WorldWideScience

Sample records for lens-based tomographic systems

  1. Characterization of lens based photoacoustic imaging system

    Directory of Open Access Journals (Sweden)

    Kalloor Joseph Francis

    2017-12-01

    Full Text Available Some of the challenges in translating photoacoustic (PA imaging to clinical applications includes limited view of the target tissue, low signal to noise ratio and the high cost of developing real-time systems. Acoustic lens based PA imaging systems, also known as PA cameras are a potential alternative to conventional imaging systems in these scenarios. The 3D focusing action of lens enables real-time C-scan imaging with a 2D transducer array. In this paper, we model the underlying physics in a PA camera in the mathematical framework of an imaging system and derive a closed form expression for the point spread function (PSF. Experimental verification follows including the details on how to design and fabricate the lens inexpensively. The system PSF is evaluated over a 3D volume that can be imaged by this PA camera. Its utility is demonstrated by imaging phantom and an ex vivo human prostate tissue sample.

  2. Computerized tomographic system

    International Nuclear Information System (INIS)

    Godbarsen, R.; Barrett, D.M.; Garrott, P.M.; Foley, L.E.; Redington, R.W.; Lambert, T.W.; Edelheit, L.S.

    1981-01-01

    A computerized tomographic system for examining human breasts is described in detail. Conventional X-ray scanning apparatus has difficulty in achieving the levels of image definition and examination speeds required for mass screening. A novel method of scanning successive layers of the breast with a rotating X-ray beam is discussed and details of the control circuitry and sequence steps are given. The method involves immersing the breast in an inner fluid (e.g. water) filled container which is stationary during an examination and is surrounded by a large outer container which is also filled with the fluid; the inner and outer containers are always maintained at a constant height and the X-ray absorption across the fan-shaped beam is as close as possible to constant. (U.K.)

  3. Tomographic imaging system

    International Nuclear Information System (INIS)

    Hayakawa, T.; Horiba, I.; Kohno, H.; Nakaya, C.; Sekihara, K.; Shiono, H.; Tomura, T.; Yamamoto, S.; Yanaka, S.

    1980-01-01

    A tomographic imaging system comprising: irradiating means for irradating a cross-section of an object under consideration with radiation rays from plural directions; detector means for detecting the radiation rays transmitted through the cross-section of said object to produce an output signal; first memory means for storing the output signal of said detector means; and an image jreconstructing section for performing a convolution integral operation on the contents of said first memory means by means of a first weighting function to reconstruct a three-dimensional image of the cross-section of said object, said image reconstructing section including (I) second memory means for storing a second weighting function, said second weighting function being provided with a predetermined positive and negative (N-1)th order when the output signal of said detector means produced by the irradiation of the cross-section of said object from one of said plural directions is sampled by N points, the value of the (N-1)th order of said second weighting function being an integration of said first weighting function from the (N-1)th order to positive infinity and the value of -(N-1)th order of said second weighting function being an integration of said first weighting function from the -(N-1)th order to negative infinity, (II) control means for successively reading out the contents of said first and second memory means, and (III) operational means for performing multiplying and summing operations on the read-out contents of said first and second memory means, said operational means producing the product of the values fo the (N-1)th and -(N-1)th orders of said second weighting function and a component of the output signal of said detector means relating to the radiation rays free from the absorption thereof by said object

  4. A NMR Tomographic System for image visualization

    International Nuclear Information System (INIS)

    Paiva, M.S.V. de; Slaets, J.F.W.; Almeida, L.O.B. de

    1989-01-01

    This paper presents some characteristics of a graphics system that is being constructed in the Electronics Instrumentation and Computation Laboratory (LIE) of IFQSC. This system will be used in reconstruction and interpretation of MR tomographic images. A minimum system is at moment being used at our laboratory to visualize MR images. (author) [pt

  5. Airborne Tomographic Swath Ice Sounding Processing System

    Science.gov (United States)

    Wu, Xiaoqing; Rodriquez, Ernesto; Freeman, Anthony; Jezek, Ken

    2013-01-01

    Glaciers and ice sheets modulate global sea level by storing water deposited as snow on the surface, and discharging water back into the ocean through melting. Their physical state can be characterized in terms of their mass balance and dynamics. To estimate the current ice mass balance, and to predict future changes in the motion of the Greenland and Antarctic ice sheets, it is necessary to know the ice sheet thickness and the physical conditions of the ice sheet surface and bed. This information is required at fine resolution and over extensive portions of the ice sheets. A tomographic algorithm has been developed to take raw data collected by a multiple-channel synthetic aperture sounding radar system over a polar ice sheet and convert those data into two-dimensional (2D) ice thickness measurements. Prior to this work, conventional processing techniques only provided one-dimensional ice thickness measurements along profiles.

  6. A tomograph VMEbus parallel processing data acquisition system

    International Nuclear Information System (INIS)

    Wilkinson, N.A.; Rogers, J.G.; Atkins, M.S.

    1989-01-01

    This paper describes a VME based data acquisition system suitable for the development of Positron Volume Imaging tomographs which use 3-D data for improved image resolution over slice-oriented tomographs. the data acquisition must be flexible enough to accommodate several 3-D reconstruction algorithms; hence, a software-based system is most suitable. Furthermore, because of the increased dimensions and resolution of volume imaging tomographs, the raw data event rate is greater than that of slice-oriented machines. These dual requirements are met by our data acquisition system. Flexibility is achieved through an array of processors connected over a VMEbus, operating asynchronously and in parallel. High raw data throughput is achieved using a dedicated high speed data transfer device available for the VMEbus. The device can attain a raw data rate of 2.5 million coincidence events per second for raw events which are 64 bits wide

  7. The CDD system in computed tomographic diagnosis of diverticular disease

    International Nuclear Information System (INIS)

    Pustelnik, Daniel; Elsholtz, Fabian Henry Juergen; Hamm, Bernd; Niehues, Stefan Markus; Bojarski, Christian

    2017-01-01

    Purpose cation in computed tomographic diagnosis and briefly recapitulates its targeted advantages over preliminary systems. Primarily, application of the CDD in computed tomography diagnostics is described. Differences with respect to the categories of the older systems are pointed out on the level of each CDD type using imaging examples. The presented images are derived from our institute according to the S2k criteria. Literature was researched on PubMed. Results The CDD constitutes an improvement compared to older systems for categorizing the stages of diverticular disease. It provides more discriminatory power on the descriptive-morphological level and defines as well as differentiates more courses of the disease. Furthermore, the categories translate more directly into state-of-the-art decision-making concerning hospitalization and therapy. The CDD should be applied routinely in the computed tomographic diagnosis of diverticular disease. Typical imaging patterns are presented.

  8. A tomograph VMEbus parallel processing data acquisition system

    International Nuclear Information System (INIS)

    Atkins, M.S.; Wilkinson, N.A.; Rogers, J.G.

    1988-11-01

    This paper describes a VME based data acquisition system suitable for the development of Positron Volume Imaging tomographs which use 3-D data for improved image resolution over slice-oriented tomographs. The data acquisition must be flexible enough to accommodate several 3-D reconstruction algorithms; hence, a software-based system is most suitable. Furthermore, because of the increased dimensions and resolution of volume imaging tomographs, the raw data event rate is greater than that of slice-oriented machines. These dual requirements are met by our data acquisition systems. Flexibility is achieved through an array of processors connected over a VMEbus, operating asynchronously and in parallel. High raw data throughput is achieved using a dedicated high speed data transfer device available for the VMEbus. The device can attain a raw data rate of 2.5 million coincidence events per second for raw events per second for raw events which are 64 bits wide. Real-time data acquisition and pre-processing requirements can be met by about forty 20 MHz Motorola 68020/68881 processors

  9. Imaging MOSS tomographic system for H-1NF

    International Nuclear Information System (INIS)

    Glass, F.; Howard, J.

    1999-01-01

    A tomographic diagnostic utilising the Modulated Optical Solid-State spectrometer (MOSS) is planned for the H-1NF stellarator at the ANU. It is designed to create two-dimensional temperature or velocity maps of a poloidal cross-section of the high temperature plasma of H-1NF. The introduction of the MOSS spectrometers has enabled the development of several diagnostics to be used on the H-1NF stellerator. The MOSS spectrometer allows calculations of the plasma temperature and bulk velocity based on a line-integrated measurement of light emitted from electronic transitions within the plasma. A tomographic system utilising a rotatable multi-view ring apparatus and spatial multiplexing through a MOSS spectrometer is currently being developed. The ring apparatus is placed inside the H-1NF vessel and encircles the plasma. Multiple line-of-sight views collect light through a poloidal cross-section of the plasma and the emitted light is coupled into large core optical fibres. The transmitted light, via the optical fibre bundle, is then imaged through a large aperture MOSS spectrometer and onto another optical fibre array. Each fibre is then fed into a photomultiplier tube for signal detection. Characterisation of the properties of the lithium niobate (LiNbO 3 ) crystal used for modulation in the MOSS spectrometer is being undertaken to account for ray divergence in the imaging system. Tomographic techniques enable the construction of a temperature or velocity map of the poloidal cross-section. Rotating the ring apparatus to a new viewing position for the next pulse of plasma should allow an accurate picture to be built up based on the reproducibility of the plasma pulses. It is expected that initial testing of the system will begin in May when H-1NF begins operations at 0.5 Telsa field strength

  10. Linear analysis of rotationally invariant, radially variant tomographic imaging systems

    International Nuclear Information System (INIS)

    Huesmann, R.H.

    1990-01-01

    This paper describes a method to analyze the linear imaging characteristics of rotationally invariant, radially variant tomographic imaging systems using singular value decomposition (SVD). When the projection measurements from such a system are assumed to be samples from independent and identically distributed multi-normal random variables, the best estimate of the emission intensity is given by the unweighted least squares estimator. The noise amplification of this estimator is inversely proportional to the singular values of the normal matrix used to model projection and backprojection. After choosing an acceptable noise amplification, the new method can determine the number of parameters and hence the number of pixels that should be estimated from data acquired from an existing system with a fixed number of angles and projection bins. Conversely, for the design of a new system, the number of angles and projection bins necessary for a given number of pixels and noise amplification can be determined. In general, computing the SVD of the projection normal matrix has cubic computational complexity. However, the projection normal matrix for this class of rotationally invariant, radially variant systems has a block circulant form. A fast parallel algorithm to compute the SVD of this block circulant matrix makes the singular value analysis practical by asymptotically reducing the computation complexity of the method by a multiplicative factor equal to the number of angles squared

  11. Tomographic reconstruction of structures using a novel GPR system

    Science.gov (United States)

    Fedeli, Alessandro; Ježová, Jana; Lambot, Sébastien; Pastorino, Matteo; Randazzo, Andrea; Pajewski, Lara

    2017-04-01

    The ever growing range of applications of ground penetrating radar (GPR) motivates the need of developing efficient measurement systems combined with effective data processing methods. On the one hand, advanced GPR measurement systems require to accurately model the physical effects occurring between the antenna structure and the medium. On the other hand, the GPR device should provide a reliable reconstruction of the properties of the targets under an inspection to a common user. In this work, a novel GPR system was tested for the imaging of buried structures. First of all, the acquired experimental data were pre-processed with a proper calibration technique for removing antenna effects. After that, a reconstruction of a hidden structure was obtained by means of both qualitative and quantitative electromagnetic inverse scattering methods. In particular, while the qualitative techniques aim at reconstructing only specific features of the targets (e.g., location, shape), the proposed quantitative method has the challenging goal of the complete electromagnetic characterization of the buried structures. The performance of the new system was evaluated in different operating conditions with promising results. Acknowledgment This work benefited from the networking activities within the EU funded COST Action TU1208, "Civil Engineering Applications of Ground Penetrating Radar". Part of this work was carried out during the Short-Term Scientific Mission STSM-TU1208-34990 "Testing of a new lightweight radar system for tomographical reconstruction of circular structures" (Alessandro Fedeli, Italy, visiting Prof. Sébastien Lambot, Belgium).

  12. Cardiac imaging systems and methods employing computerized tomographic scanning

    International Nuclear Information System (INIS)

    Richey, J.B.; Wake, R.H.; Walters, R.G.; Hunt, W.F.; Cool, S.L.

    1980-01-01

    The invention relates to cardiac imaging systems and methods employing computerised tomographic scanning. Apparatus is described which allows an image of the radiation attenuation of the heart at a desired phase of the cardiac cycle. The patients ECG signal can be used in a transverse-and-rotate type CT scanner as a time base, so that the beam reaches the heart at a desired phase of the cardiac cycle, or, in a purely rotational-type CT scanner continuously generated scan data is only stored for corresponding phases of successive cardiac cycles. Alternatively, gating of the beams themselves by shuttering or switching the power supply can be controlled by the ECG signal. A pacemaker is used to stabilize the cardiac period. Also used is a system for recognising unacceptable variations in the cardiac period and discarding corresponding scan data. In a transverse-and-rotate type fan-beam CT scanner, the effective beam width is narrowed to reduce the duration of the traverse of the heart. (U.K.)

  13. Development of a computerized tomographic system based on the FAN-BEAM technique

    International Nuclear Information System (INIS)

    Junqueira, M.M.; Santos, C.A.C.; Borges, J.C.

    1986-01-01

    The Nuclear Instrumentation Laboratory, at COPPE/UFRJ, concentrates its researches in the development of computerized tomographic systems, looking for applications in industrial and medical non destructive analysing techniques. In this work we have projected and constructed a tomographic prototype, based on the FAN-BEAM technique for irradiating the object under analysis. An algorithm previously developed to analyse parallel beams, was modified and adapted to the FAN-BEAM geometry. (Author) [pt

  14. Minimum Detectable Activity for Tomographic Gamma Scanning System

    Energy Technology Data Exchange (ETDEWEB)

    Venkataraman, Ram [Canberra Industries (AREVA BDNM), Meriden, CT (United States); Smith, Susan [Canberra Industries (AREVA BDNM), Meriden, CT (United States); Kirkpatrick, J. M. [Canberra Industries (AREVA BDNM), Meriden, CT (United States); Croft, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    For any radiation measurement system, it is useful to explore and establish the detection limits and a minimum detectable activity (MDA) for the radionuclides of interest, even if the system is to be used at far higher values. The MDA serves as an important figure of merit, and often a system is optimized and configured so that it can meet the MDA requirements of a measurement campaign. The non-destructive assay (NDA) systems based on gamma ray analysis are no exception and well established conventions, such the Currie method, exist for estimating the detection limits and the MDA. However, the Tomographic Gamma Scanning (TGS) technique poses some challenges for the estimation of detection limits and MDAs. The TGS combines high resolution gamma ray spectrometry (HRGS) with low spatial resolution image reconstruction techniques. In non-imaging gamma ray based NDA techniques measured counts in a full energy peak can be used to estimate the activity of a radionuclide, independently of other counting trials. However, in the case of the TGS each “view” is a full spectral grab (each a counting trial), and each scan consists of 150 spectral grabs in the transmission and emission scans per vertical layer of the item. The set of views in a complete scan are then used to solve for the radionuclide activities on a voxel by voxel basis, over 16 layers of a 10x10 voxel grid. Thus, the raw count data are not independent trials any more, but rather constitute input to a matrix solution for the emission image values at the various locations inside the item volume used in the reconstruction. So, the validity of the methods used to estimate MDA for an imaging technique such as TGS warrant a close scrutiny, because the pair-counting concept of Currie is not directly applicable. One can also raise questions as to whether the TGS, along with other image reconstruction techniques which heavily intertwine data, is a suitable method if one expects to measure samples whose activities

  15. Evaluation of a computer aided neutron tomographic system incorporating a gaseous position sensitive detector

    Science.gov (United States)

    Silvani, M. I.; Lopes, R. T.; de Jesus, E. F. O.; de Almeida, G. L.; Barbosa, A. F.

    2003-06-01

    A position sensitive gaseous detector, formerly designed to operate with X-rays, has been modified to equip a third generation tomographic system working with a parallel thermal neutron beam. For this purpose, the original filling-gas has been replaced by 3He-enriched helium, which plays simultaneously the role of filling-gas for the ionization process and converter of neutrons into charged particles. This paper describes the modifications done to the detector, the measurements carried out to evaluate its own performance and that of the tomographic system attached to it. Some tomographic images acquired using that system are presented as well. Tomographic systems equipped with this kind of detector should require substantially much less time than those conventional ones, where a sample translation is required. The Argonauta reactor operating at the Instituto de Engenharia Nuclear (IEN/CNEN-Brazil) has been utilized as the source of neutrons, furnishing a flux of 4.5×10 5 n cm -2 s -1 at its main irradiation channel where the tomographic system has been placed.

  16. Development of gamma-ray tomographic system for industrial plant inspection

    International Nuclear Information System (INIS)

    Kim, Jong Bum

    2011-02-01

    Gamma-ray has been widely used in process diagnosis because of its deep penetration ability. Gamma column scanning, radioisotope tracer and gamma radiography are examples of gamma-ray applications in industries. Recently there have been growing studies on gamma-ray tomography for process diagnosis in addition to conventional gamma-ray technologies. In those studies, multi-phase flow measurement, process flow visualization and CFD validation have been achieved by gamma-ray tomographic system. There are many case studies on gamma-ray tomographic systems used in laboratories and pilot plants but few cases for real scale industrial system. The main objective of this work is to develop a movable gamma-ray tomographic system for real scale industrial plants. To develop the movable gamma-ray tomographic system, some preliminary reviews has been made on the status of industrial process tomographic techniques such as electrical impedance tomography, X-ray tomography and gamma-ray tomography. From review results, it is considered that a fixed detection system with a gamma-ray source is suitable for movable tomographic system. To actualize the fixed detection and rotating source system, 4 th generation scheme by instant installation with a gamma-ray source and portable clamp-on gamma-ray tomographic system are proposed. As for 4 th generation system, multiple discrete detectors are installed around large scale object and a source is designed to rotate inside detector circle. The general configuration is similar to medical 4 th generation CT. But unlike a same type of a medical system, this system has adopted a gamma ray source and portable detection system. This system is aiming for large scale plants whose size is too big to be scanned by conventional tomographic systems. Monte Carlo simulations are performed to validate this method by generating virtual experimental data. The source and detector are simulated as 137 Cs and 1/2 inch NaI detector. Image reconstructions are

  17. Combination tomographic and cardiographic ultrasonic imaging method and system

    International Nuclear Information System (INIS)

    Yano, T.; Fukukita, H.; Fukumoto, A.; Hayakawa, Y.; Irioka, K.

    1984-01-01

    Ultrasonic echo signals are successively sampled and converted to digital echo data which are written into a first digital memory column by column and then read out row by row into a first buffer memory. The digital echo data which are derived in response to beams successively transmitted in a predetermined direction are written into columns of a second digital memory and read out of the memory in rows into a second buffer memory. The data stored in the first and second buffer memories are read out for digital-to-analog conversion and selectively applied within a television ''frame'' interval to control electron beam intensity of a single cathode ray tube so as to present tomographic and cardiographic images in different display areas of the tube

  18. ECAT: a new computerized tomographic imaging system for position-emitting radiopharmaceuticals

    International Nuclear Information System (INIS)

    Phelps, M.E.; Hoffman, E.J.; Huang, S.C.; Kuhl, D.E.

    1977-01-01

    The ECAT was designed and developed as a complete computerized positron radionuclide imaging system capable of providing high contrast, high resolution, quantitative images in 2 dimensional and tomographic formats. Flexibility, in its various image mode options, allows it to be used for a wide variety of imaging problems

  19. Studies of the inductively coupled plasma via tomographic reconstruction: II. Experimental system

    International Nuclear Information System (INIS)

    Marshall, K.A.; Monnig, C.A.; Rayson, G.D.; Hieftje, G.M.

    1986-01-01

    Spatially resolved diagnostic studies of the Inductively Coupled Plasma (ICP) have generally relied upon the Abel inversion process to transform lateral projection data into radially resolved emission or absorption profiles. Unfortunately, Abel transformation is known to possess several significant drawbacks. The validity of the radial profiles obtained from the Abel-inversion process is significantly degraded by even small amounts of noise in the lateral emission data. In addition, the Abel-inversion technique requires a cylindrically symmetrical object in order to faithfully produce reconstructions. One method of avoiding these problems is to use the more general method of tomographic reconstruction for spatially resolved studies in the ICP. The experimental requirements of tomographic reconstruction, however, necessitate a rather elaborate experimental system. The large number of angular projections, resolution elements per projection, and the sheer volume of data collected makes tomographic reconstruction prohibitively time consuming if an automated, multi-channel collection scheme is not employed. In this study, an experimental system was designed to permit tomographic characterization of a laboratory ICP. The system employs a z-theta translation stage, a silicon intensified target vidicon detector and a laboratory computer for system automation (see figure). A typical data collection scheme is to obtain 60 projections with 100-point resolution per projection. These profiles are collected every 2 mm on the vertical axis, requiring 15 profiles over a 30 mm plasma height. This process results in approximately 90,000 data points, which can be collected within an hour on this system. Tomographic reconstruction is achieved with the use of a VAX-780 computer. The system employed is described and the operating characteristics of the apparatus are discussed

  20. Pediatric computed tomographic angiography: imaging the cardiovascular system gently.

    Science.gov (United States)

    Hellinger, Jeffrey C; Pena, Andres; Poon, Michael; Chan, Frandics P; Epelman, Monica

    2010-03-01

    Whether congenital or acquired, timely recognition and management of disease is imperative, as hemodynamic alterations in blood flow, tissue perfusion, and cellular oxygenation can have profound effects on organ function, growth and development, and quality of life for the pediatric patient. Ensuring safe computed tomographic angiography (CTA) practice and "gentle" pediatric imaging requires the cardiovascular imager to have sound understanding of CTA advantages, limitations, and appropriate indications as well as strong working knowledge of acquisition principles and image post processing. From this vantage point, CTA can be used as a useful adjunct along with the other modalities. This article presents a summary of dose reduction CTA methodologies along with techniques the authors have employed in clinical practice to achieve low-dose and ultralow-dose exposure in pediatric CTA. CTA technical principles are discussed with an emphasis on the low-dose methodologies and safe contrast medium delivery strategies. Recommended parameters for currently available multidetector-row computed tomography scanners are summarized alongside recommended radiation and contrast medium parameters. In the second part of the article an overview of pediatric CTA clinical applications is presented, illustrating low-dose and ultra-low dose techniques, with an emphasis on the specific protocols. Copyright 2010 Elsevier Inc. All rights reserved.

  1. Tomographic array

    International Nuclear Information System (INIS)

    1976-01-01

    A tomographic array with the following characteristics is described. An X-ray screen serving as detector is placed before a photomultiplier tube which itself is placed in front of a television camera connected to a set of image processors. The detector is concave towards the source and is replacable. Different images of the object are obtained simultaneously. Optical fibers and lenses are used for transmission within the system

  2. Achievement report for fiscal 1998. Optical tomographic system; 1998 nendo seika hokokusho. Hikari danso imaging system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    Evaluations were given on spatial resolution and measurement time of an optical tomographic system by using the developed 64-channel time-resolved spectroscopy and an image reconstruction algorithm. With respect to the spatial resolution, the target value of 1 cm was verified from tomographic images of a phantom with a diameter of 10cm, simulating a neonate. The measurement time achieved 20 minutes, being one third of the target value. In installing the equipment at Hokkaido University, speeds of the optical switches and attenuators were increased to have reduced the measurement time to one minute. For installation at Kanagawa Rehabilitation Center, development has been made on a nano-second light pulser, whose average beam quantity has been increased to 40 times, and improvement has been given on the optical switches, the attenuators, and the indication software, by which the measurement time was decreased further by 30 seconds than that at Hokkaido University. In performing the clinical evaluation, the evaluation protocol resolved by the Experiment Evaluation Special Committee was submitted for deliberation at the Medical Welfare Device Clinical Evaluation Committee. Upon having been authorized by the Committee, the clinical evaluations were performed at Hokkaido University and the Kanagawa Rehabilitation Center. (NEDO)

  3. Tomographic evaluation of a dual-head positron emission tomography system

    International Nuclear Information System (INIS)

    Efthimiou, N; Maistros, S; Tripolitis, X; Panayiotakis, G; Samartzis, A; Loudos, G

    2011-01-01

    In this paper we present the performance evaluation results, in the planar and tomographic modes, of a low-cost positron emission tomography camera dedicated to small-animal imaging. The system consists of two pixelated Lu 2 SiO 5 crystals, two Hamamatsu H8500 position sensitive photomultiplier tubes, fast amplification electronics and an FPGA-USB-based read-out system. The parameters that have been studied are (i) saturation as a function of the head distance and photon acceptance angle, (ii) effect of the number of projections and half or complete head's rotation, (iii) spatial resolution as a function of the head distance, (iv) spatial resolution as a function of acceptance angle, (v) system's sensitivity as a function of these parameters and (vi) performance in small mice imaging. Image reconstruction has been carried out using open source software developed by our group (QSPECT), which is designed mainly for SPECT imaging. The results indicate that the system has a linear response for activities up to at least 2 MBq, which are typical in small-animal imaging. Best tomographic spatial resolution was measured to be ∼2 mm. The system has been found suitable for imaging of small mice both in the planar and tomographic modes

  4. Improvement of Varioptic's liquid lens based on electrowetting: how to obtain a short response time and its application in the design of a high resolution iris biometric system

    Science.gov (United States)

    Burger, Benjamin; Meimon, Serge C.; Petit, Cyril; Nguyen, Minh Chau

    2015-02-01

    This communication presents the results obtained for decreasing the response time of electrowetting-based real time focus correctors (liquid lenses). In order to provide a compact iris biometric system demonstrator, we have achieved a response time at 90% of 7.5 ms for a change in focalization from 0 diopter to 10 diopter with a liquid lens having an aperture of 1.9 mm. We have used a hydrodynamic fluid reorganization model to predict the features of these fast liquid lenses and evaluated the sensivity of the response time to the different conception parameters.

  5. A feasibility study on gamma-ray tomography by Monte Carlo simulation for development of portable tomographic system

    International Nuclear Information System (INIS)

    Kim, Jongbum; Jung, Sunghee; Moon, Jinho; Cho, Gyuseong

    2012-01-01

    The electron beam X-ray tomographic scanner has been used in industrial and medical field since it was developed two decades ago. However, X-ray electron beam tomography has remained as indoor equipment because of its bulky hardware of X-ray generation devices. By replacing X-ray devices of electron beam CT with a gamma-ray source, a tomographic system can be a portable device. This paper introduces analysis and simulation results on industrial gamma-ray tomographic system with scanning geometry similar to electron beam CT. The gamma-ray tomographic system is introduced through the geometrical layout and analysis on non-uniformly distributed problem. The proposed system adopts clamp-on type device to actualize portable industrial system. MCNPx is used to generate virtual experimental data. Pulse height spectra from F8 tally of MCNPx are obtained for single channel counting data of photo-peak and gross counting. Photo-peak and gross counting data are reconstructed for the cross-sectional image of simulation phantoms by ART, Total Variation algorithm and ML-EM. Image reconstruction results from Monte Carlo simulation show that the proposed tomographic system can provide the image solution for industrial objects. Those results provide the preliminary data for the tomographic scanner, which will be developed in future work. - Highlights: ► We carried out feasibility study on gamma-ray tomography with electron beam CT scanning geometry. ► Gamma ray tomographic system is introduced through geometrical layout and analysis on non-uniformly distributed problem. ► We carried out MCNPx simulation for proposed geometry. ► Results show that this system can be used for transportable tomographic system.

  6. A feasibility study on gamma-ray tomography by Monte Carlo simulation for development of portable tomographic system.

    Science.gov (United States)

    Kim, Jongbum; Jung, Sunghee; Moon, Jinho; Cho, Gyuseong

    2012-02-01

    The electron beam X-ray tomographic scanner has been used in industrial and medical field since it was developed two decades ago. However, X-ray electron beam tomography has remained as indoor equipment because of its bulky hardware of X-ray generation devices. By replacing X-ray devices of electron beam CT with a gamma-ray source, a tomographic system can be a portable device. This paper introduces analysis and simulation results on industrial gamma-ray tomographic system with scanning geometry similar to electron beam CT. The gamma-ray tomographic system is introduced through the geometrical layout and analysis on non-uniformly distributed problem. The proposed system adopts clamp-on type device to actualize portable industrial system. MCNPx is used to generate virtual experimental data. Pulse height spectra from F8 tally of MCNPx are obtained for single channel counting data of photo-peak and gross counting. Photo-peak and gross counting data are reconstructed for the cross-sectional image of simulation phantoms by ART, Total Variation algorithm and ML-EM. Image reconstruction results from Monte Carlo simulation show that the proposed tomographic system can provide the image solution for industrial objects. Those results provide the preliminary data for the tomographic scanner, which will be developed in future work. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Simulation of Tomographic Reconstruction of Magnetosphere Plasma Distribution By Multi-spacecraft Systems.

    Science.gov (United States)

    Kunitsyn, V.; Nesterov, I.; Andreeva, E.; Zelenyi, L.; Veselov, M.; Galperin, Y.; Buchner, J.

    A satellite radiotomography method for electron density distributions was recently proposed for closely-space multi-spacecraft group of high-altitude satellites to study the physics of reconnection process. The original idea of the ROY project is to use a constellation of spacecrafts (one main and several sub-satellites) in order to carry out closely-spaced multipoint measurements and 2D tomographic reconstruction of elec- tron density in the space between the main satellite and the subsatellites. The distances between the satellites were chosen to vary from dozens to few hundreds of kilometers. The easiest data interpretation is achieved when the subsatellites are placed along the plasma streamline. Then, whenever a plasma density irregularity moves between the main satellite and the subsatellites it will be scanned in different directions and we can get 2D distribution of plasma using these projections. However in general sub- satellites are not placed exactly along the plasma streamline. The method of plasma velocity determination relative to multi-spacecraft systems is considered. Possibilities of 3D tomographic imaging using multi-spacecraft systems are analyzed. The model- ing has shown that efficient scheme for 3D tomographic imaging would be to place spacecrafts in different planes so that the angle between the planes would make not more then ten degrees. Work is supported by INTAS PROJECT 2000-465.

  8. Positron imaging system with improved count rate and tomographic capability

    International Nuclear Information System (INIS)

    1979-01-01

    A system with improved count rate capability for detecting the radioactive distribution of positron events within an organ of interest in a living subject is described. Objects of the invention include improving the scintillation crystal and pulse processing electronics, avoiding the limitations of collimators and provide an Arger camera positron imaging system that avoids the use of collimators. (U.K.)

  9. Development of a portable computed tomographic scanner for on-line imaging of industrial piping systems

    International Nuclear Information System (INIS)

    Jaafar Abdullah; Mohd Arif Hamzah; Mohd Soyapi Mohd Yusof; Mohd Fitri Abdul Rahman; Fadil IsmaiI; Rasif Mohd Zain

    2003-01-01

    Computed tomography (CT) technology is being increasingly developed for industrial application. This paper presents the development of a portable computed tomographic scanner for on?line imaging of industrial piping systems. The theoretical approach, the system hardware, the data acquisition system and the adopted algorithm for image reconstruction are discussed. The scanner has large potential to be used to determine the extent of corrosion under insulation (CUI), to detect blockages, to measure the thickness of deposit/materials built-up on the walls and to improve understanding of material flow in pipelines. (Author)

  10. Means for controlling operation of power sources associated with an axial tomographic system

    International Nuclear Information System (INIS)

    1976-01-01

    An axial tomographic system is described having scanner means normally in an off-condition where all associated power sources are electrically isolated from the units driven thereby. It also includes means for activating the scanner means to establish an on-condition, control means including means to measure one or more system parameters when the scanner means is in an on-condition and to determine if the measured parameters are within predetermined limits, and means for maintaining the on-condition only if the control means is properly operational and all measured system parameters are within the predetermined limits

  11. Solving or resolving inadequate and noisy tomographic systems

    NARCIS (Netherlands)

    Nolet, G.

    1985-01-01

    Tomography in seismology often leads to underdetermined and inconsistent systems of linear equations. When solving, care must be taken to keep the propagation of data errors under control. In this paper I test the applicability of three types of damped least-squares algorithms to the kind of

  12. The CDD System in Computed Tomographic Diagnosis of Diverticular Disease.

    Science.gov (United States)

    Pustelnik, Daniel; Elsholtz, Fabian Henry Jürgen; Bojarski, Christian; Hamm, Bernd; Niehues, Stefan Markus

    2017-08-01

    Purpose  This overview sums up the Classification of Diverticular Disease (CDD) with regard to its application in computed tomographic diagnosis and briefly recapitulates its targeted advantages over preliminary systems. Primarily, application of the CDD in computed tomography diagnostics is described. Differences with respect to the categories of the older systems are pointed out on the level of each CDD type using imaging examples. Materials and Methods  The presented images are derived from our institute according to the S2k criteria. Literature was researched on PubMed. Results  The CDD constitutes an improvement compared to older systems for categorizing the stages of diverticular disease. It provides more discriminatory power on the descriptive-morphological level and defines as well as differentiates more courses of the disease. Furthermore, the categories translate more directly into state-of-the-art decision-making concerning hospitalization and therapy. Conclusion  The CDD should be applied routinely in the computed tomographic diagnosis of diverticular disease. Typical imaging patterns are presented. Key points   · The CDD is superior to its predecessors. It better stratifies categories of diverticular disease by morphology, course and modern options for treatment of the disease.. · Computed tomography is the dominant imaging modality. Different stages show typical imaging patterns.. · Non-abscessed phlegmonous peridiverticulitis is now interpreted as an uncomplicated course.. · Minimal paracolic air does not constitute a full-fledged perforation in terms of a pneumoperitoneum (CDD type 2c).. Citation Format · Pustelnik D, Elsholtz FH, Bojarski C et al. The CDD System in Computed Tomographic Diagnosis of Diverticular Disease. Fortschr Röntgenstr 2017; 189: 740 - 747. © Georg Thieme Verlag KG Stuttgart · New York.

  13. A system dedicated to the viewing and handling of tomographic images obtained by magnetic resonance

    International Nuclear Information System (INIS)

    Slaets, Joan F.W.; Almeida, Lirio O.B.; Traina, Agma J.M.

    1992-01-01

    The present work describes the development of a dedicated system to be used in visualization and manipulation of a MR images. The graphics environment as well as the tool kit were developed for the dedicated TMS34010 based hardware. The developed software offers a compact kernel with primitives to support the creation and manipulation windows and menus directly in 'C' language. This work is fundamental for the implementation of a user friendly interface build to operate and visualize tomographic images. This tools are essential for the selection an archiving of images planes as used in clinical applications. (author)

  14. Comparison of tomographic systems for X-Ray and thermal neutrons

    International Nuclear Information System (INIS)

    Souza, Maria Ines S.; Almeida, Gevaldo L. de; Furieri, Rosanne C.A.A.; Lopes, Ricardo Tadeu; Jesus, Edgar Oliveira de; Barbosa, Ademarlaudo Franca

    2003-01-01

    In this work, tomographic images of the same object have been taken with 25 keV X-rays and thermal neutrons (E=0.025 eV) aiming to demonstrate that thermal neutron tomography in some cases is a complementary technique to the X-ray tomography, such as in the examination of hydrogen-bearing compounds wrapped in a metallic matrix for instance. The capability of the neutron to pass through metallic materials such as lead, stainless steel and aluminium, allows to inspect encapsulated plastic explosives and visualize their inner structure like density variations, voids and alien materials, which are important features for the quality control of the final product. To obtain the images, a 3 rd generation tomographic system with a Position Sensitive Detector has been developed. For X-rays this proportional detector was provided with an 8 cm long carbon window, and filled with Ar - CH 4 4 under a pressure of 2 atm. The X-ray beam was supplied by an ampoule with a tungsten anode manufactured by IPRJ/UERJ. For neutron detection the carbon window has been replaced by aluminium, and the filling-gas by 3 He enriched helium, acting simultaneously as neutron converter and ionization gas. The Argonauta reactor at the Instituto de Engenharia Nuclear IEN/CNEN was used as neutron source and furnishes a thermal neutron flux of 4.5x10 5 n · cm -2 · s -1 at its main channel outlet, where the tomographic system was installed. (author)

  15. The CDD system in computed tomographic diagnosis of diverticular disease; Das CDD-System in der computertomografischen Diagnostik der Divertikelkrankheit

    Energy Technology Data Exchange (ETDEWEB)

    Pustelnik, Daniel; Elsholtz, Fabian Henry Juergen; Hamm, Bernd; Niehues, Stefan Markus [Charite - Universitaetsmedizin, Berlin (Germany). Inst. of Radiology; Bojarski, Christian [Charite - Universitaetsmedizin, Berlin (Germany). Div. of Gastroenterology, Infectiology and Rheumatology

    2017-08-15

    Purpose cation in computed tomographic diagnosis and briefly recapitulates its targeted advantages over preliminary systems. Primarily, application of the CDD in computed tomography diagnostics is described. Differences with respect to the categories of the older systems are pointed out on the level of each CDD type using imaging examples. The presented images are derived from our institute according to the S2k criteria. Literature was researched on PubMed. Results The CDD constitutes an improvement compared to older systems for categorizing the stages of diverticular disease. It provides more discriminatory power on the descriptive-morphological level and defines as well as differentiates more courses of the disease. Furthermore, the categories translate more directly into state-of-the-art decision-making concerning hospitalization and therapy. The CDD should be applied routinely in the computed tomographic diagnosis of diverticular disease. Typical imaging patterns are presented.

  16. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    This patent specification relates to a tomographic scanning apparatus using a fan beam and digital output signal, and particularly to the design of the gas-pressurized ionization detection system. (U.K.)

  17. Static and predictive tomographic reconstruction for wide-field multi-object adaptive optics systems.

    Science.gov (United States)

    Correia, C; Jackson, K; Véran, J-P; Andersen, D; Lardière, O; Bradley, C

    2014-01-01

    Multi-object adaptive optics (MOAO) systems are still in their infancy: their complex optical designs for tomographic, wide-field wavefront sensing, coupled with open-loop (OL) correction, make their calibration a challenge. The correction of a discrete number of specific directions in the field allows for streamlined application of a general class of spatio-angular algorithms, initially proposed in Whiteley et al. [J. Opt. Soc. Am. A15, 2097 (1998)], which is compatible with partial on-line calibration. The recent Learn & Apply algorithm from Vidal et al. [J. Opt. Soc. Am. A27, A253 (2010)] can then be reinterpreted in a broader framework of tomographic algorithms and is shown to be a special case that exploits the particulars of OL and aperture-plane phase conjugation. An extension to embed a temporal prediction step to tackle sky-coverage limitations is discussed. The trade-off between lengthening the camera integration period, therefore increasing system lag error, and the resulting improvement in SNR can be shifted to higher guide-star magnitudes by introducing temporal prediction. The derivation of the optimal predictor and a comparison to suboptimal autoregressive models is provided using temporal structure functions. It is shown using end-to-end simulations of Raven, the MOAO science, and technology demonstrator for the 8 m Subaru telescope that prediction allows by itself the use of 1-magnitude-fainter guide stars.

  18. A distributed multi-GPU system for high speed electron microscopic tomographic reconstruction.

    Science.gov (United States)

    Zheng, Shawn Q; Branlund, Eric; Kesthelyi, Bettina; Braunfeld, Michael B; Cheng, Yifan; Sedat, John W; Agard, David A

    2011-07-01

    Full resolution electron microscopic tomographic (EMT) reconstruction of large-scale tilt series requires significant computing power. The desire to perform multiple cycles of iterative reconstruction and realignment dramatically increases the pressing need to improve reconstruction performance. This has motivated us to develop a distributed multi-GPU (graphics processing unit) system to provide the required computing power for rapid constrained, iterative reconstructions of very large three-dimensional (3D) volumes. The participating GPUs reconstruct segments of the volume in parallel, and subsequently, the segments are assembled to form the complete 3D volume. Owing to its power and versatility, the CUDA (NVIDIA, USA) platform was selected for GPU implementation of the EMT reconstruction. For a system containing 10 GPUs provided by 5 GTX295 cards, 10 cycles of SIRT reconstruction for a tomogram of 4096(2) × 512 voxels from an input tilt series containing 122 projection images of 4096(2) pixels (single precision float) takes a total of 1845 s of which 1032 s are for computation with the remainder being the system overhead. The same system takes only 39 s total to reconstruct 1024(2) × 256 voxels from 122 1024(2) pixel projections. While the system overhead is non-trivial, performance analysis indicates that adding extra GPUs to the system would lead to steadily enhanced overall performance. Therefore, this system can be easily expanded to generate superior computing power for very large tomographic reconstructions and especially to empower iterative cycles of reconstruction and realignment. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Determination of spatial resolution of positron emission tomograph of clear PET-XPAD3/CT system

    Energy Technology Data Exchange (ETDEWEB)

    Olaya D, H.; Martinez O, S. A. [Universidad Pedagogica y Tecnologica de Colombia, Grupo de Fisica Nuclear Aplicada y Simulacion, 150003 Tunja, Boyaca (Colombia); Morel, C. [Centre de Physique des Particules de Marseille, ImXgam Group, 13009 Marseille (France); Castro, H. F. [Universidad Nacional de Colombia, Physics Department, Carrera 45 No. 26-85, Bogota (Colombia)

    2016-10-15

    Based on the National Electrical Manufacturers Association (Nema), using the Amine software to construction of sinograms and using a radioactive source {sup 22}Na that emitting positrons were made calculations for determine spatial resolution of ring array system of phoswich detectors of positron emission tomograph included in the Clear PET-XPAD3/CT prototype for small animals made in the laboratories of CCPM and whose project is led by the research group ImXgam. The radioactive source {sup 22}Na approximately 9 MBq of activity, with spherical shape and diameter of 0.57 mm immersed in a plexiglas disc was located at the geometric center of tomographic system with a Field of View (Fov) of 35 mm in the axial and transverse directions. Displacements of radioactive source were performed on the three cartesian axes and was rebuilt a sinogram for each axis. The shape of sinogram allow describe the correct position and the maximum efficiency of each detector. Subsequently, was carried out a scanning in each one of three spatial axes taking an enough distance covering the dimensions of radioactive source, were recorded data for each one of phoswich detector crystals which are aligned in the axis of movement. The process was repeated for other axes and then was offsetting the radioactive source with respect to the Fov and were calculated FWHM (Full Width at Half Maximum) and FWTM (Full Width at Tenth Maximum) values and performing statistics of these values with parabolic fitting, the latter setting allows to obtain parameters of spatial resolution of system. (Author)

  20. Determination of spatial resolution of positron emission tomograph of clear PET-XPAD3/CT system

    International Nuclear Information System (INIS)

    Olaya D, H.; Martinez O, S. A.; Morel, C.; Castro, H. F.

    2016-10-01

    Based on the National Electrical Manufacturers Association (Nema), using the Amine software to construction of sinograms and using a radioactive source 22 Na that emitting positrons were made calculations for determine spatial resolution of ring array system of phoswich detectors of positron emission tomograph included in the Clear PET-XPAD3/CT prototype for small animals made in the laboratories of CCPM and whose project is led by the research group ImXgam. The radioactive source 22 Na approximately 9 MBq of activity, with spherical shape and diameter of 0.57 mm immersed in a plexiglas disc was located at the geometric center of tomographic system with a Field of View (Fov) of 35 mm in the axial and transverse directions. Displacements of radioactive source were performed on the three cartesian axes and was rebuilt a sinogram for each axis. The shape of sinogram allow describe the correct position and the maximum efficiency of each detector. Subsequently, was carried out a scanning in each one of three spatial axes taking an enough distance covering the dimensions of radioactive source, were recorded data for each one of phoswich detector crystals which are aligned in the axis of movement. The process was repeated for other axes and then was offsetting the radioactive source with respect to the Fov and were calculated FWHM (Full Width at Half Maximum) and FWTM (Full Width at Tenth Maximum) values and performing statistics of these values with parabolic fitting, the latter setting allows to obtain parameters of spatial resolution of system. (Author)

  1. Numerical characterization of a tomographic system for online dose measurements in Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Minsky, D. M.; Valda, A. A.; Somacal, H.; Burlon, A. A.; Kreiner, A. J.

    2007-01-01

    A tomographic system for online dose measurements in Boron Neutron Capture Therapy (BNCT) based on the measurement of a specific 478 keV γ-ray emitted after the neutron capture in boron is being developed. In the present work we study by means of Monte Carlo numerical simulations the effects of the finite spatial resolution and the limited number of counts, i. e. the statistical noise, on the reconstructed image contrast of numerical phantoms. These phantoms, of simple geometry, mimic the tumor (specific) and the normal tissue (non specific) boron concentrations. The simulated projection data were reconstructed using the expectation-maximization maximum-likelihood algorithm. These studies will help in the improvement of BNCT dosimetry

  2. Studies of discrete symmetries in a purely leptonic system using the Jagiellonian Positron Emission Tomograph

    Directory of Open Access Journals (Sweden)

    Moskal P.

    2016-01-01

    Full Text Available Discrete symmetries such as parity (P, charge-conjugation (C and time reversal (T are of fundamental importance in physics and cosmology. Breaking of charge conjugation symmetry (C and its combination with parity (CP constitute necessary conditions for the existence of the asymmetry between matter and antimatter in the observed Universe. The presently known sources of discrete symmetries violations can account for only a tiny fraction of the excess of matter over antimatter. So far CP and T symmetries violations were observed only for systems involving quarks and they were never reported for the purely leptonic objects. In this article we describe briefly an experimental proposal for the test of discrete symmetries in the decays of positronium atom which is made exclusively of leptons. The experiments are conducted by means of the Jagiellonian Positron Emission Tomograph (J-PET which is constructed from strips of plastic scintillators enabling registration of photons from the positronium annihilation. J-PET tomograph together with the positronium target system enable to measure expectation values for the discrete symmetries odd operators constructed from (i spin vector of the ortho-positronium atom, (ii momentum vectors of photons originating from the decay of positronium, and (iii linear polarization direction of annihilation photons. Linearly polarized positronium will be produced in the highly porous aerogel or polymer targets, exploiting longitudinally polarized positrons emitted by the sodium 22Na isotope. Information about the polarization vector of orthopositronium will be available on the event by event basis and will be reconstructed from the known position of the positron source and the reconstructed position of the orthopositronium annihilation. In 2016 the first tests and calibration runs are planned, and the data collection with high statistics will commence in the year 2017.

  3. Study of the concrete overlay (whitetopping) in paving using computed tomographic system

    Energy Technology Data Exchange (ETDEWEB)

    Braz, D. [Nuclear Instrumentation Laboratory, COPPE/UFRJ, Rio de Janeiro (Brazil)], E-mail: delson@lin.ufrj.br; Almeida, P.E.S.; Motta, L.M.G. [Geotechnic Laboratory, COPPE/UFRJ, Rio de Janeiro (Brazil); Barroso, R.C. [Physics Institute, University of Rio de Janeiro State, Rio de Janeiro (Brazil); Lopes, R.T. [Nuclear Instrumentation Laboratory, COPPE/UFRJ, Rio de Janeiro (Brazil)

    2007-08-21

    The aim of this paper is to demonstrate the feasibility of using computed tomographic system to study the concrete paving. Tomography refers to the cross-sectional imaging of an object from transmission data collected by illuminating the object from many different directions. The mathematical algorithms for tomography reconstruction are based on projection data, which represent the attenuation of photons through an object. Projection data are a result of interaction between the radiation used for imaging and the substance in which the object is composed. The incident beam undergoes attenuation as it travels through an object. This attenuation is due to the photons either being absorbed by the atoms of the material, or being scattered away from their original directions of travel. The aim of computed tomography (CT) is to reconstruct a cross-sectional image of the attenuation coefficient. This work applies the CT technique to the study of concrete mixture. The specimens were constructed with and without fiber. We also have studied the distribution of percentage voids in both specimens and the distribution of fiber in only one specimen. It can be noticed a different distribution of particle sizes for both specimens was studied.

  4. Dynamic metasurface lens based on MEMS technology

    Directory of Open Access Journals (Sweden)

    Tapashree Roy

    2018-02-01

    Full Text Available In the recent years, metasurfaces, being flat and lightweight, have been designed to replace bulky optical components with various functions. We demonstrate a monolithic Micro-Electro-Mechanical System (MEMS integrated with a metasurface-based flat lens that focuses light in the mid-infrared spectrum. A two-dimensional scanning MEMS platform controls the angle of the lens along two orthogonal axes by ±9°, thus enabling dynamic beam steering. The device could be used to compensate for off-axis incident light and thus correct for aberrations such as coma. We show that for low angular displacements, the integrated lens-on-MEMS system does not affect the mechanical performance of the MEMS actuators and preserves the focused beam profile as well as the measured full width at half maximum. We envision a new class of flat optical devices with active control provided by the combination of metasurfaces and MEMS for a wide range of applications, such as miniaturized MEMS-based microscope systems, LIDAR scanners, and projection systems.

  5. Dynamic metasurface lens based on MEMS technology

    Science.gov (United States)

    Roy, Tapashree; Zhang, Shuyan; Jung, Il Woong; Troccoli, Mariano; Capasso, Federico; Lopez, Daniel

    2018-02-01

    In the recent years, metasurfaces, being flat and lightweight, have been designed to replace bulky optical components with various functions. We demonstrate a monolithic Micro-Electro-Mechanical System (MEMS) integrated with a metasurface-based flat lens that focuses light in the mid-infrared spectrum. A two-dimensional scanning MEMS platform controls the angle of the lens along two orthogonal axes by ±9°, thus enabling dynamic beam steering. The device could be used to compensate for off-axis incident light and thus correct for aberrations such as coma. We show that for low angular displacements, the integrated lens-on-MEMS system does not affect the mechanical performance of the MEMS actuators and preserves the focused beam profile as well as the measured full width at half maximum. We envision a new class of flat optical devices with active control provided by the combination of metasurfaces and MEMS for a wide range of applications, such as miniaturized MEMS-based microscope systems, LIDAR scanners, and projection systems.

  6. Tomographic imaging

    International Nuclear Information System (INIS)

    Newman, M.A.

    1989-01-01

    Tomographic images of an object or scene are produced by an analysis of two or more stereographic images of the scene including shifting one image laterally with respect to another and logically summing the image data sets. Several image processing, edge enhancement and edge extraction algorithms may be applied to the images in digitised video data form to provide wire-frame or skeleton type representations of each of the original images. Tomographic images of planes not parallel with the image plane (or normal to the camera axes) may be produced by changing the magnification of one image prior to logical summing. The images may be generated by three video cameras arranged on two orthogonal axes for elimination of spurious coincidences. The images are preferably produced using X-rays. (author)

  7. Tomographic array

    International Nuclear Information System (INIS)

    1976-01-01

    The configuration of a tomographic array in which the object can rotate about its axis is described. The X-ray detector is a cylindrical screen perpendicular to the axis of rotation. The X-ray source has a line-shaped focus coinciding with the axis of rotation. The beam is fan-shaped with one side of this fan lying along the axis of rotation. The detector screen is placed inside an X-ray image multiplier tube

  8. Tomographic reconstruction of 3D thermal plasma systems: a feasibility study

    Science.gov (United States)

    Franceries, X.; Freton, P.; Gonzalez, J.-J.; Lago, F.; Masquère, M.

    2005-11-01

    A preliminary investigation of tomographic reconstruction of arc plasma in three dimensions has been carried out. The main goal of this work was to define both the optimal experimental scheme for tomographic measurements and the most appropriate tomographic method with minimum constraints to obtain images of good quality in real situations. Numerical calculations were developed and performed to define a test case corresponding to an experimental device. The multiplicative algebraic reconstruction technique (MART) was applied for reconstruction of the emission profile from the acquired projections. Numerical reconstruction from two, three, four and seven projections are presented and discussed in a theoretical three-dimensional (3D) transferred arc configuration. The dependence of the reconstructed image quality on both the projection directions and the noise level was studied. Numerical simulation demonstrated that MART was perfectly suitable for reconstructing satisfactory 3D emission and temperature profiles of the arc plasma with a four-view configuration, proving the feasibility and the utility of tomography to characterize a 3D plasma medium.

  9. Tomographic reconstruction of 3D thermal plasma systems: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Franceries, X; Freton, P; Gonzalez, J-J; Lago, F; Masquere, M [CPAT, CNRS UMR 5002, Paul Sabatier University, 118 rte de Narbonne, Bat3R2, 31062 Toulouse Cedex (France)

    2005-11-07

    A preliminary investigation of tomographic reconstruction of arc plasma in three dimensions has been carried out. The main goal of this work was to define both the optimal experimental scheme for tomographic measurements and the most appropriate tomographic method with minimum constraints to obtain images of good quality in real situations. Numerical calculations were developed and performed to define a test case corresponding to an experimental device. The multiplicative algebraic reconstruction technique (MART) was applied for reconstruction of the emission profile from the acquired projections. Numerical reconstruction from two, three, four and seven projections are presented and discussed in a theoretical three-dimensional (3D) transferred arc configuration. The dependence of the reconstructed image quality on both the projection directions and the noise level was studied. Numerical simulation demonstrated that MART was perfectly suitable for reconstructing satisfactory 3D emission and temperature profiles of the arc plasma with a four-view configuration, proving the feasibility and the utility of tomography to characterize a 3D plasma medium.

  10. Tomographic reconstruction of 3D thermal plasma systems: a feasibility study

    International Nuclear Information System (INIS)

    Franceries, X; Freton, P; Gonzalez, J-J; Lago, F; Masquere, M

    2005-01-01

    A preliminary investigation of tomographic reconstruction of arc plasma in three dimensions has been carried out. The main goal of this work was to define both the optimal experimental scheme for tomographic measurements and the most appropriate tomographic method with minimum constraints to obtain images of good quality in real situations. Numerical calculations were developed and performed to define a test case corresponding to an experimental device. The multiplicative algebraic reconstruction technique (MART) was applied for reconstruction of the emission profile from the acquired projections. Numerical reconstruction from two, three, four and seven projections are presented and discussed in a theoretical three-dimensional (3D) transferred arc configuration. The dependence of the reconstructed image quality on both the projection directions and the noise level was studied. Numerical simulation demonstrated that MART was perfectly suitable for reconstructing satisfactory 3D emission and temperature profiles of the arc plasma with a four-view configuration, proving the feasibility and the utility of tomography to characterize a 3D plasma medium

  11. Analysis and databasing software for integrated tomographic gamma scanner (TGS) and passive-active neutron (PAN) assay systems

    International Nuclear Information System (INIS)

    Estep, R.J.; Melton, S.G.; Buenafe, C.

    2000-01-01

    The CTEN-FIT program, written for Windows 9x/NT in C++,performs databasing and analysis of combined thermal/epithermal neutron (CTEN) passive and active neutron assay data and integrates that with isotopics results and gamma-ray data from methods such as tomographic gamma scanning (TGS). The binary database is reflected in a companion Excel database that allows extensive customization via Visual Basic for Applications macros. Automated analysis options make the analysis of the data transparent to the assay system operator. Various record browsers and information displays simplify record keeping tasks

  12. Axial tomographic scanner

    International Nuclear Information System (INIS)

    1976-01-01

    An axial tomographic system is described comprising axial tomographic means for collecting sets of data corresponding to the transmission or absorption of a number of beams of penetrating radiation through a planar slice of an object. It includes means to locate an object to be analyzed, a source and detector for directing one or more beams of penetrating radiation through the object from the source to the detector, and means to rotate (and optionally translate) the source as well as means to process the collected sets of data. Data collection, data processing, and data display can each be conducted independently of each other. An additional advantage of the system described is that the raw data (i.e., the originally collected data) are not destroyed by the data processing but instead are retained intact for further reference or use, if needed

  13. DEVELOPMENT OF A DUAL MODALITY TOMOGRAPHIC IMAGING SYSTEM FOR BIOLUMINESCENCE AND PET

    Energy Technology Data Exchange (ETDEWEB)

    CHATZIIOANNOU, ARION

    2011-12-21

    The goal of this proposal was to develop a new hybrid imaging modality capable to simultaneously image optical bioluminescence signals, as well as radionuclide emissions from the annihilation of positrons originating from molecular imaging probes in preclinical mouse models. This new technology enables the simultaneous in-vivo measurements of both emissions that could be produced from a single or a combination of two different biomarkers. It also facilitates establishing the physical limitations of bioluminescence imaging, its tomographic and spectral image reconstruction potential and the quantification of bioluminescence signals.

  14. Pipelining Computational Stages of the Tomographic Reconstructor for Multi-Object Adaptive Optics on a Multi-GPU System

    KAUST Repository

    Charara, Ali

    2014-11-01

    The European Extremely Large Telescope project (E-ELT) is one of Europe\\'s highest priorities in ground-based astronomy. ELTs are built on top of a variety of highly sensitive and critical astronomical instruments. In particular, a new instrument called MOSAIC has been proposed to perform multi-object spectroscopy using the Multi-Object Adaptive Optics (MOAO) technique. The core implementation of the simulation lies in the intensive computation of a tomographic reconstruct or (TR), which is used to drive the deformable mirror in real time from the measurements. A new numerical algorithm is proposed (1) to capture the actual experimental noise and (2) to substantially speed up previous implementations by exposing more concurrency, while reducing the number of floating-point operations. Based on the Matrices Over Runtime System at Exascale numerical library (MORSE), a dynamic scheduler drives all computational stages of the tomographic reconstruct or simulation and allows to pipeline and to run tasks out-of order across different stages on heterogeneous systems, while ensuring data coherency and dependencies. The proposed TR simulation outperforms asymptotically previous state-of-the-art implementations up to 13-fold speedup. At more than 50000 unknowns, this appears to be the largest-scale AO problem submitted to computation, to date, and opens new research directions for extreme scale AO simulations. © 2014 IEEE.

  15. Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrakis, George [David Geffen School of Medicine at UCLA, Crump Institute for Molecular Imaging, University of California, 700 Westwood Plaza, Los Angeles, CA 90095 (United States); Rannou, Fernando R [Departamento de Ingenieria Informatica, Universidad de Santiago de Chile (USACH), Av. Ecuador 3659, Santiago (Chile); Chatziioannou, Arion F [David Geffen School of Medicine at UCLA, Crump Institute for Molecular Imaging, University of California, 700 Westwood Plaza, Los Angeles, CA 90095 (United States)

    2005-09-07

    The feasibility and limits in performing tomographic bioluminescence imaging with a combined optical-PET (OPET) system were explored by simulating its image formation process. A micro-MRI based virtual mouse phantom was assigned appropriate tissue optical properties to each of its segmented internal organs at wavelengths spanning the emission spectrum of the firefly luciferase at 37 deg. C. The TOAST finite-element code was employed to simulate the diffuse transport of photons emitted from bioluminescence sources in the mouse. OPET measurements were simulated for single-point, two-point and distributed bioluminescence sources located in different organs such as the liver, the kidneys and the gut. An expectation maximization code was employed to recover the intensity and location of these simulated sources. It was found that spectrally resolved measurements were necessary in order to perform tomographic bioluminescence imaging. The true location of emission sources could be recovered if the mouse background optical properties were known a priori. The assumption of a homogeneous optical property background proved inadequate for describing photon transport in optically heterogeneous tissues and led to inaccurate source localization in the reconstructed images. The simulation results pointed out specific methodological challenges that need to be addressed before a practical implementation of OPET-based bioluminescence tomography is achieved.

  16. Industrial dynamic tomographic reconstruction

    International Nuclear Information System (INIS)

    Oliveira, Eric Ferreira de

    2016-01-01

    The state of the art methods applied to industrial processes is currently based on the principles of classical tomographic reconstructions developed for tomographic patterns of static distributions, or is limited to cases of low variability of the density distribution function of the tomographed object. Noise and motion artifacts are the main problems caused by a mismatch in the data from views acquired in different instants. All of these add to the known fact that using a limited amount of data can result in the presence of noise, artifacts and some inconsistencies with the distribution under study. One of the objectives of the present work is to discuss the difficulties that arise from implementing reconstruction algorithms in dynamic tomography that were originally developed for static distributions. Another objective is to propose solutions that aim at reducing a temporal type of information loss caused by employing regular acquisition systems to dynamic processes. With respect to dynamic image reconstruction it was conducted a comparison between different static reconstruction methods, like MART and FBP, when used for dynamic scenarios. This comparison was based on a MCNPx simulation as well as an analytical setup of an aluminum cylinder that moves along the section of a riser during the process of acquisition, and also based on cross section images from CFD techniques. As for the adaptation of current tomographic acquisition systems for dynamic processes, this work established a sequence of tomographic views in a just-in-time fashion for visualization purposes, a form of visually disposing density information as soon as it becomes amenable to image reconstruction. A third contribution was to take advantage of the triple color channel necessary to display colored images in most displays, so that, by appropriately scaling the acquired values of each view in the linear system of the reconstruction, it was possible to imprint a temporal trace into the regularly

  17. Transducer project and optimization of the ultra low magnetic field NMR tomograph reception system system

    International Nuclear Information System (INIS)

    Vidoto, Edson Luiz Gea

    1995-01-01

    The aim of the present work was to optimize the signal to noise ratio in our NMR imaging system (TORM 005) by improving transducer's reception quality through better designed coils, balanced tuning circuit for this coils and power decoupling circuits and by reducing interference from the electromagnetic environment. For this purpose, we had to modify the internal electromagnetic shielding and incorporate line filters in the more critical signals paths. Also, new types of coils were developed, improving the signal to noise ratio, and allowing us to make clinical exams with superior quality for several anatomies. Balanced circuits for tuning and matching of the coil were studied and built, allowing a reduction of the coil losses because patient's load. This produced a more reliable coil tuning after positioning each new patient. Circuits to avoid the receiver input overload and decoupling circuits for the isolation of receiver coils from excitation coil were designed and incorporated to the TORM 005. All these alterations of our imaging system (TORM 005) contributed to a significant improvement in the signal to noise ratio, reliability and reproducibility of the system. This permitted to operate the system routinely for clinical applications, research and development in the area of ultra low magnetic field tomography. (author)

  18. Infrared tomographic PIV and 3D motion tracking system applied to aquatic predator–prey interaction

    International Nuclear Information System (INIS)

    Adhikari, Deepak; Longmire, Ellen K

    2013-01-01

    Infrared tomographic PIV and 3D motion tracking are combined to measure evolving volumetric velocity fields and organism trajectories during aquatic predator–prey interactions. The technique was used to study zebrafish foraging on both non-evasive and evasive prey species. Measurement volumes of 22.5 mm × 10.5 mm × 12 mm were reconstructed from images captured on a set of four high-speed cameras. To obtain accurate fluid velocity vectors within each volume, fish were first masked out using an automated visual hull method. Fish and prey locations were identified independently from the same image sets and tracked separately within the measurement volume. Experiments demonstrated that fish were not influenced by the infrared laser illumination or the tracer particles. Results showed that the zebrafish used different strategies, suction and ram feeding, for successful capture of non-evasive and evasive prey, respectively. The two strategies yielded different variations in fluid velocity between the fish mouth and the prey. In general, the results suggest that the local flow field, the direction of prey locomotion with respect to the predator and the relative accelerations and speeds of the predator and prey may all be significant in determining predation success. (paper)

  19. Fully 3D tomographic reconstruction by Monte Carlo simulation of the system matrix in preclinical PET with iodine 124

    International Nuclear Information System (INIS)

    Moreau, Matthieu

    2014-01-01

    Immuno-PET imaging can be used to assess the pharmacokinetic in radioimmunotherapy. When using iodine-124, PET quantitative imaging is limited by physics-based degrading factors within the detection system and the object, such as the long positron range in water and the complex spectrum of gamma photons. The objective of this thesis was to develop a fully 3D tomographic reconstruction method (S(MC)2PET) using Monte Carlo simulations for estimating the system matrix, in the context of preclinical imaging with iodine-124. The Monte Carlo simulation platform GATE was used for that respect. Several complexities of system matrices were calculated, with at least a model of the PET system response function. Physics processes in the object was either neglected or taken into account using a precise or a simplified object description. The impact of modelling refinement and statistical variance related to the system matrix elements was evaluated on final reconstructed images. These studies showed that a high level of complexity did not always improve qualitative and quantitative results, owing to the high-variance of the associated system matrices. (author)

  20. Development of a new automatic nuclear emulsion scanning system, S-UTS, with continuous 3D tomographic image read-out

    Science.gov (United States)

    Morishima, K.; Nakano, T.

    2010-04-01

    The previous version of the automatic nuclear emulsion scanning system had a limit on read-out speed of several microscope views per second (views/s). This was due to unavoidable mechanical vibration when microscope stage was stopped to acquire tomographic images along the optical axis in emulsion. To overcome this limit, we succeeded in developing optics synchronized to stage movement so that tomographic images can be acquired without stopping a stage. This new system, S-UTS, is now operative with scanning speed of 50 views/s, or 72 cm2/h, with high efficiency and sub-μm precision. It plays an essential role in the OPERA experiment at CERN.

  1. Effect of optical property estimation accuracy on tomographic bioluminescence imaging: simulation of a combined optical-PET (OPET) system

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrakis, George [Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, University of California, 700 Westwood Plaza, Los Angeles, CA 90095 (United States); Rannou, Fernando R [Departamento de Ingenieria Informatica, Universidad de Santiago de Chile (USACH), Av. Ecuador 3659, Santiago (Chile); Chatziioannou, Arion F [Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, University of California, 700 Westwood Plaza, Los Angeles, CA 90095 (United States)

    2006-04-21

    Inevitable discrepancies between the mouse tissue optical properties assumed by an experimenter and the actual physiological values may affect the tomographic localization of bioluminescent sources. In a previous work, the simplifying assumption of optically homogeneous tissues led to inaccurate localization of deep sources. Improved results may be obtained if a mouse anatomical map is provided by a high-resolution imaging modality and optical properties are assigned to segmented tissues. In this work, the feasibility of this approach was explored by simulating the effect of different magnitude optical property errors on the image formation process of a combined optical-PET system. Some comparisons were made with corresponding simulations using higher spatial resolution data that are typically attainable by CCD cameras. In addition, simulation results provided insights on some of the experimental conditions that could lead to poor localization of bioluminescent sources. They also provided a rough guide on how accurately tissue optical properties need to be known in order to achieve correct localization of point sources with increasing tissue depth under low background noise conditions.

  2. Exceptionally preserved Cambrian trilobite digestive system revealed in 3D by synchrotron-radiation X-ray tomographic microscopy.

    Directory of Open Access Journals (Sweden)

    Mats E Eriksson

    Full Text Available The Cambrian 'Orsten' fauna comprises exceptionally preserved and phosphatised microscopic arthropods. The external morphology of these fossils is well known, but their internal soft-tissue anatomy has remained virtually unknown. Here, we report the first non-biomineralised tissues from a juvenile polymerid trilobite, represented by digestive structures, glands, and connective strands harboured in a hypostome from the Swedish 'Orsten' fauna. Synchrotron-radiation X-ray tomographic microscopy enabled three-dimensional internal recordings at sub-micrometre resolution. The specimen provides the first unambiguous evidence for a J-shaped anterior gut and the presence of a crop with a constricted alimentary tract in the Trilobita. Moreover, the gut is Y-shaped in cross section, probably due to a collapsed lumen of that shape, another feature which has not previously been observed in trilobites. The combination of anatomical features suggests that the trilobite hypostome is functionally analogous to the labrum of euarthropods and that it was a sophisticated element closely integrated with the digestive system. This study also briefly addresses the preservational bias of the 'Orsten' fauna, particularly the near-absence of polymerid trilobites, and the taphonomy of the soft-tissue-harbouring hypostome.

  3. Advanced Optical Signal Processing using Time Lens based Optical Fourier Transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Lillieholm, Mads

    2016-01-01

    An overview of recent progress on time lens based advanced optical signal processing is presented, with a special focus on all-optical ultrafast 640 Gbit/s all-channel serial-to-parallel conversion, and scalable WDM regeneration....

  4. Advances in tomographic PIV

    NARCIS (Netherlands)

    Novara, M.

    2013-01-01

    This research deals with advanced developments in 3D particle image velocimetry based on the tomographic PIV technique (Tomo-PIV). The latter is a relatively recent measurement technique introduced by Elsinga et al. in 2005, which is based on the tomographic reconstruction of particle tracers in

  5. Development of NMR tomographs for dedicated applications - Dedicated NMR Imaging Systems (DIS)

    International Nuclear Information System (INIS)

    Mueller, W.; Knuettel, B.

    1989-12-01

    For the application of MR in medicine three different magnet systems have been developed. a) A superconducting magnet system with a field strength of 3 Tesla and a room temperature bore diameter of 600 mm. b) A resistive magnet system with a field strength of 0.35 Tesla and a free access of 480 mm. c) A resistive magnet with a field strength of 0.47 Tesla and a free access of 140 mm. The superconducting magnet system is capable of performing spectroscopy as well as imaging. The resistive magnet systems are basically suited for imaging, whereby the system with a free access of 140 mm can be used especially for orthopaedic studies. (orig.) [de

  6. Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: whole-body tomographic system for small animals.

    Science.gov (United States)

    Gateau, Jerome; Caballero, Miguel Angel Araque; Dima, Alexander; Ntziachristos, Vasilis

    2013-01-01

    Optoacoustic imaging relies on the detection of ultrasonic waves induced by laser pulse excitations to map optical absorption in biological tissue. A tomographic geometry employing a conventional ultrasound linear detector array for volumetric optoacoustic imaging is reported. The geometry is based on a translate-rotate scanning motion of the detector array, and capitalizes on the geometrical characteristics of the transducer assembly to provide a large solid angular detection aperture. A system for three-dimensional whole-body optoacoustic tomography of small animals is implemented. The detection geometry was tested using a 128-element linear array (5.0∕7.0 MHz, Acuson L7, Siemens), moved by steps with a rotation∕translation stage assembly. Translation and rotation range of 13.5 mm and 180°, respectively, were implemented. Optoacoustic emissions were induced in tissue-mimicking phantoms and ex vivo mice using a pulsed laser operating in the near-IR spectral range at 760 nm. Volumetric images were formed using a filtered backprojection algorithm. The resolution of the optoacoustic tomography system was measured to be better than 130 μm in-plane and 330 μm in elevation (full width half maximum), and to be homogenous along a 15 mm diameter cross section due to the translate-rotate scanning geometry. Whole-body volumetric optoacoustic images of mice were performed ex vivo, and imaged organs and blood vessels through the intact abdominal and head regions were correlated to the mouse anatomy. Overall, the feasibility of three-dimensional and high-resolution whole-body optoacoustic imaging of small animal using a conventional linear array was demonstrated. Furthermore, the scanning geometry may be used for other linear arrays and is therefore expected to be of great interest for optoacoustic tomography at macroscopic and mesoscopic scale. Specifically, conventional detector arrays with higher central frequencies may be investigated.

  7. Tomographic Evaluation of Reparative Dentin Formation after Direct Pulp Capping with Ca(OH)2, MTA, Biodentine, and Dentin Bonding System in Human Teeth.

    Science.gov (United States)

    Nowicka, Alicja; Wilk, Grażyna; Lipski, Mariusz; Kołecki, Janusz; Buczkowska-Radlińska, Jadwiga

    2015-08-01

    New materials can increase the efficiency of pulp capping through the formation of a complete reparative dentin bridge with no toxic effects. The present study involved tomographic evaluations of reparative dentin bridge formation after direct pulp capping with calcium hydroxide, mineral trioxide aggregate (MTA), Biodentine (Septodont, Saint Maur des Fossés, France), and Single Bond Universal (3M ESPE, Seefeld, Germany) in human teeth. Forty-four caries-free, intact, human third molars scheduled for extraction were subjected to mechanical pulp exposure and assigned to 1 of 4 experimental groups depending on the pulp capping agent used: calcium hydroxide, MTA, Biodentine, or Single Bond Universal. After 6 weeks, the teeth were extracted and processed for cone-beam computed tomographic imaging and histologic examination. Tomographic data, including the density and volume of formed reparative dentin bridges, were evaluated using a scoring system. The reparative dentin formed in the calcium hydroxide, MTA, and Biodentine groups was significantly superior to that formed in the Single Bond Universal group in terms of thickness and volume. The dentin bridges in the Biodentine group showed the highest average and maximum volumes. The mean density of dentin bridges was the highest in the MTA group and the lowest in the Single Bond Universal group. The volume of reparative dentin bridges formed after direct pulp capping is dependent on the material used. Biodentine and MTA resulted in the formation of bridges with a significantly higher average volume compared with Single Bond Universal, and cone-beam computed tomographic imaging allowed for the identification of the location of dentin bridges. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. A high-throughput system for high-quality tomographic reconstruction of large datasets at Diamond Light Source.

    Science.gov (United States)

    Atwood, Robert C; Bodey, Andrew J; Price, Stephen W T; Basham, Mark; Drakopoulos, Michael

    2015-06-13

    Tomographic datasets collected at synchrotrons are becoming very large and complex, and, therefore, need to be managed efficiently. Raw images may have high pixel counts, and each pixel can be multidimensional and associated with additional data such as those derived from spectroscopy. In time-resolved studies, hundreds of tomographic datasets can be collected in sequence, yielding terabytes of data. Users of tomographic beamlines are drawn from various scientific disciplines, and many are keen to use tomographic reconstruction software that does not require a deep understanding of reconstruction principles. We have developed Savu, a reconstruction pipeline that enables users to rapidly reconstruct data to consistently create high-quality results. Savu is designed to work in an 'orthogonal' fashion, meaning that data can be converted between projection and sinogram space throughout the processing workflow as required. The Savu pipeline is modular and allows processing strategies to be optimized for users' purposes. In addition to the reconstruction algorithms themselves, it can include modules for identification of experimental problems, artefact correction, general image processing and data quality assessment. Savu is open source, open licensed and 'facility-independent': it can run on standard cluster infrastructure at any institution.

  9. Tomographic and clinical aspects of the central nervous system anomalies associated to the craniofacial congenital changes

    International Nuclear Information System (INIS)

    Bellucci, Angela Delete.

    1994-01-01

    This work proposes to study people presenting craniofacial congenital anomalies, with or without mental disorders, regardless their association to other anomalies in the body middle line, aiming to verify the central nervous system frequency of concurrence with structural anomalies associated, within the clinic and phenotype spectra of that syndromes. (author). 182 refs., 36 figs

  10. Gross, histologic, and micro-computed tomographic anatomy of the lacrimal system of snakes

    OpenAIRE

    Souza, NM; Maggs, DJ; Park, SA; Puchalski, SM; Reilly, CM; Paul-Murphy, J; Murphy, CJ

    2015-01-01

    © 2014 American College of Veterinary Ophthalmologists. Objective: To describe the lacrimal system of snakes using contrast micro-computed tomography (micro-CT) with 3-dimensional reconstruction, fluorescein passage ('Jones') testing, histology, and gross dissection. Animals studied: One royal python and 19 snake cadavers representing 10 species. Procedures: Direct observation following injection of fluorescein into the subspectacular space, micro-CT following injection of three contrast agen...

  11. Monitoring tooth demineralization using a cross polarization optical coherence tomographic system with an integrated MEMS scanner

    Science.gov (United States)

    Fried, Daniel; Staninec, Michal; Darling, Cynthia; Kang, Hobin; Chan, Kenneth

    2012-01-01

    New methods are needed for the nondestructive measurement of tooth demineralization and remineralization to monitor the progression of incipient caries lesions (tooth decay) for effective nonsurgical intervention and to evaluate the performance of anti-caries treatments such as chemical treatments or laser irradiation. Studies have shown that optical coherence tomography (OCT) has great potential to fulfill this role since it can be used to measure the depth and severity of early lesions with an axial resolution exceeding 10-μm, it is easy to apply in vivo and it can be used to image the convoluted topography of tooth occlusal surfaces. In this paper we present early results using a new cross-polarization OCT system introduced by Santec. This system utilizes a swept laser source and a MEMS scanner for rapid acquisition of cross polarization images. Preliminary studies show that this system is useful for measurement of the severity of demineralization on tooth surfaces and for showing the spread of occlusal lesions under the dentinal-enamel junction.

  12. High-Speed GPU-Based Fully Three-Dimensional Diffuse Optical Tomographic System.

    Science.gov (United States)

    Saikia, Manob Jyoti; Kanhirodan, Rajan; Mohan Vasu, Ram

    2014-01-01

    We have developed a graphics processor unit (GPU-) based high-speed fully 3D system for diffuse optical tomography (DOT). The reduction in execution time of 3D DOT algorithm, a severely ill-posed problem, is made possible through the use of (1) an algorithmic improvement that uses Broyden approach for updating the Jacobian matrix and thereby updating the parameter matrix and (2) the multinode multithreaded GPU and CUDA (Compute Unified Device Architecture) software architecture. Two different GPU implementations of DOT programs are developed in this study: (1) conventional C language program augmented by GPU CUDA and CULA routines (C GPU), (2) MATLAB program supported by MATLAB parallel computing toolkit for GPU (MATLAB GPU). The computation time of the algorithm on host CPU and the GPU system is presented for C and Matlab implementations. The forward computation uses finite element method (FEM) and the problem domain is discretized into 14610, 30823, and 66514 tetrahedral elements. The reconstruction time, so achieved for one iteration of the DOT reconstruction for 14610 elements, is 0.52 seconds for a C based GPU program for 2-plane measurements. The corresponding MATLAB based GPU program took 0.86 seconds. The maximum number of reconstructed frames so achieved is 2 frames per second.

  13. Gross, histologic, and micro-computed tomographic anatomy of the lacrimal system of snakes.

    Science.gov (United States)

    Souza, Nicole M; Maggs, David J; Park, Shin Ae; Puchalski, Sarah M; Reilly, Christopher M; Paul-Murphy, Joanne; Murphy, Christopher J

    2015-01-01

    To describe the lacrimal system of snakes using contrast micro-computed tomography (micro-CT) with 3-dimensional reconstruction, fluorescein passage ('Jones') testing, histology, and gross dissection. One royal python and 19 snake cadavers representing 10 species. Direct observation following injection of fluorescein into the subspectacular space, micro-CT following injection of three contrast agents into the subspectacular space, gross dissection following injection of latex into the subspectacular space, and histopathology. Injection of fluorescein confirmed patency, but not course of the lacrimal duct. Barium enabled clear visualization of the lacrimal duct, whereas two iodinated contrast agents proved inadequate. Collectively, micro-CT, anatomic dissections, and histology suggest tears are produced by a single, large, serous, retrobulbar gland, released into the subspectacular space via several ductules, and drained through a single punctum originating in the ventronasal subspectacular space, and the lacrimal duct, which takes one of three routes of variable tortuosity before opening into the oral cavity in close association with the opening of the duct of the vomeronasal organ. The ophidian lacrimal duct has a generally tortuous course, and the details of its anatomy are species-variable. The tortuous course of the duct likely predisposes snakes to duct occlusion and must be considered when planning medical and surgical interventions in snakes with pseudobuphthalmos and subspectacular abscessation. © 2014 American College of Veterinary Ophthalmologists.

  14. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    Details are presented of a tomographic scanning apparatus, its rotational assembly, and the control and circuit elements, with particular reference to the amplifier and multiplexing circuits enabling detector signal calibration. (U.K.)

  15. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    Details are given of a tomographic scanning apparatus, with particular reference to a multiplexer slip ring means for receiving output from the detectors and enabling interfeed to the image reconstruction station. (U.K.)

  16. Organ dose measurements from multiple-detector computed tomography using a commercial dosimetry system and tomographic, physical phantoms

    Science.gov (United States)

    Lavoie, Lindsey K.

    The technology of computed tomography (CT) imaging has soared over the last decade with the use of multi-detector CT (MDCT) scanners that are capable of performing studies in a matter of seconds. While the diagnostic information obtained from MDCT imaging is extremely valuable, it is important to ensure that the radiation doses resulting from these studies are at acceptably safe levels. This research project focused on the measurement of organ doses resulting from modern MDCT scanners. A commercially-available dosimetry system was used to measure organ doses. Small dosimeters made of optically-stimulated luminescent (OSL) material were analyzed with a portable OSL reader. Detailed verification of this system was performed. Characteristics studied include energy, scatter, and angular responses; dose linearity, ability to erase the exposed dose and ability to reuse dosimeters multiple times. The results of this verification process were positive. While small correction factors needed to be applied to the dose reported by the OSL reader, these factors were small and expected. Physical, tomographic pediatric and adult phantoms were used to measure organ doses. These phantoms were developed from CT images and are composed of tissue-equivalent materials. Because the adult phantom is comprised of numerous segments, dosimeters were placed in the phantom at several organ locations, and doses to select organs were measured using three clinical protocols: pediatric craniosynostosis, adult brain perfusion and adult cardiac CT angiography (CTA). A wide-beam, 320-slice, volumetric CT scanner and a 64-slice, MDCT scanner were used for organ dose measurements. Doses ranged from 1 to 26 mGy for the pediatric protocol, 1 to 1241 mGy for the brain perfusion protocol, and 2-100 mGy for the cardiac protocol. In most cases, the doses measured on the 64-slice scanner were higher than those on the 320-slice scanner. A methodology to measure organ doses with OSL dosimeters received from CT

  17. Gynecologic electrical impedance tomograph

    Science.gov (United States)

    Korjenevsky, A.; Cherepenin, V.; Trokhanova, O.; Tuykin, T.

    2010-04-01

    Electrical impedance tomography extends to the new and new areas of the medical diagnostics: lungs, breast, prostate, etc. The feedback from the doctors who use our breast EIT diagnostic system has induced us to develop the 3D electrical impedance imaging device for diagnostics of the cervix of the uterus - gynecologic impedance tomograph (GIT). The device uses the same measuring approach as the breast imaging system: 2D flat array of the electrodes arranged on the probe with handle is placed against the body. Each of the 32 electrodes of the array is connected in turn to the current source while the rest electrodes acquire the potentials on the surface. The current flows through the electrode of the array and returns through the remote electrode placed on the patient's limb. The voltages are measured relative to another remote electrode. The 3D backprojection along equipotential surfaces is used to reconstruct conductivity distribution up to approximately 1 cm in depth. Small number of electrodes enables us to implement real time imaging with a few frames per sec. rate. The device is under initial testing and evaluation of the imaging capabilities and suitability of usage.

  18. Emerging tomographic methods within the petroleum industry

    International Nuclear Information System (INIS)

    Johansen, Geir Anton

    2013-01-01

    Since industrial process tomography was introduced as a concept almost two decades ago, the considerable progress within a large variety of sensing modalities has to a large extent been technology driven. Industrial tomography applications may be divided into three categories: 1) Laboratory systems, 2) Field equipment for diagnostics and mapping purposes, and 3) Permanently installed systems. Examples on emerging methods on all categories will be presented, either from R and D at the University of Bergen and/or our industrial partners. Most developments are within the first category, where tomographs are used to provide better understanding of various processes such as pipe flow, separators, mixers and reactors. Here tomographic data is most often used to provide better process knowledge, for reference measurements and validation and development of process models, and finally for development for instruments and process equipment. The requirement here may be either high spatial resolution or high temporal resolution, or combinations of these. Tomographic field measurements are applied to either to inspect processes or equipment on a regular base or at faulty or irregular operation, or to map multicomponent systems such petroleum reservoirs, their structure and the distribution gas, oil and water within them. The latter will only be briefly touched upon here. Tomographic methods are increasingly being used for process and equipment diagnostics. The requirements vary and solutions based on repetition of single measurements, such as in column scanning, to full tomographic systems where there is sufficiently space or access. The third category is tomographic instruments that are permanently installed in situ in a process. These need not provide full tomographic images and instruments with fewer views are often preferred to reduce complexity and increase the instrument reliability. (author)

  19. Emerging tomographic methods within the petroleum industry

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, Geir Anton, E-mail: geir.johansen@ift.uib.no [University of Bergen (UiB), Bergen, (Norway)

    2013-07-01

    Since industrial process tomography was introduced as a concept almost two decades ago, the considerable progress within a large variety of sensing modalities has to a large extent been technology driven. Industrial tomography applications may be divided into three categories: 1) Laboratory systems, 2) Field equipment for diagnostics and mapping purposes, and 3) Permanently installed systems. Examples on emerging methods on all categories will be presented, either from R and D at the University of Bergen and/or our industrial partners. Most developments are within the first category, where tomographs are used to provide better understanding of various processes such as pipe flow, separators, mixers and reactors. Here tomographic data is most often used to provide better process knowledge, for reference measurements and validation and development of process models, and finally for development for instruments and process equipment. The requirement here may be either high spatial resolution or high temporal resolution, or combinations of these. Tomographic field measurements are applied to either to inspect processes or equipment on a regular base or at faulty or irregular operation, or to map multicomponent systems such petroleum reservoirs, their structure and the distribution gas, oil and water within them. The latter will only be briefly touched upon here. Tomographic methods are increasingly being used for process and equipment diagnostics. The requirements vary and solutions based on repetition of single measurements, such as in column scanning, to full tomographic systems where there is sufficiently space or access. The third category is tomographic instruments that are permanently installed in situ in a process. These need not provide full tomographic images and instruments with fewer views are often preferred to reduce complexity and increase the instrument reliability. (author)

  20. Time Lens based Optical Fourier Transformation for All-Optical Signal Processing of Spectrally-Efficient Data

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Lillieholm, Mads

    2017-01-01

    We review recent progress in the use of time lens based optical Fourier transformation for advanced all-optical signal processing. A novel time lens based complete optical Fourier transformation (OFT) technique is introduced. This complete OFT is based on two quadratic phase-modulation stages using...

  1. Aspheric lens based imaging receiver for MIMO visible light communication

    Science.gov (United States)

    Ju, Qiuqi; Liang, Zhongcheng; Liu, Xueming; Yang, Tingting; Wang, Jin

    2014-10-01

    Visible light communication (VLC) has been regarded as a promising solution in short-range intelligent communication system. Nowadays, the research is focused on integrating the multi-input multi-output (MIMO) technique in the VLC system, to achieve a larger transmission capacity and stronger transmission reliability. However, one important issue should be addressed due to the use of MIMO technology: the multipath inter-symbol interference. The multipath intersymbol interference comes from the reflection of the signal in the room and channel crosstalk between different channels. In this paper, we propose a novel optical system used in the MIMO VLC system to reduce multipath interference dramatically. Signals from different LEDs can be separated by using parabolic lens plated with reflecting film. This structure can reduce the reflection effect effectively as well. We present the simulation results to observe the distribution of optical power on the imaging plane for various receiving positions and low correlation between all channels. We can find that the optical power density becomes stronger than non-imaging system and the interference is sharply decreased, thus the SNR and BER are also optimized. Analysis about the optical system is given in this paper.

  2. Tomographic PIV: principles and practice

    International Nuclear Information System (INIS)

    Scarano, F

    2013-01-01

    A survey is given of the major developments in three-dimensional velocity field measurements using the tomographic particle image velocimetry (PIV) technique. The appearance of tomo-PIV dates back seven years from the present review (Elsinga et al 2005a 6th Int. Symp. PIV (Pasadena, CA)) and this approach has rapidly spread as a versatile, robust and accurate technique to investigate three-dimensional flows (Arroyo and Hinsch 2008 Topics in Applied Physics vol 112 ed A Schröder and C E Willert (Berlin: Springer) pp 127–54) and turbulence physics in particular. A considerable number of applications have been achieved over a wide range of flow problems, which requires the current status and capabilities of tomographic PIV to be reviewed. The fundamental aspects of the technique are discussed beginning from hardware considerations for volume illumination, imaging systems, their configurations and system calibration. The data processing aspects are of uppermost importance: image pre-processing, 3D object reconstruction and particle motion analysis are presented with their fundamental aspects along with the most advanced approaches. Reconstruction and cross-correlation algorithms, attaining higher measurement precision, spatial resolution or higher computational efficiency, are also discussed. The exploitation of 3D and time-resolved (4D) tomographic PIV data includes the evaluation of flow field pressure on the basis of the flow governing equation. The discussion also covers a-posteriori error analysis techniques. The most relevant applications of tomo-PIV in fluid mechanics are surveyed, covering experiments in air and water flows. In measurements in flow regimes from low-speed to supersonic, most emphasis is given to the complex 3D organization of turbulent coherent structures. (topical review)

  3. Tomographic method and apparatus

    International Nuclear Information System (INIS)

    Moore, R.M.

    1981-01-01

    A tomographic x-ray machine has a camera and film-plane section which move about a primary axis for imaging a selected cross-section of an anatomical member onto the film. A ''scout image'' of the member is taken at right angles to the plane of the desired cross-section to indicate the cross-section's angle with respect to the primary axis. The film plane is then located at the same angle with respect to a film cassette axis as the selected cross-section makes with the primary axis. The film plane and the cross-section are then maintained in parallel planes throughout motion of the camera and film plane during tomographic radiography. (author)

  4. Time lens based optical fourier transformation for advanced processing of spectrally-efficient OFDM and N-WDM signals

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Morioka, Toshio

    2016-01-01

    We review recent progress in the use of time lens based optical Fourier transformation for advanced optical signal processing, with focus on all-optical generation, detection and format conversion of spectrally-efficient OFDM and N-WDM signals.......We review recent progress in the use of time lens based optical Fourier transformation for advanced optical signal processing, with focus on all-optical generation, detection and format conversion of spectrally-efficient OFDM and N-WDM signals....

  5. Correlation Reconstruction Tomographic PIV

    Science.gov (United States)

    La Foy, Roderick; Vlachos, Pavlos

    2017-11-01

    A new volumetric Particle Image Velocimetry technique was developed that outputs accurate velocity measurements up to very high seeding densities while requiring lower computational expenditure. This technique combines the tomographic and cross-correlation steps by directly reconstructing the 3D cross-correlation volumes. Since many particles contribute to a single correlation peak, this decreases the noise contributions from ghost reconstructions, allowing accurate velocity measurements to be made at exceptionally high seeding densities. Additionally the overall computational cost is lowered by combining the reconstruction and cross-correlation steps. Results comparing the errors of the new technique applied to both simulated and experimental data will be presented.

  6. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    Abele, M.

    1983-01-01

    A computerized tomographic scanning apparatus suitable for diagnosis and for improving target identification in stereotactic neurosurgery is described. It consists of a base, a source of penetrating energy, a detector which produces scanning signals and detector positioning means. A frame with top and bottom arms secures the detector and source to the top and bottom arms respectively. A drive mechanism rotates the frame about an axis along which the frame may also be moved. Finally, the detector may be moved relative to the bottom arm in a direction contrary to the rotation of the frame. (U.K.)

  7. Computed tomographic determination of tracheal dimensions in children and adolescents

    International Nuclear Information System (INIS)

    Griscom, N.T.

    1982-01-01

    A computed tomographic system for determining the internal diameters, cross-sectional area, and length of the trachea in children and adolescents was developed. Intraluminal volumes were calculated from these measurements.The results of 18 analyses are reported

  8. Tomographic reconstruction of quantum metrics

    Science.gov (United States)

    Laudato, Marco; Marmo, Giuseppe; Mele, Fabio M.; Ventriglia, Franco; Vitale, Patrizia

    2018-02-01

    In the framework of quantum information geometry we investigate the relationship between monotone metric tensors uniquely defined on the space of quantum tomograms, once the tomographic scheme is chosen, and monotone quantum metrics on the space of quantum states, classified by operator monotone functions, according to the Petz classification theorem. We show that different metrics can be related through a change in the tomographic map and prove that there exists a bijective relation between monotone quantum metrics associated with different operator monotone functions. Such a bijective relation is uniquely defined in terms of solutions of a first order second degree differential equation for the parameters of the involved tomographic maps. We first exhibit an example of a non-linear tomographic map that connects a monotone metric with a new one, which is not monotone. Then we provide a second example where two monotone metrics are uniquely related through their tomographic parameters.

  9. Gamma Ray Tomographic Scan Method for Large Scale Industrial Plants

    International Nuclear Information System (INIS)

    Moon, Jin Ho; Jung, Sung Hee; Kim, Jong Bum; Park, Jang Geun

    2011-01-01

    The gamma ray tomography systems have been used to investigate a chemical process for last decade. There have been many cases of gamma ray tomography for laboratory scale work but not many cases for industrial scale work. Non-tomographic equipment with gamma-ray sources is often used in process diagnosis. Gamma radiography, gamma column scanning and the radioisotope tracer technique are examples of gamma ray application in industries. In spite of many outdoor non-gamma ray tomographic equipment, the most of gamma ray tomographic systems still remained as indoor equipment. But, as the gamma tomography has developed, the demand on gamma tomography for real scale plants also increased. To develop the industrial scale system, we introduced the gamma-ray tomographic system with fixed detectors and rotating source. The general system configuration is similar to 4 th generation geometry. But the main effort has been made to actualize the instant installation of the system for real scale industrial plant. This work would be a first attempt to apply the 4th generation industrial gamma tomographic scanning by experimental method. The individual 0.5-inch NaI detector was used for gamma ray detection by configuring circular shape around industrial plant. This tomographic scan method can reduce mechanical complexity and require a much smaller space than a conventional CT. Those properties make it easy to get measurement data for a real scale plant

  10. Development of a tomographic system adapted to 3D measurement of contaminated wounds based on the Cacao concept (Computer aided collimation Gamma Camera)

    International Nuclear Information System (INIS)

    Douiri, A.

    2002-03-01

    The computer aided collimation gamma camera (CACAO in French) is a gamma camera using a collimator with large holes, a supplementary linear scanning motion during the acquisition and a dedicated reconstruction program taking full account of the source depth. The CACAO system was introduced to improve both the sensitivity and the resolution in nuclear medicine. This thesis focuses on the design of a fast and robust reconstruction algorithm in the CACAO project. We start by an overview of tomographic imaging techniques in nuclear medicine. After modelling the physical CACAO system, we present the complete reconstruction program which involves three steps: 1) shift and sum 2) deconvolution and filtering 3) rotation and sum. The deconvolution is the critical step that decreases the signal to noise ratio of the reconstructed images. We propose a regularized multi-channel algorithm to solve the deconvolution problem. We also present a fast algorithm based on Splines functions and preserving the high quality of the reconstructed images for the shift and the rotation steps. Comparisons of simulated reconstructed images in 2D and 3D for the conventional system (CPHC) and CACAO demonstrate the ability of CACAO system to increase the quality of the SPECT images. Finally, this study concludes with an experimental approach with a pixellated detector conceived for a 3D measurement of contaminated wounds. This experimentation proves the possible advantages of coupling the CACAO project with pixellated detectors. Moreover, a variety of applications could fully benefit from the CACAO system, such as low activity imaging, the use of high-energy gamma isotopes and the visualization of deep organs. Moreover the combination of the CACAO system with a pixels detector may open up further possibilities for the future of nuclear medicine. (author)

  11. High resolution tomographic instrument development

    International Nuclear Information System (INIS)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational

  12. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  13. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  14. Tomographic examination table

    International Nuclear Information System (INIS)

    Redington, R.W.; Henkes, J.L.

    1979-01-01

    Equipment is described for positioning and supporting patients during tomographic mammography using X-rays. The equipment consists of a table and fabric slings which permit the examination of a downward, pendant breast of a prone patient by allowing the breast to pass through a aperture in the table into a fluid filled container. The fluid has an X-ray absorption coefficient similar to that of soft human tissue allowing high density resolution radiography and permitting accurate detection of breast tumours. The shape of the equipment and the positioning of the patient allow the detector and X-ray source to rotate 360 0 about a vertical axis through the breast. This permits the use of relatively simple image reconstruction algorithms and a divergent X-ray geometry. (UK)

  15. Image interface in Java for tomographic reconstruction in nuclear medicine

    International Nuclear Information System (INIS)

    Andrade, M.A.; Silva, A.M. Marques da

    2004-01-01

    The aim of this study is to implement a software for tomographic reconstruction of SPECT data from Nuclear Medicine with a flexible interface design, cross-platform, written in Java. Validation tests were performed based on SPECT simulated data. The results showed that the implemented algorithms and filters agree with the theoretical context. We intend to extend the system by implementing additional tomographic reconstruction techniques and Java threads, in order to provide simultaneously image processing. (author)

  16. Addition of Tomographic Capabilities to NMIS

    CERN Document Server

    Mullens, J A

    2003-01-01

    This paper describes tomographic capabilities for the Nuclear Materials Identification System (NMIS). The tomographic capabilities add weapons component spatial and material properties information that result in a more detailed item signature (template) and provide more information for physical attributes analyses. The Nuclear Materials Identification System (NMIS) is used routinely to confirm the identity of HEU components in sealed containers. It does this through a radiation signature acquired by shining a sup 2 sup 5 sup 2 Cf source through the container and measuring the radiation at four detectors stacked vertically on the other side. This measurement gives a gamma and neutron radiation transmission profile of the weapons component, mixed with the radiation production due to the induced fissions in the fissile materials. This information is sufficient to match an ''unknown'' weapons component signature to a template signature from a reference item when measuring under controlled conditions. Tomography m...

  17. Tomographic multiphase flow measurement

    International Nuclear Information System (INIS)

    Sætre, C.; Johansen, G.A.; Tjugum, S.A.

    2012-01-01

    Measurement of multiphase flow of gas, oil and water is not at all trivial and in spite of considerable achievements over the past two decades, important challenges remain (). These are related to reducing measurement uncertainties arising from variations in the flow regime, improving long term stability and developing new means for calibration, adjustment and verification of the multiphase flow meters. This work focuses on the first two issues using multi gamma beam (MGB) measurements for identification of the type of flow regime. Further gamma ray tomographic measurements are used for reference of the gas/liquid distribution. For the MGB method one Am-241 source with principal emission at 59.5 keV is used because this relatively low energy enables efficient collimation and thereby shaping of the beams, as well as compact detectors. One detector is placed diametrically opposite the source whereas the second is positioned to the side so that this beam is close to the pipe wall. The principle is then straight forward to compare the measured intensities of these detectors and through that identify the flow pattern, i.e. the instantaneous cross-sectional gas-liquid distribution. The measurement setup also includes Compton scattering measurements, which can provide information about the changes in the water salinity for flow segments with high water liquid ratio and low gas fractions. By measuring the transmitted intensity in short time slots (<100ms), rapid regime variations are revealed. From this we can select the time sections suitable for salinity measurements. Since the salinity variations change at the time scale of hours, a running average can be performed to increase the accuracy of the measurements. Recent results of this work will be presented here. - Highlights: ► Multiphase flow gas-fraction and flow regime measurements by multi gamma ray beams. ► High-speed gamma ray tomograph as reference for the flow pattern and gas fraction. ► Dual modality

  18. Addition of Tomographic Capabilities to NMIS

    Energy Technology Data Exchange (ETDEWEB)

    Mullens, J.A.

    2003-03-11

    This paper describes tomographic capabilities for the Nuclear Materials Identification System (NMIS). The tomographic capabilities add weapons component spatial and material properties information that result in a more detailed item signature (template) and provide more information for physical attributes analyses. The Nuclear Materials Identification System (NMIS) is used routinely to confirm the identity of HEU components in sealed containers. It does this through a radiation signature acquired by shining a {sup 252}Cf source through the container and measuring the radiation at four detectors stacked vertically on the other side. This measurement gives a gamma and neutron radiation transmission profile of the weapons component, mixed with the radiation production due to the induced fissions in the fissile materials. This information is sufficient to match an ''unknown'' weapons component signature to a template signature from a reference item when measuring under controlled conditions. Tomography measures the interior of an item by making transmission measurements from all angles around the item, whereas NMIS makes the measurements from a single angle. Figure 1 is a standard example of tomographic reconstruction, the Shepp-Logan human brain phantom. The measured quantity is attenuation so high values (white) are highly attenuating areas.

  19. Tomographic extreme-ultraviolet spectrographs: TESS.

    Science.gov (United States)

    Cotton, D M; Stephan, A; Cook, T; Vickers, J; Taylor, V; Chakrabarti, S

    2000-08-01

    We describe the system of Tomographic Extreme Ultraviolet (EUV) SpectrographS (TESS) that are the primary instruments for the Tomographic Experiment using Radiative Recombinative Ionospheric EUV and Radio Sources (TERRIERS) satellite. The spectrographs were designed to make high-sensitivity {80 counts/s)/Rayleigh [one Rayleigh is equivalent to 10(6) photons/(4pi str cm(2)s)}, line-of-sight measurements of the oi 135.6- and 91.1-nm emissions suitable for tomographic inversion. The system consists of five spectrographs, four identical nightglow instruments (for redundancy and added sensitivity), and one instrument with a smaller aperture to reduce sensitivity and increase spectral resolution for daytime operation. Each instrument has a bandpass of 80-140 nm with approximately 2- and 1-nm resolution for the night and day instruments, respectively. They utilize microchannel-plate-based two-dimensional imaging detectors with wedge-and-strip anode readouts. The instruments were designed, fabricated, and calibrated at Boston University, and the TERRIERS satellite was launched on 18 May 1999 from Vandenberg Air Force Base, California.

  20. First tomographic image of ionospheric outflows

    Science.gov (United States)

    Yizengaw, E.; Moldwin, M. B.; Dyson, P. L.; Fraser, B. J.; Morley, S.

    2006-10-01

    An image of the dayside low-energy ion outflow event that occurred on 16 December 2003 was constructed with ground- and space-based GPS (Global Positioning System) Total Electron Content (TEC) data and ion drift meter data from the DMSP (Defense Meteorological Satellite Program). A tomographic reconstruction technique has been applied to the GPS TEC data obtained from the GPS receiver on the Low Earth Orbit (LEO) satellite FedSat. The two dimensional tomographic image of the topside ionosphere and plasmasphere reveals a spectacular beam-like dayside ion outflow emanating from the cusp region. The transverse components of the magnetic field in FedSat's NewMag data show the presence of field aligned current (FAC) sheets, indicating the existence of low-energy electron precipitation in the cusp region. The DMSP ion drift data show upward ion drift velocities and upward fluxes of low-energy ions and electrons at the orbiting height of the DMSP spacecraft in the cusp region. This study presents the first tomographic image of the flux tube structure of ionospheric ion outflows from 0.13 Re up to 3.17 Re altitude.

  1. Computer tomographic diagnosis of echinococcosis

    Energy Technology Data Exchange (ETDEWEB)

    Haertel, M.; Fretz, C.; Fuchs, W.A.

    1980-08-01

    The computer tomographic appearances and differential diagnosis in 22 patients with echinococcosis are described; of these, twelve were of the cystic and ten of the alveolar type. The computer tomographic appearances are characterised by the presence of daughter cysts (66%) within the sharply demarkated parasitic cyst of water density. In the absence of daughter cysts, a definite aetiological diagnosis cannot be made, although there is a tendency to clasification of the occassionally multiple echinococcus cysts. The computer tomographic appearances of advanced alveolar echinococcosis are characterised by partial collequative necrosis, with clacification around the necrotic areas (90%). The absence of CT evidence of partial necrosis and calsification of the pseudotumour makes it difficult to establish a specific diagnosis. The conclusive and non-invasive character of the procedure and its reproducibility makes computer tomography the method of choice for the diagnosis and follow-up of echinococcosis.

  2. X-Ray Tomographic Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Bonnie Schmittberger

    2010-08-25

    Tomographic scans have revolutionized imaging techniques used in medical and biological research by resolving individual sample slices instead of several superimposed images that are obtained from regular x-ray scans. X-Ray fluorescence computed tomography, a more specific tomography technique, bombards the sample with synchrotron x-rays and detects the fluorescent photons emitted from the sample. However, since x-rays are attenuated as they pass through the sample, tomographic scans often produce images with erroneous low densities in areas where the x-rays have already passed through most of the sample. To correct for this and correctly reconstruct the data in order to obtain the most accurate images, a program employing iterative methods based on the inverse Radon transform was written. Applying this reconstruction method to a tomographic image recovered some of the lost densities, providing a more accurate image from which element concentrations and internal structure can be determined.

  3. Bio-Inspired Wide-Angle Broad-Spectrum Cylindrical Lens Based on Reflections from Micro-Mirror Array on a Cylindrical Elastomeric Membrane

    Directory of Open Access Journals (Sweden)

    Chi-Chieh Huang

    2014-06-01

    Full Text Available We present a wide-angle, broad-spectrum cylindrical lens based on reflections from an array of three-dimensional, high-aspect-ratio micro-mirrors fabricated on a cylindrical elastomeric substrate, functionally inspired by natural reflecting superposition compound eyes. Our device can perform one-dimensional focusing and beam-shaping comparable to conventional refraction-based cylindrical lenses, while avoiding chromatic aberration. The focal length of our cylindrical lens is 1.035 mm, suitable for micro-optical systems. Moreover, it demonstrates a wide field of view of 152° without distortion, as well as modest spherical aberrations. Our work could be applied to diverse applications including laser diode collimation, barcode scanning, holography, digital projection display, microlens arrays, and optical microscopy.

  4. Computerized tomographic in non-destructive testing

    International Nuclear Information System (INIS)

    Lopes, R.T.

    1988-01-01

    The process of computerized tomography has been developed for medical imaging purposes using tomographs with X-ray, and little attention has been given to others possibles applications of technique, because of its cost. As an alternative for the problem, we constructed a Tomographic System (STAC-1), using gamma-rays, for nonmedical applications. In this work we summarize the basic theory of reconstructing images using computerized tomography and we describe the considerations leading to the development of the experimental system. The method of reconstruction image implanted in the system is the filtered backprojection or convolution, with a digital filters system to carried on a pre-filtering in the projections. The experimental system is described, with details of control and the data processing. An alternative and a complementary system, using film as a detector is shown in preliminary form . This thesis discuss and shows the theorical and practical aspects, considered in the construction of the STAC-1, and also its limitations and apllications [pt

  5. Intravenous volume tomographic pulmonary angiography imaging

    Science.gov (United States)

    Ning, Ruola; Strang, John G.; Chen, Biao; Conover, David L.; Yu, Rongfeng

    1999-05-01

    This study presents a new intravenous (IV) tomographic angiography imaging technique, called intravenous volume tomographic digital angiography (VTDA) for cross sectional pulmonary angiography. While the advantages of IV-VTDA over spiral CT in terms of volume scanning time and resolution have been validated and reported in our previous papers for head and neck vascular imaging, the superiority of IV-VTDA over spiral CT for cross sectional pulmonary angiography has not been explored yet. The purpose of this study is to demonstrate the advantage of isotropic resolution of IV-VTDA in the x, y and z directions through phantom and animal studies, and to explore its clinical application for detecting clots in pulmonary angiography. A prototype image intensifier-based VTDA imaging system has been designed and constructed by modifying a GE 8800 CT scanner. This system was used for a series of phantom and dog studies. A pulmonary vascular phantom was designed and constructed. The phantom was scanned using the prototype VTDA system for direct 3D reconstruction. Then the same phantom was scanned using a GE CT/i spiral CT scanner using the routine pulmonary CT angiography protocols. IV contrast injection and volume scanning protocols were developed during the dog studies. Both VTDA reconstructed images and spiral CT images of the specially designed phantom were analyzed and compared. The detectability of simulated vessels and clots was assessed as the function of iodine concentration levels, oriented angles, and diameters of the vessels and clots. A set of 3D VTDA reconstruction images of dog pulmonary arteries was obtained with different IV injection rates and isotropic resolution in the x, y and z directions. The results of clot detection studies in dog pulmonary arteries have also been shown. This study presents a new tomographic IV angiography imaging technique for cross sectional pulmonary angiography. The results of phantom and animal studies indicate that IV-VTDA is

  6. Original circuitry for TOHR tomograph

    International Nuclear Information System (INIS)

    Cuzon, J.C.; Pinot, L.

    1999-01-01

    Having industrialization in mind, a specific electronics for a high resolution tomograph is designed out of the usual standards of nuclear physics. All the information are converted in the time domain and a fast processor, in front of the data acquisition, carries out the time and energy coincidences. (authors)

  7. Optical tomograph optimized for tumor detection inside highly absorbent organs

    Science.gov (United States)

    Boutet, Jérôme; Koenig, Anne; Hervé, Lionel; Berger, Michel; Dinten, Jean-Marc; Josserand, Véronique; Coll, Jean-Luc

    2011-05-01

    This paper presents a tomograph for small animal fluorescence imaging. The compact and cost-effective system described in this article was designed to address the problem of tumor detection inside highly absorbent heterogeneous organs, such as lungs. To validate the tomograph's ability to detect cancerous nodules inside lungs, in vivo tumor growth was studied on seven cancerous mice bearing murine mammary tumors marked with Alexa Fluor 700. They were successively imaged 10, 12, and 14 days after the primary tumor implantation. The fluorescence maps were compared over this time period. As expected, the reconstructed fluorescence increases with the tumor growth stage.

  8. Computer tomographic findings in neurosyphilis

    Directory of Open Access Journals (Sweden)

    Pavithran K

    1993-01-01

    Full Text Available Computer tomographic features of the brain in 2 cases of neurosyphilis are described. Less prominence of the cortical sulci suggesting cortical atrophy was the predominant feature in a case of general paralysis of insane. Diffuse, irregular, non-enhancing, low-attenuated area in the cortical and subcortical region of the right temporoparietal lobe of a patient with vascular syphilis, suggested infarction of the brain.

  9. Time-lens based synchronizer and retimer for 10 Gb/s Ethernet packets with up to ±1MHz frequency offset

    DEFF Research Database (Denmark)

    Laguardia Areal, Janaina; Hu, Hao; Palushani, Evarist

    2010-01-01

    We present a time-lens based all-optical 10 Gb/s frame synchronizer and retimer. Our scheme can work with a 4096-bit frame, with frequency offset up to 1MHz, which is demonstrated by experimental results.......We present a time-lens based all-optical 10 Gb/s frame synchronizer and retimer. Our scheme can work with a 4096-bit frame, with frequency offset up to 1MHz, which is demonstrated by experimental results....

  10. Temporal evaluation of computed tomographic scans at a Level 1 ...

    African Journals Online (AJOL)

    Temporal evaluation of computed tomographic scans at a Level 1 trauma department in a central South African hospital. ... Method: Relevant categorical data were collected from the trauma patient register and radiological information system (RIS) from 01 February 2013 to 31 January 2014. A population of 1107 trauma ...

  11. Instrumentation for tomograph positioning

    International Nuclear Information System (INIS)

    Frenkel, A.D.B.; Castello Branco, L.M.; Reznik, D.S.; Santos, C.A.C.; Borges, J.C.

    1986-01-01

    The COPPE's Nuclear Instrumentation Lab. has been developing researches directed towards the implementation of a Computer-Based Tomography System. Basically, the system reported in this paper can be divided into three major parts: the mechanical part, responsible for the physical movement (Stepper-Motors, table, etc.); the electronic part, which controls the mechanical part and handles the data-acquisition process (microcomputer, interfaces, etc.); and finally, the support of a software-oriented system, including control programs and information processing routines. (Author) [pt

  12. Collimated trans-axial tomographic scintillation camera

    International Nuclear Information System (INIS)

    1980-01-01

    The objects of this invention are first to reduce the time required to obtain statistically significant data in trans-axial tomographic radioisotope scanning using a scintillation camera. Secondly, to provide a scintillation camera system to increase the rate of acceptance of radioactive events to contribute to the positional information obtainable from a known radiation source without sacrificing spatial resolution. Thirdly to reduce the scanning time without loss of image clarity. The system described comprises a scintillation camera detector, means for moving this in orbit about a cranial-caudal axis relative to a patient and a collimator having septa defining apertures such that gamma rays perpendicular to the axis are admitted with high spatial resolution, parallel to the axis with low resolution. The septa may be made of strips of lead. Detailed descriptions are given. (U.K.)

  13. A system dedicated to the viewing and handling of tomographic images obtained by magnetic resonance; Um sistema dedicado a visualizacao e manipulacao de imagens tomograficas obtidas por ressonancia magnetica

    Energy Technology Data Exchange (ETDEWEB)

    Slaets, Joan F.W.; Almeida, Lirio O.B. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Fisica e Quimica; Traina, Agma J.M. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Ciencias Matematicas

    1992-12-31

    The present work describes the development of a dedicated system to be used in visualization and manipulation of a MR images. The graphics environment as well as the tool kit were developed for the dedicated TMS34010 based hardware. The developed software offers a compact kernel with primitives to support the creation and manipulation windows and menus directly in `C` language. This work is fundamental for the implementation of a user friendly interface build to operate and visualize tomographic images. This tools are essential for the selection an archiving of images planes as used in clinical applications. (author) 9 refs., 2 figs., 1 photo; e-mail: jan, agma and lirio at uspfsc.ifqsc..usp.ansp.br

  14. Computer tomographic examinations in epilepsy

    International Nuclear Information System (INIS)

    De Villiers, J.F.K.

    1984-01-01

    Epileptic patients that was examined at the Universitas Hospital (Bloemfontein) by means of computerized tomography for the period July 1978 - December 1980, are divided into two groups: a) Patients with general epilepsy of convulsions - 507; b) Patients with vocal or partial epilepsy - 111. The method of examination and the results for both general and vocal epilepsy are discussed. A degenerative state was found in 35% of the positive computer tomographic examinations in general epilepsy and 22% of the positive examinations for vocal epilepsy. The purpose of the article was to explain the circumstances that can be expected when a epileptic patient is examined by means of computerized tomography

  15. Development of basic software for processing and visualization of NMR tomographic images

    International Nuclear Information System (INIS)

    Traina, A.J.M.; Slaets, J.F.W.

    1989-01-01

    The present work describes the software under development for Image Processing and Visualization of MR Images. This project is part of Magnetic Ressonance Tomographic System which is being built at the IFQSC - USP [pt

  16. Collimated trans-axial tomographic scintillation camera

    International Nuclear Information System (INIS)

    1980-01-01

    The principal problem in trans-axial tomographic radioisotope scanning is the length of time required to obtain meaningful data. Patient movement and radioisotope migration during the scanning period can cause distortion of the image. The object of this invention is to reduce the scanning time without degrading the images obtained. A system is described in which a scintillation camera detector is moved to an orbit about the cranial-caudal axis relative to the patient. A collimator is used in which lead septa are arranged so as to admit gamma rays travelling perpendicular to this axis with high spatial resolution and those travelling in the direction of the axis with low spatial resolution, thus increasing the rate of acceptance of radioactive events to contribute to the positional information obtainable without sacrificing spatial resolution. (author)

  17. Measurement of skull bone thickness for bone-anchored hearing aids: an experimental study comparing both a novel ultrasound system (SonoPointer) and computed tomographic scanning to mechanical measurements.

    Science.gov (United States)

    Federspil, Philipp A; Tretbar, Steffen H; Böhlen, Friederike H; Rohde, Stefan; Glaser, Simon; Plinkert, Peter K

    2010-04-01

    A-mode ultrasound scanning with coded signals allows bone thickness measurements at the site of bone-anchored hearing aid surgery as compared to computed tomographic scanning and mechanical measurements. Adequate bone thickness is a prerequisite for successful, long-lasting osseointegration of titanium fixtures for bone-anchored hearing aids. Computed tomography can be used to measure bone thickness but has several drawbacks. Bone thickness was measured at the site of bone-anchored hearing aids surgery in 28 formaldehyde-preserved human cadaver temporoparietal bones. Four blinded investigators used a hand-held, A-mode ultrasound system with direct coupling at 2.25 MHz transducer using coded signals (SonoPointer) and repeated the measurements twice. Comparisons were made with high-resolution computed tomographic scanning and mechanical micrometer caliper measurements. There was significant anatomical variation in the temporoparietal bones. Computed tomography was in good agreement with the mechanical reference. All specimens could be measured by the SonoPointer. The mean difference between the mechanical control and ultrasound scanning averaged for all measurements by all investigators was 0.3 mm (standard deviation, 1.2 mm). Trained ultrasound experts yielded better results (mean difference, 0.3 mm; standard deviation, 1.0 mm). Agreement was best for bone thickness up to 5 mm. Outliers occurred in bones thicker than 7.5 mm. The SonoPointer is a promising, noninvasive, hand-held tool for real-time measurement of bone thickness in bone-anchored hearing aid surgery, especially for children. Even disregarding the absolute thickness reading, the SonoPointer could be used to search intraoperatively for a local maximum of bone thickness.

  18. Comparison of two cone beam computed tomographic systems versus panoramic imaging for localization of impacted maxillary canines and detection of root resorption.

    Science.gov (United States)

    Alqerban, Ali; Jacobs, Reinhilde; Fieuws, Steffen; Willems, Guy

    2011-02-01

    The diagnostic accuracy for the localization of impacted canines and the detection of canine-induced root resorption of maxillary incisors were compared between conventional radiographic procedures using one two-dimensional (2D) panoramic radiograph with that of two three-dimensional (3D) cone beam computed tomography (CBCT) scans. The clinical records of 60 consecutive patients who had impacted or ectopically erupting maxillary canines were identified from those seeking orthodontic treatment. For each case, two sets of radiographic information were obtained. The study sample was divided into two groups: group A (n = 30) included those for whom a dental pantomograph (DPT) and CBCT obtained with a 3D Accuitomo-XYZ Slice View Tomograph were available and group B (n = 30) who had a DPT and CBCT obtained with a Scanora. The DPT and CBCT images were subsequently analysed by 11 examiners. Statistical analysis included an evaluation of the agreement between observers based on the standard error of the measurement, kappa statistics and coefficient of concordance, as well as an assessment of the differences between 2D and 3D imaging employing Wilcoxon signed rank and McNemar tests. There was a highly significant difference between the 2D and 3D images in the width of the canine crown (P radiography for both canine localization and identification of root resorption of adjacent teeth.

  19. Three dimensional reconstruction of tomographic images of the retina

    International Nuclear Information System (INIS)

    Glittenberg, C.; Zeiler, F.; Falkner, C.; Binder, S.; Povazay, B.; Hermann, B.; Drexler, W.

    2007-01-01

    The development of a new display system for the three-dimensional visualization of tomographic images in ophthalmology. Specifically, a system that can use stacks of B-mode scans from an ultrahigh resolution optical tomography examination to vividly display retinal specimens as three-dimensional objects. Several subroutines were programmed in the rendering and raytracing program Cinema 4D XL 9.102 Studio Bundle (Maxon Computer Inc., Friedrichsburg, Germany), which could process stacks of tomographic scans into three-dimensional objects. Ultrahigh resolution optical coherence tomography examinations were performed on patients with various retinal pathologies and post processed with the subroutines that had been designed. All ultrahigh resolution optical coherence tomographies were performed with a titanium: sapphire based ultra broad bandwidth (160 nm) femtosecond laser system (INTEGRAL, Femtolasers Productions GmbH. Vienna Austria) with an axial resolution of 3 μm. A new three dimensional display system for tomographic images in ophthalmology was developed, which allows a highly vivid display of physiological and pathological structures of the retina. The system also distinguishes itself through its high interactivity and adaptability. This new display system allows the visualization of physiological and pathological structures of the retina in a new way, which will give us new insight into their morphology and development. (author) [de

  20. Sapphire ball lens-based fiber probe for common-path optical coherence tomography and its applications in corneal and retinal imaging.

    Science.gov (United States)

    Zhao, Mingtao; Huang, Yong; Kang, Jin U

    2012-12-01

    We describe a common-path swept source optical coherence tomography fiber probe design using a sapphire ball lens for cross-sectional imaging and sensing for retina vitrectomy surgery. The high refractive index (n=1.75) of the sapphire ball lens improves the focusing power and enables the probe to operate in the intraocular space. The highly precise spherical shape of the sapphire lens also reduces astigmatism and coma compared to fused nonspherical ball lenses. A theoretical sensitivity model for common-path optical coherence tomography (CP-OCT) was developed to assess its optimal performance based on an unbalanced photodetector configuration. Two probe designs-with working distances 415 and 1221 μm and lateral resolution 11 and 18 μm-were implemented with sensitivity up to 88 dB, which is significantly higher than previously reported CP-OCT probes. We assessed the performances of the fiber probes by cross-sectional imaging a bovine cornea and retina in air and in vitreous gel with a 1310 nm swept source OCT system. To the best of our knowledge, this is the first demonstration of sapphire ball lens-based CP-OCT probes directly inserted into the vitreous gel of a bovine eyeball for ocular imaging with a sensitivity approaching the theoretical limitation of CP-OCT.

  1. Tomographic anthropomorphic models. Pt. 1

    International Nuclear Information System (INIS)

    Veit, R.; Zankl, M.; Petoussi, N.; Mannweiler, E.; Drexler, G.; Williams, G.

    1989-01-01

    The first generation of heterogenoeous anthropomorphic mathematical models to be used in dose calculations was the MIRD-5 adult phantom, followed by the pediatric MIRD-type phantoms and by the GSF sex-specific phantoms ADAM and EVA. A new generation of realistic anthropomorphic models is now introduced. The organs and tissues of these models consist of a well defined number of volume elements (voxels), derived from computer tomographic (CT) data; consequently, these models were named voxel or tomographic models. So far two voxel models of real patients are available: one of an 8 week old baby and of a 7 year old child. For simplicity, the model of the baby will be referred to as BABY and that of the child as CHILD. In chapter 1 a brief literature review is given on the existing mathematical models and their applications. The reasons that lead to the construction of the new CT models is discussed. In chapter 2 the technique is described which allows to convert any physical object into computer files to be used for dose calculations. The technique which produces three dimensional reconstructions of high resolution is discussed. In chapter 3 the main characteristics of the models of the baby and child are given. Tables of organ masses and volumes are presented together with three dimensional images of some organs and tissues. A special mention is given to the assessment of bone marrow distribution. Chapter 4 gives a short description of the Monte Carlo code used in conjunction with the models to calculate organ and tissue doses resulting from photon exposures. Some technical details concerning the computer files which describe the models are also given. (orig./HP)

  2. Application of tomographic particle image velocimetry to studies of transport in complex (dusty) plasma

    International Nuclear Information System (INIS)

    Williams, Jeremiah D.

    2011-01-01

    Over the past twelve years, two-dimensional and stereoscopic particle image velocimetry (PIV) techniques have been used to obtain detailed measurements of the thermal and transport properties of the microparticle component of dusty plasma systems. This letter reports on an extension of these techniques to obtain a volumetric, three-dimensional velocity vector measurement using tomographic PIV. Initial measurements using the tomographic PIV diagnostic are presented.

  3. A feasibility study on a tomograph for radioactive waste examination

    International Nuclear Information System (INIS)

    Montigon, J.F.

    1987-01-01

    A feasibility study on a high-energy tomograph for radioactive waste examination has been carried out by CEA/SEDFMA (Cadarache, France). After describing the scope of the research (radiation source, detector system, data processing, station mechanics), this final report deals with the work programme which has been followed and gives the results of the research. The conclusion is that such a tomograph is feasible, and its preliminary design is shown. The main points are that: - the detector material will be BGO, - the transmission of gamma rays through concrete (up to 1 625 mm thick) has been measured and a calculation code has been validated, - the radiation source will be an accelerator which has to be carefully optimized, - the system configuration has been determined and the data processors have been chosen, - the algorithms for image reconstruction have been validated through taking a tomogram on a concrete sample

  4. Compact Positron Tomograph for Prostate Imaging

    National Research Council Canada - National Science Library

    Huber, Jennifer S

    2005-01-01

    The goal of this project is to construct a functioning compact positron tomograph, whose geometry is optimized for detecting prostate tumors with molecular tracers such as 11Ccholine (carbon-11 choline...

  5. Compact Positron Tomograph for Prostate Imaging

    National Research Council Canada - National Science Library

    Huber, Jennifer

    2004-01-01

    The goal of this project is to construct a functioning compact positron tomograph, whose geometry is optimized for detecting prostate tumors with molecular tracers such as 11Ccholine (carbon-11 choline...

  6. Computed Tomographic Evaluation of Mandibular Ameloblastoma

    Directory of Open Access Journals (Sweden)

    N Eswar

    2003-01-01

    Five interesting cases of mandibular ameloblastoma are presented here, each case showing different histological pattern and corresponding computer tomographic appearance. Also an attempt is made to establish CT pattern in these histological varieties of ameloblastoma.

  7. Computed tomographic findings of intracranial gliosis

    Energy Technology Data Exchange (ETDEWEB)

    Weisberg, L.

    1981-08-01

    The clinical and computed tomographic (CT) findings in eight patients with pathological evidence of cerebral gliosis are analyzed. CT findings do not permit differentiation of gliosis from other neoplastic and non-neoplastic conditions.

  8. Computer tomographic findings of intracranial gliosis.

    Science.gov (United States)

    Weisberg, L

    1981-01-01

    The clinical and computer tomographic (CT) findings in eight patients with pathological evidence of cerebral gliosis and analyzed. CT findings do not permit differentiation of gliosis from other neoplastic and non-neoplastic conditions.

  9. Terahertz Imaging for Biomedical Applications Pattern Recognition and Tomographic Reconstruction

    CERN Document Server

    Yin, Xiaoxia; Abbott, Derek

    2012-01-01

    Terahertz Imaging for Biomedical Applications: Pattern Recognition and Tomographic Reconstruction presents the necessary algorithms needed to assist screening, diagnosis, and treatment, and these algorithms will play a critical role in the accurate detection of abnormalities present in biomedical imaging. Terahertz biomedical imaging has become an area of interest due to its ability to simultaneously acquire both image and spectral information. Terahertz imaging systems are being commercialized with an increasing number of trials performed in a biomedical setting. Terahertz tomographic imaging and detection technology contributes to the ability to identify opaque objects with clear boundaries,and would be useful to both in vivo and ex vivo environments. This book also: Introduces terahertz radiation techniques and provides a number of topical examples of signal and image processing, as well as machine learning Presents the most recent developments in an emerging field, terahertz radiation Utilizes new methods...

  10. Tomographic PIV: particles versus blobs

    International Nuclear Information System (INIS)

    Champagnat, Frédéric; Cornic, Philippe; Besnerais, Guy Le; Plyer, Aurélien; Cheminet, Adam; Leclaire, Benjamin

    2014-01-01

    We present an alternative approach to tomographic particle image velocimetry (tomo-PIV) that seeks to recover nearly single voxel particles rather than blobs of extended size. The baseline of our approach is a particle-based representation of image data. An appropriate discretization of this representation yields an original linear forward model with a weight matrix built with specific samples of the system’s point spread function (PSF). Such an approach requires only a few voxels to explain the image appearance, therefore it favors much more sparsely reconstructed volumes than classic tomo-PIV. The proposed forward model is general and flexible and can be embedded in a classical multiplicative algebraic reconstruction technique (MART) or a simultaneous multiplicative algebraic reconstruction technique (SMART) inversion procedure. We show, using synthetic PIV images and by way of a large exploration of the generating conditions and a variety of performance metrics, that the model leads to better results than the classical tomo-PIV approach, in particular in the case of seeding densities greater than 0.06 particles per pixel and of PSFs characterized by a standard deviation larger than 0.8 pixels. (paper)

  11. From tomographic images to fault heterogeneities

    Directory of Open Access Journals (Sweden)

    A. Amato

    1994-06-01

    Full Text Available Local Earthquake Tomography (LET is a useful tool for imaging lateral heterogeneities in the upper crust. The pattern of P- and S-wave velocity anomalies, in relation to the seismicity distribution along active fault zones. can shed light on the existence of discrete seismogenic patches. Recent tomographic studies in well monitored seismic areas have shown that the regions with large seismic moment release generally correspond to high velocity zones (HVZ's. In this paper, we discuss the relationship between the seismogenic behavior of faults and the velocity structure of fault zones as inferred from seismic tomography. First, we review some recent tomographic studies in active strike-slip faults. We show examples from different segments of the San Andreas fault system (Parkfield, Loma Prieta, where detailed studies have been carried out in recent years. We also show two applications of LET to thrust faults (Coalinga, Friuli. Then, we focus on the Irpinia normal fault zone (South-Central Italy, where a Ms = 6.9 earthquake occurred in 1980 and many thousands of attershock travel time data are available. We find that earthquake hypocenters concentrate in HVZ's, whereas low velocity zones (LVZ’ s appear to be relatively aseismic. The main HVZ's along which the mainshock rupture bas propagated may correspond to velocity weakening fault regions, whereas the LVZ's are probably related to weak materials undergoing stable slip (velocity strengthening. A correlation exists between this HVZ and the area with larger coseismic slip along the fault, according to both surface evidence (a fault scarp as high as 1 m and strong ground motion waveform modeling. Smaller wave-length, low-velocity anomalies detected along the fault may be the expression of velocity strengthening sections, where aseismic slip occurs. According to our results, the rupture at the nucleation depth (~ 10-12 km is continuous for the whole fault lenoth (~ 30 km, whereas at shallow depth

  12. Industrial dynamic tomographic reconstruction; Reconstrucao tomografica dinamica industrial

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Eric Ferreira de

    2016-07-01

    The state of the art methods applied to industrial processes is currently based on the principles of classical tomographic reconstructions developed for tomographic patterns of static distributions, or is limited to cases of low variability of the density distribution function of the tomographed object. Noise and motion artifacts are the main problems caused by a mismatch in the data from views acquired in different instants. All of these add to the known fact that using a limited amount of data can result in the presence of noise, artifacts and some inconsistencies with the distribution under study. One of the objectives of the present work is to discuss the difficulties that arise from implementing reconstruction algorithms in dynamic tomography that were originally developed for static distributions. Another objective is to propose solutions that aim at reducing a temporal type of information loss caused by employing regular acquisition systems to dynamic processes. With respect to dynamic image reconstruction it was conducted a comparison between different static reconstruction methods, like MART and FBP, when used for dynamic scenarios. This comparison was based on a MCNPx simulation as well as an analytical setup of an aluminum cylinder that moves along the section of a riser during the process of acquisition, and also based on cross section images from CFD techniques. As for the adaptation of current tomographic acquisition systems for dynamic processes, this work established a sequence of tomographic views in a just-in-time fashion for visualization purposes, a form of visually disposing density information as soon as it becomes amenable to image reconstruction. A third contribution was to take advantage of the triple color channel necessary to display colored images in most displays, so that, by appropriately scaling the acquired values of each view in the linear system of the reconstruction, it was possible to imprint a temporal trace into the regularly

  13. Development of a Double-Gauss Lens Based Setup for Optoacoustic Applications.

    Science.gov (United States)

    Choi, Hojong; Ryu, Jae-Myung; Yeom, Jung-Yeol

    2017-03-03

    In optoacoustic (photoacoustic) systems, different echo signal intensities such as amplitudes, center frequencies, and bandwidths need to be compensated by utilizing variable gain or time-gain compensation amplifiers. However, such electronic components can increase system complexities and signal noise levels. In this paper, we introduce a double-Gauss lens to generate a large field of view with uniform light intensity due to the low chromatic aberrations of the lens, thus obtaining uniform echo signal intensities across the field of view of the optoacoustic system. In order to validate the uniformity of the echo signal intensities in the system, an in-house transducer was placed at various positions above a tissue sample and echo signals were measured and compared with each other. The custom designed double-Gauss lens demonstrated negligible light intensity variation (±1.5%) across the illumination field of view (~2 cm diameter). When the transducer was used to measure echo signal from an eye of a bigeye tuna within a range of ±1 cm, the peak-to-peak amplitude, center frequency, and their -6 dB bandwidth variations were less than 2 mV, 1 MHz, and 6%, respectively. The custom designed double-Gauss lens can provide uniform light beam across a wide area while generating insignificant echo signal variations, and thus can lower the burden of the receiving electronics or signal processing in the optoacoustic system.

  14. Computed tomographic findings of cerebral paragonimiasis

    International Nuclear Information System (INIS)

    Sung, Nak Kwan; Nam, Kyung Jin; Park, Churl Min; Eun, Chung Kie; Lee, Sun Wha

    1983-01-01

    Paragonimiasis is widely distributed in Far East and Southeast Asia, particularly in Korea. The central nervous system is the most frequent location for paragonimiasis outside the lungs. We analyzed the computed tomographic findings of 17 cases which were diagnosed pathologically and clinically as cerebral paragonimiasis. The results were as follows: 1. The ratio of male to female was 10 : 7 and about 88% of cases were under the age of 40 years. 2. The common locations of cerebral paragonimiasis were the occipital (12 cases) and temporal (11 cases) lobes. 3. Precontrast CT findings of cerebral paragonimiasis were low density with calcifications in 6 cases, low and isodensities in 4 cases, mixed densities in 3 cases, only low density in 2 cases and only calcification in 2 cases. Hydrocephalus (7 cases), mass effect (6 cases), atrophic change (6 cases) and cyst formation (3 cases) were associated. 4. The shape of calcifications in CT scan were soap-bubble or ring in 6 cases, nodular or oval in 6 cases, stipple in 4 cases and amorphous conglomerated in 2 cases. 5. The contrast -enhanced 8 cases were 5 ring or rim like, 2 nodular and 1 irregular enhancements, while 9 cases were not enhanced

  15. Collimator trans-axial tomographic scintillation camera

    International Nuclear Information System (INIS)

    Jaszczak, Ronald J.

    1979-01-01

    An improved collimator is provided for a scintillation camera system that employs a detector head for transaxial tomographic scanning. One object of this invention is to significantly reduce the time required to obtain statistically significant data in radioisotope scanning using a scintillation camera. Another is to increase the rate of acceptance of radioactive events to contribute to the positional information obtainable from a radiation source of known strength without sacrificing spatial resolution. A further object is to reduce the necessary scanning time without degrading the images obtained. The collimator described has apertures defined by septa of different radiation transparency. The septa are aligned to provide greater radiation shielding from gamma radiation travelling within planes perpendicular to the cranial-caudal axis and less radiation shielding from gamma radiation travelling within other planes. Septa may also define apertures such that the collimator provides high spatial resolution of gamma rays traveling within planes perpendicular to the cranial-caudal axis and directed at the detector and high radiation sensitivity to gamma radiation travelling other planes and indicated at the detector. (LL)

  16. Techniques of noninvasive optical tomographic imaging

    Science.gov (United States)

    Rosen, Joseph; Abookasis, David; Gokhler, Mark

    2006-01-01

    Recently invented methods of optical tomographic imaging through scattering and absorbing media are presented. In one method, the three-dimensional structure of an object hidden between two biological tissues is recovered from many noisy speckle pictures obtained on the output of a multi-channeled optical imaging system. Objects are recovered from many speckled images observed by a digital camera through two stereoscopic microlens arrays. Each microlens in each array generates a speckle image of the object buried between the layers. In the computer each image is Fourier transformed jointly with an image of the speckled point-like source captured under the same conditions. A set of the squared magnitudes of the Fourier-transformed pictures is accumulated to form a single average picture. This final picture is again Fourier transformed, resulting in the three-dimensional reconstruction of the hidden object. In the other method, the effect of spatial longitudinal coherence is used for imaging through an absorbing layer with different thickness, or different index of refraction, along the layer. The technique is based on synthesis of multiple peak spatial degree of coherence. This degree of coherence enables us to scan simultaneously different sample points on different altitudes, and thus decreases the acquisition time. The same multi peak degree of coherence is also used for imaging through the absorbing layer. Our entire experiments are performed with a quasi-monochromatic light source. Therefore problems of dispersion and inhomogeneous absorption are avoided.

  17. Ball lens based lensed patch cord probes for optical coherence tomography in the field of dentistry

    Science.gov (United States)

    Eom, J. B.; Kim, Y.; Lee, S. J.; Min, E. J.; Park, S. J.; Lee, B. H.

    2012-10-01

    A lensed patch cord probe has been made with a ball lens packaged in a metal cylinder. By simply placing a ball lens directly in front of a fiber patch cord, a compact and potentially disposable sampling probe for optical coherence tomography (OCT) could be implemented. To achieve a sufficiently long working distance and a good transverse resolution simultaneously, the proper ball lens diameter and the distance between the ball lens and the fiber patch cord were investigated. Experimentally, a working distance of up to 5.2 mm, 3 dB bandwidth of 2 mm, and transverse resolution of 16 μm were achieved. With the patch cord probe, a common path swept source OCT system was implemented and used to demonstrate the feasibility as the dedicated probe for dentistry.

  18. A PC-controlled microwave tomographic scanner for breast imaging

    Science.gov (United States)

    Padhi, Shantanu; Howard, John; Fhager, A.; Bengtsson, Sebastian

    2011-01-01

    This article presents the design and development of a personal computer based controller for a microwave tomographic system for breast cancer detection. The system uses motorized, dual-polarized antennas and a custom-made GUI interface to control stepper motors, a wideband vector network analyzer (VNA) and to coordinate data acquisition and archival in a local MDSPlus database. Both copolar and cross-polar scattered field components can be measured directly. Experimental results are presented to validate the various functionalities of the scanner.

  19. Correction of 157-nm lens based on phase ring aberration extraction method

    Science.gov (United States)

    Meute, Jeff; Rich, Georgia K.; Conley, Will; Smith, Bruce W.; Zavyalova, Lena V.; Cashmore, Julian S.; Ashworth, Dominic; Webb, James E.; Rich, Lisa

    2004-05-01

    Early manufacture and use of 157nm high NA lenses has presented significant challenges including: intrinsic birefringence correction, control of optical surface contamination, and the use of relatively unproven materials, coatings, and metrology. Many of these issues were addressed during the manufacture and use of International SEMATECH"s 0.85NA lens. Most significantly, we were the first to employ 157nm phase measurement interferometry (PMI) and birefringence modeling software for lens optimization. These efforts yielded significant wavefront improvement and produced one of the best wavefront-corrected 157nm lenses to date. After applying the best practices to the manufacture of the lens, we still had to overcome the difficulties of integrating the lens into the tool platform at International SEMATECH instead of at the supplier facility. After lens integration, alignment, and field optimization were complete, conventional lithography and phase ring aberration extraction techniques were used to characterize system performance. These techniques suggested a wavefront error of approximately 0.05 waves RMS--much larger than the 0.03 waves RMS predicted by 157nm PMI. In-situ wavefront correction was planned for in the early stages of this project to mitigate risks introduced by the use of development materials and techniques and field integration of the lens. In this publication, we document the development and use of a phase ring aberration extraction method for characterizing imaging performance and a technique for correcting aberrations with the addition of an optical compensation plate. Imaging results before and after the lens correction are presented and differences between actual and predicted results are discussed.

  20. Preoperative imaging for DIEA perforator flaps: a comparative study of computed tomographic angiography and Doppler ultrasound.

    Science.gov (United States)

    Rozen, Warren M; Phillips, Timothy J; Ashton, Mark W; Stella, Damien L; Gibson, Robert N; Taylor, G Ian

    2008-01-01

    Abdominal donor-site flaps, including the transverse rectus abdominis musculocutaneous (TRAM) and deep inferior epigastric artery (DIEA) perforator flaps, are standard in autologous breast reconstruction. With significant variation in the vascular anatomy of the abdominal wall, preoperative imaging is essential for preoperative planning and reducing intraoperative error. Doppler and color duplex sonography have been used with varying results, and the quest continues for optimal preoperative assessment. Computed tomographic angiography has recently been proposed as a noninvasive modality for this purpose. This is the first study to formally compare preoperative Doppler ultrasound with computed tomographic angiography for imaging the DIEA. Eight consecutive patients undergoing DIEA perforator flap surgery for breast reconstruction underwent both computed tomographic angiography and Doppler ultrasound preoperatively. All investigations and procedures were performed at the same institution with the same primary and assisting surgeons and the same radiology team. Computed tomographic angiography was superior to Doppler ultrasound at identifying the course of the DIEA and its branching pattern, and in visualizing its perforators. Preoperative computed tomographic angiography was highly specific (100 percent) and more sensitive in mapping and visualizing perforators (p = 0.0078). It was also proficient at identifying the superficial epigastric arterial system and for effectively displaying the results intraoperatively. It was substantially quicker and removed the interobserver error associated with Doppler ultrasonography. The study was ceased after eight patients because of the overwhelming benefit of computed tomographic angiography over Doppler ultrasonography. Computed tomographic angiography is a valuable imaging modality for the preoperative assessment of the donor-site vascular supply for TRAM and DIEA perforator flaps.

  1. A micro-computed tomographic evaluation of dentinal microcrack alterations during root canal preparation using single-file Ni-Ti systems.

    Science.gov (United States)

    Li, Mei-Lin; Liao, Wei-Li; Cai, Hua-Xiong

    2018-01-01

    The aim of the present study was to evaluate the length of dentinal microcracks observed prior to and following root canal preparation with different single-file nickel-titanium (Ni-Ti) systems using micro-computed tomography (micro-CT) analysis. A total of 80 mesial roots of mandibular first molars presenting with type II Vertucci canal configurations were scanned at an isotropic resolution of 7.4 µm. The samples were randomly assigned into four groups (n=20 per group) according to the system used for root canal preparation, including the WaveOne (WO), OneShape (OS), Reciproc (RE) and control groups. A second micro-CT scan was conducted after the root canals were prepared with size 25 instruments. Pre- and postoperative cross-section images of the roots (n=237,760) were then screened to identify the lengths of the microcracks. The results indicated that the microcrack lengths were notably increased following root canal preparation (P<0.05). The alterations in microcrack length in the OS group were more significant compared with those in the WO, RE and control groups (P<0.05). In conclusion, the formation and development of dentinal microcracks may be associated with the movement caused by preparation rather than the taper of the files. Among the single-file Ni-Ti systems, WO and RE were not observed to cause notable microcracks, while the OS system resulted in evident microcracks.

  2. A comparative evaluation of root canal area increase using three different nickel-titanium rotary systems: An ex vivo cone-beam computed tomographic analysis.

    Science.gov (United States)

    Deka, Adrija; Bhuyan, A C; Bhuyan, Darpana

    2015-01-01

    The present study was undertaken to compare and evaluate the area increase of root canals with ProTaper, iRaCe and Revo-S systems using cone beam computed tomography for analysis. Forty five extracted human mandibular premolars having single canal and straight root were collected. Teeth were randomly assigned to three groups (n=15). Samples were decoronized by maintaining root length at 14 mm. Pre-instrumentation cone beam computed tomography scan was done after stabilizing the samples on wax blocks. The working length was determined at 1 mm short from the apical foramen by using a ISO 15 K-file tip protruding at apical foramen. Preparation was carried out according to the manufacturer's instructions. Finally, canals were instrumented upto 30/.06 apically for each group. After each instrumentation, root canals were irrigated with 2ml of 3% sodium hypochlorite solution followed by 2 ml of 17% EDTA solution. Final irrigation was done with 5ml of saline. Post instrumentation cone beam computed tomography scans of all samples in the 3 groups were acquired. Mean percentage of area increase in different thirds of the canal was highest for ProTaper followed by i-RaCe and Revo-s system which was statistically significant. Root canal area increase was highest for ProTaper followed by i-Race and Revo-S systems.

  3. A comparative evaluation of root canal area increase using three different nickel-titanium rotary systems: An ex vivo cone-beam computed tomographic analysis

    Directory of Open Access Journals (Sweden)

    Adrija Deka

    2015-01-01

    Full Text Available Background and Objectives: The present study was undertaken to compare and evaluate the area increase of root canals with ProTaper, iRaCe and Revo-S systems using cone beam computed tomography for analysis. Materials and Methodology: Forty five extracted human mandibular premolars having single canal and straight root were collected. Teeth were randomly assigned to three groups (n=15. Samples were decoronized by maintaining root length at 14 mm. Pre-instrumentation cone beam computed tomography scan was done after stabilizing the samples on wax blocks. The working length was determined at 1 mm short from the apical foramen by using a ISO 15 K-file tip protruding at apical foramen. Preparation was carried out according to the manufacturer′s instructions. Finally, canals were instrumented upto 30/.06 apically for each group. After each instrumentation, root canals were irrigated with 2ml of 3% sodium hypochlorite solution followed by 2 ml of 17% EDTA solution. Final irrigation was done with 5ml of saline. Post instrumentation cone beam computed tomography scans of all samples in the 3 groups were acquired. Results: Mean percentage of area increase in different thirds of the canal was highest for ProTaper followed by i-RaCe and Revo-s system which was statistically significant. Interpretation and Conclusion: Root canal area increase was highest for ProTaper followed by i-Race and Revo-S systems.

  4. Connections model for tomographic images reconstruction

    International Nuclear Information System (INIS)

    Rodrigues, R.G.S.; Pela, C.A.; Roque, S.F. A.C.

    1998-01-01

    This paper shows an artificial neural network with an adequately topology for tomographic image reconstruction. The associated error function is derived and the learning algorithm is make. The simulated results are presented and demonstrate the existence of a generalized solution for nets with linear activation function. (Author)

  5. Tomographic image reconstruction from continuous projections

    NARCIS (Netherlands)

    J. Cant (Jeroen); W.J. Palenstijn (Willem Jan); G. Behiels; J. Sijbers (Jan)

    2014-01-01

    htmlabstractAn important design aspect in tomographic image reconstruction is the choice between a step-and-shoot protocol versus continuous X-ray tube movement for image acquisition. A step-and-shoot protocol implies a perfectly still tube during X-ray exposure, and hence involves moving the tube

  6. Case Report: Unusual computed tomographic features of ...

    African Journals Online (AJOL)

    A case report of a 57-year old woman who presented with signs and symptoms of intracranial mass. Computed tomographic (CT) and clinical features were unusual and suggestive of a parasaggital Meningioma. However an accurate diagnosis of a tuberculoma was made at surgery and histopathological examination.

  7. Quantum probability measures and tomographic probability densities

    NARCIS (Netherlands)

    Amosov, GG; Man'ko, [No Value

    2004-01-01

    Using a simple relation of the Dirac delta-function to generalized the theta-function, the relationship between the tomographic probability approach and the quantum probability measure approach with the description of quantum states is discussed. The quantum state tomogram expressed in terms of the

  8. A new ionospheric tomographic algorithm – constrained ...

    Indian Academy of Sciences (India)

    the above algorithms. Finally, the new method is applied to reconstruct the IED distributions using the regional GNSS observation (i.e., GPS) over. China. 2. Tomographic formulation. As is well known, one measurable parameter of the ionosphere is the total electron content (TEC), which is the line integral of IED along ray ...

  9. The bar coil for NMR tomograph

    International Nuclear Information System (INIS)

    Bogorodzki, P.; Piatkowski, A.; Wasielewski, J.

    1995-01-01

    The bar coil (bi-planar) for the NMR tomograph, designed for medical diagnostics, has been described. The tests of coil shown that it generates good homogenous magnetic field in a big volume what results in improving of the signal-to-noise ratio

  10. Decomposition of time-resolved tomographic PIV

    NARCIS (Netherlands)

    Schmid, P.J.; Violato, D.; Scarano, F.

    2012-01-01

    An experimental study has been conducted on a transitional water jet at a Reynolds number of Re = 5,000. Flow fields have been obtained by means of time-resolved tomographic particle image velocimetry capturing all relevant spatial and temporal scales. The measured threedimensional flow fields have

  11. Gas microstrip detectors for X-ray tomographic flow imaging

    CERN Document Server

    Key, M J; Luggar, R D; Kundu, A

    2003-01-01

    A investigation into the suitability of gas microstrip detector technology for a high-speed industrial X-ray tomography system is reported. X-ray energies in the region 20-30 keV are well suited to the application, which involves imaging two-dimensional slices through gas/liquid multiphase pipeline flows for quantitative component fraction measurement. Stable operation over a period representing several hundred individual tomographic scans at gas gains of 500 is demonstrated using a Penning gas mixture of krypton/propylene.

  12. A positron emission tomograph based on LSO-APD modules with a sampling ADC read-out system for a students' advanced laboratory course.

    Science.gov (United States)

    Schneider, Florian R; Mann, Alexander B; Konorov, Igor; Delso, Gaspar; Paul, Stephan; Ziegler, Sibylle I

    2012-06-01

    A one-day laboratory course on positron emission tomography (PET) for the education of physics students and PhD students in medical physics has been set up. In the course, the physical background and the principles of a PET scanner are introduced. Course attendees set the system in operation, calibrate it using a (22)Na point source and reconstruct different source geometries filled with (18)F. The PET scanner features an individual channel read-out of 96 lutetium oxyorthosilicate (LSO) scintillator crystals coupled to avalanche photodiodes (APD). The analog data of each APD are digitized by fast sampling analog to digital converters (SADC) and processed within field programmable gate arrays (FPGA) to extract amplitudes and time stamps. All SADCs are continuously sampling with a precise rate of 80MHz, which is synchronous for the whole system. The data is transmitted via USB to a Linux PC, where further processing and the image reconstruction are performed. The course attendees get an insight into detector techniques, modern read-out electronics, data acquisition and PET image reconstruction. In addition, a short introduction to some common software applications used in particle and high energy physics is part of the course. Copyright © 2011. Published by Elsevier GmbH.

  13. Determination of instantaneous pressure in a transonic base flow using four-pulse tomographic PIV

    NARCIS (Netherlands)

    Blinde, P.L.; Lynch, K.P.; Schrijer, F.F.J.; Van Oudheusden, B.W.

    2015-01-01

    A tomographic four-pulse PIV system is used in a transonic axisymmetric base flow experiment at a nominal free stream Mach number of 0.7, with the objective to obtain flow acceleration and pressure data. The PIV system, consisting of two double-pulse lasers and twelve cameras, allows acquiring two

  14. Achievement report on research and development of medical and welfare equipment technology. Optical tomographic imaging method; Iryo fukushi kiki gijutsu kenkyu kaihatsu seika hokokusho. Hikari danso imaging system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    The aim is to develop a method of processing oxygen concentration distribution in human organs into an image by computed tomography using near infrared rays capable of transmitting through living tissues. Since the photoabsorption spectra of hemoglobin etc. in blood vary according to the degree of their oxidation, an oxygen concentration level is determined by measuring the magnitude of the variation. In the imaging method named in the title, the object is irradiated with picosecond-level near infrared pulses from all directions successively, the pulses after transmission through the object are measured at all directions at a picosecond-level time resolution, and the distribution of pulse scattering and absorption characteristics are subjected to algorithmic calculation, the outcome is converted into oxygen concentration levels, and an image is obtained. A 64-channel time resolution measurement system is constructed, and is applied to living tissue models (phantoms) and animals, and an image is obtained and evaluated. On the basis of the result, a patient is examined for clinical evaluation, and an image reflecting the distribution of variations in hemoglobin oxygen concentration is obtained for the head of the adult patient. A spatial resolution of 1cm is achieved in case of a phantom 10cm in diameter. In the case of 64 channels, measurement takes approximately 20 minutes and mapping image data measurement takes approximately 7 minutes. (NEDO)

  15. Computer-Aided Tomographic Analysis of Interstitial Lung Disease (ILD in Patients with Systemic Sclerosis (SSc. Correlation with Pulmonary Physiologic Tests and Patient-Centred Measures of Perceived Dyspnea and Functional Disability.

    Directory of Open Access Journals (Sweden)

    Fausto Salaffi

    Full Text Available This study was designed (a to evaluate an improved quantitative lung fibrosis score based on a computer-aided diagnosis (CaM system in patients with systemic sclerosis (SSc,-related interstitial lung disease (SSc-ILD, (b to investigate the relationship between physiologic parameters (forced vital capacity [FVC] and single-breath diffusing capacity for carbon monoxide [DLCO], patient-centred measures of dyspnea and functional disability and CaM and visual reader-based (CoVR methods, and (c to identify potential surrogate measures from quantitative and visual HRCT measurement.126 patients with SSc underwent chest radiography, HRCT and PFTs. The following patient-centred measures were obtained: modified Borg Dyspnea Index (Borg score, VAS for breathing, and Health Assessment Questionnaire-Disability Index (HAQ-DI. HRCT abnormalities were scored according to the conventional visual reader-based score (CoVR and by a CaM. The relationships among the HRCT scores, physiologic parameters (FVC and DLCO, % predicted results and patient-centred measures, were calculated using linear regression analysis and Pearson's correlation. Multivariate regression models were performed to identify the predictor variables on severity of pulmonary fibrosis.Subjects with limited cutaneous SSc had lower HAQ-DI scores than subjects with diffuse cutaneous SSc (p <0.001. CaM and CoVR scores were similar in the 2 groups. In univariate analysis, a strong correlation between CaM and CoVR was observed (p <0.0001. In multivariate analysis the CaM and CoVR scores were predicted by DLco, FVC, Borg score and HAQ-DI. Age, sex, disease duration, anti-topoisomerase antibodies and mRSS were not significantly associated with severity of pulmonary fibrosis on CaM- and CoVR methods.Although a close correlation between CaM score results and CoVR total score was found, CaM analysis showed a more significant correlation with DLco (more so than the FVC, patient-centred measures of perceived

  16. Spontaneous Intracerebral Hemorrhage: Computed Tomographic Characteristics and Outcome

    Directory of Open Access Journals (Sweden)

    Aimara de la Caridad Vergara Santos

    2015-12-01

    Full Text Available Background: strokes are the third leading cause of death among adults and 10-15 % of them are due to spontaneous intracerebral hemorrhage. Objective: to characterize spontaneous intracerebral hemorrhage through computed tomography scan and its outcome. Methods: a case series study was conducted comprising patients diagnosed with spontaneous intracerebral hemorrhage admitted to the Arnaldo Milián Castro Provincial University Hospital in Villa Clara from January 2009 to January 2010. Tomographic variables of interest were derived from evaluation of spontaneous intracerebral hematomas. Results: fifty-nine cases of spontaneous intracerebral hemorrhage were studied, 23 were located in lobar regions, 4 had severe midline shift, and 2 showed volume greater than 80 ml. Eight out of eleven with extension into the ventricular system had an unfavorable outcome. Among those with thalamic hemorrhage, patients with diameter larger than 4cm and extension into the ventricular system died. Patients with putaminal hemorrhage larger than 4 cm and posterior fossa hematoma with hydrocephalus had a poor outcome, as well as most individuals (55 with other mass effects. Most lobar hematomas (14 out of 23 had a satisfactory outcome, unlike cerebellar and brainstem hematomas. Conclusions: tomographic variables that had a negative impact on the outcome were: volume greater than 80 ml, severe midline shift, diameter larger than 4 cm, extension into the ventricular system, hydrocephalus, other signs of mass effect and brainstem location.

  17. Snowpack permittivity profile retrieval from tomographic SAR data

    Science.gov (United States)

    Rekioua, Badreddine; Davy, Matthieu; Ferro-Famil, Laurent; Tebaldini, Stefano

    2017-01-01

    This work deals with 3D structure characterization and permittivity profile retrieval of snowpacks by tomographic SAR data processing. The acquisition system is a very high resolution ground based SAR system, developed and operated by the SAPHIR team, of IETR, University of Rennes-1 (France). It consists mainly of a vector network analyser and a multi-static antenna system, moving along two orthogonal directions, so as to obtain a two-dimensional synthetic array. Data were acquired during the AlpSAR campaign carried by the European Space Agency and led by ENVEO. In this study, tomographic imaging is performed using Time Domain Back Projection and consists in coherently combining the different recorded backscatter contributions. The assumption of free-space propagation during the focusing process is discussed and illustrated by focusing experimental data. An iterative method for estimating true refractive indices of the snow layers is presented. The antenna pattern is also compensated for. The obtained tomograms after refractive index correction are compared to the stratigraphy of the observed snowpack.

  18. An original acquisition chain for the TOHR High Resolution Tomograph

    International Nuclear Information System (INIS)

    Pinot, Laurent

    1999-01-01

    The framework of this work is part of a new approach of emission tomography adapted to small animals. The principle of our tomographic system TOHR (French acronym for High Resolution Tomograph) is based on the use of large solid angle and high resolution focusing collimators each mounted in front of a detection module of high efficiency. With a first-generation acquisition chain we were able to characterize TOHR, however, to take fully advantage of the TOHR possibilities, a completely new acquisition scheme had to be designed. This system, being the main topic of this work, makes use of temporal information. The detection of a particle that entered the detector is translated into temporal logical signals. These signals pass into a time coding circuitry and the coded results are transferred in a digital processor. According to the initial terms of delivery, the developed acquisition chain steers the detection of events dependent on the deposited energy and time of arrival. The latter is done by coincidence measurements. All elements are mounted on a special board included into a PC unit and a dedicated program controls the whole system. First experiments showed up the interest of the new acquisition unit for other application in physics or medical imaging

  19. Imaging earth's interior: Tomographic inversions for mantle P-wave velocity structure

    Energy Technology Data Exchange (ETDEWEB)

    Pulliam, R.J.

    1991-07-01

    A formalism is developed for the tomographic inversion of seismic travel time residuals. The travel time equations are solved both simultaneously, for velocity model terms and corrections to the source locations, and progressively, for each set of terms in succession. The methods differ primarily in their treatment of source mislocation terms. Additionally, the system of equations is solved directly, neglecting source terms. The efficacy of the algorithms is explored with synthetic data as we perform simulations of the general procedure used to produce tomographic images of Earth's mantle from global earthquake data. The patterns of seismic heterogeneity in the mantle that would be returned reliably by a tomographic inversion are investigated. We construct synthetic data sets based on real ray sampling of the mantle by introducing spherical harmonic patterns of velocity heterogeneity and perform inversions of the synthetic data.

  20. Imaging earth`s interior: Tomographic inversions for mantle P-wave velocity structure

    Energy Technology Data Exchange (ETDEWEB)

    Pulliam, Robert Jay [Univ. of California, Berkeley, CA (United States)

    1991-07-01

    A formalism is developed for the tomographic inversion of seismic travel time residuals. The travel time equations are solved both simultaneously, for velocity model terms and corrections to the source locations, and progressively, for each set of terms in succession. The methods differ primarily in their treatment of source mislocation terms. Additionally, the system of equations is solved directly, neglecting source terms. The efficacy of the algorithms is explored with synthetic data as we perform simulations of the general procedure used to produce tomographic images of Earth`s mantle from global earthquake data. The patterns of seismic heterogeneity in the mantle that would be returned reliably by a tomographic inversion are investigated. We construct synthetic data sets based on real ray sampling of the mantle by introducing spherical harmonic patterns of velocity heterogeneity and perform inversions of the synthetic data.

  1. Development of a computerized tomographic system

    International Nuclear Information System (INIS)

    Borges, J.C.; Santos, C.A.C.

    1986-01-01

    The Nuclear Instrumentation Laboratory at COPPE/UFRJ has been developing techniques for detection and applications of nuclear radiations. A lot of research work has been done and resulted in several M.Sc. and D.Sc. thesis, concerning subjects like neutrongraphy, gammagraphy, image reconstruction, special detectors, etc. Recent progress and multiple applications of the computerized tomography to medical and industrial non-destructive tests, pushed the Laboratory to a vast program in this field of research. In this paper, we report what has been done and the results obtained. (Author) [pt

  2. Present state and development of positron tomographs

    International Nuclear Information System (INIS)

    Allemand, R.; Gariod, R.; Laval, M.; Tournier, F.

    1979-01-01

    This document presents the main characteristics of positron tomographs and analyses the relative importance of the parameters to be taken into consideration in the design of a tomograph: on the one hand, the physical parameters linked to the measurement of the annihilation photons by time coincidence and, on the other, the geometrical and technological parameters of prime importance in minimizing the many spurious effects. The last part endeavours to show this sort of instrumentation has evolved. Using the results obtained in our laboratory by mathematical simulation, the expected advantages are presented on the picture quality of the time of flight measurement of annihilation photons. Where the physical aspects of this method are concerned, the advantage of using cesium fluoride as scintillator is demonstrated [fr

  3. Tomographic Techniques for Radar Ice Sounding

    DEFF Research Database (Denmark)

    Nielsen, Ulrik

    challenge. This dissertation deals with tomographic techniques based on multiphase-center radars that represent state-of-the-art technology within thefield of ice sounding. The use of advanced tomographic processing forclutter suppression is investigated, which up to this point has beenlargely unexplored...... in the literature. The investigation also includes atheoretical study of beamforming and direction-of-arrival (DOA) estimationtechniques. In addition to the primary treatment of clutter suppression,additional novel applications of tomography are also explored. Based on an experimental multi-phase-center dataset...... discrimination of the desired bed return from strong surface clutter ispresented. The technique is applied to data from the channel of the challengingJakobshavn Glacier acquired with the Multi-channel CoherentiiiRadar Depth Sounder/Imager (MCoRDS/I), where it is shown how thetechnique can be used to close some...

  4. Tomographic site characterization using CPT, ERT, and GPR. Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    None

    2000-01-01

    ARA developed a geophysical tomographic system that incorporates results from Electrical Resistivity Tomography (ERT) measurements and Ground Penetrating Radar (GPR) Tomography measurements. Both methods are useful for imaging subsurface structures and processes, however, GPR is more effective in sandy material and ERT is more effective in clayey material. CPT or drilling is used to deploy the electrodes in the subsurface

  5. Processing of acquisition data for a time of flight positron tomograph

    International Nuclear Information System (INIS)

    Robert, G.

    1987-10-01

    After a review of basic principles concerning the time of flight positron tomography, the LETI positron tomograph is briefly described. For performance optimization (acquisition, calibration, image reconstruction), various specialized operators have been designed: the realization of the acquisition system is presented [fr

  6. First tomographic image of neutron capture rate in a BNCT facility

    Energy Technology Data Exchange (ETDEWEB)

    Minsky, D.M., E-mail: minsky@tandar.cnea.gov.ar [Gerencia de Investigacion y Aplicaciones, CAC, CNEA, Av. Gral. Paz 1499 (B1650KNA), San Martin, Prov. Bs. As. (Argentina)] [Escuela de Ciencia y Tecnologia, , UNSAM, M. de Irigoyen 3100 (1650), San Martin, Prov. Bs. As. (Argentina)] [Conicet, Av. Rivadavia 1917 (C1033AAJ), Buenos Aires (Argentina); Valda, A.A. [Gerencia de Investigacion y Aplicaciones, CAC, CNEA, Av. Gral. Paz 1499 (B1650KNA), San Martin, Prov. Bs. As. (Argentina)] [Escuela de Ciencia y Tecnologia, , UNSAM, M. de Irigoyen 3100 (1650), San Martin, Prov. Bs. As. (Argentina); Kreiner, A.J. [Gerencia de Investigacion y Aplicaciones, CAC, CNEA, Av. Gral. Paz 1499 (B1650KNA), San Martin, Prov. Bs. As. (Argentina)] [Escuela de Ciencia y Tecnologia, , UNSAM, M. de Irigoyen 3100 (1650), San Martin, Prov. Bs. As. (Argentina)] [Conicet, Av. Rivadavia 1917 (C1033AAJ), Buenos Aires (Argentina); Green, S.; Wojnecki, C. [School of Physics and Astronomy, University of Birmingham, B15 2 TT (United Kingdom)] [Department of Medical Physics, University Hospital Birmingham, Birmingham B15 2TH (United Kingdom); Ghani, Z. [Department of Medical Physics, University Hospital Birmingham, Birmingham B15 2TH (United Kingdom)

    2011-12-15

    This work discusses the development of online dosimetry of the boron dose via Single Photon Emission Computed Tomography (SPECT) during a BNCT treatment irradiation. Such a system will allow the online computation of boron dose maps without the large current uncertainties in the assessment of the boron concentration in different tissues. The first tomographic boron dose image with a SPECT prototype is shown.

  7. Computerized Tomographic Study on the Paranasal Sinusitis

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sun Kyung; Lim, Sug Young; Koh, Kwang Joon [Dept. of Oral and Maxillofacial Radiology and Institute of Oral Bio Science, College of Dentistry, Chonbuk National University, Chonju (Korea, Republic of)

    1999-08-15

    The purpose of this study was to evaluate the computed tomographic (CT) images of the paranasal sinusitis(PNS). The author examined the extent and the recurring patterns of the paranasal sinusitis and some important anatomic landmarks. The author analyzed PNS images retrospectively in 500 patients who visited Chonbuk National University Hospital between January 1996 and December 1997. The most frequently affected sinus was maxillary sinus (82.9%), followed by anterior ethmoid sinus (67.9%), posterior ethmoid sinus (48.9%), frontal sinus (42.0%) and sphenoid sinus (41.4%). The characteristic features of CT images of the sinusitis were sinus opacification (22.4%), mucoperiosteal thickening (34.3%), and polyposis (2.0%). Sinonasal inflammatory diseases were categorized into 5 patterns according to Babbel's classification. They were 1) infundibular (13.0%), 2) ostiomeatal unit (67.4%), 3)sphenoethmoidal recess (13.0%), 4) sinonasal polyposis (9.6%) and 5) unclassifiable patterns (18.0%). The incidences of contact between sinus and optic nerve were as follows ; the incidences of contact with posterior ethmoid sinus, sphenoid sinus, both posterior sinuses were 11.4%, 66.8%, 6.3%, respectively. The incidences of contact between sphenoid sinus and maxillary nerve, vidian nerve, internal carotid artery were 74.5%, 79.2%, 45.1% respectively. The incidences of pneumatization of the posterior ethmoid sinus were as follows; normal 70.6% and overriding type 29.4%. The incidences of sphenoid sinus pneumatization were as follows; normal 56.9% , rudimentary 12.5%, pterygoid recess 22.7%, anterior clinoid recess 2.7%, and both pterygoid and anterior clinoid recess 5.2%. The inflammatory sinonasal diseases were classified into five patterns using the CT of PNS, which was proven to be an excellent imaging modality providing detailed information about mucosal abnormality, pathologic patterns and the proximity of the important structures to the posterior paranasal sinuses. This

  8. Tomographic visualization of stress corrosion cracks in tubing

    International Nuclear Information System (INIS)

    Morris, R.A.; Kruger, R.P.; Wecksung, G.W.

    1979-06-01

    A feasibility study was conducted to determine the possibility of detecting and sizing cracks in reactor cooling water tubes using tomographic techniques. Due to time and financial constraints, only one tomographic reconstruction using the best technique available was made. The results indicate that tomographic reconstructions can, in fact, detect cracks in the tubing and might possibly be capable of measuring the depth of the cracks. Limits of detectability and sensitivity have not been determined but should be investigated in any future work

  9. A miniature electrical capacitance tomograph

    Science.gov (United States)

    York, T. A.; Phua, T. N.; Reichelt, L.; Pawlowski, A.; Kneer, R.

    2006-08-01

    The paper describes a miniature electrical capacitance tomography system. This is based on a custom CMOS silicon integrated circuit comprising eight channels of signal conditioning electronics to source drive signals and measure voltages. Electrodes are deposited around a hole that is fabricated, using ultrasonic drilling, through a ceramic substrate and has an average diameter of 0.75 mm. The custom chip is interfaced to a host computer via a bespoke data acquisition system based on a microcontroller, field programmable logic device and wide shift register. This provides fast capture of up to 750 frames of data prior to uploading to the host computer. Data capture rates of about 6000 frames per second have been achieved for the eight-electrode sensor. This rate could be increased but at the expense of signal to noise. Captured data are uploaded to a PC, via a RS232 interface, for off-line imaging. Initial tests are reported for the static case involving 200 µm diameter rods that are placed in the sensor and for the dynamic case using the dose from an inhaler.

  10. Tomotherapy: IMRT and tomographic verification

    International Nuclear Information System (INIS)

    Mackie, T.R.

    2000-01-01

    Full text: External beam radiation therapy delivery began around the turn of the century with the use of one or a few kilovoltage beams directed to the presumed site of the tumor. Often the treatment lasted until erythema dose was reached. Delivering the beams rotationally allowed the dose to be focused on the tumor and the skin to be spared. With the advent of megavoltage radiation therapy in the 1950's, using Co-60 teletherapy and betatrons, the treatment could once again be delivered from only a few beam directions and the dose to the skin would be kept below tolerance. Fields were shaped by lead blocks and later by custom-made blocks fabricated from low-melting temperature heavy metal. Linear accelerators did not fundamentally change the way in which radiation was delivered. It is likely that this delivery paradigm would not have changed had it not been for the advent of computers. Brahme and Cormack showed in the late 1980's that highly conformal treatments could be delivered with non-uniform intensity beams. At that time the only way in which the intensity modulated beams could be delivered was using custom-milled compensators. Fabricating and using compensators for multiple fields is time-consuming and labor-intensive. Serial tomotherapy was the first successful delivery method for IMRT and went back to the earlier practice of rotation therapy. The NOMOS Peacock system uses a binary (on-off) multileaf collimator (MLC) system to modulate a fan beam of radiation. It uses an optimization system to determine when leaves should be opened and closed. The system delivers two beam slices at once and the couch is indexed to the next slices by precisely translating the couch. This approach was first used in 1994 and to-date has treated several thousand patients. Prior to the advent of IMRT, accelerator vendors introduced the multileaf collimator (MLC) to provide field shaping without the need to fabricate custom blocking. Most new linear accelerator purchases today

  11. The development of a compact positron tomograph for prostate imaging

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Jennifer S.; Qi, Jinyi; Derenzo, Stephen E.; Moses, William W.; Huesman, Ronald H.; Budinger, Thomas F.

    2002-12-17

    We give design details and expected image results of a compact positron tomograph designed for prostate imaging that centers a patient between a pair of external curved detector banks (ellipse: 45 cm minor, 70 cm major axis). The bottom bank is fixed below the patient bed, and the top bank moves upward for patient access and downward for maximum sensitivity. Each bank is composed of two rows (axially) of 20 CTI PET Systems HR+ block detectors, forming two arcs that can be tilted to minimize attenuation. Compared to a conventional PET system, our camera uses about one-quarter the number of detectors and has almost two times higher solid angle coverage for a central point source, because the detectors are close to the patient. The detectors are read out by modified CTI HRRT data acquisition electronics. The individual detectors are angled in the plane to point towards the prostate to minimize reso

  12. Original circuitry for TOHR tomograph; Une electronique originale pour le tomographe TOHR

    Energy Technology Data Exchange (ETDEWEB)

    Cuzon, J.C.; Pinot, L. [Services Techniques, Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)

    1999-11-01

    Having industrialization in mind, a specific electronics for a high resolution tomograph is designed out of the usual standards of nuclear physics. All the information are converted in the time domain and a fast processor, in front of the data acquisition, carries out the time and energy coincidences. (authors) 2 refs., 2 figs.

  13. Computed Tomographic Perfusion Improves Diagnostic Power of Coronary Computed Tomographic Angiography in Women

    DEFF Research Database (Denmark)

    Penagaluri, Ashritha; Higgins, Angela Y.; Vavere, Andrea L

    2016-01-01

    Background-Coronary computed tomographic angiography (CTA) and myocardial perfusion imaging (CTP) is a validated approach for detection and exclusion of flow-limiting coronary artery disease (CAD), but little data are available on gender-specific performance of these modalities. In this study, we...

  14. Computed tomographic findings of traumatic intracranial lesions

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Seong Wook; Kim, Il Young; Lee, Byung Ho; Kim, Ki Jeoung; Yoon, Il Gyu [Soonchunhyang University College of Medicine, Seoul (Korea, Republic of)

    1985-10-15

    Traumatic intracranial lesion has been one of the most frequent and serious problem in neurosurgical pathology. Computed tomography made it possible to get prompt diagnosis and surgical intervention of intracranial lesions by its safety, fastness and accuracy. Computed tomographic scan was carried out on 1309 cases at Soonchunhyang Chunan Hospital for 15 months from October 1983 to December 1984. We have reviewed the computed tomographic scans of 264 patients which showed traumatic intracranial lesion. The result were as follows: 1. Head trauma was the most frequent diagnosed disease using computed tomographic scans (57.8%) and among 264 cases the most frequent mode of injury was traffic accident (73.9%). 2. Skull fracture was accompanied in frequency of 69.7% and it was detected in CT in 38.6%: depression fracture was more easily detected in 81%. 3. Conutercoup lesion (9.5%) was usually accompanied with temporal and occipital fracture, and it appeared in lower incidence among pediatric group. 4. Intracranial lesions of all 264 cases were generalized cerebral swelling (24.6%), subdural hematoma (22.3%), epidural hematoma (20.8%), intracerebral hematoma (6.1%), and subarachnoid hemorrhage (3.0%). 5. The shape of hematoma was usually biconvex (92.7%) in acute epidural hematoma and cresentic (100%) in acute subdural hematoma, but the most chronic the case became, they showed planoconvex and bicconvex shapes. 6. Extra-axial hematoma was getting decreased in density as time gone by. 7. Hematoma density was not in direct proportion to serum hemoglobin level as single factor.

  15. Tomographic image reconstruction using training images

    DEFF Research Database (Denmark)

    Soltani, Sara; Andersen, Martin Skovgaard; Hansen, Per Christian

    2017-01-01

    the framework of sparse learning as a regularized non-negative matrix factorization. Incorporating the dictionary as a prior in a convex reconstruction problem, we then find an approximate solution with a sparse representation in the dictionary. The dictionary is applied to non-overlapping patches of the image......We describe and examine an algorithm for tomographic image reconstruction where prior knowledge about the solution is available in the form of training images. We first construct a non-negative dictionary based on prototype elements from the training images; this problem is formulated within...

  16. Tomographic Heating Holder for In Situ TEM

    DEFF Research Database (Denmark)

    Gontard, Lionel C.; Dunin-Borkowski, Rafal E.; Fernández, Asunción

    2014-01-01

    A tomographic heating holder for transmission electron microscopy that can be used to study supported catalysts at temperatures of up to ~1,500°C is described. The specimen is placed in direct thermal contact with a tungsten filament that is oriented perpendicular to the axis of the holder without...... distributions and changes in active surface area are quantified from tilt series of images acquired after subjecting the specimens to increasing temperatures. The porosity of the alumina support and the sintering mechanisms of the catalysts are shown to depend on distance from the heating filament....

  17. E-learn Computed Tomographic Angiography

    DEFF Research Database (Denmark)

    Havsteen, Inger; Christensen, Anders; Nielsen, Jens K

    2012-01-01

    BACKGROUND: Computed tomographic angiography (CTA) is widely available in emergency rooms to assess acute stroke patients. To standardize readings and educate new readers, we developed a 3-step e-learning tool based on the test-teach-retest methodology in 2 acute stroke scenarios: vascular...... the teaching segment; the test size was 40% of the teaching segment size. We assessed diagnostic accuracy and readers' confidence. Results were compared using the Wilcoxon rank sum test. RESULTS: Four neurologic consultants and four radiologic residents completed the program. The vascular occlusion teaching...

  18. An intragastric trichobezoar: computerised tomographic appearance.

    Directory of Open Access Journals (Sweden)

    Morris B

    2000-04-01

    Full Text Available A 26-year-old lady presented with a history of abdominal pain and distension since two months. The ultrasound examination showed an epigastric mass, which was delineated as a filling defect in the stomach on barium studies. The computerised tomographic scan showed a gastric mass with pockets of air in it, without post-contrast enhancement. This case highlights the characteristic appearance on computerised tomography of a bezoar within the stomach, a feature that is not commonly described in medical literature.

  19. Computed tomographic study in children with microcephaly

    International Nuclear Information System (INIS)

    Ito, Masatoshi; Okuno, Takehiko; Mikawa, Haruki

    1989-01-01

    Computed tomographic (CT) brain scanning was performed on fifty-eight infants and children with microcephaly. CT scans were useful for detecting unsuspected brain lesions and for diagnosing underlying diseases. The head size did not correlate with the CT findings, the degree of mental retardation, or the existence of motor disturbance or epilepsy. On the other hand, the CT findings were correlated with the degree of mental retardation, and the existence of motor disturbance or epilepsy. CT scans were useful for determining the prognosis of the microcephaly. (author)

  20. 3D velocity measurements in a premixed flame by tomographic PIV

    International Nuclear Information System (INIS)

    Tokarev, M P; Sharaborin, D K; Lobasov, A S; Chikishev, L M; Dulin, V M; Markovich, D M

    2015-01-01

    Tomographic particle image velocimetry (PIV) has become a standard tool for 3D velocity measurements in non-reacting flows. However, the majority of the measurements in flows with combustion are limited to small resolved depth compared to the size of the field of view (typically 1 : 10). The limitations are associated with inhomogeneity of the volume illumination and the non-uniform flow seeding, the optical distortions and errors in the 3D calibration, and the unwanted flame luminosity. In the present work, the above constraints were overcome for the tomographic PIV experiment in a laminar axisymmetric premixed flame. The measurements were conducted for a 1 : 1 depth-to-size ratio using a system of eight CCD cameras and a 200 mJ pulsed laser. The results show that camera calibration based on the triangulation of the tracer particles in the non-reacting conditions provided reliable accuracy for the 3D image reconstruction in the flame. The modification of the tomographic reconstruction allowed a posteriori removal of unwanted bright objects, which were located outside of the region of interest but affected the reconstruction quality. This study reports on a novel experience for the instantaneous 3D velocimetry in laboratory-scale flames by using tomographic PIV. (paper)

  1. Tomographs based on non-conventional radiation sources and methods

    International Nuclear Information System (INIS)

    Barbuzza, R.; Fresno, M. del; Venere, Marcelo J.; Clausse, Alejandro; Moreno, C.

    2000-01-01

    Computer techniques for tomographic reconstruction of objects X-rayed with a compact plasma focus (PF) are presented. The implemented reconstruction algorithms are based on stochastic searching of solutions of Radon equation, using Genetic Algorithms and Monte Carlo methods. Numerical experiments using actual projections were performed concluding the feasibility of the application of both methods in tomographic reconstruction problem. (author)

  2. Detectability in the presence of computed tomographic reconstruction noise

    International Nuclear Information System (INIS)

    Hanson, K.M.

    1977-01-01

    The multitude of commercial computed tomographic (CT) scanners which have recently been introduced for use in diagnostic radiology has given rise to a need to compare these different machines in terms of image quality and dose to the patient. It is therefore desirable to arrive at a figure of merit for a CT image which gives a measure of the diagnostic efficacy of that image. This figure of merit may well be dependent upon the specific visual task being performed. It is clearly important that the capabilities and deficiencies of the human observer as well as the interface between man and machine, namely the viewing system, be taken into account in formulating the figure of merit. Since the CT reconstruction is the result of computer processing, it is possible to use this processing to alter the characteristics of the displayed images. This image processing may improve or degrade the figure of merit

  3. Mesooptical microscope as a tomographical device

    International Nuclear Information System (INIS)

    Soroko, L.M.

    1989-01-01

    It is shown that there are at least four regions which are common for the mesooptical microscopes, on the one hand, and for the reconstructed tomography, on the other hand. The following characteristics of the mesooptical microscope show the tomographical properties: the structure of the output data concerning the orientation and the position in space of the straight-line objects going at small angles with the perpendicular to the given tomographic plane, the behaviour of the two-dimensional fourier-transform of the straight-line object in the course of the rotation of this object with respect to the specified axis in space, the scanning algorithm of the nuclear emulsion volume by the fence-like illuminated region in the mesooptical microscope for searching for particle tracks going parallel to the optical axis of the microscope, and, finally, the fact that the mesooptical images of the straight-line particle tracks with a common vertex in the nuclear emulsion lie on the sinogram. 12 refs.; 16 figs

  4. Computed tomographic features of canine nonparenchymal hemangiosarcoma.

    Science.gov (United States)

    Fukuda, Shoko; Kobayashi, Tetsuya; Robertson, Ian D; Oshima, Fukiko; Fukazawa, Eri; Nakano, Yuko; Ono, Shin; Thrall, Donald E

    2014-01-01

    The purpose of this retrospective study was to describe pre- and postcontrast computed tomographic (CT) characteristics of confirmed nonparenchymal hemangiosarcoma in a group of dogs. Medical records were searched during the period of July 2003 and October 2011 and dogs with histologically confirmed nonparenchymal hemangiosarcoma and pre- and postcontrast CT images were recruited. Two observers recorded a consensus opinion for the following CT characteristics for each dog: largest transverse tumor diameter, number of masses, general tumor shape, character of the tumor margin, precontrast appearance, presence of dystrophic calcification, presence of postcontrast enhancement, pattern of postcontrast enhancement, presence of regional lymphadenopathy, and presence of associated cavitary fluid. A total of 17 dogs met inclusion criteria. Tumors were located in the nasal cavity, muscle, mandible, mesentery, subcutaneous tissue, and retroperitoneal space. Computed tomographic features of nonparenchymal hemangiosarcoma were similar to those of other soft tissue sarcomas, with most tumors being heterogeneous in precontrast images, invasive into adjacent tissue, and heterogeneously contrast enhancing. One unexpected finding was the presence of intense foci of contrast enhancement in 13 of the 17 tumors (76%). This appearance, which is not typical of other soft tissue sarcomas, was consistent with contrast medium residing in vascular channels. Findings indicated that there were no unique distinguishing CT characteristics for nonparenchymal hemangiosarcoma in dogs; however, the presence of highly attenuating foci of contrast enhancement may warrant further investigation in prospective diagnostic sensitivity and treatment outcome studies. © 2014 American College of Veterinary Radiology.

  5. Unusual tomographic findings of complicated necrotizing pancreatitis

    Directory of Open Access Journals (Sweden)

    Rosa Maria Silveira Sigrist

    2013-12-01

    Full Text Available Acute pancreatitis (AP is a potential life-threatening disease, which originates from inflammatory involvement of the pancreas and surrounding tissues. Serious complications eventuate and treatment is difficult. AP is classified in both interstitial edematous pancreatitis, which occurs in 70-80% of patients, and necrotizing pancreatitis, which occurs in 20-30% of patients. Diagnosis is based on the presence of two of the following criteria: abdominal pain, increased serum determination of amylase and/or lipase more than three times the reference value, and characteristic tomographic findings. Among the latter, there is the pancreatic and surrounding tissue damage as well as that related to distant organ involvement. This case report shows the fatal case of a male patient with a history of heavy alcoholic abuse admitted with the diagnosis of necrotizing pancreatitis. The authors call attention to the unusual tomographic findings; namely, a huge duodenal hematoma and a large hemoperitoneum, ischemic involvement of the spleen and kidneys, as well as pancreatic and peripancreatic necrosis.

  6. Portable tomographic PIV measurements of swimming shelled Antarctic pteropods

    Science.gov (United States)

    Adhikari, Deepak; Webster, Donald R.; Yen, Jeannette

    2016-12-01

    A portable tomographic particle image velocimetry (tomographic PIV) system is described. The system was successfully deployed in Antarctica to study shelled Antarctic pteropods ( Limacina helicina antarctica)—a delicate organism with an unusual propulsion mechanism. The experimental setup consists of a free-standing frame assembled with optical rails, thus avoiding the need for heavy and bulky equipment (e.g. an optical table). The cameras, lasers, optics, and tanks are all rigidly supported within the frame assembly. The results indicate that the pteropods flap their parapodia (or "wings") downward during both power and recovery strokes, which is facilitated by the pitching of their shell. Shell pitching significantly alters the flapping trajectory, allowing the pteropod to move vertically and/or horizontally. The pronation and supination of the parapodia, together with the figure-eight motion during flapping, suggest similarities with insect flight. The volumetric velocity field surrounding the freely swimming pteropod reveals the generation of an attached vortex ring connecting the leading-edge vortex to the trailing-edge vortex during power stroke and a presence of a leading-edge vortex during recovery stroke. These vortex structures play a major role in accelerating the organism vertically and indicate that forces generated on the parapodia during flapping constitute both lift and drag. After completing each stroke, two vortex rings are shed into the wake of the pteropod. The complex combination of body kinematics (parapodia flapping, shell pitch, sawtooth trajectory), flow structures, and resulting force balance may be significantly altered by thinning of the pteropod shell, thus making pteropods an indicator of the detrimental effects of ocean acidification.

  7. Comparative study of the macroscopic finding, conventional tomographic imaging, and computed tomographic imaging in locating the mandibular canal

    International Nuclear Information System (INIS)

    Choi, Hang Moon; You, Dong Soo

    1995-01-01

    The purpose of this study was comparison of conventional tomography with reformatted computed tomography for dental implant in locating the mandibular canal. Five dogs were used and after conventional tomographs and fitted computed tomographs were taken, four dentist traced all films. Mandibles were sectioned with 2 mm slice thickness and the sections were then radiographed (contact radiography). Each radiograpic image was traced and linear measurements were made from mandibular canal to alveolar crest, buccal cortex, lingual cortex, and inferior border. The following results were obtained; 1. Reformatted computed tomographs were exacter than conventional tomography by alveolar crest to canal length of -0.6 mm difference between real values and radiographs 2. The average measurements of buccal cortex to mandibular canal width and lingual cortex to mandibular canal width of conventional tomographs were exacter than reformatted computed tomographs, but standard deviations were higher than reformatted computed tomographs. 3. Standard deviations of reformatted computed tomographs were lower than conventional tomographs at all comparing sites 4. At reformatted computed tomography 62.5% of the measurements performed were within ±1 mm of the true value, and at conventional tomography 24.1% were. 5. Mandibular canal invisibility was 0.8% at reformatted computed tomography and 9.2% at conventional tomography. Reformatted computed tomography has been shown to be more useful radiographic technique for assessment of the mandibular canal than conventional tomography.

  8. SPICE benchmark for global tomographic methods

    Science.gov (United States)

    Qin, Yilong; Capdeville, Yann; Maupin, Valerie; Montagner, Jean-Paul; Lebedev, Sergei; Beucler, Eric

    2008-11-01

    The existing global tomographic methods result in different models due to different parametrization, scale resolution and theoretical approach. To test how current imaging techniques are limited by approximations in theory and by the inadequacy of data quality and coverage, it is necessary to perform a global-scale benchmark to understand the resolving properties of each specific imaging algorithm. In the framework of the Seismic wave Propagation and Imaging in Complex media: a European network (SPICE) project, it was decided to perform a benchmark experiment of global inversion algorithms. First, a preliminary benchmark with a simple isotropic model is carried out to check the feasibility in terms of acquisition geometry and numerical accuracy. Then, to fully validate tomographic schemes with a challenging synthetic data set, we constructed one complex anisotropic global model, which is characterized by 21 elastic constants and includes 3-D heterogeneities in velocity, anisotropy (radial and azimuthal anisotropy), attenuation, density, as well as surface topography and bathymetry. The intermediate-period (>32 s), high fidelity anisotropic modelling was performed by using state-of-the-art anisotropic anelastic modelling code, that is, coupled spectral element method (CSEM), on modern massively parallel computing resources. The benchmark data set consists of 29 events and three-component seismograms are recorded by 256 stations. Because of the limitation of the available computing power, synthetic seismograms have a minimum period of 32 s and a length of 10 500 s. The inversion of the benchmark data set demonstrates several well-known problems of classical surface wave tomography, such as the importance of crustal correction to recover the shallow structures, the loss of resolution with depth, the smearing effect, both horizontal and vertical, the inaccuracy of amplitude of isotropic S-wave velocity variation, the difficulty of retrieving the magnitude of azimuthal

  9. Tomographic patient registration and conformal avoidance tomotherapy

    Science.gov (United States)

    Aldridge, Jennifer Stacy

    Development of tomotherapy has led to the emergence of several processes, providing the basis for many unique investigative opportunities. These processes include setup verification, tomographic verification, megavoltage dose reconstruction, and conformal avoidance tomotherapy. Setup verification and conformal avoidance tomotherapy, in particular, are two closely intertwined matters. In order to avoid critical structures located within or adjacent to indistinct tumor regions, accurate patient positioning from fraction to fraction must be ensured. With tomographic patient registration, a higher level of assurance is offered than with traditional positioning methods. Translational and rotational offsets are calculated directly from projection data using cross- correlation or fast Fourier transforms. Experiments assessing the algorithm's ability to calculate individual offsets were conducted using the University of Wisconsin's Tomotherapy Benchtop. These experiments indicate statistical errors within +/-1 mm for offsets up to approximately 20 mm, with maximum offset errors of about +/-2 mm for displacements up to 35 mm. The angular offset component is within +/-2°. To evaluate the registration process as a whole, experimental results from a few multi-parameter examples are also analyzed. With the development of tomographic patient registration in projection space, efforts to promote further sparing of critical structures are justified. Conformal avoidance tomotherapy has as its objective to treat an indistinct tumor region while conformally avoiding any normal critical structures in that region. To demonstrate the advantages of conformal avoidance tomotherapy, conventional and tomotherapy treatments are contrasted for both nasopharyngeal and breast carcinoma cases. For initial research efforts, computed tomography data sets of a human male and female were obtained via the ``Visible Human Project''. Since these data sets are on the order of hundreds of megabytes, both

  10. Synthetic Dataset To Benchmark Global Tomographic Methods

    Science.gov (United States)

    Qin, Yilong; Capdeville, Yann; Maupin, Valerie; Montagner, Jean-Paul

    2006-11-01

    A new set of global synthetic seismograms calculated in a three-dimensional (3-D), heterogeneous, anisotropic, anelastic model of the Earth using the spectral element method has been released by the European network SPICE (Seismic Wave Propagation and Imaging in Complex Media: a European Network). The set consists of 7424 three-component records with a minimum period of 32 seconds, a sampling rate of one second, and a duration of 10,500 seconds. The aim of this synthetic data set is to conduct a blind test of existing global tomographic methods based on long-period data, in order to test how current imaging techniques are limited by approximations in theory and by the inadequacy of data quality and coverage.

  11. Computed tomographic investigations on intraventricular hematomas

    International Nuclear Information System (INIS)

    Laber-Szillat, S.

    1982-01-01

    This work investigated in 106 patients with intraventricular hematomas all the known factors which can have an influence on prognosis: age, sex, anamnesis of the patients, size, extent and localization of the intracranial bleeding, underlying angiopathy and differences between arterial and venous and spontaneous and traumatic bleedings. It was shown that the state of mind was the deciding prognostic factor, whereby viligance was the cumulative expression of all other investigated influences. A computed tomography (CT) examination is deciding in the question of operative hydrocephalus care. In 13 patients it was further shown, how clearly CT results and brain dissection allowed themselves to be compared. The computed tomographic examination method is best suited to achieve even physiological and more extensive prognostic possibilities. (orig.) [de

  12. Computer tomographic and sonographic diagnosis of echinococcus

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, K.; Huebener, K.H.; Klott, K.; Jenss, H.; Baehr, R. (Tuebingen Univ. (Germany, F.R.). Medizinisches Strahleninstitut und Roentgenabteilung; Tuebingen Univ. (Germany, F.R.). Medizinische Klinik; Tuebingen Univ. (Germany, F.R.). Chirurgische Klinik und Poliklinik)

    1980-05-01

    In 33 patients (18 cystic echinococci, 15 alveolar) both methods produced the following findings which could be correlated with the pathological results: single or multi-centric lesions, sharp or indefinite demarkation and abnormalities in the shape and size of the liver. The sonographic findings were analysed with respect to the echo characteristics, whereas the computer tomographically demonstrated lesions were examined densitometrically in order to show calcification. Both methods demonstrate the pathological changes satisfactorily. Computer tomography is more effective in alveolar echinococcus lesions by showing the different types of calcification, whereas sonography provides a more accurate picture of the internal structure of the cysts in cystic echinococcus. Comparison of the methods in 19 patients examined by both showed a high accuracy in each method, but sonography was relatively poor in demonstrating lesions in the spleen.

  13. Computed tomographic findings of intracranial acute leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dong Woo; Ryu, Weon Don; Kim, Jong Sung; Koh, Byung Hee; Jeon, Seok Chol; Lee, Seung Ro; Hahm, Chang Kok [Hanyang University College of Medicine, Seoul (Korea, Republic of)

    1990-07-15

    Computed tomographic (CT) abnormalities in the brain were retrospectively analyzed in 16 of 103 patients with acute leukemia confirmed by CSF cytology or combined surgery at Hanyang University Hospital, from August 1980 to August 1989. The results were as follows : 1. With FAB classification, the most frequent pathologic type was L1 : 8 cases (50%) 2. The range of age distribution showed typical pattern that ALL occurred below the 15 years old, and AML, over 15 years old. 3. Abnormal CT findings were ; Meningitis(2 cases), Mass(3), Thrombosis(1), Infarction(2), Edema(1), Hemorrhage(7), Hydrocephalus(2), Atrophy(2). 4. Most of infracranial hemorrhage were seen in M{sub 2} and M{sub 3} type.

  14. Computed tomographic findings of cerebral arterial ectasia

    International Nuclear Information System (INIS)

    Choi, Woo Suk; Ko, Young Ho; Lim, Jae Hoon

    1987-01-01

    The computed tomographic findings of cerebral arterial ectasia in 8 patients, of which 5 cases were angiographically documented, are reported. The ecstatic arteries, located predominantly in the suprasellar and interpeduncular cisterns, appeared as serpignous, tubular structures on the unenhanced scan. The enhanced CT scan demonstrated dense, sharply defined, homogeneous intraluminal enhancement. Until recently, the diagnosis of cerebral arterial ectasia was usually established by angiography. With introduction of CT it has become possible to noninvasively identify and characterize this vascular disorder and its associated intracranial complications. The vertebrobasilar dolichoectasia may be diagnosed by CT as an extra-axial lesion in the cerebellopontine angle. It enhances in a tubular fashion after intravenous injection of contrast.

  15. Advanced Ultrasonic Tomograph of Children's Bones

    Science.gov (United States)

    Lasaygues, Philippe; Lefebvre, Jean-Pierre; Guillermin, Régine; Kaftandjian, Valérie; Berteau, Jean-Philippe; Pithioux, Martine; Petit, Philippe

    This study deals with the development of an experimental device for performing ultrasonic computed tomography (UCT) on bone in pediatric degrees. The children's bone tomographs obtained in this study, were based on the use of a multiplexed 2-D ring antenna (1 MHz and 3 MHz) designed for performing electronic and mechanical scanning. Although this approach is known to be a potentially valuable means of imaging objects with similar acoustical impedances, problems arise when quantitative images of more highly contrasted media such as bones are required. Various strategies and various mathematical procedures for modeling the wave propagation based on Born approximations have been developed at our laboratory, which are suitable for use with pediatric cases. Inversions of the experimental data obtained are presented.

  16. Some principles in choosing parameters of magnetic resonance tomographs

    Science.gov (United States)

    Volobuev, A. N.

    2017-01-01

    The problem of amplifying the signal that ensures the visualization of internal organs in the magnetic resonance tomograph due to the optimal selection of some of its parameters has been considered. The operating principle of the tomograph has been analyzed. The relation between the angle of the magnetic moment precession in hydrogen nuclei in an organism, the frequency of the ac magnetic field exciting this precession, and the constant magnetic field used has been determined using quantum-mechanical concepts. This relation makes it possible to determine the optimal parameters for tomograph operation.

  17. On a novel low cost high accuracy experimental setup for tomographic particle image velocimetry

    International Nuclear Information System (INIS)

    Discetti, Stefano; Ianiro, Andrea; Astarita, Tommaso; Cardone, Gennaro

    2013-01-01

    This work deals with the critical aspects related to cost reduction of a Tomo PIV setup and to the bias errors introduced in the velocity measurements by the coherent motion of the ghost particles. The proposed solution consists of using two independent imaging systems composed of three (or more) low speed single frame cameras, which can be up to ten times cheaper than double shutter cameras with the same image quality. Each imaging system is used to reconstruct a particle distribution in the same measurement region, relative to the first and the second exposure, respectively. The reconstructed volumes are then interrogated by cross-correlation in order to obtain the measured velocity field, as in the standard tomographic PIV implementation. Moreover, differently from tomographic PIV, the ghost particle distributions of the two exposures are uncorrelated, since their spatial distribution is camera orientation dependent. For this reason, the proposed solution promises more accurate results, without the bias effect of the coherent ghost particles motion. Guidelines for the implementation and the application of the present method are proposed. The performances are assessed with a parametric study on synthetic experiments. The proposed low cost system produces a much lower modulation with respect to an equivalent three-camera system. Furthermore, the potential accuracy improvement using the Motion Tracking Enhanced MART (Novara et al 2010 Meas. Sci. Technol. 21 035401) is much higher than in the case of the standard implementation of tomographic PIV. (paper)

  18. Numerical approach for a relaxed minimization problem arising in tomographic reconstruction

    Directory of Open Access Journals (Sweden)

    Ali Srour

    2013-05-01

    Full Text Available The purpose of this article is to develop a numerical scheme for a system of optimality conditions for a smooth minimization problem that arises in tomographic reconstruction of binary axially symmetric objects. The density function of the object with the Lagrange multipliers is seen as a saddle point of an associated Lagrangian, then we use the Usawa scheme mixed with descent gradient method to give the corresponding numerical scheme.

  19. Unfolding and smoothing applied to the quality enhancement of neutron tomographic images

    International Nuclear Information System (INIS)

    Almeida, Gevaldo L. de; Silvani, Maria I.; Lopes, Ricardo T.

    2008-01-01

    Resolution and contrast are the major parameters defining the quality of a computer-aided tomographic image. These parameters depend upon several features of the image acquisition system, such as detector resolution, geometrical arrangement of the source-object-detector, beam divergence, source strength, detector efficiency and counting time. Roughly, the detector finite resolution is the main source of systematic errors affecting the separation power of the image acquisition system, while the electronic noise and statistical fluctuation are responsible for the data dispersion, which spoils the contrast. An algorithm has been developed in this work aiming at the improvement of the image quality through the minimization of both types of errors. The systematic ones are reduced by a mathematical unfolding of the position spectra - used as projections to reconstruct the 2D-images - using the Line Spread Function - LSF of the neutron tomographic system. The principle behind this technique is that every single channel contains information about all channels of the spectrum, but it is concealed due to the automatic integration carried out by the detector. Therefore, knowing the shape of this curve, it is possible to retrieve the original spectra. These spectra are unfortunately corrupted by the unavoidable statistical fluctuation, and by oscillations arising from the unfolding process, which strongly affects the quality of the final unfolded image. In order to reduce this impact, the spectra have been filtered by a Fourier transform technique or smoothed with a least square fitting procedure. The algorithm has been applied to spectra of some test-bodies generated by an earlier developed tomographic simulator, which reproduces the spectra furnished by a thermal neutron tomographic system employing a position sensitive detector. The obtained results have shown that the unfolded spectra produce final images capable to resolve features otherwise not achievable with the

  20. On the feasibility of tomographic-PIV with low pulse energy illumination in a lifted turbulent jet flame

    Science.gov (United States)

    Boxx, I.; Carter, C. D.; Meier, W.

    2014-08-01

    Tomographic particle image velocimetry (tomographic-PIV) is a recently developed measurement technique used to acquire volumetric velocity field data in liquid and gaseous flows. The technique relies on line-of-sight reconstruction of the rays between a 3D particle distribution and a multi-camera imaging system. In a turbulent flame, however, index-of-refraction variations resulting from local heat-release may inhibit reconstruction and thereby render the technique infeasible. The objective of this study was to test the efficacy of tomographic-PIV in a turbulent flame. An additional goal was to determine the feasibility of acquiring usable tomographic-PIV measurements in a turbulent flame at multi-kHz acquisition rates with current-generation laser and camera technology. To this end, a setup consisting of four complementary metal oxide semiconductor cameras and a dual-cavity Nd:YAG laser was implemented to test the technique in a lifted turbulent jet flame. While the cameras were capable of kHz-rate image acquisition, the laser operated at a pulse repetition rate of only 10 Hz. However, use of this laser allowed exploration of the required pulse energy and thus power for a kHz-rate system. The imaged region was 29 × 28 × 2.7 mm in size. The tomographic reconstruction of the 3D particle distributions was accomplished using the multiplicative algebraic reconstruction technique. The results indicate that volumetric velocimetry via tomographic-PIV is feasible with pulse energies of 25 mJ, which is within the capability of current-generation kHz-rate diode-pumped solid-state lasers.

  1. A detailed comparison of single-camera light-field PIV and tomographic PIV

    Science.gov (United States)

    Shi, Shengxian; Ding, Junfei; Atkinson, Callum; Soria, Julio; New, T. H.

    2018-03-01

    This paper conducts a comprehensive study between the single-camera light-field particle image velocimetry (LF-PIV) and the multi-camera tomographic particle image velocimetry (Tomo-PIV). Simulation studies were first performed using synthetic light-field and tomographic particle images, which extensively examine the difference between these two techniques by varying key parameters such as pixel to microlens ratio (PMR), light-field camera Tomo-camera pixel ratio (LTPR), particle seeding density and tomographic camera number. Simulation results indicate that the single LF-PIV can achieve accuracy consistent with that of multi-camera Tomo-PIV, but requires the use of overall greater number of pixels. Experimental studies were then conducted by simultaneously measuring low-speed jet flow with single-camera LF-PIV and four-camera Tomo-PIV systems. Experiments confirm that given a sufficiently high pixel resolution, a single-camera LF-PIV system can indeed deliver volumetric velocity field measurements for an equivalent field of view with a spatial resolution commensurate with those of multi-camera Tomo-PIV system, enabling accurate 3D measurements in applications where optical access is limited.

  2. Radiographic test phantom for computed tomographic lung nodule analysis

    International Nuclear Information System (INIS)

    Zerhouni, E.A.

    1987-01-01

    This patent describes a method for evaluating a computed tomograph scan of a nodule in a lung of a human or non-human animal. The method comprises generating a computer tomograph of a transverse section of the animal containing lung and nodule tissue, and generating a second computer tomograph of a test phantom comprising a device which simulates the transverse section of the animal. The tissue simulating portions of the device are constructed of materials having radiographic densities substantially identical to those of the corresponding tissue in the simulated transverse section of the animal and have voids therein which simulate, in size and shape, the lung cavities in the transverse section and which contain a test reference nodule constructed of a material of predetermined radiographic density which simulates in size, shape and position within a lung cavity void of the test phantom the nodule in the transverse section of the animal and comparing the respective tomographs

  3. Identifying High-Traffic Patterns in the Workplace with Radio Tomographic Imaging in 3D Wireless Sensor Networks

    Science.gov (United States)

    2014-03-27

    Tomographic Imaging for Ambient Assisted Living,” in Evaluating AAL Systems Through Competitive Benchmarking, pp. 108–130. Springer, 2013. [10] S...Int’l Conf. on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2011, pp. 3976–3979. [28] G. Mao , B. Fidan, and B. Anderson, “Wireless Sensor

  4. Motion tracking-enhanced MART for tomographic PIV

    International Nuclear Information System (INIS)

    Novara, Matteo; Scarano, Fulvio; Batenburg, Kees Joost

    2010-01-01

    A novel technique to increase the accuracy of multiplicative algebraic reconstruction technique (MART) reconstruction from tomographic particle image velocimetry (PIV) recordings at higher seeding density than currently possible is presented. The motion tracking enhancement (MTE) method is based on the combined utilization of images from two or more exposures to enhance the reconstruction of individual intensity fields. The working principle is first introduced qualitatively, and the mathematical background is given that explains how the MART reconstruction can be improved on the basis of an improved first guess object obtained from the combination of non-simultaneous views reduced to the same time instant deforming the 3D objects by an estimate of the particle motion field. The performances of MTE are quantitatively evaluated by numerical simulation of the imaging, reconstruction and image correlation processes. The cases of two or more exposures obtained from time-resolved experiments are considered. The iterative application of MTE appears to significantly improve the reconstruction quality, first by decreasing the intensity of the ghost images and second, by increasing the intensity and the reconstruction precision for the actual particles. Based on computer simulations, the maximum imaged seeding density that can be dealt with is tripled with respect to the MART analysis applied to a single exposure. The analysis also illustrates that the maximum effect of the MTE method is comparable to that of doubling the number of cameras in the tomographic system. Experiments performed on a transitional jet at Re = 5000 apply the MTE method to double-frame recordings. The velocity measurement precision is increased for a system with fewer views (two or three cameras compared with four cameras). The ghost particles' intensity is also visibly reduced although to a lesser extent with respect to the computer simulations. The velocity and vorticity field obtained from a three

  5. Transducer project and optimization of the ultra low magnetic field NMR tomograph reception system system; Projeto de transdutores e otimizacao do sistema de recepcao do tomografo de RMN de campo magnetico ultra baixo

    Energy Technology Data Exchange (ETDEWEB)

    Vidoto, Edson Luiz Gea

    1995-12-31

    The aim of the present work was to optimize the signal to noise ratio in our NMR imaging system (TORM 005) by improving transducer`s reception quality through better designed coils, balanced tuning circuit for this coils and power decoupling circuits and by reducing interference from the electromagnetic environment. For this purpose, we had to modify the internal electromagnetic shielding and incorporate line filters in the more critical signals paths. Also, new types of coils were developed, improving the signal to noise ratio, and allowing us to make clinical exams with superior quality for several anatomies. Balanced circuits for tuning and matching of the coil were studied and built, allowing a reduction of the coil losses because patient`s load. This produced a more reliable coil tuning after positioning each new patient. Circuits to avoid the receiver input overload and decoupling circuits for the isolation of receiver coils from excitation coil were designed and incorporated to the TORM 005. All these alterations of our imaging system (TORM 005) contributed to a significant improvement in the signal to noise ratio, reliability and reproducibility of the system. This permitted to operate the system routinely for clinical applications, research and development in the area of ultra low magnetic field tomography. (author) 46 refs., 66 figs., 11 tabs.

  6. Distance weighting for improved tomographic reconstructions

    International Nuclear Information System (INIS)

    Koeppe, R.A.; Holden, J.E.

    1984-01-01

    An improved method for the reconstruction of emission computed axial tomography images has been developed. The method is a modification of filtered back-projection, where the back projected values are weighted to reflect the loss of formation, with distance from the camera, which is inherent in gamma camera imaging. This information loss is a result of: loss of spatial resolution with distance, attenuation, and scatter. The weighting scheme can best be described by considering the contributions of any two opposing views to the reconstruction image pixels. The weight applied to the projections of one view is set to equal the relative amount of the original activity that was initially received in that projection, assuming a uniform attenuating medium. This yields a weighting value which is a function of distance into the image with a value of one for pixels ''near the camera'', a value of .5 at the image center, and a value of zero on the opposite side. Tomographic reconstructions produced with this method show improved spatial resolution when compared to conventional 360 0 reconstructions. The improvement is in the tangential direction, where simulations have indicated a FWHM improvement of 1 to 1.5 millimeters. The resolution in the radial direction is essentially the same for both methods. Visual inspection of the reconstructed images show improved resolution and contrast

  7. Computed Tomographic Artifacts in Maxillofacial Surgery.

    Science.gov (United States)

    Kim, Jun Ho; Arita, Emiko Saito; Pinheiro, Lucas Rodrigues; Yoshimoto, Marcelo; Watanabe, Plauto Christopher Aranha; Cortes, Arthur Rodriguez Gonzalez

    2018-01-01

    The present study aimed to present 4 cases and to undertake a systematic review on the current knowledge of the impact of cone beam computed tomographic (CBCT) artifacts on oral and maxillofacial surgical planning and follow-up. The MEDLINE (PubMed) database was searched for the period from February 2004 to February 2017, for studies on the impact of CBCT artifacts on surgical planning of oral and maxillofacial surgeries. The PRISMA statement was followed during data assessment and extraction. As a result, data extraction included information regarding: the use of CBCT to plan or follow-up oral and maxillofacial surgeries, presence and type identification of a CBCT artifact, and details on the impact of artifacts on image quality and/or surgical planning. Four cases were selected to illustrate the topic. The search strategy yielded 408 publications in MEDLINE (PubMed). An initial screening of the publications was performed using abstracts and key words. After application of exclusion criteria, a total of 11 studies were finally identified as eligible to be discussed. Studies revealed 3 main types of artifact: beam hardening, streak, and motion artifacts. Most of the studies suggest that artifacts significantly affect oral and maxillofacial surgical planning and follow-up, despite of allowing for identification of metal projectiles in cases of maxillofacial trauma. CBCT artifacts have a significant impact on oral and maxillofacial surgical planning and follow-up.

  8. Formation of tomographic images with neutrons

    International Nuclear Information System (INIS)

    Duarte, A.; Tenreiro, C; Valencia, J; Steinman, G.; Henriquez, C

    2000-01-01

    The possibility of having a non-destructive method of analysis for archaeological and paleontological samples is of interest. A special group of fossil samples has come to our attention, which because of their value should be preserved and, therefore, the availability of an indirect, non-destructive, non contaminating analytical technique is important. The strong absorption of usual kinds of radiation by a fossilized sample restricts the application of conventional methods of analysis. A type of radiation that is not completely attenuated by thick samples, in sizes that are typical in paleontology, is necessary. Neutrons may be considered as an ideal non-invasive probe with the possibility of developing a technique for the formation and analysis of images. A technique has been developed for the spatial reconstruction of the contents of a fossilized sample (tomography) with neutrons, without touching or altering the sample in any way. The neutron beam was extracted from the RECH-1 reactor belonging to the CCHEN, La Reina. The tomographic images of the contents of a fossilized egg are presented for the first time and represent views or cuts of the content as well as a set that permits the three dimensional reconstruction of the inside of the object and its subsequent animation in graphic format. This project developed a technique for taking neutron radiographs of this kind of sample including the numerical algorithms and the treatment and formation of the images (CW)

  9. Computed tomographic findings of hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Jo, In Su; Jong, Woo Yung; Lee, Jong Yul; Choi, Han Yong; Kim, Bong Ki

    1987-01-01

    With Development of Computed Tomography, detection of the Hepatocellular Carcinoma are easily performed and frequently used in the world. During 15 months, from December 1985 to February 1987, 59 patients with hepatocellular carcinoma were evaluated with computed tomography in department of radiology at Wallace Memorial Baptist Hospital. The results were as follow: 1. The most prevalent age group was 5th to 7th decades, male to female ratio was 4.9:1. 2. Classification with incidence of computed tomographic appearance of the hepatocellular carcinoma were solitary type 28 cases (48%), multinodular type 24 cases (40%), and diffuse type 7 cases (12%), Association with liver cirrhosis was noted in 22 cases (38%). 3. Inhomogenous internal consistency of hepatocellular carcinoma due to central necrosis were 35 cases (60%). Portal vein invasion by hepatocellular carcinoma was noted in 15 cases (25%), and particularly most common in diffuse type 4 cases (55%). 4. On precontrast scan, all hepatocellular carcinoma were seen as area of low density except for 3 cases(0.5%) of near isodensity which turned out to be remarkable low density on postcontrast scan. 5. In solitary type, posterior segment of right lobe was most common site of involvement 12 cases (43%). In diffuse type, bilobar involvement was most common, 6 cases (85%)

  10. Computer tomographic imaging of rabbit bulbourethral glands

    International Nuclear Information System (INIS)

    Dimitrov, R.

    2010-01-01

    The aim of the study was to utilize the obtained data for differentiation of normal and pathologically altered bulbourethral glands in rabbits with regard to using this animal species as a model for studying diseases in this organ in humans. MATERIAL AND METHODS: Ten sexually mature healthy male white New Zealand rabbits, 12 months old, weighed 2.8−3.2 kg were investigated. The animals were anesthetized. Scans were done at 2 mm intervals and the image reconstruction was three-dimensional. RESULTS: Rabbit bulbourethral glands were observed as a transversely oval homogeneous, relatively hyperdense structure against the surrounding soft tissues. They are visualized in the transverse cut of the pelvic outlet in the plane through the cranial part of cg2, the body of ischium, cranially to tuber ischiadicum and dorsally to the caudal part of symphysis pubis –sciatic arch. The glandular margins are adequately distinguished from the adjacent soft tissue structures. The density of the rabbit bulbourethral glands was similar to this of the soft tissues. CONCLUSION: The data obtained by the computed tomographic imaging of the rabbit bulbourethral glands could be used as an anatomical reference in the diagnosis and interpretation of imaging findings of various pathological states of the gland in this species, as well as in utilization of the rabbit as an animal model for studying diseases of this organ in humans, particularly diverticula, stenosis, lithiasis and valves

  11. A tomographic approach to intravenous coronary arteriography

    International Nuclear Information System (INIS)

    Ritman, E.L.; Bove, A.A.

    1986-01-01

    Coronary artery anatomy can be visualized using high speed, volume scanning X-ray CT. A single scan during a bolus injection of contrast medium provides image data for display of all angles of view of the opacified coronary arterial tree. Due to the tomographic nature of volume image data the superposition of contrast filled cardiac chambers, such as would occur in the levophase of an intravenous injection of contrast agent, can be eliminated. Data are presented which support these statements. The Dynamic Spatial Reconstructor (DSR) was used to scan a life-like radiologic phantom of an adult human thorax in which the left atrial and ventricular chambers and the major epicardial coronary arteries were opacified so as to simulate the levophase of an intravenous injection of contrast agent. A catheter filled with diluted contrast agent and with regions of luminal narrowing (i.e. 'stenoses') was advanced along a tract equivalent to a right ventricular catheterization. Ease of visualization of the catheter 'stenoses' and the accuracy with which they can be measured are presented. (Auth.)

  12. Comparison among tomographic reconstruction with limited data

    International Nuclear Information System (INIS)

    Oliveira, Eric F.; Dantas, Carlos C.; Vasconcelos, Daniel A.A.; Cadiz, Luis F.; Melo, Silvio B.

    2011-01-01

    Nowadays there is a continuing interest in applying computed tomography (CT) techniques in non-destructive testing and inspection of many industrial products. These applications of CT usually require a differentiated analysis when there are strong limitations in acquiring a sufficiently large amount of projection data. The use of a low number of tomographic data normally degrades the quality of the reconstructed image, highlighting the formation of artifacts and noise. This work investigates the reconstruction methods most commonly used (FBP, ART, SIRT, MART, SMART) and shows the performance of each one in this limited scenario. For this purpose, all methods were implemented and tested with a phantom of uniform density with well-known distribution, with measures of transmission of gamma radiation in a first generation CT scanner. The phantom is a concentric stainless steel tube coupled with a half - cylinder of aluminum. The measurements were made with an highest root mean square error, with the formation of visible artifacts. The artifacts are diminished but still visible in the ART and SIRT techniques, and the best performance was observed with the techniques MART and SMART. The technical superiority of these multiplicative methods is clearly seen in the reconstructed image quality, endorsing their application to situations of limited input data. (author)

  13. Computed tomographic findings of intracerebral cysticercosis

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jin Kyo; Lee, Sun Wha; Kim, Ho Kyun; Ahn, Chi Yul [School of Medicine, Kyung-Hee University, Seoul (Korea, Republic of)

    1980-12-15

    Cysticercosis is a parasitic disease in which man serves as the intermediate host of Taenia Solium, the pork tapeworm. The computed tomographic findings of 25 cases of intracerebral cysticercosis proven by pathologic and/or clinical findings during past 2 years were analysed. The results were as follows; 1. The sex was 19 males and 6 females, and 56 percent of the patients were seen in fourth and fifth decades. The most common symptom was epilepsy (72%). 2. The C. T. findings in precontrast study were varied; such as ill defined low density (48%), cystic low density (20%), dilated ventricles (20%), ill defined low density with isodense nodule (18%), cystic low density with isodense mural nodule (12%) and calcification (8%). 3. The areas of involvement were 20 cases (80%) of parenchymal form, 3 cases (12%) of ventricular form and 2 cases (8%) of mixed form. 4. The contrast-enhanced 13 cases were 5 nodular, 5 ring or rim-like and 3 mixed type enhancements, while 12 cases were not enhanced. 5. C.T. scan demonstrated more precise location and extents of cerebral cysticercosis, especially in parenchymal form. It was considered to be important in determination of surgical feasibility and its approach.

  14. Tomographic Particle Image Velocimetry using Smartphones and Colored Shadows

    KAUST Repository

    Aguirre-Pablo, Andres A.

    2017-06-12

    We demonstrate the viability of using four low-cost smartphone cameras to perform Tomographic PIV. We use colored shadows to imprint two or three different time-steps on the same image. The back-lighting is accomplished with three sets of differently-colored pulsed LEDs. Each set of Red, Green & Blue LEDs is shone on a diffuser screen facing each of the cameras. We thereby record the RGB-colored shadows of opaque suspended particles, rather than the conventionally used scattered light. We subsequently separate the RGB color channels, to represent the separate times, with preprocessing to minimize noise and cross-talk. We use commercially available Tomo-PIV software for the calibration, 3-D particle reconstruction and particle-field correlations, to obtain all three velocity components in a volume. Acceleration estimations can be done thanks to the triple pulse illumination. Our test flow is a vortex ring produced by forcing flow through a circular orifice, using a flexible membrane, which is driven by a pressurized air pulse. Our system is compared to a commercial stereoscopic PIV system for error estimations. We believe this proof of concept experiment will make this technique available for education, industry and scientists for a fraction of the hardware cost needed for traditional Tomo-PIV.

  15. Line-scanning tomographic optical microscope with isotropic transfer function

    International Nuclear Information System (INIS)

    Gajdátsy, Gábor; Dudás, László; Erdélyi, Miklós; Szabó, Gábor

    2010-01-01

    An imaging method and optical system, referred to as a line-scanning tomographic optical microscope (LSTOM) using a combination of line-scanning technique and CT reconstruction principle, is proposed and studied theoretically and experimentally. In our implementation a narrow focus line is scanned over the sample and the reflected light is measured in a confocal arrangement. One such scan is equivalent to a transverse projection in tomography. Repeating the scanning procedure in several directions, a number of transverse projections are recorded from which the image can be obtained using conventional CT reconstruction algorithms. The resolution of the image is independent of the spatial dimensions and structure of the applied detector; furthermore, the transfer function of the system is isotropic. The imaging performance of the implemented confocal LSTOM was compared with a point-scanning confocal microscope, based on recorded images. These images demonstrate that the resolution of the confocal LSTOM exceeds (by 15%) the resolution limit of a point-scanning confocal microscope

  16. Tomographic Particle Image Velocimetry using Smartphones and Colored Shadows.

    Science.gov (United States)

    Aguirre-Pablo, Andres A; Alarfaj, Meshal K; Li, Er Qiang; Hernández-Sánchez, J F; Thoroddsen, Sigurdur T

    2017-06-16

    We demonstrate the viability of using four low-cost smartphone cameras to perform Tomographic PIV. We use colored shadows to imprint two or three different time-steps on the same image. The back-lighting is accomplished with three sets of differently-colored pulsed LEDs. Each set of Red, Green & Blue LEDs is shone on a diffuser screen facing each of the cameras. We thereby record the RGB-colored shadows of opaque suspended particles, rather than the conventionally used scattered light. We subsequently separate the RGB color channels, to represent the separate times, with preprocessing to minimize noise and cross-talk. We use commercially available Tomo-PIV software for the calibration, 3-D particle reconstruction and particle-field correlations, to obtain all three velocity components in a volume. Acceleration estimations can be done thanks to the triple pulse illumination. Our test flow is a vortex ring produced by forcing flow through a circular orifice, using a flexible membrane, which is driven by a pressurized air pulse. Our system is compared to a commercial stereoscopic PIV system for error estimations. We believe this proof of concept experiment will make this technique available for education, industry and scientists for a fraction of the hardware cost needed for traditional Tomo-PIV.

  17. TOMOGRAPHIC SITE CHARACTERIZATION USING CPT, ERT, AND GPR

    Energy Technology Data Exchange (ETDEWEB)

    Rexford M. Morey; Susanne M. Conklin; Stephen P. Farrington, P.E.; James D. Shinn II, P.E.

    1999-07-01

    The US Department of Energy (DOE) is responsible for the cleanup of inactive DOE sites and for bringing DOE sites and facilities into compliance with federal, state, and local laws and regulations. The DOE's Office of Environmental Management (EM) needs advanced technologies that can make environmental restoration and waste management operations more efficient and less costly. These techniques are required to better characterize the physical, hydrogeological, and chemical properties of the subsurface while minimizing and optimizing the use of boreholes and monitoring wells. Today the cone penetrometer technique (CPT) is demonstrating the value of a minimally invasive deployment system for site characterization. Applied Research Associates, Inc. is developing two new sensor packages for site characterization and monitoring. The two new methods are: (1) Electrical Resistivity Tomography (ERT); and (2) Ground Penetrating Radar (GPR) Tomography. These sensor systems are now integrated with the CPT. The results of this program now make it possible to install ERT and GPR units by CPT methods and thereby reduce installation costs and total costs for ERT and GPR surveys. These two techniques can complement each other in regions of low resistivity where ERT is more effective and regions of high resistivity where GPR is more effective. The results show that CPT-installed GeoWells can be used for both ERT and GPR borehole tomographic subsurface imaging. These two imaging techniques can be used for environmental site characterization and monitoring have numerous and diverse applications within site cleanup and waste management operations.

  18. Imaging properties of a positron tomograph with 280 BGO crystals

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Budinger, T.F.; Huesman, R.H.; Cahoon, J.L.; Vuletich, T.

    1980-11-01

    The basic imaging properties of the Donner 280-BGO-Crystal positron tomograph were measured and compared with the same system when it was equipped with 280 NaI(T1) crystals. The NaI(T1) crystals were 8 mm x 30 mm x 50 mm deep, sealed in 10 mm wide stainless steel cans. The BGO crystals are 9.5 mm x 32 mm x 32 mm deep and as they are not hygroscopic do not require sealed cans. With a shielding gap of 3 cm (section thickness 1.7 cm FWHM) the sensitivity of the BGO system is 55,000 events per sec for 1 μCi per cm 3 in a 20 cm cylinder of water, which is 2.3 times higher than the NaI(T1) system. For a 200 μCi/cm line source on the ring axis in a 20 cm diameter water cylinder, the BGO system records 86% of the scatter fraction and 66% of the accidental fraction of the NaI(T1) system. The lower light yield and poorer time resolution of BGO requires a wider coincidence timing window than NaI(T1). However, the ability to use full-energy pulse height selection with a 2.3-fold improvement in sensitivity results in an overall reduction in the fraction of accidental events recorded. The in-plane resolution of the BGO system is 9 to 10 mm FWHM within the central 30 cm diameter field, and the radial elongation at the edge of the field in the NaI(T1) system has been nearly eliminated

  19. TomoBank: a tomographic data repository for computational x-ray science

    Science.gov (United States)

    De Carlo, Francesco; Gürsoy, Doğa; Ching, Daniel J.; Joost Batenburg, K.; Ludwig, Wolfgang; Mancini, Lucia; Marone, Federica; Mokso, Rajmund; Pelt, Daniël M.; Sijbers, Jan; Rivers, Mark

    2018-03-01

    There is a widening gap between the fast advancement of computational methods for tomographic reconstruction and their successful implementation in production software at various synchrotron facilities. This is due in part to the lack of readily available instrument datasets and phantoms representative of real materials for validation and comparison of new numerical methods. Recent advancements in detector technology have made sub-second and multi-energy tomographic data collection possible (Gibbs et al 2015 Sci. Rep. 5 11824), but have also increased the demand to develop new reconstruction methods able to handle in situ (Pelt and Batenburg 2013 IEEE Trans. Image Process. 22 5238-51) and dynamic systems (Mohan et al 2015 IEEE Trans. Comput. Imaging 1 96-111) that can be quickly incorporated in beamline production software (Gürsoy et al 2014 J. Synchrotron Radiat. 21 1188-93). The x-ray tomography data bank, tomoBank, provides a repository of experimental and simulated datasets with the aim to foster collaboration among computational scientists, beamline scientists, and experimentalists and to accelerate the development and implementation of tomographic reconstruction methods for synchrotron facility production software by providing easy access to challenging datasets and their descriptors.

  20. Tomographic surveys for mineral exploration using complex resistivity method

    Science.gov (United States)

    Son, J.; Park, S.; Kim, J.

    2011-12-01

    Complex resistive method is a kind of induced polarization (IP) method which all the measurement is made in frequency domain. It transmits the current with the specified frequency through current electrodes, and measure the amplitude and phase to the transmitted current at receiver electrodes. It is also called SIP (Spectral IP) method when multi-frequency measurements are involved. Our research group has been developing the methodology and interpretation technique for SIP survey for several years, and already developed 2/3D inversion algorithms and extended them to the simultaneous inversion of multi-frequency IP data. Recently we are developing mining evaluation technique by relating the inverted property of field IP data to the measured one in the laboratory through geo-statistical relationship. L1-norm inversion using IRLS (iterative reweighted least squares) method is introduced to overcome the problem of noise sensitive characteristics of complex resistivity data, especially in phase data and effectively applied to the field data. The L1-norm inversion improves the noise characteristics of complex resistivity survey. However complex resistivity method is used only for the surface survey because it require special electrode like porous pot and layout of cables to minimize the interference between transmitters and receivers. In this study, we applied complex resistivity method to the tomographic survey using boreholes and interpret data using L1-norm inversion technique to verify applicability without special electrode and layout of cables. Survey was done for the boreholes drilled in the tunnel for prospecting possible mineralized zone. Zeta system based on GDP multi-function receiver manufactured by Zonge was used in this survey and tomographic data measurement was made for two frequencies, 0.25 and 1 Hz. 30 electrodes respectively for two boreholes, a total of 60 electrodes were used in this survey and electrode spacing was 10 meter. Quality of measured data

  1. On the impact of neutron beam divergence and scattering on the quality of transmission acquired tomographic images

    Science.gov (United States)

    Silvani, Maria Ines; Lopes, Ricardo T.; de Almeida, Gevaldo L.; Gonçalves, Marcelo José; Furieri, Rosanne C. A. A.

    2007-10-01

    The impact of the divergence of a thermal neutron beam and the scattered neutrons on the quality of tomographic images acquired by transmission have been evaluated by using a third generation tomographic system incorporating neutron collimators under several different arrangements. The system equipped with a gaseous position sensitive detector has been placed at the main channel outlet of the Argonauta Research Reactor in Instituto de Engenharia Nuclear (CNEN-Brazil) which furnishes a thermal neutron flux of 2.3 × 105 n cm-2 s-1. Experiments have then been conducted using test-objects with well-known inner structure and composition to assess the influence of the collimators arrangement on the quality of the acquired images. Both, beam divergence and scattering - expected to spoil the image quality - have been reduced by using properly positioned collimators between the neutron source and the object, and in the gap between the object and the detector, respectively. The shadow cast by this last collimator on the projections used to reconstruct the tomographic images has been eliminated by a proper software specifically written for this purpose. Improvement of the tomographic images has been observed, demonstrating the effectiveness of the proposed approach to improve their quality by using properly positioned collimators.

  2. Predictors of incomplete optical colonoscopy using computed tomographic colonography.

    Science.gov (United States)

    Sachdeva, Reetika; Tsai, Salina D; El Zein, Mohamad H; Tieu, Alan A; Abdelgelil, Ahmed; Besharati, Sepideh; Khashab, Mouen A; Kalloo, Anthony N; Kumbhari, Vivek

    2016-01-01

    Optical colonoscopy (OC) is the primary modality for investigation of colonic pathology. Although there is data on demographic factors for incomplete OC, paucity of data exists for anatomic variables that are associated with an incomplete OC. These anatomic variables can be visualized using computed tomographic colonography (CTC). We aim to retrospectively identify variables associated with incomplete OC using CTC and develop a scoring method to predict the outcome of OC. In this case-control study, 70 cases ( with incomplete OC) and 70 controls (with complete OC) were identified. CTC images of cases and controls were independently reviewed by a single CTC radiologist. Demographic and anatomical parameters were recorded. Data was examined using descriptive linear statistics and multivariate logistic regression model. On analysis, female gender (80% vs 58.6% P = 0.007), prior abdominal/pelvic surgeries (51.4% vs 14.3% P diverticulosis (P = 0.867) with incomplete OC. A scoring system to predict the outcome of OC is proposed based on CTC findings. Female gender, prior surgery, and increasing colonic length and tortuosity were associated with incomplete OC, whereas increasing age and history of severe diverticulosis were not. These factors may be used in the future to predict those patients who are at risk of incomplete OC.

  3. On the computed tomographic diagnosis of pulmonary nodules

    International Nuclear Information System (INIS)

    Higashi, Yuuichirou

    1988-01-01

    Computed tomography (CT) was used to examine 53 pulmonary nodules which were considered not definitely calcified on plain radiographs or conventional tomograms. An average CT number was calculate for each lesion. For the primary lung cancers, the average CT number was 36 HU with a standard deviation of 6.6 HU, while the benign lesions had the mean CT number of 69 HU, with a standard deviation of 42.8 HU. The mean CT number separating lung malignancies from benign lesions was 78.8 HU. To evaluate the attenuation values within each nodule, iso-CT value map was obtained by using Siemens therapy planning system, MEVAPLAN. Nodules were classified into five categories, Type I to V. All of three nodules classified as Type IV were benign. Iso-CT value map was effective in establishing the benignancy of nodules. The quantitative computed tomographic analysis of pulmonary nodules was evaluated by dual-energy CT. Dual-energy CT has the potential to eliminate the effect of spectral hardening by use of monoenergic images derived from dual-kV data and to separate high CT numbers due to calcium from those due to high density organic material. (author)

  4. Tomographic techniques for safeguards measurements of nuclear fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Lundqvist Saleh, Tobias

    2007-10-15

    Nuclear power is currently experiencing increased interest over the world. New nuclear reactors are being built and techniques for taking care of the nuclear waste are being developed. This development puts new demands and standards to safeguards, i.e. the international efforts for ensuring the non-proliferation of nuclear weapons. New measuring techniques and devices are continuously being developed for enhancing the ability to detect diversion of fissile material. In this thesis, tomographic techniques for application in safeguards are presented. Tomographic techniques can non-destructively provide information of the inner parts of an object and may thus be used to control that no material is missing from a nuclear fuel assembly. When using the tomographic technique described in this thesis, the radiation field around a fuel assembly is first recorded. In a second step, the internal source distribution is mathematically reconstructed based on the recorded data. In this work, a procedure for tomographic safeguards measurements is suggested and the design of a tomographic measuring device is presented. Two reconstruction algorithms have been specially developed and evaluated for the application on nuclear fuel; one algorithm for image reconstruction and one for reconstructing conclusive data on the individual fuel rod level. The combined use of the two algorithms is suggested. The applicability for detecting individual removed or replaced rods has been demonstrated, based on experimental data

  5. Combining ART and FBP for improved fidelity of tomographic BOS

    Science.gov (United States)

    Hartmann, Ulrich; Seume, Joerg R.

    2016-09-01

    Engine component defects along the hot-gas path (HGP) of jet engines influence the density distribution of the flow, and thus result in characteristic patterns in the exhaust jet. These characteristic patterns can be reconstructed with the optical background-oriented schlieren (BOS) method in a tomographic set-up, which in turn allows the identification of defects inside the engine through an exhaust jet analysis. The quality of the tomographic reconstruction strongly influences how easily defects can be detected inside the jet engine. In particular, the presence of high gradients in the reconstruction area has a strong impact on the reconstruction quality. An algebraic reconstruction algorithm (ART) is implemented and compared to a filtered-back projection (FBP) algorithm in terms of the capability of performing high-gradient tomographic BOS reconstructions. A combination of both algorithms is presented which significantly improves the reconstruction quality of high-gradient tomographic BOS in terms of artifact reduction. The combination of both algorithms is applied to both synthetic and real measurement data in this paper, in order to show possible applications and the achievable improvement of high-gradient tomographic BOS reconstructions.

  6. Topographic, Tomographic, and Aberrometric Characteristics of Post-LASIK Ectasia.

    Science.gov (United States)

    Padmanabhan, Prema; Rachapalle Reddi, Sudhir; Sivakumar, Poornima Devi

    2016-11-01

    To report the refractive, topographic, tomographic, and aberrometric characteristics of post-LASIK ectasia; to compare these characteristics with normal post-LASIK controls; and to propose a comprehensive system to grade the severity of post-LASIK ectasia. The refraction, corrected distance visual acuity (CDVA), magnitude, and location of the steepest and thinnest point on the cornea, the highest anterior and posterior surface elevation, the radius of best fit sphere, corneal asphericity, and corneal aberrations were measured in 50 eyes of 29 patients with post-LASIK ectasia. These were compared with corresponding parameters in 50 eyes that did not develop ectasia for more than 1 year after LASIK. A logistic regression analysis was used to create a scoring system to grade the severity. Eyes with post-LASIK ectasia had significantly higher myopia with astigmatism and a lower CDVA than control eyes. Mean topographic toricity was 3.4 ± 1.9D, mean keratometry at the steepest point was 55.32 ± 6.63D, mean highest posterior elevation was 69.72 ± 3 μm, and mean coma was -2.06 ± 1.2 μm. All these parameters were significantly higher than corresponding values in the control group (p ectasia compared to controls. Five parameters, namely, CDVA, spherical equivalent, highest posterior corneal elevation, spherical aberration, and corneal asphericity, were identified as significant predictors of post-LASIK ectasia and used to create a scoring system. Post-LASIK ectasia is characterized by significant changes in refraction, topography, tomography, and aberrometry. The proposed scoring system may be useful in diagnosing, grading, and monitoring post-LASIK ectasia.

  7. Correction of ring artifacts in X-ray tomographic images

    DEFF Research Database (Denmark)

    Lyckegaard, Allan; Johnson, G.; Tafforeau, P.

    2011-01-01

    Ring artifacts are systematic intensity distortions located on concentric circles in reconstructed tomographic X-ray images. When using X-ray tomography to study for instance low-contrast grain boundaries in metals it is crucial to correct for the ring artifacts in the images as they may have...... are separable. The method is implemented in Matlab, it works with very little user interaction and may run in parallel on a cluster if applied to a whole stack of images. The strength and robustness of the method implemented will be demonstrated on three tomographic X-ray data sets: a mono-phase β...... the same intensity level as the grain boundaries and thus make it impossible to perform grain segmentation. This paper describes an implementation of a method for correcting the ring artifacts in tomographic X-ray images of simple objects such as metal samples where the object and the background...

  8. A SPICE synthetic dataset to benchmark global tomographic methods

    Science.gov (United States)

    Qin, Y.; Capdeville, Y.; Maupin, V.; Montagner, J.

    2005-12-01

    The different existing global tomographic methods result in different models of the Earth. Within SPICE (Seismic wave Propagation and Imaging in Complex media: a European network), we have decided to perform a benchmark experiment of global tomographic techniques. A global model has been constructed. It includes 3D heterogeneities in velocity, anisotropy and attenuation, as well as topography of discontinuities. Simplified versions of the model will also be used. Synthetic seismograms will be generated at low frequency by the Spectral Element Method, for a realistic distribution of sources and stations. The synthetic seismograms will be made available to the scientific community at the SPICE website www.spice-rtn.org. Any group wishing to test his tomographic algorithm is encouraged to download the synthetic data.

  9. Determination of instantaneous pressure in a transonic base flow using four-pulse tomographic PIV

    OpenAIRE

    Blinde, P.L.; Lynch, K.P.; Schrijer, F.F.J.; Van Oudheusden, B.W.

    2015-01-01

    A tomographic four-pulse PIV system is used in a transonic axisymmetric base flow experiment at a nominal free stream Mach number of 0.7, with the objective to obtain flow acceleration and pressure data. The PIV system, consisting of two double-pulse lasers and twelve cameras, allows acquiring two velocity fields with time separations as small as 2.5 ?s. A performance assessment is carried out and provides a typical average error estimate below 0.025 U? (0.3 voxel). The ability to use these v...

  10. Radiographic and tomographic study of the elbow joint in dogs

    International Nuclear Information System (INIS)

    Sendyk-Grunkraut, Alessandra; Martin, Claudia M.; Souza, Alexandre N.A.; Patricio, Geni Cristina F.; Lorigados, Carla A.B.; Matera, Julia M.; Fonseca-Pinto, Ana C.B.C.

    2017-01-01

    Elbow dysplasia disease includes an united anconeal process, fragmented medial coronoid process, osteochondrosis of humeral trochlea, articular incongruity and degenerative joint disease. The aim of this study was to present detailed morphologic and morphometric aspects of the elbow joint in dog in clinical and correlate with radiographic and tomographic (CT) exam. Inter-observer variation for articular incongruity measurements by CT, comparative analysis in the radiographic exam, angle in ulnar notch and its comparative analysis between radiographic and tomographic agreement examination in 44 elbow of dogs with different ages were evaluated. The statistics analyses included the kappa coefficient and interclass correlation and Fischer's test and McNemar's test. It was evidenced that individual performance of each radiographic incidence had poor agreement with the tomographic exam, suggesting that the accomplishment of more than two radiograph views are needed. There was no agreement between the three evaluators in the ulnar notch angle at radiographic and tomographic exams. However, there was good/moderate agreement for articular incongruity measurement in the sagittal plane between evaluators. It was possible to conclude that none of the five radiographic incidences was better than the others for radiographic analysis because each incidence had a better identification of a particular elbow compartment; measurements at the tomographic exam to evaluate radioulnar incongruity had no reproductiveness in the frontal plane, but in sagittal plan had a good/moderate agreement between observers and the angle in ulnar notch presented no repeatability at radiographic exam and no reproductiveness at tomographic exam. (author)

  11. High-throughput full-automatic synchrotron-based tomographic microscopy

    International Nuclear Information System (INIS)

    Mader, Kevin; Marone, Federica; Hintermueller, Christoph; Mikuljan, Gordan; Isenegger, Andreas; Stampanoni, Marco

    2011-01-01

    At the TOMCAT (TOmographic Microscopy and Coherent rAdiology experimenTs) beamline of the Swiss Light Source with an energy range of 8-45 keV and voxel size from 0.37 (micro)m to 7.4 (micro)m, full tomographic datasets are typically acquired in 5 to 10 min. To exploit the speed of the system and enable high-throughput studies to be performed in a fully automatic manner, a package of automation tools has been developed. The samples are automatically exchanged, aligned, moved to the correct region of interest, and scanned. This task is accomplished through the coordination of Python scripts, a robot-based sample-exchange system, sample positioning motors and a CCD camera. The tools are suited for any samples that can be mounted on a standard SEM stub, and require no specific environmental conditions. Up to 60 samples can be analyzed at a time without user intervention. The throughput of the system is dependent on resolution, energy and sample size, but rates of four samples per hour have been achieved with 0.74 (micro)m voxel size at 17.5 keV. The maximum intervention-free scanning time is theoretically unlimited, and in practice experiments have been running unattended as long as 53 h (the average beam time allocation at TOMCAT is 48 h per user). The system is the first fully automated high-throughput tomography station: mounting samples, finding regions of interest, scanning and reconstructing can be performed without user intervention. The system also includes many features which accelerate and simplify the process of tomographic microscopy.

  12. Biomedical Optoacoustic Tomograph Based on a Cylindrical Focusing PVDF Antenna

    Science.gov (United States)

    Subochev, P. V.; Postnikova, A. S.; Koval'chuk, A. V.; Turchin, I. V.

    2017-08-01

    We developed an optoacoustic tomograph with hand-held probe designed for optoacoustic imaging of biological tissues. The hand-held probe consists of a fiber-optic bundle for delivery of pulsed laser radiation to the studied object and a cylindrical focusing 64-element antenna for the detection of optoacoustic pulses. The capabilities of the tomograph to visualize the model blood vessels were studied experimentally using electronic and electronic-mechanical scanning. The achieved axial/lateral spatial resolution is 200/400 μm, the imaging depth is 18 mm, and the maximum B-scan acquisition rate is 10 Hz.

  13. Tomographic Site Characterization Using CPT, ERT, and GPR

    Energy Technology Data Exchange (ETDEWEB)

    Rexford M. Morey

    1997-05-23

    The U.S. Department of Energy (DOE) is responsible for the cleanup of inactive DOE sites and for bringing DOE sites and facilities into compliance with federal, state and local laws and regulations. The DOE's Office of Environmental Management (EM) needs advanced technologies that can make environmental restoration and waste management operations more efficient and less costly. These techniques are required to better characterize the physical, hydrogeological, and chemical properties of the subsurface while minimizing and optimizing the use of boreholes and monitoring wells. Today the cone penetrometer technique (CPT) is demonstrating the value of a minimally invasive deployment system fix site characterization. Applied Research Associates is developing two new sensor packages for site characterization and monitoring. The two new methods are: . Electrical Resistivity Tomography (ERT) and . Ground Penetrating Radar (GPR) Tomography. These sensor systems are now integrated with the Cone Penetrometer Technique (CPT). The results of this program now make it possible to install ERT and GPR units by CPT methods and thereby reduce installation costs and total costs for ERT and GPR surveys. These two techniques can complement each other in regions of low resistivity where ERT is more effective and regions of high resistivity where GPR is more effective. The results show that CPT-installed GeoWells can be used in both ERT and GPR borehole tomographic subsurface imaging. These two imaging techniques can be used for environmental site characterization and environmental remediation monitoring. Technologies used for site characterization and monitoring have numerous and diverse applications within site clean-up and waste management operations.

  14. Design of Pre-emphasis Compensation for MR Tomograph

    Czech Academy of Sciences Publication Activity Database

    Gescheidtová, E.; Kubásek, J.; Smékal, Z.; Bartušek, Karel

    2008-01-01

    Roč. 45, č. 1 (2008), s. 161-173 ISSN 1738-6438 R&D Projects: GA ČR(CZ) GA102/07/0389 Institutional research plan: CEZ:AV0Z20650511 Keywords : pre-emphasis compensation * MR tomograph Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  15. Computerized tomographic findings in children with head trauma in ...

    African Journals Online (AJOL)

    Objective: To describe the computerized tomographic findings in children with head trauma who presented at the University of Benin Teaching Hospital, Benin City, Nigeria. Methods: It is a retrospective review of patients aged 0 – 15 years with suspected intracranial injury (ICI) following head trauma, who presented for CT ...

  16. Tomographic reconstruction of internal wave patterns in a paraboloid

    NARCIS (Netherlands)

    Hazewinkel, J.; Maas, L.R.M.; Dalziel, S.B.

    2011-01-01

    Using tomographic synthetic schlieren, we are able to reconstruct the three-dimensional density field of internal waves. In this study, the waves are radiating from an oscillating sphere positioned eccentrically at the surface of a paraboloidal domain filled with a uniformly stratified fluid. We

  17. Gunshot injuries to the maxillofacial region: computed tomographic ...

    African Journals Online (AJOL)

    OBJECTIVE: To evaluate Computed Tomographic findings in patients with gunshot injury (GSI) to the maxillofacial region. MATERIALS AND METHODS: A retrospective cohort study of patients who had Computed Tomography (CT) scanning done for GSI to the maxillofacial region at the University of Benin Teaching ...

  18. Application of tomographic particle image velocimetry to complex (dusty) plasmas

    International Nuclear Information System (INIS)

    Williams, Jeremiah

    2011-01-01

    Over the past decade, particle image velocimetry (PIV) techniques have been used to obtain detailed measurements of the thermal and transport properties of weakly-coupled dusty plasmas. This paper reports on the application of an extension of these techniques, tomographic PIV (tom-PIV), which provides an instantaneous volumetric measurement of the particle transport.

  19. Dense velocity reconstruction from tomographic PTV with material derivatives

    NARCIS (Netherlands)

    Schneiders, J.F.G.; Scarano, F.

    2016-01-01

    A method is proposed to reconstruct the instantaneous velocity field from time-resolved volumetric particle tracking velocimetry (PTV, e.g., 3D-PTV, tomographic PTV and Shake-the-Box), employing both the instantaneous velocity and the velocity material derivative of the sparse tracer particles. The

  20. A new ionospheric tomographic algorithm–constrained multiplicative ...

    Indian Academy of Sciences (India)

    For the limitation of the conventional multiplicative algebraic reconstruction technique (MART), a constrained MART (CMART) is proposed in this paper. In the new tomographic algorithm, a popular two-dimensional multi-point finite difference approximation of the second order Laplacian operator is used to smooth the ...

  1. Unique determination of structure and velocity by 3-D tomographic ...

    African Journals Online (AJOL)

    A subsequent 2-D Prestack depth migration based on the Kirchhoff method utilizing the velocity field obtained from the tomographic inversion extracts more information from the data and gives a clear picture of the subsurface. The superiority of the simultaneous inversion of the reflected and refracted waves to that of ...

  2. Computed tomographic findings in manifesting carriers of Duchenne muscular dystrophy

    NARCIS (Netherlands)

    de Visser, M.; Verbeeten, B.

    1985-01-01

    Clinical and computed tomographic (CT) findings in 3 manifesting carriers of Duchenne muscular dystrophy are reported. CT proved to be an important adjunct to the clinical examination: in all our 3 cases a decrease in density was found in various non-paretic muscles

  3. Software development for modeling positrons emission tomograph scanners

    International Nuclear Information System (INIS)

    Vieira, Igor Fagner

    2013-01-01

    The Geant4 Application for Tomographic Emission (GATE) is an international platform recognized and used to develop Computational Model Exposure (CME) in the context of Nuclear Medicine, although currently there are dedicated modules for applications in Radiotherapy and Computed Tomography (CT). GATE uses Monte Carlo (MC) methods, and has a scripting language of its own. The writing of scripts for simulation of a PET scanner in GATE involves a number of interrelated steps, and the accuracy of the simulation is dependent on the correct setup of the geometries involved, since the physical processes depend on them, as well as the modeling of electronic detectors in module Digitizer, for example. The manual implementation of this setup can be a source of errors, especially for users without experience in the field of simulations or without any previous knowledge of a programming language, and also due to the the fact that the modeling process in GATE still remains bounded to LINUX / UNIX based systems, an environment only familiar to a few. This becomes an obstacle for beginners and prevents the use of GATE by a larger number of users interested in optimizing their experiments and/or clinical protocols through a more accessible, fast and friendly application. The objective of this work is therefore to develop a user-friendly software for the modeling of Positron Emission Tomography called GUIGATE (Graphical User Interface for GATE), with specific modules dedicated to quality control in PET scanners. The results exhibit the features available in this first version of GUIGATE, present in a set of windows that allow users to create their input files, perform and display in real time the model and analyze its output file in a single environment, allowing so intuitively access the entire architecture of the GATE simulation and to CERN's data analyzer, the ROOT. (author)

  4. Tomographic flow cytometry assisted by intelligent wavefronts analysis

    Science.gov (United States)

    Merola, F.; Memmolo, P.; Miccio, L.; Mugnano, M.; Ferraro, P.

    2017-06-01

    High-throughput single-cell analysis is a challenging target for implementing advanced biomedical applications. An excellent candidate for this aim is label-free tomographic phase microscopy. However, in-line tomography is very difficult to be implemented in practice, as it requires complex setup for rotating the sample and/or illuminate the cell along numerous directions [1]. We exploit random rolling of cells while they are flowing along a microfluidic channel demonstrating that it is possible to obtain in-line phase-contrast tomography by adopting strategies for intelligent wavefronts analysis thus obtaining complete retrieval of both 3D-position and orientation of rotating cells [2]. Thus, by numerical wavefront analysis a-priori knowledge of such information is no longer needed. This approach makes continuos-flow cyto-tomography suitable for practical operation in real-world, single-cell analysis and with substantial simplification of the optical system avoiding any mechanical/optical scanning of light source. Demonstration is given for different classes of biosamples, red-blood-cells (RBCs), diatom algae and fibroblast cells [3]. Accurate characterization of each type of cells is reported despite their very different nature and materials content, thus showing the proposed method can be extended, by adopting two alternate strategies of wavefront-analysis, to many classes of cells. In particular, for RBCs we furnish important parameters as 3D morphology, Corpuscular Hemoglobin (CH), Volume (V), and refractive index (RI) for each single cell in the total population [3]. This could open a new route in blood disease diagnosis, for example for the isolation and characterization of "foreign" cells in the blood stream, the so called Circulating Tumor Cells (CTC), early manifestation of metastasis.

  5. Effect of Shot Noise on Simultaneous Sensing in Frequency Division Multiplexed Diffuse Optical Tomographic Imaging Process.

    Science.gov (United States)

    Jang, Hansol; Lim, Gukbin; Hong, Keum-Shik; Cho, Jaedu; Gulsen, Gultekin; Kim, Chang-Seok

    2017-11-28

    Diffuse optical tomography (DOT) has been studied for use in the detection of breast cancer, cerebral oxygenation, and cognitive brain signals. As optical imaging studies have increased significantly, acquiring imaging data in real time has become increasingly important. We have developed frequency-division multiplexing (FDM) DOT systems to analyze their performance with respect to acquisition time and imaging quality, in comparison with the conventional time-division multiplexing (TDM) DOT. A large tomographic area of a cylindrical phantom 60 mm in diameter could be successfully reconstructed using both TDM DOT and FDM DOT systems. In our experiment with 6 source-detector (S-D) pairs, the TDM DOT and FDM DOT systems required 6.18 and 1 s, respectively, to obtain a single tomographic data set. While the absorption coefficient of the reconstruction image was underestimated in the case of the FDM DOT, we experimentally confirmed that the abnormal region can be clearly distinguished from the background phantom using both methods.

  6. Effect of Shot Noise on Simultaneous Sensing in Frequency Division Multiplexed Diffuse Optical Tomographic Imaging Process

    Directory of Open Access Journals (Sweden)

    Hansol Jang

    2017-11-01

    Full Text Available Diffuse optical tomography (DOT has been studied for use in the detection of breast cancer, cerebral oxygenation, and cognitive brain signals. As optical imaging studies have increased significantly, acquiring imaging data in real time has become increasingly important. We have developed frequency-division multiplexing (FDM DOT systems to analyze their performance with respect to acquisition time and imaging quality, in comparison with the conventional time-division multiplexing (TDM DOT. A large tomographic area of a cylindrical phantom 60 mm in diameter could be successfully reconstructed using both TDM DOT and FDM DOT systems. In our experiment with 6 source-detector (S-D pairs, the TDM DOT and FDM DOT systems required 6.18 and 1 s, respectively, to obtain a single tomographic data set. While the absorption coefficient of the reconstruction image was underestimated in the case of the FDM DOT, we experimentally confirmed that the abnormal region can be clearly distinguished from the background phantom using both methods.

  7. Monitoring of health of trees by gamma-ray tomographic scanners and the first Kanpur error theorem

    International Nuclear Information System (INIS)

    Verma, Ruchi; Razdan, Mayuri; Quraishi, A.M.; Munshi, Prabhat

    2004-01-01

    CT scanners produce nondestructively images of a given cross-section with the help of radiation source-detector system and a suitable tomographic reconstruction algorithm. These CT images have inherent error associated with them and for unknown objects it is not possible to calculate it directly. Careful application of the first Kanpur theorem, however, gives an indirect estimate of the inaccuracy of these images. An interesting outcome of this theorem is monitoring of health of trees. (author)

  8. Tomographic findings of acute pulmonary toxoplasmosis in immunocompetent patients.

    Science.gov (United States)

    de Souza Giassi, Karina; Costa, Andre Nathan; Apanavicius, Andre; Teixeira, Fernando Bin; Fernandes, Caio Julio Cesar; Helito, Alfredo Salim; Kairalla, Ronaldo Adib

    2014-11-25

    Toxoplasmosis is one of the most common human zoonosis, and is generally benign in most of the individuals. Pulmonary involvement is common in immunocompromised subjects, but very rare in immunocompetents and there are scarce reports of tomographic findings in the literature. The aim of the study is to describe three immunocompetent patients diagnosed with acute pulmonary toxoplasmosis and their respective thoracic tomographic findings. Acute toxoplasmosis was diagnosed according to the results of serological tests suggestive of recent primary infection and the absence of an alternative etiology. From 2009 to 2013, three patients were diagnosed with acute respiratory failure secondary to acute toxoplasmosis. The patients were two female and one male, and were 38, 56 and 36 years old. Similarly they presented a two-week febrile illness and progressive dyspnea before admission. Laboratory tests demonstrated lymphocytosis, slight changes in liver enzymes and high inflammatory markers. Tomographic findings were bilateral smooth septal and peribronchovascular thickening (100%), ground-glass opacities (100%), atelectasis (33%), random nodules (33%), lymph node enlargement (33%) and pleural effusion (66%). All the patients improved their symptoms after treatment, and complete resolution of tomographic findings were found in the followup. These cases provide a unique description of the presentation and evolution of pulmonary tomographic manifestations of toxoplasmosis in immunocompetent patients. Toxoplasma pneumonia manifests with fever, dyspnea and a non-productive cough that may result in respiratory failure. In animal models, changes were described as interstitial pneumonitis with focal infiltrates of neutrophils that can finally evolve into a pattern of diffuse alveolar damage with focal necrosis. The tomographic findings are characterized as ground glass opacities, smooth septal and marked peribronchovascular thickening; and may mimic pulmonary congestion

  9. A preliminary design study for improving performance in tomographic assays

    International Nuclear Information System (INIS)

    Estep, R.J.

    1994-03-01

    The authors recently introduced the tomographic-gamma-scanner (TGS) method for assaying transuranic (TRU) waste and special nuclear material (SNM) in 55-gal drums. The TGS combines low-resolution emission and transmission tomography to obtain attenuation-corrected images of the radionuclide distribution inside a drum. In a low-resolution tomographic assay device, it is desirable to have as flat an efficiency profile as possible. Using computer simulations, they have demonstrated that a flat response in the vertical direction can be obtained by using a diamond-shaped collimator, and that this flatness of response translates into improved assay accuracy. Similarly, they have shown that the use of a continuous-motion scan protocol reduces horizontal efficiency variations

  10. Simultaneous tomographic reconstruction and segmentation with class priors

    DEFF Research Database (Denmark)

    Romanov, Mikhail; Dahl, Anders Bjorholm; Dong, Yiqiu

    2015-01-01

    We consider tomographic imaging problems where the goal is to obtain both a reconstructed image and a corresponding segmentation. A classical approach is to first reconstruct and then segment the image; more recent approaches use a discrete tomography approach where reconstruction and segmentatio...... approach can produce better results than the classical two-step approach.......We consider tomographic imaging problems where the goal is to obtain both a reconstructed image and a corresponding segmentation. A classical approach is to first reconstruct and then segment the image; more recent approaches use a discrete tomography approach where reconstruction and segmentation...... are combined to produce a reconstruction that is identical to the segmentation. We consider instead a hybrid approach that simultaneously produces both a reconstructed image and segmentation. We incorporate priors about the desired classes of the segmentation through a Hidden Markov Measure Field Model, and we...

  11. Advances in the calibration of atom probe tomographic reconstruction

    International Nuclear Information System (INIS)

    Gault, Baptiste; Moody, Michael P.; La Fontaine, Alexandre; Stephenson, Leigh T.; Haley, Daniel; Ringer, Simon P.; Geuser, Frederic de; Tsafnat, Guy

    2009-01-01

    Modern wide field-of-view atom probes permit observation of a wide range of crystallographic features that can be used to calibrate the tomographic reconstruction of the analyzed volume. In this study, methodologies to determine values of the geometric parameters involved in the tomographic reconstruction of atom probe data sets are presented and discussed. The influence of the tip to electrode distance and specimen temperature on these parameters is explored. Significantly, their influence is demonstrated to be very limited, indicating a relatively wide regime of experimental parameters space for sound atom probe tomography (APT) experiments. These methods have been used on several specimens and material types, and the results indicate that the reconstruction parameters are specific to each specimen. Finally, it is shown how an accurate calibration of the reconstruction enables improvements to the quality and reliability of the microscopy and microanalysis capabilities of the atom probe

  12. Tomographic and clinical aspects of the central nervous system anomalies associated to the craniofacial congenital changes; Aspectos tomograficos e clinicos das anomalias estruturais do sistema nervoso central associadas as alteracoes congenitas do macico facial

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, Angela Delete

    1994-12-31

    This work proposes to study people presenting craniofacial congenital anomalies, with or without mental disorders, regardless their association to other anomalies in the body middle line, aiming to verify the central nervous system frequency of concurrence with structural anomalies associated, within the clinic and phenotype spectra of that syndromes. (author). 182 refs., 36 figs.

  13. Computed tomographic features of fibrous dysplasia of maxillofacial region

    OpenAIRE

    Sontakke, Subodh Arun; Karjodkar, Freny R; Umarji, Hemant R

    2011-01-01

    Purpose This study was to find the computed tomographic features of fibrous dysplasia of the maxillofacial region. Materials and Methods All eight cases included in the study reported either to Government Dental College and Hospital or Nair Hospital Dental College, Mumbai between 2003 and 2009. The patients were prescribed computed tomogram in addition to conventional radiographs of maxillofacial region which were studied for characteristic features of fibrous dysplasia. The diagnosis of fibr...

  14. Predictors of Incomplete Optical Colonoscopy Using Computed Tomographic Colonography

    OpenAIRE

    Sachdeva, Reetika; Tsai, Salina D.; El Zein, Mohamad H.; Tieu, Alan A.; Abdelgelil, Ahmed; Besharati, Sepideh; Khashab, Mouen A.; Kalloo, Anthony N.; Kumbhari, Vivek

    2016-01-01

    Background/Aims: Optical colonoscopy (OC) is the primary modality for investigation of colonic pathology. Although there is data on demographic factors for incomplete OC, paucity of data exists for anatomic variables that are associated with an incomplete OC. These anatomic variables can be visualized using computed tomographic colonography (CTC). We aim to retrospectively identify variables associated with incomplete OC using CTC and develop a scoring method to predict the outcome of OC. Pat...

  15. Computed tomographic diagnosis of abdominal abscess in childhood

    International Nuclear Information System (INIS)

    Kuhn, J.P.; Berger, P.E.

    1980-01-01

    Twenty-eight children suspected clinically of having an abdominal abscess were examined by CT. Eighteen had gallium 67 citrate scans and 22 had ultrasound studies. Computed tomography was found to be the most accurate test for diagnosis and evaluation of an abscess and the computed tomographic appearance of abscess is illustrated. However, because of cost factors, radiation dose, and clinical considerations, computed tomography is not always the first modality of choice in evaluating a suspected abdominal abscess [fr

  16. A general purpose tomographic program with combined inversions

    International Nuclear Information System (INIS)

    Xu Wenbin; Dong Jiafu; Li Fanzhu

    1996-01-01

    A general tomographic program has been developed by combining the Bessel expansion with the Zernicke expansion. It is useful for studying of the magnetic island structure of the tearing mode and in reconstructing the density profiles of impurities in tokamak plasmas. This combined method have the advantages of both expansions, i.e. there will be no spurious images in the edge and it will be of high inverse precision in the center of plasma

  17. Positron Emission Tomographic Imaging of the Cannabinoid Type 1 Receptor System with [11C]OMAR ([11C]JHU75528: Improvements in Image Quantification Using Wild-Type and Knockout Mice

    Directory of Open Access Journals (Sweden)

    Raúl Herance

    2011-11-01

    Full Text Available In this study, we assessed the feasibility of using positron emission tomography (PET and the tracer [11C]OMAR ([11C]JHU75528, an analogue of rimonabant, to study the brain cannabinoid type 1 (CB1 receptor system. Wild-type (WT andCB1 knockout (KO animals were imaged at baseline and after pretreatment with blocking doses of rimonabant. Brain uptake in WT animals was higher (50% than in KO animals in baseline conditions. After pretreatment with rimonabant, WT uptake lowered to the level of KO animals. The results of this study support the feasibility of using PET with the radiotracer [11C]JHU75528 to image the brain CB1 receptor system in mice. In addition, this methodology can be used to assess the effect of new drugs in preclinical studies using genetically manipulated animals.

  18. A comparative evaluation of the increase in root canal surface area and canal transportation in curved root canals by three rotary systems: A cone-beam computed tomographic study.

    Science.gov (United States)

    Prasanthi, Nalam Nvd; Rambabu, Tanikonda; Sajjan, Girija S; Varma, K Madhu; Satish, R Kalyan; Padmaja, M

    2016-01-01

    The aim of this study was to measure the increase in root canal surface area and canal transportation after biomechanical preparation at 1, 3, and 5 mm short of the apex with three different rotary systems in both continuous rotary and reciprocating rotary motions. Sixty freshly extracted human mandibular molars with mesial root canal curvatures between 20° and 30° were included in the study. Teeth were randomly distributed into three groups (n = 20). Biomechanical preparations were done in all the mesial canals. In Group 1, instrumentation was done with ProTaper universal rotary files, Group 2, with K3XF rotary files, and Group 3, with LSX rotary files. Each group was further subdivided into subgroups A and B (n = 10) where instrumentation was done by continuous rotary and reciprocating rotary techniques, respectively. Increase in root canal surface area and canal transportation was measured using the preoperative and postoperative cone-beam computed tomography scans. The data were analyzed by one-way ANOVA followed by Tukey pairwise multiple comparison tests. Increase in root canal surface area was significantly more (P 0.05) in increase of root canal surface area and canal transportation between continuous rotary and reciprocating rotary techniques for ProTaper Universal, K3XF and LSX groups. LSX rotary system showed minimal increase of root canal surface area and minimal canal transportation when compared to ProTaper and K3XF rotary systems.

  19. Tomographic findings of lobar consolidation in primary pulmonary tuberculosis

    International Nuclear Information System (INIS)

    Pereira, Bruno Alberto Falcao; Macedo, Solange Goncalves David de; Penna, Claudia Renata Rezende

    2009-01-01

    Objective: To describe tomographic findings of lobar consolidation as early manifestation of primary pulmonary tuberculosis. Materials and methods: The present study was developed at Hospital Municipal Jesus, Rio de Janeiro, RJ, Brazil, in the period between 2002 and 2006, retrospectively evaluating tomographic findings in four children aged from 3 to 14 months with lobar consolidation as an early manifestation of primary pulmonary tuberculosis. Results: The most frequently found radiological pattern was lobar consolidation with calcifications, cavitation and intermingle necrotic areas, associated with bulging fissure. Signs of bronchogenic dissemination and lymph node enlargement were observed in all of the four children. Consolidation with a pseudotumor aspect and masslike effect was observed in one case. Conclusion: The cases included in the present study have demonstrated that primary pulmonary tuberculosis manifested as lobar consolidation presents typical tomographic images such as cavitation, hypodense areas and calcifications intermingled with consolidation. The association with lymph node enlargement with central necrosis and signs of bronchogenic dissemination reinforce the diagnosis of tuberculosis. (author)

  20. Trailing edge noise estimation by tomographic Particle Image Velocimetry

    Science.gov (United States)

    Pröbsting, Stefan; Tuinstra, Marthijn; Scarano, Fulvio

    2015-06-01

    The feasibility of estimating broadband trailing edge noise with high-speed tomographic Particle Image Velocimetry (PIV) measurements is studied. A thin plate terminating in a sharp trailing edge provides a generic test case for turbulent boundary layer trailing edge interaction noise. Far-field noise is linked to the wavenumber-frequency spectrum of the surface pressure fluctuations in proximity of the trailing edge through diffraction theory. High-speed tomographic PIV measurements return volumetric and time-resolved information about all velocity components for the resolved spatio-temporal scales and can therefore provide the required statistical quantities. For the turbulent boundary layer interacting with the trailing edge, these statistics include the auto-spectral density, spanwise correlation length, and convection velocity of the unsteady surface pressure, which are thus estimated. Acoustic phased array measurements in an anechoic environment provide a reference for comparison. Over the resolved frequency band, PIV based noise estimation results compare favorably with the reference measurements. Especially at lower frequencies, where existing, empirical models for the unsteady surface pressure spectrum are not accurate, tomographic PIV can offer an alternative approach to complex and intrusive model instrumentation for assessing the relevant statistical quantities.

  1. Tomographic Particle Image Velocimetry Using Colored Shadow Imaging

    KAUST Repository

    Alarfaj, Meshal K.

    2016-02-01

    Tomographic Particle Image Velocimetry Using Colored Shadow Imaging by Meshal K Alarfaj, Master of Science King Abdullah University of Science & Technology, 2015 Tomographic Particle image velocimetry (PIV) is a recent PIV method capable of reconstructing the full 3D velocity field of complex flows, within a 3-D volume. For nearly the last decade, it has become the most powerful tool for study of turbulent velocity fields and promises great advancements in the study of fluid mechanics. Among the early published studies, a good number of researches have suggested enhancements and optimizations of different aspects of this technique to improve the effectiveness. One major aspect, which is the core of the present work, is related to reducing the cost of the Tomographic PIV setup. In this thesis, we attempt to reduce this cost by using an experimental setup exploiting 4 commercial digital still cameras in combination with low-cost Light emitting diodes (LEDs). We use two different colors to distinguish the two light pulses. By using colored shadows with red and green LEDs, we can identify the particle locations within the measurement volume, at the two different times, thereby allowing calculation of the velocities. The present work tests this technique on the flows patterns of a jet ejected from a tube in a water tank. Results from the images processing are presented and challenges discussed.

  2. A suggested theory of the conventional tomographic imaging process

    International Nuclear Information System (INIS)

    Moore, C.J.; Moores, B.M.

    1981-01-01

    An attempt is made to re-examine the well established theoretical basis of conventional tomography in the light of more detailed techniques being applied elsewhere in image analysis. Transfer function theory has been used to quantify the amount of edge detail reproduced by this process and the information in a tomogram is investigated in terms of edge detail associated with well resolved (unblurred) detail and also that associated with unresolved detail. Because resolved and unresolved detail is associated with particular anatomical layers within the tomographed object, the theory has been used to define a cut plane thickness. A variety of different tube movements have been considered and calculated values of cut plane thickness are compared with those predicted by a simple geometric model. Besides the blurring associated with the tube movement the effect of X-ray focal spot, film-screen combination and also visual response of the observer have been included and their importance in the definition of cut plane thickness highlighted. One advantage of this approach appears to be the facility to quantify the performance of different tomographic tube movements and highlight the role of tomographic detail reproduced from body sections well removed from the cut plane. (author)

  3. High Energy Computed Tomographic Inspection of Munitions

    Science.gov (United States)

    2016-11-01

    Jenkinson: Physicist (retired), Stroudsburg, PA - for technical discussions, early Small Business Innovation Research developments, and contracting...small business that has built several radiographic systems for the Joint Services for over the last 15 years. Their work includes CT systems used for...West Conshohocken, PA, 2014. 6. National Institutes of Health, ImageJ (version 1.48v / Java 1.6.0_20), Software, available from http

  4. Investigating the impact of LSO on the count rate of wholebody PET tomographs

    International Nuclear Information System (INIS)

    Douglas, J.L.; Moisan, C.; Rogers, J.G.

    1996-05-01

    We investigated the impact of using detectors made of lutetium oxyorthosilicate (LSO) on the count rate performances of wholebody PET tomographs. To that end, we used a single computational model that predicts the prompt and random contributions to the total event rate in septaless PET tomographs. Dead time factors at all stages of a typical event acquisition stream are calculated from specified values of their respective processing clock cycle. We validated our approach by fitting the true, random and multiple count rates measured with the ECAT-953B and the EXACT HR PLUS scanners for a standard 20 x 20 cm cylindrical phantom. We then investigated the implications of using position encoding detectors made of LSO in the EXACT HR PLUS scanner geometry. The results in indicate that only replacing BGO by the faster LSO incurs no appreciable change in the maximum noise-equivalent-count (NEC) rate of the scanner. However, one could realistically increase the NEC by a factor 2.5 using a 4 nsec coincidence window width with the detector processing front-end operating on a 128 nsec clock cycle. Further reducing the coincidence window width to 600 psec and the front-end clock cycle to 64 nsec leads to an increase of the NEC by a factor 7.5. To sustain the operation of an HR Plus with these specifications, the saturation bandwidth of the data acquisition system would have to be increased to no more than 4.5 MHz. (authors)

  5. Development of a X-ray micro-tomograph and its application to reservoir rocks characterization

    International Nuclear Information System (INIS)

    Ferreira de Paiva, R.

    1995-10-01

    We describe the construction and application to studies in three dimensions of a laboratory micro-tomograph for the characterisation of heterogeneous solids at the scale of a few microns. The system is based on an electron microprobe and a two dimensional X-ray detector. The use of a low beam divergence for image acquisition allows use of simple and rapid reconstruction software whilst retaining reasonable acquisition times. Spatial resolutions of better than 3 microns in radiography and 10 microns in tomography are obtained. The applications of microtomography in the petroleum industry are illustrated by the study of fibre orientation in polymer composites, of the distribution of minerals and pore space in reservoir rocks, and of the interaction of salt water with a model porous medium. A correction for X-ray beam hardening is described and used to obtain improved discrimination of the phases present in the sample. In the case of a North Sea reservoir rock we show the possibility to distinguish quartz, feldspar and in certain zone kaolinite. The representativeness of the tomographic reconstruction is demonstrated by comparing the surface of the reconstructed specimen with corresponding images obtained in scanning electron microscopy. (author). 58 refs., 10 tabs., 71 photos

  6. Quantitative tomographic measurements of opaque multiphase flows

    Energy Technology Data Exchange (ETDEWEB)

    GEORGE,DARIN L.; TORCZYNSKI,JOHN R.; SHOLLENBERGER,KIM ANN; O' HERN,TIMOTHY J.; CECCIO,STEVEN L.

    2000-03-01

    An electrical-impedance tomography (EIT) system has been developed for quantitative measurements of radial phase distribution profiles in two-phase and three-phase vertical column flows. The EIT system is described along with the computer algorithm used for reconstructing phase volume fraction profiles. EIT measurements were validated by comparison with a gamma-densitometry tomography (GDT) system. The EIT system was used to accurately measure average solid volume fractions up to 0.05 in solid-liquid flows, and radial gas volume fraction profiles in gas-liquid flows with gas volume fractions up to 0.15. In both flows, average phase volume fractions and radial volume fraction profiles from GDT and EIT were in good agreement. A minor modification to the formula used to relate conductivity data to phase volume fractions was found to improve agreement between the methods. GDT and EIT were then applied together to simultaneously measure the solid, liquid, and gas radial distributions within several vertical three-phase flows. For average solid volume fractions up to 0.30, the gas distribution for each gas flow rate was approximately independent of the amount of solids in the column. Measurements made with this EIT system demonstrate that EIT may be used successfully for noninvasive, quantitative measurements of dispersed multiphase flows.

  7. Classification of wet aged related macular degeneration using optical coherence tomographic images

    Science.gov (United States)

    Haq, Anam; Mir, Fouwad Jamil; Yasin, Ubaid Ullah; Khan, Shoab A.

    2013-12-01

    Wet Age related macular degeneration (AMD) is a type of age related macular degeneration. In order to detect Wet AMD we look for Pigment Epithelium detachment (PED) and fluid filled region caused by choroidal neovascularization (CNV). This form of AMD can cause vision loss if not treated in time. In this article we have proposed an automated system for detection of Wet AMD in Optical coherence tomographic (OCT) images. The proposed system extracts PED and CNV from OCT images using segmentation and morphological operations and then detailed feature set are extracted. These features are then passed on to the classifier for classification. Finally performance measures like accuracy, sensitivity and specificity are calculated and the classifier delivering the maximum performance is selected as a comparison measure. Our system gives higher performance using SVM as compared to other methods.

  8. The UF series of tomographic computational phantoms of pediatric patients

    International Nuclear Information System (INIS)

    Lee, Choonik; Williams, Jonathan L.; Lee, Choonsik; Bolch, Wesley E.

    2005-01-01

    Two classes of anthropomorphic computational phantoms exist for use in Monte Carlo radiation transport simulations: tomographic voxel phantoms based upon three-dimensional (3D) medical images, and stylized mathematical phantoms based upon 3D surface equations for internal organ definition. Tomographic phantoms have shown distinct advantages over the stylized phantoms regarding their similarity to real human anatomy. However, while a number of adult tomographic phantoms have been developed since the early 1990s, very few pediatric tomographic phantoms are presently available to support dosimetry in pediatric diagnostic and therapy examinations. As part of a larger effort to construct a series of tomographic phantoms of pediatric patients, five phantoms of different ages (9-month male, 4-year female, 8-year female, 11-year male, and 14-year male) have been constructed from computed tomography (CT) image data of live patients using an IDL-based image segmentation tool. Lungs, bones, and adipose tissue were automatically segmented through use of window leveling of the original CT numbers. Additional organs were segmented either semiautomatically or manually with the aid of both anatomical knowledge and available image-processing techniques. Layers of skin were created by adding voxels along the exterior contour of the bodies. The phantoms were created from fused images taken from head and chest-abdomen-pelvis CT exams of the same individuals (9-month and 4-year phantoms) or of two different individuals of the same sex and similar age (8-year, 11-year, and 14-year phantoms). For each model, the resolution and slice positions of the image sets were adjusted based upon their anatomical coverage and then fused to a single head-torso image set. The resolutions of the phantoms for the 9-month, 4-year, 8-year, 11-year, and 14-year are 0.43x0.43x3.0 mm, 0.45x0.45x5.0 mm, 0.58x0.58x6.0 mm, 0.47x0.47x6.00 mm, and 0.625x0.625x6.0 mm, respectively. While organ masses can be

  9. Soil structure characterized using computed tomographic images

    Science.gov (United States)

    Zhanqi Cheng; Stephen H. Anderson; Clark J. Gantzer; J. W. Van Sambeek

    2003-01-01

    Fractal analysis of soil structure is a relatively new method for quantifying the effects of management systems on soil properties and quality. The objective of this work was to explore several methods of studying images to describe and quantify structure of soils under forest management. This research uses computed tomography and a topological method called Multiple...

  10. The accuracy of computed tomographic angiography for mapping the perforators of the DIEA: a cadaveric study.

    Science.gov (United States)

    Rozen, Warren M; Ashton, Mark W; Stella, Damien L; Phillips, Timothy J; Taylor, G Ian

    2008-08-01

    The deep inferior epigastric artery (DIEA) perforator flap is increasingly used for breast reconstruction, with preoperative imaging sought as a means of improving operative outcome. Computed tomographic angiography has been recently described as the preferred imaging modality; however, formal evaluation of computed tomographic angiography has not been described. A cadaveric study was undertaken to evaluate the accuracy of computed tomographic angiography for perforator mapping. Ten cadaveric hemiabdominal walls from five fresh cadavers underwent contrast injection of each DIEA and subsequent computed tomographic scanning, with each DIEA and all perforating branches documented. Dissection was then performed, with the recording of the course of the DIEA and the course of all perforators in each specimen. The concordance of computed tomographic angiography with dissection findings was evaluated. Cadaveric computed tomographic angiography identified 154 perforators in 10 hemiabdominal walls. Computed tomographic angiography was highly accurate, with eight false-positives and six false-negatives on cadaveric computed tomographic angiography, establishing an overall sensitivity of 96 percent and a positive predictive value of 95 percent for mapping perforators. For perforators greater than 1 mm in diameter, the sensitivity was 100 percent and the positive predictive value was 100 percent. Computed tomographic angiography is a highly accurate tool for identifying the perforators of the DIEA before DIEA perforator flaps for breast reconstruction. Preoperative identification of these vessels can aid planning for the preferred hemiabdomen for dissection, and may save operative time, angst, and potentially complications.

  11. Collimator trans-axial tomographic scintillation camera

    International Nuclear Information System (INIS)

    Jaszczak, R.J.

    1977-01-01

    A collimator is provided for a scintillation camera system in which a detector precesses in an orbit about a patient. The collimator is designed to have high resolution and lower sensitivity with respect to radiation traveling in paths laying wholly within planes perpendicular to the cranial-caudal axis of the patient. The collimator has high sensitivity and lower resolution to radiation traveling in other planes. Variances in resolution and sensitivity are achieved by altering the length, spacing or thickness of the septa of the collimator

  12. Computerized tomographic evaluation of cerebral cysticercosis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo Young; Lee, Mi Sook; Jeon, Doo Sung; Kim, Hong Soo; Rhee, Hak Song [Precbyterian Medical Center, Chonju (Korea, Republic of)

    1988-08-15

    Cerebral cysticercosis, unfortunately frequent in Korea, is a parastic disease in which man serve as the intermediate host of taenia solium. The larvae have a predilection for the central nervous system and can cause a variety of neurologic symptoms. The authors reviewed 19 cases of surgically proven cerebral cysticercosis and following results were obtained. 1. The most frequent age distribution was 5th and 6th decade and male to female ratio was 14:5. 2. The most frevalent involving site was cerebral parenchyme and following by ventricles. 3. Clinical manifestations were symtom and sign of increased ICP, seizure and focal neurological dificit. 4. It was assumed that computerized tomography was the procedure of choice for the diagnosis of these parasitic brain disease.

  13. Dense velocity reconstruction from tomographic PTV with material derivatives

    Science.gov (United States)

    Schneiders, Jan F. G.; Scarano, Fulvio

    2016-09-01

    A method is proposed to reconstruct the instantaneous velocity field from time-resolved volumetric particle tracking velocimetry (PTV, e.g., 3D-PTV, tomographic PTV and Shake-the-Box), employing both the instantaneous velocity and the velocity material derivative of the sparse tracer particles. The constraint to the measured temporal derivative of the PTV particle tracks improves the consistency of the reconstructed velocity field. The method is christened as pouring time into space, as it leverages temporal information to increase the spatial resolution of volumetric PTV measurements. This approach becomes relevant in cases where the spatial resolution is limited by the seeding concentration. The method solves an optimization problem to find the vorticity and velocity fields that minimize a cost function, which includes next to instantaneous velocity, also the velocity material derivative. The velocity and its material derivative are related through the vorticity transport equation, and the cost function is minimized using the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm. The procedure is assessed numerically with a simulated PTV experiment in a turbulent boundary layer from a direct numerical simulation (DNS). The experimental validation considers a tomographic particle image velocimetry (PIV) experiment in a similar turbulent boundary layer and the additional case of a jet flow. The proposed technique (`vortex-in-cell plus', VIC+) is compared to tomographic PIV analysis (3D iterative cross-correlation), PTV interpolation methods (linear and adaptive Gaussian windowing) and to vortex-in-cell (VIC) interpolation without the material derivative. A visible increase in resolved details in the turbulent structures is obtained with the VIC+ approach, both in numerical simulations and experiments. This results in a more accurate determination of the turbulent stresses distribution in turbulent boundary layer investigations. Data from a jet

  14. Development of the Shimadzu computed tomographic scanner SCT-200N

    International Nuclear Information System (INIS)

    Ishihara, Hiroshi; Yamaoka, Nobuyuki; Saito, Masahiro

    1982-01-01

    The Shimadzu Computed Tomographic Scanner SCT-200N has been developed as an ideal CT scanner for diagnosing the head and spine. Due to the large aperture, moderate scan time and the Zoom Scan Mode, any part of the body can be scanned. High quality image can be obtained by adopting the precisely stabilized X-ray unit and densely packed array of 64-detectors. As for its operation, capability of computed radiography (CR) prior to patient positioning and real time reconstruction ensure efficient patient through-put. Details of the SCT-200N are described in this paper. (author)

  15. Technical innovation: Multidimensional computerized software enabled subtraction computed tomographic angiography.

    Science.gov (United States)

    Bhatia, Mona; Rosset, Antoine; Platon, Alexandra; Didier, Dominique; Becker, Christoph D; Poletti, Pierre-Alexandre

    2010-01-01

    Computed tomographic angiography (CTA) is a frequent noninvasive alternative to digital subtraction angiography. We previously reported the development of a new subtraction software to overcome limitations of adjacent bone and calcification in CT angiographic subtraction. Our aim was to further develop and improve this fast and automated computerized software, universally available for free use and compatible with most CT scanners, thus enabling better delineation of vascular structures, artifact reduction, and shorter reading times with potential clinical benefits. This computer-based free software will be available as an open source in the next release of OsiriX at the Web site http://www.osirix-viewer.com.

  16. Pressure spectra from single-snapshot tomographic PIV

    Science.gov (United States)

    Schneiders, Jan F. G.; Avallone, Francesco; Pröbsting, Stefan; Ragni, Daniele; Scarano, Fulvio

    2018-03-01

    The power spectral density and coherence of temporal pressure fluctuations are obtained from low-repetition-rate tomographic PIV measurements. This is achieved by extension of recent single-snapshot pressure evaluation techniques based upon the Taylor's hypothesis (TH) of frozen turbulence and vortex-in-cell (VIC) simulation. Finite time marching of the measured instantaneous velocity fields is performed using TH and VIC. Pressure is calculated from the resulting velocity time series. Because of the theoretical limitations, the finite time marching can be performed until the measured flow structures are convected out of the measurement volume. This provides a lower limit of resolvable frequency range. An upper limit is given by the spatial resolution of the measurements. Finite time-marching approaches are applied to low-repetition-rate tomographic PIV data of the flow past a straight trailing edge at 10 m/s. Reference results of the power spectral density and coherence are obtained from surface pressure transducers. In addition, the results are compared to state-of-the-art experimental data obtained from time-resolved tomographic PIV performed at 10 kHz. The time-resolved approach suffers from low spatial resolution and limited maximum acquisition frequency because of hardware limitations. Additionally, these approaches strongly depend upon the time kernel length chosen for pressure evaluation. On the other hand, the finite time-marching approaches make use of low-repetition-rate tomographic PIV measurements that offer higher spatial resolution. Consequently, increased accuracy of the power spectral density and coherence of pressure fluctuations are obtained in the high-frequency range, in comparison to the time-resolved measurements. The approaches based on TH and VIC are found to perform similarly in the high-frequency range. At lower frequencies, TH is found to underestimate coherence and intensity of the pressure fluctuations in comparison to time-resolved PIV

  17. Towards a tomographic reconstruction of neutron depolarization data

    International Nuclear Information System (INIS)

    Schulz, Michael; Neubauer, Andreas; Muehlbauer, Martin; Schillinger, Burkhard; Pfleiderer, Christian; Boeni, Peter; Masalovich, Sergey; Calzada, Elbio

    2010-01-01

    In this paper we show a first approach to the three dimensional reconstruction of spatially resolved neutron depolarization data. We will show measurements with a position sensitive CCD detector on a longitudinal polarization analysis setup using 3 He polarizers and analyzers installed at the radiography beamline ANTARES at FRM II, Munich. A tomographic reconstruction of data acquired with an inhomogeneous Pd 1-x Ni x sample shows that this method is a powerful tool to identify regions of different magnetic properties inside the sample.

  18. Towards a tomographic reconstruction of neutron depolarization data

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Michael; Neubauer, Andreas; Muehlbauer, Martin; Schillinger, Burkhard; Pfleiderer, Christian; Boeni, Peter [Technische Universitaet Muenchen, Physik Department, E21, James Franck Str, 85748 Garching (Germany); Masalovich, Sergey; Calzada, Elbio, E-mail: michael.schulz@frm2.tum.d [Technische Universitaet Muenchen, Forschungsneutronenquelle Heinz Maier Leibnitz (FRM II), Lichtenbergstr. 1, 85748 Garching (Germany)

    2010-02-01

    In this paper we show a first approach to the three dimensional reconstruction of spatially resolved neutron depolarization data. We will show measurements with a position sensitive CCD detector on a longitudinal polarization analysis setup using {sup 3}He polarizers and analyzers installed at the radiography beamline ANTARES at FRM II, Munich. A tomographic reconstruction of data acquired with an inhomogeneous Pd{sub 1-x}Ni{sub x} sample shows that this method is a powerful tool to identify regions of different magnetic properties inside the sample.

  19. Non tumoral intracranial expansive processes: clinical tomographic correlation

    International Nuclear Information System (INIS)

    Campos, P.; Herrera, G.; Valneica, F.

    1991-01-01

    Presentation of clinical-tomographic correlation in 111 cases of non tumoral intracranial expansive processes seen between 1984-1988 in the Hospital Cayetano Heredia (Lima, Peru). Emphasis is given fundamentally to: the importance of establishing the organicity of partial and late epilepsy; the high incidence rate of inflammatory infectious processes with CNS compromise in under developing countries; the necessity of making public the importance of two parasitic diseases in the differential diagnosis of non tumoral intracranial expansive processes: free living amebiasis, and toxoplasmosis (especially in association with AIDS). (author)

  20. Air-Coupled Ultrasonic Tomographic Imaging for Solids

    Science.gov (United States)

    Hall, K. S.; Popovics, J. S.

    2009-03-01

    Ultrasonic tomography is a powerful tool for identifying defects within an object or structure. Ultrasonic tomography is limited by time consuming transducer coupling. Air-coupled UPV may eliminate this problem and allow for more rapid data collection. This research aims to integrate recent developments in air-coupled ultrasonic measurements with the current tomography technology to image inclusions within solids. Air-coupled ultrasonic signals are collected though large PVC samples. Volumetric and planar inclusions within the samples are identified in the constructed velocity tomographs.

  1. Direct computation of harmonic moments for tomographic reconstruction

    International Nuclear Information System (INIS)

    Nara, Takaaki; Ito, Nobutaka; Takamatsu, Tomonori; Sakurai, Tetsuya

    2007-01-01

    A novel algorithm to compute harmonic moments of a density function from its projections is presented for tomographic reconstruction. For projection p(r, θ), we define harmonic moments of projection by ∫ π 0 ∫ ∞ -∞ p(r,θ)(re iθ ) n drd θ and show that it coincides with the harmonic moments of the density function except a constant. Furthermore, we show that the harmonic moment of projection of order n can be exactly computed by using n+ 1 projection directions, which leads to an efficient algorithm to reconstruct the vertices of a polygon from projections.

  2. Computed tomographic myelography (CTM) in atlanto-axial rheumatoid arthritis

    International Nuclear Information System (INIS)

    Laasonen, E.M.; Servo, A.; Kankaanpaeae, U.; Paukku, P.; Sandelin, J.; Slaetis, P.

    1985-01-01

    Thirty-two patients with severe cervical rheumatoid arthritis were investigated preoperatively with cervical myelography (CeM) and computed tomographic myelography (CTM). The severity of their clinical symptoms correlated excellently with a combination of the deformation of the spinal cord at the atlanto-axial level, the lateral dislocation of the cord at the same level, and the deformation of the cord at some lower cervical level. Obstructing softtissue excrescences seemed to have little value. No correlation was found in this study between the deformation of the cord and the main findings of the plain films: the atlanto-axial subluxation (AAS), the vertical subluxation (VS), or their combination. (orig.)

  3. Assessment of a New High-Performance Small-Animal X-Ray Tomograph

    Science.gov (United States)

    Vaquero, J. J.; Redondo, S.; Lage, E.; Abella, M.; Sisniega, A.; Tapias, G.; Montenegro, M. L. Soto; Desco, M.

    2008-06-01

    We have developed a new X-ray cone-beam tomograph for in vivo small-animal imaging using a flat panel detector (CMOS technology with a microcolumnar CsI scintillator plate) and a microfocus X-ray source. The geometrical configuration was designed to achieve a spatial resolution of about 12 lpmm with a field of view appropriate for laboratory rodents. In order to achieve high performance with regard to per-animal screening time and cost, the acquisition software takes advantage of the highest frame rate of the detector and performs on-the-fly corrections on the detector raw data. These corrections include geometrical misalignments, sensor non-uniformities, and defective elements. The resulting image is then converted to attenuation values. We measured detector modulation transfer function (MTF), detector stability, system resolution, quality of the reconstructed tomographic images and radiated dose. The system resolution was measured following the standard test method ASTM E 1695 -95. For image quality evaluation, we assessed signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) as a function of the radiated dose. Dose studies for different imaging protocols were performed by introducing TLD dosimeters in representative organs of euthanized laboratory rats. Noise figure, measured as standard deviation, was 50 HU for a dose of 10 cGy. Effective dose with standard research protocols is below 200 mGy, confirming that the system is appropriate for in vivo imaging. Maximum spatial resolution achieved was better than 50 micron. Our experimental results obtained with image quality phantoms as well as with in-vivo studies show that the proposed configuration based on a CMOS flat panel detector and a small micro-focus X-ray tube leads to a compact design that provides good image quality and low radiated dose, and it could be used as an add-on for existing PET or SPECT scanners.

  4. Large-scale volumetric pressure from tomographic PTV with HFSB tracers

    NARCIS (Netherlands)

    Schneiders, J.F.G.; Caridi, Giuseppe Carlo Alp; Sciacchitano, A.; Scarano, F.

    2016-01-01

    The instantaneous volumetric pressure in the near-wake of a truncated cylinder is measured by use of tomographic particle tracking velocimetry (PTV) using helium-filled soap bubbles (HFSB) as tracers. The measurement volume is several orders of magnitude larger than that reported in tomographic

  5. Resolving vorticity and dissipation in a turbulent boundary layer by tomographic PTV and VIC+

    NARCIS (Netherlands)

    Schneiders, J.F.G.; Scarano, F.; Elsinga, G.E.

    2017-01-01

    The existing time-resolved tomographic particle image velocimetry (PIV) measurements by Jodai and Elsinga (J Fluid Mech 795:611–633; Jodai, Elsinga, J Fluid Mech 795:611–633, 2016) in a turbulent boundary layer (Reθ = 2038) are reprocessed using tomographic particle tracking

  6. Non-Cooperative Bistatic SAR Clock Drift Compensation for Tomographic Acquisitions

    Directory of Open Access Journals (Sweden)

    Mario Azcueta

    2017-10-01

    Full Text Available In the last years, an important amount of research has been headed towards the measurement of above-ground forest biomass with polarimetric Synthetic Aperture Radar (SAR tomography techniques. This has motivated the proposal of future bistatic SAR missions, like the recent non-cooperative SAOCOM-CS and PARSIFAL from CONAE and ESA. It is well known that the quality of SAR tomography is directly related to the phase accuracy of the interferometer that, in the case of non-cooperative systems, can be particularly affected by the relative drift between onboard clocks. In this letter, we provide insight on the impact of the clock drift error on bistatic interferometry, as well as propose a correction algorithm to compensate its effect. The accuracy of the compensation is tested on simulated acquisitions over volumetric targets, estimating the final impact on tomographic profiles.

  7. Tomographic radiotracer studies of the spatial distribution of heterogeneous geochemical transport processes

    International Nuclear Information System (INIS)

    Gruendig, Marion; Richter, Michael; Seese, Anita; Sabri, Osama

    2007-01-01

    Within the scope of the further development of geochemical transport models the consideration of the influence of the heterogeneous structures of the geological layers plays an important role. For the verification and parameter estimation of such models it is necessary to measure the heterogeneous transport and sorption processes inside the samples. Tomographic radiotracer methods (positron emission tomography (PET)) enable nondestructive spatially resolved observations of the transport processes in these layers. A special quantitative evaluation system for geoscientific PET studies was developed. Investigations of the water flow distribution in a drill core of a lignite mining dump and of the migration of Cu ions in a horizontal soil column illustrate the potential of this method. Spatial distribution functions of the flow velocity, the specific mass flow and the longitudinal dispersivity were determined on the basis of PET investigations

  8. Computed tomographic features of fibrous dysplasia of maxillofacial region.

    Science.gov (United States)

    Sontakke, Subodh Arun; Karjodkar, Freny R; Umarji, Hemant R

    2011-03-01

    This study was to find the computed tomographic features of fibrous dysplasia of the maxillofacial region. All eight cases included in the study reported either to Government Dental College and Hospital or Nair Hospital Dental College, Mumbai between 2003 and 2009. The patients were prescribed computed tomogram in addition to conventional radiographs of maxillofacial region which were studied for characteristic features of fibrous dysplasia. The diagnosis of fibrous dysplasia was confirmed by histopathological report. All cases showed the ill-defined margins of lesions except in the region where the lesions were extending to cortex of the involved bone. Internal structure of all cases showed ground glass appearance. Four cases of maxillary lesion showed the displacement of maxillary sinus maintaining the shape of maxillary sinus. Two cases showed complete obliteration of maxillary sinus. Displacement of inferior alveolar canal did not follow any typical pattern in any of the cases but was displaced in different directions. The craniofacial type of fibrous dysplasia is as common as fibrous dysplasia of jaw. The margins, extent, internal structure and effect on surrounding structure are well detected on computed tomographic images.

  9. Computed tomographic features of fibrous dysplasia of maxillofacial region

    International Nuclear Information System (INIS)

    Sontakke, Subodh Arun; Karjodka, Freny R; Umarji, Hemant R

    2011-01-01

    This study was to find the computed tomographic features of fibrous dysplasia of the maxillofacial region. All eight cases included in the study reported either to Government Dental College and Hospital or Nair Hospital Dental College, Mumbai between 2003 and 2009. The patients were prescribed computed tomogram in addition to conventional radiographs of maxillofacial region which were studied for characteristic features of fibrous dysplasia. The diagnosis of fibrous dysplasia was confirmed by histopathological report. All cases showed the ill-defined margins of lesions except in the region where the lesions were extending to cortex of the involved bone. Internal structure of all cases showed ground glass appearance. Four cases of maxillary lesion showed the displacement of maxillary sinus maintaining the shape of maxillary sinus. Two cases showed complete obliteration of maxillary sinus. Displacement of inferior alveolar canal did not follow any typical pattern in any of the cases but was displaced in different directions. The craniofacial type of fibrous dysplasia is as common as fibrous dysplasia of jaw. The margins, extent, internal structure and effect on surrounding structure are well detected on computed tomographic images.

  10. Computed tomographic features of fibrous dysplasia of maxillofacial region

    Energy Technology Data Exchange (ETDEWEB)

    Sontakke, Subodh Arun; Karjodka, Freny R [Nair Hospital Dental College, Mumba (India); Umarji, Hemant R [Government Dental College and Hospital, Mumbai (India)

    2011-03-15

    This study was to find the computed tomographic features of fibrous dysplasia of the maxillofacial region. All eight cases included in the study reported either to Government Dental College and Hospital or Nair Hospital Dental College, Mumbai between 2003 and 2009. The patients were prescribed computed tomogram in addition to conventional radiographs of maxillofacial region which were studied for characteristic features of fibrous dysplasia. The diagnosis of fibrous dysplasia was confirmed by histopathological report. All cases showed the ill-defined margins of lesions except in the region where the lesions were extending to cortex of the involved bone. Internal structure of all cases showed ground glass appearance. Four cases of maxillary lesion showed the displacement of maxillary sinus maintaining the shape of maxillary sinus. Two cases showed complete obliteration of maxillary sinus. Displacement of inferior alveolar canal did not follow any typical pattern in any of the cases but was displaced in different directions. The craniofacial type of fibrous dysplasia is as common as fibrous dysplasia of jaw. The margins, extent, internal structure and effect on surrounding structure are well detected on computed tomographic images.

  11. Initial results from the Donner 600 crystal positron tomograph

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Huesman, R.H.; Cahoon, J.L.; Geyer, A.; Uber, D.; Vuletich, T.; Budinger, T.F.

    1986-10-01

    We describe a positron tomograph using a single ring of 600 close-packed 3 mm wide bismuth germanate (BGO) crystals coupled to 14 mm phototubes. The phototube preamplifier circuit derives a timing pulse from the first photoelectron, and sends it to address and coincidence circuits only if the integrated pulse height is within a pre-set window. The timing delays and pulse height windows for all 600 detectors and the coincidence timing windows are computer adjustable. An orbiting positron source is used for transmission measurements and a look-up table is used to reject scattered and random coincidences that do not pass through the source. Data can be acquired using a stationary mode for 1.57 mm lateral sampling or the two-position clam sampling mode for 0.79 mm lateral sampling. High maximum data rates are provided by 45 parallel coincidence circuits and 4 parallel histogram memory units. With two-position sampling and 1.57 mm bins, the reconstructed point spread function (PSF) of a 0.35 mm diam 22 Na wire source at the center of the tomograph is circular with 2.9 mm full-width at half-maximum (fwhm) and the PSF at a distance of 8 cm from the center is elliptical with a radial fwhm of 4.0 mm and tangential fwhm of 3.0 mm. 12 refs., 6 figs., 3 tabs

  12. Tomographic Constraints on High-Energy Neutrinos of Hadronuclear Origin.

    Science.gov (United States)

    Ando, Shin'ichiro; Tamborra, Irene; Zandanel, Fabio

    2015-11-27

    Mounting evidence suggests that the TeV-PeV neutrino flux detected by the IceCube telescope has mainly an extragalactic origin. If such neutrinos are primarily produced by a single class of astrophysical sources via hadronuclear (pp) interactions, a similar flux of gamma-ray photons is expected. For the first time, we employ tomographic constraints to pinpoint the origin of the IceCube neutrino events by analyzing recent measurements of the cross correlation between the distribution of GeV gamma rays, detected by the Fermi satellite, and several galaxy catalogs in different redshift ranges. We find that the corresponding bounds on the neutrino luminosity density are up to 1 order of magnitude tighter than those obtained by using only the spectrum of the gamma-ray background, especially for sources with mild redshift evolution. In particular, our method excludes any hadronuclear source with a spectrum softer than E^{-2.1} as a main component of the neutrino background, if its evolution is slower than (1+z)^{3}. Starburst galaxies, if able to accelerate and confine cosmic rays efficiently, satisfy both spectral and tomographic constraints.

  13. A fast multi-resolution approach to tomographic PIV

    Science.gov (United States)

    Discetti, Stefano; Astarita, Tommaso

    2012-03-01

    Tomographic particle image velocimetry (Tomo-PIV) is a recently developed three-component, three-dimensional anemometric non-intrusive measurement technique, based on an optical tomographic reconstruction applied to simultaneously recorded images of the distribution of light intensity scattered by seeding particles immersed into the flow. Nowadays, the reconstruction process is carried out mainly by iterative algebraic reconstruction techniques, well suited to handle the problem of limited number of views, but computationally intensive and memory demanding. The adoption of the multiplicative algebraic reconstruction technique (MART) has become more and more accepted. In the present work, a novel multi-resolution approach is proposed, relying on the adoption of a coarser grid in the first step of the reconstruction to obtain a fast estimation of a reliable and accurate first guess. A performance assessment, carried out on three-dimensional computer-generated distributions of particles, shows a substantial acceleration of the reconstruction process for all the tested seeding densities with respect to the standard method based on 5 MART iterations; a relevant reduction in the memory storage is also achieved. Furthermore, a slight accuracy improvement is noticed. A modified version, improved by a multiplicative line of sight estimation of the first guess on the compressed configuration, is also tested, exhibiting a further remarkable decrease in both memory storage and computational effort, mostly at the lowest tested seeding densities, while retaining the same performances in terms of accuracy.

  14. Clinical findings in 16 patients with tomographic diagnosis of schizencephaly

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Maria do Carmo de Souza [Universidade Federal do Espirito Santo, Vitoria, ES (Brazil). Hospital Universitario Cassiano Antonio Moraes]. E-mail: rodriguesmcs@yahoo.com.br; Monteiro, Alexandra Maria Vieira [Universidade do Estado do Rio de Janeiro, RJ (Brazil). Faculdade de Ciencias Medicas; Llerena Junior, Juan Clinton [Fundacao Oswaldo Cruz, Rio de Janeiro, RJ (Brazil). Instituto Fernandes Figueira. Centro de Genetica Medica; Fernandes, Alexandre Ribeiro [Universidade Gama Filho, Rio de Janeiro, RJ (Brazil). Dept. de Pediatria

    2006-09-15

    Objective: to establish a correlation between clinical features in a group of children with tomographic diagnosis of schizencephaly and clefts extent and localization. Materials and methods: retrospective study of dossiers from the archives of Neurology and Medical Genetics Services at Instituto Fernandes Figueira/FIOCRUZ and Hospital Municipal Jesus, Rio de Janeiro, RJ, Brazil, in the period between 2000 and 2003. The study included 16 patients, nine female and seven male, with tomographic diagnosis of schizencephaly investigated for clinical findings, psychomotor development, motor/cognitive deficits and epilepsy. Results: predominance of bilateral clefts in 10:16 patients, open-lip schizencephaly type in 23:27 patients, and small lips in 11:27 patients. As regards anomalies associated with schizencephaly, pellucid septum absence was the most frequent one (10:16 patients). As regards clinical findings, 15 patients presented with developmental delay and motor deficit, six patients with cognitive deficit and ten with epilepsy. In three patients, we observed discordant clinical findings and cleft sizes, although the clefts were small, the clinical features severity was high because of other cerebral anomalies. Conclusion: the clinical features of schizencephaly are related to the size of the clefts, regardless laterality, presenting higher severity when associated with other cerebral anomalies. (author)

  15. A SPICE Blind Test to Benchmark Global Tomographic Methods

    Science.gov (United States)

    Qin, Y.; Capdeville, Y.; Maupin, V.; Montagner, J.

    2006-12-01

    The different existing global tomographic methods result in different models of the Earth. In order to test how current imaging techniques are limited by approximations in theory and the inadequacy of data quality and coverage, we are undertaking a blind test of global inversion algorithms using complete 3D synthetic seismograms within SPICE (Seismic wave Propagation and Imaging in Complex media: a European network). First, a complex global anisotropic anelastic model has been constructed by summing the 1D reference model, deterministic and random anomalies and anisotropic crystal. This model includes 3D heterogeneities in velocity, anisotropy and attenuation at different scales in the whole mantle, as well as topography and crustal structure. In addition, the rotation and ellipticity are also included. Synthetic seismograms were generated using the Coupling Spectral Element Method with a minimum period of 32s, for a realistic distribution of 29 events and 256 stations. The synthetic seismograms have been made available to the scientific community worldwide at the IPGP website http://www.ipgp.jussieu.fr/~qyl/. Any group willing to test his tomographic technique is encouraged to download the synthetic dataset.g

  16. Tomographic Environmental Sections for Environmental Mitigation Devices in Historical Centers

    Directory of Open Access Journals (Sweden)

    Roberta Cocci Grifoni

    2017-03-01

    Full Text Available Urban heat waves and the overall growing trend in the annual global temperature underline the importance of urban/architectural resilience and the need to reduce energy consumption. By designing urban voids, it is possible to create thermodynamic buffers, i.e., bubbles of controlled atmosphere that act as mediators between the natural and built environments, between the human body and the surrounding air, between meteorology and physiology (meteorological architecture. Multiple small actions in the urban fabric’s open spaces, such as replacing dark pavements or inserting vegetation and green spaces, are intended to improve outdoor comfort conditions and therefore the resilience of the city itself. This not only benefits the place’s quality, which is intrinsic to the new project, but also the insulating capacity of buildings, which are relieved of an external heat load. The design emphasis therefore changes from solid structures to the climate and weather conditions, which are invisible but perceivable. To design and control these constructed atmopheres, tomographic sections processed with computational fluid dynamics software (tomographic environmental section, TENS becomes necessary. It allows the effects of an extreme event on an outdoor environment to be evaluated in order to establish the appropriate (adaptive climate mitigation devices, especially in historical centers where energy retrofits are often discouraged. By fixing boundary conditions after a local intervention, the virtual environment can be simulated and then "sliced" to analyze initial values and verify the design improvements.

  17. A 3-dimensional computed tomographic procedure for planning retrosigmoid craniotomy.

    Science.gov (United States)

    Hamasaki, Tadashi; Morioka, Motohiro; Nakamura, Hideo; Yano, Shigetoshi; Hirai, Toshinori; Kuratsu, Jun-ichi

    2009-05-01

    The planning of retrosigmoid craniotomies often relies on anatomic landmarks on the posterolateral surface of the cranium, such as the asterion. However, the location of the asterion is not fixed with respect to the underlying transverse-sigmoid sinus complex. We introduce a simple procedure that uses 3-dimensional (3D) computed tomographic imaging to project the transverse-sigmoid sinus complex onto the external surface of the cranium. We enrolled 8 patients scheduled for retrosigmoid craniotomy (Group 1) and 30 patients without posterior fossa lesions (Group 2). The procedure consists of 3 steps: 1) marking the sinus on the internal surface on 3D images of the cranium, 2) transferring the marks to the external surface on axial images, and 3) checking the transferred marks on the external surface of the cranium on 3D images. In Group 1, the craniotomies planned with the aid of our procedure coincided with findings made at surgery, indicating the accuracy of our procedure. When we applied it in morphometric studies in Group 2, we found that the relative location of the transverse-sigmoid sinus junction to the asterion, the superior nuchal line, and the posterior edge of the mastoid process exhibited a high degree of individual variation. Retrosigmoid craniotomy standardized according to anatomic landmarks raises the risk for sinus injury because of variations in their location. We offer our 3D computed tomographic imaging-based procedure as a useful device for the planning of safer retrosigmoid craniotomies.

  18. Hybrid Photoacoustic/Ultrasound Tomograph for Real-Time Finger Imaging.

    Science.gov (United States)

    Oeri, Milan; Bost, Wolfgang; Sénégond, Nicolas; Tretbar, Steffen; Fournelle, Marc

    2017-10-01

    We report a target-enclosing, hybrid tomograph with a total of 768 elements based on capacitive micromachined ultrasound transducer technology and providing fast, high-resolution 2-D/3-D photoacoustic and ultrasound tomography tailored to finger imaging. A freely programmable ultrasound beamforming platform sampling data at 80 MHz was developed to realize plane wave transmission under multiple angles. A multiplexing unit enables the connection and control of a large number of elements. Fast image reconstruction is provided by GPU processing. The tomograph is composed of four independent and fully automated movable arc-shaped transducers, allowing imaging of all three finger joints. The system benefits from photoacoustics, yielding high optical contrast and enabling visualization of finger vascularization, and ultrasound provides morphologic information on joints and surrounding tissue. A diode-pumped, Q-switched Nd:YAG laser and an optical parametric oscillator are used to broaden the spectrum of emitted wavelengths to provide multispectral imaging. Custom-made optical fiber bundles enable illumination of the region of interest in the plane of acoustic detection. Precision in positioning of the probe in motion is ensured by use of a motor-driven guide slide. The current position of the probe is encoded by the stage and used to relate ultrasound and photoacoustic signals to the corresponding region of interest of the suspicious finger joint. The system is characterized in phantoms and a healthy human finger in vivo. The results obtained promise to provide new opportunities in finger diagnostics and establish photoacoustic/ultrasound-tomography in medical routine. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  19. Tomographic PIV measurements in a turbulent lifted jet flame

    Science.gov (United States)

    Weinkauff, J.; Michaelis, D.; Dreizler, A.; Böhm, B.

    2013-12-01

    Measurements of instantaneous volumetric flow fields are required for an improved understanding of turbulent flames. In non-reacting flows, tomographic particle image velocimetry (TPIV) is an established method for three-dimensional (3D) flow measurements. In flames, the reconstruction of the particles location becomes challenging due to a locally varying index of refraction causing beam-steering. This work presents TPIV measurements within a turbulent lifted non-premixed methane jet flame. Solid seeding particles were used to provide the 3D flow field in the vicinity of the flame base, including unburned and burned regions. Four cameras were arranged in a horizontal plane around the jet flame. Following an iterative volumetric self-calibration procedure, the remaining disparity caused by the flame was less than 0.2 pixels. Comparisons with conventional two-component PIV in terms of mean and rms values provided additional confidence in the TPIV measurements.

  20. Multidetector computed tomographic imaging of Erdheim-Chester disease.

    Science.gov (United States)

    Yuceler, Zeyneb; Kantarci, Mecit; Karabulut, Nevzat; Ogul, Hayri; Bayraktutan, Ummugulsum; Akman, Canan

    2014-06-01

    Erdheim-Chester disease is a rarely reported disease that can affect nearly every organ and chiefly infiltrates the connective, perivascular, and adipose tissue. The disease is a form of non-Langerhans-cell histiocytosis characterized by the proliferation of foamy histiocytes; its cardiovascular complications carry a severe prognosis. We present the case of a 29-year-old woman who was admitted for analysis of her angina. Our evaluation with use of cardiac multidetector computed tomographic angiography revealed large mediastinal soft tissue that compressed the patient's left anterior descending coronary artery. To our knowledge, this is the first report of the use of low-dose, dual-source, 256-slice multidetector computed tomography to characterize Erdheim-Chester disease that exclusively caused angina and stenosis of a coronary artery in a young adult.

  1. Computed tomographic angiography of the liver via the coeliac axis

    Energy Technology Data Exchange (ETDEWEB)

    Lundstedt, C.; Goetberg, S.; Lunderquist, A.; Stridbeck, H.; Ekberg, H.

    Sixty computed tomographic angiographic (CTA) examinations of the liver were performed with contrast injection into the coeliac axis. Data from both an arterial and a portal venous phase were recorded. In 41 patients it was possible to compare the results of CTA with palpation of the liver during laparotomy. The results from CTA and laparotomy were the same in 35 patients (85%). In one patient CTA disclosed verified liver lesions not diagnosed at laparotomy. There were 2 false negative and 3 false positive CTA examinations. In the remaining 19 patients, a clinical follow-up period of at least 6 months was used to evaluate the results of CTA. In the 7 patients in whom CTA showed benign lesions or a normal liver parenchyma, the clinical follow-up revealed to evidence of tumour growth in the liver.

  2. Tomographic techniques for the study of exceptionally preserved fossils

    Science.gov (United States)

    Sutton, Mark D

    2008-01-01

    Three-dimensional fossils, especially those preserving soft-part anatomy, are a rich source of palaeontological information; they can, however, be difficult to work with. Imaging of serial planes through an object (tomography) allows study of both the inside and outside of three-dimensional fossils. Tomography may be performed using physical grinding or sawing coupled with photography, through optical techniques of serial focusing, or using a variety of scanning technologies such as neutron tomography, magnetic resonance imaging and most usefully X-ray computed tomography. This latter technique is applicable at a variety of scales, and when combined with a synchrotron X-ray source can produce very high-quality data that may be augmented by phase-contrast information to enhance contrast. Tomographic data can be visualized in several ways, the most effective of which is the production of isosurface-based ‘virtual fossils’ that can be manipulated and dissected interactively. PMID:18426749

  3. Computer tomographic and angiographic studies of histologically confirmed intrahepatic masses

    Energy Technology Data Exchange (ETDEWEB)

    Janson, R.; Lackner, K.; Paquet, K.J.; Thelen, M.; Thurn, P.

    1980-06-01

    The computer tomographic and angiographic findings in 53 patients with intrahepatic masses were compared. The histological findings show that 17 were due to echinococcus, 12 were due to hepatic carcinoma, ten were metastases, five patients had focal nodular hyperplasia, three an alveolar echinococcus and there were three cases with an haemangioma of the liver and a further three liver abscesses. Computer tomography proved superior in peripherally situated lesions, and in those in the left lobe of the liver. Arteriography was better at demonstrating lesions below 2 cm in size, particularly vascular tumours. As a pre-operative measure, angiography is to be preferred since it is able to demonstrate anatomic anomalies and variations in the blood supply, as well as invasion of the portal vein or of the inferior vena cava.

  4. Scanning tomographic particle image velocimetry applied to a turbulent jet

    KAUST Repository

    Casey, T. A.

    2013-02-21

    We introduce a modified tomographic PIV technique using four high-speed video cameras and a scanning pulsed laser-volume. By rapidly illuminating adjacent subvolumes onto separate video frames, we can resolve a larger total volume of velocity vectors, while retaining good spatial resolution. We demonstrate this technique by performing time-resolved measurements of the turbulent structure of a round jet, using up to 9 adjacent volume slices. In essence this technique resolves more velocity planes in the depth direction by maintaining optimal particle image density and limiting the number of ghost particles. The total measurement volumes contain between 1 ×106 and 3 ×106 velocity vectors calculated from up to 1500 reconstructed depthwise image planes, showing time-resolved evolution of the large-scale vortical structures for a turbulent jet of Re up to 10 000.

  5. A maximum entropy reconstruction technique for tomographic particle image velocimetry

    International Nuclear Information System (INIS)

    Bilsky, A V; Lozhkin, V A; Markovich, D M; Tokarev, M P

    2013-01-01

    This paper studies a novel approach for reducing tomographic PIV computational complexity. The proposed approach is an algebraic reconstruction technique, termed MENT (maximum entropy). This technique computes the three-dimensional light intensity distribution several times faster than SMART, using at least ten times less memory. Additionally, the reconstruction quality remains nearly the same as with SMART. This paper presents the theoretical computation performance comparison for MENT, SMART and MART, followed by validation using synthetic particle images. Both the theoretical assessment and validation of synthetic images demonstrate significant computational time reduction. The data processing accuracy of MENT was compared to that of SMART in a slot jet experiment. A comparison of the average velocity profiles shows a high level of agreement between the results obtained with MENT and those obtained with SMART. (paper)

  6. On the regularization for nonlinear tomographic absorption spectroscopy

    Science.gov (United States)

    Dai, Jinghang; Yu, Tao; Xu, Lijun; Cai, Weiwei

    2018-02-01

    Tomographic absorption spectroscopy (TAS) has attracted increased research efforts recently due to the development in both hardware and new imaging concepts such as nonlinear tomography and compressed sensing. Nonlinear TAS is one of the emerging modality that bases on the concept of nonlinear tomography and has been successfully demonstrated both numerically and experimentally. However, all the previous demonstrations were realized using only two orthogonal projections simply for ease of implementation. In this work, we examine the performance of nonlinear TAS using other beam arrangements and test the effectiveness of the beam optimization technique that has been developed for linear TAS. In addition, so far only smoothness prior has been adopted and applied in nonlinear TAS. Nevertheless, there are also other useful priors such as sparseness and model-based prior which have not been investigated yet. This work aims to show how these priors can be implemented and included in the reconstruction process. Regularization through Bayesian formulation will be introduced specifically for this purpose, and a method for the determination of a proper regularization factor will be proposed. The comparative studies performed with different beam arrangements and regularization schemes on a few representative phantoms suggest that the beam optimization method developed for linear TAS also works for the nonlinear counterpart and the regularization scheme should be selected properly according to the available a priori information under specific application scenarios so as to achieve the best reconstruction fidelity. Though this work is conducted under the context of nonlinear TAS, it can also provide useful insights for other tomographic modalities. © 2017 Elsevier Ltd.

  7. An original acquisition chain for the TOHR High Resolution Tomograph[OASIS]; Conception d'une chaine d'acqusition originale pour le Tomographe Haute Resolution TOHR

    Energy Technology Data Exchange (ETDEWEB)

    Pinot, Laurent [Institut de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)

    1999-04-02

    The framework of this work is part of a new approach of emission tomography adapted to small animals. The principle of our tomographic system TOHR (French acronym for High Resolution Tomograph) is based on the use of large solid angle and high resolution focusing collimators each mounted in front of a detection module of high efficiency. With a first-generation acquisition chain we were able to characterize TOHR, however, to take fully advantage of the TOHR possibilities, a completely new acquisition scheme had to be designed. This system, being the main topic of this work, makes use of temporal information. The detection of a particle that entered the detector is translated into temporal logical signals. These signals pass into a time coding circuitry and the coded results are transferred in a digital processor. According to the initial terms of delivery, the developed acquisition chain steers the detection of events dependent on the deposited energy and time of arrival. The latter is done by coincidence measurements. All elements are mounted on a special board included into a PC unit and a dedicated program controls the whole system. First experiments showed up the interest of the new acquisition unit for other application in physics or medical imaging.

  8. Diagnostic accuracy of multi-slice computed tomographic angiography in the detection of cerebral aneurysms

    International Nuclear Information System (INIS)

    Haghighatkhah, H. R.; Sabouri, S.; Borzouyeh, F.; Bagherzadeh, M. H.; Bakhshandeh, H.; Jalali, A. H.

    2008-01-01

    Multislice computed tomographic angiography is a rapid and minimally invasive method for the detection of intracranial aneurysms. The purpose of this study was to compare Multislice computed tomographic angiography with digital subtraction angiography In the diagnosis of cerebral aneurysms. Patients and Methods: In this cross sectional study we evaluated 111 consecutive patients [42(37.8%) male and 69(62.2%) female], who were admitted under clinical symptoms and signs. suggestive of harboring an intracranial aneurysm by using a four detector Multislice computed tomographic angiography. Then we compared results of Multislice computed tomographic angiography with digital subtraction angiography results as a gold standard method. Digital subtraction angiography was performed by bilateral selective common carotid artery injections and either unilateral or bilateral vertebral artery injections, as necessary. Multislice computed tomographic angiography images were interpreted by one radiologist and digital subtraction angiography was performed by another radiologist who was blinded to the interpretation of the Multislice computed tomographic angiograms. Results: The mean ±S D age of the patients was 49.1±13.6 years (range: 12-84 years). We performed Multislice computed tomographic in 111 and digital subtraction angiography in 85 patients. The sensitivity, specificity, positive predictive value, negative predictive value, positive and negative likelihood ratio of Multislice computed tomographic angiography, when compared with digital subtraction angiography as the gold standard, were 100%, 90%, 87.5%, 100%, 10 and 0, respectively. Conclusion: Multislice computed tomographic angiography seems to be an accurate and noninvasive imaging modality in the diagnosis of intracranial aneurysms

  9. Construction of a positron emission tomograph with 2.4 mm detectors

    International Nuclear Information System (INIS)

    McIntyre, J.A.; Sprosst, R.L.; Wang, K.

    1986-01-01

    One-quarter of one ring of a positron tomograph has been constructed. The positron annihilation gamma rays are detected by polished plastic scintillators which direct scintillation light by internal reflection to optical fibers for transmission to the photo-multiplier tubes. By viewing each scintillator with four sets of optical fibers, the number of photomultipliers required for an eight ring tomograph with 1024 detectors per ring (2.4 mm wide detectors) can be reduced from 8192 to 288, and the cost of the tomograph reduced accordingly

  10. Impact of dynamic computed tomographic angiography on endograft sizing for endovascular aneurysm repair.

    NARCIS (Netherlands)

    Pol, J.A.; Truijers, M.; Vliet, J.A. van der; Fillinger, M.F.; Marra, S.P.; Renema, W.K.J.; Oostveen, L.J.; Schultze Kool, L.J.; Blankensteijn, J.D.

    2009-01-01

    PURPOSE: To quantify dynamic changes in aortoiliac dimensions using dynamic electrocardiographically (ECG)-gated computed tomographic angiography (CTA) and to investigate any potential impact on preoperative endograft sizing in relation to observer variability. METHODS: Dynamic ECG-gated CTA was

  11. Linear adaptive noise-reduction filters for tomographic imaging: Optimizing for minimum mean square error

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Winston Y. [Univ. of California, Berkeley, CA (United States)

    1993-04-01

    This thesis solves the problem of finding the optimal linear noise-reduction filter for linear tomographic image reconstruction. The optimization is data dependent and results in minimizing the mean-square error of the reconstructed image. The error is defined as the difference between the result and the best possible reconstruction. Applications for the optimal filter include reconstructions of positron emission tomographic (PET), X-ray computed tomographic, single-photon emission tomographic, and nuclear magnetic resonance imaging. Using high resolution PET as an example, the optimal filter is derived and presented for the convolution backprojection, Moore-Penrose pseudoinverse, and the natural-pixel basis set reconstruction methods. Simulations and experimental results are presented for the convolution backprojection method.

  12. IceBridge Radar L3 Tomographic Ice Thickness V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains Level-3 tomographic ice thickness measurements derived from data captured by the Center for Remote Sensing of Ice Sheets (CReSIS) Multichannel...

  13. Helicopter parameter extraction using joint Time-Frequency and Tomographic Techniques

    CSIR Research Space (South Africa)

    Cilliers, A

    2008-09-01

    Full Text Available A technique based on time-frequency and tomographic analysis to extract helicopter blade parameters for the purposes of radar non-cooperative target recognition (NCTR) is investigated. The proposed algorithm shows that (under certain conditions...

  14. Blunt oesophageal perforation: treatment with surgical exclusion and percutaneous drainage under computed tomographic guidance

    International Nuclear Information System (INIS)

    Vauthey, J.N.; Lerut, J.; Laube, M.; Gertsch, P.

    1992-01-01

    We report a patient with a left thoracic contusion and rupture of the distal oesophagus. Persistent sepsis developed after oesophageal exclusion without closure. Two collection were drained percutaneously under computed tomographic guidance and the sepsis resolved. (11 refs., 1 fig.)

  15. Visual servoing in medical robotics: a survey. Part II: tomographic imaging modalities--techniques and applications.

    Science.gov (United States)

    Azizian, Mahdi; Najmaei, Nima; Khoshnam, Mahta; Patel, Rajni

    2015-03-01

    Intraoperative application of tomographic imaging techniques provides a means of visual servoing for objects beneath the surface of organs. The focus of this survey is on therapeutic and diagnostic medical applications where tomographic imaging is used in visual servoing. To this end, a comprehensive search of the electronic databases was completed for the period 2000-2013. Existing techniques and products are categorized and studied, based on the imaging modality and their medical applications. This part complements Part I of the survey, which covers visual servoing techniques using endoscopic imaging and direct vision. The main challenges in using visual servoing based on tomographic images have been identified. 'Supervised automation of medical robotics' is found to be a major trend in this field and ultrasound is the most commonly used tomographic modality for visual servoing. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Tomographic diffractive microscopy with agile illuminations for imaging targets in a noisy background.

    Science.gov (United States)

    Zhang, T; Godavarthi, C; Chaumet, P C; Maire, G; Giovannini, H; Talneau, A; Prada, C; Sentenac, A; Belkebir, K

    2015-02-15

    Tomographic diffractive microscopy is a marker-free optical digital imaging technique in which three-dimensional samples are reconstructed from a set of holograms recorded under different angles of incidence. We show experimentally that, by processing the holograms with singular value decomposition, it is possible to image objects in a noisy background that are invisible with classical wide-field microscopy and conventional tomographic reconstruction procedure. The targets can be further characterized with a selective quantitative inversion.

  17. Remote diagnosis via a telecommunication satellite--ultrasonic tomographic image transmission experiments.

    Science.gov (United States)

    Nakajima, I; Inokuchi, S; Tajima, T; Takahashi, T

    1985-04-01

    An experiment to transmit ultrasonic tomographic section images required for remote medical diagnosis and care was conducted using the mobile telecommunication satellite OSCAR-10. The images received showed the intestinal condition of a patient incapable of verbal communication, however the image screen had a fairly coarse particle structure. On the basis of these experiments, were considered as the transmission of ultrasonic tomographic images extremely effective in remote diagnosis.

  18. 3D flame topography obtained by tomographic chemiluminescence with direct comparison to planar Mie scattering measurements.

    Science.gov (United States)

    Xu, Wenjiang; Wickersham, A J; Wu, Yue; He, Fan; Ma, Lin

    2015-03-20

    This work reports the measurements of 3D flame topography using tomographic chemiluminescence and its validation by direct comparison against planar Mie scattering measurements. Tomographic measurements of the 3D topography of various well-controlled laboratory flames were performed using projections measured by seven cameras, and a simultaneous Mie scattering measurement was performed to measure a 2D cross section of the 3D flame topography. The tomographic measurements were based on chemiluminescence emissions from the flame, and the Mie scattering measurements were based on micrometer-size oil droplets seeded into the flow. The flame topography derived from the 3D tomographic and the Mie scattering measurement was then directly compared. The results show that the flame topography obtained from tomographic chemiluminescence and the Mie measurement agreed qualitatively (i.e., both methods yielded the same profile of the flame fronts), but a quantitative difference on the order of millimeters was observed between these two methods. These results are expected to be useful for understanding the capabilities and limitations of the 3D tomographic and Mie scattering techniques in combustion diagnostics.

  19. A positron emission tomograph designed for 3/4 mm resolution

    International Nuclear Information System (INIS)

    McInytre, J.A.; Allen, R.D.; Aguiar, J.; Paulson, J.T.

    1995-01-01

    Two factors of the design for a positron tomograph affect the magnitude of the tomograph spatial resolution: the gamma ray detector width and the analogue measurement of the scintillator location. In the tomograph design reported here the analogue measurement is eliminated and the detector transaxial width factor is reduced to 3/4 mm. The analogue measurement is eliminated by transmitting the scintillation light from each individual scintillator through optical fibers to four photo-multipliers (PMT's); the identities of the PMT's then provide a digital address for the scintillation location. Plastic scintillators are used to provide enough scintillation light for transmission through the optical fibers. Bonuses from the use of plastic scintillators are first, the reduction of the scintillator dead time to about 10 nsec, second, a large reduction of cross-talk between neighboring scintillators, third, the reduction of resolution loss from off-axis gamma rays and, fourth, the ability to sample the axial image at one-eighth the axial resolution distance of 2.5 mm. The designed tomograph incorporates 20 rings. Two of the 32 tomograph 20-ring modules have been constructed to measure the resolution and other characteristics of the tomographs

  20. The detrimental effect of increasing the number of cameras on self-calibration for tomographic PIV

    International Nuclear Information System (INIS)

    Discetti, Stefano; Astarita, Tommaso

    2014-01-01

    It is commonly assumed that adding cameras is beneficial for the accuracy of multiple-camera systems. This tautological assertion is most certainly true for tomographic particle image velocimetry and 3D particle-tracking velocimetry systems, where the search area on each image for the particle corresponding to a 3D trial position is small (typically less than the particle image diameter). On the other hand, when it comes to larger search areas (due to, for example, calibration uncertainties), quite surprisingly, increasing the number of cameras might have a detrimental effect. Under some conditions, this is the case for the volumetric self-calibration technique (Wieneke 2008 Exp. Fluids 45 549–56), in which the residual calibration error and misalignments of the cameras are corrected by statistically searching matching particles over a search area larger than the expected maximum calibration error. In this work, the loss of signal in the self-calibration for systems with three or more cameras is discussed. Two readily implementable solutions are provided to reduce this source of error. The algorithms are tested on synthetic and real images. (paper)

  1. The detrimental effect of increasing the number of cameras on self-calibration for tomographic PIV

    Science.gov (United States)

    Discetti, Stefano; Astarita, Tommaso

    2014-08-01

    It is commonly assumed that adding cameras is beneficial for the accuracy of multiple-camera systems. This tautological assertion is most certainly true for tomographic particle image velocimetry and 3D particle-tracking velocimetry systems, where the search area on each image for the particle corresponding to a 3D trial position is small (typically less than the particle image diameter). On the other hand, when it comes to larger search areas (due to, for example, calibration uncertainties), quite surprisingly, increasing the number of cameras might have a detrimental effect. Under some conditions, this is the case for the volumetric self-calibration technique (Wieneke 2008 Exp. Fluids 45 549-56), in which the residual calibration error and misalignments of the cameras are corrected by statistically searching matching particles over a search area larger than the expected maximum calibration error. In this work, the loss of signal in the self-calibration for systems with three or more cameras is discussed. Two readily implementable solutions are provided to reduce this source of error. The algorithms are tested on synthetic and real images.

  2. The robustness of two tomography reconstructing techniques with heavily noisy dynamical experimental data from a high speed gamma-ray tomograph

    International Nuclear Information System (INIS)

    Vasconcelos, Geovane Vitor; Melo, Silvio de Barros; Dantas, Carlos Costa; Moreira, Icaro Malta; Johansen, Geira; Maad, Rachid

    2013-01-01

    The PSIRT (Particle Systems Iterative Reconstructive Technique) is, just like the ART method, an iterative tomographic reconstruction technique with the recommended use in the reconstruction of catalytic density distribution in the refining process of oil in the FCC-type riser. The PSIRT is based upon computer graphics' particle systems, where the reconstructing material is initially represented as composed of particles subject to a force field emanating from the beams, whose intensities are parameterized by the differences between the experimental readings of a given beam trajectory, and the values corresponding to the current amount of particles landed in this trajectory. A dynamical process is set as the beams fields of attracting forces dispute the particles. At the end, with the equilibrium established, the particles are replaced by the corresponding regions of pixels. The High Speed Gamma-ray Tomograph is a 5-source-fan-beam device with a 17-detector deck per source, capable of producing up to a thousand complete sinograms per second. Around 70.000 experimental sinograms from this tomograph were produced simulating the move of gas bubbles in different angular speeds immersed in oil within the vessel, through the use of a two-hole-polypropylene phantom. The sinogram frames were set with several different detector integration times. This article studies and compares the robustness of both ART and PSIRT methods in this heavily noisy scenario, where this noise comes not only from limitations in the dynamical sampling, but also from to the underlying apparatus that produces the counting in the tomograph. These experiments suggest that PSIRT is a more robust method than ART for noisy data. Visual inspection on the resulting images suggests that PSIRT is a more robust method than ART for noisy data, since it almost never presents globally scattered noise. (author)

  3. The robustness of two tomography reconstructing techniques with heavily noisy dynamical experimental data from a high speed gamma-ray tomograph

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Geovane Vitor; Melo, Silvio de Barros; Dantas, Carlos Costa; Moreira, Icaro Malta, E-mail: geovitor@bol.com.br, E-mail: sbm@cin.ufpe.br, E-mail: ccd@ufpe.br, E-mail: ivmmoreira@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Johansen, Geira; Maad, Rachid, E-mail: geiranton.johansen@ift.uib.no [University of Bergen (UIB), Bergen, OB (Norway)

    2013-07-01

    The PSIRT (Particle Systems Iterative Reconstructive Technique) is, just like the ART method, an iterative tomographic reconstruction technique with the recommended use in the reconstruction of catalytic density distribution in the refining process of oil in the FCC-type riser. The PSIRT is based upon computer graphics' particle systems, where the reconstructing material is initially represented as composed of particles subject to a force field emanating from the beams, whose intensities are parameterized by the differences between the experimental readings of a given beam trajectory, and the values corresponding to the current amount of particles landed in this trajectory. A dynamical process is set as the beams fields of attracting forces dispute the particles. At the end, with the equilibrium established, the particles are replaced by the corresponding regions of pixels. The High Speed Gamma-ray Tomograph is a 5-source-fan-beam device with a 17-detector deck per source, capable of producing up to a thousand complete sinograms per second. Around 70.000 experimental sinograms from this tomograph were produced simulating the move of gas bubbles in different angular speeds immersed in oil within the vessel, through the use of a two-hole-polypropylene phantom. The sinogram frames were set with several different detector integration times. This article studies and compares the robustness of both ART and PSIRT methods in this heavily noisy scenario, where this noise comes not only from limitations in the dynamical sampling, but also from to the underlying apparatus that produces the counting in the tomograph. These experiments suggest that PSIRT is a more robust method than ART for noisy data. Visual inspection on the resulting images suggests that PSIRT is a more robust method than ART for noisy data, since it almost never presents globally scattered noise. (author)

  4. Tomographic and pathological findings of crazy-paving pattern

    Energy Technology Data Exchange (ETDEWEB)

    Vabo, Karen Amaral do; Damato, Simone Duarte [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. of Radiology

    2011-07-15

    Objective: To describe high-resolution computed tomography findings in several diseases that run their course with the 'crazy-paving' pattern. Materials and Methods: The present study has evaluated seven patients with diagnoses of alveolar proteinosis, bronchioloalveolar carcinoma, lipoid pneumonia and pneumocystosis, correlating tomographic and pathological findings. Results: In the cases of pneumocystosis, the alveolar spaces were filled with foamy material where parasitic organisms intermingled with surfactants, fibrin and cell debris were observed. In the cases of bronchioloalveolar carcinoma, the septa were thickened by associated fibrosis or lymphangitis, with the alveolar walls internally lined with tumor cells, and production of mucus. In the patient with alveolar proteinosis, the septa were thickened by edema, with alveolar filling determined by lipoprotein. In the patient with mineral oil aspiration, the histopathological findings included alveolar septa thickening caused by cell proliferation, with presence of fat vacuoles in alveolar septa. Conclusion: The crazy-paving pattern offers a wide range of differential diagnoses and must be evaluated in conjunction with clinical findings. (author)

  5. Computed tomographic appearances of the pelvis following hindquarter amputation.

    Science.gov (United States)

    Fowler, J; Davies, A M; Carter, S R; Grimer, R J; Sneath, R S

    1992-12-01

    Bilateral and midline symmetry of the normal pelvic anatomy is an aid to the interpretation of computed tomographic (CT) examinations. Following hindquarter amputation (HQA) or partial hemipelvectomy (PHP) the normal anatomical relationships are disturbed. The CT examinations of 15 patients who had undergone either an HQA or a PHP for an advanced musculoskeletal malignancy are reviewed. The new "normal" anatomy revealed displacement of the bladder and small bowel to the side of surgery in one third of patients, more commonly in the PHP cases. There were varying degrees of wasting of the ipsilateral musculature, gluteus maximus muscle flap, erector spinae and psoas muscles, etc., because of partial denervation and disruption of their origin or insertion. Recurrent tumour was identified in eight of 10 cases in which it was clinically suspected prior to the CT examination. Invariably the recurrence arose within the muscle flap at the resection margin. Bone involvement by direct tumour spread was present in three cases. Pitfalls in differentiating recurrent tumour from scar tissue are discussed.

  6. Strategies for source space limitation in tomographic inverse procedures

    Energy Technology Data Exchange (ETDEWEB)

    George, J.S.; Lewis, P.S.; Schlitt, H.A.; Kaplan, L.; Gorodnitsky, I.; Wood, C.C.

    1994-02-01

    The use of magnetic recordings for localization of neural activity requires the solution of an ill-posed inverse problem: i.e. the determination of the spatial configuration, orientation, and timecourse of the currents that give rise to a particular observed field distribution. In its general form, this inverse problem has no unique solution; due to superposition and the existence of silent source configurations, a particular magnetic field distribution at the head surface could be produced by any number of possible source configurations. However, by making assumptions concerning the number and properties of neural sources, it is possible to use numerical minimization techniques to determine the source model parameters that best account for the experimental observations while satisfying numerical or physical criteria. In this paper the authors describe progress on the development and validation of inverse procedures that produce distributed estimates of neuronal currents. The goal is to produce a temporal sequence of 3-D tomographic reconstructions of the spatial patterns of neural activation. Such approaches have a number of advantages, in principle. Because they do not require estimates of model order and parameter values (beyond specification of the source space), they minimize the influence of investigator decisions and are suitable for automated analyses. These techniques also allow localization of sources that are not point-like; experimental studies of cognitive processes and of spontaneous brain activity are likely to require distributed source models.

  7. Optimization and Application of Surface Segmentation Technique for Tomographic PIV

    Science.gov (United States)

    Ding, Liuyang; Adrian, Ronald; Wilson, Brandon; Prestridge, Kathy; Team

    2014-11-01

    Tomographic PIV is a widely used 3D flow measurement technique. It utilizes images recorded by multiple cameras to reconstruct the intensity distribution of a measured volume. The 3D3C velocity field is then computed by 3D cross-correlation. Surface segmentation aims to reduce computational cost. It extracts from a cloud of particles an image of those particles that lie on a mathematically prescribed surface. 2D2C velocity fields are computed on stacks of orthogonal surfaces, then assembled to construct the full 3D3C velocity field. We investigate the reconstruction of adaptive surfaces aligned with the main flow direction minimizing the out-of-plane motion. Numerical assessment is performed on curved-surface reconstruction for Taylor-Couette flow. An optimizing 2D interrogation scheme involving volumetric deformation is proposed to improve the accuracy of the 3D3C velocity field. The numerical test is performed on a synthetic vortex ring showing good measurement accuracy. Experimental results measuring the shock-driven turbulent mixing will also be presented. References

  8. Method of making tomographic images of X-rayed objects

    International Nuclear Information System (INIS)

    Eickel, R.

    1979-01-01

    A tomographic image of a selected layer of a stationary object is made by moving the source of X-rays along a first path at one side of the selected layer and by moving an ionography imaging chamber which contains a dielectric receptor sheet along a second path at the other side of the selected layer. The movement of the sheet is synchronized with movement of the source of X-rays and includes a translatory movement in a direction counter to the direction of movement of the source, a pivotal movement to maintain the sheet in a plane which is normal to the central beam of the bundle of X-rays, and a sidewise movement to vary the distance between the selected layer and the sheet so that the length of the projection of selected layer upon the sheet remains unchanged. If the sheet is rectangular, the pivotal movement is performed about an axis which is located in the plane of the selected layer and is parallel to the shorter sides of the sheet

  9. Brain computed tomographic findings in post-cardiopulmonary resuscitation patients

    International Nuclear Information System (INIS)

    Ishida, Tsuguharu; Yoshinaga, Kazumasa; Horibe, Takashi; Kokubu, Kiyokazu; Kokura, Yoshihiro; Matsui, Konosuke; Inamoto, Kazuo.

    1986-01-01

    We retrospectively assessed the brain computed tomographic (CT) findings in 22 post-cardiopulmonary resuscitation (CPR) patients excluding neonatal cases. On the basis of the CT findings, the patients were divided into two groups. Eight patients (36.4 %) had bilateral abnormal lowdensity areas in the basal ganglia (Group I). The remaining 14 patients (63.6 %) had no abnormalities in that area (Group II). In Group I, the incidence of primary cardiac arrest and duration of advanced life support (ALS) was significantly different (p < 0.05) from Group II. Sex, age, duration of basic life support (BLS), time elapsed from initiation of BLS to initial CT and from initiation of ALS to initial CT was not significantly different between the two groups. Outcome was very poor in both groups and no significant difference was noted between them. We conclude that primary cardiac arrest and long duration of ALS were predictors of abnormal bilateral low-density areas in the basal ganglia in post-CPR patients. However, their appearance was not related to outcome. (author)

  10. Double Colorectal Cancer Only Diagnosed by Computed Tomographic Colonography

    Directory of Open Access Journals (Sweden)

    Koichi Nagata

    2008-02-01

    Full Text Available A 58-year-old woman presented to her physician with rectal bleeding and intermittent diarrhea. Optical colonoscopy revealed a bulky tumor which was diagnosed as rectal cancer. She was referred to our institution for further evaluation and treatment. Slim optical colonoscopy showed an obstructive cancer in the rectosigmoid junction and no information of the proximal side of the obstruction. The patient then underwent computed tomographic (CT colonography for further evaluation of the proximal side. Three-dimensional endoluminal ‘fly-through’ images revealed another protruded lesion in the proximal side of the obstruction. Diagnosis of synchronous double cancer was made by CT colonography. This CT data was not only used to create three-dimensional images but also to decide on a preoperative clinical staging. Laparoscopy-assisted high anterior resection was performed and T3 rectal cancer and T1 sigmoid colon cancer were confirmed in the resected specimen. Follow-up optical colonoscopy revealed no other tumors. CT colonography has recently become a popular preoperative examination tool with significant improvement in quality of image due to a rapid progress in computer technology. CT colonography correctly showed synchronous double cancer in our case and provided crucial information for planning surgery. We recommend that CT colonography should be used for evaluating the proximal side of obstructive colorectal cancer.

  11. Computed tomographic appearance of primary lung tumors in dogs.

    Science.gov (United States)

    Marolf, Angela J; Gibbons, Debra S; Podell, Brendan K; Park, Richard D

    2011-01-01

    Canine primary lung tumors typically appear radiographically as a well-circumscribed solitary mass in the periphery of a caudal lung lobe. Consolidated and diffuse forms of primary lung tumors have also been described. Nineteen dogs with computed tomographic (CT) images of the thorax and a histological diagnosis of primary lung tumor (17 primary carcinomas and two primary sarcomas) were evaluated retrospectively to characterize the CT findings. All primary lung tumors were bronchocentric in origin with internal air bronchograms. The bronchi were typically narrowed, displaced, and often obstructed by the tumor. Eighteen of 19 (95%) of the tumors were solitary and there was one pneumonic/alveolar form. Most solitary tumors were well circumscribed (17/18), located in the central to periphery of the lung (14/18), and in a cranial or caudal lobe (16/19). Most primary lung tumors (11/17) had mild to moderate heterogeneous contrast enhancement. Five of 19 dogs (26%) had evidence of pulmonary metastasis. Internal mineralization (3/19) and tracheobronchial lymphadenopathy (4/19) were also identified. On CT examination, solitary, well circumscribed, bronchocentric masses with internal air bronchograms are consistent with a primary pulmonary tumor in dogs. © 2010 Veterinary Radiology & Ultrasound.

  12. Computerized tomographic studies in cerebral palsy. Analysis of 200 cases

    Energy Technology Data Exchange (ETDEWEB)

    Sugie, Y. (Tokyo Women' s Medical Coll. (Japan))

    1981-09-01

    Computed tomographic (CT) findings in 200 children with cerebral palsy (CP) were analysed from the viewpoint of clinical manifestations, disease complications and etiological factors. CT scans of 135 cases (67.5%) were found to be abnormal and there were 14 (7%) borderline cases. The major abnormality found on CT scans was cerebral atrophy. Other important changes included focal or diffuse low density area in the brain tissue, congenital malformation, and cerebellar atrophy. From the clinical point of view, a large number of patients with spastic tetraplegia and spastic diplegia showed highly abnormal CT scans. On the other hand, in patients with spastic monoplegia, spastic paraplegia, and athetotic type, CT findings were normal or revealed only minor cerebral atrophy. Most children showing asymmetric clinical symptoms had corresponding asymmetric CT abnormalities which included ventricular enlargement, low density area in the brain tissue, and hemispherical volume. There was a significant correlation between the severity of physical impairment and the extent of CT abnormalities. Severely affected children had grossly abnormal CT scans such as hydranencephaly, polycystic change, and extensive cerebral atrophy. In the patients complicated with epilepsy, the incidence and severity of abnormal CT were higher than those of non-epileptic patients. Mentally retarded patients had variable enlargement of the subarachnoidal space depending on the severity of their mental retardation. Patients with suspected postnatal etiology also had high incidence of severe CT abnormality. CT scan is a valuable tool for evaluating patients with CP and in some cases, possible etiology of the disease may be discovered.

  13. The research of clinical application of computed tomographic virtual gastroscopy

    International Nuclear Information System (INIS)

    Zhang Lei; Pan Zhenyu; Zhai Xiaoli; Gu Hua; Wang Yajie; Ding Yi; Wang Li; Liang Ying; Zhai Renyou

    2000-01-01

    Objective: To investigate the values, methods and findings of computed tomographic virtual gastroscopy (CTVG). Methods: Sixty-nine patients underwent the examination of spiral CT after charged air into stomachs in different cubage. The CT scan conditions were collimating width 3 mm, pitch 1.2 - 2.5, scanning speed 0.8 s/360 degree, the raw data of CT volume scan was reconstructed in overlapping rate 33% - 67%. Then the images of CTVG were built using navigator software (GE AG, USA). Results: The accuracy, sensitivity, and specificity of CTVG were 92.8%, 96.4%, and 78.6%, respectively. CTVG corresponded well with fibrous gastroscopy and specimens in demonstrating the gastric lesions. CTVG was provided with the ability of revealing the tiny lesions of chronic atrophic gastritis, chronic erosive gastritis, chronic proliferative gastritis, and acute hemorrhagic gastritis in some degree. The high quality imaging of CTVG could be obtained in condition of collimating width 3 mm, pitch 1.2 - 1.5, overlapping 50% - 67%, well hold-breath, gastric cubage in full and feasible scan positions. Conclusion: CTVG is a rising means of gastric examination and has great value in clinic applications

  14. Conceptual design of a compact positron tomograph for prostateimaging

    Energy Technology Data Exchange (ETDEWEB)

    Huber, J.S.; Derenzo, S.E.; Qi, J.; Moses, W.W.; Huesman, R.H.; Budinger, T.F.

    2000-11-04

    We present a conceptual design of a compact positron tomograph for prostate imaging using a pair of external curved detector banks, one placed above and one below the patient. The lower detector bank is fixed below the patient bed, and the top bank adjusts vertically for maximum sensitivity and patient access. Each bank is composed of 40conventional block detectors, forming two arcs (44 cm minor, 60 cm major axis) that are tilted to minimize attenuation and positioned as close as possible to the patient to improve sensitivity. The individual detectors are angled to point towards the prostate to minimize resolution degradation in that region. Inter-plane septa extend 5 cm beyond the scintillator crystals to reduce random and scatter backgrounds. A patient is not fully encircled by detector rings in order to minimize cost,causing incomplete sampling due to the side gaps. Monte Carlo simulation (including random and scatter) demonstrates the feasibility of detecting a spherical tumor of 2.5 cm diameter with a tumor to background ratio of2:1, utilizing the number of events that should be achievable with a6-minute scan after a 10 mCi injection (e.g., carbon-11 choline or fluorine-18 fluorocholine).

  15. Synchrotron X-ray tomographic microscopy of fossil embryos.

    Science.gov (United States)

    Donoghue, Philip C J; Bengtson, Stefan; Dong, Xi-ping; Gostling, Neil J; Huldtgren, Therese; Cunningham, John A; Yin, Chongyu; Yue, Zhao; Peng, Fan; Stampanoni, Marco

    2006-08-10

    Fossilized embryos from the late Neoproterozoic and earliest Phanerozoic have caused much excitement because they preserve the earliest stages of embryology of animals that represent the initial diversification of metazoans. However, the potential of this material has not been fully realized because of reliance on traditional, non-destructive methods that allow analysis of exposed surfaces only, and destructive methods that preserve only a single two-dimensional view of the interior of the specimen. Here, we have applied synchrotron-radiation X-ray tomographic microscopy (SRXTM), obtaining complete three-dimensional recordings at submicrometre resolution. The embryos are preserved by early diagenetic impregnation and encrustation with calcium phosphate, and differences in X-ray attenuation provide information about the distribution of these two diagenetic phases. Three-dimensional visualization of blastomere arrangement and diagenetic cement in cleavage embryos resolves outstanding questions about their nature, including the identity of the columnar blastomeres. The anterior and posterior anatomy of embryos of the bilaterian worm-like Markuelia confirms its position as a scalidophoran, providing new insights into body-plan assembly among constituent phyla. The structure of the developing germ band in another bilaterian, Pseudooides, indicates a unique mode of germ-band development. SRXTM provides a method of non-invasive analysis that rivals the resolution achieved even by destructive methods, probing the very limits of fossilization and providing insight into embryology during the emergence of metazoan phyla.

  16. Tuberculosis of the Parotid Gland: Computed Tomographic Findings

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Y.; Xiao, J.; Pui, M.H.; Gong, Q. (Dept. of Radiology, West China Hospital, Sichuan Univ., Sichuan (China))

    2008-05-15

    Background: Tuberculosis (TB) of the parotid gland is rare, even in endemic regions. Approximately 100 cases have been reported in the English literature. The computed tomographic (CT) features, however, have seldom been studied. Purpose: To determine the diagnostic CT features of tuberculosis of the parotid gland. Material and Methods: CT studies of four histologically proven cases of tuberculosis of the parotid gland were retrospectively reviewed. Results: A total of 15 enlarged lymph nodes were found in the superficial lobes of the parotid glands. The nodes were arranged linearly within the gland. Enhancement patterns included homogeneous enhancement (9/15, 60%), homogeneous enhancement with eccentric microcysts (3/15, 20%), and thick-walled rim enhancement with central lucency (3/15, 20%). Thickened adjacent fascial plane and platysma were seen in two patients. Ipsilateral cervical lymphadenopathy was seen in all patients. Conclusion: In patients presenting with unilateral parotid nodules, TB should be considered when linearly arranged enhancing nodules are demonstrated in the superficial lobes of the glands on CT scan

  17. Strategies for source space limitation in tomographic inverse procedures

    International Nuclear Information System (INIS)

    George, J.S.; Lewis, P.S.; Schlitt, H.A.; Kaplan, L.; Gorodnitsky, I.; Wood, C.C.

    1994-01-01

    The use of magnetic recordings for localization of neural activity requires the solution of an ill-posed inverse problem: i.e. the determination of the spatial configuration, orientation, and timecourse of the currents that give rise to a particular observed field distribution. In its general form, this inverse problem has no unique solution; due to superposition and the existence of silent source configurations, a particular magnetic field distribution at the head surface could be produced by any number of possible source configurations. However, by making assumptions concerning the number and properties of neural sources, it is possible to use numerical minimization techniques to determine the source model parameters that best account for the experimental observations while satisfying numerical or physical criteria. In this paper the authors describe progress on the development and validation of inverse procedures that produce distributed estimates of neuronal currents. The goal is to produce a temporal sequence of 3-D tomographic reconstructions of the spatial patterns of neural activation. Such approaches have a number of advantages, in principle. Because they do not require estimates of model order and parameter values (beyond specification of the source space), they minimize the influence of investigator decisions and are suitable for automated analyses. These techniques also allow localization of sources that are not point-like; experimental studies of cognitive processes and of spontaneous brain activity are likely to require distributed source models

  18. Quantitative analysis of normal thallium-201 tomographic studies

    International Nuclear Information System (INIS)

    Eisner, R.L.; Gober, A.; Cerqueira, M.

    1985-01-01

    To determine the normal (nl) distribution of Tl-201 uptake post exercise (EX) and at redistribution (RD) and nl washout, Tl-201 rotational tomographic (tomo) studies were performed in 40 subjects: 16 angiographic (angio) nls and 24 nl volunteers (12 from Emory and 12 from Yale). Oblique angle short axis slices were subjected to maximal count circumferential profile analysis. Data were displayed as a ''bullseye'' functional map with the apex at the center and base at the periphery. The bullseye was not uniform in all regions because of the variable effects of attenuation and resolution at different view angles. In all studies, the septum: lateral wall ratio was 1.0 in males and approximately equal to 1.0 in females. This occurred predominantly because of anterior defects due to breast soft tissue attenuation. EX and RD bullseyes were similar. Using a bi-exponential model for Tl kinetics, 4 hour normalized washout ranged 49-54% in each group and showed minimal variation between walls throughout the bullseye. Thus, there are well defined variations in Tl-201 uptake in the nl myocardium which must be taken into consideration when analyzing pt data. Because of these defects and the lack of adequate methods for attenuation correction, quantitative analysis of Tl-201 studies must include direct comparison with gender-matched nl data sets

  19. Computed tomographic findings of liver injury in adults

    International Nuclear Information System (INIS)

    Ha, Deok Gi; Lee, Hyeon Kyeong; Lee, Won Jae; Oh, Yeon Hee; Lee, Sung Hee; Yun, Jee Yeong; Lee, Tae Woo; Lee, Sung Woo; Park, Soo Soung

    1994-01-01

    We studied to compare computed tomographic(CT) findings of liver injury with management method in adults and, moreover, to present the CT basis for the management. We retrospectively reviewed CT scans of 43 adults diagnosed as liver injury during a 66 month period. Thirty-eight patients were hemodynamically stable. Thirty-two of them were managed conservatively, whereas six managed operatively. Five unstable patients underwent emergency operation. We classified CT findings according to the severity of liver injuries(ie, hematoma, laceration, and periportal tracking) and hemoperitoneum, ranging from grade 1 to 5 and from 0 to 3 +. respectively. Thus, we compared the CT classifications with their management(ie, operation rate), especially hemodynamically stable patients. Operation rates of all patients and hemodynamically stable patients were 26% and 16%, respectively. Operation rate at each grade of liver injury was low, especially in hemodynamically stable, despite relatively high operation rate in grade 4. Operation rate of 3+ homoperitoneum was 100%, including hemodynamically stable patients, in contrast to otherwise low operation rate of others. Most liver injury in adults, including grade 4, were managed conservatively, especially hemodynamically stable. Though large amount of hemoperitoneum(ie, 3+) required operation, most hemooperitoeum were managed conservatively. Thus, CT findings of liver injury is helpful in the decision for the management method

  20. Quantification of tomographic PIV uncertainty using controlled experimental measurements.

    Science.gov (United States)

    Liu, Ning; Wu, Yue; Ma, Lin

    2018-01-20

    The goal of this work was to experimentally quantify the uncertainty of three-dimensional (3D) and three-component (3C) velocity measurements using tomographic particle image velocimetry (tomo-PIV). Controlled measurements were designed using tracer particles embedded in a solid sample, and tomo-PIV measurements were performed on the sample while it was moved both translationally and rotationally to simulate various known displacement fields, so the 3D3C displacements measured by tomo-PIV can be directly compared to the known displacements created by the sample. The results illustrated that (1) the tomo-PIV technique was able to reconstruct the 3D3C velocity with an averaged error of 0.8-1.4 voxels in terms of magnitude and 1.7°-1.9° in terms of orientation for the velocity fields tested; (2) view registration (VR) plays a significant role in tomo-PIV, and by reducing VR error from 0.6° to 0.1°, the 3D3C measurement accuracy can be improved by at least 2.5 times in terms of both magnitude and orientation; and (3) the use of additional cameras in tomo-PIV can extend the 3D3C velocity measurement to a larger volume, while maintaining acceptable accuracy. These results obtained from controlled tests are expected to aid the error analysis and the design of tomo-PIV measurements.

  1. Voxel-based model construction from colored tomographic images

    International Nuclear Information System (INIS)

    Loureiro, Eduardo Cesar de Miranda

    2002-07-01

    This work presents a new approach in the construction of voxel-based phantoms that was implemented to simplify the segmentation process of organs and tissues reducing the time used in this procedure. The segmentation process is performed by painting tomographic images and attributing a different color for each organ or tissue. A voxel-based head and neck phantom was built using this new approach. The way as the data are stored allows an increasing in the performance of the radiation transport code. The program that calculates the radiation transport also works with image files. This capability allows image reconstruction showing isodose areas, under several points of view, increasing the information to the user. Virtual X-ray photographs can also be obtained allowing that studies could be accomplished looking for the radiographic techniques optimization assessing, at the same time, the doses in organs and tissues. The accuracy of the program here presented, called MCvoxEL, that implements this new approach, was tested by comparison to results from two modern and well-supported Monte Carlo codes. Dose conversion factors for parallel X-ray exposure were also calculated. (author)

  2. X-ray tomographic and laminographic microscopy (XTM, XLM) using synchrotron radiation

    International Nuclear Information System (INIS)

    Wyss, P.; Obrist, A.; Hofmann, J.; Luethi, T.; Sennhauser, U.; Thurner, P.; Stampanoni, M.; Abela, R.; Patterson, B.; Mueller, R.

    2003-01-01

    Inner structures of composite materials, components or tissues have to be characterised with micrometer and even submicrometer resolution. It is often highly desirable that specimens stay unchanged after a first characterization to allow meaningful subsequent tests. This justifies major efforts for an ongoing improvement of nondestructive radiographical and tomographical methods for morphological characterization. Radiography and tomography as well as laminography can fulfill these requirements. X-ray sources and detectors have been improved. This applies for synchrotron-beamline systems as well as for tube based systems. A novel detector concept has been implemented in the XTM station at the SLS of the PSI in Villigen, Switzerland. This microtomography station at the SLS has started its operation in spring 2002. A selection of results related to industrial and scientific applications is presented in this contribution. Special emphasis will be given to first results of tomography with limited numbers of projections which is comparable to laminography. This method allows to characterise e.g. ribbons of tissue under load

  3. Hybrid computing: CPU+GPU co-processing and its application to tomographic reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Agulleiro, J.I.; Vazquez, F.; Garzon, E.M. [Supercomputing and Algorithms Group, Associated Unit CSIC-UAL, University of Almeria, 04120 Almeria (Spain); Fernandez, J.J., E-mail: JJ.Fernandez@csic.es [National Centre for Biotechnology, National Research Council (CNB-CSIC), Campus UAM, C/Darwin 3, Cantoblanco, 28049 Madrid (Spain)

    2012-04-15

    Modern computers are equipped with powerful computing engines like multicore processors and GPUs. The 3DEM community has rapidly adapted to this scenario and many software packages now make use of high performance computing techniques to exploit these devices. However, the implementations thus far are purely focused on either GPUs or CPUs. This work presents a hybrid approach that collaboratively combines the GPUs and CPUs available in a computer and applies it to the problem of tomographic reconstruction. Proper orchestration of workload in such a heterogeneous system is an issue. Here we use an on-demand strategy whereby the computing devices request a new piece of work to do when idle. Our hybrid approach thus takes advantage of the whole computing power available in modern computers and further reduces the processing time. This CPU+GPU co-processing can be readily extended to other image processing tasks in 3DEM. -- Highlights: Black-Right-Pointing-Pointer Hybrid computing allows full exploitation of the power (CPU+GPU) in a computer. Black-Right-Pointing-Pointer Proper orchestration of workload is managed by an on-demand strategy. Black-Right-Pointing-Pointer Total number of threads running in the system should be limited to the number of CPUs.

  4. A study on the realization of high resolution solid immersion lens-based near-field imaging optics by use of an annular aperture.

    Science.gov (United States)

    Moon, Hyungbae; Yoon, Yong-Joong; Kim, Wan-Chin; Park, No-Cheol; Park, Kyoung-Su; Park, Young-Pil

    2010-08-02

    We report on the realization of solid immersion lens (SIL)-based near-field (NF) optics with an annular aperture, which is targeted to achieve high optical resolution. A numerical aperture (NA) = 1.84 hemisphere SIL-optics with an annular aperture achieves higher optical resolution than the conventional NA = 2.0 SIL-optics. The designed aperture is fabricated by photo-lithography and dry-etching technique. Experimental verification of the designed optics was performed through beam spot profile measurement under NF imaging conditions. A 15% smaller full-width-at-half-maximum spot diameter is obtained by the aperture. We verified that this method gives an improvement of the resolution in the optical imaging systems requiring higher resolution.

  5. Applicability of a set of tomographic reconstruction algorithms for quantitative SPECT on irradiated nuclear fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsson Svärd, Staffan, E-mail: staffan.jacobsson_svard@physics.uu.se; Holcombe, Scott; Grape, Sophie

    2015-05-21

    assessment, which may be particularly useful in the latter application. Two main classes of algorithms are covered; (1) analytic filtered back-projection algorithms, and (2) a group of model-based or algebraic algorithms. For the former class, a basic algorithm has been implemented, which does not take attenuation in the materials of the fuel assemblies into account and which assumes an idealized imaging geometry. In addition, a novel methodology has been presented for introducing a first-order correction to the obtained images for these deficits; in particular, the effects of attenuation are taken into account by modelling the response for an object with a homogeneous mix of fuel materials in the image area. Neither the basic algorithm, nor the correction method requires prior knowledge of the fuel geometry, but they result in images of the assembly's internal activity distribution. Image analysis is then applied to deduce quantitative information. Two algebraic algorithms are also presented, which model attenuation in the fuel assemblies to different degrees; either assuming a homogenous mix of materials in the image area without a priori information or utilizing known information of the assembly geometry and of its position in the measuring setup for modelling the gamma-ray attenuation in detail. Both algorithms model the detection system in detail. The former algorithm returns an image of the cross-section of the object, from which quantitative information is extracted, whereas the latter returns conclusive relative rod-by-rod data. Here, all reconstruction methods are demonstrated on simulated data of a 96-rod fuel assembly in a tomographic measurement setup. The assembly was simulated with the same activity content in all rods for evaluation purposes. Based on the results, it is argued that the choice of algorithm to a large degree depends on application, and also that a combination of reconstruction methods may be useful. A discussion on alternative analysis

  6. Few-View Tomographic Reconstruction of Technetium-99m-Sestamibi Distribution for the Detection and Differentiation of Breast Lesions

    National Research Council Canada - National Science Library

    La

    2000-01-01

    .... Because the time required by tomographic studies to acquire data useful to popular reconstruction algorithms might be excessive for SPECT SMM, we have worked to develop reconstruction algorithms...

  7. Few-View Tomographic Reconstruction of Technetium-99m- sestamibi Distribution for the Detection and Diagnosis of Breast Lesions

    National Research Council Canada - National Science Library

    LaRiviere, Patrick

    1998-01-01

    .... Because the time required by tomographic studies to acquire data useful to popular reconstruction algorithms might be excessive for SPECT SMM, we have worked to develop reconstruction algorithms...

  8. Method for calibration of an axial tomographic scanner

    International Nuclear Information System (INIS)

    Sparks, R.A.

    1977-01-01

    The method of calibrating an axial tomographic scanner including frame means having an opening therein in which an object to be examined is to be placed, source and detector means mounted on the frame means for directing one or more beams of penetrating radiation through the object from the source to the detector means, and means to rotate the scanner including the source and detector means about the object whereby a plurality of sets of data corresponding to the transmission or absorption by the object of a plurality of beams of penetrating radiation are collected; the calibration method comprising mounting calibration means supporting an adjustable centering member onto the frame means, positioning the adjustable centering member at approximately the center of rotation of the scanner, placing position-sensitive indicator means adjacent the approximately centered member, rotating the scanner and the calibration means mounted thereon at least one time and, if necessary, adjusting the positioning of the centering member until the centering member is coincident with the center of rotation of the scanner as determined by minimum deflection of the position-sensitive indicator means, rotating and translating the source and detector means and determining for each angular orientation of the frame means supporting the source and detector means the central position of each translational scan relative to the centered member and/or if a plurality of detectors are utilized with the detector means for each planar slice of the object being examined, the central position of each translational scan for each detector relative to the centered member

  9. Tomographic models and seismotectonics of the Reggio Emilia region, Italy

    Science.gov (United States)

    Ciaccio, M. G.; Chiarabba, C.

    2002-02-01

    The aim of this study is to define the Vp and Vp/Vs structure of the fault zone ruptured by the M L 5.1 earthquake of October 15, 1996 which occurred near Reggio Emilia (central-northern Italy). A 1-month-long seismic sequence followed the mainshock and occurred in a small region along the outer border of the northern Apenninic belt, at depth ranging between 10 and 17 km. P- and S-wave arrival times from 304 aftershocks recorded by two local dense seismic arrays installed in the epicentral region have been inverted to obtain one- and three-dimensional velocity models by using state of the art local earthquake tomographic techniques. Velocity models and aftershock relocation help us to infer the seismotectonic of the region. Earthquakes originated along a NW-dipping backthrust of a NE-trending main thrust, composing the western part of the broad Ferrara Arc. A main high Vp and high Vp/Vs region delineates a pop-up structure in the center of the area. The high Vp/Vs within the pop-up structure supports the presence of a zone with increased pore pressure. The hypocentral depth of both mainshock and aftershocks is greater than those usually found for the main seismogenic regions of the Apenninic belt. P-wave velocity values in the seismogenic area, obtained by tomography, are compatible with rocks of the Mesozoic cover and suggest that seismicity occurred within the Mesozoic units stack at present by compressional tectonics.

  10. Tomographic Inversion for Shear Velocity Beneath the North American Plate

    Science.gov (United States)

    Grand, Stephen P.

    1987-12-01

    A tomographic back projection scheme has been applied to S and SS travel times to invert for shear velocity below the North American plate. The data range in distance from 8° to 80°, and a total of 3923 arrival times were used. First arrivals were measured directly off the seismograms, while the arrival times of later arrivals were found by a waveform correlation technique using synthetic seismograms. The starting model was laterally heterogeneous in the upper 400 km to account for the first-order differences in ray paths already known. The model was divided into blocks with horizontal dimensions of 500 km by 500 km and varying vertical thicknesses. Good resolution was obtained for structure from just below the crust to about 1700 km depth in the mantle. In the upper mantle a high-velocity root was found directly beneath the Canadian shield to about 400 km depth with the Superior province having the highest velocity and deepest root. The east coast of the United States was found to have intermediate velocities from 100 to 350 km depth and the western United States the slowest velocities at these depths. Below 400 km depth the most significant structure found is a slab-shaped high-velocity anomaly from the eastern Carribean to the northern United States. Beneath the Carribean this anomaly is almost vertical and extends from about 700 km to 1700 km depth. Further to the north, the anomaly dips to the east with high velocities at 700 km depth in the central United States and high velocities below 1100 km depth beneath the east coast. The anomaly is about 1% in magnitude. This lower-mantle anomaly may be associated with past subduction of the Farallon plate beneath North America.

  11. [X-ray computed tomographic aspects of benign primary cerebral melanomas. Apropos of 4 cases].

    Science.gov (United States)

    Adam, P; Alberge, Y; Espagno, C; Bouzigues, J Y

    1986-02-01

    Benign primitive melanomas are rare tumours usually involving the leptomeninges. Four cranial localizations are reported: 2 tumours of the foramen magnum, 1 of the cerebellopontine angle and 1 supratentorial. The clinical symptomatology is variable according to the level. Slow medullary compression is frequent. One can emphasize the special and difficult problem of foramen magnum tumours that present with a very variable clinical status frequently simulating a non surgical disease of the central nervous system. The benign and primitive appearance of these tumours is evocated by the slow and favourable evolution and by the absence of extraneurologic melanotic tumour. Our purpose is essentially to emphasize the radiological and particularly the computed tomographic (CT) findings poorly described in the literature. Benign melanomas have resemblance with meningiomas: osseous or meningeal relationship, homogeneity and high density. On the other hand the angiography shows poor vascularization. One can think that a tumor simulating a meningioma by CT but not by angiography is perhaps a benign melanoma. The special problem of the radiological diagnosis of foramen magnum tumours is evocated: Computed myelography, tridimensional imaging by NMR.

  12. A comparative computed tomographic evaluation of expression of angulation and inclination in self ligating brackets

    Directory of Open Access Journals (Sweden)

    Rehana Bashir

    2018-01-01

    Full Text Available Introduction: An important objective of orthodontic treatment is to obtain the correct angulation and inclination for all the teeth. Very few studies have been conducted so far comparing the expression of angulation and inclination in conventional and self-ligating brackets (SLBs. The present study was designed to evaluate and compare the inclination and angulation in conventional brackets and active and passive SLBs. Materials and Methods: Totally 21 patients who required four 1st premolar extractions were selected and were randomly allotted to three groups: Group 1: Conventional Brackets (3M Unitek MBT (mean age 19.14 ± 2.12 years, Group 2: Passive Brackets (Smart Clip Brackets-3M Unitek MBT (mean age 19.71 ± 1.80 years, Group 3: Active Brackets (Empower Brackets-American Orthodontics MBT (mean age 18.29 ± 2.29 years computed tomographic records were collected before the start of treatment, after leveling and aligning and at 6 months into retraction. Results: The data were evaluated using SPSS version 16.0 using one-way ANOVA and post hoc Bonferroni tests. There was no statistically significant difference in the expression of angulation and inclination in conventional, active, and passive SLB systems. Conclusion: Self-ligating brackets seem to be no better than conventional brackets when it comes to the expression of angulation and inclination.

  13. Fractal analysis of en face tomographic images obtained with full field optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wanrong; Zhu, Yue [Department of Optical Engineering, Nanjing University of Science and Technology, Jiangsu (China)

    2017-03-15

    The quantitative modeling of the imaging signal of pathological areas and healthy areas is necessary to improve the specificity of diagnosis with tomographic en face images obtained with full field optical coherence tomography (FFOCT). In this work, we propose to use the depth-resolved change in the fractal parameter as a quantitative specific biomarker of the stages of disease. The idea is based on the fact that tissue is a random medium and only statistical parameters that characterize tissue structure are appropriate. We successfully relate the imaging signal in FFOCT to the tissue structure in terms of the scattering function and the coherent transfer function of the system. The formula is then used to analyze the ratio of the Fourier transforms of the cancerous tissue to the normal tissue. We found that when the tissue changes from the normal to cancerous the ratio of the spectrum of the index inhomogeneities takes the form of an inverse power law and the changes in the fractal parameter can be determined by estimating slopes of the spectra of the ratio plotted on a log-log scale. The fresh normal and cancer liver tissues were imaged to demonstrate the potential diagnostic value of the method at early stages when there are no significant changes in tissue microstructures. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. High Speed Tomographic PIV Measurements of Copepod Sensitivity to a Suction-Feeding Predator Mimic

    Science.gov (United States)

    Yen, J.; Murphy, D. W.; Fan, L.; Skipper, A.; Webster, D. R.

    2013-11-01

    Copepods, which sense their fluid environment with long, setae-bearing antennules, often serve as prey to fish. The fluid disturbance created by fish feeding is a combination of a bow wave created by swimming towards the prey with an open mouth and a sudden, high speed flow into the fish's mouth created by suction. The sensitivity and reaction of copepods to the dynamic, high acceleration flow created by a suction feeding fish have not been well explored. In the present study, a suction feeding piscine predator mimic is developed and tested with copepods from a fish-containing (marine) environment (Calanus finmarchicus) and with copepods from a fish-less (alpine lake) environment (Hesperodiaptomus shoshone). Flow fields created by the impulsive siphon are measured with a high-speed tomographic particle image velocimetry (PIV) system. Escape success and kinematics of the two species are compared. Finally, using volumetric flow measurements, the hydrodynamic signal measured along each copepod's antennules at the time point of escape is compared between species.

  15. Computed tomographic colonography (CTC); colorectal cancer diagnosis with CTC in an Auckland population.

    Science.gov (United States)

    Moore, Helen; Dodd, Nicholas

    2013-10-01

    To determine the sensitivity of computed tomographic colonography (CTC) in the detection of colorectal cancer in our population and evaluate the reasons why these lesions may be missed on CTC. All patients who underwent CTC in the 65-month period from 1 January 2004 to 1 July 2009 were included in the analysis. Demographic data and CTC findings were recorded, according to the CT Colonography Reporting and Data System. Data were cross-matched with the National Cancer Registry results for colorectal cancer cases between 1 January 2004 and 1 October 2009, 3 months longer to include any delayed diagnoses. There were 2026 consecutive CTC patients, comprising 52.6% female, average age of 60 years; range 19-87. Approximately 84% were symptomatic. There were 45 confirmed colorectal cancers among this patient group in the National Cancer Registry during the relevant time period compared with 43 suspected cancers on CTC, giving a miss rate of 2 of 45, or 4.4%. The sensitivity of 95% for CTC in the detection of colorectal cancer compares favourably with the published national and international data. © 2013 The Authors. Journal of Medical Imaging and Radiation Oncology © 2013 The Royal Australian and New Zealand College of Radiologists.

  16. Computed tomographic colonography: colonic and extracolonic findings in an Auckland population.

    Science.gov (United States)

    Moore, Helen; Dodd, Nicholas

    2012-06-08

    To determine the nature and prevalence of colonic and extracolonic findings in our population. All patients who underwent computed tomographic colonography (CTC) in the 72-month period from 1 January 2004 to 1 January 2010 were included in the analysis. Demographic data and CTC findings were recorded, according to the CT colonography reporting and data system (CRADS). There were 2152 consecutive CTC patients; comprising 52.6% female, average age of 60 years; range 19-87. Approximately 84% were symptomatic. CRADS: Colonic findings: 99/2152 patients (4.6%) were C2 category (had 1 or 2 polyps of 6-9 mm). 77/2152 (3.6%) patients were C3 category (>9 mm polyp or >2 polyps of 6-9 mm). 55/2152 (2.5%) were C4 category (possible cancer). This comprises a total potential colonoscopy/surgery referral rate of 10.7%. Extracolonic findings: The majority were normal or clinically unimportant findings. 178/2152 (8.3%) had potentially significant extracolonic findings. Our CTC population is largely symptomatic, and there is a referral rate from CTC to colonoscopy, surgery or surveillance of 10.7%. This is similar to other NZ data and international studies. The 8.3% rate of potentially significant extracolonic findings is at the lower end of the reported range.

  17. Subclinical coronary atherosclerosis identified by coronary computed tomographic angiography in asymptomatic morbidly obese patients

    Directory of Open Access Journals (Sweden)

    Peter A. McCullough

    2010-09-01

    Full Text Available Obesity is a common public health problem and obese individuals in particular have a disproportionate incidence of acute coronary events. This study was undertaken to identify coronary artery lesions as well as associated clinical features, risk factors and demographics in patients with a body mass index (BMI >40 kg/m2 without known coronary artery disease (CAD. Morbidly obese subjects were prospectively recruited to undergo coronary computed tomographic angiography (CCTA using a dual-source computed tomography (CT system. CAD was defined as the presence of any atherosclerotic lesion in any one coronary artery segment. The presence, location, and severity of atherosclerosis were related to patient characteristics. Forty-one patients (28 women, mean age, 50.4±10.0 years, mean BMI, 43.8±4.8 kg/m2 served as the study population. Of these, 25 patients (61% had at least one coronary stenosis. All but 2 patients within the CAD cohort had coronary artery calcium (CAC scores >0, and most plaques identified (75.4% were non-calcified. There was a predilection of calcified and non-calcified atherosclerosis involving the left anterior descending (LAD coronary artery compared with other coronary segments. Univariate predictors of CAD included older age, dyslipidemia, and diabetes. In this preliminary study of young morbidly obese patients, CCTA detected a high prevalence of calcified and non-calcified CAD, although the later predominated.

  18. Results of computer-tomographic examination in different forms and course of schizophrenia

    International Nuclear Information System (INIS)

    Stojchev, R.

    1991-01-01

    Data are reported of a clinical and computer-tomographic study of 103 schizophrenic patients. Those with simple form of the disease had most pronounced evidence of dilated III and lateral ventricles (41.8% of the cases for the III ventricle and 72.4% for the lateral ventricles). All patients with circular, simple and catatonic form had signs of pathology of the cortical sulci. Regarding the ventricular system evidences of pathology prevailed in cases of impetus-progredient and constantly progredient course, whereas in respect to cortical pathology, the results were almost identical in all three types of psychosis - 95.2% of cases of constantly progredient and 95.6% - of impetus-progredient course. Attention was called to the 'surprising' data of organic brain injury in patients with paranoid and circular form of the disease, as well as in the most benign (from clinical point of view) impetus course. It is assumed that morphologic changes in the brain of schizophrenic patients are a natural phenomenon, but so far have not been a subject of comprehensive studies, maybe because of prejudice or lack of appropriate methods for examination of the brain during life's time. 6 figs., 15 refs

  19. Positron emission mammography with tomographic acquisition using dual planar detectors: initial evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Mark F Smith; Raymond R Raylman; Stan Majewski; Andrew G Weisenberger

    2004-05-01

    Positron emission mammography (PEM) with tomographic acquisition using dual planar detectors rotating about the breast can obtain complete angular sampling and has the potential to improve activity estimation compared with PEM using stationary detectors. PEM tomography (PEMT) was compared with stationary PEM for point source and compressed breast phantom studies performed with a compact dual detector system. The acquisition geometries were appropriate for the target application of PEM guidance of stereotactic core biopsy. Images were reconstructed with a three-dimensional iterative maximum likelihood expectation maximization algorithm. PEMT eliminated blurring normal to the detectors seen with stationary PEM. Depth of interaction effects distorted the shape of the point spread functions for PEMT as the angular range from normal incidence of lines of response used in image reconstruction increased. Streak artifacts in PEMT for large detector rotation increments led to the development of an expression for the maximum rotation increment that maintains complete angular sampling. Studies with a compressed breast phantom were used to investigate contrast and signal-to-noise ratio (SNR) trade-offs for different sized spherical tumor models. PEMT and PEM both had advantages depending on lesion size and detector separation. The most appropriate acquisition method for specific detection or quantitation tasks requires additional investigation.

  20. C-11-labeled octadecylamine, a potential agent for positron tomographic pulmonary metabolism studies

    International Nuclear Information System (INIS)

    Washburn, L.C.; Wallace, R.T.; Byrd, B.L.; Sun, T.T.; Coffey, J.L.; Hubner, K.F.

    1984-01-01

    C-11-Labeled straight-chain primary aliphatic amines are rapidly and selectively sequestered by lung endothelial cells, making these agents potentially useful for positron tomographic studies of the lung as a metabolic organ. However, because amines having straight chains containing 4 to 13 carbon atoms are rapidly catabolized in vivo with loss of radiolabel, quantitation of pulmonary concentration is difficult. The authors have studied the effect of structural changes on the uptake and retention of primary aliphatic amines in rat lung and found that the metabolic loss form the lung decreased with increasing length of the straight carbon chain. In fact, the lung concentration of octadecylamine, a straight-chain amine with 18 carbon atoms, was constant between 1 and 30 minutes after intravenous administration. This highly insoluble amine was solubilized using 3% aqueous human serum albumin. Unilateral, radiation-induced lung injury in the rat was used as a model to study the potential of C-11-labeled octadecylamine. Radiation-damaged (3000 and 5000 Rads) lungs had significantly lower 15-minute uptakes of the labeled amine than the corresponding nonirradiated lungs. However, at 8000 Rads the concentration in both lungs was greatly suppressed, indicating that the decrease in metabolism becomes systemic at high radiation doses. These results suggest that C-11-labeled octadecylamine is a potentially useful agent for quantitative evaluation of pulmonary metabolism by positron tomography

  1. Correlation of tomographic findings with pulmonary function parameters in nonsmoking patients with idiopathic pulmonary fibrosis

    International Nuclear Information System (INIS)

    Lopes, Agnaldo Jose; Capone, Domenico; Mogami, Roberto; Jansen, Jose Manoel .E mail: phel.lop@uol.com.br; Cunha, Daniel Leme da; Melo, Pedro Lopes de

    2007-01-01

    Objective: To correlate tomographic findings with pulmonary function parameters in patients with idiopathic pulmonary fibrosis (IPF). Methods: A cross-sectional study was carried out, in which 30 nonsmoking patients with IPF were evaluated. Using a semiquantitative scoring system, the following high-resolution computerized tomography findings were quantified: total interstitial disease (TID), reticular abnormality/honeycombing, and ground-glass opacity (GGO). The functional variables were measured by spirometry, forced oscillation technique (FOT), helium dilution method, as well as the single-breath method of measuring diffusion capacity of the lung for carbon monoxide (DLCO). Results: Of the 30 patients studied, 18 were female, and 12 were male, with a mean age of 70.9 years. We found that TID and reticular abnormality and honeycombing correlated significantly (negative correlations) with the measurements of forced vital capacity (FVC), total lung capacity (TLC), DLCO, and dynamic respiratory compliance were found, as well as that GGO correlated significantly (and positively) with residual volume/TLC. The ratio of forced expiratory flow between 25 and 75% of FVC to FVC (FEF25-75%/FVC) correlated positively with TID, reticular abnormality/honeycombing, and GGO. Conclusion: In IPF patients, the measurements of volume, diffusion, and dynamic compliance are the physiological variables which best reflect the extent of the interstitial disease on HRCT scans. (author)

  2. Correlation of tomographic findings with pulmonary function parameters in nonsmoking patients with idiopathic pulmonary fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Agnaldo Jose; Capone, Domenico; Mogami, Roberto; Jansen, Jose Manoel [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). School of Medical Sciences].E mail: phel.lop@uol.com.br; Cunha, Daniel Leme da [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Pedro Ernesto University Hospital. Dept. of Radiology and Diagnostic Imaging; Melo, Pedro Lopes de [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. of Biology

    2007-11-15

    Objective: To correlate tomographic findings with pulmonary function parameters in patients with idiopathic pulmonary fibrosis (IPF). Methods: A cross-sectional study was carried out, in which 30 nonsmoking patients with IPF were evaluated. Using a semiquantitative scoring system, the following high-resolution computerized tomography findings were quantified: total interstitial disease (TID), reticular abnormality/honeycombing, and ground-glass opacity (GGO). The functional variables were measured by spirometry, forced oscillation technique (FOT), helium dilution method, as well as the single-breath method of measuring diffusion capacity of the lung for carbon monoxide (DLCO). Results: Of the 30 patients studied, 18 were female, and 12 were male, with a mean age of 70.9 years. We found that TID and reticular abnormality and honeycombing correlated significantly (negative correlations) with the measurements of forced vital capacity (FVC), total lung capacity (TLC), DLCO, and dynamic respiratory compliance were found, as well as that GGO correlated significantly (and positively) with residual volume/TLC. The ratio of forced expiratory flow between 25 and 75% of FVC to FVC (FEF25-75%/FVC) correlated positively with TID, reticular abnormality/honeycombing, and GGO. Conclusion: In IPF patients, the measurements of volume, diffusion, and dynamic compliance are the physiological variables which best reflect the extent of the interstitial disease on HRCT scans. (author)

  3. Interior tomographic imaging for x-ray coherent scattering (Conference Presentation)

    Science.gov (United States)

    Pang, Sean; Zhu, Zheyuan

    2017-05-01

    Conventional computed tomography reconstructs the attenuation only high-dimensional images. Coherent scatter computed tomography, which reconstructs the angular dependent scattering profiles of 3D objects, can provide molecular signatures that improves the accuracy of material identification and classification. Coherent scatter tomography are traditionally acquired by setups similar to x-ray powder diffraction machine; a collimated source in combination with 2D or 1D detector collimation in order to localize the scattering point. In addition, the coherent scatter cross-section is often 3 orders of magnitude lower than that of the absorption cross-section for the same material. Coded aperture and structured illumination approaches has been shown to greatly improve the collection efficiency. In many applications, especially in security imaging and medical diagnosis, fast and accurate identification of the material composition of a small volume within the whole object would lead to an accelerated imaging procedure and reduced radiation dose. Here, we report an imaging method to reconstruct the material coherent scatter profile within a small volume. The reconstruction along one radial direction can reconstruct a scalar coherent scattering tomographic image. Our methods takes advantage of the finite support of the scattering profile in small angle regime. Our system uses a pencil beam setup without using any detector side collimation. Coherent scatter profile of a 10 mm scattering sample embedded in a 30 mm diameter phantom was reconstructed. The setup has small form factor and is suitable for various portable non-destructive detection applications.

  4. Positron emission mammography with tomographic acquisition using dual planar detectors: initial evaluations.

    Science.gov (United States)

    Smith, Mark F; Raylman, Raymond R; Majewski, Stan; Weisenberger, Andrew G

    2004-06-07

    Positron emission mammography (PEM) with tomographic acquisition using dual planar detectors rotating about the breast can obtain complete angular sampling and has the potential to improve activity estimation compared with PEM using stationary detectors. PEM tomography (PEMT) was compared with stationary PEM for point source and compressed breast phantom studies performed with a compact dual detector system. The acquisition geometries were appropriate for the target application of PEM guidance of stereotactic core biopsy. Images were reconstructed with a three-dimensional iterative maximum likelihood expectation maximization algorithm. PEMT eliminated blurring normal to the detectors seen with stationary PEM. Depth of interaction effects distorted the shape of the point spread functions for PEMT as the angular range from normal incidence of lines of response used in image reconstruction increased. Streak artefacts in PEMT for large detector rotation increments led to the development of an expression for the maximum rotation increment that maintains complete angular sampling. Studies with a compressed breast phantom were used to investigate contrast and signal-to-noise ratio (SNR) trade-offs for different sized spherical tumour models. PEMT and PEM both had advantages depending on lesion size and detector separation. The most appropriate acquisition method for specific detection or quantitation tasks requires additional investigation.

  5. Positron emission mammography with tomographic acquisition using dual planar detectors: initial evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Mark F [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Raylman, Raymond R [Center for Advanced Imaging, Department of Radiology, West Virginia University, Morgantown, WV 26506 (United States); Majewski, Stan [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Weisenberger, Andrew G [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States)

    2004-06-07

    Positron emission mammography (PEM) with tomographic acquisition using dual planar detectors rotating about the breast can obtain complete angular sampling and has the potential to improve activity estimation compared with PEM using stationary detectors. PEM tomography (PEMT) was compared with stationary PEM for point source and compressed breast phantom studies performed with a compact dual detector system. The acquisition geometries were appropriate for the target application of PEM guidance of stereotactic core biopsy. Images were reconstructed with a three-dimensional iterative maximum likelihood expectation maximization algorithm. PEMT eliminated blurring normal to the detectors seen with stationary PEM. Depth of interaction effects distorted the shape of the point spread functions for PEMT as the angular range from normal incidence of lines of response used in image reconstruction increased. Streak artefacts in PEMT for large detector rotation increments led to the development of an expression for the maximum rotation increment that maintains complete angular sampling. Studies with a compressed breast phantom were used to investigate contrast and signal-to-noise ratio (SNR) trade-offs for different sized spherical tumour models. PEMT and PEM both had advantages depending on lesion size and detector separation. The most appropriate acquisition method for specific detection or quantitation tasks requires additional investigation.

  6. Standard test method for nondestructive assay of radioactive material by tomographic gamma scanning

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method describes the nondestructive assay (NDA) of gamma ray emitting radionuclides inside containers using tomographic gamma scanning (TGS). High resolution gamma ray spectroscopy is used to detect and quantify the radionuclides of interest. The attenuation of an external gamma ray transmission source is used to correct the measurement of the emission gamma rays from radionuclides to arrive at a quantitative determination of the radionuclides present in the item. 1.2 The TGS technique covered by the test method may be used to assay scrap or waste material in cans or drums in the 1 to 500 litre volume range. Other items may be assayed as well. 1.3 The test method will cover two implementations of the TGS procedure: (1) Isotope Specific Calibration that uses standards of known radionuclide masses (or activities) to determine system response in a mass (or activity) versus corrected count rate calibration, that applies to only those specific radionuclides for which it is calibrated, and (2) Respo...

  7. Reconstruction of tomographic image from x-ray projections of a few views

    International Nuclear Information System (INIS)

    Kobayashi, Fujio; Yamaguchi, Shoichiro

    1982-01-01

    Computer tomographs have progressed rapidly, and in the latest high performance types, the photographing time has been shortened to less than 5 sec, but the clear images of hearts have not yet been obtained. The X-ray tomographs used so far irradiate X-ray from many directions and measure the projected data, but by limiting projection direction to a small number, it was planned to shorter the X-ray photographing time and to reduce X-ray exposure as the objective of this study. In this paper, a method is proposed, by which tomographic images are reconstructed from projected data in a small number of direction by generalized inverse matrix penalty method. This method is the calculation method newly devised by the authors for this purpose. It is a kind of the nonlinear planning method added with the restrictive condition using a generalized inverse matrix, and it is characterized by the simple calculation procedure and rapid convergence. Moreover, the effect on reconstructed images when errors are included in projected data was examined. Also, the simple computer simulation to reconstruct tomographic images using the projected data in four directions was performed, and the usefulness of this method was confirmed. It contributes to the development of superhigh speed tomographs in future. (Kako, I.)

  8. Assessment of 64-row computed tomographic angiography for diagnosis and pretreatment planning in pulmonary sequestration.

    Science.gov (United States)

    Ren, Jian-Zhuang; Zhang, Kai; Huang, Guo-Hao; Zhang, Meng-Fan; Zhou, Peng-Li; Han, Xin-Wei; Duan, Xu-Hua; Li, Zhen

    2014-01-01

    This study was done to evaluate the clinical implications and results of a prospective protocol using 64-row computed tomographic angiography (CTA) for diagnosis and pre-treatment planning in pulmonary sequestration (PS). Forty-five patients with suspected PS were referred for CTA examination. The accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of measures used to detect PS were determined by patient-based and aberrant systemic artery-based evaluations. The location, the size and the number of aberrant systemic arteries, and the feasibility of endovascular treatment were analysed. The capability of CTA to provide a working view and the accuracy of measurements in choosing a coil were also assessed. Digital subtraction angiography and/or surgery revealed PS in 38 patients, and 7 patients had no PS. The patient-based evaluation yielded an accuracy of 97.8 %, sensitivity of 97.4 %, specificity of 100 %, PPV of 100 % and NPV of 87.5 %, in the detection of PS. CTA clearly depicted the PS in all 38 patients, and the aberrant systemic artery was accurately demonstrated in 37 out of 38 patients where endovascular treatment was possible. Working views for endovascular treatment were found in all patients with PS, and the choice of coil was correct in 37 out of 38 patients using CTA. 64-row CTA appears to be effective in terms of supporting accurate diagnosis and pre-treatment planning in PS. CTA is not only able to provide clear visualisation of aberrant systemic arteries but also provides detailed images of abnormal lung parenchyma and the airways.

  9. Tomographic and planar radionuclide imaging in patients suspected meniscal injury: Arthroscopic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Fajman, W.A.; Diehl, M.; Dunaway, E.; Stephenson, R.; Eisner, R.; Riggins, R.S.; Berger, H.J.

    1985-05-01

    In patients (pts) with knee pain which may be related to meniscal tears, clinical judgment is used to determine whether medical management or arthroscopy is indicated. Based on the assumption that meniscal injury will result in adjacent changes in Tc-99m MDP bone images, studies using both planar and tomographic techniques were performed in 12 pts referred for arthroscopy. Planar imaging was performed in the anterior, posterior, and posterior medial and lateral oblique positions of the symptomatic knee. Single photon emission computed tomography was performed using a 64 view 360/sup 0/ acquisition of both knees. In this series, both imaging techniques were accurate in identifying abnormality, but analysis of transaxial tomographic data showed greater contrast and facilitated localization because of the better spatial orientation provided by this method. Thus, tomographic bone imaging appears valuable in defining areas of localized abnormality in the knees of pts with meniscal injury.

  10. Lamb-Wave-Based Tomographic Imaging Techniques for Hole-Edge Corrosion Monitoring in Plate Structures

    Directory of Open Access Journals (Sweden)

    Dengjiang Wang

    2016-11-01

    Full Text Available This study presents a novel monitoring method for hole-edge corrosion damage in plate structures based on Lamb wave tomographic imaging techniques. An experimental procedure with a cross-hole layout using 16 piezoelectric transducers (PZTs was designed. The A0 mode of the Lamb wave was selected, which is sensitive to thickness-loss damage. The iterative algebraic reconstruction technique (ART method was used to locate and quantify the corrosion damage at the edge of the hole. Hydrofluoric acid with a concentration of 20% was used to corrode the specimen artificially. To estimate the effectiveness of the proposed method, the real corrosion damage was compared with the predicted corrosion damage based on the tomographic method. The results show that the Lamb-wave-based tomographic method can be used to monitor the hole-edge corrosion damage accurately.

  11. MCPT: A Monte Carlo code for simulation of photon transport in tomographic scanners

    International Nuclear Information System (INIS)

    Prettyman, T.H.; Gardner, R.P.; Verghese, K.

    1990-01-01

    MCPT is a special-purpose Monte Carlo code designed to simulate photon transport in tomographic scanners. Variance reduction schemes and sampling games present in MCPT were selected to characterize features common to most tomographic scanners. Combined splitting and biasing (CSB) games are used to systematically sample important detection pathways. An efficient splitting game is used to tally particle energy deposition in detection zones. The pulse height distribution of each detector can be found by convolving the calculated energy deposition distribution with the detector's resolution function. A general geometric modelling package, HERMETOR, is used to describe the geometry of the tomographic scanners and provide MCPT information needed for particle tracking. MCPT's modelling capabilites are described and preliminary experimental validation is presented. (orig.)

  12. Registration of synthetic tomographic projection data sets using cross-correlation

    International Nuclear Information System (INIS)

    Fitchard, E.E.; Aldridge, J.S.; Reckwerdt, P.J.; Mackie, T.R.

    1998-01-01

    Tomographic registration, a method that makes possible accurate patient registration directly from projection data, consists of three processing steps: (i) manual coarse positioning, (ii) tomographic projection set acquisition, and (iii) computer mediated refined positioning. In the coarse positioning stage, the degree of patient alignment is comparable with that achieved with the standard radiotherapy set-up. However, the accuracy requirements are somewhat more relaxed in that meticulous alignment of the patient using external laser indicators is not necessary. Instead, tomographic projection sets are compared with planning CTs in order to achieve improved patient set-up. The projection sets are cross-correlated to obtain the best-fit translation and rotation offsets. The algorithm has been tested on synthetic data with the incorporation of varying amounts of Gaussian pseudo-random noise. These tests demonstrate the algorithm's stability and also confirm that alignment can be achieved with an accuracy of less than one projection pixel. (author)

  13. Directional fine structure in absorption of white x rays: A tomographic interpretation

    International Nuclear Information System (INIS)

    Korecki, P.; Szymonski, M.; Tolkiehn, M.; Novikov, D. V.; Materlik, G.

    2006-01-01

    We discuss directional fine structure in absorption of white x rays for tomographic imaging of crystal structure at the atomic level. The interference between a direct x-ray beam and the secondary waves coherently scattered inside a specimen modifies the total wave field at the position of the absorbing atoms. For a white x-ray beam, the wave field variations cancel out by energy integration for all directions, except for the near forward scattering components, coinciding with the incident beam. Therefore, two-dimensional patterns of the angular-dependent fine structure in absorption of white x rays can be interpreted as real-space projections of atomic structure. In this work, we present a theory describing the directional fine structure in white x-ray absorption and a tomographic approach for crystal structure retrieval developed on its basis. The tomographic algorithm is applied to the experimental x-ray absorption data recorded for GaP crystals

  14. A comparison of newborn stylized and tomographic models for dose assessment in paediatric radiology

    International Nuclear Information System (INIS)

    Staton, R J; Pazik, F D; Nipper, J C; Williams, J L; Bolch, W E

    2003-01-01

    Establishment of organ doses from diagnostic and interventional examinations is a key component to quantifying the radiation risks from medical exposures and for formulating corresponding dose-reduction strategies. Radiation transport models of human anatomy provide a convenient method for simulating radiological examinations. At present, two classes of models exist: stylized mathematical models and tomographic voxel models. In the present study, organ dose comparisons are made for projection radiographs of both a stylized and a tomographic model of the newborn patient. Sixteen separate radiographs were simulated for each model at x-ray technique factors typical of newborn examinations: chest, abdomen, thorax and head views in the AP, PA, left LAT and right LAT projection orientation. For AP and PA radiographs of the torso (chest, abdomen and thorax views), the effective dose assessed for the tomographic model exceeds that for the stylized model with per cent differences ranging from 19% (AP abdominal view) to 43% AP chest view. In contrast, the effective dose for the stylized model exceeds that for the tomographic model for all eight lateral views including those of the head, with per cent differences ranging from 9% (LLAT chest view) to 51% (RLAT thorax view). While organ positioning differences do exist between the models, a major factor contributing to differences in effective dose is the models' exterior trunk shape. In the tomographic model, a more elliptical shape is seen thus providing for less tissue shielding for internal organs in the AP and PA directions, with corresponding increased tissue shielding in the lateral directions. This observation is opposite of that seen in comparisons of stylized and tomographic models of the adult

  15. A tomographic study of the condyle position in temporomandibular disorders

    International Nuclear Information System (INIS)

    Choi, Sung Youn; Ryu, Young Kyu

    1988-01-01

    The aim of this study was to determine whether T.M.J. tomographic examination yielded significant difference in condyle positions among asymptomatic, myalgia, derangement, and arthrosis group of T.M.J. disorders. The author obtained sagittal linear tomograms of right and left T.M.Js. of 36 asymptomatic, 22 myalgia, 54 derangement, and 31 arthrosis patients taken at serial lateral, central, and medial sections in the intercuspal position after submentovertex radiographs analyzed. With the dual linear measurements of the posterior and anterior interarticular space, condyle positions were mathematically expressed as proportion. All data from these analysis was recorded and processed statistically. The results were obtained as follows: 1. In asymptomatic group, radiographically concentric condyle position was found in 50.0% to 65.4% of subjects, with a substance range of variability. No significant differences existed between men and women and also between right and left T.M.Js. for condyle position. 2. In women, significant difference for mean condyle position of left lateral section of each diagnostic category existed between derangement and myalgia groups (P< .05). Also that of left central section existed between derangement and myalgia group, and that of left medial section existed between derangement and myalgia groups (P< . 05). 3. In main-symptom side, condyle position in myalgia group was more concentric, and condyle position in derangement and group was more posterior. This showed significant differences between derangement and myalgia groups in lateral, central, and medial sections of main symptom side, and only between derangement and myalgia groups in central section of contra-lateral sides (P< .05). Condyle position in arthrosis group was broadly distributed among all positions. 4. In contra-lateral side, significant difference for mean condyle position of central section of each symptomatic group existed between derangement and myalgia group (P< .05

  16. A tomographic study of the condyle position in temporomandibular disorders

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sung Youn; Ryu, Young Kyu [Dept. of Oral Radiology, College of Dentistry, Yonsei University, Seoul (Korea, Republic of)

    1988-11-15

    The aim of this study was to determine whether T.M.J. tomographic examination yielded significant difference in condyle positions among asymptomatic, myalgia, derangement, and arthrosis group of T.M.J. disorders. The author obtained sagittal linear tomograms of right and left T.M.Js. of 36 asymptomatic, 22 myalgia, 54 derangement, and 31 arthrosis patients taken at serial lateral, central, and medial sections in the intercuspal position after submentovertex radiographs analyzed. With the dual linear measurements of the posterior and anterior interarticular space, condyle positions were mathematically expressed as proportion. All data from these analysis was recorded and processed statistically. The results were obtained as follows: 1. In asymptomatic group, radiographically concentric condyle position was found in 50.0% to 65.4% of subjects, with a substance range of variability. No significant differences existed between men and women and also between right and left T.M.Js. for condyle position. 2. In women, significant difference for mean condyle position of left lateral section of each diagnostic category existed between derangement and myalgia groups (P< .05). Also that of left central section existed between derangement and myalgia group, and that of left medial section existed between derangement and myalgia groups (P< . 05). 3. In main-symptom side, condyle position in myalgia group was more concentric, and condyle position in derangement and group was more posterior. This showed significant differences between derangement and myalgia groups in lateral, central, and medial sections of main symptom side, and only between derangement and myalgia groups in central section of contra-lateral sides (P< .05). Condyle position in arthrosis group was broadly distributed among all positions. 4. In contra-lateral side, significant difference for mean condyle position of central section of each symptomatic group existed between derangement and myalgia group (P< .05

  17. Software for tomographic analysis: application in ceramic filters

    International Nuclear Information System (INIS)

    Figuerola, W.B.; Assis, J.T.; Oliveira, L.F.; Lopes, R.T.

    2001-01-01

    and UNIX). Various digital image processing techniques were implemented to extract physical properties such as: distance, volume, area and perimeter; digital filters as: Median filter, Histogram equalization, threshold quantization, boundary detection (Laplace and Sobel); and for the volume rendering, the Ray Casting technique was used. The results obtained with this software permits its use in this area of ceramic filters applications and to analyses others types of tomographic images

  18. Computational diffraction tomographic microscopy with transport of intensity equation using a light-emitting diode array

    Science.gov (United States)

    Li, Jiaji; Chen, Qian; Zhang, Jialin; Zuo, Chao

    2017-10-01

    Optical diffraction tomography (ODT) is an effective label-free technique for quantitatively refractive index imaging, which enables long-term monitoring of the internal three-dimensional (3D) structures and molecular composition of biological cells with minimal perturbation. However, existing optical tomographic methods generally rely on interferometric configuration for phase measurement and sophisticated mechanical systems for sample rotation or beam scanning. Thereby, the measurement is suspect to phase error coming from the coherent speckle, environmental vibrations, and mechanical error during data acquisition process. To overcome these limitations, we present a new ODT technique based on non-interferometric phase retrieval and programmable illumination emitting from a light-emitting diode (LED) array. The experimental system is built based on a traditional bright field microscope, with the light source replaced by a programmable LED array, which provides angle-variable quasi-monochromatic illumination with an angular coverage of +/-37 degrees in both x and y directions (corresponding to an illumination numerical aperture of ˜ 0.6). Transport of intensity equation (TIE) is utilized to recover the phase at different illumination angles, and the refractive index distribution is reconstructed based on the ODT framework under first Rytov approximation. The missing-cone problem in ODT is addressed by using the iterative non-negative constraint algorithm, and the misalignment of the LED array is further numerically corrected to improve the accuracy of refractive index quantification. Experiments on polystyrene beads and thick biological specimens show that the proposed approach allows accurate refractive index reconstruction while greatly reduced the system complexity and environmental sensitivity compared to conventional interferometric ODT approaches.

  19. Temporal bone anomalies in the branchio-oto-renal syndrome: detailed computed tomographic and magnetic resonance imaging findings.

    NARCIS (Netherlands)

    Ceruti, S.; Stinckens, C.I.C.; Cremers, C.W.R.J.; Casselman, J.W.

    2002-01-01

    OBJECTIVE: To inventory computed tomographic and magnetic resonance imaging findings in the branchio-oto-renal (BOR) syndrome. STUDY DESIGN: A prospective computed tomographic and magnetic resonance imaging study on a family with the BOR syndrome. SETTING: Department of medical imaging and magnetic

  20. 3D UWB Magnitude-Combined Tomographic Imaging for Biomedical Applications. Algorithm Validation

    Directory of Open Access Journals (Sweden)

    S. Capdevila

    2011-06-01

    Full Text Available Biomedical microwave imaging is a topic of continuous research for its potential in different areas especially in breast cancer detection. In this paper, 3D UWB Magnitude-Combined tomographic algorithm is assessed for this recurrent application, but also for a more challenging one such as brain stroke detection. With the UWB Magnitude-Combined concept, the algorithm can take advantage of both the efficiency of Fourier Diffraction Theorem-based tomographic formulation and the robustness and image quality improvement provided by a multi-frequency combination.

  1. Micro-computed tomographic analysis of the root canal morphology of the distal root of mandibular first molar.

    Science.gov (United States)

    Filpo-Perez, Carolina; Bramante, Clovis Monteiro; Villas-Boas, Marcelo Haas; Húngaro Duarte, Marco Antonio; Versiani, Marco Aurélio; Ordinola-Zapata, Ronald

    2015-02-01

    The aim of this study was to evaluate the morphologic aspects of the root canal anatomy of the distal root of a mandibular first molar using micro-computed tomographic analysis. One-hundred distal roots of mandibular first molars were scanned using a micro-computed tomographic device at an isotropic resolution of 19.6 μm. The percentage frequency distribution of the morphologic configuration of the root canal was performed according to the Vertucci classification system. Two-dimensional parameters (area, perimeter, roundness, aspect ratio, and major and minor diameters) and the cross-sectional shape of the root canal were analyzed in the apical third at every 1-mm interval from the main apical foramen in roots presenting Vertucci types I and II configurations (n = 79). Data were statistically compared using the Kruskal-Wallis and Dunn tests with a significance level set at 5%. Seventy-six percent of the distal roots had a single root canal. Two, three, and four canals were found in 13%, 8%, and 3% of the sample, respectively. In 13 specimens, the configuration of the root canal did not fit into Vertucci's classification. Overall, 2-dimensional parameter values significantly increased at the 3-mm level (P < .05). The prevalence of oval canals was higher at the 1-mm level and decreased at the 5-mm level in which long oval and flattened canals were more prevalent. The distal roots of the mandibular first molars showed a high prevalence of single root canals. The prevalence of long oval and flattened canals increased in the coronal direction. In 13% of the samples, canal configurations that were not included in Vertucci's configuration system were found. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. The 3D tomographic image reconstruction software for prompt-gamma measurement of the boron neutron capture therapy

    International Nuclear Information System (INIS)

    Morozov, Boris; Auterinen, Iiro; Kotiluoto, Petri; Kortesniemi, Mika

    2006-01-01

    A tomographic imaging system based on the spatial distribution measurement of the neutron capture reaction during Boron Neutron Capture Therapy (BNCT) would be very useful for clinical purpose. Using gamma-detectors in a 2D-panel, boron neutron capture and hydrogen neutron capture gamma-rays emitted by the neutron irradiated region can be detected, and an image of the neutron capture events can be reconstructed. A 3D reconstruction software package has been written to support the development of a 3D prompt-gamma tomographic system. The package consists of three independent modules: phantom generation, reconstruction and evaluation modules. The reconstruction modules are based on algebraic approach of the iterative reconstruction algorithm (ART), and on the maximum likelihood estimation method (ML-EM). In addition to that, two subsets of the ART, the simultaneous iterative reconstruction technique (SIRT) and the component averaging algorithms (CAV) have been included to the package employing parallel codes for multiprocessor architecture. All implemented algorithms use two different field functions for the reconstruction of the region. One is traditional voxel function, another is, so called, blob function, smooth spherically symmetric generalized Kaiser-Bessel function. The generation module provides the phantom and projections with background by tracing the prompt gamma-rays for a given scanner geometry. The evaluation module makes statistical comparisons between the generated and reconstructed images, and provides figure-of-merit (FOM) values for the applied reconstruction algorithms. The package has been written in C language and tested under Linux and Windows platforms. The simple graphical user interface (GUI) is used for command execution and visualization purposed. (author)

  3. All-optical OFDM system using a wavelength selective switch based transmitter and a spectral magnification based receiver

    DEFF Research Database (Denmark)

    Guan, Pengyu; Lefrancois, S.; Lillieholm, Mads

    2014-01-01

    We demonstrate an AO-OFDM system with a WSS-based transmitter and time-lens based receiver for spectral magnification, achieving BER~10-9 for a 28×10 Gbit/s DPSK AO-OFDM signal. Furthermore, the receiver performance for DPSK and DQPSK is investigated using Monte Carlo simulations....

  4. Evaluation of quality of tomographs of Rio de Janeiro state, Brazil

    International Nuclear Information System (INIS)

    Travassos, P.C.B.; Belem, V.R.; Magalhaes, L.A.; Almeida, C.E.A. de

    2014-01-01

    Computerized tomographs used in 56 institutions in the state of Rio de Janeiro were evaluated. Criteria of image quality and dosimetry were submitted. The results showed that some not performed optimize their protocols examinations or perform wrongly, which results in an increase in the dose received by patients, and an image in compromised quality. (author)

  5. Determination of pressure and load characteristics of flexible revolving wings by means of tomographic PIV

    NARCIS (Netherlands)

    van de Meerendonk, R.; Perçin, M.; van Oudheusden, B.W.

    2016-01-01

    This study explores the flow field and fluid-dynamic loads generated by revolving low-aspect-ratio wings. The pressure field and load characteristics are successfully reconstructed from the phase-locked tomographic measurements in three independently measured volumes along the span of the wing. The

  6. Tomographic Image Reconstruction Using an Interpolation Method for Tree Decay Detection

    Science.gov (United States)

    Hailin Feng; Guanghui Li; Sheng Fu; Xiping Wang

    2014-01-01

    Stress wave velocity has been traditionally regarded as an indicator of the extent of damage inside wood. This paper aimed to detect internal decay of urban trees through reconstructing tomographic image of the cross section of a tree trunk. A grid model covering the cross section area of a tree trunk was defined with some assumptions. Stress wave data were processed...

  7. Rapid tomographic reconstruction based on machine learning for time-resolved combustion diagnostics

    Science.gov (United States)

    Yu, Tao; Cai, Weiwei; Liu, Yingzheng

    2018-04-01

    Optical tomography has attracted surged research efforts recently due to the progress in both the imaging concepts and the sensor and laser technologies. The high spatial and temporal resolutions achievable by these methods provide unprecedented opportunity for diagnosis of complicated turbulent combustion. However, due to the high data throughput and the inefficiency of the prevailing iterative methods, the tomographic reconstructions which are typically conducted off-line are computationally formidable. In this work, we propose an efficient inversion method based on a machine learning algorithm, which can extract useful information from the previous reconstructions and build efficient neural networks to serve as a surrogate model to rapidly predict the reconstructions. Extreme learning machine is cited here as an example for demonstrative purpose simply due to its ease of implementation, fast learning speed, and good generalization performance. Extensive numerical studies were performed, and the results show that the new method can dramatically reduce the computational time compared with the classical iterative methods. This technique is expected to be an alternative to existing methods when sufficient training data are available. Although this work is discussed under the context of tomographic absorption spectroscopy, we expect it to be useful also to other high speed tomographic modalities such as volumetric laser-induced fluorescence and tomographic laser-induced incandescence which have been demonstrated for combustion diagnostics.

  8. Large-scale volumetric pressure from tomographic PTV with HFSB tracers

    Science.gov (United States)

    Schneiders, Jan F. G.; Caridi, Giuseppe C. A.; Sciacchitano, Andrea; Scarano, Fulvio

    2016-11-01

    The instantaneous volumetric pressure in the near-wake of a truncated cylinder is measured by use of tomographic particle tracking velocimetry (PTV) using helium-filled soap bubbles (HFSB) as tracers. The measurement volume is several orders of magnitude larger than that reported in tomographic experiments dealing with pressure from particle image velocimetry (PIV). The near-wake of a truncated cylinder installed on a flat plate ( Re D = 3.5 × 104) features both wall-bounded turbulence and large-scale unsteady flow separation. The instantaneous pressure is calculated from the time-resolved 3D velocity distribution by invoking the momentum equation. The experiments are conducted simultaneously with surface pressure measurements intended for validation of the technique. The study shows that time-averaged pressure and root-mean-squared pressure fluctuations can be accurately measured both in the fluid domain and at the solid surface by large-scale tomographic PTV with HFSB as tracers, with significant reduction in manufacturing complexity for the wind-tunnel model and circumventing the need to install pressure taps or transducers. The measurement over a large volume eases the extension toward the free-stream regime, providing a reliable boundary condition for the solution of the Poisson equation for pressure. The work demonstrates, in the case of the flow past a truncated cylinder, the use of HFSB tracer particles for pressure measurement in air flows in a measurement volume that is two orders of magnitude larger than that of conventional tomographic PIV.

  9. Spiral computed tomographic imaging related to computerized ultrasonographic images of carotid plaque morphology and histology

    DEFF Research Database (Denmark)

    Grønholdt, Marie-Louise; Wagner, A; Wiebe, B M

    2001-01-01

    Echolucency of carotid atherosclerotic plaques, as evaluated by computerized B-mode ultrasonographic images, has been associated with an increased incidence of brain infarcts on cerebral computed tomographic scans. We tested the hypotheses that characterization of carotid plaques on spiral comput...

  10. Characteristics of high-risk coronary plaques identified by computed tomographic angiography and associated prognosis

    DEFF Research Database (Denmark)

    Thomsen, Camilla; Abdulla, Jawdat

    2016-01-01

    To clarify the potential role of coronary computed tomographic angiography (CCTA) in characterizing and prognosticating high-risk coronary plaques. A systematic review and meta-analysis were conducted to compare high-risk vs. low-risk plaques and culprit vs. non-culprit lesions in patients with a...

  11. Connections model for tomographic images reconstruction; Modelo conexionista para reconstrucao de imagens tomograficas

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, R.G.S.; Pela, C.A.; Roque, S.F. A.C. [Departamento de Fisica e Matematica (FFCLRP) USP. Av. Bandeirantes, 3900- 14040- 901- Ribeirao Preto, Sao Paulo (Brazil)

    1998-12-31

    This paper shows an artificial neural network with an adequately topology for tomographic image reconstruction. The associated error function is derived and the learning algorithm is make. The simulated results are presented and demonstrate the existence of a generalized solution for nets with linear activation function. (Author)

  12. Investigating Gravity Waves in Polar Mesospheric Clouds Using Tomographic Reconstructions of AIM Satellite Imagery

    Science.gov (United States)

    Hart, V. P.; Taylor, M. J.; Doyle, T. E.; Zhao, Y.; Pautet, P.-D.; Carruth, B. L.; Rusch, D. W.; Russell, J. M.

    2018-01-01

    This research presents the first application of tomographic techniques for investigating gravity wave structures in polar mesospheric clouds (PMCs) imaged by the Cloud Imaging and Particle Size instrument on the NASA AIM satellite. Albedo data comprising consecutive PMC scenes were used to tomographically reconstruct a 3-D layer using the Partially Constrained Algebraic Reconstruction Technique algorithm and a previously developed "fanning" technique. For this pilot study, a large region (760 × 148 km) of the PMC layer (altitude 83 km) was sampled with a 2 km horizontal resolution, and an intensity weighted centroid technique was developed to create novel 2-D surface maps, characterizing the individual gravity waves as well as their altitude variability. Spectral analysis of seven selected wave events observed during the Northern Hemisphere 2007 PMC season exhibited dominant horizontal wavelengths of 60-90 km, consistent with previous studies. These tomographic analyses have enabled a broad range of new investigations. For example, a clear spatial anticorrelation was observed between the PMC albedo and wave-induced altitude changes, with higher-albedo structures aligning well with wave troughs, while low-intensity regions aligned with wave crests. This result appears to be consistent with current theories of PMC development in the mesopause region. This new tomographic imaging technique also provides valuable wave amplitude information enabling further mesospheric gravity wave investigations, including quantitative analysis of their hemispheric and interannual characteristics and variations.

  13. Computed Tomographic Airway Morphology in Chronic Obstructive Pulmonary Disease. Remodeling or Innate Anatomy?

    Science.gov (United States)

    Diaz, Alejandro A; Estépar, Raul San José; Washko, George R

    2016-01-01

    Computed tomographic measures of central airway morphology have been used in clinical, epidemiologic, and genetic investigation as an inference of the presence and severity of small-airway disease in smokers. Although several association studies have brought us to believe that these computed tomographic measures reflect airway remodeling, a careful review of such data and more recent evidence may reveal underappreciated complexity to these measures and limitations that prompt us to question that belief. This Perspective offers a review of seminal papers and alternative explanations of their data in the light of more recent evidence. The relationships between airway morphology and lung function are observed in subjects who never smoked, implying that native airway structure indeed contributes to lung function; computed tomographic measures of central airways such as wall area, lumen area, and total bronchial area are smaller in smokers with chronic obstructive pulmonary disease versus those without chronic obstructive pulmonary disease; and the airways are smaller as disease severity increases. The observations suggest that (1) native airway morphology likely contributes to the relationships between computed tomographic measures of airways and lung function; and (2) the presence of smaller airways in those with chronic obstructive pulmonary disease versus those without chronic obstructive pulmonary disease as well as their decrease with disease severity suggests that smokers with chronic obstructive pulmonary disease may simply have smaller airways to begin with, which put them at greater risk for the development of smoking-related disease.

  14. Pressure estimation from single-snapshot tomographic PIV in a turbulent boundary layer

    NARCIS (Netherlands)

    Schneiders, J.F.G.; Pröbsting, S.; Dwight, R.P.; Van Oudheusden, B.W.; Scarano, F.

    2016-01-01

    A method is proposed to determine the instantaneous pressure field from a single tomographic PIV velocity snapshot and is applied to a flat-plate turbulent boundary layer. The main concept behind the single-snapshot pressure evaluation method is to approximate the flow acceleration using the

  15. An efficient and accurate approach to MTE-MART for time-resolved tomographic PIV

    NARCIS (Netherlands)

    Lynch, KP; Scarano, F.

    2015-01-01

    The motion-tracking-enhanced MART (MTE-MART; Novara et al. in Meas Sci Technol 21:035401, 2010) has demonstrated the potential to increase the accuracy of tomographic PIV by the combined use of a short sequence of non-simultaneous recordings. A clear bottleneck of the MTE-MART technique has been

  16. An efficient and accurate approach to MTE-MART for time-resolved tomographic PIV

    NARCIS (Netherlands)

    Lynch, K.P.; Scarano, F.

    2015-01-01

    The motion-tracking-enhanced MART (MTE-MART; Novara et al. in Meas Sci Technol 21:035401, 2010) has demonstrated the potential to increase the accuracy of tomographic PIV by the combined use of a short sequence of non-simultaneous recordings. A clear bottleneck of the MTE-MART technique has been its

  17. Ratios between effective doses for tomographic and mathematician models due to internal exposure of photons

    International Nuclear Information System (INIS)

    Lima, F.R.A.; Kramer, R.; Khoury, H.J.; Santos, A.M.; Loureiro, E.C.M.

    2005-01-01

    The development of new and sophisticated Monte Carlo codes and tomographic human phantoms or voxels motivated the International Commission on Radiological Protection (ICRP) to revise the traditional models of exposure, which have been used to calculate effective dose coefficients for organs and tissues based on mathematician phantoms known as MIRD5. This paper shows the results of calculations using tomographic phantoms MAX (Male Adult voXel) and FAX (Female Adult voXel), recently developed by the authors as well as with the phantoms ADAM and EVA, of specific genres, type MIRD5, coupled to the EGS4 Monte Carlo and MCNP4C codes, for internal exposure with photons of energies between 10 keV and 4 MeV to several organs sources. Effective Doses for both models, tomographic and mathematician, will be compared separately as a function of the Monte Carlo code replacement, of compositions of human tissues and the anatomy reproduced through tomographs. The results indicate that for photon internal exposure, the use of models of exposure based in voxel, increases the values of effective doses up to 70% for some organs sources considered in this study, when compared with the corresponding results obtained with phantoms of MIRD-5 type

  18. Constraining fault interpretation through tomographic velocity gradients: application to northern Cascadia

    Directory of Open Access Journals (Sweden)

    K. Ramachandran

    2012-02-01

    Full Text Available Spatial gradients of tomographic velocities are seldom used in interpretation of subsurface fault structures. This study shows that spatial velocity gradients can be used effectively in identifying subsurface discontinuities in the horizontal and vertical directions. Three-dimensional velocity models constructed through tomographic inversion of active source and/or earthquake traveltime data are generally built from an initial 1-D velocity model that varies only with depth. Regularized tomographic inversion algorithms impose constraints on the roughness of the model that help to stabilize the inversion process. Final velocity models obtained from regularized tomographic inversions have smooth three-dimensional structures that are required by the data. Final velocity models are usually analyzed and interpreted either as a perturbation velocity model or as an absolute velocity model. Compared to perturbation velocity model, absolute velocity models have an advantage of providing constraints on lithology. Both velocity models lack the ability to provide sharp constraints on subsurface faults. An interpretational approach utilizing spatial velocity gradients applied to northern Cascadia shows that subsurface faults that are not clearly interpretable from velocity model plots can be identified by sharp contrasts in velocity gradient plots. This interpretation resulted in inferring the locations of the Tacoma, Seattle, Southern Whidbey Island, and Darrington Devil's Mountain faults much more clearly. The Coast Range Boundary fault, previously hypothesized on the basis of sedimentological and tectonic observations, is inferred clearly from the gradient plots. Many of the fault locations imaged from gradient data correlate with earthquake hypocenters, indicating their seismogenic nature.

  19. Tomographic PIV investigation on coherent vortex structures over shark-skin-inspired drag-reducing riblets

    Science.gov (United States)

    Yang, Shao-Qiong; Li, Shan; Tian, Hai-Ping; Wang, Qing-Yi; Jiang, Nan

    2016-04-01

    Nature has shown us that the microstructure of the skin of fast-swimming sharks in the ocean can reduce the skin friction drag due to the well-known shark-skin effect. In the present study, the effect of shark-skin-inspired riblets on coherent vortex structures in a turbulent boundary layer (TBL) is investigated. This is done by means of tomographic particle image velocimetry (TPIV) measurements in channel flows over an acrylic plate of drag-reducing riblets at a friction Reynolds number of 190. The turbulent flows over drag-reducing riblets are verified by a planar time-resolved particle image velocimetry (TRPIV) system initially, and then the TPIV measurements are performed. Two-dimensional (2D) experimental results with a drag-reduction rate of around 4.81 % are clearly visible over triangle riblets with a peak-to-peak spacing s+ of 14, indicating from the drag-reducing performance that the buffer layer within the TBL has thickened; the logarithmic law region has shifted upward and the Reynolds shear stress decreased. A comparison of the spatial topological distributions of the spanwise vorticity of coherent vortex structures extracted at different wall-normal heights through the improved quadrant splitting method shows that riblets weaken the amplitudes of the spanwise vorticity when ejection (Q2) and sweep (Q4) events occur at the near wall, having the greatest effect on Q4 events in particular. The so-called quadrupole statistical model for coherent structures in the whole TBL is verified. Meanwhile, their spatial conditional-averaged topological shapes and the spatial scales of quadrupole coherent vortex structures as a whole in the overlying turbulent flow over riblets are changed, suggesting that the riblets dampen the momentum and energy exchange between the regions of near-wall and outer portion of the TBL by depressing the bursting events (Q2 and Q4), thereby reducing the skin friction drag.

  20. A distribution-based parametrization for improved tomographic imaging of solute plumes

    Science.gov (United States)

    Pidlisecky, Adam; Singha, K.; Day-Lewis, F. D.

    2011-01-01

    Difference geophysical tomography (e.g. radar, resistivity and seismic) is used increasingly for imaging fluid flow and mass transport associated with natural and engineered hydrologic phenomena, including tracer experiments, in situ remediation and aquifer storage and recovery. Tomographic data are collected over time, inverted and differenced against a background image to produce 'snapshots' revealing changes to the system; these snapshots readily provide qualitative information on the location and morphology of plumes of injected tracer, remedial amendment or stored water. In principle, geometric moments (i.e. total mass, centres of mass, spread, etc.) calculated from difference tomograms can provide further quantitative insight into the rates of advection, dispersion and mass transfer; however, recent work has shown that moments calculated from tomograms are commonly biased, as they are strongly affected by the subjective choice of regularization criteria. Conventional approaches to regularization (Tikhonov) and parametrization (image pixels) result in tomograms which are subject to artefacts such as smearing or pixel estimates taking on the sign opposite to that expected for the plume under study. Here, we demonstrate a novel parametrization for imaging plumes associated with hydrologic phenomena. Capitalizing on the mathematical analogy between moment-based descriptors of plumes and the moment-based parameters of probability distributions, we design an inverse problem that (1) is overdetermined and computationally efficient because the image is described by only a few parameters, (2) produces tomograms consistent with expected plume behaviour (e.g. changes of one sign relative to the background image), (3) yields parameter estimates that are readily interpreted for plume morphology and offer direct insight into hydrologic processes and (4) requires comparatively few data to achieve reasonable model estimates. We demonstrate the approach in a series of

  1. Computed tomographic-guided iodine-125 interstitial implants for malignant thoracic tumors

    International Nuclear Information System (INIS)

    Huang, Qiming; Chen, Jin; Chen, Qunlin; Lai, Qingquan; Cai, Siqing; Luo, Kaidong; Lin, Zhengyu

    2013-01-01

    Purpose: To evaluate the feasibility and efficacy of percutaneous interstitial brachytherapy using iodine-125 ( 125 I) radioactive seeds under computed tomographic (CT) guidance for malignant thoracic tumors. Materials and methods: Forty-one patients (34 males, 7 females; 18–90 years; mean, 63.7 years) with 77 lesions (3 in the mediastinum, 7 in the chest wall, 67 in the lung) underwent percutaneous interstitial implantation of 125 I radioactive seeds under CT guidance. A treatment planning system (TPS) was employed to calculate the number and distribution of seeds preoperatively. An 18-G needle was inserted into the lesions under CT guidance and send the seeds according to TPS. Two patients with mediastinal lesions undergoing seed implantation received an artificial pneumothorax. One patient with lung carcinoma adjacent to the anterior mediastinum underwent seed implantation through the sternum. Follow-up CT was done every 2 months postoperatively. Results: The procedure was successful in all patients. No major procedure-associated death occurred. The mean duration of follow-up was 19.4 ± 1.3 months (3–49 months). A complete response (CR) was seen in 49 lesions (63.6%), partial response (PR) in 9 lesions (11.7%), stable disease (SD) in 12 lesions (12.8%), and progressive disease (PD) in 7 lesions (7.4%). The overall response rate (CR + PR) was 75.3%; the local control rate (CR + PR + SD) was 90.9%. The 1-, 2- and 3-year progression-free rates for local tumors were 91%, 88% and 88%, respectively. The 1-, 2- and 3-year survival rates were 87%, 74% and 68%, respectively. Conclusion: Implantation of CT-guided 125 I seeds is feasible and effective for patients with malignant thoracic tumors

  2. Imaging of 3-D seismic velocity structure of Southern Sumatra region using double difference tomographic method

    Energy Technology Data Exchange (ETDEWEB)

    Lestari, Titik, E-mail: t2klestari@gmail.com [Meteorological Climatological and Geophysical Agency (MCGA), Jalan Angkasa I No.2 Kemayoran, Jakarta Pusat, 10720 (Indonesia); Faculty of Earth Science and Technology, Bandung Institute of Technology, Jalan Ganesa No.10, Bandung 40132 (Indonesia); Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id [Global Geophysical Research Group, Faculty of Mining and Petroleum Engineering, Bandung Institute of Technology, Jalan Ganesa 10 Bandung 40132 (Indonesia)

    2015-04-24

    Southern Sumatra region has a high level of seismicity due to the influence of the subduction system, Sumatra fault, Mentawai fault and stretching zone activities. The seismic activities of Southern Sumatra region are recorded by Meteorological Climatological and Geophysical Agency (MCGA’s) Seismograph network. In this study, we used earthquake data catalog compiled by MCGA for 3013 events from 10 seismic stations around Southern Sumatra region for time periods of April 2009 – April 2014 in order to invert for the 3-D seismic velocities structure (Vp, Vs, and Vp/Vs ratio). We applied double-difference seismic tomography method (tomoDD) to determine Vp, Vs and Vp/Vs ratio with hypocenter adjustment. For the inversion procedure, we started from the initial 1-D seismic velocity model of AK135 and constant Vp/Vs of 1.73. The synthetic travel time from source to receiver was calculated using ray pseudo-bending technique, while the main tomographic inversion was applied using LSQR method. The resolution model was evaluated using checkerboard test and Derivative Weigh Sum (DWS). Our preliminary results show low Vp and Vs anomalies region along Bukit Barisan which is may be associated with weak zone of Sumatran fault and migration of partial melted material. Low velocity anomalies at 30-50 km depth in the fore arc region may indicated the hydrous material circulation because the slab dehydration. We detected low seismic seismicity in the fore arc region that may be indicated as seismic gap. It is coincides contact zone of high and low velocity anomalies. And two large earthquakes (Jambi and Mentawai) also occurred at the contact of contrast velocity.

  3. Evaluation of a 3D point cloud tetrahedral tomographic reconstruction method

    International Nuclear Information System (INIS)

    Pereira, N F; Sitek, A

    2010-01-01

    Tomographic reconstruction on an irregular grid may be superior to reconstruction on a regular grid. This is achieved through an appropriate choice of the image space model, the selection of an optimal set of points and the use of any available prior information during the reconstruction process. Accordingly, a number of reconstruction-related parameters must be optimized for best performance. In this work, a 3D point cloud tetrahedral mesh reconstruction method is evaluated for quantitative tasks. A linear image model is employed to obtain the reconstruction system matrix and five point generation strategies are studied. The evaluation is performed using the recovery coefficient, as well as voxel- and template-based estimates of bias and variance measures, computed over specific regions in the reconstructed image. A similar analysis is performed for regular grid reconstructions that use voxel basis functions. The maximum likelihood expectation maximization reconstruction algorithm is used. For the tetrahedral reconstructions, of the five point generation methods that are evaluated, three use image priors. For evaluation purposes, an object consisting of overlapping spheres with varying activity is simulated. The exact parallel projection data of this object are obtained analytically using a parallel projector, and multiple Poisson noise realizations of these exact data are generated and reconstructed using the different point generation strategies. The unconstrained nature of point placement in some of the irregular mesh-based reconstruction strategies has superior activity recovery for small, low-contrast image regions. The results show that, with an appropriately generated set of mesh points, the irregular grid reconstruction methods can out-perform reconstructions on a regular grid for mathematical phantoms, in terms of the performance measures evaluated.

  4. A three-dimensional strain measurement method in elastic transparent materials using tomographic particle image velocimetry.

    Directory of Open Access Journals (Sweden)

    Azuma Takahashi

    Full Text Available The mechanical interaction between blood vessels and medical devices can induce strains in these vessels. Measuring and understanding these strains is necessary to identify the causes of vascular complications. This study develops a method to measure the three-dimensional (3D distribution of strain using tomographic particle image velocimetry (Tomo-PIV and compares the measurement accuracy with the gauge strain in tensile tests.The test system for measuring 3D strain distribution consists of two cameras, a laser, a universal testing machine, an acrylic chamber with a glycerol water solution for adjusting the refractive index with the silicone, and dumbbell-shaped specimens mixed with fluorescent tracer particles. 3D images of the particles were reconstructed from 2D images using a multiplicative algebraic reconstruction technique (MART and motion tracking enhancement. Distributions of the 3D displacements were calculated using a digital volume correlation. To evaluate the accuracy of the measurement method in terms of particle density and interrogation voxel size, the gauge strain and one of the two cameras for Tomo-PIV were used as a video-extensometer in the tensile test. The results show that the optimal particle density and interrogation voxel size are 0.014 particles per pixel and 40 × 40 × 40 voxels with a 75% overlap. The maximum measurement error was maintained at less than 2.5% in the 4-mm-wide region of the specimen.We successfully developed a method to experimentally measure 3D strain distribution in an elastic silicone material using Tomo-PIV and fluorescent particles. To the best of our knowledge, this is the first report that applies Tomo-PIV to investigate 3D strain measurements in elastic materials with large deformation and validates the measurement accuracy.

  5. Resolving vorticity and dissipation in a turbulent boundary layer by tomographic PTV and VIC+

    Science.gov (United States)

    Schneiders, Jan F. G.; Scarano, Fulvio; Elsinga, Gerrit E.

    2017-04-01

    The existing time-resolved tomographic particle image velocimetry (PIV) measurements by Jodai and Elsinga (J Fluid Mech 795:611-633; Jodai, Elsinga, J Fluid Mech 795:611-633, 2016) in a turbulent boundary layer ( Re θ = 2038) are reprocessed using tomographic particle tracking velocimetry (PTV) and vortex-in-cell-plus (VIC+). The resulting small-scale flow properties, i.e. vorticity and turbulence dissipation, are compared. The VIC+ technique was recently proposed and uses the concept of pouring time into space to increase reconstruction quality of instantaneous velocity. The tomographic PTV particle track measurements are interpolated using VIC+ to a dense grid, making use of both particle velocity and Lagrangian acceleration. Comparison of the vortical structures by visualization of isosurfaces of vorticity magnitude shows that the two methods return similar coherent vortical structures, but their strength in terms of vorticity magnitude is increased when using VIC+, which suggests an improvement in spatial resolution. Further statistical evaluation shows that the root mean square (rms) of vorticity fluctuations from tomographic PIV is approximately 40% lower in comparison to a reference profile available from a DNS simulation, while the VIC+ technique returns rms vorticity fluctuations to within 10% of the reference. The dissipation rate is heavily underestimated by tomographic PIV with approximately 50% damping, whereas the VIC+ analysis yields a dissipation rate to within approximately 5% for y + > 25. The fact that dissipation can be directly measured by a volumetric experiment is novel. It differs from existing approaches that involve 2d measurements combined with isotropic turbulence assumptions or apply corrections based on sub-grid scale turbulence modelling. Finally, the study quantifies the spatial response of VIC+ with a sine-wave lattice analysis. The results indicate a twofold increase of spatial resolution with respect to cross

  6. Preliminary study of an angiographic and angio-tomographic technique based on K-edge filters

    Energy Technology Data Exchange (ETDEWEB)

    Golosio, Bruno; Brunetti, Antonio [Dipartimento POLCOMING, Istituto di Matematica e Fisica, Università di Sassari, 07100 Sassari (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari (Italy); Oliva, Piernicola; Carpinelli, Massimo [Dipartimento di Chimica e Farmacia, Università di Sassari, 07100 Sassari (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari (Italy); Luca Masala, Giovanni [Dipartimento di Chimica e Farmacia, Università di Sassari, 07100 Sassari (Italy); Meloni, Francesco [Unità operativa di Diagnostica per immagini Asl n. 1, Ospedale Civile SS Annunziata, 07100 Sassari (Italy); Battista Meloni, Giovanni [Istituto di Scienze Radiologiche, Università di Sassari, 07100 Sassari (Italy)

    2013-08-14

    Digital Subtraction Angiography is commonly affected by artifacts due to the patient movements during the acquisition of the images without and with the contrast medium. This paper presents a preliminary study on an angiographic and angio-tomographic technique based on the quasi-simultaneous acquisition of two images, obtained using two different filters at the exit of an X-ray tube. One of the two filters (K-edge filter) contains the same chemical element used as a contrast agent (gadolinium in this study). This filter absorbs more radiation with energy just above the so called K-edge energy of gadolinium than the radiation with energy just below it. The other filter (an aluminium filter in this study) is simply used to suppress the low-energy contribution to the spectrum. Using proper calibration curves, the two images are combined to obtain an image of the contrast agent distribution. In the angio-tomographic application of the proposed technique two images, corresponding to the two filter types, are acquired for each viewing angle of the tomographic scan. From the two tomographic reconstructions, it is possible to obtain a three-dimensional map of the contrast agent distribution. The technique was tested on a sample consisting of a rat skull placed inside a container filled with water. Six small cylinders with 4.7 mm internal diameter containing the contrast medium at different concentrations were placed inside the skull. In the plain angiographic application of the technique, five out of six cylinders were visible, with gadolinium concentration down to 0.96%. In the angio-tomographic application, all six cylinders were visible, with gadolinium concentration down to 0.49%. This preliminary study shows that the proposed technique can provide images of the contrast medium at low concentration without most of the artifacts that are present in images produced by conventional techniques. The results encourage further investigation on the feasibility of a clinical

  7. Detection of various anatomic patterns of root canals in mandibular incisors using digital periapical radiography, 3 cone-beam computed tomographic scanners, and micro-computed tomographic imaging.

    Science.gov (United States)

    Paes da Silva Ramos Fernandes, Luciana Maria; Rice, Dwight; Ordinola-Zapata, Ronald; Alvares Capelozza, Ana Lucia; Bramante, Clovis Monteiro; Jaramillo, David; Christensen, Heidi

    2014-01-01

    The purpose of this study was to compare the accuracy of digital periapical (PA) radiography and 3 cone-beam computed tomographic (CBCT) scanners in the identification of various internal anatomic patterns in mandibular incisors. Forty mandibular incisors were scanned using micro-computed tomographic imaging as the gold standard to establish the internal anatomic pattern. The number of root canals and internal patterns were classified into type I (single canal, n = 12), type Ia (single oval canal, n = 12), and type III (2 canals, n = 16). The teeth were placed in a human mandible, and digital PA radiography and 3 CBCT scans (Kodak 9000 3D [Carestream Health, Rochester, NY], Veraviewepocs 3De [J Morita MFG Corp, Kyoto, Japan], NewTom 5G [QR Srl, Verona, Italy]) were performed. Two blinded examiners classified each tooth's anatomic pattern, which were then compared with the micro-computed tomographic determinations. Considering type I and type Ia, which both presented with 1 root canal, there was a high degree of accuracy for all methods used (P > .05). The same result was found for type III. When identifying the shape of single canals (type I), CBCT imaging was more accurate compared with PA radiography. Concerning oval canals (type Ia), there was a significant difference between PA radiography and NewTom CBCT (PA radiography = 44%, NewTom = 88%). However, there were no significant differences between the 3 CBCT units. Double-exposure digital PA radiography for mandibular incisors is sufficient for the identification of the number of root canals. All CBCT devices showed improved accuracy in the identification of single root canal anatomy when a narrow canal was present. However, the identification of oval canals was improved only with the NewTom CBCT device. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Three-dimensional tomographic imaging for dynamic radiation behavior study using infrared imaging video bolometers in large helical device plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sano, Ryuichi; Iwama, Naofumi [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan); Peterson, Byron J.; Kobayashi, Masahiro; Mukai, Kiyofumi [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan); SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193 (Japan); Teranishi, Masaru [Hiroshima Institute of Technology, 2-1-1, Miyake, Saeki-ku, Hiroshima 731-5193 (Japan); Pandya, Shwetang N. [Institute of Plasma Research, Near Indira Bridge, Bhat Village, Gandhinagar, Gujarat 382428 (India)

    2016-05-15

    A three-dimensional (3D) tomography system using four InfraRed imaging Video Bolometers (IRVBs) has been designed with a helical periodicity assumption for the purpose of plasma radiation measurement in the large helical device. For the spatial inversion of large sized arrays, the system has been numerically and experimentally examined using the Tikhonov regularization with the criterion of minimum generalized cross validation, which is the standard solver of inverse problems. The 3D transport code EMC3-EIRENE for impurity behavior and related radiation has been used to produce phantoms for numerical tests, and the relative calibration of the IRVB images has been carried out with a simple function model of the decaying plasma in a radiation collapse. The tomography system can respond to temporal changes in the plasma profile and identify the 3D dynamic behavior of radiation, such as the radiation enhancement that starts from the inboard side of the torus, during the radiation collapse. The reconstruction results are also consistent with the output signals of a resistive bolometer. These results indicate that the designed 3D tomography system is available for the 3D imaging of radiation. The first 3D direct tomographic measurement of a magnetically confined plasma has been achieved.

  9. Development of an electrical impedance computed tomographic two-phase flows analyzer. Annual technical report for program renewal

    Energy Technology Data Exchange (ETDEWEB)

    Jones, O.C.

    1993-05-01

    This progress report details the theoretical development, numerical results, experimental design (mechanical), experimental design (electronic), and experimental results for the research program for the development of an electrical impedance computed tomographic two-phase flow analyzer.

  10. Single-Shot, Volumetrically Illuminated, Three-Dimensional, Tomographic Laser-Induced-Fluorescence Imaging in a Gaseous Free Jet

    Science.gov (United States)

    2016-04-28

    Single- shot , volumetrically illuminated, three- dimensional, tomographic laser-induced- fluorescence imaging in a gaseous free jet Benjamin R. Halls...37081 Göttingen, Germany 4School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA 5trmeyer@purdue.edu 6james.gord...us.af.mil Abstract: Single- shot , tomographic imaging of the three-dimensional concentration field is demonstrated in a turbulent gaseous free jet in co-flow

  11. Tomographic Observation and Bedmapping of Glaciers in Western Greenland with IceBridge Sounding Radar

    Science.gov (United States)

    Wu, Xiaoqing; Paden, John; Jezek, Ken; Rignot, Eric; Gim, Young

    2013-01-01

    We produced the high resolution bedmaps of several glaciers in western Greenland from IceBridge Mission sounding radar data using tomographic sounding technique. The bedmaps cover 3 regions: Russell glaciers, Umanaq glaciers and Jakobshavn glaciers of western Greenland. The covered areas is about 20x40 km(sup 2) for Russell glaciers and 300x100 sq km, and 100x80 sq km for Jakobshavn glaciers. The ground resolution is 50 meters and the average ice thickness accuracy is 10 to 20 meters. There are some void areas within the swath of the tracks in the bedmaps where the ice thickness is not known. Tomographic observations of these void areas indicate that the surface and shallow sub-surface pockets, likely filled with water, are highly reflective and greatly weaken the radar signal and reduce the energy reaching and reflected from the ice sheet bottom.

  12. Tomographic Image Reconstruction Using Training Images with Matrix and Tensor Formulations

    DEFF Research Database (Denmark)

    Soltani, Sara

    machine learning technique (here, the dictionary learning), prototype elements from the training images are extracted and then incorporated in the tomographic reconstruction problem both with matrix and tensor representations of the training images. First, an algorithm for the tomographic image...... and robustness of the reconstruction to variations of the scale and rotation in the training images is investigated and algorithms to estimate the correct relative scale and orientation of the unknown image to the training images are suggested. Then, a third-order tensor representation for the training images...... images is used. The dictionary and image reconstruction problem are reformulated using the tensor representation. The dictionary learning problem is presented as a nonnegative tensor factorization problem with sparsity constraints and the reconstruction problem is formulated in a convex optimization...

  13. Tomographic capabilities of the new GEM based SXR diagnostic of WEST

    Science.gov (United States)

    Jardin, A.; Mazon, D.; O'Mullane, M.; Mlynar, J.; Loffelmann, V.; Imrisek, M.; Chernyshova, M.; Czarski, T.; Kasprowicz, G.; Wojenski, A.; Bourdelle, C.; Malard, P.

    2016-07-01

    The tokamak WEST (Tungsten Environment in Steady-State Tokamak) will start operating by the end of 2016 as a test bed for the ITER divertor components in long pulse operation. In this context, radiative cooling of heavy impurities like tungsten (W) in the Soft X-ray (SXR) range [0.1 keV; 20 keV] is a critical issue for the plasma core performances. Thus reliable tools are required to monitor the local impurity density and avoid W accumulation. The WEST SXR diagnostic will be equipped with two new GEM (Gas Electron Multiplier) based poloidal cameras allowing to perform 2D tomographic reconstructions in tunable energy bands. In this paper tomographic capabilities of the Minimum Fisher Information (MFI) algorithm developed for Tore Supra and upgraded for WEST are investigated, in particular through a set of emissivity phantoms and the standard WEST scenario including reconstruction errors, influence of noise as well as computational time.

  14. Suprathermal electron studies in the TCV tokamak: Design of a tomographic hard-x-ray spectrometer

    International Nuclear Information System (INIS)

    Gnesin, S.; Coda, S.; Decker, J.; Peysson, Y.

    2008-01-01

    Electron cyclotron resonance heating and electron cyclotron current drive, disruptive events, and sawtooth activity are all known to produce suprathermal electrons in fusion devices, motivating increasingly detailed studies of the generation and dynamics of this suprathermal population. Measurements have been performed in the past years in the tokamak a configuration variable (TCV) tokamak using a single pinhole hard-x-ray (HXR) camera and electron-cyclotron-emission radiometers, leading, in particular, to the identification of the crucial role of spatial transport in the physics of ECCD. The observation of a poloidal asymmetry in the emitted suprathermal bremsstrahlung radiation motivates the design of a proposed new tomographic HXR spectrometer reported in this paper. The design, which is based on a compact modified Soller collimator concept, is being aided by simulations of tomographic reconstruction. Quantitative criteria have been developed to optimize the design for the greatly variable shapes and positions of TCV plasmas.

  15. Computer tomographic findings in splenic ruptures, subcapsular haematomas of the spleen and perisplenic abscesses

    International Nuclear Information System (INIS)

    Boettger, E.; Semerak, M.; Jaschke, W.; Rehabilitations-Krankenhaus Langensteinbach

    1980-01-01

    The computer tomographic criteria of splenic rupture, new or old haematomas of the spleen (pseudocysts) and perisplenic or subphrenic abscesses are described with reference to three cases. It is shown that all the relevant problems in the pre-operative stage can be clarified by computer tomography, making arteriography unnecessary. The differential diagnosis between old haematomas and perisplenic abscesses can only be made by taking account of the history and other clinical information. (orig.) [de

  16. The application of real-time, non-destructive electrical tomographic imaging to heritage conservation

    OpenAIRE

    Ogilvy, Richard

    2008-01-01

    Significant advances have been made in recent times with the non-invasive electrical tomographic imaging of the shallow subsurface. These emerging technologies are analogous to magnetic resonance imaging (MRI) or CT scans used in medical physics. Electrical Resistivity Tomography (ERT) is increasingly used to underpin studies in waste management, contaminated land characterisation and remediation, monitoring groundwater resources and the monitoring of geohazards or safety-critical plant. Ther...

  17. Three-dimensional display of computer tomographic examinations of craniofacial anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Witte, G.; Hoeltje, W.; Tiede, U.; Riemer, M.

    1986-04-01

    Craniofacial anomalies are conventionally investigated by cephalometry using ordinary radiographs and by computed tomography. Both methods have the major disadvantage of trying to demonstrate a complex three-dimensional structure, such as the skull, in two dimensions and they therefore cannot display a true spatial image. We present the principle underlying a three-dimensional display derived from computer tomographic studies and discuss the clinical application in the diagnosis of craniofacial anomalies.

  18. A 3D tomographic EBSD analysis of a CVD diamond thin film

    Directory of Open Access Journals (Sweden)

    Tao Liu, Dierk Raabe and Stefan Zaefferer

    2008-01-01

    Full Text Available We have studied the nucleation and growth processes in a chemical vapor deposition (CVD diamond film using a tomographic electron backscattering diffraction method (3D EBSD. The approach is based on the combination of a focused ion beam (FIB unit for serial sectioning in conjunction with high-resolution EBSD. Individual diamond grains were investigated in 3-dimensions particularly with regard to the role of twinning.

  19. Computed tomographic evaluation of the altered pancreas in dog and cat

    International Nuclear Information System (INIS)

    Posch, B.

    2002-11-01

    Eighteen dogs and 12 cats of varying breed, age and sex underwent a computed tomographic study of the pancreas. Length, diameter and density of each lobe of the pancreas were measured. Further, the gained results were compared to the information established by the clinical examination, sonography, haematology and histology. Contrast CT improved evaluation of the pancreas in all cases of normal life controls. CT criteria such as changes in size, density, delimitation of the pancreas and the peripancreatic structures were analyzed. Increased pancreatic size was seen in inflammatory as well as in neoplastic diseases. There were no reliable computed tomographic criteria to differentiate pancreatic neoplasia from inflammation without peripancreatic findings. Ultrasonography proved to be a good screening method in this study: sonographic and computed tomographic results correlated in all cases with the exception of 5 cases. In contrast to ultrasonography CT could differentiate normal pancreas from pancreas atrophy. Computed tomography was superior to sonography in determining the full extent of pancreatic and peripancreatic signs due to the good overview and overall image of the abdominal structures. Serum chemistry of a- amylase and lipase were obtained in 28 animals. Assays of serum lipase and a- amylase activities were only able to detect acute pancreatitis in half of the canine cases. Despite morphological alterations detected with the help of sonography or CT, there were no significant increases in a- amylase and lipase in cats. Following computed tomography the pancreas of 10 animals was examined pathohistologically. With the exception of 2 cases the computed tomographic results correlated with the pathohistological findings. In conclusion, computed tomography (CT) proved to be a valuable method to evaluate the localization, the full extent and the seriousness of pancreatic lesions. (author)

  20. [Computed tomographic features of abdominal compartment syndrome complicated by severe acute pancreatitis].

    Science.gov (United States)

    Wu, Jingtao; Zhu, Qingqiang; Zhu, Wenrong; Chen, Wenxin; Wang, Shouan

    2014-11-25

    To explore the computed tomographic (CT) imaging features of abdominal compartment syndrome (ACS) complicated by severe acute pancreatitis (SAP) to improve the diagnosis of disease. Thirty-six cases of ACS and 61 cases of non-ACS (NACS) complicated by SAP were studied retrospectively. And the meaningful CT features were studied. Among them, the ACS vascular complications of abdominal cavity and gastrointestinal bleeding were found significantly more in ACS than in NACS (P treatment.

  1. Tomographical evaluation of multifrequency-holography data in the ultrasonic testing of cylindrical components

    International Nuclear Information System (INIS)

    Kutzner, K.

    1986-01-01

    The data of multifrequency-holography on circle which were published in a previous paper were evaluated in a tomographical manner. For that the theoretical model which is the foundation of this measuring technique is converted into a Radon transform which can be inverted by standard methods. The results of this technique are compared with the results of the multifrequency-holography on circle. (orig./HP) [de

  2. Development of full-field x-ray phase-tomographic microscope based on laboratory x-ray source

    Science.gov (United States)

    Takano, H.; Wu, Y.; Momose, A.

    2017-09-01

    An X-ray phase tomographic microscope that can quantitatively measure the refractive index of a sample in three dimensions with a high spatial resolution was developed by installing a Lau interferometer consisting of an absorption grating and a π/2 phase grating into the optics of an X-ray microscope. The optics comprises a Cu rotating anode X-ray source, capillary condenser optics, and a Fresnel zone plate for the objective. The microscope has two optical modes: a large-field-of-view mode (field of view: 65 μm x 65 μm) and a high-resolution mode (spatial resolution: 50 nm). Optimizing the parameters of the interferometer yields a self-image of the phase grating with 60% visibility. Through the normal fringe-scanning measurement, a twin phase image, which has an overlap of two phase image of opposite contrast with a shear distance much larger than system resolution, is generated. Although artifacts remain to some extent currently when a phase image is calculated from the twin phase image, this system can obtain high-spatial-resolution images resolving 50-nm structures. Phase tomography with this system has also been demonstrated using a phase object.

  3. Process and installation for producing tomographic images of the distribution of a radiotracer

    International Nuclear Information System (INIS)

    Fonroget, Jacques; Brunol, Jean.

    1977-01-01

    The invention particularly concerns a process for obtaining tomographic images of an object formed by a radiotracer distributed spacially over three dimensions. This process, using a detection device with an appreciably plane detection surface and at least one collimation orifice provided in a partition between the detection surface and the object, enables tomographic sections to be obtained with an excellent three-dimensional resolution of the images achieved. It is employed to advantage in an installation that includes a detection device or gamma camera on an appreciably plane surface, a device having a series of collimation apertures which may be used in succession, these holes being appreciably distributed over a common plane parallel to the detection surface, and a holder for the object. This holder can be moved in appreciably parallel translation to the common plane. The aim of this invention is, inter alia, to meet two requirements: localization in space and obtaining good contrasts. This aim is achieved by the fact that at least one tomographic image is obtained from a series of intermediate images of the object [fr

  4. Relation of the measuring values in cephalometric radiographs and TMJ tomographs

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jin Woo [Kangnung National Univ. College of Dentistry, Kangnung (Korea, Republic of)

    2007-03-15

    To examine whether the maxillofacial skeletal morphology correlates with the condylar position and the anatomic characteristics of articular eminence using measurements of lateral cephalometric radiographs and individualized sagittal temporomandibular joint (TMJ) tomographs. I compared measurements of 202 TMJs of 101 orthodontic patients of Kangnung National University Dental Hospital. I used Pearson's correlation for comparison of the measuring values in lateral cephalometric radiographs and individualized sagittal TMJ tomographs. Large occlusal plane angle tendency showed decreased width of posterior eminence slope, decreased depth of articular fossa and decreased posterior slope angle of eminence. Large mandibular plane angle tendency showed decreased superior joint space, decreased superior joint space, decreased depth of articular fossa and decreased posterior slope angle of eminence. Large genial angle tendency showed decreased depth of articular fossa, decreased posterior slope angle of eminence and anterior position of comdylar head. Large anterior facial height and large posterior facial height tendency showed increased width of posterior position of condylar head. Maxillofacial skeletal morphology has correlation with the anatomic characteristics of TMJ. Individualized sagittal TMJ tomographs can provide useful information for anatomical analysis of TMJ.

  5. A study of the mandibular condyle shape on the individualized corrected the tomograph and submentovertex radiograph

    International Nuclear Information System (INIS)

    Lee, Sang Rae

    1994-01-01

    The purpose of this study was to observe mandibular condyle shape in an asymptomatic population. In order to carry out this study, 96 temporomandibular joints in 48 adults (22 males, 26 females), who were asymptomatic for temporomandibular disturbances and had no history of prosthodontic or orthodontic treatments, were selected, and radiographed using the Sectograph(Denar Co., U.S.A.) for lateral and frontal individualized corrected TMJ tomograph and submentovertex radiograph. Mandibular condyles were classified morphologically, and measured mediolateral and anteroposterior dimensions and condylar angulation. The obtained results were as follows. 1. In the classification of condyle shape on lateral tomographs, 94.8% were convex type and 5.2% were angled type. 2. In the classification of condyle shape on frontal tomographs, 45.3% were convex type, 32.0% were round type, 16.0% were flat type, and 6.7% were angled type. 3. In the classification of condyle shape on submentovertex radiographs, 34.5% were flat-convex type, 22.9% were flat-flat type, 20.8% were concave-convex type, 19.8% were convex-concave type, and flat-concave type were not observed. 4. The average mediolateral length of the condyle was 19.3 mm and the average anteroposterior length was 9.4 mm. The average angle between the long axis of condyle and the coronal plane made on submentovertex view was 19.6 degrees.

  6. Relation of the measuring values in cephalometric radiographs and TMJ tomographs

    International Nuclear Information System (INIS)

    Han, Jin Woo

    2007-01-01

    To examine whether the maxillofacial skeletal morphology correlates with the condylar position and the anatomic characteristics of articular eminence using measurements of lateral cephalometric radiographs and individualized sagittal temporomandibular joint (TMJ) tomographs. I compared measurements of 202 TMJs of 101 orthodontic patients of Kangnung National University Dental Hospital. I used Pearson's correlation for comparison of the measuring values in lateral cephalometric radiographs and individualized sagittal TMJ tomographs. Large occlusal plane angle tendency showed decreased width of posterior eminence slope, decreased depth of articular fossa and decreased posterior slope angle of eminence. Large mandibular plane angle tendency showed decreased superior joint space, decreased superior joint space, decreased depth of articular fossa and decreased posterior slope angle of eminence. Large genial angle tendency showed decreased depth of articular fossa, decreased posterior slope angle of eminence and anterior position of comdylar head. Large anterior facial height and large posterior facial height tendency showed increased width of posterior position of condylar head. Maxillofacial skeletal morphology has correlation with the anatomic characteristics of TMJ. Individualized sagittal TMJ tomographs can provide useful information for anatomical analysis of TMJ

  7. Three-dimensional cephalometry: a method for the identification and for the orientation of the skull after cone-bean computed tomographic scan.

    Science.gov (United States)

    Frongia, Gianluigi; Bracco, Pietro; Piancino, Maria Grazia

    2013-05-01

    The aims of this work were (1) to describe a method to identify new skeletal landmarks useful to define the reference system to orient the skull in a new position after cone-bean computed tomographic scan and (2) to demonstrate the reliability of this new method.Ten orthognathic patients (5 male, 5 female; mean [SD] age, 18.9 [1.2] years) underwent the cone-bean computed tomographic scan before surgery. Seven 3-dimensional skeletal measurements derived from 4 skeletal point of construction (C) (right, left, and median orbital C, and sella C) have been used for this study. Reliability has been calculated using Pearson correlation coefficient tests.Intraobserver reliability was 0.9999 for operator A (T1-T2) and 0.9999 for operator B (T1-T2); interobserver reliability was 0.9999 between the first (T1-T1) measurement and 0.9999 between the second (T2-T2).The original method is able to reduce the variability of landmark identification due to the variability of the human anatomy and the influence of the human error in cephalometric analysis. The innovation of this new method is the real possibility to use the anatomical structures in a 3-dimensional way, enhancing the reliability of the reference points.

  8. Solution Methods for 3D Tomographic Inversion Using A Highly Non-Linear Ray Tracer

    Science.gov (United States)

    Hipp, J. R.; Ballard, S.; Young, C. J.; Chang, M.

    2008-12-01

    To develop 3D velocity models to improve nuclear explosion monitoring capability, we have developed a 3D tomographic modeling system that traces rays using an implementation of the Um and Thurber ray pseudo- bending approach, with full enforcement of Snell's Law in 3D at the major discontinuities. Due to the highly non-linear nature of the ray tracer, however, we are forced to substantially damp the inversion in order to converge on a reasonable model. Unfortunately the amount of damping is not known a priori and can significantly extend the number of calls of the computationally expensive ray-tracer and the least squares matrix solver. If the damping term is too small the solution step-size produces either an un-realistic model velocity change or places the solution in or near a local minimum from which extrication is nearly impossible. If the damping term is too large, convergence can be very slow or premature convergence can occur. Standard approaches involve running inversions with a suite of damping parameters to find the best model. A better solution methodology is to take advantage of existing non-linear solution techniques such as Levenberg-Marquardt (LM) or quasi-newton iterative solvers. In particular, the LM algorithm was specifically designed to find the minimum of a multi-variate function that is expressed as the sum of squares of non-linear real-valued functions. It has become a standard technique for solving non-linear least squared problems, and is widely adopted in a broad spectrum of disciplines, including the geosciences. At each iteration, the LM approach dynamically varies the level of damping to optimize convergence. When the current estimate of the solution is far from the ultimate solution LM behaves as a steepest decent method, but transitions to Gauss- Newton behavior, with near quadratic convergence, as the estimate approaches the final solution. We show typical linear solution techniques and how they can lead to local minima if the

  9. In vivo tomographic imaging of lung colonization of tumour in mouse with simultaneous fluorescence and X-ray CT.

    Science.gov (United States)

    Zhang, Bin; Gao, Fuping; Wang, Mengjiao; Cao, Xu; Liu, Fei; Wang, Xin; Luo, Jianwen; Wang, Guangzhi; Bai, Jing

    2014-01-01

    Non-invasive in vivo imaging of diffuse and wide-spread colonization within the lungs, rather than distinct solid primary tumors, is still a challenging work. In this work, a lung colonization mouse model bearing A549 human lung tumor was simultaneously scanned by a dual-modality fluorescence molecular tomography (FMT) and X-ray computed tomography (CT) system in vivo. A two steps method which incorporates CT structural information into the FMT reconstruction procedure is employed to provide concurrent anatomical and functional information. By using the target-specific fluorescence agent, the fluorescence tomographic results show elevated fluorescence intensity deep within the lungs which is colonized with diffuse and wide-spread tumors. The results were confirmed with ex vivo fluorescence reflectance imaging and histological examination of the lung tissues. With FMT reconstruction combined with the CT information, the dual-modality FMT/micro-CT system is expected to offer sensitive and noninvasive imaging of diffuse tumor colonization within the lungs in vivo. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Tomographic reconstruction of atmospheric volumes from infrared limb-imager measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ungermann, Joern

    2011-08-12

    State-of-the art nadir and limb-sounders, but also in situ measurements, do not offer the capability to highly resolve the atmosphere in all three dimensions. This leaves an observational gap with respect to small-scale structures that arise frequently in the atmosphere and that still lack a quantitative understanding. For instance, filaments and tropopause folds in the upper troposphere and lower stratosphere (UTLS) are crucial for its composition and variability. One way to achieve a highly resolved three-dimensional (3-D) picture of the atmosphere is the tomographic evaluation of limb-imager measurements. This thesis presents a methodology for the tomographic reconstruction of atmospheric constituents. To be able to deal with the large increase of observations and unknowns compared to conventional retrievals, great care is taken to reduce memory consumption and processing time. This method is used to evaluate the performance of two upcoming infrared limb-imager instruments and to prepare their missions. The first examined instrument is the infrared limb-imager on board of PREMIER (Process Exploration through Measurements of Infrared and millimetrewave Emitted Radiation), one of three remaining candidates for ESA's 7th Earth Explorer mission. Scientific goals of PREMIER are, among others, the examination of gravity waves and the quantification of processes controlling atmospheric composition in the UTLS, a region of particular importance for climate change. Simulations based on the performance requirements of this instrument deliver a vertical resolution that is slightly better than its vertical field-of-view (about 0.75 km) and a horizontal resolution of {approx}25km x 70 km. Non-linear end-to-end simulations for various gravity wave patterns demonstrate that the high 3-D resolution of PREMIER considerably extends the range of detectable gravity waves in terms of horizontal and vertical wavelength compared to previous observations. The second examined

  11. Seismic tomographic constraints on plate-tectonic reconstructions of Nazca subduction under South America since late Cretaceous (˜80 Ma)

    Science.gov (United States)

    Chen, Y. W.; Wu, J.; Suppe, J.

    2017-12-01

    Global seismic tomography has provided new and increasingly higher resolution constraints on subducted lithospheric remnants in terms of their position, depth, and volumes. In this study we aim to link tomographic slab anomalies in the mantle under South America to Andean geology using methods to unfold (i.e. structurally restore) slabs back to earth surface and input them to globally consistent plate reconstructions (Wu et al., 2016). The Andean margin of South America has long been interpreted as a classic example of a continuous subduction system since early Jurassic or later. However, significant gaps in Andean plate tectonic reconstructions exist due to missing or incomplete geology from extensive Nazca-South America plate convergence (i.e. >5000 km since 80 Ma). We mapped and unfolded the Nazca slab from global seismic tomography to produce a quantitative plate reconstruction of the Andes back to the late Cretaceous 80 Ma. Our plate model predicts the latest phase of Nazca subduction began in the late Cretaceous subduction after a 100 to 80 Ma plate reorganization, which is supported by Andean geology that indicates a margin-wide compressional event at the mid-late Cretaceous (Tunik et al., 2010). Our Andean plate tectonic reconstructions predict the Andean margin experienced periods of strike-slip/transtensional and even divergent plate tectonics between 80 to 55 Ma. This prediction is roughly consistent with the arc magmatism from northern Chile between 20 to 36°S that resumed at 80 Ma after a magmatic gap. Our model indicates the Andean margin only became fully convergent after 55 Ma. We provide additional constraints on pre-subduction Nazca plate paleogeography by extracting P-wave velocity perturbations within our mapped slab surfaces following Wu et al. (2016). We identified localized slow anomalies within our mapped Nazca slab that apparently show the size and position of the subducted Nazca ridge, Carnegie ridge and the hypothesized Inca plateau

  12. Quality assurance of manufactures by means of intelligent tomographic processing

    International Nuclear Information System (INIS)

    Castano, A.; Paggi, P.; Barbuzza, R.; Venere, Marcelo J.; Clausse, Alejandro

    2003-01-01

    Quality standards in industry require inspection tools to optimize the production. In this paper we present a non destructive test method that allows the inspection of defects as well as the 3D visualization of the piece. Previous knowledge of the material and geometry of the components are applied to improve the inspection system, classifying by position, dimension and orientation of defects, to verify manufacture quality standards. (author)

  13. Study and development of a high resolution tomograph for the {gamma} radio-imagery in vivo of small animals; Etude et developpement d`un tomographe haute resolution pour la radio-imagerie {gamma} in vivo de petits animaux

    Energy Technology Data Exchange (ETDEWEB)

    Valda Ochoa, A.

    1995-06-23

    By the use of molecular radio-labelled tracers, molecular biology can reveal some aspects of the functional organisation of the brain. Non invasive in vivo brain research on small laboratory animals, like mice or rats, require analysis of structures of some cubic millimeters present in a brain of the order of a cubic centimeter. Since imaging performances of positron emission tomography (PET) and single photon emission tomography (SPECT) fail in this research field, we present here a high resolution tomograph (TOHR) based on an original principle that allows to overcome the compromise between detection efficiency and spatial resolution. TOHR is a radiation counter device having a large solid angle focusing collimator. By the use of radio-tracers decaying by a cascade of two photons, coincidence detection offers an accurate delimitation of the analysed region and improves spatial resolution. TOHR acts as a scanner, so the image is built voxel by voxel by moving the animal relative to the detector. A numerical feasibility study of such a system shows that a sub millimeter spatial resolution can be achieved. We show that the chemical etching technique is well suited for manufacturing a multi-module focusing collimator by building and testing two such modules. Finally a numerical simulation exhibits TOHR`s performance in a neuro-pharmacological experiment on a rat. From these results, other application of TOHR are envisaged, such as oncology (in vivo evolution of tumours) or gene therapy (distribution of viral particles in the brain). (author). 51 refs., 73 figs., 3 tabs.

  14. A novel flexible clinical multiphoton tomograph for early melanoma detection, skin analysis, testing of anti-age products, and in situ nanoparticle tracking

    Science.gov (United States)

    Weinigel, Martin; Breunig, Hans Georg; Gregory, Axel; Fischer, Peter; Kellner-Höfer, Marcel; Bückle, Rainer; König, Karsten

    2010-02-01

    High-resolution 3D microscopy based on multiphoton induced autofluorescence and second harmonic generation have been introduced in 1990. 13 years later, CE-marked clinical multiphoton systems for 3D imaging of human skin with subcellular resolution have first been launched by JenLab company with the tomography DermaInspect®. This year, the second generation of clinical multiphoton tomographs was introduced. The novel multiphoton tomograph MPTflex, equipped with a flexible articulated optical arm, provides an increased flexibility and accessibility especially for clinical and cosmetical examinations. Improved image quality and signal to noise ratio (SNR) are achieved by a very short source-drain spacing, by larger active areas of the detectors and by single photon counting (SPC) technology. Shorter image acquisition time due to improved image quality reduces artifacts and simplifies the operation of the system. The compact folded optical design and the light-weight structure of the optical head eases the handling. Dual channel detectors enable to distinguish between intratissue elastic fibers and collagenous structures simultaneously. Through the use of piezo-driven optics a stack of optical cross-sections (optical sectioning) can be acquired and 3D imaging can be performed. The multiphoton excitation of biomolecules like NAD(P)H, flavins, porphyrins, elastin, and melanin is done by picojoule femtosecond laser pulses from an tunable turn-key femtosescond near infrared laser system. The ability for rapid high-quality image acquisition, the user-friendly operation of the system and the compact and flexible design qualifies this system to be used for melanoma detection, diagnostics of dermatological disorders, cosmetic research and skin aging measurements as well as in situ drug monitoring and animal research.

  15. Computed tomographic cholangiography in the diagnosis of choledocholithiasis

    International Nuclear Information System (INIS)

    Lopez-Negrete, L.; Sanchez, J. L.; Garcia-Lozano, J.; Tejeiro, A.; Salas, J.

    2001-01-01

    Over a one-year period we performed 32 conventional computed tomography (CT) studies involving the intravenous administration of a contrast material that is cleared by the biliary system (Bilisergol), in patients in presenting clinical or radiological features of choledocholithiasis. The results were compared with the findings from endoscopic retrograde cholangiopancreatography (ERCP) and/or surgery. The sensitivity and specificity of intravenous cholangiography with conventional CT was 92 %. We demonstrate the utility of this widely available study, when performed according to protocol during apnea, with acquisition of thin sections. It is a highly sensitive and specific tool in the diagnosis of choledocholithiasis. (Author) 10 refs

  16. Initial results of a positron tomograph for prostate imaging

    Energy Technology Data Exchange (ETDEWEB)

    Huber, J.S.; Choong, W.S.; Moses, W.W.; Qi, J.; Hu, J.; Wang,G.C.; Wilson, D.; Oh, S.; Huesman, R.H.; Derenzo, S.E.; Budinger, T.F.

    2004-11-29

    We present the status and initial images of a positrontomograph for prostate imaging that centers a patient between a pair ofexternal curved detector banks (ellipse: 45 cm minor, 70 cm major axis).The distance between detector banks adjusts to allow patient access andto position the detectors as closely as possible for maximum sensitivitywith patients of various sizes. Each bank is composed of two axial rowsof 20 CTI PET Systems HR+ block detectors for a total of 80 modules inthe camera. Compared to an ECAT HR PET system operating in 3D mode, ourcamera uses about one-quarter the number of detectors and hasapproximately the same sensitivity for a central point source, becauseour detectors are close to the patient. The individual detectors areangled in the plane to point towards the prostate to minimize resolutiondegradation in that region. The detectors are read out by modified CTIdata acquisition electronics. We have completed construction of thegantry and electronics, have developed detector calibration and dataacquisition software, and are taking coincidence data. We demonstratethat we can clearly visualize a "prostate" in a simple phantom.Reconstructed images of two phantoms are shown.

  17. Study and development of a high resolution tomograph for the γ radio-imagery in vivo of small animals

    International Nuclear Information System (INIS)

    Valda Ochoa, A.

    1995-01-01

    By the use of molecular radio-labelled tracers, molecular biology can reveal some aspects of the functional organisation of the brain. Non invasive in vivo brain research on small laboratory animals, like mice or rats, require analysis of structures of some cubic millimeters present in a brain of the order of a cubic centimeter. Since imaging performances of positron emission tomography (PET) and single photon emission tomography (SPECT) fail in this research field, we present here a high resolution tomograph (TOHR) based on an original principle that allows to overcome the compromise between detection efficiency and spatial resolution. TOHR is a radiation counter device having a large solid angle focusing collimator. By the use of radio-tracers decaying by a cascade of two photons, coincidence detection offers an accurate delimitation of the analysed region and improves spatial resolution. TOHR acts as a scanner, so the image is built voxel by voxel by moving the animal relative to the detector. A numerical feasibility study of such a system shows that a sub millimeter spatial resolution can be achieved. We show that the chemical etching technique is well suited for manufacturing a multi-module focusing collimator by building and testing two such modules. Finally a numerical simulation exhibits TOHR's performance in a neuro-pharmacological experiment on a rat. From these results, other application of TOHR are envisaged, such as oncology (in vivo evolution of tumours) or gene therapy (distribution of viral particles in the brain). (author). 51 refs., 73 figs., 3 tabs

  18. Image-guided microneurosurgical management of small cerebral arteriovenous malformations: the value of navigated computed tomographic angiography

    International Nuclear Information System (INIS)

    Coenen, V.A.; Reinges, M.H.T.; Gilsbach, J.M.; Rohde, V.; Dammert, S.; Mull, M.

    2005-01-01

    In small arteriovenous malformations (AVM) with large hematomas, surgery remains the main therapeutic option. However, intraoperative identification of the AVM, feeders, and draining veins could be difficult in the environment of substantial intracerebral blood. In those selected cases, we use navigated computed tomographic angiography (CTA) for the microneurosurgical management. It is our objective to report our initial experiences. Prior to operation a conventional CTA with superficial skin fiducials placed on a patient's head was acquired for diagnostic and neuronavigation purposes. Image data were transferred to a neuronavigation device with integrated volume rendering capacities which allows a three-dimensional reconstruction of the vascular tree and the AVM to be created. In all patients the AVM was removed successfully after having been localized with CTA-based neuronavigation. Navigated CTA is helpful for the operative management of small AVMs with large hematomas. The technique allows feeding arteries to be distinguished from draining veins thereby allowing the nidus of the AVM to be identified despite the presence of substantial intracerebral blood. CTA can be easily implemented into commercial neuronavigation systems. (orig.)

  19. COSMIC TEC tomographic vertical density reconstructions of the topside ionosphere and plasmasphere: Differences between the American and African sectors

    Science.gov (United States)

    Sibanda, P.; Moldwin, M.; Zou, S.; Yizengaw, E. K.

    2011-12-01

    Global Positioning System (GPS) navigation measurements have become useful in observing the ionospheric spatial electron density distribution TEC from ground-based receivers are biased by the high density around the F2 peak and therefore it is difficult to extract information about the topside ionosphere and plasmasphere. GPS measurements onboard Low Earth Orbiting (LEO) satellites provide more detailed observations of the ionospheric electron density distribution from the orbit height of the LEO satellite to GPS orbit heights. We use GPS TEC measurements onboard COSMIC satellites to reconstruct the topside ionosphere and plasmasphere electron density distribution for both geomagnetically quiet and disturbed conditions during over-flights of the American and African mid-latitude regions by the COSMIC spacecraft using algebraic tomographic reconstruction technique (ART). The reconstructions provide more detailed information of the longitudinal and vertical spatial structure of topside ionosphere and plasmasphere during both geomagnetically quiet and disturbed conditions, and indicate the great potential of evaluating ionospheric models in the topside ionosphere/plasmasphere altitude range.

  20. Synthesis and enhancement of the radionuclide tomographic section

    International Nuclear Information System (INIS)

    Rowe, R.W.; Undrill, P.E.; Keyes, W.I.

    1980-01-01

    In principle, it is possible to perfectly reconstruct a two-dimensional density distribution from measurements of one-dimensional projections, subject to certain restrictions on the data, by using one of a number of analytical reconstruction techniques. However, practical implementation of the procedure means that it is impossible to satisfy all the requirements of the theory, so that the image merely approximates to the original to a greater or lesser extent. The nature and extent of the deviations from the theory and their effect on the reconstructed image are examined; in particular, the problems of sampling, statistics, detector properties, collimation and attenuation are considered in turn. The principles involved in conventional attempts at overcoming major artefacts resulting from the various aberrations are outlined, together with the most significant effects of such corrective procedures. An improved, system-specific, iterative technique for restoration and enhancement, which has been used in conjunction with the Aberdeen Section Scanner, is described. (author)

  1. Positron transaxial emission tomograph with computerized image reconstruction

    International Nuclear Information System (INIS)

    Jatteau, Michel.

    1981-01-01

    This invention concerns a positron transaxial emission tomography apparatus with computerized image reconstruction, like those used in nuclear medicine for studying the metabolism of organs, in physiological examinations and as a diagnosis aid. The operation is based on the principle of the detection of photons emitted when the positrons are annihilated by impact with an electron. The appliance is mainly composed of: (a) - a set of gamma ray detectors distributed on a polygonal arrangement around the body area to be examined, (b) - circuits for amplifying the signals delivered by the gamma ray detectors, (c) - computers essentially comprising energy integration and discrimination circuits and provided at the output of the detectors for calculating and delivering, as from the amplified signals, information on the position and energy relative to each occurrence constituted by the detections of photons, (d) - time coincidence circuits for selecting by emission of detector validation signals, only those occurrences, among the ensemble of those detected, which effectively result from the annihilation of positrons inside the area examined, (e) - a data processing system [fr

  2. An efficient simultaneous reconstruction technique for tomographic particle image velocimetry

    Science.gov (United States)

    Atkinson, Callum; Soria, Julio

    2009-10-01

    To date, Tomo-PIV has involved the use of the multiplicative algebraic reconstruction technique (MART), where the intensity of each 3D voxel is iteratively corrected to satisfy one recorded projection, or pixel intensity, at a time. This results in reconstruction times of multiple hours for each velocity field and requires considerable computer memory in order to store the associated weighting coefficients and intensity values for each point in the volume. In this paper, a rapid and less memory intensive reconstruction algorithm is presented based on a multiplicative line-of-sight (MLOS) estimation that determines possible particle locations in the volume, followed by simultaneous iterative correction. Reconstructions of simulated images are presented for two simultaneous algorithms (SART and SMART) as well as the now standard MART algorithm, which indicate that the same accuracy as MART can be achieved 5.5 times faster or 77 times faster with 15 times less memory if the processing and storage of the weighting matrix is considered. Application of MLOS-SMART and MART to a turbulent boundary layer at Re θ = 2200 using a 4 camera Tomo-PIV system with a volume of 1,000 × 1,000 × 160 voxels is discussed. Results indicate improvements in reconstruction speed of 15 times that of MART with precalculated weighting matrix, or 65 times if calculation of the weighting matrix is considered. Furthermore the memory needed to store a large weighting matrix and volume intensity is reduced by almost 40 times in this case.

  3. Molecular imaging of small animals with dedicated PET tomographs

    International Nuclear Information System (INIS)

    Chatziioannou, A.F.

    2002-01-01

    Biological discovery has moved at an accelerated pace in recent years, with a considerable focus on the transition from in vitro to in vivo models. As a result, there has been a significant increase in the need to adapt clinical imaging methods, as well as for novel imaging technologies for biological research. Positron emission tomography (PET) is a clinical imaging modality that permits the use of positron-labeled molecular imaging probes for non-invasive assays of biochemical processes. The imaging procedure can be repeatedly performed before and after interventions, thereby allowing each animal to be used as its own control. Positron-labeled compounds that target a range of molecular targets have been and continue to be synthesized, with examples of biological processes ranging from receptors and synthesis of transmitters in cell communication, to metabolic processes and gene expression. In animal research, PET has been used extensively in the past for studies of non-human primates and other larger animals. New detector technology has improved spatial resolution, and has made possible PET scanning for the study of the most important modern molecular biology model, the laboratory mouse. This paper presents the challenges facing PET technology as applied to small animal imaging, provides a historical overview of the development of small animal PET systems, and discusses the current state of the art in small animal PET technology. (orig.)

  4. TomoPy: a framework for the analysis of synchrotron tomographic data

    International Nuclear Information System (INIS)

    Gürsoy, Doǧa; De Carlo, Francesco; Xiao, Xianghui; Jacobsen, Chris

    2014-01-01

    A collaborative framework for the analysis of synchrotron tomographic data which has the potential to unify the effort of different facilities and beamlines performing similar tasks is described. The proposed Python-based framework is open-source, platform- and data-format-independent, has multiprocessing capability and supports functional programming that many researchers prefer. Analysis of tomographic datasets at synchrotron light sources (including X-ray transmission tomography, X-ray fluorescence microscopy and X-ray diffraction tomography) is becoming progressively more challenging due to the increasing data acquisition rates that new technologies in X-ray sources and detectors enable. The next generation of synchrotron facilities that are currently under design or construction throughout the world will provide diffraction-limited X-ray sources and are expected to boost the current data rates by several orders of magnitude, stressing the need for the development and integration of efficient analysis tools. Here an attempt to provide a collaborative framework for the analysis of synchrotron tomographic data that has the potential to unify the effort of different facilities and beamlines performing similar tasks is described in detail. The proposed Python-based framework is open-source, platform- and data-format-independent, has multiprocessing capability and supports procedural programming that many researchers prefer. This collaborative platform could affect all major synchrotron facilities where new effort is now dedicated to developing new tools that can be deployed at the facility for real-time processing, as well as distributed to users for off-site data processing

  5. Tomographic measurement of femtosecond-laser induced stress changes in optical fibers

    International Nuclear Information System (INIS)

    Duerr, F.; Limberger, H.G.; Salathe, R.P.; Hindle, F.; Douay, M.; Fertein, E.; Przygodzki, C.

    2004-01-01

    The tomographic measurement of the residual stress profile in femtosecond-laser irradiated standard SMF-28 germanium-doped telecommunication fiber is demonstrated. The fiber is irradiated with weakly focused pulses to realize long-period fiber gratings. In the irradiated grating regions, an asymmetrical increase in axial core stress up to 6.2 kg/mm2 is found. The increase in stress is attributed to a densification of the irradiated glass matrix. The stress-induced anisotropic index distribution is calculated and related to the absolute index change in the irradiated regions

  6. Sensitivity study of poisson corruption in tomographic measurements for air-water flows

    Energy Technology Data Exchange (ETDEWEB)

    Munshi, P. (Fraunhofer Institute for Nondestructive Testing, Saarbrucken (Germany)); Vaidya, M.S. (Indian Institute of Technology, Kanpur (India))

    1993-01-01

    An application of computerized tomography (CT) for measuring void fraction profiles in two-phase air-water flows was reported earlier. Those attempts involved some special radial methods for tomographic reconstruction and the popular convolution backprojection (CBP) method. The CBP method is capable of reconstructing void profiles for nonsymmetric flows also. In this paper, we investigate the effect of corrupted CT data for gamma-ray sources and aCBP algorithm. The corruption in such a case is due to the statistical (Poisson) nature of the source.

  7. Tomographic anthropomorphic models. Pt. 4. Organ doses for adults due to idealized external photon exposures

    CERN Document Server

    Zankl, M; Petoussi-Henss, N; Regulla, D

    2002-01-01

    The present report contains extensive tables and figures of conversion coefficients of organ and tissue equivalent dose, normalised to air kerma free in air for voxel anthropomorphic phantoms and for standard geometries of external photon radiation, estimated with Monte Carlo techniques. Four realistic adult voxel phantoms were used for the calculations, based on computed tomographic data of real people: three male phantoms, two of them being of average size, one representing a big man, and one female phantom of a tall and somewhat over weighted woman.

  8. New, multi-dimensional reconstructions for the 12-detector, scanned focal point, single-photon tomograph

    International Nuclear Information System (INIS)

    Stoddart, H.A.; Stoddart, H.F.

    1990-01-01

    The heuristic reconstruction process used for the highly-focused, scanned focal-point tomograph described by us in 1979 has remained unchanged until recently. This paper describes an entirely new and completely rigorous reconstruction for this unique geometry which produces dramatically improved images that are least square estimates of the objects. The handling of attenuation, scattering, and object power spectra are discussed. Reconstructions are described for 2D, 3D from three slices, time varying 3D from three slices, and 3D from a large set of slices. Reconstructions for simulated and actual clinical data are shown and the accuracy for quantitation is estimated

  9. Molecular-Frame 3D Photoelectron Momentum Distributions by Tomographic Reconstruction

    DEFF Research Database (Denmark)

    Maurer, Jochen; Dimitrovski, Darko; Christensen, Lauge

    2012-01-01

    Naphthalene molecules are fixed in space by a laser field and rotated, in 2° steps, over 180°. For each orientation, they are ionized by an intense, circularly polarized femtosecond laser pulse, and the 2D projection of the photoelectron momentum distribution is recorded. The molecular-frame 3D...... momentum distribution is obtained by tomographic reconstruction from all 90 projections. It reveals an anisotropic electron distribution, angularly shifted in the polarization plane, that is not accessible by the 2D momentum images. Our theoretical analysis shows that the magnitude of the angular shift...

  10. Calculation of the time resolution of the J-PET tomograph using kernel density estimation

    Science.gov (United States)

    Raczyński, L.; Wiślicki, W.; Krzemień, W.; Kowalski, P.; Alfs, D.; Bednarski, T.; Białas, P.; Curceanu, C.; Czerwiński, E.; Dulski, K.; Gajos, A.; Głowacz, B.; Gorgol, M.; Hiesmayr, B.; Jasińska, B.; Kamińska, D.; Korcyl, G.; Kozik, T.; Krawczyk, N.; Kubicz, E.; Mohammed, M.; Pawlik-Niedźwiecka, M.; Niedźwiecki, S.; Pałka, M.; Rudy, Z.; Rundel, O.; Sharma, N. G.; Silarski, M.; Smyrski, J.; Strzelecki, A.; Wieczorek, A.; Zgardzińska, B.; Zieliński, M.; Moskal, P.

    2017-06-01

    In this paper we estimate the time resolution of the J-PET scanner built from plastic scintillators. We incorporate the method of signal processing using the Tikhonov regularization framework and the kernel density estimation method. We obtain simple, closed-form analytical formulae for time resolution. The proposed method is validated using signals registered by means of the single detection unit of the J-PET tomograph built from a 30 cm long plastic scintillator strip. It is shown that the experimental and theoretical results obtained for the J-PET scanner equipped with vacuum tube photomultipliers are consistent.

  11. [ABOUT PROFESSIONAL TRAINING OF ROENTGENOLOGISTS FOR WORKING ON MAGNETIC RESONANCE TOMOGRAPHIC SCANNER].

    Science.gov (United States)

    Korobov, A V; Morozov, A N; Pasechnaia, V G; Fediainova, N V

    2015-01-01

    The article considers main problems conditioned demand of development of model of professional training of roentgenologists for working on magnetic resonance tomographic scanner in conditions of non-public medical diagnostic center in accordance with the concept of continuous medical education. The developed model is presented in graphic form i.e. folded in the form of generic structure and unfolded in the form of algorithmic and structural models of separate blocks. The detailed description of components of model and their functional designation are presented.

  12. Use of artificial neural networks in drug and explosive detection through tomographic images with thermal neutrons

    International Nuclear Information System (INIS)

    Ferreira, Francisco J.O.; Crispim, Verginia R.; Silva, Ademir X.

    2009-01-01

    The artificial neural network technique was used to identify drugs and plastic explosives, from a tomography composed by a set of six neutrongraphic projections obtained in real time. Bidimensional tomographic images of samples of drugs, explosives and other materials, when digitally processed, yield the characteristic spectra of each type of material. The information contained in those spectra was then used for ANN training, the best images being obtained when the multilayer perceptron model, the back-propagation training algorithm and the Cross-validation interruption criterion were used. ANN showed to be useful in forecasting presence of drugs and explosives hitting a rate of success above 97 %. (author)

  13. The potential use of transmission tomographic techniques for the quality checking of cemented waste drums

    International Nuclear Information System (INIS)

    Huddleston, J.; Hutchinson, I.G.

    1986-01-01

    In support of the programme for the quality checking of encapsulated intermediate level waste, the possibilities of using transmission tomographic techniques for the determination of the physical properties of the drum are being considered. A literature survey has been undertaken and the possibilities of extracting data from video recordings of real time radiographs are considered. This work was carried out with financial support from British Nuclear Fuels plc and the UK Department of the Environment. In the DoE context, the results will be used in the formulation of Government Policy, but at this stage they do not necessarily represent Government Policy. (author)

  14. Automating the segmentation of medical images for the production of voxel tomographic computational models

    International Nuclear Information System (INIS)

    Caon, M.

    2001-01-01

    Radiation dosimetry for the diagnostic medical imaging procedures performed on humans requires anatomically accurate, computational models. These may be constructed from medical images as voxel-based tomographic models. However, they are time consuming to produce and as a consequence, there are few available. This paper discusses the emergence of semi-automatic segmentation techniques and describes an application (iRAD) written in Microsoft Visual Basic that allows the bitmap of a medical image to be segmented interactively and semi-automatically while displayed in Microsoft Excel. iRAD will decrease the time required to construct voxel models. Copyright (2001) Australasian College of Physical Scientists and Engineers in Medicine

  15. Sensitivity study of poisson corruption in tomographic measurements for air-water flows

    International Nuclear Information System (INIS)

    Munshi, P.; Vaidya, M.S.

    1993-01-01

    An application of computerized tomography (CT) for measuring void fraction profiles in two-phase air-water flows was reported earlier. Those attempts involved some special radial methods for tomographic reconstruction and the popular convolution backprojection (CBP) method. The CBP method is capable of reconstructing void profiles for nonsymmetric flows also. In this paper, we investigate the effect of corrupted CT data for gamma-ray sources and aCBP algorithm. The corruption in such a case is due to the statistical (Poisson) nature of the source

  16. Computed tomographic evaluation due to ruptured intracranial aneurysms in the posterior fossa

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, Takayuki; Kayama, Takamasa; Sakurai, Yoshiharu; Ogawa, Akira; Onuma, Takehide; Yoshimoto, Takashi; Suzuki, Jiro.

    1988-12-01

    From April, 1978 through December, 1984, computed tomographic (CT) findings were carefully examined in 34 cases of initial subarachnoid bleeding due to a single ruptured aneurysm in the posterior fossa. All of the patients were hospitalized within 3 days of the onset of symptoms. High-density areas, which indicate the presence of subarachnoid clots, were evaluated in the interhemispheric and Sylvian fissures and the interpeduncular, prepontine, ambient, and quadrigeminal cisterns. The CT data suggest that hematomas in the four cisterns are thicker than those in the supratentorial subarachnoid spaces. Only one patient had an intracerebral hematoma. Hydrocephalus accompanied aneurysms of the posterior fossa more frequently than those of the anterior circulation.

  17. The paranasal sinuses before and after radiotherapy for nasopharyngeal carcinoma: a computed tomographic study

    Energy Technology Data Exchange (ETDEWEB)

    Porter, M.J.; Leung, S.F.; Ambrose, R.; Cheung, H.S.; Hasselt, C.A. van [Chinese University of Hong Kong, Shatin (Hong Kong). Prince of Wales Hospital

    1996-01-01

    A study comparing the pre- and post-radiotherapy computed tomographic scans of patients treated for nasopharyngeal carcinoma revealed that the incidence of major mucosal abnormality was significantly increased and approximately doubled after radiotherapy. The most significant factor predicting major mucosal abnormality after radiotherapy was the presence of tumour in the sinus before treatment. In the maxillary sinus there was significant association of major mucosal abnormality before and after radiotherapy although this was not so for the other sinuses. The mucosal changes observed were evident as early as six months after radiotherapy. (author).

  18. Computed Tomographic Angiography-Based Planning of Bipedicled DIEP Flaps with Intraflap Crossover Anastomosis: An Anatomical and Clinical Study.

    Science.gov (United States)

    Kim, So Young; Lee, Kyeong-Tae; Mun, Goo-Hyun

    2016-09-01

    When using deep inferior epigastric artery perforator (DIEP) flaps in breast reconstruction, harvesting bipedicled flaps can be a valuable option in cases requiring the transfer of a large portion of harvested flaps. Connecting the bilateral deep inferior epigastric arteries (DIEAs) by intraflap crossover anastomosis is one of the most popular methods of constructing bipedicled DIEP flaps. Planning the primary and secondary pedicle configurations for reliable intraflap crossover anastomosis is crucial. To achieve this, detailed anatomical DIEA information might be helpful. However, meticulous planning of bipedicled DIEP flaps based on computed tomographic angiography has not been reported. Detailed anatomical investigation of DIEA branches was conducted using computed tomographic angiographs of 100 hemiabdomens. Thirty-eight prospectively collected patients who underwent breast reconstruction using bipedicled DIEP flaps with intraflap crossover under computed tomographic angiography-based planning were reviewed. Three intramuscular DIEA branching patterns with distinct branch point topography, branch diameters, and superior continuations cranial to sizable perforators were observed. In the prospective clinical study, a primary pedicle with a recipient branch for intraflap crossover anastomosis could be specified preoperatively using computed tomographic angiography-based anatomical data of the pedicles, including size of DIEA branches or their superior continuation and size of perforators. In all cases, the bipedicle configuration was easily achieved as planned on computed tomographic angiography, and secure perfusion of the entire flap was achieved. The authors' results suggest that computed tomographic angiography provides detailed anatomical DIEA information, and comprehensive analysis of these data allows precise planning of bipedicle configurations with intraflap crossover anastomosis in DIEP flaps. Therapeutic, IV.

  19. Tomographic evaluation on bone morphology in posterior mandibular region for safe placement of dental implant.

    Science.gov (United States)

    Yildiz, Selda; Bayar, Gurkan Rasit; Guvenc, Inanc; Kocabiyik, Necdet; Cömert, Ayhan; Yazar, Fatih

    2015-03-01

    The aim of this study was to examine the morphology of submandibular fossae at edentulous posterior regions of dried mandibles and to determine a safe range for proper lingual angulation during the placement of a dental implant in the posterior mandibular region, with a computerized tomographic scan study. Spiral computed tomographic images of 77 dry adult human mandibles were evaluated to determine the deepest area in the submandibular fossa. Then, the proper lingual angulations for the placement of a dental implant at these regions were measured. Pearson's correlation coefficient was calculated to show the relation between the depths of submandibular fossa and lingual implant angulations. "Paired t test" was used for differences between the lingual implant angulations and the depths of submandibular fossa on each side of the mandibles. Depths of the submandibular fossa and lingual implant angulations were varied between 1.1 and 4.6 mm: 62°-84° on right side of the mandibles, and 1.1-4.5 mm, 65°-83° on left side of the mandibles. There were statistically medium negative correlations between the degree of lingual implant angulations and the depth of submandibular fossa on each side of the mandible (r = -0.44, p dental implant placement in posterior mandible to avoid potential risk of lingual cortical plate perforation.

  20. Simultaneous high-speed 3D flame front detection and tomographic PIV

    Science.gov (United States)

    Ebi, Dominik; Clemens, Noel T.

    2016-03-01

    A technique capable of detecting the instantaneous, time-resolved, 3D flame topography is successfully demonstrated in a lean-premixed swirl flame undergoing flashback. A simultaneous measurement of the volumetric velocity field is possible without the need for additional hardware. Droplets which vaporize in the preheat zone of the flame serve as the marker for the flame front. The droplets are illuminated with a laser and imaged from four different views followed by a tomographic reconstruction to obtain the volumetric particle field. Void regions in the reconstructed particle field, which correspond to regions of burnt gas, are detected with a series of image processing steps. The interface separating the void region from regions filled with particles is defined as the flame surface. The velocity field in the unburnt gas is measured using tomographic PIV. The resulting data include the simultaneous 3D flame front and 3D volumetric velocity field at 5 kHz. The technique is applied to a lean-premixed (ϕ  =  0.8), swirling methane-air flame and validated against simultaneously acquired planar measurements. The mean error associated with the reconstructed 3D flame topography is about 0.4 mm, which is smaller than the flame thickness under the studied conditions. The mean error associated with the volumetric velocity field is about 0.2 m s-1.

  1. Tomographic Aperture-Encoded Particle Tracking Velocimetry: A New Approach to Volumetric PIV

    Science.gov (United States)

    Troolin, Dan; Boomsma, Aaron; Lai, Wing; Pothos, Stamatios; Fluid Mechanics Research Instruments Team

    2016-11-01

    Volumetric velocity fields are useful in a wide variety of fluid mechanics applications. Several types of three-dimensional imaging methods have been used in the past to varying degrees of success, for example, 3D PTV (Maas et al., 1993), DDPIV (Peireira et al., 2006), Tomographic PIV (Elsinga, 2006), and V3V (Troolin and Longmire, 2009), among others. Each of these techniques has shown advantages and disadvantages in different areas. With the advent of higher resolution and lower noise cameras with higher stability levels, new techniques are emerging that combine the advantages of the existing techniques. This talk describes a new technique called Tomographic Aperture-Encoded Particle Tracking Velocimetry (TAPTV), in which segmented triangulation and diameter tolerance are used to achieve three-dimensional particle tracking with extremely high particle densities (on the order of ppp = 0.2 or higher) without the drawbacks normally associated with ghost particles (for example in TomoPIV). The results are highly spatially-resolved data with very fast processing times. A detailed explanation of the technique as well as plots, movies, and experimental considerations will be discussed.

  2. Simultaneous high-speed 3D flame front detection and tomographic PIV

    International Nuclear Information System (INIS)

    Ebi, Dominik; Clemens, Noel T

    2016-01-01

    A technique capable of detecting the instantaneous, time-resolved, 3D flame topography is successfully demonstrated in a lean-premixed swirl flame undergoing flashback. A simultaneous measurement of the volumetric velocity field is possible without the need for additional hardware. Droplets which vaporize in the preheat zone of the flame serve as the marker for the flame front. The droplets are illuminated with a laser and imaged from four different views followed by a tomographic reconstruction to obtain the volumetric particle field. Void regions in the reconstructed particle field, which correspond to regions of burnt gas, are detected with a series of image processing steps. The interface separating the void region from regions filled with particles is defined as the flame surface. The velocity field in the unburnt gas is measured using tomographic PIV. The resulting data include the simultaneous 3D flame front and 3D volumetric velocity field at 5 kHz. The technique is applied to a lean-premixed (ϕ  =  0.8), swirling methane-air flame and validated against simultaneously acquired planar measurements. The mean error associated with the reconstructed 3D flame topography is about 0.4 mm, which is smaller than the flame thickness under the studied conditions. The mean error associated with the volumetric velocity field is about 0.2 m s −1 . (paper)

  3. Initial studies using the RatCAP conscious animal PET tomograph

    Science.gov (United States)

    Woody, C.; Vaska, P.; Schlyer, D.; Pratte, J.-F.; Junnarkar, S.; Park, S.-J.; Stoll, S.; Purschke, M.; Southekal, S.; Kriplani, A.; Krishnamoorthy, S.; Maramraju, S.; Lee, D.; Schiffer, W.; Dewey, S.; Neill, J.; Kandasamy, A.; O'Connor, P.; Radeka, V.; Fontaine, R.; Lecomte, R.

    2007-02-01

    The RatCAP is a small, head-mounted PET tomograph designed to image the brain of a conscious rat without the use of anesthesia. The detector is a complete, high-performance 3D tomograph consisting of a 3.8 cm inside-diameter ring containing 12 block detectors, each of which is comprised of a 4×8 array of 2.2×2.2×5 mm 3 LSO crystals readout with a matching APD array and custom ASIC, and has a 1.8 cm axial field of view. Construction of the first working prototype detector has been completed and its performance characteristics have been measured. The results show an intrinsic spatial resolution of 2.1 mm, a time resolution of ˜14 ns FWHM, and a sensitivity of 0.7% at an energy threshold of 150 keV. First preliminary images have been obtained using 18F-FDG and 11C-methamphetamine, which show comparable image quality to those obtained from a commercial MicroPET R4 scanner. Initial studies have also been carried out to study stress levels in rats wearing the RatCAP.

  4. The effects of temporomandibular joint internal derangement and degenerative joint disease on tomographic and arthrotomographic images.

    Science.gov (United States)

    Brand, J W; Whinery, J G; Anderson, Q N; Keenan, K M

    1989-02-01

    In a blind study, 243 arthrograms were interpreted as showing normal disk position, anterior disk displacement with reduction, or anterior disk displacement without reduction. The presence or absence of a perforation of the posterior attachment or disk was recorded. Later, tomograms of the same patient were interpreted. The presence or absence of evidence of temporomandibular degenerative joint disease (TMDJD) was recorded. The condyle-to-fossa relationship was characterized as retropositioned or not retropositioned. O the 106 cases with tomographic evidence of TMDJD, 100 (94%) had arthrographic evidence of internal derangement (p less than 0.0001), whereas 47% of the cases with internal derangement (211) had evidence of TMDJD. Perforations were seen in 29 (27%) of the cases with degenerative joint disease and in none (0%) of the cases without TMDJD (p less than 0.001). In cases without TMDJD, 90% of the cases with internal derangement revealed condylar retropositioning (p less than 0.0001). With tomographic evidence of TMDJD present, the relationship between condylar position and disk position was not significant.

  5. Computed Tomographic Analysis of Ventral Atlantoaxial Optimal Safe Implantation Corridors in 27 Dogs.

    Science.gov (United States)

    Leblond, Guillaume; Gaitero, Luis; Moens, Noel M M; Zur Linden, Alex; James, Fiona M K; Monteith, Gabrielle J; Runciman, John

    2017-11-01

    Objectives  Ventral atlantoaxial stabilization techniques are challenging surgical procedures in dogs. Available surgical guidelines are based upon subjective anatomical landmarks, and limited radiographic and computed tomographic data. The aims of this study were (1) to provide detailed anatomical descriptions of atlantoaxial optimal safe implantation corridors to generate objective recommendations for optimal implant placements and (2) to compare anatomical data obtained in non-affected Toy breed dogs, affected Toy breed dogs suffering from atlantoaxial instability and non-affected Beagle dogs. Methods  Anatomical data were collected from a prospectively recruited population of 27 dogs using a previously validated method of optimal safe implantation corridor analysis using computed tomographic images. Results  Optimal implant positions and three-dimensional numerical data were generated successfully in all cases. Anatomical landmarks could be used to generate objective definitions of optimal insertion points which were applicable across all three groups. Overall the geometrical distribution of all implant sites was similar in all three groups with a few exceptions. Clinical Significance  This study provides extensive anatomical data available to facilitate surgical planning of implant placement for atlantoaxial stabilization. Our data suggest that non-affected Toy breed dogs and non-affected Beagle dogs constitute reasonable research models to study atlantoaxial stabilization constructs. Schattauer GmbH Stuttgart.

  6. Initial studies using the RatCAP conscious animal PET tomograph

    Energy Technology Data Exchange (ETDEWEB)

    Woody, C. [Brookhaven National Laboratory, Upton, NY (United States)]. E-mail: woody@bnl.gov; Vaska, P. [Brookhaven National Laboratory, Upton, NY (United States); Schlyer, D. [Brookhaven National Laboratory, Upton, NY (United States); Pratte, J.-F. [Brookhaven National Laboratory, Upton, NY (United States); Junnarkar, S. [Brookhaven National Laboratory, Upton, NY (United States); Park, S.-J. [Brookhaven National Laboratory, Upton, NY (United States); Stoll, S. [Brookhaven National Laboratory, Upton, NY (United States); Purschke, M. [Brookhaven National Laboratory, Upton, NY (United States); Southekal, S. [Stony Brook University, Stony Brook, NY (United States); Kriplani, A. [Stony Brook University, Stony Brook, NY (United States); Krishnamoorthy, S. [Stony Brook University, Stony Brook, NY (United States); Maramraju, S. [Stony Brook University, Stony Brook, NY (United States); Lee, D. [Brookhaven National Laboratory, Upton, NY (United States); Schiffer, W. [Brookhaven National Laboratory, Upton, NY (United States); Dewey, S. [Brookhaven National Laboratory, Upton, NY (United States); Neill, J. [Long Island University, Brookville, NY (United States); Kandasamy, A. [Brookhaven National Laboratory, Upton, NY (United States); O' Connor, P. [Brookhaven National Laboratory, Upton, NY (United States); Radeka, V. [Brookhaven National Laboratory, Upton, NY (United States); Fontaine, R. [Sherbrooke University, Sherbrooke, Que. (Canada); Lecomte, R. [Sherbrooke University, Sherbrooke, Que. (Canada)

    2007-02-01

    The RatCAP is a small, head-mounted PET tomograph designed to image the brain of a conscious rat without the use of anesthesia. The detector is a complete, high-performance 3D tomograph consisting of a 3.8 cm inside-diameter ring containing 12 block detectors, each of which is comprised of a 4x8 array of 2.2x2.2x5 mm{sup 3} LSO crystals readout with a matching APD array and custom ASIC, and has a 1.8 cm axial field of view. Construction of the first working prototype detector has been completed and its performance characteristics have been measured. The results show an intrinsic spatial resolution of 2.1 mm, a time resolution of {approx}14 ns FWHM, and a sensitivity of 0.7% at an energy threshold of 150 keV. First preliminary images have been obtained using {sup 18}F-FDG and {sup 11}C-methamphetamine, which show comparable image quality to those obtained from a commercial MicroPET R4 scanner. Initial studies have also been carried out to study stress levels in rats wearing the RatCAP.

  7. Retinal nerve fibre layer imaging: comparison of Cirrus optical coherence tomography and Heidelberg retinal tomograph 3.

    Science.gov (United States)

    Kratz, Assaf; Lim, Ridia; Rush, Ryan; Sheth, Saumil; Goldberg, Ivan

    2013-12-01

    The purpose of this study was to analyze the relationship between retinal nerve fibre layer thickness measured by spectral domain optical coherence tomography and confocal scanning laser ophthalmoscope. Prospective, cross-sectional study. Hospital setting. One hundred seventy-three subjects (85 glaucoma and 88 normal subjects). One eye from each individual was selected randomly for imaging by the spectral domain Cirrus optical coherence tomography and Heidelberg retinal tomograph 3. Global thickness and measurements at the four quadrants around the optic disc. Measurements as determined by Heidelberg retinal tomograph 3 were significantly larger than measurements done by Cirrus optical coherence tomography (respectively in mm, for global thickness: 200.0 ± 87.2 and 80.7 ± 14.7; for temporal quadrant: 75.3 ± 31.9 and 59.1 ± 13.8; for superior quadrant: 223.2 ± 128.4 and 97.7 ± 20.9; for nasal quadrant: 208.0 ± 102.9 and 66.8 ± 11.8; and for inferior quadrant: 224.4 ± 116.9 and 99.1 ± 26.6, for all P fibre layer thickness. The normative diagnostic classification of the two technologies may not agree. The results preclude interchangeable use of these measurements in clinical practice. © 2013 Royal Australian and New Zealand College of Ophthalmologistss.

  8. 3D Printing of Plant Golgi Stacks from Their Electron Tomographic Models.

    Science.gov (United States)

    Mai, Keith Ka Ki; Kang, Madison J; Kang, Byung-Ho

    2017-01-01

    Three-dimensional (3D) printing is an effective tool for preparing tangible 3D models from computer visualizations to assist in scientific research and education. With the recent popularization of 3D printing processes, it is now possible for individual laboratories to convert their scientific data into a physical form suitable for presentation or teaching purposes. Electron tomography is an electron microscopy method by which 3D structures of subcellular organelles or macromolecular complexes are determined at nanometer-level resolutions. Electron tomography analyses have revealed the convoluted membrane architectures of Golgi stacks, chloroplasts, and mitochondria. But the intricacy of their 3D organizations is difficult to grasp from tomographic models illustrated on computer screens. Despite the rapid development of 3D printing technologies, production of organelle models based on experimental data with 3D printing has rarely been documented. In this chapter, we present a simple guide to creating 3D prints of electron tomographic models of plant Golgi stacks using the two most accessible 3D printing technologies.

  9. Tomographic findings of gastric gastrointestinal stromal tumor: a 14-case study

    International Nuclear Information System (INIS)

    Pelandre, Gustavo Lemos; Djahjah, Maria Celia; Nobre, Luiz Felipe; Gasparetto, Emerson Leandro; Marchiori, Edson; Pereira, Bruno Vilhena; Valadao, Marcus; Linhares, Eduardo

    2008-01-01

    Objective: The purpose of this study was to describe the tomographic findings of gastric gastrointestinal stromal tumor. Materials and methods: Fourteen patients with histopathologically and immunohistochemically confirmed gastric gastrointestinal stromal tumors, who had already been submitted to computed tomography scans before the treatment, were evaluated in the period between January 1999 and December 2006. The following tomographic variables were analyzed: lesion topography, size/dimensions, homogeneity, contour, margins, morphology, pattern and intravenous contrast-enhancement intensity, growth pattern, invasion of adjacent organs, presence of ulceration, fistula, calcifications, mesenteric fat infiltration, lymphadenomegaly and presence of distant metastasis. Results: Tumors were found in the body (57.1%) or in the gastric fundus (42.9%), with sizes ranging between 6.0 cm and 23.0 cm (mean, 11.5 cm). Predominantly extra luminal growth was observed in 57.1% of cases and intra/extra luminal in 35.7%. Subtle contrast-enhancement was observed in 50%, moderate in 50%, and heterogeneous in 64.3% of cases. Additionally, central hypodensity was observed in 64.3%, invasion of adjacent organs in 42.9%, and hepatic metastasis in 7.2% of cases. Conclusion: In the present study, the majority of tumors were found in the gastric body, with an average size of 11.5 cm, presenting with central hypodensity, heterogeneous contrast-enhancement and predominantly extraluminal growth. (author)

  10. 3D tomographic imaging with the γ-eye planar scintigraphic gamma camera

    Science.gov (United States)

    Tunnicliffe, H.; Georgiou, M.; Loudos, G. K.; Simcox, A.; Tsoumpas, C.

    2017-11-01

    γ-eye is a desktop planar scintigraphic gamma camera (100 mm × 50 mm field of view) designed by BET Solutions as an affordable tool for dynamic, whole body, small-animal imaging. This investigation tests the viability of using γ-eye for the collection of tomographic data for 3D SPECT reconstruction. Two software packages, QSPECT and STIR (software for tomographic image reconstruction), have been compared. Reconstructions have been performed using QSPECT’s implementation of the OSEM algorithm and STIR’s OSMAPOSL (Ordered Subset Maximum A Posteriori One Step Late) and OSSPS (Ordered Subsets Separable Paraboloidal Surrogate) algorithms. Reconstructed images of phantom and mouse data have been assessed in terms of spatial resolution, sensitivity to varying activity levels and uniformity. The effect of varying the number of iterations, the voxel size (1.25 mm default voxel size reduced to 0.625 mm and 0.3125 mm), the point spread function correction and the weight of prior terms were explored. While QSPECT demonstrated faster reconstructions, STIR outperformed it in terms of resolution (as low as 1 mm versus 3 mm), particularly when smaller voxel sizes were used, and in terms of uniformity, particularly when prior terms were used. Little difference in terms of sensitivity was seen throughout.

  11. KiDS-450: tomographic cross-correlation of galaxy shear with Planck lensing

    Science.gov (United States)

    Harnois-Déraps, Joachim; Tröster, Tilman; Chisari, Nora Elisa; Heymans, Catherine; van Waerbeke, Ludovic; Asgari, Marika; Bilicki, Maciej; Choi, Ami; Erben, Thomas; Hildebrandt, Hendrik; Hoekstra, Henk; Joudaki, Shahab; Kuijken, Konrad; Merten, Julian; Miller, Lance; Robertson, Naomi; Schneider, Peter; Viola, Massimo

    2017-10-01

    We present the tomographic cross-correlation between galaxy lensing measured in the Kilo Degree Survey (KiDS-450) with overlapping lensing measurements of the cosmic microwave background (CMB), as detected by Planck 2015. We compare our joint probe measurement to the theoretical expectation for a flat Λ cold dark matter cosmology, assuming the best-fitting cosmological parameters from the KiDS-450 cosmic shear and Planck CMB analyses. We find that our results are consistent within 1σ with the KiDS-450 cosmology, with an amplitude re-scaling parameter AKiDS = 0.86 ± 0.19. Adopting a Planck cosmology, we find our results are consistent within 2σ, with APlanck = 0.68 ± 0.15. We show that the agreement is improved in both cases when the contamination to the signal by intrinsic galaxy alignments is accounted for, increasing A by ∼0.1. This is the first tomographic analysis of the galaxy lensing - CMB lensing cross-correlation signal, and is based on five photometric redshift bins. We use this measurement as an independent validation of the multiplicative shear calibration and of the calibrated source redshift distribution at high redshifts. We find that constraints on these two quantities are strongly correlated when obtained from this technique, which should therefore not be considered as a stand-alone competitive calibration tool.

  12. Box Tomography: An efficient tomographic method for imaging localized structures in the deep Earth

    Science.gov (United States)

    Masson, Yder; Romanowicz, Barbara

    2017-04-01

    The accurate imaging of localized geological structures inside the deep Earth is key to understand our planet and its history. Since the introduction of the Preliminary Reference Earth Model, many generations of global tomographic models have been developed and give us access to the 3D structure of the Earth's interior. The latest generation of global tomographic models has emerged with the development of accurate numerical wavefield computations in a 3D earth combined with access to enhanced HPC capabilities. These models have sharpened up mantle images and unveiled relatively small scale structures that were blurred out in previous generation models. Fingerlike structures have been found at the base of the oceanic asthenosphere, and vertically oriented broad low velocity plume conduits [1] extend throughout the lower mantle beneath those major hotspots that are located within the perimeter of the deep mantle large low shear velocity provinces (LLSVPs). While providing new insights into our understanding of mantle dynamics, the detailed morphology of these features requires further efforts to obtain higher resolution images. In recent years, we developed a theoretical framework [2][3] for the tomographic imaging of localised geological structures buried inside the Earth, where no seismic sources nor receivers are necessarily present. We call this "box tomography" [4]. The essential difference between box-tomography and standard tomographic methods is that the numerical modeling (i.e. the raytracing in travel time tomography and the wave propagation in waveform tomography or full waveform inversion) is completely confined within the small box-region imaged. Thus, box tomography is a lot more efficient than global tomography (i.e. where we invert for the velocity in the larger volume that encompasses all the sources and receivers), for imaging localised objects. We present 2D and 3D examples showing that box tomography can be employed for imaging structures present

  13. X-ray tomographic in-service testing of girth welds - The European project TomoWELD

    International Nuclear Information System (INIS)

    Ewert, Uwe; Redmer, Bernhard; Walter, David; Thiessenhusen, Kai-Uwe; Bellon, Carsten; Nicholson, P. Ian; Clarke, Alan; Finke-Haerkoenen, Klaus-Peter; Scharfschwerdt, Joerg W.; Rohde, Karsten

    2015-01-01

    The new standard ISO 17636-2: 2013 'NDT of welded joints - Radiographic testing - Part 2: X- and gamma radiographic testing with digital detectors ''defines the testing practice for digital radiography of welds for the production and in-service inspection. Furthermore the DIN 25435-7:2014 ''In-service inspections of the components of the primary circuit of light water reactors - Part 7: Radiographic testing'' was published. The essential requirements are discussed. The new TomoWELD system can both perform measurements according to these standards as well as record tomographic cross-sectional images (equivalent to metallographic sections), to determine image sizes. Areas of application are chemical and nuclear facilities. It provides a fast testing of girth welds as compared to the use of film or imaging plates. In 2006 the mechanized planar tomography system, TomoCAR, was already introduced, with one could measure cross-sectional images. TomoWELD uses a new photon counting and energy resolving detector with CdTe-CMOS crystal hybrids. The new detector allows the choice of energy thresholds, and enables the reduction of the influence of scattered radiation on the radiographic images and the reconstructed cross-sectional images. An optimized irradiation geometry with a new manipulator design and a fast GPU-based reconstruction algorithm can be used to accelerate the reconstruction and to improve the reconstruction results. The size and the shape of planar and voluminous irregularities can be determined. The concept and the first pictures will be presented. (Contains mainly PowerPoint slides). [de

  14. Re-evaluation of Magnetic Resonance and Computerised Tomographic Imaging in Neuro-Ophthalmic Patients in an Academic Centre

    NARCIS (Netherlands)

    Koekoek, Clarence G. J.; Meiners, Linda C.; Pott, Jan Willem R.

    The aim of the study is to report the frequency of missed diagnoses on magnetic resonance and computerised tomographic imaging in neuro-ophthalmic patients who were referred to an academic ophthalmology department, with apparent normal imaging. The authors included all neuro-ophthalmic patients,

  15. Characterization of noise sources in a rod-airfoil configuration by means of Time-Resolved Tomographic PIV

    NARCIS (Netherlands)

    Lorenzoni, V.; Violato, D.; Scarano, F.

    2010-01-01

    Time-resolved Tomographic PIV was used to characterize the flow around the leading edge of a NACA 0012 airfoil in rod-airfoil configuration at ReD = 3500. The volumetric approach at relatively high temporal resolution allows the measurement of the evolution of the 3D vortical structures constituting

  16. Value of Computed Tomographic Perfusion-Based Patient Selection for Intra-Arterial Acute Ischemic Stroke Treatment

    NARCIS (Netherlands)

    Borst, Jordi; Berkhemer, Olvert A.; Roos, Yvo B. W. E. M.; van Bavel, Ed; van Zwam, Wim H.; van Oostenbrugge, Robert J.; van Walderveen, Marianne A. A.; Lingsma, Hester F.; van der Lugt, Aad; Dippel, Diederik W. J.; Yoo, Albert J.; Marquering, Henk A.; Majoie, Charles B. L. M.; Fransen, Puck S. S.; Beumer, Debbie; van den Berg, Lucie A.; Schonewille, Wouter J.; Vos, Jan Albert; Nederkoorn, Paul J.; Wermer, Marieke J. H.; Staals, Julie; Hofmeijer, Jeannette; van Oostayen, Jacques A.; Lycklama à Nijeholt, Geert J.; Boiten, Jelis; Brouwer, Patrick A.; Emmer, Bart J.; de Bruijn, Sebastiaan F.; van Dijk, Lukas C.; Kappelle, L. Jaap; Lo, Rob H.; van Dijk, Ewoud J.; de Vries, Joost; de Kort, Paul L. M.; van den Berg, Jan S. P.; van Hasselt, Boudewijn A. A. M.; Aerden, Leo A. M.; Dallinga, René J.; Visser, Marieke C.; Bot, Joseph C. J.; Vroomen, Patrick C.; Eshghi, Omid; Schreuder, Tobien H. C. M. L.; Heijboer, Roel J. J.; Keizer, Koos; Tielbeek, Alexander V.; den Hertog, Heleen M.; Gerrits, Dick G.; van den Berg-Vos, Renske M.; Karas, Giorgos B.; Steyerberg, Ewout W.; Flach, H. Zwenneke; Sprengers, Marieke E. S.; Jenniskens, Sjoerd F. M.; Beenen, Ludo F. M.; van den Berg, René; Koudstaal, Peter J.; Brown, Martin M.; Liebig, Thomas; Stijnen, Theo; Andersson, Tommy; Mattle, Heinrich; Wahlgren, Nils; van der Heijden, Esther; Ghannouti, Naziha; Fleitour, Nadine; Hooijenga, Imke; Puppels, Corina; Pellikaan, Wilma; Geerling, Annet; Lindl-Velema, Annemieke; van Vemde, Gina; de Ridder, Ans; Greebe, Paut; de Bont-Stikkelbroeck, José; de Meris, Joke; Janssen, Kirsten; Struijk, Willy; Simons, Tiny; Messchendorp, Gert; van der Minne, Friedus; Bongenaar, Hester; Licher, Silvan; Boodt, Nikki; Ros, Adriaan; Venema, Esmee; Slokkers, Ilse; Ganpat, Raymie-Jayce; Mulder, Maxim; Saiedie, Nawid; Heshmatollah, Alis; Schipperen, Stefanie; Vinken, Stefan; van Boxtel, Tiemen; Koets, Jeroen; Boers, Merel; Santos, Emilie; Jansen, Ivo; Kappelhof, Manon; Lucas, Marit; Geuskens, Ralph; Barros, Renan Sales; Dobbe, Roeland; Csizmadia, Marloes

    2015-01-01

    The utility of computed tomographic perfusion (CTP)-based patient selection for intra-arterial treatment of acute ischemic stroke has not been proven in randomized trials and requires further study in a cohort that was not selected based on CTP. Our objective was to study the relationship between

  17. Radiographic and tomographic aspects of meningeal hemangiosarcoma in a German Shepherd dog with clinical signs of cauda equina sindrome

    International Nuclear Information System (INIS)

    Pinto, A.C.B. de C.F.; Ferrigno, C.R.A.; Matera, J.M.; Torres, L.N.; Sinhorini, I.L.; Cortopassi, S.R.G.; Hage, M.C.F.N.S.

    2007-01-01

    Hemangiosarcoma is a highly malignant neoplasia derived from the endothelial cell line and, therefore, can arise in any tissue with blood vessels. A case of a rare meningeal site of hemangiosarcoma in an eight-year old German Shepherd dog with clinical signs of cauda equina sindrome is described. The diagnosis was made based on clinical, radiographic, tomographic and histopathological findings [pt

  18. Impact of Collateral Status Evaluated by Dynamic Computed Tomographic Angiography on Clinical Outcome in Patients With Ischemic Stroke

    NARCIS (Netherlands)

    van den Wijngaard, Ido R.; Boiten, Jelis; Holswilder, Ghislaine; Algra, Ale; Dippel, Diederik W J; Velthuis, Birgitta K.; Wermer, Marieke J H; van Walderveen, Marianne A A

    2015-01-01

    BACKGROUND AND PURPOSE—: Status of collateral circulation is a strong predictor of outcome after acute ischemic stroke. Our aim was to compare the predictive value of strategies for collateral blood flow assessment with dynamic computed tomographic angiography (CTA) and conventional single-phase CT

  19. Heidelberg Retina Tomograph (HRT3) in Population-based Epidemiology : Normative Values and Criteria for Glaucomatous Optic Neuropathy

    NARCIS (Netherlands)

    Ramdas, Wishal D.; Wolfs, Roger C. W.; Hofman, Albert; de Jong, Paulus T. V. M.; Vingerling, Johannes R.; Jansonius, Nomdo M.

    2011-01-01

    Purpose: To establish normative values for Heidelberg Retina Tomograph (HRT3) variables and to develop HRT3-based criteria for glaucomatous optic neuropathy for epidemiological research in a white population. Methods: Consecutive participants in the Rotterdam Study were examined with HRT and

  20. Heidelberg Retina Tomograph (HRT3) in population-based epidemiology: normative values and criteria for glaucomatous optic neuropathy

    NARCIS (Netherlands)

    Ramdas, Wishal D.; Wolfs, Roger C. W.; Hofman, Albert; de Jong, Paulus T. V. M.; Vingerling, Johannes R.; Jansonius, Nomdo M.

    2011-01-01

    To establish normative values for Heidelberg Retina Tomograph (HRT3) variables and to develop HRT3-based criteria for glaucomatous optic neuropathy for epidemiological research in a white population. Consecutive participants in the Rotterdam Study were examined with HRT and simultaneous stereoscopic

  1. On the use of helium-filled soap bubbles for large-scale tomographic PIV in wind tunnel experiments

    NARCIS (Netherlands)

    Scarano, F.; Ghaemi, S.; Alp Caridi, G.C.; Bosbach, J.; Dierksheide, U.; Sciacchitano, A.

    2015-01-01

    The flow-tracing fidelity of sub-millimetre diameter helium-filled soap bubbles (HFSB) for low-speed aerodynamics is studied. The main interest of using HFSB in relation to micron-size droplets is the large amount of scattered light, enabling larger-scale three-dimensional experiments by tomographic

  2. Development of the two Korean adult tomographic computational phantoms for organ dosimetry

    International Nuclear Information System (INIS)

    Lee, Choonsik; Lee, Choonik; Park, Sang-Hyun; Lee, Jai-Ki

    2006-01-01

    Following the previously developed Korean tomographic phantom, KORMAN, two additional whole-body tomographic phantoms of Korean adult males were developed from magnetic resonance (MR) and computed tomography (CT) images, respectively. Two healthy male volunteers, whose body dimensions were fairly representative of the average Korean adult male, were recruited and scanned for phantom development. Contiguous whole body MR images were obtained from one subject exclusive of the arms, while whole-body CT images were acquired from the second individual. A total of 29 organs and tissues and 19 skeletal sites were segmented via image manipulation techniques such as gray-level thresholding, region growing, and manual drawing, in which each of segmented image slice was subsequently reviewed by an experienced radiologist for anatomical accuracy. The resulting phantoms, the MR-based KTMAN-1 (Korean Typical MAN-1) and the CT-based KTMAN-2 (Korean Typical MAN-2), consist of 300x150x344 voxels with a voxel resolution of 2x2x5 mm 3 for both phantoms. Masses of segmented organs and tissues were calculated as the product of a nominal reference density, the prevoxel volume, and the cumulative number of voxels defining each organs or tissue. These organs masses were then compared with those of both the Asian and the ICRP reference adult male. Organ masses within both KTMAN-1 and KTMAN-2 showed differences within 40% of Asian and ICRP reference values, with the exception of the skin, gall bladder, and pancreas which displayed larger differences. The resulting three-dimensional binary file was ported to the Monte Carlo code MCNPX2.4 to calculate organ doses following external irradiation for illustrative purposes. Colon, lung, liver, and stomach absorbed doses, as well as the effective dose, for idealized photon irradiation geometries (anterior-posterior and right lateral) were determined, and then compared with data from two other tomographic phantoms (Asian and Caucasian), and

  3. Soil physical and X-ray computed tomographic measurements to investigate small-scale structural differences under strip tillage compared to mulch till and no-till

    Science.gov (United States)

    Pöhlitz, Julia; Rücknagel, Jan; Schlüter, Steffen; Vogel, Hans-Jörg

    2017-04-01

    In recent years there has been an increasing application of conservation tillage techniques where the soil is no longer turned, but only loosened or left completely untilled. Dead plant material remains on the soil surface, which provides environmental and economic benefits such as the conservation of water, preventing soil erosion and saving time during seedbed preparation. There is a variety of conservation tillage systems, e.g. mulch till, no-till and strip tillage, which is a special feature. In strip tillage, the seed bed is divided into a seed zone (strip-till within the seed row: STWS) and a soil management zone (strip-till between the seed row: STBS). However, each tillage application affects physical soil properties and processes. Here, the combined application of classical soil mechanical and computed tomographic methods is used on a Chernozem (texture 0-30 cm: silt loam) to show small-scale structural differences under strip tillage (STWS, STBS) compared to no-till (NT) and mulch till (MT). In addition to the classical soil physical parameters dry bulk density and saturated conductivity (years: 2012, 2014, 2015) at soil depths 2-8 and 12-18 cm, stress-strain tests were carried out to map mechanical behavior. The stress-strain tests were performed for a load range from 5-550 kPa at 12-18 cm depth (year 2015). Mechanical precompression stress was determined on the stress-dry bulk density curves. Further, CT image cross sections and computed tomographic examinations (average pore size, porosity, connectivity, and anisotropy) were used from the same soil samples. For STBS and NT, a significant increase in dry bulk density was observed over the course of time compared to STWS and MT, which was more pronounced at 2-8 cm than at 12-18 cm depth. Despite higher dry bulk density, STBS displayed higher saturated conductivity in contrast to STWS, which can be attributed to higher earthworm abundance. In strip tillage, structural differences were identified

  4. Multi-Mode Lamb Wave Arrival Time Extraction for Improved Tomographic Reconstruction

    International Nuclear Information System (INIS)

    Hinders, Mark K.; Hou Jidong; Leonard, Kevin R.

    2005-01-01

    An ultrasonic signal processing technique is applied to multi-mode arrival time estimation from Lamb waveforms. The basic tool is a simplified time-scale projection called a dynamic wavelet fingerprint (DWFP) which enables direct observation of the variation of features of interest in non-stationary ultrasonic signals. The DWFP technique was used to automatically detect and evaluate each candidate through-transmitted Lamb mode. The area of the dynamic wavelet fingerprint was then used as a feature to distinguish false modes caused by noise and other interference from the true modes of interest. The set of estimated arrival times were then used as inputs for tomographic reconstruction. The Lamb wave tomography images generated with these estimated arrival times were able to indicate different defects in aluminum plates

  5. Computer tomographic characteristics of space-occupying processes in the anterior mediastinum and their differential diagnosis

    International Nuclear Information System (INIS)

    Walter, E.; Huebener, K.H.

    1980-01-01

    Histological diagnosis of space-occupying lesions in the anterior mediastinum is rarely possible using conventional radiological diagnoses; computer tomography in our opinion often makes this possible. Our experience is based on 47 tumours which have been investigated histologically. In the anterior upper or middle mediastimun there were thymic tumours, retrosternal thyroids, malignant lymphomas, teratoid cysts, one seminoma and one aneurysm. In the anterior inferior mediastinum, we found pericardial cysts, lipomas and one Morgagni hernia. The computer tomographic features of these various lesions are described. Some tumorus can be defined histologically by computer tomography alone, whereas others make it necessary to consider the clinical features in addition. Computer tomography is particularly valuable in the diagnosis of persistence of the thymus, since standard radiography in two planes fails to show the lesion. (orig./MG) [de

  6. Design considerations for a time-resolved tomographic diagnostic at DARHT

    Energy Technology Data Exchange (ETDEWEB)

    Morris I. Kaufman, Daniel Frayer, Wendi Dreesen, Douglas Johnson, Alfred Meidinger

    2006-08-01

    An instrument has been developed to acquire time-resolved tomographic data from the electron beam at the DARHT [Dual-Axis Radiographic Hydrodynamic Test] facility at Los Alamos National Laboratory. The instrument contains four optical lines of sight that view a single tilted object. The lens design optically integrates along one optical axis for each line of sight. These images are relayed via fiber optic arrays to streak cameras, and the recorded streaks are used to reconstruct the original two-dimensional data. Installation of this instrument into the facility requires automation of both the optomechanical adjustments and calibration of the instrument in a constrained space. Additional design considerations include compound tilts on the object and image planes.

  7. Upper extremity computed tomographic angiography: state of the art technique and applications in 2010.

    Science.gov (United States)

    Hellinger, Jeffrey C; Epelman, Monica; Rubin, Geoffrey D

    2010-03-01

    From technical and interpretative perspectives, upper extremity computed tomographic angiography (CTA) is one of the more challenging vascular CTA applications. Synchronizing the relatively large scan coverage with a single bolus of contrast medium requires precise selection of acquisition and contrast delivery parameters. To avoid multiple acquisitions and minimize radiation exposure and contrast medium volume, it is important to have fundamental knowledge on how to select these parameters. Equally important is knowing how to adeptly apply advanced workstation visualization techniques and tool functions for the upper extremity vascular tree. In this review, upper extremity arterial and venous anatomy is discussed, followed by a detailed overview on state-of-the-art upper extremity CTA technical considerations and strategies. The review concludes with discussion and illustration of upper extremity CTA clinical applications. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Tomographic SAR inversion by generic log-barrier algorithm: the second order cone programming approach

    Science.gov (United States)

    Biondi, Filippo; Ciotti, Piero; Pierdicca, Nazzareno

    2013-10-01

    In Multi-Baseline SAR tomography it is necessary to process the acquired data by advanced signal processing techniques in order to adequately compensate the bad consequences of an under-sampled configuration. These techniques have to properly work on an environment characterized to have point targets, distributed targets and both of theme. This paper considers the Convex Optimization (CVX) tomographic solution in order to process multi-baseline data-sets collected in a Fourier under-sampled configuration in the above mentioned environment. The CVX and the Second Order Cone Programming Solution (SOCPs) have been tested by a generic log-barrier algorithm, through a successfully computational bottleneck Newton calculation. These techniques are validated on point targets, distributed targets and realistic forested environments.

  9. Automated angular and translational tomographic alignment and application to phase-contrast imaging

    DEFF Research Database (Denmark)

    Cunha Ramos, Tiago Joao; Jørgensen, Jakob Sauer; Andreasen, Jens Wenzel

    2017-01-01

    X-ray computerized tomography (CT) is a 3D imaging technique that makes use of x-ray illumination and image reconstruction techniques to reproduce the internal cross-sections of a sample. Tomographic projection data usually require an initial relative alignment or knowledge of the exact object...... algorithm for wrapped phase projection data and an alignment algorithm that automatically takes 5 degrees of freedom, including the possible linear and angular motion errors, into consideration. The presented concepts are applied to simulated and real measured phase-contrast data, exhibiting a possible...... improvement in the reconstruction resolution. A MATLAB implementation is made publicly available and will allow robust analysis of large volumes of phase-contrast tomography data....

  10. Tomographic reconstruction of 2D line radiation distribution in the JET MkIIGB divertor

    Science.gov (United States)

    Huber, A.; Coad, P.; Coster, D.; Ingesson, L. C.; Itami, K.; Jachmich, S.; Kirschner, A.; Lehnen, M.; Matthews, G. F.; Mertens, Ph; Philipps, V.; Pospieszczyk, A.; Schweer, B.; Sergienko, G.; Stamp, M.; Contributors to the EFDA-JET programme

    2003-03-01

    A 2D-tomographic reconstruction of D α- and C III-emission distribution in L-mode, density limit discharge has been performed and compared with results from other diagnostics (KL2, KS3). The observed emission patterns in a poloidal plane show a strong in-out asymmetry, which depends on local plasma parameter in the divertor. It is shown that the major contribution to D α-emission, under the observed conditions, lies in excitation processes and that low-energy charge-exchange reactions with neutral deuterium can influence the ionisation balance of carbon and the recorded C III-emission line. The evolution of the intrinsic hydrogen and carbon impurity profiles has been analysed with respect to its dependence on the location of methane fuelling.

  11. Tomographic PIV study of boundary-layer flashback in swirl flames

    Science.gov (United States)

    Ebi, Dominik; Clemens, Noel

    2014-11-01

    Preventing boundary layer flashback in swirl combustors is a key challenge for gas turbines intended to burn high hydrogen content fuels. We are studying this type of flashback by investigating the upstream flame propagation of lean-premixed methane/hydrogen-air flames inside the mixing tube of our model swirl combustor. Experiments are conducted at atmospheric pressure. Flashback is triggered by increasing the equivalence ratio. Previous studies employing planar measurements have shown that the flame strongly alters the upstream flow field and thus its own propagation path. Volumetric measurement techniques are needed to further increase understanding of this highly three-dimensional coupled flow-flame interaction. Flashback is an inherently transient event with duration on the order of a few hundred milliseconds. Time-resolved tomographic PIV together with high-speed chemiluminescence imaging is therefore applied to investigate the velocity field in the vicinity of the flame.

  12. Work in progress. Flashing tomosynthesis: a tomographic technique for quantitative coronary angiography.

    Science.gov (United States)

    Woelke, H; Hanrath, P; Schlueter, M; Bleifeld, W; Klotz, E; Weiss, H; Waller, D; von Weltzien, J

    1982-11-01

    Flashing tomosynthesis, a procedure that consists of a recording step and a reconstruction step, facilitates the tomographic imaging of coronary arteries. In a comparative study 10 postmortem coronary arteriograms were examined with 35-mm cine technique and with flashing tomosynthesis. The degrees of stenosis found with both of these techniques were compared with morphometrically obtained values. A higher correlation coefficient existed for the degrees of stenosis obtained with tomosynthesis and morphometry (r = 0.92, p less than 0.001, SEE = 9%) than for those obtained with cine technique and morphometry (r = 0.82, p less than 0.001, SEE = 16%). The technique has also been successfully carried out in 5 patients with coronary artery disease.

  13. Breeding snow: an instrumented sample holder for simultaneous tomographic and thermal studies

    International Nuclear Information System (INIS)

    Pinzer, B; Schneebeli, M

    2009-01-01

    To study the recrystallization processes during temperature gradient metamorphism of snow, we developed a sample holder that allows applying well-defined and stable thermal gradients to a snow sample while it is scanned in an x-ray micro-tomograph. To this end, both the thermal insulation of the sample as well as image contrast and resolution of the tomography had to be optimized. We solved this conflict by using thin aluminum cylinders in combination with highly insulating foam. This design is light, does not corrupt image quality and provides very good thermal decoupling from the environment. The sample holder was instrumented to measure the effective conductivity of the snow sample and calibrated using five materials of known conductivity. Finite element simulations were consistent with the calibration measurements and gave insight into the internal temperature and heat flux fields. With this setup, geometric and thermal evolution of snow under realistic thermal boundary conditions like alternating temperature gradients can be measured

  14. Irradiation damage to frog inner ear during synchrotron radiation tomographic investigation

    International Nuclear Information System (INIS)

    Boistel, Renaud; Pollet, Nicolas; Tinevez, Jean-Yves; Cloetens, Peter; Schlenker, Michel

    2009-01-01

    Unexpectedly severe radiation damage, showing up through deformation of the saccule, was encountered during a synchrotron radiation high-resolution (700 nm pixel size) tomographic observation of an inner ear, fixed in a formaldehyde solution, of the frog Rana esculenta. The visible displacement of the edge of the otoconia-filled part of the saccule amounted to about 100 μm after an irradiation with 20.5 keV X-ray photons corresponding to a dose of 1.5 kGy for the protein matrix. The close-knit coexistence of organic and mineral components in the biological tissue may be linked to the dramatic increase of radiation dosage sensitivity.

  15. Engineering developments on the UBC-TRIUMF modified PETT VI positron emission tomograph

    International Nuclear Information System (INIS)

    Evans, B.; Harrop, R.; Heywood, D.

    1982-10-01

    A tomograph with the PETT VI geometry has been built with improvements generally applicable to such devices. In addition to improved temperature control, the gantry features commercial CsF detectors with the newer Amperex photomultiplier tubes. Much of the coincidence support circuitry is of an original design, utilizing new 'fast' TTL family devices. A local DEC 11/23 microprocessor provides for routine diagnostic and reliability checking, gantry control, and acquisition of single detector counting rates. Image reconstruction and display is performed by a medium size VAX 11/780 computer, operating in a time-sharing environment. Some preliminary performance characteristics of the machine have been measured. The reconstructed resolution in-slice, as well as the reconstructed slice thickness, has been measured as a function of radius for both 'straight' and 'cross' slices

  16. Computed tomographic findings in children with spastic diplegia; Correlation with the severity of their motor abnormality

    Energy Technology Data Exchange (ETDEWEB)

    Yokochi, Kenji; Horie, Masayo; Inukai, Kazuhisa; Kito, Hideyuki (Seirei-Mikatabara General Hospital, Shizuoka (Japan)); Shimabukuro, Satoshi; Kodama, Kazuo

    1989-08-01

    Computed tomographic findings of 46 children with spastic diplegia examined at nine months to three years of age corrected for preterm births were analyzed. Both the size of the lateral ventricles measured by the width of the anterior horns, and the volume of the extracerebral low-density areas were enlarged in some patiens. Both enlargements did not, however, correlate to the severity of the motor abnormality in the patients. The low-density areas of the periventricular white matter, especially adjacent to the trigone, were reduced in many children, probably due to the atrophy of the cerebral white matter having periventricular leukomalacia. The anterior expansion of the white matter reduction from the trigone corresponded to the severer motor abnormality in the children with spastic diplegia. (author).

  17. Comparison of kinetic models for data from a positron emission tomograph

    International Nuclear Information System (INIS)

    Coxson, P.G.; Huesman, R.H.; Lim, S.; Klein, G.J.; Reutter, B.W.; Budinger, T.F.

    1995-01-01

    The purpose of this research was to compare a physiological model of 82 Rb in the myocardium with two reduced order models with regard to their ability to assess physiological parameters of diagnostic significance. A three compartment physiological model of 82 Rb uptake in the myocardium was used to simulate kinetic region of interest data from a positron emission tomograph (PET). Simulations were generated for eight different blood flow rates reflecting the physiological range of interest. Two reduced order models which are commonly used with myocardial PET studies were fit to the simulated data and the parameters of the reduced order models were compared with the physiological parameters. Then all three models were fit to the simulated data with noise added. Monte Carlo simulations were used to evaluate and compare the diagnostic utility of the reduced order models

  18. Tomographic apparatus and method for reconstructing planar slices from non-absorbed radiation

    International Nuclear Information System (INIS)

    1976-01-01

    In a tomographic apparatus and method for reconstructing two-dimensional planar slices from linear projections of non-absorbed radiation useful in the fields of medical radiology, microscopy, and non-destructive testing, a beam of radiation in the shape of a fan is passed through an object lying in the same quasi-plane as the object slice and non-absorbtion thereof is recorded on oppositely-situated detectors aligned with the source of radiation. There is relative rotation between the source-detector configuration and the object within the quasi-plane. Periodic values of the detected radiation are taken, convolved with certain functions, and back-projected to produce a two-dimensional output picture on a visual display illustrating a facsimile of the object slice. A series of two-dimensional pictures obtained simultaneously or serially can be combined to produce a three dimensional portrayal of the entire object

  19. Ultrasonographic and computed tomographic findings of hemorrhagic cholecystitis; report of two cases

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bum Soo; Byun, Jae Young; Shinn, Kyung Sub [Catholic Univ. College of Medicine, Seoul (Korea, Republic of); Kim, Jong Woo [Kangnung Dongin Hospital, Kangnung (Korea, Republic of)

    1996-01-01

    Hemorrhagic cholecystitis(HC) is a rare complication of gallbladder(GB) disease characterized by mucosal and intraluminal hemorrhage of the GB. We report ultrasonographic(US) and computed tomographic(CT) findings of two cases of HC. Hemorrhagic fluid filled in the inflamed GB lumen was initially seen as homogeneous hyperdense and hyperattenuated lesion on both US and CT, respectively. As resolution of the hematoma and gangrenous change of the GB wall progress, US showed inhomogeneous mixed echogenic lesion in the GB having partially indistinct border, mimicking an invasive mass. At this stage, CT still showed homogeneous hyperdense hematoma and a small amount of fluid in the GB, without evidence of contrast enhancement.

  20. Microwave Tomographic Imaging Utilizing Low-Profile, Rotating, Right Angle-Bent Monopole Antennas

    Directory of Open Access Journals (Sweden)

    N. R. Epstein

    2014-01-01

    Full Text Available We have developed a simple mechanism incorporating feedline bends and rotary joints to enable motion of a monopole antenna within a liquid-based illumination chamber for tomographic imaging. The monopole is particularly well suited for this scenario because of its small size and simplicity. For the application presented here a full set of measurement data is collected from most illumination and receive directions utilizing only a pair of antennas configured with the rotating fixture underneath the imaging tank. Alternatively, the concept can be adapted for feed structures entering the tank from the sides to allow for measurements with vertically and horizontally polarized antennas. This opens the door for more advanced imaging applications where anisotropy could play an important role such as in bone imaging.