WorldWideScience

Sample records for lensed quasar images

  1. Gravitational lensing of quasars

    CERN Document Server

    Eigenbrod, Alexander

    2013-01-01

    The universe, in all its richness, diversity and complexity, is populated by a myriad of intriguing celestial objects. Among the most exotic of them are gravitationally lensed quasars. A quasar is an extremely bright nucleus of a galaxy, and when such an object is gravitationally lensed, multiple images of the quasar are produced – this phenomenon of cosmic mirage can provide invaluable insights on burning questions, such as the nature of dark matter and dark energy. After presenting the basics of modern cosmology, the book describes active galactic nuclei, the theory of gravitational lensing, and presents a particular numerical technique to improve the resolution of astronomical data. The book then enters the heart of the subject with the description of important applications of gravitational lensing of quasars, such as the measurement of the famous Hubble constant, the determination of the dark matter distribution in galaxies, and the observation of the mysterious inner parts of quasars with much higher r...

  2. A gravitationally lensed quasar with quadruple images separated by 14.62 arcseconds.

    Science.gov (United States)

    Inada, Naohisa; Oguri, Masamune; Pindor, Bartosz; Hennawi, Joseph F; Chiu, Kuenley; Zheng, Wei; Ichikawa, Shin-Ichi; Gregg, Michael D; Becker, Robert H; Suto, Yasushi; Strauss, Michael A; Turner, Edwin L; Keeton, Charles R; Annis, James; Castander, Francisco J; Eisenstein, Daniel J; Frieman, Joshua A; Fukugita, Masataka; Gunn, James E; Johnston, David E; Kent, Stephen M; Nichol, Robert C; Richards, Gordon T; Rix, Hans-Walter; Sheldon, Erin Scott; Bahcall, Neta A; Brinkmann, J; Ivezić, Zeljko; Lamb, Don Q; McKay, Timothy A; Schneider, Donald P; York, Donald G

    2003-12-18

    Gravitational lensing is a powerful tool for the study of the distribution of dark matter in the Universe. The cold-dark-matter model of the formation of large-scale structures (that is, clusters of galaxies and even larger assemblies) predicts the existence of quasars gravitationally lensed by concentrations of dark matter so massive that the quasar images would be split by over 7 arcsec. Numerous searches for large-separation lensed quasars have, however, been unsuccessful. All of the roughly 70 lensed quasars known, including the first lensed quasar discovered, have smaller separations that can be explained in terms of galaxy-scale concentrations of baryonic matter. Although gravitationally lensed galaxies with large separations are known, quasars are more useful cosmological probes because of the simplicity of the resulting lens systems. Here we report the discovery of a lensed quasar, SDSS J1004 + 4112, which has a maximum separation between the components of 14.62 arcsec. Such a large separation means that the lensing object must be dominated by dark matter. Our results are fully consistent with theoretical expectations based on the cold-dark-matter model.

  3. Gravitationally Lensed Quasars in Gaia: II. Discovery of 24 Lensed Quasars

    Science.gov (United States)

    Lemon, Cameron A.; Auger, Matthew W.; McMahon, Richard G.; Ostrovski, Fernanda

    2018-04-01

    We report the discovery, spectroscopic confirmation and preliminary characterisation of 24 gravitationally lensed quasars identified using Gaia observations. Candidates were selected in the Pan-STARRS footprint with quasar-like WISE colours or as photometric quasars from SDSS, requiring either multiple detections in Gaia or a single Gaia detection near a morphological galaxy. The Pan-STARRS grizY images were modelled for the most promising candidates and 60 candidate systems were followed up with the William Herschel Telescope. 13 of the lenses were discovered as Gaia multiples and 10 as single Gaia detections near galaxies. We also discover 1 lens identified through a quasar emission line in an SDSS galaxy spectrum. The lenses have median image separation 2.13″ and the source redshifts range from 1.06 to 3.36. 4 systems are quadruply-imaged and 20 are doubly-imaged. Deep CFHT data reveal an Einstein ring in one double system. We also report 12 quasar pairs, 10 of which have components at the same redshift and require further follow-up to rule out the lensing hypothesis. We compare the properties of these lenses and other known lenses recovered by our search method to a complete sample of simulated lenses to show the lenses we are missing are mainly those with small separations and higher source redshifts. The initial Gaia data release only catalogues all images of ˜ 30% of known bright lensed quasars, however the improved completeness of Gaia data release 2 will help find all bright lensed quasars on the sky.

  4. SDSS J2222+2745: A GRAVITATIONALLY LENSED SEXTUPLE QUASAR WITH A MAXIMUM IMAGE SEPARATION OF 15.''1 DISCOVERED IN THE SLOAN GIANT ARCS SURVEY

    International Nuclear Information System (INIS)

    Dahle, H.; Groeneboom, N.; Gladders, M. D.; Abramson, L. E.; Sharon, K.; Bayliss, M. B.; Wuyts, E.; Koester, B. P.; Brinckmann, T. E.; Kristensen, M. T.; Lindholmer, M. O.; Nielsen, A.; Krogager, J.-K.; Fynbo, J. P. U.

    2013-01-01

    We report the discovery of a unique gravitational lens system, SDSS J2222+2745, producing five spectroscopically confirmed images of a z s = 2.82 quasar lensed by a foreground galaxy cluster at z l = 0.49. We also present photometric and spectroscopic evidence for a sixth lensed image of the same quasar. The maximum separation between the quasar images is 15.''1. Both the large image separations and the high image multiplicity are in themselves rare among known lensed quasars, and observing the combination of these two factors is an exceptionally unlikely occurrence in present data sets. This is only the third known case of a quasar lensed by a cluster, and the only one with six images. The lens system was discovered in the course of the Sloan Giant Arcs Survey, in which we identify candidate lenses in the Sloan Digital Sky Survey and target these for follow-up and verification with the 2.56 m Nordic Optical Telescope. Multi-band photometry obtained over multiple epochs from 2011 September to 2012 September reveals significant variability at the ∼10%-30% level in some of the quasar images, indicating that measurements of the relative time delay between quasar images will be feasible. In this lens system, we also identify a bright (g = 21.5) giant arc corresponding to a strongly lensed background galaxy at z s = 2.30. We fit parametric models of the lens system, constrained by the redshift and positions of the quasar images and the redshift and position of the giant arc. The predicted time delays between different pairs of quasar images range from ∼100 days to ∼6 yr

  5. The discovery of a five-image lensed quasar at z = 3.34 using PanSTARRS1 and Gaia

    Science.gov (United States)

    Ostrovski, Fernanda; Lemon, Cameron A.; Auger, Matthew W.; McMahon, Richard G.; Fassnacht, Christopher D.; Chen, Geoff C.-F.; Connolly, Andrew J.; Koposov, Sergey E.; Pons, Estelle; Reed, Sophie L.; Rusu, Cristian E.

    2018-01-01

    We report the discovery, spectroscopic confirmation and mass modelling of the gravitationally lensed quasar system PS J0630-1201. The lens was discovered by matching a photometric quasar catalogue compiled from Pan-STARRS1 and Wide-field Infrared Survey Explorer photometry to the Gaia data release 1 catalogue, exploiting the high spatial resolution of the latter (full width at half-maximum ∼0.1 arcsec) to identify the three brightest components of the lensed quasar system. Follow-up spectroscopic observations with the William Herschel Telescope confirm the multiple objects are quasars at redshift zq = 3.34. Further follow-up with Keck adaptive optics high-resolution imaging reveals that the system is composed of two lensing galaxies and the quasar is lensed into an ∼2.8 arcsec separation four-image cusp configuration with a fifth image clearly visible, and a 1.0 arcsec arc due to the lensed quasar host galaxy. The system is well modelled with two singular isothermal ellipsoids, reproducing the position of the fifth image. We discuss future prospects for measuring time delays between the images and constraining any offset between mass and light using the faintly detected Einstein arcs associated with the quasar host galaxy.

  6. Discovery of two gravitationally lensed quasars with image separations of 3 arcseconds from the Sloan Digital Sky Survey

    Energy Technology Data Exchange (ETDEWEB)

    Oguri, Masamune; Inada, Naohisa; Hennawi, Joseph F.; Richards, Gordon T.; Johnston, David E.; Frieman, Joshua A.; Pindor, Bartosz; Strauss, Michael A.; Brunner, Robert; Becker, Robert H.; Castander, Francisco J.; Gregg, Michael D.; Hall, Patrick B.; Rix, Hans-Walter; Schneider, Donald P.; Bahcall, Neta A.; Brinkmann, Jonathan; York, Donald G.

    2004-11-01

    We report the discovery of two doubly-imaged quasars, SDSS J100128.61+502756.9 and SDSS J120629.65+433217.6, at redshifts of 1.838 and 1.789 and with image separations of 2.86'' and 2.90'', respectively. The objects were selected as lens candidates from the Sloan Digital Sky Survey (SDSS). Based on the identical nature of the spectra of the two quasars in each pair and the identification of the lens galaxies, we conclude that the objects are gravitational lenses. The lenses are complicated; in both systems there are several galaxies in the fields very close to the quasars, in addition to the lens galaxies themselves. The lens modeling implies that these nearby galaxies contribute significantly to the lens potentials. On larger scales, we have detected an enhancement in the galaxy density near SDSS J100128.61+502756.9. The number of lenses with image separation of {approx} 3'' in the SDSS already exceeds the prediction of simple theoretical models based on the standard Lambda-dominated cosmology and observed velocity function of galaxies.

  7. Is 1146+111B, C a lensed quasar or a quasar pair

    International Nuclear Information System (INIS)

    Huchra, J.P.

    1986-01-01

    It has been speculated that the quasar pair 1146+B, C are two bright images of a single quasar produced by a gravitational lens. The author reports additional observations of these objects, made with an ultraviolet-sensitive spectrograph on the Multiple Mirror Telescope. The ultraviolet spectra of the two quasars are different. There are also different velocity shifts between the quasars as measured by the C III] and Mg II lines. Although it is impossible to rule out the lensing hypothesis, these observations increase the probability that these objects are just two quasars at nearly the same redshift. (author)

  8. Gravitationally lensed quasars in Gaia: I. Resolving small-separation lenses

    Science.gov (United States)

    Lemon, Cameron A.; Auger, Matthew W.; McMahon, Richard G.; Koposov, Sergey E.

    2017-12-01

    Gaia's exceptional resolution (FWHM ∼ 0.1 arcsec) allows identification and cataloguing of the multiple images of gravitationally lensed quasars. We investigate a sample of 49 known lensed quasars in the Sloan Digital Sky Survey (SDSS) footprint, with image separations less than 2 arcsec, and find that eight are detected with multiple components in the first Gaia data release. In the case of the 41 single Gaia detections, we generally are able to distinguish these lensed quasars from single quasars when comparing Gaia flux and position measurements to those of Pan-STARRS and SDSS. This is because the multiple images of these lensed quasars are typically blended in ground-based imaging and therefore the total flux and a flux-weighted centroid are measured, which can differ significantly from the fluxes and centroids of the individual components detected by Gaia. We compare the fluxes through an empirical fit of Pan-STARRS griz photometry to the wide optical Gaia bandpass values using a sample of isolated quasars. The positional offsets are calculated from a recalibrated astrometric SDSS catalogue. Applying flux and centroid difference criteria to spectroscopically confirmed quasars, we discover four new sub-arcsecond-separation lensed quasar candidates which have two distinct components of similar colour in archival Canada-France-Hawaii Telescope or Hyper Suprime Cam data. Our method based on single Gaia detections can be used to identify the ∼1400 lensed quasars with image separation above 0.5 arcsec, expected to have only one image bright enough to be detected by Gaia.

  9. Image D Of Huchra's Lensed Quasar: Waiting For The Other Shoe To Drop

    Science.gov (United States)

    Pooley, David

    2015-09-01

    In mid-2013, image D of Huchra's Lens began fading precipitously in the optical (as seen by OGLE). One expects corresponding brightness changes in X-rays, as the X-ray region is thought to be smaller, by a factor of 4, than the optical continuum region (Mosquera et al), but with the changes occurring more rapidly. At the start of the 2014 OGLE season (MJD 56826), image D was 0.7 mag fainter than in mid-2013. Our analysis of archival Chandra data shows that there was no X-ray drop on MJD 56815 compared to Chandra data from mid- to late-2013. This is somewhat surprising, and it would be even more surprising if image D were still as bright as on MJD 56815, given the continuing decline in the optical (during 2015, image D had fallen 2 mag below its mid-2013 level); this would (uncomfortably) imply that the X-rays and optical come from separate non-concentric regions. We request a 30 ks observation of 2237+0305 to determine whether image D has also fallen by a factor of 6 in X-rays.

  10. COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. XVI. Time delays for the quadruply imaged quasar DES J0408-5354 with high-cadence photometric monitoring

    Science.gov (United States)

    Courbin, F.; Bonvin, V.; Buckley-Geer, E.; Fassnacht, C. D.; Frieman, J.; Lin, H.; Marshall, P. J.; Suyu, S. H.; Treu, T.; Anguita, T.; Motta, V.; Meylan, G.; Paic, E.; Tewes, M.; Agnello, A.; Chao, D. C.-Y.; Chijani, M.; Gilman, D.; Rojas, K.; Williams, P.; Hempel, A.; Kim, S.; Lachaume, R.; Rabus, M.; Abbott, T. M. C.; Allam, S.; Annis, J.; Banerji, M.; Bechtol, K.; Benoit-Lévy, A.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; D'Andrea, C. B.; da Costa, L. N.; Davis, C.; DePoy, D. L.; Desai, S.; Flaugher, B.; Fosalba, P.; García-Bellido, J.; Gaztanaga, E.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; McMahon, R. G.; Menanteau, F.; Miquel, R.; Nord, B.; Plazas, A. A.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Tucker, D. L.; Walker, A. R.; Wester, W.

    2018-01-01

    We present time-delay measurements for the new quadruple imaged quasar DES J0408-5354, the first quadruple imaged quasar found in the Dark Energy Survey (DES). Our result is made possible by implementing a new observational strategy using almost daily observations with the MPIA 2.2 m telescope at La Silla observatory and deep exposures reaching a signal-to-noise ratio of about 1000 per quasar image. This data qualityallows us to catch small photometric variations (a few mmag rms) of the quasar, acting on temporal scales much shorter than microlensing, and hence making the time delay measurement very robust against microlensing. In only seven months we very accurately measured one of the time delays in DES J0408-5354: Δt(AB) = -112.1 ± 2.1 days (1.8%) using only the MPIA 2.2 m data. In combination with data taken with the 1.2 m Euler Swiss telescope, we also measured two delays involving the D component of the system Δt(AD) = -155.5 ± 12.8 days (8.2%) and Δt(BD) = -42.4 ± 17.6 days (41%), where all the error bars include systematics. Turning these time delays into cosmological constraints will require deep Hubble Space Telescope (HST) imaging or ground-based adaptive optics (AO), and information on the velocity field of the lensing galaxy. Lightcurves are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A71

  11. LENS MODEL AND TIME DELAY PREDICTIONS FOR THE SEXTUPLY LENSED QUASAR SDSS J2222+2745

    Energy Technology Data Exchange (ETDEWEB)

    Sharon, Keren; Johnson, Traci L.; Paterno-Mahler, Rachel [Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109 (United States); Bayliss, Matthew B. [Colby College, 5800 Mayflower Hill, Waterville, 04901, Maine (United States); Dahle, Håkon [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway); Florian, Michael K.; Gladders, Michael D. [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Rigby, Jane R. [Astrophysics Science Division, Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Whitaker, Katherine E. [Department of Astronomy, University of Massachusetts-Amherst, Amherst, MA 01003 (United States); Wuyts, Eva, E-mail: kerens@umich.edu [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstr. 1, D-85741 Garching (Germany)

    2017-01-20

    SDSS J2222+2745 is a galaxy cluster at z = 0.49, strongly lensing a quasar at z = 2.805 into six widely separated images. In recent Hubble Space Telescope imaging of the field, we identify additional multiply lensed galaxies and confirm the sixth quasar image that was identified by Dahle et al. We used the Gemini-North telescope to measure a spectroscopic redshift of z = 4.56 of one of the lensed galaxies. These data are used to refine the lens model of SDSS J2222+2745, compute the time delay and magnifications of the lensed quasar images, and reconstruct the source image of the quasar host and a lensed galaxy at z = 2.3. This galaxy also appears in absorption in our Gemini spectra of the lensed quasar, at a projected distance of 34 kpc. Our model is in agreement with the recent time delay measurements of Dahle et al., who found τ {sub AB} = 47.7 ± 6.0 days and τ {sub AC} = −722 ± 24 days. We use the observed time delays to further constrain the model, and find that the model-predicted time delays of the three faint images of the quasar are τ {sub AD} = 502 ± 68 days, τ {sub AE} = 611 ± 75 days, and τ {sub AF} = 415 ± 72 days. We have initiated a follow-up campaign to measure these time delays with Gemini North. Finally, we present initial results from an X-ray monitoring program with Swift , indicating the presence of hard X-ray emission from the lensed quasar, as well as extended X-ray emission from the cluster itself, which is consistent with the lensing mass measurement and the cluster velocity dispersion.

  12. SDSS J102111.02+491330.4: A Newly discovered gravitationally lensed quasar

    Energy Technology Data Exchange (ETDEWEB)

    Pindor, Bart; Eisenstein, Daniel J.; Gregg, Michael D.; Becker, Robert H.; Inada, Naohisa; Oguri, Masamune; Hall, Patrick B.; Johnston, David E.; Richards, Gordon T.; Schneider, Donald P.; Turner, Edwin L.; Brasi, Guido; Hinz, Philip M.; Kenworthy, Matthew A.; Miller, Doug; Barentine, J.C.; Brewington, Howard J.; Brinkmann, J.; Harvanek,; Kleinman, S.J.; Krzesinski, Jurek; /Toronto U., Astron. Dept. /Arizona U., Astron. Dept. - Steward Observ. /UC, Davis /LLNL, Livermore /Tokyo U., Inst. Astron. /Tokyo U.

    2005-09-01

    We report follow-up observations of two gravitational lens candidates identified in the Sloan Digital Sky Survey (SDSS) dataset. We have confirmed that SDSS J102111.02+491330.4 is a previously unknown gravitationally lensed quasar. This lens system exhibits two images of a z = 1.72 quasar, with an image separation of 1.14'' {+-} 0.04''. Optical and near-IR imaging of the system reveals the presence of the lensing galaxy between the two quasar images. Observations of SDSS J112012.12+671116.0 indicate that it is more likely a binary quasar than a gravitational lens. This system has two quasars at a redshift of z = 1.49, with an angular separation of 1.49'' {+-} 0.02''. However, the two quasars have markedly different SEDs and no lens galaxy is apparent in optical and near-IR images of this system. We also present a list of 31 SDSS lens candidates which follow-up observations have confirmed are not gravitational lenses.

  13. The Hubble Space Telescope Snapshot Survey. IV - A summary of the search for gravitationally lensed quasars

    Science.gov (United States)

    Maoz, D.; Bahcall, J. N.; Schneider, D. P.; Bahcall, N. A.; Djorgovski, S.; Doxsey, R.; Gould, A.; Kirhakos, S.; Meylan, G.; Yanny, B.

    1993-01-01

    We report the concluding results of the HST Snapshot Survey for gravitationally lensed quasars. New observations of 153 high-luminosity z above 1 quasars are presented, bringing to 498 the total number of quasars observed in the survey. The new observations do not reveal new candidates for gravitational lensing. We present tables summarizing all of the snapshot observations, with measured V-magnitudes, accurate to 0.1 mag, for each of the quasars successfully observed. The observed frequency of lensing of quasars into multiple images is 3-6 out of 502, depending on whether one counts candidates that are not yet securely confirmed and cases in which clusters play a role. This frequency is in the range predicted by calculations with a vanishing cosmological constant, assuming galaxies can be modeled by unevolving isothermal spheres dominated in their centers by dark matter. The observed frequency is an order of magnitude lower than expected in such models when the universe is strongly dominated by a cosmological constant. This conclusion is, however, sensitive to the model assumptions and to the precise number of actual lensed quasars.

  14. Mass Models and Environment of the New Quadruply Lensed Quasar SDSS J1330+1810

    Energy Technology Data Exchange (ETDEWEB)

    Oguri, Masamune; Inada, Naohisa; Blackburne, Jeffrey A.; Shin, Min-Su; Kayo, Issha; Strauss, Michael A.; Schneider, Donald P.; York, Donald G.

    2008-09-09

    We present the discovery of a new quadruply lensed quasar. The lens system, SDSS J1330+1810 at z{sub s} = 1.393, was identified as a lens candidate from the spectroscopic sample of the Sloan Digital Sky Survey. Optical and near-infrared images clearly show four quasar images with a maximum image separation of 1.76 inch, as well as a bright lensing galaxy. We measure a redshift of the lensing galaxy of z{sub 1} = 0.373 from absorption features in the spectrum. We find a foreground group of galaxies at z = 0.31 centred {approx} 120 inch southwest of the lens system. Simple mass models fit the data quite well, including the flux ratios between images, although the lens galaxy appears to be {approx} 1 mag brighter than expected by the Faber-Jackson relation. Our mass modeling suggests that shear from nearby structure is affecting the lens potential.

  15. Radio and Gamma-Ray Monitoring of Strongly Lensed Quasars and Blazars

    NARCIS (Netherlands)

    Rumbaugh, Nick; Fassnacht, Chris; McKean, John; Koopmans, Leon; Auger, Matthew; Suyu, Sherry; Marshall, Philip J.

    2015-01-01

    We observed six strongly lensed, radio-loud quasars (MG 0414+0534, CLASS B0712+472, JVAS B1030+074, CLASS B1127+385, CLASS B1152+199, and JVAS B1938+666) in order to identify systems suitable for measuring cosmological parameters using time delays between their multiple images. Two separate

  16. Discovery of three strongly lensed quasars in the Sloan Digital Sky Survey

    Science.gov (United States)

    Williams, P. R.; Agnello, A.; Treu, T.; Abramson, L. E.; Anguita, T.; Apostolovski, Y.; Chen, G. C.-F.; Fassnacht, C. D.; Hsueh, J.-W.; Lemaux, B. C.; Motta, V.; Oldham, L.; Rojas, K.; Rusu, C. E.; Shajib, A. J.; Wang, X.

    2018-03-01

    We present the discovery of 3 quasar lenses in the Sloan Digital Sky Survey, selected using two novel photometry-based selection techniques. The J0941+0518 system, with two point sources separated by 5.46″ on either side of a galaxy, has source and lens redshifts 1.54 and 0.343. Images of J2257+2349 show two point sources separated by 1.67″ on either side of an E/S0 galaxy. The extracted spectra show two images of the same quasar at zs = 2.10. SDSS J1640+1045 has two quasar spectra at zs = 1.70 and fits to the SDSS and Pan-STARRS images confirm the presence of a galaxy between the two point sources. We observed 56 photometrically selected lens candidates in this follow-up campaign, confirming 3 new lenses, re-discovering one known lens, and ruling out 36 candidates, with 16 still inconclusive. This initial campaign demonstrates the power of purely photometric selection techniques in finding lensed quasars.

  17. Discovery and first models of the quadruply lensed quasar SDSS J1433+6007

    Science.gov (United States)

    Agnello, Adriano; Grillo, Claudio; Jones, Tucker; Treu, Tommaso; Bonamigo, Mario; Suyu, Sherry H.

    2018-03-01

    We report the discovery of the quadruply lensed quasar SDSS J1433+6007 (RA = 14:33:22.8, Dec. = +60:07:13.44), mined in the SDSS DR12 photometric catalogues using a novel outlier-selection technique, without prior spectroscopic or ultraviolet excess information. Discovery data obtained at the Nordic Optical Telescope (La Palma) show nearly identical quasar spectra at zs = 2.737 ± 0.003 and four quasar images in a fold configuration, one of which sits on a blue arc, with maximum separation 3.6 arcsec. The deflector redshift is zl = 0.407 ± 0.002, from Keck-ESI spectra. We describe the selection procedure, discovery and follow-up, image positions and BVRi magnitudes, and first results and forecasts from lens model fit to the relative image positions.

  18. Accurate spectroscopic redshift of the multiply lensed quasar PSOJ0147 from the Pan-STARRS survey

    Science.gov (United States)

    Lee, C.-H.

    2017-09-01

    Context. The gravitational lensing time delay method provides a one-step determination of the Hubble constant (H0) with an uncertainty level on par with the cosmic distance ladder method. However, to further investigate the nature of the dark energy, a H0 estimate down to 1% level is greatly needed. This requires dozens of strongly lensed quasars that are yet to be delivered by ongoing and forthcoming all-sky surveys. Aims: In this work we aim to determine the spectroscopic redshift of PSOJ0147, the first strongly lensed quasar candidate found in the Pan-STARRS survey. The main goal of our work is to derive an accurate redshift estimate of the background quasar for cosmography. Methods: To obtain timely spectroscopically follow-up, we took advantage of the fast-track service programme that is carried out by the Nordic Optical Telescope. Using a grism covering 3200-9600 Å, we identified prominent emission line features, such as Lyα, N V, O I, C II, Si IV, C IV, and [C III] in the spectra of the background quasar of the PSOJ0147 lens system. This enables us to determine accurately the redshift of the background quasar. Results: The spectrum of the background quasar exhibits prominent absorption features bluewards of the strong emission lines, such as Lyα, N V, and C IV. These blue absorption lines indicate that the background source is a broad absorption line (BAL) quasar. Unfortunately, the BAL features hamper an accurate determination of redshift using the above-mentioned strong emission lines. Nevertheless, we are able to determine a redshift of 2.341 ± 0.001 from three of the four lensed quasar images with the clean forbidden line [C III]. In addition, we also derive a maximum outflow velocity of 9800 km s-1 with the broad absorption features bluewards of the C IV emission line. This value of maximum outflow velocity is in good agreement with other BAL quasars.

  19. Serendipitous discovery of quadruply imaged quasars: two diamonds

    Science.gov (United States)

    Lucey, John R.; Schechter, Paul L.; Smith, Russell J.; Anguita, T.

    2018-05-01

    Gravitationally lensed quasars are powerful and versatile astrophysical tools, but they are challengingly rare. In particular, only ˜25 well-characterized quadruple systems are known to date. To refine the target catalogue for the forthcoming Taipan Galaxy Survey, the images of a large number of sources are being visually inspected in order to identify objects that are confused by a foreground star or galaxies that have a distinct multicomponent structure. An unexpected by-product of this work has been the serendipitous discovery of about a dozen galaxies that appear to be lensing quasars, i.e. pairs or quartets of foreground stellar objects in close proximity to the target source. Here, we report two diamond-shaped systems. Follow-up spectroscopy with the IMACS instrument on the 6.5m Magellan Baade telescope confirms one of these as a z = 1.975 quasar quadruply lensed by a double galaxy at z = 0.293. Photometry from publicly available survey images supports the conclusion that the other system is a highly sheared quadruply imaged quasar. In starting with objects thought to be galaxies, our lens finding technique complements the conventional approach of first identifying sources with quasar-like colours and subsequently finding evidence of lensing.

  20. Quasar lenses and galactic streams: outlier selection and Gaia multiplet detection

    Science.gov (United States)

    Agnello, Adriano

    2017-10-01

    I describe two novel techniques originally devised to select strongly lensed quasar candidates in wide-field surveys. The first relies on outlier selection in optical and mid-infrared magnitude space; the second combines mid-infrared colour selection with Gaia spatial resolution, to identify multiplets of objects with quasar-like colours. Both methods have already been applied successfully to the Sloan Digital Sky Survey, ATLAS and Dark Energy Survey footprints: besides recovering known lenses from previous searches, they have led to new discoveries, including quadruply lensed quasars, which are rare within the rare-object class of quasar lenses. As a serendipitous by-product, at least four candidate Galactic streams in the South have been identified among foreground contaminants. There is considerable scope for tailoring the WISE-Gaia multiplet search to stellar-like objects, instead of quasar-like, and to automatically detect Galactic streams.

  1. Quasar lenses and pairs in the VST-ATLAS and Gaia

    Science.gov (United States)

    Agnello, A.; Schechter, P. L.; Morgan, N. D.; Treu, T.; Grillo, C.; Malesani, D.; Anguita, T.; Apostolovski, Y.; Rusu, C. E.; Motta, V.; Rojas, K.; Chehade, B.; Shanks, T.

    2018-04-01

    We report on discovery results from a quasar lens search in the ATLAS-DR3 public footprint. Spectroscopic follow-up campaigns, conducted at the 2.6 m Nordic Optical Telescope (La Palma) and 3.6 m New Technology Telescope (La Silla) in 2016, yielded seven pairs of quasars exhibiting the same lines at the same redshift and monotonic flux ratios with wavelength (hereafter NIQs, nearly identical quasar pairs). Magellan spectra of A0140-1152 (01h40m03{^s.}0-11d52m19{^s.}0, zs = 1.807) confirm it as a lens with deflector at zl = 0.277 and Einstein radius θE = (0.73 ± 0.02) arcsec. Follow-up imaging of the NIQ A2213-2652 (22h13m38{^s.}4-26d52m27{^s.}1) reveals the deflector galaxy and confirms it as a lens. We show the use of spatial resolution from the Gaia mission to select lenses and list additional systems from a WISE-Gaia-ATLAS search, yielding three additional lenses (02h35m27{^s.}4-24d33m13{^s.}2, 02h59m33s-23d38m01{^s.}8, 01h46m32{^s.}9-11d33m39{^s.}0). The overall sample consists of 11 lenses/NIQs, plus three lenses known before 2016, over the ATLAS-DR3 footprint (≈3500 deg2). Finally, we discuss future prospects for objective classification of pair/NIQ/contaminant spectra.

  2. Time Delay Measurements for the Cluster-lensed Sextuple Quasar SDSS J2222+2745

    Science.gov (United States)

    Dahle, H.; Gladders, M. D.; Sharon, K.; Bayliss, M. B.; Rigby, J. R.

    2015-11-01

    We report first results from an ongoing monitoring campaign to measure time delays between the six images of the quasar SDSS J2222+2745, gravitationally lensed by a galaxy cluster. The time delay between A and B, the two most highly magnified images, is measured to be {τ }{{AB}}=47.7+/- 6.0 days (95% confidence interval), consistent with previous model predictions for this lens system. The strong intrinsic variability of the quasar also allows us to derive a time delay value of {τ }{{CA}}=722+/- 24 days between image C and A, in spite of modest overlap between their light curves in the current data set. Image C, which is predicted to lead all the other lensed quasar images, has undergone a sharp, monotonic flux increase of 60%-75% during 2014. A corresponding brightening is firmly predicted to occur in images A and B during 2016. The amplitude of this rise indicates that time delays involving all six known images in this system, including those of the demagnified central images D-F, will be obtainable from further ground-based monitoring of this system during the next few years. Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, and including observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnologi´a e Innovación Productiva (Argentina).

  3. Spectroscopic Observations of the Outflowing Wind in the Lensed Quasar SDSS J1001+5027

    Science.gov (United States)

    Misawa, Toru; Inada, Naohisa; Oguri, Masamune; Charlton, Jane C.; Eracleous, Michael; Koyamada, Suzuka; Itoh, Daisuke

    2018-02-01

    We performed spectroscopic observations of the small-separation lensed quasar SDSS J1001+5027, whose images have an angular separation θ =2\\buildrel{\\prime\\prime}\\over{.} 86, and placed constraints on the physical properties of gas clouds in the vicinity of the quasar (i.e., in the outflowing wind launched from the accretion disk). The two cylinders of sight to the two lensed images go through the same region of the outflowing wind and they become fully separated with no overlap at a very large distance from the source (∼330 pc). We discovered a clear difference in the profile of the C IV broad absorption line (BAL) detected in the two lensed images in two observing epochs. Because the kinematic components in the BAL profile do not vary in concert, the observed variations cannot be reproduced by a simple change of ionization state. If the variability is due to gas motion around the background source (i.e., the continuum source), the corresponding rotational velocity is {v}rot} ≥ 18,000 km s‑1, and their distance from the source is r≤slant 0.06 pc assuming Keplerian motion. Among three Mg II and three C IV NAL systems that we detected in the spectra, only the Mg II system at {z}abs} = 0.8716 shows a hint of variability in its Mg I profile on a rest-frame timescale of {{Δ }}{t}rest} ≤slant 191 days and an obvious velocity shear between the sightlines whose physical separation is ∼7 kpc. We interpret this as the result of motion of a cosmologically intervening absorber, perhaps located in a foreground galaxy. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  4. DES meets Gaia: discovery of strongly lensed quasars from a multiplet search

    Energy Technology Data Exchange (ETDEWEB)

    Agnello, A.; et al.

    2017-11-10

    We report the discovery, spectroscopic confirmation and first lens models of the first two, strongly lensed quasars from a combined search in WISE and Gaia over the DES footprint. The four-image lensWGD2038-4008 (r.a.=20:38:02.65, dec.=-40:08:14.64) has source- and lens-redshifts $z_{s}=0.777 \\pm 0.001$ and $z_l = 0.230 \\pm 0.002$ respectively. Its deflector has effective radius $R_{\\rm eff} \\approx 3.4^{\\prime\\prime}$, stellar mass $\\log(M_{\\star}/M_{\\odot}) = 11.64^{+0.20}_{-0.43}$, and shows extended isophotal shape variation. Simple lens models yield Einstein radii $R_{\\rm E}=(1.30\\pm0.04)^{\\prime\\prime},$ axis ratio $q=0.75\\pm0.1$ (compatible with that of the starlight) and considerable shear-ellipticity degeneracies. The two-image lensWGD2021-4115 (r.a.=20:21:39.45, dec.=--41:15:57.11) has $z_{s}=1.390\\pm0.001$ and $z_l = 0.335 \\pm 0.002$, and Einstein radius $R_{\\rm E} = (1.1\\pm0.1)^{\\prime\\prime},$ but higher-resolution imaging is needed to accurately separate the deflector and faint quasar image. We also show high-rank candidate doubles selected this way, some of which have been independently identified with different techniques, and discuss a DES+WISE quasar multiplet selection.

  5. The Atacama Cosmology Telescope: Cross-Correlation of Cosmic Microwave Background Lensing and Quasars

    Science.gov (United States)

    Sherwin, Blake D; Das, Sudeep; Haijian, Amir; Addison, Graeme; Bond, Richard; Crichton, Devin; Devlin, Mark J.; Dunkley, Joanna; Gralla, Megan B.; Halpern, Mark; hide

    2012-01-01

    We measure the cross-correlation of Atacama cosmology telescope cosmic microwave background (CMB) lensing convergence maps with quasar maps made from the Sloan Digital Sky Survey DR8 SDSS-XDQSO photometric catalog. The CMB lensing quasar cross-power spectrum is detected for the first time at a significance of 3.8 sigma, which directly confirms that the quasar distribution traces the mass distribution at high redshifts z > 1. Our detection passes a number of null tests and systematic checks. Using this cross-power spectrum, we measure the amplitude of the linear quasar bias assuming a template for its redshift dependence, and find the amplitude to be consistent with an earlier measurement from clustering; at redshift z ap 1.4, the peak of the distribution of quasars in our maps, our measurement corresponds to a bias of b = 2.5 +/- 0.6. With the signal-to-noise ratio on CMB lensing measurements likely to improve by an order of magnitude over the next few years, our results demonstrate the potential of CMB lensing crosscorrelations to probe astrophysics at high redshifts.

  6. Models of the Strongly Lensed Quasar DES J0408-5354

    Energy Technology Data Exchange (ETDEWEB)

    Agnello, A.; et al.

    2017-02-01

    We present gravitational lens models of the multiply imaged quasar DES J0408-5354, recently discovered in the Dark Energy Survey (DES) footprint, with the aim of interpreting its remarkable quad-like configuration. We first model the DES single-epoch $grizY$ images as a superposition of a lens galaxy and four point-like objects, obtaining spectral energy distributions (SEDs) and relative positions for the objects. Three of the point sources (A,B,D) have SEDs compatible with the discovery quasar spectra, while the faintest point-like image (G2/C) shows significant reddening and a `grey' dimming of $\\approx0.8$mag. In order to understand the lens configuration, we fit different models to the relative positions of A,B,D. Models with just a single deflector predict a fourth image at the location of G2/C but considerably brighter and bluer. The addition of a small satellite galaxy ($R_{\\rm E}\\approx0.2$") in the lens plane near the position of G2/C suppresses the flux of the fourth image and can explain both the reddening and grey dimming. All models predict a main deflector with Einstein radius between $1.7"$ and $2.0",$ velocity dispersion $267-280$km/s and enclosed mass $\\approx 6\\times10^{11}M_{\\odot},$ even though higher resolution imaging data are needed to break residual degeneracies in model parameters. The longest time-delay (B-A) is estimated as $\\approx 85$ (resp. $\\approx125$) days by models with (resp. without) a perturber near G2/C. The configuration and predicted time-delays of J0408-5354 make it an excellent target for follow-up aimed at understanding the source quasar host galaxy and substructure in the lens, and measuring cosmological parameters. We also discuss some lessons learnt from J0408-5354 on lensed quasar finding strategies, due to its chromaticity and morphology.

  7. Constraining the neutrino emission of gravitationally lensed Flat-Spectrum Radio Quasars with ANTARES data

    OpenAIRE

    Adrian-Martinez, S.; Albert, A.; Andre, M.; Anton, G.; Ardid, M.; Aubert, J. J.; Baret, B.; Barrios-Marti, J.; Basa, S.; Bertin, V.; Biagii, S.; Bogazzi, C.; Bormuth, R.; Bou-Cabo, M.; Bouwhuis, M. C.

    2014-01-01

    This paper proposes to exploit gravitational lensing effects to improve the sensitivity of neutrino telescopes to the intrinsic neutrino emission of distant blazar populations. This strategy is illustrated with a search for cosmic neutrinos in the direction of four distant and gravitationally lensed Flat-Spectrum Radio Quasars. The magnification factor is estimated for each system assuming a singular isothermal profile for the lens. Based on data collected from 2007 to 2012 by the ANTARES neu...

  8. Spatially Resolved Patchy Ly α Emission within the Central Kiloparsec of a Strongly Lensed Quasar Host Galaxy at z = 2.8

    Energy Technology Data Exchange (ETDEWEB)

    Bayliss, Matthew B.; Bordoloi, Rongmon [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Sharon, Keren; Runnoe, Jessie; Johnson, Traci; Paterno-Mahler, Rachel [Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109 (United States); Acharyya, Ayan; Bian, Fuyan; Kewley, Lisa [RSAA, Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Gladders, Michael D. [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Rigby, Jane R. [Astrophysics Science Division, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Dahle, Hakon [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway); Florian, Michael, E-mail: mbayliss@mit.edu [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States)

    2017-08-20

    We report the detection of extended Ly α emission from the host galaxy of SDSS J2222+2745, a strongly lensed quasar at z = 2.8. Spectroscopic follow-up clearly reveals extended Ly α in emission between two images of the central active galactic nucleus (AGN). We reconstruct the lensed quasar host galaxy in the source plane by applying a strong lens model to HST imaging and resolve spatial scales as small as ∼200 pc. In the source plane, we recover the host galaxy morphology to within a few hundred parsecs of the central AGN and map the extended Ly α emission to its physical origin on one side of the host galaxy at radii ∼0.5–2 kpc from the central AGN. There are clear morphological differences between the Ly α and rest-frame ultraviolet stellar continuum emission from the quasar host galaxy. Furthermore, the relative velocity profiles of quasar Ly α , host galaxy Ly α , and metal lines in outflowing gas reveal differences in the absorbing material affecting the AGN and host galaxy. These data indicate the presence of patchy local intervening gas in front of the central quasar and its host galaxy. This interpretation is consistent with the central luminous quasar being obscured across a substantial fraction of its surrounding solid angle, resulting in strong anisotropy in the exposure of the host galaxy to ionizing radiation from the AGN. This work demonstrates the power of strong-lensing-assisted studies to probe spatial scales that are currently inaccessible by other means.

  9. Aspheric lenses for terahertz imaging.

    Science.gov (United States)

    Lo, Yat Hei; Leonhardt, Rainer

    2008-09-29

    We present novel designs for aspheric lenses used in terahertz (THz) imaging. As different surfaces result in different beam shaping properties and in different losses from reflection and absorption, the resultant imaging resolution (i.e. the focal spot size) depends critically on the design approach. We evaluate the different lens designs using Kirchhoff's scalar diffraction theory, and test the predictions experimentally. We also show that our lenses can achieve sub-wavelength resolution. While our lens designs are tested with THz radiation, the design considerations are applicable also to other regions of the electro-magnetic spectrum.

  10. The Cluster Lens SDSS 1004+4112: Constraining World Models With its Multiply-Imaged Quasar and Galaxies

    Science.gov (United States)

    Kochanek, C.

    2005-07-01

    We will use deep ACS imaging of the giant {15 arcsec} four-image z_s=1.734 lensed quasar SDSS 1004+4112, and its z_l=0.68 lensing galaxy cluster, to identify many additional multiply-imaged background galaxies. Combining the existing single orbit ACS I-band image with ground based data, we have definitely identified two multiply imaged galaxies with estimated redshifts of 2.6 and 4.3, about 15 probable images of background galaxies, and a point source in the core of the central cD galaxy, which is likely to be the faint, fifth image of the quasar. The new data will provide accurate photometric redshifts, confirm that the candidate fifth image has the same spectral energy distribution as the other quasar images, allow secure identification of additional multiply-lensed galaxies for improving the mass model, and permit identification of faint cluster members. Due to the high lens redshift and the broad redshift distribution of the lensed background sources, we should be able to use the source-redshift scaling of the Einstein radius that depends on {d_ls/d_os}, to derive a direct, geometric estimate of Omega_Lambda. The deeper images will also allow a weak lensing analysis to extend the mass distribution to larger radii. Unlike any other cluster lenses, the time delay between the lensed quasar images {already measured for the A-B images, and measurable for the others over the next few years}, breaks the so-called kappa-degeneracies that complicate weak-lensing analyses.

  11. Gravitational lensing reveals extreme dust-obscured star formation in quasar host galaxies

    Science.gov (United States)

    Stacey, H. R.; McKean, J. P.; Robertson, N. C.; Ivison, R. J.; Isaak, K. G.; Schleicher, D. R. G.; van der Werf, P. P.; Baan, W. A.; Alba, A. Berciano; Garrett, M. A.; Loenen, A. F.

    2018-02-01

    We have observed 104 gravitationally-lensed quasars at z ˜ 1-4 with Herschel/SPIRE, the largest such sample ever studied. By targeting gravitational lenses, we probe intrinsic far-infrared (FIR) luminosities and star formation rates (SFRs) more typical of the population than the extremely luminous sources that are otherwise accessible. We detect 72 objects with Herschel/SPIRE and find 66 percent (69 sources) of the sample have spectral energy distributions (SEDs) characteristic of dust emission. For 53 objects with sufficiently constrained SEDs, we find a median effective dust temperature of 38^{+12}_{-5} K. By applying the radio-infrared correlation, we find no evidence for an FIR excess which is consistent with star-formation-heated dust. We derive a median magnification-corrected FIR luminosity of 3.6^{+4.8}_{-2.4} × 10^{11} L_{⊙} and median SFR of 120^{+160}_{-80} M_{⊙} yr^{-1} for 94 quasars with redshifts. We find ˜10 percent of our sample have FIR properties similar to typical dusty star-forming galaxies at z ˜ 2-3 and a range of SFRs statistically-significant difference in the FIR luminosities of quasars in our sample with a radio excess relative to the radio-infrared correlation. Synchrotron emission is found to dominate at FIR wavelengths for <15 percent of those sources classified as powerful radio galaxies.

  12. Optical images of quasars and radio galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, J.B.; Johnson, I.; Pyke, R.

    1988-04-01

    Matched contour plots and gray-scale diagrams are presented for 54 radio quasars or radio galaxies of redshift 0.1-0.6, observed with the Canada-France-Hawaii Telescope. All except four were recorded on the RCA1 CCD chip; four were summed from several photographic exposures behind an image tube. All except nine of the objects form the principal data base used by Hutchings (1987). Detailed comments are given on all objects, and some further measures of the objects and their companions. 12 references.

  13. Optical images of quasars and radio galaxies

    International Nuclear Information System (INIS)

    Hutchings, J.B.; Johnson, I.; Pyke, R.

    1988-01-01

    Matched contour plots and gray-scale diagrams are presented for 54 radio quasars or radio galaxies of redshift 0.1-0.6, observed with the Canada-France-Hawaii Telescope. All except four were recorded on the RCA1 CCD chip; four were summed from several photographic exposures behind an image tube. All except nine of the objects form the principal data base used by Hutchings (1987). Detailed comments are given on all objects, and some further measures of the objects and their companions. 12 references

  14. Optical images of quasars and radio galaxies

    Science.gov (United States)

    Hutchings, J. B.; Johnson, I.; Pyke, R.

    1988-04-01

    Matched contour plots and gray-scale diagrams are presented for 54 radio quasars or radio galaxies of redshift 0.1-0.6, observed with the Canada-France-Hawaii Telescope. All except four were recorded on the RCA1 CCD chip; four were summed from several photographic exposures behind an image tube. All except nine of the objects form the principal data base used by Hutchings (1987). Detailed comments are given on all objects, and some further measures of the objects and their companions.

  15. Imaging the Lenses in the Quintuple Gravitational Lens PMN J0134-0931

    Science.gov (United States)

    Wiklind, Tommy

    2017-08-01

    The gravitational lens PMN J0134-0931 is one of only two known non-cluster lenses producing six images of the background source. In this case the source is a quasar located at z=2.2 and the lens plane at z=0.76. It is likely that a small compact group of galaxies are located in the lens plane. The lens modeling for these six-image systems has, however, proven to be extraordinarily complicated and no satisfactory lens model has been produced for this system.PMN J0194-0931 is also unique in the sense that it is one of only two cases where molecular absorption lines are seen against two or more background images, the other one being PKS1830-211. The absorption lines make it possible to probe the kinematics of the lensing galaxies on sub-kpc scales and to determine kinematically derived total masses. Comparing with the mass derived from lens models, it provides a test of the assumed dark matter halo profile. In order to use the absorption lines to constrain the rotation curve it is necessary to know where the sigh lines cross the galaxies, the galaxy center and their inclination.The goal with this proposal is to image the galaxies at z=0.76 that lens the background quasar PMN J0134-0931. At optical and near-infrared wavelengths the highly magnified background quasar dominates the light. Attempts to subtract the quasar light has not produced useable results. We propose to observe PMN J0134-0931 at a wavelength short of the redshifted Lyman limit of the background quasar. This ensures that the quasar is essentially turned off. This can be accomplished by using the WFC3/F275W filter. The lensing galaxies will be observed in restframe 1500A.

  16. Precision cosmology with time delay lenses: high resolution imaging requirements

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiao-Lei; Liao, Kai [Department of Astronomy, Beijing Normal University, 19 Xinjiekouwai Street, Beijing, 100875 (China); Treu, Tommaso; Agnello, Adriano [Department of Physics, University of California, Broida Hall, Santa Barbara, CA 93106 (United States); Auger, Matthew W. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Marshall, Philip J., E-mail: xlmeng919@gmail.com, E-mail: tt@astro.ucla.edu, E-mail: aagnello@physics.ucsb.edu, E-mail: mauger@ast.cam.ac.uk, E-mail: liaokai@mail.bnu.edu.cn, E-mail: dr.phil.marshall@gmail.com [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305 (United States)

    2015-09-01

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ''Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρ{sub tot}∝ r{sup −γ'} for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. However, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation

  17. Precision cosmology with time delay lenses: High resolution imaging requirements

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiao -Lei [Beijing Normal Univ., Beijing (China); Univ. of California, Santa Barbara, CA (United States); Treu, Tommaso [Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Agnello, Adriano [Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Auger, Matthew W. [Univ. of Cambridge, Cambridge (United Kingdom); Liao, Kai [Beijing Normal Univ., Beijing (China); Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Marshall, Philip J. [Stanford Univ., Stanford, CA (United States)

    2015-09-28

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ``Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρtot∝ r–γ' for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. Furthermore, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive

  18. THE SLOAN DIGITAL SKY SURVEY QUASAR LENS SEARCH. II. STATISTICAL LENS SAMPLE FROM THETHIRD DATA RELEASE

    Energy Technology Data Exchange (ETDEWEB)

    Inada, N; Oguri, M; Becker, R H; Shin, M; Richards, G T; Hennawi, J F; White, R L; Pindor, B; Strauss, M A; Kochanek, C S; Johnston, D E; Gregg, M D; Kayo, I; Eisenstein, D; Hall, P B; Castander, F J; Clocchiatti, A; Chiu, K; Kawano, Y; Scranton, R; Frieman, J; Keeton, C R; Morokuma, T; Rix, H; Turner, E L; Burless, S; Brunner, R J; Sheldon, E S; Bahcall, N A; Fukugita, M

    2007-09-13

    We report the first results of our systematic search for strongly lensed quasars using the spectroscopically confirmed quasars in the Sloan Digital Sky Survey (SDSS). Among 46,420 quasars from the SDSS Data Release 3 ({approx}4188 deg{sup 2}), we select a subsample of 22,683 quasars that are located at redshifts between 0.6 and 2.2 and are brighter than the Galactic extinction corrected i-band magnitude of 19.1. We identify 220 lens candidates from the quasar subsample, for which we conduct extensive and systematic follow-up observations in optical and near-infrared wavebands, in order to construct a complete lensed quasar sample at image separations between 1-inch and 20-inch and flux ratios of faint to bright lensed images larger than 10{sup -0.5}. We construct a statistical sample of 11 lensed quasars. Ten of these are galaxy-scale lenses with small image separations ({approx} 1-inch - 2-inch) and one is a large separation (15-inch) system which is produced by a massive cluster of galaxies, representing the first statistical sample of lensed quasars including both galaxy- and cluster-scale lenses. The Data Release 3 spectroscopic quasars contain an additional 11 lensed quasars outside the statistical sample.

  19. A search for changing look quasars in second epoch imaging

    Science.gov (United States)

    Findlay, Joseph; Myers, Adam; McGreer, Ian

    2018-01-01

    Over nearly two decades, the Sloan Digital Sky Survey has compiled a catalog of over half a million confirmed quasars. During that period approximately ten percent of these objects have been spectroscopically observed in two or more epochs over baselines of ten or more years. This led recently to the discovery of the largest change in luminosity ever before observed in a quasar. The dimming emission was a reflection of very significant changes in continuum and broad line properties, the source had effectively transitioned from a Type I quasar to a Type II AGN. Since then several more "changing look" quasars have been discovered in multi-epoch SDSS spectroscopy. Among them are objects with rising and falling luminosities, appearing and disappearing broad lines. The origin of this behavior is still very uncertain, currently favored is the scenario in which an accreting black hole is simply starved of fuel. Other plausible scenarios include flaring due to stellar tidal disruption close to the black hole or large changes in accretion flow, which can occur during transitions between radiatively efficient and inefficient accretion regimes. Monitoring of larger numbers of changing look quasars will help to elucidate these ideas.In this poster, we report on the progress of a pilot study in which we hope to learn how to select changing look quasars in multi-epoch imaging. This will allow us to take advantage of the entire SDSS quasar catalog rather than just the ten percent of objects with multi-epoch spectroscopy. Comparing archival SDSS and more recent Legacy Survey imaging over ten-year baselines we select objects whose photometry is consistent with the large changes in luminosity expected in changing look quasars. We aim to build up a catalog of both transitioned and transitioning objects for future monitoring.

  20. Radio imaging of core-dominated high redshift quasars

    DEFF Research Database (Denmark)

    Barthel, Peter D.; Vestergaard, Marianne; Lonsdale, Colin J.

    1999-01-01

    VLA imaging at kiloparsec-scale resolution of sixteen core-dominated radio-loud QSOs is presented. Many objects appear to display variable radio emission and their radio morphologies are significantly smaller than those of steep-spectrum quasars, consistent with these objects being observed...

  1. Radio imaging of core-dominated high redshift quasars

    NARCIS (Netherlands)

    Barthel, PD; Vestergaard, M; Lonsdale, CJ

    VLA imaging at kiloparsec-scale resolution of sixteen core-dominated radio-loud QSOs is presented. Many;objects appear to display variable radio emission and their radio morphologies are significantly smaller than those of steep-spectrum quasars, consistent with these objects being observed at sight

  2. Deep CFHT Y-band Imaging of VVDS-F22 Field. II. Quasar Selection and Quasar Luminosity Function

    Science.gov (United States)

    Yang, Jinyi; Wu, Xue-Bing; Liu, Dezi; Fan, Xiaohui; Yang, Qian; Wang, Feige; McGreer, Ian D.; Fan, Zuhui; Yuan, Shuo; Shan, Huanyuan

    2018-03-01

    We report the results of a faint quasar survey in a one-square-degree field. The aim is to test the Y-K/g-z and J-K/i-Y color selection criteria for quasars at faint magnitudes to obtain a complete sample of quasars based on deep optical and near-infrared color–color selection and to measure the faint end of the quasar luminosity function (QLF) over a wide redshift range. We carried out a quasar survey based on the Y-K/g-z and J-K/i-Y quasar selection criteria, using the deep Y-band data obtained from our CFHT/WIRCam Y-band images in a two-degree field within the F22 field of the VIMOS VLT deep survey, optical co-added data from Sloan Digital Sky Survey Stripe 82 and deep near-infrared data from the UKIDSS Deep Extragalactic Survey in the same field. We discovered 25 new quasars at 0.5color selections are highly complete in a wide redshift range (z 2.5.

  3. A DIRECT MEASUREMENT OF THE LINEAR BIAS OF MID-INFRARED-SELECTED QUASARS AT z ≈ 1 USING COSMIC MICROWAVE BACKGROUND LENSING

    Energy Technology Data Exchange (ETDEWEB)

    Geach, J. E. [Centre for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, Hatfield, AL10 9AB (United Kingdom); Hickox, R. C.; Hainline, K. N. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Bleem, L. E.; Benson, B. A.; Bhattacharya, S.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T. [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Brodwin, M. [Department of Physics and Astronomy, University of Missouri, Kansas City, MO 64110 (United States); Holder, G. P.; De Haan, T.; Dobbs, M. A.; Dudley, J. [Department of Physics, McGill University, Montreal, Quebec H3A 2T8 (Canada); Aird, K. A. [University of Chicago, Chicago, IL 60637 (United States); Cho, H.-M. [NIST Quantum Devices Group, Boulder, CO 80305 (United States); George, E. M.; Holzapfel, W. L. [Department of Physics, University of California, Berkeley, CA 94720 (United States); Halverson, N. W., E-mail: j.geach@herts.ac.uk [Department of Astrophysical and Planetary Sciences and Department of Physics, University of Colorado, Boulder, CO 80309 (United States); and others

    2013-10-20

    We measure the cross-power spectrum of the projected mass density as traced by the convergence of the cosmic microwave background lensing field from the South Pole Telescope (SPT) and a sample of Type 1 and 2 (unobscured and obscured) quasars at (z) ∼ 1 selected with the Wide-field Infrared Survey Explorer, over 2500 deg{sup 2}. The cross-power spectrum is detected at ≈7σ, and we measure a linear bias b = 1.61 ± 0.22, consistent with clustering analyses. Using an independent lensing map, derived from Planck observations, to measure the cross-spectrum, we find excellent agreement with the SPT analysis. The bias of the combined sample of Type 1 and 2 quasars determined in this work is similar to that previously determined for Type 1 quasars alone; we conclude that obscured and unobscured quasars trace the matter field in a similar way. This result has implications for our understanding of quasar unification and evolution schemes.

  4. MiNDSTEp differential photometry of the gravitationally lensed quasars WFI2033-4723 and HE0047-1756: Microlensing and a new time delay

    DEFF Research Database (Denmark)

    Giannini, E.; Schmidt, R. W.; Wambsganss, J.

    2017-01-01

    Aims. We present V and R photometry of the gravitationally lensed quasars WFI 2033-4723 and HE 0047-1756. The data were taken by the MiNDSTEp collaboration with the 1.54 m Danish telescope at the ESO La Silla observatory from 2008 to 2012.Methods. Differential photometry has been carried out usin......-duration microlensing event. Finally we find that both quasars WFI 2033-4723 and HE 0047-1756 become bluer when brighter, which is consistent with previous studies....

  5. THE SLOAN DIGITAL SKY SURVEY QUASAR LENS SEARCH. V. FINAL CATALOG FROM THE SEVENTH DATA RELEASE

    International Nuclear Information System (INIS)

    Inada, Naohisa; Oguri, Masamune; Kayo, Issha; Fukugita, Masataka; Shin, Min-Su; Strauss, Michael A.; Bahcall, Neta A.; Morokuma, Tomoki; Rusu, Cristian E.; Kochanek, Christopher S.; Richards, Gordon T.; Schneider, Donald P.; York, Donald G.; Frieman, Joshua A.; Hall, Patrick B.; White, Richard L.

    2012-01-01

    We present the final statistical sample of lensed quasars from the Sloan Digital Sky Survey (SDSS) Quasar Lens Search (SQLS). The well-defined statistical lens sample consists of 26 lensed quasars brighter than i = 19.1 and in the redshift range of 0.6 < z < 2.2 selected from 50,826 spectroscopically confirmed quasars in the SDSS Data Release 7 (DR7), where we restrict the image separation range to 1'' < θ < 20'' and the i-band magnitude differences in two images to be smaller than 1.25 mag. The SDSS DR7 quasar catalog also contains 36 additional lenses identified with various techniques. In addition to these lensed quasars, we have identified 81 pairs of quasars from follow-up spectroscopy, 26 of which are physically associated binary quasars. The statistical lens sample covers a wide range of image separations, redshifts, and magnitudes, and therefore is suitable for systematic studies of cosmological parameters and surveys of the structure and evolution of galaxies and quasars.

  6. Galaxy–Galaxy Weak-lensing Measurements from SDSS. I. Image Processing and Lensing Signals

    International Nuclear Information System (INIS)

    Luo, Wentao; Yang, Xiaohu; Zhang, Jun; Tweed, Dylan; Fu, Liping; Shu, Chenggang; Mo, H. J.; Bosch, Frank C. van den; Li, Ran; Li, Nan; Liu, Xiangkun; Pan, Chuzhong; Wang, Yiran; Radovich, Mario

    2017-01-01

    We present our image processing pipeline that corrects the systematics introduced by the point-spread function (PSF). Using this pipeline, we processed Sloan Digital Sky Survey (SDSS) DR7 imaging data in r band and generated a galaxy catalog containing the shape information. Based on our shape measurements of the galaxy images from SDSS DR7, we extract the galaxy–galaxy (GG) lensing signals around foreground spectroscopic galaxies binned in different luminosities and stellar masses. We estimated the systematics, e.g., selection bias, PSF reconstruction bias, PSF dilution bias, shear responsivity bias, and noise rectification bias, which in total is between −9.1% and 20.8% at 2 σ levels. The overall GG lensing signals we measured are in good agreement with Mandelbaum et al. The reduced χ 2 between the two measurements in different luminosity bins are from 0.43 to 0.83. Larger reduced χ 2 from 0.60 to 1.87 are seen for different stellar mass bins, which is mainly caused by the different stellar mass estimator. The results in this paper with higher signal-to-noise ratio are due to the larger survey area than SDSS DR4, confirming that more luminous/massive galaxies bear stronger GG lensing signals. We divide the foreground galaxies into red/blue and star-forming/quenched subsamples and measure their GG lensing signals. We find that, at a specific stellar mass/luminosity, the red/quenched galaxies have stronger GG lensing signals than their counterparts, especially at large radii. These GG lensing signals can be used to probe the galaxy–halo mass relations and their environmental dependences in the halo occupation or conditional luminosity function framework.

  7. Galaxy–Galaxy Weak-lensing Measurements from SDSS. I. Image Processing and Lensing Signals

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Wentao [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Nandan Road 80, Shanghai 200030 (China); Yang, Xiaohu; Zhang, Jun; Tweed, Dylan [Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Fu, Liping; Shu, Chenggang [Shanghai Key Lab for Astrophysics, Shanghai Normal University, 100 Guilin Road, 200234, Shanghai (China); Mo, H. J. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003-9305 (United States); Bosch, Frank C. van den [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Li, Ran [Key Laboratory for Computational Astrophysics, Partner Group of the Max Planck Institute for Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 (China); Li, Nan [Department of Astronomy and Astrophysics, The University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Liu, Xiangkun; Pan, Chuzhong [Department of Astronomy, Peking University, Beijing 100871 (China); Wang, Yiran [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801 (United States); Radovich, Mario, E-mail: walt@shao.ac.cn, E-mail: xyang@sjtu.edu.cn [INAF-Osservatorio Astronomico di Napoli, via Moiariello 16, I-80131 Napoli (Italy)

    2017-02-10

    We present our image processing pipeline that corrects the systematics introduced by the point-spread function (PSF). Using this pipeline, we processed Sloan Digital Sky Survey (SDSS) DR7 imaging data in r band and generated a galaxy catalog containing the shape information. Based on our shape measurements of the galaxy images from SDSS DR7, we extract the galaxy–galaxy (GG) lensing signals around foreground spectroscopic galaxies binned in different luminosities and stellar masses. We estimated the systematics, e.g., selection bias, PSF reconstruction bias, PSF dilution bias, shear responsivity bias, and noise rectification bias, which in total is between −9.1% and 20.8% at 2 σ levels. The overall GG lensing signals we measured are in good agreement with Mandelbaum et al. The reduced χ {sup 2} between the two measurements in different luminosity bins are from 0.43 to 0.83. Larger reduced χ {sup 2} from 0.60 to 1.87 are seen for different stellar mass bins, which is mainly caused by the different stellar mass estimator. The results in this paper with higher signal-to-noise ratio are due to the larger survey area than SDSS DR4, confirming that more luminous/massive galaxies bear stronger GG lensing signals. We divide the foreground galaxies into red/blue and star-forming/quenched subsamples and measure their GG lensing signals. We find that, at a specific stellar mass/luminosity, the red/quenched galaxies have stronger GG lensing signals than their counterparts, especially at large radii. These GG lensing signals can be used to probe the galaxy–halo mass relations and their environmental dependences in the halo occupation or conditional luminosity function framework.

  8. Weak lensing of the Lyman-alpha forest

    Science.gov (United States)

    Croft, Rupert A. C.; Romeo, Alessandro; Metcalf, R. Benton

    2018-03-01

    The angular positions of quasars are deflected by the gravitational lensing effect of foreground matter. The Lyα forest seen in the spectra of these quasars is therefore also lensed. We propose that the signature of weak gravitional lensing of the Lyα forest could be measured using similar techniques that have been applied to the lensed Cosmic Microwave Background, and which have also been proposed for application to spectral data from 21cm radio telescopes. As with 21cm data, the forest has the advantage of spectral information, potentially yielding many lensed "slices" at different redshifts. We perform an illustrative idealized test, generating a high resolution angular grid of quasars (of order arcminute separation), and lensing the Lyα forest spectra at redshifts z = 2 - 3 using a foreground density field. We find that standard quadratic estimators can be used to reconstruct images of the foreground mass distribution at z ˜ 1. There currently exists a wealth of Lyα forest data from quasar and galaxy spectral surveys, with smaller sightline separations expected in the future. Lyα forest lensing is sensitive to the foreground mass distribution at redshifts intermediate between CMB lensing and galaxy shear, and avoids the difficulties of shape measurement associated with the latter. With further refinement and application of mass reconstruction techniques, weak gravitational lensing of the high redshift Lyα forest may become a useful new cosmological probe.

  9. MISSING LENSED IMAGES AND THE GALAXY DISK MASS IN CXOCY J220132.8-320144

    International Nuclear Information System (INIS)

    Chen, Jacqueline; Lee, Samuel K.; Schechter, Paul L.; Castander, Francisco-Javier; Maza, José

    2013-01-01

    The CXOCY J220132.8-320144 system consists of an edge-on spiral galaxy lensing a background quasar into two bright images. Previous efforts to constrain the mass distribution in the galaxy have suggested that at least one additional image must be present. These extra images may be hidden behind the disk which features a prominent dust lane. We present and analyze Hubble Space Telescope observations of the system. We do not detect any extra images, but the observations further narrow the observable parameters of the lens system. We explore a range of models to describe the mass distribution in the system and find that a variety of acceptable model fits exist. All plausible models require 2 mag of dust extinction in order to obscure extra images from detection, and some models may require an offset between the center of the galaxy and the center of the dark matter halo of 1 kpc. Currently unobserved images will be detectable by future James Webb Space Telescope observations and will provide strict constraints on the fraction of mass in the disk.

  10. Selection and Discovery of Quasars at High Redshift Through Infrared and Optical Imaging

    Science.gov (United States)

    Bursick, Shelly; Kennefick, J.

    2007-05-01

    Presented here are the results designed to aid in the computing of the space density of quasars at 4.8 candidate list. The BTC40 survey is a multicolor survey for quasars at high redshift, which proved to be successful at finding quasars, but due to faintness of the candidates and the presence of contaminates, spectroscopy could not be completed for the entire survey. Here, J-band targeted imaging data was added in an attempt to refine the candidate list, for follow-up on an 8m class telescope. Complimenting the new data set is modeling of quasar spectra for various redshifts. This work was funded by an NSF ADVANCE Fellowship.

  11. Flux and color variations of the doubly imaged quasar UM673

    DEFF Research Database (Denmark)

    Ricci, D.; Elyiv, A.; Finet, F.

    2013-01-01

    Aims. With the aim of characterizing the flux and color variations of the multiple components of the gravitationally lensed quasar UM673 as a function of time, we have performed multiepoch and multiband photometric observations with the Danish telescope at the La Silla Observatory. Methods...... seasons (+ 0.09/+ 0.11/+ 0.05 mag) and a subsequent increase during the following ones (- 0.11/- 0.11/- 0.10 mag) in the V/R/i spectral bands, respectively. Comparing our results with previous studies, we find smaller color variations between these seasons as compared with previous ones. We also separate...

  12. Gravitational Lensing Signatures of Long Cosmic Strings

    CERN Document Server

    De Laix, A A; Vachaspati, T; Laix, Andrew A. de; Krauss, Lawrence M.; Vachaspati, Tanmay

    1997-01-01

    The gravitational lensing by long, wiggly cosmic strings is shown to produce a large number of lensed images of a background source. In addition to pairs of images on either side of the string, a number of small images outline the string due to small-scale structure on the string. This image pattern could provide a highly distinctive signature of cosmic strings. Since the optical depth for multiple imaging of distant quasar sources by long strings may be comparable to that by galaxies, these image patterns should be clearly observable in the next generation of redshift surveys such as the Sloan Digital Sky Survey.

  13. A Hubble Space Telescope imaging study of four FeLoBAL quasar host galaxies

    Science.gov (United States)

    Lawther, D.; Vestergaard, M.; Fan, X.

    2018-04-01

    We study the host galaxies of four Iron Low-Ionization Broad Absorption-line Quasars (FeLoBALs), using Hubble Space Telescope imaging data, investigating the possibility that they represent a transition between an obscured active galactic nucleus (AGN) and an ordinary optical quasar. In this scenario, the FeLoBALs represent the early stage of merger-triggered accretion, in which case their host galaxies are expected to show signs of an ongoing or recent merger. Using PSF subtraction techniques, we decompose the images into host galaxy and AGN components at rest-frame ultraviolet and optical wavelengths. The ultraviolet is sensitive to young stars, while the optical probes stellar mass. In the ultraviolet we image at the BAL absorption trough wavelengths so as to decrease the contrast between the quasar and host galaxy emission. We securely detect an extended source for two of the four FeLoBALs in the rest-frame optical; a third host galaxy is marginally detected. In the rest-frame UV we detect no host emission; this constrains the level of unobscured star formation. Thus, the host galaxies have observed properties that are consistent with those of non-BAL quasars with the same nuclear luminosity, i.e. quiescent or moderately star-forming elliptical galaxies. However, we cannot exclude starbursting hosts that have the stellar UV emission obscured by modest amounts of dust reddening. Thus, our findings also allow the merger-induced young quasar scenario. For three objects, we identify possible close companion galaxies that may be gravitationally interacting with the quasar hosts.

  14. The Sloan Digital Sky Survey Quasar Lens Search. IV. Statistical Lens Sample from the Fifth Data Release

    Energy Technology Data Exchange (ETDEWEB)

    Inada, Naohisa; /Wako, RIKEN /Tokyo U., ICEPP; Oguri, Masamune; /Natl. Astron. Observ. of Japan /Stanford U., Phys. Dept.; Shin, Min-Su; /Michigan U. /Princeton U. Observ.; Kayo, Issha; /Tokyo U., ICRR; Strauss, Michael A.; /Princeton U. Observ.; Hennawi, Joseph F.; /UC, Berkeley /Heidelberg, Max Planck Inst. Astron.; Morokuma, Tomoki; /Natl. Astron. Observ. of Japan; Becker, Robert H.; /LLNL, Livermore /UC, Davis; White, Richard L.; /Baltimore, Space Telescope Sci.; Kochanek, Christopher S.; /Ohio State U.; Gregg, Michael D.; /LLNL, Livermore /UC, Davis /Exeter U.

    2010-05-01

    We present the second report of our systematic search for strongly lensed quasars from the data of the Sloan Digital Sky Survey (SDSS). From extensive follow-up observations of 136 candidate objects, we find 36 lenses in the full sample of 77,429 spectroscopically confirmed quasars in the SDSS Data Release 5. We then define a complete sample of 19 lenses, including 11 from our previous search in the SDSS Data Release 3, from the sample of 36,287 quasars with i < 19.1 in the redshift range 0.6 < z < 2.2, where we require the lenses to have image separations of 1 < {theta} < 20 and i-band magnitude differences between the two images smaller than 1.25 mag. Among the 19 lensed quasars, 3 have quadruple-image configurations, while the remaining 16 show double images. This lens sample constrains the cosmological constant to be {Omega}{sub {Lambda}} = 0.84{sub -0.08}{sup +0.06}(stat.){sub -0.07}{sup + 0.09}(syst.) assuming a flat universe, which is in good agreement with other cosmological observations. We also report the discoveries of 7 binary quasars with separations ranging from 1.1 to 16.6, which are identified in the course of our lens survey. This study concludes the construction of our statistical lens sample in the full SDSS-I data set.

  15. Mutual coherent properties of the images of the quasar microlensed by star mass

    International Nuclear Information System (INIS)

    Verkhoglyadova, O.P.; Mandzhos, A.V.

    1988-01-01

    The paper investigates the problem of mutual coherence of the radiation from two quasar images formed by a single point-mass gravitational lens with the mass of the order of solar mass. The expression for coherence degree is derived by asymptotic expansion in frequency. The coherence degree magnitude attains, in some cases, the values of 0.01-0.02 in the radio-frequency range. 9 refs.; 2 figs.; 2 tabs

  16. MAD ADAPTIVE OPTICS IMAGING OF HIGH-LUMINOSITY QUASARS: A PILOT PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Liuzzo, E. [Osservatorio di Radioastronomia, INAF, via Gobetti 101, I-40129 Bologna (Italy); Falomo, R.; Paiano, S.; Baruffolo, A.; Farinato, J.; Moretti, A.; Ragazzoni, R. [Osservatorio Astronomico di Padova, INAF, vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Treves, A. [Università dell’Insubria (Como) (Italy); Uslenghi, M. [INAF-IASF, via E. Bassini 15, I-20133 Milano (Italy); Arcidiacono, C.; Diolaiti, E.; Lombini, M. [Osservatorio Astronomico di Bologna, INAF, Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Brast, R. [Dipartimento di Fisica e Astronomia, Università di Bologna, Via Irnerio, 46, I-40126, Bologna (Italy); Donaldson, R.; Kolb, J.; Marchetti, E.; Tordo, S., E-mail: liuzzo@ira.inaf.it [European Southern Observatory, Karl-Schwarschild-Strasse 2, D-85748 Garching bei München (Germany)

    2016-08-01

    We present near-IR images of five luminous quasars at z ∼ 2 and one at z ∼ 4 obtained with an experimental adaptive optics (AO) instrument at the European Southern Observatory Very Large Telescope. The observations are part of a program aimed at demonstrating the capabilities of multi-conjugated adaptive optics imaging combined with the use of natural guide stars for high spatial resolution studies on large telescopes. The observations were mostly obtained under poor seeing conditions but in two cases. In spite of these nonoptimal conditions, the resulting images of point sources have cores of FWHM ∼ 0.2 arcsec. We are able to characterize the host galaxy properties for two sources and set stringent upper limits to the galaxy luminosity for the others. We also report on the expected capabilities for investigating the host galaxies of distant quasars with AO systems coupled with future Extremely Large Telescopes. Detailed simulations show that it will be possible to characterize compact (2–3 kpc) quasar host galaxies for quasi-stellar objects at z = 2 with nucleus K -magnitude spanning from 15 to 20 (corresponding to absolute magnitude −31 to −26) and host galaxies that are 4 mag fainter than their nuclei.

  17. A survey of z > 5.7 quasars in the sloan digital sky survey. 4. discovery of seven additional quasars

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Xiao-Hui; Strauss, Michael A.; Richards, Gordon T.; Hennawi, Joseph F.; Becker, Robert H.; White, Richard L.; Diamond-Stanic, Aleksandar M.; onley, Jennifer L.D; Jiang, Lin-Hua; Kim, J.Serena; Vestergaard, Marianne; Young, Jason E.; Gunn, James E.; Lupton, Robert H.; Knapp, Gillian R.; Schneider, Donald P.; Brandt, W.N.; Bahcall, Neta A.; Barentine, J.C.; Brinkmann, J.; Brewington, Howard J.; /Arizona U., Astron. Dept. - Steward Observ. /Princeton U. Observ. /Johns Hopkins U. /UC, Berkeley, Astron. Dept. /UC, Davis

    2005-12-01

    We present the discovery of seven quasars at z > 5.7, selected from {approx}2000 deg{sup 2} of multicolor imaging data of the Sloan Digital Sky Survey (SDSS). The new quasars have redshifts z from 5.79 to 6.13. Five are selected as part of a complete flux-limited sample in the SDSS Northern Galactic Cap; two have larger photometric errors and are not part of the complete sample. One of the new quasars, SDSS J1335+3533 (z = 5.93), exhibits no emission lines; the 3-{sigma} limit on the rest-frame equivalent width of Ly{alpha} + NV line is 5 {angstrom}. It is the highest redshift lineless quasar known, and could be a gravitational lensed galaxy, a BL Lac object or a new type of quasar. Two new z > 6 quasars, SDSS 1250+3130 (z = 6.13) and SDSS J1137+3549 (z = 6.01), show deep Gunn-Peterson absorption gaps in Ly{alpha}. These gaps are narrower the complete Gunn-Peterson absorption troughs observed among quasars at z > 6.2 and do not have complete Ly{beta} absorption.

  18. Cosmological applications of strong gravitational lensing

    DEFF Research Database (Denmark)

    Paraficz, Danuta

    value of the energy density of the two above components, together with measuring the Hubble constant that determines the age of the Universe, is a major goal of modern astrophysics. An interesting method for estimating these parameters is strong gravitational lensing of quasars (QSOs). As shown...... by Refsdal (1964), H0, !m and !! can be measured based on the time delay ("t) between multiply lensed images of QSOs, because "t depends on H0 and on the distances to lens and source, hence!m and !!. Determination of cosmological parameters using gravitational lensing suffers from some degeneracies......, but it is based on well understood physics and unlike distance ladder methods there are no calibration issues. Moreover, it has an advantage over some of the leading methods (such as Type Ia SNe) in that it is a purely cosmological approach. In this thesis, the property of strong gravitational lensing - time...

  19. iPTF16geu: A multiply imaged, gravitationally lensed type Ia supernova.

    Science.gov (United States)

    Goobar, A; Amanullah, R; Kulkarni, S R; Nugent, P E; Johansson, J; Steidel, C; Law, D; Mörtsell, E; Quimby, R; Blagorodnova, N; Brandeker, A; Cao, Y; Cooray, A; Ferretti, R; Fremling, C; Hangard, L; Kasliwal, M; Kupfer, T; Lunnan, R; Masci, F; Miller, A A; Nayyeri, H; Neill, J D; Ofek, E O; Papadogiannakis, S; Petrushevska, T; Ravi, V; Sollerman, J; Sullivan, M; Taddia, F; Walters, R; Wilson, D; Yan, L; Yaron, O

    2017-04-21

    We report the discovery of a multiply imaged, gravitationally lensed type Ia supernova, iPTF16geu (SN 2016geu), at redshift z = 0.409. This phenomenon was identified because the light from the stellar explosion was magnified more than 50 times by the curvature of space around matter in an intervening galaxy. We used high-spatial-resolution observations to resolve four images of the lensed supernova, approximately 0.3 arc seconds from the center of the foreground galaxy. The observations probe a physical scale of ~1 kiloparsec, smaller than is typical in other studies of extragalactic gravitational lensing. The large magnification and symmetric image configuration imply close alignment between the lines of sight to the supernova and to the lens. The relative magnifications of the four images provide evidence for substructures in the lensing galaxy. Copyright © 2017, American Association for the Advancement of Science.

  20. Microlensing of quasar ultraviolet iron emission

    International Nuclear Information System (INIS)

    Guerras, E.; Mediavilla, E.; Jimenez-Vicente, J.; Kochanek, C. S.; Muñoz, J. A.; Falco, E.; Motta, V.; Rojas, K.

    2013-01-01

    We measure the differential microlensing of the UV Fe II and Fe III emission line blends between 14 quasar image pairs in 13 gravitational lenses. We find that the UV iron emission is strongly microlensed in four cases with amplitudes comparable to that of the continuum. Statistically modeling the magnifications, we infer a typical size of r s ∼4√(M/M ⊙ ) light-days for the Fe line-emitting regions, which is comparable to the size of the region generating the UV continuum (∼3-7 light-days). This may indicate that a significant part of the UV Fe II and Fe III emission originates in the quasar accretion disk.

  1. Chitah: Strong-gravitational-lens hunter in imaging surveys

    Energy Technology Data Exchange (ETDEWEB)

    Chan, James H. H.; Suyu, Sherry H.; Chiueh, Tzihong; More, Anupreeta; Marshall, Philip J.; Coupon, Jean; Oguri, Masamune; Price, Paul

    2015-07-07

    Strong gravitationally lensed quasars provide powerful means to study galaxy evolution and cosmology. Current and upcoming imaging surveys will contain thousands of new lensed quasars, augmenting the existing sample by at least two orders of magnitude. To find such lens systems, we built a robot, Chitah, that hunts for lensed quasars by modeling the configuration of the multiple quasar images. Specifically, given an image of an object that might be a lensed quasar, Chitah first disentangles the light from the supposed lens galaxy and the light from the multiple quasar images based on color information. A simple rule is designed to categorize the given object as a potential four-image (quad) or two-image (double) lensed quasar system. The configuration of the identified quasar images is subsequently modeled to classify whether the object is a lensed quasar system. We test the performance of Chitah using simulated lens systems based on the Canada–France–Hawaii Telescope Legacy Survey. For bright quads with large image separations (with Einstein radius ${r}_{\\mathrm{ein}}\\gt 1\\buildrel{\\prime\\prime}\\over{.} 1$) simulated using Gaussian point-spread functions, a high true-positive rate (TPR) of $\\sim 90\\%$ and a low false-positive rate of $\\sim 3\\%$ show that this is a promising approach to search for new lens systems. We obtain high TPR for lens systems with ${r}_{\\mathrm{ein}}\\gtrsim 0\\buildrel{\\prime\\prime}\\over{.} 5$, so the performance of Chitah is set by the seeing. We further feed a known gravitational lens system, COSMOS 5921+0638, to Chitah, and demonstrate that Chitah is able to classify this real gravitational lens system successfully. Our newly built Chitah is omnivorous and can hunt in any ground-based imaging surveys.

  2. Image formation in weak gravitational lensing by tidal charged black holes

    International Nuclear Information System (INIS)

    Horvath, Zsolt; Gergely, Laszlo Arpad; Hobill, David

    2010-01-01

    We derive a generic weak lensing equation and apply it for the study of images produced by tidal charged brane black holes. We discuss the similarities and point out the differences with respect to the Schwarzschild black hole weak lensing, to both first- and second-order accuracy, when either the mass or the tidal charge dominates. In the case of mass-dominated weak lensing, we analyze the position of the images, the magnification factors and the flux ratio, as compared to the Schwarzschild lensing. The most striking modification appears in the flux ratio. When the tidal charge represents the dominating lensing effect, the number and orientation of the images with respect to the optical axis resembles the lensing properties of a Schwarzschild geometry, where the sign associated with the mass is opposite to that for the tidal charge. Finally it is found that the ratio of the brightness of the images as a function of image separation in the case of tidal charged black holes obeys a power-law relation significantly different from that of Schwarzschild black holes. This might provide a means for determining the underlying spacetime structure.

  3. Microlensing as a Possible Probe of Event-Horizon Structure in Quasars

    Energy Technology Data Exchange (ETDEWEB)

    Tomozeiu, Mihai [Zurich U.; Mohammed, Irshad [Fermilab; Rabold, Manuel [Zurich U.; Saha, Prasenjit [Zurich U.; Wambsganss, Joachim [Heidelberg U.

    2016-04-06

    In quasars which are lensed by galaxies, the point-like images sometimes show sharp and uncorrelated brightness variations (microlensing). These brightness changes are associated with the innermost region of the quasar passing through a complicated pattern of caustics produced by the stars in the lensing galaxy. In this paper, we study whether the universal properties of optical caustics could enable extraction of shape information about the central engine of quasars. We present a toy model with a crescent-shaped source crossing a fold caustic. The silhouette of a black hole over an accretion disk tends to produce roughly crescent sources. When a crescent-shaped source crosses a fold caustic, the resulting light curve is noticeably different from the case of a circular luminosity profile or Gaussian source. With good enough monitoring data, the crescent parameters, apart from one degeneracy, can be recovered.

  4. The Sloan Digital Sky Survey Quasar Lens Search. III Constraints on Dark Energy From The Third Data Release Quasar Lens Catalog

    Energy Technology Data Exchange (ETDEWEB)

    Oguri, M; Inada, N; Strauss, M A; Kochanek, C S; Richards, G T; Schneider, D P; Becker, R H; Fukugita, M; Gregg, M D; Hall, P B; Hennawi, J F; Johnston, D E; Kayo, I; Keeton, C R; Pindor, B; Shin, M; Turner, E; White, R L; York, D G; Anderson, S F; Bahcall, N A; Brunner, R J; Burles, S; Castander, F J; Chiu, K; Clocchiatti, A; Einsenstein, D; Frieman, J; Kawano, Y; Lupton, R; Morokuma, T; Rix, H; Scranton, R; Sheldon, E S

    2007-09-12

    We present cosmological results from the statistics of lensed quasars in the Sloan Digital Sky Survey (SDSS) Quasar Lens Search. By taking proper account of the selection function, we compute the expected number of quasars lensed by early-type galaxies and their image separation distribution assuming a flat universe, which is then compared with 7 lenses found in the SDSS Data Release 3 to derive constraints on dark energy under strictly controlled criteria. For a cosmological constant model (w = -1) we obtain {Omega}{sub {Lambda}} = 0.74{sub -0.15}{sup +0.11}(stat.){sub -0.06}{sup +0.13}(syst.). Allowing w to be a free parameter we find {Omega}{sub M} = 0.26{sub -0.06}{sup +0.07}(stat.){sub -0.05}{sup +0.03}(syst.) and w = -1.1 {+-} 0.6(stat.){sub -0.5}{sup +0.3}(syst.) when combined with the constraint from the measurement of baryon acoustic oscillations in the SDSS luminous red galaxy sample. Our results are in good agreement with earlier lensing constraints obtained using radio lenses, and provide additional confirmation of the presence of dark energy consistent with a cosmological constant, derived independently of type Ia supernovae.

  5. Cosmological applications of strong gravitational lensing

    DEFF Research Database (Denmark)

    Paraficz, Danuta

    value of the energy density of the two above components, together with measuring the Hubble constant that determines the age of the Universe, is a major goal of modern astrophysics. An interesting method for estimating these parameters is strong gravitational lensing of quasars (QSOs). As shown......One of the most intriguing recent results in physics is the growing evidence that an unknown energy field and an unknown kind of matter are the major components of the Universe (70% and 30%, respectively; see e.g. Riess et al. 1998, Spergel et al. 2007). Understanding and estimating the precise...... by Refsdal (1964), H0, !m and !! can be measured based on the time delay ("t) between multiply lensed images of QSOs, because "t depends on H0 and on the distances to lens and source, hence!m and !!. Determination of cosmological parameters using gravitational lensing suffers from some degeneracies...

  6. The JVAS/CLASS search for 6-arcsec to 15-arcsec image separation lensing

    NARCIS (Netherlands)

    Phillips, PM; Browne, IWA; Jackson, NJ; Wilkinson, PN; Mao, S; Rusin, D; Marlow, DR; Snellen, [No Value; Neeser, M

    2001-01-01

    The Jodrell Bank-VLA Astrometric Survey (JVAS) and the Cosmic Lens All Sky Survey (CLASS) have been systematically searched for multiple gravitational imaging of sources with image separations between 6 arcsec and 15 arcsec, associated with galaxy group and cluster lensing masses. The radio and

  7. GRAVITATIONAL IMAGING BY ELLIPTIC GALAXIES - THE EFFECTS OF DARK HALOS

    NARCIS (Netherlands)

    BREIMER, TG; SANDERS, RH

    It has been claimed that some gravitational lenses in which a background quasar is multiply-imaged by a single foreground galaxy support the existence of dark massive halos in elliptical galaxies. We reexamine this claim by considering the lensing effects of spherical galaxies with and without a

  8. Image acceleration in parallel magnetic resonance imaging by means of metamaterial magnetoinductive lenses

    Directory of Open Access Journals (Sweden)

    Manuel J. Freire

    2012-06-01

    Full Text Available Parallel Magnetic Resonance imaging (pMRI is an image acceleration technique which takes advantage of localized sensitivities of multiple receivers. In this letter, we show that metamaterial lenses based on capacitively-loaded rings can provide higher localization of coil sensitivities compared to conventional loop designs. Several lens designs are systematically analyzed in order to find the structure providing higher signal-to-noise-ratio. The magnetoinductive (MI lens has been found to be the optimum structure and an experiment is developed to show it. The ability of the MI lens for pMRI is investigated by means of the parameter known in the MRI community as g-Factor.

  9. DUSTY QUASARS AT HIGH REDSHIFTS

    Energy Technology Data Exchange (ETDEWEB)

    Weedman, Daniel; Sargsyan, Lusine, E-mail: dweedman@astro.cornell.edu [Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY 14853 (United States)

    2016-09-01

    A population of quasars at z ∼ 2 is determined based on dust luminosities νL {sub ν} (7.8 μ m) that includes unobscured, partially obscured, and obscured quasars. Quasars are classified by the ratio νL {sub ν} (0.25 μ m)/ νL {sub ν} (7.8 μ m) = UV/IR, assumed to measure obscuration of UV luminosity by the dust that produces IR luminosity. Quasar counts at rest-frame 7.8 μ m are determined for quasars in the Boötes field of the NOAO Deep Wide Field Survey using 24 μ m sources with optical redshifts from the AGN and Galaxy Evolution Survey (AGES) or infrared redshifts from the Spitzer Infrared Spectrograph. Spectral energy distributions are extended to far-infrared wavelengths using observations from the Herschel Space Observatory Spectral and Photometric Imaging Receiver (SPIRE), and new SPIRE photometry is presented for 77 high-redshift quasars from the Sloan Digital Sky Survey. It is found that unobscured and obscured quasars have similar space densities at rest-frame 7.8 μ m, but the ratio L {sub ν} (100 μ m)/ L {sub ν} (7.8 μ m) is about three times higher for obscured quasars than for unobscured, so that far-infrared or submillimeter quasar detections are dominated by obscured quasars. We find that only ∼5% of high-redshift submillimeter sources are quasars and that existing 850 μ m surveys or 2 mm surveys should already have detected sources at z ∼ 10 if quasar and starburst luminosity functions remain the same from z = 2 until z = 10.

  10. Gaia Space Mission and Quasars

    Energy Technology Data Exchange (ETDEWEB)

    Zwitter, Tomaž, E-mail: tomaz.zwitter@fmf.uni-lj.si [Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana (Slovenia)

    2017-11-15

    Quasars are often considered to be point-like objects. This is largely true and allows for an excellent alignment of the optical positional reference frame of the ongoing ESA mission Gaia with the International Celestial Reference Frame. But presence of optical jets in quasars can cause shifts of the optical photo-centers at levels detectable by Gaia. Similarly, motion of emitting blobs in the jet can be detected as proper motion shifts. Gaia's measurements of spectral energy distribution for around a million distant quasars is useful to determine their redshifts and to assess their variability on timescales from hours to years. Spatial resolution of Gaia allows to build a complete magnitude limited sample of strongly lensed quasars. The mission had its first public data release in September 2016 and is scheduled to have the next and much more comprehensive one in April 2018. Here we briefly review the capabilities and current results of the mission. Gaia's unique contributions to the studies of quasars are already being published, a highlight being a discovery of a number of quasars with optical jets.

  11. AUTOMATED DETECTION OF GALAXY-SCALE GRAVITATIONAL LENSES IN HIGH-RESOLUTION IMAGING DATA

    International Nuclear Information System (INIS)

    Marshall, Philip J.; Bradac, Marusa; Hogg, David W.; Moustakas, Leonidas A.; Fassnacht, Christopher D.; Schrabback, Tim; Blandford, Roger D.

    2009-01-01

    We expect direct lens modeling to be the key to successful and meaningful automated strong galaxy-scale gravitational lens detection. We have implemented a lens-modeling 'robot' that treats every bright red galaxy (BRG) in a large imaging survey as a potential gravitational lens system. Having optimized a simple model for 'typical' galaxy-scale gravitational lenses, we generate four assessments of model quality that are then used in an automated classification. The robot infers from these four data the lens classification parameter H that a human would have assigned; the inference is performed using a probability distribution generated from a human-classified training set of candidates, including realistic simulated lenses and known false positives drawn from the Hubble Space Telescope (HST) Extended Groth Strip (EGS) survey. We compute the expected purity, completeness, and rejection rate, and find that these statistics can be optimized for a particular application by changing the prior probability distribution for H; this is equivalent to defining the robot's 'character'. Adopting a realistic prior based on expectations for the abundance of lenses, we find that a lens sample may be generated that is ∼100% pure, but only ∼20% complete. This shortfall is due primarily to the oversimplicity of the model of both the lens light and mass. With a more optimistic robot, ∼90% completeness can be achieved while rejecting ∼90% of the candidate objects. The remaining candidates must be classified by human inspectors. Displaying the images used and produced by the robot on a custom 'one-click' web interface, we are able to inspect and classify lens candidates at a rate of a few seconds per system, suggesting that a future 1000 deg. 2 imaging survey containing 10 7 BRGs, and some 10 4 lenses, could be successfully, and reproducibly, searched in a modest amount of time. We have verified our projected survey statistics, albeit at low significance, using the HST EGS data

  12. Asymptotic solutions for the case of SIE lens models and application to the quadruply imaged quasar Q2237+0305

    Science.gov (United States)

    Wertz, O.; Surdej, J.

    2014-07-01

    Considering a small misalignment between a point-like source, a singular isothermal ellipsoid deflector and an observer, we derive to first order simple relations between the model parameters and the lensed image positions, and an expression for the time delay between pairs of opposed images which is analogue to the one previously derived for the case of ɛ - γ models. Combined with the first-order astrometric relations, we retrieve a simple expression for the time delays, in agreement with Witt, Mao & Keeton, which solely depends on the lensed image positions. The real advantage of using the first-order equations when dealing with symmetric gravitational lens systems is to directly test the validity of the adopted lens model without having to perform any accurate numerical fit. In this paper, we present in detail the calculations which lead to those relations between the singular isothermal ellipsoid lens model parameters and the lensed image positions. In addition, we model the well-known Einstein cross Q2237+0305 with three families of models: ɛ - γ, singular isothermal ellipsoid and non-singular isothermal ellipsoid plus shear, using a genetic algorithm from the Qubist Optimization Toolbox. We conclude that although the non-singular isothermal ellipsoid plus shear model shows the best agreement between the calculated and the observed image positions ( = 0.0026 arcsec), the more simple singular isothermal ellipsoid also leads to quite satisfactory and acceptable results ( = 0.0059 arcsec).

  13. Strong-lensing analysis of A2744 with MUSE and Hubble Frontier Fields images

    Science.gov (United States)

    Mahler, G.; Richard, J.; Clément, B.; Lagattuta, D.; Schmidt, K.; Patrício, V.; Soucail, G.; Bacon, R.; Pello, R.; Bouwens, R.; Maseda, M.; Martinez, J.; Carollo, M.; Inami, H.; Leclercq, F.; Wisotzki, L.

    2018-01-01

    We present an analysis of Multi Unit Spectroscopic Explorer (MUSE) observations obtained on the massive Frontier Fields (FFs) cluster A2744. This new data set covers the entire multiply imaged region around the cluster core. The combined catalogue consists of 514 spectroscopic redshifts (with 414 new identifications). We use this redshift information to perform a strong-lensing analysis revising multiple images previously found in the deep FF images, and add three new MUSE-detected multiply imaged systems with no obvious Hubble Space Telescope counterpart. The combined strong-lensing constraints include a total of 60 systems producing 188 images altogether, out of which 29 systems and 83 images are spectroscopically confirmed, making A2744 one of the most well-constrained clusters to date. Thanks to the large amount of spectroscopic redshifts, we model the influence of substructures at larger radii, using a parametrization including two cluster-scale components in the cluster core and several group scale in the outskirts. The resulting model accurately reproduces all the spectroscopic multiple systems, reaching an rms of 0.67 arcsec in the image plane. The large number of MUSE spectroscopic redshifts gives us a robust model, which we estimate reduces the systematic uncertainty on the 2D mass distribution by up to ∼2.5 times the statistical uncertainty in the cluster core. In addition, from a combination of the parametrization and the set of constraints, we estimate the relative systematic uncertainty to be up to 9 per cent at 200 kpc.

  14. Gravitational lensing in a cold dark matter universe

    Science.gov (United States)

    Narayan, Ramesh; White, Simon D. M.

    1988-01-01

    Gravitational lensing due to mass condensations in a biased cold dark matter (CDM) universe is investigated using the Press-Schechter (1974) theory with density fluctuation amplitudes taken from previous N-body work. Under the critical assumption that CDM haloes have small core radii, a distribution of image angular separations for high-z lensed quasars with a peak at about 1 arcsec and a half-width of a factor of about 10. Allowing for selection effects at small angular separations, this is in good agreement with the observed separations. The estimated frequency of lensing is somewhat lower than that observed, but the discrepancy can be removed by invoking amplification bias and by making a small upward adjustment to the density fluctuation amplitudes assumed in the CDM model.

  15. Milliarcsecond Imaging of the Radio Emission from the Quasar with the Most Massive Black Hole at Reionization

    Science.gov (United States)

    Wang, Ran; Momjian, Emmanuel; Carilli, Chris L.; Wu, Xue-Bing; Fan, Xiaohui; Walter, Fabian; Strauss, Michael A.; Wang, Feige; Jiang, Linhua

    2017-02-01

    We report Very Long Baseline Array (VLBA) observations of the 1.5 GHz radio continuum emission of the z = 6.326 quasar SDSS J010013.02+280225.8 (hereafter J0100+2802). J0100+2802 is by far the most optically luminous and is a radio-quiet quasar with the most massive black hole known at z > 6. The VLBA observations have a synthesized beam size of 12.10 mas ×5.36 mas (FWHM), and detected the radio continuum emission from this object with a peak surface brightness of 64.6 ± 9.0 μJy beam-1 and a total flux density of 88 ± 19 μJy. The position of the radio peak is consistent with that from SDSS in the optical and Chandra in the X-ray. The radio source is marginally resolved by the VLBA observations. A 2D Gaussian fit to the image constrains the source size to (7.1 ± 3.5) mas × (3.1 ± 1.7) mas. This corresponds to a physical scale of (40 ± 20) pc × (18 ± 10) pc. We estimate the intrinsic brightness temperature of the VLBA source to be TB = (1.6 ± 1.2) × 107 K. This is significantly higher than the maximum value in normal star-forming galaxies, indicating an active galactic nucleus (AGN) origin for the radio continuum emission. However, it is also significantly lower than the brightness temperatures found in highest-redshift radio-loud quasars. J0100+2802 provides a unique example for studying the radio activity in optically luminous and radio-quiet AGNs in the early universe. Further observations at multiple radio frequencies will accurately measure the spectral index and address the dominant radiation mechanism of the radio emission.

  16. Milliarcsecond Imaging of the Radio Emission from the Quasar with the Most Massive Black Hole at Reionization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ran; Wu, Xue-Bing; Jiang, Linhua [Kavli Institute of Astronomy and Astrophysics at Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871 (China); Momjian, Emmanuel; Carilli, Chris L. [National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM 87801 (United States); Fan, Xiaohui [Steward Observatory, University of Arizona, 933 N Cherry Avenue, Tucson, AZ 85721 (United States); Walter, Fabian [Max-Planck-Institute for Astronomy, Königsstuhl 17, D-69117 Heidelberg (Germany); Strauss, Michael A. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Wang, Feige [Department of Astronomy, School of Physics, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871 (China)

    2017-02-01

    We report Very Long Baseline Array (VLBA) observations of the 1.5 GHz radio continuum emission of the z = 6.326 quasar SDSS J010013.02+280225.8 (hereafter J0100+2802). J0100+2802 is by far the most optically luminous and is a radio-quiet quasar with the most massive black hole known at z > 6. The VLBA observations have a synthesized beam size of 12.10 mas ×5.36 mas (FWHM), and detected the radio continuum emission from this object with a peak surface brightness of 64.6 ± 9.0 μ Jy beam{sup −1} and a total flux density of 88 ± 19 μ Jy. The position of the radio peak is consistent with that from SDSS in the optical and Chandra in the X-ray. The radio source is marginally resolved by the VLBA observations. A 2D Gaussian fit to the image constrains the source size to (7.1 ± 3.5) mas × (3.1 ± 1.7) mas. This corresponds to a physical scale of (40 ± 20) pc × (18 ± 10) pc. We estimate the intrinsic brightness temperature of the VLBA source to be T {sub B} = (1.6 ± 1.2) × 10{sup 7} K. This is significantly higher than the maximum value in normal star-forming galaxies, indicating an active galactic nucleus (AGN) origin for the radio continuum emission. However, it is also significantly lower than the brightness temperatures found in highest-redshift radio-loud quasars. J0100+2802 provides a unique example for studying the radio activity in optically luminous and radio-quiet AGNs in the early universe. Further observations at multiple radio frequencies will accurately measure the spectral index and address the dominant radiation mechanism of the radio emission.

  17. EDITORIAL: Focus on Gravitational Lensing

    Science.gov (United States)

    Jain, Bhuvnesh

    2007-11-01

    Gravitational lensing emerged as an observational field following the 1979 discovery of a doubly imaged quasar lensed by a foreground galaxy. In the 1980s and '90s dozens of other multiply imaged systems were observed, as well as time delay measurements, weak and strong lensing by galaxies and galaxy clusters, and the discovery of microlensing in our galaxy. The rapid pace of advances has continued into the new century. Lensing is currently one of best techniques for finding and mapping dark matter over a wide range of scales, and also addresses broader cosmological questions such as understanding the nature of dark energy. This focus issue of New Journal of Physics presents a snapshot of current research in some of the exciting areas of lensing. It provides an occasion to look back at the advances of the last decade and ahead to the potential of the coming years. Just about a decade ago, microlensing was discovered through the magnification of stars in our galaxy by invisible objects with masses between that of Jupiter and a tenth the mass of the Sun. Thus a new component of the mass of our galaxy, dubbed MACHOs, was established (though a diffuse, cold dark matter-like component is still needed to make up most of the galaxy mass). More recently, microlensing led to another exciting discovery—of extra-solar planets with masses ranging from about five times that of Earth to that of Neptune. We can expect many more planets to be discovered through ongoing surveys. Microlensing is the best technique for finding Earth mass planets, though it is not as productive overall as other methods and does not allow for follow up observations. Beyond planet hunting, microlensing has enabled us to observe previously inaccessible systems, ranging from the surfaces of other stars to the accretion disks around the black holes powering distant quasars. Galaxies and galaxy clusters at cosmological distances can produce dramatic lensing effects: multiple images of background galaxies

  18. Long working distance objective lenses for single atom trapping and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pritchard, J. D., E-mail: jonathan.pritchard@strath.ac.uk [Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706 (United States); Department of Physics, University of Strathclyde, 107 Rottenrow East, Glasgow G4 0NG (United Kingdom); Isaacs, J. A.; Saffman, M. [Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706 (United States)

    2016-07-15

    We present a pair of optimized objective lenses with long working distances of 117 mm and 65 mm, respectively, that offer diffraction limited performance for both Cs and Rb wavelengths when imaging through standard vacuum windows. The designs utilise standard catalog lens elements to provide a simple and cost-effective solution. Objective 1 provides NA = 0.175 offering 3 μm resolution whilst objective 2 is optimized for high collection efficiency with NA = 0.29 and 1.8 μm resolution. This flexible design can be further extended for use at shorter wavelengths by simply re-optimising the lens separations.

  19. Gravitational lensing

    CERN Document Server

    Dodelson, Scott

    2017-01-01

    Gravitational lensing is a consequence of general relativity, where the gravitational force due to a massive object bends the paths of light originating from distant objects lying behind it. Using very little general relativity and no higher level mathematics, this text presents the basics of gravitational lensing, focusing on the equations needed to understand the phenomena. It then applies them to a diverse set of topics, including multiply imaged objects, time delays, extrasolar planets, microlensing, cluster masses, galaxy shape measurements, cosmic shear, and lensing of the cosmic microwave background. This approach allows undergraduate students and others to get quickly up to speed on the basics and the important issues. The text will be especially relevant as large surveys such as LSST and Euclid begin to dominate the astronomical landscape. Designed for a one semester course, it is accessible to anyone with two years of undergraduate physics background.

  20. Gravitational lenses and cosmological evolution

    International Nuclear Information System (INIS)

    Peacock, J.A.

    1982-01-01

    The effect of gravitational lensing on the apparent cosmological evolution of extragalactic radio sources is investigated. Models for a lens population consisting of galaxies and clusters of galaxies are constructed and used to calculate the distribution of amplification factors caused by lensing. Although many objects at high redshifts are predicted to have flux densities altered by 10 to 20 per cent relative to a homogeneous universe, flux conservation implies that de-amplification is as common as amplification. The effects on cosmological evolution as inferred from source counts and redshift data are thus relatively small; the slope of the counts is not large enough for intrinsically rare lensing events of high amplitude to corrupt observed samples. Lensing effects may be of greater importance for optically selected quasars, where lenses of mass as low as approximately 10 -4 solar mass can cause large amplifications. (author)

  1. Gravitational lenses and. cosmological evolution

    Science.gov (United States)

    Peacock, J. A.

    1982-06-01

    The effect of gravitational lensing on the apparent evolution of extragalactic radio sources is investigated. Models for a lens population consisting of galaxies and clusters of galaxies are constructed used to calculate the distribution of amplification factors caused by lensing ,. Although many objects at high redshifts are predicted to have flux densities altered by 10-20 per cent relative to a homogeneous universe, flux conservation implies that de-amplification is as common as amplification. The effect on cosmological evolution as inferred from source counts and redshift data are thus relatively small; the slope of the counts is not large enough for intrinsically rare lensing events of high amplitude to corrupt observed sample Lensing effects may be of greater importance for optically selected quasar where lenses of mass as low as ˜10-4 Msun can cause large amplifications.

  2. A Stereovision Matching Strategy for Images Captured with Fish-Eye Lenses in Forest Environments

    Directory of Open Access Journals (Sweden)

    Jesús M. Cruz

    2011-01-01

    Full Text Available We present a novel strategy for computing disparity maps from hemispherical stereo images obtained with fish-eye lenses in forest environments. At a first segmentation stage, the method identifies textures of interest to be either matched or discarded. This is achieved by applying a pattern recognition strategy based on the combination of two classifiers: Fuzzy Clustering and Bayesian. At a second stage, a stereovision matching process is performed based on the application of four stereovision matching constraints: epipolar, similarity, uniqueness and smoothness. The epipolar constraint guides the process. The similarity and uniqueness are mapped through a decision making strategy based on a weighted fuzzy similarity approach, obtaining a disparity map. This map is later filtered through the Hopfield Neural Network framework by considering the smoothness constraint. The combination of the segmentation and stereovision matching approaches makes the main contribution. The method is compared against the usage of simple features and combined similarity matching strategies.

  3. Scanless functional imaging of hippocampal networks using patterned two-photon illumination through GRIN lenses

    KAUST Repository

    Moretti, Claudio

    2016-09-12

    Patterned illumination through the phase modulation of light is increasingly recognized as a powerful tool to investigate biological tissues in combination with two-photon excitation and light-sensitive molecules. However, to date two-photon patterned illumination has only been coupled to traditional microscope objectives, thus limiting the applicability of these methods to superficial biological structures. Here, we show that phase modulation can be used to efficiently project complex two-photon light patterns, including arrays of points and large shapes, in the focal plane of graded index (GRIN) lenses. Moreover, using this approach in combination with the genetically encoded calcium indicator GCaMP6, we validate our system performing scanless functional imaging in rodent hippocampal networks in vivo ~1.2 mm below the brain surface. Our results open the way to the application of patterned illumination approaches to deep regions of highly scattering biological tissues, such as the mammalian brain.

  4. How to Measure Dark Energy with LSST's Strong Gravitational Lenses

    Science.gov (United States)

    Marshall, Philip J.; Treu, T.; Brunner, R. J.; Strong Lensing, LSST; Dark Energy Science Collaborations

    2013-01-01

    Strong gravitational lensing is sensitive to dark energy (DE) via the combinations of angular diameter distances that appear in model predictions of the lens strength. Lenses with variable sources offer the most promise: the corresponding time delay distance has recently been shown to be measurable to 5% precision. Large samples of lensed quasars and supernovae will allow internal degeneracy-breaking and so enable the most direct access to the DE parameters, while multiple source-plane, compound lens systems may provide an alternative, complementary, H0-free probe. Its wide field survey and high cadence will enable LSST to provide a sample of several thousand measured time delays, two orders of magnitude larger than the current sample, and allow an independent, competitive Stage IV DE parameter measurement to be made. However, practical problems to be solved include: lens detection (which may be very sensitive to image quality and deblender performance); image and lightcurve modelling (which could be both CPU and manual labor-intensive); obtaining and analyzing high resolution spectro-imaging follow-up data; and interpreting the whole sample of lenses in the context of the well-studied subset.

  5. Arcs from gravitational lensing

    Science.gov (United States)

    Grossman, Scott A.; Narayan, Ramesh

    1988-01-01

    The proposal made by Paczynski (1987) that the arcs of blue light found recently in two cluster cores are gravitationally lensed elongated images of background galaxies is investigated. It is shown that lenses that are circularly symmetric in projection produce pairs of arcs, in conflict with the observations. However, more realistic asymmetric lenses produce single arcs, which can become as elongated as the observed ones whenever the background galaxy is located on or close to a cusp caustic. Detailed computer simulations of lensing by clusters using a reasonable model of the mass distribution are presented. Elongated and curved lensed images longer than 10 arcsec occur in 12 percent of the simulated clusters. It is concluded that the lensing hypothesis must be taken seriously.

  6. Noise Estimates for Measurements of Weak Lensing from the Lyman-alpha Forest

    Science.gov (United States)

    Metcalf, R. Benton; Croft, Rupert A. C.; Romeo, Alessandro

    2018-03-01

    Lensing changes the apparent separation between pixels in the Lyman-α forest of separate quasars or high redshift objects by changing their observed positions on the sky. This changes the implied correlations in the absorption and in particular makes the Lyman-α forest correlation function, or power spectrum, locally anisotropic in the plane of the sky. We have proposed a method for measuring weak lensing using this effect. Here we estimate the noise expected in weak lensing maps and power spectra for different sets of observational parameters. We find that surveys of the size and quality of the ones being done today and ones planned for the future will be able to measure the lensing power spectrum at a source redshift of z ≃ 2.5 with high precision and even be able to image the distribution of foreground matter with high fidelity on degree scales. For example, we predict that Lyman-α forest lensing measurements from the DESI and WEAVE surveys should yield the mass fluctuation amplitude with a statistical error of ˜3%, eBOSS ˜6%. and the proposed MSE survey less than 1%. By dividing the redshift range into multiple bins some tomographic lensing information should be accessible as well. This would allow for cosmological lensing measurements at higher redshift than are accessible with galaxy shear surveys and correspondingly better constraints on the evolution of dark energy at relatively early times.

  7. A free-form lensing model of A370 revealing stellar mass dominated BCGs, in Hubble Frontier Fields images

    Science.gov (United States)

    Diego, Jose M.; Schmidt, Kasper B.; Broadhurst, Tom; Lam, Daniel; Vega-Ferrero, Jesús; Zheng, Wei; Lee, Slanger; Morishita, Takahiro; Bernstein, Gary; Lim, Jeremy; Silk, Joseph; Ford, Holland

    2018-02-01

    We derive a free-form mass distribution for the unrelaxed cluster A370 (z = 0.375), using the first release of the Hubble Frontier Fields images (76 orbits) and GLASS spectroscopy. Starting from a reliable set of 10 multiply lensed systems, we produce a free-form lens model that identifies ≈80 multiple images. Good consistency is found between models using independent subsamples of these lensed systems, with detailed agreement for the well-resolved arcs. The mass distribution has two very similar concentrations centred on the two prominent brightest cluster galaxies (or BCGs), with mass profiles that are accurately constrained by a uniquely useful system of long radially lensed images centred on both BCGs. We show that the lensing mass profiles of these BCGs are mainly accounted for by their stellar mass profiles, with a modest contribution from dark matter within r normal galaxies for which dark matter should dominate over stars. Growth via merging between BCGs is, however, consistent with this finding, so that stars still dominate over dark matter. We do not observe any significant offset between the positions of the peaks of the dark matter distribution and the light distribution.

  8. Strongly lensed gravitational waves and electromagnetic signals as powerful cosmic rulers

    Science.gov (United States)

    Wei, Jun-Jie; Wu, Xue-Feng

    2017-12-01

    In this paper, we discuss the possibility of using strongly lensed gravitational waves (GWs) and their electromagnetic (EM) counterparts as powerful cosmic rulers. In the EM domain, it has been suggested that joint observations of the time delay (Δτ) between lensed quasar images and the velocity dispersion (σ) of the lensing galaxy (i.e. the combination Δτ/σ2) are able to constrain the cosmological parameters more strongly than Δτ or σ2 separately. Here, for the first time, we propose that this Δτ/σ2 method can be applied to the strongly lensed systems observed in both GW and EM windows. Combining the redshifts, images and σ observed in the EM domain with the very precise Δτ derived from lensed GW signals, we expect that accurate multimessenger cosmology can be achieved in the era of third-generation GW detectors. Comparing with the constraints from the Δτ method, we prove that using Δτ/σ2 can improve the discrimination between cosmological models. Furthermore, we demonstrate that with ∼50 strongly lensed GW-EM systems, we can reach a constraint on the dark energy equation of state w comparable to the 580 Union2.1 Type Ia supernovae data. Much more stringent constraints on w can be obtained when combining the Δτ and Δτ/σ2 methods.

  9. A high-angular resolution study of the nuclear regions of quasar host galaxies with the NaCo simultaneous differential imager

    Energy Technology Data Exchange (ETDEWEB)

    Scharwaechter, J; Ivanov, V D [European Southern Observatory, Alonso de Cordova 3107, Vitacura, Casilla 19001, Santiago 19 (Chile); Zuther, J [Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Tacconi-Garman, L E [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei Muenchen (Germany); Kotilainen, J K; Reunanen, J [Tuorla Observatory, University of Turku, Vaeisaelaentie 20, FIN-21500 Piikkioe (Finland)], E-mail: jscharwa@eso.org

    2008-10-15

    A project aiming at the study of the emission line gas morphology in quasar host galaxies by means of adaptive-optics-assisted simultaneous narrow-band imaging of the line and continuum emission is presented. The project makes use of the NaCo Simultaneous Differential Imager (SDI) in an extragalactic experiment. The quasar targets are selected according to the availability of a neighbouring natural guide star for adaptive optics (AO) correction and according to a redshift criterion which places one of the emission lines of Pa{beta}, H{alpha}, or [O III] into one of the three SDI narrow-band filters in the near-infrared H-band. The first results for six targets from the Sloan Digital Sky Survey (SDSS) Quasar Catalogue at redshifts of about 0.2, 1.4, and 2.1 are summarized. The strongest line emission is detected for the H{alpha} candidate SDSS J125400.42+033726.5 at a redshift of 1.386. A double-structured continuum source is found in the central region of SDSS J114203.40+005135.8, which might be correlated with the major merger process suggested by the one-armed tidal tail in the large scale morphology.

  10. Unveiling Quasar Fueling through a Public Snapshot Survey of Quasar Host Environments

    Science.gov (United States)

    Johnson, Sean

    2017-08-01

    Feedback from quasars is thought to play a vital role in galaxy evolution, but the relationship between quasars and the halo gas that fuels star-formation on long timescales is not well constrained. Recent observations of the content of quasar host halos have found unusually high covering fractions of cool gas observed in absorption in background quasar spectra. The cool halo gas is strongly correlated with quasar luminosity and exceeds what is observed around non-AGN galaxies by factor of two. Together, these observations provide compelling evidence for a connection between AGN activity and halo gas on 20-200 kpc scales. The high covering fraction and correlation with quasar luminosity may be the result of debris from the galaxy mergers thought to trigger luminous quasars or the halo gas of satellites in gas-rich groups amenable to quasar feeding. If this is the case, then the cool gas observed in absorption will be correlated with signatures of recent galaxy interactions in the quasar host or satellites close to the background sightline. Here, we propose a snapshot imaging survey of z<1 quasars with available constraints on halo gas content to examine a possible correlation between cool halo gas and galaxy interaction signatures. Galaxy morphologies and faint tidal features at z 1 can only be observed with the high resolution imaging capabilities of HST due to the substantial flux in extended wings of AO point-spread functions. The images will be of significant archival value for studying the galaxy environments of quasars and for constraining gas flow models with multi-sightline halo gas studies of galaxies at lower redshift than the foreground & background quasars.

  11. Probing Extragalactic Planets Using Quasar Microlensing

    Science.gov (United States)

    Dai, Xinyu; Guerras, Eduardo

    2018-02-01

    Previously, planets have been detected only in the Milky Way galaxy. Here, we show that quasar microlensing provides a means to probe extragalactic planets in the lens galaxy, by studying the microlensing properties of emission close to the event horizon of the supermassive black hole of the background quasar, using the current generation telescopes. We show that a population of unbound planets between stars with masses ranging from Moon to Jupiter masses is needed to explain the frequent Fe Kα line energy shifts observed in the gravitationally lensed quasar RXJ 1131–1231 at a lens redshift of z = 0.295 or 3.8 billion lt-yr away. We constrain the planet mass-fraction to be larger than 0.0001 of the halo mass, which is equivalent to 2000 objects ranging from Moon to Jupiter mass per main-sequence star.

  12. Through BAL Quasars Brightly

    Science.gov (United States)

    Chartas, George

    2003-01-01

    We report on an observation of the broad absorption line (BAL) quasar PG 1115+080 performed with the XMM-Newton observatory. Spectral analysis reveals the second case of a relativistic X-ray-absorbing outflow in a BAL quasar. The first case was revealed in a recent observation of APM 08279+5255 with the Chandra X-Ray Observatory. As in the case of APM 08279+5255, the observed flux of PG 1115+080 is greatly magnified by gravitational lensing. The relatively high redshift (z=1.72) of the quasar places the redshifted energies of resonant absorption features in a sensitive portion of the XMM- Newton spectral response. The spectrum indicates the presence of complex low-energy absorption in the 0.2-0.6 keV observed energy band and high-energy absorption in the 2-5 keV observed energy band. The high-energy absorption is best modeled by two Gaussian absorption lines with rest-frame energies of 7.4 and 9.5 keV. Assuming that these two lines axe produced by resonant absorption due to Fe XXV, we infer that the X-ray absorbers are outflowing with velocities of approx. 0.10c and approx. 0.34c respectively. We have detected significant variability of the energies and widths of the X-ray BALs in PG 1115+080 and APM 08279+5255 over timescales of 19 and 1.8 weeks (proper time), respectively. The BAL variability observed from APM 08279+5255 supports our earlier conclusion that these absorbers are most likely launched at relatively small radii of less than 10(exp 16)(Mbh/M8)(sup 1/2) cm. A comparison of the ionization properties and column densities of the low-energy and high-energy absorbers indicates that these absorbers are likely distinct; however, higher spectral resolution is needed to confirm this result. Finally, we comment on prospects for constraining the kinematic and ionization properties of these X-ray BALs with the next generation of X-ray observatories.

  13. Laboratory simulation of Euclid-like sky images to study the impact of CCD radiation damage on weak gravitational lensing

    Science.gov (United States)

    Prod'homme, T.; Verhoeve, P.; Oosterbroek, T.; Boudin, N.; Short, A.; Kohley, R.

    2014-07-01

    Euclid is the ESA mission to map the geometry of the dark universe. It uses weak gravitational lensing, which requires the accurate measurement of galaxy shapes over a large area in the sky. Radiation damage in the 36 Charge-Coupled Devices (CCDs) composing the Euclid visible imager focal plane has already been identified as a major contributor to the weak-lensing error budget; radiation-induced charge transfer inefficiency (CTI) distorts the galaxy images and introduces a bias in the galaxy shape measurement. We designed a laboratory experiment to project Euclid-like sky images onto an irradiated Euclid CCD. In this way - and for the first time - we are able to directly assess the effect of CTI on the Euclid weak-lensing measurement free of modelling uncertainties. We present here the experiment concept, setup, and first results. The results of such an experiment provide test data critical to refine models, design and test the Euclid data processing CTI mitigation scheme, and further optimize the Euclid CCD operation.

  14. Precise Time Delays from Strongly Gravitationally Lensed Type Ia Supernovae with Chromatically Microlensed Images

    Science.gov (United States)

    Goldstein, Daniel A.; Nugent, Peter E.; Kasen, Daniel N.; Collett, Thomas E.

    2018-03-01

    Time delays between the multiple images of strongly gravitationally lensed Type Ia supernovae (glSNe Ia) have the potential to deliver precise cosmological constraints, but the effects of microlensing on time delay extraction have not been studied in detail. Here we quantify the effect of microlensing on the glSN Ia yield of the Large Synoptic Survey Telescope (LSST) and the effect of microlensing on the precision and accuracy of time delays that can be extracted from LSST glSNe Ia. Microlensing has a negligible effect on the LSST glSN Ia yield, but it can be increased by a factor of ∼2 over previous predictions to 930 systems using a novel photometric identification technique based on spectral template fitting. Crucially, the microlensing of glSNe Ia is achromatic until three rest-frame weeks after the explosion, making the early-time color curves microlensing-insensitive time delay indicators. By fitting simulated flux and color observations of microlensed glSNe Ia with their underlying, unlensed spectral templates, we forecast the distribution of absolute time delay error due to microlensing for LSST, which is unbiased at the sub-percent level and peaked at 1% for color curve observations in the achromatic phase, while for light-curve observations it is comparable to state-of-the-art mass modeling uncertainties (4%). About 70% of LSST glSN Ia images should be discovered during the achromatic phase, indicating that microlensing time delay uncertainties can be minimized if prompt multicolor follow-up observations are obtained. Accounting for microlensing, the 1–2 day time delay on the recently discovered glSN Ia iPTF16geu can be measured to 40% precision, limiting its cosmological utility.

  15. QUASARS PROBING QUASARS. IV. JOINT CONSTRAINTS ON THE CIRCUMGALACTIC MEDIUM FROM ABSORPTION AND EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Hennawi, Joseph F.; Prochaska, J. Xavier, E-mail: xavier@ucolick.org [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany)

    2013-03-20

    , than simply be a star-forming galaxy clustered around the quasar. Our observations imply that much deeper integrations with upcoming integral-field spectrometers such as MUSE and KCWI will be able to routinely detect a diffuse Ly{alpha} glow around bright quasars on scales R {approx} 100 kpc and thus directly image the CGM.

  16. MICROLENSING OF QUASAR BROAD EMISSION LINES: CONSTRAINTS ON BROAD LINE REGION SIZE

    Energy Technology Data Exchange (ETDEWEB)

    Guerras, E.; Mediavilla, E. [Instituto de Astrofisica de Canarias, Via Lactea S/N, La Laguna E-38200, Tenerife (Spain); Jimenez-Vicente, J. [Departamento de Fisica Teorica y del Cosmos, Universidad de Granada, Campus de Fuentenueva, E-18071 Granada (Spain); Kochanek, C. S. [Department of Astronomy and the Center for Cosmology and Astroparticle Physics, The Ohio State University, 4055 McPherson Lab, 140 West 18th Avenue, Columbus, OH 43221 (United States); Munoz, J. A. [Departamento de Astronomia y Astrofisica, Universidad de Valencia, E-46100 Burjassot, Valencia (Spain); Falco, E. [Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Motta, V. [Departamento de Fisica y Astronomia, Universidad de Valparaiso, Avda. Gran Bretana 1111, Valparaiso (Chile)

    2013-02-20

    We measure the differential microlensing of the broad emission lines between 18 quasar image pairs in 16 gravitational lenses. We find that the broad emission lines are in general weakly microlensed. The results show, at a modest level of confidence (1.8{sigma}), that high ionization lines such as C IV are more strongly microlensed than low ionization lines such as H{beta}, indicating that the high ionization line emission regions are more compact. If we statistically model the distribution of microlensing magnifications, we obtain estimates for the broad line region size of r{sub s} = 24{sup +22} {sub -15} and r{sub s} = 55{sup +150} {sub -35} lt-day (90% confidence) for the high and low ionization lines, respectively. When the samples are divided into higher and lower luminosity quasars, we find that the line emission regions of more luminous quasars are larger, with a slope consistent with the expected scaling from photoionization models. Our estimates also agree well with the results from local reveberation mapping studies.

  17. SUB-KILOPARSEC IMAGING OF COOL MOLECULAR GAS IN TWO STRONGLY LENSED DUSTY, STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Spilker, J. S.; Marrone, D. P. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Aravena, M. [Núcleo de Astronomía, Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército 441, Santiago (Chile); Béthermin, M.; Breuck, C. de [European Southern Observatory, Karl Schwarzschild Straße 2, D-85748 Garching (Germany); Bothwell, M. S. [Cavendish Laboratory, University of Cambridge, JJ Thompson Ave, Cambridge CB3 0HA (United Kingdom); Carlstrom, J. E. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Chapman, S. C.; Rotermund, K. M. [Dalhousie University, Halifax, Nova Scotia (Canada); Collier, J. D.; Galvin, T.; Grieve, K.; O’Brien, A. [University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751 (Australia); Fassnacht, C. D. [Department of Physics, University of California, One Shields Avenue, Davis, CA 95616 (United States); Gonzalez, A. H.; Ma, J. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); González-López, J. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 782-0436 Macul, Santiago (Chile); Hezaveh, Y. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Malkan, M., E-mail: jspilker@as.arizona.edu [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); and others

    2015-10-01

    We present spatially resolved imaging obtained with the Australia Telescope Compact Array (ATCA) of three CO lines in two high-redshift gravitationally lensed dusty star-forming galaxies, discovered by the South Pole Telescope. Strong lensing allows us to probe the structure and dynamics of the molecular gas in these two objects, at z = 2.78 and z = 5.66, with effective source-plane resolution of less than 1 kpc. We model the lensed emission from multiple CO transitions and the dust continuum in a consistent manner, finding that the cold molecular gas as traced by low-J CO always has a larger half-light radius than the 870 μm dust continuum emission. This size difference leads to up to 50% differences in the magnification factor for the cold gas compared to dust. In the z = 2.78 galaxy, these CO observations confirm that the background source is undergoing a major merger, while the velocity field of the other source is more complex. We use the ATCA CO observations and comparable resolution Atacama Large Millimeter/submillimeter Array dust continuum imaging of the same objects to constrain the CO–H{sub 2} conversion factor with three different procedures, finding good agreement between the methods and values consistent with those found for rapidly star-forming systems. We discuss these galaxies in the context of the star formation—gas mass surface density relation, noting that the change in emitting area with observed CO transition must be accounted for when comparing high-redshift galaxies to their lower redshift counterparts.

  18. Primordial environment of supermassive black holes. II. Deep Y- and J-band images around the z 6.3 quasar SDSS J1030+0524

    Science.gov (United States)

    Balmaverde, B.; Gilli, R.; Mignoli, M.; Bolzonella, M.; Brusa, M.; Cappelluti, N.; Comastri, A.; Sani, E.; Vanzella, E.; Vignali, C.; Vito, F.; Zamorani, G.

    2017-10-01

    Many cosmological studies predict that early supermassive black holes (SMBHs) can only form in the most massive dark matter halos embedded within large-scale structures marked by galaxy overdensities that may extend up to 10 physical Mpc. This scenario, however, has not been confirmed observationally, as the search for galaxy overdensities around high-z quasars has returned conflicting results. The field around the z = 6.31 quasar SDSSJ1030+0524 (J1030) is unique for multi-band coverage and represents an excellent data legacy for studying the environment around a primordial SMBH. In this paper we present wide-area ( 25' × 25') Y- and J-band imaging of the J1030 field obtained with the near infrared camera WIRCam at the Canada-France-Hawaii Telescope (CFHT). We built source catalogs in the Y- and J-band, and matched those with our photometric catalog in the r, z, and I bands presented in our previous paper and based on sources with zAB4σ. The overdensity value and its significance are higher than those found in our previous paper and we interpret this as evidence of an improved LBG selection.

  19. Extremely Variable Quasars from CRTS and WISE

    Science.gov (United States)

    Stern, Daniel

    2017-08-01

    I will present deep dives on a few examples of highly variable quasars identified from the Catalina Real-Time Transient Survey (CRTS) and WISE/NEOWISE. In particular, I will focus on a CRTS-identified iron low-ionization broad absorption line (FeLoBAL) quasar which, over the past decade, has transformed into a more typical BAL quasar (Stern et al. 2017) and a WISE-identified quasar that has shut off in the past decade (Stern et al., in prep.). I will focus on what we learn about the physics of these systems from the multiwavelength imaging and spectroscopy. Given the pace of discovery, additional interesting examples are expected to be discovered before the conference.

  20. Comparison of through-focus image quality across five presbyopia-correcting intraocular lenses (an American Ophthalmological Society thesis).

    Science.gov (United States)

    Pepose, Jay S; Wang, Daozhi; Altmann, Griffith E

    2011-12-01

    To assess through-focus polychromatic image sharpness of five US Food and Drug Administration-approved presbyopia-correcting intraocular lenses (IOLs) through a range of object vergences and pupil diameters utilizing an image sharpness algorithm. A 1951 US Air Force resolution target was imaged through a Crystalens AO (AO) (Bausch & Lomb Surgical, Aliso Viejo, California), Crystalens HD (HD) (Bausch & Lomb Surgical, Aliso Viejo, California), aspheric ReSTOR +4.0 (R4) (Alcon Laboratories, Fort Worth, Texas), aspheric ReSTOR +3.0 (R3) (Alcon Laboratories, Fort Worth, Texas), and Tecnis Multifocal Acrylic (TMF) (Abbott Medical Optics, Irvine, California) IOL in an anatomically and optically accurate model eye and captured digitally for each combination of pupil diameter and object vergence. The sharpness of each digital image was objectively scored using a two-dimensional gradient function. The AO lens had the best distance image sharpness for all pupil diameters, followed by the HD. With a 5-mm pupil, the R4 lens achieved distance image quality similar to the HD, but inferior to the AO. The R3 successfully moved the near focal point farther from the patient compared to the R4, but did not improve image sharpness at intermediate distances and showed worse distance and near image sharpness. Consistent with apodization, the ReSTOR IOLs displayed better distance and poorer near image sharpness as pupil diameter increased. The TMF lens showed consistent distance and near image sharpness across pupil diameters and exhibited the best near image sharpness for all pupil diameters. Differing IOL design strategies to increase depth of field are associated with quantifiable differences in image sharpness at varying vergences and pupil sizes. An objective comparison of the imaging properties of specific presbyopia-correcting IOLs, in conjunction with patients' pupil sizes, can be useful in selecting the most appropriate IOL for each patient.

  1. Clustering of quasars in a wide luminosity range at redshift 4 with Subaru Hyper Suprime-Cam Wide-field imaging

    Science.gov (United States)

    He, Wanqiu; Akiyama, Masayuki; Bosch, James; Enoki, Motohiro; Harikane, Yuichi; Ikeda, Hiroyuki; Kashikawa, Nobunari; Kawaguchi, Toshihiro; Komiyama, Yutaka; Lee, Chien-Hsiu; Matsuoka, Yoshiki; Miyazaki, Satoshi; Nagao, Tohru; Nagashima, Masahiro; Niida, Mana; Nishizawa, Atsushi J.; Oguri, Masamune; Onoue, Masafusa; Oogi, Taira; Ouchi, Masami; Schulze, Andreas; Shirasaki, Yuji; Silverman, John D.; Tanaka, Manobu M.; Tanaka, Masayuki; Toba, Yoshiki; Uchiyama, Hisakazu; Yamashita, Takuji

    2018-01-01

    We examine the clustering of quasars over a wide luminosity range, by utilizing 901 quasars at \\overline{z}_phot˜ 3.8 with -24.73 Strategic Program (HSC-SSP) S16A Wide2 date release and 342 more luminous quasars at 3.4 Digital Sky Survey that fall in the HSC survey fields. We measure the bias factors of two quasar samples by evaluating the cross-correlation functions (CCFs) between the quasar samples and 25790 bright z ˜ 4 Lyman break galaxies in M1450 < -21.25 photometrically selected from the HSC dataset. Over an angular scale of 10.0" to 1000.0", the bias factors are 5.93+1.34-1.43 and 2.73+2.44-2.55 for the low- and high-luminosity quasars, respectively, indicating no significant luminosity dependence of quasar clustering at z ˜ 4. It is noted that the bias factor of the luminous quasars estimated by the CCF is smaller than that estimated by the auto-correlation function over a similar redshift range, especially on scales below 40.0". Moreover, the bias factor of the less-luminous quasars implies the minimal mass of their host dark matter halos is 0.3-2 × 1012 h-1 M⊙, corresponding to a quasar duty cycle of 0.001-0.06.

  2. Measurement of cone beam CT coincidence with megavoltage isocentre and image sharpness using the QUASAR(TM) Penta-Guide phantom

    International Nuclear Information System (INIS)

    Sykes, J R; Lindsay, R; Dean, C J; Thwaites, D I; Brettle, D S; Magee, D R

    2008-01-01

    For image-guided radiotherapy (IGRT) systems based on cone beam CT (CBCT) integrated into a linear accelerator, the reproducible alignment of imager to x-ray source is critical to the registration of both the x-ray-volumetric image with the megavoltage (MV) beam isocentre and image sharpness. An enhanced method of determining the CBCT to MV isocentre alignment using the QUASAR(TM) Penta-Guide phantom was developed which improved both precision and accuracy. This was benchmarked against our existing method which used software and a ball-bearing (BB) phantom provided by Elekta. Additionally, a method of measuring an image sharpness metric (MTF 50 ) from the edge response function of a spherical air cavity within the Penta-Guide phantom was developed and its sensitivity was tested by simulating misalignments of the kV imager. Reproducibility testing of the enhanced Penta-Guide method demonstrated a systematic error of 50 for five measurements was 0.278 ± 0.004 lp mm -1 with no applied misalignment. Simulated misalignments exhibited a clear peak in the MTF 50 enabling misalignments greater than 0.4 mm to be detected. The Penta-Guide phantom can be used to precisely measure CBCT-MV coincidence and image sharpness on CBCT-IGRT systems

  3. Overdensity of galaxies in the environment of quasar pairs

    Science.gov (United States)

    Sandrinelli, A.; Falomo, R.; Treves, A.; Scarpa, R.; Uslenghi, M.

    2018-03-01

    We report on a study of the galaxy environments of low redshift physical quasars pairs. We selected 20 pairs having projected separation Digital Sky Survey images, we evaluated the galaxy overdensity around these quasars in pairs and then compare it with that of a sample of isolated quasars with same redshift and luminosity. It is found that on average there is a systematic larger overdensity of galaxies around quasars in pairs with respect to that of isolated quasars. This may represent a significant link between nuclear activity and galaxy environment. However, at odds with that, the closest quasar pairs seem to inhabit poorer environments. Implications of present results and perspectives for future work are briefly discussed.

  4. Fluid Lensing, Applications to High-Resolution 3D Subaqueous Imaging & Automated Remote Biosphere Assessment from Airborne and Space-borne Platforms

    Science.gov (United States)

    Chirayath, V.

    2014-12-01

    Fluid Lensing is a theoretical model and algorithm I present for fluid-optical interactions in turbulent flows as well as two-fluid surface boundaries that, when coupled with an unique computer vision and image-processing pipeline, may be used to significantly enhance the angular resolution of a remote sensing optical system with applicability to high-resolution 3D imaging of subaqueous regions and through turbulent fluid flows. This novel remote sensing technology has recently been implemented on a quadcopter-based UAS for imaging shallow benthic systems to create the first dataset of a biosphere with unprecedented sub-cm-level imagery in 3D over areas as large as 15 square kilometers. Perturbed two-fluid boundaries with different refractive indices, such as the surface between the ocean and air, may be exploited for use as lensing elements for imaging targets on either side of the interface with enhanced angular resolution. I present theoretical developments behind Fluid Lensing and experimental results from its recent implementation for the Reactive Reefs project to image shallow reef ecosystems at cm scales. Preliminary results from petabyte-scale aerial survey efforts using Fluid Lensing to image at-risk coral reefs in American Samoa (August, 2013) show broad applicability to large-scale automated species identification, morphology studies and reef ecosystem characterization for shallow marine environments and terrestrial biospheres, of crucial importance to understanding climate change's impact on coastal zones, global oxygen production and carbon sequestration.

  5. A direct gravitational lensing test for 10 exp 6 solar masses black holes in halos of galaxies

    Science.gov (United States)

    Wambsganss, Joachim; Paczynski, Bohdan

    1992-01-01

    We propose a method that will be able to detect or exclude the existence of 10 exp 6 solar masses black holes in the halos of galaxies. VLBA radio maps of two milliarcsecond jets of a gravitationally lensed quasar will show the signature of these black holes - if they exist. If there are no compact objects in this mass range along the line of sight, the two jets should be linear mappings of each other. If they are not, there must be compact objects of about 10 exp 6 solar masses in the halo of the galaxy that deform the images by gravitational deflection. We present numerical simulations for the two jets A and B of the double quasar 0957 + 561, but the method is valid for any gravitationally lensed quasar with structure on milliarcsecond scales. As a by-product from high-quality VLBA maps of jets A and B, one will be able to tell which features in the maps are intrinsic in the original jet and which are only an optical illusion, i.e., gravitational distortions by black holes along the line of sight.

  6. Images of four compact steep-spectrum quasars with a resolution of 20 milliarcseconds at 329.1 MHz

    International Nuclear Information System (INIS)

    Simon, R.S.; Readhead, A.C.S.; Wilkinson, P.N.; Booth, R.; Moffet, A.T.

    1990-01-01

    Four compact steep-spectrum quasars (3C 48, 3C 147, 3C 309.1, and 3C 380) have been mapped with a resolution of 20 mas at 329 MHz. The structures of all four objects are asymmetric and complex, but they are shown here to be consistent with a basic one-sided jet morphology. In this, they are quite similar to other classes of radio sources; however, their small scales and convoluted structures suggest that in these objects, other factors such as the interaction with the interstellar medium and/or variations in the initial jet direction significantly affect the morphology. 43 refs

  7. The radio structure of radio-quiet quasars

    NARCIS (Netherlands)

    Leipski, C.; Falcke, H.D.E.; Bennert, N.; Hüttemeister, S.

    2006-01-01

    Aims.We investigate the radio emitting structures of radio-quiet active galactic nuclei with an emphasis on radio-quiet quasars to study their connection to Seyfert galaxies.
    Methods: .We present and analyse high-sensitivity VLA radio continuum images of 14 radio-quiet quasars and six Seyfert

  8. Radio structure in quasars

    International Nuclear Information System (INIS)

    Barthel, P.D.

    1984-01-01

    In this thesis, observational attention is given to the extended extragalactic radio sources associated with quasars. The isolated compact radio sources, often identified with quasars, are only included in the discussions. Three aspects of the radio structure in quasars and their cosmic evolution are considered: a study of the parsec scale morphology in quasar cores, in relation to the extended morphologies; an investigation of possible epoch dependent hotspot properties as well as a more detailed investigation of this fine scale structure; a VLA project was carried out to obtain morphological information on scales of 0.5 arcsec on high redshift quasars and to investigate possible epoch dependent morphological properties. MERLIN observations at 0.1 arcsec resolution to supplement the VLA data were initiated. (Auth.)

  9. NASA's Chandra Finds Evidence for Quasar Ignition

    Science.gov (United States)

    2006-03-01

    New data from NASA's Chandra X-ray Observatory may provide clues to how quasars "turn on." Since the discovery of quasars over 40 years ago, astronomers have been trying to understand the conditions surrounding the birth of these immensely powerful objects. Hot, X-ray producing regions around two distant quasars observed by Chandra are thought to have formed during their activation. These features are located tens of thousands of light years from the central supermassive black holes thought to power the quasars. "The X-ray features are likely shock waves that could be a direct result of the turning on of the quasar about 4 billion years ago," said Alan Stockton of the University of Hawaii in Honolulu, and lead author of a report on this work published recently in The Astrophysical Journal. The quasars, 4C37.43 and 3C249.1, showed no evidence for the existence of a much larger envelope of hot gas around the features, nor were the observed X-ray regions associated with radio waves from the quasars. These factors rule out possible explanations for the X-ray emitting clouds, such as the cooling of hot intergalactic gas, or heating by high-energy jets from the quasars. Chandra X-ray Image of 4C37.43 Chandra X-ray Image of 4C37.43 "The best explanation for our observations is that a burst of star formation, or the activation of the quasar itself, is driving an enormous amount of gas away from the quasar's host galaxy at extremely high speeds," said Hai Fu, a coauthor of the study who is also from the University of Hawaii. Computer simulations of the formation of stars and the growth of black holes during a collision between two galaxies are consistent with this picture. The simulations, performed by Tiziana Di Matteo of Carnegie-Mellon University in Pittsburgh, Pennsylvania, and colleagues, show that the merger of galaxies drives gas toward the central regions where it triggers a burst of star formation and provides fuel for the growth of a central black hole. The inflow

  10. FluidCam 1&2 - UAV-based Fluid Lensing Instruments for High-Resolution 3D Subaqueous Imaging and Automated Remote Biosphere Assessment of Reef Ecosystems

    Science.gov (United States)

    Chirayath, V.; Instrella, R.

    2016-02-01

    We present NASA ESTO FluidCam 1 & 2, Visible and NIR Fluid-Lensing-enabled imaging payloads for Unmanned Aerial Vehicles (UAVs). Developed as part of a focused 2014 earth science technology grant, FluidCam 1&2 are Fluid-Lensing-based computational optical imagers designed for automated 3D mapping and remote sensing of underwater coastal targets from airborne platforms. Fluid Lensing has been used to map underwater reefs in 3D in American Samoa and Hamelin Pool, Australia from UAV platforms at sub-cm scale, which has proven a valuable tool in modern marine research for marine biosphere assessment and conservation. We share FluidCam 1&2 instrument validation and testing results as well as preliminary processed data from field campaigns. Petabyte-scale aerial survey efforts using Fluid Lensing to image at-risk reefs demonstrate broad applicability to large-scale automated species identification, morphology studies and reef ecosystem characterization for shallow marine environments and terrestrial biospheres, of crucial importance to improving bathymetry data for physical oceanographic models and understanding climate change's impact on coastal zones, global oxygen production, carbon sequestration.

  11. The impact of ΛCDM substructure and baryon-dark matter transition on the image positions of quad galaxy lenses

    Science.gov (United States)

    Gomer, Matthew R.; Williams, Liliya L. R.

    2018-04-01

    The positions of multiple images in galaxy lenses are related to the galaxy mass distribution. Smooth elliptical mass profiles were previously shown to be inadequate in reproducing the quad population. In this paper, we explore the deviations from such smooth elliptical mass distributions. Unlike most other work, we use a model-free approach based on the relative polar image angles of quads, and their position in 3D space with respect to the fundamental surface of quads (FSQ). The FSQ is defined by quads produced by elliptical lenses. We have generated thousands of quads from synthetic populations of lenses with substructure consistent with Lambda cold dark matter (ΛCDM) simulations, and found that such perturbations are not sufficient to match the observed distribution of quads relative to the FSQ. The result is unchanged even when subhalo masses are increased by a factor of 10, and the most optimistic lensing selection bias is applied. We then produce quads from galaxies created using two components, representing baryons and dark matter. The transition from the mass being dominated by baryons in inner radii to being dominated by dark matter in outer radii can carry with it asymmetries, which would affect relative image angles. We run preliminary experiments using lenses with two elliptical mass components with non-identical axial ratios and position angles, perturbations from ellipticity in the form of non-zero Fourier coefficients a4 and a6, and artificially offset ellipse centres as a proxy for asymmetry at image radii. We show that combination of these effects is a promising way of accounting for quad population properties. We conclude that the quad population provides a unique and sensitive tool for constraining detailed mass distribution in the centres of galaxies.

  12. A Hungry Quasar Caught in the Act

    Science.gov (United States)

    2001-05-01

    The VLT Secures Spectacular Image of Distant Gravitational Interaction Summary A new image of a distant quasar (the luminous core of an "active" galaxy) shows that it is engaged in a gravitational battle with its neighbouring galaxies . It also provides information on how supermassive black holes present in the center of quasars are fed. Using the FORS2 multi-mode instrument at the ESO 8.2-m VLT KUEYEN telescope on Paranal (Chile), a team of German astronomers [1] obtained a spectacular image of the close and complex environment of the distant quasar "HE 1013-2136", located some 10 billion light-years away [2]. The remarkable structures revealed in this photo lend support to the hypothesis that quasar activity is connected to gravitational interaction between galaxies, already at this early epoch of the Universe (about 5 billion years after the Big Bang). PR Photo 20a/01 : A VLT image of the Quasar HE 1013-2136 . PR Photo 20b/01 : A sharpened version of the same image. Feeding the Black Hole "Quasars" (Quasi-Stellar Objects) were first discovered by Dutch-American astronomer Maarten Schmidt in 1963 as distant, energetic objects of star-like appearance. Since then, more than 15,000 quasars have been found and we now know that they are the luminous cores at the heart of distant galaxies. Such "Active Galactic Nuclei (AGN)" are thought to host Supermassive Black Holes of up to one billion solar masses at their centres. Black Holes represent the densest possible state of matter; if the Earth were to become one, it would measure no more than a few millimetres across. The Black Hole in a galaxy gobbles up the gas and dust of its host, a process that efficiently powers the luminous core that we observe as a point-like "quasar". A Black Hole must be continuously fed to remain active. During an active phase of typically 100 million years, the Black Hole in a quasar swallows material with a total weight of up to 10 solar masses every year. This may be predominantly in the

  13. Halo-lensing or Self-lensing? Locating the MACHO Lenses

    Science.gov (United States)

    Nelson, C. A.; Cook, K. H.; Popowski, P.; Drake, A. J.; Marshall, S. L.; Griest, K.; Vandehei, T.; Alcock, C.; Allsman, R. A.; Axelrod, T. S.; Freeman, K. C.; Peterson, B. A.; Alves, D. R.; Becker, A. C.; Stubbs, C. W.; Tomaney, A. B.; Bennett, D. P.; Geha, M.; Lehner, M. J.; Minniti, D.; Pratt, M. R.; Quinn, P. J.; Sutherland, W.; Welch, D.; MACHO Collaboration

    2000-12-01

    There are two principle geometrical arrangements which may explain Large Magellanic Cloud (LMC) microlensing: a) halo-lensing, in which the lensed object is part of the Milky Way galactic halo and b) self-lensing, in which the lensed object is part of the LMC. Self-lensing in turn may be broken into two categories: LMC-LMC self-lensing, in which both the source and the lens reside in the LMC and background self-lensing, in which the lens is a star in the LMC and the source star is drawn from some population behind the LMC. Models suggest the contribution of LMC-LMC self-lensing is small, so the nature of LMC microlensing may be estimated from the location of the microlensing source stars. If the source stars are in the LMC then microlensing is dominated by halo-lensing; conversely if the source stars are located behind the LMC then microlensing is dominated by self-lensing. Since background populations reside behind the LMC, we expect them to be both redder and fainter then the average population of the LMC. We attempt to determine if the MACHO source stars come from such a background population by comparing the HST color-magnitude diagram (CMD) of source stars to the CMD of the average population of the LMC and looking for the effects of extra reddening and extinction. The microlensing source stars are identified by deriving accurate centroids in the ground-based MACHO images using difference image analysis (DIA) and then transforming the DIA coordinates to the HST frame. Preliminary results suggest that halo-lensing accounts for ≳ 40% of the observed microlensing results. Support provided by NASA, DOE, NSF and NPSC.

  14. Subaru Weak Lensing Measurements of Four Strong Lensing Clusters: Are Lensing Clusters Over-Concentrated?

    Energy Technology Data Exchange (ETDEWEB)

    Oguri, Masamune; Hennawi, Joseph F.; Gladders, Michael D.; Dahle, Haakon; Natarajan, Priyamvada; Dalal, Neal; Koester, Benjamin P.; Sharon, Keren; Bayliss, Matthew

    2009-01-29

    We derive radial mass profiles of four strong lensing selected clusters which show prominent giant arcs (Abell 1703, SDSS J1446+3032, SDSS J1531+3414, and SDSS J2111-0115), by combining detailed strong lens modeling with weak lensing shear measured from deep Subaru Suprime-cam images. Weak lensing signals are detected at high significance for all four clusters, whose redshifts range from z = 0.28 to 0.64. We demonstrate that adding strong lensing information with known arc redshifts significantly improves constraints on the mass density profile, compared to those obtained from weak lensing alone. While the mass profiles are well fitted by the universal form predicted in N-body simulations of the {Lambda}-dominated cold dark matter model, all four clusters appear to be slightly more centrally concentrated (the concentration parameters c{sub vir} {approx} 8) than theoretical predictions, even after accounting for the bias toward higher concentrations inherent in lensing selected samples. Our results are consistent with previous studies which similarly detected a concentration excess, and increases the total number of clusters studied with the combined strong and weak lensing technique to ten. Combining our sample with previous work, we find that clusters with larger Einstein radii are more anomalously concentrated. We also present a detailed model of the lensing cluster Abell 1703 with constraints from multiple image families, and find the dark matter inner density profile to be cuspy with the slope consistent with -1, in agreement with expectations.

  15. Objective-prism spectrophotometry of quasars

    International Nuclear Information System (INIS)

    Clowes, R.G.

    1980-01-01

    A procedure is derived for obtaining low-resolution spectrophotometry of quasars directly from the objective-prism plates on which they were discovered. Measurements with a PDS microdensitometer of approximately 130 quasar candidates in approximately the central 19 square degrees of the UK Schmidt prism plate UJ3682P were used in the application of the procedure. The success of the objective-prism spectrophotometry is demonstrated in a comparison with 12 slit spectra. Redshifts and equivalent widths can be determined with typical discrepancies of 1% and 40% respectively. This work on objective-prism spectrophotometry leads to a quantification of the selection effects that operate in the searches for emission-line objects on objective-prism plates. The quantification successfully explains an apparent discrepancy in the detection efficiencies of the CTIO-4m and Curtis Schmidt surveys for quasars. Spectra of quasars that were observed with the Image Photon Counting System on the Anglo-Australian Telescope are presented. The observations of quasars with broad absorption troughs indicate the ejection of matter with velocities up to approximately 22000kms -1 and with velocity dispersions up to approximately 11000kms -1 . Data on the wavelength dependences of the contrast γ and the grain response function g of the Kodak emulsion IIIaJ are presented. (author)

  16. Acoustic lenses

    International Nuclear Information System (INIS)

    Kittmer, C.A.

    1983-03-01

    Acoustic lenses focus ultrasound to produce pencil-like beams with reduced near fields. When fitted to conventional (flat-faced) transducers, such lenses greatly improve the ability to detect and size defects. This paper describes a program developed to design acoustic lenses for use in immersion or contact inspection, using normal or angle beam mode with flat or curved targets. Lens surfaces are circular in geometry to facilitate machining. For normal beam inspection of flat plate, spherical or cylindrical lenses are used. For angle beam or curved surface inspections, a compound lens is required to correct for the extra induced aberration. Such a lens is aspherical with one radius of curvature in the plane of incidence, and a different radius of curvature in the plane perpendicular to the incident plane. The resultant beam profile (i.e., location of the acoustic focus, beam diameter, 6 dB working range) depends on the degree of focusing and the transducer used. The operating frequency and bandwidth can be affected by the instrumentation used. Theoretical and measured beam profiles are in good agreement. Various applications, from zone focusing used for defect sizing in thick plate, to line focusing for pipe weld inspection, are discussed

  17. RadioAstron space VLBI imaging of polarized radio emission in the high-redshift quasar 0642+449 at 1.6 GHz

    Science.gov (United States)

    Lobanov, A. P.; Gómez, J. L.; Bruni, G.; Kovalev, Y. Y.; Anderson, J.; Bach, U.; Kraus, A.; Zensus, J. A.; Lisakov, M. M.; Sokolovsky, K. V.; Voytsik, P. A.

    2015-11-01

    Context. Polarization of radio emission in extragalactic jets at a sub-milliarcsecond angular resolution holds important clues for understanding the structure of the magnetic field in the inner regions of the jets and in close vicinity of the supermassive black holes in the centers of active galaxies. Aims: Space VLBI observations provide a unique tool for polarimetric imaging at a sub-milliarcsecond angular resolution and studying the properties of magnetic field in active galactic nuclei on scales of less than 104 gravitational radii. Methods: A space VLBI observation of high-redshift quasar TXS 0642+449 (OH 471), made at a wavelength of 18 cm (frequency of 1.6 GHz) as part of the early science programme (ESP) of the RadioAstron mission, is used here to test the polarimetric performance of the orbiting Space Radio Telescope (SRT) employed by the mission, to establish a methodology for making full Stokes polarimetry with space VLBI at 1.6 GHz, and to study the polarized emission in the target object on sub-milliarcsecond scales. Results: Polarization leakage of the SRT at 18 cm is found to be within 9% in amplitude, demonstrating the feasibility of high fidelity polarization imaging with RadioAstron at this wavelength. A polarimetric image of 0642+449 with a resolution of 0.8 mas (signifying an ~4 times improvement over ground VLBI observations at the same wavelength) is obtained. The image shows a compact core-jet structure with low (≈2%) polarization and predominantly transverse magnetic field in the nuclear region. The VLBI data also uncover a complex structure of the nuclear region, with two prominent features possibly corresponding to the jet base and a strong recollimation shock. The maximum brightness temperature at the jet base can be as high as 4 × 1013 K.

  18. Are quasars really far away

    International Nuclear Information System (INIS)

    Narlikar, J.V.

    1983-01-01

    Most astrophysicists think that quasars are distant objects. But new data, based on red-shift anomalies, and new theories embracing non-cosmological doppler effect and gravitational effects could account for the peculiarities of quasars. (U.K.)

  19. 3C 220.3: A radio galaxy lensing a submillimeter galaxy

    International Nuclear Information System (INIS)

    Haas, Martin; Westhues, Christian; Chini, Rolf; Leipski, Christian; Klaas, Ulrich; Meisenheimer, Klaus; Barthel, Peter; Koopmans, Léon V. E.; Wilkes, Belinda J.; Bussmann, R. Shane; Willner, S. P.; Ashby, Matthew L. N.; Kuraszkiewicz, Joanna; Vegetti, Simona; Clements, David L.; Fassnacht, Christopher D.; Horesh, Assaf; Lagattuta, David J.; Stern, Daniel; Wylezalek, Dominika

    2014-01-01

    Herschel Space Observatory photometry and extensive multiwavelength follow-up have revealed that the powerful radio galaxy (PRG) 3C 220.3 at z = 0.685 acts as a gravitational lens for a background submillimeter galaxy (SMG) at z = 2.221. At an observed wavelength of 1 mm, the SMG is lensed into three distinct images. In the observed near infrared, these images are connected by an arc of ∼1''.8 radius forming an Einstein half-ring centered near the radio galaxy. In visible light, only the arc is apparent. 3C 220.3 is the only known instance of strong galaxy-scale lensing by a PRG not located in a galaxy cluster and therefore it offers the potential to probe the dark matter content of the radio galaxy host. Lens modeling rejects a single lens, but two lenses centered on the radio galaxy host A and a companion B, separated by 1''.5, provide a fit consistent with all data and reveal faint candidates for the predicted fourth and fifth images. The model does not require an extended common dark matter halo, consistent with the absence of extended bright X-ray emission on our Chandra image. The projected dark matter fractions within the Einstein radii of A (1''.02) and B (0''.61) are about 0.4 ± 0.3 and 0.55 ± 0.3. The mass to i-band light ratios of A and B, M/L i ∼8±4 M ⊙ L ⊙ −1 , appear comparable to those of radio-quiet lensing galaxies at the same redshift in the CfA-Arizona Space Telescope LEns Survey, Lenses Structure and Dynamics, and Strong Lenses in the Legacy Survey samples. The lensed SMG is extremely bright with observed f(250 μm) = 440 mJy owing to a magnification factor μ ∼ 10. The SMG spectrum shows luminous, narrow C IV λ1549 Å emission, revealing that the SMG houses a hidden quasar in addition to a violent starburst. Multicolor image reconstruction of the SMG indicates a bipolar morphology of the emitted ultraviolet (UV) light suggestive of cones through which UV light escapes a dust

  20. 3C 220.3: A radio galaxy lensing a submillimeter galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Haas, Martin; Westhues, Christian; Chini, Rolf [Astronomisches Institut, Ruhr Universität, Bochum (Germany); Leipski, Christian; Klaas, Ulrich; Meisenheimer, Klaus [Max-Planck-Institut für Astronomie, Heidelberg (Germany); Barthel, Peter; Koopmans, Léon V. E. [Kapteyn Astronomical Institute, University of Groningen (Netherlands); Wilkes, Belinda J.; Bussmann, R. Shane; Willner, S. P.; Ashby, Matthew L. N.; Kuraszkiewicz, Joanna [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Vegetti, Simona [Max-Planck-Institut für Astrophysik, Garching (Germany); Clements, David L. [Imperial College, London (United Kingdom); Fassnacht, Christopher D. [University of California, Davis, CA (United States); Horesh, Assaf [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA (United States); Lagattuta, David J. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn (Australia); Stern, Daniel; Wylezalek, Dominika, E-mail: haas@astro.rub.de [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA (United States)

    2014-07-20

    Herschel Space Observatory photometry and extensive multiwavelength follow-up have revealed that the powerful radio galaxy (PRG) 3C 220.3 at z = 0.685 acts as a gravitational lens for a background submillimeter galaxy (SMG) at z = 2.221. At an observed wavelength of 1 mm, the SMG is lensed into three distinct images. In the observed near infrared, these images are connected by an arc of ∼1''.8 radius forming an Einstein half-ring centered near the radio galaxy. In visible light, only the arc is apparent. 3C 220.3 is the only known instance of strong galaxy-scale lensing by a PRG not located in a galaxy cluster and therefore it offers the potential to probe the dark matter content of the radio galaxy host. Lens modeling rejects a single lens, but two lenses centered on the radio galaxy host A and a companion B, separated by 1''.5, provide a fit consistent with all data and reveal faint candidates for the predicted fourth and fifth images. The model does not require an extended common dark matter halo, consistent with the absence of extended bright X-ray emission on our Chandra image. The projected dark matter fractions within the Einstein radii of A (1''.02) and B (0''.61) are about 0.4 ± 0.3 and 0.55 ± 0.3. The mass to i-band light ratios of A and B, M/L{sub i}∼8±4 M{sub ⊙} L{sub ⊙}{sup −1}, appear comparable to those of radio-quiet lensing galaxies at the same redshift in the CfA-Arizona Space Telescope LEns Survey, Lenses Structure and Dynamics, and Strong Lenses in the Legacy Survey samples. The lensed SMG is extremely bright with observed f(250 μm) = 440 mJy owing to a magnification factor μ ∼ 10. The SMG spectrum shows luminous, narrow C IV λ1549 Å emission, revealing that the SMG houses a hidden quasar in addition to a violent starburst. Multicolor image reconstruction of the SMG indicates a bipolar morphology of the emitted ultraviolet (UV) light suggestive of cones through which UV light escapes a

  1. WISE-Selected Red and Obscured Quasars in Stripe 82

    Science.gov (United States)

    Glikman, Eilat; Lacy, M.; Urrutia, T.; Urry, C. M.

    2013-01-01

    We identified a sample of 120 dust-reddened quasars identified by matching radio sources detected at 1.4 GHz in the Faint Images of the Radio Sky at Twenty Centimeters (FIRST) survey with the near-infrared Two Micron All Sky Survey (2MASS) catalog and color-selecting red sources. We interpret this population of objects as a tansitional phase in merger-driven quasar/galaxy co-evolution where these reddened quasars are shedding their dusty environment prior to becoming a “normal” blue quasar. When correcting for extinction, we find that red quasars make up ~15%-20% of the luminous quasar population. The radio requirement was intended to avoid contamination from stars, but restricts our sample to radio-detected objects. With the release of the Wide-Field Infrared Survey Explorer (WISE) we can now select all red quasars regardless of their radio propoerties, using infrared colors. We present a pilot survey for heavily obscured luminous quasars using infrared selection from WISE colors in the SDSS Stripe 82. We concentrated on objects with both bright WISE 22 micron fluxes and 2MASS magnitudes that lack spectra in SDSS to identify the brightest (mostly high luminosity) sources that complement the fainter objects in Spitzer-selected samples. Our relatively liberal color selection produced a candidate list of 12 sources. We obtained near-infrared spectra for all using SpeX on IRTF and have spectroscopically confirmed at least five obscured and reddened quasars. We explore the nature of the dusty quasar population and how it depends on redshift, luminosity and radio-loudness.

  2. SPITZER OBSERVATIONS OF YOUNG RED QUASARS

    International Nuclear Information System (INIS)

    Urrutia, Tanya; Lacy, Mark; Spoon, Henrik; Glikman, Eilat; Petric, Andreea; Schulz, Bernhard

    2012-01-01

    We present mid-infrared spectra and photometry of 13 redshift 0.4 < z < 1 dust reddened quasars obtained with Spitzer IRS and MIPS. We compare properties derived from their infrared spectral energy distributions (intrinsic active galactic nucleus (AGN) luminosity and far-infrared luminosity from star formation) to the host luminosities and morphologies from Hubble Space Telescope imaging, and black hole masses estimated from optical and/or near-infrared spectroscopy. Our results are broadly consistent with models in which most dust reddened quasars are an intermediate phase between a merger-driven starburst triggering a completely obscured AGN, and a normal, unreddened quasar. We find that many of our objects have high accretion rates, close to the Eddington limit. These objects tend to fall below the black hole mass-bulge luminosity relation as defined by local galaxies, whereas most of our low accretion rate objects are slightly above the local relation, as typical for normal quasars at these redshifts. Our observations are therefore most readily interpreted in a scenario in which galaxy stellar mass growth occurs first by about a factor of three in each merger/starburst event, followed sometime later by black hole growth by a similar amount. We do not, however, see any direct evidence for quasar feedback affecting star formation in our objects, for example, in the form of a relationship between accretion rate and star formation. Five of our objects, however, do show evidence for outflows in the [O III]5007 Å emission line profile, suggesting that the quasar activity is driving thermal winds in at least some members of our sample.

  3. High resolution x-ray and gamma ray imaging using diffraction lenses with mechanically bent crystals

    Science.gov (United States)

    Smither, Robert K [Hinsdale, IL

    2008-12-23

    A method for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation is provided. High quality mechanically bent diffracting crystals of 0.1 mm radial width are used for focusing the radiation and directing the radiation to an array of detectors which is used for analyzing their addition to collect data as to the location of the source of radiation. A computer is used for converting the data to an image. The invention also provides for the use of a multi-component high resolution detector array and for narrow source and detector apertures.

  4. Are quasars local

    International Nuclear Information System (INIS)

    Terrell, J.

    1974-01-01

    The problems of interpreting quasars as galaxies, at distances of billions of light-years, seem to be increasing with time and with observational knowledge. The incredibly large energy and brightness requirements, the very small size and thus high surface brightness required by their rapid fluctuations in luminosity, the recently-discovered radio-source separation speeds apparently much greater than the speed of light, their general lack of association with distant galaxies, and many other properties are all very difficult to explain on the basis of cosmological distance. The very local quasar model, involving much less massive and bright objects--perhaps similar to Type O stars--emitted at relativistic speeds by the center of our own galaxy, greatly eases these difficulties. Since such ejected objects also seem necessary to explain the similarly strange properties of radio galaxies, the emission of local quasars from some galaxies might be deduced on this basis alone. (6 figures) (U.S.)

  5. Is every quasar beamed?

    Science.gov (United States)

    Barthel, Peter D.

    1989-01-01

    A companion paper (Barthel et al.) reports the discovery of superluminal motion in the core of 4C 34.47, the largest known quasi-stellar radio source. Superluminal motion, the apparent continuity of small- and large-scale one-sided radio jets, and the recently established depolarization asymmetry in luminous quasars find a natural explanation in the effects of relativistic beaming. In the frameworkof of this relativistic beaming model, the available data imply that all radio-loud quasars are beamed toward the earth. Powerful radio galaxies may well form the unbeamed parent population. Radio-quiet QSOs and powerful infrared galaxies can be unified using similar orientation effects.

  6. FIRST-2MASS RED QUASARS: TRANSITIONAL OBJECTS EMERGING FROM THE DUST

    International Nuclear Information System (INIS)

    Glikman, Eilat; Urrutia, Tanya; Lacy, Mark; Djorgovski, S. George; Mahabal, Ashish; Myers, Adam D.; Ross, Nicholas P.; Petitjean, Patrick; Ge, Jian; Schneider, Donald P.; York, Donald G.

    2012-01-01

    We present a sample of 120 dust-reddened quasars identified by matching radio sources detected at 1.4 GHz in the Faint Images of the Radio Sky at Twenty Centimeters survey with the near-infrared Two Micron All Sky Survey catalog and color-selecting red sources. Optical and/or near-infrared spectroscopy provide broad wavelength sampling of their spectral energy distributions that we use to determine their reddening, characterized by E(B – V). We demonstrate that the reddening in these quasars is best described by Small-Magellanic-Cloud-like dust. This sample spans a wide range in redshift and reddening (0.1 ∼< z ∼< 3, 0.1 ∼< E(B – V) ∼< 1.5), which we use to investigate the possible correlation of luminosity with reddening. At every redshift, dust-reddened quasars are intrinsically the most luminous quasars. We interpret this result in the context of merger-driven quasar/galaxy co-evolution where these reddened quasars are revealing an emergent phase during which the heavily obscured quasar is shedding its cocoon of dust prior to becoming a 'normal' blue quasar. When correcting for extinction, we find that, depending on how the parent population is defined, these red quasars make up ∼< 15%-20% of the luminous quasar population. We estimate, based on the fraction of objects in this phase, that its duration is 15%-20% as long as the unobscured, blue quasar phase.

  7. Characteristics of the retinal images of the eye optical systems with implanted intraocular lenses

    Science.gov (United States)

    Siedlecki, Damian; Zając, Marek; Nowak, Jerzy

    2007-04-01

    Cataract, or opacity of crystalline lens in the human eye is one of the most frequent reasons of blindness nowadays. Removing the pathologically altered crystalline lens and replacing it with artificial implantable intraocular lens (IOL) is practically the only therapy in this illness. There exist a wide variety of artificial IOL types on the medical market, differing in their material and design (shape). In this paper six exemplary models of IOL's made of PMMA, acrylic and silicone are considered. The retinal image quality is analyzed numerically on the basis of Liou-Brennan eye model with these IOL's inserted. Chromatic aberration as well as polychromatic Point Spread Function and Modulation Transfer Function are calculated as most adequate image quality measures. The calculations made with Zemax TM software show the importance of chromatic aberration correction.

  8. Learning unit: Thin lenses

    Science.gov (United States)

    Nita, L.-S.

    2012-04-01

    Learning unit: Thin lenses "Why objects seen through lenses are sometimes upright and sometimes reversed" Nita Laura Simona National College of Arts and Crafts "Constantin Brancusi", Craiova, Romania 1. GEOMETRIC OPTICS. 13 hours Introduction (models, axioms, principles, conventions) 1. Thin lenses (Types of lenses. Defining elements. Path of light rays through lenses. Image formation. Required physical quantities. Lens formulas). 2. Lens systems (Non-collated lenses. Focalless systems). 3. Human eye (Functioning as an optical system. Sight defects and their corrections). 4. Optical instruments (Characteristics exemplified by a magnifying glass. Paths of light rays through a simplified photo camera. Path of light rays through a classical microscope) (Physics curriculum for the IXth grade/ 2011). This scenario exposes a learning unit based on experimental sequences (defining specific competencies), as a succession of lessons started by noticing a problem whose solution assumes the setup of an experiment under laboratory conditions. Progressive learning of theme objectives are realised with sequential experimental steps. The central cognitive process is the induction or the generalization (development of new knowledge based on observation of examples or counterexamples of the concept to be learnt). Pupil interest in theme objectives is triggered by problem-situations, for example: "In order to better see small objects I need a magnifying glass. But when using a magnifier, small object images are sometimes seen upright and sometimes seen reversed!" Along the way, pupils' reasoning will converge to the idea: "The image of an object through a lens depends on the relative distances among object, lens, and observer". Associated learning model: EXPERIMENT Specific competencies: derived from the experiment model, in agreement with the following learning unit steps I. Evoking - Anticipation: Size of the problem, formulation of hypotheses and planning of experiment. II

  9. Sloan Digital Sky Survey III photometric quasar clustering: probing the initial conditions of the Universe

    International Nuclear Information System (INIS)

    Ho, Shirley; Agarwal, Nishant; Lyons, Richard; Disbrow, Ashley; O'Connell, Ross; Myers, Adam D.; Seo, Hee-Jong; Schlegel, David; Ross, Nicholas P.; Ross, Ashley; Hirata, Christopher; Huff, Eric; Weinberg, David; Padmanabhan, Nikhil; Slosar, Anže; Strauss, Michael; Bahcall, Neta; Schneider, Donald P.; Brinkmann, J.; Palanque-Delabrouille, Nathalie

    2015-01-01

    The Sloan Digital Sky Survey has surveyed 14,555 square degrees of the sky, and delivered over a trillion pixels of imaging data. We present the large-scale clustering of 1.6 million quasars between z=0.5 and z=2.5 that have been classified from this imaging, representing the highest density of quasars ever studied for clustering measurements. This data set spans 0∼ 11,00 square degrees and probes a volume of 80 h −3 Gpc 3 . In principle, such a large volume and medium density of tracers should facilitate high-precision cosmological constraints. We measure the angular clustering of photometrically classified quasars using an optimal quadratic estimator in four redshift slices with an accuracy of ∼ 25% over a bin width of δ l  ∼ 10−15 on scales corresponding to matter-radiation equality and larger (0ℓ ∼ 2−3). Observational systematics can strongly bias clustering measurements on large scales, which can mimic cosmologically relevant signals such as deviations from Gaussianity in the spectrum of primordial perturbations. We account for systematics by employing a new method recently proposed by Agarwal et al. (2014) to the clustering of photometrically classified quasars. We carefully apply our methodology to mitigate known observational systematics and further remove angular bins that are contaminated by unknown systematics. Combining quasar data with the photometric luminous red galaxy (LRG) sample of Ross et al. (2011) and Ho et al. (2012), and marginalizing over all bias and shot noise-like parameters, we obtain a constraint on local primordial non-Gaussianity of f NL  = −113 +154 −154  (1σ error). We next assume that the bias of quasar and galaxy distributions can be obtained independently from quasar/galaxy-CMB lensing cross-correlation measurements (such as those in Sherwin et al. (2013)). This can be facilitated by spectroscopic observations of the sources, enabling the redshift distribution to be completely determined, and

  10. OBSERVATIONAL UPPER BOUND ON THE COSMIC ABUNDANCES OF NEGATIVE-MASS COMPACT OBJECTS AND ELLIS WORMHOLES FROM THE SLOAN DIGITAL SKY SURVEY QUASAR LENS SEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryuichi; Asada, Hideki [Faculty of Science and Technology, Hirosaki University, Hirosaki 036-8561 (Japan)

    2013-05-01

    The latest result in the Sloan Digital Sky Survey Quasar Lens Search (SQLS) has set the first cosmological constraints on negative-mass compact objects and Ellis wormholes. There are no multiple images lensed by the above two exotic objects for {approx}50, 000 distant quasars in the SQLS data. Therefore, an upper bound is put on the cosmic abundances of these lenses. The number density of negative-mass compact objects is n < 10{sup -8}(10{sup -4}) h {sup 3} Mpc{sup -3} at the mass scale |M| > 10{sup 15}(10{sup 12}) M{sub Sun }, which corresponds to the cosmological density parameter |{Omega}| < 10{sup -4} at the galaxy and cluster mass range |M| = 10{sup 12-15} M{sub Sun }. The number density of the Ellis wormhole is n < 10{sup -4} h {sup 3} Mpc{sup -3} for a range of the throat radius a = 10-10{sup 4} pc, which is much smaller than the Einstein ring radius.

  11. The luminosity function of quasars

    Science.gov (United States)

    Pei, Yichuan C.

    1995-01-01

    We propose a new evolutionary model for the optical luminosity function of quasars. Our analytical model is derived from fits to the empirical luminosity function estimated by Hartwick and Schade and Warren, Hewett, and Osmer on the basis of more than 1200 quasars over the range of redshifts 0 approximately less than z approximately less than 4.5. We find that the evolution of quasars over this entire redshift range can be well fitted by a Gaussian distribution, while the shape of the luminosity function can be well fitted by either a double power law or an exponential L(exp 1/4) law. The predicted number counts of quasars, as a function of either apparent magnitude or redshift, are fully consistent with the observed ones. Our model indicates that the evolution of quasars reaches its maximum at z approximately = 2.8 and declines at higher redshifts. An extrapolation of the evolution to z approximately greater than 4.5 implies that quasars may have started their cosmic fireworks at z(sub f) approximately = 5.2-5.5. Forthcoming surveys of quasars at these redshifts will be critical to constrain the epoch of quasar formation. All the results we derived are based on observed quasars and are therefore subject to the bias of obscuration by dust in damped Ly alpha systems. Future surveys of these absorption systems at z approximately greater than 3 will also be important if the formation epoch of quasars is to be known unambiguously.

  12. Q-3D: Imaging Spectroscopy of Quasar Hosts with JWST Analyzed with a Powerful New PSF Decomposition and Spectral Analysis Package

    Science.gov (United States)

    Wylezalek, Dominika; Veilleux, Sylvain; Zakamska, Nadia; Barrera-Ballesteros, J.; Luetzgendorf, N.; Nesvadba, N.; Rupke, D.; Sun, A.

    2017-11-01

    In the last few years, optical and near-IR IFU observations from the ground have revolutionized extragalactic astronomy. The unprecedented infrared sensitivity, spatial resolution, and spectral coverage of the JWST IFUs will ensure high demand from the community. For a wide range of extragalactic phenomena (e.g. quasars, starbursts, supernovae, gamma ray bursts, tidal disruption events) and beyond (e.g. nebulae, debris disks around bright stars), PSF contamination will be an issue when studying the underlying extended emission. We propose to provide the community with a PSF decomposition and spectral analysis package for high dynamic range JWST IFU observations allowing the user to create science-ready maps of relevant spectral features. Luminous quasars, with their bright central source (quasar) and extended emission (host galaxy), are excellent test cases for this software. Quasars are also of high scientific interest in their own right as they are widely considered to be the main driver in regulating massive galaxy growth. JWST will revolutionize our understanding of black hole-galaxy co-evolution by allowing us to probe the stellar, gas, and dust components of nearby and distant galaxies, spatially and spectrally. We propose to use the IFU capabilities of NIRSpec and MIRI to study the impact of three carefully selected luminous quasars on their hosts. Our program will provide (1) a scientific dataset of broad interest that will serve as a pathfinder for JWST science investigations in IFU mode and (2) a powerful new data analysis tool that will enable frontier science for a wide swath of astrophysical research.

  13. Is every quasar beamed?

    International Nuclear Information System (INIS)

    Barthel, P.D.

    1989-01-01

    A companion paper (Barthel et al.) reports the discovery of superluminal motion in the core of 4C 34.47, the largest known quasi-stellar radio source. Superluminal motion, the apparent continuity of small- and large-scale one-sided radio jets, and the recently established depolarization asymmetry in luminous quasars find a natural explanation in the effects of relativistic beaming. In the frameworkof of this relativistic beaming model, the available data imply that all radio-loud quasars are beamed toward the earth. Powerful radio galaxies may well form the unbeamed parent population. Radio-quiet QSOs and powerful infrared galaxies can be unified using similar orientation effects. 76 references

  14. Constraining cosmic curvature by using age of galaxies and gravitational lenses

    International Nuclear Information System (INIS)

    Rana, Akshay; Mahajan, Shobhit; Mukherjee, Amitabha; Jain, Deepak

    2017-01-01

    We use two model-independent methods to constrain the curvature of the universe. In the first method, we study the evolution of the curvature parameter (Ω k 0 ) with redshift by using the observations of the Hubble parameter and transverse comoving distances obtained from the age of galaxies. Secondly, we also use an indirect method based on the mean image separation statistics of gravitationally lensed quasars. The basis of this methodology is that the average image separation of lensed images will show a positive, negative or zero correlation with the source redshift in a closed, open or flat universe respectively. In order to smoothen the datasets used in both the methods, we use a non-parametric method namely, Gaussian Process (GP). Finally from first method we obtain Ω k 0 = 0.025±0.57 for a presumed flat universe while the cosmic curvature remains constant throughout the redshift region 0 < z < 1.37 which indicates that the universe may be homogeneous. Moreover, the combined result from both the methods suggests that the universe is marginally closed. However, a flat universe can be incorporated at 3σ level.

  15. The QUASAR facility

    Science.gov (United States)

    Gates, David

    2013-10-01

    The QUAsi-Axisymmetric Research (QUASAR) stellarator is a new facility which can solve two critical problems for fusion, disruptions and steady-state, and which provides new insights into the role of magnetic symmetry in plasma confinement. If constructed it will be the only quasi-axisymmetric stellarator in the world. The innovative principle of quasi-axisymmetry (QA) will be used in QUASAR to study how ``tokamak-like'' systems can be made: 1) Disruption-free, 2) Steady-state with low recirculating power, while preserving or improving upon features of axisymmetric tokamaks, such as 1) Stable at high pressure simultaneous with 2) High confinement (similar to tokamaks), and 3) Scalable to a compact reactor Stellarator research is critical to fusion research in order to establish the physics basis for a magnetic confinement device that can operate efficiently in steady-state, without disruptions at reactor-relevant parameters. The two large stellarator experiments - LHD in Japan and W7-X under construction in Germany are pioneering facilities capable of developing 3D physics understanding at large scale and for very long pulses. The QUASAR design is unique in being QA and optimized for confinement, stability, and moderate aspect ratio (4.5). It projects to a reactor with a major radius of ~8 m similar to advanced tokamak concepts. It is striking that (a) the EU DEMO is a pulsed (~2.5 hour) tokamak with major R ~ 9 m and (b) the ITER physics scenarios do not presume steady-state behavior. Accordingly, QUASAR fills a critical gap in the world stellarator program. This work supported by DoE Contract No. DEAC02-76CH03073.

  16. Circum-Galactic Medium in the Halo of Quasars

    Directory of Open Access Journals (Sweden)

    Riccardo Ottolina

    2017-12-01

    Full Text Available The properties of circum-galactic gas in the halo of quasar host galaxies are investigated analyzing Mg II 2800 and C IV 1540 absorption-line systems along the line of sight close to quasars. We used optical spectroscopy of closely aligned pairs of quasars (projected distance ≤ 200 kpc, but at very different redshift obtained at the VLT and Gran Telescopio Canarias to investigate the distribution of the absorbing gas for a sample of quasars at z ~1. Absorption systems of EW ≥0.3 associated with the foreground quasars are revealed up to 200 kpc from the centre of the host galaxy, showing that the structure of the absorbing gas is patchy with a covering fraction quickly decreasing beyond 100 kpc. In this contribution we use optical and near-IR images obtained at VLT to investigate the relations between the properties of the circum-galactic medium of the host galaxies and of the large scale galaxy environments of the foreground quasars.

  17. A Survey of z>5.7 Quasars in the Sloan Digital Sky Survey IV

    DEFF Research Database (Denmark)

    Fan, Xiaohui; Strauss, Michael A.; Richards, Gordon T.

    2005-01-01

    We present the discovery of seven quasars at z>5.7, selected from ~2000 deg^2 of multicolor imaging data of the Sloan Digital Sky Survey (SDSS). The new quasars have redshifts z from 5.79 to 6.13. Five are selected as part of a complete flux-limited sample in the SDSS Northern Galactic Cap; two...

  18. Cosmology with weak lensing surveys

    International Nuclear Information System (INIS)

    Munshi, Dipak; Valageas, Patrick; Waerbeke, Ludovic van; Heavens, Alan

    2008-01-01

    Weak gravitational lensing is responsible for the shearing and magnification of the images of high-redshift sources due to the presence of intervening matter. The distortions are due to fluctuations in the gravitational potential, and are directly related to the distribution of matter and to the geometry and dynamics of the Universe. As a consequence, weak gravitational lensing offers unique possibilities for probing the Dark Matter and Dark Energy in the Universe. In this review, we summarise the theoretical and observational state of the subject, focussing on the statistical aspects of weak lensing, and consider the prospects for weak lensing surveys in the future. Weak gravitational lensing surveys are complementary to both galaxy surveys and cosmic microwave background (CMB) observations as they probe the unbiased non-linear matter power spectrum at modest redshifts. Most of the cosmological parameters are accurately estimated from CMB and large-scale galaxy surveys, so the focus of attention is shifting to understanding the nature of Dark Matter and Dark Energy. On the theoretical side, recent advances in the use of 3D information of the sources from photometric redshifts promise greater statistical power, and these are further enhanced by the use of statistics beyond two-point quantities such as the power spectrum. The use of 3D information also alleviates difficulties arising from physical effects such as the intrinsic alignment of galaxies, which can mimic weak lensing to some extent. On the observational side, in the next few years weak lensing surveys such as CFHTLS, VST-KIDS and Pan-STARRS, and the planned Dark Energy Survey, will provide the first weak lensing surveys covering very large sky areas and depth. In the long run even more ambitious programmes such as DUNE, the Supernova Anisotropy Probe (SNAP) and Large-aperture Synoptic Survey Telescope (LSST) are planned. Weak lensing of diffuse components such as the CMB and 21 cm emission can also

  19. A Main Sequence for Quasars

    Directory of Open Access Journals (Sweden)

    Paola Marziani

    2018-03-01

    Full Text Available The last 25 years saw a major step forward in the analysis of optical and UV spectroscopic data of large quasar samples. Multivariate statistical approaches have led to the definition of systematic trends in observational properties that are the basis of physical and dynamical modeling of quasar structure. We discuss the empirical correlates of the so-called “main sequence” associated with the quasar Eigenvector 1, its governing physical parameters and several implications on our view of the quasar structure, as well as some luminosity effects associated with the virialized component of the line emitting regions. We also briefly discuss quasars in a segment of the main sequence that includes the strongest FeII emitters. These sources show a small dispersion around a well-defined Eddington ratio value, a property which makes them potential Eddington standard candles.

  20. Intergalactic dust and quasar distribution

    International Nuclear Information System (INIS)

    Soltan, A.

    1979-01-01

    Non-homogeneous intergalactic extinction may considerably affect the quasar distribution. Especially samples of quasars isolated on the basis of B-V colours are subject to this phenomenon. Apparent grouping and close pairs of quasars reported in the literature may be a result of intergalactic dust. Using surface distribution of faint blue objects selected by Hawkins and Reddish it is estimated that intergalactic extinction in B should reach approximately 1 mag out to the redshift of approximately 1. This is slightly larger than predicted by theory and comparable to the mean dust density derived from observations. (Author)

  1. On the Role of the Environments and Star Formation for Quasar Activity

    Energy Technology Data Exchange (ETDEWEB)

    Bettoni, Daniela; Falomo, Renato [INAF - Osservatorio Astronomico di Padova, Padua (Italy); Kotilainen, Jari K. [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Turku (Finland); Tuorla Observatory, Department of Physics and Astronomy, University of Turku, Turku (Finland); Karhunen, Kalle, E-mail: daniela.bettoni@oapd.inaf.it [Tuorla Observatory, Department of Physics and Astronomy, University of Turku, Turku (Finland)

    2017-11-16

    We investigate the host galaxy and environment properties of a sample of 400 low z (<0.5) quasars that were imaged in the SDSS Stripe82. We can detect and study the properties of the host galaxy for more than 75% of the data sample. We discover that quasar are mainly hosted in luminous galaxies of absolute magnitude M{sup *} − 3 < M(R) < M{sup *1} and that in the quasar environments the galaxy number density is comparable to that of inactive galaxies of similar luminosities. For these quasars we undertake also a study in u,g,r,i, and z SDSS bands and again we discover that the mean colors of the quasar host galaxy it is not very different with respect to the values of the sample of inactive galaxies. For a subsample of low z sources the imaging study is complemented by spectroscopy of quasar hosts and of close companion galaxies. This study suggests that the supply and cause of the nuclear activity depends only weakly on the local environment of quasars. Contrary to past suggestions, for low redshift quasar there is a very modest connection between recent star formation and the nuclear activity.

  2. The space distribution of quasars

    International Nuclear Information System (INIS)

    Hartwick, F.D.A.; Schade, D.

    1990-01-01

    A review of the current understanding of the space density (expressed in the form of luminsoity functions) and clustering properties of quasars is presented. It is pointed out that the present knowledge of the quasar luminosity function for z less than 2.2 would appear to be quite secure. In addition, the statistics of the luminosity function for z greater than 3 are improving rapidly owing to several large surveys currently underway. Deep surveys are required to determine whether the decline in space density at z greater than 3 observed for the most luminous quasars also applies to the intrinsically faintest objects. It is expected that the focus of future work will be on determining the relationship between classical quasars and their less luminous and/or obscured relatives. 202 refs

  3. Early Science with the Large Millimeter Telescope: Detection of Dust Emission in Multiple Images of a Normal Galaxy at z > 4 Lensed by a Frontier Fields Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Pope, Alexandra; Battisti, Andrew; Wilson, Grant W.; Calzetti, Daniela; Cybulski, Ryan; Giavalisco, Mauro; Kirkpatrick, Allison [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Montaña, Alfredo; Aretxaga, Itziar; Hughes, David [Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), Luis Enrique Erro 1, Sta. Ma. Tonantzintla, 72840 Puebla (Mexico); Limousin, Marceau [Aix Marseille Univ, CNRS, LAM, Laboratoire d' Astrophysique de Marseille, Marseille (France); Marchesini, Danilo; Kado-Fong, Erin [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Alberts, Stacey [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Avila-Reese, Vladimir [Instituto de Astronomía, Universidad Nacional Autónoma de México, A.P. 70-264, 04510, CDMX (Mexico); Bermejo-Climent, José Ramón [Departamento de Astrofísica, Universidad de La Laguna. Vía Láctea s/n, La Laguna 38200, Tenerife (Spain); Brammer, Gabriel [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bravo-Alfaro, Hector [Departamento de Astronomia, Universidad de Guanajuato, Apdo. Postal 144, Guanajuato 36000 (Mexico); Chary, Ranga-Ram [Infrared Processing and Analysis Center, MS314-6, California Institute of Technology, Pasadena, CA 91125 (United States); Keller, Erica, E-mail: pope@astro.umass.edu [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); and others

    2017-04-01

    We directly detect dust emission in an optically detected, multiply imaged galaxy lensed by the Frontier Fields cluster MACSJ0717.5+3745. We detect two images of the same galaxy at 1.1 mm with the AzTEC camera on the Large Millimeter Telescope leaving no ambiguity in the counterpart identification. This galaxy, MACS0717-Az9, is at z > 4 and the strong lensing model ( μ = 7.5) allows us to calculate an intrinsic IR luminosity of 9.7 × 10{sup 10} L {sub ⊙} and an obscured star formation rate of 14.6 ± 4.5 M {sub ⊙} yr{sup −1}. The unobscured star formation rate from the UV is only 4.1 ± 0.3 M {sub ⊙} yr{sup −1}, which means the total star formation rate (18.7 ± 4.5 M {sub ⊙} yr{sup −1}) is dominated (75%–80%) by the obscured component. With an intrinsic stellar mass of only 6.9 × 10{sup 9} M {sub ⊙}, MACS0717-Az9 is one of only a handful of z > 4 galaxies at these lower masses that is detected in dust emission. This galaxy lies close to the estimated star formation sequence at this epoch. However, it does not lie on the dust obscuration relation (IRX- β ) for local starburst galaxies and is instead consistent with the Small Magellanic Cloud attenuation law. This remarkable lower mass galaxy, showing signs of both low metallicity and high dust content, may challenge our picture of dust production in the early universe.

  4. The quasar luminosity function at redshift 4 with the Hyper Suprime-Cam Wide Survey

    Science.gov (United States)

    Akiyama, Masayuki; He, Wanqiu; Ikeda, Hiroyuki; Niida, Mana; Nagao, Tohru; Bosch, James; Coupon, Jean; Enoki, Motohiro; Imanishi, Masatoshi; Kashikawa, Nobunari; Kawaguchi, Toshihiro; Komiyama, Yutaka; Lee, Chien-Hsiu; Matsuoka, Yoshiki; Miyazaki, Satoshi; Nishizawa, Atsushi J.; Oguri, Masamune; Ono, Yoshiaki; Onoue, Masafusa; Ouchi, Masami; Schulze, Andreas; Silverman, John D.; Tanaka, Manobu M.; Tanaka, Masayuki; Terashima, Yuichi; Toba, Yoshiki; Ueda, Yoshihiro

    2018-01-01

    We present the luminosity function of z ˜ 4 quasars based on the Hyper Suprime-Cam Subaru Strategic Program Wide layer imaging data in the g, r, i, z, and y bands covering 339.8 deg2. From stellar objects, 1666 z ˜ 4 quasar candidates are selected via the g-dropout selection down to i = 24.0 mag. Their photometric redshifts cover the redshift range between 3.6 and 4.3, with an average of 3.9. In combination with the quasar sample from the Sloan Digital Sky Survey in the same redshift range, a quasar luminosity function covering the wide luminosity range of M1450 = -22 to -29 mag is constructed. The quasar luminosity function is well described by a double power-law model with a knee at M1450 = -25.36 ± 0.13 mag and a flat faint-end slope with a power-law index of -1.30 ± 0.05. The knee and faint-end slope show no clear evidence of redshift evolution from those seen at z ˜ 2. The flat slope implies that the UV luminosity density of the quasar population is dominated by the quasars around the knee, and does not support the steeper faint-end slope at higher redshifts reported at z > 5. If we convert the M1450 luminosity function to the hard X-ray 2-10 keV luminosity function using the relation between the UV and X-ray luminosity of quasars and its scatter, the number density of UV-selected quasars matches well with that of the X-ray-selected active galactic nuclei (AGNs) above the knee of the luminosity function. Below the knee, the UV-selected quasars show a deficiency compared to the hard X-ray luminosity function. The deficiency can be explained by the lack of obscured AGNs among the UV-selected quasars.

  5. Relativistic beaming and quasar statistics

    International Nuclear Information System (INIS)

    Orr, M.J.L.; Browne, I.W.A.

    1982-01-01

    The statistical predictions of a unified scheme for the radio emission from quasars are explored. This scheme attributes the observed differences between flat- and steep-spectrum quasars to projection and the effects of relativistic beaming of the emission from the nuclear components. We use a simple quasar model consisting of a compact relativistically beamed core with spectral index zero and unbeamed lobes, spectral index - 1, to predict the proportion of flat-spectrum sources in flux-limited samples selected at different frequencies. In our model this fraction depends on the core Lorentz factor, γ and we find that a value of approximately 5 gives satisfactory agreement with observation. In a similar way the model is used to construct the expected number/flux density counts for flat-spectrum quasars from the observed steep-spectrum counts. Again, good agreement with the observations is obtained if the average core Lorentz factor is about 5. Independent estimates of γ from observations of superluminal motion in quasars are of the same order of magnitude. We conclude that the statistical properties of quasars are entirely consistent with the predictions of simple relativistic-beam models. (author)

  6. Camera for Quasars in the Early Universe (CQUEAN)

    Science.gov (United States)

    Kim, Eunbin; Park, W.; Lim, J.; Jeong, H.; Kim, J.; Oh, H.; Pak, S.; Im, M.; Kuehne, J.

    2010-05-01

    The early universe of z ɳ is where the first stars, galaxies, and quasars formed, starting the re-ionization of the universe. The discovery and the study of quasars in the early universe allow us to witness the beginning of history of astronomical objects. In order to perform a medium-deep, medium-wide, imaging survey of quasars, we are developing an optical CCD camera, CQUEAN (Camera for QUasars in EArly uNiverse) which uses a 1024*1024 pixel deep-depletion CCD. It has an enhanced QE than conventional CCD at wavelength band around 1μm, thus it will be an efficient tool for observation of quasars at z > 7. It will be attached to the 2.1m telescope at McDonald Observatory, USA. A focal reducer is designed to secure a larger field of view at the cassegrain focus of 2.1m telescope. For long stable exposures, auto-guiding system will be implemented by using another CCD camera viewing an off-axis field. All these instruments will be controlled by the software written in python on linux platform. CQUEAN is expected to see the first light during summer in 2010.

  7. Clustering of quasars in SDSS-IV eBOSS: study of potential systematics and bias determination

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, Pierre; Goff, Jean-Marc Le; Burtin, Etienne; Bourboux, Hélion du Mas des; Palanque-Delabrouille, Nathalie [IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France); Eftekharzadeh, Sarah; Myers, Adam [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); White, Martin [Lawrence Berkeley National Lab, 1 Cyclotron Rd, Berkeley CA 94720 (United States); Ross, Ashley J. [Center for Cosmology and AstroParticle Physics, The Ohio State University, Columbus, OH 43210 (United States); Tinker, Jeremy [Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, 10003 (United States); Tojeiro, Rita [School of Physics and Astronomy, North Haugh, St. Andrews KY16 9SS (United Kingdom); Bautista, Julian; Dawson, Kyle [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Brinkmann, Jonathan [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349 (United States); Comparat, Johan [Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstraße, 85748 Garching (Germany); Kneib, Jean-Paul [Laboratoire d' Astrophysique, École Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland); McGreer, Ian D. [Steward Observatory, University of Arizona, Tucson, AZ 85721–0065 (United States); Percival, Will J. [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama building, PO1 3FX, Portsmouth (United Kingdom); Prada, Francisco, E-mail: jmlegoff@cea.fr [Instituto de Fìsica Teórica (IFT) UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); and others

    2017-07-01

    We study the first year of the eBOSS quasar sample in the redshift range 0.9< z <2.2 which includes 68,772 homogeneously selected quasars. We show that the main source of systematics in the evaluation of the correlation function arises from inhomogeneities in the quasar target selection, particularly related to the extinction and depth of the imaging data used for targeting. We propose a weighting scheme that mitigates these systematics. We measure the quasar correlation function and provide the most accurate measurement to date of the quasar bias in this redshift range, b {sub Q} = 2.45 ± 0.05 at z-bar =1.55, together with its evolution with redshift. We use this information to determine the minimum mass of the halo hosting the quasars and the characteristic halo mass, which we find to be both independent of redshift within statistical error. Using a recently-measured quasar-luminosity-function we also determine the quasar duty cycle. The size of this first year sample is insufficient to detect any luminosity dependence to quasar clustering and this issue should be further studied with the final ∼500,000 eBOSS quasar sample.

  8. ESO & NOT photometric monitoring of the Cloverleaf quasar

    NARCIS (Netherlands)

    Ostensen, R; Remy, M; Lindblad, PO; Refsdal, S; Stabell, R; Surdej, J; Barthel, PD; Emanuelsen, PI; Festin, L; Gosset, E; Hainaut, O; Hakala, P; Hjelm, M; Hjorth, J; Hutsemekers, D; Jablonski, M; Kaas, AA; Kristen, H; Larsson, S; Magain, P; Pettersson, B; Pospieszalska-Surdej, A; Smette, A; Teuber, J; Thomsen, B; Van Drom, E

    1997-01-01

    The Cloverleaf quasar, H1413+117, has been photometrically monitored at ESO (La Silla, Chile) and with the NOT (La Palma, Spain) during the period 1987-1994. All good quality CCD frames have been successfully analysed using two independent methods (i.e. an automatic image decomposition technique and

  9. Thirty Meter Telescopes and Gravitational Lensing

    OpenAIRE

    Carlberg, R. G.

    2004-01-01

    Diffraction limited 30m class telescopes will play an important role in gravitational lensing studies, coming online in approximately 2015. As imaging telescopes they will complement the ~6m JWST, probing to smaller angular scales in greatly magnified objects near critical lines and for measuring shear of objects below the JWST angular scale, such as luminous super-star clusters at high redshift. The high source density will allow more detailed mass mapping in the weak lensing regime and will...

  10. Far infrared peculiar behavior of quasars

    International Nuclear Information System (INIS)

    Liu Yulin; Liu Jiying

    1988-09-01

    Many quasars possibly have nebulous envelopes with far infrared radiation. These nebulosities may be similar to fuzz in the optical region in morphology. These quasars have many properties in common. (author). Refs, 3 figs

  11. Core or Cusps: The Central Dark Matter Profile of a Strong Lensing Cluster with a Bright Central Image at Redshift 1

    Energy Technology Data Exchange (ETDEWEB)

    Collett, Thomas E.; Buckley-Geer, Elizabeth; Lin, Huan; Bacon, David; Nichol, Robert C.; Nord, Brian; Morice-Atkinson, Xan; Amara, Adam; Birrer, Simon; Kuropatkin, Nikolay; More, Anupreeta; Papovich, Casey; Romer, Kathy K.; Tessore, Nicolas; Abbott, Tim M. C.; Allam, Sahar; Annis, James; Benoit-Lévy, Aurlien; Brooks, David; Burke, David L.; Carrasco Kind, Matias; Castander, Francisco Javier J.; D’Andrea, Chris B.; da Costa, Luiz N.; Desai, Shantanu; Diehl, H. Thomas; Doel, Peter; Eifler, Tim F.; Flaugher, Brenna; Frieman, Josh; Gerdes, David W.; Goldstein, Daniel A.; Gruen, Daniel; Gschwend, Julia; Gutierrez, Gaston; James, David J.; Kuehn, Kyler; Kuhlmann, Steve; Lahav, Ofer; Li, Ting S.; Lima, Marcos; Maia, Marcio A. G.; March, Marisa; Marshall, Jennifer L.; Martini, Paul; Melchior, Peter; Miquel, Ramon; Plazas, Andrs A.; Rykoff, Eli S.; Sanchez, Eusebio; Scarpine, Vic; Schindler, Rafe; Schubnell, Michael; Sevilla-Noarbe, Ignacio; Smith, Mathew; Sobreira, Flavia; Suchyta, Eric; Swanson, Molly E. C.; Tarle, Gregory; Tucker, Douglas L.; Walker, Alistair R.

    2017-07-10

    We report on SPT-CLJ2011-5228, a giant system of arcs created by a cluster at $z=1.06$. The arc system is notable for the presence of a bright central image. The source is a Lyman Break galaxy at $z_s=2.39$ and the mass enclosed within the 14 arc second radius Einstein ring is $10^{14.2}$ solar masses. We perform a full light profile reconstruction of the lensed images to precisely infer the parameters of the mass distribution. The brightness of the central image demands that the central total density profile of the lens be shallow. By fitting the dark matter as a generalized Navarro-Frenk-White profile---with a free parameter for the inner density slope---we find that the break radius is $270^{+48}_{-76}$ kpc, and that the inner density falls with radius to the power $-0.38\\pm0.04$ at 68 percent confidence. Such a shallow profile is in strong tension with our understanding of relaxed cold dark matter halos; dark matter only simulations predict the inner density should fall as $r^{-1}$. The tension can be alleviated if this cluster is in fact a merger; a two halo model can also reconstruct the data, with both clumps (density going as $r^{-0.8}$ and $r^{-1.0}$) much more consistent with predictions from dark matter only simulations. At the resolution of our Dark Energy Survey imaging, we are unable to choose between these two models, but we make predictions for forthcoming Hubble Space Telescope imaging that will decisively distinguish between them.

  12. Periodic self-lensing from accreting massive black hole binaries

    Science.gov (United States)

    D'Orazio, Daniel J.; Di Stefano, Rosanne

    2018-03-01

    Nearly 150 massive black hole binary (MBHB) candidates at sub-pc orbital separations have been reported in recent literature. Nevertheless, the definitive detection of even a single such object remains elusive. If at least one of the black holes is accreting, the light emitted from its accretion disc will be lensed by the other black hole for binary orbital inclinations near to the line of sight. This binary self-lensing could provide a unique signature of compact MBHB systems. We show that, for MBHBs with masses in the range 106-1010 M⊙ and with orbital periods less than ˜10 yr, strong lensing events should occur in one to 10s of per cent of MBHB systems that are monitored for an entire orbit. Lensing events will last from days for the less massive, shorter period MBHBs to a year for the most massive ˜10 year orbital period MBHBs. At small inclinations of the binary orbit to the line of sight, lensing must occur and will be accompanied by periodicity due to the relativistic Doppler boost. Flares at the same phase as the otherwise average flux of the Doppler modulation would be a smoking gun signature of self-lensing and can be used to constrain binary parameters. For MBHBs with separation ≳100 Schwarzschild radii, we show that finite-sized source effects could serve as a probe of MBH accretion disc structure. Finally, we stress that our lensing probability estimate implies that ˜10 of the known MBHB candidates identified through quasar periodicity should exhibit strong lensing flares.

  13. Gravitational lensing and microlensing

    CERN Document Server

    Mollerach, Silvia

    2002-01-01

    This book provides a comprehensive and self-contained exposition of gravitational lensing phenomena. It presents the up-to-date status of gravitational lensing and microlensing, covering the cosmological applications of the observed lensing by galaxies, clusters and the large scale structures, as well as the microlensing searches in the Local Group and its applications to unveil the nature of the galactic dark matter, the search for planetary objects and the distribution of faint stars in our galaxy. Gravitational Lensing and Microlensing is pitched at the level of the graduate student interes

  14. The SDSS view of the Palomar-Green bright quasar survey

    Energy Technology Data Exchange (ETDEWEB)

    Jester, Sebastian; Schneider, Donald P.; Richards, Gordon T.; Green, Richard F.; Schmidt, Maarten; Hall, Patrick B.; Strauss, Michael A.; Vanden Berk, Daniel E.; Stoughton, Chris; Gunn, James E.; Brinkmann, Jon; Kent, Stephen M.; Smith, J.Allyn; Tucker, Douglas, L.; Yanny, Brian; /Fermilab /Penn State U., Astron. Astrophys. /Princeton U.

    2005-02-01

    The author investigates the extent to which the Palomar-Green (PG) Bright Quasar Survey (BQS) is complete and representative of the general quasar population by comparing with imaging and spectroscopy from the Sloan Digital Sky Survey. A comparison of SDSS and PG photometry of both stars and quasars reveals the need to apply a color and magnitude recalibration to the PG data. Using the SDSS photometric catalog, they define the PG's parent sample of objects that are not main-sequence stars and simulate the selection of objects from this parent sample using the PG photometric criteria and errors. This simulation shows that the effective U-B cut in the PG survey is U-B < -0.71, implying a color-related incompleteness. As the color distribution of bright quasars peaks near U-B = -0.7 and the 2-{sigma} error in U-B is comparable to the full width of the color distribution of quasars, the color incompleteness of the BQS is approximately 50% and essentially random with respect to U-B color for z < 0.5. There is however, a bias against bright quasars at 0.5 < z < 1, which is induced by the color-redshift relation of quasars (although quasars at z > 0.5 are inherently rare in bright surveys in any case). They find no evidence for any other systematic incompleteness when comparing the distributions in color, redshift, and FIRST radio properties of the BQS and a BQS-like subsample of the SDSS quasar sample. However, the application of a bright magnitude limit biases the BQS toward the inclusion of objects which are blue in g-i, in particular compared to the full range of g-i colors found among the i-band limited SDSS quasars, and even at i-band magnitudes comparable to those of the BQS objects.

  15. VizieR Online Data Catalog: UV-bright quasars (Syphers+, 2009)

    Science.gov (United States)

    Syphers, D.; Anderson, S. F.; Zheng, W.; Haggard, D.; Meiksin, A.; Schneider, D. P.; York, D. G.

    2010-03-01

    Absorption along quasar sightlines remains among the most sensitive direct measures of HeII reionization in much of the intergalactic medium (IGM). Until recently, fewer than a half-dozen unobscured quasar sightlines suitable for the HeII Gunn-Peterson test were known; although these handful demonstrated great promise, the small sample size limited confidence in cosmological inferences. We have recently added nine more such clean HeII quasars, exploiting Sloan Digital Sky Survey (SDSS) quasar samples, broadband ultraviolet (UV) imaging from Galaxy Evolution Explorer (GALEX), and high-yield UV spectroscopic confirmations from Hubble Space Telescope (HST). Here we markedly expand this approach by cross-correlating SDSS DR7 and GALEX GR4+5 to catalog 428 SDSS and 165 other quasars with z>2.78 having likely (~70%) GALEX detections, suggesting they are bright into the far-UV. Reconnaissance HST Cycle 16 Supplemental prism data for 29 of these new quasar-GALEX matches spectroscopically confirm 17 as indeed far-UV bright. At least 10 of these confirmations have clean sightlines all the way down to HeII Lyα, substantially expanding the number of known clean HeII quasars, and reaffirming the order of magnitude enhanced efficiency of our selection technique. Combined confirmations from this and our past programs yield more than 20 HeII quasars, quintupling the sample. These provide substantial progress toward a sample of HeII quasar sightlines large enough, and spanning a sufficient redshift range, to enable statistical IGM studies that may avoid individual object peculiarity and sightline variance. Our expanded catalog of hundreds of high-likelihood far-UV-bright QSOs additionally will be useful for understanding the extreme-UV properties of the quasars themselves. (2 data files).

  16. Extreme Variability Quasars from the Sloan Digital Sky Survey and the Dark Energy Survey

    Energy Technology Data Exchange (ETDEWEB)

    Rumbaugh, N.; Shen, Yue; Morganson, Eric; Liu, Xin; Banerji, M.; McMahon, R. G.; Abdalla, F. B.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D’Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Doel, P.; Frieman, J.; García-Bellido, J.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Martini, P.; Menanteau, F.; Plazas, A. A.; Reil, K.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sheldon, E.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Walker, A. R.; Wester, W.

    2018-02-20

    We perform a systematic search for long-term extreme variability quasars (EVQs) in the overlapping Sloan Digital Sky Survey (SDSS) and 3-Year Dark Energy Survey (DES) imaging, which provide light curves spanning more than 15 years. We identified ~1000 EVQs with a maximum g band magnitude change of more than 1 mag over this period, about 10% of all quasars searched. The EVQs have L_bol~10^45-10^47 erg/s and L/L_Edd~0.01-1. Accounting for selection effects, we estimate an intrinsic EVQ fraction of ~30-50% among all g<~22 quasars over a baseline of ~15 years. These EVQs are good candidates for so-called "changing-look quasars", where a spectral transition between the two types of quasars (broad-line and narrow-line) is observed between the dim and bright states. We performed detailed multi-wavelength, spectral and variability analyses for the EVQs and compared to their parent quasar sample. We found that EVQs are distinct from a control sample of quasars matched in redshift and optical luminosity: (1) their UV broad emission lines have larger equivalent widths; (2) their Eddington ratios are systematically lower; and (3) they are more variable on all timescales. The intrinsic difference in quasar properties for EVQs suggest that internal processes associated with accretion are the main driver for the observed extreme long-term variability. However, despite their different properties, EVQs seem to be in the tail of a continuous distribution of quasar properties, rather than standing out as a distinct population. We speculate that EVQs are normal quasars accreting at relatively low accretion rates, where the accretion flow is more likely to experience instabilities that drive the factor of few changes in flux on multi-year timescales.

  17. THE COMPACT RADIO STRUCTURE OF THE HIGH REDSHIFT QUASARS 0642+449, 1402+044, 1614+051

    NARCIS (Netherlands)

    GURVITS, LI; KARDASHEV, NS; POPOV, MV; SCHILIZZI, RT; BARTHEL, PD; PAULINYTOTH, IIK; KELLERMANN, KI

    In the first stage of an investigation of possible cosmological evolution effects in the compact radio structure of quasars, we have used a combined European and US VLBI network to image the milliarcsec scale morphology of three quasars with redshifts greater than 3. The sources 0642 + 449 (z =

  18. First Discoveries of z > 6 Quasars with the DECam Legacy Survey and UKIRT Hemisphere Survey

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feige; Yang, Jinyi; Wu, Xue-Bing; Yang, Qian; Li, Zefeng [Department of Astronomy, School of Physics, Peking University, Beijing 100871 (China); Fan, Xiaohui; McGreer, Ian D.; Ding, Jiani; Green, Richard [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Bian, Fuyan [Research School of Astronomy and Astrophysics, Australian National University, Weston Creek, ACT 2611 (Australia); Li, Jiang-Tao [Department of Astronomy, University of Michigan, 311 West Hall, 1085 S. University Avenue, Ann Arbor, MI, 48109 (United States); Dey, Arjun [National Optical Astronomy Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Dye, Simon [School of Physics and Astronomy, Nottingham University, University Park, Nottingham, NG7 2RD (United Kingdom); Findlay, Joseph R.; Myers, Adam D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); James, David [Cerro Tololo Inter-American Observatory, Casilla 603 La Serena (Chile); Jiang, Linhua [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Lang, Dustin [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario, M5S 3H4 (Canada); Lawrence, Andy; Ross, Nicholas P. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom); and others

    2017-04-10

    We present the first discoveries from a survey of z ≳ 6 quasars using imaging data from the DECam Legacy Survey (DECaLS) in the optical, the UKIRT Deep Infrared Sky Survey (UKIDSS) and a preliminary version of the UKIRT Hemisphere Survey (UHS) in the near-IR, and ALLWISE in the mid-IR. DECaLS will image 9000 deg{sup 2} of sky down to z {sub AB} ∼ 23.0, and UKIDSS and UHS will map the northern sky at 0 < decl. < +60°, reaching J {sub VEGA} ∼ 19.6 (5- σ ). The combination of these data sets allows us to discover quasars at redshift z ≳ 7 and to conduct a complete census of the faint quasar population at z ≳ 6. In this paper, we report on the selection method of our search, and on the initial discoveries of two new, faint z ≳ 6 quasars and one new z = 6.63 quasar in our pilot spectroscopic observations. The two new z ∼ 6 quasars are at z = 6.07 and z = 6.17 with absolute magnitudes at rest-frame wavelength 1450 Å being M {sub 1450} = −25.83 and M {sub 1450} = −25.76, respectively. These discoveries suggest that we can find quasars close to or fainter than the break magnitude of the Quasar Luminosity Function (QLF) at z ≳ 6. The new z = 6.63 quasar has an absolute magnitude of M {sub 1450} = −25.95. This demonstrates the potential of using the combined DECaLS and UKIDSS/UHS data sets to find z ≳ 7 quasars. Extrapolating from previous QLF measurements, we predict that these combined data sets will yield ∼200 z ∼ 6 quasars to z {sub AB} < 21.5, ∼1000 z ∼ 6 quasars to z {sub AB} < 23, and ∼30 quasars at z > 6.5 to J {sub VEGA} < 19.5.

  19. Precise weak lensing constraints from deep high-resolution Ks images: VLT/HAWK-I analysis of the super-massive galaxy cluster RCS2 J 232727.7-020437 at z = 0.70

    Science.gov (United States)

    Schrabback, Tim; Schirmer, Mischa; van der Burg, Remco F. J.; Hoekstra, Henk; Buddendiek, Axel; Applegate, Douglas; Bradač, Maruša; Eifler, Tim; Erben, Thomas; Gladders, Michael D.; Hernández-Martín, Beatriz; Hildebrandt, Hendrik; Hoag, Austin; Klaes, Dominik; von der Linden, Anja; Marchesini, Danilo; Muzzin, Adam; Sharon, Keren; Stefanon, Mauro

    2018-03-01

    We demonstrate that deep good-seeing VLT/HAWK-I Ks images complemented with g + z-band photometry can yield a sensitivity for weak lensing studies of massive galaxy clusters at redshifts 0.7 ≲ z ≲ 1.1, which is almost identical to the sensitivity of HST/ACS mosaics of single-orbit depth. Key reasons for this good performance are the excellent image quality frequently achievable for Ks imaging from the ground, a highly effective photometric selection of background galaxies, and a galaxy ellipticity dispersion that is noticeably lower than for optically observed high-redshift galaxy samples. Incorporating results from the 3D-HST and UltraVISTA surveys we also obtained a more accurate calibration of the source redshift distribution than previously achieved for similar optical weak lensing data sets. Here we studied the extremely massive galaxy cluster RCS2 J232727.7-020437 (z = 0.699), combining deep VLT/HAWK-I Ks images (point spread function with a 0.''35 full width at half maximum) with LBT/LBC photometry. The resulting weak lensing mass reconstruction suggests that the cluster consists of a single overdensity, which is detected with a peak significance of 10.1σ. We constrained the cluster mass to M200c/(1015 M⊙) = 2.06-0.26+0.28(stat.) ± 0.12(sys.) assuming a spherical Navarro, Frenk & White model and simulation-based priors on the concentration, making it one of the most massive galaxy clusters known in the z ≳ 0.7 Universe. We also cross-checked the HAWK-I measurements through an analysis of overlapping HST/ACS images, yielding fully consistent estimates of the lensing signal. Based on observations conducted with the ESO Very Large Telescope, the Large Binocular Telescope, and the NASA/ESA Hubble Space Telescope, as detailed in the acknowledgements.

  20. Superconducting cosmic string evolution of quasars

    International Nuclear Information System (INIS)

    Liu Yulin.

    1988-09-01

    The quasars may have been undergoing two evolutionary processes after they formed. As a result of the string loops shrinking at the first stage, the luminosities of the quasars increased gradually up to their maximum value at the redshift z ∼ 2, after then the second evolutionary stage began and the luminosity reduced. This result can be fitted by luminosity counting of quasars. Observable limit of quasars can be obtained naturally. Many phenomena, such as radiomorphology, density distribution between fuzz structure and broad line region and rotational curve may also originate from the first evolutionary stage of quasars as cosmic string. (author). 10 refs

  1. Learning through Different Lenses

    Science.gov (United States)

    Jeweler, Sue; Barnes-Robinson, Linda

    2015-01-01

    When parents and teachers help gifted kids use the metaphor "learning through different lenses," amazing things happen: Horizons open up. Ideas are focused. Thoughts are magnified and clarified. They see the big picture. Metaphoric thinking offers new and exciting ways to see the world. Viewing the world through different lenses provides…

  2. Nanofocusing refractive X-ray lenses

    International Nuclear Information System (INIS)

    Boye, Pit

    2010-01-01

    This thesis is concerned with the optimization and development of the production of nanofocusing refractive X-ray lenses. These optics made of either silicon or diamond are well-suited for high resolution X-ray microscopy. The goal of this work is the design of a reproducible manufacturing process which allows the production of silicon lenses with high precision, high quality and high piece number. Furthermore a process for the production of diamond lenses is to be developed and established. In this work, the theoretical basics of X-rays and their interaction with matter are described. Especially, aspects of synchrotron radiation are emphasized. Important in X-ray microscopy are the different optics. The details, advantages and disadvantages, in particular those of refractive lenses are given. To achieve small X-ray beams well beyond the 100 nm range a small focal length is required. This is achieved in refractive lenses by moving to a compact lens design where several single lenses are stacked behind each other. The, so-called nanofocusing refractive lenses (NFLs) have a parabolic cylindrical shape with lateral structure sizes in the micrometer range. NFLs are produced by using micro-machining techniques. These micro-fabrication processes and technologies are introduced. The results of the optimization and the final fabrication process for silicon lenses are presented. Subsequently, two experiments that are exemplary for the use of NFLs, are introduced. The rst one employs a high-resolution scanning fluorescence mapping of a geological sample, and the second one is a coherent x-ray diffraction imaging (CXDI) experiment. CXDI is able to reconstruct the illuminated object from recorded coherent diffraction patterns. In a scanning mode, referred to as ptychography, this method is even able to reconstruct the illumination and the object simultaneously. Especially the reconstructed illumination and the possibility of computed propagation of the wave field along the

  3. Nanofocusing refractive X-ray lenses

    Energy Technology Data Exchange (ETDEWEB)

    Boye, Pit

    2010-02-05

    This thesis is concerned with the optimization and development of the production of nanofocusing refractive X-ray lenses. These optics made of either silicon or diamond are well-suited for high resolution X-ray microscopy. The goal of this work is the design of a reproducible manufacturing process which allows the production of silicon lenses with high precision, high quality and high piece number. Furthermore a process for the production of diamond lenses is to be developed and established. In this work, the theoretical basics of X-rays and their interaction with matter are described. Especially, aspects of synchrotron radiation are emphasized. Important in X-ray microscopy are the different optics. The details, advantages and disadvantages, in particular those of refractive lenses are given. To achieve small X-ray beams well beyond the 100 nm range a small focal length is required. This is achieved in refractive lenses by moving to a compact lens design where several single lenses are stacked behind each other. The, so-called nanofocusing refractive lenses (NFLs) have a parabolic cylindrical shape with lateral structure sizes in the micrometer range. NFLs are produced by using micro-machining techniques. These micro-fabrication processes and technologies are introduced. The results of the optimization and the final fabrication process for silicon lenses are presented. Subsequently, two experiments that are exemplary for the use of NFLs, are introduced. The rst one employs a high-resolution scanning fluorescence mapping of a geological sample, and the second one is a coherent x-ray diffraction imaging (CXDI) experiment. CXDI is able to reconstruct the illuminated object from recorded coherent diffraction patterns. In a scanning mode, referred to as ptychography, this method is even able to reconstruct the illumination and the object simultaneously. Especially the reconstructed illumination and the possibility of computed propagation of the wave field along the

  4. Braneworld Black Hole Gravitational Lensing

    International Nuclear Information System (INIS)

    Liang Jun

    2017-01-01

    A class of braneworld black holes, which I called as Bronnikov–Melnikov–Dehen (BMD) black holes, are studied as gravitational lenses. I obtain the deflection angle in the strong deflection limit, and further calculate the angular positions and magnifications of relativistic images as well as the time delay between different relativistic images. I also compare the results with those obtained for Schwarzschild and two braneworld black holes, i.e., the tidal Reissner-Nordström (R-N) and the Casadio–Fabbri–Mazzacurati (CFM) black holes. (paper)

  5. Gravitational Lensing from a Spacetime Perspective

    Directory of Open Access Journals (Sweden)

    Perlick Volker

    2004-09-01

    Full Text Available The theory of gravitational lensing is reviewed from a spacetime perspective, without quasi-Newtonian approximations. More precisely, the review covers all aspects of gravitational lensing where light propagation is described in terms of lightlike geodesics of a metric of Lorentzian signature. It includes the basic equations and the relevant techniques for calculating the position, the shape, and the brightness of images in an arbitrary general-relativistic spacetime. It also includes general theorems on the classification of caustics, on criteria for multiple imaging, and on the possible number of images. The general results are illustrated with examples of spacetimes where the lensing features can be explicitly calculated, including the Schwarzschild spacetime, the Kerr spacetime, the spacetime of a straight string, plane gravitational waves, and others.

  6. Think Outside The Color Box: Probabilistic Target Selection And The SDSS-XDQSO Quasar Targeting Catalog

    International Nuclear Information System (INIS)

    Bovy, J.; Sheldon, E.; Hennawi, J.F.; Hogg, D.W.; Myers, A.D.

    2011-01-01

    We present the SDSS-XDQSO quasar targeting catalog for efficient flux-based quasar target selection down to the faint limit of the Sloan Digital Sky Survey (SDSS) catalog, even at medium redshifts (2.5 ∼ 3.5) quasar probabilities for all 160,904,060 point sources with dereddened i-band magnitude between 17.75 and 22.45 mag in the 14,555 deg 2 of imaging from SDSS Data Release 8. The catalog can be used to define a uniformly selected and efficient low- or medium-redshift quasar survey, such as that needed for the SDSS-III's Baryon Oscillation Spectroscopic Survey project. We show that the XDQSO technique performs as well as the current best photometric quasar-selection technique at low redshift, and outperforms all other flux-based methods for selecting the medium-redshift quasars of our primary interest. We make code to reproduce the XDQSO quasar target selection publicly available.

  7. Rest-frame optical photometry of a z-7.54 quasar and its environment

    Science.gov (United States)

    Decarli, Roberto; Banados, Eduardo; Fan, Xiaohui; Walter, Fabian; Venemans, Bram; Paolo, Emanuele; Mazzucchelli, Chiara; Wang, Feige; Stern, Daniel

    2017-10-01

    Bright quasars are unique tools to study the dawn of galaxy and black hole formation, and to investigate the properties of the universe at the earliest cosmic epochs. We recently discovered the luminous quasar ULAS J1342+0928 at a record-breaking redshift of z=7.54 (whereas the previous quasar redshift record holder was at z=7.08). The presence of a damping wing in the quasar's spectrum, associated with a highly neutral intergalactic medium, and the high bolometric luminosity, powered by accretion on a supermassive, 8e8 Msun black hole, set unparalleled constraints on the history of reionization and on the formation and evolution of first massive black holes, only 690 Myr after the Big Bang. Here we propose to obtain sensitive Spitzer observations to sample the rest-frame optical emission of this quasar and of potential bright companion galaxies. By complementing our already secured observations with HST, IRAM/NOEMA, ALMA, and many other facilities, the proposed dataset will allow us (1) to constrain the Spectral Energy Distribution of the quasar, thus disentangling the contribution of its various components at optical wavelengths; (2) to investigate the quasar environment; and (3) to lay the foundation for high-resolution imaging and sensitive spectroscopy at MIR wavelengths with the James Webb Space Telescope.

  8. Axions and polarisation of quasars

    International Nuclear Information System (INIS)

    Payez, A.; Cudell, J. R.; Hutsemekers, D.

    2008-01-01

    We present results showing that, thanks to axion-photon mixing in external magnetic fields, it is actually possible to produce an effect similar to the one needed to explain the large-scale coherent orientations of quasar polarisation vectors in visible light that have been observed in some regions of the sky

  9. IRAS 10479 - 2808: a quasar

    International Nuclear Information System (INIS)

    Clowes, R.G.; Leggett, S.K.; Savage, A.

    1991-01-01

    The IRAS point source 10479-2808 is a quasar with B J ∼ 16 and z = 0.190. It is not in the Parkes and Molonglo radio catalogues. At the resolution of the UK and ESO Schmidt telescopes it appears to be star-like, with no sign of surrounding fuzz or interactions; it is probably optically variable. (author)

  10. Identification of Metal Absorption Lines on Quasar Spectra of SDSS ...

    Indian Academy of Sciences (India)

    Key words. Line: identification—quasars: absorption lines—quasars: general. 1. Motivation. Absorption lines are often observed on the quasar spectrum. The intrinsic absorption lines of quasars are often thought to originate in the ionized gas that are physically related with the corresponding quasars, while the intervening ...

  11. Fractal Quasar Clouds

    Science.gov (United States)

    Bottorff, Mark; Ferland, Gary

    2001-03-01

    This paper examines whether a fractal cloud geometry can reproduce the emission-line spectra of active galactic nuclei (AGNs). The nature of the emitting clouds is unknown, but many current models invoke various types of magnetohydrodynamic confinement. Recent studies have argued that a fractal distribution of clouds, in which subsets of clouds occur in self-similar hierarchies, is a consequence of such confinement. Whatever the confinement mechanism, fractal cloud geometries are found in nature and may be present in AGNs too. We first outline how a fractal geometry can apply at the center of a luminous quasar. Scaling laws are derived that establish the number of hierarchies, typical sizes, column densities, and densities. Photoionization simulations are used to predict the integrated spectrum from the ensemble. Direct comparison with observations establishes all model parameters so that the final predictions are fully constrained. Theory suggests that denser clouds might form in regions of higher turbulence and that larger turbulence results in a wider dispersion of physical gas densities. An increase in turbulence is expected deeper within the gravitational potential of the black hole, resulting in a density gradient. We mimic this density gradient by employing two sets of clouds with identical fractal structuring but different densities. The low-density clouds have a lower column density and large covering factor similar to the warm absorber. The high-density clouds have high column density and smaller covering factor similar to the broad-line region (BLR). A fractal geometry can simultaneously reproduce the covering factor, density, column density, BLR emission-line strengths, and BLR line ratios as inferred from observation. Absorption properties of the model are consistent with the integrated line-of-sight column density as determined from observations of X-ray absorption, and when scaled to a Seyfert galaxy, the model is consistent with the number of

  12. Dust reddened quasars in first and UKIDSS: Beyond the tip of the iceberg

    Energy Technology Data Exchange (ETDEWEB)

    Glikman, Eilat [Department of Physics, Middlebury College, Middlebury, VT 05753 (United States); Urrutia, Tanya [Leibniz Institut fr Astrophysik, An der Sternwarte 16, D-14482 Potsdam (Germany); Lacy, Mark [National Radio Astronomy Observatory, Charlottesville, VA (United States); Djorgovski, S. G.; Mahabal, Ashish; Graham, Matthew [California Institute of Technology, Pasadena, CA 91125 (United States); Urry, Meg [Department of Physics and Yale Center for Astronomy and Astrophysics, Yale University, P.O. Box 208121, New Haven, CT 06520-8121 (United States); Croom, Scott [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Ge, Jian, E-mail: eglikman@middlebury.edu [Astronomy Department, University of Florida, 211 Bryant Space Science Center, P.O. Box 112055, Gainesville, FL 32611 (United States)

    2013-12-01

    We present the results of a pilot survey to find dust-reddened quasars by matching the Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) radio catalog to the UKIDSS near-infrared survey and using optical data from Sloan Digital Sky Survey to select objects with very red colors. The deep K-band limit provided by UKIDSS allows for finding more heavily reddened quasars at higher redshifts as compared with previous work using FIRST and Two Micron All Sky Survey (2MASS). We selected 87 candidates with K ≤ 17.0 from the UKIDSS Large Area Survey (LAS) First Data Release (DR1), which covers 190 deg{sup 2}. These candidates reach up to ∼1.5 mag below the 2MASS limit and obey the color criteria developed to identify dust-reddened quasars. We have obtained 61 spectroscopic observations in the optical and/or near-infrared, as well as classifications in the literature, and have identified 14 reddened quasars with E(B – V) > 0.1, including 3 at z > 2. We study the infrared properties of the sample using photometry from the Wide-Field Infrared Survey Explorer and find that infrared colors improve the efficiency of red quasar selection, removing many contaminants in an infrared-to-optical color-selected sample alone. The highest-redshift quasars (z ≳ 2) are only moderately reddened, with E(B – V) ∼ 0.2-0.3. We find that the surface density of red quasars rises sharply with faintness, comprising up to 17% of blue quasars at the same apparent K-band flux limit. We estimate that to reach more heavily reddened quasars (i.e., E(B – V) ≳ 0.5) at z > 2 and a depth of K = 17, we would need to survey at least ∼2.5 times more area.

  13. Quantitative evaluation of performance of three-dimensional printed lenses

    Science.gov (United States)

    Gawedzinski, John; Pawlowski, Michal E.; Tkaczyk, Tomasz S.

    2017-08-01

    We present an analysis of the shape, surface quality, and imaging capabilities of custom three-dimensional (3-D) printed lenses. 3-D printing technology enables lens prototypes to be fabricated without restrictions on surface geometry. Thus, spherical, aspherical, and rotationally nonsymmetric lenses can be manufactured in an integrated production process. This technique serves as a noteworthy alternative to multistage, labor-intensive, abrasive processes, such as grinding, polishing, and diamond turning. Here, we evaluate the quality of lenses fabricated by Luxexcel using patented Printoptical©; technology that is based on an inkjet printing technique by comparing them to lenses made with traditional glass processing technologies (grinding, polishing, etc.). The surface geometry and roughness of the lenses were evaluated using white-light and Fizeau interferometers. We have compared peak-to-valley wavefront deviation, root mean square (RMS) wavefront error, radii of curvature, and the arithmetic roughness average (Ra) profile of plastic and glass lenses. In addition, the imaging performance of selected pairs of lenses was tested using 1951 USAF resolution target. The results indicate performance of 3-D printed optics that could be manufactured with surface roughness comparable to that of injection molded lenses (Ra<20 nm). The RMS wavefront error of 3-D printed prototypes was at a minimum 18.8 times larger than equivalent glass prototypes for a lens with a 12.7 mm clear aperture, but, when measured within 63% of its clear aperture, the 3-D printed components' RMS wavefront error was comparable to glass lenses.

  14. Inverting Gravitational Lenses

    Science.gov (United States)

    Newbury, P. R.; Spiteri, R. J.

    2002-02-01

    Gravitational lensing provides a powerful tool to study a number of fundamental questions in astrophysics. Fortuitously, one can begin to explore some non-trivial issues associated with this phenomenon without a lot of very sophisticated mathematics, making an elementary treatment of this topic tractable even to senior undergraduates. In this paper, we give a relatively self-contained outline of the basic concepts and mathematics behind gravitational lensing as a recent and exciting topic for courses in mathematical modeling or scientific computing. To this end, we have designed and made available some interactive software to aid in the simulation and inversion of gravitational lenses in a classroom setting.

  15. Stress-Detection Lenses

    Science.gov (United States)

    1996-01-01

    An Ames Research Center scientist invented an infrared lens used in sunglasses to filter out ultraviolet rays. This product finds its origins in research for military enemy detection. Through a Space Act Agreement, Optical Sales Corporation introduced the Hawkeye Lenses not only as sunglasses but as plant stress detection lenses. The lenses enhance the stressed part of the leaf, which has less chlorophyll than healthy leaves, through dyes that filter out certain wavelengths of light. Plant stress is visible earlier, at a stage when something can be done to save the plants.

  16. Impact of surface roughness on the effective dielectric constants and subwavelength image resolution of metal-insulator stack lenses.

    Science.gov (United States)

    Shivanand; Ludwig, Alon; Webb, Kevin J

    2012-10-15

    The effective parallel and perpendicular dielectric constants for a multilayer metal–insulator stack are obtained from numerical simulations and compared with analytical homogenization results as a function of wavelength and number of periods. The influence of inevitable film surface roughness on the homogenized dielectric constants, determined from numerical scattered field calculations, is evaluated as a function of roughness. The impact of this roughness on resolution in a subwavelength imaging application gives smoothness guidelines for material deposition.

  17. Gravitational lensing by a smoothly variable surface mass density

    Science.gov (United States)

    Paczynski, Bohdan; Wambsganss, Joachim

    1989-01-01

    The statistical properties of gravitational lensing due to smooth but nonuniform distributions of matter are considered. It is found that a majority of triple images had a parity characteristic for 'shear-induced' lensing. Almost all cases of triple or multiple imaging were associated with large surface density enhancements, and lensing objects were present between the images. Thus, the observed gravitational lens candidates for which no lensing object has been detected between the images are unlikely to be a result of asymmetric distribution of mass external to the image circle. In a model with smoothly variable surface mass density, moderately and highly amplified images tended to be single rather than multiple. An opposite trend was found in models which had singularities in the surface mass distribution.

  18. Sapphire ball lensed fiber probe for common-path optical coherence tomography in ocular imaging and sensing.

    Science.gov (United States)

    Zhao, Mingtao; Huang, Yong; Kang, Jin U

    2013-03-26

    We describe a novel common-path optical coherence tomography (CP-OCT) fiber probe design using a sapphire ball lens for cross-sectional imaging and sensing in retina vitrectomy surgery. Single mode Gaussian beam (TEM 00 ) simulation was used to optimize lateral resolution and working distance (WD) of the common-path probe. A theoretical sensitivity model for CP-OCT was prosed to assess its optimal performance based an unbalanced photodetector configuration. Two probe designs with working distances (WD) 415μm and 1221μm and lateral resolution 11μm and 18μm, respectively were implemented with sensitivity up to 88dB. The designs are also fully compatible with conventional Michelson interferometer based OCT configurations. The reference plane of the probe, located at the distal beam exit interface of the single mode fiber (SMF), was encased within a 25-gauge hypodermic needle by the sapphire ball lens facilitates its applications in bloody and harsh environments. The performances of the fiber probe with 11μm of lateral resolution and 19μm of axial resolution were demonstrated by cross-sectional imaging of a cow cornea and retina in vitro with a 1310nm swept source OCT system. This probe was also attached to a piezoelectric motor for active compensation of physiological tremor for handheld retinal surgical tools.

  19. Weakly oval electron lense

    International Nuclear Information System (INIS)

    Daumenov, T.D.; Alizarovskaya, I.M.; Khizirova, M.A.

    2001-01-01

    The method of the weakly oval electrical field getting generated by the axially-symmetrical field is shown. Such system may be designed with help of the cylindric form coaxial electrodes with the built-in quadrupole duplet. The singularity of the indicated weakly oval lense consists of that it provides the conducting both mechanical and electronic adjustment. Such lense can be useful for elimination of the near-axis astigmatism in the electron-optical system

  20. Scanning Miniature Microscopes without Lenses

    Science.gov (United States)

    Wang, Yu

    2009-01-01

    The figure schematically depicts some alternative designs of proposed compact, lightweight optoelectronic microscopes that would contain no lenses and would generate magnified video images of specimens. Microscopes of this type were described previously in Miniature Microscope Without Lenses (NPO - 20218), NASA Tech Briefs, Vol. 22, No. 8 (August 1998), page 43 and Reflective Variants of Miniature Microscope Without Lenses (NPO 20610), NASA Tech Briefs, Vol. 26, No. 9 (September 1999), page 6a. To recapitulate: In the design and construction of a microscope of this type, the focusing optics of a conventional microscope are replaced by a combination of a microchannel filter and a charge-coupled-device (CCD) image detector. Elimination of focusing optics reduces the size and weight of the instrument and eliminates the need for the time-consuming focusing operation. The microscopes described in the cited prior articles contained two-dimensional CCDs registered with two-dimensional arrays of microchannels and, as such, were designed to produce full two-dimensional images, without need for scanning. The microscopes of the present proposal would contain one-dimensional (line image) CCDs registered with linear arrays of microchannels. In the operation of such a microscope, one would scan a specimen along a line perpendicular to the array axis (in other words, one would scan in pushbroom fashion). One could then synthesize a full two-dimensional image of the specimen from the line-image data acquired at one-pixel increments of position along the scan. In one of the proposed microscopes, a beam of unpolarized light for illuminating the specimen would enter from the side. This light would be reflected down onto the specimen by a nonpolarizing beam splitter attached to the microchannels at their lower ends. A portion of the light incident on the specimen would be reflected upward, through the beam splitter and along the microchannels, to form an image on the CCD. If the

  1. A New Determination Of The High-redshift Quasar Luminosity Function To I 25 In The COSMOS Field

    Science.gov (United States)

    Masters, Daniel; Capak, P.; Salvato, M.; Civano, F.; Mobasher, B.; Nagao, T.; Trump, J.; Elvis, M.; Scoville, N.

    2012-01-01

    We investigate the high-redshift quasar luminosity function down to I 25 in the Cosmic Evolution Survey (COSMOS) field, using a selection that we demonstrate to be close to 100% complete for Type-1 quasars at the redshifts of interest. Careful analysis of the extensive COSMOS photometry and imaging data allows us to remove stellar and low-redshift contaminants from our candidate list. We find 133 likely quasars at z>3.1, 39 of which have prior spectroscopic confirmation. These confirmed and likely quasars are used to compute the rest-frame UV QLF in the redshift bins 3.1 3, and find that they evolve similarly between z 4 and z 3.2; however, the different normalizations imply that roughly 75% of X-ray bright active galactic nuclei (AGN) at z 3-4 are optically obscured. The implications of these results for the contribution of quasars to reionization are discussed.

  2. On The Dark Side of Quasar Evolution

    OpenAIRE

    Menou, Kristen; Haiman, Zoltan

    2004-01-01

    Recent improved determinations of the mass density rho_BH of supermassive black holes (SMBHs) in the local universe have allowed accurate comparisons of rho_BH with the amount of light received from past quasar activity. These comparisons support the notion that local SMBHs are ``dead quasars'' and yield a value epsilon >~ 0.1 for the average radiative efficiency of cosmic SMBH accretion. BH coalescences may represent an important component of the quasar mass assembly and yet not produce any ...

  3. NO OVERDENSITY OF LYMAN-ALPHA EMITTING GALAXIES AROUND A QUASAR AT z  ∼ 5.7

    Energy Technology Data Exchange (ETDEWEB)

    Mazzucchelli, C.; Bañados, E.; Decarli, R.; Farina, E. P.; Venemans, B. P.; Walter, F. [Max Planck Institute für Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Overzier, R. [Observatório Nacional, Rua José Cristino, 77. CEP 20921-400, São Cristóvão, Rio de Janeiro-RJ (Brazil)

    2017-01-01

    Bright quasars, observed when the universe was less than one billion years old ( z  > 5.5), are known to host massive black holes (∼10{sup 9} M {sub ⊙}) and are thought to reside in the center of massive dark matter overdensities. In this picture, overdensities of galaxies are expected around high-redshift quasars. However, observations based on the detection of Lyman-break galaxies (LBGs) around these quasars do not offer a clear picture: this may be due to the uncertain redshift constraints of LBGs, which are solely selected through broadband filters. To circumvent such uncertainties, we here perform a search for Lyman-alpha emitting galaxies (LAEs) in the field of the quasar PSO J215.1512–16.0417 at z  ∼ 5.73, through narrowband deep imaging with FORS2 at the Very Large Telescope. We study an area of 37 arcmin{sup 2}, i.e., ∼206 comoving Mpc{sup 2} at the redshift of the quasar. We find no evidence of an overdensity of LAEs in the quasar field with respect to blank-field studies. Possible explanations for these findings may be that our survey volume is too small, or that the strong ionizing radiation from the quasar hinders galaxy formation in its immediate proximity. Another possibility is that these quasars are not situated in the dense environments predicted by some simulations.

  4. High-Speed 3D Printing of Millimeter-Size Customized Aspheric Imaging Lenses with Sub 7 nm Surface Roughness.

    Science.gov (United States)

    Chen, Xiangfan; Liu, Wenzhong; Dong, Biqin; Lee, Jongwoo; Ware, Henry Oliver T; Zhang, Hao F; Sun, Cheng

    2018-03-24

    Advancements in three-dimensional (3D) printing technology have the potential to transform the manufacture of customized optical elements, which today relies heavily on time-consuming and costly polishing and grinding processes. However the inherent speed-accuracy trade-off seriously constrains the practical applications of 3D-printing technology in the optical realm. In addressing this issue, here, a new method featuring a significantly faster fabrication speed, at 24.54 mm 3 h -1 , without compromising the fabrication accuracy required to 3D-print customized optical components is reported. A high-speed 3D-printing process with subvoxel-scale precision (sub 5 µm) and deep subwavelength (sub 7 nm) surface roughness by employing the projection micro-stereolithography process and the synergistic effects from grayscale photopolymerization and the meniscus equilibrium post-curing methods is demonstrated. Fabricating a customized aspheric lens 5 mm in height and 3 mm in diameter is accomplished in four hours. The 3D-printed singlet aspheric lens demonstrates a maximal imaging resolution of 373.2 lp mm -1 with low field distortion less than 0.13% across a 2 mm field of view. This lens is attached onto a cell phone camera and the colorful fine details of a sunset moth's wing and the spot on a weevil's elytra are captured. This work demonstrates the potential of this method to rapidly prototype optical components or systems based on 3D printing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Analysis of luminosity distributions of strong lensing galaxies: subtraction of diffuse lensed signal

    Science.gov (United States)

    Biernaux, J.; Magain, P.; Hauret, C.

    2017-08-01

    Context. Strong gravitational lensing gives access to the total mass distribution of galaxies. It can unveil a great deal of information about the lenses' dark matter content when combined with the study of the lenses' light profile. However, gravitational lensing galaxies, by definition, appear surrounded by lensed signal, both point-like and diffuse, that is irrelevant to the lens flux. Therefore, the observer is most often restricted to studying the innermost portions of the galaxy, where classical fitting methods show some instabilities. Aims: We aim at subtracting that lensed signal and at characterising some lenses' light profile by computing their shape parameters (half-light radius, ellipticity, and position angle). Our objective is to evaluate the total integrated flux in an aperture the size of the Einstein ring in order to obtain a robust estimate of the quantity of ordinary (luminous) matter in each system. Methods: We are expanding the work we started in a previous paper that consisted in subtracting point-like lensed images and in independently measuring each shape parameter. We improve it by designing a subtraction of the diffuse lensed signal, based only on one simple hypothesis of symmetry. We apply it to the cases where it proves to be necessary. This extra step improves our study of the shape parameters and we refine it even more by upgrading our half-light radius measurement method. We also calculate the impact of our specific image processing on the error bars. Results: The diffuse lensed signal subtraction makes it possible to study a larger portion of relevant galactic flux, as the radius of the fitting region increases by on average 17%. We retrieve new half-light radii values that are on average 11% smaller than in our previous work, although the uncertainties overlap in most cases. This shows that not taking the diffuse lensed signal into account may lead to a significant overestimate of the half-light radius. We are also able to measure

  6. DESIGN OF THE MULTIORDER INTRAOCULAR LENSES

    Directory of Open Access Journals (Sweden)

    V. G. Kolobrodov

    2015-01-01

    Full Text Available Intraocular lenses (IOLs are used to replace the natural crystalline lens of the eye. Just few basic designs of IOLs are used clinically. Multiorder diffractive lenses (MODL which operate simultaneously in several diffractive orders were proposed to decrease the chromatic aberration. Properties analysis of MODL showed a possibility to use them to develop new designs of IOLs. The purpose of this paper was to develop a new method of designing of multiorder intraocular lenses with decreased chromatic aberration. The theoretical research of the lens properties was carried out. The diffraction efficiency dependence with the change of wavelength was studied. A computer simulation of MODL in a schematic model of the human eye was carried out. It is found the capability of the multiorder diffractive lenses to focus polychromatic light into a segment on the optical axis with high diffraction efficiency. At each point of the segment is present each component of the spectral range, which will build a color image in combination. The paper describes the new design method of intraocular lenses with reduced chromaticism and with endless adaptation. An optical system of an eye with an intraocular lens that provides sharp vision of objects located at a distance of 700 mm to infinity is modeled.

  7. Extreme Variability Quasars from the Sloan Digital Sky Survey and the Dark Energy Survey

    Science.gov (United States)

    Rumbaugh, N.; Shen, Yue; Morganson, Eric; Liu, Xin; Banerji, M.; McMahon, R. G.; Abdalla, F. B.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D’Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Doel, P.; Frieman, J.; García-Bellido, J.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Martini, P.; Menanteau, F.; Plazas, A. A.; Reil, K.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sheldon, E.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Walker, A. R.; Wester, W.; (DES Collaboration

    2018-02-01

    We perform a systematic search for long-term extreme variability quasars (EVQs) in the overlapping Sloan Digital Sky Survey and 3 Year Dark Energy Survey imaging, which provide light curves spanning more than 15 years. We identified ∼1000 EVQs with a maximum change in g-band magnitude of more than 1 mag over this period, about 10% of all quasars searched. The EVQs have L bol ∼ 1045–1047 erg s‑1 and L/L Edd ∼ 0.01–1. Accounting for selection effects, we estimate an intrinsic EVQ fraction of ∼30%–50% among all g≲ 22 quasars over a baseline of ∼15 yr. We performed detailed multi-wavelength, spectral, and variability analyses for the EVQs and compared them to their parent quasar sample. We found that EVQs are distinct from a control sample of quasars matched in redshift and optical luminosity: (1) their UV broad emission lines have larger equivalent widths; (2) their Eddington ratios are systematically lower; and (3) they are more variable on all timescales. The intrinsic difference in quasar properties for EVQs suggests that internal processes associated with accretion are the main driver for the observed extreme long-term variability. However, despite their different properties, EVQs seem to be in the tail of a continuous distribution of quasar properties, rather than standing out as a distinct population. We speculate that EVQs are normal quasars accreting at relatively low rates, where the accretion flow is more likely to experience instabilities that drive the changes in flux by a factor of a few on multi-year timescales.

  8. TESTING GRAVITATIONAL LENSING AS THE SOURCE OF ENHANCED STRONG Mg II ABSORPTION TOWARD GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Rapoport, Sharon; Onken, Christopher A.; Schmidt, Brian P.; Tucker, Brad E. [Research School of Astronomy and Astrophysics, Australian National University, Weston Creek, ACT 2611 (Australia); Wyithe, J. Stuart B. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Levan, Andrew J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2012-08-01

    Sixty percent of gamma-ray bursts (GRBs) reveal strong Mg II absorbing systems, which is a factor of {approx}2 times the rate seen along lines of sight to quasars. Previous studies argue that the discrepancy in the strong Mg II covering factor is most likely to be the result of either quasars being obscured due to dust or the consequence of many GRBs being strongly gravitationally lensed. We analyze observations of quasars that show strong foreground Mg II absorption. We find that GRB lines of sight pass closer to bright galaxies than would be expected for random lines of sight within the impact parameter expected for strong Mg II absorption. While this cannot be explained by obscuration in the GRB sample, it is a natural consequence of gravitational lensing. Upon examining the particular configurations of galaxies near a sample of GRBs with strong Mg II absorption, we find several intriguing lensing candidates. Our results suggest that lensing provides a viable contribution to the observed enhancement of strong Mg II absorption along lines of sight to GRBs, and we outline the future observations required to test this hypothesis conclusively.

  9. Intrinsic, Narrow N V Absorption Reveals a Clumpy Outflow in z < 0.4 Radio-Loud Quasars

    Science.gov (United States)

    DeMarcy, Bryan; Serra, Viktoriah; Culliton, Chris; Ganguly, Rajib; Runnoe, Jessie; Charlton, Jane; Eracleous, Michael; Misawa, Toru; Narayanan, Anand

    2018-01-01

    Quasar outflows are often invoked in models for galaxy evolution to inject energy and momentum into the gas in the host galaxy and influence its star formation history. Thus, the study of quasar outflows is essential for understanding galaxy evolution. N V absorption systems within the associated region (|Δv| ≤ 5000 km s-1) of the quasar are thought to be intrinsic since many show evidence for partial covering of the quasar. A recent archival study of quasar spectra taken with COS/G130M or G160M found 39/181 radio-quiet quasars show intrinsic N V absorption, while none of the 31 radio-loud quasars have N V absorption detected (Culliton et al. 2017). Further investigation of these radio-loud quasars showed a clear bias towards compact morphologies as revealed by FIRST 1.4 GHz imaging and comparatively flat radio spectra. This suggests we are viewing more face-on orientations which prevent us from seeing absorption outflows. The cause for such bias within the HST archive is still unknown; however, it could explain the lack of radio-loud intrinsic N V absorption seen by Culliton et al. (2017). Alternatively, the quasar wind structure may be fundamentally different between radio-loud and radio-quiet objects. We used COS/G130M or G160M to obtain rest-frame UV spectra (1195 Å - 1250 Å) of 14 low-redshift SDSS radio-loud quasars which show lobe-dominated FIRST morphologies to distinguish between these possibilities. Intrinsic N V absorption was detected in 6 of our 14 quasars. This suggests the lack of detections in the archival study was a result of an orientation effect/sampling bias rather than to differences in wind structure between radio-loud and radio-quiet quasars. Interestingly, we find significant overlap in radio core fractions between quasars with and without N V detection. Quasars in our sample with N V detection span a range of core fractions from < 0.01 up to 0.89 while those without detected N V range from 0.04 up to 0.93. A laminar outflow with a

  10. Counts of low-Redshift SDSS quasar candidates

    International Nuclear Information System (INIS)

    Zeljko Ivezic

    2004-01-01

    We analyze the counts of low-redshift quasar candidates selected using nine-epoch SDSS imaging data. The co-added catalogs are more than 1 mag deeper than single-epoch SDSS data, and allow the selection of low-redshift quasar candidates using UV-excess and also variability techniques. The counts of selected candidates are robustly determined down to g = 21.5. This is about 2 magnitudes deeper than the position of a change in the slope of the counts reported by Boyle (and others) (1990, 2000) for a sample selected by UV-excess, and questioned by Hawkins and Veron (1995), who utilized a variability-selected sample. Using SDSS data, we confirm a change in the slope of the counts for both UV-excess and variability selected samples, providing strong support for the Boyle (and others) results

  11. Quasars: Active nuclei of young galaxies

    Science.gov (United States)

    Komberg, B. V.

    1980-01-01

    The hypothetical properties of 'young' galaxies and possible methods of observing them are discussed. It is proposed that star formation first takes place in the central regions of protogalaxies which may appear as quasar-like objects. An evolutionary scheme is outlined in which the radio quasars are transformed in time into the nuclei of radio galaxies.

  12. Strong Lensing Science Results from the Hyper Suprime-Cam Survey

    Science.gov (United States)

    Wong, Kenneth; HSC SSP Strong Lens Working Group

    2018-01-01

    Strong gravitational lenses are valuable objects for studying galaxy structure and cosmology. Lensing is a unique probe of the dark matter structure of galaxies, groups, and clusters, as well as an independent tool for constraining cosmological parameters. Lensing also magnifies the background source population, allowing for detailed studies of their properties at high resolution. However, strong lenses are rare and difficult to find, requiring deep wide-area high-resolution imaging surveys. With data from the ongoing Hyper Suprime-Cam (HSC) Subaru Strategic Program, we have discovered over 100 new strong lenses at the galaxy and group scale to expand the sample of lensing systems, particularly at redshifts z > 0.5, where there have previously been relatively few known lenses. We present a summary of the latest strong lensing science results from the HSC survey data taken through the S17A semester.

  13. Why all the fuss about quasars

    International Nuclear Information System (INIS)

    Shaffer, D.B.; Shields, G.A.

    1980-01-01

    This article gives a brief discussiion of the most popular theories of quasars. Quasars are important because they are the most powerful source of energy in the entire universe. Their spectral lines are red shifted which leads most astronomers to believe that they are distant objects. In fact, they are believed to be a type of galaxy. First results of the chemical composition from the study of emission lines study have suggested the same mixture of chemical elements as in galactic nuclei. This gives weight to the idea that quasars and galaxies are members of the same family. It is believed that the energy of quasars is gravitational. Extracting gravitational energy from matter involves a super massive black hole. It is hoped that studing quasars will help to answer important questions of whether universe will expand forever to re-contract, and whether it has infinite or finite extent

  14. CMU DeepLens: deep learning for automatic image-based galaxy-galaxy strong lens finding

    Science.gov (United States)

    Lanusse, François; Ma, Quanbin; Li, Nan; Collett, Thomas E.; Li, Chun-Liang; Ravanbakhsh, Siamak; Mandelbaum, Rachel; Póczos, Barnabás

    2018-01-01

    Galaxy-scale strong gravitational lensing can not only provide a valuable probe of the dark matter distribution of massive galaxies, but also provide valuable cosmological constraints, either by studying the population of strong lenses or by measuring time delays in lensed quasars. Due to the rarity of galaxy-scale strongly lensed systems, fast and reliable automated lens finding methods will be essential in the era of large surveys such as Large Synoptic Survey Telescope, Euclid and Wide-Field Infrared Survey Telescope. To tackle this challenge, we introduce CMU DeepLens, a new fully automated galaxy-galaxy lens finding method based on deep learning. This supervised machine learning approach does not require any tuning after the training step which only requires realistic image simulations of strongly lensed systems. We train and validate our model on a set of 20 000 LSST-like mock observations including a range of lensed systems of various sizes and signal-to-noise ratios (S/N). We find on our simulated data set that for a rejection rate of non-lenses of 99 per cent, a completeness of 90 per cent can be achieved for lenses with Einstein radii larger than 1.4 arcsec and S/N larger than 20 on individual g-band LSST exposures. Finally, we emphasize the importance of realistically complex simulations for training such machine learning methods by demonstrating that the performance of models of significantly different complexities cannot be distinguished on simpler simulations. We make our code publicly available at https://github.com/McWilliamsCenter/CMUDeepLens.

  15. From Spheric to Aspheric Solid Polymer Lenses: A Review

    Directory of Open Access Journals (Sweden)

    Kuo-Yung Hung

    2011-01-01

    Full Text Available This paper presents a new approach in the use of MEMS technology to fabricate micro-optofluidic polymer solid lenses in order to achieve the desired profile, focal length, numerical aperture, and spot size. The resulting polymer solid lenses can be applied in optical data storage systems, imaging systems, and automated optical inspection systems. In order to meet the various needs of different applications, polymer solid lenses may have a spherical or aspherical shape. The method of fabricating polymer solid lenses is different from methods used to fabricate tunable lenses with variable focal length or needing an external control system to change the lens geometry. The current trend in polymer solid lenses is toward the fabrication of microlenses with a high numerical aperture, small clear aperture (<2 mm, and high transmittance. In this paper we focus on the use of thermal energy and electrostatic force in shaping the lens profile, including both spherical and aspherical lenses. In addition, the paper discusses how to fabricate a lens with a high numerical aperture of 0.6 using MEMS and also compares the optical characteristics of polymer lens materials, including SU-8, Norland Optical Adhesive (NOA, and cyclic olefin copolymer (COC. Finally, new concepts and applications related to micro-optofluidic lenses and polymer materials are also discussed.

  16. Biocompatibility of Intraocular Lenses.

    Science.gov (United States)

    Özyol, Pelin; Özyol, Erhan; Karel, Fatih

    2017-08-01

    The performance of an intraocular lens is determined by several factors such as the surgical technique, surgical complications, intraocular lens biomaterial and design, and host reaction to the lens. The factor indicating the biocompatibility of an intraocular lens is the behavior of inflammatory and lens epithelial cells. Hence, the biocompatibility of intraocular lens materials is assessed in terms of uveal biocompatibility, based on the inflammatory foreign-body reaction of the eye against the implant, and in terms of capsular biocompatibility, determined by the relationship of the intraocular lens with residual lens epithelial cells within the capsular bag. Insufficient biocompatibility of intraocular lens materials may result in different clinical entities such as anterior capsule opacification, posterior capsule opacification, and lens epithelial cell ongrowth. Intraocular lenses are increasingly implanted much earlier in life in cases such as refractive lens exchange or pediatric intraocular lens implantation after congenital cataract surgery, and these lenses are expected to exhibit maximum performance for many decades. The materials used in intraocular lens manufacture should, therefore, ensure long-term uveal and capsular biocompatibility. In this article, we review the currently available materials used in the manufacture of intraocular lenses, especially with regard to their uveal and capsular biocompatibility, and discuss efforts to improve the biocompatibility of intraocular lenses.

  17. SUBARU HIGH- z EXPLORATION OF LOW-LUMINOSITY QUASARS (SHELLQs). I. DISCOVERY OF 15 QUASARS AND BRIGHT GALAXIES AT 5.7 < z < 6.9

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Yoshiki; Kashikawa, Nobunari; Imanishi, Masatoshi; Furusawa, Hisanori; Ikeda, Hiroyuki [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Onoue, Masafusa; Kikuta, Satoshi [Department of Astronomy, School of Science, Graduate University for Advanced Studies, Mitaka, Tokyo 181-8588 (Japan); Iwasawa, Kazushi [ICREA and Institut de Ciències del Cosmos, Universitat de Barcelona, IEEC-UB, Martí i Franquès, 1, E-08028 Barcelona (Spain); Strauss, Michael A.; Bosch, James; Gunn, James E. [Princeton University Observatory, Peyton Hall, Princeton, NJ 08544 (United States); Nagao, Tohru; Toba, Yoshiki [Research Center for Space and Cosmic Evolution, Ehime University, Matsuyama, Ehime 790-8577 (Japan); Niida, Mana [Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577 (Japan); Akiyama, Masayuki [Astronomical Institute, Tohoku University, Aoba, Sendai, 980-8578 (Japan); Asami, Naoko [Japan Professional School of Education, Chiyoda, Tokyo 101-0041 (Japan); Foucaud, Sébastien [Department of Physics and Astronomy, Shanghai JiaoTong University, Shanghai 200240 (China); Goto, Tomotsugu [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Harikane, Yuichi [Institute for Cosmic Ray Research, The University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Kawaguchi, Toshihiro, E-mail: yk.matsuoka@nao.ac.jp [Department of Liberal Arts and Sciences, Sapporo Medical University, Chuo, Sapporo 060-8556 (Japan); and others

    2016-09-01

    We report the discovery of 15 quasars and bright galaxies at 5.7 < z < 6.9. This is the initial result from the Subaru High- z Exploration of Low-Luminosity Quasars project, which exploits the exquisite multiband imaging data produced by the Subaru Hyper Suprime-Cam (HSC) Strategic Program survey. The candidate selection is performed by combining several photometric approaches including a Bayesian probabilistic algorithm to reject stars and dwarfs. The spectroscopic identification was carried out with the Gran Telescopio Canarias and the Subaru Telescope for the first 80 deg{sup 2} of the survey footprint. The success rate of our photometric selection is quite high, approaching 100% at the brighter magnitudes (z {sub AB} < 23.5 mag). Our selection also recovered all the known high- z quasars on the HSC images. Among the 15 discovered objects, six are likely quasars, while the other six with interstellar absorption lines and in some cases narrow emission lines are likely bright Lyman-break galaxies. The remaining three objects have weak continua and very strong and narrow Ly α lines, which may be excited by ultraviolet light from both young stars and quasars. These results indicate that we are starting to see the steep rise of the luminosity function of z ≥ 6 galaxies, compared with that of quasars, at magnitudes fainter than M {sub 1450} ∼ −22 mag or z {sub AB} ∼ 24 mag. Follow-up studies of the discovered objects as well as further survey observations are ongoing.

  18. The FIRST-2MASS Red Quasar Survey

    International Nuclear Information System (INIS)

    Glikman, E; Helfand, D J; White, R L; Becker, R H; Gregg, M D; Lacy, M

    2007-01-01

    Combining radio observations with optical and infrared color selection--demonstrated in our pilot study to be an efficient selection algorithm for finding red quasars--we have obtained optical and infrared spectroscopy for 120 objects in a complete sample of 156 candidates from a sky area of 2716 square degrees. Consistent with our initial results, we find our selection criteria--J-K > 1.7,R-K > 4.0--yield a ∼ 50% success rate for discovering quasars substantially redder than those found in optical surveys. Comparison with UVX- and optical color-selected samples shows that ∼> 10% of the quasars are missed in a magnitude-limited survey. Simultaneous two-frequency radio observations for part of the sample indicate that a synchrotron continuum component is ruled out as a significant contributor to reddening the quasars spectra. We go on to estimate extinctions for our objects assuming their red colors are caused by dust. Continuum fits and Balmer decrements suggest E(B-V) values ranging from near zero to 2.5 magnitudes. Correcting the K-band magnitudes for these extinctions, we find that for K (le) 14.0, red quasars make up between 25% and 60% of the underlying quasar population; owing to the incompleteness of the 2MASS survey at fainter K-band magnitudes, we can only set a lower limit to the radio-detected red quasar population of > 20-30%

  19. What BOSS has taught us about Quasars.

    Science.gov (United States)

    Ross, Nicholas; SDSS-III BOSS Quasar Science Working Group

    2015-01-01

    This talk presents science highlights from the SDSS-III BOSS Quasar Survey, which has obtained spectra for over 300,000 quasars, 200,000 of which are at redshift z>2. Using this dataset, new measurements of the luminosity function have been made, with the faint end of the luminosity function now measured to z~5. New clustering results from DR12 are presented, and the weak luminosity dependence of quasar clustering at z~0.5 is also discussed.New studies of the broad absorption line (BAL) quasar population have also been performed, with a sample of BAL quasars from the original SDSS being re-observed. These new data have shown the disappearance of CIV BAL troughs and indeed the transformation of BAL QSOs to non-BAL QSOs. BAL disappearance, and emergence, events appear to be extremes of general BAL variability, and have shed light on accretion-disk wind models.We highlight the discovery of new classes of quasars including: a population of broad-line Mg II emitters found in a passive galaxy sample; objects with extremely red optical-to-mid infrared colors; objects with very curious UV line (LyA:NV) ratios and potentially the long-sought after high-redshift Type 2 Quasar population.Finally, we describe two new dedicated programs, one focusing on reverberation mapping, the other on X-ray selected quasars.A full list of papers connected to the BOSS Quasar Survey is given at: http://www.sdss3.org/science/publications.php

  20. X-ray lenses with large aperture

    International Nuclear Information System (INIS)

    Simon, Markus

    2010-01-01

    Up to now, most X-ray imaging setups are based on absorption contrast imaging. There is a demand for focused X-rays in many X-ray analysis applications, either to increase the resolution of an imaging system, or, to reduce the time effort of an experiment through higher photon flux. For photon energies higher than 15 keV refractive X-ray optics are more efficient in comparison to non-refractive X-ray optics. The aim of this work was to develop X-ray lenses with large apertures and high transparency. By increasing the number of refracting surfaces while removing unnecessary lens material such lenses have been developed. Utilizing this approach the overall beam deflection angle is large with respect to the lens material it propagates through and so the transparency of the lens is increased. Within this work, X-ray lenses consisting of several thousands of prisms with an edge length in the range of micrometers have been developed and fabricated by deep X-ray lithography. Deep X-ray lithography enables high precision microstrucures with smooth sidewalls and large aspect ratios. The aperture of high-transparency X-ray lenses made this way is greater than 1 mm. They are suitable for photon energies in the range of 8 keV to 24 keV and offer a focal width of smaller than 10 μm at a transparency of around 40%. Furthermore, rolled X-ray lenses have been developed, that are made out of a microstructured polyimide film, which is cut according to the requirements regarding focal length and photon energy. The microstructured film is fabricated by molding, using an anisotropically etched silicon wafer as molding tool. Its mean roughness is in the range of nanometers. The film features prismatic structures, its surface topology is similar to an asparagus field. The measured diameter of the point focus was 18 μm to 31 μm, the calculated opticla efficiency was 37%. Future work will concentrate on increasing the aspect ratio of Prism Lenses and on increasing the rolling accuracy

  1. Limits on the Mass and Abundance of Primordial Black Holes from Quasar Gravitational Microlensing

    Energy Technology Data Exchange (ETDEWEB)

    Mediavilla, E. [Instituto de Astrofísica de Canarias, Vía Láctea S/N, La Laguna E-38200, Tenerife (Spain); Jiménez-Vicente, J.; Calderón-Infante, J. [Departamento de Física Teórica y del Cosmos, Universidad de Granada, Campus de Fuentenueva, E-18071 Granada (Spain); Muñoz, J. A.; Vives-Arias, H. [Departamento de Astronomía y Astrofísica, Universidad de Valencia, E-46100 Burjassot, Valencia (Spain)

    2017-02-20

    The idea that dark matter can be made of intermediate-mass primordial black holes (PBHs) in the 10 M {sub ⊙} ≲ M ≲ 200 M {sub ⊙} range has recently been reconsidered, particularly in the light of the detection of gravitational waves by the LIGO experiment. The existence of even a small fraction of dark matter in black holes should nevertheless result in noticeable quasar gravitational microlensing. Quasar microlensing is sensitive to any type of compact objects in the lens galaxy, to their abundance, and to their mass. We have analyzed optical and X-ray microlensing data from 24 gravitationally lensed quasars to estimate the abundance of compact objects in a very wide range of masses. We conclude that the fraction of mass in black holes or any type of compact objects is negligible outside of the 0.05 M {sub ⊙} ≲ M ≲ 0.45 M {sub ⊙} mass range and that it amounts to 20% ± 5% of the total matter, in agreement with the expected masses and abundances of the stellar component. Consequently, the existence of a significant population of intermediate-mass PBHs appears to be inconsistent with current microlensing observations. Therefore, primordial massive black holes are a very unlikely source of the gravitational radiation detected by LIGO.

  2. New Discoveries Fill the Quasar Gap

    Science.gov (United States)

    Kohler, Susanna

    2017-04-01

    Quasars active and luminous galactic centers can be difficult to find at some high redshifts due to their camouflaging color. A team of scientists has now come up with a way to detect these distant monsters in spite of their disguise.Quasar CamouflageThe color track of quasars between 5 z 6 in the commonly used i z and r i bands. Each dot on the red line marks a 0.1 difference in redshift. The contours show the colors of M dwarfs, from early type to late type. Quasars at a redshift of 5.3 z 5.7 are clearly contaminated by M dwarfs, making them difficult to identify. [Adapted from Yang et al. 2017]One of the key ways we can study the early universe is by building a large sample of high-redshift quasars. In particular, we believe that reionization of the universe is just completing around z 6. Quasars near this redshift are crucial tools for probing the post-reionization epoch and exploring the evolution of the intergalactic medium, quasar evolution, and early supermassive black hole growth.But quasars at this redshift are difficult to detect! The problem is contamination: quasars at this distance are the same color in commonly used optical bands as cool M-dwarf stars. As a result, surveys searching for quasars have often just cut out that entire section of the color space in order to avoid this contamination.This means that theres a huge gap in our sample of quasars around z 5.5: of the more than 300,000 quasars known, only 30 have been found in the redshift range of 5.3 z 5.7.The addition of new colorcolor selection criteria using infrared bands (bottom two plots) allows the authors to differentiate quasars (blue) from M dwarfs (grey), which isnt possible when only the traditional optical colorcolor selection criteria are used (top plot). [Adapted from Yang et al. 2017]A New ApproachIn a recent publication led by Jinyi Yang (Peking University, China and Steward Observatory, University of Arizona), a team of scientists has demonstrated a new technique for finding

  3. Quasar evolution and gravitational collapse

    International Nuclear Information System (INIS)

    Cavaliere, A.; Giallongo, E.; Vagnetti, F.; Messina, A.

    1983-01-01

    The paper presents three convergent results concerning the sources in theactive nuclei of quasars and radio galaxies that derive their power fromconversion of gravitational energy. We first derive, for several leading modelsbased on liberation of gravitational energy from mass in a compact supply, thelaws governing the secular change L of the primary power driving the individual sources, and identify their common and key property: L increases, and eventually decreases, linearly or faster with the power itself, so that the associated time scales t/sub s/ = L/Vertical BarLVertical Bar obey dt/sub s/, (L)/dL 0) and of the luminosity (L 0) and a dimming (L<0) phase, corresponding to three such models. Sub-Eddington accretion onto a massive black hole from a star cluster that self-destroys by collisions is close to reproduce the general course of the empirical models for the optical QSO population

  4. Lenses; systems; sensitive; leadership; models; integral; spiritual; images; evolve; states; stages; consciousness; power; force; determinants; mind; genius; belief systems; evolution; spiritual growth; rationality; attitude

    Directory of Open Access Journals (Sweden)

    Jacobus C. van der Merwe

    2013-07-01

    Full Text Available Lenses on spirituality and being church; the road ahead for the Netherdutch Reformed Church of Africa (NRCA. At this point of time the Netherdutch Reformed Church of Africa (NRCA is facing the seemingly unsolvable dilemma of not being able to handle diversity in a positive manner. By applying three lenses to the current impasse with regards to the church’s struggle with diversity, this article aims at providing an answer to the question of how to proceed. The first lens addresses the challenge to maintain spiritual health and harmony in the midst of differences and tension in the church. The theory behind systems sensitive leadership as lens serves as the guideline to achieve the necessary spiritual health that the church needs in such challenging times. The second lens explores the inner Christian spiritual path in a both developmental and comprehensive way. Drawing on the work of Paul Smith this lens sets forth the developmental framework by which Christians grow inwardly in their understanding of Jesus and his teachings. The third lens is a view on a practice whereby the validity of intellectual positions, statements, or ideologies could be appraised as an innate quality in any subject. This lens opens a unique perspective which provides not only a new understanding of humanity’s journey in the universe, but also serves as a guide to were we and the whole cosmos are on our personal journeys to become who we could be. The vision that is provided by these three lenses has the capacity not only to serve as guidelines, but also to provide the tools to handle the challenges the church has to face on the road a head.

  5. The CTIO surveys for large redshift quasars

    International Nuclear Information System (INIS)

    Osmer, P.S.

    1978-01-01

    Lyman α emission in large redshift quasars is readily detectable on slitless spectrograms taken with an objective combination on the 4m telescope. This provides a new survey method, independent of color for finding radio-quiet quasars in large numbers. Surveys by Smith with the Curtis Schmidt and Hoag and Smith with the 4 m telescope, have produced more than 200 candidates with 1.5< z<3.5 and 16< m<21. Spectroscopic observations with the CTIO SIT vidicon system have been carried out for more than 50 of the candidates, with the result that the basic properties of the surveys are known. To date three 16th magnitude quasars with zapproximately2.2 and six quasars with 3.0< z<3.25 have been found. One of the most important uses of the surveys will be the determination of the surface and surface densities of large redshift quasars. A preliminary analysis of the data indicates that the space density of quasars is at least constant, if not increasing, over the interval 1.0< z<3.25. However, the Hoag-Smith sample has only one candidate with z<3.2.(Auth.)

  6. The proximity effect around high redshift quasars

    International Nuclear Information System (INIS)

    Gallerani, Simona

    2011-01-01

    The term proximity effect refers to the relative lack of Lyα absorption in quasar spectra close to the ionizing source, produced by the enhanced photoionization rate due the local radiation field. This effect can be detected both by looking along the line of sight of the quasar, (proximity effect along the line of sight) and also by studying the effect produced in the Lyα forest of a bright quasar by a foreground source located close to the quasar line of sight (transverse proximity effect). The proximity effect has been appreciated as a tool to investigate on the ionization level of the Universe at redshifts approaching the reionization epoch, and to study the environment and properties of quasars. In this work we discuss the limits related to the use of the proximity effect along the lines of sight towards high-z quasars to measure the neutral hydrogen fraction at z ∼ 6. Moreover, we present the first-ever detection of the transverse proximity effect in the HI Lyα forest.

  7. Gravitational lensing by a Horndeski black hole

    Energy Technology Data Exchange (ETDEWEB)

    Badia, Javier [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Eiroa, Ernesto F. [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Universidad de Buenos Aires, Ciudad Universitaria Pabellon I, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2017-11-15

    In this article we study gravitational lensing by non-rotating and asymptotically flat black holes in Horndeski theory. By adopting the strong deflection limit, we calculate the deflection angle, from which we obtain the positions and the magnifications of the relativistic images. We compare our results with those corresponding to black holes in General Relativity. We analyze the astrophysical consequences in the case of the nearest supermassive black holes. (orig.)

  8. A counter-jet in the Quasar 1049+616? | Akujor | Nigerian Journal of ...

    African Journals Online (AJOL)

    Multi-frequency and high fidelity radio observations of the quasar 1049 + 616 have been made in the frequency range 1.3 - 8.4 Ghz with the NRAO'S VLA and Jodrell Bank's MERLIN. Our new images reveal a prominent knotty jet and a possible counter-jet with an identifiable knot. The jet-to-counter-jet brightness ratio is ...

  9. Readjusting image sharpness by numerical parametric lenses in Forbes-representation and Halton sampling for selective refocusing in digital holographic microscopy

    Science.gov (United States)

    Stuerwald, S.; Schmitt, R.

    2010-08-01

    Digital holographic microscopy (DHM) is utilized for quantitative phase contrast microscopy in optical testing of reflective or transparent specimens and allows altering the focus numerically by propagating the complex wave. Especially for compensation of deformations or displacements and for long-term investigations of living cells, a reliable region selective numerical readjustment of the focus is of particular interest in digital holographic microscopy. Since this method is time consuming, a Halton point set with low discrepancy has been chosen. By this, the effective axial resolution can be enhanced numerically by post processing of complex wave fronts without narrowing the field of view leading to a loss of information around the focus plane by blurring. The concept of numerical parametric lenses is another key feature in DHM and used to correct aberrations in the reconstructed wave front caused by the setup. To reduce the number of parameters for parametric lenses, the polynomial basis by Forbes is applied for the needs of DHM. Both numerical approaches have been characterized and adapted to the requirements of DHM. The applicability is demonstrated by results of investigations of engineered surfaces and biological cells.

  10. Additive manufacturing of tunable lenses

    Science.gov (United States)

    Schlichting, Katja; Novak, Tobias; Heinrich, Andreas

    2017-02-01

    Individual additive manufacturing of optical systems based on 3D Printing offers varied possibilities in design and usage. In addition to the additive manufacturing procedure, the usage of tunable lenses allows further advantages for intelligent optical systems. Our goal is to bring the advantages of additive manufacturing together with the huge potential of tunable lenses. We produced tunable lenses as a bundle without any further processing steps, like polishing. The lenses were designed and directly printed with a 3D Printer as a package. The design contains the membrane as an optical part as well as the mechanical parts of the lens, like the attachments for the sleeves which contain the oil. The dynamic optical lenses were filled with an oil. The focal length of the lenses changes due to a change of the radius of curvature. This change is caused by changing the pressure in the inside of the lens. In addition to that, we designed lenses with special structures to obtain different areas with an individual optical power. We want to discuss the huge potential of this technology for several applications. Further, an appropriate controlling system is needed. Wéll show the possibilities to control and regulate the optical power of the lenses. The lenses could be used for illumination tasks, and in the future, for individual measurement tasks. The main advantage is the individuality and the possibility to create an individual design which completely fulfills the requirements for any specific application.

  11. Omni-focal refractive focus correction technology as a substitute for bi/multi-focal intraocular lenses, contact lenses, and spectacles

    Science.gov (United States)

    Ben Yaish, Shai; Zlotnik, Alex; Raveh, Ido; Yehezkel, Oren; Belkin, Michael; Lahav, Karen; Zalevsky, Zeev

    2009-02-01

    We present novel technology for extension in depth of focus of imaging lenses for use in ophthalmic lenses correcting myopia, hyperopia with regular/irregular astigmatism and presbyopia. This technology produces continuous focus without appreciable loss of energy. It is incorporated as a coating or engraving on the surface for spectacles, contact or intraocular lenses. It was fabricated and tested in simulations and in clinical trials. From the various testing this technology seems to provide a satisfactory single-lens solution. Obtained performance is apparently better than those of existing multi/bifocal lenses and it is modular enough to provide solution to various ophthalmic applications.

  12. Experimental and theoretical study of bragg-Fresnel optics etched on multilayer structures. Application: lenses for X-Ray imaging; Etude experimentale et theorique d`optiques de bragg-Fresnel gravees sur miroirs interferentiels multicouches. Application: lentilles pour l`imagerie X

    Energy Technology Data Exchange (ETDEWEB)

    Soullie, G.

    1996-10-01

    This work concerns the study of a new type of X-ray focusing optics known as Bragg-Fresnel lenses developed for imaging in the X and X-UV range. These optics, etched on multilayer structure, combine the focusing properties of zone plate with the Bragg reflection of multilayer used like support. Using synchrotron sources and a plasma source produced by a laser, we tested the efficiency and the spatial resolution of these lenses. With a monochromatic beam, we first obtained the image of a object by using the first order diffraction of an elliptical off-axis Bragg-Fresnel lens. By using only one part of a lens, the superposition of different diffraction orders in focal plane can be avoided, thus improving the image contrast. In order to evaluate the chromatic aberrations of these lenses, we have summed on the same image, three exposures at different energies in the band pass of the multilayer. To reduce these kind of aberrations, we used a system composed of two off-axis lenses. To simplify the alignment, we tested an elliptical off-axis lens associated with a lamellar grating. Thus we are able to validate the theoretical approximation of an off-axis Bragg-Fresnel lens to a variable spaced grating. Finally, to show the perturbation brought by the zeroth order, we successively imaged a laser plasma source with a centred and an off-axis elliptical lenses. As with the synchrotron source, a set of images of a test object enabled us to improve the spatial resolution. (author).

  13. RHIC electron lenses upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Gu, X. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Altinbas, Z. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Bruno, D. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Binello, S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Costanzo, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Drees, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Gassner, D. M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Hock, J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Hock, K. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Harvey, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Marusic, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Mi, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Mernick, K. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Michnoff, R. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Miller, T. A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Pikin, A. I. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Robert-Demolaize, G. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Samms, T. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Shrey, T. C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Schoefer, V. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Tan, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Than, R. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Thieberger, P. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; White, S. M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2015-05-03

    In the Relativistic Heavy Ion Collider (RHIC) 100 GeV polarized proton run in 2015, two electron lenses were used to partially compensate for the head-on beam-beam effect for the first time. Here, we describe the design of the current electron lens, detailing the hardware modifications made after the 2014 commissioning run with heavy ions. A new electron gun with 15-mm diameter cathode is characterized. The electron beam transverse profile was measured using a YAG screen and fitted with a Gaussian distribution. During operation, the overlap of the electron and proton beams was achieved using the electron backscattering detector in conjunction with an automated orbit control program.

  14. The WISSH quasars project. II. Giant star nurseries in hyper-luminous quasars

    Science.gov (United States)

    Duras, F.; Bongiorno, A.; Piconcelli, E.; Bianchi, S.; Pappalardo, C.; Valiante, R.; Bischetti, M.; Feruglio, C.; Martocchia, S.; Schneider, R.; Vietri, G.; Vignali, C.; Zappacosta, L.; La Franca, F.; Fiore, F.

    2017-08-01

    Context. Studying the coupling between the energy output produced by the central quasar and the host galaxy is fundamental to fully understand galaxy evolution. Quasar feedback is indeed supposed to dramatically affect the galaxy properties by depositing large amounts of energy and momentum into the interstellar medium (ISM). Aims: In order to gain further insights on this process, we study the spectral energy distributions (SEDs) of sources at the brightest end of the quasar luminosity function, for which the feedback mechanism is assumed to be at its maximum, given their high efficiency in driving powerful outflows. Methods: We modelled the rest-frame UV-to-far-IR SEDs of 16 WISE-SDSS Selected Hyper-luminous (WISSH) quasars at 1.8 code to account for the contribution of the quasar-related emission to the far-IR fluxes. Results: Most SEDs are well described by a standard combination of accretion disc plus torus and cold dust emission. However, about 30% of SEDs require an additional emission component in the near-IR, with temperatures peaking at 750 K, which indicates that a hotter dust component is present in these powerful quasars. We measure extreme values of both AGN bolometric luminosity (LBOL > 1047 erg/s) and star formation rate (up to 2000 M⊙/yr) based on the quasar-corrected, IR luminosity of the host galaxy. A new relation between quasar and star formation luminosity is derived (LSF ∝ L0.73QSO) by combining several Herschel-detected quasar samples from z 0 to 4. WISSH quasars have masses ( 108M⊙) and temperatures ( 50 K) of cold dust in agreement with those found for other high-z IR luminous quasars. Conclusions: Thanks to their extreme nuclear and star formation luminosities, the WISSH quasars are ideal targets to shed light on the feedback mechanism and its effect on the evolution of their host galaxies, as well as on the merger-induced scenario that is commonly assumed to explain these exceptional luminosities. Future observations will be

  15. Mapping the distribution of luminous and dark matter in strong lensing galaxies

    OpenAIRE

    Ferreras, I.; Saha, P.; Williams, L. L. R.; Burles, S.

    2007-01-01

    We present the distribution of luminous and dark matter in a set of strong lensing (early-type) galaxies. By combining two independent techniques – stellar population synthesis and gravitational lensing – we can compare the baryonic and dark matter content in these galaxies within the regions that can be probed using the images of the lensed background source. Two samples were studied, extracted from the CASTLES and SLACS surveys. The former probes a wider range of redshifts and allows us to ...

  16. Galaxy Clustering Around Nearby Luminous Quasars

    Science.gov (United States)

    Fisher, Karl B.; Bahcall, John N.; Kirhakos, Sofia; Schneider, Donald P.

    1996-01-01

    We examine the clustering of galaxies around a sample of 20 luminous low redshift (z approx. less than 0.30) quasars observed with the Wide Field Camera-2 on the Hubble Space Telescope (HST). The HST resolution makes possible galaxy identification brighter than V = 24.5 and as close as 1 min or 2 min to the quasar. We find a significant enhancement of galaxies within a projected separation of approx. less than 100 1/h kpc of the quasars. If we model the QSO/galaxy correlation function as a power law with a slope given by the galaxy/galaxy correlation function, we find that the ratio of the QSO/galaxy to galaxy/galaxy correlation functions is 3.8 +/- 0.8. The galaxy counts within r less than 15 1/h kpc of the quasars are too high for the density profile to have an appreciable core radius (approx. greater than 100 1/h kpc). Our results reinforce the idea that low redshift quasars are located preferentially in groups of 10-20 galaxies rather than in rich clusters. We see no significant difference in the clustering amplitudes derived from radio-loud and radio-quiet subsamples.

  17. Highly Accreting Quasars at High Redshift

    Directory of Open Access Journals (Sweden)

    Mary L. Martínez-Aldama

    2018-01-01

    Full Text Available We present preliminary results of a spectroscopic analysis for a sample of type 1 highly accreting quasars (L/LEdd ~ 1.0 at high redshift, z ~2–3. The quasars were observed with the OSIRIS spectrograph on the GTC 10.4 m telescope located at the Observatorio del Roque de los Muchachos in La Palma. The highly accreting quasars were identified using the 4D Eigenvector 1 formalism, which is able to organize type 1 quasars over a broad range of redshift and luminosity. The kinematic and physical properties of the broad line region have been derived by fitting the profiles of strong UV emission lines such as Aliiiλ1860, Siiii]λ1892 and Ciii]λ1909. The majority of our sources show strong blueshifts in the high-ionization lines and high Eddington ratios which are related with the productions of outflows. The importance of highly accreting quasars goes beyond a detailed understanding of their physics: their extreme Eddington ratio makes them candidates standard candles for cosmological studies.

  18. The kinetically dominated quasar 3C 418

    Science.gov (United States)

    Punsly, Brian; Kharb, Preeti

    2017-06-01

    The existence of quasars that are kinetically dominated, where the jet kinetic luminosity, Q, is larger than the total (infrared to X-ray) thermal luminosity of the accretion flow, Lbol, provides a strong constraint on the fundamental physics of relativistic jet formation. Since quasars have high values of Lbol by definition, only ˜10 kinetically dominated quasars (with \\overline{Q}/L_{bol}>1) have been found, where \\overline{Q} is the long-term time-averaged jet power. We use low-frequency (151 MHz-1.66 GHz) observations of the quasar 3C 418 to determine \\overline{Q}≈ 5.5 ± 1.3 × 10^{46} {erg s^{-1}}. Analysis of the rest-frame ultraviolet spectrum indicates that this equates to 0.57 ± 0.28 times the Eddington luminosity of the central supermassive black hole and \\overline{Q}/L_{bol} ≈ 4.8 ± 3.1, making 3C 418 one of the most kinetically dominated quasars found to date. It is shown that this maximal \\overline{Q}/L_{bol} is consistent with models of magnetically arrested accretion of jet production in which the jet production reproduces the observed trend of a decrement in the extreme ultraviolet continuum as the jet power increases. This maximal condition corresponds to an almost complete saturation of the inner accretion flow with vertical large-scale magnetic flux (maximum saturation).

  19. Magnetic electron lenses

    CERN Document Server

    1982-01-01

    No single volume has been entirely devoted to the properties of magnetic lenses, so far as I am aware, although of course all the numerous textbooks on electron optics devote space to them. The absence of such a volume, bringing together in­ formation about the theory and practical design of these lenses, is surprising, for their introduction some fifty years ago has created an entirely new family of commercial instruments, ranging from the now traditional transmission electron microscope, through the reflection and transmission scanning microscopes, to co­ lumns for micromachining and microlithography, not to mention the host of experi­ mental devices not available commercially. It therefore seemed useful to prepare an account of the various aspects of mag­ netic lens studies. These divide naturally into the five chapters of this book: the theoretical background, in which the optical behaviour is described and formu­ lae given for the various aberration coefficients; numerical methods for calculat­ ing...

  20. Spectroscopy of the fuzz associated with four quasars

    International Nuclear Information System (INIS)

    Balick, B.; Heckman, T.M.

    1983-01-01

    The spectroscopic properties of the ''fuzz'' near four quasars are consistent with starlight in a galactic environment at essentially the same redshift as the quasar. Apparently, then, the same processes that determine the redshifts of galaxies also determine the redshifts of quasars

  1. The X-ray-weak quasars from the SDSS

    Science.gov (United States)

    Pu, X.; Luo, B.

    2017-10-01

    Using archival Chandra data, we study the X-ray properties of 582 SDSS DR7 quasars in the redshift range 1.7BAL quasars under-luminous by a factor of 20 are constrained to be ˜ 1.5%. Another ˜ 3000 SDSS DR10 quasars with Chandra observations are under investigation.

  2. New Constraints on the Hard Ionizing Photon Budget and the Lifetime and Obscuration of Quasars During the Epoch of Helium Reionization

    Science.gov (United States)

    Davies, Frederick

    2017-08-01

    The epoch of helium reionization was a major milestone in the history of the Universe, a direct consequence of supermassive black hole growth and the cumulative output of hard ionizing photons by quasars. Our observations of the He II Ly-alpha forest with HST/COS in 26 quasar sightlines show strong fluctuations at z 3, consistent with our state-of-the-art simulations of the He II reionization epoch. However, our detection of transmission at z > 3.5 is inconsistent with all He II reionization models. Resolving this puzzle requires an extensive parameter study of He II reionization, which we propose to carry out using our fast, efficient simulations. The He II Ly-alpha forest is also sensitive to the effect of quasar radiation illuminating the intergalactic medium, known as the proximity effect. We have performed an ambitious ground-based imaging and spectroscopic survey for z 3 quasars in the foreground of HeII sightlines observed with HST/COS, and statistically detected the transverse proximity effect for the first time. The strength of this effect depends on both the quasar lifetime and the opening angle of quasar emission (or the fraction of obscured quasars), and we propose to use our He II reionization simulations to interpret this new measurement. Finally, the line-of-sight proximity effect due to the background quasar provides an independent constraint on the quasar lifetime. Our preliminary comparison of He II spectra to our radiative transfer simulations suggests a quasar lifetime > 10 Myr. We propose to use our He II reionization simulations to model this diverse set of observations and fully capitalize on the far-UV legacy of HST.

  3. DETECTING RELATIVISTIC X-RAY JETS IN HIGH-REDSHIFT QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    McKeough, Kathryn [Department of Statistics, Harvard University, Cambridge, MA 02138 (United States); Siemiginowska, Aneta; Kashyap, Vinay L.; Lee, N. P.; Harris, D. E.; Schwartz, D. A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Cheung, C. C. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Stawarz, Łukasz [Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-244, Kraków (Poland); Stein, Nathan [Department of Statistics, The Wharton School, University of Pennsylvania, 400 Jon M. Huntsman Hall, 3730 Walnut Street, Philadelphia, PA 19104-6340 (United States); Stampoulis, Vasileios; Dyk, David A. van [Statistics Section, Imperial College London, Huxley Building, South Kensington Campus, London SW7 (United Kingdom); Wardle, J. F. C. [Department of Physics, MS 057, Brandeis University, Waltham, MA 02454 (United States); Donato, Davide [CRESST and Astroparticle Physics Laboratory NASA/GSFC, Greenbelt, MD 20771 (United States); Maraschi, Laura; Tavecchio, Fabrizio, E-mail: kathrynmckeough@g.harvard.edu [INAF Osservatorio Astronomico di Brera, via Brera 28, I-20124, Milano (Italy)

    2016-12-10

    We analyze Chandra X-ray images of a sample of 11 quasars that are known to contain kiloparsec scale radio jets. The sample consists of five high-redshift ( z  ≥ 3.6) flat-spectrum radio quasars, and six intermediate redshift (2.1 <  z  < 2.9) quasars. The data set includes four sources with integrated steep radio spectra and seven with flat radio spectra. A total of 25 radio jet features are present in this sample. We apply a Bayesian multi-scale image reconstruction method to detect and measure the X-ray emission from the jets. We compute deviations from a baseline model that does not include the jet, and compare observed X-ray images with those computed with simulated images where no jet features exist. This allows us to compute p -value upper bounds on the significance that an X-ray jet is detected in a pre-determined region of interest. We detected 12 of the features unambiguously, and an additional six marginally. We also find residual emission in the cores of three quasars and in the background of one quasar that suggest the existence of unresolved X-ray jets. The dependence of the X-ray to radio luminosity ratio on redshift is a potential diagnostic of the emission mechanism, since the inverse Compton scattering of cosmic microwave background photons (IC/CMB) is thought to be redshift dependent, whereas in synchrotron models no clear redshift dependence is expected. We find that the high-redshift jets have X-ray to radio flux ratios that are marginally inconsistent with those from lower redshifts, suggesting that either the X-ray emissions are due to the IC/CMB rather than the synchrotron process, or that high-redshift jets are qualitatively different.

  4. Black-hole masses of distant quasars

    DEFF Research Database (Denmark)

    Vestergaard, Marianne

    2011-01-01

    A brief overview of the methods commonly used to determine or estimate the black hole mass in quiescent or active galaxies is presented and it is argued that the use of mass-scaling relations is both a reliable and the preferred method to apply to large samples of distant quasars. The method uses...... that the black hole masses are very large, of order 1 to 10 billion solar masses, even at the highest redshifts of 4 to 6. The black holes must build up their mass very fast in the early universe. Yet they do not grow much larger than that: a maximum mass of about 10 billion solar masses is also observed....... Preliminary mass functions of active black holes are presented for several quasar samples, including the Sloan Digital Sky Survey. Finally, common concerns related to the application of the mass scaling relations, especially for high redshift quasars, are briefly discussed....

  5. Hard X-ray full field microscopy and magnifying microtomography using compound refractive lenses

    CERN Document Server

    Schrör, C; Benner, B; Kuhlmann, M; Tümmler, J; Lengeler, B; Rau, C; Weitkamp, T; Snigirev, A; Snigireva, I

    2001-01-01

    For hard X-rays, parabolic compound refractive lenses (PCRLs) are genuine imaging devices like glass lenses for visible light. Based on these new lenses, a hard X-ray full field microscope has been constructed that is ideally suited to image the interior of opaque samples with a minimum of sample preparation. As a result of a large depth of field, CRL micrographs are sharp projection images of most samples. To obtain 3D information about a sample, tomographic techniques are combined with magnified imaging.

  6. Fluid Lensing and Applications to Remote Sensing of Aquatic Environments

    Science.gov (United States)

    Chirayath, Ved

    2017-01-01

    The use of fluid lensing technology on UAVs is presented as a novel means for 3D imaging of aquatic ecosystems from above the water's surface at the centimeter scale. Preliminary results are presented from airborne fluid lensing campaigns conducted over the coral reefs of Ofu Island, American Samoa (2013) and the stromatolite reefs of Shark Bay, Western Australia (2014), covering a combined area of 15km2. These reef ecosystems were revealed with centimetre-scale 2D resolution, and an accompanying 3D bathymetry model was derived using fluid lensing, Structure from Motion and UAV position data. Data products were validated from in-situ survey methods including underwater calibration targets, depth measurements and millimetre-scale high-dynamic range gigapixel photogrammetry. Fluid lensing is an experimental technology that uses water transmitting wavelengths to passively image underwater objects at high-resolution by exploiting time-varying optical lensing events caused by surface waves. Fluid lensing data are captured from low-altitude, cost-effective electric UAVs to achieve multispectral imagery and bathymetry models at the centimetre scale over regional areas. As a passive system, fluid lensing is presently limited by signal-to-noise ratio and water column inherent optical properties to approximately 10 m depth over visible wavelengths in clear waters. The datasets derived from fluid lensing present the first centimetre-scale images of a reef acquired from above the ocean surface, without wave distortion. The 3D multispectral data distinguish coral, fish and invertebrates in American Samoa, and reveal previously undocumented, morphologically distinct, stromatolite structures in Shark Bay. These findings suggest fluid lensing and multirotor electric drones represent a promising advance in the remote sensing of aquatic environments at the centimetre scale, or 'reef scale' relevant to the conservation of reef ecosystems. Pending further development and validation of

  7. Quasar Identification and Classification with Decision Trees

    Science.gov (United States)

    Spinka, T.; Carpenter, T.; Brunner, R. J.; Aydt, R.; Auvil, L.; Redman, T.; Tcheng, D.

    2003-12-01

    The massive amounts of data flooding into the astronomy field hold many answers to important problems in contemporary astrophysics. The biggest problem is sifting through massive amounts of data to uncover these secrets. In this presentation, we identify an approach in which we apply data-mining techniques to the problem of photometric quasar identification. We employ decision trees to quickly and robustly identify potential quasars to a high degree of accuracy. We emphasize computational scalability due to the high volume of data and complexity of the data-mining algorithms.

  8. Invited Review Article: Development of crystal lenses for energetic photons

    International Nuclear Information System (INIS)

    Smither, Robert K.

    2014-01-01

    This paper follows the development of crystal diffraction lenses designed to focus energetic photons. It begins with the search for a solution to the astrophysics problem of how to detect weak astrophysics sources of gamma rays and x-rays. This led to the basic designs for a lens and to the understanding of basic limitations of lens design. The discussion of the development of crystal diffraction lenses is divided into two parts: lenses using crystals with mosaic structure, and lenses that use crystals with curved crystal planes. This second group divides into two sub-groups: (1) Curved crystals that are used to increase the acceptance angle of the diffraction of a monochromatic beam and to increase the energy bandwidth of the diffraction. (2) Curved crystals used to focus gamma ray beams. The paper describes how these two types of crystals affect the design of the corresponding crystal lenses in different fields: astrophysics, medical imaging, detection of weak, distant, gamma-ray sources, etc. The designs of crystal lenses for these applications are given in enough detail to allow the reader to design a lens for his own application

  9. Chromatic confocal microscope using hybrid aspheric diffractive lenses

    Science.gov (United States)

    Rayer, Mathieu; Mansfield, Daniel

    2014-05-01

    A chromatic confocal microscope is a single point non-contact distance measurement sensor. For three decades the vast majority of the chromatic confocal microscope use refractive-based lenses to code the measurement axis chromatically. However, such an approach is limiting the range of applications. In this paper the performance of refractive, diffractive and Hybrid aspheric diffractive are compared. Hybrid aspheric diffractive lenses combine the low geometric aberration of a diffractive lens with the high optical power of an aspheric lens. Hybrid aspheric diffractive lenses can reduce the number of elements in an imaging system significantly or create large hyper- chromatic lenses for sensing applications. In addition, diffractive lenses can improve the resolution and the dynamic range of a chromatic confocal microscope. However, to be suitable for commercial applications, the diffractive optical power must be significant. Therefore, manufacturing such lenses is a challenge. We show in this paper how a theoretical manufacturing model can demonstrate that the hybrid aspheric diffractive configuration with the best performances is achieved by step diffractive surface. The high optical quality of step diffractive surface is then demonstrated experimentally. Publisher's Note: This paper, originally published on 5/10/14, was replaced with a corrected/revised version on 5/19/14. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance.

  10. Pulsar lensing geometry

    Science.gov (United States)

    Liu, Siqi; Pen, Ue-Li; Macquart, J.-P.; Brisken, Walter; Deller, Adam

    2016-05-01

    We test the inclined sheet pulsar scintillation model (Pen & Levin) against archival very long baseline interferometry (VLBI) data on PSR 0834+06 and show that its scintillation properties can be precisely reproduced by a model in which refraction occurs on two distinct lens planes. These data strongly favour a model in which grazing-incidence refraction instead of diffraction off turbulent structures is the primary source of pulsar scattering. This model can reproduce the parameters of the observed diffractive scintillation with an accuracy at the percent level. Comparison with new VLBI proper motion results in a direct measure of the ionized interstellar medium (ISM) screen transverse velocity. The results are consistent with ISM velocities local to the PSR 0834+06 sight-line (through the Galaxy). The simple 1-D structure of the lenses opens up the possibility of using interstellar lenses as precision probes for pulsar lens mapping, precision transverse motions in the ISM, and new opportunities for removing scattering to improve pulsar timing. We describe the parameters and observables of this double screen system. While relative screen distances can in principle be accurately determined, a global conformal distance degeneracy exists that allows a rescaling of the absolute distance scale. For PSR B0834+06, we present VLBI astrometry results that provide (for the first time) a direct measurement of the distance of the pulsar. For most of the recycled millisecond pulsars that are the targets of precision timing observations, the targets where independent distance measurements are not available. The degeneracy presented in the lens modelling could be broken if the pulsar resides in a binary system.

  11. Chandra Scores A Double Bonus With A Distant Quasar

    Science.gov (United States)

    2002-02-01

    Two discoveries from a distant quasar - an enormous X-ray jet and an X-ray shadow cast by an intervening galaxy - are giving astronomers using NASA's Chandra X-ray Observatory cause to be doubly excited. These two independent results reveal information about a supermassive black hole at the center of the quasar as well as the amount of oxygen in a distant galaxy billions of years ago. In one set of Chandra observations of quasar PKS 1127-145, researchers found an X-ray jet that extends over a length of at least a million light years. The jet reveals explosive activity that occurred 10 billion years ago around the quasar's central supermassive black hole. "The X-rays from the jet are likely due to the collision of microwave photons left over from the Big Bang with a high-energy beam of particles," said Aneta Siemiginowska of the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA, lead author on a paper which will appear in the May 10, 2002 issue of the Astrophysical Journal. "The intensity of these microwaves today is much less than it was 10 billion years ago, due to the expansion of the universe." Chandra observations of quasar PKS 1127-145 demonstrate that scientists can image these jets even though they are billions of light years away. Studies of these extraordinarily large structures will allow astronomers to test models for quasars and the supermassive black holes that power them. The length of the jet and the prominent knots of X-ray emission observed suggest that the activity in the vicinity of the central supermassive black hole is long-lived but maybe intermittent, perhaps due to the mergers of other galaxies with the host galaxy. In a separate result obtained by studying the same quasar, scientists found an X-ray shadow cast by an intervening galaxy. On their way to Earth, the X-rays from PKS 1127-145 pass through a galaxy located about 4 billion light years from Earth, which gives astronomers information about the amount of oxygen in the

  12. Class B0631+519: Last of the Class Lenses

    Energy Technology Data Exchange (ETDEWEB)

    York, Tom; Jackson, N.; Browne, I.W.A.; Koopmans, L.V.E.; McKean, J.P.; Norbury, M.A.; Biggs, A.D.; Blandford, R.D.; de Bruyn, A.G.; Fassnacht, C.D.; Myers, S.T.; Pearson, T.J.; Phillips, P.M.; Readhead, A.C.S.; Rusin, D.; Wilkinson, P.N.; /Jodrell Bank /Kapteyn Astron. Inst., Groningen /UC, Davis /JIVE, Dwingeloo /KIPAC, Menlo Park /NFRA,

    2005-05-31

    We report the discovery of the new gravitational lens system CLASS B0631+519. Imaging with the VLA, MERLIN and the VLBA reveals a doubly-imaged flat-spectrum radio core, a doubly-imaged steep-spectrum radio lobe and possible quadruply-imaged emission from a second lobe. The maximum separation between the lensed images is 1.16 arcsec. High resolution mapping with the VLBA at 5 GHz resolves the most magnified image of the radio core into a number of sub-components spread across approximately 20 mas. No emission from the lensing galaxy or an odd image is detected down to 0.31 mJy (5{sigma}) at 8.4 GHz. Optical and near-infrared imaging with the ACS and NICMOS cameras on the HST show that there are two galaxies along the line of sight to the lensed source, as previously discovered by optical spectroscopy. We find that the foreground galaxy at z=0.0896 is a small irregular, and that the other, at z=0.6196 is a massive elliptical which appears to contribute the majority of the lensing effect. The host galaxy of the lensed source is detected in the HST near-infrared imaging as a set of arcs, which form a nearly complete Einstein ring. Mass modeling using non-parametric techniques can reproduce the near-infrared observations and indicates that the small irregular galaxy has a (localized) effect on the flux density distribution in the Einstein ring at the 5-10% level.

  13. Fitting gravitational lenses: truth or delusion

    Science.gov (United States)

    Evans, N. Wyn; Witt, Hans J.

    2003-11-01

    The observables in a strong gravitational lens are usually just the image positions and sometimes the flux ratios. We develop a new and simple algorithm which allows a set of models to be fitted exactly to the observations. Taking our cue from the strong body of evidence that early-type galaxies are close to isothermal, we assume that the lens is scale-free with a flat rotation curve. External shear can be easily included. Our algorithm allows full flexibility regarding the angular structure of the lensing potential. Importantly, all the free parameters enter linearly into the model and so the lens and flux ratio equations can always be solved by straightforward matrix inversion. The models are only restricted by the fact that the surface mass density must be positive. We use this new algorithm to examine some of the claims made for anomalous flux ratios. It has been argued that such anomalies betray the presence of substantial amounts of substructure in the lensing galaxy. We demonstrate by explicit construction that some of the lens systems for which substructure has been claimed can be well fitted by smooth lens models. This is especially the case when the systematic errors in the flux ratios (caused by microlensing or differential extinction) are taken into account. However, there is certainly one system (B1422+231) for which the existing smooth models are definitely inadequate and for which substructure may be implicated. Within a few tens of kpc of the lensing galaxy centre, dynamical friction and tidal disruption are known to be very efficient at dissolving any substructure. Very little substructure is projected within the Einstein radius. The numbers of strong lenses for which substructure is currently being claimed may be so large that this contradicts rather than supports cold dark matter theories.

  14. The Quasar Accretion Disk Size-Black Hole Mass Relation

    Science.gov (United States)

    Morgan, Christopher W.; Kochanek, C. S.; Morgan, Nicholas D.; Falco, Emilio E.

    2010-04-01

    We use the microlensing variability observed for 11 gravitationally lensed quasars to show that the accretion disk size at a rest-frame wavelength of 2500 Å is related to the black hole mass by log(R 2500/cm) = (15.78 ± 0.12) + (0.80 ± 0.17)log(M BH/109 M sun). This scaling is consistent with the expectation from thin-disk theory (R vprop M 2/3 BH), but when interpreted in terms of the standard thin-disk model (T vprop R -3/4), it implies that black holes radiate with very low efficiency, log(η) = -1.77 ± 0.29 + log(L/L E), where η =L/(\\dot{M}c^2). Only by making the maximum reasonable shifts in the average inclination, Eddington factors, and black hole masses can we raise the efficiency estimate to be marginally consistent with typical efficiency estimates (η ≈ 10%). With one exception, these sizes are larger by a factor of ~4 than the size needed to produce the observed 0.8 μm quasar flux by thermal radiation from a thin disk with the same T vprop R -3/4 temperature profile. While scattering a significant fraction of the disk emission on large scales or including a large fraction of contaminating line emission can reduce the size discrepancy, resolving it also appears to require that accretion disks have flatter temperature/surface brightness profiles. Based on observations obtained with the Small and Moderate Aperture Research Telescope System (SMARTS) 1.3 m, which is operated by the SMARTS Consortium, the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium, the WIYN Observatory which is owned and operated by the University of Wisconsin, Indiana University, Yale University, and the National Optical Astronomy Observatories (NOAO), the 6.5 m Magellan Baade telescope, which is a collaboration between the observatories of the Carnegie Institution of Washington (OCIW), University of Arizona, Harvard University, University of Michigan, and Massachusetts Institute of Technology, and observations made

  15. Observations of Cluster Substructure using Weakly Lensed Sextupole Moments

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, John

    2003-08-01

    Since dark matter clusters and groups may have substructure, we have examined the sextupole content of Hubble images looking for a curvature signature in background galaxies that would arise from galaxy-galaxy lensing. We describe techniques for extracting and analyzing sextupole and higher weakly lensed moments. Indications of substructure, via spatial clumping of curved background galaxies, were observed in the image of CL0024 and then surprisingly in both Hubble deep fields. We estimate the dark cluster masses in the deep field. Alternatives to a lensing hypothesis appear improbable, but better statistics will be required to exclude them conclusively. Observation of sextupole moments would then provide a means to measure dark matter structure on smaller length scales than heretofore.

  16. Quasar Mass Functions Across Cosmic Time

    DEFF Research Database (Denmark)

    Vestergaard, Marianne

    2010-01-01

    I present mass functions of actively accreting black holes detected in different quasar surveys which in concert cover a wide range of cosmic history. I briefly address what we learn from these mass functions. I summarize the motivation for such a study and the methods by which we determine black...... hole masses....

  17. Flat liquid crystal diffractive lenses with variable focus and magnification

    Science.gov (United States)

    Valley, Pouria

    Non-mechanical variable lenses are important for creating compact imaging devices. Various methods employing dielectrically actuated lenses, membrane lenses, and liquid crystal lenses were previously proposed [1-4]. In This dissertation the design, fabrication, and characterization of innovative flat tunable-focus liquid crystal diffractive lenses (LCDL) are presented. LCDL employ binary Fresnel zone electrodes fabricated on Indium-Tin-Oxide using conventional micro-photolithography. The light phase can be adjusted by varying the effective refractive index of a nematic liquid crystal sandwiched between the electrodes and a reference substrate. Using a proper voltage distribution across various electrodes the focal length can be changed between several discrete values. Electrodes are shunted such that the correct phase retardation step sequence is achieved. If the number of 2pi zone boundaries is increased by a factor of m the focal length is changed from f to f/m based on the digitized Fresnel zone equation: f = rm2/2mlambda, where r m is mth zone radius, and lambda is the wavelength. The chromatic aberration of the diffractive lens is addressed and corrected by adding a variable fluidic lens. These LCDL operate at very low voltage levels (+/-2.5V ac input), exhibit fast switching times (20-150 ms), can have large apertures (>10 mm), and small form factor, and are robust and insensitive to vibrations, gravity, and capillary effects that limit membrane and dielectrically actuated lenses. Several tests were performed on the LCDL including diffraction efficiency measurement, switching dynamics, and hybrid imaging with a refractive lens. Negative focal lengths are achieved by adjusting the voltages across electrodes. Using these lenses in combination, magnification can be changed and zoom lenses can be formed. These characteristics make LCDL a good candidate for a variety of applications including auto-focus and zoom lenses in compact imaging devices such as camera

  18. Compound Refractive Lenses for Thermal Neutron Applications

    Energy Technology Data Exchange (ETDEWEB)

    Gary, Charles K.

    2013-11-12

    This project designed and built compound refractive lenses (CRLs) that are able to focus, collimate and image using thermal neutrons. Neutrons are difficult to manipulate compared to visible light or even x rays; however, CRLs can provide a powerful tool for focusing, collimating and imaging neutrons. Previous neutron CRLs were limited to long focal lengths, small fields of view and poor resolution due to the materials available and manufacturing techniques. By demonstrating a fabrication method that can produce accurate, small features, we have already dramatically improved the focal length of thermal neutron CRLs, and the manufacture of Fresnel lens CRLs that greatly increases the collection area, and thus efficiency, of neutron CRLs. Unlike a single lens, a compound lens is a row of N lenslets that combine to produce an N-fold increase in the refraction of neutrons. While CRLs can be made from a variety of materials, we have chosen to mold Teflon lenses. Teflon has excellent neutron refraction, yet can be molded into nearly arbitrary shapes. We designed, fabricated and tested Teflon CRLs for neutrons. We demonstrated imaging at wavelengths as short as 1.26 ? with large fields of view and achieved resolution finer than 250 μm which is better than has been previously shown. We have also determined designs for Fresnel CRLs that will greatly improve performance.

  19. The Sloan Digital Sky Survey Quasar Lens Search. VI. Constraints on Dark Energy and the Evolution of Massive Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Oguri, Masamune [Univ. of Tokyo (Japan); et al.

    2012-05-01

    We present a statistical analysis of the final lens sample from the Sloan Digital Sky Survey Quasar Lens Search (SQLS). The number distribution of a complete subsample of 19 lensed quasars selected from 50,836 source quasars is compared with theoretical expectations, with particular attention to the selection function. Assuming that the velocity function of galaxies does not evolve with redshift, the SQLS sample constrains the cosmological constant to \\Omega_\\Lambda=0.79^{+0.06}_{-0.07}(stat.)^{+0.06}_{-0.06}(syst.) for a flat universe. The dark energy equation of state is found to be consistent with w=-1 when the SQLS is combined with constraints from baryon acoustic oscillation (BAO) measurements or results from the Wilkinson Microwave Anisotropy Probe (WMAP). We also obtain simultaneous constraints on cosmological parameters and redshift evolution of the galaxy velocity function, finding no evidence for redshift evolution at z<1 in any combinations of constraints. For instance, number density evolution quantified as \

  20. Quasar Accretion Disk Sizes With Continuum Reverberation Mapping From the Dark Energy Survey

    Energy Technology Data Exchange (ETDEWEB)

    Mudd, D.; et al.

    2017-11-30

    We present accretion disk size measurements for 15 luminous quasars at $0.7 \\leq z \\leq 1.9$ derived from $griz$ light curves from the Dark Energy Survey. We measure the disk sizes with continuum reverberation mapping using two methods, both of which are derived from the expectation that accretion disks have a radial temperature gradient and the continuum emission at a given radius is well-described by a single blackbody. In the first method we measure the relative lags between the multiband light curves, which provides the relative time lag between shorter and longer wavelength variations. The second method fits the model parameters for the canonical Shakura-Sunyaev thin disk directly rather than solving for the individual time lags between the light curves. Our measurements demonstrate good agreement with the sizes predicted by this model for accretion rates between 0.3-1 times the Eddington rate. These results are also in reasonable agreement with disk size measurements from gravitational microlensing studies of strongly lensed quasars, as well as other photometric reverberation mapping results.

  1. Comparison of objective lenses for multiphoton microscopy in turbid samples.

    Science.gov (United States)

    Singh, Avtar; McMullen, Jesse D; Doris, Eli A; Zipfel, Warren R

    2015-08-01

    Optimization of illumination and detection optics is pivotal for multiphoton imaging in highly scattering tissue and the objective lens is the central component in both of these pathways. To better understand how basic lens parameters (NA, magnification, field number) affect fluorescence collection and image quality, a two-detector setup was used with a specialized sample cell to separate measurement of total excitation from epifluorescence collection. Our data corroborate earlier findings that low-mag lenses can be superior at collecting scattered photons, and we compare a set of commonly used multiphoton objective lenses in terms of their ability to collect scattered fluorescence, providing guidance for the design of multiphoton imaging systems. For example, our measurements of epi-fluorescence beam divergence in the presence of scattering reveal minimal beam broadening, indicating that often-advocated over-sized collection optics are not as advantageous as previously thought. These experiments also provide a framework for choosing objective lenses for multiphoton imaging by relating the results of our measurements to various design parameters of the objectives lenses used.

  2. An Exploratory Search for z gsim 6 Quasars in the Ukidss Early Data Release

    Science.gov (United States)

    Glikman, Eilat; Eigenbrod, Alexander; Djorgovski, S. G.; Meylan, Georges; Thompson, David; Mahabal, Ashish; Courbin, Frédéric

    2008-09-01

    We conducted an exploratory search for quasars at z ~ 6-8, using the Early Data Release (EDR) from the United Kingdom Infrared Deep Sky Survey (UKIDSS) cross-matched to panoramic optical imagery. High-redshift quasar candidates are chosen using multi-color selection in i, z, Y, J, H, and K bands. After removal of apparent instrumental artifacts, our candidate list consisted of 34 objects. We further refined this list with deeper imaging in the optical for ten of our candidates. Twenty-five candidates were followed up spectroscopically in the near-infrared and in the optical. We confirmed 25 of our spectra as very low-mass main-sequence stars or brown dwarfs, which were indeed expected as the main contaminants of this exploratory search. The lack of quasar detection is not surprising: the estimated probability of finding a single z > 6 quasar down to the limit of UKIDSS in 27.3 deg2 of the EDR is <5%. We find that the most important limiting factor in this work is the depth of the available optical data. Experience gained in this pilot project can help refine high-redshift quasar selection criteria for subsequent UKIDSS data releases. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  3. Discovery of a Quasar at z = 5.28 from the Sloan Digital Sky Survey Data

    Science.gov (United States)

    Tsvetanov, Z.; Zheng, W.; SDSS Collaboration

    2000-05-01

    We report the discovery of a quasar at redshift z=5.28 selected from the Sloan Digital Sky Survey (SDSS) comissioning data. Quasar selections at z > 5 suffer increasing contamination from cool stars and unresolved z ~ 1 galaxies. To fight this severe pollution problem we are carrying out a project to obtain the infrared magnitudes for selected SDSS targets. The infrared photometry enable us to isolate a handful of highly potential targets out of a an initial list of several hundreds. The IR imaging was obtained at the NASA IRTF on Mauna Kea, Hawaii and the follouw-up optical (0.6--1 μ ) spectra were taken with the 3.5m telescope at the Apache Point Observatory, New Mexico. Two quasars at z = 4.7 and 5.28 were found from just five candidates. The z = 5.28 quasar is the highest redshift known to date for luminous quasars, and its prominent emission lines provide insight into the cosmic evolution in the early universe. The new discovery shows the power of SDSS, as well as the effectiveness of the SDSS/IR selection. The SDSS is a joint project of the University of Chicago, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, Max-Planck-Institute for Astronomy, Princeton University, United States Naval Observatory and the University of Washington. Funding has been provided by the Alfred P. Sloan Foundation, the member institutions, NASA, NSF, the U.S. DoE, and the Ministry of Education of Japan.

  4. Use of Scleral Lenses and Miniscleral Lenses After Penetrating Keratoplasty.

    Science.gov (United States)

    Barnett, Melissa; Lien, Vivian; Li, Jennifer Y; Durbin-Johnson, Blythe; Mannis, Mark J

    2016-05-01

    To examine the clinical outcomes of scleral lenses for visual rehabilitation after penetrating keratoplasty (PK). A retrospective review was conducted for 34 patients (48 eyes) who had a history of prior PK and were fit with scleral lenses between October 2009 and December 2013 at the UC Davis Eye Center. The most common initial indication for PK was keratoconus in 27 eyes (56%). Thirty-three eyes (69%) had previously been fit with other types of contact lenses, with small-diameter rigid gas-permeable lenses being the most common. The improvement in best-corrected visual acuity with a scleral lens compared with prior spectacle refraction or other contact lens was a mean of two best-corrected visual acuity lines. Forty-four eyes (91.7%) achieved functional vision with best scleral lens-corrected visual acuities of 20/40 or better. Patients who continued wearing scleral lenses were significantly more likely to report "good" subjective vision compared with patients who abandoned scleral lens wear (P=0.009), although change in objective best-corrected visual acuity did not differ significantly. There were no cases of infectious keratitis. Six eyes (12.5%) developed graft rejection; 3 were able to resume scleral lens wear. Nineteen eyes (39.5%) discontinued scleral lens wear for various reasons, the most common reason for discontinuation of lens wear was difficulty with scleral lens insertion or removal (8 eyes, 42.1%). Scleral lenses are effective and safe in patients who have had PK. There was a mean gain in visual acuity, with the majority of patients achieving 20/40 vision or better. The patient's subjective perception of vision was a significant factor in determining whether scleral lens wear was continued or abandoned.

  5. Scleral lenses: a literature review.

    Science.gov (United States)

    Schornack, Muriel M

    2015-01-01

    To present a comprehensive review of current and historical literature on scleral lenses. A comprehensive search of several databases from each database's earliest inception to May 23, 2014 was conducted by an experienced librarian with input from the author to locate articles related to scleral lens design, fabrication, prescription, and management. A total of 899 references were identified, 184 of which were directly related to scleral lenses. References of interest were organized by date, topic, and study design. Most of articles published before 1983 presented lens design and fabrication techniques or indications for scleral lens therapy. Case reviews published after 1983 identified major indications for scleral lenses (corneal ectasia, ocular surface disease, and refractive error) and visual and functional outcomes of scleral lens wear. Statistically significant improvements in visual acuity, vision-related quality of life, and ocular surface integrity were reported. Reviews of ocular and systemic conditions suggested that comprehensive management strategies for these conditions could include scleral lenses. Early work investigating scleral lens fitting characteristics, optical qualities, and potential physiological impact on anterior ocular structures have been published in the past 5 years. Indications for scleral lens wear are well-established. Developing areas of research on the physiologic impact of scleral lens wear on the ocular surface, the use of technology to improve scleral lens vision and fit, and the impact of these devices on the quality of life should further enhance our understanding of scleral lenses in the future.

  6. The Einstein database of IPC x-ray observations of optically selected and radio-selected quasars, 1.

    Science.gov (United States)

    Wilkes, Belinda J.; Tananbaum, Harvey; Worrall, D. M.; Avni, Yoram; Oey, M. S.; Flanagan, Joan

    1994-01-01

    We present the first volume of the Einstein quasar database. The database includes estimates of the X-ray count rates, fluxes, and luminosities for 514 quasars and Seyfert 1 galaxies observed with the Imaging Proportional Counter (IPC) aboard the Einstein Observatory. All were previously known optically selected or radio-selected objects, and most were the targets of the X-ray observations. The X-ray properties of the Active Galactic Nuclei (AGNs) have been derived by reanalyzing the IPC data in a systematic manner to provide a uniform database for general use by the astronomical community. We use the database to extend earlier quasar luminosity studies which were made using only a subset of the currently available data. The database can be accessed on internet via the SAO Einstein on-line system ('Einline') and is available in ASCII format on magnetic tape and DOS diskette.

  7. Black hole accretion: the quasar powerhouse

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    A program is described which calculates the effects of material falling into the curved space-time surrounding a rotation black hole. The authors have developed a two-dimensional, general-relativistic hydrodynamics code to simulate fluid flow in the gravitational field of a rotating black hole. Such calculations represent models that have been proposed for the energy sources of both quasars and jets from radiogalaxies. In each case, the black hole that powers the quasar or jet would have a mass of about 100 million times the mass of the sun. The black hole would be located in the center of a galaxy whose total mass is 1000 time greater than the black hole mass. (SC)

  8. Automated analysis of slitless spectra. II. Quasars

    International Nuclear Information System (INIS)

    Edwards, G.; Beauchemin, M.; Borra, F.

    1988-01-01

    Automated software have been developed to process slitless spectra. The software, described in a previous paper, automatically separates stars from extended objects and quasars from stars. This paper describes the quasar search techniques and discusses the results. The performance of the software is compared and calibrated with a plate taken in a region of SA 57 that has been extensively surveyed by others using a variety of techniques: the proposed automated software performs very well. It is found that an eye search of the same plate is less complete than the automated search: surveys that rely on eye searches suffer from incompleteness at least from a magnitude brighter than the plate limit. It is shown how the complete automated analysis of a plate and computer simulations are used to calibrate and understand the characteristics of the present data. 20 references

  9. Gamma-Ray Flaring Activity from the Gravitationally Lensed Blazar PKS 1830-211 Observed by Fermi LAT

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A.; et al.

    2015-01-23

    The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope routinely detects the MeV-peaked flat-spectrum radio quasar PKS 1830–211 (z = 2.507). Its apparent isotropic γ-ray luminosity (E > 100 MeV), averaged over ~3 years of observations and peaking on 2010 October 14/15 at 2.9 × 10(50) erg s(–)(1), makes it among the brightest high-redshift Fermi blazars. No published model with a single lens can account for all of the observed characteristics of this complex system. Based on radio observations, one expects time-delayed variability to follow about 25 days after a primary flare, with flux about a factor of 1.5 less. Two large γ-ray flares of PKS 1830–211 have been detected by the LAT in the considered period, and no substantial evidence for such a delayed activity was found. This allows us to place a lower limit of about 6 on the γ-ray flux ratio between the two lensed images. Swift XRT observations from a dedicated Target of Opportunity program indicate a hard spectrum with no significant correlation of X-ray flux with the γ-ray variability. The spectral energy distribution can be modeled with inverse Compton scattering of thermal photons from the dusty torus. The implications of the LAT data in terms of variability, the lack of evident delayed flare events, and different radio and γ-ray flux ratios are discussed. Microlensing effects, absorption, size and location of the emitting regions, the complex mass distribution of the system, an energy-dependent inner structure of the source, and flux suppression by the lens galaxy for one image path may be considered as hypotheses for understanding our results.

  10. Influence of the cosmological constant on gravitational lensing in small systems

    International Nuclear Information System (INIS)

    Sereno, Mauro

    2008-01-01

    The cosmological constant Λ affects gravitational lensing phenomena. The contribution of Λ to the observable angular positions of multiple images and to their amplification and time delay is here computed through a study of the weak deflection limit of the equations of motion in the Schwarzschild-de Sitter metric. Because of Λ the unresolved images are slightly demagnified, the radius of the Einstein ring decreases, and the time delay increases. The effect is however negligible for near lenses. In the case of a null cosmological constant, we provide some updated results on lensing by a Schwarzschild black hole

  11. Quasar Elemental Abundances at High Redshifts

    DEFF Research Database (Denmark)

    Dietrich, M.; Hamann, F.; Shields, J. C.

    2003-01-01

    scale of t_evol = 0.5 - 0.8 Gyrs for the chemical enrichment of the gas, the first major star formation for quasars with z>=4 should have started at a redshift of z_f = 6 - 8, corresponding to an age of the universe of several 10^8 yrs (H_o = 65 km/s/Mpc, Omega_M = 0.3, Omega_Lambda = 0.7). We note...

  12. Quasars in the Life of Astronomers

    Science.gov (United States)

    D'Onofrio, Mauro; Marziani, Paola; Sulentic, Jack W.; Collin, Suzy; Setti, Giancarlo; Gaskell, Martin; Wampler, Joe; Elvis, Martin; Pronik, Iraida; Pronik, Vladimir; Sergeev, Sergey; Volvach, Aleksander; Krolik, Julian; Netzer, Hagai; Cavaliere, Alfonso; Padovani, Paolo; Arp, Halton; Narlikar, Jayant

    We are approaching the 50th anniversary of the discovery of quasars. Those old enough to have been cognizant of astronomy in 1962-1963 can remember the sense of excitement connected with this finding. There was talk of a major new constituent of the universe. The excitement of the discovery was palpable even to one of us (the most senior of the editors) who was then a high school teenager.

  13. Optical microvariability of bright type 2 quasars

    Science.gov (United States)

    Polednikova, Jana; Ederoclite, Alessandro; Cepa, Jordi; de Diego Onsurbe, José Antonio; González-Serrano, José Ignacio

    2014-07-01

    We present results from a project focused on searching optical microvariabilty (also known as ``intra-night'' variability) in type 2 - obscured - quasars. Optical microvariability can be described as very small changes in the flux, typically in the order of hundredths of magnitude, which can be observed on timescales of hours. Such studies have been so far conducted for samples of blazars and type 1, unobscured, AGNs, where the optical microvariability was detected with success. We have focused on obscured targets which would pose a challenge to the AGN standard model. In the present work, however, we have observed a sample of three bright (g mag < 17) type 2 quasar, based on the catalog of type 2 quasars from SDSS of Reyes et al. (2008). The observations were carried out with the 1.5 meter telescope at San Pedro Martir observatory in Mexico. The sample was observed during an observation period of four days in Johnsons V filter, resulting in at least two continuous intervals of observations per target during the observational run. We have obtained differential light curves for our sources as well as for the comparison stars. They were analyzed using one-way analysis of variance statistical test (ANOVA), which has been repeatedly used in the past for studies of unobscured targets. Based on the results from the statistical analysis, we show that at least two out of three observed targets appear to be variable on time scales of hours. So far, this is the first study which confirmed existence of optical microvariability in type 2 quasars.

  14. Magnified Weak Lensing Cross Correlation Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ulmer, Melville P., Clowe, Douglas I.

    2010-11-30

    This project carried out a weak lensing tomography (WLT) measurement around rich clusters of galaxies. This project used ground based photometric redshift data combined with HST archived cluster images that provide the WLT and cluster mass modeling. The technique has already produced interesting results (Guennou et al, 2010,Astronomy & Astrophysics Vol 523, page 21, and Clowe et al, 2011 to be submitted). Guennou et al have validated that the necessary accuracy can be achieved with photometric redshifts for our purposes. Clowe et al titled "The DAFT/FADA survey. II. Tomographic weak lensing signal from 10 high redshift clusters," have shown that for the **first time** via this purely geometrical technique, which does not assume a standard rod or candle, that a cosmological constant is **required** for flat cosmologies. The intent of this project is not to produce the best constraint on the value of the dark energy equation of state, w. Rather, this project is to carry out a sustained effort of weak lensing tomography that will naturally feed into the near term Dark Energy Survey (DES) and to provide invaluable mass calibration for that project. These results will greatly advance a key cosmological method which will be applied to the top-rated ground-based project in the Astro2020 decadal survey, LSST. Weak lensing tomography is one of the key science drivers behind LSST. CO-I Clowe is on the weak lensing LSST committee, and senior scientist on this project, at FNAL James Annis, plays a leading role in the DES. This project has built on successful proposals to obtain ground-based imaging for the cluster sample. By 1 Jan, it is anticipated the project will have accumulated complete 5-color photometry on 30 (or about 1/3) of the targeted cluster sample (public webpage for the survey is available at http://cencos.oamp.fr/DAFT/ and has a current summary of the observational status of various clusters). In all, the project has now been awarded the equivalent of over 60

  15. Reverberation Mapping of High-Luminosity Quasars

    Directory of Open Access Journals (Sweden)

    Shai Kaspi

    2017-10-01

    Full Text Available Over the past three decades reverberation mapping (RM has been applied to about 100 AGNs. Their broad line region (BLR sizes were measured and yielded mass estimates of the black holes in their center. However, very few attempts were carried out for high-luminosity quasars, at luminosities higher than 1046 erg/sec in the optical. Most of these attempts failed since RM of such quasars is difficult due to a number of reasons, mostly due to the long time needed to monitor these objects. During the past two decades we carried out a RM campaign on six high-luminosity quasars. This contribution presents some of the final light curves of that RM campaign in which we measured the BLR size in C iv of three of the objects (S5 0836+71, SBS 1116+603, and SBS 1425+606. We present the C iv BLR size and luminosity relation over eight orders of magnitude in luminosity, pushing the luminosity limit to its highest point so far.

  16. Reverberation Mapping of High-Luminosity Quasars

    Energy Technology Data Exchange (ETDEWEB)

    Kaspi, Shai [Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv (Israel); Brandt, William N. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA (United States); Institute for Gravitation and the Cosmos, Pennsylvania State University, University Park, PA (United States); Department of Physics, Pennsylvania State University, University Park, PA (United States); Maoz, Dan; Netzer, Hagai [Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv (Israel); Schneider, Donald P. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA (United States); Institute for Gravitation and the Cosmos, Pennsylvania State University, University Park, PA (United States); Shemmer, Ohad, E-mail: shai@wise.tau.ac.il [Department of Physics, University of North Texas, Denton, TX (United States)

    2017-10-30

    Over the past three decades reverberation mapping (RM) has been applied to about 100 AGNs. Their broad line region (BLR) sizes were measured and yielded mass estimates of the black holes in their center. However, very few attempts were carried out for high-luminosity quasars, at luminosities higher than 10{sup 46} erg/sec in the optical. Most of these attempts failed since RM of such quasars is difficult due to a number of reasons, mostly due to the long time needed to monitor these objects. During the past two decades we carried out a RM campaign on six high-luminosity quasars. This contribution presents some of the final light curves of that RM campaign in which we measured the BLR size in C iv of three of the objects (S5 0836+71, SBS 1116+603, and SBS 1425+606). We present the C iv BLR size and luminosity relation over eight orders of magnitude in luminosity, pushing the luminosity limit to its highest point so far.

  17. Extended depth of focus contact lenses vs. two commercial multifocals: Part 1. Optical performance evaluation via computed through-focus retinal image quality metrics

    Directory of Open Access Journals (Sweden)

    Ravi C. Bakaraju

    2018-01-01

    Conclusion: With the through focus retinal image quality as the gauge of optical performance, we demonstrated that the prototype EDOF designs were less susceptible to variations in pupil, inherent ocular aberrations and decentration, compared to the commercial designs. To ascertain whether these incremental improvements translate to a clinically palpable outcome requires investigation through human trials.

  18. Solving the puzzle of discrepant quasar variability on monthly time-scales implied by SDSS and CRTS data sets

    Science.gov (United States)

    Suberlak, Krzysztof; Ivezić, Željko; MacLeod, Chelsea L.; Graham, Matthew; Sesar, Branimir

    2017-12-01

    We present an improved photometric error analysis for the 7 100 CRTS (Catalina Real-Time Transient Survey) optical light curves for quasars from the SDSS (Sloan Digital Sky Survey) Stripe 82 catalogue. The SDSS imaging survey has provided a time-resolved photometric data set, which greatly improved our understanding of the quasar optical continuum variability: Data for monthly and longer time-scales are consistent with a damped random walk (DRW). Recently, newer data obtained by CRTS provided puzzling evidence for enhanced variability, compared to SDSS results, on monthly time-scales. Quantitatively, SDSS results predict about 0.06 mag root-mean-square (rms) variability for monthly time-scales, while CRTS data show about a factor of 2 larger rms, for spectroscopically confirmed SDSS quasars. Our analysis has successfully resolved this discrepancy as due to slightly underestimated photometric uncertainties from the CRTS image processing pipelines. As a result, the correction for observational noise is too small and the implied quasar variability is too large. The CRTS photometric error correction factors, derived from detailed analysis of non-variable SDSS standard stars that were re-observed by CRTS, are about 20-30 per cent, and result in reconciling quasar variability behaviour implied by the CRTS data with earlier SDSS results. An additional analysis based on independent light curve data for the same objects obtained by the Palomar Transient Factory provides further support for this conclusion. In summary, the quasar variability constraints on weekly and monthly time-scales from SDSS, CRTS and PTF surveys are mutually compatible, as well as consistent with DRW model.

  19. GALAXY SCALE LENSES IN THE RCS2. I. FIRST CATALOG OF CANDIDATE STRONG LENSES

    Energy Technology Data Exchange (ETDEWEB)

    Anguita, T. [Centro de Astro-Ingenieria, Departamento de Astronomia y Astrofisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago (Chile); Barrientos, L. F. [Departamento de Astronomia y Astrofisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago (Chile); Gladders, M. D. [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Avenue, Chicago, IL 60637 (United States); Faure, C. [Laboratoire d' Astrophysique, Ecole Polytechnique Federale de Lausanne (EPFL), Obervatoire de Sauverny, CH-1290 Versoix (Switzerland); Yee, H. K. C.; Gilbank, D. G. [Department of Astronomy and Astrophysics, University of Toronto, 50 St George Street, Toronto, Ontario, M5S 3H4 (Canada)

    2012-04-01

    We present the first galaxy scale lens catalog from the second Red-Sequence Cluster Survey. The catalog contains 60 lensing system candidates comprised of Luminous Red Galaxy (LRG) lenses at 0.2 {approx}< z {approx}< 0.5 surrounded by blue arcs or apparent multiple images of background sources. The catalog is a valuable complement to previous galaxy-galaxy lens catalogs as it samples an intermediate lens redshift range and is composed of bright sources and lenses that allow easy follow-up for detailed analysis. Mass and mass-to-light ratio estimates reveal that the lens galaxies are massive ( M-bar {approx} 5.5 Multiplication-Sign 10{sup 11} [M{sub Sun} h{sup -1}]) and rich in dark matter (M/L-bar{approx} 14 [M{sub Sun }/L{sub Sun ,B} h]). Even though a slight increasing trend in the mass-to-light ratio is observed from z = 0.2 to z = 0.5, current redshift and light profile measurements do not allow stringent constraints on the mass-to-light ratio evolution of LRGs.

  20. Gravitational lensing by exotic objects

    Science.gov (United States)

    Asada, Hideki

    2017-11-01

    This paper reviews a phenomenological approach to the gravitational lensing by exotic objects such as the Ellis wormhole lens, where the exotic lens objects may follow a non-standard form of the equation of state or may obey a modified gravity theory. A gravitational lens model is proposed in the inverse powers of the distance, such that the Schwarzschild lens and exotic lenses can be described in a unified manner as a one parameter family. As observational implications, the magnification, shear, photo-centroid motion and time delay in this lens model are discussed.

  1. Algorithms and Programs for Strong Gravitational Lensing In Kerr Space-time Including Polarization

    Science.gov (United States)

    Chen, Bin; Kantowski, Ronald; Dai, Xinyu; Baron, Eddie; Maddumage, Prasad

    2015-05-01

    Active galactic nuclei (AGNs) and quasars are important astrophysical objects to understand. Recently, microlensing observations have constrained the size of the quasar X-ray emission region to be of the order of 10 gravitational radii of the central supermassive black hole. For distances within a few gravitational radii, light paths are strongly bent by the strong gravity field of the central black hole. If the central black hole has nonzero angular momentum (spin), then a photon’s polarization plane will be rotated by the gravitational Faraday effect. The observed X-ray flux and polarization will then be influenced significantly by the strong gravity field near the source. Consequently, linear gravitational lensing theory is inadequate for such extreme circumstances. We present simple algorithms computing the strong lensing effects of Kerr black holes, including the effects on polarization. Our algorithms are realized in a program “KERTAP” in two versions: MATLAB and Python. The key ingredients of KERTAP are a graphic user interface, a backward ray-tracing algorithm, a polarization propagator dealing with gravitational Faraday rotation, and algorithms computing observables such as flux magnification and polarization angles. Our algorithms can be easily realized in other programming languages such as FORTRAN, C, and C++. The MATLAB version of KERTAP is parallelized using the MATLAB Parallel Computing Toolbox and the Distributed Computing Server. The Python code was sped up using Cython and supports full implementation of MPI using the “mpi4py” package. As an example, we investigate the inclination angle dependence of the observed polarization and the strong lensing magnification of AGN X-ray emission. We conclude that it is possible to perform complex numerical-relativity related computations using interpreted languages such as MATLAB and Python.

  2. ALGORITHMS AND PROGRAMS FOR STRONG GRAVITATIONAL LENSING IN KERR SPACE-TIME INCLUDING POLARIZATION

    International Nuclear Information System (INIS)

    Chen, Bin; Maddumage, Prasad; Kantowski, Ronald; Dai, Xinyu; Baron, Eddie

    2015-01-01

    Active galactic nuclei (AGNs) and quasars are important astrophysical objects to understand. Recently, microlensing observations have constrained the size of the quasar X-ray emission region to be of the order of 10 gravitational radii of the central supermassive black hole. For distances within a few gravitational radii, light paths are strongly bent by the strong gravity field of the central black hole. If the central black hole has nonzero angular momentum (spin), then a photon’s polarization plane will be rotated by the gravitational Faraday effect. The observed X-ray flux and polarization will then be influenced significantly by the strong gravity field near the source. Consequently, linear gravitational lensing theory is inadequate for such extreme circumstances. We present simple algorithms computing the strong lensing effects of Kerr black holes, including the effects on polarization. Our algorithms are realized in a program “KERTAP” in two versions: MATLAB and Python. The key ingredients of KERTAP are a graphic user interface, a backward ray-tracing algorithm, a polarization propagator dealing with gravitational Faraday rotation, and algorithms computing observables such as flux magnification and polarization angles. Our algorithms can be easily realized in other programming languages such as FORTRAN, C, and C++. The MATLAB version of KERTAP is parallelized using the MATLAB Parallel Computing Toolbox and the Distributed Computing Server. The Python code was sped up using Cython and supports full implementation of MPI using the “mpi4py” package. As an example, we investigate the inclination angle dependence of the observed polarization and the strong lensing magnification of AGN X-ray emission. We conclude that it is possible to perform complex numerical-relativity related computations using interpreted languages such as MATLAB and Python

  3. Gravitational Lensing of Supernova Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Mena, Olga; /Fermilab /Rome U.; Mocioiu, Irina; /Penn State U.; Quigg, Chris; /Fermilab

    2006-10-01

    The black hole at the center of the galaxy is a powerful lens for supernova neutrinos. In the very special circumstance of a supernova near the extended line of sight from Earth to the galactic center, lensing could dramatically enhance the neutrino flux at Earth and stretch the neutrino pulse.

  4. The Optical Gravitational Lensing Experiment

    Science.gov (United States)

    Udalski, A.; Szymanski, M.; Kaluzny, J.; Kubiak, M.; Mateo, Mario

    1992-01-01

    The technical features are described of the Optical Gravitational Lensing Experiment, which aims to detect a statistically significant number of microlensing events toward the Galactic bulge. Clusters of galaxies observed during the 1992 season are listed and discussed and the reduction methods are described. Future plans are addressed.

  5. Scientific visualization of gravitational lenses

    International Nuclear Information System (INIS)

    Magallon, M.

    1999-01-01

    Concepts related to gravitational lenses are discussed and applied to develop an interactive visualization tool that allow us to investigate them. Optimization strategies were performed to elaborate the tool. Some results obtained from the application of the tool are shown [es

  6. Optics Demonstrations Using Cylindrical Lenses

    Science.gov (United States)

    Ivanov, Dragia; Nikolov, Stefan

    2015-01-01

    In this paper we consider the main properties of cylindrical lenses and propose several demonstrational experiments that can be performed with them. Specifically we use simple glasses full of water to demonstrate some basic geometrical optics principles and phenomena. We also present some less standard experiments that can be performed with such…

  7. Polarization optics of GRIN lenses

    Science.gov (United States)

    Camacho, Javier; Tentori, Diana

    2001-01-01

    In this paper we show that the matrix representation for a linear retarder, given by Jones calculus, can be successfully applied to describe the birefringence properties of GRIN lenses for meridional rays. The usefulness of this description is experimentally verified by comparing the output pattern of a GRIN lens obtained in a linear polariscope with the predicted conoscopic pattern.

  8. Weak lensing and dark energy

    International Nuclear Information System (INIS)

    Huterer, Dragan

    2002-01-01

    We study the power of upcoming weak lensing surveys to probe dark energy. Dark energy modifies the distance-redshift relation as well as the matter power spectrum, both of which affect the weak lensing convergence power spectrum. Some dark-energy models predict additional clustering on very large scales, but this probably cannot be detected by weak lensing alone due to cosmic variance. With reasonable prior information on other cosmological parameters, we find that a survey covering 1000 sq deg down to a limiting magnitude of R=27 can impose constraints comparable to those expected from upcoming type Ia supernova and number-count surveys. This result, however, is contingent on the control of both observational and theoretical systematics. Concentrating on the latter, we find that the nonlinear power spectrum of matter perturbations and the redshift distribution of source galaxies both need to be determined accurately in order for weak lensing to achieve its full potential. Finally, we discuss the sensitivity of the three-point statistics to dark energy

  9. Weak lensing and cosmological investigation

    CERN Document Server

    Acquaviva, V

    2005-01-01

    In the last few years the scientific community has been dealing with the challenging issue of identifying the dark energy component. We regard weak gravitational lensing as a brand new, and extremely important, tool for cosmological investigation in this field. In fact, the features imprinted on the cosmic microwave background radiation by the lensing from the intervening distribution of matter represent a pretty unbiased estimator, and can thus be used for putting constraints on different dark energy models. This is true in particular for the magnetic-type B-modes of CMB polarization, whose unlensed spectrum at large multipoles (l approximately=1000) is very small even in presence of an amount of gravitational waves as large as currently allowed by the experiments: therefore, on these scales the lensing phenomenon is the only responsible for the observed power, and this signal turns out to be a faithful tracer of the dark energy dynamics. We first recall the formal apparatus of the weak lensing in extended t...

  10. The Extremely Luminous Quasar Survey (ELQS) in SDSS and the high-z bright-end Quasar Luminosity Function

    Science.gov (United States)

    Schindler, Jan-Torge; Fan, Xiaohui; McGreer, Ian

    2018-01-01

    Studies of the most luminous quasars at high redshift directly probe the evolution of the most massive black holes in the early Universe and their connection to massive galaxy formation. Unfortunately, extremely luminous quasars at high redshift are very rare objects. Only wide area surveys have a chance to constrain their population. The Sloan Digital Sky Survey (SDSS) nd the Baryon Oscillation Spectroscopic Survey (BOSS) have so far provided the most widely adopted measurements of the type I quasar luminosity function (QLF) at z>3. However, a careful re-examination of the SDSS quasar sample revealed that the SDSS quasar selection is in fact missing a significant fraction of $z~3$ quasars at the brightest end.We have identified the purely optical color selection of SDSS, where quasars at these redshifts are strongly contaminated by late-type dwarfs, and the spectroscopic incompleteness of the SDSS footprint as the main reasons. Therefore we have designed the Extremely Luminous Quasar Survey (ELQS), based on a novel near-infrared JKW2 color cut using WISE AllWISE and 2MASS all-sky photometry, to yield high completeness for very bright (i footprint, to obtain a well-defined and complete quasar sample for an accurate measurement of the bright-end quasar luminosity function (QLF) at 2.8<= z<=5.0. So far the ELQS has identified 75 bright new quasars in this redshift range and observations of the fall sky will continue until the end of the year. At the AAS winter meeting we will present the full spectroscopic results of the survey, including a re-estimation and extension of the high-z QLF toward higher luminosities.

  11. The Stacked LYα Emission Profile from the Circum-Galactic Medium of z ˜ 2 Quasars

    Science.gov (United States)

    Arrigoni Battaia, Fabrizio; Hennawi, Joseph F.; Cantalupo, Sebastiano; Prochaska, J. Xavier

    2016-09-01

    In the context of the FLASHLIGHT survey, we obtained deep narrowband images of 15 z ˜ 2 quasars with the Gemini Multi-object Spectrograph on Gemini South in an effort to measure Lyα emission from circum- and intergalactic gas on scales of hundreds of kpc from the central quasar. We do not detect bright giant Lyα nebulae (SB ˜ 10-17 erg s-1 cm-2 arcsec-2 at distances >50 kpc) around any of our sources, although we routinely (≃47%) detect smaller-scale Tecnologia e Inovação (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  12. High spatial resolution integral field spectroscopy of extended ionized gas around three quasars

    Science.gov (United States)

    Durret, F.; Pecontal, E.; Petitjean, P.; Bergeron, J.

    1994-11-01

    We have performed integral field spectroscopy of three radio-loud moderate redshift quasars with the TIGER instrument at the Canada France Hawaii Telescope under subarcsecond seeing. We observed TON 616, 4C 37.43 and PKS 2251+113 in the H beta - (OIII) lambda 4959-5007 wavelength region, and 4C 37.43 also in (OII). We present for each object the reconstructed image in the (OIII) lines and in the continuum, the (OIII) image deconvolved for seeing effects, the (OIII)/H beta intensity ratio, and the velocity field in (OIII). In all objects, we find that the ionized gas is not smoothly distributed; besides the envelopes in which the quasars are embedded, large blobs of gas are present a few arcseconds from the quasar, and velocity fields are rather chaotic. We discuss in detail the velocity field of TON 616, and attempt to fit it with one or two rotating disks. The possibility that the west region of this nebulosity is a companion galaxy, as suggested by the observed velocity field, is discussed. In 4C 37.43, we observe that the velocity of the gas in the two main structures is smooth, possibly suggesting here also the presence of a companion galaxy. The structure of PKS 2251+113 is more chaotic and does not suggest any overal cohesion in the velocity field.

  13. High-redshift SDSS Quasars with Weak Emission Lines

    DEFF Research Database (Denmark)

    Diamond-Stanic, Aleksandar M.; Fan, Xiaohui; Brandt, W. N.

    2009-01-01

    We identify a sample of 74 high-redshift quasars (z > 3) with weak emission lines from the Fifth Data Release of the Sloan Digital Sky Survey and present infrared, optical, and radio observations of a subsample of four objects at z > 4. These weak emission-line quasars (WLQs) constitute a promine...

  14. Early star formation traced by the highest redshift quasars

    NARCIS (Netherlands)

    Maiolino, R; Juarez, Y; Mujica, R; Nagar, NM; Oliva, E

    2003-01-01

    The iron abundance relative to alpha-elements in the circumnuclear region of quasars is regarded as a clock of the star formation history and, more specifically, of the enrichment by Type Ia supernovae. We investigate the iron abundance in a sample of 22 quasars in the redshift range 3.0

  15. Quasar evolution: not a deficit at low redshifts

    International Nuclear Information System (INIS)

    Avni, Y.; Schiller, N.

    1983-01-01

    We consider the recent suggestion of Hawkins and Stewart that complete quasar samples can be interpreted in terms of a (real or apparent) deficit of quasars at low redshifts. By using a larger sample and a more efficient method of analysis, we rule out this interpretation

  16. CONSTRAINING THE LIFETIME AND OPENING ANGLE OF QUASARS USING FLUORESCENT Ly α EMISSION: THE CASE OF Q0420–388

    Energy Technology Data Exchange (ETDEWEB)

    Borisova, Elena; Lilly, Simon J.; Cantalupo, Sebastiano [Institute for Astronomy, ETH Zurich, Zurich, CH-8093 (Switzerland); Prochaska, J. Xavier [UCO/Lick Observatory, UC Santa Cruz, Santa Cruz, CA 95064 (United States); Rakic, Olivera; Worseck, Gabor, E-mail: borisova@phys.ethz.ch [Max-Planck-Institut für Astronomie, Heidelberg, D-69117 (Germany)

    2016-10-20

    A toy model is developed to understand how the spatial distribution of fluorescent emitters in the vicinity of bright quasars could be affected by the geometry of the quasar bi-conical radiation field and by its lifetime. The model is then applied to the distribution of high-equivalent-width Ly α emitters (with rest-frame equivalent widths above 100 Å, threshold used in, e.g., Trainor and Steidel) identified in a deep narrow-band 36 × 36 arcmin{sup 2} image centered on the luminous quasar Q0420–388. These emitters are found near the edge of the field and show some evidence of an azimuthal asymmetry on the sky of the type expected if the quasar is radiating in a bipolar cone. If these sources are being fluorescently illuminated by the quasar, the two most distant objects require a lifetime of at least 15 Myr for an opening angle of 60° or more, increasing to more than 40 Myr if the opening angle is reduced to a minimum of 30°. However, some other expected signatures of boosted fluorescence are not seen at the current survey limits, e.g., a fall off in Ly α brightness, or equivalent width, with distance. Furthermore, to have most of the Ly α emission of the two distant sources to be fluorescently boosted would require the quasar to have been significantly brighter in the past. This suggests that these particular sources may not be fluorescent, invalidating the above lifetime constraints. This would cast doubt on the use of this relatively low equivalent width threshold and thus also on the lifetime analysis in Trainor and Steidel.

  17. Design and Fabrication of Large Diameter Gradient-Index Lenses for Dual-Band Visible to Short-Wave Infrared Imaging Applications

    Science.gov (United States)

    Visconti, Anthony Joseph

    The fabrication of gradient-index (GRIN) optical elements is quite challenging, which has traditionally restricted their use in many imaging systems; consequently, commercial-level GRIN components usually exist in one particular market or niche application space. One such fabrication technique, ion exchange, is a well-known process used in the chemical strengthening of glass, the fabrication of waveguide devices, and the production of small diameter GRIN optical relay systems. However, the manufacturing of large diameter ion-exchanged GRIN elements has historically been limited by long diffusion times. For example, the diffusion time for a 20 mm diameter radial GRIN lens in commercially available ion exchange glass for small diameter relays, is on the order of a year. The diffusion time can be dramatically reduced by addressing three key ion exchange process parameters; the composition of the glass, the diffusion temperature, and the composition of the salt bath. Experimental work throughout this thesis aims to (1) scale up the ion exchange diffusion process to 20 mm diameters for a fast-diffusing titania silicate glass family in both (2) sodium ion for lithium ion (Na+ for Li+) and lithium ion for sodium ion (Li+ for Na+) exchange directions, while (3) utilizing manufacturing friendly salt bath compositions. In addition, optical design studies have demonstrated that an important benefit of gradient-index elements in imaging systems is the added degree of freedom introduced with a gradient's optical power. However, these studies have not investigated the potential usefulness of GRIN materials in dual-band visible to short-wave infrared (vis-SWIR) imaging systems. The unique chromatic properties of the titania silicate ion exchange glass become a significant degree of freedom in the design process for these color-limited, broadband imaging applications. A single GRIN element can replace a cemented doublet or even a cemented triplet, without loss in overall system

  18. VLA observations of objects in the Palomar Bright Quasar Survey

    International Nuclear Information System (INIS)

    Kellermann, K.I.; Sramek, R.; Schmidt, M.; Shaffer, D.B.; Green, R.

    1989-01-01

    Results on the VLA observations (with 18 arcsec resolution) of all 114 objects from the Palomar Bright Quasar Survey (BQS) are presented, and the relation between the radio luminosity and optical luminosity is discussed. It was found that most of the BQS quasars are radio quiet and have a radio flux density close to that of the optical flux density; however, 15-20 percent of the quasars are radio loud and are much brighter at radio than at optical wavelengths. The radio luminosity function was derived. It is shown that the radio emission from high-red-shift (z greater than 0.5) quasars is dominated by compact components; most quasars with R above 100 have small red shifts. 39 refs

  19. Some recent developments in problems of quasar like objects

    International Nuclear Information System (INIS)

    Tsuruta, S.

    1983-01-01

    Almost twenty years since the discovery of quasi stellar objects (quasars), various models have been proposed. For some time it seemed hard to arrive at a general concensus concerning the true nature of these objects. However, it appears that the impressive developments in observational astronomy during the last few years have tilted the balance heavily toward models involving supermassive black holes. After a brief introduction of quasar like objects and their properties, the author describes these recent developments and presents supermassive black hole models. The physics of radiation mechanisms is looked into more carefully. This is not a complete review of all aspects of quasar-like phenomena. However, the topics selected are important, especially because they are closely related to the most important aspect of the quasar phenomena; that is, what is the central engine responsible for superenergetic phenomena in quasars and other related objects? (Auth.)

  20. Cross-correlation of gravitational lensing from DES Science Verification data with SPT and Planck lensing

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, D.; Omori, Y.; Benoit-Lévy, A.; Cawthon, R.; Chang, C.; Larsen, P.; Amara, A.; Bacon, D.; Crawford, T. M.; Dodelson, S.; Fosalba, P.; Giannantonio, T.; Holder, G.; Jain, B.; Kacprzak, T.; Lahav, O.; MacCrann, N.; Nicola, A.; Refregier, A.; Sheldon, E.; Story, K. T.; Troxel, M. A.; Vieira, J. D.; Vikram, V.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Becker, M. R.; Benson, B. A.; Bernstein, G. M.; Bernstein, R. A.; Bleem, L. E.; Bonnett, C.; Bridle, S. L.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carlstrom, J. E.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Crocce, M.; Cunha, C. E.; D' Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Honscheid, K.; James, D. J.; Jarvis, M.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lima, M.; March, M.; Martini, P.; Melchior, P.; Miller, C. J.; Miquel, R.; Nichol, R. C.; Ogando, R.; Plazas, A. A.; Reichardt, C. L.; Roodman, A.; Rozo, E.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Simard, G.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Wechsler, R. H.; Weller, J.

    2016-03-10

    We measure the cross-correlation between weak lensing of galaxy images and of the cosmic microwave background (CMB). The effects of gravitational lensing on different sources will be correlated if the lensing is caused by the same mass fluctuations. We use galaxy shape measurements from 139 deg(2) of the Dark Energy Survey (DES) Science Verification data and overlapping CMB lensing from the South Pole Telescope (SPT) and Planck. The DES source galaxies have a median redshift of z(med) similar to 0.7, while the CMB lensing kernel is broad and peaks at z similar to 2. The resulting cross-correlation is maximally sensitive to mass fluctuations at z similar to 0.44. Assuming the Planck 2015 best-fitting cosmology, the amplitude of the DESxSPT cross-power is found to be A(SPT) = 0.88 +/- 0.30 and that from DESxPlanck to be A(Planck) = 0.86 +/- 0.39, where A = 1 corresponds to the theoretical prediction. These are consistent with the expected signal and correspond to significances of 2.9 sigma and 2.2 sigma, respectively. We demonstrate that our results are robust to a number of important systematic effects including the shear measurement method, estimator choice, photo-z uncertainty and CMB lensing systematics. We calculate a value of A = 1.08 +/- 0.36 for DESxSPT when we correct the observations with a simple intrinsic alignment model. With three measurements of this cross-correlation now existing in the literature, there is not yet reliable evidence for any deviation from the expected LCDM level of cross-correlation. We provide forecasts for the expected signal-to-noise ratio of the combination of the five-year DES survey and SPT-3G.

  1. Constraining the geometry and kinematics of the quasar broad emission line region using gravitational microlensing. I. Models and simulations

    Science.gov (United States)

    Braibant, L.; Hutsemékers, D.; Sluse, D.; Goosmann, R.

    2017-11-01

    Recent studies have shown that line profile distortions are commonly observed in gravitationally lensed quasar spectra. Often attributed to microlensing differential magnification, line profile distortions can provide information on the geometry and kinematics of the broad emission line region (BLR) in quasars. We investigate the effect of gravitational microlensing on quasar broad emission line profiles and their underlying continuum, combining the emission from simple representative BLR models with generic microlensing magnification maps. Specifically, we considered Keplerian disk, polar, and equatorial wind BLR models of various sizes. The effect of microlensing has been quantified with four observables: μBLR, the total magnification of the broad emission line; μcont, the magnification of the underlying continuum; as well as red/blue, RBI and wings/core, WCI, indices that characterize the line profile distortions. The simulations showed that distortions of line profiles, such as those recently observed in lensed quasars, can indeed be reproduced and attributed to the differential effect of microlensing on spatially separated regions of the BLR. While the magnification of the emission line μBLR sets an upper limit on the BLR size and, similarly, the magnification of the continuum μcont sets an upper limit on the size of the continuum source, the line profile distortions mainly depend on the BLR geometry and kinematics. We thus built (WCI,RBI) diagrams that can serve as diagnostic diagrams to discriminate between the various BLR models on the basis of quantitative measurements. It appears that a strong microlensing effect puts important constraints on the size of the BLR and on its distance to the high-magnification caustic. In that case, BLR models with different geometries and kinematics are more prone to produce distinctive line profile distortions for a limited number of caustic configurations, which facilitates their discrimination. When the microlensing

  2. Efficient Analytical Approaches to the Optics of Compound Refractive Lenses for Use with Synchrotron X-rays

    DEFF Research Database (Denmark)

    Poulsen, Stefan Othmar; Poulsen, Henning Friis

    2014-01-01

    The properties of compound refractive lenses (CRLs) of biconcave parabolic lenses for focusing and imaging synchrotron X-rays have been investigated theoretically by ray transfer matrix analysis and Gaussian beam propagation. We present approximate analytical expressions, that allow fast estimati...

  3. A 65k pixel, 150k frames-per-second camera with global gating and micro-lenses suitable for fluorescence lifetime imaging

    Science.gov (United States)

    Burri, Samuel; Powolny, François; Bruschini, Claudio; Michalet, Xavier; Regazzoni, Francesco; Charbon, Edoardo

    2017-01-01

    This paper presents our work on a 65k pixel single-photon avalanche diode (SPAD) based imaging sensor realized in a 0.35μm standard CMOS process. At a resolution of 512 by 128 pixels the sensor is read out in 6.4μs to deliver over 150k monochrome frames per second. The individual pixel has a size of 24μm2 and contains the SPAD with a 12T quenching and gating circuitry along with a memory element. The gating signals are distributed across the chip through a balanced tree to minimize the signal skew between the pixels. The array of pixels is row-addressable and data is sent out of the chip on 128 lines in parallel at a frequency of 80MHz. The system is controlled by an FPGA which generates the gating and readout signals and can be used for arbitrary real-time computation on the frames from the sensor. The communication protocol between the camera and a conventional PC is USB2. The active area of the chip is 5% and can be significantly improved with the application of a micro-lens array. A micro-lens array, for use with collimated light, has been designed and its performance is reviewed in the paper. Among other high-speed phenomena the gating circuitry capable of generating illumination periods shorter than 5ns can be used for Fluorescence Lifetime Imaging (FLIM). In order to measure the lifetime of fluorophores excited by a picosecond laser, the sensor’s illumination period is synchronized with the excitation laser pulses. A histogram of the photon arrival times relative to the excitation is then constructed by counting the photons arriving during the sensitive time for several positions of the illumination window. The histogram for each pixel is transferred afterwards to a computer where software routines extract the lifetime at each location with an accuracy better than 100ps. We show results for fluorescence lifetime measurements using different fluorophores with lifetimes ranging from 150ps to 5ns. PMID:28626292

  4. A 65k pixel, 150k frames-per-second camera with global gating and micro-lenses suitable for fluorescence lifetime imaging

    Science.gov (United States)

    Burri, Samuel; Powolny, François; Bruschini, Claudio E.; Michalet, Xavier; Regazzoni, Francesco; Charbon, Edoardo

    2014-05-01

    This paper presents our work on a 65k pixel single-photon avalanche diode (SPAD) based imaging sensor realized in a 0.35μm standard CMOS process. At a resolution of 512 by 128 pixels the sensor is read out in 6.4μs to deliver over 150k monochrome frames per second. The individual pixel has a size of 24μm2 and contains the SPAD with a 12T quenching and gating circuitry along with a memory element. The gating signals are distributed across the chip through a balanced tree to minimize the signal skew between the pixels. The array of pixels is row-addressable and data is sent out of the chip on 128 lines in parallel at a frequency of 80MHz. The system is controlled by an FPGA which generates the gating and readout signals and can be used for arbitrary real-time computation on the frames from the sensor. The communication protocol between the camera and a conventional PC is USB2. The active area of the chip is 5% and can be significantly improved with the application of a micro-lens array. A micro-lens array, for use with collimated light, has been designed and its performance is reviewed in the paper. Among other high-speed phenomena the gating circuitry capable of generating illumination periods shorter than 5ns can be used for Fluorescence Lifetime Imaging (FLIM). In order to measure the lifetime of fluorophores excited by a picosecond laser, the sensor's illumination period is synchronized with the excitation laser pulses. A histogram of the photon arrival times relative to the excitation is then constructed by counting the photons arriving during the sensitive time for several positions of the illumination window. The histogram for each pixel is transferred afterwards to a computer where software routines extract the lifetime at each location with an accuracy better than 100ps. We show results for fluorescence lifetime measurements using different fluorophores with lifetimes ranging from 150ps to 5ns.

  5. High redshift quasars and high metallicities

    Science.gov (United States)

    Ferland, Gary J.

    1997-01-01

    A large-scale code called Cloudy was designed to simulate non-equilibrium plasmas and predict their spectra. The goal was to apply it to studies of galactic and extragalactic emission line objects in order to reliably deduce abundances and luminosities. Quasars are of particular interest because they are the most luminous objects in the universe and the highest redshift objects that can be observed spectroscopically, and their emission lines can reveal the composition of the interstellar medium (ISM) of the universe when it was well under a billion years old. The lines are produced by warm (approximately 10(sup 4)K) gas with moderate to low density (n less than or equal to 10(sup 12) cm(sup -3)). Cloudy has been extended to include approximately 10(sup 4) resonance lines from the 495 possible stages of ionization of the lightest 30 elements, an extension that required several steps. The charge transfer database was expanded to complete the needed reactions between hydrogen and the first four ions and fit all reactions with a common approximation. Radiative recombination rate coefficients were derived for recombination from all closed shells, where this process should dominate. Analytical fits to Opacity Project (OP) and other recent photoionization cross sections were produced. Finally, rescaled OP oscillator strengths were used to compile a complete set of data for 5971 resonance lines. The major discovery has been that high redshift quasars have very high metallicities and there is strong evidence that the quasar phenomenon is associated with the birth of massive elliptical galaxies.

  6. In quest of axionic hairs in quasars

    Science.gov (United States)

    Banerjee, Indrani; Mandal, Bhaswati; SenGupta, Soumitra

    2018-03-01

    The presence of axionic field can provide plausible explanation to several long standing problems in physics such as dark matter and dark energy. The pseudo-scalar axion whose derivative corresponds to the Hodge dual of the Kalb-Ramond field strength in four dimensions plays crucial roles in explaining several astrophysical and cosmological observations. Therefore, the detection of axionic hairs/Kalb-Ramond field which appears as closed string excitations in the heterotic string spectrum may provide a profound insight to our understanding of the current universe. The current level of precision achieved in solar-system based tests employed to test general relativity, is not sufficient to detect the presence of axion. However, the near horizon regime of quasars where the curvature effects are maximum seems to be a natural laboratory to probe such additions to the matter sector. The continuum spectrum emitted from the accretion disk around quasars encapsulates the imprints of the background spacetime and hence acts as a storehouse of information regarding the nature of gravitational interaction in extreme situations. The surfeit of data available in the electromagnetic domain provides a further motivation to explore such systems. Using the optical data for eighty Palomar Green quasars we demonstrate that the theoretical estimates of optical luminosity explain the observations best when the axionic field is assumed to be absent. However, axion which violates the energy condition seems to be favored by observations which has several interesting consequences. Error estimators, including reduced χ2, Nash-Sutcliffe efficiency, index of agreement and modified versions of the last two are used to solidify our conclusion and the implications of our result are discussed.

  7. Parsec-scale radio structures in Quasars

    Science.gov (United States)

    Coldwell, G.; Paragi, Z.; Gurvits, L.

    Very Long Baseline Interferometry (VLBI) con su nueva extensión para el radio telescopio orbital, VSOP/HALCA, ofrece una incomparable resolución angular alcanzando escalas de milisegundos y submilisegundos de arco a longitudes de onda de centímetros. En este trabajo presentamos observaciones y análisis de estructuras en radio, en escalas de parsec, para 3 radio fuentes extragalácticas de la muestra de VSOP Survey y 1 quasar, 1442+101, del proyecto `VSOP High Redshift'.

  8. The detection of a population of submillimeter-bright, strongly lensed galaxies.

    Science.gov (United States)

    Negrello, Mattia; Hopwood, R; De Zotti, G; Cooray, A; Verma, A; Bock, J; Frayer, D T; Gurwell, M A; Omont, A; Neri, R; Dannerbauer, H; Leeuw, L L; Barton, E; Cooke, J; Kim, S; da Cunha, E; Rodighiero, G; Cox, P; Bonfield, D G; Jarvis, M J; Serjeant, S; Ivison, R J; Dye, S; Aretxaga, I; Hughes, D H; Ibar, E; Bertoldi, F; Valtchanov, I; Eales, S; Dunne, L; Driver, S P; Auld, R; Buttiglione, S; Cava, A; Grady, C A; Clements, D L; Dariush, A; Fritz, J; Hill, D; Hornbeck, J B; Kelvin, L; Lagache, G; Lopez-Caniego, M; Gonzalez-Nuevo, J; Maddox, S; Pascale, E; Pohlen, M; Rigby, E E; Robotham, A; Simpson, C; Smith, D J B; Temi, P; Thompson, M A; Woodgate, B E; York, D G; Aguirre, J E; Beelen, A; Blain, A; Baker, A J; Birkinshaw, M; Blundell, R; Bradford, C M; Burgarella, D; Danese, L; Dunlop, J S; Fleuren, S; Glenn, J; Harris, A I; Kamenetzky, J; Lupu, R E; Maddalena, R J; Madore, B F; Maloney, P R; Matsuhara, H; Michaowski, M J; Murphy, E J; Naylor, B J; Nguyen, H; Popescu, C; Rawlings, S; Rigopoulou, D; Scott, D; Scott, K S; Seibert, M; Smail, I; Tuffs, R J; Vieira, J D; van der Werf, P P; Zmuidzinas, J

    2010-11-05

    Gravitational lensing is a powerful astrophysical and cosmological probe and is particularly valuable at submillimeter wavelengths for the study of the statistical and individual properties of dusty star-forming galaxies. However, the identification of gravitational lenses is often time-intensive, involving the sifting of large volumes of imaging or spectroscopic data to find few candidates. We used early data from the Herschel Astrophysical Terahertz Large Area Survey to demonstrate that wide-area submillimeter surveys can simply and easily detect strong gravitational lensing events, with close to 100% efficiency.

  9. Process equipped with a sloped UV lamp for the fabrication of gradient-refractive-index lenses.

    Science.gov (United States)

    Liu, Jui-Hsiang; Chiu, Yi-Hong

    2009-05-01

    In this investigation, a method for the preparation of gradient-refractive-index (GRIN) lenses by UV-energy-controlled polymerization has been developed. A glass reaction tube equipped with a sloped UV lamp was designed. Methyl methacrylate and diphenyl sulfide were used as the reactive monomer and nonreactive dopant, respectively. Ciba IRGACURE 184 (1-hydroxy-cyclohexyl-phenyl-ketone) was used as the initiator. The effects of initiator concentration, the addition of acrylic polymers, and the preparation conditions on the optical characteristics of the GRIN lenses produced by this method were also investigated. Refractive index distributions and image transmission properties were estimated for all GRIN lenses prepared.

  10. Gravitational lensing of gravitational waves: A statistical perspective

    Science.gov (United States)

    Li, Shun-Sheng; Mao, Shude; Zhao, Yuetong; Lu, Youjun

    2018-02-01

    In this paper we study the strong gravitational lensing of gravitational waves (GWs) from a statistical perspective, with particular focus on the high frequency GWs from stellar binary black hole coalescences. These are most promising targets for ground-based detectors such as aLIGO and the proposed Einstein Telescope (ET) and can be safely treated under the geometrical optics limit for GW propagation. We perform a thorough calculation of the lensing rate, by taking account of effects caused by the ellipticity of lensing galaxies, lens environments, and magnification bias. We find that in certain GW source rate scenarios, we should be able to observe strongly lensed GW events once per year (˜1 yr-1) in the aLIGO survey at its design sensitivity; for the proposed ET survey, the rate could be as high as ˜80 yr-1. These results depend on the estimate of GW source abundance, and hence can be correspondingly modified with an improvement in our understanding of the merger rate of stellar binary black holes. We also compute the fraction of four-image lens systems in each survey, predicting it to be ˜30 percent for the aLIGO survey and ˜6 percent for the ET survey. Finally, we evaluate the possibility of missing some images due to the finite survey duration, by presenting the probability distribution of lensing time delays. We predict that this selection bias will be insignificant in future GW surveys, as most of the lens systems (˜90%) will have time delays less than ˜1 month which will be far shorter than survey durations.

  11. Gravitational lensing of gravitational waves: a statistical perspective

    Science.gov (United States)

    Li, Shun-Sheng; Mao, Shude; Zhao, Yuetong; Lu, Youjun

    2018-05-01

    In this paper, we study the strong gravitational lensing of gravitational waves (GWs) from a statistical perspective, with particular focus on the high frequency GWs from stellar binary black hole coalescences. These are most promising targets for ground-based detectors such as Advanced Laser Interferometer Gravitational Wave Observatory (aLIGO) and the proposed Einstein Telescope (ET) and can be safely treated under the geometrical optics limit for GW propagation. We perform a thorough calculation of the lensing rate, by taking account of effects caused by the ellipticity of lensing galaxies, lens environments, and magnification bias. We find that in certain GW source rate scenarios, we should be able to observe strongly lensed GW events once per year (˜1 yr-1) in the aLIGO survey at its design sensitivity; for the proposed ET survey, the rate could be as high as ˜80 yr-1. These results depend on the estimate of GW source abundance, and hence can be correspondingly modified with an improvement in our understanding of the merger rate of stellar binary black holes. We also compute the fraction of four-image lens systems in each survey, predicting it to be ˜30 per cent for the aLIGO survey and ˜6 per cent for the ET survey. Finally, we evaluate the possibility of missing some images due to the finite survey duration, by presenting the probability distribution of lensing time delays. We predict that this selection bias will be insignificant in future GW surveys, as most of the lens systems ({˜ } 90{per cent}) will have time delays less than ˜1 month, which will be far shorter than survey durations.

  12. SOURCE-PLANE RECONSTRUCTION OF THE BRIGHT LENSED GALAXY RCSGA 032727-132609

    Energy Technology Data Exchange (ETDEWEB)

    Sharon, Keren; Gladders, Michael D.; Wuyts, Eva; Bayliss, Matthew B. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Rigby, Jane R. [Observational Cosmology Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Koester, Benjamin P. [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Barrientos, L. Felipe, E-mail: kerens@kicp.uchicago.edu [Departamento de Astronomia y Astrofisica, Pontificia Universidad Catolica de Chile, Avda. Vicuna Mackenna 4860, Casilla 306, Santiago 22 (Chile)

    2012-02-20

    We present new Hubble Space Telescope/Wide Field Camera 3 imaging data of RCSGA 032727-132609, a bright lensed galaxy at z = 1.7 that is magnified and stretched by the lensing cluster RCS2 032727-132623. Using this new high-resolution imaging, we modify our previous lens model (which was based on ground-based data) to fully understand the lensing geometry, and use it to reconstruct the lensed galaxy in the source plane. This giant arc represents a unique opportunity to peer into 100 pc scale structures in a high-redshift galaxy. This new source reconstruction will be crucial for a future analysis of the spatially resolved rest-UV and rest-optical spectra of the brightest parts of the arc.

  13. A Study of Galaxies and Quasars in the Background of the Andromeda Galaxy

    Science.gov (United States)

    Dhara, Atirath; McConnell, Kaela; Guhathakurta, Puragra; Roy, Namrata; Waite, Jurij

    2018-01-01

    The SPLASH (Spectroscopic and Photometric Landscape of Andromeda’s Stellar Halo) survey is based on wide-field ground-based optical images (KPNO 4-m/Mosaic, CFHT 3.6-m/MegaCam imager, and Subaru 8-m/Suprime-Cam), deep Hubble Space Telescope ultraviolet/optical/near infrared images (ACS and WFC3), and medium resolution spectra (Keck II 10-m/DEIMOS). The SPLASH survey data set contains two main categories of (non-M31) contaminants (SPLASH trash, if you will): foreground Milky Way stars and compact background galaxies/quasars. In this poster, we present the discovery and characterization of galaxies and quasars behind M31. Such objects were identified based on the presence of redshifted emission lines and other galaxy/quasar spectral features (e.g., Ca H+K absorption and IGM absorption). The redshift of each galaxy was measured by cross-correlating its spectrum against an emission line galaxy spectral template. The cross-correlation results (spectrum and best-fit template) were visually inspected to identify cases of incorrect matching of emission lines. Many of these incorrect redshift estimates were corrected by using the second or third highest cross-correlation peak. Quasar redshifts were determined based on cross-correlation against a quasar spectral template. Most of the galaxies in our sample are star forming galaxies with strong emission lines. We analyze their emission line flux ratios in a BPT diagram to learn more about the ionization source and metallicity. Finally, the properties of these compact galaxies behind M31 are compared to those of galaxies selected in a more standard way in the DEEP2 redshift survey to explore the effects of morphological pre-selection (compact vs. extended) on the properties of the resulting galaxy sample.This research was supported by NASA/STScI and the National Science Foundation. Most of this work was carried out by high school students working under the auspices of the Science Internship Program (SIP) at UC Santa Cruz.

  14. CALCULATION AND RESEARCH OF CONTACT OPHTHALMIC DUAL APPLICATION LENSES

    Directory of Open Access Journals (Sweden)

    D. N. Cherkasova

    2015-05-01

    Full Text Available Subject of research. Algorithm for calculation of contact ophthalmic lenses for dual application has been suggested based on unified approach for their calculation. The algorithm has been tested on the composition of Goldmann ophthalmic lenses and Panfundoscope lens optical systems. Method. The condition of mutual unambiguous orientation of patient’s eye and instruments is performed at the initial calculation step by face mounting and movement of coordinate table with optical head. Then such type of patient's eye optical system model is selected that the lens would be combined with the front surface of eye cornea optical system. Pupil of patient eye is under anesthesia. At the final calculation step we determine the functions of optical lens image quality and their values based on medical and technical requirements for the components of the complex system. Main results. The algorithm for ophthalmic lenses calculation has been suggested and its correctness has been proved practically on the example of two basic models in the group of such type lenses being applied in practice as a part of complex system with ophthalmic laser coagulators. Optical calculation of Goldmann ophthalmic contact lenses and Panfundoscope is presented. The method of neutralization is optimal for Goldmann lenses. The first component in Panfundoscope operates the position of object planes whereas the second component operates the position of complex system with ophthalmocoagulator's pupils. Computer modeling of complex system "Computer model of eye-ophthalmic lens" in ZEMAX confirmed the correctness of calculation algorithm in which the criteria of diffraction image quality has been used. Application possibility of simplified computer eye model called "Reduced eye" by Verbitskiy has been demonstrated. Practical relevance. The general scientific approach to the problem of synthesis, calculation and research of complex system with contact ophthalmic lenses for diagnostics

  15. Gravitational lensing by rotating wormholes

    Science.gov (United States)

    Jusufi, Kimet; Ã-vgün, Ali

    2018-01-01

    In this paper the deflection angle of light by a rotating Teo wormhole spacetime is calculated in the weak limit approximation. We mainly focus on the weak deflection angle by revealing the gravitational lensing as a partially global topological effect. We apply the Gauss-Bonnet theorem (GBT) to the optical geometry osculating the Teo-Randers wormhole optical geometry to calculate the deflection angle. Furthermore we find the same result using the standard geodesic method. We have found that the deflection angle can be written as a sum of two terms, namely the first term is proportional to the throat of the wormhole and depends entirely on the geometry, while the second term is proportional to the spin angular momentum parameter of the wormhole. A direct observation using lensing can shed light and potentially test the nature of rotating wormholes by comparing with the black holes systems.

  16. Storm in a Teacup: X-Ray View of an Obscured Quasar and Superbubble

    Science.gov (United States)

    Lansbury, George B.; Jarvis, Miranda E.; Harrison, Chris M.; Alexander, David M.; Del Moro, Agnese; Edge, Alastair C.; Mullaney, James R.; Thomson, Alasdair P.

    2018-03-01

    We present the X-ray properties of the “Teacup AGN” (SDSS J1430+1339), a z = 0.085 type 2 quasar that is interacting dramatically with its host galaxy. Spectral modeling of the central quasar reveals a powerful, highly obscured active galactic nucleus (AGN) with a column density of N H = (4.2–6.5) × 1023 cm‑2 and an intrinsic luminosity of L 2–10 keV = (0.8–1.4) × 1044 erg s‑1. The current high bolometric luminosity inferred (L bol ≈1045–1046 erg s‑1) has ramifications for previous interpretations of the Teacup as a fading/dying quasar. High-resolution Chandra imaging data reveal a ≈10 kpc loop of X-ray emission, cospatial with the “eastern bubble” previously identified in luminous radio and ionized gas (e.g., [O III] line) emission. The X-ray emission from this structure is in good agreement with a shocked thermal gas, with T = (4–8) × 106 K, and there is evidence for an additional hot component with T ≳ 3 × 107 K. Although the Teacup is a radiatively dominated AGN, the estimated ratio between the bubble power and the X-ray luminosity is in remarkable agreement with observations of ellipticals, groups, and clusters of galaxies undergoing AGN feedback.

  17. A system of catoptric lenses

    International Nuclear Information System (INIS)

    McFarland, P.J.; Rambauske, W.R.

    1973-01-01

    Description is given of a system of catoptric lenses for combining energies provided by a certain number of sources, e.g. optical energies provided by a certain number of lasers. This system comprises sets of mirrors the reflecting surfaces of which have their focuses spaced from a common axis. The mirrors of all these sets are arranged on a common frame, which makes aperture-locking impossible. This can be applied to thermonuclear fusion [fr

  18. Weak gravitational lensing towards high-precision cosmology

    International Nuclear Information System (INIS)

    Berge, Joel

    2007-01-01

    This thesis aims at studying weak gravitational lensing as a tool for high-precision cosmology. We first present the development and validation of a precise and accurate tool for measuring gravitational shear, based on the shapelets formalism. We then use shapelets on real images for the first time, we analyze CFHTLS images, and combine them with XMM-LSS data. We measure the normalisation of the density fluctuations power spectrum σ 8 , and the one of the mass-temperature relation for galaxy clusters. The analysis of the Hubble space telescope COSMOS field confirms our σ 8 measurement and introduces tomography. Finally, aiming at optimizing future surveys, we compare the individual and combined merits of cluster counts and power spectrum tomography. Our results demonstrate that next generation surveys will allow weak lensing to yield its full potential in the high-precision cosmology era. (author) [fr

  19. Quasar 2175 Å dust absorbers - I. Metallicity, depletion pattern and kinematics

    Science.gov (United States)

    Ma, Jingzhe; Ge, Jian; Zhao, Yinan; Prochaska, J. Xavier; Zhang, Shaohua; Ji, Tuo; Schneider, Donald P.

    2017-12-01

    We present 13 new 2175 Å dust absorbers at zabs = 1.0-2.2 towards background quasars from the Sloan Digital Sky Survey. These absorbers are examined in detail using data from the Echelle Spectrograph and Imager (ESI) on the Keck II telescope. Many low-ionization lines including Fe II, Zn II, Mg II, Si II, Al II, Ni II, Mn II, Cr II, Ti II and Ca II are present in the same absorber that gives rise to the 2175 Å bump. The relative metal abundances (with respect to Zn) demonstrate that the depletion patterns of our 2175 Å dust absorbers resemble that of the Milky Way clouds although some are disc-like and some are halo-like. The 2175 Å dust absorbers have significantly higher depletion levels compared to literature damped Lyman α absorbers (DLAs) and sub-DLAs. The dust depletion level indicator [Fe/Zn] tends to anticorrelate with bump strengths. The velocity profiles from the Keck/ESI spectra also provide kinematical information on the dust absorbers. The dust absorbers are found to have multiple velocity components with velocity widths extending from ∼100 to ∼600 km s-1, which are larger than those of most DLAs and sub-DLAs. Assuming the velocity width is a reliable tracer of stellar mass, the host galaxies of 2175 Å dust absorbers are expected to be more massive than DLA/sub-DLA hosts. Not all of the 2175 Å dust absorbers are intervening systems towards background quasars. The absorbers towards quasars J1006+1538 and J1047+3423 are proximate systems that could be associated with the quasar itself or the host galaxy.

  20. Interpreting the Strongly Lensed Supernova iPTF16geu: Time Delay Predictions, Microlensing, and Lensing Rates

    Energy Technology Data Exchange (ETDEWEB)

    More, Anupreeta; Oguri, Masamune; More, Surhud [Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), University of Tokyo, Chiba 277-8583 (Japan); Suyu, Sherry H. [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany); Lee, Chien-Hsiu, E-mail: anupreeta.more@ipmu.jp [Subaru Telescope, National Astronomical Observatory of Japan, 650 North Aohoku Place, Hilo, HI 96720 (United States)

    2017-02-01

    We present predictions for time delays between multiple images of the gravitationally lensed supernova, iPTF16geu, which was recently discovered from the intermediate Palomar Transient Factory (iPTF). As the supernova is of Type Ia where the intrinsic luminosity is usually well known, accurately measured time delays of the multiple images could provide tight constraints on the Hubble constant. According to our lens mass models constrained by the Hubble Space Telescope F814W image, we expect the maximum relative time delay to be less than a day, which is consistent with the maximum of 100 hr reported by Goobar et al. but places a stringent upper limit. Furthermore, the fluxes of most of the supernova images depart from expected values suggesting that they are affected by microlensing. The microlensing timescales are small enough that they may pose significant problems to measure the time delays reliably. Our lensing rate calculation indicates that the occurrence of a lensed SN in iPTF is likely. However, the observed total magnification of iPTF16geu is larger than expected, given its redshift. This may be a further indication of ongoing microlensing in this system.

  1. Bayesian galaxy shape measurement for weak lensing surveys - III. Application to the Canada-France-Hawaii Telescope Lensing Survey

    Science.gov (United States)

    Miller, L.; Heymans, C.; Kitching, T. D.; van Waerbeke, L.; Erben, T.; Hildebrandt, H.; Hoekstra, H.; Mellier, Y.; Rowe, B. T. P.; Coupon, J.; Dietrich, J. P.; Fu, L.; Harnois-Déraps, J.; Hudson, M. J.; Kilbinger, M.; Kuijken, K.; Schrabback, T.; Semboloni, E.; Vafaei, S.; Velander, M.

    2013-03-01

    A likelihood-based method for measuring weak gravitational lensing shear in deep galaxy surveys is described and applied to the Canada-France-Hawaii Telescope (CFHT) Lensing Survey (CFHTLenS). CFHTLenS comprises 154 deg2 of multi-colour optical data from the CFHT Legacy Survey, with lensing measurements being made in the i' band to a depth i'AB noise ratio νSN ≳ 10. The method is based on the lensfit algorithm described in earlier papers, but here we describe a full analysis pipeline that takes into account the properties of real surveys. The method creates pixel-based models of the varying point spread function (PSF) in individual image exposures. It fits PSF-convolved two-component (disc plus bulge) models to measure the ellipticity of each galaxy, with Bayesian marginalization over model nuisance parameters of galaxy position, size, brightness and bulge fraction. The method allows optimal joint measurement of multiple, dithered image exposures, taking into account imaging distortion and the alignment of the multiple measurements. We discuss the effects of noise bias on the likelihood distribution of galaxy ellipticity. Two sets of image simulations that mirror the observed properties of CFHTLenS have been created to establish the method's accuracy and to derive an empirical correction for the effects of noise bias.

  2. 30 CFR 18.30 - Windows and lenses.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Windows and lenses. 18.30 Section 18.30 Mineral... § 18.30 Windows and lenses. (a) MSHA may waive testing of materials for windows or lenses except headlight lenses. When tested, material for windows or lenses shall meet the test requirements prescribed in...

  3. Planck 2015 results. XV. Gravitational lensing

    CERN Document Server

    Ade, P.A.R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; Basak, S.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Diego, J.M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T.A.; Eriksen, H.K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Hurier, G.; Jaffe, A.H.; Jaffe, T.R.; Jones, W.C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C.R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P.B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P.M.; Macías-Pérez, J.F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P.G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J.A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Nørgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G.W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J.P.; Reach, W.T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J.A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J.A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; White, M.; Yvon, D.; Zacchei, A.

    2016-01-01

    We present the most significant measurement of the cosmic microwave background (CMB) lensing potential to date (at a level of 40 sigma), using temperature and polarization data from the Planck 2015 full-mission release. Using a polarization-only estimator we detect lensing at a significance of 5 sigma. We cross-check the accuracy of our measurement using the wide frequency coverage and complementarity of the temperature and polarization measurements. Public products based on this measurement include an estimate of the lensing potential over approximately 70% of the sky, an estimate of the lensing potential power spectrum in bandpowers for the multipole range 40lensing potential power spectrum and that found in the best-fitting LCDM model based on the Planck temperature and polarization power spectra. Using the lensing likelihood alone we obtain a percent-level measurement of ...

  4. THE EXTENDED HIGH A ( V ) QUASAR SURVEY: SEARCHING FOR DUSTY ABSORBERS TOWARD MID-INFRARED-SELECTED QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Krogager, J.-K.; Noterdaeme, P. [Institut d’Astrophysique de Paris, CNRS-UPMC, UMR7095, 98bis bd Arago, F-75014 Paris (France); Fynbo, J. P. U.; Heintz, K. E.; Vestergaard, M. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Geier, S. [Instituto de Astrofísica de Canarias (IAC), E-38205 La Laguna, Tenerife (Spain); Ledoux, C. [European Southern Observatory, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago 19 (Chile); Møller, P. [European Southern Observatory, Karl-Schwarzschildstrasse 2, D-85748 Garching bei München (Germany); Venemans, B. P. [Max-Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany)

    2016-11-20

    We present the results of a new spectroscopic survey for dusty intervening absorption systems, particularly damped Ly α absorbers (DLAs), toward reddened quasars. The candidate quasars are selected from mid-infrared photometry from the Wide-field Infrared Survey Explorer combined with optical and near-infrared photometry. Out of 1073 candidates, we secure low-resolution spectra for 108 using the Nordic Optical Telescope on La Palma, Spain. Based on the spectra, we are able to classify 100 of the 108 targets as quasars. A large fraction (50%) is observed to have broad absorption lines (BALs). Moreover, we find six quasars with strange breaks in their spectra, which are not consistent with regular dust reddening. Using template fitting, we infer the amount of reddening along each line of sight ranging from A ( V ) ≈ 0.1 to 1.2 mag (assuming a Small Magellanic Cloud extinction curve). In four cases, the reddening is consistent with dust exhibiting the 2175 Å feature caused by an intervening absorber, and for two of these, an Mg ii absorption system is observed at the best-fit absorption redshift. In the rest of the cases, the reddening is most likely intrinsic to the quasar. We observe no evidence for dusty DLAs in this survey. However, the large fraction of BAL quasars hampers the detection of absorption systems. Out of the 50 non-BAL quasars, only 28 have sufficiently high redshift to detect Ly α in absorption.

  5. FISHEYE LENSES FOR 3D MODELING: EVALUATIONS AND CONSIDERATIONS

    Directory of Open Access Journals (Sweden)

    L. Barazzetti

    2017-02-01

    Full Text Available Fisheye lenses are becoming more popular in complete image-based modelling projects of small and narrow spaces. The growing interest in fisheye lenses is confirmed by the availability of different commercial software incorporating a fisheye camera model. Such software are now able to carry out the steps of the image processing pipeline in a fully automated way, from camera calibration and orientation to dense matching, surface generation, and orthophoto production. This paper highlights the advantages (and disadvantages of fisheye lenses when used for 3D modelling projects through different commercial software. The goal is not only a comparison of commercial software, but also an analysis of the additional issues that arise when a fisheye lens is used for 3D modelling. Results confirm that a fisheye lens is suitable for accurate metric documentation, especially when limited space is available. On the other hand, additional issues where found during the camera calibration/image orientation step as well as the texture generation and orthophoto production phases, for which particular attention is required.

  6. THE THIRD GRAVITATIONAL LENSING ACCURACY TESTING (GREAT3) CHALLENGE HANDBOOK

    International Nuclear Information System (INIS)

    Mandelbaum, Rachel; Kannawadi, Arun; Simet, Melanie; Rowe, Barnaby; Kacprzak, Tomasz; Bosch, James; Miyatake, Hironao; Chang, Chihway; Gill, Mandeep; Courbin, Frederic; Jarvis, Mike; Armstrong, Bob; Lackner, Claire; Leauthaud, Alexie; Nakajima, Reiko; Rhodes, Jason; Zuntz, Joe; Bridle, Sarah; Coupon, Jean; Dietrich, Jörg P.

    2014-01-01

    The GRavitational lEnsing Accuracy Testing 3 (GREAT3) challenge is the third in a series of image analysis challenges, with a goal of testing and facilitating the development of methods for analyzing astronomical images that will be used to measure weak gravitational lensing. This measurement requires extremely precise estimation of very small galaxy shape distortions, in the presence of far larger intrinsic galaxy shapes and distortions due to the blurring kernel caused by the atmosphere, telescope optics, and instrumental effects. The GREAT3 challenge is posed to the astronomy, machine learning, and statistics communities, and includes tests of three specific effects that are of immediate relevance to upcoming weak lensing surveys, two of which have never been tested in a community challenge before. These effects include many novel aspects including realistically complex galaxy models based on high-resolution imaging from space; a spatially varying, physically motivated blurring kernel; and a combination of multiple different exposures. To facilitate entry by people new to the field, and for use as a diagnostic tool, the simulation software for the challenge is publicly available, though the exact parameters used for the challenge are blinded. Sample scripts to analyze the challenge data using existing methods will also be provided. See http://great3challenge.info and http://great3.projects.phys.ucl.ac.uk/leaderboard/ for more information

  7. Scleral lenses in the management of keratoconus.

    Science.gov (United States)

    Schornack, Muriel M; Patel, Sanjay V

    2010-01-01

    To describe the use of Jupiter scleral lenses (Medlens Innovations, Front Royal, VA; and Essilor Contact Lenses, Inc., Dallas, TX) in the management of keratoconus. We performed a single-center retrospective chart review of our initial 32 patients with keratoconus evaluated for scleral lens wear. All patients were referred for scleral lens evaluation after exhausting other nonsurgical options for visual correction. Diagnostic lenses were used in the initial fitting process. If adequate fit could not be achieved with standard lenses, custom lenses were designed in consultation with the manufacturers' specialists. The following measures were evaluated for each patient: ability to tolerate and handle lenses, visual acuity with scleral lenses, number of lenses, and visits needed to complete the fitting process. Fifty-two eyes of 32 patients were evaluated for scleral lens wear. Of these, 12 patients (20 eyes) decided not to pursue scleral lens wear after initial evaluation. One patient (2 eyes) abandoned the fitting process after cataract surgery. The remaining 19 patients (30 eyes) were fit successfully. The average number of lenses ordered per eye was 1.5. The fitting process required an average of 2.8 visits. Standard lenses were prescribed for 23 eyes, and custom designs were needed for 7 eyes. Median best-corrected visual acuity improved from 20/40 (mean, 20/76) before scleral lens fitting to 20/20 (mean, 20/30) after fitting. Follow-up ranged from 3 to 32 months. Jupiter scleral lenses provide acceptable visual acuity and comfort in patients with keratoconus. The availability of diagnostic lenses facilitates the fitting process.

  8. Age-related compaction of lens fibers affects the structure and optical properties of rabbit lenses

    Directory of Open Access Journals (Sweden)

    Al-Ghoul Walid M

    2007-12-01

    Full Text Available Abstract Background The goal of this investigation was to correlate particular age-related structural changes (compaction to the amount of scatter in rabbit lenses and to determine if significant fiber compaction occurred in the nuclear and inner cortical regions. Methods New Zealand White rabbits at 16–20 months old (adult; n = 10 and at 3.5–4 years old (aged; n = 10 were utilized for this study. Immediately after euthanising, scatter was assessed in fresh lenses by low power helium-neon laser scan analysis. Scatter data was analyzed both for whole lenses and regionally, to facilitate correlation with morphometric data. After functional analysis, lenses were fixed and processed for scanning electron microcopy (SEM; right eyes and light microscopy (LM; left eyes. Morphometric analysis of SEM images was utilized to evaluate compaction of nuclear fibers. Similarly, measurements from LM images were used to assess compaction of inner cortical fibers. Results Scatter was significantly greater in aged lenses as compared to adult lenses in all regions analyzed, however the difference in the mean was slightly more pronounced in the inner cortical region. The anterior and posterior elliptical angles at 1 mm (inner fetal nucleus were significantly decreased in aged vs. adult lenses (anterior, p = 0.040; posterior, p = 0.036. However, the average elliptical angles at 2.5 mm (outer fetal nucleus were not significantly different in adult and aged lenses since all lenses examined had comparable angles to inner fetal fibers of aged lenses, i.e. they were all compacted. In cortical fibers, measures of average cross-sectional fiber area were significantly different at diameters of both 6 and 7 mm as a function of age (p = 0.011 and p = 0.005, respectively. Accordingly, the estimated fiber volume was significantly decreased in aged as compared to adult lenses at both 6 mm diameter (p = 0.016 and 7 mm diameter (p = 0.010. Conclusion Morphometric data indicates

  9. Eight New Luminous z > 6 Quasars Selected via SED Model Fitting of VISTA, WISE and Dark Energy Survey Year 1 Observations

    Energy Technology Data Exchange (ETDEWEB)

    Reed, S.L.; et al.

    2017-01-17

    We present the discovery and spectroscopic confirmation with the ESO NTT and Gemini South telescopes of eight new 6.0 < z < 6.5 quasars with z$_{AB}$ < 21.0. These quasars were photometrically selected without any star-galaxy morphological criteria from 1533 deg$^{2}$ using SED model fitting to photometric data from the Dark Energy Survey (g, r, i, z, Y), the VISTA Hemisphere Survey (J, H, K) and the Wide-Field Infrared Survey Explorer (W1, W2). The photometric data was fitted with a grid of quasar model SEDs with redshift dependent Lyman-{\\alpha} forest absorption and a range of intrinsic reddening as well as a series of low mass cool star models. Candidates were ranked using on a SED-model based $\\chi^{2}$-statistic, which is extendable to other future imaging surveys (e.g. LSST, Euclid). Our spectral confirmation success rate is 100% without the need for follow-up photometric observations as used in other studies of this type. Combined with automatic removal of the main types of non-astrophysical contaminants the method allows large data sets to be processed without human intervention and without being over run by spurious false candidates. We also present a robust parametric redshift estimating technique that gives comparable accuracy to MgII and CO based redshift estimators. We find two z $\\sim$ 6.2 quasars with HII near zone sizes < 3 proper Mpc which could indicate that these quasars may be young with ages < 10$^6$ - 10$^7$ years or lie in over dense regions of the IGM. The z = 6.5 quasar VDESJ0224-4711 has J$_{AB}$ = 19.75 is the second most luminous quasar known with z > 6.5.

  10. DES J0454-4448: discovery of the first luminous z ≥ 6 quasar from the Dark Energy Survey

    Energy Technology Data Exchange (ETDEWEB)

    Reed, S. L.; McMahon, R. G.; Banerji, M.; Becker, G. D.; Gonzalez-Solares, E.; Martini, P.; Ostrovski, F.; Rauch, M.; Abbott, T.; Abdalla, F. B.; Allam, S.; Benoit-Levy, A.; Bertin, E.; Buckley-Geer, E.; Burke, D.; Carnero Rosell, A.; da Costa, L. N.; D' Andrea, C.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Cunha, C. E.; Estrada, J.; Evrard, A. E.; Fausti Neto, A.; Finley, D. A.; Fosalba, P.; Frieman, J.; Gruen, D.; Honscheid, K.; James, D.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Maia, M. A. G.; Makler, M.; Marshall, J.; Merritt, K.; Miquel, R.; Mohr, J.; Nord, B.; Ogando, R.; Plazas, A.; Romer, K.; Roodman, A.; Rykoff, E.; Sako, M.; Sanchez, E.; Santiago, B.; Schubnell, M.; Sevilla, I.; Smith, C.; Soares-Santos, M.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Tucker, D.; Walker, A.; Wechsler, R. H.

    2015-10-28

    We present the first results of a survey for high-redshift, z ≥ 6, quasars using izY multicolour photometric observations from the Dark Energy Survey (DES). Here we report the discovery and spectroscopic confirmation of the zAB, YAB = 20.2, 20.2 (M1450 = -26.5) quasar DES J0454-4448 with a redshift of z = 6.09±0.02 based on the onset of the Ly α forest and an H I near zone size of 4.1+1.1-1.2 proper Mpc. The quasar was selected as an i-band drop out with i-z = 2.46 and zAB < 21.5 from an area of ~300 deg2. It is the brightest of our 43 candidates and was identified for spectroscopic follow-up solely based on the DES i-z and z-Y colours. The quasar is detected by WISE and has W1AB = 19.68. The discovery of one spectroscopically confirmed quasar with 5.7 < z < 6.5 and zAB ≤ 20.2 is consistent with recent determinations of the luminosity function at z ~ 6. DES when completed will have imaged ~5000 deg2 to YAB = 23.0 (5σ point source) and we expect to discover 50–100 new quasars with z > 6 including 3–10 with z > 7 dramatically increasing the numbers of quasars currently known that are suitable for detailed studies.

  11. VLA observations of the Palomar bright quasar survey

    International Nuclear Information System (INIS)

    Shaffer, D.B.; Schmidt, M.

    1982-01-01

    The authors have optically surveyed some 10000 square degrees of the northern sky to search for bright quasars. Their final sample contains about 100 quasars. The B magnitudes of the sample range from 13.1 to 16.5, with most in the range 15.0-16.2. The redshifts range from 0.03 to over 2, considerably concentrated toward smaller values (median of 0.18). They observed 94 of these quasars with the partially complete VLA in November/December 1979, and detected radio emission from 27 of them, or 29%, to a limit of 1-2 mJy. It is concluded that bright quasars are definitely more likely to be detectable radio sources. (Auth.)

  12. How Quasar Feedback May Shape the Co-evolutionary Paths

    Energy Technology Data Exchange (ETDEWEB)

    Ishibashi, Wako, E-mail: wako.ishibashi@physik.uzh.ch [Physik-Institut, University of Zurich, Zürich (Switzerland)

    2017-10-17

    Observations point toward some form of “co-evolutionary sequence,” from dust-enshrouded starbursts to luminous unobscured quasars. Active galactic nucleus (AGN) feedback is generally invoked to expel the obscuring dusty gas in a blow-out event, eventually revealing the hidden central quasar. However, the physical mechanism driving AGN feedback, either due to winds or radiation, remains uncertain and is still a source of much debate. We consider quasar feedback, based on radiation pressure on dust, which directly acts on the obscuring dusty gas. We show that AGN radiative feedback is capable of efficiently removing the obscuring cocoon, and driving powerful outflows on galactic scales, consistent with recent observations. I will discuss how such quasar feedback may provide a natural physical interpretation of the observed evolutionary path, and the physical implications in the broader context of black hole-host galaxy co-evolution.

  13. Modeling fine-scale geological heterogeneity-examples of sand lenses in tills

    DEFF Research Database (Denmark)

    Kessler, Timo Christian; Comunian, Alessandro; Oriani, Fabio

    2013-01-01

    . However, two-dimensional training images acquired by outcrop mapping are of limited use to generate three-dimensional realizations with MPS. One can use a technique that consists in splitting the 3D domain into a set of slices in various directions that are sequentially simulated and reassembled into a 3D...... on till outcrops producing binary images of geological cross-sections capturing the size, shape and distribution of individual features. Sand lenses occur as elongated, anisotropic geobodies that vary in size and extent. Besides, sand lenses show strong non-stationary patterns on section images...

  14. THE FIRST HIGH-REDSHIFT QUASAR FROM Pan-STARRS

    Energy Technology Data Exchange (ETDEWEB)

    Morganson, Eric; De Rosa, Gisella; Decarli, Roberto; Walter, Fabian; Rix, Hans-Walter [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, 69117 Heidelberg (Germany); Chambers, Ken; Burgett, William; Flewelling, Heather; Hodapp, Klaus; Kaiser, Nick; Magnier, Eugene; Sweeney, Bill; Waters, Christopher [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); McGreer, Ian; Fan, Xiaohui [Steward Observatory, University of Arizona, 933 N Cherry Ave., Tucson, AZ 85721 (United States); Greiner, Jochen [Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching (Germany); Price, Paul, E-mail: morganson@mpia.de [Princeton University Observatory, 4 Ivy Lane, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States)

    2012-06-15

    We present the discovery of the first high-redshift (z > 5.7) quasar from the Panoramic Survey Telescope and Rapid Response System 1 (Pan-STARRS1 or PS1). This quasar was initially detected as an i{sub P1} dropout in PS1, confirmed photometrically with the SAO Wide-field InfraRed Camera at Arizona's Multiple Mirror Telescope (MMT) and the Gamma-Ray Burst Optical/Near-Infrared Detector at the MPG 2.2 m telescope in La Silla. The quasar was verified spectroscopically with the MMT Spectrograph, Red Channel and the Cassegrain Twin Spectrograph at the Calar Alto 3.5 m telescope. Its near-infrared spectrum was taken at the Large Binocular Telescope Observatory (LBT) with the LBT Near-Infrared Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research. It has a redshift of 5.73, an AB z{sub P1} magnitude of 19.4, a luminosity of 3.8 Multiplication-Sign 10{sup 47} erg s{sup -1}, and a black hole mass of 6.9 Multiplication-Sign 10{sup 9} M{sub Sun }. It is a broad absorption line quasar with a prominent Ly{beta} peak and a very blue continuum spectrum. This quasar is the first result from the PS1 high-redshift quasar search that is projected to discover more than 100 i{sub P1} dropout quasars and could potentially find more than 10 z{sub P1} dropout (z > 6.8) quasars.

  15. Probing Planets in Extragalactic Galaxies Using Quasar Microlensing

    OpenAIRE

    Dai, Xinyu; Guerras, Eduardo

    2018-01-01

    Previously, planets have been detected only in the Milky Way galaxy. Here, we show that quasar microlensing provides a means to probe extragalactic planets in the lens galaxy, by studying the microlensing properties of emission close to the event horizon of the supermassive black hole of the background quasar, using the current generation telescopes. We show that a population of unbound planets between stars with masses ranging from Moon to Jupiter masses is needed to explain the frequent Fek...

  16. Discovery and spectrophotometry of high-redshift quasars

    International Nuclear Information System (INIS)

    MacAlpine, G.M.; Feldman, F.R.

    1982-01-01

    We report on the discovery and spectrophotometry of 30 new high-redshift quasars, which were detected using the Curtis Schmidt technique. We also discuss new follow-up spectrophotometry for 23 quasar candidates from University of Michigan Lists I--IV. Our program sample contains eight quasars with z>3, at least five objects exhibiting broad absorption troughs, and a pair of quasars which are 1' apart on the sky and nearly identical in redshift, at z near 2.13. The redshift distribution for the majority of quasars in UM List IV suggests that most of the single-line quasar candidates in the UM List have low to moderate redshifts, with the reported line often being Mg II lambda2798 or C III] lambda1909. For 17 high-redshift quasars where lambda912 at the emission-line redshift could be examined, we did not find any definite Lyman limit cutoffs. Although three objects show a decline of the continuum within 100 A of lambda912, we do not believe them to be unambiguous examples for emission-line clouds situated in the line of sight. When our O I lambda1304 measurements are combined with the data of others to yield a composite spectrum, we obtain O I lambda1304/lambda8446 = 1.35. This suggests reddening with E/sub B/-Vroughly-equal0.23. Finally, our data exhibit a correlation between Lyα emission line velocity widths and redshift. The higher z quasars in the sample tend to have narrower lines, due, at least in part, to bias in the detection technique

  17. Broad Absorption Line Quasar catalogues with Supervised Neural Networks

    International Nuclear Information System (INIS)

    Scaringi, Simone; Knigge, Christian; Cottis, Christopher E.; Goad, Michael R.

    2008-01-01

    We have applied a Learning Vector Quantization (LVQ) algorithm to SDSS DR5 quasar spectra in order to create a large catalogue of broad absorption line quasars (BALQSOs). We first discuss the problems with BALQSO catalogues constructed using the conventional balnicity and/or absorption indices (BI and AI), and then describe the supervised LVQ network we have trained to recognise BALQSOs. The resulting BALQSO catalogue should be substantially more robust and complete than BI-or AI-based ones.

  18. Effective collision strengths of quasar ultraviolet emission lines

    International Nuclear Information System (INIS)

    Osterbrock, D.E.; Wallace, R.K.

    1977-01-01

    The best available published collision strengths for excitation of permitted and semiforbidden emission lines of abundant ions observed or expected in quasars have been collected and averaged over Maxwellian velocity distributions. For a few ions for which calculations are not available, extrapolation along isoelectronic sequences or in principal quantum number n was used to estimate values. These collision strengths were used to correct differentially published photoionization models of quasars, and the corrected models compared with published observational data

  19. A Measurement of CMB Cluster Lensing with SPT and DES Year 1 Data

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, E.J.; et al.

    2017-08-03

    Clusters of galaxies gravitationally lens the cosmic microwave background (CMB) radiation, resulting in a distinct imprint in the CMB on arcminute scales. Measurement of this effect offers a promising way to constrain the masses of galaxy clusters, particularly those at high redshift. We use CMB maps from the South Pole Telescope Sunyaev-Zel'dovich (SZ) survey to measure the CMB lensing signal around galaxy clusters identified in optical imaging from first year observations of the Dark Energy Survey. We detect lensing of the CMB by the galaxy clusters at 6.5$\\sigma$ significance. Using the measured lensing signal, we constrain the amplitude of the relation between cluster mass and optical richness to roughly $20\\%$ precision, finding good agreement with recent constraints obtained with galaxy lensing. The error budget is dominated by statistical noise but includes significant contributions from systematic biases due to the thermal SZ effect and cluster miscentering.

  20. Defect inspection of actuator lenses using swept-source optical coherence tomography

    Science.gov (United States)

    Lee, Jaeyul; Shirazi, Muhammad Faizan; Park, Kibeom; Jeon, Mansik; Kim, Jeehyun

    2017-12-01

    Actuator lens industries have gained an enormous interest with the enhancement of various latest communication devices, such as mobile phone and notebooks. The quality of the aforementioned devices can be degraded due to the internal defects of actuator lenses. Therefore, in this study, we implemented swept-source optical coherence tomography (SS-OCT) system to inspect defects of actuator lenses. Owing to the high-resolution of the SS-OCT system, defected foreign substances between the actuator lenses, defective regions of lenses and surface stains were more clearly distinguished through three-dimensional (3D) and two-dimensional (2D) cross-sectional OCT images. Therefore, the implemented SS-OCT system can be considered as a potential application to defect inspection of actuator lens.

  1. The Scales of Gravitational Lensing

    Directory of Open Access Journals (Sweden)

    Francesco De Paolis

    2016-03-01

    Full Text Available After exactly a century since the formulation of the general theory of relativity, the phenomenon of gravitational lensing is still an extremely powerful method for investigating in astrophysics and cosmology. Indeed, it is adopted to study the distribution of the stellar component in the Milky Way, to study dark matter and dark energy on very large scales and even to discover exoplanets. Moreover, thanks to technological developments, it will allow the measure of the physical parameters (mass, angular momentum and electric charge of supermassive black holes in the center of ours and nearby galaxies.

  2. Meso-Structure in Three Strong-lensing Systems

    Science.gov (United States)

    Saha, Prasenjit; Williams, Liliya L. R.; Ferreras, Ignacio

    2007-07-01

    We map substructure in three strong-lensing systems having particularly good image data: the galaxy lens MG J0414+053 and the clusters SDSS J1004+411 and ACO 1689. Our method is to first reconstruct the lens as a pixelated mass map and then subtract off the symmetric part (in the galaxy case) or a projected Navarro-Frenk-White profile (for the cluster lenses). In all three systems we find extended irregular structures, or meso-structures, having of order 10% of the total mass. In J0414+053, the meso-structure suggests a tidal tail connecting the main lens with a nearby galaxy; however, this interpretation is tentative. In the clusters, the identification of meso-structure is more secure, especially in ACO 1689, where two independent sets of lensed images imply very similar meso-structure. In all three cases, the meso-structures are correlated with galaxies but much more extended and massive than the stellar components of single galaxies. Such extended structures cannot plausibly persist in such high-density regions without being mixed; the crossing times are too short. The meso-structures therefore appear to be merging or otherwise dynamically evolving systems.

  3. An astrophysics data program investigation of a synoptic study of quasar continua

    Science.gov (United States)

    Elvis, Martin

    1991-01-01

    A summary of the program is presented. The major product of the program, an atlas of quasar energy distributions, is presented in the appendices along with papers written as a result of this research. The topics covered in the papers include: (1) accurate galactic N(sub h) values toward quasars and active galactic nuclei (AGN); (2) weak bump quasars; (3) millimeter measurements of hard x ray selected active galaxies- implications for the nature of the continuous spectrum; (3) persistence and change in the soft x ray spectrum of the quasar PG1211+143; (4) the soft x ray excess in einstein quasar spectra; and (5) EXOSAT x ray spectra of quasars.

  4. HOW TO FIND GRAVITATIONALLY LENSED TYPE Ia SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, Daniel A.; Nugent, Peter E. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States)

    2017-01-01

    Type Ia supernovae (SNe Ia) that are multiply imaged by gravitational lensing can extend the SN Ia Hubble diagram to very high redshifts ( z ≳ 2), probe potential SN Ia evolution, and deliver high-precision constraints on H {sub 0}, w , and Ω{sub m} via time delays. However, only one, iPTF16geu, has been found to date, and many more are needed to achieve these goals. To increase the multiply imaged SN Ia discovery rate, we present a simple algorithm for identifying gravitationally lensed SN Ia candidates in cadenced, wide-field optical imaging surveys. The technique is to look for supernovae that appear to be hosted by elliptical galaxies, but that have absolute magnitudes implied by the apparent hosts’ photometric redshifts that are far brighter than the absolute magnitudes of normal SNe Ia (the brightest type of supernovae found in elliptical galaxies). Importantly, this purely photometric method does not require the ability to resolve the lensed images for discovery. Active galactic nuclei, the primary sources of contamination that affect the method, can be controlled using catalog cross-matches and color cuts. Highly magnified core-collapse SNe will also be discovered as a byproduct of the method. Using a Monte Carlo simulation, we forecast that the Large Synoptic Survey Telescope can discover up to 500 multiply imaged SNe Ia using this technique in a 10 year z -band search, more than an order of magnitude improvement over previous estimates. We also predict that the Zwicky Transient Facility should find up to 10 multiply imaged SNe Ia using this technique in a 3 year R -band search—despite the fact that this survey will not resolve a single system.

  5. Precision cosmology from future lensed gravitational wave and electromagnetic signals.

    Science.gov (United States)

    Liao, Kai; Fan, Xi-Long; Ding, Xuheng; Biesiada, Marek; Zhu, Zong-Hong

    2017-10-27

    The standard siren approach of gravitational wave cosmology appeals to the direct luminosity distance estimation through the waveform signals from inspiralling double compact binaries, especially those with electromagnetic counterparts providing redshifts. It is limited by the calibration uncertainties in strain amplitude and relies on the fine details of the waveform. The Einstein telescope is expected to produce 10 4 -10 5 gravitational wave detections per year, 50-100 of which will be lensed. Here, we report a waveform-independent strategy to achieve precise cosmography by combining the accurately measured time delays from strongly lensed gravitational wave signals with the images and redshifts observed in the electromagnetic domain. We demonstrate that just 10 such systems can provide a Hubble constant uncertainty of 0.68% for a flat lambda cold dark matter universe in the era of third-generation ground-based detectors.

  6. The Curious Molecular Gas Conditions in a z=2.6 Radio-loud Quasar

    Science.gov (United States)

    Sharon, Chelsea; Riechers, Dominik A.; Kuk Leung, Tsz; Weiss, Axel; Walter, Fabian; Carilli, Chris; Kraiburg Knudsen, Kirsten; Hodge, Jacqueline

    2018-01-01

    Theoretical work suggests that AGN play an important role in quenching star formation in massive galaxies. In addition to molecular outflows observed in the local universe, emission from very high-J CO rotational transitions has been one of the key pieces of evidence for AGN directly affecting the molecular gas reservoirs that fuel star formation. However, very few observations of Jupper>9 transitions exist for galaxies in the early universe. Here we will present the peculiar molecular gas conditions in MG 0414+0534 (MG 0414 hereafter), one of the few high-z galaxies with very high-J CO detections. MG 0414 is a strongly lensed IR-bright radio-loud quasar with broad Hα emission at z=2.6390. We recently confirmed the CO(3–2) detection from Barvainis et al. (1998), but were unable to detect the CO(1–0) line. The 3σ lower limit on the 3–2/1–0 line ratio (in units of brightness temperature) is r3,1>5.72, which is significantly higher than the r3,1≤1 typical for thermalized optically thick emission in other z˜2–3 AGN host galaxies. In addition, the CO(11–10) line was detected to high significance using the Atacama Large Millimeter/submillimeter Array, and the CO(11–10) line FWHM is nearly double that of the CO(3–2) line. We will discuss possible explanations for the peculiar line ratios in MG 0414 (such as optically thin emission, molecular outflows, and differential lensing) and what the origin of these ratios imply for molecular gas observations of other high-z AGN host galaxies.

  7. The kinematical structure of gravitationally lensed arcs

    NARCIS (Netherlands)

    Moller, O; Noordermeer, E

    2006-01-01

    In this paper, the expected properties of the velocity fields of strongly lensed arcs behind galaxy clusters are investigated. The velocity profile along typical lensed arcs is determined by ray-tracing light rays from a model source galaxy through parametric cluster toy models consisting of

  8. Modern scleral lenses part I: clinical features.

    NARCIS (Netherlands)

    Visser, E.S.; Visser, R.; Lier, H.J.J. van; Otten, H.M.

    2007-01-01

    PURPOSE: To evaluate the indications for modern scleral lenses and their clinical performance in patients who were fitted with scleral lenses at the authors' practices. METHODS: In this cross-sectional survey, all the necessary data were obtained at the first follow-up visit during the 5-month study

  9. Soft Lenses | Kuming | South African Medical Journal

    African Journals Online (AJOL)

    A series of cases fitted with Bionite soft lenses is described. Good results were obtained in bullous keratopathy, dry eyes, early and moderately advanced Stevens-Johnson syndrome and pemphigoid, and some cases of indolent corneal ulcers. The lenses appear to be a most effective replacement for tarsorrhaphy, haptic ...

  10. CLASS B 1359+ 154: Modelling Lensing by a Group of Galaxies

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... The recently discovered gravitationally lensed system CLASS B1359+154 appears to have six detectable images of a single background source at a redshift of 3.235. A group of galaxies acts as the lens, at a redshift of ∼ 1. The present work identifies two distinct, physically plausible image configurations, ...

  11. MOLECULAR GAS IN z ∼ 6 QUASAR HOST GALAXIES

    International Nuclear Information System (INIS)

    Wang Ran; Carilli, Chris L.; Wagg, Jeff; Neri, R.; Cox, Pierre; Riechers, D. A.; Walter, Fabian; Bertoldi, Frank; Menten, Karl M.; Omont, Alain; Fan Xiaohui

    2010-01-01

    We report our new observations of redshifted carbon monoxide emission from six z ∼ 6 quasars, using the IRAM Plateau de Bure Interferometer. CO (6-5) or (5-4) line emission was detected in all six sources. Together with two other previous CO detections, these observations provide unique constraints on the molecular gas emission properties in these quasar systems close to the end of the cosmic re-ionization. Complementary results are also presented for low-J CO lines observed at the Green Bank Telescope and the Very Large Array, and dust continuum from five of these sources with the SHARC-II bolometer camera at the Caltech Submillimeter Observatory. We then present a study of the molecular gas properties in our combined sample of eight CO-detected quasars at z ∼ 6. The detections of high-order CO line emission in these objects indicates the presence of highly excited molecular gas, with estimated masses on the order of 10 10 M sun within the quasar host galaxies. No significant difference is found in the gas mass and CO line width distributions between our z ∼ 6 quasars and samples of CO-detected 1.4 ≤ z ≤ 5 quasars and submillimeter galaxies. Most of the CO-detected quasars at z ∼ 6 follow the far-infrared-CO luminosity relationship defined by actively star-forming galaxies at low and high redshifts. This suggests that ongoing star formation in their hosts contributes significantly to the dust heating at FIR wavelengths. The result is consistent with the picture of galaxy formation co-eval with supermassive black hole (SMBH) accretion in the earliest quasar-host systems. We investigate the black hole-bulge relationships of our quasar sample, using the CO dynamics as a tracer for the dynamical mass of the quasar host. The median estimated black hole-bulge mass ratio is about 15 times higher than the present-day value of ∼0.0014. This places important constraints on the formation and evolution of the most massive SMBH-spheroidal host systems at the

  12. Deep learning approach for classifying, detecting and predicting photometric redshifts of quasars in the Sloan Digital Sky Survey stripe 82

    Science.gov (United States)

    Pasquet-Itam, J.; Pasquet, J.

    2018-04-01

    We have applied a convolutional neural network (CNN) to classify and detect quasars in the Sloan Digital Sky Survey Stripe 82 and also to predict the photometric redshifts of quasars. The network takes the variability of objects into account by converting light curves into images. The width of the images, noted w, corresponds to the five magnitudes ugriz and the height of the images, noted h, represents the date of the observation. The CNN provides good results since its precision is 0.988 for a recall of 0.90, compared to a precision of 0.985 for the same recall with a random forest classifier. Moreover 175 new quasar candidates are found with the CNN considering a fixed recall of 0.97. The combination of probabilities given by the CNN and the random forest makes good performance even better with a precision of 0.99 for a recall of 0.90. For the redshift predictions, the CNN presents excellent results which are higher than those obtained with a feature extraction step and different classifiers (a K-nearest-neighbors, a support vector machine, a random forest and a Gaussian process classifier). Indeed, the accuracy of the CNN within |Δz| http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A97

  13. Environment of micro-quasars and other high energy sources in our galaxy

    International Nuclear Information System (INIS)

    Fuchs, Yael

    2001-01-01

    This thesis presents the study of the environment of two micro-quasars and one soft gamma-ray repeater (SGR), mainly based on infrared (IR) images taken with ISOCAM, the camera on board of the ISO satellite, between 4 to 18 micron. The results are compared to other wavelengths ones, from radio to X-ray. GRS1915+105's study reveals mid-IR thermal emission from dust surrounding the micro-quasar, and probably heated by its activity. The multi-wavelength observation of two possible counterpart of this X-ray binary relativistic jet interactions with the surrounding medium, situated at more than 10 parsec from the source, are inconclusive. SS433 has also been observed with PHOT, another instrument on board of ISO, spectroscopically at 2-12 micron and in far IR photometry. Spectra and mass-loss estimate imply the visible companion of this micro-quasar, the nature of which has never been precisely determined, to be likely a Wolf-Rayet star. The mass ejected by this star escapes from the X-ray binary to form probably dust surrounding the system and emitting in far IR. W50, the radio nebula surrounding SS433 and elongated under its relativistic jet action has been partly mapped at 15 micron. No particular emission was found in the eastern lobe. In the western lobe, IR hot-spots, partly corresponding to radio emission and coincident with molecular clouds, lie in the apparent X-ray relativistic jet course, and they possibly trace its interactions with the denser medium of this lobe. Near and mid-IR images of SGR1806-20 do not show any evidence of its high energy activity, but they reveal a young star cluster still enshrouded in their birth cloud, which could also be the original place of the SGR, and then possibly be a key for the understanding of its particular properties. (author) [fr

  14. Probing black hole accretion in quasar pairs at high redshift

    Science.gov (United States)

    Vignali, C.; Piconcelli, E.; Perna, M.; Hennawi, J.; Gilli, R.; Comastri, A.; Zamorani, G.; Dotti, M.; Mathur, S.

    2018-03-01

    Models and observations suggest that luminous quasar activity is triggered by mergers, so it should preferentially occur in the most massive primordial dark matter haloes, where the frequency of mergers is expected to be the highest. Since the importance of galaxy mergers increases with redshift, we identify the high-redshift Universe as the ideal laboratory for studying dual AGN. Here we present the X-ray properties of two systems of dual quasars at z=3.0-3.3 selected from the SDSS DR6 at separations of 6-8 arcsec (43-65 kpc) and observed by Chandra for ≈65 ks each. Both members of each pair are detected with good photon statistics to allow us to constrain the column density, spectral slope and intrinsic X-ray luminosity. We also include a recently discovered dual quasar at z=5 (separation of 21″, 136 kpc) for which XMM-Newton archival data allow us to detect the two components separately. Using optical spectra we derived bolometric luminosities, BH masses and Eddington ratios that were compared to those of luminous SDSS quasars in the same redshift ranges. We find that the brighter component of both quasar pairs at z ≈ 3.0-3.3 has high luminosities compared to the distribution of SDSS quasars at similar redshift, with J1622A having an order magnitude higher luminosity than the median. This source lies at the luminous end of the z ≈ 3.3 quasar luminosity function. While we cannot conclusively state that the unusually high luminosities of our sources are related to their having a close companion, for J1622A there is only a 3% probability that it is by chance.

  15. Star Formation Quenching in Quasar Host Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Carniani, Stefano, E-mail: sc888@mrao.cam.ac.uk [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom); Kavli Institute for Cosmology, University of Cambridge, Cambridge (United Kingdom)

    2017-10-16

    Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN). In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionized and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ~ 2.4 obtained with SINFONI in the H- and K-band. All the quasars show [Oiii]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM < 500 km/s), which is spatially extended and associated with star formation in the host galaxy. On paper fast outflows are spatially anti-correlated with star-formation powered emission, i.e., star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50–100 M{sub ⊙} yr{sup −1}, has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2) ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2) transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  16. Fifty Years of Quasars From Early Observations and Ideas to Future Research

    CERN Document Server

    Marziani, Paola; Sulentic, Jack

    2012-01-01

    The 50th anniversary of the discovery of quasars in 1963 presents an interesting opportunity to ask questions about the current state of quasar research. Formatted as a series of interviews with noted researchers in the field, each of them asked to address a specific set of questions covering topics selected by the editors, this book deals with the historical development of quasar research and discusses how advances in instrumentation and computational capabilities have benefitted quasar astronomy and have changed our basic understanding of quasars. In the last part of the book the interviews address the current topic of the role of quasars in galaxy evolution. They summarise open issues in understanding active galactic nuclei and quasars and present an outlook regarding what future observational facilities both on the ground and in space might reveal. Its interview format, the fascinating topic of quasars and black holes, and the lively recollections and at times controversial views of the contributors make ...

  17. Understanding the Nature of X-ray Weak Quasars

    Science.gov (United States)

    Brandt, William

    We propose a program of archival X-ray and related studies designed to advance understanding of the remarkable active galactic nucleus (AGN) population of X-ray weak quasars. These exceptional objects reveal phenomena that are more generally applicable but are difficult to investigate when more subtly expressed in the overall quasar population. X-ray weak quasars furthermore challenge a central tenet of X-ray astronomy that luminous X-ray emission is a universal property of efficiently accreting supermassive black holes; this idea underlies the utility of X-ray surveys for identifying AGNs throughout the Universe. Our previous findings indicate that understanding of Xray weak quasars is now primed for rapid further advances. Our studies of X-ray weak quasars will employ data from the vast archives of forefront X-ray missions, particularly XMM-Newton and Chandra, and they will also benefit greatly from the use of NuSTAR, ROSAT, Suzaku, Swift, GALEX, and WISE data. They are largely enabled by the enormous quasar samples delivered by modern widefield sky surveys. In particular, we will identify X-ray weak quasars using the serendipitous X-ray coverage of the 380,000 relatively bright quasars spectroscopically identified by the Sloan Digital Sky Survey (SDSS) from z 0.1-5.5; these are wellmatched to the depths of typical archival X-ray observations. The number of SDSS spectroscopic quasars has more than tripled in recent years, and the sample-size improvements at redshifts of z = 2-4, important for our investigations, are even more dramatic. We will construct an unprecedented new sample of X-ray weak quasars, about 20 times larger than those used currently, to enable systematic studies of the X-ray weakness phenomenon. This work should reveal the cause of X-ray weakness for quasars with weak emission lines, allowing testing of a model that relies upon small-scale shielding of ionizing photons by a thick inner accretion disk around a black hole accreting at a high

  18. On Using a Space Telescope to Detect Weak-lensing Shear

    Science.gov (United States)

    Tung, Nathan; Wright, Edward

    2017-11-01

    Ignoring redshift dependence, the statistical performance of a weak-lensing survey is set by two numbers: the effective shape noise of the sources, which includes the intrinsic ellipticity dispersion and the measurement noise, and the density of sources that are useful for weak-lensing measurements. In this paper, we provide some general guidance for weak-lensing shear measurements from a “generic” space telescope by looking for the optimum wavelength bands to maximize the galaxy flux signal-to-noise ratio (S/N) and minimize ellipticity measurement error. We also calculate an effective galaxy number per square degree across different wavelength bands, taking into account the density of sources that are useful for weak-lensing measurements and the effective shape noise of sources. Galaxy data collected from the ultra-deep UltraVISTA Ks-selected and R-selected photometric catalogs (Muzzin et al. 2013) are fitted to radially symmetric Sérsic galaxy light profiles. The Sérsic galaxy profiles are then stretched to impose an artificial weak-lensing shear, and then convolved with a pure Airy Disk PSF to simulate imaging of weak gravitationally lensed galaxies from a hypothetical diffraction-limited space telescope. For our model calculations and sets of galaxies, our results show that the peak in the average galaxy flux S/N, the minimum average ellipticity measurement error, and the highest effective galaxy number counts all lie around the K-band near 2.2 μm.

  19. Speed of Gravitational Waves from Strongly Lensed Gravitational Waves and Electromagnetic Signals.

    Science.gov (United States)

    Fan, Xi-Long; Liao, Kai; Biesiada, Marek; Piórkowska-Kurpas, Aleksandra; Zhu, Zong-Hong

    2017-03-03

    We propose a new model-independent measurement strategy for the propagation speed of gravitational waves (GWs) based on strongly lensed GWs and their electromagnetic (EM) counterparts. This can be done in two ways: by comparing arrival times of GWs and their EM counterparts and by comparing the time delays between images seen in GWs and their EM counterparts. The lensed GW-EM event is perhaps the best way to identify an EM counterpart. Conceptually, this method does not rely on any specific theory of massive gravitons or modified gravity. Its differential setting (i.e., measuring the difference between time delays in GW and EM domains) makes it robust against lens modeling details (photons and GWs travel in the same lensing potential) and against internal time delays between GW and EM emission acts. It requires, however, that the theory of gravity is metric and predicts gravitational lensing similar to general relativity. We expect that such a test will become possible in the era of third-generation gravitational-wave detectors, when about 10 lensed GW events would be observed each year. The power of this method is mainly limited by the timing accuracy of the EM counterpart, which for kilonovae is around 10^{4}  s. This uncertainty can be suppressed by a factor of ∼10^{10}, if strongly lensed transients of much shorter duration associated with the GW event can be identified. Candidates for such short transients include short γ-ray bursts and fast radio bursts.

  20. The effects of camera lenses and dental specialties on the perception of smile esthetics.

    Science.gov (United States)

    Sajjadi, Seyed Hadi; Khosravanifard, Behnam; Esmaeilpour, Mozhgan; Rakhshan, Vahid; Moazzami, Fatemeh

    2015-01-01

    The purpose of this study was to investigate whether different camera lenses and dental specialties can affect the perception of smile esthetics. In the first phase of this study, 40 female smile photographs (taken from dental students) were evaluated by six orthodontists, three specialists in restorative dentistry, and three prosthodontists to select the most beautiful smiles. The 20 students with the best smile ranks were again photographed in standard conditions, but this time with two different lenses: Regular and then macro lenses. Each referee evaluated the beauty of the smiles on a visual analog scale. The referees were blinded of the type of lenses, and the images were all coded. The data were analyzed using two-way analysis of variance (ANOVA), Kruskal-Wallis and Mann-Whitney U-tests (alpha = 0.05, alpha = 0.0167). The lenses led to similar scores of beauty perception (Mann-Whitney P = 0.8). There was no difference between subjective beauty perception of specialties (Kruskal-Wallis P = 0.6). Two-way ANOVA indicated no significant role for lenses (P = 0.1750), specialties (P = 0.7677), or their interaction (P = 0.7852). The photographs taken by a regular lens and then digitally magnified can be as appealing as close-up photographs taken by a macro lens. Experts in different specialties (orthodontics, prosthodontics, and restorative dentistry) showed similar subjective judgments of smile beauty.

  1. ALMA observations of lensed Herschel sources: testing the dark matter halo paradigm

    Science.gov (United States)

    Amvrosiadis, A.; Eales, S. A.; Negrello, M.; Marchetti, L.; Smith, M. W. L.; Bourne, N.; Clements, D. L.; De Zotti, G.; Dunne, L.; Dye, S.; Furlanetto, C.; Ivison, R. J.; Maddox, S. J.; Valiante, E.; Baes, M.; Baker, A. J.; Cooray, A.; Crawford, S. M.; Frayer, D.; Harris, A.; Michałowski, M. J.; Nayyeri, H.; Oliver, S.; Riechers, D. A.; Serjeant, S.; Vaccari, M.

    2018-04-01

    With the advent of wide-area submillimetre surveys, a large number of high-redshift gravitationally lensed dusty star-forming galaxies have been revealed. Because of the simplicity of the selection criteria for candidate lensed sources in such surveys, identified as those with S500 μm > 100 mJy, uncertainties associated with the modelling of the selection function are expunged. The combination of these attributes makes submillimetre surveys ideal for the study of strong lens statistics. We carried out a pilot study of the lensing statistics of submillimetre-selected sources by making observations with the Atacama Large Millimeter Array (ALMA) of a sample of strongly lensed sources selected from surveys carried out with the Herschel Space Observatory. We attempted to reproduce the distribution of image separations for the lensed sources using a halo mass function taken from a numerical simulation that contains both dark matter and baryons. We used three different density distributions, one based on analytical fits to the haloes formed in the EAGLE simulation and two density distributions [Singular Isothermal Sphere (SIS) and SISSA] that have been used before in lensing studies. We found that we could reproduce the observed distribution with all three density distributions, as long as we imposed an upper mass transition of ˜1013 M⊙ for the SIS and SISSA models, above which we assumed that the density distribution could be represented by a Navarro-Frenk-White profile. We show that we would need a sample of ˜500 lensed sources to distinguish between the density distributions, which is practical given the predicted number of lensed sources in the Herschel surveys.

  2. Finding strong gravitational lenses in the Kilo Degree Survey with Convolutional Neural Networks

    Science.gov (United States)

    Petrillo, C. E.; Tortora, C.; Chatterjee, S.; Vernardos, G.; Koopmans, L. V. E.; Verdoes Kleijn, G.; Napolitano, N. R.; Covone, G.; Schneider, P.; Grado, A.; McFarland, J.

    2017-11-01

    The volume of data that will be produced by new-generation surveys requires automatic classification methods to select and analyse sources. Indeed, this is the case for the search for strong gravitational lenses, where the population of the detectable lensed sources is only a very small fraction of the full source population. We apply for the first time a morphological classification method based on a Convolutional Neural Network (CNN) for recognizing strong gravitational lenses in 255 deg2 of the Kilo Degree Survey (KiDS), one of the current-generation optical wide surveys. The CNN is currently optimized to recognize lenses with Einstein radii ≳1.4 arcsec, about twice the r-band seeing in KiDS. In a sample of 21 789 colour-magnitude selected luminous red galaxies (LRGs), of which three are known lenses, the CNN retrieves 761 strong-lens candidates and correctly classifies two out of three of the known lenses. The misclassified lens has an Einstein radius below the range on which the algorithm is trained. We down-select the most reliable 56 candidates by a joint visual inspection. This final sample is presented and discussed. A conservative estimate based on our results shows that with our proposed method it should be possible to find ∼100 massive LRG-galaxy lenses at z ≲ 0.4 in KiDS when completed. In the most optimistic scenario, this number can grow considerably (to maximally ∼2400 lenses), when widening the colour-magnitude selection and training the CNN to recognize smaller image-separation lens systems.

  3. ALMA observations of lensed Herschel sources : Testing the dark-matter halo paradigm

    Science.gov (United States)

    Amvrosiadis, A.; Eales, S. A.; Negrello, M.; Marchetti, L.; Smith, M. W. L.; Bourne, N.; Clements, D. L.; De Zotti, G.; Dunne, L.; Dye, S.; Furlanetto, C.; Ivison, R. J.; Maddox, S.; Valiante, E.; Baes, M.; Baker, A. J.; Cooray, A.; Crawford, S. M.; Frayer, D.; Harris, A.; Michałowski, M. J.; Nayyeri, H.; Oliver, S.; Riechers, D. A.; Serjeant, S.; Vaccari, M.

    2018-01-01

    With the advent of wide-area submillimeter surveys, a large number of high-redshift gravitationally lensed dusty star-forming galaxies (DSFGs) has been revealed. Due to the simplicity of the selection criteria for candidate lensed sources in such surveys, identified as those with S500μm > 100 mJy, uncertainties associated with the modelling of the selection function are expunged. The combination of these attributes makes submillimeter surveys ideal for the study of strong lens statistics. We carried out a pilot study of the lensing statistics of submillimetre-selected sources by making observations with the Atacama Large Millimetre Array (ALMA) of a sample of strongly-lensed sources selected from surveys carried out with the Herschel Space Observatory. We attempted to reproduce the distribution of image separations for the lensed sources using a halo mass function taken from a numerical simulation which contains both dark matter and baryons. We used three different density distributions, one based on analytical fits to the halos formed in the EAGLE simulation and two density distributions (Singular Isothermal Sphere (SIS) and SISSA) that have been used before in lensing studies. We found that we could reproduce the observed distribution with all three density distributions, as long as we imposed an upper mass transition of ˜1013M⊙ for the SIS and SISSA models, above which we assumed that the density distribution could be represented by an NFW profile. We show that we would need a sample of ˜500 lensed sources to distinguish between the density distributions, which is practical given the predicted number of lensed sources in the Herschel surveys.

  4. Spectral compression of a DWDM grid using optical time-lenses

    DEFF Research Database (Denmark)

    Palushani, Evarist; Mulvad, Hans Christian Hansen; Galili, Michael

    2013-01-01

    We experimentally demonstrate the compression of a dense wavelength-division multiplexing (DWDM) grid via a spectral imaging system based on two time-lenses. A 100-GHz DWDM-grid is compressed to 50-GHz with error-free performance for all channels.......We experimentally demonstrate the compression of a dense wavelength-division multiplexing (DWDM) grid via a spectral imaging system based on two time-lenses. A 100-GHz DWDM-grid is compressed to 50-GHz with error-free performance for all channels....

  5. A general-purpose computer program for studying ultrasonic beam patterns generated with acoustic lenses

    Science.gov (United States)

    Roberti, Dino; Ludwig, Reinhold; Looft, Fred J.

    1988-03-01

    A 3-D computer model of a piston radiator with lenses for focusing and defocusing is presented. To achieve high-resolution imaging, the frequency of the transmitted and received ultrasound must be as high as 10 MHz. Current ultrasonic transducers produce an extremely narrow beam at these high frequencies and thus are not appropriate for imaging schemes such as synthetic-aperture focus techniques (SAFT). Consequently, a numerical analysis program has been developed to determine field intensity patterns that are radiated from ultrasonic transducers with lenses. Lens shapes are described and the field intensities are numerically predicted and compared with experimental results.

  6. Modern scleral lenses part I: clinical features.

    Science.gov (United States)

    Visser, Esther-Simone; Visser, Rients; van Lier, Henk J J; Otten, Henny M

    2007-01-01

    To evaluate the indications for modern scleral lenses and their clinical performance in patients who were fitted with scleral lenses at the authors' practices. In this cross-sectional survey, all the necessary data were obtained at the first follow-up visit during the 5-month study period. There were four types of scleral lenses: spherical, front-surface toric, back-surface toric, and bitoric. The preformed scleral lens fitting technique developed at Visser Contact Lens Practice was used in all patients. The lenses were cut by precise Sub Micron Lathing from a Boston Equalens II blank at Procornea. Visual acuity and slitlamp findings were recorded. A specially designed classification for scleral lens fitting was used to investigate clinical performance. The largest proportion of the 178 patients (284 eyes) were diagnosed with keratoconus (143 [50.4%] eyes) followed by postpenetrating keratoplasty (56 [19.7%] eyes). The remaining diagnoses were irregular astigmatism, keratitis sicca, corneal dystrophy, and multiple diagnoses. The ratio of spherical to back-surface toric designs was 1:1.1. Clinical examination showed sharp increases in visual acuity (median increase, 0.45) and safe physiologic responses of the anterior eye. All the patients could continue to wear scleral lenses, with 79.2% with the same lens parameters. Several types of corneal abnormality were managed successfully with modern scleral lenses. The main indication was optical correction of an irregular corneal surface. Satisfactory clinical performance meant that all the patients could continue to wear their scleral lenses.

  7. Investigations of Galaxy Clusters Using Gravitational Lensing

    Energy Technology Data Exchange (ETDEWEB)

    Wiesner, Matthew P. [Northern Illinois Univ., DeKalb, IL (United States)

    2014-08-01

    In this dissertation, we discuss the properties of galaxy clusters that have been determined using strong and weak gravitational lensing. A galaxy cluster is a collection of galaxies that are bound together by the force of gravity, while gravitational lensing is the bending of light by gravity. Strong lensing is the formation of arcs or rings of light surrounding clusters and weak lensing is a change in the apparent shapes of many galaxies. In this work we examine the properties of several samples of galaxy clusters using gravitational lensing. In Chapter 1 we introduce astrophysical theory of galaxy clusters and gravitational lensing. In Chapter 2 we examine evidence from our data that galaxy clusters are more concentrated than cosmology would predict. In Chapter 3 we investigate whether our assumptions about the number of galaxies in our clusters was valid by examining new data. In Chapter 4 we describe a determination of a relationship between mass and number of galaxies in a cluster at higher redshift than has been found before. In Chapter 5 we describe a model of the mass distribution in one of the ten lensing systems discovered by our group at Fermilab. Finally in Chapter 6 we summarize our conclusions.

  8. Origami with negative refractive index to generate super-lenses

    International Nuclear Information System (INIS)

    Guenneau, Fanny; Chakrabarti, Sangeeta; Guenneau, Sebastien; Ramakrishna, S Anantha

    2014-01-01

    Negative refractive index materials (NRIM) enable unique effects including superlenses with a high degree of sub-wavelength image resolution, a capability that stems from the ability of NRIM to support a host of surface plasmon states. Using a generalized lens theorem and the powerful tools of transformational optics, a variety of focusing configurations involving complementary positive and negative refractive index media can be generated. A paradigm of such complementary media are checkerboards that consist of alternating cells of positive and negative refractive index, and are associated with very singular electromagnetics. We present here a variety of multi-scale checkerboard lenses that we call origami lenses and investigate their electromagnetic properties both theoretically and computationally. Some of these meta-structures in the plane display thin bridges of complementary media, and this highly enhances their plasmonic response. We demonstrate the design of three-dimensional checkerboard meta-structures of complementary media using transformational optics to map the checkerboard onto three-dimensional corner lenses, the only restriction being that the corresponding unfolded structures in the plane are constrained by the four color-map theorem. (paper)

  9. Cross-correlation of gravitational lensing from DES Science Verification data with SPT and Planck lensing

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, D.; Omori, Y.; Benoit-Lévy, A.; Cawthon, R.; Chang, C.; Larsen, P.; Amara, A.; Bacon, D.; Crawford, T. M.; Dodelson, S.; Fosalba, P.; Giannantonio, T.; Holder, G.; Jain, B.; Kacprzak, T.; Lahav, O.; MacCrann, N.; Nicola, A.; Refregier, A.; Sheldon, E.; Story, K. T.; Troxel, M. A.; Vieira, J. D.; Vikram, V.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Becker, M. R.; Benson, B. A.; Bernstein, G. M.; Bernstein, R. A.; Bleem, L. E.; Bonnett, C.; Bridle, S. L.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carlstrom, J. E.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Crocce, M.; Cunha, C. E.; D' Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Honscheid, K.; James, D. J.; Jarvis, M.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lima, M.; March, M.; Martini, P.; Melchior, P.; Miller, C. J.; Miquel, R.; Nichol, R. C.; Ogando, R.; Plazas, A. A.; Reichardt, C. L.; Roodman, A.; Rozo, E.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Simard, G.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Wechsler, R. H.; Weller, J.

    2016-03-10

    We measure the cross-correlation between weak lensing of galaxy images and of the cosmic microwave background (CMB). The effects of gravitational lensing on different sources will be correlated if the lensing is caused by the same mass fluctuations. We use galaxy shape measurements from 139 deg$^{2}$ of the Dark Energy Survey (DES) Science Verification data and overlapping CMB lensing from the South Pole Telescope (SPT) and Planck. The DES source galaxies have a median redshift of $z_{\\rm med} {\\sim} 0.7$, while the CMB lensing kernel is broad and peaks at $z{\\sim}2$. The resulting cross-correlation is maximally sensitive to mass fluctuations at $z{\\sim}0.44$. Assuming the Planck 2015 best-fit cosmology, the amplitude of the DES$\\times$SPT cross-power is found to be $A = 0.88 \\pm 0.30$ and that from DES$\\times$Planck to be $A = 0.86 \\pm 0.39$, where $A=1$ corresponds to the theoretical prediction. These are consistent with the expected signal and correspond to significances of $2.9 \\sigma$ and $2.2 \\sigma$ respectively. We demonstrate that our results are robust to a number of important systematic effects including the shear measurement method, estimator choice, photometric redshift uncertainty and CMB lensing systematics. Significant intrinsic alignment of galaxy shapes would increase the cross-correlation signal inferred from the data; we calculate a value of $A = 1.08 \\pm 0.36$ for DES$\\times$SPT when we correct the observations with a simple IA model. With three measurements of this cross-correlation now existing in the literature, there is not yet reliable evidence for any deviation from the expected LCDM level of cross-correlation, given the size of the statistical uncertainties and the significant impact of systematic errors, particularly IAs. We provide forecasts for the expected signal-to-noise of the combination of the five-year DES survey and SPT-3G.

  10. Modern scleral lenses: Mini versus large.

    Science.gov (United States)

    Fadel, Daddi

    2017-08-01

    The evolution of scleral lenses has led to new formulations of scleral fitting concepts and designs. The diameters of modern scleral lenses have been overhauled too and they are smaller comparing to the original ones. Nowadays, prescription of mini-sclerals supposedly seems in major extension and it appears indeed the necessity of some practitioner to differentiate the smaller mini-scleral lenses from larger mini-scleral lenses empathizing that they are the "smaller" ones. Therefore, it is maybe, necessary a definition of mini-scleral lenses referring to the landing zone width in relation to the horizontal visible iris diameter (HVID) and the limbus extension. The choice of the total diameter is crucial for a successful fitting and it depends majorly on patient's topographic patterns and anatomic factors. However, there are other important criteria for the selection of the scleral lens diameter based on oxygen supply, bubbles formation, mechanical stress on a toric sclera, ocular surface disease protection, entity of the vault over the cornea and distribution of the lens weight on the sclera. The advantages of mini-scleral lenses are various nonetheless in some cases large lenses are necessary. This paper presents a review of the benefits and disadvantages of both mini and large scleral lenses analyzing the conditions in which it may be better to prefer one diameter to another. A suggestion may be that to start fitting the smallest lens as possible, depending on the dimension of HVID and limbus width and consider larger lenses only when issues occur. Copyright © 2017 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  11. The Nature of Post-Staburst Quasars

    Science.gov (United States)

    Sanmartim, David; Storchi-Bergmann, Thaisa; Brotherton, Michael S.

    2013-02-01

    Post-Starburst Quasars (PSQs) are broad-lined AGN whose spectra show Balmer jumps and high-order Balmer absorption lines from A stars characterstic of massive post-starburst populations with ages of a few hundred Myr. These objects are hypothesized to represent a stage in the evolution of massive galaxies in which the star formation has been recently quenched due to the feedback of the nuclear activity. Our goal is to test this scenario with a resolved stellar populaton study in order to map the distribution of the different stellar age components as well as to map the gas excitation and kinematics in order to quantify the AGN feedback. With our previous GMOS-IFU observations of two PSQs we have discovered that the young to intermediate age components are not located right at nucleus, but are instead spread in a circumnuclear ring beyond 1 kpc from the nucleus. It is essential to verify if this is a general characteristic of PSQs in order to understand the nature of these objects. We thus propose new GMOS-IFU observations of a larger sample of PSQs. For the next semester we have selected two low redshift PSQs, which are close and bright enough to allow a similar resolved study of its stellar population and gas kinematics.

  12. Are Quasar Jets Dominated by Poynting Flux?

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, M

    2005-02-02

    The formation of relativistic astrophysical jets is presumably mediated by magnetic fields threading accretion disks and central, rapidly rotating objects. As it is accelerated by magnetic stresses, the jet's kinetic energy flux grows at the expense of its Poynting flux. However, it is unclear how efficient is the conversion from magnetic to kinetic energy and whether there are any observational signatures of this process. We address this issue in the context of jets in quasars. Using data from all spatial scales, we demonstrate that in these objects the conversion from Poynting-flux-dominated to matter-dominated jets is very likely to take place closer to the black hole than the region where most of the Doppler boosted radiation observed in blazars is produced. We briefly discuss the possibility that blazar activity can be induced by global MHD instabilities, e.g., via the production of localized velocity gradients that lead to dissipative events such as shocks or magnetic reconnection, where acceleration of relativistic particles and production of non-thermal flares is taking place.

  13. Optical variability properties of mini-BAL and NAL quasars

    Science.gov (United States)

    Horiuchi, Takashi; Misawa, Toru; Morokuma, Tomoki; Koyamada, Suzuka; Takahashi, Kazuma; Wada, Hisashi

    2016-08-01

    While narrow absorption lines (NALs) are relatively stable, broad absorption lines (BALs) and mini-BAL systems usually show violent time variability within a few years via a mechanism that is not yet understood. In this study, we examine the variable ionization state (VIS) scenario as a plausible mechanism, as previously suspected. Over three years, we performed photometric monitoring observations of four mini-BAL and five NAL quasars at zem ˜ 2.0-3.1 using the 105 cm Kiso Schmidt Telescope in u, g, and i bands. We also performed spectroscopic monitoring observation of one of our mini-BAL quasars (HS 1603+3820) using the 188 cm Okayama Telescope over the same period as the photometric observations. Our main results are as follows: (1) Structure function (SF) analysis revealed that the quasar UV flux variability over three years was not large enough to support the VIS scenario, unless the ionization condition of outflow gas is very low. (2) There was no crucial difference between the SFs of mini-BAL and NAL quasars. (3) The variability of the mini-BAL and quasar light curves was weakly synchronized with a small time delay for HS 1603+3820. These results suggest that the VIS scenario may need additional mechanisms such as variable shielding by X-ray warm absorbers.

  14. 'Colored' and Decorative Contact Lenses: A Prescription Is a Must

    Science.gov (United States)

    ... these looks with decorative contact lenses (sometimes called “fashion,” “costume,” or “colored” contact lenses). These lenses don’ ... Wear Decorative or “Colored” Contact Lenses An entertainment industry artist from American Horror Story and the FDA ...

  15. Mass Functions of the Active Black Holes in Distant Quasars from the Large Bright Quasar Survey, the Bright Quasar Survey, and the Color-Selected Sample of the SDSS Fall Equatorial Stripe

    DEFF Research Database (Denmark)

    Vestergaard, Marianne; Osmer, Patrick S.

    2009-01-01

    We present mass functions of distant actively accreting supermassive black holes residing in luminous quasars discovered in the Large Bright Quasar Survey, the Bright Quasar Survey, and the Fall Equatorial Stripe of the Sloan Digital Sky Survey (SDSS). The quasars cover a wide range of redshifts (0...... functions at similar redshifts based on the SDSS Data Release 3 quasar catalog presented by Vestergaard et al. We see clear evidence of cosmic downsizing in the comoving space density distribution of active black holes in the LBQS sample alone. In forthcoming papers, further analysis, comparison......, and discussion of these mass functions will be made with other existing black hole mass functions, notably that based on the SDSS DR3 quasar catalog. We present the relationships used to estimate the black hole mass based on the MgII emission line; the relations are calibrated to the Hbeta and CIV relations...

  16. Tevatron Electron Lenses: Design and Operation

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir; /Fermilab; Bishofberger, Kip; /Los Alamos; Kamerdzhiev, Vsevolod; /Fermilab; Kozub, Sergei; /Serpukhov, IHEP; Kufer, Matthew; Kuznetsov, Gennady; Martinez, Alexander; Olson, Marvin; Pfeffer, Howard; Saewert, Greg; Scarpine, Vic; /Fermilab /SLAC /Fermilab /Serpukhov, IHEP /Novosibirsk, IYF /Serpukhov, IHEP /Fermilab

    2008-08-01

    The beam-beam effects have been the dominating sources of beam loss and lifetime limitations in the Tevatron proton-antiproton collider [1]. Electron lenses were originally proposed for compensation of electromagnetic long-range and head-on beam-beam interactions of proton and antiproton beams [2]. Results of successful employment of two electron lenses built and installed in the Tevatron are reported in [3,4,5]. In this paper we present design features of the Tevatron electron lenses (TELs), discuss the generation of electron beams, describe different modes of operation and outline the technical parameters of various subsystems.

  17. Thin Film Coating Technology For Ophthalmic Lenses

    Science.gov (United States)

    Guenther, K. H.

    1986-05-01

    Coating of ophthalmic lenses is an application of high-vacuum coating technology which must satisfy not only physical and technical requirements but also customer demands with respect to aesthetics, color fidelity, and exchangeability of coated ophthalmic lenses. Because this application caters specifically to the consumer market, ophthalmic lenses are subject to certain fashion trends which frequently require quick adaptation of the coating technique. The state-of-the-art of ophthalmic lens coating is reviewed in this paper, with particular emphasis on the durability requirements in daily use by untrained consumers as well as on the applicable testing methods.

  18. The Extremely Luminous Quasar Survey in the SDSS Footprint. I. Infrared-based Candidate Selection

    Science.gov (United States)

    Schindler, Jan-Torge; Fan, Xiaohui; McGreer, Ian D.; Yang, Qian; Wu, Jin; Jiang, Linhua; Green, Richard

    2017-12-01

    Studies of the most luminous quasars at high redshift directly probe the evolution of the most massive black holes in the early universe and their connection to massive galaxy formation. However, extremely luminous quasars at high redshift are very rare objects. Only wide-area surveys have a chance to constrain their population. The Sloan Digital Sky Survey (SDSS) has so far provided the most widely adopted measurements of the quasar luminosity function at z> 3. However, a careful re-examination of the SDSS quasar sample revealed that the SDSS quasar selection is in fact missing a significant fraction of z≳ 3 quasars at the brightest end. We identified the purely optical-color selection of SDSS, where quasars at these redshifts are strongly contaminated by late-type dwarfs, and the spectroscopic incompleteness of the SDSS footprint as the main reasons. Therefore, we designed the Extremely Luminous Quasar Survey (ELQS), based on a novel near-infrared JKW2 color cut using Wide-field Infrared Survey Explorer mission (WISE) AllWISE and 2MASS all-sky photometry, to yield high completeness for very bright ({m}{{i}}footprint to obtain a well-defined and complete quasar sample for an accurate measurement of the bright-end quasar luminosity function (QLF) at 3.0≤slant z≤slant 5.0. In this paper, we present the quasar selection algorithm and the quasar candidate catalog.

  19. Simulations for 21 cm radiation lensing at EoR redshifts

    Science.gov (United States)

    Romeo, Alessandro; Metcalf, Robert Benton; Pourtsidou, Alkistis

    2018-02-01

    We introduce simulations aimed at assessing how well weak gravitational lensing of 21cm radiation from the Epoch of Reionization (z ˜ 8) can be measured by a Square Kilometre Array (SKA)-like radio telescope. A simulation pipeline has been implemented to study the performance of lensing reconstruction techniques. We show how well the lensing signal can be reconstructed using the 3D quadratic lensing estimator in Fourier space assuming different survey strategies. The numerical code introduced in this work is capable of dealing with issues that cannot be treated analytically such as the discreteness of visibility measurements and the inclusion of a realistic model for the antennas distribution. This paves the way for future numerical studies implementing more realistic re-ionization models, foreground subtraction schemes, and testing the performance of lensing estimators that take into account the non-Gaussian distribution of HI after re-ionization. If multiple frequency channels covering z ˜ 7-11.6 are combined, Phase 1 of SKA-Low should be able to obtain good quality images of the lensing potential with a total resolution of ˜1.6 arcmin. The SKA-Low Phase 2 should be capable of providing images with high fidelity even using data from z ˜ 7.7 to 8.3. We perform tests aimed at evaluating the numerical implementation of the mapping reconstruction. We also discuss the possibility of measuring an accurate lensing power spectrum. Combining data from z ˜ 7 to 11.6 using the SKA2-Low telescope model, we find constraints comparable to sample variance in the range L < 1000, even for survey areas as small as 25 deg2.

  20. The Properties of Quasar 2175 Å Dust Absorbers at z = 1.0-2.5

    Science.gov (United States)

    Ma, Jingzhe; Ge, Jian; Prochaska, Jason; Zhao, Yinan; Zhang, Shaohua; Ji, Tuo; Lundgren, Britt; Zhou, Hongyan; Lu, Honglin; Schneider, Donald

    2018-01-01

    Quasar 2175 Å dust absorbers (2DAs) are a population of quasar absorption line systems identified by the broad absorption feature centered around rest-frame 2175 Å, which is ubiquitously seen in the Milky Way extinction curves. These absorbers are excellent tracers of gas and dust properties, metal abundances, chemical evolution, physical conditions, as well as kinematics in the absorbing galaxies. We present the metallicity, depletion pattern, kinematics, and the cold neutral content (HI and CI gas) of a sample of 2DAs at z = 1.0-2.5 that were initially selected from the Sloan Digital Sky Survey and followed up with Keck and MMT spectrographs. We perform a correlation analysis between metallicity, redshift, depletion level, velocity width, and explore relationships between 2DAs and other absorption line systems. The 2DAs on average have higher metallicity, higher depletion levels, and larger velocity widths than Damped Lyman-α absorbers (DLAs) or subDLAs. The correlation between [Zn/H] and [Fe/Zn] or [Zn/H] and logΔV90 can be used as alternative stellar mass estimators based on the well-established mass-metallicity relation. The relationship with other quasar absorption line systems can be described as (1) 2DAs are a subset of Mg II and Fe II absorbers, (2) 2DAs are preferentially metal-strong DLAs/subDLAs, (3) More importantly, all of the 2DAs show CI detections with N(CI) > 14.0 cm-2, (4) 2DAs can be used as molecular gas tracers. Their host galaxies are likely to be chemically enriched, evolved, and massive galaxies (more massive than typical DLA/subDLA galaxies). In addition, we have, for the first time, identified the host galaxy of a 2DA beyond the local Universe using HST IR direct imaging and grism spectroscopy.

  1. A high signal-to-noise ratio composite quasar spectrum

    International Nuclear Information System (INIS)

    Francis, P.J.; Hewett, P.C.; Foltz, C.B.; Chaffee, F.H.; Weymann, R.J.

    1991-01-01

    A very high signal-to-noise ratio (S/N of about 400) composite spectrum of the rest-frame ultraviolet and optical region of high luminosity quasars is presented. The spectrum is derived from 718 individual spectra obtained as part of the Large Bright Quasar Survey. The moderate resolution, 4A or less, and high signal-to-noise ratio allow numerous weak emission features to be identified. Of particular note is the large equivalent-width of the Fe II emission in the rest-frame ultraviolet and the blue continuum slope of the composite. The primary aim of this paper is to provide a reference spectrum for use in line identifications, and a series of large-scale representations of the composite spectrum are shown. A measure of the standard deviation of the individual quasar spectra from the composite spectrum is also presented. 12 refs

  2. Emission Line Correlations as Diagnostics of Quasar Winds

    Science.gov (United States)

    Sheldon, Keziah; Richards, Gordon

    2018-01-01

    We investigate correlations between UV and optical emission line properties for a sample of z~0.5 SDSS (Sloan Digital Sky Survey) quasars that have recently been observed by HST. The sample is designed to be comparable in luminosity to the existing reverberation mapping (RM) sample, but less biased in terms of their "eigenvector 1" properties. We seek to understand the conditions under which high-ionization emission lines become dominated by a wind. Our analysis takes advantage of spectral decomposition through Independent Component Analysis (ICA) and archival UV HST spectroscopy of SDSS quasars. With these data we will clarify the needs for RM analysis of quasars with wind-dominated emission features.

  3. Characterisation of adaptive fluidic silicone membrane lenses

    CSIR Research Space (South Africa)

    Schneider, F

    2009-09-01

    Full Text Available In this paper the auhtors compare the performance and optical quality of two types of adaptive fluidic silicone-membrane lenses. The membranes feature either a homogeneous thickness, or they are shaped resulting in an inhomogeneous cross...

  4. Disposable contact lenses in penetrating keratoplasty.

    Science.gov (United States)

    Arora, R; Gupta, S; Taneja, M; Raina, U K; Mehta, D K

    2000-07-01

    To evaluate the therapeutic efficacy of disposable contact lenses in management of complications after keratoplasty. Twenty-eight patients with various post keratoplasty complications were fit with disposable contact lenses (45% Vifilcon A and 55% water content). Indications for lens use included persistent epithelial defects, wound leak, graft edema, dry eye and protection of normal corneal epithelium. Success was obtained with the therapeutic use of disposable lenses in 20 of the 28 cases. The best results were seen in maintenance and restoration of healthy ocular surface and small wound leaks. Stromal graft edema with no epithelial involvement was the major area of therapeutic failure. Disposable contact lenses are an attractive low cost option in the management of complications after keratoplasty. They are particularly useful in maintaining a healthy ocular surface, providing symptomatic relief and avoiding resurgery in patients with small wound leaks.

  5. Gravitational Lensing Mass Mapping with Gaussian Processes

    Science.gov (United States)

    Schneider, Michael; Ng, Karen; Dawson, William; Marshall, Phil; Meyers, Joshua; Bard, Deborah

    2018-01-01

    We infer gravitational lensing shear and convergence fields from galaxy ellipticity catalogs under a Gaussian Process prior for the lensing potential. We demonstrate the performance of our algorithm with simulated Gaussian-distributed cosmological lensing shear maps and a reconstruction of the mass distribution of the merging galaxy cluster Abell 781 using galaxy ellipticities measured with the Deep Lens Survey. Given interim posterior samples of lensing shear or convergence fields on the sky, we describe an algorithm to infer cosmological parameters via lens field marginalization. In the most general formulation of our algorithm we make no assumptions about weak shear orGaussian-distributed shape noise or shears. Because we require solutions and matrix determinants of a linear system of dimension that scales with the number of galaxies, we present computational performance metrics with approximate algorithms that introduce sparsity in the Gaussian Process kernel.

  6. Investigating the internal structure of galaxies and clusters through strong gravitational lensing

    Science.gov (United States)

    Jigish Gandhi, Pratik; Grillo, Claudio; Bonamigo, Mario

    2018-01-01

    Gravitational lensing studies have radically improved our understanding of the internal structure of galaxies and cluster-scale systems. In particular, the combination of strong lensing and stellar dynamics or stellar population synthesis models have made it possible to characterize numerous fundamental properties of the galaxies as well as dark matter halos and subhalos with unprecedented robustness and accuracy. Here we demonstrate the usefulness and accuracy of strong lensing as a probe for characterising the properties of cluster members as well as dark matter halos, to show that such characterisation carried out via lensing analyses alone is as viable as those carried out through a combination of spectroscopy and lensing analyses.Our study uses focuses on the early-type galaxy cluster MACS J1149.5+2223 at redshift 0.54 in the Hubble Frontier Fields (HFF) program, where the first magnified and spatially resolved multiple images of supernova (SN) “Refsdal” and its late-type host galaxy at redshift 1.489 were detected. The Refsdal system is unique in being the first ever multiply-imaged supernova, with it’s first four images appearing in an Einstein Cross configuration around one of the cluster members in 2015. In our lensing analyses we use HST data of the multiply-imaged SN Refsdal to constrain the dynamical masses, velocity dispersions, and virial radii of individual galaxies and dark matter halos in the MACS J1149.5+2223 cluster. For our lensing models we select a sample of 300 cluster members within approximately 500 kpc from the BCG, and a set of reliable multiple images associated with 18 distinct knots in the SN host spiral galaxy, as well as multiple images of the supernova itself. Our results provide accurate measurements of the masses, velocity dispersions, and radii of the cluster’s dark matter halo as well as three chosen members galaxies, in strong agreement with those obtained by Grillo et al 2015, demonstrating the usefulness of strong

  7. MUSE spectroscopy and deep observations of a unique compact JWST target, lensing cluster CLIO

    Science.gov (United States)

    Griffiths, Alex; Conselice, Christopher J.; Alpaslan, Mehmet; Frye, Brenda L.; Diego, Jose M.; Zitrin, Adi; Yan, Haojing; Ma, Zhiyuan; Barone-Nugent, Robert; Bhatawdekar, Rachana; Driver, Simon P.; Robotham, Aaron S. G.; Windhorst, Rogier A.; Wyithe, J. Stuart B.

    2018-04-01

    We present the results of a VLT MUSE/FORS2 and Spitzer survey of a unique compact lensing cluster CLIO at z = 0.42, discovered through the GAMA survey using spectroscopic redshifts. Compact and massive clusters such as this are understudied, but provide a unique prospective on dark matter distributions and for finding background lensed high-z galaxies. The CLIO cluster was identified for follow-up observations due to its almost unique combination of high-mass and dark matter halo concentration, as well as having observed lensing arcs from ground-based images. Using dual band optical and infra-red imaging from FORS2 and Spitzer, in combination with MUSE optical spectroscopy we identify 89 cluster members and find background sources out to z = 6.49. We describe the physical state of this cluster, finding a strong correlation between environment and galaxy spectral type. Under the assumption of an NFW profile, we measure the total mass of CLIO to be M200 = (4.49 ± 0.25) × 1014 M⊙. We build and present an initial strong-lensing model for this cluster, and measure a relatively low intracluster light (ICL) fraction of 7.21 ± 1.53 per cent through galaxy profile fitting. Due to its strong potential for lensing background galaxies and its low ICL, the CLIO cluster will be a target for our 110 h James Webb Space Telescope `Webb Medium-Deep Field' (WMDF) GTO program.

  8. Comments on the Gravitational lensing Magnification

    OpenAIRE

    Takashi, HAMANA; Astronomical Institute, Tohoku University

    1998-01-01

    We rederive a relation between gravitational lensing magnification relative to the standard Friedmann distance and one relative to the Dyer-Roeder distance by investigating the null geodesic deviation equation. We show that the relation comes from a natural consequence of the definition of the lensing magnification matrices and is not based on the averaging of the magnifications, which has conventionally been used to derive it. We therefore conclude that the relation is true for each individu...

  9. Comments on the gravitational lensing magnification

    OpenAIRE

    Hamana, Takashi

    1998-01-01

    We rederive a relation between gravitational lensing magnification relative to the standard Friedmann distance and one relative to the Dyer-Roeder distance by investigating the null geodesic deviation equation. We show that the relation comes from a natural consequence of the definition of the lensing magnification matrices and is not based on the averaging of the magnifications, which has conventionally been used to derive it. We therefore conclude that the relation is true for each individu...

  10. Planck 2015 results: XV. Gravitational lensing

    DEFF Research Database (Denmark)

    Ade, P. A R; Aghanim, N.; Arnaud, M.

    2016-01-01

    We present the most significant measurement of the cosmic microwave background (CMB) lensing potential to date (at a level of 40σ), using temperature and polarization data from the Planck 2015 full-mission release. Using a polarization-only estimator, we detect lensing at a significance of 5σ. We......-scale temperature anisotropies, detecting a cross-correlation at the 3σ level, as expected because of dark energy in the concordance ΛCDM model....

  11. Electron Lenses for particle collimation in LHC

    CERN Document Server

    Shiltsev, V

    2008-01-01

    Electron Lenses built and installed in Tevatron have proven themselves as safe and very reliable instruments which can be effectively used in hadron collider operation for a number of applications, including compensation of beam-beam effects , DC beam removal from abort gaps , as a diagnostic tool. In this presentation we – following original proposal – consider in more detail a possibility of using electron lenses with hollow electron beam for ion and proton collimation in LHC.

  12. Revised Unfilling Procedure for Solid Lithium Lenses

    Energy Technology Data Exchange (ETDEWEB)

    Leveling, A.; /Fermilab

    2003-06-03

    A procedure for unfilling used lithium lenses to has been described in Pbar Note 664. To date, the procedure has been used to disassemble lenses 20, 21, 17, 18, and 16. As a result of this work, some parts of the original procedure were found to be time consuming and ineffective. Modifications to the original procedure have been made to streamline the process and are discussed in this note. The revised procedure is included in this note.

  13. Black holes, quasars, and the universe /2nd edition/

    Science.gov (United States)

    Shipman, H. L.

    1980-01-01

    Topics of astronomy are discussed in terms of black holes, galaxies, quasars, and models of the universe. Black holes are approached through consideration of stellar evolution, white dwarfs, supernovae, neutron stars, pulsars, the event horizon, Cygnus X-1, white holes, and worm holes. Attention is also given to radio waves from high speed electrons, the radiation emitted by quasars, active galaxies, galactic energy sources, and interpretations of the redshift. Finally, the life cycle of the universe is deliberated, along with the cosmic time scale, evidence for the Big Bang, and the future of the universe.

  14. Measuring Quasar Spin via X-ray Continuum Fitting

    Science.gov (United States)

    Jenkins, Matthew; Pooley, David; Rappaport, Saul; Steiner, Jack

    2018-01-01

    We have identified several quasars whose X-ray spectra appear very soft. When fit with power-law models, the best-fit indices are greater than 3. This is very suggestive of thermal disk emission, indicating that the X-ray spectrum is dominated by the disk component. Galactic black hole binaries in such states have been successfully fit with disk-blackbody models to constrain the inner radius, which also constrains the spin of the black hole. We have fit those models to XMM-Newton spectra of several of our identified soft X-ray quasars to place constraints on the spins of the supermassive black holes.

  15. Quasar Formation and Energy Emission in Black Hole Universe

    Directory of Open Access Journals (Sweden)

    Zhang T. X.

    2012-07-01

    Full Text Available Formation and energy emission of quasars are investigated in accord with the black hole universe, a new cosmological model recently developed by Zhang. According to this new cosmological model, the universe originated from a star-like black hole and grew through a supermassive black hole to the present universe by accreting ambient matter and merging with other black holes. The origin, structure, evolution, expansion, and cosmic microwave background radiation of the black hole universe have been fully ex- plained in Paper I and II. This study as Paper III explains how a quasar forms, ignites and releases energy as an amount of that emitted by dozens of galaxies. A main sequence star, after its fuel supply runs out, will, in terms of its mass, form a dwarf, a neutron star, or a black hole. A normal galaxy, after its most stars have run out of their fuels and formed dwarfs, neutron stars, and black holes, will eventually shrink its size and collapse towards the center by gravity to form a supermassive black hole with billions of solar masses. This collapse leads to that extremely hot stellar black holes merge each other and further into the massive black hole at the center and meantime release a huge amount of radiation energy that can be as great as that of a quasar. Therefore, when the stellar black holes of a galaxy collapse and merge into a supermassive black hole, the galaxy is activated and a quasar is born. In the black hole universe, the observed dis- tant quasars powered by supermassive black holes can be understood as donuts from the mother universe. They were actually formed in the mother universe and then swallowed into our universe. The nearby galaxies are still very young and thus quiet at the present time. They will be activated and further evolve into quasars after billions of years. At that time, they will enter the universe formed by the currently observed distant quasars as similar to the distant quasars entered our universe

  16. Efficient simulation of autofluorescence effects in microscopic lenses

    DEFF Research Database (Denmark)

    Gross, Herbert; Rodenko, Olga; Esslinger, Moritz

    2015-01-01

    The use of fluorescence in microscopy is a well known technology today. Due to the autofluorescence of the materials of the optical system components, the contrast of the images is degraded. The calculation of autofluorescense usually is performed by brute force methods as volume scattering...... be performed properly. Some necessary approximations produce negligible errors. The improvement in run time is in the range of 104 . It is shown with some practical examples of microscopic lenses, that the results are comparable with conventional methods. The limitations and the consequences for questions...

  17. Predicting gravitational lensing by stellar remnants

    Science.gov (United States)

    Harding, Alexander J.; Stefano, R. Di; Lépine, S.; Urama, J.; Pham, D.; Baker, C.

    2018-03-01

    Gravitational lensing provides a means to measure mass that does not rely on detecting and analysing light from the lens itself. Compact objects are ideal gravitational lenses, because they have relatively large masses and are dim. In this paper, we describe the prospects for predicting lensing events generated by the local population of compact objects, consisting of 250 neutron stars, five black holes, and ≈35 000 white dwarfs. By focusing on a population of nearby compact objects with measured proper motions and known distances from us, we can measure their masses by studying the characteristics of any lensing event they generate. Here, we concentrate on shifts in the position of a background source due to lensing by a foreground compact object. With Hubble Space Telescope, JWST, and Gaia, measurable centroid shifts caused by lensing are relatively frequent occurrences. We find that 30-50 detectable events per decade are expected for white dwarfs. Because relatively few neutron stars and black holes have measured distances and proper motions, it is more difficult to compute realistic rates for them. However, we show that at least one isolated neutron star has likely produced detectable events during the past several decades. This work is particularly relevant to the upcoming data releases by the Gaia mission and also to data that will be collected by JWST. Monitoring predicted microlensing events will not only help to determine the masses of compact objects, but will also potentially discover dim companions to these stellar remnants, including orbiting exoplanets.

  18. Discovery of 16 New z  ∼ 5.5 Quasars: Filling in the Redshift Gap of Quasar Color Selection

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jinyi; Wu, Xue-Bing; Wang, Feige; Yang, Qian; Yue, Minghao; Wang, Shu; Li, Zefeng [Department of Astronomy, School of Physics, Peking University, Beijing 100871 (China); Fan, Xiaohui; Jiang, Linhua [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Bian, Fuyan [Research School of Astronomy and Astrophysics, Australian National University, Weston Creek, ACT 2611 (Australia); McGreer, Ian D.; Green, Richard; Ding, Jiani [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Yi, Weimin [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Dye, Simon [School of Physics and Astronomy, Nottingham University, University Park, Nottingham, NG7 2RD (United Kingdom); Lawrence, Andy [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom)

    2017-04-01

    We present initial results from the first systematic survey of luminous z  ∼ 5.5 quasars. Quasars at z ∼ 5.5, the post-reionization epoch, are crucial tools to explore the evolution of intergalactic medium, quasar evolution, and the early super-massive black hole growth. However, it has been very challenging to select quasars at redshifts 5.3 ≤ z ≤ 5.7 using conventional color selections, due to their similar optical colors to late-type stars, especially M dwarfs, resulting in a glaring redshift gap in quasar redshift distributions. We develop a new selection technique for z ∼ 5.5 quasars based on optical, near-IR, and mid-IR photometric data from Sloan Digital Sky Survey (SDSS), UKIRT InfraRed Deep Sky Surveys—Large Area Survey (ULAS), VISTA Hemisphere Survey (VHS), and Wide Field Infrared Survey Explorer . From our pilot observations in the SDSS-ULAS/VHS area, we have discovered 15 new quasars at 5.3 ≤ z ≤ 5.7 and 6 new lower redshift quasars, with SDSS z band magnitude brighter than 20.5. Including other two z ∼ 5.5 quasars already published in our previous work, we now construct a uniform quasar sample at 5.3 ≤ z ≤ 5.7, with 17 quasars in a ∼4800 square degree survey area. For further application in a larger survey area, we apply our selection pipeline to do a test selection by using the new wide field J-band photometric data from a preliminary version of the UKIRT Hemisphere Survey (UHS). We successfully discover the first UHS selected z ∼ 5.5 quasar.

  19. The distribution of gas and galaxies around the distant quasar PKS 1614 + 051

    Science.gov (United States)

    Hu, Esther M.; Cowie, Lennox L.

    1987-01-01

    The results of narrow-band and broad-band filter observations of the region surrounding the z = 3.21 quasars, PKS 1614 + 051, made under subarcsec seeing conditions with the 3.6 m CFHT telescope at Mauna Kea are reported. The nuclear region of the Lyman-alpha companion to the quasar is resolved with a FWHM of about 0.9 arcsec A magnitude fainter. Limits on detectable continuum flux from this object suggest that it is a gas cloud interacting with the quasar, and its emission is consistent with simple photoionization by the quasar. However, the presence of several galaxies around the periphery of the quasar is noted. A search of 11 additional quasars at z greater than 3 has failed to show any other such systems. It is argued that this is consistent with the statistics of extended emission line systems in low-z quasars.

  20. Strong lensing by fermionic dark matter in galaxies

    Science.gov (United States)

    Gómez, L. Gabriel; Argüelles, C. R.; Perlick, Volker; Rueda, J. A.; Ruffini, R.

    2016-12-01

    It has been shown that a self-gravitating system of massive keV fermions in thermodynamic equilibrium correctly describes the dark matter (DM) distribution in galactic halos (from dwarf to spiral and elliptical galaxies) and that, at the same time, it predicts a denser quantum core towards the center of the configuration. Such a quantum core, for a fermion mass in the range of 50 keV ≲m c2≲345 keV , can be an alternative interpretation of the central compact object in Sgr A*, traditionally assumed to be a black hole (BH). We present in this work the gravitational lensing properties of this novel DM configuration in nearby Milky-Way-like spiral galaxies. We describe the lensing effects of the pure DM component both on halo scales, where we compare them to the effects of the Navarro-Frenk-White and the nonsingular isothermal sphere DM models, and near the galaxy center, where we compare them with the effects of a Schwarzschild BH. For the particle mass leading to the most compact DM core, m c2≈1 02 keV , we draw the following conclusions. At distances r ≳20 pc from the center of the lens the effect of the central object on the lensing properties is negligible. However, we show that measurements of the deflection angle produced by the DM distribution in the outer region at a few kpc, together with rotation curve data, could help to discriminate between different DM models. In the inner regions 1 0-6≲r ≲20 pc , the lensing effects of a DM quantum core alternative to the BH scenario becomes a theme of an analysis of unprecedented precision which is challenging for current technological developments. We show that at distances ˜1 0-4 pc strong lensing effects, such as multiple images and Einstein rings, may occur. Large differences in the deflection angle produced by a DM central core and a central BH appear at distances r ≲1 0-6 pc ; in this regime the weak-field formalism is no longer applicable and the exact general-relativistic formula has to be used

  1. A SEARCH FOR DISK-GALAXY LENSES IN THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Feron, Chloe; Hjorth, Jens; Samsing, Johan; McKean, John P.

    2009-01-01

    We present the first automated spectroscopic search for disk-galaxy lenses, using the Sloan Digital Sky Survey (SDSS) database. We follow up eight gravitational lens candidates, selected among a sample of ∼40,000 candidate massive disk galaxies, using a combination of ground-based imaging and long-slit spectroscopy. We confirm two gravitational lens systems: one probable disk galaxy and one probable S0 galaxy. The remaining systems are four promising disk-galaxy lens candidates, as well as two probable gravitational lenses whose lens galaxy might be an S0 galaxy. The redshifts of the lenses are z lens ∼ 0.1. The redshift range of the background sources is z source ∼ 0.3-0.7. The systems presented here are (confirmed or candidate) galaxy-galaxy lensing systems, that is, systems where the multiple images are faint and extended, allowing an accurate determination of the lens galaxy mass and light distributions without contamination from the background galaxy. Moreover, the low redshift of the (confirmed or candidates) lens galaxies is favorable for measuring rotation points to complement the lensing study. We estimate the rest-frame total mass-to-light ratio within the Einstein radius for the two confirmed lenses: we find M tot /L I = 5.4 ± 1.5 within 3.9 ± 0.9 kpc for SDSS J081230.30+543650.9 and M tot /L I = 1.5 ± 0.9 within 1.4 ± 0.8 kpc for SDSS J145543.55+530441.2 (all in solar units). Hubble Space Telescope or adaptive optics imaging is needed to further study the systems.

  2. CLASS B 1359 + 154: Modelling Lensing by a Group of Galaxies

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    systems: CLASS B1359 + 154—galaxy groups—dark matter. 1. Introduction. A find of the Cosmic Lens All-Sky Survey (CLASS; Myers et al. 1995), the radio lensed system B1359 + 154 was at first identified as a quadruply-imaged ('quad') system (Myers et al. 1999), although six compact radio features had been detected in.

  3. What if LIGO's gravitational wave detections are strongly lensed by massive galaxy clusters?

    Science.gov (United States)

    Smith, Graham P.; Jauzac, Mathilde; Veitch, John; Farr, Will M.; Massey, Richard; Richard, Johan

    2018-04-01

    Motivated by the preponderance of so-called `heavy black holes' in the binary black hole (BBH) gravitational wave (GW) detections to date, and the role that gravitational lensing continues to play in discovering new galaxy populations, we explore the possibility that the GWs are strongly lensed by massive galaxy clusters. For example, if one of the GW sources were actually located at z = 1, then the rest-frame mass of the associated BHs would be reduced by a factor of ˜2. Based on the known populations of BBH GW sources and strong-lensing clusters, we estimate a conservative lower limit on the number of BBH mergers detected per detector year at LIGO/Virgo's current sensitivity that are multiply-imaged, of Rdetect ≃ 10-5 yr-1. This is equivalent to rejecting the hypothesis that one of the BBH GWs detected to date was multiply-imaged at ≲4σ. It is therefore unlikely, but not impossible, that one of the GWs is multiply-imaged. We identify three spectroscopically confirmed strong-lensing clusters with well-constrained mass models within the 90 per cent credible sky localizations of the BBH GWs from LIGO's first observing run. In the event that one of these clusters multiply-imaged one of the BBH GWs, we predict that 20-60 per cent of the putative next appearances of the GWs would be detectable by LIGO, and that they would arrive at Earth within 3yr of first detection.

  4. A KiDS weak lensing analysis of assembly bias in GAMA galaxy groups

    NARCIS (Netherlands)

    Dvornik, Andrej; Cacciato, Marcello; Kuijken, Konrad; Viola, Massimo; Hoekstra, Henk; Nakajima, Reiko; van Uitert, Edo; Brouwer, Margot; Choi, Ami; Erben, Thomas; Fenech Conti, Ian; Farrow, Daniel J.; Herbonnet, Ricardo; Heymans, Catherine; Hildebrandt, Hendrik; Hopkins, Andrew. M.; McFarland, John; Norberg, Peder; Schneider, Peter; Sifón, Cristóbal; Valentijn, Edwin; Wang, Lingyu

    2017-01-01

    We investigate possible signatures of halo assembly bias for spectroscopically selected galaxy groups from the GAMA survey using weak lensing measurements from the spatially overlapping regions of the deeper, high-imaging-quality photometric KiDS survey. We use GAMA groups with an apparent richness

  5. A multi-epoch spectroscopic study of the BAL quasar APM 08279+5255. II. Emission- and absorption-line variability time lags

    Science.gov (United States)

    Saturni, F. G.; Trevese, D.; Vagnetti, F.; Perna, M.; Dadina, M.

    2016-03-01

    Context. The study of high-redshift bright quasars is crucial to gather information about the history of galaxy assembly and evolution. Variability analyses can provide useful data on the physics of quasar processes and their relation with the host galaxy. Aims: In this study, we aim to measure the black hole mass of the bright lensed BAL QSO APM 08279+5255 at z = 3.911 through reverberation mapping, and to update and extend the monitoring of its C IV absorption line variability. Methods: We perform the first reverberation mapping of the Si IV and C IV emission lines for a high-luminosity quasar at high redshift with the use of 138 R-band photometric data and 30 spectra available over 16 years of observations. We also cross-correlate the C IV absorption equivalent width variations with the continuum light curve to estimate the recombination time lags of the various absorbers and infer the physical conditions of the ionised gas. Results: We find a reverberation-mapping time lag of ~900 rest-frame days for both Si IV and C IV emission lines. This is consistent with an extension of the BLR size-to-luminosity relation for active galactic nuclei up to a luminosity of ~1048 erg s-1, and implies a black hole mass of 1010 M⊙. Additionally, we measure a recombination time lag of ~160 days in the rest frame for the C IV narrow absorption system, which implies an electron density of the absorbing gas of ~2.5 × 104 cm-3. Conclusions: The measured black hole mass of APM 08279+5255 indicates that the quasar resides in an under-massive host-galaxy bulge with Mbulge ~ 7.5MBH, and that the lens magnification is lower than ~8. Finally, the inferred electron density of the narrow-line absorber implies a distance of the order of 10 kpc of the absorbing gas from the quasar, placing it within the host galaxy.

  6. Mesh-free free-form lensing - I. Methodology and application to mass reconstruction

    Science.gov (United States)

    Merten, Julian

    2016-09-01

    Many applications and algorithms in the field of gravitational lensing make use of meshes with a finite number of nodes to analyse and manipulate data. Specific examples in lensing are astronomical CCD images in general, the reconstruction of density distributions from lensing data, lens-source plane mapping or the characterization and interpolation of a point spread function. We present a numerical framework to interpolate and differentiate in the mesh-free domain, defined by nodes with coordinates that follow no regular pattern. The framework is based on radial basis functions (RBFs) to smoothly represent data around the nodes. We demonstrate the performance of Gaussian RBF-based, mesh-free interpolation and differentiation, which reaches the sub-percent level in both cases. We use our newly developed framework to translate ideas of free-form mass reconstruction from lensing on to the mesh-free domain. By reconstructing a simulated mock lens we find that strong-lensing only reconstructions achieve <10 per cent accuracy in the areas where these constraints are available but provide poorer results when departing from these regions. Weak-lensing only reconstructions give <10 per cent accuracy outside the strong-lensing regime, but cannot resolve the inner core structure of the lens. Once both regimes are combined, accurate reconstructions can be achieved over the full field of view. The reconstruction of a simulated lens, using constraints that mimics real observations, yields accurate results in terms of surface-mass density, Navarro-Frenk-White profile (NFW) parameters, Einstein radius and magnification map recovery, encouraging the application of this method to real data.

  7. Quasar outflow energetics from broad absorption line variability

    Science.gov (United States)

    McGraw, S. M.; Shields, J. C.; Hamann, F. W.; Capellupo, D. M.; Herbst, H.

    2018-03-01

    Quasar outflows have long been recognized as potential contributors to the co-evolution between supermassive black holes (SMBHs) and their host galaxies. The role of outflows in active galactic nucleus (AGN) feedback processes can be better understood by placing observational constraints on wind locations and kinetic energies. We utilize broad absorption line (BAL) variability to investigate the properties of a sample of 71 BAL quasars with P V broad absorption. The presence of P V BALs indicates that other BALs like C IV are saturated, such that variability in those lines favours clouds crossing the line of sight. We use these constraints with measurements of BAL variability to estimate outflow locations and energetics. Our data set consists of multiple-epoch spectra from the Sloan Digital Sky Survey and MDM Observatory. We detect significant (4σ) BAL variations from 10 quasars in our sample over rest-frame time-scales between ≤0.2-3.8 yr. Our derived distances for the 10 variable outflows are nominally ≲ 1-10 pc from the SMBH using the transverse-motion scenario, and ≲ 100-1000 pc from the central source using ionization-change considerations. These distances, in combination with the estimated high outflow column densities (i.e. NH ≳ 1022 cm-2), yield outflow kinetic luminosities between ˜ 0.001 and 1 times the bolometric luminosity of the quasar, indicating that many absorber energies within our sample are viable for AGN feedback.

  8. Measurement of Black Hole Mass Radio-Loud Quasars

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... In this work, we construct a sample of 1585 radio-loud quasars to measure their black hole masses using broad emission lines. We compare our black hole masses with the virial black hole masses measured by Shen et al. (2010).We find that there is a large deviation between them if our black hole mass is ...

  9. The Second APM UKST Colour Survey for z>4 Quasars

    OpenAIRE

    Storrie-Lombardi, Lisa J.; Irwin, Michael J.; McMahon, Richard G.; Hook, Isobel M.

    2000-01-01

    We present the spectra, positions, and finding charts for 31 bright (R4.5. The majority are in the southern sky (δ30°) sky, resulting in 59 optically selected quasars in the redshift range 3.85 to 4.78; 49 of which have z≥4.00.

  10. Extreme Variability in a Broad Absorption Line Quasar

    Energy Technology Data Exchange (ETDEWEB)

    Stern, Daniel; Jun, Hyunsung D. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Mail Stop 169-221, Pasadena, CA 91109 (United States); Graham, Matthew J.; Djorgovski, S. G.; Donalek, Ciro; Drake, Andrew J.; Mahabal, Ashish A.; Steidel, Charles C. [California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Arav, Nahum; Chamberlain, Carter [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Barth, Aaron J. [Department of Physics and Astronomy, 4129 Frederick Reines Hall, University of California, Irvine, CA 92697 (United States); Glikman, Eilat, E-mail: daniel.k.stern@jpl.nasa.gov [Department of Physics, Middlebury College, Middlebury, VT 05753 (United States)

    2017-04-20

    CRTS J084133.15+200525.8 is an optically bright quasar at z = 2.345 that has shown extreme spectral variability over the past decade. Photometrically, the source had a visual magnitude of V ∼ 17.3 between 2002 and 2008. Then, over the following five years, the source slowly brightened by approximately one magnitude, to V ∼ 16.2. Only ∼1 in 10,000 quasars show such extreme variability, as quantified by the extreme parameters derived for this quasar assuming a damped random walk model. A combination of archival and newly acquired spectra reveal the source to be an iron low-ionization broad absorption line quasar with extreme changes in its absorption spectrum. Some absorption features completely disappear over the 9 years of optical spectra, while other features remain essentially unchanged. We report the first definitive redshift for this source, based on the detection of broad H α in a Keck/MOSFIRE spectrum. Absorption systems separated by several 1000 km s{sup −1} in velocity show coordinated weakening in the depths of their troughs as the continuum flux increases. We interpret the broad absorption line variability to be due to changes in photoionization, rather than due to motion of material along our line of sight. This source highlights one sort of rare transition object that astronomy will now be finding through dedicated time-domain surveys.

  11. The micro-quasars, witness of the extremes physics

    International Nuclear Information System (INIS)

    2002-01-01

    Hopeful the micro-quasars, the astronomers reveal indirectly the black holes presence, invisible in the galaxies. They are extraordinary laboratories to understand the high energies physics and test the general relativity. For the first time, an international scientific team observes their energy emissions evolution. (A.L.B.)

  12. Quasars as probes of gas in extended protogalaxies

    International Nuclear Information System (INIS)

    Rees, M.J.

    1988-01-01

    The formation of a galaxy involves infall of gas from radii ∼ 100 kpc, at epochs corresponding to redshifts z 4 K would become largely neutral. Clouds or sheets of such gas, in galaxies along the line-of-sight to a background quasar, could readily give rise to at least as many HI absorption systems of high column density as are observed. (author)

  13. Starburst-driven Superwinds in Quasar Host Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Barthel, Peter; Podigachoski, Pece [Kapteyn Astronomical Institute, University of Groningen, Groningen (Netherlands); Wilkes, Belinda [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Haas, Martin, E-mail: pdb@astro.rug.nl, E-mail: podigachoski@astro.rug.nl [Astronomisches Institut, Ruhr Universität, Bochum (Germany)

    2017-07-01

    During the past five decades astronomers have been puzzled by the presence of strong absorption features including metal lines, observed in the optical and ultraviolet spectra of quasars, signaling inflowing and outflowing gas winds with relative velocities up to several thousands of km s{sup −1}. In particular, the location of these winds—close to the quasar, further out in its host galaxy, or in its direct environment—and the possible impact on their surroundings have been issues of intense discussion and uncertainty. Using our Herschel Space Observatory data, we report a tendency for this so-called associated metal absorption to occur along with prodigious star formation in the quasar host galaxy, indicating that the two phenomena are likely to be interrelated, that the gas winds likely occur on the kiloparsec scale and would then have a strong impact on the interstellar medium of the galaxy. This correlation moreover would imply that the unusually high cold dust luminosities in these quasars are connected with ongoing star formation. Given that we find no correlation with the AGN strength, the wind feedback that we establish in these radio-loud objects is most likely associated with their host star formation rather than with their black hole accretion.

  14. Comparison of Approaches to Photometric Redshift Estimation of Quasars

    Science.gov (United States)

    Tu, Yang; Zhang, Yan-Xia; Zhao, Yong-Heng; Tian, Hai-Jun

    We probe many kinds of approaches used for photometric redshift estimation of quasars, including KNN (K-nearest neighbor algorithm), Lasso (Least Absolute Shrinkage and Selection Operator), PLS (Partial Least Square regression), ridge regression, SGD (Stochastic Gradient Descent) and Extra-Trees.

  15. Optical features associated with the quasar PKS 2135-14

    International Nuclear Information System (INIS)

    Hawkins, M.R.S.

    1978-01-01

    The field surrounding the quasar PKS 2135-14 has been investigated from B and R photographs taken with the 3.8-m Anglo-Australian telescope. Isophotal plots of the plates, produced with the COSMOS measuring machine, have revealed a number of faint optical features apparently associated with the radio source. (author)

  16. The Scale Invariant Synchrotron Jet of Flat Spectrum Radio Quasars

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... In this paper, the scale invariance of the synchrotron jet of Flat Spectrum Radio Quasars has been studied using a sample of combined sources from FKM04 and from SDSS DR3 catalogue. Since the research of scale invariance has been focused on sub-Eddington cases that can be fitted onto the ...

  17. Optical variability of the medium-bright quasar sample

    International Nuclear Information System (INIS)

    Huang, K.; Mitchell, K.J.; Usher, P.D.

    1990-01-01

    A variability study of the 32-member Medium-Bright Quasar Sample is reported. It is found that the star US 1953 has undergone a noticeable variation in the course of 26 hr. Apparent variations in the extragalactic object US 3498 may be illusory, owing to its partially resolved appearance. No other evidence for variability was detected. 34 refs

  18. The discovery of timescale-dependent color variability of quasars

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yu-Han; Wang, Jun-Xian; Chen, Xiao-Yang [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zheng, Zhen-Ya, E-mail: sunyh92@mail.ustc.edu.cn, E-mail: jxw@ustc.edu.cn [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States)

    2014-09-01

    Quasars are variable on timescales from days to years in UV/optical and generally appear bluer while they brighten. The physics behind the variations in fluxes and colors remains unclear. Using Sloan Digital Sky Survey g- and r-band photometric monitoring data for quasars in Stripe 82, we find that although the flux variation amplitude increases with timescale, the color variability exhibits the opposite behavior. The color variability of quasars is prominent at timescales as short as ∼10 days, but gradually reduces toward timescales up to years. In other words, the variable emission at shorter timescales is bluer than that at longer timescales. This timescale dependence is clearly and consistently detected at all redshifts from z = 0 to 3.5; thus, it cannot be due to contamination to broadband photometry from emission lines that do not respond to fast continuum variations. The discovery directly rules out the possibility that simply attributes the color variability to contamination from a non-variable redder component such as the host galaxy. It cannot be interpreted as changes in global accretion rate either. The thermal accretion disk fluctuation model is favored in the sense that fluctuations in the inner, hotter region of the disk are responsible for short-term variations, while longer-term and stronger variations are expected from the larger and cooler disk region. An interesting implication is that one can use quasar variations at different timescales to probe disk emission at different radii.

  19. Luminous and Obscured Quasars and Their Host Galaxies

    Directory of Open Access Journals (Sweden)

    Agnese Del Moro

    2018-01-01

    Full Text Available The most heavily-obscured, luminous quasars might represent a specific phase of the evolution of the actively accreting supermassive black holes and their host galaxies, possibly related to mergers. We investigated a sample of the most luminous quasars at z ≈ 1 − 3 in the GOODS fields, selected in the mid-infrared band through detailed spectral energy distribution (SED decomposition. The vast majority of these quasars (~80% are obscured in the X-ray band and ~30% of them to such an extent, that they are undetected in some of the deepest (2 and 4 Ms Chandra X-ray data. Although no clear relation is found between the star-formation rate of the host galaxies and the X-ray obscuration, we find a higher incidence of heavily-obscured quasars in disturbed/merging galaxies compared to the unobscured ones, thus possibly representing an earlier stage of evolution, after which the system is relaxing and becoming unobscured.

  20. Starburst-driven Superwinds in Quasar Host Galaxies

    International Nuclear Information System (INIS)

    Barthel, Peter; Podigachoski, Pece; Wilkes, Belinda; Haas, Martin

    2017-01-01

    During the past five decades astronomers have been puzzled by the presence of strong absorption features including metal lines, observed in the optical and ultraviolet spectra of quasars, signaling inflowing and outflowing gas winds with relative velocities up to several thousands of km s −1 . In particular, the location of these winds—close to the quasar, further out in its host galaxy, or in its direct environment—and the possible impact on their surroundings have been issues of intense discussion and uncertainty. Using our Herschel Space Observatory data, we report a tendency for this so-called associated metal absorption to occur along with prodigious star formation in the quasar host galaxy, indicating that the two phenomena are likely to be interrelated, that the gas winds likely occur on the kiloparsec scale and would then have a strong impact on the interstellar medium of the galaxy. This correlation moreover would imply that the unusually high cold dust luminosities in these quasars are connected with ongoing star formation. Given that we find no correlation with the AGN strength, the wind feedback that we establish in these radio-loud objects is most likely associated with their host star formation rather than with their black hole accretion.

  1. QUASAR - an interactive program for spectrum analysis in personal computers

    International Nuclear Information System (INIS)

    Auler, L.T.; Nobrega, J.A.W. da.

    1991-11-01

    The QUASAR software for the interactive analysis and report of energy (pulse-height) and time (multichannel scaling) spectra is described. The operating instructions as well as the mathematical methods and algorithms used by the program are presented in detail. This program is an extension to the PULSAR program. (author)

  2. Report on the Dynamical Evolution of an Axially Symmetric Quasar ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... The role of the angular momentum in the regular or chaotic character of motion in an axially symmetric quasar model is examined. It is found that, for a given value of the critical angular momentum , there are two values of the mass of the nucleus for which transition from regular to chaotic motion ...

  3. Determination of astrophysical parameters of quasars within the Gaia mission

    Science.gov (United States)

    Delchambre, L.

    2018-01-01

    We describe methods designed to determine the astrophysical parameters of quasars based on spectra coming from the red and blue spectrophotometers of the Gaia satellite. These methods principally rely on two already published algorithms that are the weighted principal component analysis and the weighted phase correlation. The presented approach benefits from a fast implementation, an intuitive interpretation as well as strong diagnostic tools on the potential errors that may arise during predictions. The production of a semi-empirical library of spectra as they will be observed by Gaia is also covered and subsequently used for validation purpose. We detail the pre-processing that is necessary in order for these spectra to be fully exploitable by our algorithms along with the procedures that are used to predict the redshifts of the quasars, their continuum slopes, the total equivalent width of their emission lines and whether these are broad absorption line (BAL) quasars or not. Performances of these procedures were assessed in comparison with the extremely randomized trees learning method and were proven to provide better results on the redshift predictions and on the ratio of correctly classified observations though the probability of detection of BAL quasars remains restricted by the low resolution of these spectra as well as by their limited signal-to-noise ratio. Finally, the triggering of some warning flags allows us to obtain an extremely pure subset of redshift predictions where approximately 99 per cent of the observations come along with absolute errors that are below 0.1.

  4. Report on the Dynamical Evolution of an Axially Symmetric Quasar ...

    Indian Academy of Sciences (India)

    Abstract. The role of the angular momentum in the regular or chaotic character of motion in an axially symmetric quasar model is examined. It is found that, for a given value of the critical angular momentum Lzc, there are two values of the mass of the nucleus Mn for which transition from regular to chaotic motion occurs.

  5. QUASARS PROBING QUASARS. VIII. THE PHYSICAL PROPERTIES OF THE COOL CIRCUMGALACTIC MEDIUM SURROUNDING z ∼ 2–3 MASSIVE GALAXIES HOSTING QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Marie Wingyee; Prochaska, J. Xavier [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Hennawi, Joseph F., E-mail: lwymarie@ucolick.org [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69115 Heidelberg (Germany)

    2016-10-01

    We characterize the physical properties of the cool T  ∼ 10{sup 4} K circumgalactic medium (CGM) surrounding z  ∼ 2–3 quasar host galaxies, which are predicted to evolve into present-day massive ellipticals. Using a statistical sample of 14 quasar pairs with projected separation <300 kpc and spectra of high dispersion and high signal-to-noise ratio, we find extreme kinematics with low metal ion lines typically spanning ≈500 km s{sup −1}, exceeding any previously studied galactic population. The CGM is significantly enriched, even beyond the virial radius, with a median metallicity [M/H] ≈ −0.6. The α /Fe abundance ratio is enhanced, suggesting that halo gas is primarily enriched by core-collapse supernovae. The projected cool gas mass within the virial radius is estimated to be 1.9 × 10{sup 11} M {sub ⊙} ( R {sub ⊥}/160 kpc){sup 2}, accounting for ≈1/3 of the baryonic budget of the galaxy halo. The ionization state of CGM gas increases with projected distance from the foreground quasars, contrary to expectation if the quasar dominates the ionizing radiation flux. However, we also found peculiarities not exhibited in the CGM of other galaxy populations. In one absorption system, we may be detecting unresolved fluorescent Ly α emission, and another system shows strong N v lines. Taken together, these anomalies suggest that transverse sightlines are—at least in some cases—possibly illuminated. We also discovered a peculiar case where detection of the C ii fine-structure line implies an electron density >100 cm{sup −3} and sub-parsec-scale gas clumps.

  6. Relative radiosensitivity of rat lenses as a function of age

    International Nuclear Information System (INIS)

    Merriam, G.R. Jr.; Szechter, A.

    1975-01-01

    The effect of age on the development of radiation cataracts in rat lenses has been investigated using the Columbia--Sherman rat as an experiment model. A detailed pattern of age dependence was obtained at several different dose levels. In general at dose levels from 200 to 300 rads the lens changes occurred sooner and progressed faster in the adult lenses than in young lenses. In the dose range from 300 rads to 900 rads opacities developed sooner in the young lenses but progression was faster and severe opacities developed sooner in adult lenses. Above 900 rads opacities developed sooner and progressed faster in the young lenses. (U.S.)

  7. A Robust Mass Estimator for Dark Matter Subhalo Perturbations in Strong Gravitational Lenses

    Energy Technology Data Exchange (ETDEWEB)

    Minor, Quinn E. [Department of Science, Borough of Manhattan Community College, City University of New York, New York, NY 10007 (United States); Kaplinghat, Manoj [Department of Physics and Astronomy, University of California, Irvine CA 92697 (United States); Li, Nan [Department of Astronomy and Astrophysics, The University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States)

    2017-08-20

    A few dark matter substructures have recently been detected in strong gravitational lenses through their perturbations of highly magnified images. We derive a characteristic scale for lensing perturbations and show that they are significantly larger than the perturber’s Einstein radius. We show that the perturber’s projected mass enclosed within this radius, scaled by the log-slope of the host galaxy’s density profile, can be robustly inferred even if the inferred density profile and tidal radius of the perturber are biased. We demonstrate the validity of our analytic derivation using several gravitational lens simulations where the tidal radii and the inner log-slopes of the density profile of the perturbing subhalo are allowed to vary. By modeling these simulated data, we find that our mass estimator, which we call the effective subhalo lensing mass, is accurate to within about 10% or smaller in each case, whereas the inferred total subhalo mass can potentially be biased by nearly an order of magnitude. We therefore recommend that the effective subhalo lensing mass be reported in future lensing reconstructions, as this will allow for a more accurate comparison with the results of dark matter simulations.

  8. Weak gravitational lensing as a method to constrain unstable dark matter

    International Nuclear Information System (INIS)

    Wang Meiyu; Zentner, Andrew R.

    2010-01-01

    The nature of the dark matter remains a mystery. The possibility of an unstable dark matter particle decaying to invisible daughter particles has been explored many times in the past few decades. Meanwhile, weak gravitational lensing shear has gained a lot of attention as a probe of dark energy, though it was previously considered a dark matter probe. Weak lensing is a useful tool for constraining the stability of the dark matter. In the coming decade a number of large galaxy imaging surveys will be undertaken and will measure the statistics of cosmological weak lensing with unprecedented precision. Weak lensing statistics are sensitive to unstable dark matter in at least two ways. Dark matter decays alter the matter power spectrum and change the angular diameter distance-redshift relation. We show how measurements of weak lensing shear correlations may provide the most restrictive, model-independent constraints on the lifetime of unstable dark matter. Our results rely on assumptions regarding nonlinear evolution of density fluctuations in scenarios of unstable dark matter and one of our aims is to stimulate interest in theoretical work on nonlinear structure growth in unstable dark matter models.

  9. BIASED DARK ENERGY CONSTRAINTS FROM NEGLECTING REDUCED SHEAR IN WEAK-LENSING SURVEYS

    International Nuclear Information System (INIS)

    Shapiro, Charles

    2009-01-01

    The weak gravitational lensing of distant galaxies by a large-scale structure is expected to become a powerful probe of dark energy. By measuring the ellipticities of large number of background galaxies, the subtle gravitational distortion called 'cosmic shear' can be measured and used to constrain dark energy parameters. The observed galaxy ellipticities, however, are induced not by shear but by reduced shear, which also accounts for slight magnifications of the images. This distinction is negligible for present weak-lensing surveys, but it will become more important as we improve our ability to measure and understand small-angle cosmic shear modes. I calculate the discrepancy between shear and reduced shear in the context of power spectra and cross spectra, finding the difference could be as high as 10% on the smallest accessible angular scales. I estimate how this difference will bias dark energy parameters obtained from two weak-lensing methods: weak-lensing tomography and the shear ratio method known as offset-linear scaling. For weak-lensing tomography, ignoring the effects of reduced shear will cause future surveys considered by the Dark Energy Task Force to measure dark energy parameters that are biased by amounts comparable to their error bars. I advocate that reduced shear be properly accounted for in such surveys, and I provide a semi-analytic formula for doing so. Since reduced shear cross spectra do not follow an offset-linear scaling relation, the shear ratio method is similarly biased but with smaller significance.

  10. Lack of dust in quasar absorption line systems

    International Nuclear Information System (INIS)

    Jura, M.

    1977-01-01

    It is stated that the origin of absorption line systems in quasars is still uncertain. Most such systems apparently have atomic hydrogen column densities of the order of 10 19 /cm 2 , but at least two quasars, 1331 + 170 and PHL957, have such strong Lyman α absorption lines that atomic hydrogen column densities of the order of 10 21 /cm 2 are indicated. It should be possible to observe the dust produced 2,200 A extinction feature as it is red shifted into the visible, and to determine whether absorption line systems are produced in spiral galaxies where the dust content is similar to that in the interstellar medium. It has been argued that the emission line regions of quasars generally lack dust and that towards PHL957 the 2,200 A feature is absent. The present author argues that dust similar to that found in the interstellar medium is not found towards the quasars 1331 + 170 and PHL957. This could explain why H 2 is not found towards PHL957, and it indicates that the absorption line systems in quasars are not produced in spiral galaxies similar to our own. It seems from the analysis presented that the dust-to-gas ratio towards 1331 + 170 is at least a factor of 20 less than in the interstellar medium, and there is no reason to suppose that this lack of dust results from a lack of metals It is concluded that there seems to be a lack of normal dust towards PHL957 by at least a factor of two; and that the absorption region towards 1331 + 170 and probably the region towards PHL957 are lacking dust similar to that in our own galaxy. This can explain the lack of H 2 in these systems. (U.K.)

  11. Effective wavefront aberration measurement of spectacle lenses in as-worn status

    Science.gov (United States)

    Jia, Zhigang; Xu, Kai; Fang, Fengzhou

    2018-04-01

    An effective wavefront aberration analysis method for measuring spectacle lenses in as-worn status was proposed and verified using an experimental apparatus based on an eye rotation model. Two strategies were employed to improve the accuracy of measurement of the effective wavefront aberrations on the corneal sphere. The influences of three as-worn parameters, the vertex distance, pantoscopic angle, and face form angle, together with the eye rotation and corresponding incident beams, were objectively and quantitatively obtained. The experimental measurements of spherical single vision and freeform progressive addition lenses demonstrate the accuracy and validity of the proposed method and experimental apparatus, which provide a potential means of achieving supernormal vision correction with customization and personalization in optimizing the as-worn status-based design of spectacle lenses and evaluating their manufacturing and imaging qualities.

  12. Giant luminous arcs from lensing: determination of the mass distribution inside distant cluster cores

    International Nuclear Information System (INIS)

    Hammer, F.; Rigaut, F.

    1989-01-01

    The observations of giant luminous arcs are used in the context of the gravitational lensing theory, to investigate the distribution of the deflecting matter, usually situated in the cores of distant clusters. Analytic equations of the caustic curves are presented for a multi-point mass model, which roughly accounts for the observed arc properties. A more general lensing model is introduced, where the lensing objects (galaxies, groups and clusters of galaxies) are extended and follow the r 1/4 law. Numerical simulations reproduce pixel by pixel all the gravitational images, including the arcs, found in the cores of the A 370 and CI2244-02 clusters. They are consistent with the use of the observations of luminous matter and X-ray emitting matter as a tracer of the total mass distribution

  13. Giant luminous arcs from lensing: determination of the mass distribution inside distant cluster cores

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, F.; Rigaut, F. (Observatoire de Paris, Section de Meudon, 92 (FR))

    1989-12-01

    The observations of giant luminous arcs are used in the context of the gravitational lensing theory, to investigate the distribution of the deflecting matter, usually situated in the cores of distant clusters. Analytic equations of the caustic curves are presented for a multi-point mass model, which roughly accounts for the observed arc properties. A more general lensing model is introduced, where the lensing objects (galaxies, groups and clusters of galaxies) are extended and follow the r{sup 1/4} law. Numerical simulations reproduce pixel by pixel all the gravitational images, including the arcs, found in the cores of the A 370 and CI2244-02 clusters. They are consistent with the use of the observations of luminous matter and X-ray emitting matter as a tracer of the total mass distribution.

  14. Determination of Electron Optical Properties for Aperture Zoom Lenses Using an Artificial Neural Network Method.

    Science.gov (United States)

    Isik, Nimet

    2016-04-01

    Multi-element electrostatic aperture lens systems are widely used to control electron or charged particle beams in many scientific instruments. By means of applied voltages, these lens systems can be operated for different purposes. In this context, numerous methods have been performed to calculate focal properties of these lenses. In this study, an artificial neural network (ANN) classification method is utilized to determine the focused/unfocused charged particle beam in the image point as a function of lens voltages for multi-element electrostatic aperture lenses. A data set for training and testing of ANN is taken from the SIMION 8.1 simulation program, which is a well known and proven accuracy program in charged particle optics. Mean squared error results of this study indicate that the ANN classification method provides notable performance characteristics for electrostatic aperture zoom lenses.

  15. Modern scleral contact lenses: A review.

    Science.gov (United States)

    van der Worp, Eef; Bornman, Dina; Ferreira, Daniela Lopes; Faria-Ribeiro, Miguel; Garcia-Porta, Nery; González-Meijome, José M

    2014-08-01

    Scleral contact lenses (ScCL) have gained renewed interest during the last decade. Originally, they were primarily used for severely compromised eyes. Corneal ectasia and exposure conditions were the primary indications. However, the indication range of ScCL in contact lens practices seems to be expanding, and it now increasingly includes less severe and even non-compromised eyes, too. All lenses that partly or entirely rest on the sclera are included under the name ScCL in this paper; although the Scleral Lens Education Society recommends further classification. When a lens partly rests on the cornea (centrally or peripherally) and partly on the sclera, it is called a corneo-scleral lens. A lens that rests entirely on the sclera is classified as a scleral lens (up to 25 mm in diameter maximum). When there is full bearing on the sclera, further distinctions of the scleral lens group include mini-scleral and large-scleral lenses. This manuscript presents a review of the current applications of different ScCL (all types), their fitting methods, and their clinical outcomes including potential adverse events. Adverse events with these lenses are rare, but the clinician needs to be aware of them to avoid further damage in eyes that often are already compromised. The use of scleral lenses for non-pathological eyes is discussed in this paper. Copyright © 2014 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  16. CMB-lensing beyond the Born approximation

    International Nuclear Information System (INIS)

    Marozzi, Giovanni; Fanizza, Giuseppe; Durrer, Ruth; Dio, Enea Di

    2016-01-01

    We investigate the weak lensing corrections to the cosmic microwave background temperature anisotropies considering effects beyond the Born approximation. To this aim, we use the small deflection angle approximation, to connect the lensed and unlensed power spectra, via expressions for the deflection angles up to third order in the gravitational potential. While the small deflection angle approximation has the drawback to be reliable only for multipoles ℓ ∼< 2500, it allows us to consistently take into account the non-Gaussian nature of cosmological perturbation theory beyond the linear level. The contribution to the lensed temperature power spectrum coming from the non-Gaussian nature of the deflection angle at higher order is a new effect which has not been taken into account in the literature so far. It turns out to be the leading contribution among the post-Born lensing corrections. On the other hand, the effect is smaller than corrections coming from non-linearities in the matter power spectrum, and its imprint on CMB lensing is too small to be seen in present experiments.

  17. Plasma lenses for focusing relativistic electron beams

    International Nuclear Information System (INIS)

    Govil, R.; Wheeler, S.; Leemans, W.

    1997-01-01

    The next generation of colliders require tightly focused beams with high luminosity. To focus charged particle beams for such applications, a plasma focusing scheme has been proposed. Plasma lenses can be overdense (plasma density, n p much greater than electron beam density, n b ) or underdense (n p less than 2 n b ). In overdense lenses the space-charge force of the electron beam is canceled by the plasma and the remaining magnetic force causes the electron beam to self-pinch. The focusing gradient is nonlinear, resulting in spherical aberrations. In underdense lenses, the self-forces of the electron beam cancel, allowing the plasma ions to focus the beam. Although for a given beam density, a uniform underdense lens produces smaller focusing gradients than an overdense lens, it produces better beam quality since the focusing is done by plasma ions. The underdense lens can be improved by tapering the density of the plasma for optimal focusing. The underdense lens performance can be enhanced further by producing adiabatic plasma lenses to avoid the Oide limit on spot size due to synchrotron radiation by the electron beam. The plasma lens experiment at the Beam Test Facility (BTF) is designed to study the properties of plasma lenses in both overdense and underdense regimes. In particular, important issues such as electron beam matching, time response of the lens, lens aberrations and shot-to-shot reproducibility are being investigated

  18. INVESTIGATING THE COMPLEX X-RAY SPECTRUM OF A BROAD-LINE 2MASS RED QUASAR: XMM-NEWTON OBSERVATION OF FTM 0830+3759

    International Nuclear Information System (INIS)

    Piconcelli, Enrico; Nicastro, Fabrizio; Fiore, Fabrizio; Vignali, Cristian; Bianchi, Stefano; Miniutti, Giovanni

    2010-01-01

    We report results from a 50 ks XMM-Newton observation of the dust-reddened broad-line quasar FTM 0830+3759 (z = 0.413) selected from the Faint Images of the Radio Sky at Twenty cm/Two Micron All Sky Survey red quasar survey. For this active galactic nucleus (AGN), a very short 9 ks Chandra exposure had suggested a feature-rich X-ray spectrum and Hubble Space Telescope images revealed a very disturbed host galaxy morphology. Contrary to classical, optically selected quasars, the X-ray properties of red (i.e., with J - K s > 1.7 and R - K s > 4.0) broad-line quasars are still quite unexplored, although there is a growing consensus that, due to moderate obscuration, these objects can offer a unique view of spectral components typically swamped by the AGN light in normal, blue quasars. The XMM-Newton observation discussed here has definitely confirmed the complexity of the X-ray spectrum revealing the presence of a cold (or mildly ionized) absorber with N H ∼ 10 22 cm -2 along the line of sight to the nucleus and a Compton reflection component accompanied by an intense Fe Kα emission line in this quasar with a L 2-10 k eV ∼ 5 x 10 44 erg s -1 . A soft-excess component is also required by the data. The match between the column density derived by our spectral analysis and that expected on the basis of reddening due to the dust suggests the possibility that both absorptions occur in the same medium. FTM 0830+3759 is characterized by an extinction/absorption-corrected X-ray-to-optical flux ratio α ox = -2.3, which is steeper than expected on the basis of its UV luminosity. These findings indicate that the X-ray properties of FTM 0830+3759 differ from those typically observed for optically selected broad-line quasars with comparable hard X-ray luminosity.

  19. Probing the cosmic distance duality relation using time delay lenses

    Energy Technology Data Exchange (ETDEWEB)

    Rana, Akshay; Mahajan, Shobhit; Mukherjee, Amitabha [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Jain, Deepak [Deen Dayal Upadhyaya College, University of Delhi, Sector-3, Dwarka, New Delhi 110078 (India); Holanda, R.F.L., E-mail: montirana1992@gmail.com, E-mail: djain@ddu.du.ac.in, E-mail: shobhit.mahajan@gmail.com, E-mail: amimukh@gmail.com, E-mail: holanda@uepb.edu.br [Departamento de Física, Universidade Federal de Sergipe, 49100-000, Aracaju—SE (Brazil)

    2017-07-01

    The construction of the cosmic distance-duality relation (CDDR) has been widely studied. However, its consistency with various new observables remains a topic of interest. We present a new way to constrain the CDDR η( z ) using different dynamic and geometric properties of strong gravitational lenses (SGL) along with SNe Ia observations. We use a sample of 102 SGL with the measurement of corresponding velocity dispersion σ{sub 0} and Einstein radius θ {sub E} . In addition, we also use a dataset of 12 two image lensing systems containing the measure of time delay Δ t between source images. Jointly these two datasets give us the angular diameter distance D {sub A} {sub ol} of the lens. Further, for luminosity distance, we use the 740 observations from JLA compilation of SNe Ia. To study the combined behavior of these datasets we use a model independent method, Gaussian Process (GP). We also check the efficiency of GP by applying it on simulated datasets, which are generated in a phenomenological way by using realistic cosmological error bars. Finally, we conclude that the combined bounds from the SGL and SNe Ia observation do not favor any deviation of CDDR and are in concordance with the standard value (η=1) within 2σ confidence region, which further strengthens the theoretical acceptance of CDDR.

  20. Radio line and continuum observations of quasar-galaxy pairs and the origin of low reshift quasar absorption line systems

    Science.gov (United States)

    Carilli, C. L.; Vangorkom, J. H.; Hauxthausen, E. M.; Stocke, J. T.; Salzer, J.

    1990-01-01

    There are a number of known quasars for which our line of sight to the high redshift quasar passes within a few Holmberg radii of a low redshift galaxy. In a few of these cases, spectra of the quasar reveal absorption by gas associated with the low redshift galaxy. A number of these pairs imply absorption by gas which lies well outside the optical disk of the associated galaxy, leading to models of galaxies with 'halos' or 'disks' of gas extending to large radii. The authors present observations of 4 such pairs. In three of the four cases, they find that the associated galaxy is highly disturbed, typically due to a gravitational interaction with a companion galaxy, while in the fourth case the absorption can be explained by clouds in the optical disk of the associated galaxy. They are led to an alternative hypothesis concerning the origin of the low redshift absorption line systems: the absorption is by gas clouds which have been gravitationally stripped from the associated galaxy. These galaxies are rapidly evolving, and should not be used as examples of absorption by clouds in halos of field spirals. The authors conclude by considering the role extended gas in interacting systems plays in the origin of higher redshift quasar absorption line systems.

  1. Physical Properties of 15 Quasars at z ≳ 6.5

    Science.gov (United States)

    Mazzucchelli, C.; Bañados, E.; Venemans, B. P.; Decarli, R.; Farina, E. P.; Walter, F.; Eilers, A.-C.; Rix, H.-W.; Simcoe, R.; Stern, D.; Fan, X.; Schlafly, E.; De Rosa, G.; Hennawi, J.; Chambers, K. C.; Greiner, J.; Burgett, W.; Draper, P. W.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E.; Metcalfe, N.; Waters, C.; Wainscoat, R. J.

    2017-11-01

    Quasars are galaxies hosting accreting supermassive black holes; due to their brightness, they are unique probes of the early universe. To date, only a few quasars have been reported at z> 6.5 (big bang). In this work, we present six additional z≳ 6.5 quasars discovered using the Pan-STARRS1 survey. We use a sample of 15 z≳ 6.5 quasars to perform a homogeneous and comprehensive analysis of this highest-redshift quasar population. We report four main results: (1) the majority of z≳ 6.5 quasars show large blueshifts of the broad C IV λ1549 emission line compared to the systemic redshift of the quasars, with a median value ˜3× higher than a quasar sample at z˜ 1; (2) we estimate the quasars’ black hole masses ({M}{BH} ˜ (0.3-5) × 109 M ⊙) via modeling of the Mg II λ2798 emission line and rest-frame UV continuum and find that quasars at high redshift accrete their material (with =0.39) at a rate comparable to a luminosity-matched sample at lower redshift, albeit with significant scatter (0.4 dex); (3) we recover no evolution of the Fe II/Mg II abundance ratio with cosmic time; and (4) we derive near-zone sizes and, together with measurements for z˜ 6 quasars from recent work, confirm a shallow evolution of the decreasing quasar near-zone sizes with redshift. Finally, we present new millimeter observations of the [C II] 158 μm emission line and underlying dust continuum from NOEMA for four quasars and provide new accurate redshifts and [C II]/infrared luminosity estimates. The analysis presented here shows the large range of properties of the most distant quasars.

  2. Dust-deficient Palomar-Green Quasars and the Diversity of AGN Intrinsic IR Emission

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, Jianwei; Rieke, G. H. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Shi, Yong, E-mail: jianwei@email.arizona.edu [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)

    2017-02-01

    To elucidate the intrinsic broadband infrared (IR) emission properties of active galactic nuclei (AGNs), we analyze the spectral energy distributions (SEDs) of 87 z ≲ 0.5 Palomar-Green (PG) quasars. While the Elvis AGN template with a moderate far-IR correction can reasonably match the SEDs of the AGN components in ∼60% of the sample (and is superior to alternatives such as that by Assef), it fails on two quasar populations: (1) hot-dust-deficient (HDD) quasars that show very weak emission thoroughly from the near-IR to the far-IR, and (2) warm-dust-deficient (WDD) quasars that have similar hot dust emission as normal quasars but are relatively faint in the mid- and far-IR. After building composite AGN templates for these dust-deficient quasars, we successfully fit the 0.3–500 μm SEDs of the PG sample with the appropriate AGN template, an infrared template of a star-forming galaxy, and a host galaxy stellar template. 20 HDD and 12 WDD quasars are identified from the SED decomposition, including seven ambiguous cases. Compared with normal quasars, the HDD quasars have AGNs with relatively low Eddington ratios and the fraction of WDD quasars increases with AGN luminosity. Moreover, both the HDD and WDD quasar populations show relatively stronger mid-IR silicate emission. Virtually identical SED properties are also found in some quasars from z = 0.5 to 6. We propose a conceptual model to demonstrate that the observed dust deficiency of quasars can result from a change of structures of the circumnuclear tori that can occur at any cosmic epoch.

  3. Electron lenses for super-colliders

    CERN Document Server

    Shiltsev, Vladimir D

    2016-01-01

    This book provides a comprehensive overview of the operating principles and technology of electron lenses in supercolliders.  Electron lenses are a novel instrument for high energy particle accelerators, particularly for the energy-frontier superconducting hadron colliders, including the Tevatron, RHIC, LHC and future very large hadron colliders.  After reviewing the issues surrounding beam dynamics in supercolliders, the book offers an introduction to the electron lens method and its application.  Further chapters describe the technology behind the electron lenses which have recently been proposed, built and employed for compensation of beam-beam effects and for collimation of high-energy high-intensity beams, for compensation of space-charge effects and several other applications in accelerators. The book will be an invaluable resource for those involved in the design, construction and operation of the next generation of hadron colliders.

  4. Time Delay and Accretion Disk Size Measurements in the Lensed Quasar SBS 0909+532 from Multiwavelength Microlensing Analysis

    Science.gov (United States)

    2013-09-01

    Flagstaff, AZ 86001-8521, USA; hch@nofs.navy.mil, trudy@nofs.navy.mil 4 Facultad de Ciencias , Universidad de Cantabria, Avda. de Los Castros s/n, E-39005...Ray Center award 11700501. The Liverpool Telescope is operated on the island of La Palma by Liverpool John Moores University in the Spanish

  5. Achromatic Cooling Channel with Li Lenses

    Energy Technology Data Exchange (ETDEWEB)

    Balbekov, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2002-04-29

    A linear cooling channel with Li lenses, solenoids, and 201 MHz RF cavities is considered. A special lattice design is used to minimize chromatic aberrations by suppression of several betatron resonances. Transverse emittance of muon beam decreases from 2 mm to 0.5 mm at the channel of about 110 m length. Longitudinal heating is modest, therefore transmission of the channel is rather high: 96% without decay and 90% with decay. Minimal beam emittance achievable by similar channel estimated as about 0.25 mm at surface field of Li lenses 10 T.

  6. Rigid gas permeable lenses and patient management.

    Science.gov (United States)

    Terry, R; Schnider, C; Holden, B A

    1989-01-01

    The introduction of new rigid gas permeable (RGP) contact lens materials provides the practitioner with a number of alternatives for patient management. But whatever the lens materials used, problems related to the lenses, care and maintenance solutions, and patients may arise. This paper examines concerns such as parameter instability, durability of lenses, compatibility of materials and solutions, patient education and compliance, 3 and 9 o'clock staining, corneal distortion, and lid changes. Suggestions are made on ways to avoid or minimize problems related to RGP lens wear.

  7. Modern scleral contact lenses : a review

    OpenAIRE

    van der Worp, Eef; Bornman, Dina; Ferreira, Daniela Lopes; Ribeiro, Miguel Faria; Garcia-Porta, Nery; González-Méijome, José Manuel

    2014-01-01

    Scleral contact lenses (ScCL) have gained renewed interest during the last decade. Originally, they wereprimarily used for severely compromised eyes. Corneal ectasia and exposure conditions were the primaryindications. However, the indication range of ScCL in contact lens practices seems to be expanding, andit now increasingly includes less severe and even non-compromised eyes, too.All lenses that partly or entirely rest on the sclera are included under the name ScCL in this paper;although th...

  8. Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs). II. Discovery of 32 quasars and luminous galaxies at 5.7 < z ≤ 6.8

    Science.gov (United States)

    Matsuoka, Yoshiki; Onoue, Masafusa; Kashikawa, Nobunari; Iwasawa, Kazushi; Strauss, Michael A.; Nagao, Tohru; Imanishi, Masatoshi; Lee, Chien-Hsiu; Akiyama, Masayuki; Asami, Naoko; Bosch, James; Foucaud, Sébastien; Furusawa, Hisanori; Goto, Tomotsugu; Gunn, James E.; Harikane, Yuichi; Ikeda, Hiroyuki; Izumi, Takuma; Kawaguchi, Toshihiro; Kikuta, Satoshi; Kohno, Kotaro; Komiyama, Yutaka; Lupton, Robert H.; Minezaki, Takeo; Miyazaki, Satoshi; Morokuma, Tomoki; Murayama, Hitoshi; Niida, Mana; Nishizawa, Atsushi J.; Oguri, Masamune; Ono, Yoshiaki; Ouchi, Masami; Price, Paul A.; Sameshima, Hiroaki; Schulze, Andreas; Shirakata, Hikari; Silverman, John D.; Sugiyama, Naoshi; Tait, Philip J.; Takada, Masahiro; Takata, Tadafumi; Tanaka, Masayuki; Tang, Ji-Jia; Toba, Yoshiki; Utsumi, Yousuke; Wang, Shiang-Yu

    2018-01-01

    We present spectroscopic identification of 32 new quasars and luminous galaxies discovered at 5.7 galaxies, two [O III] emitters at z ˜ 0.8, and 15 Galactic brown dwarfs. The new quasars have considerably lower luminosity (M1450 ˜ -25 to -22 mag) than most of the previously known high-z quasars. Several of these quasars have luminous (>1043 erg s-1) and narrow (galaxies have extremely high luminosities (M1450 ˜ -24 to -22 mag) compared to other galaxies found at similar redshifts. With the discovery of these new classes of objects, we are opening up new parameter spaces in the high-z Universe. Further survey observations and follow-up studies of the identified objects, including the construction of the quasar luminosity function at z ˜ 6, are ongoing.

  9. Dark Energy Survey Year 1 Results: Methodology and Projections for Joint Analysis of Galaxy Clustering, Galaxy Lensing, and CMB Lensing Two-point Functions

    Energy Technology Data Exchange (ETDEWEB)

    Giannantonio, T.; et al.

    2018-02-14

    Optical imaging surveys measure both the galaxy density and the gravitational lensing-induced shear fields across the sky. Recently, the Dark Energy Survey (DES) collaboration used a joint fit to two-point correlations between these observables to place tight constraints on cosmology (DES Collaboration et al. 2017). In this work, we develop the methodology to extend the DES Collaboration et al. (2017) analysis to include cross-correlations of the optical survey observables with gravitational lensing of the cosmic microwave background (CMB) as measured by the South Pole Telescope (SPT) and Planck. Using simulated analyses, we show how the resulting set of five two-point functions increases the robustness of the cosmological constraints to systematic errors in galaxy lensing shear calibration. Additionally, we show that contamination of the SPT+Planck CMB lensing map by the thermal Sunyaev-Zel'dovich effect is a potentially large source of systematic error for two-point function analyses, but show that it can be reduced to acceptable levels in our analysis by masking clusters of galaxies and imposing angular scale cuts on the two-point functions. The methodology developed here will be applied to the analysis of data from the DES, the SPT, and Planck in a companion work.

  10. NASA Fluid Lensing & MiDAR: Next-Generation Remote Sensing Technologies for Aquatic Remote Sensing

    Science.gov (United States)

    Chirayath, Ved

    2018-01-01

    We present two recent instrument technology developments at NASA, Fluid Lensing and MiDAR, and their application to remote sensing of Earth's aquatic systems. Fluid Lensing is the first remote sensing technology capable of imaging through ocean waves in 3D at sub-cm resolutions. MiDAR is a next-generation active hyperspectral remote sensing and optical communications instrument capable of active fluid lensing. Fluid Lensing has been used to provide 3D multispectral imagery of shallow marine systems from unmanned aerial vehicles (UAVs, or drones), including coral reefs in American Samoa and stromatolite reefs in Hamelin Pool, Western Australia. MiDAR is being deployed on aircraft and underwater remotely operated vehicles (ROVs) to enable a new method for remote sensing of living and nonliving structures in extreme environments. MiDAR images targets with high-intensity narrowband structured optical radiation to measure an objectâ€"TM"s non-linear spectral reflectance, image through fluid interfaces such as ocean waves with active fluid lensing, and simultaneously transmit high-bandwidth data. As an active instrument, MiDAR is capable of remotely sensing reflectance at the centimeter (cm) spatial scale with a signal-to-noise ratio (SNR) multiple orders of magnitude higher than passive airborne and spaceborne remote sensing systems with significantly reduced integration time. This allows for rapid video-frame-rate hyperspectral sensing into the far ultraviolet and VNIR wavelengths. Previously, MiDAR was developed into a TRL 2 laboratory instrument capable of imaging in thirty-two narrowband channels across the VNIR spectrum (400-950nm). Recently, MiDAR UV was raised to TRL4 and expanded to include five ultraviolet bands from 280-400nm, permitting UV remote sensing capabilities in UV A, B, and C bands and enabling mineral identification and stimulated fluorescence measurements of organic proteins and compounds, such as green fluorescent proteins in terrestrial and

  11. High-speed optical signal processing using time lenses

    DEFF Research Database (Denmark)

    Galili, Michael; Hu, Hao; Guan, Pengyu

    2015-01-01

    This paper will discuss time lenses and their broad range of applications. A number of recent demonstrations of complex high-speed optical signal processing using time lenses will be outlined with focus on the operating principle.......This paper will discuss time lenses and their broad range of applications. A number of recent demonstrations of complex high-speed optical signal processing using time lenses will be outlined with focus on the operating principle....

  12. X-ray spectra of PG quasars. I. The continuum from X-rays to infrared

    International Nuclear Information System (INIS)

    Elvis, M.; Green, R.F.; Bechtold, J.; Schmidt, M.; Neugebauer, G.; Kitt Peak National Observatory, Tucson, AZ; Steward Observatory, Tucson, AZ; Palomar Observatory, Pasadena, CA)

    1986-01-01

    Einstein IPC X-ray spectra for a sample of eight optically selected quasars from the Palomar Bright Quasar survey are presented. The quasars have a mean power law energy slope which in five individual cases is inconsistent with the value found in hard X-ray selection criterion rather than luminosity, redshift, or U-B color. New IUE and optical continuum spectra and infrared photometry are presented for these quasars. The data are combined into log vf(v) and log v distributions which support the decomposition of the overall quasar spectrum into a power law plus a superposed optical-UV big bump which may be due to an accretion disk. At least six of the quasars have vf(v)s which are roughly constant between their infrared and X-ray power laws, suggesting a strong link between the two regions. 104 references

  13. A Long-Term Space Astrophysics Research Program. The Evolution of the Quasar Continuum

    Science.gov (United States)

    Elvis, M.

    1998-01-01

    The grant "The Evolution of the Quasar Continuum" resulted in over 53 published referred papers and conference proceedings. The more significant of these papers are listed below, and abstracts are attached. The papers address a wide range of issues involving the evolution of quasars, their electromagnetic emissions, and their environment, from nearby low luminosity Seyfert galaxies to quasars at the highest redshifts. Primarily observational in content the work nonetheless included theoretical studies of quasar accretion disks that attempt to explain the observed time variability of quasars, and the overall 'demographics' of the quasar population. The work carried out under this grant has laid a strong foundation for ongoing and future research with AXAF, HST and other new facilities.

  14. Eight new luminous z ≥ 6 quasars discovered via SED model fitting of VISTA, WISE and Dark Energy Survey Year 1 observations

    Science.gov (United States)

    Reed, S. L.; McMahon, R. G.; Martini, P.; Banerji, M.; Auger, M.; Hewett, P. C.; Koposov, S. E.; Gibbons, S. L. J.; Gonzalez-Solares, E.; Ostrovski, F.; Tie, S. S.; Abdalla, F. B.; Allam, S.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Evrard, A. E.; Finley, D. A.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Melchior, P.; Miller, C. J.; Miquel, R.; Nord, B.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Tucker, D. L.; Walker, A. R.; Wester, W.

    2017-07-01

    We present the discovery and spectroscopic confirmation with the European Southern Observatory New Technology Telescope (NTT) and Gemini South telescopes of eight new, and the rediscovery of two previously known, 6.0 energy distribution (SED) model fitting to photometric data from Dark Energy Survey (g, r, I, z, Y), VISTA Hemisphere Survey (J, H, K) and Wide-field Infrared Survey Explorer (W1, W2). The photometric data were fitted with a grid of quasar model SEDs with redshift-dependent Ly α forest absorption and a range of intrinsic reddening as well as a series of low-mass cool star models. Candidates were ranked using an SED-model-based χ2-statistic, which is extendable to other future imaging surveys (e.g. LSST and Euclid). Our spectral confirmation success rate is 100 per cent without the need for follow-up photometric observations as used in other studies of this type. Combined with automatic removal of the main types of non-astrophysical contaminants, the method allows large data sets to be processed without human intervention and without being overrun by spurious false candidates. We also present a robust parametric redshift estimator that gives comparable accuracy to Mg II and CO-based redshift estimators. We find two z ˜ 6.2 quasars with H II near zone sizes ≤3 proper Mpc that could indicate that these quasars may be young with ages ≲ 106-107 years or lie in over dense regions of the IGM. The z = 6.5 quasar VDES J0224-4711 has JAB = 19.75 and is the second most luminous quasar known with z ≥ 6.5.

  15. Weak Lensing by Galaxy Clusters: from Pixels to Cosmology

    International Nuclear Information System (INIS)

    Gruen, Daniel

    2015-01-01

    The story of the origin and evolution of our Universe is told, equivalently, by space-time itself and by the structures that grow inside of it. Clusters of galaxies are the frontier of bottom-up structure formation. They are the most massive objects to have collapsed at the present epoch. By that virtue, their abundance and structural parameters are highly sensitive to the composition and evolution of the Universe. The most common probe of cluster cosmology, abundance, uses samples of clusters selected by some observable. Applying a mass-observable relation (MOR), cosmological parameters can be constrained by comparing the sample to predicted cluster abundances as a function of observable and redshift. Arguably, however, cluster probes have not yet entered the era of per cent level precision cosmology. The primary reason for this is our imperfect understanding of the MORs. The overall normalization, the slope of mass vs. observable, the redshift evolution, and the degree and correlation of intrinsic scatters of observables at fixed mass have to be constrained for interpreting abundances correctly. Mass measurement of clusters by means of the differential deflection of light from background sources in their gravitational field, i.e. weak lensing, is a powerful approach for achieving this. This thesis presents new methods for and scientific results of weak lensing measurements of clusters of galaxies. The former include, on the data reduction side, (i) the correction of CCD images for non-linear effects due to the electric fields of accumulated charges and (ii) a method for masking artifact features in sets of overlapping images of the sky by comparison to the median image. Also, (iii) I develop a method for the selection of background galaxy samples based on their color and apparent magnitude that includes a new correction for contamination with cluster member galaxies. The main scientific results are the following. (i) For the Hubble Frontier Field cluster RXC J

  16. Weak Lensing by Galaxy Clusters: from Pixels to Cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Gruen, Daniel [Ludwig Maximilian Univ., Munich (Germany)

    2015-03-11

    The story of the origin and evolution of our Universe is told, equivalently, by space-time itself and by the structures that grow inside of it. Clusters of galaxies are the frontier of bottom-up structure formation. They are the most massive objects to have collapsed at the present epoch. By that virtue, their abundance and structural parameters are highly sensitive to the composition and evolution of the Universe. The most common probe of cluster cosmology, abundance, uses samples of clusters selected by some observable. Applying a mass-observable relation (MOR), cosmological parameters can be constrained by comparing the sample to predicted cluster abundances as a function of observable and redshift. Arguably, however, cluster probes have not yet entered the era of per cent level precision cosmology. The primary reason for this is our imperfect understanding of the MORs. The overall normalization, the slope of mass vs. observable, the redshift evolution, and the degree and correlation of intrinsic scatters of observables at fixed mass have to be constrained for interpreting abundances correctly. Mass measurement of clusters by means of the differential deflection of light from background sources in their gravitational field, i.e. weak lensing, is a powerful approach for achieving this. This thesis presents new methods for and scientific results of weak lensing measurements of clusters of galaxies. The former include, on the data reduction side, (i) the correction of CCD images for non-linear effects due to the electric fields of accumulated charges and (ii) a method for masking artifact features in sets of overlapping images of the sky by comparison to the median image. Also, (iii) I develop a method for the selection of background galaxy samples based on their color and apparent magnitude that includes a new correction for contamination with cluster member galaxies. The main scientific results are the following. (i) For the Hubble Frontier Field cluster RXC J

  17. Weak deflection gravitational lensing for photons coupled to Weyl tensor in a Schwarzschild black hole

    Science.gov (United States)

    Cao, Wei-Guang; Xie, Yi

    2018-03-01

    Beyond the Einstein-Maxwell model, electromagnetic field might couple with gravitational field through the Weyl tensor. In order to provide one of the missing puzzles of the whole physical picture, we investigate weak deflection lensing for photons coupled to the Weyl tensor in a Schwarzschild black hole under a unified framework that is valid for its two possible polarizations. We obtain its coordinate-independent expressions for all observables of the geometric optics lensing up to the second order in the terms of ɛ which is the ratio of the angular gravitational radius to angular Einstein radius of the lens. These observables include bending angle, image position, magnification, centroid and time delay. The contributions of such a coupling on some astrophysical scenarios are also studied. We find that, in the cases of weak deflection lensing on a star orbiting the Galactic Center Sgr A*, Galactic microlensing on a star in the bulge and astrometric microlensing by a nearby object, these effects are beyond the current limits of technology. However, measuring the variation of the total flux of two weak deflection lensing images caused by the Sgr A* might be a promising way for testing such a coupling in the future.

  18. Coatings and Tints of Spectacle Lenses

    Directory of Open Access Journals (Sweden)

    H. Zeki Büyükyıldız

    2012-10-01

    Full Text Available Spectacle lenses are made of mineral or organic (plastic materials. Various coatings and tints are applied to the spectacle lenses according to the characteristic of the lens material, and for the personal needs and cosmetic purpose. The coatings may be classified in seven groups: 1 Anti-reflection coatings, 2 Hard coatings, 3 Clean coat, 4 Mirror coatings, 5 Color tint coating (one of coloring processes, 6 Photochromic coating (one of photochromic processes, and 7 Anti-fog coatings. Anti-reflection coatings reduce unwanted reflections from the lens surfaces and increase light transmission. Hard coatings are applied for preventing the plastic lens surface from scratches and abrasion. Hard coatings are not required for the mineral lenses due to their hardness. Clean coat makes the lens surface smooth and hydrophobic. Thus, it prevents the adherence of dust, tarnish, and dirt particles on the lens surface. Mirror coatings are applied onto the sunglasses for cosmetic purpose. Color tinted and photochromic lenses are used for sun protection and absorption of the harmful UV radiations. Anti-fog coatings make the lens surface hydrophilic and prevent the coalescence of tiny water droplets on the lens surface that reduces light transmission. (Turk J Ophthalmol 2012; 42: 359-69

  19. Optical aberrations in a gas lenses

    CSIR Research Space (South Africa)

    Mafusire, C

    2010-08-01

    Full Text Available Gas lenses work on the basis that aerodynamic media can be used to generate a graded refractive index distribution which can be used to focus a laser beam. Examples of these are the spinning pipe gas lens (SPGL) and the flame lens (FL). The SPGL...

  20. GRAVITATIONAL LENSES AND UNCONVENTIONAL GRAVITY THEORIES

    NARCIS (Netherlands)

    BEKENSTEIN, JD; SANDERS, RH

    1994-01-01

    We study gravitational lensing by clusters of galaxies in the context of the generic class of unconventional gravity theories which describe gravity in terms of a metric and one or more scalar fields (called here scalar-tensor theories). We conclude that, if the scalar fields have positive energy,

  1. Modern scleral lenses part II: patient satisfaction.

    NARCIS (Netherlands)

    Visser, E.S.; Visser, R.; Lier, H.J.J. van; Otten, H.M.

    2007-01-01

    PURPOSE: To evaluate the subjective performance of modern scleral lenses in patients of the clinics of Visser Contact Lens Practice. METHODS: In this cross-sectional survey, all the necessary data were collected at the first follow-up visit during the 5-month study period. In accordance with the

  2. Studying dark matter haloes with weak lensing

    NARCIS (Netherlands)

    Velander, Malin Barbro Margareta

    2012-01-01

    Our Universe is comprised not only of normal matter but also of unknown components: dark matter and dark energy. This Thesis recounts studies of dark matter haloes, using a technique known as weak gravitational lensing, in order to learn more about the nature of these dark components. The haloes

  3. Quantum Spin Lenses in Atomic Arrays

    Directory of Open Access Journals (Sweden)

    A. W. Glaetzle

    2017-09-01

    Full Text Available We propose and discuss quantum spin lenses, where quantum states of delocalized spin excitations in an atomic medium are focused in space in a coherent quantum process down to (essentially single atoms. These can be employed to create controlled interactions in a quantum light-matter interface, where photonic qubits stored in an atomic ensemble are mapped to a quantum register represented by single atoms. We propose Hamiltonians for quantum spin lenses as inhomogeneous spin models on lattices, which can be realized with Rydberg atoms in 1D, 2D, and 3D, and with strings of trapped ions. We discuss both linear and nonlinear quantum spin lenses: in a nonlinear lens, repulsive spin-spin interactions lead to focusing dynamics conditional to the number of spin excitations. This allows the mapping of quantum superpositions of delocalized spin excitations to superpositions of spatial spin patterns, which can be addressed by light fields and manipulated. Finally, we propose multifocal quantum spin lenses as a way to generate and distribute entanglement between distant atoms in an atomic lattice array.

  4. The Distance of Quasar outflows: VLT/X-SHOOTER Survey

    Science.gov (United States)

    Xu, Xinfeng; Arav, Nahum; Reid Miller, Timothy

    2018-01-01

    We observed 13 BAL and mini-BAL quasars using the VLT X-Shooter spectrograph. In 7 of these we find outflow troughs from S IV and S IV*. Using collisional excitation models of the measured S IV and S IV* column densities, we determine the electron number density (ne) of the outflow; and combining this value of ne with photoionization simulations, we derive the distance of each outflow from the central source. We find that 6 out of 8 outflows (one quasar shows two such outflows) are located at a distances of more than 100 pc from the central source. The spectral region covering the S IV and S IV* troughs was not observed in our targets prior to the VLT observations; and therefore this sample is unbiased towards a specific distance scale. Thus, these results are representitive (albeit in a small sample) for the general population of the high ionization BAL and mini-BAL outflows.

  5. Observational Constraints on Quasar Black Hole Mass Distributions, Eddington Ratio Distributions, and Lifetimes

    DEFF Research Database (Denmark)

    Kelly, Brandon C.; Vestergaard, Marianne; Fan, X.

    2010-01-01

    I will present the black hole mass function (BHMF) of broad line quasars in the SDSS DR3. We employ a powerful Bayesian statistical technique that corrects for incompleteness and the statistical uncertainty in the mass estimates. We find evidence that the most massive black hole appeared as quasars...... earlier in the universe, and that most quasars are not radiating at or near the Eddington limit. I will also present constraints on the quasar lifetime and maximum black hole mass, derived from the mass functions....

  6. Mean and Extreme Radio Properties of Quasars and the Origin of Radio Emission

    Science.gov (United States)

    Richards, Gordon T.; Kratzer, R.

    2014-01-01

    We explore the evolution of the fraction of radio loud quasars and the mean radio properties of quasars. Although any quasar has only a ~10% chance of being radio loud and the average quasar has a radio luminosity of ~4x10^30 ergs/s/Hz, these properties are strong functions of not only luminosity, redshift, black hole mass, and accretion rate, but also the strength of the accretion disk wind (as characterized by CIV emission line properties). Quasars with higher optical luminosity and/or lower redshift have a higher than average probability of being radio loud, but their median radio luminosity (relative to optical) is much lower than average. We find that, while radio properties of quasars generally cannot be predicted from their optical properties, objects where one expects a strong radiation line driven wind (based on emission line features) have virtually no chance of being radio loud. The redder quasars are in the optical, the more radio flux (relative to optical) they have; this trend holds even for quasars that are not expected to be significantly dust reddened/extincted in the optical. Finally, we consider the radio properties of quasars in the framework of models which describe the radio loud extrema as being due to particularly high spin resulting from second generation mergers and in the context of star formation at lower levels of radio flux. This work was supported by NSF AAG grant 1108798.

  7. AN INFRARED EXCESS IDENTIFIED IN RADIO-LOUD BROAD ABSORPTION LINE QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    DiPompeo, M. A.; Runnoe, J. C.; Brotherton, M. S.; Myers, A. D. [Department of Physics and Astronomy 3905, University of Wyoming, 1000 East University, Laramie, WY 82071 (United States)

    2013-01-10

    If broad absorption line (BAL) quasars represent a high-covering-fraction evolutionary state (even if this is not the sole factor governing the presence of BALs), it is expected that they should show an excess of mid-infrared radiation compared to normal quasars. Some previous studies have suggested that this is not the case. We perform the first analysis of the IR properties of radio-loud BAL quasars, using IR data from WISE and optical (rest-frame ultraviolet) data from SDSS, and compare the BAL quasar sample with a well-matched sample of unabsorbed quasars. We find a statistically significant excess in the mid- to near-infrared luminosities of BAL quasars, particularly at rest-frame wavelengths of 1.5 and 4 {mu}m. Our sample was previously used to show that BALs are observed along many lines of sight toward quasars, but with an overabundance of more edge-on sources, suggesting that orientation factors into the appearance of BALs. The evidence here-of a difference in IR luminosities between BAL quasars and unabsorbed quasars-can be ascribed to evolution. This suggests that a merging of the current BAL paradigms is needed to fully describe the class.

  8. Quasars, pulsars and black holes (a bibliography with abstracts). Report for 1964--Feb 77

    International Nuclear Information System (INIS)

    Grooms, D.W.

    1977-04-01

    Astronomical surveys of quasars, pulsars, and black holes are cited. Computer simulations, mathematical models and other methods used for the verification of hypotheses about astrophysical processes are included

  9. Hydrogeochemistry and sustainability of freshwater lenses in the Samborombón Bay wetland, Argentina

    Science.gov (United States)

    Carol, Eleonora; García, Leandro; Borzi, Guido

    2015-07-01

    Freshwater lenses constitute one of the most vulnerable aquifer systems in the world, especially in coastal wetland areas. The objectives of this work are to determine the hydrogeochemical processes that regulate the quality of the freshwater lenses in a sector of the Samborombón Bay wetland, and to assess their sustainability as regards the development of mining activities. A hydrochemical evaluation of groundwater was undertaken on the basis of major ion, trace and environmental isotope data. The deterioration in time of the freshwater lenses in relation to mining was studied on the basis of the analysis of topographic charts, aerial photography and satellite imaging. The results obtained show that the CO2(g) that dissolves in the rainwater infiltrating and recharging the lenses is converted to HCO3-, which dissolves the carbonate facies of the sediment. The exchange of Ca2+ for Na+, the incongruent dissolution of basic plagioclase and the reprecipitation of carbonate produce a change of the Ca-HCO3 facies to Na-HCO3. In depth, the pH increases with the groundwater flow, and the volcanic glassis dissolved, releasing F-and As. Besides, the evapotranspiration processes cause the saline content to increase slightly. As the only sources of drinking water in the region are the freshwater lenses occurring in the shell ridges, mining operations have deteriorated this resource and decreased the freshwater reserves in the lenses. The study undertaken made it possible to develop some preservation, remediation and management guidelines aimed at the sustainability of the water resources in the region.

  10. Stellar Populations of Highly Magnified Lensed Galaxies Young Starburst at Z to Approximately 2

    Science.gov (United States)

    Wuyts, Eva; Rigby, Jane R.; Gladders, Michael D.; Gilbank, David G.; Sharon, Keren; Gralla, Megan B.; Bayliss, Matthew B.

    2011-01-01

    We present a comprehensive analysis of the rest-frame UV to near-IR spectral energy distributions and rest-frame optical spectra of four of the brightest gravitationally lensed galaxies in the literature: RCSGA 032727-132609 at z = 170, MS1512-cB58 at z = 2.73, SGAS J152745.1+065219 at z = 2.76 and SGAS J12265L3+215220 at z = 2.92. This includes new Spitzer imaging for RCSGA0327 as well as new spectra, near-IR imaging and Spitzer imaging for SGAS1527 and SGAS1226. Lensing magnifications of 3-4 magnitudes allow a detailed study of the stellar populations and physical conditions. We compare star formation rates as measured from the SED fit, the Ha and [O II] .(lambda)3727 emission lines, and the UV+IR bolometric luminosity where 24micron photometry is available. The SFR estimate from the SED fit is consistently higher than the other indicators, which suggests that the Calzetti dust extinction law used in the SED fitting is too flat for young star-forming galaxies at z approx. 2. Our analysis finds similar stellar population parameters for all four lensed galaxies: stellar masses 3 - 7 x 10(exp 9) Stellar mass, young ages approx. 100 Myr, little dust content E(B - V)=0.10-0.25, and star formation rates around 20- 100 Stellar mass/y. Compared to typical values for the galaxy population at z approx. 2, this suggests we are looking at newly formed, starbursting systems that have only recently started the build-up of stellar mass. These results constitute the first detailed, uniform analysis of a sample of the growing number of strongly lensed galaxies known at z approx. 2. Subject headings: galaxies: high-redshift, strong gravitational lensing, infrared: galaxies

  11. Black hole feedback in the luminous quasar PDS 456

    DEFF Research Database (Denmark)

    Nardini, E.; Reeves, J. N.; Gofford, J.

    2015-01-01

    The evolution of galaxies is connected to the growth of supermassive black holes in their centers. During the quasar phase, a huge luminosity is released as matter falls onto the black hole, and radiation-driven winds can transfer most of this energy back to the host galaxy. Over five different...... gas. The outflow’s kinetic power larger than 1046 ergs per second is enough to provide the feedback required by models of black hole and host galaxy coevolution....

  12. Using Quasars as Standard Candles for Studying Dark Energy

    DEFF Research Database (Denmark)

    Denney, Kelly D.; Vestergaard, Marianne; Watson, D.

    2012-01-01

    , which relies on the technique of reverberation mapping to measure time delays between the quasar continuum and emission line variability signatures. Measuring this time delay effectively measures the radius between the central source and the emission-line gas. The emission line gas is photo...... forecasts demonstrating the power this method can have over, e.g., SNe, to constrain dark energy parameters by extending to higher redshifts than can currently be probed with any other technique....

  13. An Introduction to 50 Years of Research on Quasars

    Science.gov (United States)

    Marziani, Paola; Sulentic, Jack W.; D'Onofrio, Mauro

    We are approaching the 50th anniversary of the discovery of quasars. Those old enough to have been cognizant of astronomy in 1962-1963 can remember the sense of excitement connected with this finding. There was talk of a major new constituent of the universe. The excitement of the discovery was palpable even to one of us (the most senior of the editors) who was then a high school teenager.

  14. Two phases of the interstellar medium in nebulas around quasars

    Energy Technology Data Exchange (ETDEWEB)

    Zentsova, A.S.

    1988-05-01

    It is shown that for the interstellar gas in nebulas surrounding quasars the condition of thermal instability is satisfied, and the gas must separate into two phases: cold (T /approx equal/ 10/sup 4//degree/K) dense clouds and a hot (T /approx equal/ 10/sup 8//degree/K) rarefied medium. The density, size, and mass of the clouds formed by the development of the thermal instability are estimated.

  15. Power Profiles and In Vitro Optical Quality of Scleral Contact Lenses: Effect of the Aperture and Power.

    Science.gov (United States)

    Domínguez-Vicent, Alberto; Esteve-Taboada, Jose Juan; Recchioni, Alberto; Brautaset, Rune

    2017-01-13

    To assess the power profile and in vitro optical quality of scleral contact lenses with different powers as a function of the optical aperture. The mini and semiscleral contact lenses (Procornea) were measured for five powers per design. The NIMO TR-1504 (Lambda-X) was used to assess the power profile and Zernike coefficients of each contact lens. Ten measurements per lens were taken at 3- and 6-mm apertures. Furthermore, the optical quality of each lens was described in Zernike coefficients, modulation transfer function, and point spread function (PSF). A convolution of each lens PSF with an eye-chart image was also computed. The optical power fluctuated less than 0.5 diopters (D) along the optical zone of each lens. However, the optical power obtained for some lenses did not match with its corresponding nominal one, the maximum difference being 0.5 D. In optical quality, small differences were obtained among all lenses within the same design. Although significant differences were obtained among lenses (Pscleral lens. Additionally, the optical quality of both lenses has showed to be independent of the lens power within the same aperture.

  16. Processes for manufacturing multifocal diffractive-refractive intraocular lenses

    Science.gov (United States)

    Iskakov, I. A.

    2017-09-01

    Manufacturing methods and design features of modern diffractive-refractive intraocular lenses are discussed. The implantation of multifocal intraocular lenses is the most optimal method of restoring the accommodative ability of the eye after removal of the natural lens. Diffractive-refractive intraocular lenses are the most widely used implantable multifocal lenses worldwide. Existing methods for manufacturing such lenses implement various design solutions to provide the best vision function after surgery. The wide variety of available diffractive-refractive intraocular lens designs reflects the demand for this method of vision correction in clinical practice and the importance of further applied research and development of new technologies for designing improved lens models.

  17. An automated algorithm for determining photometric redshifts of quasars

    Science.gov (United States)

    Wang, Dan; Zhang, Yanxia; Zhao, Yongheng

    2010-07-01

    We employ k-nearest neighbor algorithm (KNN) for photometric redshift measurement of quasars with the Fifth Data Release (DR5) of the Sloan Digital Sky Survey (SDSS). KNN is an instance learning algorithm where the result of new instance query is predicted based on the closest training samples. The regressor do not use any model to fit and only based on memory. Given a query quasar, we find the known quasars or (training points) closest to the query point, whose redshift value is simply assigned to be the average of the values of its k nearest neighbors. Three kinds of different colors (PSF, Model or Fiber) and spectral redshifts are used as input parameters, separatively. The combination of the three kinds of colors is also taken as input. The experimental results indicate that the best input pattern is PSF + Model + Fiber colors in all experiments. With this pattern, 59.24%, 77.34% and 84.68% of photometric redshifts are obtained within ▵z colors as input, the model colors achieve the best performance. However, when using two kinds of colors, the best result is achieved by PSF + Fiber colors. In addition, nearest neighbor method (k = 1) shows its superiority compared to KNN (k ≠ 1) for the given sample.

  18. Optical spectral properties of active galactic nuclei and quasars

    International Nuclear Information System (INIS)

    Yee, H.K.C.

    1981-01-01

    Four separate investigations dealing with the properties of optical continuum and emission-lines of active galactic nuclei (AGN) and quasars are presented. Multichannel scans of 3CR radio galaxies are decomposed by using a two-component model-an elliptical galaxy and a power-law nonthermal component. It is found that there is a strong correlation between the luminosity of the power-law component and the strength of the Balmer emission-lines. In most cases, by extrapolating to the Lyman continuum, the power-law models derived provide enough ionizing radiation to account for the Balmer line strengths. Extending the study of radio galaxies to include Seyfert galaxies and quasars, it is found that there is a strong continuity between broad-line AGN's and quasars in terms of similarities in the correlations between line luminosities and nonthermal continuum luminosity. Next, a study of the variability of absolute optical energy distribution and emission-lines of the N-galaxies 3C382 and 3C390.3 is made. Lastly, a preliminary study of surface photometry of Markarian Seyfert galaxies are presented. It is found that the properties of the underlying galaxies such as scale-length and surface brightness of the disk, color, and total brightness, do not depart systematically from those of luminous normal spiral galaxies

  19. Relativistic beaming and orientation effects in core-dominated quasars

    International Nuclear Information System (INIS)

    Ubachukwu, A.A.; Chukwude, A.E.

    2002-07-01

    In this paper, we investigate the relativistic beaming effects in a well-defined sample of core- dominated quasars using the correlation between the relative prominence of the core with respect to the extended emission (defined as the ratio of the core- to the lobe- flux density measured in the rest frame of the source) and the projected linear size as an indicator of relativistic beaming and source orientation. Based on the orientation-dependent relativistic beaming and unification paradigm for high luminosity sources in which the Fanaroff-Riley class-ll radio galaxies form the unbeamed parent population of both the lobe- and core-dominated quasars which are expected to lie at successively smaller angles to the line of sight, we find that the flows in the cores of these core-dominated quasars are highly relativistic, with optimum bulk Lorentz factor, γ opt ∼6-16, and also highly anisotropic, with an average viewing angle, ∼ 9 deg. - 16 deg. Furthermore, the largest boosting occurs within a critical cone angle of ∼ 4 deg. - 10 deg. The results suggest that relativistic bulk flow appears to extend to kilo-parsec scales in these sources. (author)

  20. A Gaia oriented analysis of a large sample of quasars

    Science.gov (United States)

    Andrei, A. H.; Assafin, M.; Barache, C.; Bouquillon, S.; Bourda, G.; Camargo, J. I. B.; le Campion, J.-F.; Charlot, P.; Gontier, A.-M.; Lambert, S.; Osório, J. J. Pereira; da Silva Neto, D. N.; Souchay, J.; Martins, R. Vieira

    2008-07-01

    Gaia photometric capabilities should distinguish quasars to a high degree of certainty. With this, they should also be able to deliver a clean sample of quasars with a negligible trace of stellar contaminants. However, a purely photometric sample could miss a non negligible percentage of ICRF sources counterparts - and this interface is required to align with the ICRS and de-rotate the GCRF (Gaia Celestial Reference Frame), on grounds of continuity. To prepare a minimum clean sample forming the initial quasar catalogue for the Gaia mission, an all sky ensemble was formed containing 128,257 candidates. Among them there is at least one redshift determination for 98.75%, and at least one magnitude determination for 99.20% of the targets. The sources were collected from different optical and radio lists. We analyze the redshift, magnitude, and color distributions, their relationships, as well as their degree of completeness. Complementary, the candidate sources enable to form an optical representation of the ICRS from first principles, namely, kinematically non-rotating with respect to the ensemble of distant extragalactic objects, aligned to the mean equator and dynamical equinox of J2000, and realized by a list of adopted coordinates of extragalactic sources.

  1. [Galaxy/quasar classification based on nearest neighbor method].

    Science.gov (United States)

    Li, Xiang-Ru; Lu, Yu; Zhou, Jian-Ming; Wang, Yong-Jun

    2011-09-01

    With the wide application of high-quality CCD in celestial spectrum imagery and the implementation of many large sky survey programs (e. g., Sloan Digital Sky Survey (SDSS), Two-degree-Field Galaxy Redshift Survey (2dF), Spectroscopic Survey Telescope (SST), Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) program and Large Synoptic Survey Telescope (LSST) program, etc.), celestial observational data are coming into the world like torrential rain. Therefore, to utilize them effectively and fully, research on automated processing methods for celestial data is imperative. In the present work, we investigated how to recognizing galaxies and quasars from spectra based on nearest neighbor method. Galaxies and quasars are extragalactic objects, they are far away from earth, and their spectra are usually contaminated by various noise. Therefore, it is a typical problem to recognize these two types of spectra in automatic spectra classification. Furthermore, the utilized method, nearest neighbor, is one of the most typical, classic, mature algorithms in pattern recognition and data mining, and often is used as a benchmark in developing novel algorithm. For applicability in practice, it is shown that the recognition ratio of nearest neighbor method (NN) is comparable to the best results reported in the literature based on more complicated methods, and the superiority of NN is that this method does not need to be trained, which is useful in incremental learning and parallel computation in mass spectral data processing. In conclusion, the results in this work are helpful for studying galaxies and quasars spectra classification.

  2. Monitoring the variability of intrinsic absorption lines in quasar spectra , ,

    Energy Technology Data Exchange (ETDEWEB)

    Misawa, Toru [School of General Education, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Charlton, Jane C.; Eracleous, Michael, E-mail: misawatr@shinshu-u.ac.jp [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2014-09-01

    We have monitored 12 intrinsic narrow absorption lines (NALs) in five quasars and seven mini-broad absorption lines (mini-BALs) in six quasars for a period of 4-12 yr (1-3.5 yr in the quasar rest-frame). We present the observational data and the conclusions that follow immediately from them, as a prelude to a more detailed analysis. We found clear variability in the equivalent widths (EWs) of the mini-BAL systems but no easily discernible changes in their profiles. We did not detect any variability in the NAL systems or in narrow components that are often located at the center of mini-BAL profiles. Variations in mini-BAL EWs are larger at longer time intervals, reminiscent of the trend seen in variable BALs. If we assume that the observed variations result from changes in the ionization state of the mini-BAL gas, we infer lower limits to the gas density ∼10{sup 3}-10{sup 5} cm{sup –3} and upper limits on the distance of the absorbers from the central engine of the order of a few kiloparsecs. Motivated by the observed variability properties, we suggest that mini-BALs can vary because of fluctuations of the ionizing continuum or changes in partial coverage while NALs can vary primarily because of changes in partial coverage.

  3. Relativistic beaming and orientation effects in core-dominated quasars

    CERN Document Server

    Ubachukwu, A A

    2002-01-01

    In this paper, we investigate the relativistic beaming effects in a well-defined sample of core-dominated quasars using the correlation between the relative prominence of the core with respect to the extended emission (defined as the ratio of the core- to the lobe- flux density measured in the rest frame of the source) and the projected linear size as an indicator of relativistic beaming and source orientation. Based on the orientation-dependent relativistic beaming and unification paradigm for high luminosity sources in which the Fanaroff-Riley class-II radio galaxies form the unbeamed parent population of both the lobe- and coredominated quasars which are expected to lie at successively smaller angles to the line of sight, we find that the flows in the cores of these coredominated quasars are highly relativistic, with optimum bulk Lorentz factor, $\\gamma_{opt}\\sim6-16$, and also highly anisotropic, with an average viewing angle, $\\sim9^0-16^0$. Furthermore, the largest boosting occurs within a critical cone...

  4. VizieR Online Data Catalog: LAMOST quasar survey: quasar properties from the DR1 (Ai+, 2016)

    Science.gov (United States)

    Ai, Y. L.; Wu, X.-B.; Yang, J.; Yang, Q.; Wang, F.; Guo, R.; Zuo, W.; Dong, X.; Zhang, Y.-X.; Yuan, H.-L.; Song, Y.-H.; Wang, J.; Dong, X.; Yang, M.; Wu, H.; Shen, S.-Y.; Shi, J.-R.; He, B.-L.; Lei, Y.-J.; Li, Y.-B.; Luo, A.-L.; Zhao, Y.-H.; Zhang, H.-T.

    2018-03-01

    LAMOST began a pilot survey in 2011 October and a regular survey in 2012 September. The regular survey, carried out over five to six years, has two major components: the LAMOST Experiment for Galactic Understanding and Exploration (LEGUE) and the LAMOST Extragalactic Survey (LEGAS; Zhao et al. 2012RAA....12..723Z). LEGAS only uses a small part of the available observing time due to the limitations of the LAMOST site, especially the bright sky background and poor seeing. The first data release (DR1) contains spectra taken before 2013 June (Luo et al. 2015, Cat. V/146). In this paper we present the results of the quasar survey from LEGAS. LAMOST LEGAS spectroscopic observations are taken in a series of at least three 30 minute exposures. There are 70290 quasar candidates observed, with 82625 spectra in DR1. (2 data files).

  5. X-ray lenses with large aperture; Roentgenlinsen mit grosser Apertur

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Markus

    2010-07-01

    Up to now, most X-ray imaging setups are based on absorption contrast imaging. There is a demand for focused X-rays in many X-ray analysis applications, either to increase the resolution of an imaging system, or, to reduce the time effort of an experiment through higher photon flux. For photon energies higher than 15 keV refractive X-ray optics are more efficient in comparison to non-refractive X-ray optics. The aim of this work was to develop X-ray lenses with large apertures and high transparency. By increasing the number of refracting surfaces while removing unnecessary lens material such lenses have been developed. Utilizing this approach the overall beam deflection angle is large with respect to the lens material it propagates through and so the transparency of the lens is increased. Within this work, X-ray lenses consisting of several thousands of prisms with an edge length in the range of micrometers have been developed and fabricated by deep X-ray lithography. Deep X-ray lithography enables high precision microstrucures with smooth sidewalls and large aspect ratios. The aperture of high-transparency X-ray lenses made this way is greater than 1 mm. They are suitable for photon energies in the range of 8 keV to 24 keV and offer a focal width of smaller than 10 {mu}m at a transparency of around 40%. Furthermore, rolled X-ray lenses have been developed, that are made out of a microstructured polyimide film, which is cut according to the requirements regarding focal length and photon energy. The microstructured film is fabricated by molding, using an anisotropically etched silicon wafer as molding tool. Its mean roughness is in the range of nanometers. The film features prismatic structures, its surface topology is similar to an asparagus field. The measured diameter of the point focus was 18 {mu}m to 31 {mu}m, the calculated opticla efficiency was 37%. Future work will concentrate on increasing the aspect ratio of Prism Lenses and on increasing the rolling

  6. DISCLOSING THE RADIO LOUDNESS DISTRIBUTION DICHOTOMY IN QUASARS: AN UNBIASED MONTE CARLO APPROACH APPLIED TO THE SDSS-FIRST QUASAR SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Balokovic, M. [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Smolcic, V. [Argelander-Institut fuer Astronomie, Auf dem Hugel 71, D-53121 Bonn (Germany); Ivezic, Z. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Zamorani, G. [INAF-Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Schinnerer, E. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Kelly, B. C. [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106 (United States)

    2012-11-01

    We investigate the dichotomy in the radio loudness distribution of quasars by modeling their radio emission and various selection effects using a Monte Carlo approach. The existence of two physically distinct quasar populations, the radio-loud and radio-quiet quasars, is controversial and over the last decade a bimodal distribution of radio loudness of quasars has been both affirmed and disputed. We model the quasar radio luminosity distribution with simple unimodal and bimodal distribution functions. The resulting simulated samples are compared to a fiducial sample of 8300 quasars drawn from the SDSS DR7 Quasar Catalog and combined with radio observations from the FIRST survey. Our results indicate that the SDSS-FIRST sample is best described by a radio loudness distribution which consists of two components, with (12 {+-} 1)% of sources in the radio-loud component. On the other hand, the evidence for a local minimum in the loudness distribution (bimodality) is not strong and we find that previous claims for its existence were probably affected by the incompleteness of the FIRST survey close to its faint limit. We also investigate the redshift and luminosity dependence of the radio loudness distribution and find tentative evidence that at high redshift radio-loud quasars were rarer, on average louder, and exhibited a smaller range in radio loudness. In agreement with other recent work, we conclude that the SDSS-FIRST sample strongly suggests that the radio loudness distribution of quasars is not a universal function, and that more complex models than presented here are needed to fully explain available observations.

  7. Extended Emission-Line Regions: Remnants of Quasar Superwinds?

    Science.gov (United States)

    Fu, Hai; Stockton, Alan

    2009-01-01

    We give an overview of our recent integral-field-unit spectroscopy of luminous extended emission-line regions (EELRs) around low-redshift quasars, including new observations of five fields. Previous work has shown that the most luminous EELRs are found almost exclusively around steep-spectrum radio-loud quasars, with apparently disordered global velocity fields, and little, if any, morphological correlation with either the host galaxy or the radio structure. Our new observations confirm and expand these results. The EELRs often show some clouds with velocities exceeding 500 km s-1, ranging up to 1100 km s-1, but the velocity dispersions, with few exceptions, are in the 30-100 km s-1 range. Emission-line ratios show that the EELRs are clearly photoionized by the quasars. Masses of the EELRs range up to 1010Msun. Essentially all of the EELRs show relatively low metallicities, and they are associated with quasars that, in contrast to most, show similarly low metallicities in their broad-line regions. The two objects in our sample that do not have classical double-lobed radio morphologies (3C 48, with a compact-steep-spectrum source; Mrk 1014, radio quiet, but with a weak compact-steep-spectrum source) are the only ones that appear to have recent star formation. While some of the less luminous EELRs may have other origins, the most likely explanation for those in our sample is that they are examples of gas swept out of the host galaxy by a large-solid-angle blast wave accompanying the production of the radio jets. The triggering of the quasar activity is almost certainly the result of the merger of a gas-rich galaxy with a massive, gas-poor galaxy hosting the supermassive black hole. Based in part on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the

  8. What makes red quasars red?. Observational evidence for dust extinction from line ratio analysis

    Science.gov (United States)

    Kim, Dohyeong; Im, Myungshin

    2018-02-01

    Red quasars are very red in the optical through near-infrared (NIR) wavelengths, which is possibly due to dust extinction in their host galaxies as expected in a scenario in which red quasars are an intermediate population between merger-driven star-forming galaxies and unobscured type 1 quasars. However, alternative mechanisms also exist to explain their red colors: (i) an intrinsically red continuum; (ii) an unusual high covering factor of the hot dust component, that is, CFHD = LHD/Lbol, where the LHD is the luminosity from the hot dust component and the Lbol is the bolometric luminosity; and (iii) a moderate viewing angle. In order to investigate why red quasars are red, we studied optical and NIR spectra of 20 red quasars at z 0.3 and 0.7, where the usage of the NIR spectra allowed us to look into red quasar properties in ways that are little affected by dust extinction. The Paschen to Balmer line ratios were derived for 13 red quasars and the values were found to be 10 times higher than unobscured type 1 quasars, suggesting a heavy dust extinction with AV > 2.5 mag. Furthermore, the Paschen to Balmer line ratios of red quasars are difficult to explain with plausible physical conditions without adopting the concept of the dust extinction. The CFHD of red quasars are similar to, or marginally higher than, those of unobscured type 1 quasars. The Eddington ratios, computed for 19 out of 20 red quasars, are higher than those of unobscured type 1 quasars (by factors of 3-5), and hence the moderate viewing angle scenario is disfavored. Consequently, these results strongly suggest the dust extinction that is connected to an enhanced nuclear activity as the origin of the red color of red quasars, which is consistent with the merger-driven quasar evolution scenario. Full Table A.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A31

  9. H0LiCOW - V. New COSMOGRAIL time delays of HE 0435-1223: H0 to 3.8 per cent precision from strong lensing in a flat ΛCDM model

    Science.gov (United States)

    Bonvin, V.; Courbin, F.; Suyu, S. H.; Marshall, P. J.; Rusu, C. E.; Sluse, D.; Tewes, M.; Wong, K. C.; Collett, T.; Fassnacht, C. D.; Treu, T.; Auger, M. W.; Hilbert, S.; Koopmans, L. V. E.; Meylan, G.; Rumbaugh, N.; Sonnenfeld, A.; Spiniello, C.

    2017-03-01

    We present a new measurement of the Hubble Constant H0 and other cosmological parameters based on the joint analysis of three multiply imaged quasar systems with measured gravitational time delays. First, we measure the time delay of HE 0435-1223 from 13-yr light curves obtained as part of the COSMOGRAIL project. Companion papers detail the modelling of the main deflectors and line-of-sight effects, and how these data are combined to determine the time-delay distance of HE 0435-1223. Crucially, the measurements are carried out blindly with respect to cosmological parameters in order to avoid confirmation bias. We then combine the time-delay distance of HE 0435-1223 with previous measurements from systems B1608+656 and RXJ1131-1231 to create a Time Delay Strong Lensing probe (TDSL). In flat Λ cold dark matter (ΛCDM) with free matter and energy density, we find H0 =71.9^{+2.4}_{-3.0} {km s^{-1} Mpc^{-1}} and Ω _{Λ }=0.62^{+0.24}_{-0.35}. This measurement is completely independent of, and in agreement with, the local distance ladder measurements of H0. We explore more general cosmological models combining TDSL with other probes, illustrating its power to break degeneracies inherent to other methods. The joint constraints from TDSL and Planck are H0 = 69.2_{-2.2}^{+1.4} {km s^{-1} Mpc^{-1}}, Ω _{Λ }=0.70_{-0.01}^{+0.01} and Ω _k=0.003_{-0.006}^{+0.004} in open ΛCDM and H0 =79.0_{-4.2}^{+4.4} {km s^{-1} Mpc^{-1}}, Ω _de=0.77_{-0.03}^{+0.02} and w=-1.38_{-0.16}^{+0.14} in flat wCDM. In combination with Planck and baryon acoustic oscillation data, when relaxing the constraints on the numbers of relativistic species we find Neff = 3.34_{-0.21}^{+0.21} in NeffΛCDM and when relaxing the total mass of neutrinos we find Σmν ≤ 0.182 eV in mνΛCDM. Finally, in an open wCDM in combination with Planck and cosmic microwave background lensing, we find H0 =77.9_{-4.2}^{+5.0} {km s^{-1} Mpc^{-1}}, Ω _de=0.77_{-0.03}^{+0.03}, Ω _k=-0.003_{-0.004}^{+0.004} and w=-1.37_{-0.23}^{+0.18}.

  10. Towards an understanding of dark matter: Precise gravitational lensing analysis complemented by robust photometric redshifts

    Science.gov (United States)

    Coe, Daniel Aaron

    The goal of thesis is to help scientists resolve one of the great mysteries of our time: the nature of Dark Matter. Dark Matter is currently believed to make up over 80% of the material in our universe, yet we have so far inferred but a few of its basic properties. Here we study the Dark Matter surrounding a galaxy cluster, Abell 1689, via the most direct method currently available--gravitational lensing. Abell 1689 is a "strong" gravitational lens, meaning it produces multiple images of more distant galaxies. The observed positions of these images can be measured very precisely and act as a blueprint allowing us to reconstruct the Dark Matter distribution of the lens. Until now, such mass models of Abell 1689 have reproduced the observed multiple images well but with significant positional offsets. Using a new method we develop here, we obtain a new mass model which perfectly reproduces the observed positions of 168 knots identified within 135 multiple images of 42 galaxies. An important ingredient to our mass model is the accurate measurement of distances to the lensed galaxies via their photometric redshifts. Here we develop tools which improve the accuracy of these measurements based on our study of the Hubble Ultra Deep Field, the only image yet taken to comparable depth as the magnified regions of Abell 1689. We present results both for objects in the Hubble Ultra Deep Field and for galaxies gravitationally lensed by Abell 1689. As part of this thesis, we also provide reviews of Dark Matter and Gravitational Lensing, including a chapter devoted to the mass profiles of Dark Matter halos realized in simulations. The original work presented here was performed primarily by myself under the guidance of Narciso Benítez and Holland Ford as a member of the Advanced Camera for Surveys GTO Science Team at Johns Hopkins University and the Instituto de Astrofisica de Andalucfa. My advisors served on my thesis committee along with Rick White, Gabor Domokos, and Steve

  11. To calculation of electron-optical characteristics of crossed lenses

    International Nuclear Information System (INIS)

    Afanas'ev, V.P.; Gritsyuk, N.P.; Lachashvili, R.A.; Yavor, S.Ya.

    1979-01-01

    Two approaches are used for theoretical study of crossed lenses (CL), which are formed by plates with slits turned by 90 deg: 1) aberration determination according to axial determination of potential and 2) trajectory analysis of CL. While studying CL of definite configuration it is necessary to take into account aberrations of the highest order. The following conclusions are drawn: the classical method is applied for fast determination of the main characteristics, of CL by means of average power computers (the ''M-220'' or the ''Minsk-32'' computers); the trajectory analysis should be performed by means of power computer (the BESM-6) when it is necessary to obtain more detailed information of the CL, including the trajectory deflection along the system axis, the dimensions of the point source image taking into account the aberrations of the highest order

  12. Modelling high resolution ALMA observations of strongly lensed highly star forming galaxies detected by Herscheltype="fn" rid="fn1" />

    Science.gov (United States)

    Dye, S.; Furlanetto, C.; Dunne, L.; Eales, S. A.; Negrello, M.; Nayyeri, H.; van der Werf, P. P.; Serjeant, S.; Farrah, D.; Michałowski, M. J.; Baes, M.; Marchetti, L.; Cooray, A.; Riechers, D. A.; Amvrosiadis, A.

    2018-02-01

    We have modelled ˜0.1 arcsec resolution ALMA imaging of six strong gravitationally lensed galaxies detected by the Herschel Space Observatory. Our modelling recovers mass properties of the lensing galaxies and, by determining magnification factors, intrinsic properties of the lensed sub-millimetre sources. We find that the lensed galaxies all have high ratios of star formation rate to dust mass, consistent with or higher than the mean ratio for high redshift sub-millimetre galaxies and low redshift ultra-luminous infra-red galaxies. Source reconstruction reveals that most galaxies exhibit disturbed morphologies. Both the cleaned image plane data and the directly observed interferometric visibilities have been modelled, enabling comparison of both approaches. In the majority of cases, the recovered lens models are consistent between methods, all six having mass density profiles that are close to isothermal. However, one system with poor signal to noise shows mildly significant differences.

  13. Fabrication of miniature elastomer lenses with programmable liquid mold for smartphone microscopy: curing polydimethylsiloxane with in situ curvature control

    Science.gov (United States)

    Karunakaran, Bhuvaneshwari; Tharion, Joseph; Dhawangale, Arvind Ramrao; Paul, Debjani; Mukherji, Soumyo

    2018-02-01

    Miniature lenses can transform commercial imaging systems, e.g., smartphones and webcams, into powerful, low-cost, handheld microscopes. To date, the reproducible fabrication of polymer lenses is still a challenge as they require controlled dispensing of viscous liquid. This paper reports a reproducible lens fabrication technique using liquid mold with programmable curvature and off-the-shelf materials. The lens curvature is controlled during fabrication by tuning the curvature of an interface of two immiscible liquids [polydimethylsiloxane (PDMS) and glycerol]. The curvature control is implemented using a visual feedback system, which includes a software-based guiding system to produce lenses of desired curvature. The technique allows PDMS lens fabrication of a wide range of sizes and focal lengths, within 20 min. The fabrication of two lens diameters: 1 and 5 mm with focal lengths ranging between 1.2 and 11 mm are demonstrated. The lens surface and bulk quality check performed using X-ray microtomography and atomic force microscopy reveal that the lenses are suitable for optical imaging. Furthermore, a smartphone microscope with ˜1.4-μm resolution is developed using a self-assembly of a single high power fabricated lens and microaperture. The lenses have various potential applications, e.g., optofluidics, diagnostics, forensics, and surveillance.

  14. A measurement of CMB cluster lensing with SPT and DES year 1 data

    Science.gov (United States)

    Baxter, E. J.; Raghunathan, S.; Crawford, T. M.; Fosalba, P.; Hou, Z.; Holder, G. P.; Omori, Y.; Patil, S.; Rozo, E.; Abbott, T. M. C.; Annis, J.; Aylor, K.; Benoit-Lévy, A.; Benson, B. A.; Bertin, E.; Bleem, L.; Buckley-Geer, E.; Burke, D. L.; Carlstrom, J.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Chang, C. L.; Cho, H.-M.; Crites, A. T.; Crocce, M.; Cunha, C. E.; da Costa, L. N.; D'Andrea, C. B.; Davis, C.; de Haan, T.; Desai, S.; Dietrich, J. P.; Dobbs, M. A.; Dodelson, S.; Doel, P.; Drlica-Wagner, A.; Estrada, J.; Everett, W. B.; Fausti Neto, A.; Flaugher, B.; Frieman, J.; García-Bellido, J.; George, E. M.; Gaztanaga, E.; Giannantonio, T.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Halverson, N. W.; Harrington, N. L.; Hartley, W. G.; Holzapfel, W. L.; Honscheid, K.; Hrubes, J. D.; Jain, B.; James, D. J.; Jarvis, M.; Jeltema, T.; Knox, L.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Lee, A. T.; Leitch, E. M.; Li, T. S.; Lima, M.; Luong-Van, D.; Manzotti, A.; March, M.; Marrone, D. P.; Marshall, J. L.; Martini, P.; McMahon, J. J.; Melchior, P.; Menanteau, F.; Meyer, S. S.; Miller, C. J.; Miquel, R.; Mocanu, L. M.; Mohr, J. J.; Natoli, T.; Nord, B.; Ogando, R. L. C.; Padin, S.; Plazas, A. A.; Pryke, C.; Rapetti, D.; Reichardt, C. L.; Romer, A. K.; Roodman, A.; Ruhl, J. E.; Rykoff, E.; Sako, M.; Sanchez, E.; Sayre, J. T.; Scarpine, V.; Schaffer, K. K.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Shirokoff, E.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Staniszewski, Z.; Stark, A.; Story, K.; Suchyta, E.; Tarle, G.; Thomas, D.; Troxel, M. A.; Vanderlinde, K.; Vieira, J. D.; Walker, A. R.; Williamson, R.; Zhang, Y.; Zuntz, J.

    2018-05-01

    Clusters of galaxies gravitationally lens the cosmic microwave background (CMB) radiation, resulting in a distinct imprint in the CMB on arcminute scales. Measurement of this effect offers a promising way to constrain the masses of galaxy clusters, particularly those at high redshift. We use CMB maps from the South Pole Telescope Sunyaev-Zel'dovich (SZ) survey to measure the CMB lensing signal around galaxy clusters identified in optical imaging from first year observations of the Dark Energy Survey. The cluster catalogue used in this analysis contains 3697 members with mean redshift of \\bar{z} = 0.45. We detect lensing of the CMB by the galaxy clusters at 8.1σ significance. Using the measured lensing signal, we constrain the amplitude of the relation between cluster mass and optical richness to roughly 17 {per cent} precision, finding good agreement with recent constraints obtained with galaxy lensing. The error budget is dominated by statistical noise but includes significant contributions from systematic biases due to the thermal SZ effect and cluster miscentring.

  15. A Measurement of CMB Cluster Lensing with SPT and DES Year 1 Data

    Science.gov (United States)

    Baxter, E. J.; Raghunathan, S.; Crawford, T. M.; Fosalba, P.; Hou, Z.; Holder, G. P.; Omori, Y.; Patil, S.; Rozo, E.; Abbott, T. M. C.; Annis, J.; Aylor, K.; Benoit-Lévy, A.; Benson, B. A.; Bertin, E.; Bleem, L.; Buckley-Geer, E.; Burke, D. L.; Carlstrom, J.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Chang, C. L.; Cho, H.-M.; Crites, A. T.; Crocce, M.; Cunha, C. E.; da Costa, L. N.; D'Andrea, C. B.; Davis, C.; de Haan, T.; Desai, S.; Dietrich, J. P.; Dobbs, M. A.; Dodelson, S.; Doel, P.; Drlica-Wagner, A.; Estrada, J.; Everett, W. B.; Fausti Neto, A.; Flaugher, B.; Frieman, J.; García-Bellido, J.; George, E. M.; Gaztanaga, E.; Giannantonio, T.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Halverson, N. W.; Harrington, N. L.; Hartley, W. G.; Holzapfel, W. L.; Honscheid, K.; Hrubes, J. D.; Jain, B.; James, D. J.; Jarvis, M.; Jeltema, T.; Knox, L.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Lee, A. T.; Leitch, E. M.; Li, T. S.; Lima, M.; Luong-Van, D.; Manzotti, A.; March, M.; Marrone, D. P.; Marshall, J. L.; Martini, P.; McMahon, J. J.; Melchior, P.; Menanteau, F.; Meyer, S. S.; Miller, C. J.; Miquel, R.; Mocanu, L. M.; Mohr, J. J.; Natoli, T.; Nord, B.; Ogando, R. L. C.; Padin, S.; Plazas, A. A.; Pryke, C.; Rapetti, D.; Reichardt, C. L.; Romer, A. K.; Roodman, A.; Ruhl, J. E.; Rykoff, E.; Sako, M.; Sanchez, E.; Sayre, J. T.; Scarpine, V.; Schaffer, K. K.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Shirokoff, E.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Staniszewski, Z.; Stark, A.; Story, K.; Suchyta, E.; Tarle, G.; Thomas, D.; Troxel, M. A.; Vanderlinde, K.; Vieira, J. D.; Walker, A. R.; Williamson, R.; Zhang, Y.; Zuntz, J.

    2018-02-01

    Clusters of galaxies gravitationally lens the cosmic microwave background (CMB) radiation, resulting in a distinct imprint in the CMB on arcminute scales. Measurement of this effect offers a promising way to constrain the masses of galaxy clusters, particularly those at high redshift. We use CMB maps from the South Pole Telescope Sunyaev-Zel'dovich (SZ) survey to measure the CMB lensing signal around galaxy clusters identified in optical imaging from first year observations of the Dark Energy Survey. The cluster catalog used in this analysis contains 3697 members with mean redshift of \\bar{z} = 0.45. We detect lensing of the CMB by the galaxy clusters at 8.1σ significance. Using the measured lensing signal, we constrain the amplitude of the relation between cluster mass and optical richness to roughly 17% precision, finding good agreement with recent constraints obtained with galaxy lensing. The error budget is dominated by statistical noise but includes significant contributions from systematic biases due to the thermal SZ effect and cluster miscentering.

  16. Calibration of fisheye lenses for hemispherical photography

    International Nuclear Information System (INIS)

    Diaci, J.; Kolar, U.

    2000-01-01

    Hemispherical photography represents one of the most appropriate methods of estimating averages of solar radiation over extended periods of time. This method is based upon the use of extremely wide-angle fisheye lenses, which produce large projection distortion. To correctly interpret hemispherical photography we have to know the projection characteristics of the fisheye lens in combination with a camera body. This can be achieved through lens calibration. The first part of the article explains in detail the calibration method for fisheye lenses which are used to assess the solar radiation in forest ecology research. In the second part the results of calibration for fisheye lens Sigma 8 mm, f/4 (MF, N) are presented. The lens was used on a Nikon F50 camera body

  17. Astrophysical observations: lensing and eclipsing Einstein's theories.

    Science.gov (United States)

    Bennett, Charles L

    2005-02-11

    Albert Einstein postulated the equivalence of energy and mass, developed the theory of special relativity, explained the photoelectric effect, and described Brownian motion in five papers, all published in 1905, 100 years ago. With these papers, Einstein provided the framework for understanding modern astrophysical phenomena. Conversely, astrophysical observations provide one of the most effective means for testing Einstein's theories. Here, I review astrophysical advances precipitated by Einstein's insights, including gravitational redshifts, gravitational lensing, gravitational waves, the Lense-Thirring effect, and modern cosmology. A complete understanding of cosmology, from the earliest moments to the ultimate fate of the universe, will require developments in physics beyond Einstein, to a unified theory of gravity and quantum physics.

  18. Microfabrication of hard x-ray lenses

    DEFF Research Database (Denmark)

    Stöhr, Frederik

    This thesis deals with the development of silicon compound refractive lenses (Si-CRLs) for shaping hard x-ray beams. The CRLs are to be fabricated using state of the art microfabrication techniques. The primary goal of the thesis work is to produce Si-CRLs with considerably increased structure...... intense and wider line beams with narrower waists. The thesis starts with a review of alternative x-ray lenses. Si-CRLs are identified as valuable optical components that allow shaping hard x-rays efficiently and creating beam waists that are clearly in the nanometer range. They stand out...... and characterized with respect to their shape. Their optical performances were tested at the European Synchrotron Radiation Facility (ESRF). Two 1D-focusing Si-CRLs suitable as condensers in hard-XRM were developed utilizing the aforementioned two different strategies. The first Si-condenser showed focusing of a 56...

  19. Contact lenses for ophthalmic drug delivery.

    Science.gov (United States)

    Hui, Alex

    2017-09-01

    Contact lenses as a means to deliver pharmaceuticals to the eye have seen a significant increase in research interest in the past few years. This review will detail the in vitro experiments which have investigated use of these contact lenses in the context of the desired pharmacological treatment goals in the management of infectious, inflammatory, allergic and glaucomatous diseases of the eye. The techniques researchers have employed to modify and tailor drug release rates from these materials, including the use of vitamin E diffusion barriers, modified ionicity, molecular imprinting and incorporation of drug reservoirs, will be discussed, as well as their impact on drug release kinetics. Finally, the demonstration of the feasibility of these materials when applied in vivo in animal models as well as in humans with and without disease will be presented and their results discussed relating to their implications for the future of the field. © 2017 Optometry Australia.

  20. Design considerations for liquid crystal contact lenses

    Science.gov (United States)

    Bailey, J.; Kaur, S.; Morgan, P. B.; Gleeson, H. F.; Clamp, J. H.; Jones, J. C.

    2017-12-01

    Switchable liquid crystal contact lenses with electrically controllable focal powers have previously been investigated as an alternative to bifocal contact lenses and spectacles for the correction of presbyopia. The simplest lens design uses a meniscus shaped cavity within the lens to contain the liquid crystal. The design of such a lens is considered in detail, including the nematic alignment and electrodes materials. The organic transparent conductor PEDOT:PSS was used as both electrode and planar alignment. Four different configurations are considered, using both planar and homeotropic orientations with either homogenous or axial alignment. Controllable switching of the focal power was demonstrated for each mode and focal power changes of up to ΔP  =  3.3  ±  0.2 D achieved. Such lens designs offer significant potential for a novel form of correction for this common visual problem.

  1. Android application and REST server system for quasar spectrum presentation and analysis

    Science.gov (United States)

    Wasiewicz, P.; Pietralik, K.; Hryniewicz, K.

    2017-08-01

    This paper describes the implementation of a system consisting of a mobile application and RESTful architecture server intended for the analysis and presentation of quasars' spectrum. It also depicts the quasar's characteristics and significance to the scientific community, the source for acquiring astronomical objects' spectral data, used software solutions as well as presents the aspect of Cloud Computing and various possible deployment configurations.

  2. THE RADIO STRUCTURE OF EXTENDED QUASARS .1. A VLBI SURVEY OF THE NUCLEAR-EMISSION

    NARCIS (Netherlands)

    HOOIMEYER, JRA; BARTHEL, PD; SCHILIZZI, RT; MILEY, GK

    Snapshot VLBI observations at 5 GHz have been obtained for a subset of a sample of 30 quasars with extended radio structure. For all but one of the 12 sources involved, the objects were detected at one or more baselines. In 9 quasars, the visibility data revealed the presence of resolved core

  3. Narrow CIV lambda 1549A Absorption Lines in Moderate-Redshift Quasars

    DEFF Research Database (Denmark)

    Vestergaard, Marianne

    2002-01-01

    A large, high-quality spectral data base of well-selected, moderate-redshift radio-loud and radio-quiet quasars is used to characterize the incidence of narrow associated CIV lambda 1549 absorption, and how this may depend on some quasar properties, including radio-type. Preliminary results...

  4. Observations of the Ca II IR Triplet in High Luminosity Quasars ...

    Indian Academy of Sciences (India)

    supplement the sample presented by Martínez-Aldama et al. (2015) – allow us to confirm the constraints on physical conditions and location of the region emitting the low ionization lines, as well as the relation between. Ca II and Fe II. Key words. Quasars: general—quasars: emission lines—lines: profiles— star formation. 1.

  5. NuSTAR Reveals Extreme Absorption in z <0.5 Type 2 Quasars

    DEFF Research Database (Denmark)

    Lansbury, G. B.; Gandhi, P.; Alexander, D. M.

    2015-01-01

    The intrinsic column density (N-H) distribution of quasars is poorly known. At the high obscuration end of the quasar population and for redshifts z <1, the X-ray spectra can only be reliably characterized using broad-band measurements that extend to energies above 10 keV. Using the hard X-ray ob...

  6. A Sample of Quasars with Strong Nitrogen Emission Lines from the Sloan Digital Sky Survey

    DEFF Research Database (Denmark)

    Jiang, Linhua; Fan, Xiaohui; Vestergaard, Marianne

    2008-01-01

    We report on 293 quasars with strong NIV] lambda 1486 or NIII] lambda 1750 emission lines (rest-frame equivalent width > 3 \\AA) at 1.7......We report on 293 quasars with strong NIV] lambda 1486 or NIII] lambda 1750 emission lines (rest-frame equivalent width > 3 \\AA) at 1.7...

  7. Irregular Corneas: Improve Visual Function With Scleral Contact Lenses.

    Science.gov (United States)

    de Luis Eguileor, Beatriz; Etxebarria Ecenarro, Jaime; Santamaria Carro, Alaitz; Feijoo Lera, Raquel

    2016-10-20

    To assess visual function in patients with irregular cornea who do not tolerate gas permeable (GP) corneal contact lenses and are fitted with GP scleral contact lenses (Rose K2 XL). In this prospective study, we analyzed 15 eyes of 15 patients who did not tolerate GP corneal contact lenses and were fitted with scleral contact lenses (Rose K2 XL). We assessed visual function using visual acuity and the visual function index (VF-1