realize arbitrary XXZ spin models in ultracold quantum gases, where transverse and Ising-type spin couplings can be fully controlled in magnitude and sign.

  10. Experimental Correlation between Nonlinear Optical and Magnetotransport Properties Observed in Au-Co Thin Films

    Directory of Open Access Journals (Sweden)

    Kaida Yang

    2016-01-01

    Full Text Available Magnetic materials where at least one dimension is in the nanometer scale typically exhibit different magnetic, magnetotransport, and magnetooptical properties compared to bulk materials. Composite magnetic thin films where the matrix composition, magnetic cluster size, and overall composite film thickness can be experimentally tailored via adequate processing or growth parameters offer a viable nanoscale platform to investigate possible correlations between nonlinear magnetooptical and magnetotransport properties, since both types of properties are sensitive to the local magnetization landscape. It has been shown that the local magnetization contrast affects the nonlinear magnetooptical properties as well as the magnetotransport properties in magnetic-metal/nonmagnetic metal multilayers; thus, nanocomposite films showcase another path to investigate possible correlations between these distinct properties which may prove useful for sensing applications.

  11. Optical fingerprint identification using cellular neural network and joint transform correlation

    Science.gov (United States)

    Bal, Abdullah; Alam, Mohammad S.; El-Saba, Aed

    2004-10-01

    An important step in the fingerprint identification system is the extraction of relevant details against distributed complex features. Identification performance is directly related to the enhancement of fingerprint images during or after the enrollment phase. Among the various enhancement algorithms, artificial intelligence based feature extraction techniques are attractive due to their adaptive learning properties. In this paper, we propose a cellular neural network (CNN) based filtering technique due to its ability of parallel processing and generating learnable filtering features. CNN offers high efficient feature extraction and enhancement possibility for fingerprint images. The enhanced fingerprint images are then introduced to joint transform correlator (JTC) architecture to identify unknown fingerprint from the database. Since the fringe-adjusted JTC algorithm has been found to yield significantly better correlation output compared to alternate JTCs, we used it for the identification process. Test results are presented to verify the effectiveness of the proposed algorithm.

  12. Correlation of Vitreous Vascular Endothelial Growth Factor and Uric Acid Concentration Using Optical Coherence Tomography in Diabetic Macular Edema

    Directory of Open Access Journals (Sweden)

    Libuse Krizova

    2015-01-01

    Full Text Available Purpose. We investigated two factors linked to diabetic macular edema (DME, vitreous and serum levels of vascular endothelial growth factor (VEGF and uric acid (UA in patients with DME, and compared the results with changes in optical coherence tomography (OCT and visual acuity (VA. Methods. A prospective study of 29 eyes, 16 cystoid DME and nonproliferative diabetic retinopathy (DR and 13 nondiabetic controls. Biochemical analysis of vitreous and serum samples was performed and OCT scans were graded according to central retinal thickness (CRT, cube volume (CV, cube average thickness (CAT, and serous retinal detachment (SRD. Results. In DME group, intravitreal concentrations of VEGF (p<0.001, UA (p=0.038, and total protein (p<0.001 were significantly higher than in control group. In DME subjects, intravitreal UA correlated significantly with intravitreal VEGF (ƍ = 0.559, p=0.03 but not with total vitreous protein and serum UA. Increased intravitreal VEGF in DME group correlated with increase in CV (ƍ = 0.515/p=0.041. None of the OCT parameters correlated with the VA. Conclusions. The results suggest that the CV might be assessor of anti-VEGF therapy efficacy. Second, apart from VEGF, the role of UA in the pathogenesis and progression of DR should be considered.

  13. Correlation between prefrontal cortex activity during working memory tasks and natural mood independent of personality effects: an optical topography study.

    Science.gov (United States)

    Aoki, Ryuta; Sato, Hiroki; Katura, Takusige; Matsuda, Ryoichi; Koizumi, Hideaki

    2013-04-30

    Interactions between mood and cognition have drawn much attention in the fields of psychology and neuroscience. Recent neuroimaging studies have examined a neural basis of the mood-cognition interaction that which emphasize the role of the prefrontal cortex (PFC). Although these studies have shown that natural mood variations among participants are correlated with PFC activity during cognitive tasks, they did not control for personality differences. Our aim in this study was to clarify the relationship between natural mood and PFC activity by partialling out the effects of personality. Forty healthy adults completed self-report questionnaires assessing natural mood (the Profile of Mood States) and personality (the NEO Five-Factor Inventory and the Behavioral Inhibition/Activation Systems scales). They performed verbal and spatial working memory (WM) tasks while their PFC activity was measured using optical topography, a non-invasive, low-constraint neuroimaging tool. Correlation analysis showed that the level of negative mood was inversely associated with PFC activity during the verbal WM task, which replicated our previous findings. Furthermore, the negative correlation between negative mood and PFC activity remained significant after controlling for participants' personality traits, suggesting that natural mood is an independent contributing factor of PFC activity during verbal WM tasks. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Fuzzy logic and optical correlation-based face recognition method for patient monitoring application in home video surveillance

    Science.gov (United States)

    Elbouz, Marwa; Alfalou, Ayman; Brosseau, Christian

    2011-06-01

    Home automation is being implemented into more and more domiciles of the elderly and disabled in order to maintain their independence and safety. For that purpose, we propose and validate a surveillance video system, which detects various posture-based events. One of the novel points of this system is to use adapted Vander-Lugt correlator (VLC) and joint-transfer correlator (JTC) techniques to make decisions on the identity of a patient and his three-dimensional (3-D) positions in order to overcome the problem of crowd environment. We propose a fuzzy logic technique to get decisions on the subject's behavior. Our system is focused on the goals of accuracy, convenience, and cost, which in addition does not require any devices attached to the subject. The system permits one to study and model subject responses to behavioral change intervention because several levels of alarm can be incorporated according different situations considered. Our algorithm performs a fast 3-D recovery of the subject's head position by locating eyes within the face image and involves a model-based prediction and optical correlation techniques to guide the tracking procedure. The object detection is based on (hue, saturation, value) color space. The system also involves an adapted fuzzy logic control algorithm to make a decision based on information given to the system. Furthermore, the principles described here are applicable to a very wide range of situations and robust enough to be implementable in ongoing experiments.

  15. Transverse magneto-optical anisotropy in bidisperse ferrofluids with long range particle correlations

    Energy Technology Data Exchange (ETDEWEB)

    Elfimova, E.A.; Ivanov, A.O. [Ural Federal University, ul. Lenina 51, Yekaterinburg 620000 (Russian Federation); Popescu, L.B. [Institute for Space Sciences, Atomistilor 409, Magurele RO-077125 (Romania); Socoliuc, V., E-mail: vsocoliuc@acad-tim.tm.edu.ro [Romanian Academy-Timisoara Branch, Center for Fundamental and Advanced Technical Research, Lab. Magnetic Fluids, Bv.M. Viteazu 24, Timisoara RO-300223 (Romania)

    2017-06-01

    A comparative study between experiment and the predictions of a theoretical model developed for the description of magnetically induced dichroism in ferrofluids with long range interacting bidisperse spherical nanoparticles is presented. Magnetically induced dichroism in dilution series of two ferrofluids with different surfactant thickness was measured. Both ferrofluids show a concave solid volume fraction dependence of the specific dichroism, whose characteristics are very well qualitatively explained by the theoretical model. The theory fails to satisfactorily explain the magnetic field dependence of the highly concentrated samples specific dichroism, due to inherent approximations in the virial expansion of the pair correlation function.

  16. Magnetic-field-dependent optical properties and interdot correlations in coupled quantum dots

    International Nuclear Information System (INIS)

    Bellucci, Devis; Troiani, Filippo; Goldoni, Guido; Molinari, Elisa

    2005-01-01

    We theoretically investigate the properties of neutral and charged excitons in vertically coupled quantum dots, as a function of the in-plane magnetic field. The single-particle states are computed by numerically solving the 3D effective-mass equation, while the neutral- and charged-exciton states are obtained by means of a configuration interaction approach. We show that the field determines an enhancement of the interdot correlations, resulting in unexpected carrier localization. The field effect on the excitonic binding energies is also discussed, and is shown to strongly depend on the charging

  17. Effects of Polytypism on Optical Properties and Band Structure of Individual Ga(N)P Nanowires from Correlative Spatially Resolved Structural and Optical Studies.

    Science.gov (United States)

    Dobrovolsky, Alexander; Persson, Per O Å; Sukrittanon, Supanee; Kuang, Yanjin; Tu, Charles W; Chen, Weimin M; Buyanova, Irina A

    2015-06-10

    III-V semiconductor nanowires (NWs) have gained significant interest as building blocks in novel nanoscale devices. The one-dimensional (1D) nanostructure architecture allows one to extend band structure engineering beyond quantum confinement effects by utilizing formation of different crystal phases that are thermodynamically unfavorable in bulk materials. It is therefore of crucial importance to understand the influence of variations in the NWs crystal structure on their fundamental physical properties. In this work we investigate effects of structural polytypism on the optical properties of gallium phosphide and GaP/GaNP core/shell NW structures by a correlative investigation on the structural and optical properties of individual NWs. The former is monitored by transmission electron microscopy, whereas the latter is studied via cathodoluminescence (CL) mapping. It is found that structural defects, such as rotational twins in zinc blende (ZB) GaNP, have detrimental effects on light emission intensity at low temperatures by promoting nonradiative recombination processes. On the other hand, formation of the wurtzite (WZ) phase does not notably affect the CL intensity neither in GaP nor in the GaNP alloy. This suggests that zone folding in WZ GaP does not enhance its radiative efficiency, consistent with theoretical predictions. We also show that the change in the lattice structure have negligible effects on the bandgap energies of the GaNP alloys, at least within the range of the investigated nitrogen compositions of <2%. Both WZ and ZB GaNP are found to have a significantly higher efficiency of radiative recombination as compared with that in parental GaP, promising for potential applications of GaNP NWs as efficient nanoscale light emitters within the desirable amber-red spectral range.

  18. Correlations between Optical, Chemical and Physical Properties ofBiomass Burn Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Rebecca J.; Lewis, K.; Desyaterik, Yury; Wang, Z.; Tivanski, Alexei V.; Arnott, W.P.; Laskin, Alexander; Gilles, M.K.

    2008-01-29

    Aerosols generated from burning different plant fuels were characterized to determine relationships between chemical, optical and physical properties. Single scattering albedo ({omega}) and Angstrom absorption coefficients ({alpha}{sub ap}) were measured using a photoacoustic technique combined with a reciprocal nephelometer. Carbon-to-oxygen atomic ratios, sp{sup 2} hybridization, elemental composition and morphology of individual particles were measured using scanning transmission X-ray microscopy coupled with near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS) and scanning electron microscopy with energy dispersion of X-rays (SEM/EDX). Particles were grouped into three categories based on sp2 hybridization and chemical composition. Measured {omega} (0.4-1.0 at 405 nm) and {alpha}{sub ap} (1.0-3.5) values displayed a fuel dependence. The category with sp{sup 2} hybridization >80% had values of {omega} (<0.5) and {alpha}{sub ap} ({approx}1.25) characteristic of light absorbing soot. Other categories with lower sp2 hybridization (20 to 60%) exhibited higher {omega} (>0.8) and {alpha}{sub ap} (1.0 to 3.5) values, indicating increased absorption spectral selectivity.

  19. The Modulation of Optical Property and its Correlation with Microstructures of ZnO Nanowires

    Directory of Open Access Journals (Sweden)

    Hope Greg

    2009-01-01

    Full Text Available Abstract ZnO nanowires with both good crystallinity and oxygen vacancies defects were synthesized by thermal oxidation of Zn substrate pretreated in concentrated sulfuric acid under the air atmosphere, Ar- and air-mixed gas stream. The photoluminescence spectra reveal that only near-band-edge (NBE emission peak was observed for the sample grown in the air atmosphere; the broad blue–green and the red-shifted NBE emission peaks were observed for the sample grown in the mixed gas stream, indicating that the sample grown in the mixed gas stream has a defective structure and its optical properties can be modulated by controlling its structure. The high-resolution transmission electron microscope and the corresponding structural simulation confirm that the oxygen vacancies exist in the crystal of the nanowires grown in the mixed gas stream. The ZnO nanowires with oxygen vacancies defects exhibit better photocatalytic activity than the nanowires with good crystallinity. The photocatalytic process obeys the rules of first-order kinetic reaction, and the rate constants were calculated.

  20. Vacuum source-field correlations and advanced waves in quantum optics

    Directory of Open Access Journals (Sweden)

    Adam Stokes

    2018-01-01

    Full Text Available The solution to the wave equation as a Cauchy problem with prescribed fields at an initial time $t=0$ is purely retarded. Similarly, in the quantum theory of radiation the specification of Heisenberg picture photon annihilation and creation operators at time $t \\gt 0$ in terms of operators at $t=0$ automatically yields purely retarded source-fields. However, we show that two-time quantum correlations between the retarded source-fields of a stationary dipole and the quantum vacuum-field possess advanced wave-like contributions. Despite their advanced nature, these correlations are perfectly consistent with Einstein causality. It is shown that while they do not significantly contribute to photo-detection amplitudes in the vacuum state, they do effect the statistics of measurements involving the radiative force experienced by a point charge in the field of the dipole. Specifically, the dispersion in the charge's momentum is found to increase with time. This entails the possibility of obtaining direct experimental evidence for the existence of advanced waves in physical reality, and provides yet another signature of the quantum nature of the vacuum.

  1. Characterization of the phase modulation property of a free-space electro-optic modulator by interframe intensity correlation matrix.

    Science.gov (United States)

    Yue, Huimin; Song, Lei; Hu, Zexiong; Liu, Hongxiang; Liu, Yong; Liu, Yongzhi; Peng, Zengshou

    2012-07-01

    Characterization of a phase modulator or phase shifter has always been an integral part of phase-modulating or phase-adjusting applications. We propose a simplified approach to characterize a phase modulator by investigating the performance of phase shifts from grabbed interferograms using the phase extraction method. After reviewing some phase analysis techniques, the interframe intensity correlation (IIC) matrix method is introduced to the investigation. The proposed strategy is illustrated by the measurement of a free-space electro-optic modulator (EOM). Placing the modulator in one arm of a Michelson interferometer, the global phase shifts are estimated by the IIC method from the phase-stepped interferograms. Experimental results demonstrate the tested EOM has a phase modulation response of at least 2π  rad with a π/20  rad modulation precision for λ=1064  nm. In addition, our method is applicable to various types of phase modulator or phase shifter calibration, e.g., electro-optic phase modulator, spatial light modulator, or piezoelectric transducer (PZT).

  2. Non-local exchange correlation functionals impact on the structural, electronic and optical properties of III-V arsenides

    KAUST Repository

    Anua, N. Najwa

    2013-08-20

    Exchange correlation (XC) energy functionals play a vital role in the efficiency of density functional theory (DFT) calculations, more soundly in the calculation of fundamental electronic energy bandgap. In the present DFT study of III-arsenides, we investigate the implications of XC-energy functional and corresponding potential on the structural, electronic and optical properties of XAs (X = B, Al, Ga, In). Firstly we report and discuss the optimized structural lattice parameters and the band gap calculations performed within different non-local XC functionals as implemented in the DFT-packages: WIEN2k, CASTEP and SIESTA. These packages are representative of the available code in ab initio studies. We employed the LDA, GGA-PBE, GGA-WC and mBJ-LDA using WIEN2k. In CASTEP, we employed the hybrid functional, sX-LDA. Furthermore LDA, GGA-PBE and meta-GGA were employed using SIESTA code. Our results point to GGA-WC as a more appropriate approximation for the calculations of structural parameters. However our electronic bandstructure calculations at the level of mBJ-LDA potential show considerable improvements over the other XC functionals, even the sX-LDA hybrid functional. We report also the optical properties within mBJ potential, which show a nice agreement with the experimental measurements in addition to other theoretical results. © 2013 IOP Publishing Ltd.

  3. Correlating optical damage threshold with intrinsic defect populations in fused silica as a function of heat treatment temperature

    Energy Technology Data Exchange (ETDEWEB)

    Shen, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Matthews, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Elhadj, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Miller, P. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nelson, A. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hamilton, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-04-03

    Here, chemical vapor deposition (CVD) is used for the production of fused silica optics in high-power laser applications. However, relatively little is known about the ultraviolet laser damage threshold of CVD films and how they relate to intrinsic defects produced during deposition. We present here a study relating structural and electronic defects in CVD films to 355 nm pulsed-laser damage threshold as a function of post-deposition annealing temperature (THT). Plasma-enhanced CVD based on SiH4/N2O under oxygen-rich conditions was used to deposit 1.5, 3.1 and 6.4 µm thick films on etched SiO2 substrates. Rapid annealing was performed using a scanned CO2 laser beam up to THT ~ 2100 K. The films were then characterized using x-ray photoemission spectroscopy, Fourier transform infrared spectroscopy (FTIR) and photoluminescence spectroscopy. A gradual transition in the damage threshold of annealed films was observed for THT values up to 1600 K, correlating with a decrease in non-bridging silanol and oxygen deficient centres. An additional sharp transition in damage threshold also occurs at ~1850 K indicating substrate annealing. Based on our results, a mechanism for damage-related defect annealing is proposed, and the potential of using high-THT CVD SiO2 to mitigate optical damage is also discussed.

  4. Correlation between structural, optical, and electrical properties of self-assembled plasmonic nanostructures on the GaAs surface

    Energy Technology Data Exchange (ETDEWEB)

    Gladskikh, Polina V.; Gladskikh, Igor A.; Toropov, Nikita A., E-mail: nikita.a.toropov@gmail.com; Baranov, Mikhail A.; Vartanyan, Tigran A. [ITMO University (Russian Federation)

    2015-11-15

    Self-assembled silver nanostructures on the industry-grade monocrystalline GaAs (100) wafer surface were obtained via physical vapor deposition and characterized by optical reflection spectroscopy, scanning electron microscopy, and current–voltage curve measurements. Reflection spectra of the samples with Ag equivalent thicknesses of 5, 7.5, and 10 nm demonstrated wide plasmonic bands in the visible range of spectra. Thermal annealing of the nanostructures led to narrowing of the plasmonic bands caused by major transformations of the film morphology. While the As prepared films predominantly had a small-scale labyrinth structure, after annealing well-separated silver nanoislands are formed on the gallium arsenide surface. A clear correlation between films morphology and their optical and electrical properties is elucidated. Annealing of the GaAs substrate with Ag nanostructures at 100 °C under control of the resistivity allowed us to obtain and fix the structure at the percolation threshold. It is established that the samples at the percolation threshold possess the properties of resistance switching and hysteresis.Graphical Abstract.

  5. Radiation dose response correlation between thermoluminescence and optically stimulated luminescence in quartz

    International Nuclear Information System (INIS)

    Oniya, E.O.; Polymeris, G.S.; Tsirliganis, N.C.; Kitis, G.

    2012-01-01

    The fast, linearly modulated optically stimulated luminescence (LM-OSL) component in quartz is the main dosimetric signal used for the dating applications of this material. Since the blue light stimulation (470 nm, 40 mW cm −2 ) time needed to obtain the fast LM-OSL component is less than 50 s the electron trapping levels responsible for it are still highly populated. In this way an active radiation history is created which could play an important role in the dosimetric characteristics of the fast OSL signal. In the present work the dose response behavior of the fast OSL signal is investigated in quartz samples with an annealed radiation history and quartz samples possessing an artificial radiation history. A computerized curve de-convolution analysis of the LM-OSL curves for 50 s stimulation time showed that it consists of three individual OSL components. The faster component C 1 with peak maximum time around 5 s has a linear dose response in virgin samples, which turns to a slight superlinearity as a function of the artificial radiation history. On the other hand the component C 2 with peak maximum time at 12 s is slightly superlinear which turns into strong superlinearity as a function of artificial radiation history. Finally, component C 3 with peak maximum time at about 45 s is strongly superlinear for both virgin samples and as a function of artificial radiation history. The implications to practical application are discussed. - Highlights: ► The fast OSL component consists of three components. ► The linearity of first fast component does not depend on radiation history. ► The linearity of second and third components depend on radiation history. ► The TL between 180 and 300 °C is the major source of OSL.

  6. Surface rupture characteristics of the 2016 Kumamoto earthquake from field data and correlation of lidar and optical imagery

    Science.gov (United States)

    Lajoie, L. J.; Nissen, E.; Hollingsworth, J.; Maruyama, T.; Chiba, T.

    2016-12-01

    The Kumamoto earthquake sequence of April, 2016 included a Mw 6.2 foreshock on April 14th, followed two days later by the Mw 7.0 mainshock. Here we present a preliminary investigation of the mainshock surface rupture and shallow slip characteristics, including an estimation of the shallow slip deficit and analysis of geometrical rupture propagation effects. We use a combination of fault offsets surveyed on the ground by the Geological Survey of Japan, together with near-field surface displacements calculated from lidar and optical image correlation. We use two 0.5 meter digital surface models provided by Asia Air Survey Co. that are derived from lidar data collected in surveys flown following the foreshock on April 15th, and eight days after the mainshock on April 24th. Although the surface models have not been processed to remove vegetation, the close temporal spacing of acquisitions minimizes non-tectonic surface changes. We also use 2 meter resolution SPOT 7 stereo images collected on December 12th, 2015 and April 20th, 2016. Although the elapsed time between acquisitions is larger for the SPOT 7 images than the lidar data (and includes foreshock surface deformation), it is possible to calculate 3-dimensional displacements using stereo-images and derivative digital elevation models. Lidar and optical datasets were each separately correlated using the COSI-Corr software package, allowing a qualitative comparison of the displacement fields from the two independent datasets. Ongoing work aims to compute the full 3-dimensional displacement field from both datasets.

  7. Correlation between thermal, optical and morphological properties of heterogeneous blends of poly(3-hexylthiophene) and thermoplastic polyurethane

    International Nuclear Information System (INIS)

    PatrIcio, PatrIcia S O; Calado, Hallen D R; Oliveira, Flavio A C de; Righi, Ariete; Neves, Bernardo R A; Silva, Glaura G; Cury, Luiz A

    2006-01-01

    A correlation between thermal, optical and morphological properties of self-sustained films formed from blends of poly(3-hexylthiophene) (P3HT) and thermoplastic polyurethane (TPU), with 1, 10 and 20 wt% of P3HT in TPU, is established. Images of scanning electron microscopy (SEM) show the formation of domains of P3HT into the TPU matrix, characterizing the blend material as heterogeneous. The heat capacity (C p ) dependence on P3HT contents was investigated in a large temperature interval. In the region of the TPU glass transition, the difference between the experimental and predicted ΔC p values is more pronounced for the 1 wt% case, which strongly suggests that in this case there is a higher influence of the P3HT chains on the TPU matrix. The SEM images for the 1 wt% blended film present the formation of the smallest P3HT domains in the TPU matrix. The relatively high reduction of the PL intensity of the pure electronic transition peak in the 1 wt% blended film, in comparison to the other blended films and also to a pure P3HT film, favours the assumption that the smallest P3HT domains are at the origin of a more structural disordered character. This fact is in agreement with the results obtained by Raman spectroscopy and also by photoluminescence resolved by polarization in stretched self-sustained films, showing an ample correlation between morphological, thermal and optical properties of these blended materials. In addition, the thermoplastic properties of the polyurethane configure very good conditions for tensile drawing of P3HT and other conjugated polymer molecules

  8. High-accuracy and robust face recognition system based on optical parallel correlator using a temporal image sequence

    Science.gov (United States)

    Watanabe, Eriko; Ishikawa, Mami; Ohta, Maiko; Kodate, Kashiko

    2005-09-01

    Face recognition is used in a wide range of security systems, such as monitoring credit card use, searching for individuals with street cameras via Internet and maintaining immigration control. There are still many technical subjects under study. For instance, the number of images that can be stored is limited under the current system, and the rate of recognition must be improved to account for photo shots taken at different angles under various conditions. We implemented a fully automatic Fast Face Recognition Optical Correlator (FARCO) system by using a 1000 frame/s optical parallel correlator designed and assembled by us. Operational speed for the 1: N (i.e. matching a pair of images among N, where N refers to the number of images in the database) identification experiment (4000 face images) amounts to less than 1.5 seconds, including the pre/post processing. From trial 1: N identification experiments using FARCO, we acquired low error rates of 2.6% False Reject Rate and 1.3% False Accept Rate. By making the most of the high-speed data-processing capability of this system, much more robustness can be achieved for various recognition conditions when large-category data are registered for a single person. We propose a face recognition algorithm for the FARCO while employing a temporal image sequence of moving images. Applying this algorithm to a natural posture, a two times higher recognition rate scored compared with our conventional system. The system has high potential for future use in a variety of purposes such as search for criminal suspects by use of street and airport video cameras, registration of babies at hospitals or handling of an immeasurable number of images in a database.

  9. Hanbury Brown and Twiss and other atom-atom correlations: advances in quantum atom optics

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    Fifty years ago, two astronomers, R. Hanbury Brown and R. Q. Twiss, invented a new method to measure the angular diameter of stars, in spite of the atmospheric fluctuations. Their proposal prompted a hot debate among physicists : how might two particles (photons), emitted independently (at opposite extremities of a star) , behave in a correlated way when detected ? It was only after the development of R Glauber's full quantum analysis that the effect was understood as a two particle quantum interference effect. From a modern perspective, it can be viewed as an early example of the amazing properties of pairs of entangled particles. The effect has now been observed with bosonic and fermionic atoms, stressing its fully quantum character. After putting these experiments in a historical perspective, I will present recent results, and comment on their significance. I will also show how our single atom detection scheme has allowed us to demonstrate the creation of atom pairs by non linear mixing of matter wa...

  10. Mitochondrial dynamics and optical conformation changes in DsRed as studied by Fourier imaging correlation spectroscopy

    Science.gov (United States)

    Senning, Eric Nicolas

    Novel experiments that probe the dynamics of intracellular species, including the center-of-mass displacements and internal conformational transitions of biological macromolecules, have the potential to reveal the complex biochemical mechanisms operating within the cell. This work presents the implementation and development of Fourier imaging correlation spectroscopy (FICS), a phase-selective approach to fluorescence spectroscopy that measures the collective coordinate fluctuations of fluorescently labeled microscopic particles. In FICS experiments, a spatially modulated optical grating excites a fluorescently labeled sample. Phase-synchronous detection of the fluorescence, with respect to the phase of the exciting optical grating, can be used to monitor the fluctuations of partially averaged spatial coordinates. These data are then analyzed by two-point and four-point time correlation functions to provide a statistically meaningful understanding of the dynamics under observation. FICS represents a unique route to elevate signal levels, while acquiring detailed information about molecular coordinate trajectories. Mitochondria of mammalian cells are known to associate with cytoskeletal proteins, and their motions are affected by the stability of microtubules and microfilaments. Within the cell it is possible to fluorescently label the mitochondria and study its dynamic behavior with FICS. The dynamics of S. cerevisiae yeast mitochondria are characterized at four discrete length scales (ranging from 0.6--1.19 mum) and provide detailed information about the influence of specific cytoskeletal elements. Using the microtubule and microfilament destabilizing agents, Nocodazole and Latrunculin A, it is determined that microfilaments are required for normal yeast mitochondrial motion while microtubules have no effect. Experiments with specific actin mutants revealed that actin is responsible for enhanced mobility on length scales greater than 0.6 mum. The versatility of

  11. SO2 EMISSION MEASUREMENT BY DOAS (DIFFERENTIAL OPTICAL ABSORPTION SPECTROSCOPY AND COSPEC (CORRELATION SPECTROSCOPY AT MERAPI VOLCANO (INDONESIA

    Directory of Open Access Journals (Sweden)

    Hanik Humaida

    2010-06-01

    Full Text Available The SO2 is one of the volcanic gases that can use as indicator of volcano activity. Commonly, SO2 emission is measured by COSPEC (Correlation Spectroscopy. This equipment has several disadvantages; such as heavy, big in size, difficulty in finding spare part, and expensive. DOAS (Differential Optical Absorption Spectroscopy is a new method for SO2 emission measurement that has advantages compares to the COSPEC. Recently, this method has been developed. The SO2 gas emission measurement of Gunung Merapi by DOAS has been carried out at Kaliadem, and also by COSPEC method as comparation. The differences of the measurement result of both methods are not significant. However, the differences of minimum and maximum result of DOAS method are smaller than that of the COSPEC. It has range between 51 ton/day and 87 ton/day for DOAS and 87 ton/day and 201 ton/day for COSPEC. The measurement of SO2 gas emission evaluated with the seismicity data especially the rockfall showed the presence of the positive correlation. It may cause the gas pressure in the subsurface influencing instability of 2006 eruption lava.   Keywords: SO2 gas, Merapi, DOAS, COSPEC

  12. Correlation of micro-Raman and optical microscopy analysis of polycrystalline YBa2Cu3O7-x

    International Nuclear Information System (INIS)

    Long, J. M.; Finlayson, T. R.; Lim, C. S.; Mernagh, T. P.

    1996-01-01

    Optical microscopy has proven to be a useful technique for obtaining general, qualitative information from the entire surface of YBCO samples. When observed through crossed polarisers, both orthorhombic and tetragonal YBCO show characteristic colours, allowing the observation and detection of superconducting and nonsuperconducting regions. Certain impurities also have characteristic colours. Once the colours of the various phases are calibrated, one can determine their distribution throughout a whole surface. Both the observation of colour and the twin patterns can indicate textured regions, or grains of similar orientation in an untextured material. We present an example of the complementary use of both techniques for a more complete analysis of polycrystalline YBCO. Observed colours of polarisation on YBCO were correlated with information provided by MRS on individual grains to deduce microstructural characteristics (including texture, chemistry, and impurities) across the whole surface of a sample. Grains of similar orientation were observed by both methods. It was also found that Raman results can be misleading unless the sample is also observed by polarised light microscopy and the two sets of results correlated. These techniques would be quite useful for the analysis of large, textured samples, especially where material is produced in large quantities

  13. Validation of the structure-function correlation report from the heidelberg edge perimeter and spectral-domain optical coherence tomography.

    Science.gov (United States)

    Cui, Qi N; Fudemberg, Scott J; Resende, Arthur F; Vu, Thuy-Anh; Zhou, Chen; Rahmatnejad, Kamran; Hark, Lisa A; Myers, Jonathan S; Katz, L Jay; Waisbourd, Michael

    2018-02-02

    To compare the diagnostic assessment of glaucoma specialists with an automated structure-function correlation report combining visual field (VF) and spectral-domain optical coherence tomography (SD-OCT) imagining in subjects with glaucoma. This prospective, cross-sectional study was conducted at Wills Eye Hospital, Philadelphia, PA, USA. Subjects with glaucoma received ophthalmic examination, VF testing, and SD-OCT imaging. An automated report was generated describing structure-function correlations between the two structural elements [retinal nerve fiber layer (RNFL) and Bruch's membrane opening-minimum rim width (MRW)] and VF sectors. Three glaucoma specialists masked to the automated report and to each other identified clinically significant structure-function correlations between the VF and SD-OCT reports. Raw agreement and chance-corrected agreement (kappa statistics) between the automated report and the clinical assessments were compared. A total of 53 eyes from 45 subjects with glaucoma were included in this study. The overall agreement between the automated report and clinical assessment comparing MRW and VF was good at 74.8% with a kappa of 0.62 (95% CI 0.55-0.69). Agreements for the six different MRW sections were moderate to good with kappa values ranging from 0.54 to 0.69. For mean RNFL thickness and VF comparisons, agreement between the automated report and clinical assessment was 75.4% with a kappa of 0.62 (95% CI 0.54-0.70). For different RNFL sectors, kappa values ranged from 0.47 (moderate agreement) to 0.80 (good agreement). This study suggests that the automated structure-function report combining results from the SD-OCT and the HEP may assist in the evaluation and management of glaucoma.

  14. Cone Photoreceptor Irregularity on Adaptive Optics Scanning Laser Ophthalmoscopy Correlates With Severity of Diabetic Retinopathy and Macular Edema.

    Science.gov (United States)

    Lammer, Jan; Prager, Sonja G; Cheney, Michael C; Ahmed, Amel; Radwan, Salma H; Burns, Stephen A; Silva, Paolo S; Sun, Jennifer K

    2016-12-01

    To determine whether cone density, spacing, or regularity in eyes with and without diabetes (DM) as assessed by high-resolution adaptive optics scanning laser ophthalmoscopy (AOSLO) correlates with presence of diabetes, diabetic retinopathy (DR) severity, or presence of diabetic macular edema (DME). Participants with type 1 or 2 DM and healthy controls underwent AOSLO imaging of four macular regions. Cone assessment was performed by independent graders for cone density, packing factor (PF), nearest neighbor distance (NND), and Voronoi tile area (VTA). Regularity indices (mean/SD) of NND (RI-NND) and VTA (RI-VTA) were calculated. Fifty-three eyes (53 subjects) were assessed. Mean ± SD age was 44 ± 12 years; 81% had DM (duration: 22 ± 13 years; glycated hemoglobin [HbA1c]: 8.0 ± 1.7%; DM type 1: 72%). No significant relationship was found between DM, HbA1c, or DR severity and cone density or spacing parameters. However, decreased regularity of cone arrangement in the macular quadrants was correlated with presence of DM (RI-NND: P = 0.04; RI-VTA: P = 0.04), increasing DR severity (RI-NND: P = 0.04), and presence of DME (RI-VTA: P = 0.04). Eyes with DME were associated with decreased density (P = 0.04), PF (P = 0.03), and RI-VTA (0.04). Although absolute cone density and spacing don't appear to change substantially in DM, decreased regularity of the cone arrangement is consistently associated with the presence of DM, increasing DR severity, and DME. Future AOSLO evaluation of cone regularity is warranted to determine whether these changes are correlated with, or predict, anatomic or functional deficits in patients with DM.

  15. Lesion size detection in geographic atrophy by polarization-sensitive optical coherence tomography and correlation to conventional imaging techniques.

    Science.gov (United States)

    Schütze, Christopher; Bolz, Matthias; Sayegh, Ramzi; Baumann, Bernhard; Pircher, Michael; Götzinger, Erich; Hitzenberger, Christoph K; Schmidt-Erfurth, Ursula

    2013-01-28

    To investigate the reproducibility of automated lesion size detection in patients with geographic atrophy (GA) using polarization-sensitive spectral-domain optical coherence tomography (PS-OCT) and to compare findings with scanning laser ophthalmoscopy (SLO), fundus autofluorescence (FAF), and intensity-based spectral-domain OCT (SD-OCT). Twenty-nine eyes of 22 patients with GA were examined by PS-OCT, selectively identifying the retinal pigment epithelium (RPE). A novel segmentation algorithm was applied, automatically detecting and quantifying areas of RPE atrophy. The reproducibility of the algorithm was assessed, and lesion sizes were correlated with manually delineated SLO, FAF, and intensity-based SD-OCT images to validate the clinical applicability of PS-OCT in GA evaluation. Mean GA lesion size of all patients was 5.28 mm(2) (SD: 4.92) in PS-OCT. Mean variability of individual repeatability measurements was 0.83 mm(2) (minimum: 0.05; maximum: 3.65). Mean coefficient of variation was 0.07 (min: 0.01; max: 0.19). Mean GA area in SLO (Spectralis OCT) was 5.15 mm(2) (SD: 4.72) and 2.5% smaller than in PS-OCT (P = 0.9, Pearson correlation coefficient = 0.98, P < 0.01). Mean GA area in intensity-based SD-OCT pseudo-SLO images (Cirrus OCT) was 5.14 mm(2) (SD: 4.67) and 2.7% smaller than in PS-OCT (P = 0.9, Pearson correlation coefficient = 0.98, P < 0.01). Mean GA area of all eyes measured 5.41 mm(2) (SD: 4.75) in FAF, deviating by 2.4% from PS-OCT results (P = 0.89, Pearson correlation coefficient = 0.99, P < 0.01). PS-OCT demonstrated high reproducibility of GA lesion size determination. Results correlated well with SLO, FAF, and intensity-based SD-OCT fundus imaging. PS-OCT may therefore be a valuable and specific imaging modality for automated GA lesion size determination in scientific studies and clinical practice.

  16. Correlation in retinal nerve fibre layer thickness in uveitis and healthy eyes using scanning laser polarimetry and optical coherence tomography.

    Science.gov (United States)

    Bellocq, David; Maucort-Boulch, Delphine; Kodjikian, Laurent; Denis, Philippe

    2017-03-01

    To evaluate the correlation of retinal nerve fibre layer (RNFL) thickness measured using spectral domain optical coherence tomography (SD-OCT) and scanning laser polarimetry (SLP) in uveitic eyes compared with healthy eyes. A descriptive, observational, prospective, consecutive, cross-sectional, controlled, monocentre case series was conducted from May to October 2015. Clinical characteristics, best-corrected visual acuity, intraocular pressure, RNFL thickness measurement with SD-OCT and SLP using GDx variable corneal compensation (GDx VCC) were performed for each patient. An evaluation of anterior chamber inflammation with laser flare-cell meter was also carried out. Correlations between SD-OCT and GDx VCC RNFL measurement were evaluated by linear regression analysis. Fifty-four patients were included and divided into two groups: 50 healthy eyes in 29 patients and 42 uveitic eyes in 25 patients. The mean RNFL thickness was 98.08(±8.42) and 113.21(±20.53) μm in the healthy group and the uveitic group, respectively, when measured with SD-OCT (p<0.001); and 56.43(±5.24) and 58.77(±6.67) μm, respectively, when measured with GDx VCC (p=0.078). There was a strong correlation between total average RNFL thickness measured using SD-OCT and GDX (r=0.48, p<0.001) in healthy eyes but there was no correlation in the uveitic eyes (r=0.2, p=0.19). RNFL thickness was significantly greater when measured using SD-OCT in active uveitis as compared with GDx. There was no correlation between the RNFL thickness measurements obtained using the two techniques in uveitic eyes. The discrepancies between the results suggest that for these patients both techniques should be used in conjunction to obtain an accurate measurement of RNFL. IRB 00008855 Société Française d'Ophtalmologie IRB#1. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  17. Correlating the optical properties of WS2 monolayers grown by CVD with isoelectronic Mo doping level(Conference Presentation)

    Science.gov (United States)

    Wang, Kai; Cross, Nick; Boulesbaa, Abdelaziz; Pudasaini, Pushpa R.; Tian, Mengkun; Mahjouri-Samani, Masoud; Oxley, Mark P.; Rouleau, Christopher M.; Puretzky, Alexander A.; Rack, Philip D.; Xiao, Kai; Yoon, Mina; Eres, Gyula; Duscher, Gerd; Geohegan, David B.

    2017-02-01

    Incorporating dopants in monolayer transition metal dichalcogenides (TMD) can enable manipulations of their electrical and optical properties. Previous attempts in amphoteric doping in monolayer TMDs have proven to be challenging. Here we report the incorporation of molybdenum (Mo) atoms in monolayer WS2 during growth by chemical vapor deposition, and correlate the distribution of Mo atoms with the optical properties including photoluminescence and ultrafast transient absorption dynamics. Dark field scanning transmission electron microscopy imaging quantified the isoelectronic doping of Mo in WS2 and revealed its gradual distribution along a triangular WS2 monolayer crystal, increasing from 0% at the edge to 2% in the center of the triangular WS2 triangular crystals. This agrees well with the Raman spectra data that showed two obvious modes between 360 cm-1 and 400 cm-1 that corresponded to MoS2 in the center. This in-plane gradual distribution of Mo in WS2 was found to account for the spatial variations in photoluminescence intensity and emission energy. Transition absorption spectroscopy further indicated that the incorporation of Mo in WS2 regulate the amplitude ratio of XA and XB of WS2. The effect of Mo incorporation on the electronic structure of WS2 was further elucidated by density functional theory. Finally, we compared the electrical properties of Mo incorporated and pristine WS2 monolayers by fabricating field-effect transistors. The isoelectronic doping of Mo in WS2 provides an alternative approach to engineer the bandgap and also enriches our understanding the influence of the doping on the excitonic dynamics.

  18. Wide-area mapping of resting state hemodynamic correlations at microvascular resolution with multi-contrast optical imaging (Conference Presentation)

    Science.gov (United States)

    Senarathna, Janaka; Hadjiabadi, Darian; Gil, Stacy; Thakor, Nitish V.; Pathak, Arvind P.

    2017-02-01

    Different brain regions exhibit complex information processing even at rest. Therefore, assessing temporal correlations between regions permits task-free visualization of their `resting state connectivity'. Although functional MRI (fMRI) is widely used for mapping resting state connectivity in the human brain, it is not well suited for `microvascular scale' imaging in rodents because of its limited spatial resolution. Moreover, co-registered cerebral blood flow (CBF) and total hemoglobin (HbT) data are often unavailable in conventional fMRI experiments. Therefore, we built a customized system that combines laser speckle contrast imaging (LSCI), intrinsic optical signal (IOS) imaging and fluorescence imaging (FI) to generate multi-contrast functional connectivity maps at a spatial resolution of 10 μm. This system comprised of three illumination sources: a 632 nm HeNe laser (for LSCI), a 570 nm ± 5 nm filtered white light source (for IOS), and a 473 nm blue laser (for FI), as well as a sensitive CCD camera operating at 10 frames per second for image acquisition. The acquired data enabled visualization of changes in resting state neurophysiology at microvascular spatial scales. Moreover, concurrent mapping of CBF and HbT-based temporal correlations enabled in vivo mapping of how resting brain regions were linked in terms of their hemodynamics. Additionally, we complemented this approach by exploiting the transit times of a fluorescent tracer (Dextran-FITC) to distinguish arterial from venous perfusion. Overall, we demonstrated the feasibility of wide area mapping of resting state connectivity at microvascular resolution and created a new toolbox for interrogating neurovascular function.

  19. Efficient methodology to correlate structural with optical properties of GaAs nanowires based on scanning electron microscopy

    Science.gov (United States)

    Lin, Wan-Hsien; Jahn, Uwe; Küpers, Hanno; Luna, Esperanza; Lewis, Ryan B.; Geelhaar, Lutz; Brandt, Oliver

    2017-10-01

    Twin boundaries and boundaries between zincblende (ZB) and wurtzite (WZ) segments of GaAs-related nanowires (NWs) form intrinsic heterointerfaces with essential consequences for the application of such nanomaterials in optoelectronic devices. We show that for GaAs and GaAs/(Al, Ga)As core/shell NWs, crystal twinning along the NW axis can be imaged with a spatial resolution of 10 nm using secondary electrons in a scanning electron microscope (SEM). Changes of the crystal structure from the ZB to the WZ phase have been investigated by electron backscatter diffraction. In addition to these methods, we employ spectrally and spatially resolved cathodoluminescence measurements in the same SEM to study the correlation between the structural and optical properties in single NWs. Two GaAs/AlAs/GaAs core/shell/shell NWs differing significantly in the crystal structure along their axis have been investigated combining these three techniques in order to demonstrate the strength of the employed methodology. Our experiments show that based on commonly available SEM methods, an overview of the structural properties along an entire NW and their impact on the spectral and spatial luminescence distribution can be efficiently obtained providing a quick feedback for the optimization of growth conditions.

  20. Feasibility of correlation mapping optical coherence tomography (cmOCT) for anti-spoof sub-surface fingerprinting.

    Science.gov (United States)

    Zam, Azhar; Dsouza, Roshan; Subhash, Hrebesh M; O'Connell, Marie-Louise; Enfield, Joey; Larin, Kirill; Leahy, Martin J

    2013-09-01

    We propose the use of correlation mapping optical coherence tomography (cmOCT) to deliver additional biometrics associated with the finger that could complement existing fingerprint technology for law enforcement applications. The current study extends the existing fingerprint paradigm by measuring additional biometrics associated with sub-surface finger tissue such as sub-surface fingerprints, sweat glands, and the pattern of the capillary bed to yield a user-friendly cost effective and anti-spoof multi-mode biometric solution associated with the finger. To our knowledge no other method has been able to capture sub-surface fingerprint, papillary pattern and horizontal vessel pattern in a single scan or to show the correspondence between these patterns in live adult human fingertip. Unlike many current technologies this approach incorporates 'liveness' testing by default. The ultimate output is a biometric module which is difficult to defeat and complements fingerprint scanners that currently are used in border control and law enforcement applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Correlation of structural retinal nerve fibre layer parameters and functional measures using Heidelberg Retinal Tomography and Spectralis spectral domain optical coherence tomography at different levels of glaucoma severity.

    Science.gov (United States)

    Leaney, John; Healey, Paul R; Lee, Martin; Graham, Stuart L

    2012-11-01

    To compare the structure/function relationship in glaucoma cases at different levels of severity, and with different disc sizes, between the Heidelberg Retinal Tomography and Spectralis spectral domain optical coherence tomography. Retrospective study of glaucoma patients attending a Sydney-based private practice. 169 eyes of 169 patients with a clinical diagnosis of glaucoma. Patients were divided on visual field criteria into early (mean deviation > -4 dB), moderate (-4 dB fibre layer thickness sectoral measurement were calculated. Correlation, as measured by Spearman's rho, between retinal nerve fibre layer measurements and mean threshold scores. Comparison of correlation strengths between the two scanning modalities with analysis of the effect of disease severity and disc size. Both imaging techniques showed only moderate correlations at best. Spectral domain optical coherence tomography (global retinal nerve fibre layer Spearman's rho = 0.670, P fibre layer (Spearman's rho = 0.421, P optical coherence tomography retinal nerve fibre layer measurements demonstrated closer correlations to visual field threshold reductions using a structure/function model in varying stages of glaucoma. © 2012 The Authors. Clinical and Experimental Ophthalmology © 2012 Royal Australian and New Zealand College of Ophthalmologists.

  2. Corneal Epithelial Thickness Measured by Manual Electronic Caliper Spectral Domain Optical Coherence Tomography: Distributions and Demographic Correlations in Preoperative Refractive Surgery Patients.

    Science.gov (United States)

    Rush, Sloan W; Matulich, Jennifer; Biskup, Joel; Cofoid, Philip; Rush, Ryan B

    2016-01-01

    The aim of this study was to report the distributions and demographic correlations of corneal epithelial thickness measured by manual electronic caliper spectral domain optical coherence tomography in preoperative refractive surgery patients. This was a retrospective review. The charts of 218 consecutive patients (413 eyes) who presented for refractive surgery evaluation from April 2013 through September 2013 were retrospectively reviewed. The mean corneal epithelial thickness was 51.0 μm with a range of 43 to 61 μm. Corneal epithelial thickness was significantly correlated with sex (P caliper optical coherence tomography in preoperative refractive surgery patients is comparable with the findings for the general population using other measurement techniques, the awareness of which may be useful in the preoperative assessment of these patients.

  3. Extended depth of field imaging through multicore optical fibers.

    Science.gov (United States)

    Orth, Antony; Ploschner, Martin; Maksymov, Ivan S; Gibson, Brant C

    2018-03-05

    Compact microendoscopes use multicore optical fibers (MOFs) to visualize hard-to-reach regions of the body. These devices typically have a large numerical aperture (NA) and are fixed-focus, leading to blurry images from a shallow depth of field with little focus control. In this work, we demonstrate a method to digitally adjust the collection aperture and therefore extend the depth of field of lensless MOF imaging probes. We show that the depth of field can be more than doubled for certain spatial frequencies, and observe a resolution enhancement of up to 78% at a distance of 50μm from the MOF facet. Our technique enables imaging of complex 3D objects at a comparable working distance to lensed MOFs, but without the requirement of lenses, scan units or transmission matrix calibration. Our approach is implemented in post processing and may be used to improve contrast in any microendoscopic probe utilizing a MOF and incoherent light.

  4. Polarization properties of a photorefractive Bi12SiO20 crystal and their application in an optical correlator

    DEFF Research Database (Denmark)

    Edvold, Bent; Andersen, Peter E.; Buchhave, Preben

    1994-01-01

    The polarization properties of Bi12SiO20 (BSO) crystals are investigated in detail theoretically and experimentally, and the results are used to describe the operation of an optical correlator for a particle image velocimeter (PIV) using a BSO crystal as the nonlinear optical element. The work...... that these effects can have a significant influence in the setup employed for the optical correlator even when the diffraction efficiency is low. The predictions of the numerical model are verified by extensive experiments on the polarization state of the output of the correlator as a function of operating...

  5. Correlation between cup-to-disc ratio and cup/retrobulbar optic nerve diameter proportion assessed by high-resolution ultrasound in glaucomatous eyes

    Directory of Open Access Journals (Sweden)

    Wilian Silva Queiroz

    2013-10-01

    Full Text Available PURPOSE: To investigate the correlation between the measurements of the cup/retrobulbar optic nerve diameter (C/OND proportion obtained by high-resolution 20-MHz B-mode ultrasound (US and those of the cup/disc ratio (C/D obtained by fundus biomicroscopy (BIO and optical coherence tomography (OCT. METHODS: Thirty eyes of 15 glaucomatous patients with any C/D proportion were studied. All patients underwent examination of the vertical C/D by BIO with a 78D lens and time-domain OCT analysis, as well as the vertical C/OND proportion using 20-MHz US measurements. All data were analyzed by correlation and agreement tests. RESULTS: The Spearman test showed a strong correlation between C/D results obtained by BIO and the measurements of C/OND (US (r=0.788, p<0.0001, and with C/D obtained by OCT (r=0.8529, p<0.0001. However, comparison of C/D results obtained with OCT to those obtained by with C/OND (US showed only a moderate correlation (r=0.6727, p<0.0001. Bland-Altman analysis did not show good agreement between C/D (BIO and C/OND (US. CONCLUSIONS: The results demonstrate that B-mode ultrasound examination with a 20 MHz probe can be a good additional method for the evaluation of the C/D ratio in glaucomatous patients, and may be considered as an alternative gross tool in glaucomatous patients with optic media opacities.

  6. The mass distribution in early-type disc galaxies : declining rotation curves and correlations with optical properties

    NARCIS (Netherlands)

    Noordermeer, E.; van der Hulst, J. M.; Sancisi, R.; Swaters, R. S.; van Albada, T. S.

    2007-01-01

    We present rotation curves for 19 early-type disc galaxies (S0-Sab). The galaxies span a B-band absolute magnitude range from -17.5 to -22, but the majority have a high luminosity with M-B <-20. Rotation velocities are measured from a combination of H I velocity fields and long-slit optical emission

  7. Detection of 2-mm-long strained section in silica fiber using slope-assisted Brillouin optical correlation-domain reflectometry

    Science.gov (United States)

    Lee, Heeyoung; Mizuno, Yosuke; Nakamura, Kentaro

    2018-02-01

    Slope-assisted Brillouin optical correlation-domain reflectometry is a single-end-access distributed Brillouin sensing technique with high spatial resolution and high-speed operation. We have recently discovered its unique feature, that is, strained or heated sections even shorter than nominal resolution can be detected, but its detailed characterization has not been carried out. Here, after experimentally characterizing this “beyond-nominal-resolution” effect, we show its usefulness by demonstrating the detection of a 2-mm-long strained section along a silica fiber. We also demonstrate the detection of a 5-mm-long heated section along a polymer optical fiber. The lengths of these detected sections are smaller than those of the other demonstrations reported so far.

  8. High-vacuum optical platform for cryo-CLEM (HOPE): A new solution for non-integrated multiscale correlative light and electron microscopy.

    Science.gov (United States)

    Li, Shuoguo; Ji, Gang; Shi, Yang; Klausen, Lasse Hyldgaard; Niu, Tongxin; Wang, Shengliu; Huang, Xiaojun; Ding, Wei; Zhang, Xiang; Dong, Mingdong; Xu, Wei; Sun, Fei

    2018-01-01

    Cryo-correlative light and electron microscopy (cryo-CLEM) offers a unique way to analyze the high-resolution structural information of cryo-vitrified specimen by cryo-electron microscopy (cryo-EM) with the guide of the search for unique events by cryo-fluorescence microscopy (cryo-FM). To achieve cryo-FM, a trade-off must be made between the temperature and performance of objective lens. The temperature of specimen should be kept below devitrification while the distance between the objective lens and specimen should be short enough for high resolution imaging. Although special objective lens was designed in many current cryo-FM approaches, the unavoided frosting and ice contamination are still affecting the efficiency of cryo-CLEM. In addition, the correlation accuracy between cryo-FM and cryo-EM would be reduced during the current specimen transfer procedure. Here, we report an improved cryo-CLEM technique (high-vacuum optical platform for cryo-CLEM, HOPE) based on a high-vacuum optical stage and a commercial cryo-EM holder. The HOPE stage comprises of a special adapter to suit the cryo-EM holder and a high-vacuum chamber with an anti-contamination system. It provides a clean and enduring environment for cryo specimen, while the normal dry objective lens in room temperature can be used via the optical windows. The 'touch-free' specimen transfer via cryo-EM holder allows least specimen deformation and thus maximizes the correlation accuracy between cryo-FM and cryo-EM. Besides, we developed a software to perform semi-automatic cryo-EM acquisition of the target region localized by cryo-FM. Our work provides a new solution for cryo-CLEM and can be adapted for different commercial fluorescence microscope and electron microscope. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Structure-functional correlation using adaptive optics, OCT, and microperimetry in a case of occult macular dystrophy

    Directory of Open Access Journals (Sweden)

    Karlos Ítalo Viana

    Full Text Available ABSTRACT We report retinal functional and structural changes of a 40-year-old man diagnosed with occult macular dystrophy. Comprehensive ophthalmological evaluation was performed, followed by spectral-domain optical coherence tomography (SD-OC - Heidelberg and image acquisition using an adaptive optics (AO camera (RTX1, Imagine Eyes for photoreceptor density analysis. Functional tests included full-field ERG (ERG and multifocal electroretinography (mfERG (Diagnosys, LLC and microperimetry with scanning laser ophthalmoscope (SLO fixation controlled (MAIA, CenterVUE. OCT revealed a line of discontinuity corresponding to cone outer-segment photoreceptors associated with a loss of cone density, highlighted by a dark blue spot on the AO co ne-density map on the fovea in both eyes. Loss of central sensitivity was revealed using microperimetry; ERG was within the normal range, although the mfERG showed a reduced central response amplitude.

  10. Correlation between morphological characteristics in spectral-domain-optical coherence tomography, different functional tests and a patient's subjective handicap in acute central serous chorioretinopathy.

    Science.gov (United States)

    Gerendas, Bianca S; Kroisamer, Julia-Sophie; Buehl, Wolf; Rezar-Dreindl, Sandra M; Eibenberger, Katharina M; Pablik, Eleonore; Schmidt-Erfurth, Ursula; Sacu, Stefan

    2018-01-16

    The purpose of this study was to identify quantitatively measurable morphologic optical coherence tomography (OCT) characteristics in patients with an acute episode of central serous chorioretinopathy (CSC) and evaluate their correlation to functional and psychological variables for their use in daily clinical practice. Retinal thickness (RT), the height, area and volume of subretinal fluid (SRF)/pigment epithelium detachments were evaluated using the standardized procedures of the Vienna Reading Center. These morphologic characteristics were compared with functional variables [best-corrected visual acuity (BCVA), contrast sensitivity (CS), retinal sensitivity/microperimetry, fixation stability], and patients' subjective handicap from CSC using the National Eye Institute 25-item Visual Function Questionnaire (NEI VFQ-25). Data from 39 CSC patients were included in this analysis. Three different SRF height measures showed a high negative correlation (r = -0.7) to retinal sensitivity within the central 9°, which was also negatively correlated with SRF area and volume (r = -0.6). The CS score and fixation stability (fixation points within 2°) showed a moderate negative correlation (r = -0.4) with SRF height variables. Comparison of the subjective handicap with morphological characteristics in spectral-domain (SD)-OCT showed SRF height had the highest correlation (r = -0.4) with the subjective problems reported and overall NEI VFQ-25 score. In conclusion, SRF height measured in SD-OCT showed the best correlation with functional variables and patients' subjective handicap caused by the disease and therefore seems to be the best variable to look at in daily clinical routine. Even though area and volume also show a correlation, these cannot be so easily measured as height and are therefore not suggested for daily clinical routine. © 2018 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  11. Pattern electroretinogram in neuromyelitis optica and multiple sclerosis with or without optic neuritis and its correlation with FD-OCT and perimetry.

    Science.gov (United States)

    Hokazono, Kenzo; Raza, Ali S; Oyamada, Maria K; Hood, Donald C; Monteiro, Mário L R

    2013-12-01

    To evaluate the ability of transient pattern electroretinogram (PERG) parameters to differentiate between eyes of patients with neuromyelitis optica (NMO), longitudinally extensive transverse myelitis (LETM), multiple sclerosis with optic neuritis (MS + ON), multiple sclerosis without optic neuritis (MS - ON), and controls, to compare PERG and OCT with regard to discrimination ability, and to assess the correlation between PERG, FD-OCT, and visual field measurements (VFs). Visual field measurements and full-field stimulation PERGs based on both 48- and 14-min checks were obtained from patients with MS (n = 28), NMO (n = 20), LETM (n = 18), and controls (n = 26). In addition, FD-OCT peripapillary retinal nerve fiber layer (RNFL) and segmented macular layer measurements were obtained and their correlation coefficients were determined. Compared to controls, PERG amplitude measurements were significantly reduced in eyes with NMO and MS + ON, but not in eyes with LETM and MS - ON. PERG amplitudes were significantly smaller in NMO and MS + ON eyes than in MS - ON eyes. PERG and OCT performance was similar except in NMO eyes where macular thickness parameters were more efficient at detecting abnormalities. A significant correlation was found between N95 amplitude values and OCT-measured macular ganglion cell layer thickness, total retinal thickness, and temporal peripapillary RNFL thickness. PERG amplitude was also significantly associated with VF sensitivity loss. No statistically significant difference was observed with regard to the best-performing parameters of the two methods. Pattern electroretinogram measurements were able to detect RNFL loss in MS + ON and NMO eyes, with a performance comparable to OCT. PERG amplitude measurements were reasonably well correlated with OCT-measured parameters.

  12. Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy

    Science.gov (United States)

    Yazdi, Hossein S.; O'Sullivan, Thomas D.; Leproux, Anais; Hill, Brian; Durkin, Amanda; Telep, Seraphim; Lam, Jesse; Yazdi, Siavash S.; Police, Alice M.; Carroll, Robert M.; Combs, Freddie J.; Strömberg, Tomas; Yodh, Arjun G.; Tromberg, Bruce J.

    2017-04-01

    Diffuse optical spectroscopic imaging (DOSI) and diffuse correlation spectroscopy (DCS) are model-based near-infrared (NIR) methods that measure tissue optical properties (broadband absorption, μa, and reduced scattering, μs‧) and blood flow (blood flow index, BFI), respectively. DOSI-derived μa values are used to determine composition by calculating the tissue concentration of oxy- and deoxyhemoglobin (HbO2, HbR), water, and lipid. We developed and evaluated a combined, coregistered DOSI/DCS handheld probe for mapping and imaging these parameters. We show that uncertainties of 0.3 mm-1 (37%) in μs‧ and 0.003 mm-1 (33%) in μa lead to ˜53% and 9% errors in BFI, respectively. DOSI/DCS imaging of a solid tissue-simulating flow phantom and a breast cancer patient reveals well-defined spatial distributions of BFI and composition that clearly delineates both the flow channel and the tumor. BFI reconstructed with DOSI-corrected μa and μs‧ values had a tumor/normal contrast of 2.7, 50% higher than the contrast using commonly assumed fixed optical properties. In conclusion, spatially coregistered imaging of DOSI and DCS enhances intrinsic tumor contrast and information content. This is particularly important for imaging diseased tissues where there are significant spatial variations in μa and μs‧ as well as potential uncoupling between flow and metabolism.

  13. In Vivo, Non-Invasive Characterization of Human Bone by Hybrid Broadband (600-1200 nm Diffuse Optical and Correlation Spectroscopies.

    Directory of Open Access Journals (Sweden)

    Sanathana Konugolu Venkata Sekar

    Full Text Available Non-invasive in vivo diffuse optical characterization of human bone opens a new possibility of diagnosing bone related pathologies. We present an in vivo characterization performed on seventeen healthy subjects at six different superficial bone locations: radius distal, radius proximal, ulna distal, ulna proximal, trochanter and calcaneus. A tailored diffuse optical protocol for high penetration depth combined with the rather superficial nature of considered tissues ensured the effective probing of the bone tissue. Measurements were performed using a broadband system for Time-Resolved Diffuse Optical Spectroscopy (TRS to assess mean absorption and reduced scattering spectra in the 600-1200 nm range and Diffuse Correlation Spectroscopy (DCS to monitor microvascular blood flow. Significant variations among tissue constituents were found between different locations; with radius distal rich of collagen, suggesting it as a prominent location for bone related measurements, and calcaneus bone having highest blood flow among the body locations being considered. By using TRS and DCS together, we are able to probe the perfusion and oxygen consumption of the tissue without any contrast agents. Therefore, we predict that these methods will be able to evaluate the impairment of the oxygen metabolism of the bone at the point-of-care.

  14. In Vivo, Non-Invasive Characterization of Human Bone by Hybrid Broadband (600-1200 nm) Diffuse Optical and Correlation Spectroscopies

    Science.gov (United States)

    Pagliazzi, Marco; Negredo, Eugènia; Martelli, Fabrizio; Farina, Andrea; Dalla Mora, Alberto; Lindner, Claus; Farzam, Parisa; Pérez-Álvarez, Núria; Puig, Jordi; Taroni, Paola; Pifferi, Antonio; Durduran, Turgut

    2016-01-01

    Non-invasive in vivo diffuse optical characterization of human bone opens a new possibility of diagnosing bone related pathologies. We present an in vivo characterization performed on seventeen healthy subjects at six different superficial bone locations: radius distal, radius proximal, ulna distal, ulna proximal, trochanter and calcaneus. A tailored diffuse optical protocol for high penetration depth combined with the rather superficial nature of considered tissues ensured the effective probing of the bone tissue. Measurements were performed using a broadband system for Time-Resolved Diffuse Optical Spectroscopy (TRS) to assess mean absorption and reduced scattering spectra in the 600–1200 nm range and Diffuse Correlation Spectroscopy (DCS) to monitor microvascular blood flow. Significant variations among tissue constituents were found between different locations; with radius distal rich of collagen, suggesting it as a prominent location for bone related measurements, and calcaneus bone having highest blood flow among the body locations being considered. By using TRS and DCS together, we are able to probe the perfusion and oxygen consumption of the tissue without any contrast agents. Therefore, we predict that these methods will be able to evaluate the impairment of the oxygen metabolism of the bone at the point-of-care. PMID:27997565

  15. Realizing the Strongly Correlated d-Wave Mott-Insulator State in a Fermionic Cold-Atom Optical Lattice

    International Nuclear Information System (INIS)

    Peterson, Michael R.; Zhang Chuanwei; Tewari, Sumanta; Sarma, S. Das

    2008-01-01

    We show that a new state of matter, the d-wave Mott-insulator state (d-Mott state) (introduced recently by [H. Yao, W. F. Tsai, and S. A. Kivelson, Phys. Rev. B 76, 161104 (2007)]), which is characterized by a nonzero expectation value of a local plaquette operator embedded in an insulating state, can be engineered using ultracold atomic fermions in two-dimensional double-well optical lattices. We characterize and analyze the parameter regime where the d-Mott state is stable. We predict the testable signatures of the state in the time-of-flight measurements

  16. Correlation lifetimes of quiet and magnetic granulation from the SOUP instrument on Spacelab 2. [Solar Optical Universal Polarimeter

    Science.gov (United States)

    Title, A.; Tarbell, T.; Topka, K.; Acton, L.; Duncan, D.

    1988-01-01

    The time sequences of diffraction limited granulation images obtained by the Solar Optical Universal Polarimeter on Spacelab 2 are presented. The uncorrection autocorrelation limetime in magnetic regions is dominated by the 5-min oscillation. The removal of this oscillation causes the autocorrelation lifetime to increase by more than a factor of 2. The results suggest that a significant fraction of granule lifetimes are terminated by nearby explosions. Horizontal displacements and transverse velocities in the intensity field are measured. Lower limits to the lifetime in the quiet and magnetic sun are set at 440 s and 950 s, respectively.

  17. Constraining the optical depth of galaxies and velocity bias with cross-correlation between the kinetic Sunyaev-Zeldovich effect and the peculiar velocity field

    Science.gov (United States)

    Ma, Yin-Zhe; Gong, Guo-Dong; Sui, Ning; He, Ping

    2018-03-01

    We calculate the cross-correlation function between the kinetic Sunyaev-Zeldovich (kSZ) effect and the reconstructed peculiar velocity field using linear perturbation theory, with the aim of constraining the optical depth τ and peculiar velocity bias of central galaxies with Planck data. We vary the optical depth τ and the velocity bias function bv(k) = 1 + b(k/k0)n, and fit the model to the data, with and without varying the calibration parameter y0 that controls the vertical shift of the correlation function. By constructing a likelihood function and constraining the τ, b and n parameters, we find that the quadratic power-law model of velocity bias, bv(k) = 1 + b(k/k0)2, provides the best fit to the data. The best-fit values are τ = (1.18 ± 0.24) × 10-4, b=-0.84^{+0.16}_{-0.20} and y0=(12.39^{+3.65}_{-3.66})× 10^{-9} (68 per cent confidence level). The probability of b > 0 is only 3.12 × 10-8 for the parameter b, which clearly suggests a detection of scale-dependent velocity bias. The fitting results indicate that the large-scale (k ≤ 0.1 h Mpc-1) velocity bias is unity, while on small scales the bias tends to become negative. The value of τ is consistent with the stellar mass-halo mass and optical depth relationship proposed in the literature, and the negative velocity bias on small scales is consistent with the peak background split theory. Our method provides a direct tool for studying the gaseous and kinematic properties of galaxies.

  18. The diagnostic use of choroidal thickness analysis and its correlation with visual field indices in glaucoma using spectral domain optical coherence tomography.

    Directory of Open Access Journals (Sweden)

    Zhongjing Lin

    Full Text Available To evaluate the quantitative characteristics of choroidal thickness in primary open-angle glaucoma (POAG, normal tension glaucoma (NTG and in normal eyes using spectral-domain optical coherence tomography (SD-OCT. To evaluate the diagnostic ability of choroidal thickness in glaucoma and to determine the correlation between choroidal thickness and visual field parameters in glaucoma.A total of 116 subjects including 40 POAG, 30 NTG and 46 healthy subjects were enrolled in this study. Choroidal thickness measurements were acquired in the macular and peripapillary regions using SD-OCT. All subjects underwent white-on-white (W/W and blue-on-yellow (B/Y visual field tests using Humphrey Field Analyzer. The receiver operating characteristic (ROC curve and the area under curve (AUC were generated to assess the discriminating power of choroidal thickness for glaucoma. Pearson's correlation coefficients were calculated to assess the structure function correlation for glaucoma patients.No significant differences were observed for macular choroidal thickness among the different groups (all P > 0.05. Regarding the peripapillary choroidal thickness (PPCT, significant differences were observed among the three groups (all P 0.05, but showed significant correlations with B/Y MD (all P < 0.05. In the early glaucomatous eyes, PPCT showed significant correlations with W/W MD and B/Y MD (all P < 0.05.In our study, peripapillary choroidal thickness measured on OCT showed a low to moderate but statistically significant diagnostic power and a significant correlation with blue-on-yellow visual field indices in glaucoma. This may indicate a potential adjunct for peripapillary choroidal thickness in glaucoma diagnosis.

  19. Enhanced gas sensing correlated with structural and optical properties of Cs-loaded SnO2 nanofilms

    Science.gov (United States)

    Elia Raine, P. J.; Arun George, P.; Balasundaram, O. N.; Varghese, T.

    2016-09-01

    The Cs-loaded SnO2 thin films were prepared by the spray pyrolysis technique and were characterized by X-ray diffraction, scanning electron microscopy, ultraviolet-visible spectroscopy, impedance spectroscopy and conductometric method. Investigations based on the structural, optical and electrical properties confirm an enhanced gas sensing potential of cesium-loaded tin oxide films. It is found that the tin oxide thin film doped with 4% Cs with a mean grain size of 20 nm at a deposition temperature of 350 ° C show a maximum sensor response of 97.5% for LPG consistently. It is also observed that the sensor response of Cs-doped SnO2 thin films depends on the dopant concentration and the deposition temperature of the film.

  20. Microwave-assisted hydrothermal synthesis of CePO4 nanostructures: Correlation between the structural and optical properties

    International Nuclear Information System (INIS)

    Palma-Ramírez, D.; Domínguez-Crespo, M.A.; Torres-Huerta, A.M.; Dorantes-Rosales, H.; Ramírez-Meneses, E.; Rodríguez, E.

    2015-01-01

    Highlights: • An enhancement in the hydrothermal synthesis for obtaining of CePO 4 is presented. • Microwave energy can replace the energy by convection for obtaining CePO 4 . • CePO 4 demonstrates to be an option to increase the optical properties of polymers. • Adjusting the pH, the sintering process is not necessary to obtain the desire phase. • CePO 4 morphologies undergo evolution from nanorods to semispherical nanoparticles. - Abstract: In this work, the microwave-assisted hydrothermal method is proposed as an alternative to the synthesis of cerium phosphate (CePO 4 ) nanostructures to evaluate the influence of different synthesis parameters on both the structural and optical properties. In order to reach this goal, two different sets of experiments were designed, varying the reaction temperature (130 and 180 °C), synthesis time (15 and 30 min) and sintering temperature (400 and 600 °C), maintaining a constant pH = 3. Thereafter, two experimental conditions were selected to assess changes in the properties of CePO 4 nanopowders with pH (1, 5, 9 and 11). The crystal structure and morphology of the nanostructures were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM), respectively. Diffuse reflectance properties of CePO 4 with different microstructures were studied. The results demonstrated that by using the microwave-assisted hydrothermal method, the shape, size and structural phase of CePO 4 can be modulated by using relatively low synthesis temperatures and short reaction times, and depending on pH, a sintering process is not needed to obtain either a desired phase or size. Under the selected experimental conditions, the materials underwent an evolution from nanorods to semispherical nanoparticles, accompanied by a phase transition from hexagonal to monoclinic

  1. Microwave-assisted hydrothermal synthesis of CePO{sub 4} nanostructures: Correlation between the structural and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Palma-Ramírez, D. [Instituto Politécnico Nacional, CICATA-Unidad Altamira, Km 14.5, Carretera Tampico-Puerto Industrial Altamira, C.P. 89600 Altamira, Tamps (Mexico); Domínguez-Crespo, M.A., E-mail: mdominguezc@ipn.mx [Instituto Politécnico Nacional, CICATA-Unidad Altamira, Km 14.5, Carretera Tampico-Puerto Industrial Altamira, C.P. 89600 Altamira, Tamps (Mexico); Torres-Huerta, A.M. [Instituto Politécnico Nacional, CICATA-Unidad Altamira, Km 14.5, Carretera Tampico-Puerto Industrial Altamira, C.P. 89600 Altamira, Tamps (Mexico); Dorantes-Rosales, H. [Instituto Politécnico Nacional, ESIQIE, Departamento de Metalurgia, C.P. 07300 México D.F. (Mexico); Ramírez-Meneses, E. [Universidad Iberoamericana, Departamento de Ingeniería y Ciencias Químicas, Prolongación Paseo de la Reforma 880, Lomas de Santa Fe, C.P. 01219 México D.F. (Mexico); Rodríguez, E. [Instituto Politécnico Nacional, CICATA-Unidad Altamira, Km 14.5, Carretera Tampico-Puerto Industrial Altamira, C.P. 89600 Altamira, Tamps (Mexico)

    2015-09-15

    Highlights: • An enhancement in the hydrothermal synthesis for obtaining of CePO{sub 4} is presented. • Microwave energy can replace the energy by convection for obtaining CePO{sub 4}. • CePO{sub 4} demonstrates to be an option to increase the optical properties of polymers. • Adjusting the pH, the sintering process is not necessary to obtain the desire phase. • CePO{sub 4} morphologies undergo evolution from nanorods to semispherical nanoparticles. - Abstract: In this work, the microwave-assisted hydrothermal method is proposed as an alternative to the synthesis of cerium phosphate (CePO{sub 4}) nanostructures to evaluate the influence of different synthesis parameters on both the structural and optical properties. In order to reach this goal, two different sets of experiments were designed, varying the reaction temperature (130 and 180 °C), synthesis time (15 and 30 min) and sintering temperature (400 and 600 °C), maintaining a constant pH = 3. Thereafter, two experimental conditions were selected to assess changes in the properties of CePO{sub 4} nanopowders with pH (1, 5, 9 and 11). The crystal structure and morphology of the nanostructures were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM), respectively. Diffuse reflectance properties of CePO{sub 4} with different microstructures were studied. The results demonstrated that by using the microwave-assisted hydrothermal method, the shape, size and structural phase of CePO{sub 4} can be modulated by using relatively low synthesis temperatures and short reaction times, and depending on pH, a sintering process is not needed to obtain either a desired phase or size. Under the selected experimental conditions, the materials underwent an evolution from nanorods to semispherical nanoparticles, accompanied by a phase transition from hexagonal to monoclinic.

  2. A classical optical approach to the ‘non-local Pancharatnam-like phases’ in Hanbury-Brown–Twiss correlations

    International Nuclear Information System (INIS)

    Arvind; Chaturvedi, S.; Mukunda, N.

    2017-01-01

    Highlights: • Pancharatnam-like phase in HBT correlations. • Mach–Zehnder type setup to clarify that the phases involved are not geometric phases. • No nonlocality involved since the treatment is classical. - Abstract: We examine a recent proposal to show the presence of nonlocal Pancharatnam type geometric phases in a quantum mechanical treatment of intensity interferometry measurements upon inclusion of polarizing elements in the setup. It is shown that a completely classical statistical treatment of such effects is adequate for practical purposes. Further we show that the phase angles that appear in the correlations, while at first sight appearing to resemble Pancharatnam phases in their mathematical structure, cannot actually be interpreted in that manner. We also describe a simpler Mach–Zehnder type setup where similar effects can be observed without use of the paraxial approximation.

  3. Pulse-Wave Analysis of Optic Nerve Head Circulation Is Significantly Correlated with Kidney Function in Patients with and without Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Tomoaki Shiba

    2014-01-01

    Full Text Available Aim. To determine whether there is a significant correlation between the optic nerve head (ONH circulation determined by laser speckle flowgraphy (LSFG and kidney function. Materials. Seventy-one subjects were investigated. The estimated glomerular filtration rate (GFR and serum creatinine, cystatin C, and urinary albumin excretion were measured. The ONH circulation was determined by an analysis of the pulse wave of LSFG, and this parameter was named blowout time (BOT. Chronic kidney disease (CKD was defined to be present when the estimated GFR was <60 mL/min per 1.73 m2. Pearson’s correlation coefficients were used to determine the relationship between the BOT and the kidney function. We also examined whether there were significant differences in all parameters in patients with and without CKD. Results. BOT was significantly correlated with the level of creatinine (r=-0.24, P=0.04, the estimated GFR (r=0.42, P=0.0003, cystatin C (r=-0.29, P=0.01, and urinary albumin excretion (r=-0.29, P=0.01. The BOT level in subjects with CKD was significantly lower than that in subjects without CKD (P=0.002. Conclusion. BOT in ONH by LSFG can detect the organ damage such as kidney dysfunction, CKD.

  4. One to one correlation of needle based optical coherence tomography with histopathology: a qualitative and quantitative analysis in 20 prostatectomy specimens (Conference Presentation)

    Science.gov (United States)

    Swaan, Abel; Muller, Berrend B. G.; van Kollenburg, Rob A. A.; de Bruin, Daniel M.; Sterenborg, Dick H. J. C. M.; de la Rosette, Jean J. M. C. H.; van Leeuwen, Ton G.; Faber, Dirk J.

    2017-02-01

    Prostate cancer treatment is shifting from radical to focal therapy. Instant tumor visualization on a microscopic level is crucial for clinical application of focal therapy. Optical coherence tomography (OCT) produces instant tissue visualization on a µm scale and the attenuation of OCT signal as a measure of tissue organization. The objective is to correlate qualitative and quantitative OCT analysis with histopathology. Twenty prostates were analyzed by needle based OCT after radical prostatectomy. For precise correlation, whole mount histology slides were cut through the OCT trajectory. OCT images were classified in eight histological categories. Two reviewers independently performed assessment of the OCT images into these categories. Quantitative attenuation coefficient was used to discriminate stroma and malignant tissue. Sensitivity and specificity for detection of malignancy on OCT was calculated. Visual analyses showed that OCT can reliably differentiate between fat, cystic and regular atrophy and benign glands. Differentiation of benign stroma and inflammation and also malignancy Gleason 3 and 4 is more difficult. Sensitivity and specificity for detection of malignancy on OCT were calculated at 77% and 75%. Quantitative analysis by means of the attenuation coefficient for differentiation between stroma and malignancy showed no significant difference (4.39 mm-1 vs. 5.31 mm-1). Precise correlation of histology and OCT is possible and helps us to understand what we see and measure on OCT. Visual malignancy detection shows reasonable sensitivity and specificity. Our future studies focus on improving discrimination of malignancy with OCT for example by combining an extra imaging modality.

  5. Correlation between Retinal Changes and Visual Function in Late-Stage Vogt-Koyanagi-Harada Disease: An Optical Coherence Tomography Study

    Directory of Open Access Journals (Sweden)

    Min Zhou

    2015-01-01

    Full Text Available Purpose. To characterize the optical coherence tomography (OCT findings in late-stage Vogt-Koyanagi-Harada (VKH disease and its correlation with visual function. Methods. The records of patients with late-stage VKH disease (defined as ≥12 months from disease onset were retrospectively reviewed. The analysis focused on the OCT findings and microperimetry, in addition to the possible correlation between morphology and functional findings. Results. Twenty-nine patients (58 eyes were included. Mean age at onset was 34.24 ± 10.67 years. The OCT revealed that the outer retina and retinal pigment epithelium (RPE were mainly affected. These effects included RPE thickening and breakage or disappearance of the cone outer segment tip (COST line and/or inner segment/outer segment (IS/OS junction. The COST line and IS/OS results were related to macular function and the interval between symptom onset and initiation of high-dose corticosteroid treatment (all P<0.01. Eyes with intact COST lines demonstrated intact IS/OS and normal RPE layers as well as better visual function and normal retinal sensitivity. Conclusions. The OCT findings are strongly correlated with macular function, as well as other clinical findings in late-stage VKH. With respect to the COST line and retinal sensitivity especially, the OCT and microperimetry findings may be useful for evaluating later-stage VKH.

  6. Synthesis of dynamic phase profile by the correlation technique for spatial control of optical beams in multiplexing and switching

    Science.gov (United States)

    Bugaychuk, Svitlana A.; Gnatovskyy, Vladimir O.; Sidorenko, Andrey V.; Pryadko, Igor I.; Negriyko, Anatoliy M.

    2015-11-01

    New approach for the correlation technique, which is based on multiple periodic structures to create a controllable angular spectrum, is proposed and investigated both theoretically and experimentally. The transformation of an initial laser beam occurs due to the actions of consecutive phase periodic structures, which may differ by their parameters. Then, after the Fourier transformation of a complex diffraction field, the output diffraction orders will be changed both by their intensities and by their spatial position. The controllable change of output angular spectrum is carried out by a simple control of the parameters of the periodic structures. We investigate several simple examples of such management.

  7. Quantum distillation: Dynamical generation of low-entropy states of strongly correlated fermions in an optical lattice

    Energy Technology Data Exchange (ETDEWEB)

    Heidrich-Meisner, F. [Institut fur Physikalische Chemie der RWTH; Manmana, S. R. [Ecole Polytechnique Federale de Lausanne, Switzerland; Rigol, M. [Georgetown University; Muramatsu, A. [Universitat Stuttgart, Institute fur Plasmaforschung, Germany; Feiguin, A. E. [University of Maryland; Dagotto, Elbio R [ORNL

    2009-01-01

    Correlations between particles can lead to subtle and sometimes counterintuitive phenomena. We analyze one such case, occurring during the sudden expansion of fermions in a lattice when the initial state has a strong admixture of double occupancies. We promote the notion of quantum distillation: during the expansion and in the case of strongly repulsive interactions, doublons group together, forming a nearly ideal band insulator, which is metastable with low entropy. We propose that this effect could be used for cooling purposes in experiments with two-component Fermi gases.

  8. Electronic structure, optical properties and Compton profiles of RuO2: Performance of PBEsol exchange–correlation approximation

    International Nuclear Information System (INIS)

    Sharma, Khushboo; Sahariya, Jagrati; Ahuja, B.L.

    2015-01-01

    Highlights: • First ever Compton study of rutile RuO 2 . • Demonstrated use of new PBEsol potential for electronic properties using LCAO and FP-LAPW. • Analyzed optical and electronic structure calculations and compared with experiment. - Abstract: We present first ever electron momentum density of RuO 2 using 20 Ci 137 Cs (661.65 keV) Compton spectrometer at a resolution (Gaussian FWHM) of 0.34 a.u. The experimental Compton profile (CP) has been compared with the theoretical profiles computed using linear combination of atomic orbitals (LCAO) within framework Hartree–Fock scheme and of density functional theory. Comparison of theoretical and experimental CPs demonstrates usefulness of revised functional of Perdew–Burke–Ernzerhof (so called PBEsol) in computing the electronic properties of RuO 2 . The energy bands and density of states of RuO 2 are also reported using LCAO and full potential linearized augmented plane wave (FP-LAPW) method within PBEsol approximation. The complex dielectric functions computed using FP-LAPW method are explained in terms of transitions within energy bands. Our results for dielectric functions show a good agreement with the available experimental data and confirm the Drude like behavior of RuO 2 . The Fermi surface structure and reflectivity spectra computed using FP-LAPW method are found to be in tune with the available measurements

  9. Electronic structure, optical properties and Compton profiles of RuO{sub 2}: Performance of PBEsol exchange–correlation approximation

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Khushboo [Department of Physics, M.L. Sukhadia University, Udaipur 313002, Rajasthan (India); Sahariya, Jagrati [Department of Physics, Manipal University, Jaipur 303007, Rajasthan (India); Ahuja, B.L., E-mail: blahuja@yahoo.com [Department of Physics, M.L. Sukhadia University, Udaipur 313002, Rajasthan (India)

    2015-10-05

    Highlights: • First ever Compton study of rutile RuO{sub 2}. • Demonstrated use of new PBEsol potential for electronic properties using LCAO and FP-LAPW. • Analyzed optical and electronic structure calculations and compared with experiment. - Abstract: We present first ever electron momentum density of RuO{sub 2} using 20 Ci {sup 137}Cs (661.65 keV) Compton spectrometer at a resolution (Gaussian FWHM) of 0.34 a.u. The experimental Compton profile (CP) has been compared with the theoretical profiles computed using linear combination of atomic orbitals (LCAO) within framework Hartree–Fock scheme and of density functional theory. Comparison of theoretical and experimental CPs demonstrates usefulness of revised functional of Perdew–Burke–Ernzerhof (so called PBEsol) in computing the electronic properties of RuO{sub 2}. The energy bands and density of states of RuO{sub 2} are also reported using LCAO and full potential linearized augmented plane wave (FP-LAPW) method within PBEsol approximation. The complex dielectric functions computed using FP-LAPW method are explained in terms of transitions within energy bands. Our results for dielectric functions show a good agreement with the available experimental data and confirm the Drude like behavior of RuO{sub 2}. The Fermi surface structure and reflectivity spectra computed using FP-LAPW method are found to be in tune with the available measurements.

  10. Nanostructured rare earth doped Nb2O5: Structural, optical properties and their correlation with photonic applications

    International Nuclear Information System (INIS)

    Pereira, Rafael Ramiro; Aquino, Felipe Thomaz; Ferrier, Alban; Goldner, Philippe; Gonçalves, Rogéria R.

    2016-01-01

    In the present work, we report on a systematic study on structural and spectroscopic properties Eu 3+ and Er 3+ -doped Nb 2 O 5 prepared by sol–gel method. The Eu 3+ ions were used as structural probe to determine the symmetry sites occupied by lanthanide ions. The Eu 3+ -doped Nb 2 O 5 nanocrystalline powders were annealed at different temperatures to verify how the different Nb 2 O 5 crystalline phases affect the structure and the luminescence properties. Er 3+ -doped Nb 2 O 5 was prepared showing an intense NIR luminescence, and, visible luminescence on the green and red, deriving from upconversion process. The synthetized materials can find widespread applicability in photonics as red luminophor for white LED (with tricolor), optical amplifiers and upconverter materials. - Highlights: • Vis and NIR emission from nanostructured lanthanide doped Nb 2 O 5 . • Eu 3+ -doped Nb 2 O 5 as Red luminophor. • Multicolor tunability of intense upconversion emission from lanthanide doped Nb 2 O 5 . • Potential application as biological markers. • Broad band NIR emission.

  11. Optical mammography: a new technique for visualizing breast lesions in women presenting non palpable BIRADS 4–5 imaging findings: preliminary results with radiologic–pathologic correlation

    Science.gov (United States)

    Vanel, Daniel; Fournier, Laure; Balleyguier, Corinne

    2007-01-01

    The purpose of this prospective study is to determine the diagnostic accuracy of near-infrared breast optical absorption imaging in patients with Breast Imaging Reporting and Data System (BIRADS) 4–5 non-palpable lesions scheduled for biopsy, using pathology after core or excisional biopsy as a reference. The patient's breast was positioned onto a panel of red light-emitting diodes (640 nm). A soft membrane was inflated to exert a uniform pressure on the breast. Transmitted light was detected using a CCD camera. The entire acquisition sequence took 1 minute. Image processing generated dynamic images displayed in colour scale, to reveal time-dependent changes in the transmitted light intensity caused by the pressure change. Dynamic curves were classified in two categories: consistently decreasing intensity suspicious for malignancy, and sinusoidal increasing intensity considered as benign. Seventy-eight women consulting for non-palpable breast lesions were initially included in the study. An imaging–histology correlation was obtained for seventy-two patients, the remaining six patients were excluded for technical optical scan reasons. We experienced an overall sensitivity of 73% and specificity of 38%, the false negative results being mainly small size (<10 mm) infiltrating malignant lesions and ductal carcinoma in situ (DCIS). False positive results were seen in benign proliferative lesions. Dynamic optical breast imaging is a novel, low-cost, non-invasive technique yielding a new type of information about the physiology of breast lesions. Absorption is due to haemoglobin and its products, therefore reflecting the angiogenic status of breast tumours. PMID:17339139

  12. Optical mammography: a new technique for visualizing breast lesions in women presenting non palpable BIRADS 4-5 imaging findings: preliminary results with radiologic-pathologic correlation.

    Science.gov (United States)

    Athanasiou, Alexandra; Vanel, Daniel; Fournier, Laure; Balleyguier, Corinne

    2007-02-28

    The purpose of this prospective study is to determine the diagnostic accuracy of near-infrared breast optical absorption imaging in patients with Breast Imaging Reporting and Data System (BIRADS) 4-5 non-palpable lesions scheduled for biopsy, using pathology after core or excisional biopsy as a reference. The patient's breast was positioned onto a panel of red light-emitting diodes (640 nm). A soft membrane was inflated to exert a uniform pressure on the breast. Transmitted light was detected using a CCD camera. The entire acquisition sequence took 1 minute. Image processing generated dynamic images displayed in colour scale, to reveal time-dependent changes in the transmitted light intensity caused by the pressure change. Dynamic curves were classified in two categories: consistently decreasing intensity suspicious for malignancy, and sinusoidal increasing intensity considered as benign. Seventy-eight women consulting for non-palpable breast lesions were initially included in the study. An imaging-histology correlation was obtained for seventy-two patients, the remaining six patients were excluded for technical optical scan reasons. We experienced an overall sensitivity of 73% and specificity of 38%, the false negative results being mainly small size (<10 mm) infiltrating malignant lesions and ductal carcinoma in situ (DCIS). False positive results were seen in benign proliferative lesions. Dynamic optical breast imaging is a novel, low-cost, non-invasive technique yielding a new type of information about the physiology of breast lesions. Absorption is due to haemoglobin and its products, therefore reflecting the angiogenic status of breast tumours.

  13. Topography, complex refractive index, and conductivity of graphene layers measured by correlation of optical interference contrast, atomic force, and back scattered electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vaupel, Matthias, E-mail: Matthias.vaupel@zeiss.com; Dutschke, Anke [Training Application Support Center, Carl Zeiss Microscopy GmbH, Königsallee 9-21, 37081 Göttingen (Germany); Wurstbauer, Ulrich; Pasupathy, Abhay [Department of Physics, Columbia University New York, 538 West 120th Street, New York, New York 10027 (United States); Hitzel, Frank [DME Nanotechnologie GmbH, Geysostr. 13, D-38106 Braunschweig (Germany)

    2013-11-14

    The optical phase shift by reflection on graphene is measured by interference contrast microscopy. The height profile across graphene layers on 300 nm thick SiO{sub 2} on silicon is derived from the phase profile. The complex refractive index and conductivity of graphene layers on silicon with 2 nm thin SiO{sub 2} are evaluated from a phase profile, while the height profile of the layers is measured by atomic force microscopy. It is observed that the conductivity measured on thin SiO{sub 2} is significantly greater than on thick SiO{sub 2}. Back scattered electron contrast of graphene layers is correlated to the height of graphene layers.

  14. Correlation of within-individual fluctuation of depressed mood with prefrontal cortex activity during verbal working memory task: optical topography study

    Science.gov (United States)

    Sato, Hiroki; Aoki, Ryuta; Katura, Takusige; Matsuda, Ryoichi; Koizumi, Hideaki

    2011-12-01

    Previous studies showed that interindividual variations in mood state are associated with prefrontal cortex (PFC) activity. In this study, we focused on the depressed-mood state under natural circumstances and examined the relationship between within-individual changes over time in this mood state and PFC activity. We used optical topography (OT), a functional imaging technique based on near-infrared spectroscopy, to measure PFC activity for each participant in three experimental sessions repeated at 2-week intervals. In each session, the participants completed a self-report questionnaire of mood state and underwent OT measurement while performing verbal and spatial working memory (WM) tasks. The results showed that changes in the depressed-mood score between successive sessions were negatively correlated with those in the left PFC activation for the verbal WM task (ρ = -0.56, p < 0.05). In contrast, the PFC activation for the spatial WM task did not co-vary with participants' mood changes. We thus demonstrated that PFC activity during a verbal WM task varies depending on the participant's depressed mood state, independent of trait factors. This suggests that using optical topography to measure PFC activity during a verbal WM task can be used as a potential state marker for an individual's depressed mood state.

  15. Nanometer scale correlation of optical and structural properties of individual InGaN/GaN nanorods by scanning transmission electron microscope cathodoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Marcus; Schmidt, Gordon; Veit, Peter; Petzold, Silke; Bertram, Frank; Christen, Juergen [Institute of Experimental Physics, Otto-von-Guericke-University Magdeburg (Germany); Albert, Steven; Bengoechea-Encabo, Ana Maria; Sanchez-Garcia, Miguel Angel; Calleja, Enrique [ISOM e Departamento de Ingenieria Electronica, Universidad Politecnica de Madrid (Spain)

    2013-07-01

    A potential benefit of nanorods as light emitters, aside from their very high crystal quality, relies on better light extraction efficiency as compared to thin films, because of the high surface to volume ratio. In this study we present a direct nano-scale correlation of the optical properties with the actual crystalline structure of ordered InGaN/GaN nanorods using low temperature cathodoluminescence spectroscopy in a scanning transmission electron microscope (STEM-CL). Direct comparison of the high-angle annular dark field image with the simultaneously recorded panchromatic CL mapping at 15 K reveals a weak luminescence from the bottom GaN layer. We observe the highest CL intensity in the middle of the InGaN region. The spectral position of the InGaN emission shifts continuously red from the GaN/InGaN interface (λ=409 nm) to the NR top (λ=446 nm) due to lattice pulling effects and InGaN partial decomposition. Additionally, optical active basal stacking faults in the GaN layer emitting at 366 nm can be found.

  16. Using optical fibers with different modes to improve the signal-to-noise ratio of diffuse correlation spectroscopy flow-oximeter measurements

    Science.gov (United States)

    He, Lian; Lin, Yu; Shang, Yu; Shelton, Brent J.; Yu, Guoqiang

    2013-03-01

    The dual-wavelength diffuse correlation spectroscopy (DCS) flow-oximeter is an emerging technique enabling simultaneous measurements of blood flow and blood oxygenation changes in deep tissues. High signal-to-noise ratio (SNR) is crucial when applying DCS technologies in the study of human tissues where the detected signals are usually very weak. In this study, single-mode, few-mode, and multimode fibers are compared to explore the possibility of improving the SNR of DCS flow-oximeter measurements. Experiments on liquid phantom solutions and in vivo muscle tissues show only slight improvements in flow measurements when using the few-mode fiber compared with using the single-mode fiber. However, light intensities detected by the few-mode and multimode fibers are increased, leading to significant SNR improvements in detections of phantom optical property and tissue blood oxygenation. The outcomes from this study provide useful guidance for the selection of optical fibers to improve DCS flow-oximeter measurements.

  17. Defect Creation in InGaAs/GaAs Multiple Quantum Wells: Correlation of Crystalline and Optical Properties with Epitaxial Growth Conditions

    Science.gov (United States)

    Karow, Matthias

    Multiple quantum well (MQW) structures have been employed in a variety of solid state devices. The InGaAs/GaAs material system is of special interest for many optoelectronic applications. This study examines epitaxial growth and defect creation in InGaAs/GaAs MQWs at its initial stage. Correlations between physical properties, crystal perfection of epitaxial structures, and growth conditions under which desired properties are achieved appear as highly important for the realization and final performance of semiconductor based devices. Molecular beam epitaxy was utilized to grow InGaAs/GaAs MQW structures with a variation in deposition temperature Tdep among the samples to change crystalline and physical properties. High resolution x-ray diffraction and transmission electron microscopy were utilized to probe crystal properties, whereas photoluminescence spectroscopy evaluated optical response. An optimal growth temperature Tdep=505°C was found for 20% In composition. The density of 60° primary and secondary dislocation loops increased continuously at lower growth temperatures and reduced crystal perfection, as evaluated by lateral and vertical coherence lengths and diffuse scattering in reciprocal space maps. Likewise, the strength of non-radiative Shockley-Read-Hall recombination increased as deposition temperature was reduced. Elevated deposition temperature led to InGaAs decay in the structures and manifested in different crystalline defects with a rather isotropic distribution and no lateral ordering. High available thermal energy increased atomic surface diffusivity and resulted in growth surface instability against perturbations, manifesting in lateral layer thickness undulations. Carriers in structures grown at elevated temperature experience localization in local energy minima.InGaAs/GaAs MQW structures reveal correlation between their crystal quality and optical properties. It can be suggested that there is an optimal growth temperature range for each In

  18. Estimation of cardiac motion in cine-MRI sequences by correlation transform optical flow of monogenic features distance

    Science.gov (United States)

    Gao, Bin; Liu, Wanyu; Wang, Liang; Liu, Zhengjun; Croisille, Pierre; Delachartre, Philippe; Clarysse, Patrick

    2016-12-01

    Cine-MRI is widely used for the analysis of cardiac function in clinical routine, because of its high soft tissue contrast and relatively short acquisition time in comparison with other cardiac MRI techniques. The gray level distribution in cardiac cine-MRI is relatively homogenous within the myocardium, and can therefore make motion quantification difficult. To ensure that the motion estimation problem is well posed, more image features have to be considered. This work is inspired by a method previously developed for color image processing. The monogenic signal provides a framework to estimate the local phase, orientation, and amplitude, of an image, three features which locally characterize the 2D intensity profile. The independent monogenic features are combined into a 3D matrix for motion estimation. To improve motion estimation accuracy, we chose the zero-mean normalized cross-correlation as a matching measure, and implemented a bilateral filter for denoising and edge-preservation. The monogenic features distance is used in lieu of the color space distance in the bilateral filter. Results obtained from four realistic simulated sequences outperformed two other state of the art methods even in the presence of noise. The motion estimation errors (end point error) using our proposed method were reduced by about 20% in comparison with those obtained by the other tested methods. The new methodology was evaluated on four clinical sequences from patients presenting with cardiac motion dysfunctions and one healthy volunteer. The derived strain fields were analyzed favorably in their ability to identify myocardial regions with impaired motion.

  19. Holographic Optical Data Storage

    Science.gov (United States)

    Timucin, Dogan A.; Downie, John D.; Norvig, Peter (Technical Monitor)

    2000-01-01

    Although the basic idea may be traced back to the earlier X-ray diffraction studies of Sir W. L. Bragg, the holographic method as we know it was invented by D. Gabor in 1948 as a two-step lensless imaging technique to enhance the resolution of electron microscopy, for which he received the 1971 Nobel Prize in physics. The distinctive feature of holography is the recording of the object phase variations that carry the depth information, which is lost in conventional photography where only the intensity (= squared amplitude) distribution of an object is captured. Since all photosensitive media necessarily respond to the intensity incident upon them, an ingenious way had to be found to convert object phase into intensity variations, and Gabor achieved this by introducing a coherent reference wave along with the object wave during exposure. Gabor's in-line recording scheme, however, required the object in question to be largely transmissive, and could provide only marginal image quality due to unwanted terms simultaneously reconstructed along with the desired wavefront. Further handicapped by the lack of a strong coherent light source, optical holography thus seemed fated to remain just another scientific curiosity, until the field was revolutionized in the early 1960s by some major breakthroughs: the proposition and demonstration of the laser principle, the introduction of off-axis holography, and the invention of volume holography. Consequently, the remainder of that decade saw an exponential growth in research on theory, practice, and applications of holography. Today, holography not only boasts a wide variety of scientific and technical applications (e.g., holographic interferometry for strain, vibration, and flow analysis, microscopy and high-resolution imagery, imaging through distorting media, optical interconnects, holographic optical elements, optical neural networks, three-dimensional displays, data storage, etc.), but has become a prominent am advertising

  20. Frequency characteristic measurement of a fiber optic gyroscope using a correlation spectrum analysis method based on a pseudo-random sequence

    Science.gov (United States)

    Li, Yang; Chen, Xingfan; Liu, Cheng

    2015-08-01

    The frequency characteristic is an important indicator of a system’s dynamic performance. The identification of a fiber optic gyroscope (FOG)’s frequency characteristic using a correlation spectrum analysis method based on a pseudo-random sequence is proposed. Taking the angle vibrator as the source of the test rotation stimulation and a pseudo-random sequence as the test signal, the frequency characteristic of a FOG is calculated according to the power spectral density of the rotation rate signal and the cross-power spectral density of the FOG’s output signal and rotation rate signal. A theoretical simulation is done to confirm the validity of this method. An experiment system is built and the test results indicate that the measurement error of the normalized amplitude-frequency response is less than 0.01, that the error of the phase-frequency response is less than 0.3 rad, and the overall measurement accuracy is superior to the traditional frequency-sweep method. By using this method, the FOG’s amplitude-frequency response and phase-frequency response can be measured simultaneously, quickly, accurately, and with a high frequency resolution. The described method meets the requirements of engineering applications.

  1. Quantifying 3D Deformation in the 14 November 2016 MW 7.8 Kaikoura, New Zealand Earthquake Using COSI-Corr Optical Satellite Image Correlation

    Science.gov (United States)

    Zinke, R. W.; Hollingsworth, J.; Dolan, J. F.; Van Dissen, R. J.

    2017-12-01

    We determined the 3D surface deformation field for 14 November 2016 MW 7.8 Kaikoura, New Zealand earthquake using a novel version of COSI-Corr optical image correlation software on 20 sets of WorldView satellite images. Our results provide high-precision (better than 1 m) measurements of horizontal and vertical displacement resulting from this event, over areas of 100's of square km. As such, our data set "bridges the gap" between the numerous, high-quality field and lidar-based measurements collected in the very near-field vicinity of the fault (but which may not account for far-field, distributed deformation), and other space-borne techniques such as InSAR that survey a wide spatial aperture but typically decorrelate near the fault. Our results thus provide a clear picture of how surface deformation was manifested in the Kaikoura rupture at a variety of spatial scales, and can aid in understanding how near-fault field measurements reflect broader patterns of strain release in earthquakes, and help us develop a better understanding of the controls on the 3D distribution of near-surface deformation in large earthquakes.

  2. Optics/Optical Diagnostics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optics/Optical Diagnostics Laboratory supports graduate instruction in optics, optical and laser diagnostics and electro-optics. The optics laboratory provides...

  3. Electronic Energy-Level Structures, Optical Line Strengths, and Correlation Crystal-Field Interactions in NEODYMIUM(3+) and ERBIUM(3+) Crystalline Compounds.

    Science.gov (United States)

    Quagliano, John Romolo

    Energy-level state structures of Nd^ {3+} (4f^3) and Er^{3+} (4f^ {11}) electronic configurations were analyzed in a total of 13 distinct chemical systems. The 13 systems included seven crystalline hosts that contain Nd ^{3+} ions (four garnets, one nonahydrate, one hexachloride, and one hexabromide), and six that contain Er^{3+} ions (three garnets, one oxalate-bioxalate, one hexachloride, and one hexabromide). Single crystal absorption spectra (polarized and unpolarized) and optical intensity data have been acquired for neat (rm Nd(H_2O)_9) (CF _3rm SO_3)_3 at cryogenic temperatures over the UV to near-IR energy range. Single crystal polarized orthoaxial absorption, excitation, and emission experiments were performed on Er^{3+}-doped CsCdBr _3. Model Hamiltonians were developed and used to calculate lanthanide 4f^{rm N } electronic structures. These Hamiltonians were constructed and parametrized to represent both atomic and crystal-field interactions in various host materials. A Hamiltonian with atomic and first-order crystal-field operators gave a very good initial description of the energy-level structures, and a second-order correlation crystal-field (CCF) refinement produced excellent results for some multiplet manifolds that are not well characterized by the first -order (one-particle) crystal-field interactions alone. The ^2rm H(2)_{11/2} , ^2{F}(2)_ {5/2}, and ^2rm F(2) _{7/2} multiplet manifolds of Nd ^{3+} and the ^2rm H(2)_{9/2}, ^2H(2) _{11/2}, and ^4 rm G_{11/2} multiplet manifolds of Er^{3+} were markedly improved after a maximum of three CCF operators were added to the Hamiltonian. The studies showed that since the Nd^{3+} and Er ^{3+} ions share the same SLJ (Russell -Saunders) basis of atomic states, then their respective energy-level structures are sensitive to the same CCF operators. The magnitudes of the CCF interactions were found to be typically 10% of the first-order one-particle crystal-field interactions. The present work establishes a new

  4. Correlation of bipolar climate and volcanism over the time interval ~11 to 80 ka using an optical borehole dust-logger

    Science.gov (United States)

    Bay, R. C.; Bramall, N.; Price, P. B.

    2003-04-01

    Until recently, paleoclimate records in polar ice had been extracted from core samples mostly with mass spectrometric and chemical techniques. Our optical borehole logger is now adding a new dimension to paleoclimatology. LEDs emit 370-nm light horizontally (± 5^o) into the ice. At shallow depths, the light encounters air bubbles and dust; at greater depths, where the bubbles have transformed into air hydrate crystals, the light is absorbed or scattered only by dust particles. A fraction of the light scatters back into the borehole and is detected by a phototube that is shielded from the outgoing light. Depth resolution is determined by planar collimation of the source, its separation from the phototube, and for weak signals the smoothness of the borehole wall. In one day we can obtain a continuous, high-resolution dust record of past climate and volcanism extending from the surface several thousand meters down to bedrock over a cylindrical volume of the ice around a borehole. The data are immune to the problems commonly encountered in recovering deep cores and preserving them at the surface. Our log of GISP2 follows closely the depth-dependence of calcium ion concentration (a proxy for insoluble dust) and of δ 18 O of water in the ice (a proxy for temperature). We see abrupt changes in dust concentration on a time-scale of less than a decade. Our log of Siple Dome A provides a sensitive, full-length record of frequent volcanic ash depositions even at depths for which core sections are virtually useless due to fracturing. I will report and discuss an intriguing, statistically significant correlation between volcanic depositions at Siple Dome and GISP2 Dansgaard-Oeschger oscillations in dust over the last glacial period. Using the most recent agevsnocorr. depth relationship and a point-series Monte Carlo technique to measure significance, I find that Siple volcanic depositions lead GISP2 kiloyear cold periods by several hundred years with at least a 95% rejection

  5. REMOTE SENSING MEASUREMENTS OF AEROSOL OPTICAL THICKNESS AND CORRELATION WITH IN-SITU AIR QUALITY PARAMETERS DURING A SMOKE HAZE EPISODE IN SOUTHEAST ASIA

    Science.gov (United States)

    Chew, B.; Salinas Cortijo, S. V.; Liew, S.

    2009-12-01

    Transboundary smoke haze due to biomass burning is a major environmental problem in Southeast Asia which has not only affected air quality in the source region, but also in the surrounding countries. Air quality monitoring stations and meteorological stations can provide valuable information on the concentrations of criteria pollutants such as sulphur dioxide, nitrogen oxide, carbon monoxide, ozone and particulate mass (PM10) as well as health advisory to the general public during the haze episodes. Characteristics of aerosol particles in the smoke haze such as the aerosol optical thickness (AOT), aerosol size distribution and Angstrom exponent are also measured or retrieved by sun-tracking photometers, such as those deployed in the world-wide AErosol RObotic NETwork (AERONET). However, due to the limited spatial coverage by the air quality monitoring stations and AERONET sites, it is difficult to study and monitor the spatial and temporal variability of the smoke haze during a biomass burning episode, especially in areas without ground-based instrumentation. As such, we combine the standard in-situ measurements of PM10 by air quality monitoring stations with the remote sensing imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board NASA's Terra and Aqua satellites. The columnar AOT is first derived from the MODIS images for regions where PM10 measurements are available. Empirical correlations between AOT and PM10 measurements are then established for 50 sites in both Malaysia and Singapore during the smoke haze episode in 2006. When available, vertical feature information from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is used to examine the validity of the correlations. Aloft transport of aerosols, which can weaken the correlations between AOT and PM10 measurements, is also identified by CALIPSO and taken into consideration for the analysis. With this integrated approach, we hope to enhance and

  6. Correlations of Optical Absorption, Charge Trapping, and Surface Roughness of TiO2 Photoanode Layer Loaded with Neat Ag-NPs for Efficient Perovskite Solar Cells.

    Science.gov (United States)

    Yang, Dongwook; Jang, Jae Gyu; Lim, Joohyun; Lee, Jin-Kyu; Kim, Sung Hyun; Hong, Jong-In

    2016-08-24

    We systematically investigated the effect of silver nanoparticles (Ag-NPs) on the power conversion efficiency (PCE) of perovskite solar cells (PSCs). Neat, spherical Ag-NPs at loading levels of 0.0, 0.5, 1.0, and 2.0 wt % were embedded into the titanium dioxide (TiO2) photoanode layer. The plasmonic effect of the Ag-NPs strongly enhanced the incident light absorption over a wide range of the visible wavelength region in addition to the inherent absorbance of the perovskite sensitizer. The low conduction energy level of the Ag-NPs compared to that of TiO2 provides trap sites for free charge carriers. Thus, the correlation between the enhancement of the optical absorption and the number of charge traps provided by the Ag-NPs is critical to determine the device performance, especially current density (Jsc) and PCE. This is confirmed by the quantitative comparison of the incident light absorption and the time-resolved photoluminescence decay according to the loading levels of the Ag-NPs in the TiO2 layer. The absorption enhancement from 380 to 750 nm in the UV-visible spectrum is proportional to the increase in the loading levels of the Ag-NPs. However, the Jsc increases with the device with 0.5 wt % Ag-NPs and gradually decreases with increases in the loading level above 0.5 wt % because of the different contributions to the absorbance and the charge trapping by different Ag-NP loading levels. In addition, the suppression of the surface roughness with dense packing by the Ag-NPs helps to improve the Jsc and the following PCE. Consequently, the PCE of the PSC with 0.5 wt % Ag-NPs is increased to 11.96%. These results are attributed to the balance between increased absorbance by the localized surface plasmon resonance and the decreased charge trapping as well as the decreased surface roughness of the TiO2 layer with the Ag-NPs.

  7. Photon correlation holography.

    Science.gov (United States)

    Naik, Dinesh N; Singh, Rakesh Kumar; Ezawa, Takahiro; Miyamoto, Yoko; Takeda, Mitsuo

    2011-01-17

    Unconventional holography called photon correlation holography is proposed and experimentally demonstrated. Using photon correlation, i.e. intensity correlation or fourth order correlation of optical field, a 3-D image of the object recorded in a hologram is reconstructed stochastically with illumination through a random phase screen. Two different schemes for realizing photon correlation holography are examined by numerical simulations, and the experiment was performed for one of the reconstruction schemes suitable for the experimental proof of the principle. The technique of photon correlation holography provides a new insight into how the information is embedded in the spatial as well as temporal correlation of photons in the stochastic pseudo thermal light.

  8. Optical Image Encryption Using Devil’s Vortex Toroidal Lens in the Fresnel Transform Domain

    Directory of Open Access Journals (Sweden)

    Hukum Singh

    2015-01-01

    Full Text Available We have carried out a study of optical image encryption in the Fresnel transform (FrT domain, using a random phase mask (RPM in the input plane and a phase mask based on devil’s vortex toroidal lens (DVTL in the frequency plane. The original images are recovered from their corresponding encrypted images by using the correct parameters of the FrT and the parameters of DVTL. The use of a DVTL-based structured mask enhances security by increasing the key space for encryption and also aids in overcoming the problem of axis alignment associated with an optical setup. The proposed encryption scheme is a lensless optical system and its digital implementation has been performed using MATLAB 7.6.0 (R2008a. The scheme has been validated for a grayscale and a binary image. The efficacy of the proposed scheme is verified by computing mean-squared-error (MSE between the recovered and the original images. We have also investigated the scheme’s sensitivity to the encryption parameters and examined its robustness against occlusion and noise attacks.

  9. Comparison of diagnostic capability of macular ganglion cell complex and retinal nerve fiber layer among primary open angle glaucoma, ocular hypertension, and normal population using Fourier-domain optical coherence tomography and determining their functional correlation in Indian population

    Directory of Open Access Journals (Sweden)

    Nabanita Barua

    2016-01-01

    Full Text Available Context: Analysis of diagnostic ability of macular ganglionic cell complex and retinal nerve fiber layer (RNFL in glaucoma. Aim: To correlate functional and structural parameters and comparing predictive value of each of the structural parameters using Fourier-domain (FD optical coherence tomography (OCT among primary open angle glaucoma (POAG and ocular hypertension (OHT versus normal population. Setting and Design: Single centric, cross-sectional study done in 234 eyes. Materials and Methods: Patients were enrolled in three groups: POAG, ocular hypertensive and normal (40 patients in each group. After comprehensive ophthalmological examination, patients underwent standard automated perimetry and FD-OCT scan in optic nerve head and ganglion cell mode. The relationship was assessed by correlating ganglion cell complex (GCC parameters with mean deviation. Results were compared with RNFL parameters. Statistical Analysis: Data were analyzed with SPSS, analysis of variance, t-test, Pearson′s coefficient, and receiver operating curve. Results: All parameters showed strong correlation with visual field (P 0.5 when compared with other parameters. None of the parameters showed significant diagnostic capability to detect OHT from normal population. In diagnosing early glaucoma from OHT and normal population, only inferior GCC had statistically significant AUC value (0.715. Conclusion: In this study, GCC and RNFL parameters showed equal predictive capability in perimetric versus normal group. In early stage, inferior GCC was the best parameter. In OHT population, single day cross-sectional imaging was not valuable.

  10. Correlation between microstructure and optical properties of nano-crystalline TiO{sub 2} thin films prepared by sol-gel dip coating

    Energy Technology Data Exchange (ETDEWEB)

    Mechiakh, R., E-mail: raouf_mechiakh@yahoo.fr [Departement de Medecine, Faculte de Medecine, Universite Hadj Lakhdar, Batna (Algeria); Laboratoire de Photovoltaique de Semi-conducteurs et de Nanostructures, Centre de Recherche des Sciences et Technologies de l' Energie, BP.95, Hammam-Lif 2050 (Tunisia); Laboratoire de Ceramiques, Universite Mentouri Constantine (Algeria); Sedrine, N. Ben; Chtourou, R. [Laboratoire de Photovoltaique de Semi-conducteurs et de Nanostructures, Centre de Recherche des Sciences et Technologies de l' Energie, BP.95, Hammam-Lif 2050 (Tunisia); Bensaha, R. [Laboratoire de Ceramiques, Universite Mentouri Constantine (Algeria)

    2010-11-15

    Titanium dioxide thin films have been prepared from tetrabutyl-orthotitanate solution and methanol as a solvent by sol-gel dip coating technique. TiO{sub 2} thin films prepared using a sol-gel process have been analyzed for different annealing temperatures. Structural properties in terms of crystal structure were investigated by Raman spectroscopy. The surface morphology and composition of the films were investigated by atomic force microscopy (AFM). The optical transmittance and reflectance spectra of TiO{sub 2} thin films deposited on silicon substrate were also determined. Spectroscopic ellipsometry study was used to determine the annealing temperature effect on the optical properties and the optical gap of the TiO{sub 2} thin films. The results show that the TiO{sub 2} thin films crystallize in anatase phase between 400 and 800 deg. C, and into the anatase-rutile phase at 1000 deg. C, and further into the rutile phase at 1200 deg. C. We have found that the films consist of titanium dioxide nano-crystals. The AFM surface morphology results indicate that the particle size increases from 5 to 41 nm by increasing the annealing temperature. The TiO{sub 2} thin films have high transparency in the visible range. For annealing temperatures between 1000 and 1400 deg. C, the transmittance of the films was reduced significantly in the wavelength range of 300-800 nm due to the change of crystallite phase and composition in the films. We have demonstrated as well the decrease of the optical band gap with the increase of the annealing temperature.

  11. Optic neuritis

    Science.gov (United States)

    Retro-bulbar neuritis; Multiple sclerosis - optic neuritis; Optic nerve - optic neuritis ... The exact cause of optic neuritis is unknown. The optic nerve carries visual information from your eye to the brain. The nerve can swell when ...

  12. Correlation of ''twins'' observed by optical microscopy and transmission electron microscopy in YBa2Cu3O7/sub -//sub x/ superconductors

    International Nuclear Information System (INIS)

    Hoff, H.A.; Singh, A.K.; Pande, C.S.

    1988-01-01

    By using transmission electron microscopy and optical microscopy on the same specimens, the patterns of light- and dark-contrast lines seen in reflected polarized light were shown to be an interference pattern due to the variable spacing of suboptical microtwins. These microtwins are mostly [110] reflection twins. The [110] twinning was observed to be cyclic and occasionally pseudotetragonal because of the progressive cycling of contact twin domains. Within a domain, and occasionally in a whole grain, the [110] reflection twins occurred as polysynthetic lamellae. The morphology of the domain structure can be explained from the theory of martensitic transformation

  13. Using optical full-field measurement based on digital image correlation to measure strain on a tree subjected to mechanical load

    Czech Academy of Sciences Publication Activity Database

    Sebera, V.; Praus, L.; Tippner, J.; Kunecký, Jiří; Čepela, J.; Wimmer, R.

    2014-01-01

    Roč. 28, č. 4 (2014), s. 1173-1184 ISSN 0931-1890 Institutional support: RVO:68378297 Keywords : digital image correlation * tree biomechanics * strain * pulling test * arboriculture * nondestructive Subject RIV: JJ - Other Materials Impact factor: 1.651, year: 2014

  14. Stochastic singular optics

    CSIR Research Space (South Africa)

    Roux, FS

    2013-09-01

    Full Text Available Roux Presented at the International Conference on Correlation Optics 2013 Chernivtsi, Ukraine 18-20 September 2013 CSIR National Laser Centre, Pretoria, South Africa – p. 1/24 Contents ⊲ Defining Stochastic Singular Optics (SSO) ⊲ Tools of Stochastic...

  15. Using optical fibers with different modes to improve the signal-to-noise ratio of diffuse correlation spectroscopy flow-oximeter measurements

    OpenAIRE

    He, Lian; Lin, Yu; Shang, Yu; Shelton, Brent J.; Yu, Guoqiang

    2013-01-01

    The dual-wavelength diffuse correlation spectroscopy (DCS) flow-oximeter is an emerging technique enabling simultaneous measurements of blood flow and blood oxygenation changes in deep tissues. High signal-to-noise ratio (SNR) is crucial when applying DCS technologies in the study of human tissues where the detected signals are usually very weak. In this study, single-mode, few-mode, and multimode fibers are compared to explore the possibility of improving the SNR of DCS flow-oximeter measure...

  16. Nanostructured rare earth doped Nb{sub 2}O{sub 5}: Structural, optical properties and their correlation with photonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Rafael Ramiro; Aquino, Felipe Thomaz [Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP CEP 14040-901 (Brazil); Ferrier, Alban [PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris, 75005 Paris (France); Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris (France); Goldner, Philippe [PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris, 75005 Paris (France); Gonçalves, Rogéria R., E-mail: rrgoncalves@ffclrp.usp.br [Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP CEP 14040-901 (Brazil)

    2016-02-15

    In the present work, we report on a systematic study on structural and spectroscopic properties Eu{sup 3+} and Er{sup 3+}-doped Nb{sub 2}O{sub 5} prepared by sol–gel method. The Eu{sup 3+} ions were used as structural probe to determine the symmetry sites occupied by lanthanide ions. The Eu{sup 3+}-doped Nb{sub 2}O{sub 5} nanocrystalline powders were annealed at different temperatures to verify how the different Nb{sub 2}O{sub 5} crystalline phases affect the structure and the luminescence properties. Er{sup 3+}-doped Nb{sub 2}O{sub 5} was prepared showing an intense NIR luminescence, and, visible luminescence on the green and red, deriving from upconversion process. The synthetized materials can find widespread applicability in photonics as red luminophor for white LED (with tricolor), optical amplifiers and upconverter materials. - Highlights: • Vis and NIR emission from nanostructured lanthanide doped Nb{sub 2}O{sub 5}. • Eu{sup 3+}-doped Nb{sub 2}O{sub 5} as Red luminophor. • Multicolor tunability of intense upconversion emission from lanthanide doped Nb{sub 2}O{sub 5}. • Potential application as biological markers. • Broad band NIR emission.

  17. Astronomical site survey report on dust measurement, wind profile, optical turbulence, and their correlation with seeing over IAO-Hanle. Astronomical site survey report over IAO-Hanle

    Science.gov (United States)

    Ningombam, Shantikumar S.; Kathiravan, S.; Parihar, P. S.; L. Larson, E. J.; Mohanan, Sharika; Angchuk, Dorje; Jorphel, Sonam; Rangarajan, K. E.; Prabhu, K.

    2017-04-01

    The present work discusses astronomical site survey reports on dust content, vertical distribution of atmospheric turbulence, precipitable water vapor (PWV), surface and upper-air data, and their effects on seeing over the Indian Astronomical Observatory (IAO) Hanle. Using Laser Particulate Counter, ambient dust measurements at various sizes (0.3 μm to 25 μm) were performed at various locations at the site during November 2015. Estimated volume concentration for the particle size at 0.5 μm was around 10,000 per cubic foot, which is equivalent to ten thousand class of clean room standard protocol. During the measurement, surface wind speed varied from 0-20 m s -1, while estimated aerosol optical depth (AOD) using Sky radiometer (Prede) varied from 0.02-0.04 at 500 nm, which indicates the site is fairly clean. The two independent measurements of dust content and aerosol concentrations at the site agreed well. The turbulence or wind gust at the site was studied with wind profiles at three different heights above the ground. The strength of the wind gust varies with time and altitude. Nocturnal temperature across seasons varied with a moderate at summer (6-8 ∘C) and lower in winter (4-5 ∘C). However, the contrast between the two is significantly small due to cold and extremely dry typical climatic conditions of the site. The present study also examined the effects of surface and upper-air data along with Planetary Boundary Layer (PBL) dynamics with seeing measurement over the site. Further, a comparative study of such observed parameters was conducted with other high altitude astronomical observatories across the globe.

  18. Simultaneous Fluorescein Angiography and Spectral Domain Optical Coherence Tomography Correlate Retinal Thickness Changes to Vascular Abnormalities in an In Vivo Mouse Model of Retinopathy of Prematurity

    Directory of Open Access Journals (Sweden)

    Olachi J. Mezu-Ndubuisi

    2017-01-01

    Full Text Available Background. Retinopathy of prematurity (ROP is a condition of abnormal retinal vascular development (RVD in premature infants. Fluorescein angiography (FA has depicted phases (early, mid, late, and mature of RVD in oxygen-induced retinopathy (OIR mice. We sought to establish the relationship between retinal structural and vascular changes using simultaneous FA and spectral domain optical coherence tomography (SD-OCT. Method. 63 mice were exposed to 77% oxygen at postnatal day 7 (P7 for 5 days, while 63 mice remained in room air (RA. Total retinal thickness (TRT, inner retinal thickness (IRT, and outer retinal thickness (ORT were calculated at early (P19, mid (P24, late (P32, and mature (P47 phases of RVD. Results. TRT was reduced in OIR (162.66 ± 17.75 μm, n=13 compared to RA mice at P19 (197.57 ± 3.49 μm, n=14, P24, P32, and P49 (P0.05. IRT was reduced in OIR (71.60 ± 17.14 μm compared to RA (103.07 ± 3.47 μm mice at P19 and all ages (P<0.0001. Conclusion. We have shown the spatial and temporal relationship between retinal structure and vascular development in OIR. Significant inner retinal thinning in OIR mice persisted despite revascularization of the capillary network; further studies will elucidate its functional implications in ROP.

  19. [Correlation between the biological activity of 30S subunits of Escherichia coli ribosomes and their conformational changes revealed by mixing optical spectroscopy].

    Science.gov (United States)

    Dobychin, P D; Kirillov, S V; Noskin, V A; Peshin, N N

    1982-01-01

    The analysis of light spectra scattered from solution of 30S subunits were performed by the method of regularization of inverse spectral problem. The subunits observed at ionic conditions which preserved their biological activity (200 mM NH4Cl at 1 mM MgCl2) revealed a monodisperse pattern of scattering with diffusion constant D = (1,83 +/- 0.10) . 10(-7) cm2/sec. The polydispersity and compactization of 30S subunits was observed in inactivating ionic conditions (30 mM NH4Cl at 1 mM MgCl2). The number of compactized particles correlates with the irreversible loss of biological activity, the capability of 30S subunits to bind specific tRNA.

  20. Correlation between biological activity of 30 S subunits of Escherichia coli ribosomes and their conformation changes revealed by optical mixing spectroscopy.

    Science.gov (United States)

    Dobitchin, P D; Kirillov, S V; Noskin, V A; Peshin, N N

    1983-03-01

    Spectral analysis of light scattered from solutions of 30 S subunits was performed by the method of regularization of the inverse spectral problem. The subunits observed under ionic conditions which preserved their biological activity (200 mM NH4Cl at 1 mM MgCl2) revealed a monodisperse pattern of scattering with diffusion constant D = (1.83 +/- 0.10) X 10(-7) cm2/s. The polydispersity and compaction of 30 S subunits were observed under inactivation ionic conditions (30 mM NH4Cl at 1 mM MgCl2). The number of compacted particles correlates with the irreversible loss of biological activity, the ability of 30 S subunits to bind specific tRNA.

  1. Correlation Between En Face Optical Coherence Tomography Defects of the Inner Retinal Layers and Ganglion Cell Inner Plexiform Layer Analysis After Internal Limiting Membrane Peeling for Idiopathic Full-Thickness Macular Hole.

    Science.gov (United States)

    Sabry, Dalia; El-Kannishy, Amr; Kamel, Rania; Abou Samra, Waleed

    2016-07-01

    The purpose of this study was to report en face optical coherence tomography (OCT) inner retinal changes after internal limiting membrane (ILM) peeling for idiopathic full-thickness macular hole (IFTMH) and to correlate these findings with macular ganglion cell inner plexiform layer (GC-IPL) analysis. This prospective study included 20 patients with IFTMH treated using pars plana vitrectomy with ILM peeling. All patients were analyzed using en face OCT at 6 months after surgery to determinate the effect of ILM peeling on the inner retinal layers. Correlation between the GC-IPL en face OCT findings and that obtained by three-dimensional volumetric OCT scanning also was performed. Seven patients (35%) showed defects in the retinal nerve fiber layer (RNFL) that appeared as multiple dark dots with no visible defects at the GC-IPL, either with en face OCT or 3D volumetric OCT scanning. Thirteen patients (65%) showed a similar combination of RNFL defects and well-circumscribed defects in the underlying GC-IPL. These defects could be visualized on en face OCT display, and they correlated with areas of GC-IPL thinning detected in the 3D volumetric OCT scanning. With ILM peeling, en face OCT scanning showed two forms of inner retinal layers changes. The first form was the concentric macular dark spots (CMDS) with intact GC-IPL. The second form appeared in the CMDS with evident localized defects in the underlying GC-IPL. These defects correlate with the areas of GC-IPL thinning detected using 3D volumetric OCT scanning.

  2. ELVES Research at the Pierre Auger Observatory: Optical Emission Simulation and Time Evolution, WWLLN-LIS-Auger Correlations, and Double ELVES Observations and Simulation.

    Science.gov (United States)

    Merenda, K. D.

    2016-12-01

    Since 2013, the Pierre Auger Cosmic Ray Observatory in Mendoza, Argentina, extended its trigger algorithm to detect emissions of light consistent with the signature from very low frequency perturbations due to electromagnetic pulse sources (ELVES). Correlations with the World Wide Lightning Location Network (WWLLN), the Lightning Imaging Sensor (LIS) and simulated events were used to assess the quality of the reconstructed data. The FD is a pixel array telescope sensitive to the deep UV emissions of ELVES. The detector provides the finest time resolution of 100 nanoseconds ever applied to the study of ELVES. Four eyes, separated by approximately 40 kilometers, consist of six telescopes and span a total of 360 degrees of azimuth angle. The detector operates at night when storms are not in the field of view. An existing 3D EMP Model solves Maxwell's equations using a three dimensional finite-difference time-domain model to describe the propagation of electromagnetic pulses from lightning sources to the ionosphere. The simulation also provides a projection of the resulting ELVES onto the pixel array of the FD. A full reconstruction of simulated events is under development. We introduce the analog signal time evolution comparison between Auger reconstructed data and simulated events on individual FD pixels. In conjunction, we will present a study of the angular distribution of light emission around the vertical and above the causative lightning source. We will also contrast, with Monte Carlo, Auger double ELVES events separated by at most 5 microseconds. These events are too short to be explained by multiple return strokes, ground reflections, or compact intra-cloud lightning sources. Reconstructed ELVES data is 40% correlated to WWLLN data and an analysis with the LIS database is underway.

  3. A lensless, automated microscope for disease diagnostics

    CSIR Research Space (South Africa)

    Hugo, S

    2012-03-01

    Full Text Available using a conventional bright field microscope. Applications of this work are targeted towards the implementation of a full blood count, which could provide resource-limited areas with improved healthcare facilities and diagnosis times....

  4. A lensless, automated microscope for disease diagnostics

    CSIR Research Space (South Africa)

    Hugo, S

    2011-09-01

    Full Text Available microscope. Applications of this work are targeted towards the implementation of a full blood count, which could provide resource-limited areas with improved healthcare facilities and diagnosis times....

  5. Noise-tolerance analysis for detection and reconstruction of absorbing inhomogeneities with diffuse optical tomography using single- and phase-correlated dual-source schemes

    International Nuclear Information System (INIS)

    Kanmani, B; Vasu, R M

    2007-01-01

    An iterative reconstruction procedure is used to invert intensity data from both single- and phase-correlated dual-source illuminations for absorption inhomogeneities. The Jacobian for the dual source is constructed by an algebraic addition of the Jacobians estimated for the two sources separately. By numerical simulations, it is shown that the dual-source scheme performs superior to the single-source system in regard to (i) noise tolerance in data and (ii) ability to reconstruct smaller and lower contrast objects. The quality of reconstructions from single-source data, as indicated by mean-square error at convergence, is markedly poorer compared to their dual-source counterpart, when noise in data was in excess of 2%. With fixed contrast and decreasing inhomogeneity diameter, our simulations showed that, for diameters below 7 mm, the dual-source scheme has a higher percentage contrast recovery compared to the single-source scheme. Similarly, the dual-source scheme reconstructs to a higher percentage contrast recovery from lower contrast inhomogeneity, in comparison to the single-source scheme

  6. Macular Pigment Optical Density and Measures of Macular Function: Test-Retest Variability, Cross-Sectional Correlations, and Findings from the Zeaxanthin Pilot Study of Response to Supplementation (ZEASTRESS-Pilot

    Directory of Open Access Journals (Sweden)

    Alessandro Iannaccone

    2016-04-01

    Full Text Available We report on the short-term test-retest baseline variability in macular function tests in ZEASTRESS-Pilot participants (n = 18, on their cross-sectional correlation with macular pigment optical density (MPOD, and on the effects of four months (FUV4 of 20 mg/day zeaxanthin (ZX, followed by a four-month washout (FUV8; n = 24, age 50–81 years old. Outcomes included: MPOD at 0.5 and 2.0 deg eccentricity (MPOD-0.5 and -2.0; contrast sensitivity (CS; pattern-reversal electroretinogram (PERG amplitude; dark-adapted 650 nm foveal cone sensitivity (DA650-FCS; and 500 mn parafoveal rod sensitivity (DA500-PFRS. All measures of macular function showed close test-retest correlation (Pearson’s r range: 0.744–0.946 and low coefficients of variation (CV range: 1.13%–4.00%. MPOD correlated in a complex fashion with macular function. Following supplementation, MPOD-0.5 and MPOD-2.0 increased at both FUV4 and FUV8 (p ≤ 0.0001 for all measures. Continued, delayed MPOD increase and a small, but significant (p = 0.012, CS increase was seen at FUV8 only in females. PERGs increased significantly at FUV4 (p = 0.0006, followed by a partial decline at FUV8. In conclusion, following ZX supplementation, MPOD increased significantly. There was no effect on DA-650 FCS or DA-500 PFRS. Both CS and PERG amplitudes increased following supplementation, but the effect varied between males and females. Additional studies appear warranted to confirm and characterize further these inter-gender differences.

  7. Seasonal evolution of glacier velocity and portraits of basal motion across southeast Alaska via cross-correlation of optical satellite imagery

    Science.gov (United States)

    Armstrong, W. H., Jr.; Anderson, R. S.; Moon, T. A.; Fahnestock, M. A.

    2015-12-01

    We investigate how glacier geometry and geographic setting govern a glacier's response to meltwater and precipitation inputs. Does the up-glacier limit of enhanced summer basal motion vary across glaciers? Do non-surge glaciers show consistent spatial patterns of basal motion from year to year? We investigate such questions by documenting the seasonal-to-annual evolution of surface velocity for over 25 surge- and non-surge type glaciers in the Wrangell-St Elias ranges of southeast Alaska, USA, during 2013-2015. We use the Python-implemented PYCORR image cross-correlation software to estimate ice surface velocity fields over ~35,000 km2 covered by four Landsat-8 (L8) scenes. PYCORR is an optimized version of IMCORR, and takes less than 5 minutes to process a full L8 scene. This computational efficiency allows us to calculate dozens of velocity fields for each scene to provide high temporal resolution. We automate the extraction of velocity profiles along longitudinal glacier profiles to document their temporal evolution over timespans ranging from 16 days to greater than one year at spatial resolution of several tens to several hundred meters. This method provides much greater spatial coverage than GPS-derived velocities, and succeeds in terrain of rough surface texture and significant temporal elevation change, both of which present substantial challenges for deriving InSAR velocities. Preliminary data on Kennicott Glacier (Figure 1) resolve the annual velocity cycle in which speeds are lowest over winter and highest in summer reflecting meltwater-induced basal motion. We find notable seasonal velocity fluctuations at distances of more than 30 km from the glacier terminus. While longitudinal stress gradient coupling may explain a portion of these velocity variations, local basal motion must contribute, as the relatively thin (~500 m) ice cannot transmit longitudinal stresses over such distances. Regions downstream of tributary junctions show consistently

  8. Quantum optics

    National Research Council Canada - National Science Library

    Agarwal, G. S

    2013-01-01

    .... Focusing on applications of quantum optics, the textbook covers recent developments such as engineering of quantum states, quantum optics on a chip, nano-mechanical mirrors, quantum entanglement...

  9. Computation of surface roughness using optical correlation

    Indian Academy of Sciences (India)

    The laser speckle photography is used to calculate the average surface roughness from the autocorrelation function of the aluminum diffuse objects. The computed results of surface roughness obtained from the profile shapes of the autocorrelation function of the diffuser show good agreement with the results obtained by ...

  10. Computation of surface roughness using optical correlation

    Indian Academy of Sciences (India)

    Pramana – Journal of Physics. Current Issue : Vol. 90, Issue 4 · Current Issue Volume 90 | Issue 4. April 2018. Home · Volumes & Issues · Special Issues · Forthcoming Articles · Search · Editorial Board · Information for Authors · Subscription ...

  11. Correlation between Morphological, Optical and Electrical ...

    African Journals Online (AJOL)

    The scanning electron microscope (SEM) and atomic force microscope (AFM) were employed for the surface morphological measurements. The charge carrier concentrations, mobilities and AC resistivities were deduced from Drude's model. The DC resistivities were determined from the four-point probe measurements.

  12. Computation of surface roughness using optical correlation

    Indian Academy of Sciences (India)

    [13] E Marx and T V Vorburger, Appl. Opt. 29, 3613 (1990). [14] R Silvennoinen, K E Peiponen, T Asakura, Y Zhang, C Gu, K Ikonen and E J Morley,. Opt. Lasers Eng. 17, 103 (1992). [15] M Sato Kurita, M Sato and K Nakano, Int. J. Jpn. Soc. Mech. Eng. 35, 335 (1992). [16] P Beckmann, Scattering of light by rough surfaces, ...

  13. Optical Computing

    Indian Academy of Sciences (India)

    Optics has been used in computing for a number of years but the main emphasis has been and continues to be to link portions of computers, for communications, or more intrin- sically in devices that have some optical application or component (optical pattern recognition, etc). Optical digi- tal computers are still some years ...

  14. Engineering Optics

    CERN Document Server

    Iizuka, Keigo

    2008-01-01

    Engineering Optics is a book for students who want to apply their knowledge of optics to engineering problems, as well as for engineering students who want to acquire the basic principles of optics. It covers such important topics as optical signal processing, holography, tomography, holographic radars, fiber optical communication, electro- and acousto-optic devices, and integrated optics (including optical bistability). As a basis for understanding these topics, the first few chapters give easy-to-follow explanations of diffraction theory, Fourier transforms, and geometrical optics. Practical examples, such as the video disk, the Fresnel zone plate, and many more, appear throughout the text, together with numerous solved exercises. There is an entirely new section in this updated edition on 3-D imaging.

  15. Application of the optical-coherence area concept : Optical system for Rayleigh spectroscopy

    International Nuclear Information System (INIS)

    Barbosa, G.A.

    1981-01-01

    A practical optical system for Rayleigh spectroscopy is shown as an application of the optical coherence area concept. A short review of the propagation of the electric field self-correlation function is presented. (Author) [pt

  16. Applied optics

    International Nuclear Information System (INIS)

    Orszag, A.; Antonetti, A.

    1988-01-01

    The 1988 progress report, of the Applied Optics laboratory, of the (Polytechnic School, France), is presented. The optical fiber activities are focused on the development of an optical gyrometer, containing a resonance cavity. The following domains are included, in the research program: the infrared laser physics, the laser sources, the semiconductor physics, the multiple-photon ionization and the nonlinear optics. Investigations on the biomedical, the biological and biophysical domains are carried out. The published papers and the congress communications are listed [fr

  17. Hamilton's Optics

    Indian Academy of Sciences (India)

    IAS Admin

    Hamiton, optics, wavefronts, characterisic function, conical refraction. . Hamilton's Optics. The Power of Wavefronts. Rajaram Nityananada. Building on work by Fermat and Huygens, Hamil- ton transformed the study of geometrical optics in his very first paper, presented when still in his teens. His 'characteristic function' was ...

  18. Optical pattern recognition III; Proceedings of the Meeting, Orlando, FL, Apr. 21, 22, 1992

    Science.gov (United States)

    Casasent, David P. (Editor); Chao, Tien-Hsin (Editor)

    1992-01-01

    Consideration is given to transitioning of optical processing into systems (TOPS), optical correlator hardware, phase-only optical correlation filters, optical distortion-invariant correlation filters, and optical neural networks. Particular attention is given to a test target for optical correlators, a TOPS electronic warfare channelizer program, a portable video-rate optical correlator, a joint transform correlator employing electron trapping materials, a novelty filtered optical correlator using a photorefractive crystal, a comparison of correlation performance of smart ternary phase-amplitude filters with gray-scale and binary input scenes, real-time distortion-tolerant composite filters for automatic target identification, landscaping the correlation surface, fast designing of a circular harmonic filter using simulated annealing, feature-based correlation filters for distortion invariance, automatic target recognition using a feature-based optical neural network, and a holographic inner-product processor for pattern recognition.

  19. Optical Pattern Recognition With Self-Amplification

    Science.gov (United States)

    Liu, Hua-Kuang

    1994-01-01

    In optical pattern recognition system with self-amplification, no reference beam used in addressing mode. Polarization of laser beam and orientation of photorefractive crystal chosen to maximize photorefractive effect. Intensity of recognition signal is orders of magnitude greater than other optical correlators. Apparatus regarded as real-time or quasi-real-time optical pattern recognizer with memory and reprogrammability.

  20. Nonlinear optics

    CERN Document Server

    Boyd, Robert W

    2013-01-01

    Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q

  1. Optical fibres

    CERN Document Server

    Geisler, J; Boutruche, J P

    1986-01-01

    Optical Fibers covers numerous research works on the significant advances in optical fibers, with particular emphasis on their application.This text is composed of three parts encompassing 15 chapters. The first part deals with the manufacture of optical fibers and the materials used in their production. The second part describes optical-fiber connectors, terminals and branches. The third part is concerned with the major optoelectronic components encountered in optical-communication systems.This book will be of value to research scientists, engineers, and patent workers.

  2. Optical interconnects

    CERN Document Server

    Chen, Ray T

    2006-01-01

    This book describes fully embedded board level optical interconnect in detail including the fabrication of the thin-film VCSEL array, its characterization, thermal management, the fabrication of optical interconnection layer, and the integration of devices on a flexible waveguide film. All the optical components are buried within electrical PCB layers in a fully embedded board level optical interconnect. Therefore, we can save foot prints on the top real estate of the PCB and relieve packaging difficulty reduced by separating fabrication processes. To realize fully embedded board level optical

  3. Atom optics

    International Nuclear Information System (INIS)

    Balykin, V. I.; Jhe, W.

    1999-01-01

    Atom optics, in analogy to neutron and electron optics, deals with the realization of as a traditional elements, such as lenes, mirrors, beam splitters and atom interferometers, as well as a new 'dissipative' elements such as a slower and a cooler, which have no analogy in an another types of optics. Atom optics made the development of atom interferometer with high sensitivity for measurement of acceleration and rotational possible. The practical interest in atom optics lies in the opportunities to create atom microprobe with atom-size resolution and minimum damage of investigated objects. (Cho, G. S.)

  4. Score Correlation

    Czech Academy of Sciences Publication Activity Database

    Fabián, Zdeněk

    2010-01-01

    Roč. 20, č. 6 (2010), s. 793-798 ISSN 1210-0552 R&D Projects: GA ČR GA205/09/1079 Institutional research plan: CEZ:AV0Z10300504 Keywords : score function * correlation * rank correlation coefficient * heavy tails Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.511, year: 2010

  5. Applied optics and optical design

    CERN Document Server

    Conrady, Alexander Eugen

    1957-01-01

    ""For the optical engineer it is an indispensable work."" - Journal, Optical Society of America""As a practical guide this book has no rival."" - Transactions, Optical Society""A noteworthy contribution,"" - Nature (London)Part I covers all ordinary ray-tracing methods, together with the complete theory of primary aberrations and as much of higher aberration as is needed for the design of telescopes, low-power microscopes and simple optical systems. Chapters: Fundamental Equations, Spherical Aberration, Physical Aspect of Optical Images, Chromatic Aberration, Design of Achromatic Object-Glass

  6. Optics in neural computation

    Science.gov (United States)

    Levene, Michael John

    In all attempts to emulate the considerable powers of the brain, one is struck by both its immense size, parallelism, and complexity. While the fields of neural networks, artificial intelligence, and neuromorphic engineering have all attempted oversimplifications on the considerable complexity, all three can benefit from the inherent scalability and parallelism of optics. This thesis looks at specific aspects of three modes in which optics, and particularly volume holography, can play a part in neural computation. First, holography serves as the basis of highly-parallel correlators, which are the foundation of optical neural networks. The huge input capability of optical neural networks make them most useful for image processing and image recognition and tracking. These tasks benefit from the shift invariance of optical correlators. In this thesis, I analyze the capacity of correlators, and then present several techniques for controlling the amount of shift invariance. Of particular interest is the Fresnel correlator, in which the hologram is displaced from the Fourier plane. In this case, the amount of shift invariance is limited not just by the thickness of the hologram, but by the distance of the hologram from the Fourier plane. Second, volume holography can provide the huge storage capacity and high speed, parallel read-out necessary to support large artificial intelligence systems. However, previous methods for storing data in volume holograms have relied on awkward beam-steering or on as-yet non- existent cheap, wide-bandwidth, tunable laser sources. This thesis presents a new technique, shift multiplexing, which is capable of very high densities, but which has the advantage of a very simple implementation. In shift multiplexing, the reference wave consists of a focused spot a few millimeters in front of the hologram. Multiplexing is achieved by simply translating the hologram a few tens of microns or less. This thesis describes the theory for how shift

  7. Optics Express

    OpenAIRE

    Poon, Ting-Chung; Doh, K. B.

    2007-01-01

    The Hilbert transform as been investigated abundantly in coherent imaging. To the best of our knowledge, it is for the first time investigated in the context of incoherent imaging. We present a two-pupil optical heterodyne scanning system and analyze mathematically the design of its two pupils such that the optical system can perform the Hilbert transform on incoherent objects. Computer simulations of the idea clarify the theoretical results. (c) 2007 Optical Society of America.

  8. Optical electronics

    CERN Document Server

    Yariv, Amnon

    1991-01-01

    This classic text introduces engineering students to the first principles of major phenomena and devices of optoelectronics and optical communication technology. Yariv's "first principles" approach employs real-life examples and extensive problems. The text includes separate chapters on quantum well and semiconductor lasers, as well as phase conjugation and its applications. Optical fiber amplification, signal and noise considerations in optical fiber systems, laser arrays and distributed feedback lasers all are covered extensively in major sections within chapters.

  9. Optical Computing With Nonlinear Optics

    Science.gov (United States)

    Khitrova, Galina; Gibbs, Hyatt; Peyghambarian, Nasser

    1987-01-01

    Nonlinear optics is becoming a new thrust in the field of optical computing and signal processing.14 Optical nonlinearity makes the device's transmission intensity dependent, so one can obtain the thresholding needed for logic decisionmaking. Thresholding is essential to digital optical computing, neural nets, and associative memories. GaAs etalons exhibit many of the characteristics desirable for the nonlinear devices including high speed (picosecond) and diode-laser compatability. However, demonstrations of the use of nonlinear decisionmaking for optical computing have used ZnS or ZnSe interference filters. They are slow (millisecond), but they can be used with the visible 514.5-nm output of an argon laser. We have used such filters to demonstrate all-optical logic operations, one-bit addition by symbolic substitution, and recognition of a three-spot pattern in an arbitrary 2 x 8 array of input beams. The application to associative memories is under study.

  10. Polarization Optics

    OpenAIRE

    Fressengeas, Nicolas

    2010-01-01

    The physics of polarization optics *Polarized light propagation *Partially polarized light; DEA; After a brief introduction to polarization optics, this lecture reviews the basic formalisms for dealing with it: Jones Calculus for totally polarized light and Stokes parameters associated to Mueller Calculus for partially polarized light.

  11. Optical Computing

    Indian Academy of Sciences (India)

    Integration (VLSI) technology with smaller device dimensions and greater complexity. The smallest .... on a chip, much less than what was mentioned earlier (optical integration is still in its infancy compared to electronics). ..... Optical tunnel devices are under continuous development varying from small caliber endoscopes to ...

  12. Optical Computing

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 6. Optical Computing - Optical Components and Storage Systems. Debabrata Goswami. General Article Volume 8 Issue 6 June 2003 pp 56-71. Fulltext. Click here to view fulltext PDF. Permanent link:

  13. Optical biosensors.

    Science.gov (United States)

    Damborský, Pavel; Švitel, Juraj; Katrlík, Jaroslav

    2016-06-30

    Optical biosensors represent the most common type of biosensor. Here we provide a brief classification, a description of underlying principles of operation and their bioanalytical applications. The main focus is placed on the most widely used optical biosensors which are surface plasmon resonance (SPR)-based biosensors including SPR imaging and localized SPR. In addition, other optical biosensor systems are described, such as evanescent wave fluorescence and bioluminescent optical fibre biosensors, as well as interferometric, ellipsometric and reflectometric interference spectroscopy and surface-enhanced Raman scattering biosensors. The optical biosensors discussed here allow the sensitive and selective detection of a wide range of analytes including viruses, toxins, drugs, antibodies, tumour biomarkers and tumour cells. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  14. Two dimensional image correlation processor

    Science.gov (United States)

    Yao, Shi-Kai

    1992-06-01

    Two dimensional images are converted into a very long 1-dimensional data stream by means of raster scan. It is shown that the 1-dimensional correlation function of such long data streams is equivalent to the raster scan converted data of 2-dimensional correlation function of images. Real time correlation of high resolution two-dimensional images has been demonstrated using commercially available components. The advantages of this approach includes programmable electronics reference images, easy interface to objects of interest using conventional image collection optics, real time operation with high resolution images using off-the shelf components, and usefulness in the form of either black and white or full colored images. Such system would be versatile enough for robotics vision, optical inspection, and other pattern recognition and identification applications.

  15. Rheo-optical two-dimensional (2D) near-infrared (NIR) correlation spectroscopy for probing strain-induced molecular chain deformation of annealed and quenched Nylon 6 films

    Science.gov (United States)

    Shinzawa, Hideyuki; Mizukado, Junji

    2018-04-01

    A rheo-optical characterization technique based on the combination of a near-infrared (NIR) spectrometer and a tensile testing machine is presented here. In the rheo-optical NIR spectroscopy, tensile deformations are applied to polymers to induce displacement of ordered or disordered molecular chains. The molecular-level variation of the sample occurring on short time scales is readily captured as a form of strain-dependent NIR spectra by taking an advantage of an acousto-optic tunable filter (AOTF) equipped with the NIR spectrometer. In addition, the utilization of NIR with much less intense absorption makes it possible to measure transmittance spectra of relatively thick samples which are often required for conventional tensile testing. An illustrative example of the rheo-optical technique is given with annealed and quenched Nylon 6 samples to show how this technique can be utilized to derive more penetrating insight even from the seemingly simple polymers. The analysis of the sets of strain-dependent NIR spectra suggests the presence of polymer structures undergoing different variations during the tensile elongation. For instance, the tensile deformation of the semi-crystalline Nylon 6 involves a separate step of elongation of the rubbery amorphous chains and subsequent disintegration of the rigid crystalline structure. Excess amount of crystalline phase in Nylon 6, however, results in the retardation of the elastic deformation mainly achieved by the amorphous structure, which eventually leads to the simultaneous orientation of both amorphous and crystalline structures.

  16. Fiber optic coupled optical sensor

    Science.gov (United States)

    Fleming, Kevin J.

    2001-01-01

    A displacement sensor includes a first optical fiber for radiating light to a target, and a second optical fiber for receiving light from the target. The end of the first fiber is adjacent and not axially aligned with the second fiber end. A lens focuses light from the first fiber onto the target and light from the target onto the second fiber.

  17. Nonlinear optics

    CERN Document Server

    Bloembergen, Nicolaas

    1996-01-01

    Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe

  18. Families of Bose rays in quantum optics

    International Nuclear Information System (INIS)

    Mukunda, N.; Sudarshan, E.C.G.; Simon, R.

    1988-01-01

    Having known classical wave optics and wave mechanics, can we reverse Schroedinger's path and extend the concept of families of rays of light to provide a new exact rendering of quantum optics including the Bose nature of photons? This question is answered in the affirmative, and the implications of the Bose symmetry for certain nonlocal correlations of the many-ray distribution functions are worked out. The similarities and the differences between classical and quantum wave optics are brought out. The ray-ray Bose correlation is analyzed. The generating functional for the many-ray distribution functions is formulated; and the notion of paraxial illumination for quantum optics is made precise

  19. Glaucoma severity affects diffusion tensor imaging (DTI) parameters of the optic nerve and optic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sidek, S. [Department of Biomedical Imaging, University Malaya, Research Imaging Centre, Faculty of Medicine, University Malaya (Malaysia); Medical Imaging Unit, Faculty of Medicine, Universiti Teknologi MARA, Selangor (Malaysia); Ramli, N. [Department of Biomedical Imaging, University Malaya, Research Imaging Centre, Faculty of Medicine, University Malaya (Malaysia); Rahmat, K., E-mail: katt_xr2000@yahoo.com [Department of Biomedical Imaging, University Malaya, Research Imaging Centre, Faculty of Medicine, University Malaya (Malaysia); Ramli, N.M.; Abdulrahman, F. [Department of Ophthalmology, Faculty of Medicine, University Malaya, Kuala Lumpur (Malaysia); Tan, L.K. [Department of Biomedical Imaging, University Malaya, Research Imaging Centre, Faculty of Medicine, University Malaya (Malaysia)

    2014-08-15

    Objectives: To evaluate whether MR diffusion tensor imaging (DTI) of the optic nerve and optic radiation in glaucoma patients provides parameters to discriminate between mild and severe glaucoma and to determine whether DTI derived indices correlate with retinal nerve fibre layer (RNFL) thickness. Methods: 3-Tesla DTI was performed on 90 subjects (30 normal, 30 mild glaucoma and 30 severe glaucoma subjects) and the FA and MD of the optic nerve and optic radiation were measured. The categorisation into mild and severe glaucoma was done using the Hodapp–Parrish–Anderson (HPA) classification. RNFL thickness was also assessed on all subjects using OCT. Receiver operating characteristic (ROC) analysis and Spearman's correlation coefficient was carried out. Results: FA and MD values in the optic nerve and optic radiation decreased and increased respectively as the disease progressed. FA at the optic nerve had the highest sensitivity (87%) and specificity (80%). FA values displayed the strongest correlation with RNFL thickness in the optic nerve (r = 0.684, p ≤ 0.001) while MD at the optic radiation showed the weakest correlation with RNFL thickness (r = −0.360, p ≤ 0.001). Conclusions: The high sensitivity and specificity of DTI-derived FA values in the optic nerve and the strong correlation between DTI-FA and RNFL thickness suggest that these parameters could serve as indicators of disease severity.

  20. Integrated optics

    International Nuclear Information System (INIS)

    Jekowski, J.; Aeby, I.

    1979-01-01

    The purpose of the R and D effort is to establish a baseline technology in integrated optic techniques within the EMG. Significant investment presently being made by industry in this area indicates that this technology may offer an alternative solution for high speed digital data acquisition and transmission. The objectives of this year's integrated optics program were three-fold: (1) to establish a literature search and maintain industry contacts in an attempt to make the needs of the Weapons Test Program known; (2) to assist the Las Vegas Hybrid facility in establising integrated optic fabrication techniques for their new Thin Film Laboratory; and (3) to conduct basic experiments at Los Alamos in the construction of photolithograhicaly etched plastic film devices. The report describes the successful completion of preliminary investigations into photolithographic techniques and continuing investigations into newly announced integrated optic techniques and devices that would be applicable to the weapons test program

  1. Optical Spectroscopy

    DEFF Research Database (Denmark)

    Thyrhaug, Erling

    The work presented in this thesis is broadly concerned with how complexation reactions and molecular motion can be characterized with the standard techniques in optical spectroscopy. The thesis aims to show a relatively broad range of methods for probing physico-chemical properties in fluorophore...... containing systems and are characterized using techniques in optical spectroscopy. Of the standard techniques in optical spectroscopy, particular attention has been paid to those based on time-resolved measurements and polarization, which is reflected in the experiment design in the projects. Not all...... reactions by optical spectroscopy. In project 1 simple steady-state absorption and fluorescence spectroscopy is used to determine the stoichiometries and equilibrium constants in the inclusion complex formation between cyclodextrins and derivatives of the water-insoluble oligo(phenylene vinylene) in aqueous...

  2. Quantum optics

    DEFF Research Database (Denmark)

    Andersen, Ulrik Lund

    2013-01-01

    Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves.......Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves....

  3. Electrifying photonic metamaterials for tunable nonlinear optics.

    Science.gov (United States)

    Kang, Lei; Cui, Yonghao; Lan, Shoufeng; Rodrigues, Sean P; Brongersma, Mark L; Cai, Wenshan

    2014-08-11

    Metamaterials have not only enabled unprecedented flexibility in producing unconventional optical properties that are not found in nature, they have also provided exciting potential to create customized nonlinear media with high-order properties correlated to linear behaviour. Two particularly compelling directions are active metamaterials, whose optical properties can be purposely tailored by external stimuli in a reversible manner, and nonlinear metamaterials, which enable intensity-dependent frequency conversion of light waves. Here, by exploring the interaction of these two directions, we leverage the electrical and optical functions simultaneously supported in nanostructured metals and demonstrate electrically controlled nonlinear optical processes from a metamaterial. Both second harmonic generation and optical rectification, enhanced by the resonance behaviour in the metamaterial absorber, are modulated externally with applied voltage signals. Our results reveal an opportunity to exploit optical metamaterials as self-contained, dynamic electro-optic systems with intrinsically embedded electrical functions and optical nonlinearities.

  4. Ocean optics

    Energy Technology Data Exchange (ETDEWEB)

    Spinard, R.W.; Carder, K.L.; Perry, M.J.

    1994-12-31

    This volume is the twenty fifth in the series of Oxford Monographs in Geology and Geophysics. The propagation off light in the hydra-atmosphere systems is governed by the integral-differential Radiative Transfer Equation (RTE). Closure and inversion are the most common techniques in optical oceanography to understand the most basic principles of natural variability. Three types of closure are dealt with: scale closure, experimental closure, and instrument closure. The subject is well introduced by Spinard et al. in the Preface while Howard Gordon in Chapter 1 provides an in-depth introduction to the RTE and its inherent problems. Inherent and apparent optical properties are dealt with in Chapter 2 by John Kirk and the realities of optical closure are presented in the following chapter by Ronald Zaneveld. The balance of the papers in this volume is quite varied. The early papers deal in a very mathematical manner with the basics of radiative transfer and the relationship between inherent and optical properties. Polarization of sea water is discussed in a chapter that contains a chronological listing of discoveries in polarization, starting at about 1000 AD with the discovery of dichroic properties of crystals by the Vikings and ending with the demonstration of polarotaxis in certain marine organisms by Waterman in 1972. Chapter 12 on Raman scattering in pure water and the pattern recognition techniques presented in Chapter 13 on the optical effects of large particles may be of relevance to fields outside ocean optics.

  5. Correlation spectrometer

    Science.gov (United States)

    Sinclair, Michael B [Albuquerque, NM; Pfeifer, Kent B [Los Lunas, NM; Flemming, Jeb H [Albuquerque, NM; Jones, Gary D [Tijeras, NM; Tigges, Chris P [Albuquerque, NM

    2010-04-13

    A correlation spectrometer can detect a large number of gaseous compounds, or chemical species, with a species-specific mask wheel. In this mode, the spectrometer is optimized for the direct measurement of individual target compounds. Additionally, the spectrometer can measure the transmission spectrum from a given sample of gas. In this mode, infrared light is passed through a gas sample and the infrared transmission signature of the gasses present is recorded and measured using Hadamard encoding techniques. The spectrometer can detect the transmission or emission spectra in any system where multiple species are present in a generally known volume.

  6. Correlation Evaluation on Small LTE Handsets

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Pedersen, Gert Frølund

    2012-01-01

    This paper presents measurements of the first MIMO handset on the market. It investigates the correlation coefficient computed from coaxial cable measurements and from optical fiber measurements. The results are compared and discussed. The question of the actual feasibility of low correlation for...... for the LTE-700 band in small terminals is raised....

  7. Improved DMD configurations for image correlation. [deformable mirror devices

    Science.gov (United States)

    Florence, James M.; Lin, Tsen-Hwang; Wu, Wen-Rong; Juday, Richard D.

    1990-01-01

    Two novel deformable mirror structures have been developed for spatial light modulators: an 'AM torsion beam' and a 'phase-mostly single-quadrant cantilever' beam. Both devices are well-suited to optical correlator input and filtering functions. Which the optical modulation characteristic of the torsion-beam modulator is essential amplitude only, which is well suited for use as the input modulator of the optical correlator, the characteristic of the one-quadrant modulator is a phase-mostly modulation whose amplitude changes are coupled to the phase changes; this renders it operable in the Fourier plane of the optical correlator as the filtering device.

  8. Traffic Sign Recognition System based on Cambridge Correlator Image Comparator

    Directory of Open Access Journals (Sweden)

    J. Turan

    2012-06-01

    Full Text Available Paper presents basic information about application of Optical Correlator (OC, specifically Cambridge Correlator, in system to recognize of traffic sign. Traffic Sign Recognition System consists of three main blocks, Preprocessing, Optical Correlator and Traffic Sign Identification. The Region of Interest (ROI is defined and chosen in preprocessing block and then goes to Optical Correlator, where is compared with database of Traffic Sign. Output of Optical Correlation is correlation plane, which consist of highly localized intensities, know as correlation peaks. The intensity of spots provides a measure of similarity and position of spots, how images (traffic signs are relatively aligned in the input scene. Several experiments have been done with proposed system and results and conclusion are discussed.

  9. QUANTUM OPTICS. Universal linear optics.

    Science.gov (United States)

    Carolan, Jacques; Harrold, Christopher; Sparrow, Chris; Martín-López, Enrique; Russell, Nicholas J; Silverstone, Joshua W; Shadbolt, Peter J; Matsuda, Nobuyuki; Oguma, Manabu; Itoh, Mikitaka; Marshall, Graham D; Thompson, Mark G; Matthews, Jonathan C F; Hashimoto, Toshikazu; O'Brien, Jeremy L; Laing, Anthony

    2015-08-14

    Linear optics underpins fundamental tests of quantum mechanics and quantum technologies. We demonstrate a single reprogrammable optical circuit that is sufficient to implement all possible linear optical protocols up to the size of that circuit. Our six-mode universal system consists of a cascade of 15 Mach-Zehnder interferometers with 30 thermo-optic phase shifters integrated into a single photonic chip that is electrically and optically interfaced for arbitrary setting of all phase shifters, input of up to six photons, and their measurement with a 12-single-photon detector system. We programmed this system to implement heralded quantum logic and entangling gates, boson sampling with verification tests, and six-dimensional complex Hadamards. We implemented 100 Haar random unitaries with an average fidelity of 0.999 ± 0.001. Our system can be rapidly reprogrammed to implement these and any other linear optical protocol, pointing the way to applications across fundamental science and quantum technologies. Copyright © 2015, American Association for the Advancement of Science.

  10. Optical pattern recognition; Proceedings of the Meeting, Los Angeles, CA, Jan. 17, 18, 1989

    Science.gov (United States)

    Liu, Hua-Kuang (Editor)

    1989-01-01

    Papers on optical pattern recognition are presented, covering topics such as the estimation of satellite pose and motion parameters using a neural net tracker, associative memory, optical implmentation of programmable neural networks, optoelectronic neural networks, dynamic autoassociative neural memory, heteroassociative memory, bilinear pattern recognition processors, optical processing of optical correlation plane data, and a synthetic discriminant function-based nonlinear optical correlator. Other topics include an interactive optical-digital image processor, geometric transformations for video compression and human teleoperator display, quasiconformal remapping for compensation of human visual field defects, hybrid vision for automated spacecraft landing, advanced symbolic and inference optical correlation filters, and a rotationally invariant holographic tracking system. Additional topics include the detection of rotational and scale-varying objects with a programmable joint transform correlator, a single spatial light modulator binary nonlinear optical correlator, optical joint transform correlation, linear phase coefficient composite filters, and binary phase-only filters.

  11. Toward intravascular morphological and biochemical imaging of atherosclerosis with optical coherence tomography (OCT) and fluorescence lifetime imaging (FLIM) (Conference Presentation)

    Science.gov (United States)

    Chen, Xi; Kim, Wihan; Serafino, Michael; Walton, Brian; Jo, Javier A.; Applegate, Brian E.

    2017-02-01

    We have shown in an ex vivo human coronary artery study that the biochemical information derived from FLIM interpreted in the context of the morphological information from OCT enables a detailed classification of human coronary plaques associated with atherosclerosis. The identification of lipid-rich plaques prone to erosion or rupture and associated with sudden coronary events can impact current clinical practice as well as future development of targeted therapies for "vulnerable" plaques. In order to realize clinical translation of intravascular OCT/FLIM we have had to develop several key technologies. A multimodal catheter endoscope capable of delivering near UV excitation for FLIM and shortwave IR for OCT has been fabricated using a ball lens design with a double clad fiber. The OCT illumination and the FLIM excitation propogate down the inner core while the large outer multimode core captures the fluorescence emission. To enable intravascular pullback imaging with this endoscope we have developed an ultra-wideband fiber optic rotary joint using the same double clad fiber. The rotary joint is based on a lensless design where two cleaved fibers, one fixed and one rotating, are brought into close proximity but not touching. Using water as the lubricant enabled operation over the near UV-shortwave IR range. Transmission over this bandwidth has been measured to be near 100% at rotational frequencies up to 147 Hz. The entire system has been assembled and placed on a mobile cart suitable for cath lab based imaging. System development, performance, and early ex vivo imaging results will be discussed.

  12. The illusionist game and hidden correlations

    International Nuclear Information System (INIS)

    Brida, G; Degiovanni, I P; Genovese, M; Meda, A; Olivares, S; Paris, M

    2013-01-01

    We suggest and demonstrate a new protocol based on correlated beams of light: the ‘optical illusionist game’. An ‘illusionist’ at first shows that if two uncorrelated light beams excited in the same Gaussian state are mixed in a beam splitter, then no correlations arise between them, as it was not present. On the other hand, when correlations with an ancillary state are exploited, the presence of the beam splitter can be unveiled. (paper)

  13. Semiconductor Optics

    CERN Document Server

    Klingshirn, Claus F

    2012-01-01

    This updated and enlarged new edition of Semiconductor Optics provides an introduction to and an overview of semiconductor optics from the IR through the visible to the UV, including linear and nonlinear optical properties, dynamics, magneto and electrooptics, high-excitation effects and laser processes, some applications, experimental techniques and group theory. The mathematics is kept as elementary as possible, sufficient for an intuitive understanding of the experimental results and techniques treated. The subjects covered extend from physics to materials science and optoelectronics. Significantly updated chapters add coverage of current topics such as electron hole plasma, Bose condensation of excitons and meta materials. Over 120 problems, chapter introductions and a detailed index make it the key textbook for graduate students in physics. The mathematics is kept as elementary as possible, sufficient for an intuitive understanding of the experimental results and techniques treated. The subjects covered ...

  14. Optical memory

    Science.gov (United States)

    Mao, Samuel S; Zhang, Yanfeng

    2013-07-02

    Optical memory comprising: a semiconductor wire, a first electrode, a second electrode, a light source, a means for producing a first voltage at the first electrode, a means for producing a second voltage at the second electrode, and a means for determining the presence of an electrical voltage across the first electrode and the second electrode exceeding a predefined voltage. The first voltage, preferably less than 0 volts, different from said second voltage. The semiconductor wire is optically transparent and has a bandgap less than the energy produced by the light source. The light source is optically connected to the semiconductor wire. The first electrode and the second electrode are electrically insulated from each other and said semiconductor wire.

  15. An optical processor for object recognition and tracking

    Science.gov (United States)

    Sloan, J.; Udomkesmalee, S.

    1987-01-01

    The design and development of a miniaturized optical processor that performs real time image correlation are described. The optical correlator utilizes the Vander Lugt matched spatial filter technique. The correlation output, a focused beam of light, is imaged onto a CMOS photodetector array. In addition to performing target recognition, the device also tracks the target. The hardware, composed of optical and electro-optical components, occupies only 590 cu cm of volume. A complete correlator system would also include an input imaging lens. This optical processing system is compact, rugged, requires only 3.5 watts of operating power, and weighs less than 3 kg. It represents a major achievement in miniaturizing optical processors. When considered as a special-purpose processing unit, it is an attractive alternative to conventional digital image recognition processing. It is conceivable that the combined technology of both optical and ditital processing could result in a very advanced robot vision system.

  16. Optical syntactic pattern recognition by fuzzy scoring

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, R.; Kinser, J.; Schamschula, M.; Shamir, J.; Caulfield, H.J. [Center for Applied Optical Sciences, Department of Physics, Alabama A& M University, Normal, Alabama 35762 (United States)

    1996-06-01

    A novel syntactic approach is introduced to treat particular problems in pattern recognition. The procedure is implemented by the use of optical correlation methods for identifying the various primitives that appear in the input pattern, and their importance is determined by fuzzy relational scoring. Robust pattern recognition with tolerance to normal variations is demonstrated, indicating an efficient new approach for optical pattern recognition. {copyright} {ital 1996 Optical Society of America.}

  17. Reflective optics

    CERN Document Server

    Korsch, Dietrich

    1991-01-01

    This is the first book dedicated exclusively to all-reflective imaging systems. It is a teaching tool as well as a practical design tool for anyone who specializes in optics, particularly for those interested in telescopes, infrared, and grazing-incidence systems. The first part of the book describes a unified geometric optical theory of all-reflective imaging systems (from near-normal to grazing incidence) developed from basic principles. The second part discusses correction methods and a multitude of closed-form solutions of well-corrected systems, supplemented with many conventional and unc

  18. Optical dosimeter

    International Nuclear Information System (INIS)

    Drukaroff, I.; Fishman, R.

    1984-01-01

    A reflecting optical dosimeter is a thin block of optical material having an input light pipe at one corner and an output light pipe at another corner, arranged so that the light path includes several reflections off the edges of the block to thereby greatly extend its length. In a preferred embodiment, one corner of the block is formed at an angle so that after the light is reflected several times between two opposite edges, it is then reflected several more times between the other two edges

  19. Statistical optics

    CERN Document Server

    Goodman, Joseph W

    2015-01-01

    This book discusses statistical methods that are useful for treating problems in modern optics, and the application of these methods to solving a variety of such problems This book covers a variety of statistical problems in optics, including both theory and applications.  The text covers the necessary background in statistics, statistical properties of light waves of various types, the theory of partial coherence and its applications, imaging with partially coherent light, atmospheric degradations of images, and noise limitations in the detection of light. New topics have been introduced i

  20. Quantum optics

    International Nuclear Information System (INIS)

    Flytzanis, C.

    1988-01-01

    The 1988 progress report of the Quantum Optics laboratory (Polytechnic School, France) is presented. The research program is focused on the behavior of dense and dilute materials submitted to short and high-intensity light radiation fields. Nonlinear optics techniques, with time and spatial resolution, are developed. An important research activity concerns the investigations on the interactions between the photon beams and the inhomogeneous or composite materials, as well as the artificial microstructures. In the processes involving molecular beams and surfaces, the research works on the photophysics of surfaces and the molecule-surface interactions, are included [fr

  1. Correlation plenoptic imaging

    Science.gov (United States)

    Pepe, Francesco V.; Di Lena, Francesco; Garuccio, Augusto; D'Angelo, Milena

    2017-06-01

    Plenoptic Imaging (PI) is a novel optical technique for achieving tridimensional imaging in a single shot. In conventional PI, a microlens array is inserted in the native image plane and the sensor array is moved behind the microlenses. On the one hand, the microlenses act as imaging pixels to reproduce the image of the scene; on the other hand, each microlens reproduces on the sensor array an image of the camera lens, thus providing the angular information associated with each imaging pixel. The recorded propagation direction is exploited, in post- processing, to computationally retrace the geometrical light path, thus enabling the refocusing of different planes within the scene, the extension of the depth of field of the acquired image, as well as the 3D reconstruction of the scene. However, a trade-off between spatial and angular resolution is built in the standard plenoptic imaging process. We demonstrate that the second-order spatio-temporal correlation properties of light can be exploited to overcome this fundamental limitation. Using two correlated beams, from either a chaotic or an entangled photon source, we can perform imaging in one arm and simultaneously obtain the angular information in the other arm. In fact, we show that the second order correlation function possesses plenoptic imaging properties (i.e., it encodes both spatial and angular information), and is thus characterized by a key re-focusing and 3D imaging capability. From a fundamental standpoint, the plenoptic application is the first situation where the counterintuitive properties of correlated systems are effectively used to beat intrinsic limits of standard imaging systems. From a practical standpoint, our protocol can dramatically enhance the potentials of PI, paving the way towards its promising applications.

  2. Wolfram syndrome: a clinicopathologic correlation.

    Science.gov (United States)

    Hilson, Justin B; Merchant, Saumil N; Adams, Joe C; Joseph, Jeffrey T

    2009-09-01

    Wolfram syndrome or DIDMOAD (diabetes insipidus, diabetes mellitus, optic atrophy and deafness) is a neurodegenerative disorder characterized by diabetes mellitus and optic atrophy as well as diabetes insipidus and deafness in many cases. We report the post-mortem neuropathologic findings of a patient with Wolfram syndrome and correlate them with his clinical presentation. In the hypothalamus, neurons in the paraventricular and supraoptic nuclei were markedly decreased and minimal neurohypophyseal tissue remained in the pituitary. The pontine base and inferior olivary nucleus showed gross shrinkage and neuron loss, while the cerebellum was relatively unaffected. The visual system had moderate to marked loss of retinal ganglion neurons, commensurate loss of myelinated axons in the optic nerve, chiasm and tract, and neuron loss in the lateral geniculate nucleus but preservation of the primary visual cortex. The patient's inner ear showed loss of the organ of Corti in the basal turn of the cochleae and mild focal atrophy of the stria vascularis. These findings correlated well with the patient's high-frequency hearing loss. The pathologic findings correlated closely with the patient's clinical symptoms and further support the concept of Wolfram syndrome as a neurodegenerative disorder. Our findings extend prior neuropathologic reports of Wolfram syndrome by providing contributions to our understanding of eye, inner ear and olivopontine pathology in this disease.

  3. Diophantine Optics

    Science.gov (United States)

    Rouan, D.

    2016-09-01

    What I call Diophantine optics is the exploitation in optics of some remarkable algebraic relations between powers of integers. The name comes from Diophantus of Alexandria, a greek mathematician, known as the father of algebra. He studied polynomial equations with integer coefficients and integer solutions, called diophantine equations. Since constructive or destructive interferences are playing with optical path differences which are multiple integer (odd or even) of λ/2 and that the complex amplitude is a highly non-linear function of the optical path difference (or equivalently of the phase), one can understand that any Taylor development of this amplitude implies powers of integers. This is the link with Diophantine equations. We show how, especially in the field of interferometry, remarkable relations between powers of integers can help to solve several problems, such as achromatization of a phase shifter or deep nulling efficiency. It appears that all the research that was conducted in this frame of thinking, relates to the field of detection of exoplanets, a very active domain of astrophysics today.

  4. Optical profilometer

    Science.gov (United States)

    Wieloszyńska, Aleksandra; StrÄ kowski, Marcin

    2016-09-01

    The profilometry plays a huge role in the most fields of science and technology. It allows to measure the profile of the surface with high-resolution. This technique is used in the fields like optic, electronic, medicine, automotive, and much more. The aim of the current work was to design and build optical profilometer based on the interference phenomena. The developed device has been working with He-Ne laser (632.8 nm). The optical parts have been chosen in order to reach the sized 2.0 mm x 1.6 mm of scanning area. The setup of the profilometer is based on Twyman-Green interferometer. Therefore, the phase distribution of the backreflected light from measured surface is recorded. The measurements are carried out with the aid of multiframe algorithms. In this approach we have used the Hariharan algorithm to obtain the exact value of the recorded phase. During tests, which have been carried out in order to check the functionality of the device, the interference patterns have been recoded and processed in order to obtain the 3D profile of measured surface. In this contribution the setup of the optical system, as well as signal processing methods are going to be presented. The brief discussion about the advantages and disadvantages, and usefulness of this approach will be carried out.

  5. Optical fibres

    CERN Multimedia

    1992-01-01

    These optical fibres are used to detect particles passing through in bunches. Made from scintillating material, the fibres glow when a high energy particle passes through them. These detectors are known as spaghetti detectors and are used to measure the energy of particles.

  6. Optical geometry

    International Nuclear Information System (INIS)

    Robinson, I.; Trautman, A.

    1988-01-01

    The geometry of classical physics is Lorentzian; but weaker geometries are often more appropriate: null geodesics and electromagnetic fields, for example, are well known to be objects of conformal geometry. To deal with a single null congruence, or with the radiative electromagnetic fields associated with it, even less is needed: flag geometry for the first, optical geometry, with which this paper is chiefly concerned, for the second. The authors establish a natural one-to-one correspondence between optical geometries, considered locally, and three-dimensional Cauchy-Riemann structures. A number of Lorentzian geometries are shown to be equivalent from the optical point of view. For example the Goedel universe, the Taub-NUT metric and Hauser's twisting null solution have an optical geometry isomorphic to the one underlying the Robinson congruence in Minkowski space. The authors present general results on the problem of lifting a CR structure to a Lorentz manifold and, in particular, to Minkowski space; and exhibit the relevance of the deviation form to this problem

  7. Optical twisters

    DEFF Research Database (Denmark)

    Daria, Vincent R.; Palima, Darwin; Glückstad, Jesper

    2010-01-01

    We describe a diffracting beam with orbital angular momentum (OAM) but with a helical profile in both phase and amplitude components of the beam. This is different from Laguerre-Gaussian (LG) beams where only the phase component has a helical profile. Such profile in LG beams introduces a phase s....... Such beams can be applied to fundamental studies of light and atoms such as in quantum entanglement of the OAM, toroidal traps for cold atoms and for optical manipulation of microscopic particles....... and linearly scaled towards no phase singularity at the centre of the beam. At the focal volume, we show that our beam forms an intensity distribution that can be accurately described as an "optical twister" as it propagates in the forward direction. Unlike LG beams, an optical twister can have minimal changes...... in radius but with a scalable OAM. Furthermore, we characterize the OAM in terms of its capacity to introduce spiral motion on particles trapped along its orbit. We also show that our "optical twister" maintains a high concentration of photons at the focus even as the topological charge is increased...

  8. Skin optics

    NARCIS (Netherlands)

    van Gemert, M. J.; Jacques, S. L.; Sterenborg, H. J.; Star, W. M.

    1989-01-01

    Quantitative dosimetry in the treatment of skin disorders with (laser) light requires information on propagation of light in the skin related to the optical properties of the individual skin layers. This involves the solution of the integro-differential equation of radiative transfer in a model

  9. Optical metrology

    CERN Document Server

    Gåsvik, Kjell J

    2003-01-01

    New material on computerized optical processes, computerized ray tracing, and the fast Fourier transform, Bibre-Bragg sensors, and temporal phase unwrapping.* New introductory sections to all chapters.* Detailed discussion on lasers and laser principles, including an introduction to radiometry and photometry.* Thorough coverage of the CCD camera.

  10. Optical Computing

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 7. Optical Computing - Research Trends. Debabrata Goswami. General Article Volume 8 Issue 7 July 2003 pp 8-21. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/008/07/0008-0021. Keywords.

  11. Optical Coherence and Quantum Optics

    CERN Document Server

    Mandel, Leonard

    1995-01-01

    This book presents a systematic account of optical coherence theory within the framework of classical optics, as applied to such topics as radiation from sources of different states of coherence, foundations of radiometry, effects of source coherence on the spectra of radiated fields, coherence theory of laser modes, and scattering of partially coherent light by random media. The book starts with a full mathematical introduction to the subject area and each chapter concludes with a set of exercises. The authors are renowned scientists and have made substantial contributions to many of the topi

  12. Optical Magnetometry

    Science.gov (United States)

    Budker, Dmitry; Kimball, Derek F. Jackson

    2013-03-01

    Part I. Principles and Techniques: 1. General principles and characteristics of optical magnetometers D. F. Jackson Kimball, E. B. Alexandrov and D. Budker; 2. Quantum noise in atomic magnetometers M. V. Romalis; 3. Quantum noise, squeezing, and entanglement in radio-frequency optical magnetometers K. Jensen and E. S. Polzik; 4. Mx and Mz magnetometers E. B. Alexandrov and A. K. Vershovskiy; 5. Spin-exchange-relaxation-free (serf) magnetometers I. Savukov and S. J. Seltzer; 6. Optical magnetometry with modulated light D. F. Jackson Kimball, S. Pustelny, V. V. Yashchuk and D. Budker; 7. Microfabricated atomic magnetometers S. Knappe and J. Kitching; 8. Optical magnetometry with nitrogen-vacancy centers in diamond V. M. Acosta, D. Budker, P. R. Hemmer, J. R. Maze and R. L. Walsworth; 9. Magnetometry with cold atoms W. Gawlik and J. M. Higbie; 10. Helium magnetometers R. E. Slocum, D. D. McGregor and A. W. Brown; 11. Surface coatings for atomic magnetometry S. J. Seltzer, M.-A. Bouchiat and M. V. Balabas; 12. Magnetic shielding V. V. Yashchuk, S.-K. Lee and E. Paperno; Part II. Applications: 13. Remote detection magnetometry S. M. Rochester, J. M. Higbie, B. Patton, D. Budker, R. Holzlöhner and D. Bonaccini Calia; 14. Detection of nuclear magnetic resonance with atomic magnetometers M. P. Ledbetter, I. Savukov, S. J. Seltzer and D. Budker; 15. Space magnetometry B. Patton, A. W. Brown, R. E. Slocum and E. J. Smith; 16. Detection of biomagnetic fields A. Ben-Amar Baranga, T. G. Walker and R. T. Wakai; 17. Geophysical applications M. D. Prouty, R. Johnson, I. Hrvoic and A. K. Vershovskiy; Part III. Broader Impact: 18. Tests of fundamental physics with optical magnetometers D. F. Jackson Kimball, S. K. Lamoreaux and T. E. Chupp; 19. Nuclear magnetic resonance gyroscopes E. A. Donley and J. Kitching; 20. Commercial magnetometers and their application D. C. Hovde, M. D. Prouty, I. Hrvoic and R. E. Slocum; Index.

  13. The expression of Wnt2b in the optic cup lip requires a border between the pigmented and nonpigmented epithelium.

    Science.gov (United States)

    Kitamoto, Junko; Hyer, Jeanette

    2010-12-14

    Wnt2b is normally expressed at the optic cup lip and is implicated in ciliary body induction. The lens has often been considered an organizer for the anterior eye, but recent studies demonstrate that the anterior cell fates are correctly specified in the absence of the lens. This study uses Wnt2b as a marker to reveal the mechanism behind the specification of the anterior domain of the optic cup. Developing chick embryos were used as a model system. Eyes were microsurgically manipulated to assess the role of the lens in the development of the anterior optic cup. Eyes were molecularly manipulated, using fibroblast growth factor expressing replication-incompetent retrovirus, introduced into the retinal pigmented epithelium (RPE) domain. Ectopic fibroblast growth factor transformed the RPE into nonpigmented epithelium (NPE; ciliary body). As the virus does not spread, discrete borders between RPE and NPE were experimentally created. Wnt2b expression was assessed after surgical and molecular manipulation. Contrary to expectations, we found that the lens is not able to induce Wnt2b expression in optic cup tissue: When the optic cup lip is experimentally misspecified such that it no longer contains the juxtaposition of pigmented and nonpigmented tissue, Wnt2b is not expressed. In addition, if the prelens ectoderm is removed from the optic vesicle before morphogenesis, the resulting lensless optic cup expresses Wnt2b even though it was not in contact with lens tissue. We also show that ectopic lenses do not induce Wnt2b in optic cup tissue. The ciliary body/anterior eye domain is specified at the border of RPE and the NPE of the ciliary body. During development, this border is normally found at the optic cup lip. We can manipulate tissue specification using retroviral-mediated gene transfer, and create ectopic borders between nonpigmented and pigmented tissue. At such borders, Wnt2b is ectopically expressed in the absence of lens contact. Finally, we describe a role for

  14. On important precursor of singular optics (tutorial)

    Science.gov (United States)

    Polyanskii, Peter V.; Felde, Christina V.; Bogatyryova, Halina V.; Konovchuk, Alexey V.

    2018-01-01

    The rise of singular optics is usually associated with the seminal paper by J. F. Nye and M. V. Berry [Proc. R. Soc. Lond. A, 336, 165-189 (1974)]. Intense development of this area of modern photonics has started since the early eighties of the XX century due to invention of the interfrence technique for detection and diagnostics of phase singularities, such as optical vortices in complex speckle-structured light fields. The next powerful incentive for formation of singular optics into separate area of the science on light was connectected with discovering of very practical technique for creation of singular optical beams of various kinds on the base of computer-generated holograms. In the eghties and ninetieth of the XX century, singular optics evolved, almost entirely, under the approximation of complete coherency of light field. Only at the threshold of the XXI century, it has been comprehended that the singular-optics approaches can be fruitfully expanded onto partially spatially coherent, partially polarized and polychromatic light fields supporting singularities of new kinds, that has been resulted in establishing of correlation singular optics. Here we show that correlation singular optics has much deeper roots, ascending to "pre-singular" and even pre-laser epoch and associated with the concept of partial coherence and polarization. It is remarcable that correlation singular optics in its present interpretation has forestalled the standard coherent singular optics. This paper is timed to the sixtieth anniversary of the most profound precursor of modern correlation singular optics [J. Opt. Soc. Am., 47, 895-902 (1957)].

  15. Attractive new technologies for 7-wavelength time domain optical mammography

    Science.gov (United States)

    Ferocino, Edoardo; Martinenghi, Edoardo; Dalla Mora, Alberto; Pifferi, Antonio; Cubeddu, Rinaldo; Taroni, Paola

    2017-07-01

    An 8-channel Silicon PhotoMultiplier (SiPM) probe and Time-to-Digital-Converter (TDC) realize a higher-throughput, cheaper and compact detection chain for time-resolved optical mammography than photomultiplier tubes (PMTs) and Time Correlated Single Photon Counting (TCSPC) boards, providing comparable estimate of optical properties with increased optical responsivity.

  16. Characterization of transimpedance amplifier as optical to electrical converter on designing optical instrumentation

    Science.gov (United States)

    Hanto, D.; Ula, R. K.

    2017-05-01

    Optical to electrical converter is the main components for designing of the optical instrumentations. In addition, this component is also used as signal conditioning. This component usually consists of a photo detector and amplifier. In this paper, characteristics of commercial amplifiers from Thorlabs PDA50B-EC has been observed. The experiment was conducted by diode laser with power of -5 dBm and wavelength 1310 nm; the optical attenuator to vary optical power from 0 to 60 dB, optical to electrical converter from Thorlabs Amplifier PDA50B-EC; multimode optical fiber to guide the laser; and digital voltmeter to measure the output of converter. The results of the characterization indicate that each channel amplification has a non-linear correlation between optical and electrical parameter; optical conversion measurement range of 20-23 dB to full scale; and different measurement coverage area. If this converter will be used as a part component of optical instrumentation so it should be adjusted suitably with the optical power source. Then, because of the correlation equation is not linear so calculation to determine the interpretation also should be considered in addition to the transfer function of the optical sensor.

  17. Assessment of early-stage optic nerve invasion in retinoblastoma using high-resolution 1.5 Tesla MRI with surface coils: a multicentre, prospective accuracy study with histopathological correlation

    Energy Technology Data Exchange (ETDEWEB)

    Brisse, Herve J. [Institut Curie, Department of Radiology, Paris (France); Institut CURIE, Imaging Department, Paris (France); Graaf, Pim de; Rodjan, Firazia; Jong, Marcus C. de; Castelijns, Jonas A. [VU University Medical Center, Department of Radiology, Amsterdam (Netherlands); Galluzzi, Paolo [Neuroimaging and Neurointerventional Unit (NINT) Azienda Ospedaliera e Universitaria Senese, Siena (Italy); Cosker, Kristel; Savignoni, Alexia [Institut Curie, Department of Biostatistics, Paris (France); Maeder, Philippe [Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Department of Radiology, Lausanne (Switzerland); Goericke, Sophia [University Hospital Essen, Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Aerts, Isabelle [Institut Curie, Department of Pediatric Oncology, Paris (France); Desjardins, Laurence [Institut Curie, Department of Ophthalmology, Paris (France); Moll, Annette C. [VU University Medical Center, Department of Ophthalmology, Amsterdam (Netherlands); Hadjistilianou, Theodora [Azienda Ospedaliera Universitaria Senese, Department of Ophthalmology, Siena (Italy); Toti, Paolo [University of Siena, Department of Medical Biotechnologies, Pathology Unit, Siena (Italy); Valk, Paul van der [VU University Medical Center, Department of Pathology, Amsterdam (Netherlands); Sastre-Garau, Xavier [Institut Curie, Department of Biopathology, Paris (France); Collaboration: European Retinoblastoma Imaging Collaboration (ERIC)

    2015-05-01

    To assess the accuracy of high-resolution (HR) magnetic resonance imaging (MRI) in diagnosing early-stage optic nerve (ON) invasion in a retinoblastoma cohort. This IRB-approved, prospective multicenter study included 95 patients (55 boys, 40 girls; mean age, 29 months). 1.5-T MRI was performed using surface coils before enucleation, including spin-echo unenhanced and contrast-enhanced (CE) T1-weighted sequences (slice thickness, 2 mm; pixel size <0.3 x 0.3 mm{sup 2}). Images were read by five neuroradiologists blinded to histopathologic findings. ROC curves were constructed with AUC assessment using a bootstrap method. Histopathology identified 41 eyes without ON invasion and 25 with prelaminar, 18 with intralaminar and 12 with postlaminar invasion. All but one were postoperatively classified as stage I by the International Retinoblastoma Staging System. The accuracy of CE-T1 sequences in identifying ON invasion was limited (AUC = 0.64; 95 % CI, 0.55 - 0.72) and not confirmed for postlaminar invasion diagnosis (AUC = 0.64; 95 % CI, 0.47 - 0.82); high specificities (range, 0.64 - 1) and negative predictive values (range, 0.81 - 0.97) were confirmed. HR-MRI with surface coils is recommended to appropriately select retinoblastoma patients eligible for primary enucleation without the risk of IRSS stage II but cannot substitute for pathology in differentiating the first degrees of ON invasion. (orig.)

  18. Optical measures of dust velocities and direction during loss of vacuum accidents in confined environment and correlation between dust positions and properties with the resuspension degrees and the velocity modules

    Science.gov (United States)

    Andrea, Malizia; Rossi, Riccardo; Gaudio, Pasquale

    2017-08-01

    Dust explosions are dangerous events that still today represent a risk to all the industries that produce and/or handle combustible dust like the agro-alimentary, pharmaceutical and energy ones. When a dust cloud is dispersed in an oxidant gas, like air, it may reach the explosive concentration range. A model to predict the dust critical conditions, that can cause explosions, is a key factor for safety of operators and the security of the plants. The key point to predict this dust resuspension is to measure the velocity vectors of dust under the accidental conditions. In order to achieve this goal the authors have developed an experimental facility, STARDUST-U, which allow to obtain different conditions of temperature and pressurization rates characteristic of accidents in confined environment. The authors have developed also optical methods and software to analyse different dust resuspension phenomena under different conditions in confined environment. In this paper, the author will present how they measure the dust velocity vectors in different experimental conditions (and for different type of dusts) and how they have related the dust characteristics and positions inside STARDUST-U with the resuspension degree and the velocity values.

  19. Measurement of the $CP$-even Fraction of the $D^0 \\rightarrow 2\\pi^+ 2\\pi^-$ Decay using Quantum Correlated ${D\\bar{D}}$ Pairs at CLEO-c, and Real-time Alignment of the LHCb RICH optical Systems

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00392372

    This thesis covers three subjects, namely the measurement of the $C\\!P$-even fraction of the $D^0\\rightarrow 2\\pi^+2\\pi^-$ decay, the real-time alignment of the LHCb RICH mirror systems and the estimation of the sensitivity to the CKM angle $\\gamma$ that can be obtained using $B^{\\pm}\\rightarrow D(\\rightarrow 2\\pi^+2\\pi^-)K^{\\pm}$ events at LHCb.\\\\ \\\\ The $C\\!P$-even fraction $F_{4\\pi}^{+}$ of the $D^0\\rightarrow 2\\pi^+2\\pi^-$ decay is measured using a dataset corresponding to 818$\\,pb^{-1}$ of quantum correlated $D\\bar{D}$ decays produced in electron-positron collisions at the $\\psi(3770)$ resonance collected by the CLEO-c experiment at Cornell University. In the analysis, one of the correlated $D$ mesons is reconstructed as $D\\rightarrow 2\\pi^+2\\pi^-$ while the other $D$ meson is reconstructed as $D^0\\rightarrow K^0_{S,L}\\pi^+\\pi^-$. Sensitivity to the $C\\!P$-even fraction of $D^0\\rightarrow 2\\pi^+2\\pi^-$ is obtained by determining the variation of yields over the $D^0\\rightarrow K^0_{S,L}\\pi^+\\pi^-$ phase ...

  20. Acousto-optic-assisted diffuse optical tomography

    NARCIS (Netherlands)

    Bratchenia, A.; Molenaar, Robert; van Leeuwen, Ton; Kooyman, R.P.H.

    2011-01-01

    We introduce and experimentally demonstrate acousto-optic-assisted diffuse optical tomography (DOT) using a holography-based acousto-optic setup. The method is based on probing a scattering medium with a localized acoustical modulation of the phase of the scattered light. The optical properties of

  1. CHIRALITY IN NONLINEAR OPTICS AND OPTICAL SWITCHING

    NARCIS (Netherlands)

    Meijer, E.W.; Feringa, B.L.

    1993-01-01

    Chirality in molecular opto-electronics is limited sofar to the use of optically active liquid crystals and a number of optical phenomena are related to the helical macroscopic structure obtained by using one enantiomer, only. In this paper, the use of chirality in nonlinear optics and optical

  2. Few-photon optical diode

    OpenAIRE

    Roy, Dibyendu

    2010-01-01

    We propose a novel scheme of realizing an optical diode at the few-photon level. The system consists of a one-dimensional waveguide coupled asymmetrically to a two-level system. The two or multi-photon transport in this system is strongly correlated. We derive exactly the single and two-photon current and show that the two-photon current is asymmetric for the asymmetric coupling. Thus the system serves as an optical diode which allows transmission of photons in one direction much more efficie...

  3. Quantum Optical Effects in Semiconductors

    Science.gov (United States)

    Hoyer, W.; Kira, M.; Koch, S. W.

    Quantum optical effects in semiconductors are studied using a density-matrix approach which takes into account the many-body Coulomb interaction among the charge carriers, coupling to lattice vibrations, and the quantum nature of light. The theory provides a consistent set of equations which is used to compute photoluminescence spectra, predict the emission of squeezed light, investigate correlations between photons emitted by quantum-well structures, and to show examples where light-matter entanglement influences experiments done with classical optical fields.

  4. Collision models in quantum optics

    Science.gov (United States)

    Ciccarello, Francesco

    2017-12-01

    Quantum collision models (CMs) provide advantageous case studies for investigating major issues in open quantum systems theory, and especially quantum non-Markovianity. After reviewing their general definition and distinctive features, we illustrate the emergence of a CM in a familiar quantum optics scenario. This task is carried out by highlighting the close connection between the well-known input-output formalism and CMs. Within this quantum optics framework, usual assumptions in the CMs' literature - such as considering a bath of noninteracting yet initially correlated ancillas - have a clear physical origin.

  5. Imaging of the optic nerve

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Minerva [Head and Neck and Maxillofacial Radiology, Department of Radiology, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, CH - 1211 Geneva 14 (Switzerland)], E-mail: minerva.becker@hcuge.ch; Masterson, Karen [Head and Neck and Maxillofacial Radiology, Department of Radiology, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, CH - 1211 Geneva 14 (Switzerland); Delavelle, Jacqueline [Neuroradiology, Department of Radiology, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, CH - 1211 Geneva 14 (Switzerland); Viallon, Magalie [Department of Radiology, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, CH - 1211 Geneva 14 (Switzerland); Vargas, Maria-Isabel [Neuroradiology, Department of Radiology, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, CH - 1211 Geneva 14 (Switzerland); Becker, Christoph D. [Department of Radiology, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, CH - 1211 Geneva 14 (Switzerland)

    2010-05-15

    This article provides an overview of the imaging findings of diseases affecting the optic nerve with special emphasis on clinical-radiological correlation and on the latest technical developments in MR imaging and CT. The review deals with congenital malformations, tumors, toxic/nutritional and degenerative entities, inflammatory and infectious diseases, compressive neuropathy, vascular conditions and trauma involving the optic nerve from its ocular segment to the chiasm. The implications of imaging findings on patient management and outcome and the importance of performing high-resolution tailored examinations adapted to the clinical situation are discussed.

  6. MRI in Optic Neuritis: Structure, Function, Interactions

    DEFF Research Database (Denmark)

    Fuglø, Dan

    2011-01-01

    Optic neuritis (ON) is an acute inflammatory demyelinating condition of the optic nerve characterised by transient visual loss and eye pain. ON is the presenting symptom in 20% of patients with multiple sclerosis (MS) and the 15 year risk of developing MS after ON is about 50%. Decline in vision...... usually occurs over several days and is accompanied by eye pain. Patients start to recover 2 to 4 weeks after onset and most of the recovery typically occurs within 6 months. However, despite clinical recovery, patients develop atrophy of the optic nerve, which has been demonstrated using magnetic...... of the damage to the afferent visual pathway is needed. Optical coherence tomography (OCT) is a tissue imaging technique capable of measuring the RNFL thickness around the optic disc. We investigated the correlation between optic nerve lesion length, the RNFL thickness and the fMRI response in a group of 41...

  7. Correlated binomial models and correlation structures

    International Nuclear Information System (INIS)

    Hisakado, Masato; Kitsukawa, Kenji; Mori, Shintaro

    2006-01-01

    We discuss a general method to construct correlated binomial distributions by imposing several consistent relations on the joint probability function. We obtain self-consistency relations for the conditional correlations and conditional probabilities. The beta-binomial distribution is derived by a strong symmetric assumption on the conditional correlations. Our derivation clarifies the 'correlation' structure of the beta-binomial distribution. It is also possible to study the correlation structures of other probability distributions of exchangeable (homogeneous) correlated Bernoulli random variables. We study some distribution functions and discuss their behaviours in terms of their correlation structures

  8. Quantum Optics

    CERN Document Server

    Garrison, J C

    2008-01-01

    Quantum optics, i.e. the interaction of individual photons with matter, began with the discoveries of Planck and Einstein, but in recent years it has expanded beyond pure physics to become an important driving force for technological innovation. This book serves the broader readership growing out of this development by starting with an elementary description of the underlying physics and then building up a more advanced treatment. The reader is led from the quantum theory of thesimple harmonic oscillator to the application of entangled states to quantum information processing. An equally impor

  9. EDITORIAL: Optical orientation Optical orientation

    Science.gov (United States)

    SAME ADDRESS *, Yuri; Landwehr, Gottfried

    2008-11-01

    priority of the discovery in the literature, which was partly caused by the existence of the Iron Curtain. I had already enjoyed contact with Boris in the 1980s when the two volumes of Landau Level Spectroscopy were being prepared [2]. He was one of the pioneers of magneto-optics in semiconductors. In the 1950s the band structure of germanium and silicon was investigated by magneto-optical methods, mainly in the United States. No excitonic effects were observed and the band structure parameters were determined without taking account of excitons. However, working with cuprous oxide, which is a direct semiconductor with a relative large energy gap, Zakharchenya and his co-worker Seysan showed that in order to obtain correct band structure parameters, it is necessary to take excitons into account [3]. About 1970 Boris started work on optical orientation. Early work by Hanle in Germany in the 1920s on the depolarization of luminescence in mercury vapour by a transverse magnetic field was not appreciated for a long time. Only in the late 1940s did Kastler and co-workers in Paris begin a systematic study of optical pumping, which led to the award of a Nobel prize. The ideas of optical pumping were first applied by Georges Lampel to solid state physics in 1968. He demonstrated optical orientation of free carriers in silicon. The detection method was nuclear magnetic resonance; optically oriented free electrons dynamically polarized the 29Si nuclei of the host lattice. The first optical detection of spin orientation was demonstrated by with the III-V semiconductor GaSb by Parsons. Due to the various interaction mechanisms of spins with their environment, the effects occurring in semiconductors are naturally more complex than those in atoms. Optical detection is now the preferred method to detect spin alignment in semiconductors. The orientation of spins in crystals pumped with circularly polarized light is deduced from the degree of circular polarization of the recombination

  10. Optical pulse coupling in a photorefractive crystal, propagation of encoded pulses in an optical fiber, and phase conjugate optical interconnections

    Energy Technology Data Exchange (ETDEWEB)

    Yao, X.S.

    1992-01-01

    In Part I, the author presents a theory to describe the interaction between short optical pulses in a photorefractive crystal. This theory provides an analytical framework for pulse coherence length measurements using a photorefractive crystal. The theory also predicts how a pulse changes its temporal shape due to its coupling with another pulse in a photorefractive crystal. The author describes experiments to demonstrate how photorefractive coupling alters the temporal shape and the frequency spectrum of an optical pulse. The author describes a compact optical field correlator. Using this correlator, the author measured the field cross-correlation function of optical pulses using a photorefractive crystal. The author presents a more sophisticated theory to describe the photorefractive coupling of optical pulses that are too short for the previous theory to be valid. In Part II of this dissertation, the author analyzes how the group-velocity dispersion and the optical nonlinearity of an optical fiber ruin an fiberoptic code-division multiple-access (CDMA) communication system. The author treats the optical fiber's nonlinear response with a novel approach and derives the pulse propagation equation. Through analysis and numerically simulations, the author obtains the maximum and the maximum allowed peak pulse power, as well as the minimum and the maximum allowed pulse width for the communication system to function properly. The author simulates how the relative misalignment between the encoding and the decoding masks affects the system's performance. In Part III the author demonstrates a novel optical interconnection device based on a mutually pumped phase conjugator. This device automatically routes light from selected information-sending channels to selected information-receiving channels, and vice versa. The phase conjugator eliminates the need for critical alignment. It is shown that a large number of optical channels can be interconnected using this

  11. Advances in nonlinear optics

    CERN Document Server

    Chen, Xianfeng; Zeng, Heping; Guo, Qi; She, Weilong

    2015-01-01

    This book presents an overview of the state of the art of nonlinear optics from weak light nonlinear optics, ultrafast nonlinear optics to electro-optical theory and applications. Topics range from the fundamental studies of the interaction between matter and radiation to the development of devices, components, and systems of tremendous commercial interest for widespread applications in optical telecommunications, medicine, and biotechnology.

  12. PREFACE: Correlated Electrons (Japan)

    Science.gov (United States)

    Miyake, Kazumasa

    2007-03-01

    This issue of Journal of Physics: Condensed Matter is dedicated to results in the field of strongly correlated electron systems under multiple-environment. The physics of strongly correlated electron systems (SCES) has attracted much attention since the discovery of superconductivity in CeCu_2 Si_2 by Steglich and his co-workers a quater-century ago. Its interest has been intensified by the discovery of high-Tc superconductivity in a series of cuprates with layered perovskite structure which are still under active debate. The present issue of Journal of Physics: Condensed Matter present some aspects of SCES physics on the basis of activities of a late project "Centre-Of-Excellence" supported by MEXT (Ministry of Education, Sports, Science, Culture and Technology of the Japanese Government). This project has been performed by a condensed matter physics group in the faculties of science and engineering science of Osaka University. Although this project also covers correlated phenomena in optics and nano-scale systems, we focus here on the issues of SCES related to superconductivity, mainly unconventional. The present issue covers the discussions on a new mechanism of superconductivity with electronic origin (critical valence fluctuation mechanism), interplay and unification of magnetism and superconductivity in SCES based on a systematic study of NQR under pressure, varieties of Fermi surface of Ce- and U-based SCES probed by the de Haas-van Alphen effect, electronic states probed by a bulk sensitive photoemission spectroscopy with soft X-ray, pressure induced superconductivity of heavy electron materials, pressure dependence of superconducting transition temperature based on a first-principle calculation, and new superconductors under very high-pressure. Some papers offer readers' reviews of the relevant fields and/or include new developments of this intriguing research field of SCES. Altogether, the papers within this issue outline some aspects of electronic states

  13. Photonic correlator pattern recognition: Application to autonomous docking

    Science.gov (United States)

    Sjolander, Gary W.

    1991-01-01

    Optical correlators for real-time automatic pattern recognition applications have recently become feasible due to advances in high speed devices and filter formulation concepts. The devices are discussed in the context of their use in autonomous docking.

  14. PREFACE: Quantum Optics III

    Science.gov (United States)

    Orszag, M.; Retamal, J. C.; Saavedra, C.; Wallentowitz, S.

    2007-06-01

    All the 50 years of conscious pondering did not bring me nearer to an answer to the question `what is light quanta?'. Nowadays, every rascal believes, he knows it, however, he is mistaken. (A Einstein, 1951 in a letter to M Besso) Quantum optics has played a key role in physics in the last several decades. On the other hand, in these early decades of the information age, the flow of information is becoming more and more central to our daily life. Thus, the related fields of quantum information theory as well as Bose-Einstein condensation have acquired tremendous importance in the last couple of decades. In Quantum Optics III, a fusion of these fields appears in a natural way. Quantum Optics III was held in Pucón, Chile, in 27-30 of November, 2006. This beautiful location in the south of Chile is near the lake Villarrica and below the snow covered volcano of the same name. This fantastic environment contributed to a relaxed atmosphere, suitable for informal discussion and for the students to have a chance to meet the key figures in the field. The previous Quantum Optics conferences took place in Santiago, Chile (Quantum Optics I, 2000) and Cozumel, Mexico (Quantum Optics II, 2004). About 115 participants from 19 countries attended and participated in the meeting to discuss a wide variety of topics such as quantum-information processing, experiments related to non-linear optics and squeezing, various aspects of entanglement including its sudden death, correlated twin-photon experiments, light storage, decoherence-free subspaces, Bose-Einstein condensation, discrete Wigner functions and many more. There was a strong Latin-American participation from Argentina, Brazil, Chile, Colombia, Peru, Uruguay, Venezuela and Mexico, as well as from Europe, USA, China, and Australia. New experimental and theoretical results were presented at the conference. In Latin-America a quiet revolution has taken place in the last twenty years. Several groups working in quantum optics and

  15. Statistical Distributions of Optical Flares from Gamma-Ray Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Shuang-Xi [College of Physics and Engineering, Qufu Normal University, Qufu 273165 (China); Yu, Hai; Wang, F. Y.; Dai, Zi-Gao, E-mail: fayinwang@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)

    2017-07-20

    We statistically study gamma-ray burst (GRB) optical flares from the Swift /UVOT catalog. We compile 119 optical flares, including 77 flares with redshift measurements. Some tight correlations among the timescales of optical flares are found. For example, the rise time is correlated with the decay time, and the duration time is correlated with the peak time of optical flares. These two tight correlations indicate that longer rise times are associated with longer decay times of optical flares and also suggest that broader optical flares peak at later times, which are consistent with the corresponding correlations of X-ray flares. We also study the frequency distributions of optical flare parameters, including the duration time, rise time, decay time, peak time, and waiting time. Similar power-law distributions for optical and X-ray flares are found. Our statistic results imply that GRB optical flares and X-ray flares may share the similar physical origin, and both of them are possibly related to central engine activities.

  16. Statistical Distributions of Optical Flares from Gamma-Ray Bursts

    International Nuclear Information System (INIS)

    Yi, Shuang-Xi; Yu, Hai; Wang, F. Y.; Dai, Zi-Gao

    2017-01-01

    We statistically study gamma-ray burst (GRB) optical flares from the Swift /UVOT catalog. We compile 119 optical flares, including 77 flares with redshift measurements. Some tight correlations among the timescales of optical flares are found. For example, the rise time is correlated with the decay time, and the duration time is correlated with the peak time of optical flares. These two tight correlations indicate that longer rise times are associated with longer decay times of optical flares and also suggest that broader optical flares peak at later times, which are consistent with the corresponding correlations of X-ray flares. We also study the frequency distributions of optical flare parameters, including the duration time, rise time, decay time, peak time, and waiting time. Similar power-law distributions for optical and X-ray flares are found. Our statistic results imply that GRB optical flares and X-ray flares may share the similar physical origin, and both of them are possibly related to central engine activities.

  17. Photon correlation spectroscopy in ophthalmology

    Science.gov (United States)

    Rovati, L.

    2011-05-01

    On the basis of the theory of light scattering, photon correlation spectroscopy has been used for more than three decades to study ocular tissues. From first in-vitro experiments to study cataractogenesis, this approach has been extended to characterize semi-quantitatively in-vivo all the ocular tissues from cornea to retina and choroids. In order to acquire high quality measurement data from the experiments, serious attention has to be paid to the detector and processing system performance. Detector noise, sensitivity, dead time and afterpulsing lead to a direct or indirect corruption of the acquired correlation function whereas counting range and resolution should be optimized to take into account the wide variability of the ocular tissue optical characteristics.

  18. Quantum optics for experimentalists

    CERN Document Server

    Ou, Zhe-Yu Jeff

    2017-01-01

    This book on quantum optics is from the point of view of an experimentalist. It approaches the theory of quantum optics with the language of optical modes of classical wave theory, with which experimentalists are most familiar.

  19. Introduction to biomedical optics

    CERN Document Server

    Splinter, Robert

    2006-01-01

    GENERAL BIOMEDICAL OPTICS THEORYIntroduction to the Use of Light for Diagnostic and Therapeutic ModalitiesWhat Is Biomedical Optics?Biomedical Optics TimelineElementary Optical DiscoveriesHistorical Events in Therapeutic and Diagnostic Use of LightLight SourcesCurrent State of the ArtSummaryAdditional ReadingProblemsReview of Optical Principles: Fundamental Electromagnetic Theory and Description of Light SourcesDefinitions in OpticsKirchhoff's Laws of RadiationElectromagnetic Wave TheoryLight SourcesApplications of Various LasersSummaryAdditional ReadingProblemsReview of Optical Principles: Classical OpticsGeometrical OpticsOther Optical PrinciplesQuantum PhysicsGaussian OpticsSummaryAdditional ReadingProblemsReview of Optical Interaction PropertiesAbsorption and ScatteringSummaryAdditional ReadingProblemsLight-Tissue Interaction VariablesLaser VariablesTissue VariablesLight Transportation TheoryLight Propagation under Dominant AbsorptionSummaryNomenclatureAdditional ReadingProblemsLight-Tissue Interaction Th...

  20. Coding for optical channels

    CERN Document Server

    Djordjevic, Ivan; Vasic, Bane

    2010-01-01

    This unique book provides a coherent and comprehensive introduction to the fundamentals of optical communications, signal processing and coding for optical channels. It is the first to integrate the fundamentals of coding theory and optical communication.

  1. Time-gated Einstein-Podolsky-Rosen correlation

    International Nuclear Information System (INIS)

    Takei, Nobuyuki; Lee, Noriyuki; Furusawa, Akira; Moriyama, Daiki; Neergaard-Nielsen, J. S.

    2006-01-01

    We experimentally demonstrate the creation and characterization of Einstein-Podolsky-Rosen (EPR) correlation between optical beams in a time-gated fashion. The correlated beams are created with two independent continuous-wave optical parametric oscillators and a half beam splitter. We define the temporal modes using a square temporal filter with duration T and make time-resolved measurements on the generated state. We observe correlations between the relevant conjugate variables in the temporal mode which correspond to EPR correlation. Our scheme is extendable to continuous-variable quantum teleportation of a non-Gaussian state defined in the time domain such as a superposition of coherent states

  2. Tunable laser optics

    CERN Document Server

    Duarte, FJ

    2015-01-01

    This Second Edition of a bestselling book describes the optics and optical principles needed to build lasers. It also highlights the optics instrumentation necessary to characterize laser emissions and focuses on laser-based optical instrumentation. The book emphasizes practical and utilitarian aspects of relevant optics including the essential theory. This revised, expanded, and improved edition contains new material on tunable lasers and discusses relevant topics in quantum optics.

  3. Optical Remote Sensing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optical Remote Sensing Laboratory deploys rugged, cutting-edge electro-optical instrumentation for the collection of various event signatures, with expertise in...

  4. Intelligent Optics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Intelligent Optics Laboratory supports sophisticated investigations on adaptive and nonlinear optics; advancedimaging and image processing; ground-to-ground and...

  5. Fibre-optic communications

    CERN Document Server

    Lecoy, Pierre

    2010-01-01

    This book describes in a comprehensive manner the components and systems of fiber optic communications and networks. The first section explains the theory of multimode and single-mode fibers, then the technological features, including manufacturing, cabling, and connecting. The second section describes the various components (passive and active optical components, integrated optics, opto-electronic transmitters and receivers, and optical amplifiers) used in fiber optic systems. Finally, the optical transmission system design is explained, and applications to optical networks and fiber optic se

  6. Optical loop framing

    International Nuclear Information System (INIS)

    Kalibjian, R.; Chong, Y.P.; Prono, D.S.; Cavagnolo, H.R.

    1984-06-01

    The ATA provides an electron beam pulse of 70-ns duration at a 1-Hz rate. Our present optical diagnostics technique involve the imaging of the visible light generated by the beam incident onto the plant of a thin sheet of material. It has already been demonstrated that the light generated has a sufficiently fast temporal reponse in performing beam diagnostics. Notwithstanding possible beam emittance degradation due to scattering in the thin sheet, the observation of beam spatial profiles with relatively high efficiencies has provided data complementary to that obtained from beam wall current monitors and from various x-ray probes and other electrical probes. The optical image sensor consists of a gated, intensified television system. The gate pulse of the image intensifier can be appropriately delayed to give frames that are time-positioned from the head to the tail of the beam with a minimum gate time of 5-ns. The spatial correlation of the time frames from pulse to pulse is very good for a stable electron beam; however, when instabilities do occur, it is difficult to properly assess the spatial composition of the head and the tail of the beam on a pulse-to-pulse basis. Multiple gating within a pulse duration becomes desirable but cannot be performed because the recycle time (20-ms) of the TV system is much longer than the beam pulse. For this reason we have developed an optical-loop framing technique that will allow the recording of two frames within one pulse duration with our present gated/intensified TV system

  7. Quantum Optical Multiple Scattering

    DEFF Research Database (Denmark)

    Ott, Johan Raunkjær

    . In the first part we use a scattering-matrix formalism combined with results from random-matrix theory to investigate the interference of quantum optical states on a multiple scattering medium. We investigate a single realization of a scattering medium thereby showing that it is possible to create entangled...... states by interference of squeezed beams. Mixing photon states on the single realization also shows that quantum interference naturally arises by interfering quantum states. We further investigate the ensemble averaged transmission properties of the quantized light and see that the induced quantum...... interference survives even after disorder averaging. The quantum interference manifests itself through increased photon correlations. Furthermore, the theoretical description of a measurement procedure is presented. In this work we relate the noise power spectrum of the total transmitted or reflected light...

  8. Optical network security using unipolar Walsh code

    Science.gov (United States)

    Sikder, Somali; Sarkar, Madhumita; Ghosh, Shila

    2018-04-01

    Optical code-division multiple-access (OCDMA) is considered as a good technique to provide optical layer security. Many research works have been published to enhance optical network security by using optical signal processing. The paper, demonstrates the design of the AWG (arrayed waveguide grating) router-based optical network for spectral-amplitude-coding (SAC) OCDMA networks with Walsh Code to design a reconfigurable network codec by changing signature codes to against eavesdropping. In this paper we proposed a code reconfiguration scheme to improve the network access confidentiality changing the signature codes by cyclic rotations, for OCDMA system. Each of the OCDMA network users is assigned a unique signature code to transmit the information and at the receiving end each receiver correlates its own signature pattern a(n) with the receiving pattern s(n). The signal arriving at proper destination leads to s(n)=a(n).

  9. Optical trapping of carbon nanotubes and graphene

    Directory of Open Access Journals (Sweden)

    S. Vasi

    2011-09-01

    Full Text Available We study optical trapping of nanotubes and graphene. We extract the distribution of both centre-of-mass and angular fluctuations from three-dimensional tracking of these optically trapped carbon nanostructures. The optical force and torque constants are measured from auto and cross-correlation of the tracking signals. We demonstrate that nanotubes enable nanometer spatial, and femto-Newton force resolution in photonic force microscopy by accurately measuring the radiation pressure in a double frequency optical tweezers. Finally, we integrate optical trapping with Raman and photoluminescence spectroscopy demonstrating the use of a Raman and photoluminescence tweezers by investigating the spectroscopy of nanotubes and graphene flakes in solution. Experimental results are compared with calculations based on electromagnetic scattering theory.

  10. Light Optics for Optical Stochastic Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Andorf, Matthew [NICADD, DeKalb; Lebedev, Valeri [Fermilab; Piot, Philippe [NICADD, DeKalb; Ruan, Jinhao [Fermilab

    2016-06-01

    In Optical Stochastic Cooling (OSC) radiation generated by a particle in a "pickup" undulator is amplified and transported to a downstream "kicker" undulator where it interacts with the same particle which radiated it. Fermilab plans to carry out both passive (no optical amplifier) and active (optical amplifier) tests of OSC at the Integrable Optics Test Accelerator (IOTA) currently in construction*. The performace of the optical system is analyzed with simulations in Synchrotron Radiation Workshop (SRW) accounting for the specific temporal and spectral properties of undulator radiation and being augmented to include dispersion of lens material.

  11. Optical Properties of Rotationally Twinned Nanowire Superlattices

    DEFF Research Database (Denmark)

    Bao, Jiming; Bell, David C.; Capasso, Federico

    2008-01-01

    blende InP nanowires. We have constructed the energy band diagram of the resulting multiquantum well heterostructure and have performed detailed quantum mechanical calculations of the electron and hole wave functions. The excitation power dependent blue-shift of the photoluminescence can be explained...... a heterostructure in a chemically homogeneous nanowire material and alter in a major way its optical properties opens new possibilities for band-structure engineering.......We have developed a technique so that both transmission electron microscopy and microphotoluminescence can be performed on the same semiconductor nanowire over a large range of optical power, thus allowing us to directly correlate structural and optical properties of rotationally twinned zinc...

  12. Self-Amplified Optical Pattern Recognizer

    Science.gov (United States)

    Liu, Hua-Kuang

    1993-01-01

    Self-amplified optical pattern recognizers developed for use in recognition of patterns, in optical computing, and in optoelectronic neural networks. In recognizer, photorefractive crystal serves as medium in which one holographically records diffraction-grating filter representing pattern with which recognition sought. Apparatus "self-amplified" because signal amplified within filter to many orders of magnitude greater than in prior optical pattern recognizers. Basic principle of operation applicable to many types of correlation filters, including (but not limited to) Vander Lugt matched filters, joint-transform filters, and phase-only filters.

  13. A nonlinear optical-fiber interferometer for nondemolitional measurement of photon number

    Science.gov (United States)

    Imoto, N.; Watkins, S.; Sasaki, Y.

    1987-01-01

    A nondemolitional measurement scheme to determine the photon number was realized using an optical fiber as the optical Kerr medium. The chi(3) value of an optical fiber for the optical Kerr effect was measured using this scheme. A classical correlation between the measured light intensity and the outgoing light intensity was observed experimentally. The goal of the measurement accuracy to obtain a quantum correlation is also discussed aiming at the quantum nondemolition measurement of the photon number.

  14. Quantum Correlations in Nonlocal Boson Sampling.

    Science.gov (United States)

    Shahandeh, Farid; Lund, Austin P; Ralph, Timothy C

    2017-09-22

    Determination of the quantum nature of correlations between two spatially separated systems plays a crucial role in quantum information science. Of particular interest is the questions of if and how these correlations enable quantum information protocols to be more powerful. Here, we report on a distributed quantum computation protocol in which the input and output quantum states are considered to be classically correlated in quantum informatics. Nevertheless, we show that the correlations between the outcomes of the measurements on the output state cannot be efficiently simulated using classical algorithms. Crucially, at the same time, local measurement outcomes can be efficiently simulated on classical computers. We show that the only known classicality criterion violated by the input and output states in our protocol is the one used in quantum optics, namely, phase-space nonclassicality. As a result, we argue that the global phase-space nonclassicality inherent within the output state of our protocol represents true quantum correlations.

  15. Optic Nerve Pit

    Science.gov (United States)

    ... Conditions Frequently Asked Questions Español Condiciones Chinese Conditions Optic Nerve Pit What is optic nerve pit? An optic nerve pit is a ... may be seen in both eyes. How is optic pit diagnosed? If the pit is not affecting ...

  16. Optical image encryption topology.

    Science.gov (United States)

    Yong-Liang, Xiao; Xin, Zhou; Qiong-Hua, Wang; Sheng, Yuan; Yao-Yao, Chen

    2009-10-15

    Optical image encryption topology is proposed based on the principle of random-phase encoding. Various encryption topological units, involving peer-to-peer, ring, star, and tree topologies, can be realized by an optical 6f system. These topological units can be interconnected to constitute an optical image encryption network. The encryption and decryption can be performed in both digital and optical methods.

  17. Optics for dummies

    CERN Document Server

    Duree, Galen C

    2011-01-01

    The easy way to shed light on Optics In general terms, optics is the science of light. More specifically, optics is a branch of physics that describes the behavior and properties of light?including visible, infrared, and ultraviolet?and the interaction of light with matter. Optics For Dummies gives you an approachable introduction to optical science, methods, and applications. You'll get plain-English explanations of the nature of light and optical effects; reflection, refraction, and diffraction; color dispersion; optical devices, industrial, medical, and military applicatio

  18. Adaptive optics in microscopy.

    Science.gov (United States)

    Booth, Martin J

    2007-12-15

    The imaging properties of optical microscopes are often compromised by aberrations that reduce image resolution and contrast. Adaptive optics technology has been employed in various systems to correct these aberrations and restore performance. This has required various departures from the traditional adaptive optics schemes that are used in astronomy. This review discusses the sources of aberrations, their effects and their correction with adaptive optics, particularly in confocal and two-photon microscopes. Different methods of wavefront sensing, indirect aberration measurement and aberration correction devices are discussed. Applications of adaptive optics in the related areas of optical data storage, optical tweezers and micro/nanofabrication are also reviewed.

  19. Fiber optic connector

    Science.gov (United States)

    Rajic, Slobodan; Muhs, Jeffrey D.

    1996-01-01

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled.

  20. Integrated optics technology study

    Science.gov (United States)

    Chen, B.

    1982-01-01

    The materials and processes available for the fabrication of single mode integrated electrooptical components are described. Issues included in the study are: (1) host material and orientation, (2) waveguide formation, (3) optical loss mechanisms, (4) wavelength selection, (5) polarization effects and control, (6) laser to integrated optics coupling,(7) fiber optic waveguides to integrated optics coupling, (8) souces, (9) detectors. The best materials, technology and processes for fabrication of integrated optical components for communications and fiber gyro applications are recommended.

  1. Measurement of optical glasses

    International Nuclear Information System (INIS)

    Nicolau-Rebigan, S.

    1978-11-01

    The possibilities of measurement of the optical glasses parameters needed in building optical devices especially in lasers devices are presented. In the first chapter the general features of the main optical glasses as well as the modalities of obtaining them are given. Chapter two defines the optical glass parameters, and the third chapter describes the measuring methods of the optical glass parameters. Finally, the conclusions which point out the utilization of this paper are presented. (author)

  2. Optical imaging and spectroscopy

    CERN Document Server

    Brady, David J

    2009-01-01

    An essential reference for optical sensor system design This is the first text to present an integrated view of the optical and mathematical analysis tools necessary to understand computational optical system design. It presents the foundations of computational optical sensor design with a focus entirely on digital imaging and spectroscopy. It systematically covers: Coded aperture and tomographic imaging Sampling and transformations in optical systems, including wavelets and generalized sampling techniques essential to digital system analysis Geometric, wave, and statis

  3. Optical properties of liquid crystals

    International Nuclear Information System (INIS)

    Durand, G.

    1977-01-01

    Liquid crystals are strongly anisotropic liquids. Their textures are stabilized by a usually weak culvature elasticity. External fields act coherently through induced torques to align the liquid crystal textures. Low fields can have large optical effects. These properties explain the interest of liquid crystals for electrooptical applications. The optical properties of liquid crystals are those of positive uniaxial or biaxial solid crystals. An important parameter is the existence of a possible regular twist, spontaneous or not, on an optical wavelength scale or larger. This results in Bragg scattering of light, a very large associated rotatory power or possibly a wave-guide regime for polarized light. Light scattering is an important source of noise close to the transmitted beam, and it is difficult to filter because of the large associated correlation time. A highly distorted texture which contains all kinds of defects can scatter light like a ground glass. All these properties are used in optical devices. Optical devices using liquid crystal displays are now commercially available. Most of them use nematic materials, in the twisted geometry, in the variable tilt mode or in the dynamic scattering mode. These passive displays are interesting for field application because of their very low power consumption. Their relatively large response time (typically in the millisecond range) is used for a multiplex-type addressing. Smectic materials are potentially interesting for optical applications. Their advantage would be a much larger resolution which is not limited to the thickness of the liquid crystal cell. The response times are also much shorter than in nematics and could soon become compatible with a standard television rate of imaging. Smectics (and cholesterics) present also a memory effect. The ferroelectric chiral smectic C opens up a new field for future investigations. (author)

  4. Optical Biopsy Using Tissue Spectroscopy and Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Norman S Nishioka

    2003-01-01

    Full Text Available ‘Optical biopsy’ or ‘optical diagnostics’ is a technique whereby light energy is used to obtain information about the structure and function of tissues without disrupting them. In fluorescence spectroscopy, light energy (usually provided by a laser is used to excite tissues and the resulting fluorescence provides information about the target tissue. Its major gastrointestinal application has been in the evaluation of colonic polyps, in which it can reliably distinguish malignant from benign lesions. Optical coherence tomography (OCT has been used in the investigation of Barrett’s epithelium (and dysplasia, although a variety of other applications are feasible. For example, OCT could assist in the identification and staging of mucosal and submucosal neoplasms, the grading of inflammation in the stomach and intestine, the diagnosis of biliary tumours and the assessment of villous architecture. OCT differs from endoscopic ultrasound, a complementary modality, in that it has a much higher resolution but lesser depth of penetration. The images correlate with the histopathological appearance of tissues, and the addition of Doppler methods may enable it to evaluate the vascularity of tumours and the amount of blood flow in varices. Refinements in these new optical techniques will likely make them valuable in clinical practice, although their specific roles have yet to be determined.

  5. PREFACE: Strongly correlated electron systems Strongly correlated electron systems

    Science.gov (United States)

    Saxena, Siddharth S.; Littlewood, P. B.

    2012-07-01

    make use of 'small' electrons packed to the highest possible density. These are by definition 'strongly correlated'. For example: good photovoltaics must be efficient optical absorbers, which means that photons will generate tightly bound electron-hole pairs (excitons) that must then be ionised at a heterointerface and transported to contacts; efficient solid state refrigeration depends on substantial entropy changes in a unit cell, with large local electrical or magnetic moments; efficient lighting is in a real sense the inverse of photovoltaics; the limit of an efficient battery is a supercapacitor employing mixed valent ions; fuel cells and solar to fuel conversion require us to understand electrochemistry on the scale of a single atom; and we already know that the only prospect for effective high temperature superconductivity involves strongly correlated materials. Even novel IT technologies are now seen to have value not just for novel function but also for efficiency. While strongly correlated electron systems continue to excite researchers and the public alike due to the fundamental science issues involved, it seems increasingly likely that support for the science will be leveraged by its impact on energy and sustainability. Strongly correlated electron systems contents Strongly correlated electron systemsSiddharth S Saxena and P B Littlewood Magnetism, f-electron localization and superconductivity in 122-type heavy-fermion metalsF Steglich, J Arndt, O Stockert, S Friedemann, M Brando, C Klingner, C Krellner, C Geibel, S Wirth, S Kirchner and Q Si High energy pseudogap and its evolution with doping in Fe-based superconductors as revealed by optical spectroscopyN L Wang, W Z Hu, Z G Chen, R H Yuan, G Li, G F Chen and T Xiang Structural investigations on YbRh2Si2: from the atomic to the macroscopic length scaleS Wirth, S Ernst, R Cardoso-Gil, H Borrmann, S Seiro, C Krellner, C Geibel, S Kirchner, U Burkhardt, Y Grin and F Steglich Confinement of chiral magnetic

  6. Correlation between optical emission spectra and the process ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... In this paper, the hydrogen and hydrogen-methane mixed plasma have been generated inside a 33 cm diameter quartz bell jar with a low power (9 KW) and lower frequency 915 MHz microwave plasma chemical vapor deposition system. The reactor is being used for growing polycrystalline diamond (PCD) ...

  7. Correlation between optical emission spectra and the process ...

    Indian Academy of Sciences (India)

    Stirling. Cryogenics, NMH2 600) whereas, 99.999% pure CH4(BOC India) is ..... plasma diagnostic method that it does not detect methyl radical, the main precursor for micro- crystalline diamond CVD growth. But it is well-proven that the atomic ...

  8. Optical Spectroscopy and Imaging of Correlated Spin Orbit Phases

    Science.gov (United States)

    2016-06-14

    Invited book chapter on “ Magnetic characterization techniques for nanomaterials ” : Springer, (12 2015) TOTAL: 1 Patents Submitted Patents Awarded...We discovered a previously hidden odd-parity magnetic order in the pseudogap region of hole- 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13...Sr3Ir2O7 respectively. 2) We discovered a previously hidden odd-parity magnetic order in the pseudogap region of hole-doped Sr2IrO4, which is

  9. Correlations between Optical Variability and Physical Parameters of ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... The relationship between variability and black hole mass is uncertain. The intrinsic distribution of variability amplitudes for ... Wu1 Yi-Qing Liu1 Cheng-Liang Jiao2. Department of Astronomy, Peking University, Beijing 100871, China. Korea Astronomy and Space Science Institute, Daejeon, South Korea.

  10. Correlations between Optical Variability and Physical Parameters of ...

    Indian Academy of Sciences (India)

    z ≥ 1.9 (Vestergaard & Wilkes 2006). If more than one emission lines are available, we still adopt the fiducial virial black hole mass in Shen & Kelly (2010). 99% of quasars have measurable quantity. To measure the variability amplitude in each filter band for every quasar, we adopt the formalism similar to that used in Ai et ...

  11. Geometric correlations and multifractals

    International Nuclear Information System (INIS)

    Amritkar, R.E.

    1991-07-01

    There are many situations where the usual statistical methods are not adequate to characterize correlations in the system. To characterize such situations we introduce mutual correlation dimensions which describe geometric correlations in the system. These dimensions allow us to distinguish between variables which are perfectly correlated with or without a phase lag, variables which are uncorrelated and variables which are partially correlated. We demonstrate the utility of our formalism by considering two examples from dynamical systems. The first example is about the loss of memory in chaotic signals and describes auto-correlations while the second example is about synchronization of chaotic signals and describes cross-correlations. (author). 19 refs, 6 figs

  12. Design of optical switches by illusion optics

    International Nuclear Information System (INIS)

    Shoorian, H R; Abrishamian, M S

    2013-01-01

    In this paper, illusion optics theory is employed to form Bragg gratings in an optical waveguide in order to design an optical switch. By using an illusion device at a certain distance from the waveguide, the effective refractive index of the waveguide is remotely modulated, turning the waveguide into a distributed Bragg reflector (DBR) which blocks the waves at a stop band. By removing the illusion device, the waves propagate through the waveguide again. In addition, this method is used to remotely tune DBR optical properties such as resonant frequency and bandwidth in a wide range, which leads to a tunable filter for optical switching applications. Finally, using an illusion device at a distance, an optical cavity is created by inserting defects remotely in a DBR without any physical damage in the primary device. (paper)

  13. Design of optical switches by illusion optics

    Science.gov (United States)

    Shoorian, H. R.; Abrishamian, M. S.

    2013-05-01

    In this paper, illusion optics theory is employed to form Bragg gratings in an optical waveguide in order to design an optical switch. By using an illusion device at a certain distance from the waveguide, the effective refractive index of the waveguide is remotely modulated, turning the waveguide into a distributed Bragg reflector (DBR) which blocks the waves at a stop band. By removing the illusion device, the waves propagate through the waveguide again. In addition, this method is used to remotely tune DBR optical properties such as resonant frequency and bandwidth in a wide range, which leads to a tunable filter for optical switching applications. Finally, using an illusion device at a distance, an optical cavity is created by inserting defects remotely in a DBR without any physical damage in the primary device.

  14. Hadron correlations from recombination

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Rainer J [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2005-01-01

    Quark recombination is a successful model to describe the hadronization of a deconfined quark gluon plasma. Jet-like dihadron correlations measured at RHIC provide a challenge for this picture. We discuss how correlations between hadrons can arise from correlations between partons before hadronization. An enhancement of correlations through the recombination process, similar to the enhancement of elliptic flow is found. Hot spots from completely or partially quenched jets are a likely source of such parton correlations.

  15. Joint digital-optical design of imaging systems for grayscale objects

    Science.gov (United States)

    Robinson, M. Dirk; Stork, David G.

    2008-09-01

    In many imaging applications, the objects of interest have broad range of strongly correlated spectral components. For example, the spectral components of grayscale objects such as media printed with black ink or toner are nearly perfectly correlated spatially. We describe how to exploit such correlation during the design of electro-optical imaging systems to achieve greater imaging performance and lower optical component cost. These advantages are achieved by jointly optimizing optical, detector, and digital image processing subsystems using a unified statistical imaging performance measure. The resulting optical systems have lower F# and greater depth-of-field than systems that do not exploit spectral correlations.

  16. Efficient polishing of aspheric optics

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.S.; Piscotty, M.A.; Nguyen, N.Q.; Landram, C.S.; Ng, L.C.

    1997-04-15

    The objectives of this project are to develop, evaluate, and optimize novel designs for a polishing tool intended for ultra-precise figure corrections on aspheric optics with tolerances typical of those required for use in extreme ultraviolet (EUV) projection lithography. This work may lead to an enhanced US industrial capability for producing optics for EUV, x-ray and, other high precision applications. LLNL benefits from developments in computer-controlled polishing and the insertion of fluid mechanics modeling into the precision manufacturing area. Our accomplishments include the numerical estimation of the hydrodynamic shear stress distribution for a new polishing tool that directs and controls the interaction of an abrasive slurry with an optical surface. A key milestone is in establishing a correlation between the shear stress predicted using our fluid mechanics model and the observed removal footprint created by a prototype tool. In addition, we demonstrate the ability to remove 25 nm layers of optical glass in a manner qualitatively similar to macroscopic milling operations using a numerically- controlled machine tool. Other accomplishments include the development of computer control software for directing the polishing tool and the construction of a polishing testbed.

  17. Nonlinear Optics and Applications

    Science.gov (United States)

    Abdeldayem, Hossin A. (Editor); Frazier, Donald O. (Editor)

    2007-01-01

    Nonlinear optics is the result of laser beam interaction with materials and started with the advent of lasers in the early 1960s. The field is growing daily and plays a major role in emerging photonic technology. Nonlinear optics play a major role in many of the optical applications such as optical signal processing, optical computers, ultrafast switches, ultra-short pulsed lasers, sensors, laser amplifiers, and many others. This special review volume on Nonlinear Optics and Applications is intended for those who want to be aware of the most recent technology. This book presents a survey of the recent advances of nonlinear optical applications. Emphasis will be on novel devices and materials, switching technology, optical computing, and important experimental results. Recent developments in topics which are of historical interest to researchers, and in the same time of potential use in the fields of all-optical communication and computing technologies, are also included. Additionally, a few new related topics which might provoke discussion are presented. The book includes chapters on nonlinear optics and applications; the nonlinear Schrodinger and associated equations that model spatio-temporal propagation; the supercontinuum light source; wideband ultrashort pulse fiber laser sources; lattice fabrication as well as their linear and nonlinear light guiding properties; the second-order EO effect (Pockels), the third-order (Kerr) and thermo-optical effects in optical waveguides and their applications in optical communication; and, the effect of magnetic field and its role in nonlinear optics, among other chapters.

  18. Introduction to nonimaging optics

    CERN Document Server

    Chaves, Julio

    2015-01-01

    Introduction to Nonimaging Optics covers the theoretical foundations and design methods of nonimaging optics, as well as key concepts from related fields. This fully updated, revised, and expanded Second Edition: Features a new and intuitive introduction with a basic description of the advantages of nonimaging opticsAdds new chapters on wavefronts for a prescribed output (irradiance or intensity), infinitesimal étendue optics (generalization of the aplanatic optics), and Köhler optics and color mixingIncorporates new material on the simultaneous multiple surface (SMS) design method in 3-D, int

  19. Simple online recognition of optical data strings based on conservative optical logic.

    Science.gov (United States)

    Caulfield, H John; Shamir, Joseph; Zavalin, Andrey I; Silberman, Enrique; Qian, Lei; Vikram, Chandra S

    2006-06-10

    Optical packet switching relies on the ability of a system to recognize header information on an optical signal. Unless the headers are very short with large Hamming distances, optical correlation fails and optical logic becomes attractive because it can handle long headers with Hamming distances as low as 1. Unfortunately, the only optical logic gates fast enough to keep up with current communication speeds involve semiconductor optical amplifiers and do not lend themselves to the incorporation of large numbers of elements for header recognition and would consume a lot of power as well. The ideal system would operate at any bandwidth with no power consumption. We describe how to design and build such a system by using passive optical logic. This too leads to practical problems that we discuss. We show theoretically various ways to use optical interferometric logic for reliable recognition of long data streams such as headers in optical communication. In addition, we demonstrate one particularly simple experimental approach using interferometric coinc gates.

  20. From optics testing to micro optics testing

    Science.gov (United States)

    Brock, Christian; Dorn, Ralf; Pfund, Johannes

    2017-10-01

    Testing micro optics, i.e. lenses with dimensions down to 0.1mm and less, with high precision requires a dedicated design of the testing device, taking into account propagation and wave-optical effects. In this paper, we discuss testing methods based on Shack-Hartmann wavefront technology for functional testing in transmission and for the measurement of surface shape in reflection. As a first example of more conventional optics testing, i.e. optics in the millimeter range, we present the measurement of binoculars in transmission, and discuss the measured wave aberrations and imaging quality. By repeating the measurement at different wavelengths, information on chromatic effects is retrieved. A task that is often tackled using Shack-Hartman wavefront sensors is the alignment of collimation optics in front of a light source. In case of a micro-optical collimation unit with a 1/e² beam diameter of ca. 1mm, we need adapted relay optics for suitable beam expansion and well-defined imaging conditions. In this example, we will discuss the alignment process and effects of the relay optics magnification, as well as typical performance data. Oftentimes, micro optics are fabricated not as single pieces, but as mass optics, e.g. by lithographic processes. Thus, in order to reduce tooling and alignment time, an automated test procedure is necessary. We present an approach for the automated testing of wafer- or tray-based micro optics, and discuss transmission and reflection measurement capabilities. Exemplary performance data is shown for a sample type with 30 microns in diameter, where typical repeatabilities of a few nanometers (rms) are reached.

  1. TRANSPORT PROPERTIES OF THE STRONGLY CORRELATED SYSTEMS

    Directory of Open Access Journals (Sweden)

    T.Domanski

    2004-01-01

    Full Text Available The transport properties of various systems are studied here in the context of three different models. These are: - the disordered Hubbard model applicable to correlated binary alloys with a general disorder, - the Anderson model used in describing the Kondo physics of a quantum dot connected to the external superconducting leads, and - the Ranninger-Robaszkiewicz model applied to the study of optical properties of the system with preformed electron pairs above the temperature of transition to the superconducting state. We calculate the density of states, specific heat, the Wilson ratio and conductivity of the correlated binary alloy with off-diagonal disorder. We investigate the conditions under which the Kondo peak appears in the density of states and in the conductance of a dot coupled to the external superconducting leads. We analyze the effect of the pseudogap on the optical spectra in the high temperature superconductors described by the boson-fermion model.

  2. Miniature Optical Isolator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To address NASA's need for miniature optical isolators in atom interferometry applications, Physical Optics Corporation (POC) proposes to develop a miniature optical...

  3. High speed optical object recognition processor with massive holographic memory

    Science.gov (United States)

    Chao, T.; Zhou, H.; Reyes, G.

    2002-01-01

    Real-time object recognition using a compact grayscale optical correlator will be introduced. A holographic memory module for storing a large bank of optimum correlation filters, to accommodate the large data throughput rate needed for many real-world applications, has also been developed. System architecture of the optical processor and the holographic memory will be presented. Application examples of this object recognition technology will also be demonstrated.

  4. Peptide Optical waveguides.

    Science.gov (United States)

    Handelman, Amir; Apter, Boris; Shostak, Tamar; Rosenman, Gil

    2017-02-01

    Small-scale optical devices, designed and fabricated onto one dielectric substrate, create integrated optical chip like their microelectronic analogues. These photonic circuits, based on diverse physical phenomena such as light-matter interaction, propagation of electromagnetic waves in a thin dielectric material, nonlinear and electro-optical effects, allow transmission, distribution, modulation, and processing of optical signals in optical communication systems, chemical and biological sensors, and more. The key component of these optical circuits providing both optical processing and photonic interconnections is light waveguides. Optical confinement and transmitting of the optical waves inside the waveguide material are possible due to the higher refractive index of the waveguides in comparison with their surroundings. In this work, we propose a novel field of bionanophotonics based on a new concept of optical waveguiding in synthetic elongated peptide nanostructures composed of ordered peptide dipole biomolecules. New technology of controllable deposition of peptide optical waveguiding structures by nanofountain pen technique is developed. Experimental studies of refractive index, optical transparency, and linear and nonlinear waveguiding in out-of-plane and in-plane diphenylalanine peptide nanotubes have been conducted. Optical waveguiding phenomena in peptide structures are simulated by the finite difference time domain method. The advantages of this new class of bio-optical waveguides are high refractive index contrast, wide spectral range of optical transparency, large optical nonlinearity, and electro-optical effect, making them promising for new applications in integrated multifunctional photonic circuits. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  5. Monitoring changes of optical attenuation coefficients of acupuncture points during laser acupuncture by optical coherence tomography

    Science.gov (United States)

    Huang, Yimei; Yang, Hongqin; Wang, Yuhua; Zheng, Liqin; Xie, Shusen

    2010-11-01

    The physical properties of acupuncture point were important to discover the mechanism of acupuncture meridian. In this paper, we used an optical coherence tomography to monitor in vivo the changes of optical attenuation coefficients of Hegu acupuncture point and non-acupuncture point during laser irradiation on Yangxi acupuncture point. The optical attenuation coefficients of Hegu acupuncture point and non-acupuncture point were obtained by fitting the raw data according to the Beer-Lambert's law. The experimental results showed that the optical attenuation coefficient of Hegu acupuncture point decreased during the laser acupuncture, in contrast to a barely changed result in that of non-acupuncture point. The significant change of optical attenuation coefficient of Hegu acupuncture point indicated that there was a correlation between Hegu and Yangxi acupuncture points to some extent.

  6. Multiple degree of freedom optical pattern recognition

    Science.gov (United States)

    Casasent, D.

    1987-01-01

    Three general optical approaches to multiple degree of freedom object pattern recognition (where no stable object rest position exists) are advanced. These techniques include: feature extraction, correlation, and artificial intelligence. The details of the various processors are advanced together with initial results.

  7. Optical Spectral Variability of Blazars Haritma Gaur

    Indian Academy of Sciences (India)

    trend appears to hold. Key words. Galaxies: active—galaxies: .... fashion because it has never shown a large amount of optical activity (Gaur et al. 2012b). We found significant flux variations in all the ... tive correlation was found for any BL Lac which reflects the common trend for this class that they become bluer when they ...

  8. The 2005 Nobel Prize in Physics: Optics

    Indian Academy of Sciences (India)

    article we will describe briefly the remarkable 1963 dis- covery of the Diagonal Coherent State .... of the two-point amplitude correlation function; and via this object the concepts of partial coherence and its ... way the role of statistical methods in optics came to be much better appreciated. Some of the early names are those ...

  9. A 25 m Live Optics Telescope

    DEFF Research Database (Denmark)

    Ardeberg, Arne; Andersen, Torben; Owner-Petersen, Mette

    1996-01-01

    meniscus form truss structure, tied to the horseshoe by a coarser mesh. A FEM with 10^4 dof was developed and applied. Live optics control M1 and M4 segments (the latter with potential high bandwidth). Correction signals in tilt, coma and defocus are traced. A correlation tracker and a lase guide star...

  10. Short range correlations in high energy heavy ion collisions

    International Nuclear Information System (INIS)

    Franco, V.; Nutt, W.T.

    1978-01-01

    We present a technique for including the effects of nucleon-nucleon correlations in the optical phase shift (chi) expansion of the nucleus-nucleus scattering amplitude and present the results for chi to second order. The total and inelastic cross sections are consistently higher than those obtained ignoring correlations, and are in better agreement with the data. Furthermore, the inclusion of correlations leads to second order phase shift functions which do not violate unitarity, in constrast to the case when correlations are ignored in very heavy nuclei (A 1 , A 2 > or approx. = 200). In elastic scattering differential cross sections, the effects of correlations can be quite large

  11. Molecular studies and plastic optical fiber device structures for nonlinear optical applications

    Science.gov (United States)

    Dirk, Carl W.; Nagarur, Aruna R.; Lu, Jin J.; Zhang, Lixia; Kalamegham, Priya; Fonseca, Joe; Gopalan, Saytha; Townsend, Scott; Gonzalez, Gabriel; Craig, Patrick; Rosales, Monica; Green, Leslie; Chan, Karen; Twieg, Robert J.; Ermer, Susan P.; Leung, Doris S.; Lovejoy, Steven M.; Lacroix, Suzanne; Godbout, Nicolas; Monette, Etienne

    1995-10-01

    Summarized are two project areas: First, the development of a quantitative structure property relationship for analyzing thermal decomposition differential scanning calorimetry data of electro-optic dyes is presented. The QSPR relationship suggest that thermal decomposition can be effectively correlated with structure by considering the kinds of atoms, their hybridization, and their nearest neighbor bonded atoms. Second, the simple preparation of clad plastic optical fibers (POF) is discussed with the intention of use for nonlinear optical applications. We discuss preparation techniques for single core and multiple core POF, and present some recent data on index profiles and the optimization of thermal stability in acrylate-based POF structures.

  12. Optical microscope illumination analysis using through-focus scanning optical microscopy.

    Science.gov (United States)

    Attota, Ravi Kiran; Park, Haesung

    2017-06-15

    Misalignment of the aperture diaphragm present in optical microscopes results in angular illumination asymmetry (ANILAS) at the sample plane. Here we show that through-focus propagation of ANILAS results in a lateral image shift with a focus position. This could lead to substantial errors in quantitative results for optical methods that use through-focus images such as three-dimensional nanoparticle tracking, confocal microscopy, and through-focus scanning optical microscopy (TSOM). A correlation exists between ANILAS and the slant in TSOM images. Hence, the slant in the TSOM image can be used to detect, analyze, and rectify the presence of ANILAS.

  13. Optical Airborne Tracker System

    Data.gov (United States)

    National Aeronautics and Space Administration — The Optical Airborne Tracker System (OATS) is an airborne dual-axis optical tracking system capable of pointing at any sky location or ground target.  The objectives...

  14. The Scanning Optical Microscope.

    Science.gov (United States)

    Sheppard, C. J. R.

    1978-01-01

    Describes the principle of the scanning optical microscope and explains its advantages over the conventional microscope in the improvement of resolution and contrast, as well as the possibility of producing a picture from optical harmonies generated within the specimen.

  15. Optics for SIERRA

    Data.gov (United States)

    National Aeronautics and Space Administration — To demonstrate a massively parallel optical ray trace to enable the design and analysis of extremely large aperture optical systems. This, in turn, enables...

  16. Fiber Optics Technology.

    Science.gov (United States)

    Burns, William E.

    1986-01-01

    Discusses various applications of fiber optics technology: information systems, industrial robots, medicine, television, transportation, and training. Types of jobs that will be available with fiber optics training (such as electricians and telephone cable installers and splicers) are examined. (CT)

  17. Fiber Optics Instrumentation Development

    Science.gov (United States)

    Chan, Patrick Hon Man; Parker, Allen R., Jr.; Richards, W. Lance

    2010-01-01

    This is a general presentation of fiber optics instrumentation development work being conducted at NASA Dryden for the past 10 years and recent achievements in the field of fiber optics strain sensors.

  18. Optical illusion: apogee development

    OpenAIRE

    Elena, Chernyсhuk; Bazylevych, Viktoriya

    2015-01-01

    The article provides a classification of optical illusions performed by the authors. Briefly described each of the 11 identified species. Offered the variants using optical illusions in the urban environment, exterior and interior.

  19. Optical potential from first principles

    Science.gov (United States)

    Rotureau, J.; Danielewicz, P.; Hagen, G.; Nunes, F. M.; Papenbrock, T.

    2017-02-01

    We develop a method to construct a microscopic optical potential from chiral interactions for nucleon-nucleus scattering. The optical potential is constructed by combining the Green's function approach with the coupled-cluster method. To deal with the poles of the Green's function along the real energy axis we employ a Berggren basis in the complex energy plane combined with the Lanczos method. Using this approach, we perform a proof-of-principle calculation of the optical potential for the elastic neutron scattering on 16O. For the computation of the ground state of 16O, we use the coupled-cluster method in the singles-and-doubles approximation, while for the A ±1 nuclei we use particle-attached/removed equation-of-motion method truncated at two-particle-one-hole and one-particle-two-hole excitations, respectively. We verify the convergence of the optical potential and scattering phase shifts with respect to the model-space size and the number of discretized complex continuum states. We also investigate the absorptive component of the optical potential (which reflects the opening of inelastic channels) by computing its imaginary volume integral and find an almost negligible absorptive component at low energies. To shed light on this result, we computed excited states of 16O using the equation-of-motion coupled-cluster method with singles-and-doubles excitations and we found no low-lying excited states below 10 MeV. Furthermore, most excited states have a dominant two-particle-two-hole component, making higher-order particle-hole excitations necessary to achieve a precise description of these core-excited states. We conclude that the reduced absorption at low energies can be attributed to the lack of correlations coming from the low-order cluster truncation in the employed coupled-cluster method.

  20. Angular correlation methods

    International Nuclear Information System (INIS)

    Ferguson, A.J.

    1974-01-01

    An outline of the theory of angular correlations is presented, and the difference between the modern density matrix method and the traditional wave function method is stressed. Comments are offered on particular angular correlation theoretical techniques. A brief discussion is given of recent studies of gamma ray angular correlations of reaction products recoiling with high velocity into vacuum. Two methods for optimization to obtain the most accurate expansion coefficients of the correlation are discussed. (1 figure, 53 references) (U.S.)

  1. Optical Coherence Tomography of the Aging Kidney.

    Science.gov (United States)

    Andrews, Peter M; Wang, Hsing-Wen; Guo, Hengchang; Anderson, Erik; Falola, Reuben; Chen, Yu

    2016-12-01

    The aging kidney exhibits a progressive decline in renal function with characteristic histopathologic changes and is a risk factor for renal transplant. However, the degree to which the kidney exhibits this decline depends on several factors that vary from one individual to the next. Optical coherence tomography is an evolving noninvasive imaging technology that has recently been used to evaluate acute tubular necrosis of living-human donor kidneys before their transplant. With the increasing use of kidneys from older individuals, it is important to determine whether optical coherence tomography also can distinguish the histopathology associated with aging. In this investigation, we used Munich-Wistar rats to evaluate the ability of optical coherence tomography to detect histopathologic changes associated with aging. Optical coherence tomography observations were correlated with renal function and conventional light microscopic evaluation of these same kidneys. With the onset of severe proteinuria at 10 to 12 months of age, optical coherence tomography revealed tubular necrosis/atrophy, interstitial fibrosis, tubular dilation, and glomerulosclerosis. With a further deterioration in kidney function at 16 to 18 months of age (as indicated by rising creatinine levels), optical coherence tomography revealed more extensive interstitial fibrosis and tubular atrophy, increased tubular dilation with cyst formation and more sclerotic glomeruli. The foregoing observations suggest that optical coherence tomography can be used to detect the histopathology of progressive nephropathy associated with aging.

  2. Advanced digital optical communications

    CERN Document Server

    Binh, Le Nguyen

    2015-01-01

    This book provides a fundamental understanding of digital communication applications in optical communication technologies. Emphasizing operation principles versus mathematical analysis, the Second Edition includes new coverage of superchannel optical transmission systems, metropolitan and long-haul optical systems and networks, and Nyquist pulse shaping and high spectral efficiency of optical transmission systems, as well as new homework problems and examples. Featuring theoretical foundations as well as practical case studies, the text focuses on enhancements to digital technologies that are

  3. Progress in optics

    CERN Document Server

    Wolf, Emil

    2009-01-01

    In the fourty-seven years that have gone by since the first volume of Progress in Optics was published, optics has become one of the most dynamic fields of science. The volumes in this series which have appeared up to now contain more than 300 review articles by distinguished research workers, which have become permanent records for many important developments.- Backscattering and Anderson localization of light- Advances in oliton manipulation in optical lattices- Fundamental quantum noise in optical amplification- Invisibility cloaks

  4. Progress in optics

    CERN Document Server

    Wolf, Emil

    2015-01-01

    The Progress in Optics series contains more than 300 review articles by distinguished research workers, which have become permanent records for many important developments, helping optical scientists and optical engineers stay abreast of their fields. Comprehensive, in-depth reviewsEdited by the leading authority in the field

  5. Multiplane optical microscope

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tongcang; Ota, Sadao; Kim, Jeongmin; Wang, Yuan; Zhang, Xiang

    2017-11-21

    This disclosure provides systems, methods, and apparatus related to optical microscopy. In one aspect, an apparatus includes a sample holder, a first objective lens, a plurality of optical components, a second objective lens, and a mirror. The apparatus may directly image a cross-section of a sample oblique to or parallel to the optical axis of the first objective lens, without scanning.

  6. Fun with Optical Fibres

    Science.gov (United States)

    Alti, Kamlesh

    2017-01-01

    Optical fibres play a very crucial role in today's technologies. Academic courses in optical fibres start at the undergraduate level. Nevertheless, student's curiosity towards optical fibres starts from the school level. In this paper, some fun experiments have been designed for both school and college students, which have some concrete…

  7. Optical ordinal optimization

    Science.gov (United States)

    Caulfield, H. John

    2000-07-01

    Ordinal optimization is a relatively new field of mathematics that seems never to have been applied to optics. Optics has made extensive use of traditional cardinal optimization. This paper explores the possibility that ordinal optimization might be useful in optics. The conclusion is: Not directly but indirectly.

  8. Correlations in Werner States

    International Nuclear Information System (INIS)

    Luo Shunlong; Li Nan

    2008-01-01

    Werner states are paradigmatic examples of quantum states and play an innovative role in quantum information theory. In investigating the correlating capability of Werner states, we find the curious phenomenon that quantum correlations, as quantified by the entanglement of formation, may exceed the total correlations, as measured by the quantum mutual information. Consequently, though the entanglement of formation is so widely used in quantifying entanglement, it cannot be interpreted as a consistent measure of quantum correlations per se if we accept the folklore that total correlations are measured (or rather upper bounded) by the quantum mutual information.

  9. Congenital optic tract syndrome: magnetic resonance imaging and scanning laser ophthalmoscopy findings.

    Science.gov (United States)

    Murphy, M A; Grosof, D H; Hart, W M

    1997-12-01

    Lesions of the optic tract produce a distinctive pattern of optic atrophy and visual field loss and may be due to either congenital or acquired causes. We report a case of a congenital optic tract syndrome and correlate the magnetic resonance imaging findings with the appearance of nerve fiber layer defects found by confocal scanning laser ophthalmoscopy.

  10. Near perfect optics

    Energy Technology Data Exchange (ETDEWEB)

    Goeke, R.; Farnsworth, A.V.; Neumann, C.C.; Sweatt, W.C.; Warren, M.E.; Weed, J.W.

    1996-06-01

    This report discusses a novel fabrication process to produce nearly perfect optics. The process utilizes vacuum deposition techniques to optimally modify polished optical substrate surfaces. The surface figure, i.e. contour of a polished optical element, is improved by differentially filling in the low spots on the surface using flux from a physical vapor deposition source through an appropriate mask. The process is expected to enable the manufacture of diffraction-limited optical systems for the UV, extreme UV, and soft X-ray spectral regions, which would have great impact on photolithography and astronomy. This same technique may also reduce the fabrication cost of visible region optics with aspheric surfaces.

  11. Optical modulator including grapene

    Science.gov (United States)

    Liu, Ming; Yin, Xiaobo; Zhang, Xiang

    2016-06-07

    The present invention provides for a one or more layer graphene optical modulator. In a first exemplary embodiment the optical modulator includes an optical waveguide, a nanoscale oxide spacer adjacent to a working region of the waveguide, and a monolayer graphene sheet adjacent to the spacer. In a second exemplary embodiment, the optical modulator includes at least one pair of active media, where the pair includes an oxide spacer, a first monolayer graphene sheet adjacent to a first side of the spacer, and a second monolayer graphene sheet adjacent to a second side of the spacer, and at least one optical waveguide adjacent to the pair.

  12. Optical Binding of Nanowires

    Czech Academy of Sciences Publication Activity Database

    Simpson, Stephen Hugh; Zemánek, Pavel; Marago, O.M.; Jones, P.H.; Hanna, S.

    2017-01-01

    Roč. 17, č. 6 (2017), s. 3485-3492 ISSN 1530-6984 R&D Projects: GA ČR GB14-36681G Grant - others:AV ČR(CZ) CNR-16-12 Program:Bilaterální spolupráce Institutional support: RVO:68081731 Keywords : optical binding nanowires * Brownian motion * self -organization * non-equilibrium thermodynamics * non-equilibrium steady state * spin-orbit coupling * emergent phenomena Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 12.712, year: 2016

  13. Small scale optics

    CERN Document Server

    Yupapin, Preecha

    2013-01-01

    The behavior of light in small scale optics or nano/micro optical devices has shown promising results, which can be used for basic and applied research, especially in nanoelectronics. Small Scale Optics presents the use of optical nonlinear behaviors for spins, antennae, and whispering gallery modes within micro/nano devices and circuits, which can be used in many applications. This book proposes a new design for a small scale optical device-a microring resonator device. Most chapters are based on the proposed device, which uses a configuration know as a PANDA ring resonator. Analytical and nu

  14. [Adaptive optics for ophthalmology].

    Science.gov (United States)

    Saleh, M

    2016-04-01

    Adaptive optics is a technology enhancing the visual performance of an optical system by correcting its optical aberrations. Adaptive optics have already enabled several breakthroughs in the field of visual sciences, such as improvement of visual acuity in normal and diseased eyes beyond physiologic limits, and the correction of presbyopia. Adaptive optics technology also provides high-resolution, in vivo imaging of the retina that may eventually help to detect the onset of retinal conditions at an early stage and provide better assessment of treatment efficacy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Optic disc oedema

    DEFF Research Database (Denmark)

    Nielsen, Marianne Kromann; Hamann, Steffen

    2014-01-01

    Optic disc oedema describes the nonspecific, localized swelling of the optic nerve head regardless of aetiology. Therefore, differentiating among the various aetiologies depends on a thorough history and knowledge of the clinical characteristics of the underlying conditions. Papilloedema strictly...... refers to optic disc oedema as a consequence of elevated intracranial pressure. It is usually a bilateral condition and visual function is preserved until late. Optic disc oedema caused by an anterior optic neuropathy is usually unilateral and accompanied by the loss of visual function....

  16. Progress in optics

    CERN Document Server

    Wolf, Emil

    2006-01-01

    In the thirty-seven years that have gone by since the first volume of Progress in Optics was published, optics has become one of the most dynamic fields of science. At the time of inception of this series, the first lasers were only just becoming operational, holography was in its infancy, subjects such as fiber optics, integrated optics and optoelectronics did not exist and quantum optics was the domain of only a few physicists. The term photonics had not yet been coined. Today these fields are flourishing and have become areas of specialisation for many science and engineering students and n

  17. Progress in optics

    CERN Document Server

    Wolf, Emil

    1977-01-01

    In the thirty-seven years that have gone by since the first volume of Progress in Optics was published, optics has become one of the most dynamic fields of science. At the time of inception of this series, the first lasers were only just becoming operational, holography was in its infancy, subjects such as fiber optics, integrated optics and optoelectronics did not exist and quantum optics was the domain of only a few physicists. The term photonics had not yet been coined. Today these fields are flourishing and have become areas of specialisation for many science and engineering students and n

  18. Peptide Integrated Optics.

    Science.gov (United States)

    Handelman, Amir; Lapshina, Nadezda; Apter, Boris; Rosenman, Gil

    2018-02-01

    Bio-nanophotonics is a wide field in which advanced optical materials, biomedicine, fundamental optics, and nanotechnology are combined and result in the development of biomedical optical chips. Silk fibers or synthetic bioabsorbable polymers are the main light-guiding components. In this work, an advanced concept of integrated bio-optics is proposed, which is based on bioinspired peptide optical materials exhibiting wide optical transparency, nonlinear and electrooptical properties, and effective passive and active waveguiding. Developed new technology combining bottom-up controlled deposition of peptide planar wafers of a large area and top-down focus ion beam lithography provides direct fabrication of peptide optical integrated circuits. Finding a deep modification of peptide optical properties by reconformation of biological secondary structure from native phase to β-sheet architecture is followed by the appearance of visible fluorescence and unexpected transition from a native passive optical waveguiding to an active one. Original biocompatibility, switchable regimes of waveguiding, and multifunctional nonlinear optical properties make these new peptide planar optical materials attractive for application in emerging technology of lab-on-biochips, combining biomedical photonic and electronic circuits toward medical diagnosis, light-activated therapy, and health monitoring. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Nonlinear optical systems

    CERN Document Server

    Lugiato, Luigi; Brambilla, Massimo

    2015-01-01

    Guiding graduate students and researchers through the complex world of laser physics and nonlinear optics, this book provides an in-depth exploration of the dynamics of lasers and other relevant optical systems, under the umbrella of a unitary spatio-temporal vision. Adopting a balanced approach, the book covers traditional as well as special topics in laser physics, quantum electronics and nonlinear optics, treating them from the viewpoint of nonlinear dynamical systems. These include laser emission, frequency generation, solitons, optically bistable systems, pulsations and chaos and optical pattern formation. It also provides a coherent and up-to-date treatment of the hierarchy of nonlinear optical models and of the rich variety of phenomena they describe, helping readers to understand the limits of validity of each model and the connections among the phenomena. It is ideal for graduate students and researchers in nonlinear optics, quantum electronics, laser physics and photonics.

  20. Optical logic: an overview

    Science.gov (United States)

    Caulfield, H. John

    2005-05-01

    Progress of optical logic has been anything but uniform or even monotonic. The hope for "all optical computers" was largely abandoned after devastating critiques by Keyes. Over time, optical logic transformed into a very viable niche activity by the needs of optical communication for "all optical" logic and the advent of a critical component: the SOA or Semiconductor Optical Amplifier. I argue that a new phase in this uneven history can be defined - linear (single photon, not multiple entangled photon) quantum optical logic. These can perform conservative, reversible logic operations without energy or time penalties, but cascading requires the irreversible act of measurement, so only single devices or single layers can deliver those advantages.

  1. Optic nerve oxygenation

    DEFF Research Database (Denmark)

    Stefánsson, Einar; Pedersen, Daniella Bach; Jensen, Peter Koch

    2005-01-01

    The oxygen tension of the optic nerve is regulated by the intraocular pressure and systemic blood pressure, the resistance in the blood vessels and oxygen consumption of the tissue. The oxygen tension is autoregulated and moderate changes in intraocular pressure or blood pressure do not affect...... the optic nerve oxygen tension. If the intraocular pressure is increased above 40 mmHg or the ocular perfusion pressure decreased below 50 mmHg the autoregulation is overwhelmed and the optic nerve becomes hypoxic. A disturbance in oxidative metabolism in the cytochromes of the optic nerve can be seen...... at similar levels of perfusion pressure. The levels of perfusion pressure that lead to optic nerve hypoxia in the laboratory correspond remarkably well to the levels that increase the risk of glaucomatous optic nerve atrophy in human glaucoma patients. The risk for progressive optic nerve atrophy in human...

  2. Optic nerve oxygenation

    DEFF Research Database (Denmark)

    Stefánsson, Einar; Pedersen, Daniella Bach; Jensen, Peter Koch

    2005-01-01

    at similar levels of perfusion pressure. The levels of perfusion pressure that lead to optic nerve hypoxia in the laboratory correspond remarkably well to the levels that increase the risk of glaucomatous optic nerve atrophy in human glaucoma patients. The risk for progressive optic nerve atrophy in human...... glaucoma patients is six times higher at a perfusion pressure of 30 mmHg, which corresponds to a level where the optic nerve is hypoxic in experimental animals, as compared to perfusion pressure levels above 50 mmHg where the optic nerve is normoxic. Medical intervention can affect optic nerve oxygen......-oxygenase inhibitor, indomethacin, which indicates that prostaglandin metabolism plays a role. Laboratory studies suggest that carbonic anhydrase inhibitors might be useful for medical treatment of optic nerve and retinal ischemia, potentially in diseases such as glaucoma and diabetic retinopathy. However, clinical...

  3. Optical system design

    CERN Document Server

    Fischer, Robert F

    2008-01-01

    Honed for more than 20 years in an SPIE professional course taught by renowned optical systems designer Robert E. Fischer, Optical System Design, Second Edition brings you the latest cutting-edge design techniques and more than 400 detailed diagrams that clearly illustrate every major procedure in optical design. This thoroughly updated resource helps you work better and faster with computer-aided optical design techniques, diffractive optics, and the latest applications, including digital imaging, telecommunications, and machine vision. No need for complex, unnecessary mathematical derivations-instead, you get hundreds of examples that break the techniques down into understandable steps. For twenty-first century optical design without the mystery, the authoritative Optical Systems Design, Second Edition features: Computer-aided design use explained through sample problems Case studies of third-millennium applications in digital imaging, sensors, lasers, machine vision, and more New chapters on optomechanic...

  4. MEMS optical sensor

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to an all-optical sensor utilizing effective index modulation of a waveguide and detection of a wavelength shift of reflected light and a force sensing system accommodating said optical sensor. One embodiment of the invention relates to a sensor system comprising...... at least one multimode light source, one or more optical sensors comprising a multimode sensor optical waveguide accommodating a distributed Bragg reflector, at least one transmitting optical waveguide for guiding light from said at least one light source to said one or more multimode sensor optical...... waveguides, a detector for measuring light reflected from said Bragg reflector in said one or more multimode sensor optical waveguides, and a data processor adapted for analyzing variations in the Bragg wavelength of at least one higher order mode of the reflected light....

  5. Accuracies Of Optical Processors For Adaptive Optics

    Science.gov (United States)

    Downie, John D.; Goodman, Joseph W.

    1992-01-01

    Paper presents analysis of accuracies and requirements concerning accuracies of optical linear-algebra processors (OLAP's) in adaptive-optics imaging systems. Much faster than digital electronic processor and eliminate some residual distortion. Question whether errors introduced by analog processing of OLAP overcome advantage of greater speed. Paper addresses issue by presenting estimate of accuracy required in general OLAP that yields smaller average residual aberration of wave front than digital electronic processor computing at given speed.

  6. Analysis of Optical Variations of BL Lac Object AO 0235+ 164

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Historical optical BVRI band data are combined on the BL Lac object AO 0235 + 164. In order to examine the possible existence of lags and correlations between variations in different optical bands from this source, a statistical analysis is performed through the Discrete Correlation Function (DCF) method.

  7. Photoinduced optical dynamics of phase-change vanadium oxides

    Science.gov (United States)

    Kumar, Nardeep; Rúa, Armando; Chevres, Lee R.; Theran, Larry; Ayala, Brian; Fernández, Félix E.; Lysenko, Sergiy

    2017-08-01

    Using time- and angle-resolved hemispherical elastic light scattering technique we reveal complex pathways of photoinduced nonlinear optical dynamics in VO2, V2O3 and V3O5 thin films. The structural dynamics was monitored by using an ultrafast diffraction conoscopy technique. The evolution of phases in these correlated oxides is substantially different and significantly depends on optical excitation, temperature and size of grains and domains. Strong optical nonlinearity along with its complex transient dynamics makes vanadium oxides attractive for high-contrast all-optical switches, high-speed optical data storage and holographic devices. The characteristic time of optical nonlinearity can be tuned from several femtoseconds to picoseconds by altering the excitation fluence and size of grains and domains. Additional control of ultrafast phase transition dynamics can be achieved by photoacoustical generation of strain waves. Depending on material morphology and level of optical excitation, the optical signal shows coherent oscillations caused by photoacoustic wave at picosecond and nanosecond time scales. Complex nonlinear dynamics of correlated vanadium oxides can provide a way for precise tuning of transient optical and electronic properties in photonic devices.

  8. Intercorporate Security Event Correlation

    Directory of Open Access Journals (Sweden)

    D. O. Kovalev

    2010-03-01

    Full Text Available Security controls are prone to false positives and false negatives which can lead to unwanted reputation losses for the bank. The reputational database within the security operations center (SOC and intercorporate correlation of security events are offered as a solution to increase attack detection fidelity. The theses introduce the definition and structure of the reputation, architectures of reputational exchange and the place of intercorporate correlation in overall SOC correlation analysis.

  9. Recent advancements in robotic micro-optical assembly at the Lockheed Martin Optical Payload Center of Excellence

    Science.gov (United States)

    Hwang, David; Larson, Thomas M.

    2017-08-01

    Lockheed Martin Space Systems Company Optical Payloads Center of Excellence is in process of standing up the Robotic Optical Assembly System (ROAS) capability at Lockheed Martin Coherent Technologies in Colorado. This currently implemented Robotic Optical Assembly has enabled Lockheed Martin to create world-leading, ultra-lowSWAP photonic devices using a closed-loop control robot to precisely position and align micro-optics with a potential fill factor of >25 optics per square inch. This paper will discuss the anticipated applications and optical capability when ROAS is fully operational, as well as challenge the audience to update their "rules of thumb" and best practices when designing low-SWAP optical-mechanical systems that take advantage of Lockheed Martin's ROAS capability. This paper will reveal demonstrated optical pointing and stability performance achievable with ROAS and why we believe these optical specifications are relevant for the majority of anticipated applications. After a high level overview of the ROAS current state, this paper will focus in on recent results of the "Reworkable Micro-Optics Mounting IRAD". Results from this IRAD will correlate to the anticipated optical specifications required for relevant applications.

  10. Correlation Reconstruction Tomographic PIV

    Science.gov (United States)

    La Foy, Roderick; Vlachos, Pavlos

    2017-11-01

    A new volumetric Particle Image Velocimetry technique was developed that outputs accurate velocity measurements up to very high seeding densities while requiring lower computational expenditure. This technique combines the tomographic and cross-correlation steps by directly reconstructing the 3D cross-correlation volumes. Since many particles contribute to a single correlation peak, this decreases the noise contributions from ghost reconstructions, allowing accurate velocity measurements to be made at exceptionally high seeding densities. Additionally the overall computational cost is lowered by combining the reconstruction and cross-correlation steps. Results comparing the errors of the new technique applied to both simulated and experimental data will be presented.

  11. Particle Correlations at LEP

    CERN Document Server

    Kress, Thomas

    2002-01-01

    Particle correlations are extensively studied to obtain information about the dynamics of hadron production. From 1989 to 2000 the four LEP collaborations recorded more than 16 million hadronic Z0 decays and several thousand W+W- events. In Z0 decays, two-particle correlations were analysed in detail to study Bose-Einstein and Fermi-Dirac correlations for various particle species. In fully-hadronic W+W- decays, particle correlations were used to study whether the two W bosons decay independently. A review of selected results is presented.

  12. Correlation engine prototype

    CERN Document Server

    Pose, V

    2003-01-01

    The CERN monitoring prototype, part of the fabric management work package (WP4) of the DataGrid project, task Monitoring, collects monitoring data from farm nodes in CERN into a central monitoring database. Performing correlations on the data in the monitoring database should help to foresee exceptions on individual nodes or node groups and to analyze performance of the farm. The Correlation Engine Prototype has been developed to provide easy adding of new correlations of monitoring data and actions triggered in case of exceptions. The current prototype is written in Perl. The results of the correlation engine can be accessed through a web-interface.

  13. Correlated Electromagnetic Levitation Actuator

    Data.gov (United States)

    National Aeronautics and Space Administration — Approach is to first characterize the capabilities of correlated electromagnets by developing a prototype with readily available materials and manufacturing...

  14. Learning efficient correlated equilibria

    KAUST Repository

    Borowski, Holly P.

    2014-12-15

    The majority of distributed learning literature focuses on convergence to Nash equilibria. Correlated equilibria, on the other hand, can often characterize more efficient collective behavior than even the best Nash equilibrium. However, there are no existing distributed learning algorithms that converge to specific correlated equilibria. In this paper, we provide one such algorithm which guarantees that the agents\\' collective joint strategy will constitute an efficient correlated equilibrium with high probability. The key to attaining efficient correlated behavior through distributed learning involves incorporating a common random signal into the learning environment.

  15. Fibre-optical microendoscopy.

    Science.gov (United States)

    Gu, M; Bao, H; Kang, H

    2014-04-01

    Microendoscopy has been an essential tool in exploring micro/nano mechanisms in vivo due to high-quality imaging performance, compact size and flexible movement. The investigations into optical fibres, micro-scanners and miniature lens have boosted efficiencies of remote light delivery to sample site and signal collection. Given the light interaction with materials in the fluorescence imaging regime, this paper reviews two classes of compact microendoscopy based on a single fibre: linear optical microendoscopy and nonlinear optical microendoscopy. Due to the fact that fluorescence occurs only in the focal volume, nonlinear optical microendoscopy can provide stronger optical sectioning ability than linear optical microendoscopy, and is a good candidate for deep tissue imaging. Moreover, one-photon excited fluorescence microendoscopy as the linear optical microendoscopy suffers from severe photobleaching owing to the linear dependence of photobleaching rate on excitation laser power. On the contrary, nonlinear optical microendoscopy, including two-photon excited fluorescence microendoscopy and second harmonic generation microendoscopy, has the capability to minimize or avoid the photobleaching effect at a high excitation power and generate high image contrast. The combination of various nonlinear signals gained by the nonlinear optical microendoscopy provides a comprehensive insight into biophenomena in internal organs. Fibre-optical microendoscopy overcomes physical limitations of traditional microscopy and opens up a new path to achieve early cancer diagnosis and microsurgery in a minimally invasive and localized manner. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  16. All-optical recognition method of double two-dimensional optical orthogonal codes-based labels using four-wave mixing.

    Science.gov (United States)

    Zhang, Chongfu; Wang, Leyang; Perumal, Sathishkumar; Qiu, Kun; Zhou, Heng

    2011-08-01

    A novel all-optical label recognition method is proposed and demonstrated experimentally which is based on fiber Bragg gratings (FBGs)-based encoder/decoder and semiconductor optical amplifier (SOA). In this scheme, the optical label is firstly decoded properly, the decoded signal then generates the 1st and the 2nd order four-wave mixing (FWM) effect in different SOA, any of the frequencies achieved by the 2nd order FWM is extracted to recognize the optical label. The proposed solution can favor hardware simplicity over bandwidth efficiency in order to achieve the double two-dimensional optical orthogonal codes (2D-OOCs)-based optical label recognition in an optical packet switching (OPS) system where the bandwidth efficiency can be improved by FWM effect in SOA to achieve optical label processing and reasonable spacing of wavelengths for the payloads and optical label. The feasibility of the proposed method is validated by two experiments of the double 2D-OOCs-based optical label generation and recognition, the effect of the optical label on the payloads is also considered. These results show that the proposed method can (1) reduce effectively the code auto-correlation /cross-correlation requirements of the optical label identification and remove the cross-correlation pulses after optical decoding, (2) increase greatly the coding capacity and the number of the available optical labels, (3) improve the reliability and bandwidth efficiency of the optical label identification. The experimental results also show that the optical label has a high extinction ratio and can be operated easily.

  17. Pauli correlations in heavy-ion collisions at high energies

    International Nuclear Information System (INIS)

    Franco, V.; Nutt, W.T.

    1977-01-01

    The effects of short-range correlations on the Glauber expansion for nucleus-nucleus collisions are calculated using the Fermi gas model for nuclei. When the Pauli principle is neglected for collisions between heavy nuclei, calculation of the optical phase-shift function leads to non-unitary results and cross sections cannot be obtained. When Pauli correlations are included important cancellations in the optical phase-shift function are found which make possible the calculation of total and differential cross sections for heavy nuclei. (Auth.)

  18. Optical properties of the human round window membrane

    Science.gov (United States)

    Höhl, Martin; DeTemple, Daphne; Lyutenski, Stefan; Leuteritz, Georg; Varkentin, Arthur; Schmitt, Heike Andrea; Lenarz, Thomas; Roth, Bernhard; Meinhardt-Wollweber, Merve; Morgner, Uwe

    2017-10-01

    Optical techniques are effective tools for diagnostic applications in medicine and are particularly attractive for the noninvasive analysis of biological tissues and fluids in vivo. Noninvasive examinations of substances via a fiber optic probe need to consider the optical properties of biological tissues obstructing the optical path. This applies to the analysis of the human perilymph, which is located behind the round window membrane. The composition of this inner ear liquid is directly correlated to inner ear hearing loss. In this work, experimental methods for studying the optical properties of the human round window membrane ex vivo are presented. For the first time, a comprehensive investigation of this tissue is performed, including optical transmission, forward scattering, and Raman scattering. The results obtained suggest the application of visible wavelengths (>400 nm) for investigating the perilymph behind the round window membrane in future.

  19. Multi-wavelength time-coincident optical communications system and methods thereof

    Science.gov (United States)

    Lekki, John (Inventor); Nguyen, Quang-Viet (Inventor)

    2009-01-01

    An optical communications transmitter includes a oscillator source, producing a clock signal, a data source, producing a data signal, a modulating circuit for modulating the clock signal using the data signal to produce modulating signals, optical drivers, receiving the modulating signals and producing optical driving signals based on the modulating signals and optical emitters, producing small numbers of photons based on the optical driving signals. The small numbers of photons are time-correlated between at least two separate optical transmission wavelengths and quantum states and the small number of photons can be detected by a receiver to reform the data signal.

  20. The Use Of Optical Properties Of Cr-39 In Alpha Particle Equivalent Dose Measurements

    International Nuclear Information System (INIS)

    Shnishin, K.A.

    2007-01-01

    In this work, optical properties of alpha irradiated Cr-39 were measured as a function of optical photon wavelength from 200-1100 nm. Optical energy gap and optical absorption at finite wavelength was also calculated and correlated to alpha fluence and dose equivalent. Alpha doses were calculated from the corresponding irradiation fluence and specific energy loss using TRIM computer program. It was found that, the optical absorption of unattached Cr-39 was varied with alpha fluence and corresponding equivalent doses. Also the optical energy gab was varied with fluence and dose equivalent of alpha particles. This work introduces a reasonably simple method for the Rn dose equivalent calculation by Cr-39 track

  1. Correlation-based nonlinear composite filters applied to image recognition

    Science.gov (United States)

    Martínez-Díaz, Saúl

    2010-08-01

    Correlation-based pattern recognition has been an area of extensive research in the past few decades. Recently, composite nonlinear correlation filters invariants to translation, rotation, and scale were proposed. The design of the filters is based on logical operations and nonlinear correlation. In this work nonlinear filters are designed and applied to non-homogeneously illuminated images acquired with an optical microscope. Images are embedded into cluttered background, non-homogeneously illuminated and corrupted by random noise, which makes difficult the recognition task. Performance of nonlinear composite filters is compared with performance of other composite correlation filters, in terms discrimination capability.

  2. Correlates of Academic Procrastination.

    Science.gov (United States)

    Milgram, Norman A.; And Others

    1993-01-01

    Investigated concurrent correlates of academic procrastination in Israeli college preparatory students (n=113). Procrastination in one course of study was found to be moderately correlated with procrastination in another but not to procrastination in routine tasks of daily living. Procrastination was weakly related to emotional upset about it and…

  3. Advances in integrated optics

    CERN Document Server

    Chester, A; Bertolotti, M

    1994-01-01

    This volwne contains the Proceedings of a two-week summer conference titled "Advances in Integrated Optics" held June 1-9, 1993, in Erice, Sicily. This was the 18th annual course organized by the International School of Quantum Electronics, under the auspices of the "Ettore Majorana" Centre for Scientific Culture. The term Integrated Optics signifies guided-wave optical circuits consisting of two or more devices on a single substrate. Since its inception in the late 1960's, Integrated Optics has evolved from a specialized research topic into a broad field of work, ranging from basic research through commercial applications. Today many devices are available on market while a big effort is devolved to research on integrated nonlinear optical devices. This conference was organized to provide a comprehensive survey of the frontiers of this technology, including fundamental concepts, nonlinear optical materials, devices both in the linear and nonlinear regimes, and selected applications. These Proceedings update a...

  4. Silicon Optical Modulator Simulation

    Directory of Open Access Journals (Sweden)

    Soon Thor LIM

    2015-04-01

    Full Text Available We developed a way of predicting and analyzing high speed optical modulator. Our research adopted a bottom-up approach to consider high-speed optical links using an eye diagram. Our method leverages on modular mapping of electrical characteristics to optical characteristics, while attaining the required accuracy necessary for device footprint approaching sub-micron scales where electrical data distribution varies drastically. We calculate for the bias dependent phase shift (2pi/mm and loss (dB/mm for the optical modulator based on the real and imaginary part of complex effective indices. Subsequently, combine effectively both the electrical and optical profiles to construct the optical eye diagram which is the essential gist of signal integrity of such devices.

  5. Fundamentals of optical waveguides

    CERN Document Server

    Okamoto, Katsunari

    2006-01-01

    Fundamentals of Optical Waveguides is an essential resource for any researcher, professional or student involved in optics and communications engineering. Any reader interested in designing or actively working with optical devices must have a firm grasp of the principles of lightwave propagation. Katsunari Okamoto has presented this difficult technology clearly and concisely with several illustrations and equations. Optical theory encompassed in this reference includes coupled mode theory, nonlinear optical effects, finite element method, beam propagation method, staircase concatenation method, along with several central theorems and formulas. Since the publication of the well-received first edition of this book, planar lightwave circuits and photonic crystal fibers have fully matured. With this second edition the advances of these fibers along with other improvements on existing optical technologies are completely detailed. This comprehensive volume enables readers to fully analyze, design and simulate opti...

  6. Lasers and optical engineering

    CERN Document Server

    Das, P

    1991-01-01

    A textbook on lasers and optical engineering should include all aspects of lasers and optics; however, this is a large undertaking. The objective of this book is to give an introduction to the subject on a level such that under­ graduate students (mostly juniors/seniors), from disciplines like electrical engineering, physics, and optical engineering, can use the book. To achieve this goal, a lot of basic background material, central to the subject, has been covered in optics and laser physics. Students with an elementary knowledge of freshman physics and with no formal courses in electromagnetic theory should be able to follow the book, although for some sections, knowledge of electromagnetic theory, the Fourier transform, and linear systems would be highly beneficial. There are excellent books on optics, laser physics, and optical engineering. Actually, most of my knowledge was acquired through these. However, when I started teaching an undergraduate course in 1974, under the same heading as the title of th...

  7. Tunable micro-optics

    CERN Document Server

    Duppé, Claudia

    2015-01-01

    Presenting state-of-the-art research into the dynamic field of tunable micro-optics, this is the first book to provide a comprehensive survey covering a varied range of topics including novel materials, actuation concepts and new imaging systems in optics. Internationally renowned researchers present a diverse range of chapters on cutting-edge materials, devices and subsystems, including soft matter, artificial muscles, tunable lenses and apertures, photonic crystals, and complete tunable imagers. Special contributions also provide in-depth treatment of micro-optical characterisation, scanners, and the use of natural eye models as inspiration for new concepts in advanced optics. With applications extending from medical diagnosis to fibre telecommunications, Tunable Micro-optics equips readers with a solid understanding of the broader technical context through its interdisciplinary approach to the realisation of new types of optical systems. This is an essential resource for engineers in industry and academia,...

  8. FPGA design of correlation-based pattern recognition

    Science.gov (United States)

    Jridi, Maher; Alfalou, Ayman

    2017-05-01

    Optical/Digital pattern recognition and tracking based on optical/digital correlation are a well-known techniques to detect, identify and localize a target object in a scene. Despite the limited number of treatments required by the correlation scheme, computational time and resources are relatively high. The most computational intensive treatment required by the correlation is the transformation from spatial to spectral domain and then from spectral to spatial domain. Furthermore, these transformations are used on optical/digital encryption schemes like the double random phase encryption (DRPE). In this paper, we present a VLSI architecture for the correlation scheme based on the fast Fourier transform (FFT). One interesting feature of the proposed scheme is its ability to stream image processing in order to perform correlation for video sequences. A trade-off between the hardware consumption and the robustness of the correlation can be made in order to understand the limitations of the correlation implementation in reconfigurable and portable platforms. Experimental results obtained from HDL simulations and FPGA prototype have demonstrated the advantages of the proposed scheme.

  9. Quantum correlation games

    International Nuclear Information System (INIS)

    Iqbal, Azhar; Weigert, Stefan

    2004-01-01

    A new approach to play games quantum mechanically is proposed. We consider two players who perform measurements in an EPR-type setting. The payoff relations are defined as functions of correlations, i.e. without reference to classical or quantum mechanics. Classical bi-matrix games are reproduced if the input states are classical and perfectly anti-correlated, that is, for a classical correlation game. However, for a quantum correlation game, with an entangled singlet state as input, qualitatively different solutions are obtained. For example, the Prisoners' Dilemma acquires a Nash equilibrium if both players apply a mixed strategy. It appears to be conceptually impossible to reproduce the properties of quantum correlation games within the framework of classical games

  10. Quantum correlation games

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Azhar; Weigert, Stefan [HuMP-Hull Mathematical Physics, Department of Mathematics, University of Hull (United Kingdom)

    2004-06-04

    A new approach to play games quantum mechanically is proposed. We consider two players who perform measurements in an EPR-type setting. The payoff relations are defined as functions of correlations, i.e. without reference to classical or quantum mechanics. Classical bi-matrix games are reproduced if the input states are classical and perfectly anti-correlated, that is, for a classical correlation game. However, for a quantum correlation game, with an entangled singlet state as input, qualitatively different solutions are obtained. For example, the Prisoners' Dilemma acquires a Nash equilibrium if both players apply a mixed strategy. It appears to be conceptually impossible to reproduce the properties of quantum correlation games within the framework of classical games.

  11. New Architecture of Optical Interconnect for High-Speed Optical Computerized Data Networks (Nonlinear Response

    Directory of Open Access Journals (Sweden)

    El-Sayed A. El-Badawy

    2008-02-01

    Full Text Available Although research into the use of optics in computers has increased in the last and current decades, the fact remains that electronics is still superior to optics in almost every way. Research into the use of optics at this stage mirrors the research into electronics after the 2nd World War. The advantages of using fiber optics over wiring are the same as the argument for using optics over electronics in computers. Even through totally optical computers are now a reality, computers that combine both electronics and optics, electro-optic hybrids, have been in use for some time. In the present paper, architecture of optical interconnect is built up on the bases of four Vertical-Cavity Surface- Emitting Laser Diodes (VCSELD and two optical links where thermal effects of both the diodes and the links are included. Nonlinear relations are correlated to investigate the power-current and the voltage-current dependences of the four devices. The good performance (high speed of the interconnect is deeply and parametrically investigated under wide ranges of the affecting parameters. The high speed performance is processed through three different effects, namely the device 3-dB bandwidth, the link dispersion characteristics, and the transmitted bit rate (soliton. Eight combinations are investigated; each possesses its own characteristics. The best architecture is the one composed of VCSELD that operates at 850 nm and the silica fiber whatever the operating set of causes. This combination possesses the largest device 3-dB bandwidth, the largest link bandwidth and the largest soliton transmitted bit rate. The increase of the ambient temperature reduces the high-speed performance of the interconnect

  12. Progress in optics

    CERN Document Server

    Wolf, Emil

    2008-01-01

    In the fourty-six years that have gone by since the first volume of Progress in Optics was published, optics has become one of the most dynamic fields of science. The volumes in this series which have appeared up to now contain more than 300 review articles by distinguished research workers, which have become permanent records for many important developments.- Metamaterials- Polarization Techniques- Linear Baisotropic Mediums- Ultrafast Optical Pulses- Quantum Imaging- Point-Spread Funcions- Discrete Wigner Functions

  13. Optical atomic magnetometer

    Science.gov (United States)

    Budker, Dmitry; Higbie, James; Corsini, Eric P

    2013-11-19

    An optical atomic magnetometers is provided operating on the principles of nonlinear magneto-optical rotation. An atomic vapor is optically pumped using linearly polarized modulated light. The vapor is then probed using a non-modulated linearly polarized light beam. The resulting modulation in polarization angle of the probe light is detected and used in a feedback loop to induce self-oscillation at the resonant frequency.

  14. Dominant optic atrophy

    DEFF Research Database (Denmark)

    Lenaers, Guy; Hamel, Christian; Delettre, Cécile

    2012-01-01

    DEFINITION OF THE DISEASE: Dominant Optic Atrophy (DOA) is a neuro-ophthalmic condition characterized by a bilateral degeneration of the optic nerves, causing insidious visual loss, typically starting during the first decade of life. The disease affects primary the retinal ganglion cells (RGC) an......) and their axons forming the optic nerve, which transfer the visual information from the photoreceptors to the lateral geniculus in the brain....

  15. Concepts of classical optics

    CERN Document Server

    Strong, John

    1958-01-01

    An intermediate course in optics, this volume explores both experimental and theoretical concepts, offering practical knowledge of geometrical optics that will enhance students' comprehension of any relevant applied science. Its exposition of the concepts of classical optics is presented with a minimum of mathematical detail but presumes some knowledge of calculus, vectors, and complex numbers.Subjects include light as wave motion; superposition of wave motions; electromagnetic waves; interaction of light and matter; velocities and scattering of light; polarized light and dielectric boundarie

  16. Optical Fibre Bundle

    CERN Multimedia

    These are sample fibre optic cables which are used for networking. Optical fibers are widely used in fiber-optic communications, where they permit transmission over longer distances and at higher bandwidths (data rates) than wire cables. Fibers are used instead of metal wires because signals travel along them with less loss and are also immune to electromagnetic interference. This is useful for somewhere like CERN where magnets with their highly powerful magnetic fields could pose a problem.

  17. Determination of optical constants and nonlinear optical coefficients ...

    Indian Academy of Sciences (India)

    −7 cm2/W and nonlinear absorption coefficient, β = 6.31×10. −3 cm/W. Optical limiting characteris- tics of the dye-doped polymer film was studied. The result reveals that Violet 1 can be a promising material for optical limiting applications. Keywords. Absorption spectra; nonlinear optics; optical constants; optical limiting.

  18. Overview of optical microscopy and optical microspectroscopy

    Science.gov (United States)

    Ager, Joel W.

    1998-11-01

    Optical microscopy has historically been a major tool for semiconductor inspection. As the ULSI design rule continues to decline to 0.25 μm and below, standard optical microscopy methods will arrive at their resolution limit. In the first part of this paper an overview of currently used optical microscopy techniques will be given. The resolution limit for optical imaging will be discussed, and novel methods for increasing resolution, including deep UV microscopy and confocal laser microscopy, will be presented. The second part of the paper will discuss an emerging technology for contamination analysis in semiconductor processing, microspectroscopy. Three topics in this area will be discussed with an emphasis on applications to off-line defect identification in process development: (1) micro-Raman spectroscopy, (2) micro-fluorescence or micro-photoluminescence spectroscopy, and (3) micro-reflectivity. It will be shown that these microspectroscopy methods can provide composition information for defects down to 1 μm in size that is not accessible through the more commonly used methods such as scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS) and scanning Auger microscopy. Classes of defects where optical micro-spectroscopy methods are useful include ceramic particles, thin films of organic material, and dielectric films.

  19. LSST Camera Optics Design

    Energy Technology Data Exchange (ETDEWEB)

    Riot, V J; Olivier, S; Bauman, B; Pratuch, S; Seppala, L; Gilmore, D; Ku, J; Nordby, M; Foss, M; Antilogus, P; Morgado, N

    2012-05-24

    The Large Synoptic Survey Telescope (LSST) uses a novel, three-mirror, telescope design feeding a camera system that includes a set of broad-band filters and three refractive corrector lenses to produce a flat field at the focal plane with a wide field of view. Optical design of the camera lenses and filters is integrated in with the optical design of telescope mirrors to optimize performance. We discuss the rationale for the LSST camera optics design, describe the methodology for fabricating, coating, mounting and testing the lenses and filters, and present the results of detailed analyses demonstrating that the camera optics will meet their performance goals.

  20. Surface optical vortices

    Science.gov (United States)

    Lembessis, V. E.; Babiker, M.; Andrews, D. L.

    2009-01-01

    It is shown how the total internal reflection of orbital-angular-momentum-endowed light can lead to the generation of evanescent light possessing rotational properties in which the intensity distribution is firmly localized in the vicinity of the surface. The characteristics of these surface optical vortices depend on the form of the incident light and on the dielectric mismatch of the two media. The interference of surface optical vortices is shown to give rise to interesting phenomena, including pattern rotation akin to a surface optical Ferris wheel. Applications are envisaged to be in atom lithography, optical surface tweezers, and spanners.

  1. Optics for engineers

    CERN Document Server

    DiMarzio, Charles A

    2011-01-01

    This book is an excellent resource for teaching any student or scientist who needs to use optical systems. I particularly like the addition of MATLAB scripts and functions. Highly recommended.-Professor James C. Wyant, Dean of College of Optical Sciences, University of ArizonaHis book is clear, concise and highly readable. This is an excellent text.-Professor Changhuei Yang, California Institute of TechnologyAt last, a book on optics that is written with the practising engineer in mind. I have been teaching optics to engineers for many years and have often longed for a text aimed at my student

  2. Interactive virtual optical laboratories

    Science.gov (United States)

    Liu, Xuan; Yang, Yi

    2017-08-01

    Laboratory experiences are essential for optics education. However, college students have limited access to advanced optical equipment that is generally expensive and complicated. Hence there is a need for innovative solutions to expose students to advanced optics laboratories. Here we describe a novel approach, interactive virtual optical laboratory (IVOL) that allows unlimited number of students to participate the lab session remotely through internet, to improve laboratory education in photonics. Although students are not physically conducting the experiment, IVOL is designed to engage students, by actively involving students in the decision making process throughout the experiment.

  3. Ocean Optics Instrumentation Systems

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides instrumentation suites for a wide variety of measurements to characterize the ocean’s optical environment. These packages have been developed to...

  4. Optical engineering of diamond

    CERN Document Server

    Rabeau, James R

    2013-01-01

    This is the first comprehensive book on the engineering of diamond optical devices. It will give readers an up-to-date account of the properties of optical quality synthetic diamond (single crystal, nanodiamond and polycrystalline) and reviews the large and growing field of engineering of diamond-based optical devices, with applications in quantum computation, nano-imaging, high performance lasers, and biomedicine. It aims to provide scientists, engineers and physicists with a valuable resource and reference book for the design and performance of diamond-based optical devices.

  5. Bidirectional optical scattering facility

    Data.gov (United States)

    Federal Laboratory Consortium — Goniometric optical scatter instrument (GOSI)The bidirectional reflectance distribution function (BRDF) quantifies the angular distribution of light scattered from a...

  6. Optics, light and lasers

    CERN Document Server

    Meschede, Dieter

    2008-01-01

    Starting from the concepts of classical optics, Optics, Light and Lasers introduces in detail the phenomena of linear and nonlinear light matter interaction, the properties of modern laser sources, and the concepts of quantum optics. Several examples taken from the scope of modern research are provided to emphasize the relevance of optics in current developments within science and technology. The text has been written for newcomers to the topic and benefits from the author's ability to explain difficult sequences and effects in a straightforward and easily comprehensible way. To this second, c

  7. Elementary wave optics

    CERN Document Server

    Webb, Robert H

    2005-01-01

    This undergraduate textbook presents thorough coverage of the standard topics of classical optics and optical instrument design; it also offers significant details regarding the concepts of modern optics. Its survey of the mathematical tools of optics grants students insights into the physical principles of quantum mechanics.Two principal concepts occur throughout: a treatment of scattering from real scatterers (leading to Huygens' principles, diffraction theory, the index of refraction, and related topics); and the difference between coherent and noncoherent wave phenomena. Examinations of su

  8. Optically pumped atoms

    CERN Document Server

    Happer, William; Walker, Thad

    2010-01-01

    Covering the most important knowledge on optical pumping of atoms, this ready reference is backed by numerous examples of modelling computation for optical pumped systems. The authors show for the first time that modern scientific computing software makes it practical to analyze the full, multilevel system of optically pumped atoms. To make the discussion less abstract, the authors have illustrated key points with sections of MATLAB codes. To make most effective use of contemporary mathematical software, it is especially useful to analyze optical pumping situations in the Liouville spa

  9. Optical network democratization.

    Science.gov (United States)

    Nejabati, Reza; Peng, Shuping; Simeonidou, Dimitra

    2016-03-06

    The current Internet infrastructure is not able to support independent evolution and innovation at physical and network layer functionalities, protocols and services, while at same time supporting the increasing bandwidth demands of evolving and heterogeneous applications. This paper addresses this problem by proposing a completely democratized optical network infrastructure. It introduces the novel concepts of the optical white box and bare metal optical switch as key technology enablers for democratizing optical networks. These are programmable optical switches whose hardware is loosely connected internally and is completely separated from their control software. To alleviate their complexity, a multi-dimensional abstraction mechanism using software-defined network technology is proposed. It creates a universal model of the proposed switches without exposing their technological details. It also enables a conventional network programmer to develop network applications for control of the optical network without specific technical knowledge of the physical layer. Furthermore, a novel optical network virtualization mechanism is proposed, enabling the composition and operation of multiple coexisting and application-specific virtual optical networks sharing the same physical infrastructure. Finally, the optical white box and the abstraction mechanism are experimentally evaluated, while the virtualization mechanism is evaluated with simulation. © 2016 The Author(s).

  10. Cultivation mode research of practical application talents for optical engineering major

    Science.gov (United States)

    Liu, Zhiying

    2017-08-01

    The requirements on science and technology graduates are more and higher with modern science progress and society market economy development. Because optical engineering major is with very long practicality, practice should be paid more attention from analysis of optical engineering major and students' foundation. To play role of practice to a large amount, the practice need be systemic and correlation. It should be combination of foundation and profundity. Modern foundation professional knowledge is studied with traditional optical concept and technology at the same time. Systemic regularity and correlation should be embodied in the contents. Start from basic geometrical optics concept, the optical parameter of optical instrument is analyzed, the optical module is built and ray tracing is completed during geometrical optics practice. With foundation of primary aberration calculation, the optical system is further designed and evaluated during optical design practice course. With the optical model and given instrument functions and requirements, the optical-mechanism is matched. The accuracy is calculated, analyzed and distributed in every motion segment. And the mechanism should guarantee the alignment and adjustment. The optical mechanism is designed during the instrument and element design practice. When the optical and mechanism drawings are completed, the system is ready to be fabricated. Students can complete grinding, polishing and coating process by themselves through optical fabricating practice. With the optical and mechanical elements, the system can be assembled and aligned during the thesis practice. With a set of correlated and logical practices, the students can acquire the whole process knowledge about optical instrument. All details are contained in every practice process. These practical experiences provide students working ability. They do not need much adaption anymore when they go to work after graduation. It is favorable to both student

  11. Optical clearing: impact of optical and dielectric properties of clearing solutions on pulmonary tissue mechanics.

    Science.gov (United States)

    Schwenninger, David; Priebe, Hans-Joachim; Schneider, Matthias; Runck, Hanna; Guttmann, Josef

    2017-07-01

    Optical clearing allows tissue visualization under preservation of organ integrity. Optical clearing of organs with a physiological change in three-dimensional geometry (such as the lung) would additionally allow visualization of macroscopic and microscopic tissue geometry. A prerequisite, however, is the preservation of the native tissue mechanics of the optically cleared lung tissue. We investigated the impact of optical and dielectric properties of clearing solutions on biomechanics and clearing potency in porcine tissue strips of healthy lungs. After fixation, bleaching, and rehydration, four methods of optical clearing were investigated using eight different protocols. The mechanical and optical properties of the cleared lung tissue strips were investigated by uniaxial tensile testing and by analyzing optical transparency and translucency for red, green, and blue light before, during, and after the biochemical optical clearing process. Fresh tissue strips were used as controls. Best balance between efficient clearing and preserved mechanics was found for clearing with a 1:1 mixture of dimethyl sulfoxide (DMSO) and aniline. Our findings show that 1 ) the degree of tissue transparency and translucency correlated with the refractive index of the clearing solution index ( r = 0.976, P = 0.0004; and r = 0.91, P = 0.0046, respectively), 2 ) tissue mechanics were affected by dehydration and the type of clearing solution, and 3 ) tissue biomechanics and geometry correlated with the dielectric constant of the clearing solution ( r = -0.98, P mechanics, our results help to compose optimal clearing solutions. In addition, the results allow conclusions on the molecular interaction of solvents with collagen fibers in tissue, thereby consolidating existing theories about the functionality of collagen. Copyright © 2017 the American Physiological Society.

  12. Size of the intracranial optic nerve and optic tract in neonates at term-equivalent age at magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Jun; Mori, Kouichi [Tsuchiura Kyodo General Hospital, Department of Radiology, Tsuchiura, Ibaraki (Japan); Imamura, Masatoshi [Tsuchiura Kyodo General Hospital, Department of Neonatology, Tsuchiura, Ibaraki (Japan); Mizushima, Yukiko [Tsuchiura Kyodo General Hospital, Department of Ophthalmology, Tsuchiura, Ibaraki (Japan); Tateishi, Ukihide [Tokyo Medical and Dental University, Departments of Diagnostic Radiology and Nuclear Medicine, Tokyo (Japan)

    2016-04-15

    The expected MRI-based dimensions of the intracranial optic nerve and optic tract in neonates are unknown. To evaluate the sizes of the intracranial optic nerve and optic tract in neonates at term-equivalent age using MRI. We retrospectively analyzed brain MRI examinations in 62 infants (28 boys) without intracranial abnormalities. The images were obtained in infants at term-equivalent age with a 1.5-tesla MRI scanner. We measured the widths and heights of the intracranial optic nerve and optic tract and calculated the cross-sectional areas using the formula for an ellipse. The means ± standard deviation of the width, height and cross-sectional area of the intracranial optic nerve were 2.7 ± 0.2 mm, 1.7 ± 0.2 mm and 3.5 ± 0.5 mm{sup 2}, respectively. The width, height and cross-sectional area of the optic tract were 1.5 ± 0.1 mm, 1.6 ± 0.1 mm and 2.0 ± 0.2 mm{sup 2}, respectively. Using univariate and multivariate analyses, we found that postmenstrual age showed independent intermediate positive correlations with the width (r = 0.48, P < 0.01) and cross-sectional area (r = 0.40, P < 0.01) of the intracranial optic nerve. The lower bounds of the 95% prediction intervals for the width and cross-sectional area of the intracranial optic nerve were 0.07 x (postmenstrual age in weeks) - 0.46 mm, and 0.17 x (postmenstrual age in weeks) - 4.0 mm{sup 2}, respectively. We identified the sizes of the intracranial optic nerve and optic tract in neonates at term-equivalent age. The postmenstrual age at MRI independently positively correlated with the sizes. (orig.)

  13. Developing an ultrasound correlation velocimetry system

    Science.gov (United States)

    Surup, Gerrit; White, Christopher; UNH Team

    2011-11-01

    The process of building an ultrasound correlation velocimetry (UCV) system by integrating a commercial medical ultrasound with a PC running commercial PIV software is described and preliminary validation measurements in pipe flow using UCV and optical particle image velocimetry (PIV) are reported. In principles of operation, UCV is similar to the technique of PIV, differing only in the image acquisition process. The benefits of UCV are that it does not require optical access to the flow field and can be used for measuring flows of opaque fluids. While the limitations of UVC are the inherently low frame rates (limited by the imaging capabilities of the commercial ultrasound system) and low spatial resolution, which limits the range of velocities and transient flow behavior that can be measured. The support of the NSF (CBET0846359, grant monitor Horst Henning Winter) is gratefully acknowledged.

  14. Intelligent Optical Systems Using Adaptive Optics

    Science.gov (United States)

    Clark, Natalie

    2012-01-01

    Until recently, the phrase adaptive optics generally conjured images of large deformable mirrors being integrated into telescopes to compensate for atmospheric turbulence. However, the development of smaller, cheaper devices has sparked interest for other aerospace and commercial applications. Variable focal length lenses, liquid crystal spatial light modulators, tunable filters, phase compensators, polarization compensation, and deformable mirrors are becoming increasingly useful for other imaging applications including guidance navigation and control (GNC), coronagraphs, foveated imaging, situational awareness, autonomous rendezvous and docking, non-mechanical zoom, phase diversity, and enhanced multi-spectral imaging. The active components presented here allow flexibility in the optical design, increasing performance. In addition, the intelligent optical systems presented offer advantages in size and weight and radiation tolerance.

  15. Electron correlation in molecules

    CERN Document Server

    Wilson, S

    2007-01-01

    Electron correlation effects are of vital significance to the calculation of potential energy curves and surfaces, the study of molecular excitation processes, and in the theory of electron-molecule scattering. This text describes methods for addressing one of theoretical chemistry's central problems, the study of electron correlation effects in molecules.Although the energy associated with electron correlation is a small fraction of the total energy of an atom or molecule, it is of the same order of magnitude as most energies of chemical interest. If the solution of quantum mechanical equatio

  16. Spectral analysis by correlation

    International Nuclear Information System (INIS)

    Fauque, J.M.; Berthier, D.; Max, J.; Bonnet, G.

    1969-01-01

    The spectral density of a signal, which represents its power distribution along the frequency axis, is a function which is of great importance, finding many uses in all fields concerned with the processing of the signal (process identification, vibrational analysis, etc...). Amongst all the possible methods for calculating this function, the correlation method (correlation function calculation + Fourier transformation) is the most promising, mainly because of its simplicity and of the results it yields. The study carried out here will lead to the construction of an apparatus which, coupled with a correlator, will constitute a set of equipment for spectral analysis in real time covering the frequency range 0 to 5 MHz. (author) [fr

  17. Entropic Nonsignaling Correlations

    Science.gov (United States)

    Chaves, Rafael; Budroni, Costantino

    2016-06-01

    We introduce the concept of entropic nonsignaling correlations, i.e., entropies arising from probabilistic theories that are compatible with the fact that we cannot transmit information instantaneously. We characterize and show the relevance of these entropic correlations in a variety of different scenarios, ranging from typical Bell experiments to more refined descriptions such as bilocality and information causality. In particular, we apply the framework to derive the first entropic inequality testing genuine tripartite nonlocality in quantum systems of arbitrary dimension and also prove the first known monogamy relation for entropic Bell inequalities. Further, within the context of complex Bell networks, we show that entropic nonlocal correlations can be activated.

  18. Optical computing and neural networks; Proceedings of the Meeting, National Chiao Tung Univ., Hsinchu, Taiwan, Dec. 16, 17, 1992

    Science.gov (United States)

    Hsu, Ken-Yuh (Editor); Liu, Hua-Kuang (Editor)

    1992-01-01

    The present conference discusses optical neural networks, photorefractive nonlinear optics, optical pattern recognition, digital and analog processors, and holography and its applications. Attention is given to bifurcating optical information processing, neural structures in digital halftoning, an exemplar-based optical neural net classifier for color pattern recognition, volume storage in photorefractive disks, and microlaser-based compact optical neuroprocessors. Also treated are the optical implementation of a feature-enhanced optical interpattern-associative neural network model and its optical implementation, an optical pattern binary dual-rail logic gate module, a theoretical analysis for holographic associative memories, joint transform correlators, image addition and subtraction via the Talbot effect, and optical wavelet-matched filters. (No individual items are abstracted in this volume)

  19. Study of the Radial Peripapillary Capillary Network in Congenital Optic Disc Anomalies With Optical Coherence Tomography Angiography.

    Science.gov (United States)

    Cennamo, Gilda; Rossi, Claudia; Ruggiero, Pasquale; de Crecchio, Giuseppe; Cennamo, Giovanni

    2017-04-01

    To evaluate the radial peripapillary capillary network with optical coherence tomography angiography (angio-OCT) in morning glory syndrome (MGS), optic disc colobomas, and optic disc pits, and to explore possible correlations between the neural vascular structure and the pathogenesis of congenital optic disc anomalies. Prospective observational comparative case series. Fifteen eyes of 15 patients with congenital optic disc anomalies were enrolled in this study. All patients underwent angio-OCT. The scans were centered on optic discs. The mean age at presentation was 33 years (range: 19-50 years). Congenital optic disc anomalies were identified in all 15 eyes. Three eyes had the characteristic funduscopic signs of MGS, and angio-OCT scans of the peripapillary retina revealed a dense microvascular network. Optic disc colobomas were found in 5 eyes, and the characteristic funduscopic signs of optic pits were found in 7 eyes. Angio-OCT showed the absence of a radial peripapillary microvascular network in these 12 eyes. The finding that angio-OCT scans confirmed the presence of a peripapillary microvascular network only in MGS cases supports the hypothesis that a primary neuroectodermal abnormality and a secondary mesenchymal abnormality leads to MGS. Angio-OCT is a safe, rapid imaging technique that could shed light on the pathogenesis of rare diseases of the optic disc. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Tripartite correlations over two octaves from cascaded harmonic generation

    Science.gov (United States)

    Olsen, M. K.

    2018-03-01

    We analyse the output quantum tripartite correlations from an intracavity nonlinear optical system which uses cascaded nonlinearities to produce both second and fourth harmonic outputs from an input field at the fundamental frequency. Using fully quantum equations of motion, we investigate two parameter regimes and show that the system produces tripartite inseparability, entanglement and EPR steering, with the detection of these depending on the correlations being considered.