WorldWideScience

Sample records for length modules induced

  1. Determination of molecular configuration by debye length modulation.

    Science.gov (United States)

    Vacic, Aleksandar; Criscione, Jason M; Rajan, Nitin K; Stern, Eric; Fahmy, Tarek M; Reed, Mark A

    2011-09-07

    Silicon nanowire field effect transistors (FETs) have emerged as ultrasensitive, label-free biodetectors that operate by sensing bound surface charge. However, the ionic strength of the environment (i.e., the Debye length of the solution) dictates the effective magnitude of the surface charge. Here, we show that control of the Debye length determines the spatial extent of sensed bound surface charge on the sensor. We apply this technique to different methods of antibody immobilization, demonstrating different effective distances of induced charge from the sensor surface.

  2. Induced modules over group algebras

    CERN Document Server

    Karpilovsky, Gregory

    1990-01-01

    In 1898 Frobenius discovered a construction which, in present terminology, associates with every module of a subgroup the induced module of a group. This construction proved to be of fundamental importance and is one of the basic tools in the entire theory of group representations.This monograph is designed for research mathematicians and advanced graduate students and gives a picture of the general theory of induced modules as it exists at present. Much of the material has until now been available only in research articles. The approach is not intended to be encyclopedic, rather each topic is

  3. All-optical, thermo-optical path length modulation based on the vanadium-doped fibers.

    Science.gov (United States)

    Matjasec, Ziga; Campelj, Stanislav; Donlagic, Denis

    2013-05-20

    This paper presents an all-fiber, fully-optically controlled, optical-path length modulator based on highly absorbing optical fiber. The modulator utilizes a high-power 980 nm pump diode and a short section of vanadium-co-doped single mode fiber that is heated through absorption and a non-radiative relaxation process. The achievable path length modulation range primarily depends on the pump's power and the convective heat-transfer coefficient of the surrounding gas, while the time response primarily depends on the heated fiber's diameter. An absolute optical length change in excess of 500 µm and a time-constant as short as 11 ms, were demonstrated experimentally. The all-fiber design allows for an electrically-passive and remote operation of the modulator. The presented modulator could find use within various fiber-optics systems that require optical (remote) path length control or modulation.

  4. Telomere length modulation in human astroglial brain tumors.

    Directory of Open Access Journals (Sweden)

    Domenico La Torre

    Full Text Available BACKGROUND: Telomeres alteration during carcinogenesis and tumor progression has been described in several cancer types. Telomeres length is stabilized by telomerase (h-TERT and controlled by several proteins that protect telomere integrity, such as the Telomere Repeat-binding Factor (TRF 1 and 2 and the tankyrase-poli-ADP-ribose polymerase (TANKs-PARP complex. OBJECTIVE: To investigate telomere dysfunction in astroglial brain tumors we analyzed telomeres length, telomerase activity and the expression of a panel of genes controlling the length and structure of telomeres in tissue samples obtained in vivo from astroglial brain tumors with different grade of malignancy. MATERIALS AND METHODS: Eight Low Grade Astrocytomas (LGA, 11 Anaplastic Astrocytomas (AA and 11 Glioblastoma Multiforme (GBM samples were analyzed. Three samples of normal brain tissue (NBT were used as controls. Telomeres length was assessed through Southern Blotting. Telomerase activity was evaluated by a telomere repeat amplification protocol (TRAP assay. The expression levels of TRF1, TRF2, h-TERT and TANKs-PARP complex were determined through Immunoblotting and RT-PCR. RESULTS: LGA were featured by an up-regulation of TRF1 and 2 and by shorter telomeres. Conversely, AA and GBM were featured by a down-regulation of TRF1 and 2 and an up-regulation of both telomerase and TANKs-PARP complex. CONCLUSIONS: In human astroglial brain tumours, up-regulation of TRF1 and TRF2 occurs in the early stages of carcinogenesis determining telomeres shortening and genomic instability. In a later stage, up-regulation of PARP-TANKs and telomerase activation may occur together with an ADP-ribosylation of TRF1, causing a reduced ability to bind telomeric DNA, telomeres elongation and tumor malignant progression.

  5. Electrostatic stiffening and induced persistence length for coassembled molecular bottlebrushes

    Science.gov (United States)

    Storm, Ingeborg M.; Stuart, Martien A. Cohen; de Vries, Renko; Leermakers, Frans A. M.

    2018-03-01

    A self-consistent field analysis for tunable contributions to the persistence length of isolated semiflexible polymer chains including electrostatically driven coassembled deoxyribonucleic acid (DNA) bottlebrushes is presented. When a chain is charged, i.e., for polyelectrolytes, there is, in addition to an intrinsic rigidity, an electrostatic stiffening effect, because the electric double layer resists bending. For molecular bottlebrushes, there is an induced contribution due to the grafts. We explore cases beyond the classical phantom main-chain approximation and elaborate molecularly more realistic models where the backbone has a finite volume, which is necessary for treating coassembled bottlebrushes. We find that the way in which the linear charge density or the grafting density is regulated is important. Typically, the stiffening effect is reduced when there is freedom for these quantities to adapt to the curvature stresses. Electrostatically driven coassembled bottlebrushes, however, are relatively stiff because the chains have a low tendency to escape from the compressed regions and the electrostatic binding force is largest in the convex part. For coassembled bottlebrushes, the induced persistence length is a nonmonotonic function of the polymer concentration: For low polymer concentrations, the stiffening grows quadratically with coverage; for semidilute polymer concentrations, the brush chains retract and regain their Gaussian size. When doing so, they lose their induced persistence length contribution. Our results correlate well with observed physical characteristics of electrostatically driven coassembled DNA-bioengineered protein-polymer bottlebrushes.

  6. Customization of biliopancreatic limb length to modulate and sustain antidiabetic effect of gastric bypass surgery.

    Science.gov (United States)

    Pal, A; Rhoads, D B; Tavakkoli, A

    2018-02-01

    Although Roux-en-Y Gastric Bypass (RYGB) remains the most effective treatment for obesity and type 2 diabetes (T2D), many patients fail to achieve remission, or relapse. Increasing intestinal limb lengths of RYGB may improve outcomes, but the mechanistic basis for this remains unclear. We hypothesize biliopancreatic (BP) limb length modulates the antidiabetic effect of RYGB. Rats underwent RYGB with a 20-cm (RYGB-20cm) or 40-cm (RYGB-40cm) BP limb and were compared with control animals. After 2 and 4 wk, portal and systemic blood was sampled during intestinal glucose infusion. Portosystemic gradient was used to calculate intestinal glucose utilization (G util ), absorption (G absorp ), and hormone secretion. Intestinal morphology and gene expression were assessed. At 2 wk, G absorp progressively decreased with increasing BP limb length; this pattern persisted at 4 wk. G util increased ≈70% in both RYGB-20cm and -40cm groups at 2 wk. At 4 wk, G util progressively increased with limb length. Furthermore, Roux limb weight, and expression of hexokinase and preproglucagon, exhibited a similar progressive increase. At 4 wk, glucagon-like peptide-1 and -2 levels were higher after RYGB-40cm, with associated increased secretion. We conclude that BP limb length modulates multiple antidiabetic mechanisms, analogous to the dose-response relationship of a drug. Early postoperatively, a longer BP limb reduces G absorp . Later, G util , Roux limb hypertrophy, hormone secretion, and hormone levels are increased with longer BP limb. Sustained high incretin levels may prevent weight regain and T2D relapse. These data provide the basis for customizing BP limb length according to patient characteristics and desired metabolic effect. NEW & NOTEWORTHY Biliopancreatic limb length in gastric bypass modulates multiple antidiabetic mechanisms, analogous to the dose-response relationship of a drug. With a longer biliopancreatic limb, Roux limb hypertrophy, increased glucose utilization

  7. Amplification of Frequency-Modulated Similariton Pulses in Length-Inhomogeneous Active Fibers

    Directory of Open Access Journals (Sweden)

    I. O. Zolotovskii

    2012-01-01

    Full Text Available The possibility of an effective gain of the self-similar frequency-modulated (FM wave packets is studied in the length-inhomogeneous active fibers. The dynamics of parabolic pulses with the constant chirp has been considered. The optimal profile for the change of the group-velocity dispersion corresponding to the optimal similariton pulse amplification has been obtained. It is shown that the use of FM pulses in the active (gain and length-inhomogeneous optical fibers with the normal group-velocity dispersion can provide subpicosecond optical pulse amplification up to the energies higher than 1 nJ.

  8. Stimulus-dependent modulation of spike burst length in cat striate cortical cells.

    Science.gov (United States)

    DeBusk, B C; DeBruyn, E J; Snider, R K; Kabara, J F; Bonds, A B

    1997-07-01

    Burst activity, defined by groups of two or more spikes with intervals of cats. Bursting varied broadly across a population of 507 simple and complex cells. Half of this population had > or = 42% of their spikes contained in bursts. The fraction of spikes in bursts did not vary as a function of average firing rate and was stationary over time. Peaks in the interspike interval histograms were found at both 3-5 ms and 10-30 ms. In many cells the locations of these peaks were independent of firing rate, indicating a quantized control of firing behavior at two different time scales. The activity at the shorter time scale most likely results from intrinsic properties of the cell membrane, and that at the longer scale from recurrent network excitation. Burst frequency (bursts per s) and burst length (spikes per burst) both depended on firing rate. Burst frequency was essentially linear with firing rate, whereas burst length was a nonlinear function of firing rate and was also governed by stimulus orientation. At a given firing rate, burst length was greater for optimal orientations than for nonoptimal orientations. No organized orientation dependence was seen in bursts from lateral geniculate nucleus cells. Activation of cortical contrast gain control at low response amplitudes resulted in no burst length modulation, but burst shortening at optimal orientations was found in responses characterized by supersaturation. At a given firing rate, cortical burst length was shortened by microinjection of gamma-aminobutyric acid (GABA), and bursts became longer in the presence of N-methyl-bicuculline, a GABA(A) receptor blocker. These results are consistent with a model in which responses are reduced at nonoptimal orientations, at least in part, by burst shortening that is mediated by GABA. A similar mechanism contributes to response supersaturation at high contrasts via recruitment of inhibitory responses that are tuned to adjacent orientations. Burst length modulation can serve

  9. Inflation of the screening length induced by Bjerrum pairs.

    Science.gov (United States)

    Zwanikken, Jos; van Roij, René

    2009-10-21

    Within a modified Poisson-Boltzmann theory we study the effect of Bjerrum pairs on the typical length scale [Formula: see text] over which electric fields are screened in electrolyte solutions, taking into account a simple association-dissociation equilibrium between free ions and Bjerrum pairs. At low densities of Bjerrum pairs, this length scale is well approximated by the Debye length [Formula: see text], with ρ(s) the free-ion density. At high densities of Bjerrum pairs, however, we find [Formula: see text], which is significantly larger than 1/κ due to the enhanced effective permittivity of the electrolyte, caused by the polarization of Bjerrum pairs. We argue that this mechanism may explain the recently observed anomalously large colloid-free zones between an oil-dispersed colloidal crystal and a colloidal monolayer at the oil-water interface.

  10. Electrostatic stiffening and induced persistence length for coassembled molecular bottlebrushes

    NARCIS (Netherlands)

    Storm, Ingeborg M.; Stuart, Martien A.C.; Vries, de Renko; Leermakers, Frans A.M.

    2018-01-01

    A self-consistent field analysis for tunable contributions to the persistence length of isolated semiflexible polymer chains including electrostatically driven coassembled deoxyribonucleic acid (DNA) bottlebrushes is presented. When a chain is charged, i.e., for polyelectrolytes, there is, in

  11. Inflation of the screening length induced by Bjerrum pairs

    NARCIS (Netherlands)

    Zwanikken, J.W.; van Roij, R.H.H.G.

    2009-01-01

    Within a modified Poisson–Boltzmann theory we study the effect of Bjerrum pairs on the typical length scale 1/¯κ over which electric fields are screened in electrolyte solutions, taking into account a simple association–dissociation equilibrium between free ions and Bjerrum pairs. At low densities

  12. Damping coherent phase oscillations by means of path-length modulation

    International Nuclear Information System (INIS)

    Rees, J.R.

    1978-06-01

    Multi-bunch storage rings and synchrotrons are typically plagued by a tendency for the bunches to indulge in unstable coherent phase oscillations engendered by their electromagnetic interactions with the vacuum chamber. In many machines feedback systems have been used successfully to damp these oscillations using a signal proportional to the coherent phase motion or the concomitant energy motion to control an auxiliary longitudinal electric field. The purpose of this note is to describe an alternative feedback system which, using the same kind of a signal, modulates the path length of the orbit of the reference particle (the synchronous particle in the absence of coherent phase oscillations) in such a way as to damp coherent oscillations. 2 refs., 1 fig

  13. Full Length Research Paper Curcumin induces cleavage of -catenin ...

    African Journals Online (AJOL)

    β-Catenin/Tcf-4 signaling pathway plays important roles in colorectal tumorigenesis. RT-PCR, western blotting and immunoprecipitation were used to study the effects of curcumin on β-catenin/Tcf-4 signaling pathway in HT-29 cells. Treatment of curcumin could induce cleavage of β-catenin and the cleavage could be ...

  14. DNA Length Modulates the Affinity of Fragments of Genomic DNA for the Nuclear Matrix In Vitro.

    Science.gov (United States)

    García-Vilchis, David; Aranda-Anzaldo, Armando

    2017-12-01

    Classical observations have shown that during the interphase the chromosomal DNA of metazoans is organized in supercoiled loops attached to a compartment known as the nuclear matrix (NM). Fragments of chromosomal DNA able to bind the isolated NM in vitro are known as matrix associated/attachment/addressed regions or MARs. No specific consensus sequence or motif has been found that may constitute a universal, defining feature of MARs. On the other hand, high-salt resistant DNA-NM interactions in situ define true DNA loop anchorage regions or LARs, that might correspond to a subset of the potential MARs but are not necessarily identical to MARs characterized in vitro, since there are several examples of MARs able to bind the NM in vitro but which are not actually bound to the NM in situ. In the present work we assayed the capacity of two LARs, as well as of shorter fragments within such LARs, for binding to the NM in vitro. Paradoxically the isolated (≈2 kb) LARs cannot bind to the NM in vitro while their shorter (≈300 pb) sub-fragments and other non-related but equally short DNA fragments, bind to the NM in a high-salt resistant fashion. Our results suggest that the ability of a given DNA fragment for binding to the NM in vitro primarily depends on the length of the fragment, suggesting that binding to the NM is modulated by the local topology of the DNA fragment in suspension that it is known to depend on the DNA length. J. Cell. Biochem. 118: 4487-4497, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Multifactorial Modulation of Food-Induced Anaphylaxis

    Directory of Open Access Journals (Sweden)

    Sara Benedé

    2017-05-01

    Full Text Available Prevalence of food-induced anaphylaxis increases progressively and occurs in an unpredictable manner, seriously affecting the quality of life of patients. Intrinsic factors including age, physiological, and genetic features of the patient as well as extrinsic factors such as the intake of drugs and exposure to environmental agents modulate this disorder. It has been proven that diseases, such as mastocytosis, defects in HLA, or filaggrin genes, increase the risk of severe allergic episodes. Certain allergen families such as storage proteins, lipid transfer proteins, or parvalbumins have also been linked to anaphylaxis. Environmental factors such as inhaled allergens or sensitization through the skin can exacerbate or trigger acute anaphylaxis. Moreover, the effect of dietary habits such as the early introduction of certain foods in the diet, and the advantage of the breastfeeding remain as yet unresolved. Interaction of allergens with the intestinal cell barrier together with a set of effector cells represents the primary pathways of food-induced anaphylaxis. After an antigen cross-links the IgEs on the membrane of effector cells, a complex intracellular signaling cascade is initiated, which leads cells to release preformed mediators stored in their granules that are responsible for the acute symptoms of anaphylaxis. Afterward, they can also rapidly synthesize lipid compounds such as prostaglandins or leukotrienes. Cytokines or chemokines are also released, leading to the recruitment and activation of immune cells in the inflammatory microenvironment. Multiple factors that affect food-induced anaphylaxis are discussed in this review, paying special attention to dietary habits and environmental and genetic conditions.

  16. Melatonin modulates drug-induced acute porphyria

    Directory of Open Access Journals (Sweden)

    Sandra M. Lelli

    Full Text Available This work investigated the modulation by melatonin (Mel of the effects of the porphyrinogenic drugs 2-allyl-2-isopropylacetamide (AIA and 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6-collidine (DDC on oxidative environment, glucose biosynthesis and heme pathway parameters. Administration of Mel before rat intoxication with AIA/DDC showed a clear beneficial effect in all cases. Mel induced decreases of 42% and 35% in the excretion of the hemeprecursors 5-aminolevulinic acid (ALA and porphobilinogen (PBG, respectively, and a 33% decrease in the induction of the heme regulatory enzyme 5-aminolevulinic acid-synthase (ALA-S. The activity of the glucose metabolism enzyme phosphoenolpyruvate carboxykinase (PEPCK, which had been diminished by the porphyrinogenic treatment, was restored by 45% when animals were pre-treated with Mel. Mel abolished the modest decrease in glucose 6-phospatase (G6Pase activity caused by AIA/DDC treatment. The oxidative status of lipids was attenuated by Mel treatment in homogenates by 47%, whereas no statistically significant AIA/DDC-induced increase in thiobarbituric acid reactive substances (TBARS was observed in microsomes after Mel pre-treatment. We hypothesize that Mel may be scavenging reactive species of oxygen (ROS that could be damaging lipids, PEPCK, G6Pase and ferrochelatase (FQ. Additionally, Mel administration resulted in the repression of the key enzyme ALA-S, and this could be due to an increase in glucose levels, which is known to inhibit ALA-S induction. The consequent decrease in levels of the heme precursors ALA and PBG had a beneficial effect on the drug-induced porphyria. The results obtained open the possibility of further research on the use of melatonin as a co-treatment option in acute porphyria. Keywords: Melatonin, Glucose synthesis, Heme pathway, Acute porphyria, Oxidative stress

  17. Assessing thermally induced errors of machine tools by 3D length measurements

    NARCIS (Netherlands)

    Florussen, G.H.J.; Delbressine, F.L.M.; Schellekens, P.H.J.

    2003-01-01

    A new measurement technique is proposed for the assessment of thermally induced errors of machine tools. The basic idea is to measure changes of length by a telescopic double ball bar (TDEB) at multiple locations in the machine's workspace while the machine is thermally excited. In addition thermal

  18. Parameter study for polymer solar modules based on various cell lengths and light intensities

    Energy Technology Data Exchange (ETDEWEB)

    Slooff, L.H.; Burgers, A.R.; Bende, E.E.; Kroon, J.M. [ECN Solar Energy, P.O. Box 1, 1755 ZG Petten (Netherlands); Veenstra, S.C. [ECN Solar Energy, Solliance, High Tech Campus 5, P63, 5656AE Eindhoven (Netherlands)

    2013-10-15

    Polymer solar cells may be applied in portable electronic devices, where light intensity and spectral distribution of the illuminating source can be very different compared to outdoor applications. As the power output of solar cells depends on temperature, light intensity and spectrum, the design of the module must be optimized for the specific illumination conditions in the different applications. The interconnection area between cells in a module must be as narrow as possible to maximize the active area, also called geometrical fill factor, of the module. Laser scribing has the potential to realize this. The optimal width of the interconnection zone depends both on technological limitations, e.g. laser scribe width and the minimal distance between scribes, and electrical limitations like resistive losses. The latter depends on the generated current in the cell and thus also on illumination intensity. Besides that, also the type of junction, i.e. a single or tandem junction, will influence the optimal geometry. In this paper a calculation model is presented that can be used for electrical modeling of polymer cells and modules in order to optimize the performance for the specific illumination conditions.

  19. Wave-length-modulated femtosecond stimulated raman spectroscopy-approach towards automatic data processing

    NARCIS (Netherlands)

    Kloz, M.; van Grondelle, R.; Kennis, J.T.M.

    2011-01-01

    A new wavelength modulator based on a custom-made chopper blade and a slit placed in the Fourier plane of a pulse shaper was used to detect explicitly the first derivative of the time-resolved femtosecond stimulated Raman spectroscopy (FSRS) signals. This approach resulted in an unprecedented

  20. All-optical modulation based on electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Fountoulakis, Antonios; Terzis, Andreas F.; Paspalakis, Emmanuel

    2010-01-01

    We numerically investigate the implementation of all-optical absorption modulation of electromagnetic pulses by a medium that exhibits electromagnetically induced transparency. The quantum system is modelled as a three-level Λ-type system that interacts with two electromagnetic pulses, a probe pulse and a coupling pulse. The dynamics of the system is described by the coupled Maxwell-density matrix equations, and we explore the dependence of the optical modulation efficiency on the parameters of the system.

  1. Light induced modulation instability of surfaces under intense illumination

    KAUST Repository

    Burlakov, V. M.

    2013-12-17

    We show that a flat surface of a polymer in rubber state illuminated with intense electromagnetic radiation is unstable with respect to periodic modulation. Initial periodic perturbation is amplified due to periodic thermal expansion of the material heated by radiation. Periodic heating is due to focusing-defocusing effects caused by the initial surface modulation. The surface modulation has a period longer than the excitation wavelength and does not require coherent light source. Therefore, it is not related to the well-known laser induced periodic structures on polymer surfaces but may contribute to their formation and to other phenomena of light-matter interaction.

  2. Simulating the Effect of Modulated Tool-Path Chip Breaking On Surface Texture and Chip Length

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.S.; McFarland, J.T.; Tursky, D. A.; Assaid, T. S.; Barkman, W. E.; Babelay, Jr., E. F.

    2010-04-30

    One method for creating broken chips in turning processes involves oscillating the cutting tool in the feed direction utilizing the CNC machine axes. The University of North Carolina at Charlotte and the Y-12 National Security Complex have developed and are refining a method to reliably control surface finish and chip length based on a particular machine's dynamic performance. Using computer simulations it is possible to combine the motion of the machine axes with the geometry of the cutting tool to predict the surface characteristics and map the surface texture for a wide range of oscillation parameters. These data allow the selection of oscillation parameters to simultaneously ensure broken chips and acceptable surface characteristics. This paper describes the machine dynamic testing and characterization activities as well as the computational method used for evaluating and predicting chip length and surface texture.

  3. Using refraction in thick glass plates for optical path length modulation in low coherence interferometry.

    Science.gov (United States)

    Kröger, Niklas; Schlobohm, Jochen; Pösch, Andreas; Reithmeier, Eduard

    2017-09-01

    In Michelson interferometer setups the standard way to generate different optical path lengths between a measurement arm and a reference arm relies on expensive high precision linear stages such as piezo actuators. We present an alternative approach based on the refraction of light at optical interfaces using a cheap stepper motor with high gearing ratio to control the rotation of a glass plate. The beam path is examined and a relation between angle of rotation and change in optical path length is devised. As verification, an experimental setup is presented, and reconstruction results from a measurement standard are shown. The reconstructed step height from this setup lies within 1.25% of the expected value.

  4. Cholinergic Modulation of Restraint Stress Induced Neurobehavioral ...

    African Journals Online (AJOL)

    The involvement of the cholinergic system in restraint stress induced neurobehavioral alterations was investigated in rodents using the hole board, elevated plus maze, the open field and the light and dark box tests. Restraint stress (3h) reduced significantly (p<0.05) the number of entries and time spent in the open arm, ...

  5. Length-extension resonator as a force sensor for high-resolution frequency-modulation atomic force microscopy in air.

    Science.gov (United States)

    Beyer, Hannes; Wagner, Tino; Stemmer, Andreas

    2016-01-01

    Frequency-modulation atomic force microscopy has turned into a well-established method to obtain atomic resolution on flat surfaces, but is often limited to ultra-high vacuum conditions and cryogenic temperatures. Measurements under ambient conditions are influenced by variations of the dew point and thin water layers present on practically every surface, complicating stable imaging with high resolution. We demonstrate high-resolution imaging in air using a length-extension resonator operating at small amplitudes. An additional slow feedback compensates for changes in the free resonance frequency, allowing stable imaging over a long period of time with changing environmental conditions.

  6. Contrast distortion induced by modulation voltage in scanning capacitance microscopy

    Science.gov (United States)

    Chang, M. N.; Hu, C. W.; Chou, T. H.; Lee, Y. J.

    2012-08-01

    With a dark-mode scanning capacitance microscopy (SCM), we directly observed the influence of SCM modulation voltage (MV) on image contrasts. For electrical junctions, an extensive modulated area induced by MV may lead to noticeable changes in the SCM signal phase and intensity, resulting in a narrowed junction image and a broadened carrier concentration profile. This contrast distortion in SCM images may occur even if the peak-to-peak MV is down to 0.3 V. In addition, MV may shift the measured electrical junction depth. The balance of SCM signals components explain these MV-induced contrast distortions.

  7. Critical role of surface chemical modifications induced by length shortening on multi-walled carbon nanotubes-induced toxicity

    Directory of Open Access Journals (Sweden)

    Bussy Cyrill

    2012-11-01

    Full Text Available Abstract Given the increasing use of carbon nanotubes (CNT in composite materials and their possible expansion to new areas such as nanomedicine which will both lead to higher human exposure, a better understanding of their potential to cause adverse effects on human health is needed. Like other nanomaterials, the biological reactivity and toxicity of CNT were shown to depend on various physicochemical characteristics, and length has been suggested to play a critical role. We therefore designed a comprehensive study that aimed at comparing the effects on murine macrophages of two samples of multi-walled CNT (MWCNT specifically synthesized following a similar production process (aerosol-assisted CVD, and used a soft ultrasonic treatment in water to modify the length of one of them. We showed that modification of the length of MWCNT leads, unavoidably, to accompanying structural (i.e. defects and chemical (i.e. oxidation modifications that affect both surface and residual catalyst iron nanoparticle content of CNT. The biological response of murine macrophages to the two different MWCNT samples was evaluated in terms of cell viability, pro-inflammatory cytokines secretion and oxidative stress. We showed that structural defects and oxidation both induced by the length reduction process are at least as responsible as the length reduction itself for the enhanced pro-inflammatory and pro-oxidative response observed with short (oxidized compared to long (pristine MWCNT. In conclusion, our results stress that surface properties should be considered, alongside the length, as essential parameters in CNT-induced inflammation, especially when dealing with a safe design of CNT, for application in nanomedicine for example.

  8. Dietary Modulation of Inflammation-Induced Colorectal Cancer through PPARγ

    Directory of Open Access Journals (Sweden)

    Ashlee B. Carter

    2009-01-01

    Full Text Available Mounting evidence suggests that the risk of developing colorectal cancer (CRC is dramatically increased for patients with chronic inflammatory diseases. For instance, patients with Crohn's Disease (CD or Ulcerative Colitis (UC have a 12–20% increased risk for developing CRC. Preventive strategies utilizing nontoxic natural compounds that modulate immune responses could be successful in the suppression of inflammation-driven colorectal cancer in high-risk groups. The increase of peroxisome proliferator-activated receptor-γ (PPAR-γ expression and its transcriptional activity has been identified as a target for anti-inflammatory efforts, and the suppression of inflammation-driven colon cancer. PPARγ down-modulates inflammation and elicits antiproliferative and proapoptotic actions in epithelial cells. All of which may decrease the risk for inflammation-induced CRC. This review will focus on the use of orally active, naturally occurring chemopreventive approaches against inflammation-induced CRC that target PPARγ and therefore down-modulate inflammation.

  9. Investigation of the extraction of short diffusion lengths from simulated electron-beam induced current

    Energy Technology Data Exchange (ETDEWEB)

    Wee, D.; Parish, G.; Nener, B. [Microelectronics Research Group, The University of Western Australia, 35 Stirling Highway, 6009 Crawley (Perth) (Australia)

    2010-10-15

    This paper reports on the investigations via 2-D simulation into the accuracy of diffusion length extraction from scanning electron-beam induced current measurements when the diffusion length, L is very short. L is extracted by using the direct method proposed by Chan et al.[1] and later refined by Kurniawan and Ong[2] to take finite junction depth into account. The 2-D simulations were undertaken using Synopsys {sup registered} Sentaurus TCAD and a realistic electron-hole pair generation volume was created using CASINO v2.42[3], a Monte Carlo Scanning Electron Microscope interaction simulation software, and imported into Sentaurus. The voltage and diameter of the electron beam and diffusion length and surface recombination velocity of the semiconductor materials were varied in the simulations to determine the errors in the diffusion length extracted from the EBIC signals as a function of these parameters. The results of the simulation show that the accuracy of the method proposed in[1] is reasonably accurate and that the beam voltage and spot size do not have significant effects on the accuracy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Investigation of the extraction of short diffusion lengths from simulated electron-beam induced current

    International Nuclear Information System (INIS)

    Wee, D.; Parish, G.; Nener, B.

    2010-01-01

    This paper reports on the investigations via 2-D simulation into the accuracy of diffusion length extraction from scanning electron-beam induced current measurements when the diffusion length, L is very short. L is extracted by using the direct method proposed by Chan et al.[1] and later refined by Kurniawan and Ong[2] to take finite junction depth into account. The 2-D simulations were undertaken using Synopsys registered Sentaurus TCAD and a realistic electron-hole pair generation volume was created using CASINO v2.42[3], a Monte Carlo Scanning Electron Microscope interaction simulation software, and imported into Sentaurus. The voltage and diameter of the electron beam and diffusion length and surface recombination velocity of the semiconductor materials were varied in the simulations to determine the errors in the diffusion length extracted from the EBIC signals as a function of these parameters. The results of the simulation show that the accuracy of the method proposed in[1] is reasonably accurate and that the beam voltage and spot size do not have significant effects on the accuracy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Path-length-resolved measurements of multiple scattered photons in static and dynamic turbid media using phase-modulated low-coherence interferometry

    NARCIS (Netherlands)

    Varghese, Babu; Rajan, Vinayakrishnan; van Leeuwen, Ton G.; Steenbergen, Wiendelt

    2007-01-01

    In optical Doppler measurements, the path length of the light is unknown. To facilitate quantitative measurements, we develop a phase-modulated Mach-Zehnder interferometer with separate fibers for illumination and detection. With this setup, path-length-resolved dynamic light scattering measurements

  12. Influence of rubbing-alignment on microwave modulation induced by liquid crystal

    Directory of Open Access Journals (Sweden)

    Wenjiang Ye

    2015-06-01

    Full Text Available The microwave modulation induced by liquid crystal is decided by the liquid crystal director distribution under an external applied voltage. The rubbing-alignment of substrate has an effect on the liquid crystal director, which must result in the change of microwave phase-shift. To illustrate the influence of rubbing-alignment on the microwave phase-shift, the microwave modulation property of twisted nematic liquid crystal is researched adopting the elastic theory of liquid crystal and the finite-difference iterative method. The variations of microwave phase-shift per unit-length for different pre-tilt and pre-twist angles of liquid crystal on the substrate surface and anchoring energy strengths with the applied voltage are numerically simulated. The result indicates that with the increase of pre-tilt angle and with the decrease of anchoring energy strength the weak anchoring twisted cell with pre-twisted angle 90° relative to the strong anchoring non-twisted cell can increase the microwave phase-shift per unit-length. As a result, for achieving the maximum microwave modulation, the weak anchoring twisted cell with pre-tilt angle 5° and anchoring energy strength 1×10−5J/m2 should be selected, which provides a reliably theoretical foundation for the design of liquid crystal microwave modulator.

  13. Numerical analysis of finite Debye-length effects in induced-charge electro-osmosis.

    Science.gov (United States)

    Gregersen, Misha Marie; Andersen, Mathias Baekbo; Soni, Gaurav; Meinhart, Carl; Bruus, Henrik

    2009-06-01

    For a microchamber filled with a binary electrolyte and containing a flat unbiased center electrode at one wall, we employ three numerical models to study the strength of the resulting induced-charge electro-osmotic (ICEO) flow rolls: (i) a full nonlinear continuum model resolving the double layer, (ii) a linear slip-velocity model not resolving the double layer and without tangential charge transport inside this layer, and (iii) a nonlinear slip-velocity model extending the linear model by including the tangential charge transport inside the double layer. We show that, compared to the full model, the slip-velocity models significantly overestimate the ICEO flow. This provides a partial explanation of the quantitative discrepancy between observed and calculated ICEO velocities reported in the literature. The discrepancy increases significantly for increasing Debye length relative to the electrode size, i.e., for nanofluidic systems. However, even for electrode dimensions in the micrometer range, the discrepancies in velocity due to the finite Debye length can be more than 10% for an electrode of zero height and more than 100% for electrode heights comparable to the Debye length.

  14. Acquisition session length modulates consolidation effects produced by 5-HT2C ligands in a mouse autoshaping-operant procedure.

    Science.gov (United States)

    Walker, Ellen A; Foley, John J

    2010-03-01

    Although the neurotransmitter, 5-hydroxytryptamine (serotonin, 5-HT), has been implicated as a mediator of learning and memory, the specific role of 5-HT receptors in rodents requires further delineation. In this study, 5-HT2C receptor ligands of varying relative intrinsic efficacies were tested in a mouse learning and memory model called autoshaping-operant. On day 1, mice were placed in experimental chambers and presented with a tone on a variable interval schedule. The tone remained on for 6 s or until a nose-poke response occurred to produce a dipper with Ensure solution. Mice were then injected with saline, MK212 (full agonist), m-chlorophenylpiperazine (partial agonist), mianserin, and SB206 553 (inverse agonists), and methysergide and (+)-2-bromo lysergic acid diethylamide (+)-hydrogen tartrate (neutral antagonists). Each compound was injected after either 1 or 2-h acquisition sessions on day 1 to investigate the role of acquisition session length on consolidation. Day 1 injection of the 5-HT2C inverse agonist mianserin produced greater retrieval impairments of the autoshaped operant response on day 2 than any other agent tested. Furthermore, decreasing the length of the acquisition session to 1h significantly increased the difficulty of the autoshaping task further modulating the consolidation effects produced by the 5-HT2C ligands tested.

  15. Adrenal-derived stress hormones modulate ozone-induced ...

    Science.gov (United States)

    Ozone-induced systemic effects are modulated through activation of the neuro-hormonal stress response pathway. Adrenal demedullation (DEMED)or bilateral total adrenalectomy (ADREX) inhibits systemic and pulmonary effect of acute ozone exposure. To understand the influence of adrenal-derived stress hormones in mediating ozone-induced lung injury/inflammation, we assessed global gene expression (mRNA sequencing) and selected proteins in lung tissues from male Wistar-Kyoto rats that underwent DEMED, ADREX, or sham surgery (SHAM)prior to their exposure to air or ozone (1 ppm),4 h/day for 1 or 2days. Ozone exposure significantly changed the expression of over 2300 genes in lungs of SHAM rats, and these changes were markedly reduced in DEMED and ADREX rats. SHAM surgery but not DEMED or ADREX resulted in activation of multiple ozone-responsive pathways, including glucocorticoid, acute phase response, NRF2, and Pl3K-AKT.Predicted targets from sequencing data showed a similarity between transcriptional changes induced by ozone and adrenergic and steroidal modulation of effects in SHAM but not ADREX rats. Ozone-induced Increases in lung 116 in SHAM rats coincided with neutrophilic Inflammation, but were diminished in DEMED and ADREX rats. Although ozone exposure in SHAM rats did not significantly alter mRNA expression of lfny and 11-4, the IL-4 protein and ratio of IL-4 to IFNy (IL-4/IFNy) proteins increased suggesting a tendency for a Th2 response. This did not occur

  16. [Mechanisms of retroviral immunosuppressive domain-induced immune modulation].

    Science.gov (United States)

    Blinov, V M; Krasnov, G S; Shargunov, A V; Shurdov, M A; Zverev, V V

    2013-01-01

    Immunosuppressive domains (ISD) of viral envelope glycoproteins provide highly pathogenic phenotypes of various retroviruses. ISD interaction with immune cells leads to an inhibition of a response. In the 1980s it was shown that the fragment of ISD comprising of 17 amino acids (named CKS-17) is carrying out such immune modulation. However the underlying mechanisms were not known. The years of thorough research allowed to identify the regulation of Ras-Raf-MEK-MAPK and PI3K-AKT-mTOR cellular pathways as a result of ISD interaction with immune cells. By the way, this leads to decrease of secretion of stimulatory cytokines (e.g., IL-12) and increase of inhibitory, anti-inflammatory ones (e.g., IL-10). One of the receptor tyrosine kinases inducing signal in these pathways acts as the primary target of ISD while other key regulators--cAMP and diacylglycerol (DAG), act as secondary messengers of signal transduction. Immunosuppressive-like domains can be found not only in retroviruses; the presence of ISD within Ebola viral envelope glycoproteins caused extremely hard clinical course of virus-induced hemorrhagic fever. A number of retroviral-origin fragments encoding ISD can be found in the human genome. These regions are expressed in the placenta within genes of syncytins providing a tolerance of mother's immune system to an embryo. The present review is devoted to molecular aspects of retroviral ISD-induced modulation of host immune system.

  17. Load-induced modulation of signal transduction networks.

    Science.gov (United States)

    Jiang, Peng; Ventura, Alejandra C; Sontag, Eduardo D; Merajver, Sofia D; Ninfa, Alexander J; Del Vecchio, Domitilla

    2011-10-11

    Biological signal transduction networks are commonly viewed as circuits that pass along information--in the process amplifying signals, enhancing sensitivity, or performing other signal-processing tasks--to transcriptional and other components. Here, we report on a "reverse-causality" phenomenon, which we call load-induced modulation. Through a combination of analytical and experimental tools, we discovered that signaling was modulated, in a surprising way, by downstream targets that receive the signal and, in doing so, apply what in physics is called a load. Specifically, we found that non-intuitive changes in response dynamics occurred for a covalent modification cycle when load was present. Loading altered the response time of a system, depending on whether the activity of one of the enzymes was maximal and the other was operating at its minimal rate or whether both enzymes were operating at submaximal rates. These two conditions, which we call "limit regime" and "intermediate regime," were associated with increased or decreased response times, respectively. The bandwidth, the range of frequency in which the system can process information, decreased in the presence of load, suggesting that downstream targets participate in establishing a balance between noise-filtering capabilities and a circuit's ability to process high-frequency stimulation. Nodes in a signaling network are not independent relay devices, but rather are modulated by their downstream targets.

  18. Gut microbiota modulates alcohol withdrawal-induced anxiety in mice.

    Science.gov (United States)

    Xiao, Hui-Wen; Ge, Chang; Feng, Guo-Xing; Li, Yuan; Luo, Dan; Dong, Jia-Li; Li, Hang; Wang, Haichao; Cui, Ming; Fan, Sai-Jun

    2018-05-01

    Excessive alcohol consumption remains a major public health problem that affects millions of people worldwide. Accumulative experimental evidence has suggested an important involvement of gut microbiota in the modulation of host's immunological and neurological functions. However, it is previously unknown whether enteric microbiota is implicated in the formation of alcohol withdrawal-induced anxiety. Using a murine model of chronic alcoholism and withdrawal, we examined the impact of alcohol consumption on the possible alterations of gut microbiota as well as alcohol withdrawal-induced anxiety and behavior changes. The 16S rRNA sequencing revealed that alcohol consumption did not alter the abundance of bacteria, but markedly changed the composition of gut microbiota. Moreover, the transplantation of enteric microbes from alcohol-fed mice to normal healthy controls remarkably shaped the composition of gut bacteria, and elicited behavioral signs of alcohol withdrawal-induced anxiety. Using quantitative real-time polymerase chain reaction, we further confirmed that the expression of genes implicated in alcohol addiction, BDNF, CRHR1 and OPRM1, was also altered by transplantation of gut microbes from alcohol-exposed donors. Collectively, our findings suggested a possibility that the alterations of gut microbiota composition might contribute to the development of alcohol withdrawal-induced anxiety, and reveal potentially new etiologies for treating alcohol addiction. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  19. Beam-induced heating / bunch length / RF and lessons for 2012

    International Nuclear Information System (INIS)

    Metral, E.

    2012-01-01

    Beam-induced heating has been observed here and there during the 2011 run when the bunch/beam intensity was increased and/or the bunch length was reduced. These observations are first reviewed before mentioning the recent news/work performed during the shutdown. In fact, several possible sources of heating exist and only the RF heating (i.e. coming from the real part of the longitudinal impedance of the machine components) is discussed in some detail in the present paper: 1) comparing the case of a Broad-Band (BB) vs. a Narrow-Band (NB) impedance; 2) discussing the beam spectrum; 3) reminding the usual solutions to avoid/minimize the RF heating; 4) reviewing the different heat transfer mechanisms; 5) mentioning that the synchronous phase shift is a measurement of the power loss and effective impedance. The three current 'hot' topics for the LHC performance, which are the VMTSA, TDI and MKI, are then analyzed in detail and some lessons for 2012 (and after) are finally drawn

  20. Serotonergic modulation of nicotine-induced kinetic tremor in mice

    Directory of Open Access Journals (Sweden)

    Naofumi Kunisawa

    2017-06-01

    Full Text Available We previously demonstrated that nicotine elicited kinetic tremor by elevating the neural activity of the inferior olive via α7 nicotinic acetylcholine (nACh receptors. Since α7 nACh receptors reportedly facilitate synaptic monoamine release, we explored the role of 5-HT receptors in induction and/or modulation of nicotine tremor. Treatment of mice with nicotine induced kinetic tremor that normally appeared during movement. The 5-HT1A agonist, 8-hydroxydipropylaminotetraline (8-OH-DPAT, significantly enhanced nicotine-induced tremor and the action of 8-OH-DPAT was antagonized by WAY-100135 (5-HT1A antagonist. In addition, the cerebral 5-HT depletion by repeated treatment with p-chlorophenylalanine did not reduce, but rather potentiated the facilitatory effects of 8-OH-DPAT. In contrast, the 5-HT2 agonist, 2,5-dimethoxy-4-iodoamphetamine (DOI, significantly attenuated nicotine tremor, which was antagonized by ritanserin (5-HT2 antagonist. The 5-HT3 agonist SR-57227 did not affect nicotine-induced tremor. Furthermore, when testing the direct actions of 5-HT antagonists, nicotine tremor was inhibited by WAY-100135, but was unaffected by ritanserin, ondansetron (5-HT3 antagonist or SB-258585 (5-HT6 antagonist. These results suggest that postsynaptic 5-HT1A receptors are involved in induction of nicotine tremor mediated by α7 nACh receptors. In addition, 5-HT2 receptors have an inhibitory modulatory role in induction of nicotine tremor.

  1. Microstructure fabrication process induced modulations in CVD graphene

    Science.gov (United States)

    Matsubayashi, Akitomo; Zhang, Zhenjun; Lee, Ji Ung; LaBella, Vincent P.

    2014-12-01

    The systematic Raman spectroscopic study of a "mimicked" graphene device fabrication is presented. Upon photoresist baking, compressive stress is induced in the graphene which disappears after it is removed. The indirect irradiation from the electron beam (through the photoresist) does not significantly alter graphene characteristic Raman peaks indicating that graphene quality is preserved upon the exposure. The 2D peak shifts and the intensity ratio of 2D and G band, I(2D)/I(G), decreases upon direct metal deposition (Co and Py) suggesting that the electronic modulation occurs due to sp2 C-C bond weakening. In contrast, a thin metal oxide film deposited graphene does not show either the significant 2D and G peaks shift or I(2D)/I(G) decrease upon the metal deposition suggesting the oxide protect the graphene quality in the fabrication process.

  2. Microstructure fabrication process induced modulations in CVD graphene

    Energy Technology Data Exchange (ETDEWEB)

    Matsubayashi, Akitomo, E-mail: amatsubayashi@albany.edu; Zhang, Zhenjun; Lee, Ji Ung; LaBella, Vincent P., E-mail: vlabella@albany.edu [College of Nanoscale Science and Engineering, University at Albany, SUNY, Albany, New York 12203 (United States)

    2014-12-15

    The systematic Raman spectroscopic study of a “mimicked” graphene device fabrication is presented. Upon photoresist baking, compressive stress is induced in the graphene which disappears after it is removed. The indirect irradiation from the electron beam (through the photoresist) does not significantly alter graphene characteristic Raman peaks indicating that graphene quality is preserved upon the exposure. The 2D peak shifts and the intensity ratio of 2D and G band, I(2D)/I(G), decreases upon direct metal deposition (Co and Py) suggesting that the electronic modulation occurs due to sp{sup 2} C-C bond weakening. In contrast, a thin metal oxide film deposited graphene does not show either the significant 2D and G peaks shift or I(2D)/I(G) decrease upon the metal deposition suggesting the oxide protect the graphene quality in the fabrication process.

  3. Modulated phases of phospholipid bilayers induced by tocopherols.

    Science.gov (United States)

    Kamal, Md Arif; Raghunathan, V A

    2012-11-01

    The influence of α-, γ- and δ-tocopherols on the structure and phase behavior of dipalmitoyl phosphatidylcholine (DPPC) bilayers has been determined from X-ray diffraction studies on oriented multilayers. In all the three cases the main-transition temperature (T(m)) of DPPC was found to decrease with increasing tocopherol concentration up to around 25 mol%. Beyond this the main transition is suppressed in the case of γ-tocopherol, whereas T(m) becomes insensitive to composition in the other two cases. The pre-transition is found to be suppressed over a narrow tocopherol concentration range between 7.5 and 10 mol% in DPPC-γ-tocopherol and DPPC-δ-tocopherol bilayers, and the ripple phase occurs down to the lowest temperature studied. In all the three cases a modulated phase is observed above a tocopherol concentration of about 10 mol%, which is similar to the P(β) phase reported in DPPC-cholesterol bilayers. This phase is found to occur even in excess water conditions at lower tocopherol concentrations, and consists of bilayers with periodic height modulation. These results indicate the ability of tocopherols to induce local curvature in membranes, which could be important for some of their biological functions. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Study of force induced melting of dsDNA as a function of length and conformation

    International Nuclear Information System (INIS)

    Danilowicz, Claudia; Hatch, Kristi; Conover, Alyson; Gunaratne, Ruwan; Coljee, Vincent; Prentiss, Mara; Ducas, Theodore

    2010-01-01

    We measure the constant force required to melt double-stranded (ds) DNA as a function of length for lengths from 12 to 100 000 base pairs, where the force is applied to the 3'3' or 5'5' ends of the dsDNA. Molecules with 32 base pairs or fewer melt before overstretching. For these short molecules, the melting force is independent of the ends to which the force is applied and the shear force as a function of length is well described by de Gennes theory with a de Gennes length of less than 10 bp. Molecules with lengths of 500 base pairs or more overstretch before melting. For these long molecules, the melting force depends on the ends to which the force is applied. The melting force as a function of length increases even when the length exceeds 1000 bp, where the length dependence is inconsistent with de Gennes theory. Finally, we expand de Gennes melting theory to 3'5' pulling and compare the predictions with experimental results.

  5. Understanding curcumin-induced modulation of protein aggregation.

    Science.gov (United States)

    Ahmad, Basir; Borana, Mohanish S; Chaudhary, Ankur P

    2017-07-01

    Curcumin, a diarylheptanoid compound, found in spice turmeric is known to alter the aggregation of proteins and reduce the toxicity of the aggregates. This review looks at the molecular basis of modulating protein aggregation and toxicity of the aggregates. Foremost, we identify the interaction of curcumin and its derivatives with proteins/peptides and the effect of their interaction on the conformational stability and unfolding/folding pathway(s). The unfolding/folding processes generate partially folded/unfolded intermediate, which serve as aggregation precursor state. Secondly, we discuss the effect of curcumin binding on the kinetics parameters of the aggregation process, which give information about the mechanism of the aggregation inhibition. We describe, in addition, that curcumin can accelerate/promote fibril formation by binding to oligomeric intermediate(s) accumulated in the aggregation pathway. Finally, we discuss the correlation of curcumin-induced monomeric and/or oligomeric precursor states with aggregate structure and toxicity. On the basis of these discussions, we propose a model describing curcumin-induced inhibition/promotion of formation of amyloid-like fibrils. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Acoustic Measurement of the Length of Air-plasma Filament Induced by an Intense Femtosecond Laser Pulse

    Directory of Open Access Journals (Sweden)

    Wu Si-Qing

    2017-01-01

    Full Text Available The paper studies acoustic emission from air-plasma filament induced by a strong femtosecond laser pulse. Acoustic signal is detected with a sensitive directional microphone. Acoustic measurement provides a new method to determine the length of a filament. Compared with other methods, acoustic measurement is simpler, more sensitive, and with higher spatial resolution. Information of filament length is experimentally acquired through measuring acoustic pressure at different position of filament. On the basis of the relationship between acoustic signal and free-electron density in filament, profile of free-electron density is demonstrated

  7. Serotonergic modulation of nicotine-induced kinetic tremor in mice.

    Science.gov (United States)

    Kunisawa, Naofumi; Iha, Higor A; Nomura, Yuji; Onishi, Misaki; Matsubara, Nami; Shimizu, Saki; Ohno, Yukihiro

    2017-06-01

    We previously demonstrated that nicotine elicited kinetic tremor by elevating the neural activity of the inferior olive via α7 nicotinic acetylcholine (nACh) receptors. Since α7 nACh receptors reportedly facilitate synaptic monoamine release, we explored the role of 5-HT receptors in induction and/or modulation of nicotine tremor. Treatment of mice with nicotine induced kinetic tremor that normally appeared during movement. The 5-HT 1A agonist, 8-hydroxydipropylaminotetraline (8-OH-DPAT), significantly enhanced nicotine-induced tremor and the action of 8-OH-DPAT was antagonized by WAY-100135 (5-HT 1A antagonist). In addition, the cerebral 5-HT depletion by repeated treatment with p-chlorophenylalanine did not reduce, but rather potentiated the facilitatory effects of 8-OH-DPAT. In contrast, the 5-HT 2 agonist, 2,5-dimethoxy-4-iodoamphetamine (DOI), significantly attenuated nicotine tremor, which was antagonized by ritanserin (5-HT 2 antagonist). The 5-HT 3 agonist SR-57227 did not affect nicotine-induced tremor. Furthermore, when testing the direct actions of 5-HT antagonists, nicotine tremor was inhibited by WAY-100135, but was unaffected by ritanserin, ondansetron (5-HT 3 antagonist) or SB-258585 (5-HT 6 antagonist). These results suggest that postsynaptic 5-HT 1A receptors are involved in induction of nicotine tremor mediated by α7 nACh receptors. In addition, 5-HT 2 receptors have an inhibitory modulatory role in induction of nicotine tremor. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  8. Light induced modulation instability of surfaces under intense illumination

    KAUST Repository

    Burlakov, V. M.; Foulds, Ian G.; Goriely, A.

    2013-01-01

    heated by radiation. Periodic heating is due to focusing-defocusing effects caused by the initial surface modulation. The surface modulation has a period longer than the excitation wavelength and does not require coherent light source. Therefore

  9. XPM-induced degradation of multilevel phase modulated channel caused by neighboring NRZ modulated channels

    DEFF Research Database (Denmark)

    Jensen, Jesper Bevensee; Schiellerup, G.; Peucheret, Christophe

    2008-01-01

    The impact of XPM from NRZ modulated channels on an 8-level phase modulated channel in a WDM system was investigated. Requirements on launch power are found. 400 km transmission was achieved with negligible penalty.......The impact of XPM from NRZ modulated channels on an 8-level phase modulated channel in a WDM system was investigated. Requirements on launch power are found. 400 km transmission was achieved with negligible penalty....

  10. Breaking Through the Multi-Mesa-Channel Width Limited of Normally Off GaN HEMTs Through Modulation of the Via-Hole-Length.

    Science.gov (United States)

    Chien, Cheng-Yen; Wu, Wen-Hsin; You, Yao-Hong; Lin, Jun-Huei; Lee, Chia-Yu; Hsu, Wen-Ching; Kuan, Chieh-Hsiung; Lin, Ray-Ming

    2017-12-01

    We present new normally off GaN high-electron-mobility transistors (HEMTs) that overcome the typical limitations in multi-mesa-channel (MMC) width through modulation of the via-hole-length to regulate the charge neutrality screen effect. We have prepared enhancement-mode (E-mode) GaN HEMTs having widths of up to 300 nm, based on an enhanced surface pinning effect. E-mode GaN HEMTs having MMC structures and widths as well as via-hole-lengths of 100 nm/2 μm and 300 nm/6 μm, respectively, exhibited positive threshold voltages (V th ) of 0.79 and 0.46 V, respectively. The on-resistances of the MMC and via-hole-length structures were lower than those of typical tri-gate nanoribbon GaN HEMTs. In addition, the devices not only achieved the E-mode but also improved the power performance of the GaN HEMTs and effectively mitigated the device thermal effect. We controlled the via-hole-length sidewall surface pinning effect to obtain the E-mode GaN HEMTs. Our findings suggest that via-hole-length normally off GaN HEMTs have great potential for use in next-generation power electronics.

  11. Breaking Through the Multi-Mesa-Channel Width Limited of Normally Off GaN HEMTs Through Modulation of the Via-Hole-Length

    Science.gov (United States)

    Chien, Cheng-Yen; Wu, Wen-Hsin; You, Yao-Hong; Lin, Jun-Huei; Lee, Chia-Yu; Hsu, Wen-Ching; Kuan, Chieh-Hsiung; Lin, Ray-Ming

    2017-06-01

    We present new normally off GaN high-electron-mobility transistors (HEMTs) that overcome the typical limitations in multi-mesa-channel (MMC) width through modulation of the via-hole-length to regulate the charge neutrality screen effect. We have prepared enhancement-mode (E-mode) GaN HEMTs having widths of up to 300 nm, based on an enhanced surface pinning effect. E-mode GaN HEMTs having MMC structures and widths as well as via-hole-lengths of 100 nm/2 μm and 300 nm/6 μm, respectively, exhibited positive threshold voltages ( V th) of 0.79 and 0.46 V, respectively. The on-resistances of the MMC and via-hole-length structures were lower than those of typical tri-gate nanoribbon GaN HEMTs. In addition, the devices not only achieved the E-mode but also improved the power performance of the GaN HEMTs and effectively mitigated the device thermal effect. We controlled the via-hole-length sidewall surface pinning effect to obtain the E-mode GaN HEMTs. Our findings suggest that via-hole-length normally off GaN HEMTs have great potential for use in next-generation power electronics.

  12. Ultra-High Resolution Ion Mobility Separations Utilizing Traveling Waves in a 13 m Serpentine Path Length Structures for Lossless Ion Manipulations Module

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Liulin; Ibrahim, Yehia M.; Hamid, Ahmed M.; Garimella, Sandilya V. B.; Webb, Ian K.; Zheng, Xueyun; Prost, Spencer A.; Sandoval, Jeremy A.; Norheim, Randolph V.; Anderson, Gordon A.; Tolmachev, Aleksey V.; Baker, Erin S.; Smith, Richard D.

    2016-09-20

    We report the development and initial evaluation of a 13-m path length Structures for Lossless Manipulations (SLIM) module for achieving high resolution separations using traveling waves (TW) with ion mobility (IM) spectrometry. The TW SLIM module was fabricated using two mirror-image printed circuit boards with appropriately configured RF, DC and TW electrodes and positioned with a 2.75-mm inter-surface gap. Ions were effective confined between the surfaces by RF-generated pseudopotential fields and moved losslessly through a serpentine path including 44 “U” turns using TWs. The ion mobility resolution was characterized at different pressures, gaps between the SLIM surfaces, TW and RF parameters. After initial optimization the SLIM IM-MS module provided about 5-fold higher resolution separations than present commercially available drift tube or traveling wave IM-MS platforms. Peak capacity and peak generation rates achieved were 246 and 370 s-1, respectively, at a TW speed of 148 m/s. The high resolution achieved in the TW SLIM IM-MS enabled e.g., isomeric sugars (Lacto-N-fucopentaose I and Lacto-N-fucopentaose II) to be baseline resolved, and peptides from a albumin tryptic digest much better resolved than with existing commercial IM-MS platforms. The present work also provides a foundation for the development of much higher resolution SLIM devices based upon both considerably longer path lengths and multi-pass designs.

  13. Quantum Field Theory with a Minimal Length Induced from Noncommutative Space

    International Nuclear Information System (INIS)

    Lin Bing-Sheng; Chen Wei; Heng Tai-Hua

    2014-01-01

    From the inspection of noncommutative quantum mechanics, we obtain an approximate equivalent relation for the energy dependence of the Planck constant in the noncommutative space, which means a minimal length of the space. We find that this relation is reasonable and it can inherit the main properties of the noncommutative space. Based on this relation, we derive the modified Klein—Gordon equation and Dirac equation. We investigate the scalar field and ϕ 4 model and then quantum electrodynamics in our theory, and derive the corresponding Feynman rules. These results may be considered as reasonable approximations to those of noncommutative quantum field theory. Our theory also shows a connection between the space with a minimal length and the noncommutative space. (physics of elementary particles and fields)

  14. EFFECTS INDUCED BY DIETHYL SULPHATE ON SOME CYTOGENETICAL PARAMETERS AND LENGTH GROWTH OF HEMP PLANTLETS

    Directory of Open Access Journals (Sweden)

    Elena Truta

    2007-08-01

    Full Text Available The hemp seeds were treated with diethyl sulphate, in four concentrations (0.1%, 0.25%, 0.5%, and 1% and in two variants of alkylant exposure (3 and 6 hours. The length growth of plantlets, mitotic index and frequency of chromosomal aberrations were the analyzed parameters. Significant modifications were obtained at the level of parameters in variants treated with DES, comparatively with control.

  15. Distinct modulation of telomere length in two T-lymphoblastic leukemia cell lines by cytotoxic nucleoside phosphonates PMEG and PMEDAP

    Czech Academy of Sciences Publication Activity Database

    Hájek, Miroslav; Cvilink, Viktor; Votruba, Ivan; Holý, Antonín; Mertlíková-Kaiserová, Helena

    2010-01-01

    Roč. 643, č. 1 (2010), s. 6-12 ISSN 0014-2999 R&D Projects: GA MŠk 1M0508; GA AV ČR 1QS400550501 Institutional research plan: CEZ:AV0Z40550506 Keywords : acyclic nucleoside phosphonates * PMEG * PMEDAP * telomere length * telomerase inhibition Subject RIV: CC - Organic Chemistry Impact factor: 2.737, year: 2010

  16. Numerical analysis of finite Debye-length effects in induced-charge electro-osmosis

    DEFF Research Database (Denmark)

    Gregersen, Misha Marie; Andersen, Mathias Bækbo; Soni, G.

    2009-01-01

    For a microchamber filled with a binary electrolyte and containing a flat unbiased center electrode at one wall, we employ three numerical models to study the strength of the resulting induced-charge electro-osmotic (ICEO) flow rolls: (i) a full nonlinear continuum model resolving the double laye...

  17. Automated Data Collection for Determining Statistical Distributions of Module Power Undergoing Potential-Induced Degradation

    DEFF Research Database (Denmark)

    Hacke, Peter; Spataru, Sergiu

    We propose a method for increasing the frequency of data collection and reducing the time and cost of accelerated lifetime testing of photovoltaic modules undergoing potential-induced degradation (PID). This consists of in-situ measurements of dark current-voltage curves of the modules at elevate...

  18. Manipulating the morphology and textural property of γ-AlOOH by modulating the alkyl chain length of cation in ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhe, E-mail: tangzhe1983@163.com; Hu, Xiaofu, E-mail: hjj19850922@126.cn; Liang, Jilei, E-mail: liang.jilei_ttplan@126.com; Zhao, Jinchong, E-mail: Dr.zhaojc@gmail.com; Liu, Yunqi, E-mail: liuyq@upc.edu.cn; Liu, Chenguang, E-mail: cgliu@upc.edu.cn

    2013-06-01

    Graphical abstract: - Highlights: • γ-AlOOH was the only product in all experiments. • Different morphology of γ-AlOOH was obtained according to the alkyl chain length. • The textural property of γ-AlOOH was changed according to the alkyl chain length. • The possible formation mechanisms for hollow sphere and microflower were proposed. - Abstract: We demonstrated that the morphology and textural property of γ-AlOOH can be tuned by modulating the alkyl chain length of cation in [C{sub n}mim]{sup +}Cl{sup −} (n = 4, 8, 16). Using the short alkyl chain length-based [C{sub 4}mim]{sup +}Cl{sup −} as the structure-directed reagent, the morphology of γ-AlOOH was not changed and preserved as the hollow sphere structure in all experiments. The specific area and the number of small meso-pores of γ-AlOOH increased with the increase of [C{sub 4}mim]{sup +}Cl{sup −} dosage. While, using the larger alkyl chain length-based ionic liquids as the soft-template, such as [C{sub 8}mim]{sup +}Cl{sup −} and [C{sub 16}mim]{sup +}Cl{sup −}, the morphologies of γ-AlOOH were changed from initiative hollow spheres into the final microflowers. The specific areas of γ-AlOOH firstly increased then decreased with the increase of their dosage. The samples were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscope (SEM) and Transmission Electron Microscopy (TEM). Furthermore, the possible formation mechanisms of γ-AlOOH have been proposed.

  19. Modulation of saturation and chain length of fatty acids in Saccharomyces cerevisiae for production of cocoa butter-like lipids

    DEFF Research Database (Denmark)

    Bergenholm, David; Gossing, Michael; Wei, Yongjun

    2018-01-01

    Chain length and degree of saturation plays an important role for the characteristics of various products derived from fatty acids, such as fuels, cosmetics, and food additives. The seeds of Theobroma cacao are the source of cocoa butter, a natural lipid of high interest for the food and cosmetics...... as the saturated fatty acid stearic acid is typically found only in low abundance. Demand for cocoa butter is increasing, yet T. cacao can only be cultivated in some parts of the tropics. Alternative means of production of cocoa butter lipids (CBLs) are, therefore, sought after. Yeasts also store fatty acids...... industry. Cocoa butter is rich in saturated fatty acids that are stored in the form of triacylglycerides (TAGs). One of the major TAG species of cocoa butter, consisting of two stearic acid molecules and one oleic acid molecule (stearic acid-oleic acid-stearic acid, sn-SOS), is particularly rare in nature...

  20. Full-length huntingtin levels modulate body weight by influencing insulin-like growth factor 1 expression

    DEFF Research Database (Denmark)

    Pouladi, Mahmoud A; Xie, Yuanyun; Skotte, Niels Henning

    2010-01-01

    of the IGF-1 pathway in mediating the effect of htt on body weight. IGF-1 expression was examined in transgenic mouse lines expressing different levels of FL wild-type (WT) htt (YAC18 mice), FL mutant htt (YAC128 and BACHD mice) and truncated mutant htt (shortstop mice). We demonstrate that htt influences...... body weight by modulating the IGF-1 pathway. Plasma IGF-1 levels correlate with body weight and htt levels in the transgenic YAC mice expressing human htt. The effect of htt on IGF-1 expression is independent of CAG size. No effect on body weight is observed in transgenic YAC mice expressing...... and decreases the body weight of YAC128 animals to WT levels. Furthermore, given the ubiquitous expression of IGF-1 within the central nervous system, we also examined the impact of FL htt levels on IGF-1 expression in different regions of the brain, including the striatum, cerebellum of YAC18, YAC128...

  1. High Precision Axial Coordinate Readout for an Axial 3-D PET Detector Module using a Wave Length Shifter Strip Matrix

    CERN Document Server

    Braem, André; Joram, C; Séguinot, Jacques; Weilhammer, P; De Leo, R; Nappi, E; Lustermann, W; Schinzel, D; Johnson, I; Renker, D; Albrecht, S

    2007-01-01

    We describe a novel method to extract the axial coordinate from a matrix of long axially oriented crystals, which is based on wavelength shifting plastic strips. The method allows building compact 3-D axial gamma detector modules for PET scanners with excellent 3-dimensional spatial, timing and energy resolution while keeping the number of readout channels reasonably low. A voxel resolution of about 10 mm3 is expected. We assess the performance of the method in two independent ways, using classical PMTs and G-APDs to read out the LYSO (LSO) scintillation crystals and the wavelength shifting strips. We observe yields in excess of 35 photoelectrons from the strips for a 511 keV gamma and reconstruct the axial coordinate with a precision of about 2.5 mm (FWHM).

  2. Altered brain network modules induce helplessness in major depressive disorder.

    Science.gov (United States)

    Peng, Daihui; Shi, Feng; Shen, Ting; Peng, Ziwen; Zhang, Chen; Liu, Xiaohua; Qiu, Meihui; Liu, Jun; Jiang, Kaida; Fang, Yiru; Shen, Dinggang

    2014-10-01

    The abnormal brain functional connectivity (FC) has been assumed to be a pathophysiological aspect of major depressive disorder (MDD). However, it is poorly understood, regarding the underlying patterns of global FC network and their relationships with the clinical characteristics of MDD. Resting-state functional magnetic resonance imaging data were acquired from 16 first episode, medication-naïve MDD patients and 16 healthy control subjects. The global FC network was constructed using 90 brain regions. The global topological patterns, e.g., small-worldness and modularity, and their relationships with depressive characteristics were investigated. Furthermore, the participant coefficient and module degree of MDD patients were measured to reflect the regional roles in module network, and the impairment of FC was examined by network based statistic. Small-world property was not altered in MDD. However, MDD patients exhibited 5 atypically reorganized modules compared to the controls. A positive relationship was also found among MDD patients between the intra-module I and helplessness factor evaluated via the Hamilton Depression Scale. Specifically, eight regions exhibited the abnormal participant coefficient or module degree, e.g., left superior orbital frontal cortex and right amygdala. The decreased FC was identified among the sub-network of 24 brain regions, e.g., frontal cortex, supplementary motor area, amygdala, thalamus, and hippocampus. The limited size of MDD samples precluded meaningful study of distinct clinical characteristics in relation to aberrant FC. The results revealed altered patterns of brain module network at the global level in MDD patients, which might contribute to the feelings of helplessness. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Design of Electrically Conductive Structural Composites by Modulating Aligned CVD-Grown Carbon Nanotube Length on Glass Fibers.

    Science.gov (United States)

    He, Delong; Fan, Benhui; Zhao, Hang; Lu, Xiaoxin; Yang, Minhao; Liu, Yu; Bai, Jinbo

    2017-01-25

    Function-integration in glass fiber (GF) reinforced polymer composites is highly desired for developing lightweight structures and devices with improved performance and structural health monitoring. In this study, homogeneously aligned carbon nanotube (CNT) shell was in situ grafted on GF by chemical vapor deposition (CVD). It was demonstrated that the CNT shell thickness and weight fraction can be modulated by controlling the CVD conditions. The obtained hierarchical CNTs-GF/epoxy composites show highly improved electrical conductivity and thermo-mechanical and flexural properties. The composite through-plane and in-plane electrical conductivities increase from a quasi-isolator value to ∼3.5 and 100 S/m, respectively, when the weight fraction of CNTs grafted on GF fabric varies from 0% to 7%, respectively. Meanwhile, the composite storage modulus and flexural modulus and strength improve as high as 12%, 21%, and 26%, respectively, with 100% retention of the glass transition temperature. The reinforcing mechanisms are investigated by analyzing the composite microstructure and the interfacial adhesion and wetting properties of CNTs-GF hybrids. Moreover, the specific damage-related resistance variation characteristics could be employed to in situ monitor the structural health state of the composites. The outstanding electrical and structural properties of the CNTs-GF composites were due to the specific interfacial and interphase structures created by homogeneously grafting aligned CNTs on each GF of the fabric.

  4. Modulation of saturation and chain length of fatty acids in Saccharomyces cerevisiae for production of cocoa butter-like lipids.

    Science.gov (United States)

    Bergenholm, David; Gossing, Michael; Wei, Yongjun; Siewers, Verena; Nielsen, Jens

    2018-04-01

    Chain length and degree of saturation plays an important role for the characteristics of various products derived from fatty acids, such as fuels, cosmetics, and food additives. The seeds of Theobroma cacao are the source of cocoa butter, a natural lipid of high interest for the food and cosmetics industry. Cocoa butter is rich in saturated fatty acids that are stored in the form of triacylglycerides (TAGs). One of the major TAG species of cocoa butter, consisting of two stearic acid molecules and one oleic acid molecule (stearic acid-oleic acid-stearic acid, sn-SOS), is particularly rare in nature as the saturated fatty acid stearic acid is typically found only in low abundance. Demand for cocoa butter is increasing, yet T. cacao can only be cultivated in some parts of the tropics. Alternative means of production of cocoa butter lipids (CBLs) are, therefore, sought after. Yeasts also store fatty acids in the form of TAGs, but these are typically not rich in saturated fatty acids. To make yeast an attractive host for microbial production of CBLs, its fatty acid composition needs to be optimized. We engineered Saccharomyces cerevisiae yeast strains toward a modified fatty acid synthesis. Analysis of the fatty acid profile of the modified strains showed that the fatty acid content as well as the titers of saturated fatty acids and the titers of TAGs were increased. The relative content of potential CBLs in the TAG pool reached up to 22% in our engineered strains, which is a 5.8-fold increase over the wild-type. SOS content reached a level of 9.8% in our engineered strains, which is a 48-fold increase over the wild type. © 2018 Wiley Periodicals, Inc.

  5. Full-Length Sequence of Mouse Acupuncture-Induced 1-L (Aig1l Gene Including Its Transcriptional Start Site

    Directory of Open Access Journals (Sweden)

    Mika Ohta

    2011-01-01

    Full Text Available We have been investigating the molecular efficacy of electroacupuncture (EA, which is one type of acupuncture therapy. In our previous molecular biological study of acupuncture, we found an EA-induced gene, named acupuncture-induced 1-L (Aig1l, in mouse skeletal muscle. The aims of this study consisted of identification of the full-length cDNA sequence of Aig1l including the transcriptional start site, determination of the tissue distribution of Aig1l and analysis of the effect of EA on Aig1l gene expression. We determined the complete cDNA sequence including the transcriptional start site via cDNA cloning with the cap site hunting method. We then analyzed the tissue distribution of Aig1l by means of northern blot analysis and real-time quantitative polymerase chain reaction. We used the semiquantitative reverse transcriptase-polymerase chain reaction to examine the effect of EA on Aig1l gene expression. Our results showed that the complete cDNA sequence of Aig1l was 6073 bp long, and the putative protein consisted of 962 amino acids. All seven tissues that we analyzed expressed the Aig1l gene. In skeletal muscle, EA induced expression of the Aig1l gene, with high expression observed after 3 hours of EA. Our findings thus suggest that the Aig1l gene may play a key role in the molecular mechanisms of EA efficacy.

  6. First- and zero-sound velocity and Fermi liquid parameter F2s in liquid 3He determined by a path length modulation technique

    International Nuclear Information System (INIS)

    Hamot, P.J.; Lee, Y.; Sprague, D.T.

    1995-01-01

    We have measured the velocity of first- and zero-sound in liquid 3 He at 12.6 MHz over the pressure range of 0.6 to 14.5 bar using a path length modulation technique that we have recently developed. From these measurements, the pressure dependent value of the Fermi liquid parameter F 2 s was calculated and found to be larger at low pressure than previously reported. These new values of F 2 s indicate that transverse zero-sound is a propagating mode at all pressures. The new values are important for the interpretation of the frequencies of order parameter collective modes in the superfluid phases. The new acoustic technique permits measurements in regimes of very high attenuation with a sensitivity in phase velocity of about 10 ppm achieved by a feedback arrangement. The sound velocity is thus measured continuously throughout the highly attenuating crossover (ωt ∼ 1) regime, even at the lowest pressures

  7. Texture-induced modulations of friction force: the fingerprint effect.

    Science.gov (United States)

    Wandersman, E; Candelier, R; Debrégeas, G; Prevost, A

    2011-10-14

    Modulations of the friction force in dry solid friction are usually attributed to macroscopic stick-slip instabilities. Here we show that a distinct, quasistatic mechanism can also lead to nearly periodic force oscillations during sliding contact between an elastomer patterned with parallel grooves, and abraded glass slides. The dominant oscillation frequency is set by the ratio between the sliding velocity and the grooves period. A model is derived which quantitatively captures the dependence of the force modulations amplitude with the normal load, the grooves period, and the slides roughness characteristics. The model's main ingredient is the nonlinearity of the friction law. Since such nonlinearity is ubiquitous for soft solids, this "fingerprint effect" should be relevant to a large class of frictional configurations and have important consequences in human digital touch.

  8. Strain-induced modulation of near-field radiative transfer.

    Science.gov (United States)

    Ghanekar, Alok; Ricci, Matthew; Tian, Yanpei; Gregory, Otto; Zheng, Yi

    2018-06-11

    In this theoretical study, we present a near-field thermal modulator that exhibits change in radiative heat transfer when subjected to mechanical stress/strain. The device has two terminals at different temperatures separated by vacuum: one fixed and one stretchable. The stretchable side contains one-dimensional grating. When subjected to mechanical strain, the effective optical properties of the stretchable side are affected upon deformation of the grating. This results in modulation of surface waves across the interfaces influencing near-field radiative heat transfer. We show that for a separation of 100 nm, it is possible to achieve 25% change in radiative heat transfer for a strain of 10%.

  9. Effect of modulated ultrasound parameters on ultrasound-induced thrombolysis

    International Nuclear Information System (INIS)

    Soltani, Azita; Volz, Kim R; Hansmann, Doulas R

    2008-01-01

    The potential of ultrasound to enhance enzyme-mediated thrombolysis by application of constant operating parameters (COP) has been widely demonstrated. In this study, the effect of ultrasound with modulated operating parameters (MOP) on enzyme-mediated thrombolysis was investigated. The MOP protocol was applied to an in vitro model of thrombolysis. The results were compared to a COP with the equivalent soft tissue thermal index (TIS) over the duration of ultrasound exposure of 30 min (p -2 ± 0.01 μm and 1.99 x 10 -2 ± 0.004 μm, respectively (p < 0.74). No signatures of inertial or stable cavitation were observed for either acoustic protocol. In conclusion, due to mechanisms other than cavitation, application of ultrasound with modulated operating parameters has the potential to significantly enhance the relative lysis enhancement compared to application of ultrasound with constant operating parameters.

  10. Visual-induced expectations modulate auditory cortical responses

    Directory of Open Access Journals (Sweden)

    Virginie evan Wassenhove

    2015-02-01

    Full Text Available Active sensing has important consequences on multisensory processing (Schroeder et al. 2010. Here, we asked whether in the absence of saccades, the position of the eyes and the timing of transient colour changes of visual stimuli could selectively affect the excitability of auditory cortex by predicting the where and the when of a sound, respectively. Human participants were recorded with magnetoencephalography (MEG while maintaining the position of their eyes on the left, right, or centre of the screen. Participants counted colour changes of the fixation cross while neglecting sounds which could be presented to the left, right or both ears. First, clear alpha power increases were observed in auditory cortices, consistent with participants’ attention directed to visual inputs. Second, colour changes elicited robust modulations of auditory cortex responses (when prediction seen as ramping activity, early alpha phase-locked responses, and enhanced high-gamma band responses in the contralateral side of sound presentation. Third, no modulations of auditory evoked or oscillatory activity were found to be specific to eye position. Altogether, our results suggest that visual transience can automatically elicit a prediction of when a sound will occur by changing the excitability of auditory cortices irrespective of the attended modality, eye position or spatial congruency of auditory and visual events. To the contrary, auditory cortical responses were not significantly affected by eye position suggesting that where predictions may require active sensing or saccadic reset to modulate auditory cortex responses, notably in the absence of spatial orientation to sounds.

  11. Could grape seed extract modulate nephritic damage induced by ...

    African Journals Online (AJOL)

    RBCs). Preadministration of GSO to Metho-induced rats revealed apparent normal renal parenchyma. The proximal convoluted tubules and collecting tubules appeared near to normal with their narrow lumen. Preadministration with GSO ...

  12. 10 Hz Amplitude Modulated Sounds Induce Short-Term Tinnitus Suppression

    Directory of Open Access Journals (Sweden)

    Patrick Neff

    2017-05-01

    Full Text Available Objectives: Acoustic stimulation or sound therapy is proposed as a main treatment option for chronic subjective tinnitus. To further probe the field of acoustic stimulations for tinnitus therapy, this exploratory study compared 10 Hz amplitude modulated (AM sounds (two pure tones, noise, music, and frequency modulated (FM sounds and unmodulated sounds (pure tone, noise regarding their temporary suppression of tinnitus loudness. First, it was hypothesized that modulated sounds elicit larger temporary loudness suppression (residual inhibition than unmodulated sounds. Second, with manipulation of stimulus loudness and duration of the modulated sounds weaker or stronger effects of loudness suppression were expected, respectively.Methods: We recruited 29 participants with chronic tonal tinnitus from the multidisciplinary Tinnitus Clinic of the University of Regensburg. Participants underwent audiometric, psychometric and tinnitus pitch matching assessments followed by an acoustic stimulation experiment with a tinnitus loudness growth paradigm. In a first block participants were stimulated with all of the sounds for 3 min each and rated their subjective tinnitus loudness to the pre-stimulus loudness every 30 s after stimulus offset. The same procedure was deployed in the second block with the pure tone AM stimuli matched to the tinnitus frequency, manipulated in length (6 min, and loudness (reduced by 30 dB and linear fade out. Repeated measures mixed model analyses of variance (ANOVA were calculated to assess differences in loudness growth between the stimuli for each block separately.Results: First, we found that all sounds elicit a short-term suppression of tinnitus loudness (seconds to minutes with strongest suppression right after stimulus offset [F(6, 1331 = 3.74, p < 0.01]. Second, similar to previous findings we found that AM sounds near the tinnitus frequency produce significantly stronger tinnitus loudness suppression than noise [vs. Pink

  13. Jasmonic acid signaling modulates ozone-induced hypersensitive cell death.

    Science.gov (United States)

    Rao, M V; Lee, H; Creelman, R A; Mullet, J E; Davis, K R

    2000-09-01

    Recent studies suggest that cross-talk between salicylic acid (SA)-, jasmonic acid (JA)-, and ethylene-dependent signaling pathways regulates plant responses to both abiotic and biotic stress factors. Earlier studies demonstrated that ozone (O(3)) exposure activates a hypersensitive response (HR)-like cell death pathway in the Arabidopsis ecotype Cvi-0. We now have confirmed the role of SA and JA signaling in influencing O(3)-induced cell death. Expression of salicylate hydroxylase (NahG) in Cvi-0 reduced O(3)-induced cell death. Methyl jasmonate (Me-JA) pretreatment of Cvi-0 decreased O(3)-induced H(2)O(2) content and SA concentrations and completely abolished O(3)-induced cell death. Cvi-0 synthesized as much JA as did Col-0 in response to O(3) exposure but exhibited much less sensitivity to exogenous Me-JA. Analyses of the responses to O(3) of the JA-signaling mutants jar1 and fad3/7/8 also demonstrated an antagonistic relationship between JA- and SA-signaling pathways in controlling the magnitude of O(3)-induced HR-like cell death.

  14. Potential-induced degradation of Cu(In,Ga)Se2 photovoltaic modules

    Science.gov (United States)

    Yamaguchi, Seira; Jonai, Sachiko; Hara, Kohjiro; Komaki, Hironori; Shimizu-Kamikawa, Yukiko; Shibata, Hajime; Niki, Shigeru; Kawakami, Yuji; Masuda, Atsushi

    2015-08-01

    Potential-induced degradation (PID) of Cu(In,Ga)Se2 (CIGS) photovoltaic (PV) modules fabricated from integrated submodules is investigated. PID tests were performed by applying a voltage of -1000 V to connected submodule interconnector ribbons at 85 °C. The normalized energy conversion efficiency of a standard module decreases to 0.2 after the PID test for 14 days. This reveals that CIGS modules suffer PID under this experimental condition. In contrast, a module with non-alkali glass shows no degradation, which implies that the degradation occurs owing to alkali metal ions, e.g., Na+, migrating from the cover glass. The results of dynamic secondary ion mass spectrometry show Na accumulation in the n-ZnO transparent conductive oxide layer of the degraded module. A CIGS PV module with an ionomer (IO) encapsulant instead of a copolymer of ethylene and vinyl acetate shows no degradation. This reveals that the IO encapsulant can prevent PID of CIGS modules. A degraded module can recover from its performance losses by applying +1000 V to connected submodule interconnector ribbons from an Al plate placed on the test module.

  15. Social factors modulate restraint stress induced hyperthermia in mice.

    Science.gov (United States)

    Watanabe, Shigeru

    2015-10-22

    Stress-induced hyperthermia (SIH) was examined in three different social conditions in mice by thermographic measurement of the body surface temperature. Placing animals in cylindrical holders induced restraint stress. I examined the effect of the social factors in SIH using the thermograph (body surface temperature). Mice restrained in the holders alone showed SIH. Mice restrained in the holders at the same time as other similarly restrained cage mates (social equality condition) showed less hyperthermia. Interestingly, restrained mice with free moving cage mates (social inequality condition) showed the highest hyperthermia. These results are consistent with a previous experiment measuring the memory-enhancing effects of stress and the stress-induced elevation of corticosterone, and suggest that social inequality enhances stress. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Potential-Induced Degradation-Delamination Mode in Crystalline Silicon Modules: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hacke, Peter L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kempe, Michael D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wohlgemuth, John [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Li, Jichao [SunPower Corporation; Shen, Yu-Chen [SunPower Corporation

    2018-03-21

    A test sequence producing potential-induced degradation-delamination (PID-d) in crystalline silicon modules has been tested and found comparable under visual inspection to cell/encapsulant delamination seen in some fielded modules. Four commercial modules were put through this sequence, 85 degrees C, 85%, 1000 h damp heat, followed by an intensive PID stress sequence of 72 degrees C, 95% RH, and -1000 V, with the module face grounded using a metal foil. The 60 cell c-Si modules exhibiting the highest current transfer (4.4 center dot 10-4 A) exhibited PID-d at the first inspection after 156 h of PID stress. Effects promoting PID-d are reduced adhesion caused by damp heat, sodium migration further reducing adhesion to the cells, and gaseous products of electrochemical reactions driven by the applied system voltage. A new work item proposal for an IEC test standard to evaluate for PID-d is anticipated.

  17. Short-term cortical plasticity induced by conditioning pain modulation

    DEFF Research Database (Denmark)

    Egsgaard, Line Lindhardt; Buchgreitz, Line; Wang, Li

    2012-01-01

    To investigate the effects of homotopic and heterotopic conditioning pain modulation (CPM) on short-term cortical plasticity. Glutamate (tonic pain) or isotonic saline (sham) was injected in the upper trapezius (homotopic) and in the thenar (heterotopic) muscles. Intramuscular electrical stimulat......To investigate the effects of homotopic and heterotopic conditioning pain modulation (CPM) on short-term cortical plasticity. Glutamate (tonic pain) or isotonic saline (sham) was injected in the upper trapezius (homotopic) and in the thenar (heterotopic) muscles. Intramuscular electrical......, and after homotopic and heterotopic CPM versus control. Peak latencies at N100, P200, and P300 were extracted and the location/strength of corresponding dipole current sources and multiple dipoles were estimated. Homotopic CPM caused hypoalgesia (P = 0.032, 30.6% compared to baseline) to electrical...... stimulation. No cortical changes were found for homotopic CPM. A positive correlation at P200 between electrical pain threshold after tonic pain and the z coordinate after tonic pain (P = 0.032) was found for homotopic CPM. For heterotopic CPM, no significant hypoalgesia was found and a dipole shift of the P...

  18. Modulation of Brain Dead Induced Inflammation by Vagus Nerve Stimulation

    NARCIS (Netherlands)

    Hoeger, S.; Bergstraesser, C.; Selhorst, J.; Fontana, J.; Birck, R.; Waldherr, R.; Beck, G.; Sticht, C.; Seelen, M. A.; van Son, W. J.; Leuvenink, H.; Ploeg, R.; Schnuelle, P.; Yard, B. A.

    Because the vagus nerve is implicated in control of inflammation, we investigated if brain death (BD) causes impairment of the parasympathetic nervous system, thereby contributing to inflammation. BD was induced in rats. Anaesthetised ventilated rats (NBD) served as control. Heart rate variability

  19. Actin-cytoskeleton rearrangement modulates proton-induced uptake

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Dov, Nadav [Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv (Israel); Korenstein, Rafi, E-mail: korens@post.tau.ac.il [Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv (Israel)

    2013-04-15

    Recently it has been shown that elevating proton concentration at the cell surface stimulates the formation of membrane invaginations and vesicles accompanied by an enhanced uptake of macromolecules. While the initial induction of inward membrane curvature was rationalized in terms of proton-based increase of charge asymmetry across the membrane, the mechanisms underlying vesicle formation and its scission are still unknown. In light of the critical role of actin in vesicle formation during endocytosis, the present study addresses the involvement of cytoskeletal actin in proton-induced uptake (PIU). The uptake of dextran-FITC is used as a measure for the factual fraction of inward invaginations that undergo scission from the cell's plasma membrane. Our findings show that the rate of PIU in suspended cells is constant, whereas the rate of PIU in adherent cells is gradually increased in time, saturating at the level possessed by suspended cells. This is consistent with pH induced gradual degradation of stress-fibers in adherent cells. Wortmannin and calyculin-A are able to elevate PIU by 25% in adherent cells but not in suspended cells, while cytochalasin-D, rapamycin and latrunculin-A elevate PIU both in adherent and suspended cells. However, extensive actin depolymerization by high concentrations of latrunculin-A is able to inhibit PIU. We conclude that proton-induced membrane vesiculation is restricted by the actin structural resistance to the plasma membrane bending. Nevertheless, a certain degree of cortical actin restructuring is required for the completion of the scission process. - Highlights: ► Acidification of cells' exterior enhances uptake of macromolecules by the cells. ► Disruption of actin stress fibers leads to enhancement of proton induced uptake. ► Extensive depolymerization of cellular actin attenuates proton-induced uptake.

  20. Strain- and electric field-induced band gap modulation in nitride nanomembranes

    International Nuclear Information System (INIS)

    Amorim, Rodrigo G; Zhong Xiaoliang; Mukhopadhyay, Saikat; Pandey, Ravindra; Rocha, Alexandre R; Karna, Shashi P

    2013-01-01

    The hexagonal nanomembranes of the group III-nitrides are a subject of interest due to their novel technological applications. In this paper, we investigate the strain- and electric field-induced modulation of their band gaps in the framework of density functional theory. For AlN, the field-dependent modulation of the bandgap is found to be significant whereas the strain-induced semiconductor-metal transition is predicted for GaN. A relatively flat conduction band in AlN and GaN nanomembranes leads to an enhancement of their electronic mobility compared to that of their bulk counterparts. (paper)

  1. Pharmacological modulation of late radio-induced side effects; Modulation pharmacologique des effets tardifs de l'irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bourgier, C.; Bourhis, J.; Deutsch, E. [Departement de radiotherapie, institut de cancerologie Gustave-Roussy, 114, rue edouard-Vaillant, 94805 Villejuif (France); Unite mixte de recherche ' radiotherapie moleculaire' , Inserm unite 1030, 114, rue edouard-Vaillant, 94805 Villejuif (France); UMR 1030, universite Paris Sud 11, 114, rue edouard-Vaillant, 94805 Villejuif (France); UMR 1030, institut de cancerologie Gustave-Roussy, 114, rue edouard-Vaillant, 94805 Villejuif (France); Monceau, V. [Unite mixte de recherche ' radiotherapie moleculaire' , Inserm unite 1030, 114, rue edouard-Vaillant, 94805 Villejuif (France); UMR 1030, universite Paris Sud 11, 114, rue edouard-Vaillant, 94805 Villejuif (France); UMR 1030, institut de cancerologie Gustave-Roussy, 114, rue edouard-Vaillant, 94805 Villejuif (France); Vozenin, M.C. [Unite mixte de recherche ' radiotherapie moleculaire' , Inserm unite 1030, 114, rue edouard-Vaillant, 94805 Villejuif (France); UMR 1030, universite Paris Sud 11, 114, rue edouard-Vaillant, 94805 Villejuif (France); UMR 1030, institut de cancerologie Gustave-Roussy, 114, rue edouard-Vaillant, 94805 Villejuif (France); Unite mixte de recherche ' cellules souches et radiations' , Inserm unite 967, 18, route du Panorama, 92265 Fontenay-aux-Roses cedex (France); UMR 967, institut de radiobiologie cellulaire et moleculaire (iRCM), direction des sciences du vivant, CEA, 18, route du Panorama, 92265 Fontenay-aux-Roses cedex (France); UMR 967, universite Paris-Diderot Paris 7, 18, route du Panorama, 92265 Fontenay-aux-Roses cedex (France); UMR 967, universite Paris Sud 11, 18, route du Panorama, 92265 Fontenay-aux-Roses cedex (France)

    2011-08-15

    After normal tissue exposure to radiation therapy, late side effects can occur and may reduce patients' quality of life due to their progressive nature. Late toxicities occurrence is the main limiting factor of radiotherapy. Various biological disorders related to irradiation are involved in the development of late toxicities including fibrosis. The present review will focus on the recent physiopathological and molecular mechanisms described to be involved in the development of late radio-induced toxicities, that provide therapeutic perspective for pharmaco-modulation. (authors)

  2. Task-induced frequency modulation features for brain-computer interfacing

    Science.gov (United States)

    Jayaram, Vinay; Hohmann, Matthias; Just, Jennifer; Schölkopf, Bernhard; Grosse-Wentrup, Moritz

    2017-10-01

    Objective. Task-induced amplitude modulation of neural oscillations is routinely used in brain-computer interfaces (BCIs) for decoding subjects’ intents, and underlies some of the most robust and common methods in the field, such as common spatial patterns and Riemannian geometry. While there has been some interest in phase-related features for classification, both techniques usually presuppose that the frequencies of neural oscillations remain stable across various tasks. We investigate here whether features based on task-induced modulation of the frequency of neural oscillations enable decoding of subjects’ intents with an accuracy comparable to task-induced amplitude modulation. Approach. We compare cross-validated classification accuracies using the amplitude and frequency modulated features, as well as a joint feature space, across subjects in various paradigms and pre-processing conditions. We show results with a motor imagery task, a cognitive task, and also preliminary results in patients with amyotrophic lateral sclerosis (ALS), as well as using common spatial patterns and Laplacian filtering. Main results. The frequency features alone do not significantly out-perform traditional amplitude modulation features, and in some cases perform significantly worse. However, across both tasks and pre-processing in healthy subjects the joint space significantly out-performs either the frequency or amplitude features alone. This result only does not hold for ALS patients, for whom the dataset is of insufficient size to draw any statistically significant conclusions. Significance. Task-induced frequency modulation is robust and straight forward to compute, and increases performance when added to standard amplitude modulation features across paradigms. This allows more information to be extracted from the EEG signal cheaply and can be used throughout the field of BCIs.

  3. Task-induced frequency modulation features for brain-computer interfacing.

    Science.gov (United States)

    Jayaram, Vinay; Hohmann, Matthias; Just, Jennifer; Schölkopf, Bernhard; Grosse-Wentrup, Moritz

    2017-10-01

    Task-induced amplitude modulation of neural oscillations is routinely used in brain-computer interfaces (BCIs) for decoding subjects' intents, and underlies some of the most robust and common methods in the field, such as common spatial patterns and Riemannian geometry. While there has been some interest in phase-related features for classification, both techniques usually presuppose that the frequencies of neural oscillations remain stable across various tasks. We investigate here whether features based on task-induced modulation of the frequency of neural oscillations enable decoding of subjects' intents with an accuracy comparable to task-induced amplitude modulation. We compare cross-validated classification accuracies using the amplitude and frequency modulated features, as well as a joint feature space, across subjects in various paradigms and pre-processing conditions. We show results with a motor imagery task, a cognitive task, and also preliminary results in patients with amyotrophic lateral sclerosis (ALS), as well as using common spatial patterns and Laplacian filtering. The frequency features alone do not significantly out-perform traditional amplitude modulation features, and in some cases perform significantly worse. However, across both tasks and pre-processing in healthy subjects the joint space significantly out-performs either the frequency or amplitude features alone. This result only does not hold for ALS patients, for whom the dataset is of insufficient size to draw any statistically significant conclusions. Task-induced frequency modulation is robust and straight forward to compute, and increases performance when added to standard amplitude modulation features across paradigms. This allows more information to be extracted from the EEG signal cheaply and can be used throughout the field of BCIs.

  4. Magneto-Induced ac Electrical Permittivity of Metal-Dielectric Composites with a Two Characteristic Length Scales Periodic Microstructure

    International Nuclear Information System (INIS)

    Strelniker, Y.M.; Bergman, D.J.

    1998-01-01

    A new effect was recently predicted in conducting composites that have a periodic microstructure: an induced strongly anisotropic dc magneto-resistance. This phenomenon is already verified on high mobility n-GaAs films. Here we discuss the possibility of observing analogous behavior in the ac electric permittivity of a metal-dielectric composite with a periodic microstructure in the presence of a strong magnetic field. We developed new analytical and numerical methods to treat the low-frequency magneto-optical properties in composite media with both disordered and periodic conducting micro-structures. Those methods allow us to study composites with inclusions of arbitrary shape (and arbitrary volume fraction) at arbitrarily strong magnetic field. This is exploited in order to calculate an effective dielectric tensor for this system as a function of applied magnetic field and ac frequency. We show that in a non-dilute metal-dielectric composite medium the magneto-plasma resonance and the cyclotron resonance depend upon both the applied magnetic field as well as on the geometric shape of the inclusion. Near such a resonance, it is possible to achieve large values for the ratio of the off-diagonal-to-diagonal electric permittivity tensor components, ε xy /ε xx , (since ε xx →0, while ε xy ≠0), which is analogous to similar ratio of the resistivity tensor components, ρ xy /ρ xx , in the case of dc magneto-transport problem. Motivated by this observation and by results of previous studies of dc magneto-transport in composite conductors, we then performed a numerical study of the ac magneto-electric properties of a particular metal-dielectric composite film with a periodic columnar microstructure which has a two characteristic length scales. The unit cell of such composite is prepared as follows: We placed the conducting square (in cross section) rods (first characteristic length scale) along the perimeter of the unit cell in order to create a dielectric host

  5. Full-Length Fibronectin Drives Fibroblast Accumulation at the Surface of Collagen Microtissues during Cell-Induced Tissue Morphogenesis.

    Directory of Open Access Journals (Sweden)

    Jasper Foolen

    Full Text Available Generating and maintaining gradients of cell density and extracellular matrix (ECM components is a prerequisite for the development of functionality of healthy tissue. Therefore, gaining insights into the drivers of spatial organization of cells and the role of ECM during tissue morphogenesis is vital. In a 3D model system of tissue morphogenesis, a fibronectin-FRET sensor recently revealed the existence of two separate fibronectin populations with different conformations in microtissues, i.e. 'compact and adsorbed to collagen' versus 'extended and fibrillar' fibronectin that does not colocalize with the collagen scaffold. Here we asked how the presence of fibronectin might drive this cell-induced tissue morphogenesis, more specifically the formation of gradients in cell density and ECM composition. Microtissues were engineered in a high-throughput model system containing rectangular microarrays of 12 posts, which constrained fibroblast-populated collagen gels, remodeled by the contractile cells into trampoline-shaped microtissues. Fibronectin's contribution during the tissue maturation process was assessed using fibronectin-knockout mouse embryonic fibroblasts (Fn-/- MEFs and floxed equivalents (Fnf/f MEFs, in fibronectin-depleted growth medium with and without exogenously added plasma fibronectin (full-length, or various fragments. In the absence of full-length fibronectin, Fn-/- MEFs remained homogenously distributed throughout the cell-contracted collagen gels. In contrast, in the presence of full-length fibronectin, both cell types produced shell-like tissues with a predominantly cell-free compacted collagen core and a peripheral surface layer rich in cells. Single cell assays then revealed that Fn-/- MEFs applied lower total strain energy on nanopillar arrays coated with either fibronectin or vitronectin when compared to Fnf/f MEFs, but that the presence of exogenously added plasma fibronectin rescued their contractility. While collagen

  6. Progesterone modulates the LPS-induced nitric oxide production by a progesterone-receptor independent mechanism.

    Science.gov (United States)

    Wolfson, Manuel Luis; Schander, Julieta Aylen; Bariani, María Victoria; Correa, Fernando; Franchi, Ana María

    2015-12-15

    Genital tract infections caused by Gram-negative bacteria induce miscarriage and are one of the most common complications of human pregnancy. LPS administration to 7-day pregnant mice induces embryo resorption after 24h, with nitric oxide playing a fundamental role in this process. We have previously shown that progesterone exerts protective effects on the embryo by modulating the inflammatory reaction triggered by LPS. Here we sought to investigate whether the in vivo administration of progesterone modulated the LPS-induced nitric oxide production from peripheral blood mononuclear cells from pregnant and non-pregnant mice. We found that progesterone downregulated LPS-induced nitric oxide production by a progesterone receptor-independent mechanism. Moreover, our results suggest a possible participation of glucocorticoid receptors in at least some of the anti-inflammatory effects of progesterone. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Modulational instability for an induced field in the far-wake region of a space vehicle

    International Nuclear Information System (INIS)

    Liao Jingjing; Deng Qian; Qu Wen

    2012-01-01

    The behavior of the induced field and the generation of density cavitons in the far-wake region (|k 0 | → 0) of a space vehicle can be described by a set of nonlinear coupling equations. Modulational instability of the induced field is investigated on the basis of the nonlinear equations. The results show that the induced field is modulationally unstable and will collapse into spatial localized structures; meanwhile, density cavitons will be generated. The characteristic scale and the maximum growth rate of the induced field depend not only on the angle between the amplitude of pump waves E 0 and the perturbation wave vector k, but also on the energy density of pump waves |E 0 | 2 . (paper)

  8. Crystallization and preliminary X-ray analysis of Acetivibrio cellulolyticus cellulosomal type II cohesin module: two versions having different linker lengths

    International Nuclear Information System (INIS)

    Noach, Ilit; Alber, Orly; Bayer, Edward A.; Lamed, Raphael; Levy-Assaraf, Maly; Shimon, Linda J. W.; Frolow, Felix

    2007-01-01

    The cloning, expression, purification, crystallization and preliminary X-ray characterization of two protein constructs of the second type II cohesin module from A. cellulolyticus ScaB are described. Both constructs contain the native N-terminal linker, but only one of them contains the full-length 45-residue C-terminal linker; the other contains a five-residue segment of this linker. The second type II cohesin module of the cellulosomal scaffoldin polypeptide ScaB from Acetivibrio cellulolyticus (CohB2) was cloned into two constructs: one containing a short (five-residue) C-terminal linker (CohB2-S) and the second incorporating the full native 45-residue linker (CohB2-L). Both constructs encode proteins that also include the full native six-residue N-terminal linker. The CohB2-S and CohB2-L proteins were expressed, purified and crystallized in the orthorhombic crystal system, but with different unit cells and symmetries: space group P2 1 2 1 2 1 with unit-cell parameters a = 90.36, b = 68.65, c = 111.29 Å for CohB2-S and space group P2 1 2 1 2 with unit-cell parameters a = 68.76, b = 159.22, c = 44.21 Å for CohB2-L. The crystals diffracted to 2.0 and 2.9 Å resolution, respectively. The asymmetric unit of CohB2-S contains three cohesin molecules, while that of CohB2-L contains two molecules

  9. Polyamines modulate carcinogen-induced mutagenesis in vivo.

    Science.gov (United States)

    Wallon, U Margaretha; O'Brien, Thomas G

    2005-01-01

    Elevated polyamine levels as a consequence of targeted overexpression of ornithine decarboxylase (ODC) to murine skin enhance susceptibility to tumorigenesis in this tissue. A possible mechanism for the enhanced susceptibility phenotype is an increased sensitivity of tissues with elevated polyamine levels to the mutagenic action of carcinogens. To test this hypothesis, a transgenic mouse model containing the Big Blue transgene and also expressing a K6/ODC transgene was developed. Incorporation of the K6/ODC transgene into the Big Blue model did not affect the spontaneous lacI mutant frequency in either skin or epidermis of the double-transgenic mice. After skin treatment with single doses of either 7,12-dimethylbenz[a]anthracene or N-methyl-N'-nitro-N-nitrosoguanidine, however, the mutant frequency was significantly increased in the skin of double-transgenic Big Blue;K6/ODC mice compared to Big Blue controls. The increases in mutant frequency were clearly due to ODC transgene activity, since treatment of mice with the ODC inhibitor, alpha-difluoromethylornithine, completely abolished the difference in mutant frequencies between double-transgenic and Big Blue mice. These results demonstrate that intracellular polyamine levels modulate mutation induction following carcinogen exposure. 2004 Wiley-Liss, Inc.

  10. Systemic progesterone for modulating electrocautery-induced secondary brain injury.

    Science.gov (United States)

    Un, Ka Chun; Wang, Yue Chun; Wu, Wutian; Leung, Gilberto Ka Kit

    2013-09-01

    Bipolar electrocautery is an effective and commonly used haemostatic technique but it may also cause iatrogenic brain trauma due to thermal injury and secondary inflammatory reactions. Progesterone has anti-inflammatory and neuroprotective actions in traumatic brain injury. However, its potential use in preventing iatrogenic brain trauma has not been explored. We conducted a pilot animal study to investigate the effect of systemic progesterone on brain cellular responses to electrocautery-induced injury. Adult male Sprague-Dawley rats received standardized bipolar electrocautery (40 W for 2 seconds) over the right cerebral cortex. The treatment group received progesterone intraperitoneally 2 hours prior to surgery; the control group received the drug vehicle only. Immunohistochemical studies showed that progesterone could significantly reduce astrocytic hypertrophy on postoperative day 1, 3 and 7, as well as macrophage infiltration on day 3. The number of astrocytes, however, was unaffected. Our findings suggest that progesterone should be further explored as a neuroprotective agent against electrocautery-induced or other forms of iatrogenic trauma during routine neurosurgical procedures. Future studies may focus on different dosing regimens, neuronal survival, functional outcome, and to compare progesterone with other agents such as dexamethasone. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Fermented dairy products modulate Citrobacter rodentium-induced colonic hyperplasia.

    Science.gov (United States)

    Collins, James W; Chervaux, Christian; Raymond, Benoit; Derrien, Muriel; Brazeilles, Rémi; Kosta, Artemis; Chambaud, Isabelle; Crepin, Valerie F; Frankel, Gad

    2014-10-01

    We evaluated the protective effects of fermented dairy products (FDPs) in an infection model, using the mouse pathogen Citrobacter rodentium (CR). Treatment of mice with FDP formulas A, B, and C or a control product did not affect CR colonization, organ specificity, or attaching and effacing lesion formation. Fermented dairy product A (FDP-A), but neither the supernatant from FDP-A nor β-irradiated (IR) FDP-A, caused a significant reduction in colonic crypt hyperplasia and CR-associated pathology. Profiling the gut microbiota revealed that IR-FDP-A promoted higher levels of phylotypes belonging to Alcaligenaceae and a decrease in Lachnospiraceae (Ruminococcus) during CR infection. Conversely, FDP-A prevented a decrease in Ruminococcus and increased Turicibacteraceae (Turicibacter). Importantly, loss of Ruminococcus and Turicibacter has been associated with susceptibility to dextran sodium sulfate-induced colitis. Our results demonstrate that viable bacteria in FDP-A reduced CR-induced colonic crypt hyperplasia and prevented the loss of key bacterial genera that may contribute to disease pathology. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.

  12. Infliximab Modulates Cisplatin-Induced Hepatotoxicity in Rats

    Directory of Open Access Journals (Sweden)

    Medine Cumhur Cüre

    2016-10-01

    Full Text Available Background: Cisplatin (Cis is one of the most commonly used antineoplastic drugs. It is used as chemotherapy for many solid organ malignancies such as brain, neck, male and female urogenital, vesical and pulmonary cancers. Infliximab blocks tumor necrosis factor alpha (TNF-α. Several studies have reported that infliximab ameliorates cell damage by reducing cytokine levels. Aims: We aimed to investigate whether infliximab has a preventive effect against cisplatin-induced hepatotoxicity and whether it has a synergistic effect when combined with Cis. Study Design: Animal experimentation. Methods: Male Wistar albino rats were divided in three groups as follows: Cis group, infliximab + Cis (CIN group and the control group. Each group comprised 10 animals. Animals in the Cis group received an intraperitoneal single-dose injection of Cis (7 mg/kg. In the CIN group, a single dose of infliximab (7 mg/kg was administered 72 h prior to the Cis injection. After 72 h, a single dose of Cis (7 mg/kg was administered. All rats were sacrificed five days after Cis injection. Results: TNF-α levels in the Cis group were significantly higher (345.5±40.0 pg/mg protein than those of the control (278.7±62.1 pg/mg protein, p=0.003 and CIN groups (239.0±64.2 pg/mg protein, p=0.013. The Cis group was found to have high carbonic anhydrase (CA-II and low carbamoyl phosphate synthetase-1 (CPS-1 levels. Aspartate transaminase (AST and alanine transaminase (ALT levels were lower in the CIN group as compared to the Cis group. Total histological damage was greater in the Cis group as compared to the control and CIN groups. Conclusion: Cis may lead to liver damage by increasing cytokine levels. It may increase oxidative stress-induced tissue damage by increasing carbonic anhydrase II (CA-II enzyme levels and decreasing CPS-1 enzyme levels. Infliximab decreases Cis-induced hepatic damage by blocking TNF-α and it may also protect against liver damage by regulating CPS-1 and

  13. Adrenal-derived stress hormones modulate ozone-induced lung injury and inflammation

    Science.gov (United States)

    Ozone-induced systemic effects are modulated through activation of the neuro-hormonal stress response pathway. Adrenal demedullation (DEMED)or bilateral total adrenalectomy (ADREX) inhibits systemic and pulmonary effect of acute ozone exposure. To understand the influence of adre...

  14. Glutamatergic neurotransmission modulates hypoxia-induced hyperventilation but not anapyrexia

    Directory of Open Access Journals (Sweden)

    Paula P.M. de

    2004-01-01

    Full Text Available The interaction between pulmonary ventilation (V E and body temperature (Tb is essential for O2 delivery to match metabolic rate under varying states of metabolic demand. Hypoxia causes hyperventilation and anapyrexia (a regulated drop in Tb, but the neurotransmitters responsible for this interaction are not well known. Since L-glutamate is released centrally in response to peripheral chemoreceptor stimulation and glutamatergic receptors are spread in the central nervous system we tested the hypothesis that central L-glutamate mediates the ventilatory and thermal responses to hypoxia. We measured V E and Tb in 40 adult male Wistar rats (270 to 300 g before and after intracerebroventricular injection of kynurenic acid (KYN, an ionotropic glutamatergic receptor antagonist, alpha-methyl-4-carboxyphenylglycine (MCPG, a metabotropic glutamatergic receptor antagonist or vehicle (saline, followed by a 1-h period of hypoxia (7% inspired O2 or normoxia (humidified room air. Under normoxia, KYN (N = 5 or MCPG (N = 8 treatment did not affect V E or Tb compared to saline (N = 6. KYN and MCPG injection caused a decrease in hypoxia-induced hyperventilation (595 ± 49 for KYN, N = 7 and 525 ± 84 ml kg-1 min-1 for MCPG, N = 6; P < 0.05 but did not affect anapyrexia (35.3 ± 0.2 for KYN and 34.7 ± 0.4ºC for MCPG compared to saline (912 ± 110 ml kg-1 min-1 and 34.8 ± 0.2ºC, N = 8. We conclude that glutamatergic receptors are involved in hypoxic hyperventilation but do not affect anapyrexia, indicating that L-glutamate is not a common mediator of this interaction.

  15. Antioxidant modulation of nevirapine induced hepatotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Awodele Olufunsho

    2015-03-01

    Full Text Available HIV/AIDS related mortality has been dramatically reduced by the advent of antiretroviral therapy (ART. However, ART presents with associated adverse effects. One of such adverse effects is hepatotoxicity observed with nevirapine (NVP containing ART. Since previous studies showed that NVP hepatotoxicity may be due to oxidative stress via generation of oxidative radicals, this study sought to evaluate the protective effects of antioxidants in alleviating NVP induced hepatotoxicity. Rats were divided into 6 groups with 8 animals per group and received doses of the antioxidants jobelyn (10.7 mg/kg/day, vitamin C (8 mg/kg/day, vitamin E (5 mg/kg/day and/or NVP (6 mg/kg/day for 60 days. The animals were sacrificed on day 61 by cervical dislocation, blood samples were collected for biochemical and hematological examination. The liver of the sacrificed animals was weighed and subjected to histopathological examination. There was a statistically significant (p<0.05 elevation in MDA level observed in the NVP group as compared with control. The results further showed non-significant decreases in the levels of MDA in the NVP plus antioxidant groups, except vitamin C, when compared with the NVP alone group. Vitamin E and Vitamin E plus C treated groups showed significantly (p<0.05 higher levels of SOD, CAT and GSH. The results also showed statistically significantly (p<0.05 lower levels of ALT and AST in the antioxidant treated groups There was an observed significantly (p<0.05 higher level of TP and urea in the antioxidant treated rats. A significantly (p<0.05 higher white blood cell count was observed in the antioxidant groups. Histopathological assessment of the liver extracted from the rats showed no visible pathology across the groups. Observations from this study suggest a potentially positive modulatory effect of antioxidants and may be indicative for the inclusion of antioxidants in nevirapine containing ART.

  16. Presynaptic protein synthesis required for NT-3-induced long-term synaptic modulation

    Directory of Open Access Journals (Sweden)

    Je H

    2011-01-01

    Full Text Available Abstract Background Neurotrophins elicit both acute and long-term modulation of synaptic transmission and plasticity. Previously, we demonstrated that the long-term synaptic modulation requires the endocytosis of neurotrophin-receptor complex, the activation of PI3K and Akt, and mTOR mediated protein synthesis. However, it is unclear whether the long-term synaptic modulation by neurotrophins depends on protein synthesis in pre- or post-synaptic cells. Results Here we have developed an inducible protein translation blocker, in which the kinase domain of protein kinase R (PKR is fused with bacterial gyrase B domain (GyrB-PKR, which could be dimerized upon treatment with a cell permeable drug, coumermycin. By genetically targeting GyrB-PKR to specific cell types, we show that NT-3 induced long-term synaptic modulation requires presynaptic, but not postsynaptic protein synthesis. Conclusions Our results provide mechanistic insights into the cell-specific requirement for protein synthesis in the long-term synaptic modulation by neurotrophins. The GyrB-PKR system may be useful tool to study protein synthesis in a cell-specific manner.

  17. Adsorbate-induced one-dimensional long-range modulation of an epitaxial insulator film

    International Nuclear Information System (INIS)

    Ernst, W.; Eichmann, M.; Pfnuer, H.; Jonas, K.-L.; Oeynhausen, V. von; Meiwes-Broer, K.H.

    2002-01-01

    Using low-energy electron diffraction and scanning tunneling microscopy, we found that epitaxial NaCl films grown on Ge(100) with thicknesses up to (at least) 15 monolayers can be modulated with a period of six lattice constants and an amplitude directed mainly normal to their surface. The (6x1) periodicity on the NaCl films is induced by a preadsorbed Na layer at very low coverages (Θ≅0.06), that form chain structures with a sixfold periodicity in one dimension. At 10 monolayers thickness of NaCl a modulation amplitude of 0.28 Aa was obtained

  18. A System for Measuring Defect Induced Beam Modulation on Inertial Confinement Fusion-class Laser Optics

    International Nuclear Information System (INIS)

    Runkel, M; Hawley-Fedder, R; Widmayer, C; Williams, W; Weinzapfel, C; Roberts, D

    2005-01-01

    A multi-wavelength laser based system has been constructed to measure defect induced beam modulation (diffraction) from ICF class laser optics. The Nd:YLF-based modulation measurement system (MMS) uses simple beam collimation and imaging to capture diffraction patterns from optical defects onto an 8-bit digital camera at 1053, 527 and 351 nm. The imaging system has a field of view of 4.5 x 2.8 mm 2 and is capable of imaging any plane from 0 to 30 cm downstream from the defect. The system is calibrated using a 477 micron chromium dot on glass for which the downstream diffraction patterns were calculated numerically. Under nominal conditions the system can measure maximum peak modulations of approximately 7:1. An image division algorithm is used to calculate the peak modulation from the diffracted and empty field images after the baseline residual light background is subtracted from both. The peak modulation can then be plotted versus downstream position. The system includes a stage capable of holding optics up to 50 pounds with x and y translation of 40 cm and has been used to measure beam modulation due to solgel coating defects, surface digs on KDP crystals, lenslets in bulk fused silica and laser damage sites mitigated with CO 2 lasers

  19. A System for Measuring Defect Induced Beam Modulation on Inertial Confinement Fusion-class Laser Optics

    Energy Technology Data Exchange (ETDEWEB)

    Runkel, M; Hawley-Fedder, R; Widmayer, C; Williams, W; Weinzapfel, C; Roberts, D

    2005-10-18

    A multi-wavelength laser based system has been constructed to measure defect induced beam modulation (diffraction) from ICF class laser optics. The Nd:YLF-based modulation measurement system (MMS) uses simple beam collimation and imaging to capture diffraction patterns from optical defects onto an 8-bit digital camera at 1053, 527 and 351 nm. The imaging system has a field of view of 4.5 x 2.8 mm{sup 2} and is capable of imaging any plane from 0 to 30 cm downstream from the defect. The system is calibrated using a 477 micron chromium dot on glass for which the downstream diffraction patterns were calculated numerically. Under nominal conditions the system can measure maximum peak modulations of approximately 7:1. An image division algorithm is used to calculate the peak modulation from the diffracted and empty field images after the baseline residual light background is subtracted from both. The peak modulation can then be plotted versus downstream position. The system includes a stage capable of holding optics up to 50 pounds with x and y translation of 40 cm and has been used to measure beam modulation due to solgel coating defects, surface digs on KDP crystals, lenslets in bulk fused silica and laser damage sites mitigated with CO{sub 2} lasers.

  20. Effects of contract-relax vs static stretching on stretch-induced strength loss and length-tension relationship

    DEFF Research Database (Denmark)

    Balle, S S; Magnusson, S P; McHugh, M P

    2015-01-01

    The purpose of this study was to determine the acute effects of contract-relax stretching (CRS) vs static stretching (SS) on strength loss and the length-tension relationship. We hypothesized that there would be a greater muscle length-specific effect of CRS vs SS. Isometric hamstring strength wa...

  1. ANALYSIS OF SEEING-INDUCED POLARIZATION CROSS-TALK AND MODULATION SCHEME PERFORMANCE

    International Nuclear Information System (INIS)

    Casini, R.; De Wijn, A. G.; Judge, P. G.

    2012-01-01

    We analyze the generation of polarization cross-talk in Stokes polarimeters by atmospheric seeing, and its effects on the noise statistics of spectropolarimetric measurements for both single-beam and dual-beam instruments. We investigate the time evolution of seeing-induced correlations between different states of one modulation cycle and compare the response to these correlations of two popular polarization modulation schemes in a dual-beam system. Extension of the formalism to encompass an arbitrary number of modulation cycles enables us to compare our results with earlier work. Even though we discuss examples pertinent to solar physics, the general treatment of the subject and its fundamental results might be useful to a wider community.

  2. Investigation of the radiation properties of magnetospheric ELF waves induced by modulated ionospheric heating

    Science.gov (United States)

    Wang, Feng; Ni, Binbin; Zhao, Zhengyu; Zhao, Shufan; Zhao, Guangxin; Wang, Min

    2017-05-01

    Electromagnetic extremely low frequency (ELF) waves play an important role in modulating the Earth's radiation belt electron dynamics. High-frequency (HF) modulated heating of the ionosphere acts as a viable means to generate artificial ELF waves. The artificial ELF waves can reside in two different plasma regions in geo-space by propagating in the ionosphere and penetrating into the magnetosphere. As a consequence, the entire trajectory of ELF wave propagation should be considered to carefully analyze the wave radiation properties resulting from modulated ionospheric heating. We adopt a model of full wave solution to evaluate the Poynting vector of the ELF radiation field in the ionosphere, which can reflect the propagation characteristics of the radiated ELF waves along the background magnetic field and provide the initial condition of waves for ray tracing in the magnetosphere. The results indicate that the induced ELF wave energy forms a collimated beam and the center of the ELF radiation shifts obviously with respect to the ambient magnetic field with the radiation power inversely proportional to the wave frequency. The intensity of ELF wave radiation also shows a weak correlation with the size of the radiation source or its geographical location. Furthermore, the combination of ELF propagation in the ionosphere and magnetosphere is proposed on basis of the characteristics of the ELF radiation field from the upper ionospheric boundary and ray tracing simulations are implemented to reasonably calculate magnetospheric ray paths of ELF waves induced by modulated ionospheric heating.

  3. Lovastatin-induced RhoA modulation and its effect on senescence in prostate cancer cells

    International Nuclear Information System (INIS)

    Lee, Jeeyun; Lee, Inkyoung; Park, Chaehwa; Kang, Won Ki

    2006-01-01

    Lovastatin inhibits a 3-hydroxy 3-methylglutaryl coenzyme A reductase and prevents the synthesis of cholesterol precursors, such as farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP), responsible for important cell signaling in cell proliferation and migration. Recently, the anti-cancer effect of lovastatin has been suggested in various tumor types. In this study, we showed that a low dose lovastatin induced senescence and G1 cell cycle arrest in human prostate cancer cells. Addition of GGPP or mevalonate, but not FPP, prevented the lovastatin-induced G1 phase cell cycle arrest and cell senescence. We found that constitutively active RhoA (caRhoA) reversed lovastatin-induced senescence in caRhoA-transfected PC-3 cells. Thus, we postulate that modulation of RhoA may be critical in lovastatin-induced senescence in PC-3 cells

  4. Abnormal dopaminergic modulation of striato-cortical networks underlies levodopa-induced dyskinesias in humans

    DEFF Research Database (Denmark)

    Herz, Damian M.; Haagensen, Brian N.; Christensen, Mark S.

    2015-01-01

    of levodopa-induced dyskinesias. Twenty-six patients with Parkinson's disease (age range: 51–84 years; 11 females) received a single dose of levodopa and then performed a task in which they had to produce or suppress a movement in response to visual cues. Task-related activity was continuously mapped...... with functional magnetic resonance imaging. Dynamic causal modelling was applied to assess levodopa-induced modulation of effective connectivity between the pre-supplementary motor area, primary motor cortex and putamen when patients suppressed a motor response. Bayesian model selection revealed that patients who...

  5. KCNE5 induces time- and voltage-dependent modulation of the KCNQ1 current

    DEFF Research Database (Denmark)

    Angelo, Kamilla; Jespersen, Thomas; Grunnet, Morten

    2002-01-01

    The function of the KCNE5 (KCNE1-like) protein has not previously been described. Here we show that KCNE5 induces both a time- and voltage-dependent modulation of the KCNQ1 current. Interaction of the KCNQ1 channel with KCNE5 shifted the voltage activation curve of KCNQ1 by more than 140 mV in th...... the I(Ks) current in certain parts of the mammalian heart....

  6. Acupuncture induce the different modulation patterns of the default mode network: an fMRI study

    Science.gov (United States)

    Liu, Peng; Qin, Wei; Tian, Jie; Zhang, Yi

    2009-02-01

    According to Traditional Chinese Medicine (TCM) theory and certain clinical treatment reports, the sustained effects of acupuncture indeed exist, which may last several minutes or hours. Furthermore, increased attention has fallen on the sustained effects of acupuncture. Recently, it is reported that the sustained acupuncture effects may alter the default mode network (DMN). It raises interesting questions: whether the modulations of acupuncture effects to the DMN are still detected at other acupoints and whether the modulation patterns are different induced by different acupoints. In the present study, we wanted to investigate the questions. An experiment fMRI design was carried out on 36 subjects with the electroacupuncture stimulation (EAS) at the three acupoints: Guangming (GB37), Kunlun (BL60) and Jiaoxin (KI8) on the left leg. The data sets were analyzed by a data driven method named independent component analysis (ICA). The results indicated that the three acupoints stimulations may modulate the DMN. Moreover, the modulation patterns were distinct. We suggest the different modulation patterns on the DMN may attribute to the distinct functional effects of acupoints.

  7. FM-to-AM modulations induced by a weak residual reflection stack of sine-modulated pulses in inertial confinement fusion laser systems

    Science.gov (United States)

    Huang, Xiaoxia; Deng, Xuewei; Zhou, Wei; Hu, Dongxia; Guo, Huaiwen; Wang, Yuancheng; Zhao, Bowang; Zhong, Wei; Deng, Wu

    2018-02-01

    We report on frequency to amplitude modulation (FM-to-AM) conversion induced by a weak residual reflection stack of sine-modulated pulses in a complex laser system. Theoretical and experimental investigations reveal that when weak residual reflected pulses stack on the main pulse, the spectral intensity changes in the stacked region, which then converts to obvious AM. This kind of FM-to-AM effect often occurs in the tail of the pulse and cannot be eliminated by common compensation methods, which even enhance the modulation depth. Furthermore, the actual intensity modulation frequency and depth induced by the residual reflection stack are much higher and deeper than observed on the oscilloscope, which is harmful for safe operation of the laser facility and the driving power balance during inertial confinement fusion. To eliminate this kind of FM-to-AM effect, any possible on-axis and near-axis residual reflection in laser systems must be avoided.

  8. Characterization of chemically induced liver injuries using gene co-expression modules.

    Directory of Open Access Journals (Sweden)

    Gregory J Tawa

    Full Text Available Liver injuries due to ingestion or exposure to chemicals and industrial toxicants pose a serious health risk that may be hard to assess due to a lack of non-invasive diagnostic tests. Mapping chemical injuries to organ-specific damage and clinical outcomes via biomarkers or biomarker panels will provide the foundation for highly specific and robust diagnostic tests. Here, we have used DrugMatrix, a toxicogenomics database containing organ-specific gene expression data matched to dose-dependent chemical exposures and adverse clinical pathology assessments in Sprague Dawley rats, to identify groups of co-expressed genes (modules specific to injury endpoints in the liver. We identified 78 such gene co-expression modules associated with 25 diverse injury endpoints categorized from clinical pathology, organ weight changes, and histopathology. Using gene expression data associated with an injury condition, we showed that these modules exhibited different patterns of activation characteristic of each injury. We further showed that specific module genes mapped to 1 known biochemical pathways associated with liver injuries and 2 clinically used diagnostic tests for liver fibrosis. As such, the gene modules have characteristics of both generalized and specific toxic response pathways. Using these results, we proposed three gene signature sets characteristic of liver fibrosis, steatosis, and general liver injury based on genes from the co-expression modules. Out of all 92 identified genes, 18 (20% genes have well-documented relationships with liver disease, whereas the rest are novel and have not previously been associated with liver disease. In conclusion, identifying gene co-expression modules associated with chemically induced liver injuries aids in generating testable hypotheses and has the potential to identify putative biomarkers of adverse health effects.

  9. Non-London electrodynamics in a multiband London model: Anisotropy-induced nonlocalities and multiple magnetic field penetration lengths

    Science.gov (United States)

    Silaev, Mihail; Winyard, Thomas; Babaev, Egor

    2018-05-01

    The London model describes strongly type-2 superconductors as massive vector field theories, where the magnetic field decays exponentially at the length scale of the London penetration length. This also holds for isotropic multiband extensions, where the presence of multiple bands merely renormalizes the London penetration length. We show that, by contrast, the magnetic properties of anisotropic multiband London models are not this simple, and the anisotropy leads to the interband phase differences becoming coupled to the magnetic field. This results in the magnetic field in such systems having N +1 penetration lengths, where N is the number of field components or bands. That is, in a given direction, the magnetic field decay is described by N +1 modes with different amplitudes and different decay length scales. For certain anisotropies we obtain magnetic modes with complex masses. That means that magnetic field decay is not described by a monotonic exponential increment set by a real penetration length but instead is oscillating. Some of the penetration lengths are shown to diverge away from the superconducting phase transition when the mass of the phase-difference mode vanishes. Finally the anisotropy-driven hybridization of the London mode with the Leggett modes can provide an effectively nonlocal magnetic response in the nominally local London model. Focusing on the two-component model, we discuss the magnetic field inversion that results from the effective nonlocality, both near the surface of the superconductor and around vortices. In the regime where the magnetic field decay becomes nonmonotonic, the multiband London superconductor is shown to form weakly-bound states of vortices.

  10. Nutrient-induced glucagon like peptide-1 release is modulated by serotonin.

    Science.gov (United States)

    Ripken, Dina; van der Wielen, Nikkie; Wortelboer, Heleen M; Meijerink, Jocelijn; Witkamp, Renger F; Hendriks, Henk F J

    2016-06-01

    Glucagon like peptide-1 (GLP-1) and serotonin are both involved in food intake regulation. GLP-1 release is stimulated upon nutrient interaction with G-protein coupled receptors by enteroendocrine cells (EEC), whereas serotonin is released from enterochromaffin cells (ECC). The central hypothesis for the current study was that nutrient-induced GLP-1 release from EECs is modulated by serotonin through a process involving serotonin receptor interaction. This was studied by assessing the effects of serotonin reuptake inhibition by fluoxetine on nutrient-induced GLP-1, PYY and CCK release from isolated pig intestinal segments. Next, serotonin-induced GLP-1 release was studied in enteroendocrine STC-1 cells, where effects of serotonin receptor inhibition were studied using specific and non-specific antagonists. Casein (1% w/v), safflower oil (3.35% w/v), sucrose (50mM) and rebaudioside A (12.5mM) stimulated GLP-1 release from intestinal segments, whereas casein only stimulated PYY and CCK release. Combining nutrients with fluoxetine further increased nutrient-induced GLP-1, PYY and CCK release. Serotonin release from intestinal tissue segments was stimulated by casein and safflower oil while sucrose and rebaudioside A had no effect. The combination with fluoxetine (0.155μM) further enhanced casein and safflower oil induced-serotonin release. Exposure of ileal tissue segments to serotonin (30μM) stimulated GLP-1 release whereas it did not induce PYY and CCK release. Serotonin (30 and 100μM) also stimulated GLP-1 release from STC-1 cells, which was inhibited by the non-specific 5HT receptor antagonist asenapine (1 and 10μM). These data suggest that nutrient-induced GLP-1 release is modulated by serotonin through a receptor mediated process. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Nutrient Induced Type 2 and Chemical Induced Type 1 Experimental Diabetes Differently Modulate Gastric GLP-1 Receptor Expression

    Directory of Open Access Journals (Sweden)

    Olga Bloch

    2015-01-01

    Full Text Available T2DM patients demonstrate reduced GLP-1 receptor (GLP-1R expression in their gastric glands. Whether induced T2DM and T1DM differently affect the gastric GLP-1R expression is not known. This study assessed extrapancreatic GLP-1R system in glandular stomach of rodents with different types of experimental diabetes. T2DM and T1DM were induced in Psammomys obesus (PO by high-energy (HE diet and by streptozotocin (STZ in Sprague Dawly (SD rats, respectively. GLP-1R expression was determined in glandular stomach by RT PCR and immunohistomorphological analysis. The mRNA expression and cellular association of the GLP-1R in principal glands were similar in control PO and SD rats. However, nutrient and chemical induced diabetes resulted in opposite alterations of glandular GLP-1R expression. Diabetic PO demonstrated increased GLP-1R mRNA expression, intensity of cellular GLP-1R immunostaining, and frequency of GLP-1R positive cells in the neck area of principal glands compared with controls. In contrast, SD diabetic rats demonstrated decreased GLP-1 mRNA, cellular GLP-1R immunoreactivity, and frequency of GLP-1R immunoreactive cells in the neck area compared with controls. In conclusion, nutrient and chemical induced experimental diabetes result in distinct opposite alterations of GLP-1R expression in glandular stomach. These results suggest that induced T1DM and T2DM may differently modulate GLP-1R system in enteropancreatic axis.

  12. Modulation of Hypercholesterolemia-Induced Oxidative/Nitrative Stress in the Heart

    Science.gov (United States)

    Sárközy, Márta; Pipicz, Márton; Dux, László; Csont, Tamás

    2016-01-01

    Hypercholesterolemia is a frequent metabolic disorder associated with increased risk for cardiovascular morbidity and mortality. In addition to its well-known proatherogenic effect, hypercholesterolemia may exert direct effects on the myocardium resulting in contractile dysfunction, aggravated ischemia/reperfusion injury, and diminished stress adaptation. Both preclinical and clinical studies suggested that elevated oxidative and/or nitrative stress plays a key role in cardiac complications induced by hypercholesterolemia. Therefore, modulation of hypercholesterolemia-induced myocardial oxidative/nitrative stress is a feasible approach to prevent or treat deleterious cardiac consequences. In this review, we discuss the effects of various pharmaceuticals, nutraceuticals, some novel potential pharmacological approaches, and physical exercise on hypercholesterolemia-induced oxidative/nitrative stress and subsequent cardiac dysfunction as well as impaired ischemic stress adaptation of the heart in hypercholesterolemia. PMID:26788247

  13. Photo-Induced Phase Transitions to Liquid Crystal Phases: Influence of the Chain Length from C8E4 to C14E4

    Directory of Open Access Journals (Sweden)

    Simone Techert

    2009-09-01

    Full Text Available Photo-induced phase transitions are characterized by the transformation from phase A to phase B through the absorption of photons. We have investigated the mechanism of the photo-induced phase transitions of four different ternary systems CiE4/alkane (i with n = 8, 10, 12, 14; cyclohexane/H2O. We were interested in understanding the effect of chain length increase on the dynamics of transformation from the microemulsion phase to the liquid crystal phase. Applying light pump (pulse/x-ray probe (pulse techniques, we could demonstrate that entropy and diffusion control are the driving forces for the kind of phase transition investigated.

  14. Dunnione ameliorates cisplatin-induced small intestinal damage by modulating NAD{sup +} metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Pandit, Arpana; Kim, Hyung-Jin; Oh, Gi-Su; Shen, AiHua; Lee, Su-Bin; Khadka, Dipendra; Lee, SeungHoon [Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Shim, Hyeok; Yang, Sei-Hoon; Cho, Eun-Young [Department of Internal Medicine, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Kwon, Kang-Beom [Department of Oriental Medical Physiology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Kwak, Tae Hwan [PAEAN Biotechnology, 160 Techno-2 Street, Yuseong-gu, Daejeon 305-500 (Korea, Republic of); Choe, Seong-Kyu; Park, Raekil [Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); So, Hong-Seob, E-mail: jeanso@wku.ac.kr [Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of)

    2015-11-27

    Although cisplatin is a widely used anticancer drug for the treatment of a variety of tumors, its use is critically limited because of adverse effects such as ototoxicity, nephrotoxicity, neuropathy, and gastrointestinal damage. Cisplatin treatment increases oxidative stress biomarkers in the small intestine, which may induce apoptosis of epithelial cells and thereby elicit damage to the small intestine. Nicotinamide adenine dinucleotide (NAD{sup +}) is a cofactor for various enzymes associated with cellular homeostasis. In the present study, we demonstrated that the hyper-activation of poly(ADP-ribose) polymerase-1 (PARP-1) is closely associated with the depletion of NAD{sup +} in the small intestine after cisplatin treatment, which results in downregulation of sirtuin1 (SIRT1) activity. Furthermore, a decrease in SIRT1 activity was found to play an important role in cisplatin-mediated small intestinal damage through nuclear factor (NF)-κB p65 activation, facilitated by its acetylation increase. However, use of dunnione as a strong substrate for the NADH:quinone oxidoreductase 1 (NQO1) enzyme led to an increase in intracellular NAD{sup +} levels and prevented the cisplatin-induced small intestinal damage correlating with the modulation of PARP-1, SIRT1, and NF-κB. These results suggest that direct modulation of cellular NAD{sup +} levels by pharmacological NQO1 substrates could be a promising therapeutic approach for protecting against cisplatin-induced small intestinal damage. - Highlights: • NAD{sup +} acts as a cofactor for numerous enzymes including Sirtuins and PARP. • Up-regulation of SIRT1 could attenuate the cisplatin-induced intestinal damage. • Modulation of the cellular NAD{sup +} could be a promising therapeutic approach.

  15. β2-adrenoceptor-induced modulation of transglutaminase 2 transamidase activity in cardiomyoblasts.

    Science.gov (United States)

    Vyas, Falguni S; Nelson, Carl P; Freeman, Fiona; Boocock, David J; Hargreaves, Alan J; Dickenson, John M

    2017-10-15

    Tissue transglutaminase 2 (TG2) is modulated by protein kinase A (PKA) mediated phosphorylation: however, the precise mechanism(s) of its modulation by G-protein coupled receptors coupled to PKA activation are not fully understood. In the current study we investigated the potential regulation of TG2 activity by the β 2 -adrenoceptor in rat H9c2 cardiomyoblasts. Transglutaminase transamidation activity was assessed using amine-incorporating and protein cross-linking assays. TG2 phosphorylation was determined via immunoprecipitation and Western blotting. The long acting β 2 -adrenoceptor agonist formoterol induced time- and concentration-dependent increases in TG2 transamidation. Increases in TG2 activity were reduced by the TG2 inhibitors Z-DON (Benzyloxycarbonyl-(6-Diazo-5-oxonorleucinyl)-L-valinyl-L-prolinyl-L-leucinmethylester) and R283 ((1,3,dimethyl-2[2-oxo-propyl]thio)imidazole chloride). Responses to formoterol were blocked by pharmacological inhibition of PKA, extracellular signal-regulated kinase 1 and 2 (ERK1/2), or phosphatidylinositol 3-kinase (PI-3K) signalling. Furthermore, the removal of extracellular Ca 2+ also attenuated formoterol-induced TG2 activation. Fluorescence microscopy demonstrated TG2-induced biotin-X-cadaverine incorporation into proteins. Formoterol increased the levels of TG2-associated phosphoserine and phosphothreonine, which were blocked by inhibition of PKA, ERK1/2 or PI-3K signalling. Subsequent proteomic analysis identified known (e.g. lactate dehydrogenase A chain) and novel (e.g. Protein S100-A6) protein substrates for TG2. Taken together, the data obtained suggest that β 2 -adrenoceptor-induced modulation of TG2 represents a novel paradigm in β 2 -adrenoceptor cell signalling, expanding the repertoire of cellular functions responsive to catecholamine stimulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Gentiana asclepiadea and Armoracia rusticana can modulate the adaptive response induced by zeocin in human lymphocytes.

    Science.gov (United States)

    Hudecova, A; Hasplova, K; Kellovska, L; Ikreniova, M; Miadokova, E; Galova, E; Horvathova, E; Vaculcikova, D; Gregan, F; Dusinska, M

    2012-01-01

    Zeocin is a member of bleomycin/phleomycin family of antibiotics isolated from Streptomyces verticullus. This unique radiomimetic antibiotic is known to bind to DNA and induce oxidative stress in different organisms producing predominantly single- and double- strand breaks, as well as a DNA base loss resulting in apurinic/apyrimidinic (AP) sites. The aim of this study was to induce an adaptive response (AR) by zeocin in freshly isolated human lymphocytes from blood and to observe whether plant extracts could modulate this response. The AR was evaluated by the comet assay. The optimal conditions for the AR induction and modulation were determined as: 2 h-intertreatment time (in PBS, at 4°C) given after a priming dose (50 µg/ml) of zeocin treatment. Genotoxic impact of zeocin to lymphocytes was modulated by plant extracts isolated from Gentiana asclepiadea (methanolic and aqueous haulm extracts, 0.25 mg/ml) and Armoracia rusticana (methanolic root extract, 0.025 mg/ml). These extracts enhanced the AR and also decreased DNA damage caused by zeocin (after 0, 1 and 4 h-recovery time after the test dose of zeocin application) to more than 50%. These results support important position of plants containing many biologically active compounds in the field of pharmacology and medicine.

  17. Rac1 modulates G-protein-coupled receptor-induced bronchial smooth muscle contraction.

    Science.gov (United States)

    Sakai, Hiroyasu; Kai, Yuki; Sato, Ken; Ikebe, Mitsuo; Chiba, Yohihiko

    2018-01-05

    Increasing evidence suggests a functional role of RhoA/Rho-kinase signalling as a mechanism for smooth muscle contraction; however, little is known regarding the roles of Rac1 and other members of the Rho protein family. This study aimed to examine whether Rac1 modulates bronchial smooth muscle contraction. Ring preparations of bronchi isolated from rats were suspended in an organ bath, and isometric contraction of circular smooth muscle was measured. Immunoblotting was used to examine myosin light chain phosphorylation in bronchial smooth muscle. Our results demonstrated that muscle contractions induced by carbachol (CCh) and endothelin-1 (ET-1) were inhibited by EHT1864, a selective Rac1 inhibitor, and NSC23766, a selective inhibitor of Rac1-specific guanine nucleotide exchange factors. Similarly, myosin light chain and myosin phosphatase target subunit 1 (MYPT1) at Thr853 phosphorylation induced by contractile agonist were inhibited with Rac1 inhibition. However, contractions induced by high K + , calyculin A (a potent protein phosphatase inhibitor) and K + /PDBu were not inhibited by these Rac1 inhibitors. Interestingly, NaF (a G-protein activator)-induced contractions were inhibited by EHT1864 but not by NSC23766. We next examined the effects of a trans-acting activator of transcription protein transduction domain (PTD) fusion protein with Rac1 (PTD-Rac1) on muscle contraction. The constitutively active form of PTD-Rac1 directly induced force development and contractions were abolished by EHT1864. These results suggest that Rac1, activated by G protein-coupled receptor agonists, such as CCh and ET-1, may induce myosin light chain and MYPT phosphorylation and modulate the contraction of bronchial smooth muscle. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The mixed serotonin receptor agonist psilocybin reduces threat-induced modulation of amygdala connectivity.

    Science.gov (United States)

    Kraehenmann, Rainer; Schmidt, André; Friston, Karl; Preller, Katrin H; Seifritz, Erich; Vollenweider, Franz X

    2016-01-01

    Stimulation of serotonergic neurotransmission by psilocybin has been shown to shift emotional biases away from negative towards positive stimuli. We have recently shown that reduced amygdala activity during threat processing might underlie psilocybin's effect on emotional processing. However, it is still not known whether psilocybin modulates bottom-up or top-down connectivity within the visual-limbic-prefrontal network underlying threat processing. We therefore analyzed our previous fMRI data using dynamic causal modeling and used Bayesian model selection to infer how psilocybin modulated effective connectivity within the visual-limbic-prefrontal network during threat processing. First, both placebo and psilocybin data were best explained by a model in which threat affect modulated bidirectional connections between the primary visual cortex, amygdala, and lateral prefrontal cortex. Second, psilocybin decreased the threat-induced modulation of top-down connectivity from the amygdala to primary visual cortex, speaking to a neural mechanism that might underlie putative shifts towards positive affect states after psilocybin administration. These findings may have important implications for the treatment of mood and anxiety disorders.

  19. The mixed serotonin receptor agonist psilocybin reduces threat-induced modulation of amygdala connectivity

    Directory of Open Access Journals (Sweden)

    Rainer Kraehenmann

    2016-01-01

    Full Text Available Stimulation of serotonergic neurotransmission by psilocybin has been shown to shift emotional biases away from negative towards positive stimuli. We have recently shown that reduced amygdala activity during threat processing might underlie psilocybin's effect on emotional processing. However, it is still not known whether psilocybin modulates bottom-up or top-down connectivity within the visual-limbic-prefrontal network underlying threat processing. We therefore analyzed our previous fMRI data using dynamic causal modeling and used Bayesian model selection to infer how psilocybin modulated effective connectivity within the visual–limbic–prefrontal network during threat processing. First, both placebo and psilocybin data were best explained by a model in which threat affect modulated bidirectional connections between the primary visual cortex, amygdala, and lateral prefrontal cortex. Second, psilocybin decreased the threat-induced modulation of top-down connectivity from the amygdala to primary visual cortex, speaking to a neural mechanism that might underlie putative shifts towards positive affect states after psilocybin administration. These findings may have important implications for the treatment of mood and anxiety disorders.

  20. Fundamental length and relativistic length

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1988-01-01

    It si noted that the introduction of fundamental length contradicts the conventional representations concerning the contraction of the longitudinal size of fast-moving objects. The use of the concept of relativistic length and the following ''elongation formula'' permits one to solve this problem

  1. Flame Length

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Flame length was modeled using FlamMap, an interagency fire behavior mapping and analysis program that computes potential fire behavior characteristics. The tool...

  2. Pronociceptive pain modulation in patients with painful chemotherapy-induced polyneuropathy.

    Science.gov (United States)

    Nahman-Averbuch, Hadas; Yarnitsky, David; Granovsky, Yelena; Sprecher, Elliot; Steiner, Mariana; Tzuk-Shina, Tzahala; Pud, Dorit

    2011-08-01

    Several chemotherapy agents induce polyneuropathy that is painful for some patients, but not for others. We assumed that these differences might be attributable to varying patterns of pain modulation. The aim of the present study was to evaluate pain modulation in such patients. Twenty-seven patients with chemotherapy-induced polyneuropathy were tested for detection thresholds (cold, warm, and mechanical) in both the forearm and foot, as well as for heat pain threshold, mechanical temporal summation (TS), and conditioned pain modulation (CPM; also known as the diffuse noxious inhibitory control-like effect), which were tested in the upper limbs. Positive correlations were found between clinical pain levels and both TS (r=0.52, P=0.005) and CPM (r=0.40, P=0.050) for all patients. In addition, higher TS was associated with less efficient CPM (r=0.56, P=0.004). The group of patients with painful polyneuropathy (n=12) showed a significantly higher warm detection threshold in the foot (P=0.03), higher TS (P<0.01), and less efficient CPM (P=0.03) in comparison to the group with nonpainful polyneuropathy. The painfulness of polyneuropathy is associated with a "pronociceptive" modulation pattern, which may be primary to the development of pain. The higher warm sensory thresholds in the painful polyneuropathy group suggest that the severity of polyneuropathy may be another factor in determining its painfulness. Copyright © 2011 U.S. Cancer Pain Relief Committee. Published by Elsevier Inc. All rights reserved.

  3. Pacific ciguatoxin 1B-induced modulation of inflammatory mediators in a murine macrophage cell line.

    Science.gov (United States)

    Matsui, Mariko; Kumar-Roine, Shilpa; Darius, H Taiana; Chinain, Mireille; Laurent, Dominique; Pauillac, Serge

    2010-10-01

    Ciguatoxins, potent marine neurotoxins responsible for ciguatera, exert their numerous damaging effects through primary binding to the voltage-sensitive sodium channels of excitable cells. Using RAW 264.7 murine macrophages, we report the first experimental study presenting evidence that P-CTX-1B (the most potent congener from the Pacific) could modulate mRNA expression of pro- and anti-inflammatory cytokines as well as of inducible nitric oxide synthase (iNOS). P-CTX-1B, unlike other less potent marine polyether toxins, P-CTX-3C and PbTx-3, induced the overexpression of interleukin (IL)-1beta, IL-6, IL-10, tumor necrosis factor-alpha and iNOS with different magnitude and kinetic profiles, as compared to bacterial lipopolysaccharide (LPS). Unlike LPS, P-CTX-1B did not modulate IL-11 expression. In this report, we provide new evidence of the P-CTX-1B iNOS- and cytokines-inducing ability and shed new light on host response to potent neurotoxins. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Pathways Involving Beta-3 Adrenergic Receptors Modulate Cold Stress-Induced Detrusor Overactivity in Conscious Rats.

    Science.gov (United States)

    Imamura, Tetsuya; Ishizuka, Osamu; Ogawa, Teruyuki; Yamagishi, Takahiro; Yokoyama, Hitoshi; Minagawa, Tomonori; Nakazawa, Masaki; Nishizawa, Osamu

    2015-01-01

    To investigate pathways involving beta-3 adrenergic receptors (ARs) in detrusor overactivity induced by cold stress, we determined if the beta-3 AR agonist CL316243 could modulate the cold stress-induced detrusor overactivity in normal rats. Two days prior to cystometric investigations, the bladders of 10-week-old female Sprague-Dawley rats were cannulated. Cystometric measurements of the unanesthetized, unrestricted rats were taken to estimate baseline values at room temperature (RT, 27 ± 2 °C) for 20 min. They were then intravenously administered vehicle, 0.1, or 1.0 mg/kg CL316243 (n = 6 in each group). Five minutes after the treatments, they were gently and quickly transferred to the low temperature (LT, 4 ± 2 °C) room for 40 min where the cystometric measurements were again made. Afterward, the rats were returned to RT for final cystometric measurements. The cystometric effects of CL316243 were also measured at RT (n = 6 in each group). At RT, both low and high dose of CL316243 decreased basal and micturition pressure while the high dose (1.0 mg/kg) significantly increased voiding interval and bladder capacity. During LT exposure, the high dose of CL316243 partially reduced cold stress-induced detrusor overactivity characterized by increased basal pressure and urinary frequency. The high drug dose also significantly inhibited the decreases of both voiding interval and bladder capacity compared to the vehicle- and low dose (0.1 mg/kg)-treated rats. A high dose of the beta-3 agonist CL316243 could modulate cold stress-induced detrusor overactivity. Therefore, one of the mechanisms in cold stress-induced detrusor overactivity includes a pathway involving beta-3 ARs. © 2014 Wiley Publishing Asia Pty Ltd.

  5. Nicotine induces resistance to chemotherapy by modulating mitochondrial signaling in lung cancer.

    Science.gov (United States)

    Zhang, Jingmei; Kamdar, Opal; Le, Wei; Rosen, Glenn D; Upadhyay, Daya

    2009-02-01

    Continued smoking causes tumor progression and resistance to therapy in lung cancer. Carcinogens possess the ability to block apoptosis, and thus may induce development of cancers and resistance to therapy. Tobacco carcinogens have been studied widely; however, little is known about the agents that inhibit apoptosis, such as nicotine. We determine whether mitochondrial signaling mediates antiapoptotic effects of nicotine in lung cancer. A549 cells were exposed to nicotine (1 muM) followed by cisplatin (35 muM) plus etoposide (20 muM) for 24 hours. We found that nicotine prevented chemotherapy-induced apoptosis, improved cell survival, and caused modest increases in DNA synthesis. Inhibition of mitogen-activated protein kinase (MAPK) and Akt prevented the antiapoptotic effects of nicotine and decreased chemotherapy-induced apoptosis. Small interfering RNA MAPK kinase-1 blocked antiapoptotic effects of nicotine, whereas small interfering RNA MAPK kinase-2 blocked chemotherapy-induced apoptosis. Nicotine prevented chemotherapy-induced reduction in mitochondrial membrane potential and caspase-9 activation. Antiapoptotic effects of nicotine were blocked by mitochondrial anion channel inhibitor, 4,4'diisothiocyanatostilbene-2,2'disulfonic acid. Chemotherapy enhanced translocation of proapoptotic Bax to the mitochondria, whereas nicotine blocked these effects. Nicotine up-regulated Akt-mediated antiapoptotic X-linked inhibitor of apoptosis protein and phosphorylated proapoptotic Bcl2-antagonist of cell death. The A549-rho0 cells, which lack mitochondrial DNA, demonstrated partial resistance to chemotherapy-induced apoptosis, but blocked the antiapoptotic effects of nicotine. Accordingly, we provide evidence that nicotine modulates mitochondrial signaling and inhibits chemotherapy-induced apoptosis in lung cancer. The mitochondrial regulation of nicotine imposes an important mechanism that can critically impair the treatment of lung cancer, because many cancer

  6. Src Kinase Dependent Rapid Non-genomic Modulation of Hippocampal Spinogenesis Induced by Androgen and Estrogen

    Directory of Open Access Journals (Sweden)

    Mika Soma

    2018-05-01

    Full Text Available Dendritic spine is a small membranous protrusion from a neuron's dendrite that typically receives input from an axon terminal at the synapse. Memories are stored in synapses which consist of spines and presynapses. Rapid modulations of dendritic spines induced by hippocampal sex steroids, including dihydrotestosterone (DHT, testosterone (T, and estradiol (E2, are essential for synaptic plasticity. Molecular mechanisms underlying the rapid non-genomic modulation through synaptic receptors of androgen (AR and estrogen (ER as well as its downstream kinase signaling, however, have not been well understood. We investigated the possible involvement of Src tyrosine kinase in rapid changes of dendritic spines in response to androgen and estrogen, including DHT, T, and E2, using hippocampal slices from adult male rats. We found that the treatments with DHT (10 nM, T (10 nM, and E2 (1 nM increased the total density of spines by ~1.22 to 1.26-fold within 2 h using super resolution confocal imaging of Lucifer Yellow-injected CA1 pyramidal neurons. We examined also morphological changes of spines in order to clarify differences between three sex steroids. From spine head diameter analysis, DHT increased middle- and large-head spines, whereas T increased small- and middle-head spines, and E2 increased small-head spines. Upon application of Src tyrosine kinase inhibitor, the spine increases induced through DHT, T, and E2 treatments were completely blocked. These results imply that Src kinase is essentially involved in sex steroid-induced non-genomic modulation of the spine density and morphology. These results also suggest that rapid effects of exogenously applied androgen and estrogen can occur in steroid-depleted conditions, including “acute” hippocampal slices and the hippocampus of gonadectomized animals.

  7. Differentiation-inducing factor-1 and -2 function also as modulators for Dictyostelium chemotaxis.

    Directory of Open Access Journals (Sweden)

    Hidekazu Kuwayama

    Full Text Available BACKGROUND: In the early stages of development of the cellular slime mold Dictyostelium discoideum, chemotaxis toward cAMP plays a pivotal role in organizing discrete cells into a multicellular structure. In this process, a series of signaling molecules, such as G-protein-coupled cell surface receptors for cAMP, phosphatidylinositol metabolites, and cyclic nucleotides, function as the signal transducers for controlling dynamics of cytoskeleton. Differentiation-inducing factor-1 and -2 (DIF-1 and DIF-2 were originally identified as the factors (chlorinated alkylphenones that induce Dictyostelium stalk cell differentiation, but it remained unknown whether the DIFs had any other physiologic functions. METHODOLOGY/PRINCIPAL FINDINGS: To further elucidate the functions of DIFs, in the present study we investigated their effects on chemotaxis under various conditions. Quite interestingly, in shallow cAMP gradients, DIF-1 suppressed chemotaxis whereas DIF-2 promoted it greatly. Analyses with various mutants revealed that DIF-1 may inhibit chemotaxis, at least in part, via GbpB (a phosphodiesterase and a decrease in the intracellular cGMP concentration ([cGMP](i. DIF-2, by contrast, may enhance chemotaxis, at least in part, via RegA (another phosphodiesterase and an increase in [cGMP](i. Using null mutants for DimA and DimB, the transcription factors that are required for DIF-dependent prestalk differentiation, we also showed that the mechanisms for the modulation of chemotaxis by DIFs differ from those for the induction of cell differentiation by DIFs, at least in part. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that DIF-1 and DIF-2 function as negative and positive modulators for Dictyostelium chemotaxis, respectively. To our knowledge, this is the first report in any organism of physiologic modulators (small molecules for chemotaxis having differentiation-inducing activity.

  8. Ligand Modulation of the Epstein-Barr Virus-induced Seven-transmembrane Receptor EBI2

    DEFF Research Database (Denmark)

    Benned-Jensen, Tau; Smethurst, Christopher; Holst, Peter Johannes

    2011-01-01

    The Epstein-Barr virus-induced receptor 2 (EBI2) is a constitutively active seven-transmembrane receptor, which was recently shown to orchestrate the positioning of B cells in the follicle. To date, no ligands, endogenously or synthetic, have been identified that modulate EBI2 activity. Here we...... with similar potency. Overexpression of EBI2 profoundly potentiated antibody-stimulated ex vivo proliferation of murine B cells compared with WT cells, whereas this was equivalently reduced for EBI2-deficient B cells. Inhibition of EBI2 constitutive activity suppressed the proliferation in all cases...

  9. Arctigenin induced gallbladder cancer senescence through modulating epidermal growth factor receptor pathway.

    Science.gov (United States)

    Zhang, Mingdi; Cai, Shizhong; Zuo, Bin; Gong, Wei; Tang, Zhaohui; Zhou, Di; Weng, Mingzhe; Qin, Yiyu; Wang, Shouhua; Liu, Jun; Ma, Fei; Quan, Zhiwei

    2017-05-01

    Gallbladder cancer has poor prognosis and limited therapeutic options. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms involved in the antitumor effect of arctigenin on gallbladder cancer have not been fully elucidated. The expression levels of epidermal growth factor receptor were examined in 100 matched pairs of gallbladder cancer tissues. A positive correlation between high epidermal growth factor receptor expression levels and poor prognosis was observed in gallbladder cancer tissues. Pharmacological inhibition or inhibition via RNA interference of epidermal growth factor receptor induced cellular senescence in gallbladder cancer cells. The antitumor effect of arctigenin on gallbladder cancer cells was primarily achieved by inducing cellular senescence. In gallbladder cancer cells treated with arctigenin, the expression level of epidermal growth factor receptor significantly decreased. The analysis of the activity of the kinases downstream of epidermal growth factor receptor revealed that the RAF-MEK-ERK signaling pathway was significantly inhibited. Furthermore, the cellular senescence induced by arctigenin could be reverted by pcDNA-epidermal growth factor receptor. Arctigenin also potently inhibited the growth of tumor xenografts, which was accompanied by the downregulation of epidermal growth factor receptor and induction of senescence. This study demonstrates arctigenin could induce cellular senescence in gallbladder cancer through the modulation of epidermal growth factor receptor pathway. These data identify epidermal growth factor receptor as a key regulator in arctigenin-induced gallbladder cancer senescence.

  10. The psychedelic state induced by ayahuasca modulates the activity and connectivity of the default mode network.

    Directory of Open Access Journals (Sweden)

    Fernanda Palhano-Fontes

    Full Text Available The experiences induced by psychedelics share a wide variety of subjective features, related to the complex changes in perception and cognition induced by this class of drugs. A remarkable increase in introspection is at the core of these altered states of consciousness. Self-oriented mental activity has been consistently linked to the Default Mode Network (DMN, a set of brain regions more active during rest than during the execution of a goal-directed task. Here we used fMRI technique to inspect the DMN during the psychedelic state induced by Ayahuasca in ten experienced subjects. Ayahuasca is a potion traditionally used by Amazonian Amerindians composed by a mixture of compounds that increase monoaminergic transmission. In particular, we examined whether Ayahuasca changes the activity and connectivity of the DMN and the connection between the DMN and the task-positive network (TPN. Ayahuasca caused a significant decrease in activity through most parts of the DMN, including its most consistent hubs: the Posterior Cingulate Cortex (PCC/Precuneus and the medial Prefrontal Cortex (mPFC. Functional connectivity within the PCC/Precuneus decreased after Ayahuasca intake. No significant change was observed in the DMN-TPN orthogonality. Altogether, our results support the notion that the altered state of consciousness induced by Ayahuasca, like those induced by psilocybin (another serotonergic psychedelic, meditation and sleep, is linked to the modulation of the activity and the connectivity of the DMN.

  11. The psychedelic state induced by ayahuasca modulates the activity and connectivity of the default mode network.

    Science.gov (United States)

    Palhano-Fontes, Fernanda; Andrade, Katia C; Tofoli, Luis F; Santos, Antonio C; Crippa, Jose Alexandre S; Hallak, Jaime E C; Ribeiro, Sidarta; de Araujo, Draulio B

    2015-01-01

    The experiences induced by psychedelics share a wide variety of subjective features, related to the complex changes in perception and cognition induced by this class of drugs. A remarkable increase in introspection is at the core of these altered states of consciousness. Self-oriented mental activity has been consistently linked to the Default Mode Network (DMN), a set of brain regions more active during rest than during the execution of a goal-directed task. Here we used fMRI technique to inspect the DMN during the psychedelic state induced by Ayahuasca in ten experienced subjects. Ayahuasca is a potion traditionally used by Amazonian Amerindians composed by a mixture of compounds that increase monoaminergic transmission. In particular, we examined whether Ayahuasca changes the activity and connectivity of the DMN and the connection between the DMN and the task-positive network (TPN). Ayahuasca caused a significant decrease in activity through most parts of the DMN, including its most consistent hubs: the Posterior Cingulate Cortex (PCC)/Precuneus and the medial Prefrontal Cortex (mPFC). Functional connectivity within the PCC/Precuneus decreased after Ayahuasca intake. No significant change was observed in the DMN-TPN orthogonality. Altogether, our results support the notion that the altered state of consciousness induced by Ayahuasca, like those induced by psilocybin (another serotonergic psychedelic), meditation and sleep, is linked to the modulation of the activity and the connectivity of the DMN.

  12. The time-dependence of exchange-induced relaxation during modulated radio frequency pulses.

    Science.gov (United States)

    Sorce, Dennis J; Michaeli, Shalom; Garwood, Michael

    2006-03-01

    The problem of the relaxation of identical spins 1/2 induced by chemical exchange between spins with different chemical shifts in the presence of time-dependent RF irradiation (in the first rotating frame) is considered for the fast exchange regime. The solution for the time evolution under the chemical exchange Hamiltonian in the tilted doubly rotating frame (TDRF) is presented. Detailed derivation is specified to the case of a two-site chemical exchange system with complete randomization between jumps of the exchanging spins. The derived theory can be applied to describe the modulation of the chemical exchange relaxation rate constants when using a train of adiabatic pulses, such as the hyperbolic secant pulse. Theory presented is valid for quantification of the exchange-induced time-dependent rotating frame longitudinal T1rho,ex and transverse T2rho,ex relaxations in the fast chemical exchange regime.

  13. Antidepressant effects of insulin in streptozotocin induced diabetic mice: Modulation of brain serotonin system.

    Science.gov (United States)

    Gupta, Deepali; Kurhe, Yeshwant; Radhakrishnan, Mahesh

    2014-04-22

    Diabetes is a persistent metabolic disorder, which often leads to depression as a result of the impaired neurotransmitter function. Insulin is believed to have antidepressant effects in depression associated with diabetes; however, the mechanism underlying the postulated effect is poorly understood. In the present study, it is hypothesized that insulin mediates an antidepressant effect in streptozotocin (STZ) induced diabetes in mice through modulation of the serotonin system in the brain. Therefore, the current study investigated the antidepressant effect of insulin in STZ induced diabetes in mice and insulin mediated modulation in the brain serotonin system. In addition, the possible pathways that lead to altered serotonin levels as a result of insulin administration were examined. Experimentally, Swiss albino mice of either sex were rendered diabetic by a single intraperitoneal (i.p.) injection of STZ. After one week, diabetic mice received a single dose of either insulin or saline or escitalopram for 14days. Thereafter, behavioral studies were conducted to test the behavioral despair effects using forced swim test (FST) and tail suspension test (TST), followed by biochemical estimations of serotonin concentrations and monoamine oxidase (MAO) activity in the whole brain content. The results demonstrated that, STZ treated diabetic mice exhibited an increased duration of immobility in FST and TST as compared to non-diabetic mice, while insulin treatment significantly reversed the effect. Biochemical assays revealed that administration of insulin attenuated STZ treated diabetes induced neurochemical alterations as indicated by elevated serotonin levels and decreased MAO-A and MAO-B activities in the brain. Collectively, the data indicate that insulin exhibits antidepressant effects in depression associated with STZ induced diabetes in mice through the elevation of the brain serotonin levels. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Attenuation of doxorubicin-induced cardiotoxicity by esculetin through modulation of Bmi-1 expression.

    Science.gov (United States)

    Xu, Fan; Li, Xiao; Liu, Lanfang; Xiao, Xu; Zhang, Li; Zhang, Shenglin; Lin, Pingping; Wang, Xiaojie; Wang, Yongwei; Li, Qingshan

    2017-09-01

    The protective effects and mechanisms of esculetin on doxorubicin (DOX)-induced injury of H9c2 cells were investigated. H9c2 cells were cultured and the logarithmic growth phase of the cells was divided into a control group, a DOX group and an esculetin + DOX group. Cell viability was detected by MTT assay. Annexin V-PI (AV-PI) double staining flow cytometry was carried out to detect cell apoptosis. Intracellular reactive oxygen species (ROS) were detected by flow cytometry. Transmission electron microscope (TEM) was used to evaluate cell ultrastructure. Cleaved caspase-3, cleaved PARP, Bcl-2, Bid and Bmi-1 proteins levels were investigated by western blot analysis. Bmi-1 siRNA was used to detect the role of Bmi-1 in the protective effects of esculetin against DOX-induced toxicity in H9c2 cells. The MTT and AV-PI double staining results showed that esculetin significantly increased H9c2 cell viability. Compared with the control group, the levels of cleaved caspase-3, cleaved PARP, Bid and ROS levels were significantly decreased, but the expression of Bcl-2 and Bmi-1 were significantly increased in the esculetin + DOX group. TEM showed that the cell structure of the mitochondria was protected by esculetin. The results of Bmi-1 siRNA showed that esculetin could protect DOX-induced cardiotoxicity by modulating Bmi-1 expression. Esculetin can protect DOX-induced cardiotoxicity and the effects may be attributable to modulation of Bmi-1 expression, provoking intracellular ROS accumulation, protecting the structure of mitochondria and reducing cell apoptosis.

  15. Resistive Switching and Voltage Induced Modulation of Tunneling Magnetoresistance in Nanosized Perpendicular Organic Spin Valves

    Science.gov (United States)

    Schmidt, Georg; Goeckeritz, Robert; Homonnay, Nico; Mueller, Alexander; Fuhrmann, Bodo

    Resistive switching has already been reported in organic spin valves (OSV), however, its origin is still unclear. We have fabricated nanosized OSV based on La0.7Sr0.3MnO3/Alq3/Co. These devices show fully reversible resistive switching of up to five orders of magnitude. The magnetoresistance (MR) is modulated during the switching process from negative (-70%) to positive values (+23%). The results are reminiscent of experiments claiming magnetoelectric coupling in LSMO based tunneling structures using ferroelectric barriers. By analyzing the I/V characteristics of the devices we can show that transport is dominated by tunneling through pinholes. The resistive switching is caused by voltage induced creation and motion of oxygen vacancies at the LSMO surface, however, the resulting tunnel barrier is complemented by a second adjacent barrier in the organic semiconductor. Our model shows that the barrier in the organic material is constant, causing the initial MR while the barrier in the LMSO can be modulated by the voltage resulting in the resistive switching and the modulation of the MR as the coupling to the states in the LSMO changes. A switching caused by LSMO only is also supported by the fact that replacing ALQ3 by H2PC yields almost identical results. Supported by the DFG in the SFB762.

  16. Automated Data Collection for Determining Statistical Distributions of Module Power Undergoing Potential-Induced Degradation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hacke, P.; Spataru, S.

    2014-08-01

    We propose a method for increasing the frequency of data collection and reducing the time and cost of accelerated lifetime testing of photovoltaic modules undergoing potential-induced degradation (PID). This consists of in-situ measurements of dark current-voltage curves of the modules at elevated stress temperature, their use to determine the maximum power at 25 degrees C standard test conditions (STC), and distribution statistics for determining degradation rates as a function of stress level. The semi-continuous data obtained by this method clearly show degradation curves of the maximum power, including an incubation phase, rates and extent of degradation, precise time to failure, and partial recovery. Stress tests were performed on crystalline silicon modules at 85% relative humidity and 60 degrees C, 72 degrees C, and 85 degrees C. Activation energy for the mean time to failure (1% relative) of 0.85 eV was determined and a mean time to failure of 8,000 h at 25 degrees C and 85% relative humidity is predicted. No clear trend in maximum degradation as a function of stress temperature was observed.

  17. Small-Molecule Sigma1 Modulator Induces Autophagic Degradation of PD-L1.

    Science.gov (United States)

    Maher, Christina M; Thomas, Jeffrey D; Haas, Derick A; Longen, Charles G; Oyer, Halley M; Tong, Jane Y; Kim, Felix J

    2018-02-01

    Emerging evidence suggests that Sigma1 ( SIGMAR1 , also known as sigma-1 receptor) is a unique ligand-regulated integral membrane scaffolding protein that contributes to cellular protein and lipid homeostasis. Previously, we demonstrated that some small-molecule modulators of Sigma1 alter endoplasmic reticulum (ER)-associated protein homeostasis pathways in cancer cells, including the unfolded protein response and autophagy. Programmed death-ligand 1 (PD-L1) is a type I integral membrane glycoprotein that is cotranslationally inserted into the ER and is processed and transported through the secretory pathway. Once at the surface of cancer cells, PD-L1 acts as a T-cell inhibitory checkpoint molecule and suppresses antitumor immunity. Here, we demonstrate that in Sigma1-expressing triple-negative breast and androgen-independent prostate cancer cells, PD-L1 protein levels were suppressed by RNAi knockdown of Sigma1 and by small-molecule inhibition of Sigma1. Sigma1-mediated action was confirmed by pharmacologic competition between Sigma1-selective inhibitor and activator ligands. When administered alone, the Sigma1 inhibitor decreased cell surface PD-L1 expression and suppressed functional interaction of PD-1 and PD-L1 in a coculture of T cells and cancer cells. Conversely, the Sigma1 activator increased PD-L1 cell surface expression, demonstrating the ability to positively and negatively modulate Sigma1 associated PD-L1 processing. We discovered that the Sigma1 inhibitor induced degradation of PD-L1 via autophagy, by a mechanism distinct from bulk macroautophagy or general ER stress-associated autophagy. Finally, the Sigma1 inhibitor suppressed IFNγ-induced PD-L1. Our data demonstrate that small-molecule Sigma1 modulators can be used to regulate PD-L1 in cancer cells and trigger its degradation by selective autophagy. Implications: Sigma1 modulators sequester and eliminate PD-L1 by autophagy, thus preventing functional PD-L1 expression at the cell surface. This

  18. Fundamental length

    International Nuclear Information System (INIS)

    Pradhan, T.

    1975-01-01

    The concept of fundamental length was first put forward by Heisenberg from purely dimensional reasons. From a study of the observed masses of the elementary particles known at that time, it is sumrised that this length should be of the order of magnitude 1 approximately 10 -13 cm. It was Heisenberg's belief that introduction of such a fundamental length would eliminate the divergence difficulties from relativistic quantum field theory by cutting off the high energy regions of the 'proper fields'. Since the divergence difficulties arise primarily due to infinite number of degrees of freedom, one simple remedy would be the introduction of a principle that limits these degrees of freedom by removing the effectiveness of the waves with a frequency exceeding a certain limit without destroying the relativistic invariance of the theory. The principle can be stated as follows: It is in principle impossible to invent an experiment of any kind that will permit a distintion between the positions of two particles at rest, the distance between which is below a certain limit. A more elegant way of introducing fundamental length into quantum theory is through commutation relations between two position operators. In quantum field theory such as quantum electrodynamics, it can be introduced through the commutation relation between two interpolating photon fields (vector potentials). (K.B.)

  19. Modulation of 17{beta}-estradiol-induced responses in fish by cytochrome P4501A1 inducing compounds

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, M.J.; Hinton, D.E. [Univ. of California, Davis, CA (United States)

    1995-12-31

    Some compounds which induce cytochrome P4501A1 (CYP1A1) are antiestrogenic in mammalian bioassay, and this effect is linked to aryl hydrocarbon (Ah) receptor. Liver of fish synthesizes estrogen-inducible egg yolk precursor protein vitellogenin (Vg) which is critical for oocyte maturation and ovarian development. To determine if Ah receptor-linked endocrine modulation could occur in fish liver, primary cultures of juvenile rainbow trout (Oncorhynchus mykiss) liver cells were co-administered 17{beta}-estradiol and CYP1A1 inducing compounds. Vitellogenin and albumin, estimated by ELISA measurement of concentration in the media 48 hrs after treatment, formed the basis for the test. Cellular CYP1A1 protein content and catalytic activity was estimated by ELISA and ethoxyresorufin-O-deethylase (EROD) activity assays respectively. Equivalent viability (mitochondrial dehydrogenase activity) and secretary functional capacity (albumin synthesis) were estimated and correlated with other results. In descending order, 2,3,4,7,8 pentachlorodibenzofuran (10{sup {minus}12} to 10{sup {minus}8} M) > 2,3,7,8 tetrachlorodibenzo-p-dioxin {approx_equal} 2,3,7,8 tetrachlorodibenzofuran (10{sup {minus}11} to 10{sup {minus}8} M) > {beta}-naphthoflavone (10{sup {minus}7} to 10{sup {minus}6} M) inhibited Vg synthesis in 17{beta}-estradiol treated liver cells. Potency of inhibition directly related to strength as an inducer of CYP1A1 protein. At 10-8 M, PCB congeners 77, 126, and 156 did not inhibit Vg synthesis and induced no or only moderate CYP1A1 protein. At 10-8 M, PCB congener 114, a weak CYP1A1 inducer, potentiated Vg synthesis relative to cells treated with 17{beta}-estradiol alone. This study increases their understanding of the consequences of hepatic CYP1A1 induction, forewarns of reproductive impairment of sexually maturing fishes exposed to CYP1A1 inducing compounds and argues for further, more detailed in vivo investigation.

  20. Sympathetic Neurotransmitters Modulate Osteoclastogenesis and Osteoclast Activity in the Context of Collagen-Induced Arthritis

    Science.gov (United States)

    Muschter, Dominique; Schäfer, Nicole; Stangl, Hubert; Straub, Rainer H.; Grässel, Susanne

    2015-01-01

    Excessive synovial osteoclastogenesis is a hallmark of rheumatoid arthritis (RA). Concomitantly, local synovial changes comprise neuronal components of the peripheral sympathetic nervous system. Here, we wanted to analyze if collagen-induced arthritis (CIA) alters bone marrow-derived macrophage (BMM) osteoclastogenesis and osteoclast activity, and how sympathetic neurotransmitters participate in this process. Therefore, BMMs from Dark Agouti rats at different CIA stages were differentiated into osteoclasts in vitro and osteoclast number, cathepsin K activity, matrix resorption and apoptosis were analyzed in the presence of acetylcholine (ACh), noradrenaline (NA) vasoactive intestinal peptide (VIP) and assay-dependent, adenylyl cyclase activator NKH477. We observed modulation of neurotransmitter receptor mRNA expression in CIA osteoclasts without affecting protein level. CIA stage-dependently altered marker gene expression associated with osteoclast differentiation and activity without affecting osteoclast number or activity. Neurotransmitter stimulation modulated osteoclast differentiation, apoptosis and activity. VIP, NA and adenylyl cyclase activator NKH477 inhibited cathepsin K activity and osteoclastogenesis (NKH477, 10-6M NA) whereas ACh mostly acted pro-osteoclastogenic. We conclude that CIA alone does not affect metabolism of in vitro generated osteoclasts whereas stimulation with NA, VIP plus specific activation of adenylyl cyclase induced anti-resorptive effects probably mediated via cAMP signaling. Contrary, we suggest pro-osteoclastogenic and pro-resorptive properties of ACh mediated via muscarinic receptors. PMID:26431344

  1. Graphene-induced modulation effects on magnetic plasmon in multilayer metal-dielectric-metal metamaterial

    Science.gov (United States)

    Li, Daimin; Wang, Wei; Zhang, Hong; Zhu, Yuhang; Zhang, Song; Zhang, Zhiyi; Zhang, Xinpeng; Yi, Juemin; Wei, Wei

    2018-03-01

    Motivated by the increasing interest in active control of the optical response in magnetic metamaterials, we theoretically demonstrate that monolayer graphene, even only a single atom thick, can provide an efficient modulation on the magnetic plasmon (MP) resonance, including over 10 meV resonance shift and over 25% modulation of resonance absorption intensity. We show that the resonance shift is distinctly different from the graphene-induced change in electrically excited surface plasmon resonances in plasmonic systems. Our analysis based on the equivalent nanocircuit method reveals that the MP resonance shift is governed by both the real and imaginary parts of graphene permittivity. Importantly, we find that an additional dissipation channel relevant to the graphene-induced resistance governs the MP absorption and that even the dissipation channel of interband transition is blocked. The interplay between both channels results in a pronounced modification of MP absorption intensities. The findings will offer a promising way to realize the dynamic control of the magnetic response, which holds great potential applications in graphene-based active metamaterials.

  2. Dipolar interaction induced band gaps and flat modes in surface-modulated magnonic crystals

    Science.gov (United States)

    Gallardo, R. A.; Schneider, T.; Roldán-Molina, A.; Langer, M.; Fassbender, J.; Lenz, K.; Lindner, J.; Landeros, P.

    2018-04-01

    Theoretical results for the magnetization dynamics of a magnonic crystal formed by grooves on the surface of a ferromagnetic film, called a surface-modulated magnonic crystal, are presented. For such a system, the role of the periodic dipolar field induced by the geometrical modulation is addressed by using the plane-wave method. The results reveal that, under the increasing of the depth of the grooves, zones with magnetizing and demagnetizing fields act on the system in such a way that magnonic band gaps are observed in both Damon-Eshbach and backward volume geometries. Particularly, in the backward volume configuration, high-frequency band gaps and low-frequency flat modes are obtained. By taking into account the properties of the internal field induced by the grooves, the flattening of the modes and their shift towards low frequencies are discussed and explained. To test the validity of the model, the theoretical results of this work are confirmed by micromagnetic simulations, and good agreement between both methods is achieved. The theoretical model allows for a detailed understanding of the physics underlying these kinds of systems, thereby providing an outlook for potential applications on magnonic devices.

  3. Hepcidin mediates transcriptional changes that modulate acute cytokine-induced inflammatory responses in mice.

    Science.gov (United States)

    De Domenico, Ivana; Zhang, Tian Y; Koening, Curry L; Branch, Ryan W; London, Nyall; Lo, Eric; Daynes, Raymond A; Kushner, James P; Li, Dean; Ward, Diane M; Kaplan, Jerry

    2010-07-01

    Hepcidin is a peptide hormone that regulates iron homeostasis and acts as an antimicrobial peptide. It is expressed and secreted by a variety of cell types in response to iron loading and inflammation. Hepcidin mediates iron homeostasis by binding to the iron exporter ferroportin, inducing its internalization and degradation via activation of the protein kinase Jak2 and the subsequent phosphorylation of ferroportin. Here we have shown that hepcidin-activated Jak2 also phosphorylates the transcription factor Stat3, resulting in a transcriptional response. Hepcidin treatment of ferroportin-expressing mouse macrophages showed changes in mRNA expression levels of a wide variety of genes. The changes in transcript levels for half of these genes were a direct effect of hepcidin, as shown by cycloheximide insensitivity, and dependent on the presence of Stat3. Hepcidin-mediated transcriptional changes modulated LPS-induced transcription in both cultured macrophages and in vivo mouse models, as demonstrated by suppression of IL-6 and TNF-alpha transcript and secreted protein. Hepcidin-mediated transcription in mice also suppressed toxicity and morbidity due to single doses of LPS, poly(I:C), and turpentine, which is used to model chronic inflammatory disease. Most notably, we demonstrated that hepcidin pretreatment protected mice from a lethal dose of LPS and that hepcidin-knockout mice could be rescued from LPS toxicity by injection of hepcidin. The results of our study suggest a new function for hepcidin in modulating acute inflammatory responses.

  4. Giant superconductivity-induced modulation of the ferromagnetic magnetization in a cuprate-manganite superlattice.

    Science.gov (United States)

    Hoppler, J; Stahn, J; Niedermayer, Ch; Malik, V K; Bouyanfif, H; Drew, A J; Rössle, M; Buzdin, A; Cristiani, G; Habermeier, H-U; Keimer, B; Bernhard, C

    2009-04-01

    Artificial multilayers offer unique opportunities for combining materials with antagonistic orders such as superconductivity and ferromagnetism and thus to realize novel quantum states. In particular, oxide multilayers enable the utilization of the high superconducting transition temperature of the cuprates and the versatile magnetic properties of the colossal-magnetoresistance manganites. However, apart from exploratory work, the in-depth investigation of their unusual properties has only just begun. Here we present neutron reflectometry measurements of a [Y(0.6)Pr(0.4)Ba(2)Cu(3)O(7) (10 nm)/La(2/3)Ca(1/3)MnO(3) (10 nm)](10) superlattice, which reveal a surprisingly large superconductivity-induced modulation of the vertical ferromagnetic magnetization profile. Most surprisingly, this modulation seems to involve the density rather than the orientation of the magnetization and is highly susceptible to the strain, which is transmitted from the SrTiO(3) substrate. We outline a possible explanation of this unusual superconductivity-induced phenomenon in terms of a phase separation between ferromagnetic and non-ferromagnetic nanodomains in the La(2/3)Ca(1/3)MnO(3) layers.

  5. Measuring high-frequency responses of an electro-optic phase modulator based on dispersion induced phase modulation to intensity modulation conversion

    Science.gov (United States)

    Zhang, Shangjian; Wang, Heng; Wang, Yani; Zou, Xinhai; Zhang, Yali; Liu, Shuang; Liu, Yong

    2014-11-01

    We investigate the phase modulation to intensity modulation conversion in dispersive fibers for measuring frequency responses of electro-optic phase modulators, and demonstrate two typical measurements with cascade path and fold-back path. The measured results achieve an uncertainty of less than 2.8% within 20 GHz. Our measurements show stable and repeatable results because the optical carrier and its phase-modulated sidebands are affected by the same fiber impairments. The proposed method requires only dispersive fibers and works without any small-signal assumption, which is applicable for swept frequency measurement at different driving levels and operating wavelengths.

  6. Modulation of lipopolysaccharide-induced chorioamnionitis by Ureaplasma parvum in sheep.

    Science.gov (United States)

    Snyder, Candice C; Wolfe, Katherine B; Gisslen, Tate; Knox, Christine L; Kemp, Matthew W; Kramer, Boris W; Newnham, John P; Jobe, Alan H; Kallapur, Suhas G

    2013-05-01

    Ureaplasma colonization in the setting of polymicrobial flora is common in women with chorioamnionitis, and is a risk factor for preterm delivery and neonatal morbidity. We hypothesized that Ureaplasma colonization of amniotic fluid would modulate chorioamnionitis induced by Escherichia coli lipopolysaccharide (LPS). Sheep received intraamniotic (IA) injections of media (control) or live Ureaplasma either 7 or 70 days before delivery. Another group received IA LPS 2 days before delivery. To test for interactions, U parvum-exposed animals were challenged with IA LPS, and delivered 2 days later. All animals were delivered preterm at 125 ± 1 day of gestation. Both IA Ureaplasma and LPS induced leukocyte infiltration of chorioamnion. LPS greatly increased the expression of proinflammatory cytokines and myeloperoxidase in leukocytes, while Ureaplasma alone caused modest responses. Interestingly, 7-day but not 70-day Ureaplasma exposure significantly down-regulated LPS-induced proinflammatory cytokines and myeloperoxidase expression in the chorioamnion. Acute (7-day) U parvum exposure can suppress LPS-induced chorioamnionitis. Copyright © 2013 Mosby, Inc. All rights reserved.

  7. Resveratrol confers protection against rotenone-induced neurotoxicity by modulating myeloperoxidase levels in glial cells.

    Directory of Open Access Journals (Sweden)

    Chi Young Chang

    Full Text Available Myeloperoxidase (MPO functions as a key molecular component of the host defense system against diverse pathogens. We have previously reported that increased MPO levels and activity is a distinguishing feature of rotenone-exposed glial cells, and that either overactivation or deficiency of MPO leads to pathological conditions in the brain. Here, we provide that modulation of MPO levels in glia by resveratrol confers protective effects on rotenone-induced neurotoxicity. We show that resveratrol significantly reduced MPO levels but did not trigger abnormal nitric oxide (NO production in microglia and astrocytes. Resveratrol-induced down-regulation of MPO, in the absence of an associated overproduction of NO, markedly attenuated rotenone-triggered inflammatory responses including phagocytic activity and reactive oxygen species production in primary microglia and astrocytes. In addition, impaired responses of primary mixed glia from Mpo (-/- mice to rotenone were relieved by treatment with resveratrol. We further show that rotenone-induced neuronal injury, particularly dopaminergic cell death, was attenuated by resveratrol in neuron-glia co-cultures, but not in neurons cultured alone. Similar regulatory effects of resveratrol on MPO levels were observed in microglia treated with MPP(+, another Parkinson's disease-linked neurotoxin, supporting the beneficial effects of resveratrol on the brain. Collectively, our findings provide that resveratrol influences glial responses to rotenone by regulating both MPO and NO, and thus protects against rotenone-induced neuronal injury.

  8. Reactive oxygen species mediates homocysteine-induced mitochondrial biogenesis in human endothelial cells: Modulation by antioxidants

    International Nuclear Information System (INIS)

    Perez-de-Arce, Karen; Foncea, Rocio; Leighton, Federico

    2005-01-01

    It has been proposed that homocysteine (Hcy)-induces endothelial dysfunction and atherosclerosis by generation of reactive oxygen species (ROS). A previous report has shown that Hcy promotes mitochondrial damage. Considering that oxidative stress can affect mitochondrial biogenesis, we hypothesized that Hcy-induced ROS in endothelial cells may lead to increased mitochondrial biogenesis. We found that Hcy-induced ROS (1.85-fold), leading to a NF-κB activation and increase the formation of 3-nitrotyrosine. Furthermore, expression of the mitochondrial biogenesis factors, nuclear respiratory factor-1 and mitochondrial transcription factor A, was significantly elevated in Hcy-treated cells. These changes were accompanied by increase in mitochondrial mass and higher mRNA and protein expression of the subunit III of cytochrome c oxidase. These effects were significantly prevented by pretreatment with the antioxidants, catechin and trolox. Taken together, our results suggest that ROS is an important mediator of mitochondrial biogenesis induced by Hcy, and that modulation of oxidative stress by antioxidants may protect against the adverse vascular effects of Hcy

  9. CDB-4124, a progesterone receptor modulator, inhibits mammary carcinogenesis by suppressing cell proliferation and inducing apoptosis.

    Science.gov (United States)

    Wiehle, Ronald; Lantvit, Daniel; Yamada, Tohru; Christov, Konstantin

    2011-03-01

    CDB-4124 (Proellex or telapristone acetate) is a modulator of progesterone receptor (PR) signaling, which is currently employed in preclinical studies for prevention and treatment of breast cancer and has been used in clinical studies for treatment of uterine fibroids and endometriosis. Here we provide evidence for its action on steroid hormone-signaling, cell cycle-regulated genes and in vivo on mammary carcinogenesis. When CDB-4124 is given to rats at 200 mg/kg for 24 months, it prevents the development of spontaneous mammary hyperplastic and premalignant lesions. Also, CDB-4124 given as subcutaneous pellets at two different doses suppressed, dose dependently, N-methyl-N-nitrosourea (MNU)-induced mammary carcinogenesis. The high dose (30 mg, over 84 days) increased tumor latency from 66 ± 24 days to 87 ± 20 days (P CDB-4124 inhibited cell proliferation and induced apoptosis in MNU-induced mammary tumors, which correlated with a decreased proportion of PR(+) tumor cells and with decreased serum progesterone. CDB-4124 did not affect serum estradiol. In a mechanistic study employing T47D cells we found that CDB-4124 suppressed G(1)/G(0)-S transition by inhibiting CDK2 and CDK4 expressions, which correlated with inhibition of estrogen receptor (ER) expression. Taken together, these data indicate that CDB-4124 can suppress the development of precancerous lesions and carcinogen-induced ER(+) mammary tumors in rats, and may have implications for prevention and treatment of human breast cancer.

  10. Agmatine attenuates nicotine induced conditioned place preference in mice through modulation of neuropeptide Y system.

    Science.gov (United States)

    Kotagale, Nandkishor R; Walke, Sonali; Shelkar, Gajanan P; Kokare, Dadasaheb M; Umekar, Milind J; Taksande, Brijesh G

    2014-04-01

    The purpose of the present study was to examine the effect of agmatine on nicotine induced conditioned place preference (CPP) in male albino mice. Intra-peritoneal (ip) administration of nicotine (1mg/kg) significantly increased time spent in drug-paired compartment. Agmatine (20 and 40 mg/kg, ip) co-administered with nicotine during the 6 days conditioning sessions completely abolished the acquisition of nicotine-induced CPP in mice. Concomitant administration of neuropeptide Y (NPY) (1 pg/mouse, icv) or [Leu(31), Pro(34)]-NPY (0.1 pg/mouse, icv), selective NPY Y1 receptor agonist potentiated the inhibitory effect of agmatine (10 mg/kg, ip) on nicotine CPP. Conversely, pretreatment with NPY Y1 receptor antagonist, BIBP3226 (0.01 ng/mouse, icv) blocked the effect of agmatine (20 mg/kg, ip) on nicotine induced CPP. In immunohistochemical study, nicotine decreased NPY-immunoreactivity in nucleus accumbens shell (AcbSh), bed nucleus of stria terminalis, lateral part (BNSTl), arcuate nucleus (ARC) and paraventricular nucleus (PVN). Conversely, administration of agmatine prior to the nicotine significantly reversed the effect of nicotine on NPY-immunoreactivity in the above brain nuclei. This data indicate that agmatine attenuate nicotine induced CPP via modulation of NPYergic neurotransmission in brain. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Lithium blocks ethanol-induced modulation of protein kinases in the developing brain

    International Nuclear Information System (INIS)

    Chakraborty, Goutam; Saito, Mitsuo; Mao, Rui-Fen; Wang, Ray; Vadasz, Csaba; Saito, Mariko

    2008-01-01

    Lithium has been shown to be neuroprotective against various insults including ethanol exposure. We previously reported that ethanol-induced apoptotic neurodegeneration in the postnatal day 7 (P7) mice is associated with decreases in phosphorylation levels of Akt, glycogen synthase kinase-3β (GSK-3β), and AMP-activated protein kinase (AMPK), and alteration in lipid profiles in the brain. Here, P7 mice were injected with ethanol and lithium, and the effects of lithium on ethanol-induced alterations in phosphorylation levels of protein kinases and lipid profiles in the brain were examined. Immunoblot and immunohistochemical analyses showed that lithium significantly blocked ethanol-induced caspase-3 activation and reduction in phosphorylation levels of Akt, GSK-3β, and AMPK. Further, lithium inhibited accumulation of cholesterol ester (ChE) and N-acylphosphatidylethanolamine (NAPE) triggered by ethanol in the brain. These results suggest that Akt, GSK-3β, and AMPK are involved in ethanol-induced neurodegeneration and the neuroprotective effects of lithium by modulating both apoptotic and survival pathways

  12. Modulation of Active Gut Microbiota by Lactobacillus rhamnosus GG in a Diet Induced Obesity Murine Model

    Directory of Open Access Journals (Sweden)

    Yosep Ji

    2018-04-01

    Full Text Available Gut microbiota play a key role in the development of metabolic disorders. Defining and correlating structural shifts in gut microbial assemblages with conditions related to metabolic syndrome have, however, been proven difficult. Results from 16S genomic DNA and 16S ribosomal RNA analyses of fecal samples may differ widely, leading to controversial information on the whole microbial community and metabolically active microbiota. Using a C57BL/6J murine model, we compared data from 16S genomic DNA and ribosomal RNA of the fecal microbiota. The study included three groups of experimental animals comprising two groups with high fat diet induced obesity (DIO while a third group (control received a low fat diet. One of the DIO groups was treated with the probiotic Lactobacillus rhamnosus GG (LGG. Compared to the data obtained by DNA analysis, a significantly higher abundance of OTUs was accounted for by RNA analysis. Moreover, rRNA based analysis showed a modulation of the active gut microbial population in the DIO group receiving LGG, thus reflecting a change in the induced obesity status of the host. As one of the most widely studied probiotics the functionality of LGG has been linked to the alleviation of metabolic syndrome, and, in some cases, to an impact on the microbiome. Yet, it appears that no study has reported thus far on modulation of the active microbiota by LGG treatment. It is postulated that the resulting impact on calorie consumption affects weight gain concomitantly with modulation of the functional structure of the gut microbial population. Using the 16S rRNA based approach therefore decisively increased the precision of gut microbiota metagenome analysis.

  13. Modulation of Active Gut Microbiota by Lactobacillus rhamnosus GG in a Diet Induced Obesity Murine Model.

    Science.gov (United States)

    Ji, Yosep; Park, Soyoung; Park, Haryung; Hwang, Eunchong; Shin, Hyeunkil; Pot, Bruno; Holzapfel, Wilhelm H

    2018-01-01

    Gut microbiota play a key role in the development of metabolic disorders. Defining and correlating structural shifts in gut microbial assemblages with conditions related to metabolic syndrome have, however, been proven difficult. Results from 16S genomic DNA and 16S ribosomal RNA analyses of fecal samples may differ widely, leading to controversial information on the whole microbial community and metabolically active microbiota. Using a C57BL/6J murine model, we compared data from 16S genomic DNA and ribosomal RNA of the fecal microbiota. The study included three groups of experimental animals comprising two groups with high fat diet induced obesity (DIO) while a third group (control) received a low fat diet. One of the DIO groups was treated with the probiotic Lactobacillus rhamnosus GG (LGG). Compared to the data obtained by DNA analysis, a significantly higher abundance of OTUs was accounted for by RNA analysis. Moreover, rRNA based analysis showed a modulation of the active gut microbial population in the DIO group receiving LGG, thus reflecting a change in the induced obesity status of the host. As one of the most widely studied probiotics the functionality of LGG has been linked to the alleviation of metabolic syndrome, and, in some cases, to an impact on the microbiome. Yet, it appears that no study has reported thus far on modulation of the active microbiota by LGG treatment. It is postulated that the resulting impact on calorie consumption affects weight gain concomitantly with modulation of the functional structure of the gut microbial population. Using the 16S rRNA based approach therefore decisively increased the precision of gut microbiota metagenome analysis.

  14. Taurine ameliorated homocysteine-induced H9C2 cardiomyocyte apoptosis by modulating endoplasmic reticulum stress.

    Science.gov (United States)

    Zhang, Zhimin; Zhao, Lianyou; Zhou, Yanfen; Lu, Xuanhao; Wang, Zhengqiang; Wang, Jipeng; Li, Wei

    2017-05-01

    Homocysteine (Hcy)-triggered endoplasmic reticulum (ER) stress-mediated endothelial cell apoptosis has been suggested as a cause of Hcy-dependent vascular injury. However, whether ER stress is the molecular mechanism linking Hcy and cardiomyocytes death is unclear. Taurine has been reported to exert cardioprotective effects via various mechanisms. However, whether taurine protects against Hcy-induced cardiomyocyte death by attenuating ER stress is unknown. This study aimed to evaluate the opposite effects of taurine on Hcy-induced cardiomyocyte apoptosis and their underlying mechanisms. Our results demonstrated that low-dose or short-term Hcy treatment increased the expression of glucose-regulated protein 78 (GRP78) and activated protein kinase RNA-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1), and activating transcription factor 6 (ATF6), which in turn prevented apoptotic cell death. High-dose Hcy or prolonged Hcy treatment duration significantly up-regulated levels of C/EBP homologous protein (CHOP), cleaved caspase-12, p-c-Jun N-terminal kinase (JNK), and then triggered apoptotic events. High-dose Hcy also resulted in a decrease in mitochondrial membrane potential (Δψm) and an increase in cytoplasmic cytochrome C and the expression of cleaved caspase-9. Pretreatment of cardiomyocytes with sodium 4-phenylbutyric acid (an ER stress inhibitor) significantly inhibited Hcy-induced apoptosis. Furthermore, blocking the PERK pathway partly alleviated Hcy-induced ER stress-modulated cardiomyocyte apoptosis, and down-regulated the levels of Bax and cleaved caspase-3. Experimental taurine pretreatment inhibited the expression of ER stress-related proteins, and protected against apoptotic events triggered by Hcy-induced ER stress. Taken together, our results suggest that Hcy triggered ER stress in cardiomyocytes, which was the crucial molecular mechanism mediating Hcy-induced cardiomyocyte apoptosis, and the adverse effect of Hcy could be prevented by taurine.

  15. Length-scales of Slab-induced Asthenospheric Deformation from Geodynamic Modeling, Mantle Deformation Fabric, and Synthetic Shear Wave Splitting

    Science.gov (United States)

    Jadamec, M. A.; MacDougall, J.; Fischer, K. M.

    2017-12-01

    The viscosity structure of the Earth's interior is critically important, because it places a first order constraint on plate motion and mantle flow rates. Geodynamic models using a composite viscosity based on experimentally derived flow laws for olivine aggregates show that lateral viscosity variations emerge in the upper mantle due to the subduction dynamics. However, the length-scale of this transition is still not well understood. Two-dimensional numerical models of subduction are presented that investigate the effect of initial slab dip, maximum yield stress (slab strength), and viscosity formulation (Newtonian versus composite) on the emergent lateral viscosity variations in the upper-mantle and magnitude of slab-driven mantle flow velocity. Significant viscosity reductions occur in regions of large flow velocity gradients due to the weakening effect of the dislocation creep deformation mechanism. The dynamic reductions in asthenospheric viscosity (less than 1018 Pa s) occur within approximately 500 km from driving force of the slab, with peak flow velocities occurring in models with a lower yield stress (weaker slab) and higher stress exponent. This leads to a sharper definition of the rheological base of the lithosphere and implies lateral variability in tractions along the base of the lithosphere. As the dislocation creep mechanism also leads to mantle deformation fabric, we then examine the spatial variation in the LPO development in the asthenosphere and calculate synthetic shear wave splitting. The models show that olivine LPO fabric in the asthenosphere generally increases in alignment strength with increased proximity to the slab, but can be transient and spatially variable on small length scales. The vertical flow fields surrounding the slab tip can produce shear-wave splitting variations with back-azimuth that deviate from the predictions of uniform trench-normal anisotropy, a result that bears on the interpretation of complexity in shear

  16. NF-kappa B modulation is involved in celastrol induced human multiple myeloma cell apoptosis.

    Directory of Open Access Journals (Sweden)

    Haiwen Ni

    Full Text Available Celastrol is an active compound extracted from the root bark of the traditional Chinese medicine Tripterygium wilfordii Hook F. To investigate the effect of celastrol on human multiple myeloma cell cycle arrest and apoptosis and explore its molecular mechanism of action. The activity of celastrol on LP-1 cell proliferation was detected by WST-8 assay. The celastrol-induced cell cycle arrest was analyzed by flow cytometry after propidium iodide staining. Nuclear translocation of the nuclear factor kappa B (NF-κB was observed by fluorescence microscope. Celastrol inhibited cell proliferation of LP-1 myeloma cell in a dose-dependent manner with IC50 values of 0.8817 µM, which was mediated through G1 cell cycle arrest and p27 induction. Celastrol induced apoptosis in LP-1 and RPMI 8226 myeloma cells in a time and dose dependent manner, and it involved Caspase-3 activation and NF-κB pathway. Celastrol down-modulated antiapoptotic proteins including Bcl-2 and survivin expression. The expression of NF-κB and IKKa were decreased after celastrol treatment. Celastrol effectively blocked the nuclear translocation of the p65 subunit and induced human multiple myeloma cell cycle arrest and apoptosis by p27 upregulation and NF-kB modulation. It has been demonstrated that the effect of celastrol on NF-kB was HO-1-independent by using zinc protoporphyrin-9 (ZnPPIX, a selective heme oxygenase inhibitor. From the results, it could be inferred that celastrol may be used as a NF-kB inhibitor to inhibit myeloma cell proliferation.

  17. Nitric oxide synthase modulates CFA-induced thermal hyperalgesia through cytokine regulation in mice.

    Science.gov (United States)

    Chen, Yong; Boettger, Michael K; Reif, Andreas; Schmitt, Angelika; Uçeyler, Nurcan; Sommer, Claudia

    2010-03-02

    Although it has been largely demonstrated that nitric oxide synthase (NOS), a key enzyme for nitric oxide (NO) production, modulates inflammatory pain, the molecular mechanisms underlying these effects remain to be clarified. Here we asked whether cytokines, which have well-described roles in inflammatory pain, are downstream targets of NO in inflammatory pain and which of the isoforms of NOS are involved in this process. Intraperitoneal (i.p.) pretreatment with 7-nitroindazole sodium salt (7-NINA, a selective neuronal NOS inhibitor), aminoguanidine hydrochloride (AG, a selective inducible NOS inhibitor), L-N(G)-nitroarginine methyl ester (L-NAME, a non-selective NOS inhibitor), but not L-N(5)-(1-iminoethyl)-ornithine (L-NIO, a selective endothelial NOS inhibitor), significantly attenuated thermal hyperalgesia induced by intraplantar (i.pl.) injection of complete Freund's adjuvant (CFA). Real-time reverse transcription-polymerase chain reaction (RT-PCR) revealed a significant increase of nNOS, iNOS, and eNOS gene expression, as well as tumor necrosis factor-alpha (TNF), interleukin-1 beta (IL-1beta), and interleukin-10 (IL-10) gene expression in plantar skin, following CFA. Pretreatment with the NOS inhibitors prevented the CFA-induced increase of the pro-inflammatory cytokines TNF and IL-1beta. The increase of the anti-inflammatory cytokine IL-10 was augmented in mice pretreated with 7-NINA or L-NAME, but reduced in mice receiving AG or L-NIO. NNOS-, iNOS- or eNOS-knockout (KO) mice had lower gene expression of TNF, IL-1beta, and IL-10 following CFA, overall corroborating the inhibitor data. These findings lead us to propose that inhibition of NOS modulates inflammatory thermal hyperalgesia by regulating cytokine expression.

  18. Nitric oxide synthase modulates CFA-induced thermal hyperalgesia through cytokine regulation in mice

    Directory of Open Access Journals (Sweden)

    Üçeyler Nurcan

    2010-03-01

    Full Text Available Abstract Background Although it has been largely demonstrated that nitric oxide synthase (NOS, a key enzyme for nitric oxide (NO production, modulates inflammatory pain, the molecular mechanisms underlying these effects remain to be clarified. Here we asked whether cytokines, which have well-described roles in inflammatory pain, are downstream targets of NO in inflammatory pain and which of the isoforms of NOS are involved in this process. Results Intraperitoneal (i.p. pretreatment with 7-nitroindazole sodium salt (7-NINA, a selective neuronal NOS inhibitor, aminoguanidine hydrochloride (AG, a selective inducible NOS inhibitor, L-N(G-nitroarginine methyl ester (L-NAME, a non-selective NOS inhibitor, but not L-N(5-(1-iminoethyl-ornithine (L-NIO, a selective endothelial NOS inhibitor, significantly attenuated thermal hyperalgesia induced by intraplantar (i.pl. injection of complete Freund's adjuvant (CFA. Real-time reverse transcription-polymerase chain reaction (RT-PCR revealed a significant increase of nNOS, iNOS, and eNOS gene expression, as well as tumor necrosis factor-alpha (TNF, interleukin-1 beta (IL-1β, and interleukin-10 (IL-10 gene expression in plantar skin, following CFA. Pretreatment with the NOS inhibitors prevented the CFA-induced increase of the pro-inflammatory cytokines TNF and IL-1β. The increase of the anti-inflammatory cytokine IL-10 was augmented in mice pretreated with 7-NINA or L-NAME, but reduced in mice receiving AG or L-NIO. NNOS-, iNOS- or eNOS-knockout (KO mice had lower gene expression of TNF, IL-1β, and IL-10 following CFA, overall corroborating the inhibitor data. Conclusion These findings lead us to propose that inhibition of NOS modulates inflammatory thermal hyperalgesia by regulating cytokine expression.

  19. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans.

    Science.gov (United States)

    Nitsche, M A; Fricke, K; Henschke, U; Schlitterlau, A; Liebetanz, D; Lang, N; Henning, S; Tergau, F; Paulus, W

    2003-11-15

    Transcranial direct current stimulation (tDCS) of the human motor cortex results in polarity-specific shifts of cortical excitability during and after stimulation. Anodal tDCS enhances and cathodal stimulation reduces excitability. Animal experiments have demonstrated that the effect of anodal tDCS is caused by neuronal depolarisation, while cathodal tDCS hyperpolarises cortical neurones. However, not much is known about the ion channels and receptors involved in these effects. Thus, the impact of the sodium channel blocker carbamazepine, the calcium channel blocker flunarizine and the NMDA receptor antagonist dextromethorphane on tDCS-elicited motor cortical excitability changes of healthy human subjects were tested. tDCS-protocols inducing excitability alterations (1) only during tDCS and (2) eliciting long-lasting after-effects were applied after drug administration. Carbamazepine selectively eliminated the excitability enhancement induced by anodal stimulation during and after tDCS. Flunarizine resulted in similar changes. Antagonising NMDA receptors did not alter current-generated excitability changes during a short stimulation, which elicits no after-effects, but prevented the induction of long-lasting after-effects independent of their direction. These results suggest that, like in other animals, cortical excitability shifts induced during tDCS in humans also depend on membrane polarisation, thus modulating the conductance of sodium and calcium channels. Moreover, they suggest that the after-effects may be NMDA receptor dependent. Since NMDA receptors are involved in neuroplastic changes, the results suggest a possible application of tDCS in the modulation or induction of these processes in a clinical setting. The selective elimination of tDCS-driven excitability enhancements by carbamazepine proposes a role for this drug in focussing the effects of cathodal tDCS, which may have important future clinical applications.

  20. On the possibility of a quantum bremsstrahlung induced self-modulation of a relativistic beam channeling in crystals

    International Nuclear Information System (INIS)

    Vysotskij, V.I.; Vorontsov, V.I.; Kuz'min, R.N.

    1987-01-01

    Physical predictions and quantitative estimations of a new physical effect - the phenomenon of quantum bremsstrahlung induced selfmodulation of a fast beam channeling in the crystals are considered and carried out. The occurrence of induced self-modulation results from nonstationary interference of proper waves of a channeled particle in the range of mutual coherence and with account of difference of selective bremsstrahlung losses of these waves. The modulation frequency for superrelativistic particles is shown to lie within the range from soft X-ray to hard gamma range. It proceeds from the estimations that modulation at these frequencies is preserved within the limits of macroscopically large ranges after the crystal attaining several meters. The maximum frequency of modulation for nonrelativistic heavy particles (protons) corresponds to the optical range

  1. A3 Adenosine Receptor Allosteric Modulator Induces an Anti-Inflammatory Effect: In Vivo Studies and Molecular Mechanism of Action

    Directory of Open Access Journals (Sweden)

    Shira Cohen

    2014-01-01

    Full Text Available The A3 adenosine receptor (A3AR is overexpressed in inflammatory cells and in the peripheral blood mononuclear cells of individuals with inflammatory conditions. Agonists to the A3AR are known to induce specific anti-inflammatory effects upon chronic treatment. LUF6000 is an allosteric compound known to modulate the A3AR and render the endogenous ligand adenosine to bind to the receptor with higher affinity. The advantage of allosteric modulators is their capability to target specifically areas where adenosine levels are increased such as inflammatory and tumor sites, whereas normal body cells and tissues are refractory to the allosteric modulators due to low adenosine levels. LUF6000 administration induced anti-inflammatory effect in 3 experimental animal models of rat adjuvant induced arthritis, monoiodoacetate induced osteoarthritis, and concanavalin A induced liver inflammation in mice. The molecular mechanism of action points to deregulation of signaling proteins including PI3K, IKK, IκB, Jak-2, and STAT-1, resulting in decreased levels of NF-κB, known to mediate inflammatory effects. Moreover, LUF6000 induced a slight stimulatory effect on the number of normal white blood cells and neutrophils. The anti-inflammatory effect of LUF6000, mechanism of action, and the differential effects on inflammatory and normal cells position this allosteric modulator as an attractive and unique drug candidate.

  2. The full-length E1-circumflexE4 protein of human papillomavirus type 18 modulates differentiation-dependent viral DNA amplification and late gene expression

    International Nuclear Information System (INIS)

    Wilson, Regina; Ryan, Gordon B.; Knight, Gillian L.; Laimins, Laimonis A.; Roberts, Sally

    2007-01-01

    Activation of the productive phase of the human papillomavirus (HPV) life cycle in differentiated keratinocytes is coincident with high-level expression of E1-circumflexE4 protein. To determine the role of E1-circumflexE4 in the HPV replication cycle, we constructed HPV18 mutant genomes in which expression of the full-length E1-circumflexE4 protein was abrogated. Undifferentiated keratinocytes containing mutant genomes showed enhanced proliferation when compared to cells containing wildtype genomes, but there were no differences in maintenance of viral episomes. Following differentiation, cells with mutant genomes exhibited reduced levels of viral DNA amplification and late gene expression, compared to wildtype genome-containing cells. This indicates that HPV18 E1-circumflexE4 plays an important role in regulating HPV late functions, and it may also function in the early phase of the replication cycle. Our finding that full-length HPV18 E1-circumflexE4 protein plays a significant role in promoting viral genome amplification concurs with a similar report with HPV31, but is in contrast to an HPV11 study where viral DNA amplification was not dependent on full-length E1-circumflexE4 expression, and to HPV16 where only C-terminal truncations in E1-circumflexE4 abrogated vegetative genome replication. This suggests that type-specific differences exist between various E1-circumflexE4 proteins

  3. Modulation of induced gamma band activity in the human EEG by attention and visual information processing.

    Science.gov (United States)

    Müller, M M; Gruber, T; Keil, A

    2000-12-01

    Here we present a series of four studies aimed to investigate the link between induced gamma band activity in the human EEG and visual information processing. We demonstrated and validated the modulation of spectral gamma band power by spatial selective visual attention. When subjects attended to a certain stimulus, spectral power was increased as compared to when the same stimulus was ignored. In addition, we showed a shift in spectral gamma band power increase to the contralateral hemisphere when subjects shifted their attention to one visual hemifield. The following study investigated induced gamma band activity and the perception of a Gestalt. Ambiguous rotating figures were used to operationalize the law of good figure (gute Gestalt). We found increased gamma band power at posterior electrode sites when subjects perceived an object. In the last experiment we demonstrated a differential hemispheric gamma band activation when subjects were confronted with emotional pictures. Results of the present experiments in combination with other studies presented in this volume are supportive for the notion that induced gamma band activity in the human EEG is closely related to visual information processing and attentional perceptual mechanisms.

  4. Acute Stress-Induced Epigenetic Modulations and Their Potential Protective Role Toward Depression

    Directory of Open Access Journals (Sweden)

    Francesco Rusconi

    2018-05-01

    Full Text Available Psychiatric disorders entail maladaptive processes impairing individuals’ ability to appropriately interface with environment. Among them, depression is characterized by diverse debilitating symptoms including hopelessness and anhedonia, dramatically impacting the propensity to live a social and active life and seriously affecting working capability. Relevantly, besides genetic predisposition, foremost risk factors are stress-related, such as experiencing chronic psychosocial stress—including bullying, mobbing and abuse—, and undergoing economic crisis or chronic illnesses. In the last few years the field of epigenetics promised to understand core mechanisms of gene-environment crosstalk, contributing to get into pathogenic processes of many disorders highly influenced by stressful life conditions. However, still very little is known about mechanisms that tune gene expression to adapt to the external milieu. In this Perspective article, we discuss a set of protective, functionally convergent epigenetic processes induced by acute stress in the rodent hippocampus and devoted to the negative modulation of stress-induced immediate early genes (IEGs transcription, hindering stress-driven morphostructural modifications of corticolimbic circuitry. We also suggest that chronic stress damaging protective epigenetic mechanisms, could bias the functional trajectory of stress-induced neuronal morphostructural modification from adaptive to maladaptive, contributing to the onset of depression in vulnerable individuals. A better understanding of the epigenetic response to stress will be pivotal to new avenues of therapeutic intervention to treat depression, especially in light of limited efficacy of available antidepressant drugs.

  5. Modulation of BCR Signaling by the Induced Dimerization of Receptor-Associated SYK

    Directory of Open Access Journals (Sweden)

    Mark L. Westbroek

    2017-12-01

    Full Text Available Clustering of the B cell antigen receptor (BCR by polyvalent antigens is transmitted through the SYK tyrosine kinase to the activation of multiple intracellular pathways that determine the physiological consequences of receptor engagement. To explore factors that modulate the quantity and quality of signals sent by the crosslinked BCR, we developed a novel chemical mediator of dimerization to induce clustering of receptor-associated SYK. To accomplish this, we fused SYK with E. coli dihydrofolate reductase (eDHFR, which binds the small molecule trimethoprim (TMP with high affinity and selectivity and synthesized a dimer of TMP with a flexible linker. The TMP dimer is able to induce the aggregation of eDHFR-linked SYK in live cells. The induced dimerization of SYK bound to the BCR differentially regulates the activation of downstream transcription factors, promoting the activation of Nuclear Factor of Activated T cells (NFAT without affecting the activation of NFκB. The dimerization of SYK enhances the duration but not the amplitude of calcium mobilization by enhancing the extent and duration of its interaction with the crosslinked BCR at the plasma membrane.

  6. Efficacy of Clove Oil in Modulating Radiation-Induced Some Biochemical Disorders in Male Rats

    International Nuclear Information System (INIS)

    Nada, A.S.

    2011-01-01

    The current study was conducted to evaluate the possible modulating efficacy of prolonged oral administration of clove oil against gamma irradiation-induced some biochemical disorders in male rats. Clove oil was orally administrated in a concentration of 200 mg/kg body wt daily for 21 days before irradiation at a single dose of 7 Gy and for 7 days post exposure. Transaminases (AST and ALT), alkaline phosphatase (ALP), lipid profile; cholesterol, triglycerides (T.G) and low density lipoprotein (LDL) as well as serum glucose level were determined. Also, liver reduced glutathione (GSH) content and lipid peroxidation were estimated in addition to the hepatic concentration levels of some trace elements (Fe, Cu, Zn, and Se). Rats exposed to ionizing radiation revealed transaminases disorders, lipid abnormalities, elevation in serum glucose, ALP activity as well as liver TBARS. A sharp drop in glutathione was recorded. Also, radiation induced alteration in hepatic trace element contents. The obtained data show that rats treated with clove oil before and after whole body gamma irradiation exhibited significant amelioration in liver marker enzymes, serum glucose and lipids as well as noticeable improvement in liver glutathione contents. Clove oil was also effective in minimizing lipid pr oxidation and trace element alteration induced by irradiation. It could be concluded that clove oil exerts a beneficial protective role against gamma irradiation

  7. Smoothened-antagonists reverse homogentisic acid-induced alterations of Hedgehog signaling and primary cilium length in alkaptonuria.

    Science.gov (United States)

    Gambassi, Silvia; Geminiani, Michela; Thorpe, Stephen D; Bernardini, Giulia; Millucci, Lia; Braconi, Daniela; Orlandini, Maurizio; Thompson, Clare L; Petricci, Elena; Manetti, Fabrizio; Taddei, Maurizio; Knight, Martin M; Santucci, Annalisa

    2017-11-01

    Alkaptonuria (AKU) is an ultra-rare genetic disease, in which the accumulation of a toxic metabolite, homogentisic acid (HGA) leads to the systemic development of ochronotic aggregates. These aggregates cause severe complications mainly at the level of joints with extensive degradation of the articular cartilage. Primary cilia have been demonstrated to play an essential role in development and the maintenance of articular cartilage homeostasis, through their involvement in mechanosignaling and Hedgehog signaling pathways. Hedgehog signaling has been demonstrated to be activated in osteoarthritis (OA) and to drive cartilage degeneration in vivo. The numerous similarities between OA and AKU suggest that primary cilia Hedgehog signaling may also be altered in AKU. Thus, we characterized an AKU cellular model in which healthy chondrocytes were treated with HGA (66 µM) to replicate AKU cartilage pathology. We investigated the degree of activation of the Hedgehog signaling pathway and how treatment with inhibitors of the receptor Smoothened (Smo) influenced Hedgehog activation and primary cilia structure. The results obtained in this work provide a further step in the comprehension of the pathophysiological features of AKU, suggesting a potential therapeutic approach to modulate AKU cartilage degradation processes through manipulation of the Hedgehog pathway. © 2016 Wiley Periodicals, Inc.

  8. Direct current modulation of spin-Hall-induced spin torque ferromagnetic resonance in platinum/permalloy bilayer thin films

    Science.gov (United States)

    Hirayama, Shigeyuki; Mitani, Seiji; Otani, YoshiChika; Kasai, Shinya

    2018-06-01

    We examined the spin-Hall-induced spin torque ferromagnetic resonance (ST-FMR) in platinum/permalloy bilayer thin films under bias direct current (DC). The bias DC modulated the symmetric components of the ST-FMR spectra, while no dominant modulation was found in the antisymmetric components. A detailed analysis in combination with simple model calculations clarified that the major origin of the modulation can be attributed to the DC resistance change under the precessional motion of magnetization. This effect is the second order contribution for the precession angle, even though the contribution can be comparable to the rectification voltage under some specific conditions.

  9. NDR1 modulates the UV-induced DNA-damage checkpoint and nucleotide excision repair

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong-Min; Choi, Ji Ye [Department of Biological Science, Dong-A University, Busan (Korea, Republic of); Yi, Joo Mi [Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan (Korea, Republic of); Chung, Jin Woong; Leem, Sun-Hee; Koh, Sang Seok [Department of Biological Science, Dong-A University, Busan (Korea, Republic of); Kang, Tae-Hong, E-mail: thkang@dau.ac.kr [Department of Biological Science, Dong-A University, Busan (Korea, Republic of)

    2015-06-05

    Nucleotide excision repair (NER) is the sole mechanism of UV-induced DNA lesion repair in mammals. A single round of NER requires multiple components including seven core NER factors, xeroderma pigmentosum A–G (XPA–XPG), and many auxiliary effector proteins including ATR serine/threonine kinase. The XPA protein helps to verify DNA damage and thus plays a rate-limiting role in NER. Hence, the regulation of XPA is important for the entire NER kinetic. We found that NDR1, a novel XPA-interacting protein, modulates NER by modulating the UV-induced DNA-damage checkpoint. In quiescent cells, NDR1 localized mainly in the cytoplasm. After UV irradiation, NDR1 accumulated in the nucleus. The siRNA knockdown of NDR1 delayed the repair of UV-induced cyclobutane pyrimidine dimers in both normal cells and cancer cells. It did not, however, alter the expression levels or the chromatin association levels of the core NER factors following UV irradiation. Instead, the NDR1-depleted cells displayed reduced activity of ATR for some set of its substrates including CHK1 and p53, suggesting that NDR1 modulates NER indirectly via the ATR pathway. - Highlights: • NDR1 is a novel XPA-interacting protein. • NDR1 accumulates in the nucleus in response to UV irradiation. • NDR1 modulates NER (nucleotide excision repair) by modulating the UV-induced DNA-damage checkpoint response.

  10. Cardiovascular Mitochondrial Dysfunction Induced by Cocaine: Biomarkers and Possible Beneficial Effects of Modulators of Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Manuela Graziani

    2017-01-01

    Full Text Available Cocaine abuse has long been known to cause morbidity and mortality due to its cardiovascular toxic effects. The pathogenesis of the cardiovascular toxicity of cocaine use has been largely reviewed, and the most recent data indicate a fundamental role of oxidative stress in cocaine-induced cardiovascular toxicity, indicating that mitochondrial dysfunction is involved in the mechanisms of oxidative stress. The comprehension of the mechanisms involving mitochondrial dysfunction could help in selecting the most appropriate mitochondria injury biological marker, such as superoxide dismutase-2 activity and glutathionylated hemoglobin. The potential use of modulators of oxidative stress (mitoubiquinone, the short-chain quinone idebenone, and allopurinol in the treatment of cocaine cardiotoxic effects is also suggested to promote further investigations on these potential mitochondria-targeted antioxidant strategies.

  11. Modulation of lipopolysaccharide-induced chorioamnionitis in fetal sheep by maternal betamethasone.

    Science.gov (United States)

    Wolfe, Katherine B; Snyder, Candice C; Gisslen, Tate; Kemp, Matthew W; Newnham, John P; Kramer, Boris W; Jobe, Alan H; Kallapur, Suhas

    2013-12-01

    We tested the hypothesis that the order of exposure to maternal betamethasone and intra-amniotic (IA) lipopolysaccharide (LPS) will differentially modulate inflammation in the chorioamnion. Time-mated Merino ewes with singleton fetuses received saline alone, IA LPS alone, maternal betamethasone before LPS, or betamethasone after LPS. We assessed inflammatory markers in the chorioamnion and the amniotic fluid. Inflammatory cell infiltration, expression of myeloperoxidase, serum amyloid A3 (acute phase reactant) in the chorioamnion, and levels of interleukin (IL)-8 in the amniotic fluid increased 7 days after LPS exposure. Betamethasone prior to LPS decreased infiltration of the inflammatory cells, CD3+ T cells, and decreased the levels of IL-1β and IL-8 in the amniotic fluid. Betamethasone 7 days prior to LPS exposure suppressed LPS-induced inflammation. The markers of inflammation largely had returned to the baseline 14 days after LPS exposure.

  12. Stress induced modulation of magnetic domain diffraction of single crystalline yttrium iron garnet

    Science.gov (United States)

    Mito, Shinichiro; Yoshihara, Yuki; Takagi, Hiroyuki; Inoue, Mitsuteru

    2018-05-01

    Stress induced modulation of the diffraction angle and efficiency of the light reflected from a stripe-domain magnetic garnet was demonstrated. The spacing of the magnetic domain was changed using the inverse magnetostriction effect. The sample structure was a piezo actuator/Al reflection layer/magnetic garnet substrate. A diffraction angle between the 0th and 1st ordered light was changed from 9.12 deg. to 10.20 deg. This result indicates that the domain spacing was changed from 3.3 μm to 3.0 μm. The change of the diffraction angle was irreversible for the voltage. However, reversible, linear and continuous change of the diffraction efficiency was observed. These results could be applicable for a voltage-driven optical solid state light deflector with low power consumption and high switching speed.

  13. Similarities between exercise-induced hypoalgesia and conditioned pain modulation in humans

    DEFF Research Database (Denmark)

    Vægter, Henrik Bjarke; Handberg, Gitte; Graven-Nielsen, Thomas

    2014-01-01

    Pain inhibitory mechanisms are often assessed by paradigms of exercise-induced hypoalgesia (EIH) and conditioned pain modulation (CPM). In this study it was hypothesised that the spatial and temporal manifestations of EIH and CPM were comparable. Eighty healthy subjects (40 females), between 18......-65 years participated in this randomized repeated-measures crossover trial with data collection on two different days. CPM was assessed by two different cold pressor tests (hand,foot). EIH was assessed through two intensities of aerobic bicycling exercises and two intensities of isometric muscle...... tests and after all of the exercise conditions, except low intensity bicycling. EIH after bicycling was increased in women compared to men. CPM and the EIH response after isometric exercises were comparable in men and women and not affected by age. The EIH response was larger in the exercising body part...

  14. Characterization and pharmacological modulation of intestinal inflammation induced by ionizing radiation

    International Nuclear Information System (INIS)

    Gremy, O.

    2006-12-01

    The use of radiation therapy to treat abdominal and pelvic malignancies inevitably involves exposure of healthy intestinal tissues which are very radiosensitive. As a result, most patients experience symptoms such as abdominal pain, nausea and diarrhea. Such symptoms are associated with acute damage to intestine mucosa including radio-induced inflammatory processes. With a rat model of colorectal fractionated radiation, we have shown a gradual development of a colonic inflammation during radiation planning, without evident tissue injury. This radio-induced inflammation is characterized not only by the sur expressions of pro-inflammatory cytokines and chemokines, a NF-kB activation, but also by a repression of anti-inflammatory cytokines and the nuclear receptors PPARa and RXRa, both involved in inflammation control. This early inflammation is associated with a discreet neutrophil recruitment and a macrophage accumulation. Macrophages are still abnormally numerous in tissue 27 weeks after the last day of irradiation. Inflammatory process is the most often related to a specific immune profile, either a type Th1 leading to a cellular immune response, or a type Th2 for humoral immunity. According to our studies, a unique abdominal radiation in the rat induces an ileum inflammation and an immune imbalance resulting in a Th2-type profile. Inhibiting this profile is important as its persistence promotes chronic inflammation, predisposition to bacterial infections and fibrosis which is the main delayed side-effect of radiotherapy. The treatment of rats with an immuno-modulator compound, the caffeic acid phenethyl ester (C.A.P.E.), have the potential to both reduce ileal mucosal inflammation and inhibit the radio-induced Th2 status. In order to search new therapeutic molecular target, we has been interested in the PPARg nuclear receptor involved in the maintenance of colon mucosal integrity. In our abdominal irradiation model, we have demonstrated that the prophylactic

  15. Turbulence modulation induced by bubble swarm in oscillating-grid turbulence

    International Nuclear Information System (INIS)

    Morikawa, Koichi; Urano, Shigeyuki; Saito, Takayuki

    2007-01-01

    In the present study, liquid-phase turbulence modulation induced by a bubble swarm ascending in arbitrary turbulence was experimentally investigated. Liquid-phase homogeneous isotropic turbulence was formed using an oscillating grid in a cylindrical acrylic vessel of 149 mm in inner diameter. A bubble swarm consisting of 19 bubbles of 2.8 mm in equivalent diameter was examined; the bubble size and launching time were completely controlled using a bubble launching device through audio speakers. This bubble launching device was able to repeatedly control the bubble swarm arbitrarily and precisely. The bubble swarm was launched at a frequency of 4 Hz. The liquid phase motion was measured via two LDA (Laser Doppler Anemometer) probes. The turbulence intensity, spatial correlation and integral scale were calculated from LDA data obtained by the two spatially-separate-point measurement. When the bubble swarm was added, the turbulence intensity dramatically changed. The original isotropic turbulence was modulated to the anisotropic turbulence by the mutual interference between the bubble swarm and ambient isotropic turbulence. The integral scales were calculated from the spatial correlation function. The effects of the bubble swarm on the integral scales showed the tendencies similar to those on turbulence intensity. (author)

  16. Significant modulation of the hepatic proteome induced by exposure to low temperature in Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Kazumichi Nagasawa

    2013-08-01

    The African clawed frog, Xenopus laevis, is an ectothermic vertebrate that can survive at low environmental temperatures. To gain insight into the molecular events induced by low body temperature, liver proteins were evaluated at the standard laboratory rearing temperature (22°C, control and a low environmental temperature (5°C, cold exposure. Using nano-flow liquid chromatography coupled with tandem mass spectrometry, we identified 58 proteins that differed in abundance. A subsequent Gene Ontology analysis revealed that the tyrosine and phenylalanine catabolic processes were modulated by cold exposure, which resulted in decreases in hepatic tyrosine and phenylalanine, respectively. Similarly, levels of pyruvate kinase and enolase, which are involved in glycolysis and glycogen synthesis, were also decreased, whereas levels of glycogen phosphorylase, which participates in glycogenolysis, were increased. Therefore, we measured metabolites in the respective pathways and found that levels of hepatic glycogen and glucose were decreased. Although the liver was under oxidative stress because of iron accumulation caused by hepatic erythrocyte destruction, the hepatic NADPH/NADP ratio was not changed. Thus, glycogen is probably utilized mainly for NADPH supply rather than for energy or glucose production. In conclusion, X. laevis responds to low body temperature by modulating its hepatic proteome, which results in altered carbohydrate metabolism.

  17. High frequency electrical stimulation concurrently induces central sensitization and ipsilateral inhibitory pain modulation.

    Science.gov (United States)

    Vo, L; Drummond, P D

    2013-03-01

    In healthy humans, analgesia to blunt pressure develops in the ipsilateral forehead during various forms of limb pain. The aim of the current study was to determine whether this analgesic response is induced by ultraviolet B radiation (UVB), which evokes signs of peripheral sensitization, or by high-frequency electrical stimulation (HFS), which triggers signs of central sensitization. Before and after HFS and UVB conditioning, sensitivity to heat and to blunt and sharp stimuli was assessed at and adjacent to the treated site in the forearm. In addition, sensitivity to blunt pressure was measured bilaterally in the forehead. The effect of ipsilateral versus contralateral temple cooling on electrically evoked pain in the forearm was then examined, to determine whether HFS or UVB conditioning altered inhibitory pain modulation. UVB conditioning triggered signs of peripheral sensitization, whereas HFS conditioning triggered signs of central sensitization. Importantly, ipsilateral forehead analgesia developed after HFS but not UVB conditioning. In addition, decreases in electrically evoked pain at the HFS-treated site were greater during ipsilateral than contralateral temple cooling, whereas decreases at the UVB-treated site were similar during both procedures. HFS conditioning induced signs of central sensitization in the forearm and analgesia both in the ipsilateral forehead and the HFS-treated site. This ipsilateral analgesia was not due to peripheral sensitization or other non-specific effects, as it failed to develop after UVB conditioning. Thus, the supra-spinal mechanisms that evoke central sensitization might also trigger a hemilateral inhibitory pain modulation process. This inhibitory process could sharpen the boundaries of central sensitization or limit its spread. © 2012 European Federation of International Association for the Study of Pain Chapters.

  18. Nocebo-induced modulation of cerebral itch processing - An fMRI study.

    Science.gov (United States)

    van de Sand, Missanga F; Menz, Mareike M; Sprenger, Christian; Büchel, Christian

    2018-02-01

    It has been shown repeatedly that perceiving itch-related pictures or listening to a lecture on itch can enhance itch sensation and scratching behaviour (Niemeier and Gieler, 2000; Holle et al., 2012; Lloyd et al., 2013), indicating that itch is strongly influenced by expectations. Using fMRI, we investigated the neural correlates of the itch-related nocebo effect in healthy male and female human subjects. Itch sensation on the left forearm was induced by cutaneous histamine application and thermally modulated, with cooling leading to higher itch. Nocebo-induced aggravation of histaminergic itch was achieved by ostensibly treating volunteers with "transcutaneous electrical nerve stimulation (TENS)" about which subjects were instructed that it would increase itch. During a conditioning phase subjects indeed experienced stronger itch due to slightly altered cooling and histamine concentrations, but attributed it to the alleged "TENS stimulation". Importantly, in the subsequent test phase where no "TENS" or electrical stimulation was applied, volunteers significantly reported stronger itch during the nocebo as compared to the control condition. Comparing BOLD responses during nocebo in contrast to control, we observed increased activity in contralateral (right) rolandic operculum. Opercular involvement was repeatedly reported in studies related to the expectation of stimulus intensification and might thus represent an early area integrating expectation information with somatosensory information. Finally, functional coupling between the insula and the periaqueductal gray (PAG) was enhanced specifically in the nocebo condition. This cortex-PAG interaction indicates that context-dependent top-down modulation during itch might represent a shared mechanism with other modalities such as pain. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Modulation of modeled microgravity on radiation-induced bystander effects in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ting [Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031 (China); Sun, Qiao [Space Molecular Biological Lab, China Academy of Space Technology, Beijing 100086 (China); Xu, Wei; Li, Fanghua [Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031 (China); Li, Huasheng; Lu, Jinying [Space Molecular Biological Lab, China Academy of Space Technology, Beijing 100086 (China); Wu, Lijun; Wu, Yuejin [Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031 (China); Liu, Min [Space Molecular Biological Lab, China Academy of Space Technology, Beijing 100086 (China); Bian, Po [Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031 (China)

    2015-03-15

    Highlights: • The effects of microgravity on the radiation-induced bystander effects (RIBE) were definitely demonstrated. • The effects of microgravity on RIBE might be divergent for different biological events. • The microgravity mainly modified the generation or transport of bystander signals at early stage. - Abstract: Both space radiation and microgravity have been demonstrated to have inevitable impact on living organisms during space flights and should be considered as important factors for estimating the potential health risk for astronauts. Therefore, the question whether radiation effects could be modulated by microgravity is an important aspect in such risk evaluation. Space particles at low dose and fluence rate, directly affect only a fraction of cells in the whole organism, which implement radiation-induced bystander effects (RIBE) in cellular response to space radiation exposure. The fact that all of the RIBE experiments are carried out in a normal gravity condition bring forward the need for evidence regarding the effect of microgravity on RIBE. In the present study, a two-dimensional rotation clinostat was adopted to demonstrate RIBE in microgravity conditions, in which the RIBE was assayed using an experimental system of root-localized irradiation of Arabidopsis thaliana (A. thaliana) plants. The results showed that the modeled microgravity inhibited significantly the RIBE-mediated up-regulation of expression of the AtRAD54 and AtRAD51 genes, generation of reactive oxygen species (ROS) and transcriptional activation of multicopy P35S:GUS, but made no difference to the induction of homologous recombination by RIBE, showing divergent responses of RIBE to the microgravity conditions. The time course of interaction between the modeled microgravity and RIBE was further investigated, and the results showed that the microgravity mainly modulated the processes of the generation or translocation of the bystander signal(s) in roots.

  20. Fatigue correlates with the decrease in parasympathetic sinus modulation induced by a cognitive challenge

    Science.gov (United States)

    2014-01-01

    Background It is known that enhancement of sympathetic nerve activity based on a decrease in parasympathetic nerve activity is associated with fatigue induced by mental tasks lasting more than 30 min. However, to measure autonomic nerve function and assess fatigue levels in both clinical and industrial settings, shorter experimental durations and more sensitive measurement methods are needed. The aim of the present study was to establish an improved method for inducing fatigue and evaluating the association between it and autonomic nerve activity. Methods Twenty-eight healthy female college students participated in the study. We used a kana pick-out test (KPT) as a brief verbal cognitive task and recorded electrocardiography (ECG) to measure autonomic nerve activity. The experimental design consisted of a 16-min period of ECG: A pre-task resting state with eyes open for 3 min and eyes closed for 3 min, the 4-min KPT, and a post-task resting state with eyes open for 3 min and eyes closed for 3 min. Results Baseline fatigue sensation, measured by a visual analogue scale before the experiment, was associated with the decrease in parasympathetic sinus modulation, as indicated the by ratio of low-frequency component power (LF) to high-frequency component power (HF), during the KPT. The LF/HF ratio during the post-KPT rest with eyes open tended to be greater than the ratio during the KPT and correlated with fatigue sensation. Fatigue sensation was correlated negatively with log-transformed HF, which is an index of parasympathetic sinus modulation, during the post-KPT rest with eyes open. Conclusions The methods described here are useful for assessing the association between fatigue sensation and autonomic nerve activity using a brief cognitive test in healthy females. PMID:25069864

  1. Radiation-Induced Cancers From Modern Radiotherapy Techniques: Intensity-Modulated Radiotherapy Versus Proton Therapy

    International Nuclear Information System (INIS)

    Yoon, Myonggeun; Ahn, Sung Hwan; Kim, Jinsung; Shin, Dong Ho; Park, Sung Yong; Lee, Se Byeong; Shin, Kyung Hwan; Cho, Kwan Ho

    2010-01-01

    Purpose: To assess and compare secondary cancer risk resulting from intensity-modulated radiotherapy (IMRT) and proton therapy in patients with prostate and head-and-neck cancer. Methods and Materials: Intensity-modulated radiotherapy and proton therapy in the scattering mode were planned for 5 prostate caner patients and 5 head-and-neck cancer patients. The secondary doses during irradiation were measured using ion chamber and CR-39 detectors for IMRT and proton therapy, respectively. Organ-specific radiation-induced cancer risk was estimated by applying organ equivalent dose to dose distributions. Results: The average secondary doses of proton therapy for prostate cancer patients, measured 20-60cm from the isocenter, ranged from 0.4 mSv/Gy to 0.1 mSv/Gy. The average secondary doses of IMRT for prostate patients, however, ranged between 3 mSv/Gy and 1 mSv/Gy, approximately one order of magnitude higher than for proton therapy. Although the average secondary doses of IMRT were higher than those of proton therapy for head-and-neck cancers, these differences were not significant. Organ equivalent dose calculations showed that, for prostate cancer patients, the risk of secondary cancers in out-of-field organs, such as the stomach, lungs, and thyroid, was at least 5 times higher for IMRT than for proton therapy, whereas the difference was lower for head-and-neck cancer patients. Conclusions: Comparisons of organ-specific organ equivalent dose showed that the estimated secondary cancer risk using scattering mode in proton therapy is either significantly lower than the cases in IMRT treatment or, at least, does not exceed the risk induced by conventional IMRT treatment.

  2. Integrated modulation of phorbol ester-induced Raf activation in EL4 lymphoma cells.

    Science.gov (United States)

    Han, Shujie; Meier, Kathryn E

    2009-05-01

    The EL4 murine lymphoma cell line exists in variant phenotypes that differ with respect to responses to the tumor promoter phorbol 12-myristate 13-acetate (PMA1). Previous work showed that "PMA-sensitive" cells, characterized by a high magnitude of PMA-induced Erk activation, express RasGRP, a phorbol ester receptor that directly activates Ras. In "PMA-resistant" and "intermediate" EL4 cell lines, PMA induces Erk activation to lesser extents, but with a greater response in intermediate cells. In the current study, these cell lines were used to examine mechanisms of Raf-1 modulation. Phospho-specific antibodies were utilized to define patterns and kinetics of Raf-1 phosphorylation on several sites. Further studies showed that Akt is constitutively activated to a greater extent in PMA-resistant than in PMA-sensitive cells, and also to a greater extent in resistant than intermediate cells. Akt negatively regulates Raf-1 activation (Ser259), partially explaining the difference between resistant and intermediate cells. Erk activation exerts negative feedback on Raf-1 (Ser289/296/301), thus resulting in earlier termination of the signal in cells with a higher level of Erk activation. RKIP, a Raf inhibitory protein, is expressed at higher levels in resistant cells than in sensitive or intermediate cells. Knockdown of RKIP increases Erk activation and also negative feedback. In conclusion, this study delineates Raf-1 phosphorylation events occurring in response to PMA in cell lines with different extents of Erk activation. Variations in the levels of expression and activation of multiple signaling proteins work in an integrated fashion to modulate the extent and duration of Erk activation.

  3. Hydrogen Gas Is Involved in Auxin-Induced Lateral Root Formation by Modulating Nitric Oxide Synthesis

    Directory of Open Access Journals (Sweden)

    Zeyu Cao

    2017-10-01

    Full Text Available Metabolism of molecular hydrogen (H2 in bacteria and algae has been widely studied, and it has attracted increasing attention in the context of animals and plants. However, the role of endogenous H2 in lateral root (LR formation is still unclear. Here, our results showed that H2-induced lateral root formation is a universal event. Naphthalene-1-acetic acid (NAA; the auxin analog was able to trigger endogenous H2 production in tomato seedlings, and a contrasting response was observed in the presence of N-1-naphthyphthalamic acid (NPA, an auxin transport inhibitor. NPA-triggered the inhibition of H2 production and thereafter lateral root development was rescued by exogenously applied H2. Detection of endogenous nitric oxide (NO by the specific probe 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate (DAF-FM DA and electron paramagnetic resonance (EPR analyses revealed that the NO level was increased in both NAA- and H2-treated tomato seedlings. Furthermore, NO production and thereafter LR formation induced by auxin and H2 were prevented by 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO; a specific scavenger of NO and the inhibitor of nitrate reductase (NR; an important NO synthetic enzyme. Molecular evidence confirmed that some representative NO-targeted cell cycle regulatory genes were also induced by H2, but was impaired by the removal of endogenous NO. Genetic evidence suggested that in the presence of H2, Arabidopsis mutants nia2 (in particular and nia1 (two nitrate reductases (NR-defective mutants exhibited defects in lateral root length. Together, these results demonstrated that auxin-induced H2 production was associated with lateral root formation, at least partially via a NR-dependent NO synthesis.

  4. Dihydrotestosterone (DHT) modulates the ability of NSAIDs to induce apoptosis of prostate cancer cells.

    Science.gov (United States)

    Andrews, Peter; Krygier, Scott; Djakiew, Daniel

    2002-03-01

    Recent evidence indicates that nonsteroidal antiinflammatory drugs (NSAIDs) are effective in the treatment and prevention of prostate cancer. In the study reported here, we investigated the ability of the steroid hormone dihydrotestosterone (DHT) to modulate NSAID-induced apoptosis of prostate cancer cells. Using in vitro models of androgen-sensitive and androgen-insensitive human prostate cancer cells, we evaluated the ability of a specific cyclooxygenase-2 inhibitor (NS-398) and a nonspecific cyclooxygenase inhibitor (indomethacin) to induce apoptosis in the presence of various concentrations of DHT. Apoptosis was quantified using the TUNEL method and verified by electron microscopy. We found that increasing concentrations of DHT significantly enhanced the ability of NS-398 and indomethacin to induce apoptosis of androgen-sensitive LNCaP cells. The ability of NSAIDs to induce apoptosis of androgen-insensitive PC-3 cells, however, was not affected by the presence of DHT. Higher levels of DHT in the incubation medium both before as well as following exposure to NSAIDs enhanced apoptosis of LNCaP cells. Another steroid hormone that interacts with the androgen receptor in LNCaP cells (progesterone) also promoted apoptosis of these cells. Increasing concentrations of DHT caused LNCaP cells to shift from the S and G(2)/M to the G(0)/G(1) stages of the cell cycle. These observations support the use of DHT in combination with NSAIDs in the treatment of prostate cancer, and indicate that DHT is an important issue to address in clinical trials of NSAIDs since androgen ablation is a common treatment for prostate cancer.

  5. Dietary fish oil modulates the effect of dimethylhydrazine-induced colon cancer in rats

    Energy Technology Data Exchange (ETDEWEB)

    Rasmy, G. E.; Khalil, W. K. B.; Moharib, S. A.; Kawab, A. A.; Jwanny, E. W.

    2011-07-01

    This study was conducted to examine the efficacy of fish oil supplementation in male wistar rat colon carcinogenesis. In order to induce colon cancer, the rats were given a weekly subcutaneous injection of 1,2-Dimethylhydrazine (DMH) at a dose of 20 mg/kg b.w. for five weeks. Afterwards, some of the rats ingested fish oil for either 4 weeks (DMH-FO4 group), or 17 weeks (DMH-FO17 group). The remaining rats continued without any supplementation for the same 4 weeks (DMH4 group), or 17 weeks (DMH17 group). Another two groups of rats did not receive the DMH and were given fish oil (FO17 group) or a normal diet only and considered as the control group (CN group). At the end of the experiment, the rats were sacrificed; and were subsequently subjected to biochemical and molecular biological analyses as well as histopathological examinations. The results showed increased levels of lactate dehydrogenase (LDH), malondialdehyde (MDA) and alkaline phosphatase (ALP) activities in the DMH rats compared to the control. The liver and colonic changes that were induced by DMH were significantly improved through fish oil supplementation in the DMH-FO17 group. The molecular analysis revealed that DMH treatment induced the expression alterations of genes p53, p27 and p21 and increased DNA band patterns related to cancer, while both FO17 and DMH-FO17 groups showed much better results. A histopathological examination of the DMH17 group revealed colon adenocarcinoma and several lesions in rat liver tissues. An improvement in the histopathological picture was seen in the livers and colons of groups DMHFO17. In conclusion, the present results demonstrated the anti-carciongenic effect of herring fish oil against DMH induced colon carcinogenesis in rats. The inhibitory effect of FO was due to the modulation of elevated biochemical parameters, DNA damage, gene expression and histopathological lesions caused by DMH. (Author) 70 refs.

  6. Spinal translocator protein (TSPO) modulates pain behavior in rats with CFA-induced monoarthritis.

    Science.gov (United States)

    Hernstadt, Hayley; Wang, Shuxing; Lim, Grewo; Mao, Jianren

    2009-08-25

    Translocator protein 18 kDa (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), is predominantly located in the mitochondrial outer membrane and plays an important role in steroidogenesis, immunomodulation, cell survival and proliferation. Previous studies have shown an increased expression of TSPO centrally in neuropathology, as well as in injured nerves. TSPO has also been implicated in modulation of nociception. In the present study, we examined the hypothesis that TSPO is involved in the initiation and maintenance of inflammatory pain using a rat model of Complete Freund's Adjuvant (CFA)-induced monoarthritis of the tibio-tarsal joint. Immunohistochemistry was performed using Iba-1 (microglia), NeuN (neurons), anti-Glial Fibrillary Acidic Protein, GFAP (astrocytes) and anti-PBR (TSPO) on Days 1, 7 and 14 after CFA-induced arthritis. Rats with CFA-induced monoarthritis showed mechanical allodynia and thermal hyperalgesia on the ipsilateral hindpaw, which correlated with the increased TSPO expression in ipsilateral laminae I-II on all experimental days. Iba-1 expression in the ipsilateral dorsal horn was also increased on Days 7 and 14. Moreover, TSPO was colocalized with Iba-1, GFAP and NeuN within the spinal cord dorsal horn. The TSPO agonist Ro5-4864, given intrathecally, dose-dependently retarded or prevented the development of mechanical allodynia and thermal hyperalgesia in rats with CFA-induced monoarthritis. These findings provide evidence that spinal TSPO is involved in the development and maintenance of inflammatory pain behaviors in rats. Thus, spinal TSPO may present a central target as a complementary therapy to reduce inflammatory pain.

  7. Serotonergic-postsynaptic receptors modulate gripping-induced immobility episodes in male taiep rats.

    Science.gov (United States)

    Eguibar, José R; Cortés, M C; Ita, M L

    2009-09-01

    The Taiep rat is a myelin mutant with a motor syndrome characterized by tremor, ataxia, immobility, epilepsy, and paralysis. The rat shows a hypomyelination followed by a progressive demyelination. During immobilities taiep rats show a REM-like sleep pattern and a disorganized sleep-wake pattern suggesting taiep rats as a model of narcolepsy-cataplexy. Our study analyzed the role of postsynaptic serotonin receptors in the expression of gripping-induced immobility episodes (IEs) in 8-month-old male taiep rats. The specific postsynaptic serotonin agonist +/-1-(2,5-dimethoxy-4-iodoamphetamine hydrochloride (+/-DOI) decreased the frequency of gripping-induced IEs, but that was not the case with alpha-methyl-serotonin maleate (alpha-methyl-5HT), a nonspecific postsynaptic agonist. Although the serotonin antagonists, ketanserine and metergoline, produced a biphasic effect, first a decrease followed by an increase with higher doses, similar effects were obtained with a mean duration of gripping-induced IEs. These findings correlate with the pharmacological observations in narcoleptic dogs and humans in which serotonin-reuptake inhibitors improve cataplexy, particularly in long-term treatment that could change the serotonin receptor levels. Polysomnographic recordings showed an increase in the awakening time and a decrease in the slow wave and rapid eye movement sleep concomitant with a decrease in immobilities after use of +/-DOI, this being stronger with the highest dose. Taken together, our results show that postsynaptic serotonin receptors are involved in the modulation in gripping-induced IEs caused by the changes in the organization of the sleep-wake cycle in taiep rats. It is possible that specific agonists, without side effects, could be a useful treatment in human narcoleptic patients. 2009 Wiley-Liss, Inc.

  8. Cigarette smoke modulates expression of human rhinovirus-induced airway epithelial host defense genes.

    Directory of Open Access Journals (Sweden)

    David Proud

    Full Text Available Human rhinovirus (HRV infections trigger acute exacerbations of chronic obstructive pulmonary disease (COPD and asthma. The human airway epithelial cell is the primary site of HRV infection and responds to infection with altered expression of multiple genes, the products of which could regulate the outcome to infection. Cigarette smoking aggravates asthma symptoms, and is also the predominant risk factor for the development and progression of COPD. We, therefore, examined whether cigarette smoke extract (CSE modulates viral responses by altering HRV-induced epithelial gene expression. Primary cultures of human bronchial epithelial cells were exposed to medium alone, CSE alone, purified HRV-16 alone or to HRV-16+ CSE. After 24 h, supernatants were collected and total cellular RNA was isolated. Gene array analysis was performed to examine mRNA expression. Additional experiments, using real-time RT-PCR, ELISA and/or western blotting, validated altered expression of selected gene products. CSE and HRV-16 each induced groups of genes that were largely independent of each other. When compared to gene expression in response to CSE alone, cells treated with HRV+CSE showed no obvious differences in CSE-induced gene expression. By contrast, compared to gene induction in response to HRV-16 alone, cells exposed to HRV+CSE showed marked suppression of expression of a number of HRV-induced genes associated with various functions, including antiviral defenses, inflammation, viral signaling and airway remodeling. These changes were not associated with altered expression of type I or type III interferons. Thus, CSE alters epithelial responses to HRV infection in a manner that may negatively impact antiviral and host defense outcomes.

  9. Interhemispheric connectivity influences the degree of modulation of TMS-induced effects during auditory processing

    Directory of Open Access Journals (Sweden)

    Jamila eAndoh

    2011-07-01

    Full Text Available Repetitive TMS (rTMS has been shown to interfere with many components of language processing, including semantic, syntactic and phonologic. However, not much is known about its effects on primary auditory processing, especially its action on Heschl’s gyrus (HG. We aimed to investigate the behavioural and neural basis of rTMS during a melody processing task, while targeting the left HG, the right HG and the Vertex as a control site. Response Times (RT were normalized relative to the baseline-rTMS (Vertex and expressed as percentage change from baseline (%RT change. We also looked at sex differences in rTMS-induced response as well as in functional connectivity during melody processing using rTMS and functional Magnetic Resonance Imaging (fMRI.Functional MRI results showed an increase in the right HG compared with the left HG during the melody task, as well as sex differences in functional connectivity indicating a greater interhemispheric connectivity between left and right HG in females compared with males. TMS results showed that 10Hz-rTMS targeting the right HG induced differential effects according to sex, with a facilitation of performance in females and an impairment of performance in males. We also found a differential correlation between the %RT change after 10Hz-rTMS targeting the right HG and the interhemispheric functional connectivity between right and left HG, indicating that an increase in interhemispheric functional connectivity was associated with a facilitation of performance. This is the first study to report a differential rTMS-induced interference with melody processing depending on sex. In addition, we showed a relationship between the interference induced by rTMS on behavioral performance and the neural activity in the network connecting left and right HG, suggesting that the interhemispheric functional connectivity could determine the degree of modulation of behavioral performance.

  10. Acemannan (a polysaccharides of Aloe vera gel) protects against radiation induced mortality by modulation of immunosuppression

    International Nuclear Information System (INIS)

    Kumar, Sumit; Tiku, Ashu Bhan

    2014-01-01

    Acemannan (poly-acetylated mannose) is an active component of Aloe vera gel and has been reported to have anticancerous, antimicrobial and shown to stimulate the development and proliferation of the hematopoietic cells. The anticancerous properties of acemannan have been attributed to the modulation of immune system rather then cytotoxicity. Therefore objective of the present study was to evaluate radioprotective efficacy of acemannan against radiation induced immune suppression using Swiss albino mice as a model system. For In-vivo studies mice were treated for 7 days orally prior to irradiation (5 Gy). Animals were sacrificed at different time point to study the effect on cellular proliferation, DNA damage, apoptosis and ROS level, cytokines level, antioxidant enzymes, nitric oxide and protein expression. For survival studies mice were treated with acemannan for 7 days pre or post irradiation and survival was monitored for 30 days. Acemannan showed a significant induction of proliferation of splenocytes in radiation treated groups. Beside a decrease in radiation induced ROS and DNA damage resulted in the reduction of apoptosis in murine splenocytes. Acemannan restored the antioxidant enzyme level (catalase, SOD, DTD and GST) and maintained the proper redox status via GSH, in irradiated mice. Further acemannan was shown to induce the hematopoiesis (peripheral lymphocytes cells, spleen colony cells, spleen index) by increasing the level of the pro-hematopoiesis cytokines (IL-1, TNF-α). Being an immunomodulator, acemannan reduced the level of the inflammation (IL-6, nitric oxide). Also the multiple mechanisms operational at cellular and molecule levelled to the reduction of radiation induced mortality of mice in both pre and post-irradiation studies. On the basis of the above results it can be concluded that radioprotective effects of the acemannan was due to its immunomodulatory activity and could have application for radio-therapeutic purposes. (author)

  11. Mineralocorticoid receptor blockade prevents stress-induced modulation of multiple memory systems in the human brain.

    Science.gov (United States)

    Schwabe, Lars; Tegenthoff, Martin; Höffken, Oliver; Wolf, Oliver T

    2013-12-01

    Accumulating evidence suggests that stress may orchestrate the engagement of multiple memory systems in the brain. In particular, stress is thought to favor dorsal striatum-dependent procedural over hippocampus-dependent declarative memory. However, the neuroendocrine mechanisms underlying these modulatory effects of stress remain elusive, especially in humans. Here, we targeted the role of the mineralocorticoid receptor (MR) in the stress-induced modulation of dorsal striatal and hippocampal memory systems in the human brain using a combination of event-related functional magnetic resonance imaging and pharmacologic blockade of the MR. Eighty healthy participants received the MR antagonist spironolactone (300 mg) or a placebo and underwent a stressor or control manipulation before they performed, in the scanner, a classification task that can be supported by the hippocampus and the dorsal striatum. Stress after placebo did not affect learning performance but reduced explicit task knowledge and led to a relative increase in the use of more procedural learning strategies. At the neural level, stress promoted striatum-based learning at the expense of hippocampus-based learning. Functional connectivity analyses showed that this shift was associated with altered coupling of the amygdala with the hippocampus and dorsal striatum. Mineralocorticoid receptor blockade before stress prevented the stress-induced shift toward dorsal striatal procedural learning, same as the stress-induced alterations of amygdala connectivity with hippocampus and dorsal striatum, but resulted in significantly impaired performance. Our findings indicate that the stress-induced shift from hippocampal to dorsal striatal memory systems is mediated by the amygdala, required to preserve performance after stress, and dependent on the MR. © 2013 Society of Biological Psychiatry.

  12. Cerium dioxide nanoparticles do not modulate the lipopolysaccharide-induced inflammatory response in human monocytes

    Directory of Open Access Journals (Sweden)

    Hussain S

    2012-03-01

    Full Text Available Salik Hussain1,*, Faris Al-Nsour1,*, Annette B Rice1, Jamie Marshburn1, Zhaoxia Ji2, Jeffery I Zink2, Brenda Yingling1, Nigel J Walker3, Stavros Garantziotis11Clinical Research Unit, National Institute of Environmental Health Sciences/National Institute of Health, Research Triangle Park, NC, 2UC Center for Environmental Implications of Nanotechnology University of California, Los Angeles, CA, 3Division of National Toxicology Program, National Institute of Environmental Health Sciences/National Institute of Health, Research Triangle Park, NC, USA*Both are principal authorsBackground: Cerium dioxide (CeO2 nanoparticles have potential therapeutic applications and are widely used for industrial purposes. However, the effects of these nanoparticles on primary human cells are largely unknown. The ability of nanoparticles to exacerbate pre-existing inflammatory disorders is not well documented for engineered nanoparticles, and is certainly lacking for CeO2 nanoparticles. We investigated the inflammation-modulating effects of CeO2 nanoparticles at noncytotoxic concentrations in human peripheral blood monocytes.Methods: CD14+ cells were isolated from peripheral blood samples of human volunteers. Cells were exposed to either 0.5 or 1 µg/mL of CeO2 nanoparticles over a period of 24 or 48 hours with or without lipopolysaccharide (10 ng/mL prestimulation. Modulation of the inflammatory response was studied by measuring secreted tumor necrosis factor-alpha, interleukin-1beta, macrophage chemotactic protein-1, interferon-gamma, and interferon gamma-induced protein 10.Results: CeO2 nanoparticle suspensions were thoroughly characterized using dynamic light scattering analysis (194 nm hydrodynamic diameter, zeta potential analysis (-14 mV, and transmission electron microscopy (irregular-shaped particles. Transmission electron microscopy of CD14+ cells exposed to CeO2 nanoparticles revealed that these nanoparticles were efficiently internalized by monocytes and

  13. Stress-induced brain histone H3 phosphorylation: contribution of the intensity of stressors and length of exposure.

    Science.gov (United States)

    Rotllant, David; Pastor-Ciurana, Jordi; Armario, Antonio

    2013-05-01

    Expression of c-fos is used for the characterization of brain areas activated by stressors. Recently, some epigenetic markers associated with enhanced transcription have been identified that may be also useful to detect neuronal populations important for the processing of stressors: phosphorylation of histone H3 in serine 10 or 28 (pH3S₁₀ or pH3S₂₈). Then, we compared in rats the response to stress of c-fos and these epigenetic changes. More specifically, we studied the influence of the type of stressor (novel environment vs. immobilization, IMO) and the dynamics of the response to IMO. Stress increased pH3S₁₀ positive neurons, with a more restricted pattern than that of c-fos, both in terms of brain areas activated and number of positive neurons. Changes in pH3S₁₀ showed a maximum at 30 min, then progressively declining in most areas in spite of the persistence of IMO. Moreover, the decline was in general more sensitive than c-fos to the termination of IMO. The pattern of pH3S₂₈ was even more restricted that of pH3S₁₀, but they showed co-localization. The present data demonstrate a more selective pattern of stress-induced histone H3 phosphorylation than c-fos. The factors determining such a selectivity and its biological meaning remain to be studied. © 2013 International Society for Neurochemistry.

  14. Radiation induced cerebellum impairments in Swiss albino mice and its modulation by dietary Prunus domestica

    International Nuclear Information System (INIS)

    Sharma, Garima; Sisodia, Rashmi

    2012-01-01

    To study the biochemical, quantitative histopathological and behavioural changes after 5 Gy whole body irradiation and its modulation by supplementation of Prunus domestica extract (PDE) for 15 consecutive days on male Swiss albino. For this study healthy mice from an inbred colony were divided into five groups: (i) Control; (ii) PDE treated - mice in this group were orally supplemented with PDE (400 mg/kg body weight (bw)/day) once daily for 15 consecutive days; (iii) Irradiated-mice were whole body exposed to 5 Gy irradiated; (iv) PDE + irradiated-mice in this group were orally supplemented PDE for 15 days (once a day) prior to irradiation; and (v) irradiated+PDE -mice in this group were administered PDE orally for 15 days (once a day) consequently after irradiation. Marked radiation induced changes in the amount of cerebellar lipid peroxidation (LPO), glutathione (GSH), protein, superoxide dismutase (SOD), catalase and histopathological changes (molecular layer, granular layer and purkinje cell numbers) could be significantly ameliorated supplementation of PDE prior/post irradiation. Radiation induced deficits in learning and memory were also significantly ameliorated. PDE was found to have strong radical scavenging activity in 2,2-diphenyl-1-picrylhydrazyl (DPPH) and also showed in vitro radioprotective activity. The result of present study showed that prior/post-supplementation of Prunus domestica has radioprotective potential as well as neuroprotective properties against the radiation. (author)

  15. Optical feedback-induced light modulation for fiber-based laser ablation.

    Science.gov (United States)

    Kang, Hyun Wook

    2014-11-01

    Optical fibers have been used as a minimally invasive tool in various medical fields. However, due to excessive heat accumulation, the distal end of a fiber often suffers from severe melting or devitrification, leading to the eventual fiber failure during laser treatment. In order to minimize thermal damage at the fiber tip, an optical feedback sensor was developed and tested ex vivo. Porcine kidney tissue was used to evaluate the feasibility of optical feedback in terms of signal activation, ablation performance, and light transmission. Testing various signal thresholds demonstrated that 3 V was relatively appropriate to trigger the feedback sensor and to prevent the fiber deterioration during kidney tissue ablation. Based upon the development of temporal signal signatures, full contact mode rapidly activated the optical feedback sensor possibly due to heat accumulation. Modulated light delivery induced by optical feedback diminished ablation efficiency by 30% in comparison with no feedback case. However, long-term transmission results validated that laser ablation assisted with optical feedback was able to almost consistently sustain light delivery to the tissue as well as ablation efficiency. Therefore, an optical feedback sensor can be a feasible tool to protect optical fiber tips by minimizing debris contamination and delaying thermal damage process and to ensure more efficient and safer laser-induced tissue ablation.

  16. Melatonin modulates inflammatory response and suppresses burn-induced apoptotic injury

    Directory of Open Access Journals (Sweden)

    Ganka Bekyarova

    2017-04-01

    Full Text Available Introduction: Melatonin, the principal secretory product of the pineal gland, has antioxidant functions as a potent antioxidant and free radical scavenger. Objectives of the present study were to investigate the effect of melatonin against inflammatory response, burn-induced oxidative damage and apoptotic changes of rat liver. Methods: Melatonin (10 mg /kg, i.p. was applied immediately after 30% of total body surface area (TBSA burns on male Wistar rats. The level of malondialdehyde (MDA as a marker of an oxidative stress was quantified by thiobarbituric method. Hepatic TNFα and IL-10 as inflammatory markers were assayed by ELISA. Using light immunоchistochemistry the expression Ki67 proliferative marker was investigated. Results: Hepatic MDA and TNF-α levels increased significantly following burns without any change in IL-10 level. Intracellular vacuolization, hepatic cell degeneration and apoptosis occurred in rats after burns. The number of apoptotic cells was increased whereas no significant increase in Ki67 proliferative marker. Melatonin decreased the MDA and TNF-α content and increased the IL-10 level. It also limited the degenerative changes and formation of apoptotic cells in rat liver but did not increase expression of the marker of proliferation. In conclusion, our data show that melatonin relieves burn-induced hepatic damage associated with modulation of the proinflammatory/anti-inflammatory balance, mitigation of lipid peroxidation and hepatic apoptosis.

  17. Fluoride-induced modulation of ionic transport in asymmetric nanopores functionalized with "caged" fluorescein moieties.

    Science.gov (United States)

    Ali, Mubarak; Ahmed, Ishtiaq; Ramirez, Patricio; Nasir, Saima; Cervera, Javier; Niemeyer, Christof M; Ensinger, Wolfgang

    2016-04-28

    We demonstrate experimentally and theoretically a nanofluidic fluoride sensing device based on a single conical pore functionalized with "caged" fluorescein moieties. The nanopore functionalization is based on an amine-terminated fluorescein whose phenolic hydroxyl groups are protected with tert-butyldiphenylsilyl (TBDPS) moieties. The protected fluorescein (Fcn-TBDPS-NH2) molecules are then immobilized on the nanopore surface via carbodiimide coupling chemistry. Exposure to fluoride ions removes the uncharged TBDPS moieties due to the fluoride-promoted cleavage of the silicon-oxygen bond, leading to the generation of negatively charged groups on the fluorescein moieties immobilized onto the pore surface. The asymmetrical distribution of these groups along the conical nanopore leads to the electrical rectification observed in the current-voltage (I-V) curve. On the contrary, other halides and anions are not able to induce any significant ionic rectification in the asymmetric pore. In each case, the success of the chemical functionalization and deprotection reactions is monitored through the changes observed in the I-V curves before and after the specified reaction step. The theoretical results based on the Nernst-Planck and Poisson equations further demonstrate the validity of an experimental approach to fluoride-induced modulation of nanopore current rectification behaviour.

  18. Modulation of benzodiazepine by lysine and pipecolic acid on pentylenetetrazol-induced seizures

    International Nuclear Information System (INIS)

    Chang, Y.F.; Hargest, V.; Chen, J.S.

    1988-01-01

    L-lysine and its metabolite pipecolic acid (PA) have been studied for their effects on pentylenetetrazol (PTZ)-induced seizures in mice. L-Lysine of L-Pa i.p. significantly increased clonic and tonic latencies in a dose-dependent manner against 90 mg/kg PTZ-induced seizures. L-Lysine but not L-Pa enhanced the anticonvulsant effect of diazepam (DZ). L-Pa i.c.v. showed a slight decrease in clonic latency; it did not enhance the antiseizure activity of DZ; it caused seizures at 0.6 mmol/kg. D-PA i.c.v. displayed an opposite effect compared to its L-isomer. The anticonvulsant effect of L-lysine in terms of increase in seizure latency and survival was even more amplified when tested with a submaximal PTZ concentration. L-Lysine showed an enhancement of specific 3 H-flunitrazepam(FZ) binding to mouse brain membranes both in vitro an din vivo. The possibility of L-lysine acting as a modulator for the GABA/benzodiazepine receptors was demonstrated. Since L-PA showed enhancement of 3 H-FZ binding only in vitro but not in vivo, the anticonvulsant effect of L-PA may not be linked to the GABA/benzodiazepine receptor

  19. Melatonin Modulates Neuronal Cell Death Induced by Endoplasmic Reticulum Stress under Insulin Resistance Condition.

    Science.gov (United States)

    Song, Juhyun; Kim, Oh Yoen

    2017-06-10

    Insulin resistance (IR) is an important stress factor in the central nervous system, thereby aggravating neuropathogenesis and triggering cognitive decline. Melatonin, which is an antioxidant phytochemical and synthesized by the pineal gland, has multiple functions in cellular responses such as apoptosis and survival against stress. This study investigated whether melatonin modulates the signaling of neuronal cell death induced by endoplasmic reticulum (ER) stress under IR condition using SH-SY5Y neuroblastoma cells. Apoptosis cell death signaling markers (cleaved Poly [ADP-ribose] polymerase 1 (PARP), p53, and Bax) and ER stress markers (phosphorylated eIF2α (p-eIF2α), ATF4, CHOP, p-IRE1 , and spliced XBP1 (sXBP1)) were measured using reverse transcription-PCR, quantitative PCR, and western blottings. Immunofluorescence staining was also performed for p-ASK1 and p-IRE1 . The mRNA or protein expressions of cell death signaling markers and ER stress markers were increased under IR condition, but significantly attenuated by melatonin treatment. Insulin-induced activation of ASK1 ( p-ASK1 ) was also dose dependently attenuated by melatonin treatment. The regulatory effect of melatonin on neuronal cells under IR condition was associated with ASK1 signaling. In conclusion, the result suggested that melatonin may alleviate ER stress under IR condition, thereby regulating neuronal cell death signaling.

  20. Salmonella Modulates Metabolism During Growth under Conditions that Induce Expression of Virulence Genes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Mo; Schmidt, Brian; Kidwai, Afshan S.; Jones, Marcus B.; Deatherage, Brooke L.; Brewer, Heather M.; Mitchell, Hugh D.; Palsson, Bernhard O.; McDermott, Jason E.; Heffron, Fred; Smith, Richard D.; Peterson, Scott N.; Ansong, Charles; Hyduke, Daniel R.; Metz, Thomas O.; Adkins, Joshua N.

    2013-04-05

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative pathogen that uses complex mechanisms to invade and proliferate within mammalian host cells. To investigate possible contributions of metabolic processes in S. Typhimurium grown under conditions known to induce expression of virulence genes, we used a metabolomics-driven systems biology approach coupled with genome scale modeling. First, we identified distinct metabolite profiles associated with bacteria grown in either rich or virulence-inducing media and report the most comprehensive coverage of the S. Typhimurium metabolome to date. Second, we applied an omics-informed genome scale modeling analysis of the functional consequences of adaptive alterations in S. Typhimurium metabolism during growth under our conditions. Excitingly, we observed possible sequestration of metabolites recently suggested to have immune modulating roles. Modeling efforts highlighted a decreased cellular capability to both produce and utilize intracellular amino acids during stationary phase culture in virulence conditions, despite significant abundance increases for these molecules as observed by our metabolomics measurements. Model-guided analysis suggested that alterations in metabolism prioritized other activities necessary for pathogenesis instead, such as lipopolysaccharide biosynthesis.

  1. Oxidative stress and sodium methyldithiocarbamate-induced modulation of the macrophage response to lipopolysaccharide in vivo.

    Science.gov (United States)

    Pruett, Stephen B; Cheng, Bing; Fan, Ruping; Tan, Wei; Sebastian, Thomas

    2009-06-01

    Sodium methyldithiocarbamate (SMD) is the third most abundantly used conventional pesticide in the United States, and hundreds of thousands of persons are exposed to this compound or its major breakdown product, methylisothiocyanate, at levels greater than recommended by the Environmental Protection Agency. A previous study suggests three mechanisms of action involved to some degree in the inhibition of inflammation and decreased resistance to infection caused by exposure of mice to the compound. One of these mechanisms is oxidative stress. The purpose of the present study was to confirm that this mechanism is involved in the effects of SMD on cytokine production by peritoneal macrophages and to further characterize its role in altered cytokine production. Results indicated that SMD significantly decreased the intracellular concentration of reduced glutathione (GSH), suggesting oxidative stress. This was further indicated by the upregulation of genes involved in the "response to oxidative stress" as determined by microarray analysis. These effects were associated with the inhibition of lipopolysaccharide (LPS)-induced production of several proinflammatory cytokines. Experimental depletion of GSH with buthionine sulfoximine (BSO) partially prevented the decrease in LPS-induced interleukin (IL)-6 production caused by SMD and completely prevented the decrease in IL-12. In contrast, BSO plus SMD substantially enhanced the production of IL-10. These results along with results from a previous study are consistent with the hypothesis that SMD causes oxidative stress, which contributes to modulation of cytokine production. However, oxidative stress alone cannot explain the increased IL-10 production caused by SMD.

  2. Spatiotemporal brain dynamics of emotional face processing modulations induced by the serotonin 1A/2A receptor agonist psilocybin.

    Science.gov (United States)

    Bernasconi, Fosco; Schmidt, André; Pokorny, Thomas; Kometer, Michael; Seifritz, Erich; Vollenweider, Franz X

    2014-12-01

    Emotional face processing is critically modulated by the serotonergic system. For instance, emotional face processing is impaired by acute psilocybin administration, a serotonin (5-HT) 1A and 2A receptor agonist. However, the spatiotemporal brain mechanisms underlying these modulations are poorly understood. Here, we investigated the spatiotemporal brain dynamics underlying psilocybin-induced modulations during emotional face processing. Electrical neuroimaging analyses were applied to visual evoked potentials in response to emotional faces, following psilocybin and placebo administration. Our results indicate a first time period of strength (i.e., Global Field Power) modulation over the 168-189 ms poststimulus interval, induced by psilocybin. A second time period of strength modulation was identified over the 211-242 ms poststimulus interval. Source estimations over these 2 time periods further revealed decreased activity in response to both neutral and fearful faces within limbic areas, including amygdala and parahippocampal gyrus, and the right temporal cortex over the 168-189 ms interval, and reduced activity in response to happy faces within limbic and right temporo-occipital brain areas over the 211-242 ms interval. Our results indicate a selective and temporally dissociable effect of psilocybin on the neuronal correlates of emotional face processing, consistent with a modulation of the top-down control. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Thermoresponsive Poly(2-oxazoline) Molecular Brushes by Living Ionic Polymerization: Kinetic Investigations of Pendant Chain Grafting and Cloud Point Modulation by Backbone and Side Chain Length Variation

    KAUST Repository

    Zhang, Ning

    2012-04-17

    Molecular brushes of poly(2-oxazoline)s were prepared by living anionic polymerization of 2-iso-propenyl-2-oxazoline to form the backbone and subsequent living cationic ring-opening polymerization of 2-n- or 2-iso-propyl-2-oxazoline for pendant chain grafting. In situ kinetic studies indicate that the initiation efficiency and polymerization rates are independent from the number of initiator functions per initiator molecule. This was attributed to the high efficiency of oxazolinium salt and the stretched conformation of the backbone, which is caused by the electrostatic repulsion of the oxazolinium moieties along the macroinitiator. The resulting molecular brushes showed thermoresponsive properties, that is, having a defined cloud point (CP). The dependence of the CP as a function of backbone and side chain length as well as concentration was studied. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Enhancement of fracture healing in the rat, modulated by compounds that stimulate inducible nitric oxide synthase

    Science.gov (United States)

    Rajfer, R. A.; Kilic, A.; Neviaser, A. S.; Schulte, L. M.; Hlaing, S. M.; Landeros, J.; Ferrini, M. G.; Ebramzadeh, E.

    2017-01-01

    Objectives We investigated the effects on fracture healing of two up-regulators of inducible nitric oxide synthase (iNOS) in a rat model of an open femoral osteotomy: tadalafil, a phosphodiesterase inhibitor, and the recently reported nutraceutical, COMB-4 (consisting of L-citrulline, Paullinia cupana, ginger and muira puama), given orally for either 14 or 42 days. Materials and Methods Unilateral femoral osteotomies were created in 58 male rats and fixed with an intramedullary compression nail. Rats were treated daily either with vehicle, tadalafil or COMB-4. Biomechanical testing of the healed fracture was performed on day 42. The volume, mineral content and bone density of the callus were measured by quantitative CT on days 14 and 42. Expression of iNOS was measured by immunohistochemistry. Results When compared with the control group, the COMB-4 group exhibited 46% higher maximum strength (t-test, p = 0.029) and 92% higher stiffness (t-test, p = 0.023), but no significant changes were observed in the tadalafil group. At days 14 and 42, there was no significant difference between the three groups with respect to callus volume, mineral content and bone density. Expression of iNOS at day 14 was significantly higher in the COMB-4 group which, as expected, had returned to baseline levels at day 42. Conclusion This study demonstrates an enhancement in fracture healing by an oral natural product known to augment iNOS expression. Cite this article: R. A. Rajfer, A. Kilic, A. S. Neviaser, L. M. Schulte, S. M. Hlaing, J. Landeros, M. G. Ferrini, E. Ebramzadeh, S-H. Park. Enhancement of fracture healing in the rat, modulated by compounds that stimulate inducible nitric oxide synthase: Acceleration of fracture healing via inducible nitric oxide synthase. Bone Joint Res 2017:6:–97. DOI: 10.1302/2046-3758.62.BJR-2016-0164.R2. PMID:28188129

  5. Important role of platelets in modulating endotoxin-induced lung inflammation in CFTR-deficient mice.

    Directory of Open Access Journals (Sweden)

    Caiqi Zhao

    Full Text Available Mutation of CFTR (cystic fibrosis transmembrane conductance regulator leads to cystic fibrosis (CF. Patients with CF develop abnormalities of blood platelets and recurrent lung inflammation. However, whether CFTR-mutated platelets play a role in the development of lung inflammation is elusive. Therefore, we intratracheally challenged wildtype and F508del (a common type of CFTR mutation mice with LPS to observe changes of F508del platelets in the peripheral blood and indexes of lung inflammation (BAL neutrophils and protein levels. Furthermore, we investigated whether or not and how F508del platelets modulate the LPS-induced acute lung inflammation by targeting anti-platelet aggregation, depletion of neutrophils, reconstitution of bone marrow or neutrophils, blockade of P-selectin glycoprotein ligand-1 (PSGL-1, platelet activating factor (PAF, and correction of mutated CFTR trafficking. We found that LPS-challenged F508del mice developed severe thrombocytopenia and had higher levels of plasma TXB2 coincided with neutrophilic lung inflammation relative to wildtype control. Inhibition of F508del platelet aggregation or depletion of F508del neutrophils diminished the LPS-induced lung inflammation in the F508del mice. Moreover, wildtype mice reconstituted with either F508del bone marrow or neutrophils developed worse thrombocytopenia. Blocking PSGL-1, platelet activating factor (PAF, or rectifying trafficking of mutated CFTR in F508del mice diminished and alveolar neutrophil transmigration in the LPS-challenged F508del mice. These findings suggest that F508del platelets and their interaction with neutrophils are requisite for the development of LPS-induced lung inflammation and injury. As such, targeting platelets might be an emerging strategy for dampening recurrent lung inflammation in cystic fibrosis patients.

  6. alpha-Adrenoceptor and opioid receptor modulation of clonidine-induced antinociception.

    Science.gov (United States)

    Sierralta, F; Naquira, D; Pinardi, G; Miranda, H F

    1996-10-01

    1. The antinociceptive action of clonidine (Clon) and the interactions with alpha 1, alpha 2 adrenoceptor and opioid receptor antagonists was evaluated in mice by use of chemical algesiometric test (acetic acid writhing test). 2. Clon produced a dose-dependent antinociceptive action and the ED50 for intracerebroventricular (i.c.v.) was lower than for intraperitoneal (i.p.) administration (1 ng kg-1 vs 300 ng kg-1). The parallelism of the dose-response curves indicates activation of a common receptor subtype. 3. Systemic administration of prazosin and terazosin displayed antinociceptive activity. Pretreatment with prazosin produced a dual action: i.c.v. Clon effect did not change, and i.p. Clon effect was enhanced. Yohimbine i.c.v. or i.p. did not induce antinonciception, but antagonized Clon-induced activity. These results suggest that alpha 1- and alpha 2-adrenoceptors, either located at the pre- and/or post-synaptic level, are involved in the control of spinal antinociception. 4. Naloxone (NX) and naltrexone (NTX) induced antinociceptive effects at low doses (microgram kg-1 range) and a lower antinociceptive effect at higher doses (mg kg-1 range). Low doses of NX or NTX antagonized Clon antinociception, possibly in relation to a preferential mu opioid receptor antagonism. In contrast, high doses of NX or NTX increased the antinociceptive activity of Clon, which could be due to an enhanced inhibition of the release of substance P. 5. The results obtained in the present work suggest the involvement of alpha 1-, alpha 2-adrenoceptor and opioid receptors in the modulation of the antinociceptive activity of clonidine, which seems to be exerted either at spinal and/or supraspinal level.

  7. Oleocanthal Modulates Estradiol-Induced Gene Expression Involving Estrogen Receptor α.

    Science.gov (United States)

    Keiler, Annekathrin Martina; Djiogue, Sefirin; Ehrhardt, Tino; Zierau, Oliver; Skaltsounis, Leandros; Halabalaki, Maria; Vollmer, Günter

    2015-09-01

    Oleocanthal is a bioactive compound from olive oil. It has attracted considerable attention as it is anti-inflammatory, antiproliferative, and has been shown to possess neuroprotective properties in vitro and in vivo. Delineated from its polyphenolic structure, the aim of this study was to characterize oleocanthal towards estrogenic properties. This might contribute to partly explain the beneficial effects described for the Mediterranean diet. Estrogenic properties of oleocanthal were assessed by different methods: a) stimulation of reporter gene activity in MVLN or RNDA cells either expressing estrogen receptor α or β, b) stimulation of luciferase reporter gene activity in U2OS osteosarcoma cells expressing estrogen receptor α or β, and c) elucidation of the impact on estradiol-induced gene expression in U2OS cells transduced with both estrogen receptors. Depending on the cell line origin, oleocanthal inhibited luciferase activity (MVLN, U2OS-estrogen receptor β) or weakly induced reporter gene activity at 10 µM in U2OS-estrogen receptor α cells. However, oleocanthal inhibited stimulation of luciferase activity by estradiol from both estrogen receptors. Oleocanthal, if given alone, did not stimulate gene expression in U2OS cells, but it significantly modulated the response of estradiol. Oleocanthal enhanced the effect of estradiol on the regulation of those genes, which are believed to be regulated through heterodimeric estrogen receptors. As the estrogenic response pattern of oleocanthal is rather unique, we compared the results obtained with oleacein. Oleocanthal binds to both estrogen receptors inducing estradiol-agonistic or antiagonistic effects depending on the cell line. Regarding regulation of gene expression in U2OS-estrogen receptor α/β cells, oleocanthal and oleacein enhanced estradiol-mediated regulation of heterodimer-regulated genes. Georg Thieme Verlag KG Stuttgart · New York.

  8. Beneficial effects of lycopene against haloperidol induced orofacial dyskinesia in rats: Possible neurotransmitters and neuroinflammation modulation.

    Science.gov (United States)

    Datta, Swati; Jamwal, Sumit; Deshmukh, Rahul; Kumar, Puneet

    2016-01-15

    Tardive Dyskinesia is a severe side effect of chronic neuroleptic treatment consisting of abnormal involuntary movements, characterized by orofacial dyskinesia. The study was designed to investigate the protective effect of lycopene against haloperidol induced orofacial dyskinesia possibly by neurochemical and neuroinflammatory modulation in rats. Rats were administered with haloperidol (1mg/kg, i.p for 21 days) to induce orofacial dyskinesia. Lycopene (5 and 10mg/kg, p.o) was given daily 1hour before haloperidol treatment for 21 days. Behavioral observations (vacuous chewing movements, tongue protrusions, facial jerking, rotarod activity, grip strength, narrow beam walking) were assessed on 0th, 7th(,) 14th(,) 21st day after haloperidol treatment. On 22nd day, animals were killed and striatum was excised for estimation of biochemical parameters (malondialdehyde, nitrite and endogenous enzyme (GSH), pro-inflammatory cytokines [Tumor necrosis factor, Interleukin 1β, Interleukin 6] and neurotransmitters level (dopamine, serotonin, nor epinephrine, 5-Hydroxyindole acetic acid (5-HIAA), Homovanillic acid, 3,4- dihydroxyphenylacetic acid. Haloperidol treatment for 21 days impaired muscle co-ordination, motor activity and grip strength with an increased in orofacial dyskinetic movements. Further free radical generation increases MDA and nitrite levels, decreasing GSH levels in striatum. Neuroinflammatory markers were significantly increased with decrease in neurotransmitters levels. Lycopene (5 and 10mg/kg, p.o) treatment along with haloperidol significantly attenuated impairment in behavioral, biochemical, neurochemical and neuroinflammatory markers. Results of the present study attributed the therapeutic potential of lycopene in the treatment (prevented or delayed) of typical antipsychotic induced orofacial dyskinesia. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Taurine protects cisplatin induced cardiotoxicity by modulating inflammatory and endoplasmic reticulum stress responses.

    Science.gov (United States)

    Chowdhury, Sayantani; Sinha, Krishnendu; Banerjee, Sharmistha; Sil, Parames C

    2016-11-12

    Oxidative stress, ER stress, inflammation, and apoptosis results in the pathogenesis of cisplatin-induced cardiotoxicity. The present study was designed to investigate the signaling mechanisms involved in the ameliorating effect of taurine, a conditionally essential amino acid, against cisplatin-mediated cardiac ER stress dependent apoptotic death and inflammation. Mice were simultaneously treated with taurine (150 mg kg -1 body wt, i.p.) and cisplatin (10 mg kg -1 body wt, i.p.) for a week. Cisplatin exposure significantly altered serum creatine kinase and troponin T levels. In addition, histological studies revealed disintegration in the normal radiation pattern of cardiac muscle fibers. However, taurine administration could abate such adverse effects of cisplatin. Taurine administration significantly mitigated the reactive oxygen species production, alleviated the overexpression of nuclear factor-κB (NF-κB), and inhibited the elevation of proinflammatoy cytokines, adhesion molecules, and chemokines. Cisplatin exposure resulted in the unfolded protein response (UPR)-regulated CCAAT/enhancer binding protein (CHOP) up-regulation, induction of GRP78: a marker of ER stress and eIF2α signaling. Increase in calpain-1 expression level, activation of caspase-12 and caspase-3, cleavage of the PARP protein as well as the inhibition of antiapoptotic protein Bcl-2 were reflected on cisplatin-triggered apoptosis. Taurine could, however, combat against such cisplatin induced cardiac-abnormalities. The above mentioned findings suggest that taurine plays a beneficial role in providing protection against cisplatin-induced cardiac damage by modulating inflammatory responses and ER stress. © 2016 BioFactors, 42(6):647-664, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  10. Observations of Bathymetry-Induced Ocean Roughness Modulation in In-situ Surface Slope Measurements and Coincident Airborne SAR Images

    NARCIS (Netherlands)

    Gommenginger, C.P.; Robinson, I.S.; Willoughby, J.; Greidanus, H.S.F.; Taylor, V.

    1999-01-01

    Empirical results from a field experiment in the southern North Sea have demonstrated the possibility to detect bathymetry-induced sea surface roughness modulation in the coastal zone using high frequency in-situ slope measurements provided by the Towed Laser Slopemeter. A strong correlation between

  11. Glutamate Receptor GluA1 Subunit Is Implicated in Capsaicin Induced Modulation of Amygdala LTP but Not LTD

    Science.gov (United States)

    Gebhardt, Christine; Albrecht, Doris

    2018-01-01

    Capsaicin has been shown to modulate synaptic plasticity in various brain regions including the amygdala. Whereas in the lateral amygdala the modulatory effect of capsaicin on long-term potentiation (LA-LTP) is mediated by TRPV1 channels, we have recently shown that capsaicin-induced enhancement of long term depression (LA-LTD) is mediated by…

  12. Positive allosteric modulation of GABA-A receptors reduces capsaicin-induced primary and secondary hypersensitivity in rats

    DEFF Research Database (Denmark)

    Hansen, Rikke Rie; Erichsen, Helle K; Brown, David T

    2012-01-01

    GABA-A receptor positive allosteric modulators (PAMs) mediate robust analgesia in animal models of pathological pain, in part via enhancing injury-induced loss of GABA-A-α2 and -α3 receptor function within the spinal cord. As yet, a lack of clinically suitable tool compounds has prevented this co...

  13. An extended collection length model for the description of keV-electron induced degradation and thermal recovery of p-i-n solar cells

    International Nuclear Information System (INIS)

    Schneider, U.; Schroder, B.

    1990-01-01

    The results of keV-electron degradation and annealing experiments obtained on a-Si:H based p-i-n solar cells are interpretated under inclusion of models developed earlier for the degradation of a-Si:H films and are placed in the framework of an extended collection length model. The strong degradation of the cell parameters j sc and FF due to considerable keV-electron irradiation can be explained quantitatively. This enables a crucial test of the validity of the mathematical models for the keV-electron induced effects developed so far. Furthermore the results of a detailed investigation of the thermal recovery of electron-degraded solar cells can be cleared up consistently. Some unresolved issues are discussed, and experiments to resolve these questions are proposed

  14. Bifidobacterium breve - HT-29 cell line interaction: modulation of TNF-α induced gene expression.

    Science.gov (United States)

    Boesten, R J; Schuren, F H J; Willemsen, L E M; Vriesema, A; Knol, J; De Vos, W M

    2011-06-01

    To provide insight in the molecular basis for intestinal host-microbe interactions, we determined the genome-wide transcriptional response of human intestinal epithelial cells following exposure to cells of Bifidobacterium breve. To select an appropriate test system reflecting inflammatory conditions, the responsiveness to TNF-α was compared in T84, Caco-2 and HT-29 cells. The highest TNF-α response was observed in HT-29 cells and this cell line was selected for exposure to the B. breve strains M-16V, NR246 and UCC2003. After one hour of bacterial pre-incubation followed by two hours of additional TNF-α stimulation, B. breve M-16V (86%), but to a much lesser extent strains NR246 (50%) or UCC2003 (32%), showed a strain-specific reduction of the HT-29 transcriptional response to the inflammatory treatment. The most important functional groups of genes that were transcriptionally suppressed by the presence of B. breve M-16V, were found to be involved in immune regulation and apoptotic processes. About 54% of the TNF-α induced genes were solely suppressed by the presence of B. breve M-16V. These included apoptosis-related cysteine protease caspase 7 (CASP7), interferon regulatory factor 3 (IRF3), amyloid beta (A4) precursor proteinbinding family A member 1 (APBA1), NADPH oxidase (NOX5), and leukemia inhibitory factor receptor (LIFR). The extracellular IL-8 concentration was determined by an immunological assay but did not change significantly, indicating that B. breve M-16V only partially modulates the TNF-α pathway. In conclusion, this study shows that B. breve strains modulate gene expression in HT-29 cells under inflammatory conditions in a strain-specific way.

  15. PPARβ/δ modulates ethanol-induced hepatic effects by decreasing pyridoxal kinase activity

    International Nuclear Information System (INIS)

    Goudarzi, Maryam; Koga, Takayuki; Khozoie, Combiz; Mak, Tytus D.; Kang, Boo-Hyon; Jr, Albert J. Fornace; Peters, Jeffrey M.

    2013-01-01

    Because of the significant morbidity and lethality caused by alcoholic liver disease (ALD), there remains a need to elucidate the regulatory mechanisms that can be targeted to prevent and treat ALD. Toward this goal, minimally invasive biomarker discovery represents an outstanding approach for these purposes. The mechanisms underlying ALD include hepatic lipid accumulation. As the peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) has been shown to inhibit steatosis, the present study examined the role of PPARβ/δ in ALD coupling metabolomic, biochemical and molecular biological analyses. Wild-type and Pparβ/δ-null mice were fed either a control or 4% ethanol diet and examined after 4–7 months of treatment. Ethanol fed Pparβ/δ-null mice exhibited steatosis after short-term treatment compared to controls, the latter effect appeared to be due to increased activity of sterol regulatory element binding protein 1c (SREBP1c). The wild-type and Pparβ/δ-null mice fed the control diet showed clear differences in their urinary metabolomic profiles. In particular, metabolites associated with arginine and proline metabolism, and glycerolipid metabolism, were markedly different between genotypes suggesting a constitutive role for PPARβ/δ in the metabolism of these amino acids. Interestingly, urinary excretion of taurine was present in ethanol-fed wild-type mice but markedly lower in similarly treated Pparβ/δ-null mice. Evidence suggests that PPARβ/δ modulates pyridoxal kinase activity by altering K m , consistent with the observed decreased in urinary taurine excretion. These data collectively suggest that PPARβ/δ prevents ethanol-induced hepatic effects by inhibiting hepatic lipogenesis, modulation of amino acid metabolism, and altering pyridoxal kinase activity

  16. Circuit-Host Coupling Induces Multifaceted Behavioral Modulations of a Gene Switch.

    Science.gov (United States)

    Blanchard, Andrew E; Liao, Chen; Lu, Ting

    2018-02-06

    Quantitative modeling of gene circuits is fundamentally important to synthetic biology, as it offers the potential to transform circuit engineering from trial-and-error construction to rational design and, hence, facilitates the advance of the field. Currently, typical models regard gene circuits as isolated entities and focus only on the biochemical processes within the circuits. However, such a standard paradigm is getting challenged by increasing experimental evidence suggesting that circuits and their host are intimately connected, and their interactions can potentially impact circuit behaviors. Here we systematically examined the roles of circuit-host coupling in shaping circuit dynamics by using a self-activating gene switch as a model circuit. Through a combination of deterministic modeling, stochastic simulation, and Fokker-Planck equation formalism, we found that circuit-host coupling alters switch behaviors across multiple scales. At the single-cell level, it slows the switch dynamics in the high protein production regime and enlarges the difference between stable steady-state values. At the population level, it favors cells with low protein production through differential growth amplification. Together, the two-level coupling effects induce both quantitative and qualitative modulations of the switch, with the primary component of the effects determined by the circuit's architectural parameters. This study illustrates the complexity and importance of circuit-host coupling in modulating circuit behaviors, demonstrating the need for a new paradigm-integrated modeling of the circuit-host system-for quantitative understanding of engineered gene networks. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. MicroRNA modulation induced by AICA ribonucleotide in J1 mouse ES cells.

    Directory of Open Access Journals (Sweden)

    Xiaoyan Shi

    Full Text Available ES cells can propagate indefinitely, maintain self-renewal, and differentiate into almost any cell type of the body. These properties make them valuable in the research of embryonic development, regenerative medicine, and organ transplantation. MicroRNAs (miRNAs are considered to have essential functions in the maintenance and differentiation of embryonic stem cells (ES cells. It was reported that, strong external stimuli, such as a transient low-pH and hypoxia stress, were conducive to the formation of induced pluripotent stem cells (iPS cells. AICA ribonucleotide (AICAR is an AMP-activated protein kinase activator, which can let cells in the state of energy stress. We have demonstrated that AICAR can maintain the pluripotency of J1 mouse ES cells through modulating protein expression in our previous research, but its effects on ES cell miRNA expression remain unknown. In this study, we conducted small RNA high-throughput sequencing to investigate AICAR influence on J1 mouse ES cells by comparing the miRNA expression patterns of the AICAR-treated cells and those without treatment. The result showed that AICAR can significantly modulate the expression of multiple miRNAs, including those have crucial functions in ES cell development. Some differentially expressed miRNAs were selected and confirmed by real-time PCR. For the differently expressed miRNAs identified, further study was conducted regarding the pluripotency and differentiation associated miRNAs with their targets. Moreover, miR-134 was significantly down-regulated after AICAR treatment, and this was suggested to be directly associated with the up-regulated pluripotency markers, Nanog and Sox2. Lastly, Myc was significantly down-regulated after AICAR treatment; therefore, we predicted miRNAs that may target Myc and identified that AICAR induced up-regulation of miR-34a, 34b, and 34c can repress Myc expression in J1 mouse ES cells. Taken together, our study provide a new mechanism for

  18. Full-length cellular β-secretase has a trimeric subunit stoichiometry, and its sulfur-rich transmembrane interaction site modulates cytosolic copper compartmentalization.

    Science.gov (United States)

    Liebsch, Filip; Aurousseau, Mark R P; Bethge, Tobias; McGuire, Hugo; Scolari, Silvia; Herrmann, Andreas; Blunck, Rikard; Bowie, Derek; Multhaup, Gerd

    2017-08-11

    The β-secretase (BACE1) initiates processing of the amyloid precursor protein (APP) into Aβ peptides, which have been implicated as central players in the pathology of Alzheimer disease. BACE1 has been described as a copper-binding protein and its oligomeric state as being monomeric, dimeric, and/or multimeric, but the native cellular stoichiometry has remained elusive. Here, by using single-molecule fluorescence and in vitro cross-linking experiments with photo-activatable unnatural amino acids, we show that full-length BACE1, independently of its subcellular localization, exists as trimers in human cells. We found that trimerization requires the BACE1 transmembrane sequences (TMSs) and cytoplasmic domains, with residues Ala 463 and Cys 466 buried within the trimer interface of the sulfur-rich core of the TMSs. Our 3D model predicts that the sulfur-rich core of the trimeric BACE1 TMS is accessible to metal ions, but copper ions did not trigger trimerization. The results of functional assays of endogenous BACE1 suggest that it has a role in intracellular copper compartmentalization by transferring cytosolic copper to intracellular compartments, while leaving the overall cellular copper concentration unaltered. Adding to existing physiological models, our results provide novel insight into the atypical interactions between copper and BACE1 and into its non-enzymatic activities. In conclusion, therapeutic Alzheimer disease prevention strategies aimed at decreasing BACE1 protein levels should be regarded with caution, because adverse effects in copper homeostasis may occur. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Pharmacological Modulation of the Mitochondrial Electron Transport Chain in Paclitaxel-Induced Painful Peripheral Neuropathy.

    Science.gov (United States)

    Griffiths, Lisa A; Flatters, Sarah J L

    2015-10-01

    Paclitaxel is an effective first-line chemotherapeutic with the major dose-limiting side effect of painful neuropathy. Mitochondrial dysfunction and oxidative stress have been implicated in paclitaxel-induced painful neuropathy. Here we show the effects of pharmacological modulation of mitochondrial sites that produce reactive oxygen species using systemic rotenone (complex I inhibitor) or antimycin A (complex III inhibitor) on the maintenance and development of paclitaxel-induced mechanical hypersensitivity in adult male Sprague Dawley rats. The maximally tolerated dose (5 mg/kg) of rotenone inhibited established paclitaxel-induced mechanical hypersensitivity. However, some of these inhibitory effects coincided with decreased motor coordination; 3 mg/kg rotenone also significantly attenuated established paclitaxel-induced mechanical hypersensitivity without any motor impairment. The maximally tolerated dose (.6 mg/kg) of antimycin A reversed established paclitaxel-induced mechanical hypersensitivity without any motor impairment. Seven daily doses of systemic rotenone or antimycin A were given either after paclitaxel administration or before and during paclitaxel administration. Rotenone had no significant effect on the development of paclitaxel-induced mechanical hypersensitivity. However, antimycin A significantly inhibited the development of paclitaxel-induced mechanical hypersensitivity when given before and during paclitaxel administration but had no effect when given after paclitaxel administration. These studies provide further evidence of paclitaxel-evoked mitochondrial dysfunction in vivo, suggesting that complex III activity is instrumental in paclitaxel-induced pain. This study provides further in vivo evidence that mitochondrial dysfunction is a key contributor to the development and maintenance of chemotherapy-induced painful neuropathy. This work also indicates that selective modulation of the electron transport chain can induce antinociceptive

  20. Modulation of chromatin remodelling induced by the freshwater cyanotoxin cylindrospermopsin in human intestinal caco-2 cells.

    Directory of Open Access Journals (Sweden)

    Antoine Huguet

    Full Text Available Cylindrospermopsin (CYN is a cyanotoxin that has been recognised as an emerging potential public health risk. Although CYN toxicity has been demonstrated, the mechanisms involved have not been fully characterised. To identify some key pathways related to this toxicity, we studied the transcriptomic profile of human intestinal Caco-2 cells exposed to a sub-toxic concentration of CYN (1.6 µM for 24hrs using a non-targeted approach. CYN was shown to modulate different biological functions which were related to growth arrest (with down-regulation of cdkn1a and uhrf1 genes, and DNA recombination and repair (with up-regulation of aptx and pms2 genes. Our main results reported an increased expression of some histone-modifying enzymes (histone acetyl and methyltransferases MYST1, KAT5 and EHMT2 involved in chromatin remodelling, which is essential for initiating transcription. We also detected greater levels of acetylated histone H2A (Lys5 and dimethylated histone H3 (Lys4, two products of these enzymes. In conclusion, CYN overexpressed proteins involved in DNA damage repair and transcription, including modifications of nucleosomal histones. Our results highlighted some new cell processes induced by CYN.

  1. Action and valence modulate choice and choice-induced preference change.

    Directory of Open Access Journals (Sweden)

    Raphael Koster

    Full Text Available Choices are not only communicated via explicit actions but also passively through inaction. In this study we investigated how active or passive choice impacts upon the choice process itself as well as a preference change induced by choice. Subjects were tasked to select a preference for unfamiliar photographs by action or inaction, before and after they gave valuation ratings for all photographs. We replicate a finding that valuation increases for chosen items and decreases for unchosen items compared to a control condition in which the choice was made post re-evaluation. Whether choice was expressed actively or passively affected the dynamics of revaluation differently for positive and negatively valenced items. Additionally, the choice itself was biased towards action such that subjects tended to choose a photograph obtained by action more often than a photographed obtained through inaction. These results highlight intrinsic biases consistent with a tight coupling of action and reward and add to an emerging understanding of how the mode of action itself, and not just an associated outcome, modulates the decision making process.

  2. Chromatin- and temperature-dependent modulation of radiation-induced double-strand breaks.

    Science.gov (United States)

    Elmroth, K; Nygren, J; Stenerlöw, B; Hultborn, R

    2003-10-01

    To investigate the influence of chromatin organization and scavenging capacity in relation to irradiation temperature on the induction of double-strand breaks (DSB) in structures derived from human diploid fibroblasts. Agarose plugs with different chromatin structures (intact cells+/-wortmannin, permeabilized cells with condensed chromatin, nucleoids and DNA) were prepared and irradiated with X-rays at 2 or 37 degrees C and lysed using two different lysis protocols (new ice-cold lysis or standard lysis at 37 degrees C). Induction of DSB was determined by constant-field gel electrophoresis. The dose-modifying factor (DMF(temp)) for irradiation at 37 compared with 2 degrees C was 0.92 in intact cells (i.e. more DSB induced at 2 degrees C), but gradually increased to 1.5 in permeabilized cells, 2.2 in nucleoids and 2.6 in naked DNA, suggesting a role of chromatin organization for temperature modulation of DNA damage. In addition, DMF(temp) was influenced by the presence of 0.1 M DMSO or 30 mM glutathione, but not by post-irradiation temperature. The protective effect of low temperature was correlated to the indirect effects of ionizing radiation and was not dependent on post-irradiation temperature. Reasons for a dose modifying factor <1 in intact cells are discussed.

  3. Senescence-Induced Alterations of Laminin Chain Expression Modulate Tumorigenicity of Prostate Cancer Cells1

    Science.gov (United States)

    Sprenger, Cynthia C T; Drivdahl, Rolf H; Woodke, Lillie B; Eyman, Daniel; Reed, May J; Carter, William G; Plymate, Stephen R

    2008-01-01

    Prostate cancer is an age-associated epithelial cancer, and as such, it contributes significantly to the mortality of the elderly. Senescence is one possible mechanism by which the body defends itself against various epithelial cancers. Senescent cells alter the microenvironment, in part, through changes to the extracellular matrix. Laminins (LMs) are extracellular proteins important to both the structure and function of the microenvironment. Overexpression of the senescence-associated gene mac25 in human prostate cancer cells resulted in increased mRNA levels of the LM α4 and β2 chains compared to empty vector control cells. The purpose of this study was to examine the effects of these senescence-induced LM chains on tumorigenicity of prostate cancer cells. We created stable M12 human prostate cancer lines overexpressing either the LM α4 or β2 chain or both chains. Increased expression of either the LM α4 or β2 chain resulted in increased in vitro migration and in vivo tumorigenicity of those cells, whereas high expression of both chains led to decreased in vitro proliferation and in vivo tumorigenicity compared to M12 control cells. This study demonstrates that senescent prostate epithelial cells can alter the microenvironment and that these changes modulate progression of prostate cancer. PMID:19048114

  4. Senescence-Induced Alterations of Laminin Chain Expression Modulate Tumorigenicity of Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Cynthia C.T. Sprenger

    2008-12-01

    Full Text Available Prostate cancer is an age-associated epithelial cancer, and as such, it contributes significantly to the mortality of the elderly. Senescence is one possible mechanism by which the body defends itself against various epithelial cancers. Senescent cells alter the microenvironment, in part, through changes to the extracellular matrix. Laminins (LMs are extracellular proteins important to both the structure and function of the microenvironment. Overexpression of the senescence-associated gene mac25 in human prostate cancer cells resulted in increased mRNA levels of the LM α4 and β2 chains compared to empty vector control cells. The purpose of this study was to examine the effects of these senescence-induced LM chains on tumorigenicity of prostate cancer cells. We created stable M12 human prostate cancer lines overexpressing either the LM α4 or β2 chain or both chains. Increased expression of either the LM α4 or β2 chain resulted in increased in vitro migration and in vivo tumorigenicity of those cells, whereas high expression of both chains led to decreased in vitro proliferation and in vivo tumorigenicity compared to M12 control cells. This study demonstrates that senescent prostate epithelial cells can alter the microenvironment and that these changes modulate progression of prostate cancer.

  5. GABAergic modulation of DC stimulation-induced motor cortex excitability shifts in humans.

    Science.gov (United States)

    Nitsche, Michael A; Liebetanz, David; Schlitterlau, Anett; Henschke, Undine; Fricke, Kristina; Frommann, Kai; Lang, Nicolas; Henning, Stefan; Paulus, Walter; Tergau, Frithjof

    2004-05-01

    Weak transcranial DC stimulation (tDCS) of the human motor cortex results in excitability shifts during and after the end of stimulation, which are most probably localized intracortically. Anodal stimulation enhances excitability, whereas cathodal stimulation reduces it. Although the after-effects of tDCS are NMDA receptor-dependent, nothing is known about the involvement of additional receptors. Here we show that pharmacological strengthening of GABAergic inhibition modulates selectively the after-effects elicited by anodal tDCS. Administration of the GABA(A) receptor agonist lorazepam resulted in a delayed, but then enhanced and prolonged anodal tDCS-induced excitability elevation. The initial absence of an excitability enhancement under lorazepam is most probably caused by a loss of the anodal tDCS-generated intracortical diminution of inhibition and enhancement of facilitation, which occurs without pharmacological intervention. The reasons for the late-occurring excitability enhancement remain unclear. Because intracortical inhibition and facilitation are not changed in this phase compared with pre-tDCS values, excitability changes originating from remote cortical or subcortical areas could be involved.

  6. Elucidation and modulation of glucocorticoid-induced apoptosis in acute lymphoblastic leukemia cells

    International Nuclear Information System (INIS)

    Eberhart, K.

    2011-01-01

    This thesis deals with the elucidation of the synergistic effect of the glucocorticoid dexamethasone and the metabolic modulator 2-deoxyglucose on apoptosis induction in two in vitro model systems of childhood acute lymphoblastic leukemia. 2-deoxyglucose accelerated the kinetics of, and increased the sensitivity to, glucocorticoid-induced apoptosis in two leukemia cell lines. In primary lymphocytes from healthy donors, in contrast, 2-deoxyglucose and dexamethasone did not act synergistically on apoptosis induction. To elucidate the molecular basis of the synergistic effect, glycolysis by means of glucose uptake, lactate production, ATP levels, glucose transporter and hexokinase expression and mitochondrial oxygen consumption was analyzed in treated vs. untreated cells. The study revealed a downregulation of gene expression of the glucose transporter GLUT1 and hexokinase 2 (HK2), release of HK2 from the outer mitochondrial membrane, as well as reduced glycolysis and mitochondrial respiration. Moreover, the analysis of the mitochondrial proteome by 2 dimensional differential gel electrophoresis after treatment with 2-deoxyglucose and dexamethasone revealed the regulation of several interesting candidate proteins involved in treatment related apoptosis. (author)

  7. Musa paradisiaca inflorescence induces human colon cancer cell death by modulating cascades of transcriptional events.

    Science.gov (United States)

    K B, Arun; Madhavan, Aravind; T R, Reshmitha; Thomas, Sithara; Nisha, P

    2018-01-24

    Colorectal cancer (CRC) is one of the leading causes of cancer death, and diet plays an important role in the etiology of CRC. Traditional medical practitioners in many South Asian countries use plantain inflorescence to treat various gastro-intestinal ailments. The aim of the present study was to investigate the anticancer effects of extracts of inflorescence of Musa paradisiaca against HT29 human colon cancer cells and elucidate the mechanism of these effects by studying the modulation of cascades of transcriptional events. In vitro assays depicted that methanol extract of Musa paradisiaca inflorescence (PIMET) was cytotoxic to HT29 cells. PIMET induced DNA damage and arrested the cell cycle at the G2/M phase. Expression studies showed that PIMET pretreatment upregulates pro-apoptotic Bcl2 and downregulates anti-apoptotic Bax proteins. Different assays showed that the deregulation of pro/antiapoptotic proteins reduces the mitochondrial membrane potential and ATP production; moreover, it enhances cytochrome c release, which triggers the apoptotic pathway, and further cleaves caspase 3 and PARP proteins, resulting in apoptosis. Changes in the protein expression profile of HT29 cells after PIMET treatment were analyzed using mass-spectrometry-based proteomics. PIMET treatment significantly altered the expression of HT29 protein; interestingly, X-linked inhibitor of apoptosis protein was also downregulated. Alteration in the expression of this protein has significant effects, leading to HT29 cell death.

  8. Suggestion-Induced Modulation of Semantic Priming during Functional Magnetic Resonance Imaging

    Science.gov (United States)

    Ulrich, Martin; Kiefer, Markus; Bongartz, Walter; Grön, Georg; Hoenig, Klaus

    2015-01-01

    Using functional magnetic resonance imaging during a primed visual lexical decision task, we investigated the neural and functional mechanisms underlying modulations of semantic word processing through hypnotic suggestions aimed at altering lexical processing of primes. The priming task was to discriminate between target words and pseudowords presented 200 ms after the prime word which was semantically related or unrelated to the target. In a counterbalanced study design, each participant performed the task once at normal wakefulness and once after the administration of hypnotic suggestions to perceive the prime as a meaningless symbol of a foreign language. Neural correlates of priming were defined as significantly lower activations upon semantically related compared to unrelated trials. We found significant suggestive treatment-induced reductions in neural priming, albeit irrespective of the degree of suggestibility. Neural priming was attenuated upon suggestive treatment compared with normal wakefulness in brain regions supporting automatic (fusiform gyrus) and controlled semantic processing (superior and middle temporal gyri, pre- and postcentral gyri, and supplementary motor area). Hence, suggestions reduced semantic word processing by conjointly dampening both automatic and strategic semantic processes. PMID:25923740

  9. Suggestion-Induced Modulation of Semantic Priming during Functional Magnetic Resonance Imaging.

    Directory of Open Access Journals (Sweden)

    Martin Ulrich

    Full Text Available Using functional magnetic resonance imaging during a primed visual lexical decision task, we investigated the neural and functional mechanisms underlying modulations of semantic word processing through hypnotic suggestions aimed at altering lexical processing of primes. The priming task was to discriminate between target words and pseudowords presented 200 ms after the prime word which was semantically related or unrelated to the target. In a counterbalanced study design, each participant performed the task once at normal wakefulness and once after the administration of hypnotic suggestions to perceive the prime as a meaningless symbol of a foreign language. Neural correlates of priming were defined as significantly lower activations upon semantically related compared to unrelated trials. We found significant suggestive treatment-induced reductions in neural priming, albeit irrespective of the degree of suggestibility. Neural priming was attenuated upon suggestive treatment compared with normal wakefulness in brain regions supporting automatic (fusiform gyrus and controlled semantic processing (superior and middle temporal gyri, pre- and postcentral gyri, and supplementary motor area. Hence, suggestions reduced semantic word processing by conjointly dampening both automatic and strategic semantic processes.

  10. Expression of measles virus nucleoprotein induces apoptosis and modulates diverse functional proteins in cultured mammalian cells.

    Directory of Open Access Journals (Sweden)

    Ashima Bhaskar

    Full Text Available BACKGROUND: Measles virus nucleoprotein (N encapsidates the viral RNA, protects it from endonucleases and forms a virus specific template for transcription and replication. It is the most abundant protein during viral infection. Its C-terminal domain is intrinsically disordered imparting it the flexibility to interact with several cellular and viral partners. PRINCIPAL FINDINGS: In this study, we demonstrate that expression of N within mammalian cells resulted in morphological transitions, nuclear condensation, DNA fragmentation and activation of Caspase 3 eventuating into apoptosis. The rapid generation of intracellular reactive oxygen species (ROS was involved in the mechanism of cell death. Addition of ascorbic acid (AA or inhibitor of caspase-3 in the extracellular medium partially reversed N induced apoptosis. We also studied the protein profile of cells expressing N protein. MS analysis revealed the differential expression of 25 proteins out of which 11 proteins were up regulated while 14 show signs of down regulation upon N expression. 2DE results were validated by real time and semi quantitative RT-PCR analysis. CONCLUSION: These results show the pro-apoptotic effects of N indicating its possible development as an apoptogenic tool. Our 2DE results present prima facie evidence that the MV nucleoprotein interacts with or causes differential expression of a wide range of cellular factors. At this stage it is not clear as to what the adaptive response of the host cell is and what reflects a strategic modulation exerted by the virus.

  11. Acupuncture analgesia involves modulation of pain-induced gamma oscillations and cortical network connectivity.

    Science.gov (United States)

    Hauck, Michael; Schröder, Sven; Meyer-Hamme, Gesa; Lorenz, Jürgen; Friedrichs, Sunja; Nolte, Guido; Gerloff, Christian; Engel, Andreas K

    2017-11-24

    Recent studies support the view that cortical sensory, limbic and executive networks and the autonomic nervous system might interact in distinct manners under the influence of acupuncture to modulate pain. We performed a double-blind crossover design study to investigate subjective ratings, EEG and ECG following experimental laser pain under the influence of sham and verum acupuncture in 26 healthy volunteers. We analyzed neuronal oscillations and inter-regional coherence in the gamma band of 128-channel-EEG recordings as well as heart rate variability (HRV) on two experimental days. Pain ratings and pain-induced gamma oscillations together with vagally-mediated power in the high-frequency bandwidth (vmHF) of HRV decreased significantly stronger during verum than sham acupuncture. Gamma oscillations were localized in the prefrontal cortex (PFC), mid-cingulate cortex (MCC), primary somatosensory cortex and insula. Reductions of pain ratings and vmHF-power were significantly correlated with increase of connectivity between the insula and MCC. In contrast, connectivity between left and right PFC and between PFC and insula correlated positively with vmHF-power without a relationship to acupuncture analgesia. Overall, these findings highlight the influence of the insula in integrating activity in limbic-saliency networks with vagally mediated homeostatic control to mediate antinociception under the influence of acupuncture.

  12. Lithium modulates the chronic stress-induced effect on blood glucose level of male rats

    Directory of Open Access Journals (Sweden)

    Popović Nataša

    2010-01-01

    Full Text Available In the present study we examined gross changes in the mass of whole adrenal glands and that of the adrenal cortex, as well as the serum corticosterone and glucose level of mature male Wistar rats subjected to three different treatments: animals subjected to chronic restraint-stress, animals injected with lithium (Li and chronically stressed rats treated with Li. Under all three conditions we observed hypertrophy of whole adrenals, as well as the adrenal cortices. Chronic restraint stress, solely or in combination with Li treatment, significantly elevated the corticosterone level, but did not change the blood glucose level. Animals treated only with Li exhibited an elevated serum corticosterone level and blood glucose level. The aim of our study was to investigate the modulation of the chronic stress-induced effect on the blood glucose level by lithium, as a possible mechanism of avoiding the damage caused by chronic stress. Our results showed that lithium is an agent of choice which may help to reduce stress-elevated corticosterone and replenish exhausted glucose storages in an organism.

  13. Phosphotyrosine phosphatase and tyrosine kinase inhibition modulate airway pressure-induced lung injury.

    Science.gov (United States)

    Parker, J C; Ivey, C L; Tucker, A

    1998-11-01

    We determined whether drugs which modulate the state of protein tyrosine phosphorylation could alter the threshold for high airway pressure-induced microvascular injury in isolated perfused rat lungs. Lungs were ventilated for successive 30-min periods with peak inflation pressures (PIP) of 7, 20, 30, and 35 cmH2O followed by measurement of the capillary filtration coefficient (Kfc), a sensitive index of hydraulic conductance. In untreated control lungs, Kfc increased by 1.3- and 3.3-fold relative to baseline (7 cmH2O PIP) after ventilation with 30 and 35 cmH2O PIP. However, in lungs treated with 100 microM phenylarsine oxide (a phosphotyrosine phosphatase inhibitor), Kfc increased by 4.7- and 16.4-fold relative to baseline at these PIP values. In lungs treated with 50 microM genistein (a tyrosine kinase inhibitor), Kfc increased significantly only at 35 cmH2O PIP, and the three groups were significantly different from each other. Thus phosphotyrosine phosphatase inhibition increased the susceptibility of rat lungs to high-PIP injury, and tyrosine kinase inhibition attenuated the injury relative to the high-PIP control lungs.

  14. Electroabsorption spectra of carotenoid isomers: Conformational modulation of polarizability vs. induced dipole moments

    International Nuclear Information System (INIS)

    Krawczyk, Stanislaw; Jazurek, Beata; Luchowski, Rafal; Wiacek, Dariusz

    2006-01-01

    Electroabsorption spectra of all-trans, 13-cis and 15-cis isomers of carotenoids violaxanthin and β-carotene frozen in organic solvents were analysed in terms of changes in permanent dipole moment, Δμ, and in the linear polarizability, Δα, on electronic excitation. The spectral range investigated covered the two carotenoid absorption bands in the VIS and UV, known to originate from differently oriented transition dipole moments. In contrast with the collinearity of the apparent Δμ with Δα in the lowest-energy allowed (VIS) transition 1A g - ->1B u + , the axis of the largest polarizability change in the UV transition 1A g - ->1A g + (''cis band'') was found to make a large angle with the transition moment, while the direction of Δμ appears to be much closer to it. These data support the view that Δμ's inferred from electrochromic spectra of carotenoids are apparent and are not induced by the local matrix field in the solvent cavity, but merely result from conformational modulation of molecular polarizability

  15. Externally induced frontoparietal synchronization modulates network dynamics and enhances working memory performance.

    Science.gov (United States)

    Violante, Ines R; Li, Lucia M; Carmichael, David W; Lorenz, Romy; Leech, Robert; Hampshire, Adam; Rothwell, John C; Sharp, David J

    2017-03-14

    Cognitive functions such as working memory (WM) are emergent properties of large-scale network interactions. Synchronisation of oscillatory activity might contribute to WM by enabling the coordination of long-range processes. However, causal evidence for the way oscillatory activity shapes network dynamics and behavior in humans is limited. Here we applied transcranial alternating current stimulation (tACS) to exogenously modulate oscillatory activity in a right frontoparietal network that supports WM. Externally induced synchronization improved performance when cognitive demands were high. Simultaneously collected fMRI data reveals tACS effects dependent on the relative phase of the stimulation and the internal cognitive processing state. Specifically, synchronous tACS during the verbal WM task increased parietal activity, which correlated with behavioral performance. Furthermore, functional connectivity results indicate that the relative phase of frontoparietal stimulation influences information flow within the WM network. Overall, our findings demonstrate a link between behavioral performance in a demanding WM task and large-scale brain synchronization.

  16. Behavior of the potential-induced degradation of photovoltaic modules fabricated using flat mono-crystalline silicon cells with different surface orientations

    Science.gov (United States)

    Yamaguchi, Seira; Masuda, Atsushi; Ohdaira, Keisuke

    2016-04-01

    This paper deals with the dependence of the potential-induced degradation (PID) of flat, p-type mono-crystalline silicon solar cell modules on the surface orientation of solar cells. The investigated modules were fabricated from p-type mono-crystalline silicon cells with a (100) or (111) surface orientation using a module laminator. PID tests were performed by applying a voltage of -1000 V to shorted module interconnector ribbons with respect to an Al plate placed on the cover glass of the modules at 85 °C. A decrease in the parallel resistance of the (100)-oriented cell modules is more significant than that of the (111)-oriented cell modules. Hence, the performance of the (100)-oriented-cell modules drastically deteriorates, compared with that of the (111)-oriented-cell modules. This implies that (111)-oriented cells offer a higher PID resistance.

  17. From bird to sparrow: Learning-induced modulations in fine-grained semantic discrimination.

    Science.gov (United States)

    De Meo, Rosanna; Bourquin, Nathalie M-P; Knebel, Jean-François; Murray, Micah M; Clarke, Stephanie

    2015-09-01

    Recognition of environmental sounds is believed to proceed through discrimination steps from broad to more narrow categories. Very little is known about the neural processes that underlie fine-grained discrimination within narrow categories or about their plasticity in relation to newly acquired expertise. We investigated how the cortical representation of birdsongs is modulated by brief training to recognize individual species. During a 60-minute session, participants learned to recognize a set of birdsongs; they improved significantly their performance for trained (T) but not control species (C), which were counterbalanced across participants. Auditory evoked potentials (AEPs) were recorded during pre- and post-training sessions. Pre vs. post changes in AEPs were significantly different between T and C i) at 206-232ms post stimulus onset within a cluster on the anterior part of the left superior temporal gyrus; ii) at 246-291ms in the left middle frontal gyrus; and iii) 512-545ms in the left middle temporal gyrus as well as bilaterally in the cingulate cortex. All effects were driven by weaker activity for T than C species. Thus, expertise in discriminating T species modulated early stages of semantic processing, during and immediately after the time window that sustains the discrimination between human vs. animal vocalizations. Moreover, the training-induced plasticity is reflected by the sharpening of a left lateralized semantic network, including the anterior part of the temporal convexity and the frontal cortex. Training to identify birdsongs influenced, however, also the processing of C species, but at a much later stage. Correct discrimination of untrained sounds seems to require an additional step which results from lower-level features analysis such as apperception. We therefore suggest that the access to objects within an auditory semantic category is different and depends on subject's level of expertise. More specifically, correct intra

  18. The density and length of root hairs are enhanced in response to cadmium and arsenic by modulating gene expressions involved in fate determination and morphogenesis of root hairs in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Ramin Bahmani

    2016-11-01

    Full Text Available Root hairs are tubular outgrowths that originate from epidermal cells. Exposure of Arabidopsis to cadmium (Cd and arsenic [arsenite, As(III] increases root hair density and length. To examine the underlying mechanism, we measured the expression of genes involved in fate determination and morphogenesis of root hairs. Cd and As(III downregulated TTG1 and GL2 (negative regulators of fate determination and upregulated GEM (positive regulator, suggesting that root hair fate determination is stimulated by Cd and As(III. Cd and As(III increased the transcript levels of genes involved in root hair initiation (RHD6 and AXR2 and root hair elongation (AUX1, AXR1, ETR1, and EIN2 except CTR1. DR5::GUS transgenic Arabidopsis showed a higher DR5 expression in the root tip, suggesting that Cd and As(III increased the auxin content in the root tip. Knockdown of TTG1 in Arabidopsis resulted in increased root hair density and decreased root hair length compared with the control (Col-0 on 1/2 MS media. This phenotype may be attributed to the downregulation of GL2 and CTR1 and upregulation of RHD6. By contrast, gem mutant plants displayed a decrease in root hair density and length with reduced expression of RHD6, AXR2, AUX1, AXR1, ETR1, CTR1, and EIN2. Taken together, our results indicate that fate determination, initiation, and elongation of root hairs are stimulated in response to Cd and As(III through the modulation of the expression of genes involved in these processes in Arabidopsis.

  19. Beta-Glucan induced immune modulation of wound healing in common carp (Cyprinus carpio)

    OpenAIRE

    Jiménez, Natalia Ivonne Vera; Nielsen, Michael Engelbrecht; Lindenstrøm, Thomas

    2012-01-01

    Immune modulators are compounds capable to interact with the immune system and to modify the host response. This interaction enhances non-specific defense mechanisms, improving health and promoting survival. β-glucans are glucose polysaccharides present in sea weed, bacteria, fungi and cereal but not in animals. β-glucans are commonly used as immune modulators, but the mechanisms through which the modulation is achieved remains to be understood. Wound healing and tissue regeneration are essen...

  20. Modulations of anisotropic optical transmission on alumina-doped zinc oxide surface by femtosecond laser induced ripples

    Science.gov (United States)

    Lu, Yanhui; Jiang, Lan; Sun, Jingya; Cao, Qiang; Wang, Qingsong; Han, Weina; Lu, Yongfeng

    2018-04-01

    This study demonstrated that femtosecond-laser-induced ripples on an alumina-doped zinc oxide (AZO) film with space intervals of approximately 340 and 660 nm exhibit modulations of anisotropic optical transmission. At low laser fluence, ripples can not affect the original absorption peak of AZO film, but at higher laser fluence, the absorption peak of AZO film is disappeared due to the modulation by femtosecond laser induced ripples. Moreover, the relationship between the anisotropic optical transmission and the features of nanostructures is discussed. Ripples with a space interval of approximately 660 nm have a higher ability to block light than nanostructures with a space interval of approximately 340 nm. These observations indicate that anisotropic optical transmission has potential applications in the field of optoelectronics.

  1. Modulation of stimulus-induced 20-Hz activity for the tongue and hard palate during tongue movement in humans.

    Science.gov (United States)

    Maezawa, Hitoshi; Onishi, Kaori; Yagyu, Kazuyori; Shiraishi, Hideaki; Hirai, Yoshiyuki; Funahashi, Makoto

    2016-01-01

    Modulation of 20-Hz activity in the primary sensorimotor cortex (SM1) may be important for oral functions. Here, we show that 20-Hz event-related desynchronization/synchronization (20-Hz ERD/ERS) is modulated by sensory input and motor output in the oral region. Magnetic 20-Hz activity was recorded following right-sided tongue stimulation during rest (Rest) and self-paced repetitive tongue movement (Move). To exclude proprioception effects, 20-Hz activity induced by right-sided hard palate stimulation was also recorded. The 20-Hz activity in the two conditions was compared via temporal spectral evolution analyses. 20-Hz ERD/ERS was detected over bilateral temporoparietal areas in the Rest condition for both regions. Moreover, 20-Hz ERS was significantly suppressed in the Move condition for both regions. Detection of 20-Hz ERD/ERS during the Rest condition for both regions suggests that the SM1 functional state may be modulated by oral stimulation, with or without proprioceptive effects. Moreover, the suppression of 20-Hz ERS for the hard palate during the Move condition suggests that the stimulation-induced functional state of SM1 may have been modulated by the movement, even though the movement and stimulation areas were different. Sensorimotor function of the general oral region may be finely coordinated through 20-Hz cortical oscillation. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Intracellular Ca2+ release mediates cationic but not anionic poly(amidoamine) (PAMAM) dendrimer-induced tight junction modulation.

    Science.gov (United States)

    Avaritt, Brittany R; Swaan, Peter W

    2014-09-01

    Poly(amidoamine) (PAMAM) dendrimers show great promise for utilization as oral drug delivery vehicles. These polymers are capable of traversing epithelial barriers, and have been shown to translocate by both transcellular and paracellular routes. While many proof-of-concept studies have shown that PAMAM dendrimers improve intestinal transport, little information exists on the mechanisms of paracellular transport, specifically dendrimer-induced tight junction modulation. Using anionic G3.5 and cationic G4 PAMAM dendrimers with known absorption enhancers, we investigated tight junction modulation in Caco-2 monolayers by visualization and mannitol permeability and compared dendrimer-mediated tight junction modulation to that of established permeation enhancers. [(14)C]-Mannitol permeability in the presence and absence of phospholipase C-dependent signaling pathway inhibitors was also examined and indicated that this pathway may mediate dendrimer-induced changes in permeability. Differences between G3.5 and G4 in tight junction protein staining and permeability with inhibitors were evident, suggesting divergent mechanisms were responsible for tight junction modulation. These dissimilarities are further intimated by the intracellular calcium release caused by G4 but not G3.5. Based on our results, it is apparent that the underlying mechanisms of dendrimer permeability are complex, and the complexities are likely a result of the density and sign of the surface charges of PAMAM dendrimers. The results of this study will have implications on the future use of PAMAM dendrimers for oral drug delivery.

  3. Shear Stress Induces Phenotypic Modulation of Vascular Smooth Muscle Cells via AMPK/mTOR/ULK1-Mediated Autophagy.

    Science.gov (United States)

    Sun, Liqian; Zhao, Manman; Liu, Aihua; Lv, Ming; Zhang, Jingbo; Li, Youxiang; Yang, Xinjian; Wu, Zhongxue

    2018-03-01

    Phenotypic modulation of vascular smooth muscle cells (VSMCs) is involved in the pathophysiological processes of the intracranial aneurysms (IAs). Although shear stress has been implicated in the proliferation, migration, and phenotypic conversion of VSMCs, the molecular mechanisms underlying these events are currently unknown. In this study, we investigated whether shear stress(SS)-induced VSMC phenotypic modulation was mediated by autophagy involved in adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)/Unc-51-like kinase 1 (ULK1) pathway. The results show that shear stress could inhibit the expression of key VSMC contractile genes and induce pro-inflammatory/matrix-remodeling genes levels, contributing to VSMCs phenotypic switching from a contractile to a synthetic phenotype. More importantly, Shear stress also markedly increased the levels of the autophagy marker microtubule-associated protein light chain 3-II (LC3II), Beclin-1, and p62 degradation. The autophagy inhibitor 3-methyladenine (3-MA) significantly blocked shear-induced phenotypic modulation of VSMCs. To further explore the molecular mechanism involved in shear-induced autophagy, we found that shear stress could activate AMPK/mTOR/ULK1 signaling pathway in VSMCs. Compound C, a pharmacological inhibitor of AMPK, significantly reduced the levels of p-AMPK and p-ULK, enhanced p-mTOR level, and finally decreased LC3II and Beclin-1 level, which suggested that activated AMPK/mTOR/ULK1 signaling was related to shear-mediated autophagy. These results indicate that shear stress promotes VSMC phenotypic modulation through the induction of autophagy involved in activating the AMPK/mTOR/ULK1 pathway.

  4. Probiotic Lactobacilli Modulate Staphylococcus aureus-Induced Activation of Conventional and Unconventional T cells and NK cells

    Directory of Open Access Journals (Sweden)

    Maria A Johansson

    2016-07-01

    Full Text Available Lactobacilli are probiotic commensal bacteria and potent modulators of immunity. When present in the gut or supplemented as probiotics, they beneficially modulate ex vivo immune responsiveness. Further, factors derived from several lactobacilli strains act immune regulato-ry in vitro. In contrast, Staphylococcus aureus (S. aureus is known to induce excessive T cell activation. In this study we aimed to investigate S. aureus-induced activation of human muco-sal associated invariant T cells (MAIT cells, γδ T cells, NK cells, as well as of conventional CD4+ and CD8+ T cells in vitro. Further, we investigated if lactobacilli-derived factors could modulate their activation.PBMC were cultured with S. aureus 161:2 cell free supernatant (CFS, staphylococcal en-terotoxin A or CD3/CD28-beads alone or in combination with Lactobacillus rhamnosus (L. rhamnosus GG-CFS or Lactobacillus reuteri (L. reuteri DSM 17938-CFS, and activation of T and NK cells was evaluated. S. aureus-CFS induced IFN-γ and CD107a expression as well as proliferation. Co-stimulation with lactobacilli-CFS dampened lymphocyte activation in all cell types analysed. Pre-incubation with lactobacilli-CFS was enough to reduce subsequent activation and the ab-sence of APC or APC-derived IL-10 did not prevent lactobacilli-mediated dampening. Final-ly, lactate selectively dampened activation of unconventional T cells and NK cells. In summary, we show that molecules present in the lactobacilli-CFS are able to directly dampen in vitro activation of conventional and unconventional T cells and of NK cells. This study provides novel insights on the immune modulatory nature of probiotic lactobacilli and suggests a role for lactobacilli in modulation of induced T and NK cell activation.

  5. Modulation of radiation-induced base excision repair pathway gene expression by melatonin

    Directory of Open Access Journals (Sweden)

    Saeed Rezapoor

    2017-01-01

    Full Text Available Objective: Approximately 70% of all cancer patients receive radiotherapy. Although radiotherapy is effective in killing cancer cells, it has adverse effects on normal cells as well. Melatonin (MLT as a potent antioxidant and anti-inflammatory agent has been proposed to stimulate DNA repair capacity. We investigated the capability of MLT in the modification of radiation-induced DNA damage in rat peripheral blood cells. Materials and Methods: In this experimental study, male rats (n = 162 were divided into 27 groups (n = 6 in each group including: irradiation only, vehicle only, vehicle with irradiation, 100 mg/kg MLT alone, 100 mg/kg MLT plus irradiation in 3 different time points, and control. Subsequently, they were irradiated with a single whole-body X-ray radiation dose of 2 and 8 Gy at a dose rate of 200 MU/min. Rats were given an intraperitoneal injection of MLT or the same volume of vehicle alone 1 h prior to irradiation. Blood samples were also taken 8, 24, and 48 h postirradiation, in order to measure the 8-oxoguanine glycosylase1 (Ogg1, Apex1, and Xrcc1 expression using quantitative real-time-polymerase chain reaction. Results: Exposing to the ionizing radiation resulted in downregulation of Ogg1, Apex1, and Xrcc1 gene expression. The most obvious suppression was observed in 8 h after exposure. Pretreatments with MLT were able to upregulate these genes when compared to the irradiation-only and vehicle plus irradiation groups (P < 0.05 in all time points. Conclusion: Our results suggested that MLT in mentioned dose may result in modulation of Ogg1, Apex1, and Xrcc1 gene expression in peripheral blood cells to reduce X-ray irradiation-induced DNA damage. Therefore, administration of MLT may increase the normal tissue tolerance to radiation through enhancing the cell DNA repair capacity. We believed that MLT could play a radiation toxicity reduction role in patients who have undergone radiation treatment as a part of cancer radiotherapy.

  6. [The molecular mechanisms and morphological manifestations of leiomyoma reduction induced by selective progesterone receptor modulators].

    Science.gov (United States)

    Demura, T A; Revazova, Z V; Kogan, E A; Adamyan, L V

    to investigate the molecular mechanisms and morphological substrate of reduced uterine leiomyoma in patients receiving the selective progesterone receptor modulator (SPRM) ulipristal acetate for 3 months, by estimating the immunohistochemical expression of the markers steroid receptor coactivator 1 (SRC-1), nuclear receptor corepressor 1 (NCoR-1), ER, PgR, Ki-67, p16, TGF-β, and VEGF in tumor tissue. The investigation enrolled 75 women with uterine leiomyoma, menorrhagias, and anemia. Group 1 included 40 patients who were treated with ulipristal for 3 months, followed by laparoscopic myomectomy. Group 2 consisted of 35 patients who underwent surgery without previous preparation. The intra- and postoperative parameters and molecular and morphological changes in the myomatous nodules were comparatively analyzed in both groups. After 3 months of therapy initiation, menorrhagia completely ceased, myomatous nodules decreased in size (pleiomyoma reduction was leiomyocyte apoptosis and dystrophy, tumor stroma sclerosis and hyalinosis with diminished Ki-67 expression and elevated p16 in the smooth muscle cells, trophic nodular tissue disorders exhibited by vascular wall sclerosis and lower VEGF and TGF-β expression, and leiomyocyte hormonal reception dysregulation that made itself evident through the reduced expression of SRC-1 with the unchanged expression of PR and ER and the maintained level of NCoR-1. The molecular mechanisms of tumor reduction involved the reduced Ki-67 expression and elevated p16, lower VEGF and TGF-β, diminished SRC-1 expression with the maintained level of PR, ER, and NCoR-1. Overall, this is suggestive of enhanced apoptosis and reduced leiomyoma proliferation and angiogenesis induced by SPRM and indicative of the expediency of using ulipristal acetate as a preoperative agent for organ-sparing surgery in reproductive-aged patients with uterine myoma, menorrhagias, and anemia.

  7. Analgesia induced by self-initiated electrotactile sensation is mediated by top-down modulations.

    Science.gov (United States)

    Zhao, Ke; Tang, Zhengyu; Wang, Huiquan; Guo, Yifei; Peng, Weiwei; Hu, Li

    2017-06-01

    It is well known that sensory perception can be attenuated when sensory stimuli are controlled by self-initiated actions. This phenomenon is explained by the consistency between forward models of anticipated action effects and actual sensory feedback. Specifically, the brain state related to the binding between motor processing and sensory perception would have inhibitory function by gating sensory information via top-down control. Since the brain state could casually influence the perception of subsequent stimuli of different sensory modalities, we hypothesize that pain evoked by nociceptive stimuli following the self-initiated tactile stimulation would be attenuated as compared to that following externally determined tactile stimulation. Here, we compared psychophysical and neurophysiological responses to identical nociceptive-specific laser stimuli in two different conditions: self-initiated tactile sensation condition (STS) and nonself-initiated tactile sensation condition (N-STS). We observed that pain intensity and unpleasantness, as well as laser-evoked brain responses, were significantly reduced in the STS condition compared to the N-STS condition. In addition, magnitudes of alpha and beta oscillations prior to laser onset were significantly larger in the STS condition than in the N-STS condition. These results confirmed that pain perception and pain-related brain responses were attenuated when the tactile stimulation was initiated by subjects' voluntary actions, and exploited neural oscillations reflecting the binding between motor processing and sensory feedback. Thus, our study elaborated the understanding of underlying neural mechanisms related to top-down modulations of the analgesic effect induced by self-initiated tactile sensation, which provided theoretical basis to improve the analgesic effect in various clinical applications. © 2017 Society for Psychophysiological Research.

  8. Anomalous plasma heating induced by modulation of the current-density profile

    International Nuclear Information System (INIS)

    Lopes Cardozo, N.J.

    1985-05-01

    The usual plasma heating in a tokamak needs additional heating to reach ignition temperature (approx. 10 8 K). The method used in the TORTUR III experiment is to induce anomalous plasma resistivity by applying a short (10 microseconds) high-voltage pulse. A sharp rise of the plasma temperature is found almost simultaneously, but this effect, though considerable, is too short-lived to be of interest for a thermonuclear chain reaction. A second pulse gives a second rise of temperature, but this time a slow one, extending over several milliseconds. The mechanism of this delayed heating and the reservoir within the plasma supplying the energy are subjects of investigation in the TORTUR III experiments. Some conclusions concerning the plasma heating mechanism are presented. The conclusion is reached that the application of the high-voltage pulse results in a modulation of the current-density profile: the (normally already peaked) profile sharpens, the current concentrates in the centre of the plasma column. This is a non-equilibrium situation. It relaxes to the noraml current distribution within approximately 2 milliseconds. As long as this relaxation process is not finished, the dissipation is on an enhanced level and anomalous plasma heating is observed. Many plasma parameters are surveyed and evaluated: temperature (both of the ions and the electrons), density, emission spectrum (from microwaves to hard X-rays) and the fluctuation spectrum. Main subject of this report is the measurement and interpretation of the X-rays of the emission spectrum. Experimental results are presented and discussed

  9. Stress-induced alterations in 5-HT1A receptor transcriptional modulators NUDR and Freud-1.

    Science.gov (United States)

    Szewczyk, Bernadeta; Kotarska, Katarzyna; Daigle, Mireille; Misztak, Paulina; Sowa-Kucma, Magdalena; Rafalo, Anna; Curzytek, Katarzyna; Kubera, Marta; Basta-Kaim, Agnieszka; Nowak, Gabriel; Albert, Paul R

    2014-11-01

    The effect of stress on the mRNA and protein level of the 5-HT1A receptor and two of its key transcriptional modulators, NUDR and Freud-1, was examined in the prefrontal cortex (PFC) and hippocampus (Hp) using rodent models: olfactory bulbectomy (OB) and prenatal stress (PS) in male and female rats; chronic mild stress in male rats (CMS) and pregnancy stress. In PFC, CMS induced the most widespread changes, with significant reduction in both mRNA and protein levels of NUDR, 5-HT1A receptor and in Freud-1 mRNA; while in Hp 5-HT1A receptor and Freud-1 protein levels were also decreased. In male, but not female OB rats PFC Freud-1 and 5-HT1A receptor protein levels were reduced, while in Hp 5-HT1A receptor, Freud-1 and NUDR mRNA's but not protein were reduced. In PS rats PFC 5-HT1A receptor protein was reduced more in females than males; while in Hp Freud-1 protein was increased in females. In pregnancy stress, PFC NUDR, Freud-1 and 5-HT1A protein receptor levels were reduced, and in HP 5-HT1A receptor protein levels were also reduced; in HP only NUDR and Freud-1 mRNA levels were reduced. Overall, CMS and stress during pregnancy produced the most salient changes in 5-HT1A receptor and transcription factor expression, suggesting a primary role for altered transcription factor expression in chronic regulation of 5-HT1A receptor expression. By contrast, OB (in males) and PS (in females) produced gender-specific reductions in PFC 5-HT1A receptor protein levels, suggesting a role for post-transcriptional regulation. These and previous data suggest that chronic stress might be a key regulator of NUDR/Freud-1 gene expression.

  10. Early suppression of adipocyte lipid turnover induces immunometabolic modulation in cancer cachexia syndrome.

    Science.gov (United States)

    Henriques, Felipe Santos; Sertié, Rogério Antônio Laurato; Franco, Felipe Oliveira; Knobl, Pamela; Neves, Rodrigo Xavier; Andreotti, Sandra; Lima, Fabio Bessa; Guilherme, Adilson; Seelaender, Marilia; Batista, Miguel Luiz

    2017-05-01

    Cancer cachexia is a multifactorial syndrome characterized by body weight loss, atrophy of adipose tissue (AT) and systemic inflammation. However, there is limited information regarding the mechanisms of immunometabolic response in AT from cancer cachexia. Male Wistar rats were inoculated with 2 × 10 7 of Walker 256 tumor cells [tumor bearing (TB) rats]. The mesenteric AT (MeAT) was collected on d 0, 4, 7 (early stage), and 14 (cachexia stage) after tumor cell injection. Surgical biopsies for MeAT were obtained from patients who had gastrointestinal cancer with cachexia. Lipolysis showed an early decrease in glycerol release in TB d 4 (TB4) rats in relation to the control, followed by a 6-fold increase in TB14 rats, whereas de novo lipogenesis was markedly lower in the incorporation of glucose into fatty acids in TB14 rats during the development of cachexia. CD11b and CD68 were positive in TB7 and TB14 rats, respectively. In addition, we found cachexia stage results similar to those of animals in MeAT from patients: an increased presence of CD68 + , iNOS2 + , TNFα + , and HSL + cells. In summary, translational analysis of MeAT from patients and an animal model of cancer cachexia enabled us to identify early disruption in Adl turnover and subsequent inflammatory response during the development of cancer cachexia.-Henriques, F. S., Sertié, R. A. L., Franco, F. O., Knobl, P., Neves, R. X., Andreotti, S., Lima, F. B., Guilherme, A., Seelaender, M., Batista, M. L., Jr. Early suppression of adipocyte lipid turnover induces immunometabolic modulation in cancer cachexia syndrome. © FASEB.

  11. Ionizing Radiation Induces Morphological Changes and Immunological Modulation of Jurkat Cells.

    Science.gov (United States)

    Voos, Patrick; Fuck, Sebastian; Weipert, Fabian; Babel, Laura; Tandl, Dominique; Meckel, Tobias; Hehlgans, Stephanie; Fournier, Claudia; Moroni, Anna; Rödel, Franz; Thiel, Gerhard

    2018-01-01

    Impairment or stimulation of the immune system by ionizing radiation (IR) impacts on immune surveillance of tumor cells and non-malignant cells and can either foster therapy response or side effects/toxicities of radiation therapy. For a better understanding of the mechanisms by which IR modulates T-cell activation and alters functional properties of these immune cells, we exposed human immortalized Jurkat cells and peripheral blood lymphocytes (PBL) to X-ray doses between 0.1 and 5 Gy. This resulted in cellular responses, which are typically observed also in naïve T-lymphocytes in response of T-cell receptor immune stimulation or mitogens. These responses include oscillations of cytosolic Ca 2+ , an upregulation of CD25 surface expression, interleukin-2 and interferon-γ synthesis, elevated expression of Ca 2+ sensitive K + channels and an increase in cell diameter. The latter was sensitive to inhibition by the immunosuppressant cyclosporine A, Ca 2+ buffer BAPTA-AM, and the CDK1-inhibitor RO3306, indicating the involvement of Ca 2+ -dependent immune activation and radiation-induced cell cycle arrest. Furthermore, on a functional level, Jurkat and PBL cell adhesion to endothelial cells was increased upon radiation exposure and was highly dependent on an upregulation of integrin beta-1 expression and clustering. In conclusion, we here report that IR impacts on immune activation and functional properties of T-lymphocytes that may have implications in both toxic effects and treatment response to combined radiation and immune therapy in cancer patients.

  12. MicroRNA-15b Modulates Molecular Mediators of Blood Induced Arthropathy in Hemophilia Mice

    Directory of Open Access Journals (Sweden)

    Dwaipayan Sen

    2016-04-01

    Full Text Available The development of arthropathy is a major co-morbidity in patients with hemophilia. The present study was designed to study the role of a microRNA biomarker (miR-15b in the development of joint disease. To investigate the expression profile of miR-15b during the development of arthropathy, we first isolated and studied small RNA from the acute and chronic hemarthrosis model of hemophilia A mice. We observed that miR-15b was consistently repressed (~1- to 4-fold from the onset of joint bleeding (1, 3, 7 and 24 h until six bleeding episodes (up to 90 days. To test if reconstitution of miR-15b modulates biomarkers of joint damage in a chronic hemarthrosis model, we administered an adeno-associated virus (AAV 5-miR-15b vector intra-articularly alone or in combination with systemic administration of AAV2-factor VIII. miR-15b overexpression downregulated markers of angiogenesis and hypoxia (vascular epithelial growth factor α (VEGF-α and hypoxia inducing factor 2α (HIF-2α, ~70% and ~34%, respectively in the affected joints. In addition, the co-administration of miR-15b and factor VIII vectors reduced the levels of the chondrodegenerative matrix-metalloproteinases (MMPs 1, 3, 9 and 14 (~14% to 60% in the injured joints. These data demonstrate for the first time the role of a miR-15b in the development of hemophilic arthropathy and has implications in development of miR based therapies for joint disease.

  13. Ionizing Radiation Induces Morphological Changes and Immunological Modulation of Jurkat Cells

    Directory of Open Access Journals (Sweden)

    Patrick Voos

    2018-04-01

    Full Text Available Impairment or stimulation of the immune system by ionizing radiation (IR impacts on immune surveillance of tumor cells and non-malignant cells and can either foster therapy response or side effects/toxicities of radiation therapy. For a better understanding of the mechanisms by which IR modulates T-cell activation and alters functional properties of these immune cells, we exposed human immortalized Jurkat cells and peripheral blood lymphocytes (PBL to X-ray doses between 0.1 and 5 Gy. This resulted in cellular responses, which are typically observed also in naïve T-lymphocytes in response of T-cell receptor immune stimulation or mitogens. These responses include oscillations of cytosolic Ca2+, an upregulation of CD25 surface expression, interleukin-2 and interferon-γ synthesis, elevated expression of Ca2+ sensitive K+ channels and an increase in cell diameter. The latter was sensitive to inhibition by the immunosuppressant cyclosporine A, Ca2+ buffer BAPTA-AM, and the CDK1-inhibitor RO3306, indicating the involvement of Ca2+-dependent immune activation and radiation-induced cell cycle arrest. Furthermore, on a functional level, Jurkat and PBL cell adhesion to endothelial cells was increased upon radiation exposure and was highly dependent on an upregulation of integrin beta-1 expression and clustering. In conclusion, we here report that IR impacts on immune activation and functional properties of T-lymphocytes that may have implications in both toxic effects and treatment response to combined radiation and immune therapy in cancer patients.

  14. Systemic Exercise-Induced Hypoalgesia Following Isometric Exercise Reduces Conditioned Pain Modulation.

    Science.gov (United States)

    Alsouhibani, Ali; Vaegter, Henrik Bjarke; Hoeger Bement, Marie

    2018-04-03

    Physically active individuals show greater conditioned pain modulation (CPM) compared with less active individuals. Understanding the effects of acute exercise on CPM may allow for a more targeted use of exercise in the management of pain. This study investigated the effects of acute isometric exercise on CPM. In addition, the between-session and within-session reliability of CPM was investigated. Experimental, randomized crossover study. Laboratory at Marquette University. Thirty healthy adults (19.3±1.5 years, 15 males). Subjects underwent CPM testing before and after isometric exercise (knee extension, 30% maximum voluntary contraction for three minutes) and quiet rest in two separate experimental sessions. Pressure pain thresholds (PPTs) at the quadriceps and upper trapezius muscles were assessed before, during, and after ice water immersions. PPTs increased during ice water immersion (i.e., CPM), and quadriceps PPT increased after exercise (P CPM decreased similarly following exercise and quiet rest (P > 0.05). CPM within-session reliability was fair to good (intraclass correlation coefficient [ICC] = 0.43-0.70), and the between-session reliability was poor (ICC = 0.20-0.35). Due to the variability in the systemic exercise-induced hypoalgesia (EIH) response, participants were divided into systemic EIH responders (N = 9) and nonresponders (N = 21). EIH responders experienced attenuated CPM following exercise (P = 0.03), whereas the nonresponders showed no significant change (P > 0.05). Isometric exercise decreased CPM in individuals who reported systemic EIH, suggesting activation of shared mechanisms between CPM and systemic EIH responses. These results may improve the understanding of increased pain after exercise in patients with chronic pain and potentially attenuated CPM.

  15. Radioprotective effect of sulphydryl group containing triazole derivative to modulate the radiation-induced clastogenic effects

    International Nuclear Information System (INIS)

    Suchetha Kumari, N.; Madhu, L.N.

    2012-01-01

    Protection of biological systems against radiation damage is of paramount importance during accidental and unavoidable exposure to radiation. Several physico-chemical and biological factors collectively contribute to the damage caused by radiation and are, therefore, targets for developing radioprotectors. Chemicals capable of scavenging free radicals, relieving oxidative stress, promoting antioxidant activity and modulating immune response have been some of the radioprotectors extensively investigated with limited success. It has long been known that some of the most effective radioprotective agents are those which contain sulphydryl groups. The present study reports an evaluation of radical scavenging property and radioprotective property of sulphydryl group containing triazole derivative. The lethal dose of Electron beam radiation (EBR) was studied by survival assay. The dose reduction factor (DRF) of 4-amino-5-mercapto-3-methyl-1,2,4-triazole (TR1) was calculated by taking the ratio between LD 50 of EBR with and without TR1 treatment. Radical scavenging property of TR1 was assessed by DPPH radical scavenging assay. The clastogenic effects of EBR were recorded by Micronucleus test in bone marrow cells and DNA fragmentation assay in hepatic cells of mice. The survival assay results showed that 10Gy was the LD 50 of EBR. The calculated DRF for TR1 was found to be 1.2. DPPH radical scavenging assay showed a positive result when it compared with the standard glutathione. Treatment of mice with 100 mg of TR1 for 15 days before irradiation significantly (P<0.05) reduced the frequency of micronucleus formation in bone marrow cells and also reduced the DNA fragmentation in hepatic cells. The result obtained in the present study concludes that TR1 has a protective effect against the EBR-induced mortality and clastogenicity. (author)

  16. Low Concentration of Exogenous Carbon Monoxide Modulates Radiation-Induced Bystander Effect in Mammalian Cell Cluster Model

    Directory of Open Access Journals (Sweden)

    Wenqing Wu

    2016-12-01

    Full Text Available During radiotherapy procedures, radiation-induced bystander effect (RIBE can potentially lead to genetic hazards to normal tissues surrounding the targeted regions. Previous studies showed that RIBE intensities in cell cluster models were much higher than those in monolayer cultured cell models. On the other hand, low-concentration carbon monoxide (CO was previously shown to exert biological functions via binding to the heme domain of proteins and then modulating various signaling pathways. In relation, our previous studies showed that exogenous CO generated by the CO releasing molecule, tricarbonyldichlororuthenium (CORM-2, at a relatively low concentration (20 µM, effectively attenuated the formation of RIBE-induced DNA double-strand breaks (DSB and micronucleus (MN. In the present work, we further investigated the capability of a low concentration of exogenous CO (CORM-2 of attenuating or inhibiting RIBE in a mixed-cell cluster model. Our results showed that CO (CORM-2 with a low concentration of 30 µM could effectively suppress RIBE-induced DSB (p53 binding protein 1, p53BP1, MN formation and cell proliferation in bystander cells but not irradiated cells via modulating the inducible nitric oxide synthase (iNOS andcyclooxygenase-2 (COX-2. The results can help mitigate RIBE-induced hazards during radiotherapy procedures.

  17. Biphasic Estradiol-induced AKT Phosphorylation Is Modulated by PTEN via MAP Kinase in HepG2 Cells

    Science.gov (United States)

    Marino, Maria; Acconcia, Filippo; Trentalance, Anna

    2003-01-01

    We reported previously in HepG2 cells that estradiol induces cell cycle progression throughout the G1–S transition by the parallel stimulation of both PKC-α and ERK signaling molecules. The analysis of the cyclin D1 gene expression showed that only the MAP kinase pathway was involved. Here, the presence of rapid/nongenomic, estradiol-regulated, PI3K/AKT signal transduction pathway, its modulation by the levels of the tumor suppressor PTEN, its cross-talk with the ERK pathway, and its involvement in DNA synthesis and cyclin D1 gene promoter activity have all been studied in HepG2 cells. 17β-Estradiol induced the rapid and biphasic phosphorylation of AKT. These phosphorylations were independent of each other, being the first wave of activation independent of the estrogen receptor (ER), whereas the second was dependent on ER. Both activations were dependent on PI3K activity; furthermore, the ERK pathway modulated AKT phosphorylation by acting on the PTEN levels. The results showed that the PI3K pathway, as well as ER, were strongly involved in both G1–S progression and cyclin D1 promoter activity by acting on its proximal region (-254 base pairs). These data indicate that in HepG2 cells, different rapid/nongenomic estradiol-induced signal transduction pathways modulate the multiple steps of G1–S phase transition. PMID:12808053

  18. Characterization of Imidazopyridine Compounds as Negative Allosteric Modulators of Proton-Sensing GPR4 in Extracellular Acidification-Induced Responses.

    Directory of Open Access Journals (Sweden)

    Ayaka Tobo

    Full Text Available G protein-coupled receptor 4 (GPR4, previously proposed as the receptor for sphingosylphosphorylcholine, has recently been identified as the proton-sensing G protein-coupled receptor (GPCR coupling to multiple intracellular signaling pathways, including the Gs protein/cAMP and G13 protein/Rho. In the present study, we characterized some imidazopyridine compounds as GPR4 modulators that modify GPR4 receptor function. In the cells that express proton-sensing GPCRs, including GPR4, OGR1, TDAG8, and G2A, extracellular acidification stimulates serum responsive element (SRE-driven transcriptional activity, which has been shown to reflect Rho activity, with different proton sensitivities. Imidazopyridine compounds inhibited the moderately acidic pH-induced SRE activity only in GPR4-expressing cells. Acidic pH-stimulated cAMP accumulation, mRNA expression of inflammatory genes, and GPR4 internalization within GPR4-expressing cells were all inhibited by the GPR4 modulator. We further compared the inhibition property of the imidazopyridine compound with psychosine, which has been shown to selectively inhibit actions induced by proton-sensing GPCRs, including GPR4. In the GPR4 mutant, in which certain histidine residues were mutated to phenylalanine, proton sensitivity was significantly shifted to the right, and psychosine failed to further inhibit acidic pH-induced SRE activation. On the other hand, the imidazopyridine compound almost completely inhibited acidic pH-induced action in mutant GPR4. We conclude that some imidazopyridine compounds show specificity to GPR4 as negative allosteric modulators with a different action mode from psychosine, an antagonist susceptible to histidine residues, and are useful for characterizing GPR4-mediated acidic pH-induced biological actions.

  19. Characterization of Imidazopyridine Compounds as Negative Allosteric Modulators of Proton-Sensing GPR4 in Extracellular Acidification-Induced Responses.

    Science.gov (United States)

    Tobo, Ayaka; Tobo, Masayuki; Nakakura, Takashi; Ebara, Masashi; Tomura, Hideaki; Mogi, Chihiro; Im, Dong-Soon; Murata, Naoya; Kuwabara, Atsushi; Ito, Saki; Fukuda, Hayato; Arisawa, Mitsuhiro; Shuto, Satoshi; Nakaya, Michio; Kurose, Hitoshi; Sato, Koichi; Okajima, Fumikazu

    2015-01-01

    G protein-coupled receptor 4 (GPR4), previously proposed as the receptor for sphingosylphosphorylcholine, has recently been identified as the proton-sensing G protein-coupled receptor (GPCR) coupling to multiple intracellular signaling pathways, including the Gs protein/cAMP and G13 protein/Rho. In the present study, we characterized some imidazopyridine compounds as GPR4 modulators that modify GPR4 receptor function. In the cells that express proton-sensing GPCRs, including GPR4, OGR1, TDAG8, and G2A, extracellular acidification stimulates serum responsive element (SRE)-driven transcriptional activity, which has been shown to reflect Rho activity, with different proton sensitivities. Imidazopyridine compounds inhibited the moderately acidic pH-induced SRE activity only in GPR4-expressing cells. Acidic pH-stimulated cAMP accumulation, mRNA expression of inflammatory genes, and GPR4 internalization within GPR4-expressing cells were all inhibited by the GPR4 modulator. We further compared the inhibition property of the imidazopyridine compound with psychosine, which has been shown to selectively inhibit actions induced by proton-sensing GPCRs, including GPR4. In the GPR4 mutant, in which certain histidine residues were mutated to phenylalanine, proton sensitivity was significantly shifted to the right, and psychosine failed to further inhibit acidic pH-induced SRE activation. On the other hand, the imidazopyridine compound almost completely inhibited acidic pH-induced action in mutant GPR4. We conclude that some imidazopyridine compounds show specificity to GPR4 as negative allosteric modulators with a different action mode from psychosine, an antagonist susceptible to histidine residues, and are useful for characterizing GPR4-mediated acidic pH-induced biological actions.

  20. Aryl Hydrocarbon Receptor (AhR Modulates Cockroach Allergen-Induced Immune Responses through Active TGFβ1 Release

    Directory of Open Access Journals (Sweden)

    Yufeng Zhou

    2014-01-01

    Full Text Available Background. Aryl hydrocarbon receptor (AhR, a multifunctional regulator that senses and responds to environmental stimuli, plays a role in normal cell development and immune regulation. Recent evidence supports a significant link between environmental exposure and AhR in the development of allergic diseases. We sought to investigate whether AhR plays a role in mediating cockroach allergen-induced allergic immune responses. Methods. AhR expression in human lung fibroblasts from asthmatic and healthy individuals and in cockroach extract (CRE treated human lung fibroblasts (WI-38 was examined. The role of AhR in modulating CRE induced TGFβ1 production was investigated by using AhR agonist, TCDD, antagonist CH122319, and knockdown of AhR. The role of latent TGFβ1 binding protein-1 (LTBP1 in mediating TCDD induced active TGFβ1 release was also examined. Results. AhR expression was higher in airway fibroblasts from asthmatic subjects as compared to healthy controls. AhR in fibroblasts was activated by TCDD with an increased expression of cyp1a1 and cyp1b1. Increased AhR expression was observed in CRE-treated fibroblasts. Importantly, CRE induced TGFβ1 production in fibroblasts was significantly enhanced by TCDD but inhibited by CH122319. Reduced TGFβ1 production was further confirmed in fibroblasts with AhR knockdown. Moreover, AhR knockdown inhibited CRE induced fibroblast differentiation. Furthermore, TCDD induced active TGFβ1 release was significantly inhibited by LTBP1 knockdown. Conclusion. These results provide evidence for the role of AhR in modulating cockroach allergen-induced immune responses through controlling the active TGFβ1 release, suggesting a possible synergistic effect between exposure to allergens and environmental chemicals on the development of allergic diseases.

  1. Modulation of radiation-induced apoptosis and G{sub 2}/M block in murine T-lymphoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Palayoor, S.T.; Macklis, R.M.; Bump, E.A.; Coleman, C.N. [Harvard Medical School, Boston, MA (United States)

    1995-03-01

    Radiation-induced apoptosis in lymphocyte-derived cell lines is characterized by endonucleolytic cleavage of cellular DNA within hours after radiation exposure. We have studied this phenomenon qualitatively (DNA gel electrophoresis) and quantitatively (diphenylamine reagent assay) in murine EL4 T-lymphoma cells exposed to {sup 137}Cs {gamma} irradiation. Fragmentation was discernible within 18-24 h after exposure. It increased with time and dose and reached a plateau after 8 Gy of {gamma} radiation. We studied the effect of several pharmacological agents on the radiation-induced G{sub 2}/M block and DNA fragmentation. The agents which reduced the radiation-induced G{sub 2}/M-phase arrest (caffeine, theobromine, theophylline and 2-aminopurine) enhanced the degree of DNA fragmentation at 24 h. In contrast, the agents which sustained the radiation-induced G{sub 2}/M-phase arrest (TPA, DBcAMP, IBMX and 3-aminobenzamide) inhibited the DNA fragmentation at 24 h. These studies on EL4 lymphoma cells are consistent with the hypothesis that cells with radiation-induced genetic damage are eliminated by apoptosis subsequent to a G{sub 2}/M block. Furthermore, it may be possible to modulate the process of radiation-induced apoptosis in lymphoma cells with pharmacological agents that modify the radiation-induced G{sub 2}/M block, and to use this effect in the treatment of patients with malignant disease. 59 refs., 7 figs.

  2. Modulation of radiation-induced apoptosis and G2/M block in murine T-lymphoma cells

    International Nuclear Information System (INIS)

    Palayoor, S.T.; Macklis, R.M.; Bump, E.A.; Coleman, C.N.

    1995-01-01

    Radiation-induced apoptosis in lymphocyte-derived cell lines is characterized by endonucleolytic cleavage of cellular DNA within hours after radiation exposure. We have studied this phenomenon qualitatively (DNA gel electrophoresis) and quantitatively (diphenylamine reagent assay) in murine EL4 T-lymphoma cells exposed to 137 Cs γ irradiation. Fragmentation was discernible within 18-24 h after exposure. It increased with time and dose and reached a plateau after 8 Gy of γ radiation. We studied the effect of several pharmacological agents on the radiation-induced G 2 /M block and DNA fragmentation. The agents which reduced the radiation-induced G 2 /M-phase arrest (caffeine, theobromine, theophylline and 2-aminopurine) enhanced the degree of DNA fragmentation at 24 h. In contrast, the agents which sustained the radiation-induced G 2 /M-phase arrest (TPA, DBcAMP, IBMX and 3-aminobenzamide) inhibited the DNA fragmentation at 24 h. These studies on EL4 lymphoma cells are consistent with the hypothesis that cells with radiation-induced genetic damage are eliminated by apoptosis subsequent to a G 2 /M block. Furthermore, it may be possible to modulate the process of radiation-induced apoptosis in lymphoma cells with pharmacological agents that modify the radiation-induced G 2 /M block, and to use this effect in the treatment of patients with malignant disease. 59 refs., 7 figs

  3. Atorvastatin calcium inhibits phenotypic modulation of PDGF-BB-induced VSMCs via down-regulation the Akt signaling pathway.

    Science.gov (United States)

    Chen, Shuang; Liu, Baoqin; Kong, Dehui; Li, Si; Li, Chao; Wang, Huaqin; Sun, Yingxian

    2015-01-01

    Plasticity of vascular smooth muscle cells (VSMCs) plays a central role in the onset and progression of proliferative vascular diseases. In adult tissue, VSMCs exist in a physiological contractile-quiescent phenotype, which is defined by lack of the ability of proliferation and migration, while high expression of contractile marker proteins. After injury to the vessel, VSMC shifts from a contractile phenotype to a pathological synthetic phenotype, associated with increased proliferation, migration and matrix secretion. It has been demonstrated that PDGF-BB is a critical mediator of VSMCs phenotypic switch. Atorvastatin calcium, a selective inhibitor of 3-hydroxy-3-methyl-glutaryl l coenzyme A (HMG-CoA) reductase, exhibits various protective effects against VSMCs. In this study, we investigated the effects of atorvastatin calcium on phenotype modulation of PDGF-BB-induced VSMCs and the related intracellular signal transduction pathways. Treatment of VSMCs with atorvastatin calcium showed dose-dependent inhibition of PDGF-BB-induced proliferation. Atorvastatin calcium co-treatment inhibited the phenotype modulation and cytoskeleton rearrangements and improved the expression of contractile phenotype marker proteins such as α-SM actin, SM22α and calponin in comparison with PDGF-BB alone stimulated VSMCs. Although Akt phosphorylation was strongly elicited by PDGF-BB, Akt activation was attenuated when PDGF-BB was co-administrated with atorvastatin calcium. In conclusion, atorvastatin calcium inhibits phenotype modulation of PDGF-BB-induced VSMCs and activation of the Akt signaling pathway, indicating that Akt might play a vital role in the modulation of phenotype.

  4. Modulation of early stress-induced neurobiological changes: a review of behavioural and pharmacological interventions in animal models.

    Science.gov (United States)

    Harrison, E L; Baune, B T

    2014-05-13

    Childhood adversity alters the predisposition to psychiatric disorders later in life. Those with psychiatric conditions and a history of early adversity exhibit a higher incidence of treatment resistance compared with individuals with no such history. Modulation of the influence early stress exerts over neurobiology may help to prevent the development of psychiatric disorders in some cases, while attenuating the extent of treatment resistance in those with established psychiatric disorders. This review aims to critically evaluate the ability of behavioural, environmental and pharmacologic interventions to modulate neurobiological changes induced by early stress in animal models. Databases were systematically searched to locate literature relevant to this review. Early adversity was defined as stress that resulted from manipulation of the mother-infant relationship. Analysis was restricted to animal models to enable characterisation of how a given intervention altered specific neurobiological changes induced by early stress. A wide variety of changes in neurobiology due to early stress are amenable to intervention. Behavioural interventions in childhood, exercise in adolescence and administration of epigenetic-modifying drugs throughout life appear to best modulate cellar and behavioural alterations induced by childhood adversity. Other pharmacotherapies, such as endocannabinoid system modulators, anti-inflammatories and antidepressants can also influence these neurobiological and behavioural changes that result from early stress, although findings are less consistent at present and require further investigation. Further work is required to examine the influence that behavioural interventions, exercise and epigenetic-modifying drugs exert over alterations that occur following childhood stress in human studies, before possible translational into clinical practice is possible.

  5. Characterization and pharmacological modulation of intestinal inflammation induced by ionizing radiation; Caracterisation et modulation pharmacologique de l'inflammation intestinale induite par les rayonnements ionisants

    Energy Technology Data Exchange (ETDEWEB)

    Gremy, O

    2006-12-15

    The use of radiation therapy to treat abdominal and pelvic malignancies inevitably involves exposure of healthy intestinal tissues which are very radiosensitive. As a result, most patients experience symptoms such as abdominal pain, nausea and diarrhea. Such symptoms are associated with acute damage to intestine mucosa including radio-induced inflammatory processes. With a rat model of colorectal fractionated radiation, we have shown a gradual development of a colonic inflammation during radiation planning, without evident tissue injury. This radio-induced inflammation is characterized not only by the sur expressions of pro-inflammatory cytokines and chemokines, a NF-kB activation, but also by a repression of anti-inflammatory cytokines and the nuclear receptors PPARa and RXRa, both involved in inflammation control. This early inflammation is associated with a discreet neutrophil recruitment and a macrophage accumulation. Macrophages are still abnormally numerous in tissue 27 weeks after the last day of irradiation. Inflammatory process is the most often related to a specific immune profile, either a type Th1 leading to a cellular immune response, or a type Th2 for humoral immunity. According to our studies, a unique abdominal radiation in the rat induces an ileum inflammation and an immune imbalance resulting in a Th2-type profile. Inhibiting this profile is important as its persistence promotes chronic inflammation, predisposition to bacterial infections and fibrosis which is the main delayed side-effect of radiotherapy. The treatment of rats with an immuno-modulator compound, the caffeic acid phenethyl ester (C.A.P.E.), have the potential to both reduce ileal mucosal inflammation and inhibit the radio-induced Th2 status. In order to search new therapeutic molecular target, we has been interested in the PPARg nuclear receptor involved in the maintenance of colon mucosal integrity. In our abdominal irradiation model, we have demonstrated that the prophylactic

  6. Characterization and pharmacological modulation of intestinal inflammation induced by ionizing radiation; Caracterisation et modulation pharmacologique de l'inflammation intestinale induite par les rayonnements ionisants

    Energy Technology Data Exchange (ETDEWEB)

    Gremy, O

    2006-12-15

    The use of radiation therapy to treat abdominal and pelvic malignancies inevitably involves exposure of healthy intestinal tissues which are very radiosensitive. As a result, most patients experience symptoms such as abdominal pain, nausea and diarrhea. Such symptoms are associated with acute damage to intestine mucosa including radio-induced inflammatory processes. With a rat model of colorectal fractionated radiation, we have shown a gradual development of a colonic inflammation during radiation planning, without evident tissue injury. This radio-induced inflammation is characterized not only by the sur expressions of pro-inflammatory cytokines and chemokines, a NF-kB activation, but also by a repression of anti-inflammatory cytokines and the nuclear receptors PPARa and RXRa, both involved in inflammation control. This early inflammation is associated with a discreet neutrophil recruitment and a macrophage accumulation. Macrophages are still abnormally numerous in tissue 27 weeks after the last day of irradiation. Inflammatory process is the most often related to a specific immune profile, either a type Th1 leading to a cellular immune response, or a type Th2 for humoral immunity. According to our studies, a unique abdominal radiation in the rat induces an ileum inflammation and an immune imbalance resulting in a Th2-type profile. Inhibiting this profile is important as its persistence promotes chronic inflammation, predisposition to bacterial infections and fibrosis which is the main delayed side-effect of radiotherapy. The treatment of rats with an immuno-modulator compound, the caffeic acid phenethyl ester (C.A.P.E.), have the potential to both reduce ileal mucosal inflammation and inhibit the radio-induced Th2 status. In order to search new therapeutic molecular target, we has been interested in the PPARg nuclear receptor involved in the maintenance of colon mucosal integrity. In our abdominal irradiation model, we have demonstrated that the prophylactic

  7. Diffusion-induced periodic transition between oscillatory modes in amplitude-modulated patterns

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiaodong; He, Yuxiu; Wang, Shaorong; Gao, Qingyu, E-mail: gaoqy@cumt.edu.cn [College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221008 (China); Epstein, Irving R., E-mail: epstein@brandeis.edu [Department of Chemistry and Volen Center for Complex Systems, MS 015, Brandeis University, Waltham, Massachusetts 02454-9110 (United States); Wang, Qun [School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116 (China)

    2014-06-15

    We study amplitude-modulated waves, e.g., wave packets in one dimension, overtarget spirals and superspirals in two dimensions, under mixed-mode oscillatory conditions in a three-variable reaction-diffusion model. New transition zones, not seen in the homogeneous system, are found, in which periodic transitions occur between local 1{sup N−1} and 1{sup N} oscillations. Amplitude-modulated complex patterns result from periodic transition between (N − 1)-armed and N-armed waves. Spatial recurrence rates provide a useful guide to the stability of these modulated patterns.

  8. Morin Attenuates Ovalbumin-Induced Airway Inflammation by Modulating Oxidative Stress-Responsive MAPK Signaling

    Directory of Open Access Journals (Sweden)

    Yuan Ma

    2016-01-01

    Full Text Available Asthma is one of the most common inflammatory diseases characterized by airway hyperresponsiveness, inflammation, and remodeling. Morin, an active ingredient obtained from Moraceae plants, has been demonstrated to have promising anti-inflammatory activities in a range of disorders. However, its impacts on pulmonary diseases, particularly on asthma, have not been clarified. This study was designed to investigate whether morin alleviates airway inflammation in chronic asthma with an emphasis on oxidative stress modulation. In vivo, ovalbumin- (OVA- sensitized mice were administered with morin or dexamethasone before challenge. Bronchoalveolar lavage fluid (BALF and lung tissues were obtained to perform cell counts, histological analysis, and enzyme-linked immunosorbent assay. In vitro, human bronchial epithelial cells (BECs were challenged by tumor necrosis factor alpha (TNF-α. The supernatant was collected for the detection of the proinflammatory proteins, and the cells were collected for reactive oxygen species (ROS/mitogen-activated protein kinase (MAPK evaluations. Severe inflammatory responses and remodeling were observed in the airways of the OVA-sensitized mice. Treatment with morin dramatically attenuated the extensive trafficking of inflammatory cells into the BALF and inhibited their infiltration around the respiratory tracts and vessels. Morin administration also significantly suppressed goblet cell hyperplasia and collagen deposition/fibrosis and dose-dependently inhibited the OVA-induced increases in IgE, TNF-α, interleukin- (IL- 4, IL-13, matrix metalloproteinase-9, and malondialdehyde. In human BECs challenged by TNF-α, the levels of proteins such as eotaxin-1, monocyte chemoattractant protein-1, IL-8 and intercellular adhesion molecule-1, were consistently significantly decreased by morin. Western blotting and the 2′,7′-dichlorofluorescein assay revealed that the increases in intracellular ROS and MAPK phosphorylation were

  9. Clinically Significant Contrast Induced Acute Kidney Injury after Non-Emergent Cardiac Catheterization - Risk Factors and Impact on Length of Hospital Stay

    International Nuclear Information System (INIS)

    Kashif, W.; Yaqub, S.; Khawaja, A.

    2013-01-01

    Objective: To evaluate the frequency and risk factors associated with clinically significant contrast-induced nephropathy (CIN) in patients undergoing non-emergent coronary angiography. Study Design: Descriptive study. Place and Duration of Study: The Aga Khan University Hospital, Karachi, from January 2005 to December 2007. Methodology: Case records of patients who underwent coronary angiography with a serum creatinine of >= 1.5 mg/dl at the time of procedure were evaluated. Clinically significant contrast induced nephropathy (CSCIN) was defined as either doubling of serum creatinine from baseline value within a week following the procedure or need for emergency hemodialysis after the procedure. Results: One hundred and sixteen patients met the inclusion criteria. Mean age was 64.0 +- 11.5 years, 72% were males. Overall prevalence of CIN was 17% (rise of serum creatinine by A= 0.5 mg/dl) while that of clinically significant CIN (CSCIN) was 9.5% (11 patients). Patients with CSCIN had significantly lower left ventricular ejection fraction (p = 0.03, OR: 0.24; 95% CI = 0.06 A= 0.91) and higher prevalence of cerebrovascular disease (p < 0.001, OR: 14.66; 95% CI = 3.30 - 65.08). Mean baseline serum creatinine was significantly higher, 3.0 +- 1.5 vs. 2.0 +- 1.1 mg/dl (p = 0.03, OR: 1.47; 95% CI = 1.03 - 2.11) whereas mean GFR estimated by Cockcroft-Gault formula was significantly lower at 25 +- 7.4 vs. 41.0 +- 14.6 ml/minute (p = 0.001, OR = 0.89, 95% CI = 0.84 A= 0.95) at the time of procedure in patients with CSCIN. Mean length of hospital stay was significantly higher in this group compared to those without CIN, 9.0 +- 5.1 vs. 3.0 +- 3.2 days (p = 0.001, OR = 1.31, 95% CI = 1.12 - 1.54). Multivariate analysis revealed low GFR (p = 0.001, OR = 0.88; 95% CI = 0.82 - 0.95) and low ejection fraction (p = 0.03, OR = 0.20; 95% CI = 0.04 - 0.91) to be independent factors associated with CSCIN. No significant differences were noted between the two groups in patients with

  10. Potency of full-length MGF to induce maximal activation of the IGF-I R Is similar to recombinant human IGF-I at high equimolar concentrations

    NARCIS (Netherlands)

    J.A.M.J.L. Janssen (Joseph); L.J. Hofland (Leo); C.J. Strasburger; E.S.R.D. Van Dungen (Elisabeth S.R. Den); M. Thevis (Mario)

    2016-01-01

    textabstractAims To compare full-length mechano growth factor (full-length MGF) with human recombinant insulin-like growth factor-I (IGF-I) and human recombinant insulin (HI) in their ability to activate the human IGF-I receptor (IGF-IR), the human insulin receptor (IR-A) and the human insulin

  11. Relativistic length agony continued

    Directory of Open Access Journals (Sweden)

    Redžić D.V.

    2014-01-01

    Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028

  12. Serotoninergic Modulation of Basal Cardiovascular Responses and Responses Induced by Isotonic Extracellular Volume Expansion in Rats.

    Science.gov (United States)

    Semionatto, Isadora Ferraz; Raminelli, Adrieli Oliveira; Alves, Angelica Cristina; Capitelli, Caroline Santos; Chriguer, Rosangela Soares

    2017-02-01

    Isotonic blood volume expansion (BVE) induced alterations of sympathetic and parasympathetic activity in the heart and blood vessels, which can be modulated by serotonergic pathways. To evaluate the effect of saline or serotonergic agonist (DOI) administration in the hypothalamic paraventricular nucleus (PVN) on cardiovascular responses after BVE. We recorded pulsatile blood pressure through the femoral artery to obtain the mean arterial pressure (MAP), systolic (SBP) and diastolic blood pressure (DBP), heart rate (HR) and the sympathetic-vagal ratio (LF/HF) of Wistar rats before and after they received bilateral microinjections of saline or DOI into the PVN, followed by BVE. No significant differences were observed in the values of the studied variables in the different treatments from the control group. However, when animals are treated with DOI followed by BVE there is a significant increase in relation to the BE control group in all the studied variables: MBP (114.42±7.85 vs 101.34±9.17); SBP (147.23±14.31 vs 129.39±10.70); DBP (98.01 ±4.91 vs 87.31±8.61); HR (421.02±43.32 vs 356.35±41.99); and LF/HF ratio (2.32±0.80 vs 0.27±0.32). The present study showed that the induction of isotonic BVE did not promote alterations in MAP, HR and LF/HF ratio. On the other hand, the injection of DOI into PVN of the hypothalamus followed by isotonic BVE resulted in a significant increase of all variables. These results suggest that serotonin induced a neuromodulation in the PVN level, which promotes an inhibition of the baroreflex response to BVE. Therefore, the present study suggests the involvement of the serotonergic system in the modulation of vagal reflex response at PVN in the normotensive rats. Expansão de volume extracelular (EVEC) promove alterações da atividade simpática e parassimpática no coração e vasos sanguíneos, os quais podem ser moduladas por vias serotoninérgicas. Avaliar o efeito da administração de salina ou agonista serotonin

  13. Dietary fish oil modulates the effect of dimethylhydrazine- induced colon cancer in rats

    Directory of Open Access Journals (Sweden)

    Rasmy, G. E.

    2011-09-01

    Full Text Available This study was conducted to examine the efficacy of fish oil supplementation in male wistar rat colon carcinogenesis. In order to induce colon cancer, the rats were given a weekly subcutaneous injection of 1,2-Dimethylhydrazine (DMH at a dose of 20 mg/kg b.w. for five weeks. Afterwards, some of the rats ingested fish oil for either 4 weeks (DMH-FO4 group, or 17 weeks (DMH-FO17 group. The remaining rats continued without any supplementation for the same 4 weeks (DMH4 group, or 17 weeks (DMH17 group. Another two groups of rats did not receive the DMH and were given fish oil (FO17 group or a normal diet only and considered as the control group (CN group. At the end of the experiment, the rats were sacrificed; and were subsequently subjected to biochemical and molecular biological analyses as well as histopathological examinations. The results showed increased levels of lactate dehydrogenase (LDH, malondialdehyde (MDA and alkaline phoshatase (ALP activities in the DMH rats compared to the control. The liver and colonic changes that were induced by DMH were significantly improved through fish oil supplementation in the DMH-FO17 group. The molecular analysis revealed that DMH treatment induced the expression alterations of genes p53, p27 and p21 and increased DNA band patterns related to cancer, while both FO17 and DMH-FO17 groups showed much better results. A histopathological examination of the DMH17 group revealed colon adenocarcinoma and several lesions in rat liver tissues. An improvement in the histopathological picture was seen in the livers and colons of groups DMHFO17. In conclusion, the present results demonstrated the anti-carciongenic effect of herring fish oil against DMH induced colon carcinogenesis in rats. The inhibitory effect of FO was due to the modulation of elevated biochemical parameters, DNA damage, gene expression and histopathological lesions caused by DMH.

    Este estudio fue realizado para examinar la eficacia de la

  14. Hypoxia-induced p53 modulates both apoptosis and radiosensitivity via AKT

    NARCIS (Netherlands)

    Leszczynska, K.B.; Foskolou, I.P.; Abraham, A.G.; Anbalagan, S.; Tellier, C.; Haider, S.; Span, P.N.; O'Neill, E.E.; Buffa, F.M.; Hammond, E.M.

    2015-01-01

    Restoration of hypoxia-induced apoptosis in tumors harboring p53 mutations has been proposed as a potential therapeutic strategy; however, the transcriptional targets that mediate hypoxia-induced p53-dependent apoptosis remain elusive. Here, we demonstrated that hypoxia-induced p53-dependent

  15. Osmotic and Salt Stresses Modulate Spontaneous and Glutamate-Induced Action Potentials and Distinguish between Growth and Circumnutation in Helianthus annuus Seedlings

    Directory of Open Access Journals (Sweden)

    Maria Stolarz

    2017-10-01

    Full Text Available Action potentials (APs, i.e., long-distance electrical signals, and circumnutations (CN, i.e., endogenous plant organ movements, are shaped by ion fluxes and content in excitable and motor tissues. The appearance of APs and CN as well as growth parameters in seedlings and 3-week old plants of Helianthus annuus treated with osmotic and salt stress (0–500 mOsm were studied. Time-lapse photography and extracellular measurements of electrical potential changes were performed. The hypocotyl length was strongly reduced by the osmotic and salt stress. CN intensity declined due to the osmotic but not salt stress. The period of CN in mild salt stress was similar to the control (~164 min and increased to more than 200 min in osmotic stress. In sunflower seedlings growing in a hydroponic medium, spontaneous APs (SAPs propagating basipetally and acropetally with a velocity of 12–20 cm min−1 were observed. The number of SAPs increased 2–3 times (7–10 SAPs 24 h−1plant−1 in the mild salt stress (160 mOsm NaCl and KCl, compared to the control and strong salt stress (3–4 SAPs 24 h−1 plant−1 in the control and 300 mOsm KCl and NaCl. Glutamate-induced series of APs were inhibited in the strong salt stress-treated seedlings but not at the mild salt stress and osmotic stress. Additionally, in 3-week old plants, the injection of the hypo- or hyperosmotic solution at the base of the sunflower stem evoked series of APs (3–24 APs transmitted along the stem. It has been shown that osmotic and salt stresses modulate differently hypocotyl growth and CN and have an effect on spontaneous and evoked APs in sunflower seedlings. We suggested that potassium, sodium, and chloride ions at stress concentrations in the nutrient medium modulate sunflower excitability and CN.

  16. Inducing Strong Density Modulation with Small Energy Dispersion in Particle Beams and the Harmonic Amplifier Free Electron Laser

    CERN Document Server

    McNeil, Brian W J; Robb, Gordon

    2005-01-01

    We present a possible method of inducing a periodic density modulation in a particle beam with little increase in the energy dispersion of the particles. The flow of particles in phase space does not obey Liouville's Theorem. The method relies upon the Kuramoto-like model of collective synchronism found in free electron generators of radiation, such as Cyclotron Resonance Masers and the Free Electron Laser. For the case of an FEL interaction, electrons initially begin to bunch and emit radiation energy with a correlated energy dispersion which is periodic with the FEL ponderomotive potential. The relative phase between potential and particles is then changed by approximately 180 degrees. The particles continue to bunch, however, there is now a correlated re-absorption of energy from the field. We show that, by repeating this relative phase change many times, a significant density modulation of the particles may be achieved with only relatively small energy dispersion. A similar method of repeated relative ele...

  17. Construction and validation of a long-channel membrane test cell for representative monitoring of performance and characterization of fouling over the length of spiral-wound membrane modules

    KAUST Repository

    Siebdrath, Nadine; Ding, Wei; Pietsch, Elisabeth; Kruithof, Joop; Uhl, Wolfgang; Vrouwenvelder, Johannes S.

    2017-01-01

    A long-channel membrane test cell (LCMTC) with the same length as full-scale elements was developed to simulate performance and fouling in nanofiltration and reverse osmosis spiral-wound membrane modules (SWMs). The transparent LCMTC enabled simultaneous monitoring of SWM performance indicators: feed channel pressure drop, permeate flux and salt passage. Both permeate flux and salt passage were monitored over five sections of the test cell and were related to the amount and composition of the accumulated foulant in these five sections, illustrating the unique features of the test cell. Validation experiments at various feed pressures showed the same flow profile and the same hydraulic behaviour as SWMs used in practice, confirming the representativeness and suitability of the test cell to study SWM operation and fouling. The importance to apply feed spacers matching the flow channel height in test cell systems was demonstrated. Biofouling studies showed that the dosage of a biodegradable substrate to the feed of the LCMTC accelerated the gradual decrease of membrane performance and the accumulation of biomass on the spacer and membrane sheets. The strongest permeate flux decline and the largest amount of accumulated biomass was found in the first 18 cm of the test cell. The LCMTC showed to be suitable to study the impact of biofilm development and biofouling control strategies under representative conditions for full-scale membrane elements.

  18. Construction and validation of a long-channel membrane test cell for representative monitoring of performance and characterization of fouling over the length of spiral-wound membrane modules

    KAUST Repository

    Siebdrath, Nadine

    2017-12-03

    A long-channel membrane test cell (LCMTC) with the same length as full-scale elements was developed to simulate performance and fouling in nanofiltration and reverse osmosis spiral-wound membrane modules (SWMs). The transparent LCMTC enabled simultaneous monitoring of SWM performance indicators: feed channel pressure drop, permeate flux and salt passage. Both permeate flux and salt passage were monitored over five sections of the test cell and were related to the amount and composition of the accumulated foulant in these five sections, illustrating the unique features of the test cell. Validation experiments at various feed pressures showed the same flow profile and the same hydraulic behaviour as SWMs used in practice, confirming the representativeness and suitability of the test cell to study SWM operation and fouling. The importance to apply feed spacers matching the flow channel height in test cell systems was demonstrated. Biofouling studies showed that the dosage of a biodegradable substrate to the feed of the LCMTC accelerated the gradual decrease of membrane performance and the accumulation of biomass on the spacer and membrane sheets. The strongest permeate flux decline and the largest amount of accumulated biomass was found in the first 18 cm of the test cell. The LCMTC showed to be suitable to study the impact of biofilm development and biofouling control strategies under representative conditions for full-scale membrane elements.

  19. Statin therapy exacerbates alcohol-induced constriction of cerebral arteries via modulation of ethanol-induced BK channel inhibition in vascular smooth muscle.

    Science.gov (United States)

    Simakova, Maria N; Bisen, Shivantika; Dopico, Alex M; Bukiya, Anna N

    2017-12-01

    Statins constitute the most commonly prescribed drugs to decrease cholesterol (CLR). CLR is an important modulator of alcohol-induced cerebral artery constriction (AICAC). Using rats on a high CLR diet (2% CLR) we set to determine whether atorvastatin administration (10mg/kg daily for 18-23weeks) modified AICAC. Middle cerebral arteries were pressurized in vitro at 60mmHg and AICAC was evoked by 50mM ethanol, that is within the range of blood alcohol detected in humans following moderate-to-heavy drinking. AICAC was evident in high CLR+atorvastatin group but not in high CLR diet+placebo. Statin exacerbation of AICAC persisted in de-endothelialized arteries, and was blunted by CLR enrichment in vitro. Fluorescence imaging of filipin-stained arteries showed that atorvastatin decreased vascular smooth muscle (VSM) CLR when compared to placebo, this difference being reduced by CLR enrichment in vitro. Voltage- and calcium-gated potassium channels of large conductance (BK) are known VSM targets of ethanol, with their beta1 subunit being necessary for ethanol-induced channel inhibition and resulting AICAC. Ethanol-induced BK inhibition in excised membrane patches from freshly isolated myocytes was exacerbated in the high CLR diet+atorvastatin group when compared to high CLR diet+placebo. Unexpectedly, atorvastatin decreased the amount and function of BK beta1 subunit as documented by immunofluorescence imaging and functional patch-clamp studies. Atorvastatin exacerbation of ethanol-induced BK inhibition disappeared upon artery CLR enrichment in vitro. Our study demonstrates for the first time statin's ability to exacerbate the vascular effect of a widely consumed drug of abuse, this exacerbation being driven by statin modulation of ethanol-induced BK channel inhibition in the VSM via CLR-mediated mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Differential modulation of a radiation-induced bystander effect in glioblastoma cells by pifithrin-alpha and wortmannin

    Energy Technology Data Exchange (ETDEWEB)

    Shao Chunlin, E-mail: clshao@shmu.edu.c [Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032 (China); Zhang Jianghong [Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032 (China); Prise, Kevin M. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Lisburn Road, Belfast BT9 7AB (United Kingdom)

    2010-03-15

    The implication of radiation-induced bystander effect (RIBE) for both radiation protection and radiotherapy has attracted significant attention, but a key question is how to modulate the RIBE. The present study found that, when a fraction of glioblastoma cells in T98G population were individually targeted with precise helium particles through their nucleus, micronucleus (MN) were induced and its yield increased non-linearly with radiation dose. After co-culturing with irradiated cells, additional MN could be induced in the non-irradiated bystander cells and its yield was independent of irradiation dose, giving direct evidence of a RIBE. Further results showed that the RIBE could be eliminated by pifithrin-alpha (p53 inhibitor) but enhanced by wortmannin (PI3K inhibitor). Moreover, it was found that nitric oxide (NO) contributed to this RIBE, and the levels of NO of both irradiated cells and bystander cells could be extensively diminished by pifithrin-alpha but insignificantly reduced by wortmannin. Our results indicate that RIBE can be modulated by p53 and PI3K through a NO-dependent and NO-independent pathway, respectively.

  1. Protein kinase D1 modulates aldosterone-induced ENaC activity in a renal cortical collecting duct cell line.

    LENUS (Irish Health Repository)

    McEneaney, Victoria

    2010-08-30

    Aldosterone treatment of M1-CCD cells stimulated an increase in epithelial Na(+) channel (ENaC) alpha-subunit expression that was mainly localized to the apical membrane. PKD1-suppressed cells constitutively expressed ENaCalpha at low abundance, with no increase after aldosterone treatment. In the PKD1-suppressed cells, ENaCalpha was mainly localized proximal to the basolateral surface of the epithelium both before and after aldosterone treatment. Apical membrane insertion of ENaCbeta in response to aldosterone treatment was also sensitive to PKD1 suppression as was the aldosterone-induced rise in the amiloride-sensitive, trans-epithelial current (I(TE)). The interaction of the mineralocorticoid receptor (MR) with specific elements in the promoters of aldosterone responsive genes is stabilized by ligand interaction and phosphorylation. PKD1 suppression inhibited aldosterone-induced SGK-1 expression. The nuclear localization of MR was also blocked by PKD1 suppression and MEK antagonism implicating both these kinases in MR nuclear stabilization. PKD1 thus modulates aldosterone-induced ENaC activity through the modulation of sub-cellular trafficking and the stabilization of MR nuclear localization.

  2. miR-21 modulates tumor outgrowth induced by human adipose tissue-derived mesenchymal stem cells in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Keun Koo; Lee, Ae Lim; Kim, Jee Young [Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Center for Ischemic Tissue Engineering, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); BK21 Medical Science Education Center, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Lee, Sun Young [Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Center for Ischemic Tissue Engineering, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Bae, Yong Chan [Department of Plastic Surgery, School of Medicine, Pusan National University, Pusan 602-739 (Korea, Republic of); Jung, Jin Sup, E-mail: jsjung@pusan.ac.kr [Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Center for Ischemic Tissue Engineering, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); BK21 Medical Science Education Center, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Institute, Pusan National University, Pusan 602-739 (Korea, Republic of)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer miR-21 modulates hADSC-induced increase of tumor growth. Black-Right-Pointing-Pointer The action is mostly mediated by the modulation of TGF-{beta} signaling. Black-Right-Pointing-Pointer Inhibition of miR-21 enhances the blood flow recovery in hindlimb ischemia. -- Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in clinical situations, due principally to their potential use in regenerative medicine and tissue engineering applications. However, the therapeutic application of MSCs remains limited, unless the favorable effects of MSCs on tumor growth in vivo, and the long-term safety of the clinical applications of MSCs, can be more thoroughly understood. In this study, we determined whether microRNAs can modulate MSC-induced tumor outgrowth in BALB/c nude mice. Overexpression of miR-21 in human adipose-derived stem cells (hADSCs) inhibited hADSC-induced tumor growth, and inhibition of miR-21 increased it. Downregulation of transforming growth factor beta receptor II (TGFBR2), but not of signal transducer and activator of transcription 3, in hADSCs showed effects similar to those of miR-21 overexpression. Downregulation of TGFBR2 and overexpression of miR21 decreased tumor vascularity. Inhibition of miR-21 and the addition of TGF-{beta} increased the levels of vascular endothelial growth factor and interleukin-6 in hADSCs. Transplantation of miR-21 inhibitor-transfected hADSCs increased blood flow recovery in a hind limb ischemia model of nude mice, compared with transplantation of control oligo-transfected cells. These findings indicate that MSCs might favor tumor growth in vivo. Thus, it is necessary to study the long-term safety of this technique before MSCs can be used as therapeutic tools in regenerative medicine and tissue engineering.

  3. Nitric oxide-induced murine hematopoietic stem cell fate involves multiple signaling proteins, gene expression, and redox modulation.

    Science.gov (United States)

    Nogueira-Pedro, Amanda; Dias, Carolina C; Regina, Helena; Segreto, C; Addios, Priscilla C; Lungato, Lisandro; D'Almeida, Vania; Barros, Carlos C; Higa, Elisa M S; Buri, Marcus V; Ferreira, Alice T; Paredes-Gamero, Edgar Julian

    2014-11-01

    There are a growing number of reports showing the influence of redox modulation in cellular signaling. Although the regulation of hematopoiesis by reactive oxygen species (ROS) and reactive nitrogen species (RNS) has been described, their direct participation in the differentiation of hematopoietic stem cells (HSCs) remains unclear. In this work, the direct role of nitric oxide (NO(•)), a RNS, in the modulation of hematopoiesis was investigated using two sources of NO(•) , one produced by endothelial cells stimulated with carbachol in vitro and another using the NO(•)-donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) in vivo. Two main NO(•) effects were observed: proliferation of HSCs-especially of the short-term HSCs-and its commitment and terminal differentiation to the myeloid lineage. NO(•)-induced proliferation was characterized by the increase in the number of cycling HSCs and hematopoietic progenitor cells positive to BrdU and Ki-67, upregulation of Notch-1, Cx43, PECAM-1, CaR, ERK1/2, Akt, p38, PKC, and c-Myc. NO(•)-induced HSCs differentiation was characterized by the increase in granulocytic-macrophage progenitors, granulocyte-macrophage colony forming units, mature myeloid cells, upregulation of PU.1, and C/EBPα genes concomitantly to the downregulation of GATA-3 and Ikz-3 genes, activation of Stat5 and downregulation of the other analyzed proteins mentioned above. Also, redox status modulation differed between proliferation and differentiation responses, which is likely associated with the transition of the proliferative to differentiation status. Our findings provide evidence of the role of NO(•) in inducing HSCs proliferation and myeloid differentiation involving multiple signaling. © 2014 AlphaMed Press.

  4. Stable Failure-Inducing Micro-Silica Aqua Epoxy Bonding Material for Floating Concrete Module Connection

    Directory of Open Access Journals (Sweden)

    Jang-Ho Jay Kim

    2015-11-01

    Full Text Available Many recent studies in the development of floating concrete structures focused on a connection system made of modules. In the connection system, the modules are designed to be attached by pre-stressing (PS while floating on the water, which exposes them to loads on the surface of the water. Therefore, the development of a pre-connection material becomes critical to ensure successful bonding of floating concrete modules. Micro-silica mixed aqua-epoxy (MSAE was developed for this task. To find the proper MSAE mix proportion, 0% to 4% micro-silica was mixed in a standard mixture of aqua-epoxy for material testing. Also, the effect of micro-silica on the viscosity of the aqua epoxy was evaluated by controlling the epoxy silane at proportions of 0%, ±5%, and ±10%. After completion of the performance tests of the MSAE, we evaluated the effect of MSAE in a connected structure. The plain unreinforced concrete module joint specimens applied with MSAE at thicknesses of 5, 10, and 20 mm were prepared to be tested. Finally, we evaluated the performance of MSAE-applied reinforced concrete (RC module specimens connected by PS tendons, and these were compared with those of continuous RC and non-MSAE-applied beams. The results showed that the mix of micro-silica in the aqua-epoxy changed the performance of the aqua-epoxy and the mix ratio of 2% micro-silica gave a stable failure behavior. The flexural capacity of concrete blocks bonded with MSAE changed according to the bond thickness and was better than that of concrete blocks bonded with aqua-epoxy without micro-silica. Even though MSAE insignificantly increases the load-carrying capacity of the attached concrete module structure, the stress concentration reduction effect stabilized the failure of the structure.

  5. Anisotropy of the nuclear magnetic relaxation times induced in solid 3He by modulation of the dipolar interactions

    International Nuclear Information System (INIS)

    Deville, G.

    1976-01-01

    Anisotropic nuclear relaxation times have been measured in solid 3 He samples grown at constant pressure, in the Larmor frequency range 1.5MHz-5MHz where the main relaxation mechanism is the modulation of the dipolar interaction by exchange or by motion of the vacancies. The second order calculation made by Harris for the exchange induced relaxation regime is extended to the regime where vacancy motion dominates. The theory is further refined by considering the fourth moment anisotropy effect on the spectral densities. This latter calculation yields a frequency dependent anisotropic contribution to T 1 which agrees qualitatively with the data, unlike the simpler results by Harris [fr

  6. Enhanced Cross-Phase Modulation Based on a Double Electromagnetically Induced Transparency in a Four-Level Tripod Atomic System

    International Nuclear Information System (INIS)

    Li Shujing; Yang Xudong; Cao Xuemin; Zhang Chunhong; Xie Changde; Wang Hai

    2008-01-01

    We report experimental observations on the simultaneous electromagnetically induced transparency (EIT) effects for probe and trigger fields (double EIT) as well as the enhanced cross-phase modulation (XPM) between the two fields in a four-level tripod EIT system of the D1 line of 87 Rb atoms. The XPM coefficients (larger than 2x10 -5 cm 2 /W) and the accompanying transmissions (higher than 60%) are measured at a slight detuning of the probe field from the exact EIT-resonance condition. The system and enhanced cross-Kerr nonlinearities presented here can be applied to quantum information processes

  7. Modulation of chemotherapy-induced cytotoxicity in SH-SY5Y neuroblastoma cells by caffeine and chlorogenic acid.

    Science.gov (United States)

    Hall, Susan; Anoopkumar-Dukie, Shailendra; Grant, Gary D; Desbrow, Ben; Lai, Richard; Arora, Devinder; Hong, Yinna

    2017-06-01

    Chemotherapy is an important treatment modality for malignancy but is limited by significant toxicity and it susceptibility to numerous drug interactions. While the interacting effects with medications are well known, there is limited evidence on the interaction with commonly consumed food and natural products. The aim of this study was to evaluate the bioactive constituents of coffee (caffeine and chlorogenic acid) on the cytotoxicity of doxorubicin, gemcitabine, and paclitaxel in vitro. Pretreatment with caffeine (100 nM and 10 μM) sensitized SH-SY5Y cells to doxorubicin-induced toxicity and increased apoptosis and sensitized PC3 cells to gemcitabine-induced toxicity. Pretreatment with 10 μM caffeine decreased total cell reactive oxygen species (ROS) production but increased mitochondrial ROS production. In contrast, caffeine (10 nM and 10 μM) protected cells against gemcitabine-induced toxicity and apoptosis. Similarly, 1 μM and 10 μM caffeine protected cells against paclitaxel-induced toxicity and mitochondrial ROS production. Chlorogenic acid had no effect on chemotherapy-induced toxicity in SH-SY5Y cells. In conclusion, this study provides preliminary evidence that caffeine, not chlorogenic acid, modulates the cytotoxicity of doxorubicin, gemcitabine, and paclitaxel in SH-SY5Y cells via different mechanisms.

  8. Bee venom induces apoptosis through intracellular Ca2+ -modulated intrinsic death pathway in human bladder cancer cells.

    Science.gov (United States)

    Ip, Siu-Wan; Chu, Yung-Lin; Yu, Chun-Shu; Chen, Po-Yuan; Ho, Heng-Chien; Yang, Jai-Sing; Huang, Hui-Ying; Chueh, Fu-Shin; Lai, Tung-Yuan; Chung, Jing-Gung

    2012-01-01

    To focus on bee venom-induced apoptosis in human bladder cancer TSGH-8301 cells and to investigate its signaling pathway to ascertain whether intracellular calcium iron (Ca(2+)) is involved in this effect. Bee venom-induced cytotoxic effects, productions of reactive oxygen species and Ca(2+) and the level of mitochondrial membrane potential (ΔΨm) were analyzed by flow cytometry. Apoptosis-associated proteins were examined by Western blot analysis and confocal laser microscopy. Bee venom-induced cell morphological changes and decreased cell viability through the induction of apoptosis in TSGH-8301 cell were found. Bee venom promoted the protein levels of Bax, caspase-9, caspase-3 and endonuclease G. The enhancements of endoplasmic reticulum stress-related protein levels were shown in bee venom-provoked apoptosis of TSGH-8301 cells. Bee venom promoted the activities of caspase-3, caspase-8, and caspase-9, increased Ca(2+) release and decreased the level of ΔΨm. Co-localization of immunofluorescence analysis showed the releases of endonuclease G and apoptosis-inducing factor trafficking to nuclei for bee venom-mediated apoptosis. The images revealed evidence of nuclear condensation and formation of apoptotic bodies by 4',6-diamidino-2-phenylindole staining and DNA gel electrophoresis showed the DNA fragmentation in TSGH-8301 cells. Bee venom treatment induces both caspase-dependent and caspase-independent apoptotic death through intracellular Ca(2+) -modulated intrinsic death pathway in TSGH-8301 cells. © 2011 The Japanese Urological Association.

  9. The celiac ganglion modulates LH-induced inhibition of androstenedione release in late pregnant rat ovaries

    Directory of Open Access Journals (Sweden)

    Rastrilla Ana M

    2006-12-01

    Full Text Available Abstract Background Although the control of ovarian production of steroid hormones is mainly of endocrine nature, there is increasing evidence that the nervous system also influences ovarian steroidogenic output. The purpose of this work was to study whether the celiac ganglion modulates, via the superior ovarian nerve, the anti-steroidogenic effect of LH in the rat ovary. Using mid- and late-pregnant rats, we set up to study: 1 the influence of the noradrenergic stimulation of the celiac ganglion on the ovarian production of the luteotropic hormone androstenedione; 2 the modulatory effect of noradrenaline at the celiac ganglion on the anti-steroidogenic effect of LH in the ovary; and 3 the involvement of catecholaminergic neurotransmitters released in the ovary upon the combination of noradrenergic stimulation of the celiac ganglion and LH treatment of the ovary. Methods The ex vivo celiac ganglion-superior ovarian nerve-ovary integrated system was used. This model allows studying in vitro how direct neural connections from the celiac ganglion regulate ovarian steroidogenic output. The system was incubated in buffer solution with the ganglion and the ovary located in different compartments and linked by the superior ovarian nerve. Three experiments were designed with the addition of: 1 noradrenaline in the ganglion compartment; 2 LH in the ovarian compartment; and 3 noradrenaline and LH in the ganglion and ovarian compartments, respectively. Rats of 15, 19, 20 and 21 days of pregnancy were used, and, as an end point, the concentration of the luteotropic hormone androstenedione was measured in the ovarian compartment by RIA at various times of incubation. For some of the experimental paradigms the concentration of various catecholamines (dihydroxyphenylalanine, dopamine, noradrenaline and adrenaline was also measured in the ovarian compartment by HPLC. Results The most relevant result concerning the action of noradrenaline in the celiac ganglion

  10. Correlated evolution of sternal keel length and ilium length in birds

    Directory of Open Access Journals (Sweden)

    Tao Zhao

    2017-07-01

    Full Text Available The interplay between the pectoral module (the pectoral girdle and limbs and the pelvic module (the pelvic girdle and limbs plays a key role in shaping avian evolution, but prior empirical studies on trait covariation between the two modules are limited. Here we empirically test whether (size-corrected sternal keel length and ilium length are correlated during avian evolution using phylogenetic comparative methods. Our analyses on extant birds and Mesozoic birds both recover a significantly positive correlation. The results provide new evidence regarding the integration between the pelvic and pectoral modules. The correlated evolution of sternal keel length and ilium length may serve as a mechanism to cope with the effect on performance caused by a tradeoff in muscle mass between the pectoral and pelvic modules, via changing moment arms of muscles that function in flight and in terrestrial locomotion.

  11. Updating the induction module from single-pulse to double-pulses

    International Nuclear Information System (INIS)

    Huang Ziping; Wang Huacen; Deng Jianjun

    2002-01-01

    A double-pulse Linear Induced Accelerator (LIA) module is reconstructed based on a usual simple-pulse LIA module. By changing the length of one of the cables between the inductive cell and the Blumlein pulse forming line, two induction pulses with 90 ns FWHM and 150 kV pulse voltage are generated by the ferrite cores inductive cell. The interval time of the pulses is adjustable by changing the lengths of the cable

  12. Curcumin modulation of high fat diet-induced atherosclerosis and steatohepatosis in LDL receptor deficient mice

    Science.gov (United States)

    Consuming curcumin may benefit health by modulating lipid metabolism and suppressing atherogenesis. Fatty acid binding proteins (FABP-4/aP2) and CD36 expression are key factors in lipid accumulation in macrophages and foam cell formation in atherogenesis. Our earlier observations suggest that curcum...

  13. Wound induces changes in nitric oxide related biologies putatively modulating tuber healing

    Science.gov (United States)

    Wound-related losses in harvested potatoes and cut seed are a serious and costly problem (losses > $320 m/yr). Our understanding of the regulation and modulation of the processes involved in wound healing (WH) are advancing and showing promise in the development of new approaches and technologies t...

  14. Electrophysiological correlates of learning-induced modulation of visual motion processing in humans

    Directory of Open Access Journals (Sweden)

    Viktor Gál

    2010-01-01

    Full Text Available Training on a visual task leads to increased perceptual and neural responses to visual features that were attended during training as well as decreased responses to neglected distractor features. However, the time course of these attention-based modulations of neural sensitivity for visual features has not been investigated before. Here we measured event related potentials (ERP in response to motion stimuli with different coherence levels before and after training on a speed discrimination task requiring object-based attentional selection of one of the two competing motion stimuli. We found that two peaks on the ERP waveform were modulated by the strength of the coherent motion signal; the response amplitude associated with motion directions that were neglected during training was smaller than the response amplitude associated with motion directions that were attended during training. The first peak of motion coherence-dependent modulation of the ERP responses was at 300 ms after stimulus onset and it was most pronounced over the occipitotemporal cortex. The second peak was around 500 ms and was focused over the parietal cortex. A control experiment suggests that the earlier motion coherence-related response modulation reflects the extraction of the coherent motion signal whereas the later peak might index accumulation and readout of motion signals by parietal decision mechanisms. These findings suggest that attention-based learning affects neural responses both at the sensory and decision processing stages.

  15. Using periodic modulation to control coexisting attractors induced by delayed feedback

    International Nuclear Information System (INIS)

    Martinez-Zerega, B.E.; Pisarchik, A.N.; Tsimring, L.S.

    2003-01-01

    A delay in feedback can stabilize simultaneously several unstable periodic orbits embedded in a chaotic attractor. We show that by modulating the feedback variable it is possible to lock one of these states and eliminate other coexisting periodic attractors. The method is demonstrated with both a logistic map and a CO 2 laser model

  16. Modulation of cisplatin-induced reactive oxygen species production by fullerene C(60 in normal and transformed lymphoid cells

    Directory of Open Access Journals (Sweden)

    D. V. Franskevych

    2016-02-01

    Full Text Available The early response of normal (Wistar rat thymocytes and transformed (mice lymphoid leukemia L1210 cells to treatment with anticancer drug cisplatin or to combined treatment with cisplatin and carbon nanostructure fullerene C60 was studied. We demonstrated with fluorescent probes DCFH-DA and TMRE that cisplatin at concentration 1 μg/ml induced reactive oxygen species (ROS production and decreased the value of mitochondrial membrane potential in both cell types. The combined treatment with cisplatin (1 μg/ml and fullerene C60 (7.2 μg/ml was shown to be followed by oppositely directed modulation of ROS production in thymocytes and L1210 cells. Cisplatin-induced ROS production was intensified in L1210 cells, while in thymocytes it was decreased. It is supposed that the different effects of combined treatment are associated with peculiarities of fullerene C60 accumulation and localization in normal and cancer cells.

  17. p53 modulates the AMPK inhibitor compound C induced apoptosis in human skin cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shi-Wei [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Wu, Chun-Ying [Division of Gastroenterology and Hepatology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Wang, Yen-Ting [Department of Medical Research and Education, Cheng Hsin General Hospital, Taipei, Taiwan (China); Kao, Jun-Kai [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Department of Pediatrics, Children' s Hospital, Changhua Christian Hospital, Changhua, Taiwan (China); Lin, Chi-Chen; Chang, Chia-Che; Mu, Szu-Wei; Chen, Yu-Yu [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Chiu, Husan-Wen [Institute of Biotechnology, National Cheng-Kung University, Tainan, Taiwan (China); Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan (China); Chang, Chuan-Hsun [Department of Surgical Oncology, Cheng Hsin General Hospital, Taipei, Taiwan (China); Department of Nutrition Therapy, Cheng Hsin General Hospital, Taipei, Taiwan (China); School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan (China); Liang, Shu-Mei [Institute of Biotechnology, National Cheng-Kung University, Tainan, Taiwan (China); Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan (China); Chen, Yi-Ju [Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Huang, Jau-Ling [Department of Bioscience Technology, Chang Jung Christian University, Tainan, Taiwan (China); Shieh, Jeng-Jer, E-mail: shiehjj@vghtc.gov.tw [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan (China)

    2013-02-15

    Compound C, a well-known inhibitor of the intracellular energy sensor AMP-activated protein kinase (AMPK), has been reported to cause apoptotic cell death in myeloma, breast cancer cells and glioma cells. In this study, we have demonstrated that compound C not only induced autophagy in all tested skin cancer cell lines but also caused more apoptosis in p53 wildtype skin cancer cells than in p53-mutant skin cancer cells. Compound C can induce upregulation, phosphorylation and nuclear translocalization of the p53 protein and upregulate expression of p53 target genes in wildtype p53-expressing skin basal cell carcinoma (BCC) cells. The changes of p53 status were dependent on DNA damage which was caused by compound C induced reactive oxygen species (ROS) generation and associated with activated ataxia-telangiectasia mutated (ATM) protein. Using the wildtype p53-expressing BCC cells versus stable p53-knockdown BCC sublines, we present evidence that p53-knockdown cancer cells were much less sensitive to compound C treatment with significant G2/M cell cycle arrest and attenuated the compound C-induced apoptosis but not autophagy. The compound C induced G2/M arrest in p53-knockdown BCC cells was associated with the sustained inactive Tyr15 phosphor-Cdc2 expression. Overall, our results established that compound C-induced apoptosis in skin cancer cells was dependent on the cell's p53 status. - Highlights: ► Compound C caused more apoptosis in p53 wildtype than p53-mutant skin cancer cells. ► Compound C can upregulate p53 expression and induce p53 activation. ► Compound C induced p53 effects were dependent on ROS induced DNA damage pathway. ► p53-knockdown attenuated compound C-induced apoptosis but not autophagy. ► Compound C-induced apoptosis in skin cancer cells was dependent on p53 status.

  18. p53 modulates the AMPK inhibitor compound C induced apoptosis in human skin cancer cells

    International Nuclear Information System (INIS)

    Huang, Shi-Wei; Wu, Chun-Ying; Wang, Yen-Ting; Kao, Jun-Kai; Lin, Chi-Chen; Chang, Chia-Che; Mu, Szu-Wei; Chen, Yu-Yu; Chiu, Husan-Wen; Chang, Chuan-Hsun; Liang, Shu-Mei; Chen, Yi-Ju; Huang, Jau-Ling; Shieh, Jeng-Jer

    2013-01-01

    Compound C, a well-known inhibitor of the intracellular energy sensor AMP-activated protein kinase (AMPK), has been reported to cause apoptotic cell death in myeloma, breast cancer cells and glioma cells. In this study, we have demonstrated that compound C not only induced autophagy in all tested skin cancer cell lines but also caused more apoptosis in p53 wildtype skin cancer cells than in p53-mutant skin cancer cells. Compound C can induce upregulation, phosphorylation and nuclear translocalization of the p53 protein and upregulate expression of p53 target genes in wildtype p53-expressing skin basal cell carcinoma (BCC) cells. The changes of p53 status were dependent on DNA damage which was caused by compound C induced reactive oxygen species (ROS) generation and associated with activated ataxia-telangiectasia mutated (ATM) protein. Using the wildtype p53-expressing BCC cells versus stable p53-knockdown BCC sublines, we present evidence that p53-knockdown cancer cells were much less sensitive to compound C treatment with significant G2/M cell cycle arrest and attenuated the compound C-induced apoptosis but not autophagy. The compound C induced G2/M arrest in p53-knockdown BCC cells was associated with the sustained inactive Tyr15 phosphor-Cdc2 expression. Overall, our results established that compound C-induced apoptosis in skin cancer cells was dependent on the cell's p53 status. - Highlights: ► Compound C caused more apoptosis in p53 wildtype than p53-mutant skin cancer cells. ► Compound C can upregulate p53 expression and induce p53 activation. ► Compound C induced p53 effects were dependent on ROS induced DNA damage pathway. ► p53-knockdown attenuated compound C-induced apoptosis but not autophagy. ► Compound C-induced apoptosis in skin cancer cells was dependent on p53 status

  19. The corticosteroid hormone induced factor: a new modulator of KCNQ1 channels?

    DEFF Research Database (Denmark)

    Jespersen, Thomas; Grunnet, Morten; Rasmussen, Hanne B

    2006-01-01

    The corticosteroid hormone induced factor (CHIF) is a member of the one-transmembrane segment protein family named FXYD, which also counts phospholemman and the Na,K-pump gamma-subunit. Originally it was suggested that CHIF could induce the expression of the I(Ks) current when expressed in Xenopu...

  20. Telomere Length and Mortality

    DEFF Research Database (Denmark)

    Kimura, Masayuki; Hjelmborg, Jacob V B; Gardner, Jeffrey P

    2008-01-01

    Leukocyte telomere length, representing the mean length of all telomeres in leukocytes, is ostensibly a bioindicator of human aging. The authors hypothesized that shorter telomeres might forecast imminent mortality in elderly people better than leukocyte telomere length. They performed mortality...

  1. Isotonic force modulates force redevelopment rate of intact frog muscle fibres: evidence for cross-bridge induced thin filament activation

    Science.gov (United States)

    Vandenboom, Rene; Hannon, James D; Sieck, Gary C

    2002-01-01

    We tested the hypothesis that force-velocity history modulates thin filament activation, as assessed by the rate of force redevelopment after shortening (+dF/dtR). The influence of isotonic force on +dF/dtR was assessed by imposing uniform amplitude (2.55 to 2.15 μm sarcomere−1) but different speed releases to intact frog muscle fibres during fused tetani. Each release consisted of a contiguous ramp- and step-change in length. Ramp speed was changed from release to release to vary fibre shortening speed from 1.00 (2.76 ± 0.11 μm half-sarcomere−1 s−1) to 0.30 of maximum unloaded shortening velocity (Vu), thereby modulating isotonic force from 0 to 0.34 Fo, respectively. The step zeroed force and allowed the fibre to shorten unloaded for a brief period of time prior to force redevelopment. Although peak force redevelopment after different releases was similar, +dF/dtR increased by 81 ± 6% (P < 0.05) as fibre shortening speed was reduced from 1.00 Vu. The +dF/dtR after different releases was strongly correlated with the preceding isotonic force (r = 0.99, P < 0.001). Results from additional experiments showed that the slope of slack test plots produced by systematically increasing the step size that followed each ramp were similar. Thus, isotonic force did not influence Vu (mean: 2.84 ± 0.10 μm half-sarcomere−1 s−1, P < 0.05). We conclude that isotonic force modulates +dF/dtR independent of change in Vu, an outcome consistent with a cooperative influence of attached cross-bridges on thin filament activation that increases cross-bridge attachment rate without alteration to cross-bridge detachment rate. PMID:12205189

  2. Genistein modulation of streptozotocin diabetes in male B6C3F1 mice can be induced by diet

    International Nuclear Information System (INIS)

    Guo, Tai L.; Wang, Yunbiao; Xiong, Tao; Ling, Xiao; Zheng, Jianfeng

    2014-01-01

    Diet and phytoestrogens affect the development and progression of diabetes. The objective of the present study was to determine if oral exposure to phytoestrogen genistein (GE) by gavage changed blood glucose levels (BGL) through immunomodulation in streptozotocin (STZ)-induced diabetic male B6C3F1 mice fed with three different diets. These three diets were: NTP-2000 diet (NTP), soy- and alfalfa-free 5K96 diet (SOF) and high fat diet (HFD) with 60% of kcal from fat, primarily rendered fat of swine. The dosing regimen for STZ consisted of three 100 mg/kg doses (i.p.): the first dose was administered at approximately 2 weeks following the initiation of daily GE (20 mg/kg) gavage, and the second dose was on day 19 following the first dose, and the third dose was on day 57 following the first dose. In mice on the NTP diet, GE treatment decreased BGL with statistical significances observed on days 33 and 82 following the first STZ injection. In mice fed the HFD diet, GE treatment produced a significant decrease and a significant increase in BGL on days 15 and 89 following the first STZ injection, respectively. In mice fed the SOF diet, GE treatment had no significant effects on BGL. Although GE treatment affected phenotypic distributions of both splenocytes (T cells, B cells, natural killer cells and neutrophils) and thymocytes (CD4/CD8 and CD44/CD25), and their mitochondrial transmembrane potential and generation of reactive oxygen species, indicators of cell death (possibly apoptosis), GE modulation of neutrophils was more consistent with its diabetogenic or anti-diabetic potentials. The differential effects of GE on BGL in male B6C3F1 mice fed with three different diets with varied phytoestrogen contents suggest that the estrogenic properties of this compound may contribute to its modulation of diabetes. - Highlights: • Diets affected streptozotocin-induced diabetes in male B6C3F1 mice. • Genistein modulation of streptozotocin diabetes can be induced by diet.

  3. Genistein modulation of streptozotocin diabetes in male B6C3F1 mice can be induced by diet

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Tai L., E-mail: tlguo1@uga.edu [Department of Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-7382 (United States); Wang, Yunbiao [Department of Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-7382 (United States); Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102 (China); Xiong, Tao [College of Animal Science, Yangtze University, Jingzhou City, Hubei Province 434025 (China); Ling, Xiao [Institute for Food and Drug Control of Shandong Province, Jinan City, Shandong 250012 (China); Zheng, Jianfeng [Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298-0613 (United States)

    2014-11-01

    Diet and phytoestrogens affect the development and progression of diabetes. The objective of the present study was to determine if oral exposure to phytoestrogen genistein (GE) by gavage changed blood glucose levels (BGL) through immunomodulation in streptozotocin (STZ)-induced diabetic male B6C3F1 mice fed with three different diets. These three diets were: NTP-2000 diet (NTP), soy- and alfalfa-free 5K96 diet (SOF) and high fat diet (HFD) with 60% of kcal from fat, primarily rendered fat of swine. The dosing regimen for STZ consisted of three 100 mg/kg doses (i.p.): the first dose was administered at approximately 2 weeks following the initiation of daily GE (20 mg/kg) gavage, and the second dose was on day 19 following the first dose, and the third dose was on day 57 following the first dose. In mice on the NTP diet, GE treatment decreased BGL with statistical significances observed on days 33 and 82 following the first STZ injection. In mice fed the HFD diet, GE treatment produced a significant decrease and a significant increase in BGL on days 15 and 89 following the first STZ injection, respectively. In mice fed the SOF diet, GE treatment had no significant effects on BGL. Although GE treatment affected phenotypic distributions of both splenocytes (T cells, B cells, natural killer cells and neutrophils) and thymocytes (CD4/CD8 and CD44/CD25), and their mitochondrial transmembrane potential and generation of reactive oxygen species, indicators of cell death (possibly apoptosis), GE modulation of neutrophils was more consistent with its diabetogenic or anti-diabetic potentials. The differential effects of GE on BGL in male B6C3F1 mice fed with three different diets with varied phytoestrogen contents suggest that the estrogenic properties of this compound may contribute to its modulation of diabetes. - Highlights: • Diets affected streptozotocin-induced diabetes in male B6C3F1 mice. • Genistein modulation of streptozotocin diabetes can be induced by diet.

  4. Electroabsorption optical modulator

    Energy Technology Data Exchange (ETDEWEB)

    Skogen, Erik J.

    2017-11-21

    An electroabsorption modulator incorporates waveguiding regions along the length of the modulator that include quantum wells where at least two of the regions have quantum wells with different bandgaps. In one embodiment of the invention, the regions are arranged such that the quantum wells have bandgaps with decreasing bandgap energy along the length of the modulator from the modulator's input to its output. The bandgap energy of the quantum wells may be decreased in discrete steps or continuously. Advantageously, such an arrangement better distributes the optical absorption as well as the carrier density along the length of the modulator. Further advantageously, the modulator may handle increased optical power as compared with prior art modulators of similar dimensions, which allows for improved link gain when the optical modulator is used in an analog optical communication link.

  5. Identification of small molecule and genetic modulators of AON-induced dystrophin exon skipping by high-throughput screening.

    Directory of Open Access Journals (Sweden)

    Debra A O'Leary

    Full Text Available One therapeutic approach to Duchenne Muscular Dystrophy (DMD recently entering clinical trials aims to convert DMD phenotypes to that of a milder disease variant, Becker Muscular Dystrophy (BMD, by employing antisense oligonucleotides (AONs targeting splice sites, to induce exon skipping and restore partial dystrophin function. In order to search for small molecule and genetic modulators of AON-dependent and independent exon skipping, we screened approximately 10,000 known small molecule drugs, >17,000 cDNA clones, and >2,000 kinase- targeted siRNAs against a 5.6 kb luciferase minigene construct, encompassing exon 71 to exon 73 of human dystrophin. As a result, we identified several enhancers of exon skipping, acting on both the reporter construct as well as endogenous dystrophin in mdx cells. Multiple mechanisms of action were identified, including histone deacetylase inhibition, tubulin modulation and pre-mRNA processing. Among others, the nucleolar protein NOL8 and staufen RNA binding protein homolog 2 (Stau2 were found to induce endogenous exon skipping in mdx cells in an AON-dependent fashion. An unexpected but recurrent theme observed in our screening efforts was the apparent link between the inhibition of cell cycle progression and the induction of exon skipping.

  6. Kefir Peptides Prevent Hyperlipidemia and Obesity in High-Fat-Diet-Induced Obese Rats via Lipid Metabolism Modulation.

    Science.gov (United States)

    Tung, Yu-Tang; Chen, Hsiao-Ling; Wu, Hsin-Shan; Ho, Mei-Hsuan; Chong, Kowit-Yu; Chen, Chuan-Mu

    2018-02-01

    Obesity has reached epidemic proportions worldwide. Obesity is a complex metabolic disorder that is linked to numerous serious health complications with high morbidity. The present study evaluated the effects of kefir peptides on high fat diet (HFD)-induced obesity in rats. Kefir peptides markedly improved obesity, including body weight gain, inflammatory reactions and the formation of adipose tissue fat deposits around the epididymis and kidney, and adipocyte size. Treating high fat diet (HFD)-induced obese rats with kefir peptides significantly reduced the fatty acid synthase protein and increased the p-acetyl-CoA carboxylase protein to block lipogenesis in the livers. Kefir peptides also increased fatty acid oxidation by increasing the protein expressions of phosphorylated AMP-activated protein kinase, peroxisome proliferator-activated receptor-α, and hepatic carnitine palmitoyltransferase-1 in the livers. In addition, administration of kefir peptides significantly decreased the inflammatory response (TNF-α, IL-1β, and TGF-β) to modulate oxidative damage. These results demonstrate that kefir peptides treatment improves obesity via inhibition of lipogenesis, modulation of oxidative damage, and stimulation of lipid oxidation. Therefore, kefir peptides may act as an anti-obesity agent to prevent body fat accumulation and obesity-related metabolic diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The catechin flavonoid reduces proliferation and induces apoptosis of murine lymphoma cells LB02 through modulation of antiapoptotic proteins

    Directory of Open Access Journals (Sweden)

    Daniela Laura Papademetrio

    2013-06-01

    Full Text Available Flavonoids are products of secondary metabolism of plants. They are present in herbs and trees and also act as natural chemopreventives and anticancer agents. Ligaria cuneifolia (Ruiz & Pav. Tiegh., Loranthaceae, is a hemiparasite species that belongs to Argentine flora. Phytochemical studies have disclosed the presence of quercetin, catechin-4β-ol and pro-anthocyanidine as polyphenolic compounds in the active extracts. We previously demonstrated that ethyl acetate extract was capable of reducing cell proliferation and inducing apoptotic death of lymphoid tumor cells. The aim of the current study is to determine whether or not catechin, isolated from L. cuneifolia extracts can induce leukemia cell death and to determine its effect on the cytoplasmatic proteins that modulate cell survival. Our results show that catechin can reduce proliferation of murine lymphoma cell line LB02. The effect is mediated by apoptosis at concentrations upper to 100 µg/mL. Cell death is related to the loss of mitochondrial membrane potential (ΔΨm and a down regulation of survivin and Bcl-2 together with the increase of pro-apoptotic protein Bax. In summary, the current study indicates that catechin present in the extract of L. cuneifolia is in part, responsible for the anti-proliferative activity of whole extracts by induction of ΔΨm disruption and modulation of the anti-apoptotic proteins over expressed in tumor cells. These results give new findings into the potential anticancer and chemopreventive activities of L. cuneifolia.

  8. The catechin flavonoid reduces proliferation and induces apoptosis of murine lymphoma cells LB02 through modulation of antiapoptotic proteins

    Directory of Open Access Journals (Sweden)

    Daniela Laura Papademetrio

    2013-03-01

    Full Text Available Flavonoids are products of secondary metabolism of plants. They are present in herbs and trees and also act as natural chemopreventives and anticancer agents. Ligaria cuneifolia (Ruiz & Pav. Tiegh., Loranthaceae, is a hemiparasite species that belongs to Argentine flora. Phytochemical studies have disclosed the presence of quercetin, catechin-4β-ol and pro-anthocyanidine as polyphenolic compounds in the active extracts. We previously demonstrated that ethyl acetate extract was capable of reducing cell proliferation and inducing apoptotic death of lymphoid tumor cells. The aim of the current study is to determine whether or not catechin, isolated from L. cuneifolia extracts can induce leukemia cell death and to determine its effect on the cytoplasmatic proteins that modulate cell survival. Our results show that catechin can reduce proliferation of murine lymphoma cell line LB02. The effect is mediated by apoptosis at concentrations upper to 100 µg/mL. Cell death is related to the loss of mitochondrial membrane potential (ΔΨm and a down regulation of survivin and Bcl-2 together with the increase of pro-apoptotic protein Bax. In summary, the current study indicates that catechin present in the extract of L. cuneifolia is in part, responsible for the anti-proliferative activity of whole extracts by induction of ΔΨm disruption and modulation of the anti-apoptotic proteins over expressed in tumor cells. These results give new findings into the potential anticancer and chemopreventive activities of L. cuneifolia.

  9. Age and gender differences in mechanically induced intraoral temporal summation and conditioned pain modulation in healthy subjects.

    Science.gov (United States)

    Khan, Junad; Korczeniewska, Olga; Benoliel, Rafael; Kalladka, Mythili; Eliav, Eli; Nasri-Heir, Cibelle

    2018-04-13

    The aim of this study was to investigate intraoral temporal summation (TS) and conditioned pain modulation (CPM) and compare the outcome with TS and CPM induced in the forearm. In addition, we aimed to study the effect of age and gender on intraoral and forearm TS and CPM. Mechanical stimulation was induced with # 5.46 von Frey filament applying 26 grams of force. A single stimulus, followed by a train of 30 successive stimuli, was applied intraorally and to the dominant forearm. CPM was assessed with the TS test as the painful stimulus and with immersion of the nondominant hand in a hot water bath as the conditioning stimulus. Gender was significantly associated with TS but not with CPM measures. Females had significantly lower mean TS measured in the face and in the dominant forearm compared with males. Age was significantly associated with CPM, but not with TS measures. In both sites examined, older patients had significantly lower mean CPM compared with younger patients. Mechanical TM elicited in the oral cavity can be used as test stimulus for CPM testing. Intraoral modulation, both TS and CPM, has an extent similar to that of the standard cutaneous extremity. TS was lower in females, and CPM was reduced with age. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. P3-9: Roles of Subthreshold LFP Induced by Receptive Field Surround for Response Modulation in Monkey V1

    Directory of Open Access Journals (Sweden)

    Kayeon Kim

    2012-10-01

    Full Text Available A focal stimulus outside the receptive field robustly induces LFP change, while the same stimulus evokes no spike activity. We determined how this subthreshold LFP change interacted with spike response to the RF stimulus. Specifically, we sequentially presented two identical Gabor stimuli with a variable stimulus onset asynchrony (SOA; the first one (S1 was presented outside RF inducing a subthreshold LFP change, and the second one (S2 was subsequently presented within RF generating a spiking response. This enabled us to manipulate the temporal relation between subthreshold LFP and evoked spike activity and to determine whether subthreshold LFP contributed to modulation of spike activity in a SOA-dependent manner. We found that the subthreshold LFP propagated a considerably long distance, estimated to be more than 10 mm of cortical distance. The cross-correlation between the time course of subthreshold LFP and the pattern of SOA-dependency of spike activity was significant. These results indicate that signal integration is farther beyond the RF than previously estimated based on spike-triggered average, and suggest that subthreshold LFP modulate spike activity in a SOA-dependent manner.

  11. HSP27 Inhibits Homocysteine-Induced Endothelial Apoptosis by Modulation of ROS Production and Mitochondrial Caspase-Dependent Apoptotic Pathway

    Directory of Open Access Journals (Sweden)

    Xin Tian

    2016-01-01

    Full Text Available Objectives. Elevated plasma homocysteine (Hcy could lead to endothelial dysfunction and is viewed as an independent risk factor for atherosclerosis. Heat shock protein 27 (HSP27, a small heat shock protein, is reported to exert protective effect against atherosclerosis. This study aims to investigate the protective effect of HSP27 against Hcy-induced endothelial cell apoptosis in human umbilical vein endothelial cells (HUVECs and to determine the underlying mechanisms. Methods. Apoptosis, reactive oxygen species (ROS, and mitochondrial membrane potential (MMP of normal or HSP27-overexpressing HUVECs in the presence of Hcy were analyzed by flow cytometry. The mRNA and protein expression levels were measured by quantitative real-time polymerase chain reaction (qRT-PCR and western blot. Results. We found that Hcy could induce cell apoptosis with corresponding decrease of nitric oxide (NO level, increase of endothelin-1 (ET-1, intracellular adhesion molecule-1 (ICAM-1, vascular cellular adhesion molecule-1 (VCAM-1, and monocyte chemoattractant protein-1 (MCP-1 levels, elevation of ROS, and dissipation of MMP. In addition, HSP27 could protect the cell against Hcy-induced apoptosis and inhibit the effect of Hcy on HUVECs. Furthermore, HSP27 could increase the ratio of Bcl-2/Bax and inhibit caspase-3 activity. Conclusions. Therefore, we concluded that HSP27 played a protective role against Hcy-induced endothelial apoptosis through modulation of ROS production and the mitochondrial caspase-dependent apoptotic pathway.

  12. Sprouty4 is an endogenous negative modulator of TrkA signaling and neuronal differentiation induced by NGF.

    Directory of Open Access Journals (Sweden)

    Fernando C Alsina

    Full Text Available The Sprouty (Spry family of proteins represents endogenous regulators of downstream signaling pathways induced by receptor tyrosine kinases (RTKs. Using real time PCR, we detect a significant increase in the expression of Spry4 mRNA in response to NGF, indicating that Spry4 could modulate intracellular signaling pathways and biological processes induced by NGF and its receptor TrkA. In this work, we demonstrate that overexpression of wild-type Spry4 causes a significant reduction in MAPK and Rac1 activation and neurite outgrowth induced by NGF. At molecular level, our findings indicate that ectopic expression of a mutated form of Spry4 (Y53A, in which a conserved tyrosine residue was replaced, fail to block both TrkA-mediated Erk/MAPK activation and neurite outgrowth induced by NGF, suggesting that an intact tyrosine 53 site is required for the inhibitory effect of Spry4 on NGF signaling. Downregulation of Spry4 using small interference RNA knockdown experiments potentiates PC12 cell differentiation and MAPK activation in response to NGF. Together, these findings establish a new physiological mechanism through which Spry4 regulates neurite outgrowth reducing not only the MAPK pathway but also restricting Rac1 activation in response to NGF.

  13. Azadirachtin(A) distinctively modulates subdomain 2 of actin - novel mechanism to induce depolymerization revealed by molecular dynamics study.

    Science.gov (United States)

    Pravin Kumar, R; Roopa, L; Sudheer Mohammed, M M; Kulkarni, Naveen

    2016-12-01

    Azadirachtin(A) (AZA), a potential insecticide from neem, binds to actin and induces depolymerization in Drosophila. AZA binds to the pocket same as that of Latrunculin A (LAT), but LAT inhibits actin polymerization by stiffening the actin structure and affects the ADP-ATP exchange. The mechanism by which AZA induces actin depolymerization is not clearly understood. Therefore, different computational experiments were conducted to delineate the precise mechanism of AZA-induced actin depolymerization. Molecular dynamics studies showed that AZA strongly interacted with subdomain 2 and destabilized the interactions between subdomain 2 of one actin and subdomains 1 and 4 of the adjacent actin, causing the separation of actin subunits. The separation was observed between subdomain 3 of subunit n and subdomain 4 of subunit n + 2. However, the specific triggering point for the separation of the subunits was the destabilization of direct interactions between subdomain 2 of subunit n (Arg39, Val45, Gly46 and Arg62) and subdomain 4 of subunit n + 2 (Asp286, Ile287, Asp288, Ile289, Asp244 and Lys291). These results reveal a unique mechanism of an actin filament modulator that induces depolymerization. This mechanism of AZA can be used to design similar molecules against mammalian actins for cancer therapy.

  14. Pentylenetetrazol modulates redox system by inducing addicsin translocation from endoplasmic reticulum to plasma membrane in NG108-15 cells

    Directory of Open Access Journals (Sweden)

    Mitsushi J. Ikemoto

    2017-09-01

    Full Text Available Addicsin (Arl6ip5 is a multifunctional physiological and pathophysiological regulator that exerts its effects by readily forming homo- and hetero-complexes with various functional factors. In particular, addicsin acts as a negative modulator of neural glutamate transporter excitatory amino acid carrier 1 (EAAC1 and participates in the regulation of intracellular glutathione (GSH content by negatively modulating EAAC1-mediated cysteine and glutamate uptake. Addicsin is considered to play a crucial role in the onset of neurodegenerative diseases including epilepsy. However, the molecular dynamics of addicsin remains largely unknown. Here, we report the dynamics of addicsin in NG108-15 cells upon exposure to pentylenetetrazol (PTZ, a representative epileptogenic agent acting on the gamma-Aminobutyric acid A (GABAA receptor. Fluorescent immunostaining analysis demonstrated that addicsin drastically changed its localization from the endoplasmic reticulum (ER to the plasma membrane within 1 h of PTZ exposure in a dose-dependent manner. Moreover, addicsin was co-localized with the plasma membrane markers EAAC1 and Na+/K+ ATPase alpha-3 upon PTZ stimulation. This translocation was significantly inhibited by a non-competitive GABAA receptor antagonist, picrotoxin, but not by a competitive GABAA receptor antagonist, bicuculline. Furthermore, lactate dehydrogenase (LDH assay and 2,2-diphenyl-1-picrylhydrazyl (DPPH radical-scavenging assay showed that PTZ-induced addicsin translocation was accompanied by a decrease of radical-scavenging activity and an increase of cytotoxicity in a PTZ dose-dependent manner. These findings suggest that PTZ induces the translocation of addicsin from the ER to the plasma membrane and modulates the redox system by regulating EAAC1-mediated GSH synthesis, which leads to the activation of cell death signaling.

  15. Hypoxia-induced p53 modulates both apoptosis and radiosensitivity via AKT

    Science.gov (United States)

    Leszczynska, Katarzyna B.; Foskolou, Iosifina P.; Abraham, Aswin G.; Anbalagan, Selvakumar; Tellier, Céline; Haider, Syed; Span, Paul N.; O’Neill, Eric E.; Buffa, Francesca M.; Hammond, Ester M.

    2015-01-01

    Restoration of hypoxia-induced apoptosis in tumors harboring p53 mutations has been proposed as a potential therapeutic strategy; however, the transcriptional targets that mediate hypoxia-induced p53-dependent apoptosis remain elusive. Here, we demonstrated that hypoxia-induced p53-dependent apoptosis is reliant on the DNA-binding and transactivation domains of p53 but not on the acetylation sites K120 and K164, which, in contrast, are essential for DNA damage–induced, p53-dependent apoptosis. Evaluation of hypoxia-induced transcripts in multiple cell lines identified a group of genes that are hypoxia-inducible proapoptotic targets of p53, including inositol polyphosphate-5-phosphatase (INPP5D), pleckstrin domain–containing A3 (PHLDA3), sulfatase 2 (SULF2), B cell translocation gene 2 (BTG2), cytoplasmic FMR1-interacting protein 2 (CYFIP2), and KN motif and ankyrin repeat domains 3 (KANK3). These targets were also regulated by p53 in human cancers, including breast, brain, colorectal, kidney, bladder, and melanoma cancers. Downregulation of these hypoxia-inducible targets associated with poor prognosis, suggesting that hypoxia-induced apoptosis contributes to p53-mediated tumor suppression and treatment response. Induction of p53 targets, PHLDA3, and a specific INPP5D transcript mediated apoptosis in response to hypoxia through AKT inhibition. Moreover, pharmacological inhibition of AKT led to apoptosis in the hypoxic regions of p53-deficient tumors and consequently increased radiosensitivity. Together, these results identify mediators of hypoxia-induced p53-dependent apoptosis and suggest AKT inhibition may improve radiotherapy response in p53-deficient tumors. PMID:25961455

  16. Length dependence of force generation exhibit similarities between rat cardiac myocytes and skeletal muscle fibres.

    Science.gov (United States)

    Hanft, Laurin M; McDonald, Kerry S

    2010-08-01

    According to the Frank-Starling relationship, increased ventricular volume increases cardiac output, which helps match cardiac output to peripheral circulatory demand. The cellular basis for this relationship is in large part the myofilament length-tension relationship. Length-tension relationships in maximally calcium activated preparations are relatively shallow and similar between cardiac myocytes and skeletal muscle fibres. During twitch activations length-tension relationships become steeper in both cardiac and skeletal muscle; however, it remains unclear whether length dependence of tension differs between striated muscle cell types during submaximal activations. The purpose of this study was to compare sarcomere length-tension relationships and the sarcomere length dependence of force development between rat skinned left ventricular cardiac myocytes and fast-twitch and slow-twitch skeletal muscle fibres. Muscle cell preparations were calcium activated to yield 50% maximal force, after which isometric force and rate constants (k(tr)) of force development were measured over a range of sarcomere lengths. Myofilament length-tension relationships were considerably steeper in fast-twitch fibres compared to slow-twitch fibres. Interestingly, cardiac myocyte preparations exhibited two populations of length-tension relationships, one steeper than fast-twitch fibres and the other similar to slow-twitch fibres. Moreover, myocytes with shallow length-tension relationships were converted to steeper length-tension relationships by protein kinase A (PKA)-induced myofilament phosphorylation. Sarcomere length-k(tr) relationships were distinct between all three cell types and exhibited patterns markedly different from Ca(2+) activation-dependent k(tr) relationships. Overall, these findings indicate cardiac myocytes exhibit varied length-tension relationships and sarcomere length appears a dominant modulator of force development rates. Importantly, cardiac myocyte length

  17. Estimating induced-activation of SCT barrel-modules in the ATLAS radiation environment.

    CERN Document Server

    Buttar, C M; Dawson, I; Mandic, I; Moraes, A

    2002-01-01

    One of the consequences of operating detector systems in the harsh radiation environments of the ATLAS inner-detector will be radioactivation of the components. If the levels of radioactivity and corresponding dose rates are significant, then there will be implications for any access or maintenance operations. Given in this note are predictions for the radioactivation of SCT barrel-modules in the expected radiation environment of the inner-detector, based on both calculations and measurements. It is shown that both neutron-capture and high-energy hadron reactions must be taken into account. The predictions show that, from a radiological point of view, the SCT barrel-modules should not pose any serious problems.

  18. Effects of PV Module Soiling on Glass Surface Resistance and Potential-Induced Degradation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hacke, Peter; Burton, Patrick; Hendrickson, Alex; Spartaru, Sergiu; Glick, Stephen; Terwilliger, Kent

    2015-12-03

    The sheet resistance of three soil types (Arizona road dust, soot, and sea salt) on glass were measured by the transmission line method as a function of relative humidity (RH) between 39% and 95% at 60 degrees C. Sea salt yielded a 3.5 order of magnitude decrease in resistance on the glass surface when the RH was increased over this RH range. Arizona road dust showed reduced sheet resistance at lower RH, but with less humidity sensitivity over the range tested. The soot sample did not show significant resistivity change compared to the unsoiled control. Photovoltaic modules with sea salt on their faces were step-stressed between 25% and 95% RH at 60 degrees C applying -1000 V bias to the active cell circuit. Leakage current from the cell circuit to ground ranged between two and ten times higher than that of the unsoiled controls. Degradation rate of modules with salt on the surface increased with increasing RH and time.

  19. Pump-induced optical distortions in disk amplifier modules: holographic and interferometric measurements

    International Nuclear Information System (INIS)

    Linford, G.J.; Chau, H.H.; Glaze, J.A.; Layne, C.B.; Rainer, F.

    1975-01-01

    Interferometric measurements have been made of the optical distortions induced in laser disk amplifiers during the flashlamp pumping pulse. Both conventional interferometric methods and the techniques of double exposure holographic interferometry were used to identify four major sources of pump-induced optical distortions: subsonic intrusion of hot gas (traced to leakage of atmospheric oxygen into the amplifier), microexplosions of dust particles, thermally induced optical distortions in the glass disks, and gaseous optical distortion effects caused by turbulent flow of the purging nitrogen gas supply used within the laser amplifier head. Methods for reducing or eliminating the effects of each of these optical distortions are described

  20. The mixed serotonin receptor agonist psilocybin reduces threat-induced modulation of amygdala connectivity

    OpenAIRE

    Kraehenmann, Rainer; Schmidt, André; Friston, Karl; Preller, Katrin H; Seifritz, Erich; Vollenweider, Franz X

    2016-01-01

    Stimulation of serotonergic neurotransmission by psilocybin has been shown to shift emotional biases away from negative towards positive stimuli. We have recently shown that reduced amygdala activity during threat processing might underlie psilocybin's effect on emotional processing. However, it is still not known whether psilocybin modulates bottom-up or top-down connectivity within the visual-limbic-prefrontal network underlying threat processing. We therefore analyzed our previous fMRI dat...

  1. Feedback of mechanical effectiveness induces adaptations in motor modules during cycling

    Science.gov (United States)

    De Marchis, Cristiano; Schmid, Maurizio; Bibbo, Daniele; Castronovo, Anna Margherita; D'Alessio, Tommaso; Conforto, Silvia

    2013-01-01

    Recent studies have reported evidence that the motor system may rely on a modular organization, even if this behavior has yet to be confirmed during motor adaptation. The aim of the present study is to investigate the modular motor control mechanisms underlying the execution of pedaling by untrained subjects in different biomechanical conditions. We use the muscle synergies framework to characterize the muscle coordination of 11 subjects pedaling under two different conditions. The first one consists of a pedaling exercise with a strategy freely chosen by the subjects (Preferred Pedaling Technique, PPT), while the second condition constrains the gesture by means of a real time visual feedback of mechanical effectiveness (Effective Pedaling Technique, EPT). Pedal forces, recorded using a pair of instrumented pedals, were used to calculate the Index of Effectiveness (IE). EMG signals were recorded from eight muscles of the dominant leg and Non-negative Matrix Factorization (NMF) was applied for the extraction of muscle synergies. All the synergy vectors, extracted cycle by cycle for each subject, were pooled across subjects and conditions and underwent a 2-dimensional Sammon's non-linear mapping. Seven representative clusters were identified on the Sammon's projection, and the corresponding eight-dimensional synergy vectors were used to reconstruct the repertoire of muscle activation for all subjects and all pedaling conditions (VAF > 0.8 for each individual muscle pattern). Only 5 out of the 7 identified modules were used by the subjects during the PPT pedaling condition, while 2 additional modules were found specific for the pedaling condition EPT. The temporal recruitment of three identified modules was highly correlated with IE. The structure of the identified modules was found similar to that extracted in other studies of human walking, partly confirming the existence of shared and task specific muscle synergies, and providing further evidence on the modularity

  2. Flow transients induced on a 2D airfoil by pulse-modulated actuation

    Energy Technology Data Exchange (ETDEWEB)

    Amitay, Michael [Rensselaer Polytechnic Institute, Mechanical, Aerospace and Nuclear Engineering, Troy, NY (United States); Glezer, Ari [Georgia Institute of Technology, Woodruff School of Mechanical Engineering, Atlanta, GA (United States)

    2006-02-01

    The transitory response of the flow over a stalled, 2D airfoil to a momentary synthetic jet actuation that is realized by low-duty cycle amplitude modulation of the actuator's resonant waveform is investigated experimentally using hot-wire anemometry and flow visualization. The pulse-like actuation results in the shedding of large vortical structures and a momentary flow attachment. (orig.)

  3. Endogenous Pain Modulation Induced by Extrinsic and Intrinsic Psychological Threat in Healthy Individuals.

    Science.gov (United States)

    Gibson, William; Moss, Penny; Cheng, Tak Ho; Garnier, Alexandre; Wright, Anthony; Wand, Benedict M

    2018-03-01

    Many factors interact to influence threat perception and the subsequent experience of pain. This study investigated the effect of observing pain (extrinsic threat) and intrinsic threat of pain to oneself on pressure pain threshold (PPT). Forty socially connected pairs of healthy volunteers were threat-primed and randomly allocated to experimental or control roles. An experimental pain modulation paradigm was applied, with non-nociceptive threat cues used as conditioning stimuli. In substudy 1, the extrinsic threat to the experimental participant was observation of the control partner in pain. The control participant underwent hand immersion in noxious and non-noxious water baths in randomized order. Change in the observing participant's PPT from baseline to mid- and postimmersion was calculated. A significant interaction was found for PPT between conditions and test time (F 2,78  = 24.9, P Extrinsic and intrinsic threat of pain, in the absence of any afferent input therefore influences pain modulation. This may need to be considered in studies that use noxious afferent input with populations who show dysfunctional pain modulation. The effect on endogenous analgesia of observing another's pain and of threat of pain to oneself was investigated. Extrinsic as well as intrinsic threat cues, in the absence of any afferent input, increased pain thresholds, suggesting that mere threat of pain may initiate analgesic effects in traditional noxious experimental paradigms. Copyright © 2017 The American Pain Society. Published by Elsevier Inc. All rights reserved.

  4. Adrenergic and steroid hormone modulation of ozone-induced pulmonary injury and inflammation

    Science.gov (United States)

    Rationale: We have shown that acute ozone inhalation promotes activation of the sympathetic and hypothalamic-pituitary-adrenal (HPA) axis leading to release of cortisol and epinephrine from the adrenals. Adrenalectomy (ADREX) inhibits ozone-induced pulmonary vascular leakage and ...

  5. Ozone-Induced Pulmonary Injury and Inflammation are Modulated by Adrenal-Derived Stress Hormones

    Science.gov (United States)

    Ozone exposure promotes pulmonary injury and inflammation. Previously we have characterized systemic changes that occur immediately after acute ozone exposure and are mediated by neuro-hormonal stress response pathway. Both HPA axis and sympathetic tone alterations induce the rel...

  6. Adrenal-derived stress hormones modulate ozone-induced lung injury and inflammation

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data set shows high throughput gene expression assessment using RNAseq to examine how ozone-induced transcriptional changes in the lung are influenced by...

  7. Neutrophil-induced human bronchial hyperresponsiveness in vitro--pharmacological modulation.

    Science.gov (United States)

    Hughes, J M; McKay, K O; Johnson, P R; Tragoulias, S; Black, J L; Armour, C L

    1993-04-01

    Although it has been postulated that inflammatory cells cause the bronchial hyperresponsiveness which is diagnostic of asthma, until recently there has been little direct evidence of such a link. We have recently shown that calcium ionophore-activated human neutrophils and eosinophils can induce a state of human airway hyperresponsiveness in vitro. In this study we have shown that the anti-inflammatory agent nedocromil sodium, 10(-7) M, inhibited the hyperresponsiveness induced by products released from ionophore activated neutrophils but did not inhibit the release of leukotriene B4 from the same cells. Neutrophil-induced bronchial hyperresponsiveness was also inhibited by pre-treatment of the bronchial tissues with a thromboxane A2 and prostaglandin receptor antagonist, GR32191, 10(-7) M. These findings indicate that cyclooxygenase products are involved in bronchial hyperresponsiveness induced by inflammatory cell products in vitro and that their release can be inhibited by nedocromil sodium.

  8. Experimentally induced mastitis and metritis modulate soy bean derived isoflavone biotransformation in diary cows.

    Science.gov (United States)

    Kowalczyk-Zieba, I; Woclawek-Potocka, I; Piskula, M K; Piotrowska-Tomala, K K; Boruszewska, D; Bah, M M; Siemieniuch, M J; Skarzynski, D J

    2011-12-01

    The present study compared the changes in isoflavone (daidzein and genistein) and their metabolite (equol and para-ethyl-phenol) concentrations in the blood plasma of cows with induced mastitis and metritis after feeding with soy bean. Sixteen cows were divided into four groups: control for mastitis group, cows with induced mastitis group, control for metritis group, and cows with induced metritis group. All cows were fed a single dose of 2.5 kg of soy bean and then blood samples were taken from the jugular vein for 8 h at predetermined intervals. The concentrations of soy bean-derived isoflavones and their active metabolites were measured in the blood plasma on HPLC system. β-Glucuronidase activity in the blood plasma of cows was measured by fluorometric method. In the blood plasma of cows with induced mastitis and metritis, we found considerably higher concentrations and time-dependent increase in isoflavone metabolites (equol and para-ethyl-phenol) with reference to cyclic cows (P < 0.05). Moreover, we noticed significant decrease of genistein in the blood plasma of the cows with induced metritis compared with control cows (P < 0.05). In addition, in the blood plasma of the cows with induced metritis, we found an increase in β-glucuronidase activity compared with control cows (P < 0.05). In conclusion, health status of the females influenced the concentrations of isoflavone metabolites in the blood plasma of the cows. Experimentally induced mastitis and metritis increased isoflavone absorption, biotransformation and metabolism. Therefore, we suggest that cows with induced mastitis and metritis are more exposed to active isoflavone metabolite actions than healthy cows. Copyright © 2011. Published by Elsevier Inc.

  9. Characterization of Chemically Induced Liver Injuries Using Gene Co-Expression Modules

    Science.gov (United States)

    2014-09-16

    evaluated the periportal fibrosis gene signature in the GEO dataset - GSE13747 [34]. In this dataset, liver fibrosis was induced by bile duct ...dataset, liver fibrosis was induced by bile duct ligation. Figure 10-D shows the observed correlation between log-ratios of periportal fibrosis...at 15 days of exposure obtained from TG-GATEs, and D) liver fibrosis produced by bile duct ligation obtained from GSE13747. doi:10.1371/journal.pone

  10. Peritoneal fluid modulates the sperm acrosomal exocytosis induced by N-acetylglucosaminyl neoglycoprotein

    Directory of Open Access Journals (Sweden)

    E.P. Passos

    1999-01-01

    Full Text Available The effect of peritoneal fluid (PF on the human sperm acrosome reaction (AR was tested. Sperm was pre-incubated with PF and the AR was induced by calcium ionophore A23187 and a neoglycoprotein bearing N-acetylglycosamine residues (NGP. The AR induced by calcium ionophore was inhibited 40% by PF from controls (PFc and 50% by PF from the endometriosis (PFe group, but not by PF from infertile patients without endometriosis (PFi. No significant differences were found in the spontaneous AR. When the AR was induced by NGP, pre-incubation with PFc reduced (60% the percentage of AR, while PFe and PFi caused no significant differences. The average rates of acrosome reactions obtained in control, NGP- and ionophore-treated sperm showed that NGP-induced exocytosis differed significantly between the PFc (11% and PFe/PFi groups (17%, and the ionophore-induced AR was higher for PFi (33% than PFc/PFe (25%. The incidence of the NGP-induced AR was reduced in the first hour of pre-incubation with PFc and remained nearly constant throughout 4 h of incubation. The present data indicate that PF possesses a protective factor which prevents premature AR.

  11. Modulation of mutagen-induced biological effects by inhibitors of DNA repair

    International Nuclear Information System (INIS)

    Natarajan, A.T.; Mullenders, L.F.H.; Zwanenburg, T.S.B.

    1986-01-01

    When lesions are induced in the DNA by mutagenic agents, they are subjected to cellular repair. Unrepaired and misrepaired lesions lead to biological effects, such as cell killing, point mutations and chromosomal alterations (aberrations and sister chromatid exchanges - SCEs). It is very difficult to directly correlate any particular type of lesion to a specific biological effect. However, in specific cases, this has been done. For example, short wave UV induced biological effects (cell killing, chromosomal alterations) result predominantly from induced cyclobutane dimers and by photoreactivation experiments, one can demonstrate that with the removal of dimers all types biological effects are diminished. In cases where many types of lesions are considered responsible for the observed biological effects other strategies have been employed to identify the possible lesion. The frequencies of induced chromosomal alterations and point mutations increase with the dose of the mutagen employed and an inhibition of DNA repair following treatment with the mutagen. Prevention of the cells from dividing following mutagen treatment allows them to repair premutational damage, thus reducing the biological effects induced. By comprehensive studies involving quantification of primary DNA lesions, their repair and biological effects will enable us to understand to some extent the complex processes involved in the manifestation of specific biological effects that follow the treatment of cells with mutagenic carcinogens

  12. Retinoic acid modulation of ultraviolet light-induced epidermal ornithine decarboxylase activity

    International Nuclear Information System (INIS)

    Lowe, N.J.; Breeding, J.

    1982-01-01

    Irradiation of skin with ultraviolet light of sunburn range (UVB) leads to a large and rapid induction of the polyamine biosynthetic enzyme ornithine decarboxylase in the epidermis. Induction of epidermal ornithine decarboxylase also occurs following application of the tumor promoting agent 12-0-tetradecanoylphorbol-13 acetate and topical retinoic acid is able to block both this ornithine decarboxylase induction and skin tumor promotion. In the studies described below, topical application of retinoic acid to hairless mouse skin leads to a significant inhibition of UVB-induced epidermal ornithine decarboxylase activity. The degree of this inhibition was dependent on the dose, timing, and frequency of the application of retinoic acid. To show significant inhibition of UVB-induced ornithine decarboxylase the retinoic acid had to be applied within 5 hr of UVB irradiation. If retinoic acid treatment was delayed beyond 7 hr following UVB, then no inhibition of UVB-induced ornithine decarboxylase was observed. The quantities of retinoic acid used (1.7 nmol and 3.4 nmol) have been shown effective at inhibiting 12-0-tetradecanoyl phorbol-13 acetate induced ornithine decarboxylase. The results show that these concentrations of topical retinoic acid applied either before or immediately following UVB irradiation reduces the UVB induction of epidermal ornithine decarboxylase. The effect of retinoic acid in these regimens on UVB-induced skin carcinogenesis is currently under study

  13. Organic honey supplementation reverses pesticide-induced genotoxicity by modulating DNA damage response.

    Science.gov (United States)

    Alleva, Renata; Manzella, Nicola; Gaetani, Simona; Ciarapica, Veronica; Bracci, Massimo; Caboni, Maria Fiorenza; Pasini, Federica; Monaco, Federica; Amati, Monica; Borghi, Battista; Tomasetti, Marco

    2016-10-01

    Glyphosate (GLY) and organophosphorus insecticides such as chlorpyrifos (CPF) may cause DNA damage and cancer in exposed individuals through mitochondrial dysfunction. Polyphenols ubiquitously present in fruits and vegetables, have been viewed as antioxidant molecules, but also influence mitochondrial homeostasis. Here, honey containing polyphenol compounds was evaluated for its potential protective effect on pesticide-induced genotoxicity. Honey extracts from four floral organic sources were evaluated for their polyphenol content, antioxidant activity, and potential protective effects on pesticide-related mitochondrial destabilization, reactive oxygen and nitrogen species formation, and DNA damage response in human bronchial epithelial and neuronal cells. The protective effect of honey was, then evaluated in a residential population chronically exposed to pesticides. The four honey types showed a different polyphenol profile associated with a different antioxidant power. The pesticide-induced mitochondrial dysfunction parallels ROS formation from mitochondria (mtROS) and consequent DNA damage. Honey extracts efficiently inhibited pesticide-induced mtROS formation, and reduced DNA damage by upregulation of DNA repair through NFR2. Honey supplementation enhanced DNA repair activity in a residential population chronically exposed to pesticides, which resulted in a marked reduction of pesticide-induced DNA lesions. These results provide new insight regarding the effect of honey containing polyphenols on pesticide-induced DNA damage response. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Development of Instrumentation for Spin-Echo Induced Spatial Beam Modulations

    DEFF Research Database (Denmark)

    Sales, Morten

    Spin-Echo Modulated Small Angle Neutron Scattering in Time-of-Flight mode (ToF SEMSANS) is an emerging technique extending the measurable phase space covered by neutron scattering. Using inclined magnetic field surfaces, (very) small angle scattering from a sample can be mapped into the spin...... orientation of the neutron as it has been shown in Spin-Echo Small Angle Neutron Scattering (SESANS). Taking this technique further we have shown that it is possible to perform quantitative Dark-Field Imaging, where the small angle scattering signal of individual areas in a neutron image can be obtained...

  15. Relaxation dynamics of femtosecond-laser-induced temperature modulation on the surfaces of metals and semiconductors

    Czech Academy of Sciences Publication Activity Database

    Levy, Yoann; Derrien, Thibault; Bulgakova, Nadezhda M.; Gurevich, E.L.; Mocek, Tomáš

    2016-01-01

    Roč. 374, Jun (2016), s. 157-164 ISSN 0169-4332 R&D Projects: GA MŠk ED2.1.00/01.0027 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143; OP VK 6(XE) CZ.1.07/2.3.00/20.0143 Institutional support: RVO:68378271 Keywords : LIPSS * modulated temperature relaxation * two-temperature model * nano-melting Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.387, year: 2016

  16. Tumorigenesis induced by the HHV8-encoded chemokine receptor requires ligand modulation of high constitutive activity

    DEFF Research Database (Denmark)

    Holst, P J; Rosenkilde, M M; Manfra, D

    2001-01-01

    sarcoma (KS). Here we demonstrate that several lines of mice carrying mutated receptors deficient in either constitutive activity or chemokine regulation fail to develop KS-like disease. In addition, animals expressing a receptor that preserves chemokine binding and constitutive activity but that does...... not respond to agonist stimulation have a much lower incidence of angiogenic lesions and tumors. These results indicate that induction of the KS-like disease in transgenic mice by ORF74 requires not only high constitutive signaling activity but also modulation of this activity by endogenous chemokines....

  17. Improvement of dizocilpine-induced social recognition deficits in mice by brexpiprazole, a novel serotonin-dopamine activity modulator.

    Science.gov (United States)

    Yoshimi, Noriko; Futamura, Takashi; Hashimoto, Kenji

    2015-03-01

    Cognitive impairment, including impaired social cognition, is largely responsible for the deterioration in social life suffered by patients with psychiatric disorders, such as schizophrenia and major depressive disorder (MDD). Brexpiprazole (7-{4-[4-(1-benzothiophen-4-yl)piperazin-1-yl]butoxy}quinolin-2(1H)-one), a novel serotonin-dopamine activity modulator, was developed to offer efficacious and tolerable therapy for different psychiatric disorders, including schizophrenia and adjunctive treatment of MDD. In this study, we investigated whether brexpiprazole could improve social recognition deficits (one of social cognition deficits) in mice, after administration of the N-methyl-d-aspartate (NMDA) receptor antagonist MK-801 (dizocilpine). Dosing with dizocilpine (0.1mg/kg) induced significant impairment of social recognition in mice. Brexpiprazole (0.01, 0.03, 0.1mg/kg, p.o.) significantly ameliorated dizocilpine-induced social recognition deficits, without sedation or a reduction of exploratory behavior. In addition, brexpiprazole alone had no effect on social recognition in untreated control mice. By contrast, neither risperidone (0.03mg/kg, p.o.) nor olanzapine (0.03mg/kg, p.o.) altered dizocilpine-induced social recognition deficits. Finally, the effect of brexpiprazole on dizocilpine-induced social recognition deficits was antagonized by WAY-100,635, a selective serotonin 5-HT1A antagonist. These results suggest that brexpiprazole could improve dizocilpine-induced social recognition deficits via 5-HT1A receptor activation in mice. Therefore, brexpiprazole may confer a beneficial effect on social cognition deficits in patients with psychiatric disorders. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  18. MicroRNA-661 Enhances TRAIL or STS Induced Osteosarcoma Cell Apoptosis by Modulating the Expression of Cytochrome c1

    Directory of Open Access Journals (Sweden)

    Lin Fan

    2017-04-01

    Full Text Available Aim: Osteosarcoma (OS is an aggressive bone malignancy that affects rapidly growing bones and is associated with a poor prognosis. Our previous study showed that cytochrome c1 (CYC1, a subunit of the cytochrome bc1 complex (complex III of the mitochondrial electron chain, is overexpressed in human OS tissues and cell lines and its silencing induces apoptosis in vitro and inhibits tumor growth in vivo. Here, we investigated the mechanism underlying the modulation of CYC1 expression in OS and its role in the resistance of OS to apoptosis. Methods: qRT-PCR, luciferase reporter assay, western blotting, fow cytometry, and animal experiments were performed in this study. Results: MicroRNA (miR-661 was identified as a downregulated miRNA in OS tissues and cells and shown to directly target CYC1. Ectopically expressed miR-661 inhibited OS cell growth, promoted apoptosis, and reduced the activity of mitochondrial complex III. miR-661 overexpression enhanced TRAIL or STS induced apoptosis and promoted the release of cytochrome c into the cytosol, which induced caspase-9 activation, and these effects were abolished by a caspase-3 inhibitor. Overexpression of CYC1 rescued the effects of miR-661 on sensitizing OS cells to TRAIL or STS induced apoptosis, indicating that the antitumor effect of miR-661 is mediated by the downregulation of CYC1. In vivo, miR-661 overexpression sensitized tumors to TRAIL or STS induced apoptosis in a xenograft mouse model, and these effects were attenuated by co-expression of CYC1. Conclusion: Taken together, our results indicate that miR-661 plays a tumor suppressor role in OS mediated by the downregulation of CYC1, suggesting a potential mechanism underlying cell death resistance in OS.

  19. Polyoxyethylene hydrogenated castor oil modulates benzalkonium chloride toxicity: comparison of acute corneal barrier dysfunction induced by travoprost Z and travoprost.

    Science.gov (United States)

    Uematsu, Masafumi; Kumagami, Takeshi; Shimoda, Kenichiro; Kusano, Mao; Teshima, Mugen; To, Hideto; Kitahara, Takashi; Kitaoka, Takashi; Sasaki, Hitoshi

    2011-10-01

    To determine the element that modulates benzalkonium chloride (BAC) toxicity by using a new electrophysiological method to evaluate acute corneal barrier dysfunction induced by travoprost Z with sofZia (Travatan Z(®)), travoprost with 0.015% BAC (Travatan(®)), and its additives. Corneal transepithelial electrical resistance (TER) was measured in live white Japanese rabbits by 2 Ag/AgCl electrodes placed in the anterior aqueous chamber and on the cornea. We evaluated corneal TER changes after a 60-s exposure to travoprost Z, travoprost, and 0.015% BAC. Similarly, TER changes were evaluated after corneas were exposed for 60 s to the travoprost additives ethylenediaminetetraacetic acid disodium salt, boric acid, mannitol, trometamol, and polyoxyethylene hydrogenated castor oil 40 (HCO-40) with or without BAC. Corneal damage was examined after exposure to BAC with or without travoprost additives using scanning electron microscopy (SEM) and a cytotoxicity assay. Although no decreases of TER were noted after exposure to travoprost Z with sofZia and travoprost with 0.015% BAC, a significant decrease of corneal TER was observed after 0.015% BAC exposure. With the exception of BAC, no corneal TER decreases were observed for any travoprost additives. After corneal exposure to travoprost additives with BAC, HCO-40 was able to prevent the BAC-induced TER decrease. SEM observations and the cytotoxicity assay confirmed that there was a remarkable improvement of BAC-induced corneal epithelial toxicity after addition of HCO-40 to the BAC. Travoprost Z with sofZia and travoprost with BAC do not induce acute corneal barrier dysfunction. HCO-40 provides protection against BAC-induced corneal toxicity.

  20. Modulation of cadmium-induced mitochondrial dysfunction and volume changes by temperature in rainbow trout (Oncorhynchus mykiss)

    International Nuclear Information System (INIS)

    Onukwufor, John O.; Kibenge, Fred; Stevens, Don; Kamunde, Collins

    2015-01-01

    Highlights: • Interactions of Cd and temperature exacerbate mitochondrial dysfunction and enhance Cd accumulation. • Cd uptake by mitochondria occurs through the Ca uniporter. • Temperature exacerbates Cd-induced mitochondrial volume changes. • Low concentrations of Cd inhibit mitochondrial swelling. - Abstract: We investigated how temperature modulates cadmium (Cd)-induced mitochondrial bioenergetic disturbances, metal accumulation and volume changes in rainbow trout (Oncorhynchus mykiss). In the first set of experiments, rainbow trout liver mitochondrial function and Cd content were measured in the presence of complex I substrates, malate and glutamate, following exposure to Cd (0–100 μM) at three (5, 13 and 25 °C) temperatures. The second set of experiments assessed the effect of temperature on Cd-induced mitochondrial volume changes, including the underlying mechanisms, at 15 and 25 °C. Although temperature stimulated both state 3 and 4 rates of respiration, the coupling efficiency was reduced at temperature extremes due to greater inhibition of state 3 at low temperature and greater stimulation of state 4 at the high temperature. Cadmium exposure reduced the stimulatory effect of temperature on state 3 respiration but increased that on state 4, consequently exacerbating mitochondrial uncoupling. The interaction of Cd and temperature yielded different responses on thermal sensitivity of state 3 and 4 respiration; the Q 10 values for state 3 respiration increased at low temperature (5–13 °C) while those for state 4 increased at high temperature (13–25 °C). Importantly, the mitochondria accumulated more Cd at high temperature suggesting that the observed greater impairment of oxidative phosphorylation with temperature was due, at least in part, to a higher metal burden. Cadmium-induced mitochondrial volume changes were characterized by an early phase of contraction followed by swelling, with temperature changing the kinetics and intensifying

  1. Modulation of cadmium-induced mitochondrial dysfunction and volume changes by temperature in rainbow trout (Oncorhynchus mykiss)

    Energy Technology Data Exchange (ETDEWEB)

    Onukwufor, John O. [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3 (Canada); Kibenge, Fred [Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3 (Canada); Stevens, Don [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3 (Canada); Kamunde, Collins, E-mail: ckamunde@upei.ca [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3 (Canada)

    2015-01-15

    Highlights: • Interactions of Cd and temperature exacerbate mitochondrial dysfunction and enhance Cd accumulation. • Cd uptake by mitochondria occurs through the Ca uniporter. • Temperature exacerbates Cd-induced mitochondrial volume changes. • Low concentrations of Cd inhibit mitochondrial swelling. - Abstract: We investigated how temperature modulates cadmium (Cd)-induced mitochondrial bioenergetic disturbances, metal accumulation and volume changes in rainbow trout (Oncorhynchus mykiss). In the first set of experiments, rainbow trout liver mitochondrial function and Cd content were measured in the presence of complex I substrates, malate and glutamate, following exposure to Cd (0–100 μM) at three (5, 13 and 25 °C) temperatures. The second set of experiments assessed the effect of temperature on Cd-induced mitochondrial volume changes, including the underlying mechanisms, at 15 and 25 °C. Although temperature stimulated both state 3 and 4 rates of respiration, the coupling efficiency was reduced at temperature extremes due to greater inhibition of state 3 at low temperature and greater stimulation of state 4 at the high temperature. Cadmium exposure reduced the stimulatory effect of temperature on state 3 respiration but increased that on state 4, consequently exacerbating mitochondrial uncoupling. The interaction of Cd and temperature yielded different responses on thermal sensitivity of state 3 and 4 respiration; the Q{sub 10} values for state 3 respiration increased at low temperature (5–13 °C) while those for state 4 increased at high temperature (13–25 °C). Importantly, the mitochondria accumulated more Cd at high temperature suggesting that the observed greater impairment of oxidative phosphorylation with temperature was due, at least in part, to a higher metal burden. Cadmium-induced mitochondrial volume changes were characterized by an early phase of contraction followed by swelling, with temperature changing the kinetics and

  2. Interaction between the dopaminergic and opioidergic systems in dorsal hippocampus in modulation of formalin-induced orofacial pain in rats.

    Science.gov (United States)

    Reisi, Zahra; Haghparast, Amir; Pahlevani, Pouyan; Shamsizadeh, Ali; Haghparast, Abbas

    2014-09-01

    The hippocampus is a region of the brain that serves several functions. The dopaminergic system acts through D1- and D2-like receptors to interfere in pain modulation and the opioid receptors play major roles in analgesic processes and there are obvious overlaps between these two systems. The present study investigated the interaction between the opioidergic and dopaminergic systems in the dorsal hippocampus (CA1) region for formalin-induced orofacial pain. Two guide cannulae were stereotaxically implanted in the CA1 region and morphine (0.5, 1, 2 and 4 μg/0.5 μl saline) and naloxone (0.3, 1 and 3 μg/0.5 μl saline) were used as the opioid receptor agonist and antagonist, respectively. SKF-38393 (1 μg/0.5 μl saline) was used as a D1-like receptor agonist, quinpirole (2 μg/0.5 μl saline) as a D2-like receptor agonist, SCH-23390 (0.5 μg/0.5 μl saline) as a D1-like receptor antagonist and sulpiride (3 μg/0.5 μl DMSO) as a D2-like receptor antagonist. To induce orofacial pain, 50 μl of 1% formalin was subcutaneously injected into the left side of the upper lip. Our results showed that different doses of morphine significantly reduced orofacial pain in both phases induced by formalin. Naloxone (1 and 3 μg) reversed morphine induced analgesia in CA1. SKF-38393 and quinpirole with naloxone (1 μg) significantly decreased formalin-induced orofacial pain in both phases. SCH-23390 had no effect on the antinociceptive response of morphine in both phases of orofacial pain. Sulpiride reversed the antinociceptive effects of morphine only in the first phase, but this result was not significant. Our findings suggest that there is cross-talk between the opioidergic and dopaminergic systems. Opioidergic neurons also exerted antinociceptive effects by modulation of the dopaminergic system in the CA1 region of the brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Luteinizing hormone-induced Akt phosphorylation and androgen production are modulated by MAP Kinase in bovine theca cells

    Directory of Open Access Journals (Sweden)

    Fukuda Shin

    2009-11-01

    Full Text Available Abstract Background Theca cells play an important role in controlling ovarian steroidogenesis by providing aromatizable androgens for granulosa cell estrogen biosynthesis. Although it is well established that the steroidogenic activity of theca cells is mainly regulated by LH, the intracellular signal transduction mechanisms that regulate thecal proliferation and/or steroidogenesis remain obscure. In this study, we examined whether and how LH controls the PI3K/Akt signaling pathway and androgen production in bovine theca cells. We also explored whether this LH-induced PI3K/Akt activation is modulated with other signaling pathways (i.e. PKA and MAPK. Methods Ovarian theca cells were isolated from bovine small antral follicles and were incubated with LH for various durations. Phospho-Akt and total-Akt content in the cultured theca cells were examined using Western blotting. Androstenedione levels in the spent media were determined using EIA. Semi-quantitative RT-PCR analyses were conducted to analyze the mRNA levels of CYP17A1 and StAR in the theca cells. To examine whether Akt activity is involved in theca cell androgen production, the PI3K inhibitors wortmannin and LY294002 were also added to the cells. Results Akt is constitutively expressed, but is gradually phosphorylated in cultured bovine theca cells through exposure to LH. LH significantly increased androstenedione production in bovine theca cells, whereas addition of the wortmannin and LY294002 significantly decreased LH-induced androstenedione production. LH significantly increased CYP17A1 mRNA level in theca cells, whereas addition of LY294002 significantly decreased LH-induced CYP17A1 expression. Neither LH nor PI3K inhibitors alter the mRNA levels of StAR in theca cells. Although H89 (a selective inhibitor of PKA does not affect LH-mediated changes in Akt, U0126 (a potent MEK inhibitor suppressed LH-induced Akt phosphorylation, CYP17A1 expression, and androgen production in theca

  4. Schisantherin A suppresses osteoclast formation and wear particle-induced osteolysis via modulating RANKL signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    He, Yi; Zhang, Qing; Shen, Yi; Chen, Xia; Zhou, Feng; Peng, Dan, E-mail: xyeypd@163.com

    2014-07-04

    Highlights: • Schisantherin A suppresses osteoclasts formation and function in vitro. • Schisantherin A impairs RANKL signaling pathway. • Schisantherin A suppresses osteolysis in vivo. • Schisantherin A may be used for treating osteoclast related diseases. - Abstract: Receptor activator of NF-κB ligand (RANKL) plays critical role in osteoclastogenesis. Targeting RANKL signaling pathways has been a promising strategy for treating osteoclast related bone diseases such as osteoporosis and aseptic prosthetic loosening. Schisantherin A (SA), a dibenzocyclooctadiene lignan isolated from the fruit of Schisandra sphenanthera, has been used as an antitussive, tonic, and sedative agent, but its effect on osteoclasts has been hitherto unknown. In the present study, SA was found to inhibit RANKL-induced osteoclast formation and bone resorption. The osteoclastic specific marker genes induced by RANKL including c-Src, SA inhibited OSCAR, cathepsin K and TRAP in a dose dependent manner. Further signal transduction studies revealed that SA down-regulate RANKL-induced nuclear factor-kappaB (NF-κB) signaling activation by suppressing the phosphorylation and degradation of IκBα, and subsequently preventing the NF-κB transcriptional activity. Moreover, SA also decreased the RANKL-induced MAPKs signaling pathway, including JNK and ERK1/2 posphorylation while had no obvious effects on p38 activation. Finally, SA suppressed the NF-κB and MAPKs subsequent gene expression of NFATc1 and c-Fos. In vivo studies, SA inhibited osteoclast function and exhibited bone protection effect in wear-particle-induced bone erosion model. Taken together, SA could attenuate osteoclast formation and wear particle-induced osteolysis by mediating RANKL signaling pathways. These data indicated that SA is a promising therapeutic natural compound for the treatment of osteoclast-related prosthesis loosening.

  5. Exercise Inhibits the Effects of Smoke-Induced COPD Involving Modulation of STAT3

    Directory of Open Access Journals (Sweden)

    Maysa Alves Rodrigues Brandao-Rangel

    2017-01-01

    Full Text Available Purpose. Evaluate the participation of STAT3 in the effects of aerobic exercise (AE in a model of smoke-induced COPD. Methods. C57Bl/6 male mice were divided into control, Exe, COPD, and COPD+Exe groups. Smoke were administered during 90 days. Treadmill aerobic training begun on day 61 until day 90. Pulmonary inflammation, systemic inflammation, the level of lung emphysema, and the airway remodeling were evaluated. Analysis of integral and phosphorylated expression of STAT3 by airway epithelial cells, peribronchial leukocytes, and parenchymal leukocytes was performed. Results. AE inhibited smoke-induced accumulation of total cells (p<0.001, lymphocytes (p<0.001, and neutrophils (p<0.001 in BAL, as well as BAL levels of IL-1β (p<0.001, CXCL1 (p<0.001, IL-17 (p<0.001, and TNF-α (p<0.05, while increased the levels of IL-10 (p<0.001. AE also inhibited smoke-induced increases in total leukocytes (p<0.001, neutrophils (p<0.05, lymphocytes (p<0.001, and monocytes (p<0.01 in blood, as well as serum levels of IL-1β (p<0.01, CXCL1 (p<0.01, IL-17 (p<0.05, and TNF-α (p<0.01, while increased the levels of IL-10 (p<0.001. AE reduced smoke-induced emphysema (p<0.001 and collagen fiber accumulation in the airways (p<0.001. AE reduced smoke-induced STAT3 and phospho-STAT3 expression in airway epithelial cells (p<0.001, peribronchial leukocytes (p<0.001, and parenchymal leukocytes (p<0.001. Conclusions. AE reduces smoke-induced COPD phenotype involving STAT3.

  6. [Heat shock protein 90--modulator of TNFalpha-induced apoptosis of Jurkat tumor cells].

    Science.gov (United States)

    Kaĭgorodova, E V; Riazantseva, N V; Novitskiĭ, V V; Moroshkina, A N; Belkina, M V; Iakushina, V D

    2011-01-01

    rTNFalpha-induced programmed death of Jurkat tumor cells cultured with 17-AAG, a selective inhibitor of heat shock protein (Hsp90), was studied by fluorescent microscopy with the use of FITC-labeled annexin V and propidium iodide. Caspase-3 and -8 activities were determined by spectrophotometry using a caspase- 3 and -8 colorimetric assay kit. It was shown that inhibition of Hsp90 leads to activation of Jurkat cell apoptosis while Hsp90 itself suppresses this process. 17-AAG enhances rTNFa-induced apoptosis of tumor cells.

  7. NFAT5 participates in seawater inhalation-induced acute lung injury via modulation of NF-κB activity

    Science.gov (United States)

    Li, Congcong; Liu, Manling; Bo, Liyan; Liu, Wei; Liu, Qingqing; Chen, Xiangjun; Xu, Dunquan; Li, Zhichao; Jin, Faguang

    2016-01-01

    Nuclear factor of activated T cells 5 (NFAT5) is a transcription factor that can be activated by extracellular tonicity. It has been reported that NFAT5 may increase the transcription of certain osmoprotective genes in the renal system, and the aim of the current study was to explore the role of NFAT5 in seawater inhalation-induced acute lung injury. Though establishing the model of seawater inhalation-induced acute lung injury, it was demonstrated that seawater inhalation enhanced the transcription and protein expression of NFAT5 (evaluated by reverse transcription-polymerase chain reaction, immunohistochemistry stain and western blotting) and activation of nuclear factor (NF)-κB (evaluated by western blotting and mRNA expression levels of three NF-κB-dependent genes) both in lung tissue and rat alveolar macrophage cells (NR8383 cells). When expression of NFAT5 was reduced in NR8383 cells using an siRNA targeted to NFAT5, the phosphorylation of NF-κB and transcription of NF-κB-dependent genes were significantly reduced. In addition, the elevated content of certain inflammatory cytokines [tumor necrosis factor α, interleukin (IL)-1 and IL-8] were markedly reduced. In conclusion, NFAT5 serves an important pathophysiological role in seawater inhalation-induced acute lung injury by modulating NF-κB activity, and these data suggest that NFAT5 may be a promising therapeutic target. PMID:27779669

  8. Investigating the influence of respiratory motion on the radiation induced bystander effect in modulated radiotherapy

    Science.gov (United States)

    Cole, Aidan J.; McGarry, Conor K.; Butterworth, Karl T.; McMahon, Stephen J.; Hounsell, Alan R.; Prise, Kevin M.; O'Sullivan, Joe M.

    2013-12-01

    Respiratory motion introduces complex spatio-temporal variations in the dosimetry of radiotherapy and may contribute towards uncertainties in radiotherapy planning. This study investigates the potential radiobiological implications occurring due to tumour motion in areas of geometric miss in lung cancer radiotherapy. A bespoke phantom and motor-driven platform to replicate respiratory motion and study the consequences on tumour cell survival in vitro was constructed. Human non-small-cell lung cancer cell lines H460 and H1299 were irradiated in modulated radiotherapy configurations in the presence and absence of respiratory motion. Clonogenic survival was calculated for irradiated and shielded regions. Direction of motion, replication of dosimetry by multi-leaf collimator (MLC) manipulation and oscillating lead shielding were investigated to confirm differences in cell survival. Respiratory motion was shown to significantly increase survival for out-of-field regions for H460/H1299 cell lines when compared with static irradiation (p < 0.001). Significantly higher survival was found in the in-field region for the H460 cell line (p < 0.030). Oscillating lead shielding also produced these significant differences. Respiratory motion and oscillatory delivery of radiation dose to human tumour cells has a significant impact on in- and out-of-field survival in the presence of non-uniform irradiation in this in vitro set-up. This may have important radiobiological consequences for modulated radiotherapy in lung cancer.

  9. Sex Differences in Behavioral Outcomes Following Temperature Modulation During Induced Neonatal Hypoxic Ischemic Injury in Rats

    Directory of Open Access Journals (Sweden)

    Amanda L. Smith

    2015-05-01

    Full Text Available Neonatal hypoxia ischemia (HI; reduced oxygen and/or blood flow to the brain can cause various degrees of tissue damage, as well as subsequent cognitive/behavioral deficits such as motor, learning/memory, and auditory impairments. These outcomes frequently result from cardiovascular and/or respiratory events observed in premature infants. Data suggests that there is a sex difference in HI outcome, with males being more adversely affected relative to comparably injured females. Brain/body temperature may play a role in modulating the severity of an HI insult, with hypothermia during an insult yielding more favorable anatomical and behavioral outcomes. The current study utilized a postnatal day (P 7 rodent model of HI injury to assess the effect of temperature modulation during injury in each sex. We hypothesized that female P7 rats would benefit more from lowered body temperatures as compared to male P7 rats. We assessed all subjects on rota-rod, auditory discrimination, and spatial/non-spatial maze tasks. Our results revealed a significant benefit of temperature reduction in HI females as measured by most of the employed behavioral tasks. However, HI males benefitted from temperature reduction as measured on auditory and non-spatial tasks. Our data suggest that temperature reduction protects both sexes from the deleterious effects of HI injury, but task and sex specific patterns of relative efficacy are seen.

  10. Sex differences in behavioral outcomes following temperature modulation during induced neonatal hypoxic ischemic injury in rats.

    Science.gov (United States)

    Smith, Amanda L; Garbus, Haley; Rosenkrantz, Ted S; Fitch, Roslyn Holly

    2015-05-22

    Neonatal hypoxia ischemia (HI; reduced oxygen and/or blood flow to the brain) can cause various degrees of tissue damage, as well as subsequent cognitive/behavioral deficits such as motor, learning/memory, and auditory impairments. These outcomes frequently result from cardiovascular and/or respiratory events observed in premature infants. Data suggests that there is a sex difference in HI outcome, with males being more adversely affected relative to comparably injured females. Brain/body temperature may play a role in modulating the severity of an HI insult, with hypothermia during an insult yielding more favorable anatomical and behavioral outcomes. The current study utilized a postnatal day (P) 7 rodent model of HI injury to assess the effect of temperature modulation during injury in each sex. We hypothesized that female P7 rats would benefit more from lowered body temperatures as compared to male P7 rats. We assessed all subjects on rota-rod, auditory discrimination, and spatial/non-spatial maze tasks. Our results revealed a significant benefit of temperature reduction in HI females as measured by most of the employed behavioral tasks. However, HI males benefitted from temperature reduction as measured on auditory and non-spatial tasks. Our data suggest that temperature reduction protects both sexes from the deleterious effects of HI injury, but task and sex specific patterns of relative efficacy are seen.

  11. Early visual evoked potentials are modulated by eye position in humans induced by whole body rotations

    Directory of Open Access Journals (Sweden)

    Petit Laurent

    2004-09-01

    Full Text Available Abstract Background To reach and grasp an object in space on the basis of its image cast on the retina requires different coordinate transformations that take into account gaze and limb positioning. Eye position in the orbit influences the image's conversion from retinotopic (eye-centered coordinates to an egocentric frame necessary for guiding action. Neuroimaging studies have revealed eye position-dependent activity in extrastriate visual, parietal and frontal areas that is along the visuo-motor pathway. At the earliest vision stage, the role of the primary visual area (V1 in this process remains unclear. We used an experimental design based on pattern-onset visual evoked potentials (VEP recordings to study the effect of eye position on V1 activity in humans. Results We showed that the amplitude of the initial C1 component of VEP, acknowledged to originate in V1, was modulated by the eye position. We also established that putative spontaneous small saccades related to eccentric fixation, as well as retinal disparity cannot explain the effects of changing C1 amplitude of VEP in the present study. Conclusions The present modulation of the early component of VEP suggests an eye position-dependent activity of the human primary visual area. Our findings also evidence that cortical processes combine information about the position of the stimulus on the retinae with information about the location of the eyes in their orbit as early as the stage of primary visual area.

  12. Different Brain Network Activations Induced by Modulation and Nonmodulation Laser Acupuncture

    Directory of Open Access Journals (Sweden)

    Chang-Wei Hsieh

    2011-01-01

    Full Text Available The aim of this study is to compare the distinct cerebral activation with continued wave (CW and 10 Hz-modulated wave (MW stimulation during low-level laser acupuncture. Functional magnetic resonance imaging (fMRI studies were performed to investigate the possible mechanism during laser acupuncture stimulation at the left foot's yongquan (K1 acupoint. There are 12 healthy right-handed volunteers for each type of laser stimulation (10-Hz-Modulated wave: 8 males and 4 females; continued wave: 9 males and 3 females. The analysis of multisubjects in this experiment was applied by random-effect (RFX analysis. In CW groups, significant activations were found within the inferior parietal lobule, the primary somatosensory cortex, and the precuneus of left parietal lobe. Medial and superior frontal gyrus of left frontal lobe were also aroused. In MW groups, significant activations were found within the primary motor cortex and middle temporal gyrus of left hemisphere and bilateral cuneus. Placebo stimulation did not show any activation. Most activation areas were involved in the functions of memory, attention, and self-consciousness. The results showed the cerebral hemodynamic responses of two laser acupuncture stimulation modes and implied that its mechanism was not only based upon afferent sensory information processing, but that it also had the hemodynamic property altered during external stimulation.

  13. THz-induced ultrafast modulation of NIR refractive index of silicon

    DEFF Research Database (Denmark)

    Tarekegne, Abebe Tilahun; Hirori, Hideki; Iwaszczuk, Krzysztof

    2016-01-01

    We measure THz-induced change in refractive index of ∼5×10−3 in high resistivity silicon at 800 nm which indicates generation of high density of free carriers. The change in refractive index increases by more than 30 times with high initial carrier density set by optical excitation compared to op...

  14. Simvastatin Attenuates Contrast-Induced Nephropathy through Modulation of Oxidative Stress, Proinflammatory Myeloperoxidase, and Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Ketab E. Al-Otaibi

    2012-01-01

    Full Text Available Contrast media- (CM- induced nephropathy is a serious complication of radiodiagnostic procedures. Available data suggests that the development of prophylaxis strategies is limited by poor understanding of pathophysiology of CM-induced nephropathy. Present study was designed to determine the role of oxidative stress, myeloperoxidase, and nitric oxide in the pathogenesis of iohexol model of nephropathy and its modification with simvastatin (SSTN. Adult Sprague Dawley rats were divided into seven groups. After 24 h of water deprivation, all the rats except in control and SSTN-only groups were injected (10 ml/kg with 25% glycerol. After 30 min, SSTN (15, 30, and 60 mg/kg was administered orally, daily for 4 days. Twenty-four hours after the glycerol injection, iohexol was infused (8 ml/kg through femoral vein over a period of 2 min. All the animals were sacrificed on day 5 and blood and kidneys were collected for biochemical and histological studies. The results showed that SSTN dose dependently attenuated CM-induced rise of creatinine, urea, and structural abnormalities suggesting its nephroprotective effect. A significant increase in oxidative stress (increased lipid hydroperoxides and reduced glutathione levels and myeloperoxidase (MPO and decreased nitric oxide in CM group were reversed by SSTN. These findings support the use of SSTN to combat CM-induced nephrotoxicity.

  15. Modulation of LPS induced inflammatory response by Lawsonyl monocyclic terpene from the marine derived Streptomyces sp.

    Digital Repository Service at National Institute of Oceanography (India)

    Ali, A.; Khajuria, A.; Sidiq, T.; AshokKumar; Thakur, N.L.; Naik, D.; Vishwakarma, R.A.

    . The effect of Lawsonone (1) was elucidated on the immune cells (splenocytes and macrophages) collected from BALB/c mice. Study was carried out to find the effect of Lawsonone (1) on Con-A and LPS stimulated splenocyte proliferation, LPS-induced NO, IL-1beta...

  16. Modulating factors in the expression of radiation-induced oncogenic transformation

    International Nuclear Information System (INIS)

    Hall, E.J.; Hei, T.K.

    1990-01-01

    Many assays for oncogenic transformation have been developed ranging from those in established rodent cell lines where morphological alteration is scored, to those in human cells growing in nude mice where tumor invasiveness is scored. In general, systems that are most quantitaive are also the least relevant in terms of human carcinogenesis and human risk estimation. The development of cell culture systems has made it possible to assess at the cellular level the oncogenic potential of a variety of chemical, physical and viral agents. Cell culture systems afford the opportunity to identify factors and conditions that may prevent or enhance cellular transformation by radiation and chemicals. Permissive and protective factors in radiation-induced transformation include thyroid hormone and the tumor promoter TPA that increase the transformation incidence for a given dose of radiation, and retinoids, selenium, vitamin E, and 5-aminobenzamide that inhibit the expression of transformation. Densely ionizing α-particles, similar to those emitted by radon daughters, are highly effective in inducing transformations and appear to interact in a supra-additive fashion with asbestos fibers. The activation of a known dominant oncogene has not yet been demonstrated in radiation-induced oncogenic transformation. The most likely mechanism for radiation activation of an oncogene would be via the production of a chromosomal translocation. Radiation also efficiently induces deletions and may thus lead to the loss of a suppressor gene

  17. Urtica dioica leaves modulates muscarinic cholinergic system in the hippocampus of streptozotocin-induced diabetic mice.

    Science.gov (United States)

    Patel, Sita Sharan; Parashar, Arun; Udayabanu, Malairaman

    2015-06-01

    Diabetes mellitus is a chronic metabolic disorder and has been associated with cognitive dysfunction. In our earlier study, chronic Urtica dioica (UD) treatment significantly ameliorated diabetes induced associative and spatial memory deficit in mice. The present study was designed to explore the effect of UD leaves extract on muscarinic cholinergic system, which has long been known to be involved in cognition. Streptozotocin (STZ) (50 mg/kg, i.p., consecutively for 5 days) was used to induce diabetes followed by treatment with UD extract (50 mg/kg, oral) or rosiglitazone (5 mg/kg, oral) for 8 weeks. STZ-induced diabetic mice showed significant reduction in hippocampal muscarinic acetylcholine receptor-1 and choline acetyltransferase expressions. Chronic diabetes significantly up-regulated the protein expression of acetylcholinesterase associated with oxidative stress in hippocampus. Besides, STZ-induced diabetic mice showed hypolocomotion with up-regulation of muscarinic acetylcholine receptor-4 expression in striatum. Chronic UD treatment significantly attenuated the cholinergic dysfunction and oxidative stress in the hippocampus of diabetic mice. UD had no effect on locomotor activity and muscarinic acetylcholine receptor-4 expression in striatum. In conclusion, UD leaves extract has potential to reverse diabetes mediated alteration in muscarinic cholinergic system in hippocampus and thereby improve memory functions.

  18. Piperine Enhances the Protective Effect of Curcumin Against 3-NP Induced Neurotoxicity: Possible Neurotransmitters Modulation Mechanism.

    Science.gov (United States)

    Singh, Shamsher; Jamwal, Sumit; Kumar, Puneet

    2015-08-01

    3-Nitropropionic acid (3-NP) is a fungal toxin well established model used for inducing symptoms of Huntington's disease. Curcumin a natural polyphenol has been reported to possess neuroprotective activity by decreasing oxidative stress. The aim of present study was to investigate neuroprotective effect of curcumin with piperine (bioavailability enhancer) against 3-NP induced neurotoxicity in rats. Administration of 3-NP (10 mg/kg for 21 days) showed loss in body weight, declined motor function and changes in biochemical (LPO, nitrite and glutathione level), neuroinflammatory (TNF-α and IL-1β level) and neurochemical (DA, NE, 5-HT, DOPAC, 5-HIAA and HVA). Chronic treatment with curcumin (25 and 50 mg/kg) and curcumin (25 mg/kg) with piperine (2.5 mg/kg) once daily for 21 days prior to 3-NP administration. All the behavioral parameters were studied at 1st, 7th, 14th, and 21st day. On 22nd day all the animals was scarified and striatum was separated. Curcumin alone and combination (25 mg/kg) with piperine (2.5 mg/kg) showed beneficial effect against 3-NP induced motor deficit, biochemical and neurochemical abnormalities in rats. Piperine (2.5 mg/kg) with curcumin (25 mg/kg) significantly enhances its protective effect as compared with curcumin alone treated group. The results of the present study indicate that protective effect of curcumin potentiated in the presence of piperine (bioavailability enhancer) against 3-NP-induced behavioral and molecular alteration.

  19. Staphylococcus enterotoxin A modulates interleukin 15-induced signaling and mitogenesis in human T cells

    DEFF Research Database (Denmark)

    Gerwien, J; Kaltoft, K; Nielsen, M

    1998-01-01

    the anti-mitogenic effect of SEA on cytokine-induced proliferation and the pro-mitogenic effect of PMA. In contrast, inhibitors of PP1, PP2A, protein kinase C (PKC), phosphatidyl-inositol-3-kinase (PI-3K) and mammalian target of rapamycin (mTOR) are unable to inhibit the effects of SEA. In a SEA "non...

  20. Modulation of iridovirus-induced apoptosis by endocytosis, early expression, JNK, and apical caspase

    International Nuclear Information System (INIS)

    Chitnis, Nilesh S.; D'Costa, Susan M.; Paul, Eric R.; Bilimoria, Shaen L.

    2008-01-01

    Chilo iridescent virus (CIV) is the type species for the family Iridoviridae, which are large, isometric, cytoplasmic dsDNA viruses. We examined the mechanism of apoptosis induction by CIV. High CIV doses (CIV XS ; 400 μg/ml), UV-irradiated virus (CIV UV ; 10 μg/ml) and CVPE (CIV protein extract; 10 μg/ml) induced apoptosis in 60% of treated Choristoneura fumiferana (IPRI-CF-124T) cells. Normal doses of infectious CIV (10 μg/ml) induced apoptosis in only 10% of C. fumiferana (CF) cells. Apoptosis was inhibited by Z-IETD-FMK, an apical caspase inhibitor, indicating that CIV-induced apoptosis requires caspase activity. The putative caspase in CF cells was designated Cf-caspase-i. CIV UV or CVPE enhanced Cf-caspase-i activity by 80% at 24 h relative to mock-treated cells. Since the MAP kinase pathway induces or inhibits apoptosis depending on the context, we used JNK inhibitor SP600125 and demonstrated drastic suppression of CVPE-induced apoptosis. Thus, the JNK signaling pathway is significant for apoptosis in this system. Virus interaction with the cell surface was not sufficient for apoptosis since CIV UV particles bound to polysterene beads failed to induce apoptosis. Endocytosis inhibitors (bafilomycin or ammonium chloride) negated apoptosis induction by CIV UV , CIV XS or CVPE indicating that entry through this mode is required. Given the weak apoptotic response to infectious CIV, we postulated that viral gene expression inhibited apoptosis. CIV infection of cells pretreated with cycloheximide induced apoptosis in 69% of the cells compared to 10% in normal infections. Furthermore, blocking viral DNA replication with aphidicolin or phosphonoacetic acid suppressed apoptosis and Cf-caspase-i activity, indicating that early viral expression is necessary for inhibition of apoptosis, and de novo synthesis of viral proteins is not required for induction. We show for the first time that, in a member of the family Iridoviridae, apoptosis: (i) requires entry and

  1. SIRT-1 regulates TGF-β-induced dermal fibroblast migration via modulation of Cyr61 expression.

    Science.gov (United States)

    Kwon, Eun-Jeong; Park, Eun-Jung; Yu, Hyeran; Huh, Jung-Sik; Kim, Jinseok; Cho, Moonjae

    2018-05-01

    SIRT1 is a NAD-dependent protein deacetylase that participates in cellular regulation. The increased migration of fibroblasts is an important phenotype in fibroblast activation. The role of SIRT1 in cell migration remains controversial as to whether SIRT1 acts as an activator or suppressor of cell migration. Therefore, we have established the role of SIRT1 in the migration of human dermal fibroblasts and explored targets of SIRT1 during dermal fibroblast migration. SIRT1 and Cyr61 were expressed in human dermal fibroblasts and the stimulation with TGF-β further induced their expression. Treatment with resveratrol (RSV), a SIRT1 agonist, or overexpression of SIRT1 also promoted the expression Cyr61 in human dermal fibroblasts, whereas the inhibition of SIRT1 activity by nicotinamide or knockdown of SIRT1 decreased the level of Cyr61, as well as TGF-β or RSV-induced Cyr61 expression. Blocking of ERK signaling by PD98509 reduced the expression of Cyr61 induced by TGF-β or RSV. TGF-β, RSV, or SIRT1 overexpression enhanced β-catenin as well as Cyr61 expression. This stimulation was reduced by the Wnt inhibitor XAV939. RSV increased migration and nicotinamide attenuated RSV-induced migration of human dermal fibroblasts. Furthermore, SIRT1 overexpression promoted cell migration, whereas blocking Cyr61 attenuated SIRT1-stimulated migration of human dermal fibroblasts. SIRT1 increased cell migration by stimulating Cyr61 expression and the ERK and Wnt/β-catenin signaling. SIRT1-induced Cyr61 activity is very important for human dermal fibroblasts migration.

  2. ENSO Modulations due to Interannual Variability of Freshwater Forcing and Ocean Biology-induced Heating in the Tropical Pacific.

    Science.gov (United States)

    Zhang, Rong-Hua; Gao, Chuan; Kang, Xianbiao; Zhi, Hai; Wang, Zhanggui; Feng, Licheng

    2015-12-18

    Recent studies have identified clear climate feedbacks associated with interannual variations in freshwater forcing (FWF) and ocean biology-induced heating (OBH) in the tropical Pacific. The interrelationships among the related anomaly fields are analyzed using hybrid coupled model (HCM) simulations to illustrate their combined roles in modulating the El Niño-Southern Oscillation (ENSO). The HCM-based supporting experiments are performed to isolate the related feedbacks, with interannually varying FWF and OBH being represented individually or collectively, which allows their effects to be examined in a clear way. It is demonstrated that the interannual freshwater forcing enhances ENSO variability and slightly prolongs the simulated ENSO period, while the interannual OBH reduces ENSO variability and slightly shortens the ENSO period, with their feedback effects tending to counteract each other.

  3. Atorvastatin restores arsenic-induced vascular dysfunction in rats: Modulation of nitric oxide signaling and inflammatory mediators

    International Nuclear Information System (INIS)

    Kesavan, Manickam; Sarath, Thengumpallil Sasindran; Kannan, Kandasamy; Suresh, Subramaniyam; Gupta, Priyanka; Vijayakaran, Karunakaran; Sankar, Palanisamy; Kurade, Nitin Pandurang; Mishra, Santosh Kumar; Sarkar, Souvendra Nath

    2014-01-01

    We evaluated whether atorvastatin, an extensively prescribed statin for reducing the risks of cardiovascular diseases, can reduce the risk of arsenic-induced vascular dysfunction and inflammation in rats and whether the modulation could be linked to improvement in vascular NO signaling. Rats were exposed to sodium arsenite (100 ppm) through drinking water for 90 consecutive days. Atorvastatin (10 mg/kg bw, orally) was administered once daily during the last 30 days of arsenic exposure. On the 91 st day, blood was collected for measuring serum C-reactive protein. Thoracic aorta was isolated for assessing reactivity to phenylephrine, sodium nitroprusside and acetylcholine; evaluating eNOS and iNOS mRNA expression and measuring NO production, while abdominal aorta was used for ELISA of cytokines, chemokine and vascular cell adhesion molecules. Histopathology was done in aortic arches. Arsenic did not alter phenylephrine-elicited contraction. Atorvastatin inhibited E max of phenylephrine, but it augmented the contractile response in aortic rings from arsenic-exposed animals. Sodium nitroprusside-induced relaxation was not altered with any treatment. However, arsenic reduced acetylcholine-induced relaxation and affected aortic eNOS at the levels of mRNA expression, protein concentration, phosphorylation and NO production. Further, it increased aortic iNOS mRNA expression, iNOS-derived NO synthesis, production of pro-inflammatory mediators (IL-1β, IL-6, MCP-1, VCAM, sICAM) and serum C-reactive protein and aortic vasculopathic lesions. Atorvastatin attenuated these arsenic-mediated functional, biochemical and structural alterations. Results show that atorvastatin has the potential to ameliorate arsenic-induced vascular dysfunction and inflammation by restoring endothelial function with improvement in NO signaling and attenuating production of pro-inflammatory mediators and cell adhesion molecules. - Highlights: • We evaluated if atorvastatin reduce arsenic-induced

  4. Atorvastatin restores arsenic-induced vascular dysfunction in rats: Modulation of nitric oxide signaling and inflammatory mediators

    Energy Technology Data Exchange (ETDEWEB)

    Kesavan, Manickam; Sarath, Thengumpallil Sasindran; Kannan, Kandasamy; Suresh, Subramaniyam; Gupta, Priyanka; Vijayakaran, Karunakaran; Sankar, Palanisamy; Kurade, Nitin Pandurang; Mishra, Santosh Kumar; Sarkar, Souvendra Nath, E-mail: snsarkar1911@rediffmail.com

    2014-10-01

    We evaluated whether atorvastatin, an extensively prescribed statin for reducing the risks of cardiovascular diseases, can reduce the risk of arsenic-induced vascular dysfunction and inflammation in rats and whether the modulation could be linked to improvement in vascular NO signaling. Rats were exposed to sodium arsenite (100 ppm) through drinking water for 90 consecutive days. Atorvastatin (10 mg/kg bw, orally) was administered once daily during the last 30 days of arsenic exposure. On the 91{sup st} day, blood was collected for measuring serum C-reactive protein. Thoracic aorta was isolated for assessing reactivity to phenylephrine, sodium nitroprusside and acetylcholine; evaluating eNOS and iNOS mRNA expression and measuring NO production, while abdominal aorta was used for ELISA of cytokines, chemokine and vascular cell adhesion molecules. Histopathology was done in aortic arches. Arsenic did not alter phenylephrine-elicited contraction. Atorvastatin inhibited E{sub max} of phenylephrine, but it augmented the contractile response in aortic rings from arsenic-exposed animals. Sodium nitroprusside-induced relaxation was not altered with any treatment. However, arsenic reduced acetylcholine-induced relaxation and affected aortic eNOS at the levels of mRNA expression, protein concentration, phosphorylation and NO production. Further, it increased aortic iNOS mRNA expression, iNOS-derived NO synthesis, production of pro-inflammatory mediators (IL-1β, IL-6, MCP-1, VCAM, sICAM) and serum C-reactive protein and aortic vasculopathic lesions. Atorvastatin attenuated these arsenic-mediated functional, biochemical and structural alterations. Results show that atorvastatin has the potential to ameliorate arsenic-induced vascular dysfunction and inflammation by restoring endothelial function with improvement in NO signaling and attenuating production of pro-inflammatory mediators and cell adhesion molecules. - Highlights: • We evaluated if atorvastatin reduce arsenic-induced

  5. High speed, intermediate resolution, large area laser beam induced current imaging and laser scribing system for photovoltaic devices and modules

    Science.gov (United States)

    Phillips, Adam B.; Song, Zhaoning; DeWitt, Jonathan L.; Stone, Jon M.; Krantz, Patrick W.; Royston, John M.; Zeller, Ryan M.; Mapes, Meghan R.; Roland, Paul J.; Dorogi, Mark D.; Zafar, Syed; Faykosh, Gary T.; Ellingson, Randy J.; Heben, Michael J.

    2016-09-01

    We have developed a laser beam induced current imaging tool for photovoltaic devices and modules that utilizes diode pumped Q-switched lasers. Power densities on the order of one sun (100 mW/cm2) can be produced in a ˜40 μm spot size by operating the lasers at low diode current and high repetition rate. Using galvanostatically controlled mirrors in an overhead configuration and high speed data acquisition, large areas can be scanned in short times. As the beam is rastered, focus is maintained on a flat plane with an electronically controlled lens that is positioned in a coordinated fashion with the movements of the mirrors. The system can also be used in a scribing mode by increasing the diode current and decreasing the repetition rate. In either mode, the instrument can accommodate samples ranging in size from laboratory scale (few cm2) to full modules (1 m2). Customized LabVIEW programs were developed to control the components and acquire, display, and manipulate the data in imaging mode.

  6. Supramolecular Assembly of Comb-like Macromolecules Induced by Chemical Reactions that Modulate the Macromolecular Interactions In Situ.

    Science.gov (United States)

    Xia, Hongwei; Fu, Hailin; Zhang, Yanfeng; Shih, Kuo-Chih; Ren, Yuan; Anuganti, Murali; Nieh, Mu-Ping; Cheng, Jianjun; Lin, Yao

    2017-08-16

    Supramolecular polymerization or assembly of proteins or large macromolecular units by a homogeneous nucleation mechanism can be quite slow and require specific solution conditions. In nature, protein assembly is often regulated by molecules that modulate the electrostatic interactions of the protein subunits for various association strengths. The key to this regulation is the coupling of the assembly process with a reversible or irreversible chemical reaction that occurs within the constituent subunits. However, realizing this complex process by the rational design of synthetic molecules or macromolecules remains a challenge. Herein, we use a synthetic polypeptide-grafted comb macromolecule to demonstrate how the in situ modulation of interactions between the charged macromolecules affects their resulting supramolecular structures. The kinetics of structural formation was studied and can be described by a generalized model of nucleated polymerization containing secondary pathways. Basic thermodynamic analysis indicated the delicate role of the electrostatic interactions between the charged subunits in the reaction-induced assembly process. This approach may be applicable for assembling a variety of ionic soft matters that are amenable to chemical reactions in situ.

  7. MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity

    International Nuclear Information System (INIS)

    Weber, Martina; Baker, Meredith B.; Moore, Jeffrey P.; Searles, Charles D.

    2010-01-01

    Mechanical forces associated with blood flow play an important role in regulating vascular signaling and gene expression in endothelial cells (ECs). MicroRNAs (miRNAs) are a class of noncoding RNAs that posttranscriptionally regulate the expression of genes involved in diverse cell functions, including differentiation, growth, proliferation, and apoptosis. miRNAs are known to have an important role in modulating EC biology, but their expression and functions in cells subjected to shear stress conditions are unknown. We sought to determine the miRNA expression profile in human ECs subjected to unidirectional shear stress and define the role of miR-21 in shear stress-induced changes in EC function. TLDA array and qRT-PCR analysis performed on HUVECs exposed to prolonged unidirectional shear stress (USS, 24 h, 15 dynes/cm 2 ) identified 13 miRNAs whose expression was significantly upregulated (p · ) production. These data demonstrate that shear stress forces regulate the expression of miRNAs in ECs, and that miR-21 influences endothelial biology by decreasing apoptosis and activating the NO · pathway. These studies advance our understanding of the mechanisms by which shear stress forces modulate vascular homeostasis.

  8. Grape juice concentrate modulates p16 expression in high fat diet-induced liver steatosis in Wistar rats.

    Science.gov (United States)

    Ferreira, Andressa Orlandeli; Gollücke, Andréa Pittelli Boiago; Noguti, Juliana; da Silva, Victor Hugo Pereira; Yamamura, Elsa Tiemi Hojo; Ribeiro, Daniel Araki

    2012-04-01

    The goal of this study was to investigate whether subchronic treatment with grape juice concentrate is able to protect the liver from high fat diet injury in rats. The effects of grape juice concentrate treatment on histopathological changes, and immunohistochemistry for p53, p16 and p21 were evaluated. Male Wistar rats (n = 18) were distributed into three groups: group 1: negative control; group 2: cholesterol at 1% (w/w) in their diet, treated during 5 weeks; and group 3: cholesterol at 1% in their chow during 5 weeks, and grape juice concentrate at 222 mg per day in their drinking-water in the last week only. The results pointed out that treatment with grape juice concentrate did not show remarkable differences regarding liver tissue in the cholesterol-exposed group when compared to group 2. However, grape juice concentrate was able to modulate p16 immunoexpression when compared to high fat diet group. p53 and p21 did not show any significant statistical differences among groups. Taken together, our results suggest that subchronic grape juice concentrate administration was able to modulate cell cycle control by downregulation of p16 immunoexpression in high fat diet-induced liver steatosis in rats.

  9. Proton Induced Modulation of ICT and PET Processes in an Imidazo-phenanthroline Based BODIPY Fluorophores.

    Science.gov (United States)

    Thakare, Shrikant S; Chakraborty, Goutam; Kothavale, Shantaram; Mula, Soumyaditya; Ray, Alok K; Sekar, Nagaiyan

    2017-11-01

    BODIPY fluorophores linked with an imidazo-phenanthroline donor at α and β positions have been synthesized. Intriguing intramolecular charge transfer phenomenon is observed in both the dyes which has been extensively investigated using UV-vis absorption, steady-state and time-resolved fluorescence measurements. H-bonding and intrinsic polarity of the solvents has modulated the absorption and emission bands of these fluorophores strongly causing significant increase in the Stokes shifts. In spite of having difference only in terms of the position of donor subunit, the photophysics of these dyes are not only significantly different from each other, but contradictory too. Interestingly, acidochromic studies revealed the shuttling mechanism between ICT and PET processes for BDP 2. Quantum chemical calculations have been employed further to support experimental findings. DFT and TD-DFT method of analysis have been used to optimize ground and excited state geometries of the synthesized dyes.

  10. Glycinebetaine-induced modulation in some biochemical and physiological attributes of okra under salt

    International Nuclear Information System (INIS)

    Saeed, H.M.; Mirza, J.I.

    2016-01-01

    Role of glycinebetaine (GB) in okra (Abelmoschus esculentus L. Moench) cv. Subz-pari plants grown under salinity stress was investigated under field conditions. The crop was planted under varying levels (0, 200 and 400 mg NaCl per kg of soil) of salinity stress. Foliar application of 75 mM GB was employed at two phases i.e. after 30 and 60 days of sowing. Imposition of salinity stress significantly increased leaf GB and proline contents but significantly reduced leaf chlorophyll content and physiological characteristics such as rate of photosynthesis (Pn), rate of transpiration (E), stomatal conductance (gs) and leaf relative water content (LRWC). Exogenous application of GB significantly increased GB content but decreased proline content of leaves and improved various gas exchange characteristics/physiological parameters. The present results thus indicated that foliar application of GB (75 mM) can modulate various biochemical and gas exchange parameters of okra, grown under salt stress. (author)

  11. Citric acid induced W18O49 electrochromic films with enhanced optical modulation

    Science.gov (United States)

    Xie, Junliang; Song, Bin; Zhao, Gaoling; Han, Gaorong

    2018-06-01

    Electrochromic materials exhibit promising applications in energy-saving fields for their ability to control heat from outdoors. Nanostructured W18O49 has drawn attention for its one-dimensional structure to transfer charge efficiently as a remarkable electrochromic material. W18O49 bi-layer films were fabricated through a facile one-step solvothermal process with citric acid as a chelating agent. The addition of citric acid improved the deposition on the substance, and a nanostructured film with a denser layer at the bottom and a tussock-like upper layer was obtained. The bi-layer film exhibited an enhanced optical modulation of 68.7%, a coloration efficiency of 82.1 cm2/C with stability over 400 cycles, and fast response times (1.4 s and 2.3 s for bleaching and coloring), with expectation to be applied in the electrochromic field.

  12. Systemic Exercise-Induced Hypoalgesia Following Isometric Exercise Reduces Conditioned Pain Modulation

    DEFF Research Database (Denmark)

    Alsouhibani, Ali; Vaegter, Henrik Bjarke; Hoeger Bement, Marie

    2018-01-01

    Objective: Physically active individuals show greater conditioned pain modulation (CPM) compared with less active individuals. Understanding the effects of acute exercise on CPM may allow for a more targeted use of exercise in the management of pain. This study investigated the effects of acute...... isometric exercise on CPM. In addition, the between-session and within-session reliability of CPM was investigated. Design: Experimental, randomized crossover study. Setting: Laboratory at Marquette University. Subjects: Thirty healthy adults (19.3±1.5 years, 15 males). Methods: Subjects underwent CPM....... Results: PPTs increased during ice water immersion (i.e., CPM), and quadriceps PPT increased after exercise (P CPM decreased similarly following exercise and quiet rest (P > 0.05). CPM within-session reliability was fair to good (intraclass correlation coefficient [ICC] = 0...

  13. Radiation-induced apoptosis in differentially modulated by PTK inhibitora in K562 cells

    International Nuclear Information System (INIS)

    Lee, Hyung Sik; Moon, Chang Woo; Hur, Won Joo; Jeong, Su Jin; Jeong Min Ho; Lee, Jeong Hyeon; Lim, Young Jin; Park, Heon Joo

    2000-01-01

    The effect of PTK inhibitors (herbimycin A and genistein) on the induction of radiation-induced apoptosis in Ph-positive K562 leukemia cell line was investigated. K562 cells in exponential growth phase were irradiated with a linear accelerator at room temperature. For 6 MV X-ray irradiation and drug treatment, cultures were initiated at 2x10 6 cells/ml. The cells were irradiated with 10Gy. Stock solutions of herbimycin A and genistein were prepared in dimethyl sulphoxide (DMSO). After incubation at 37 .deg. for 0-48 h, the extent of apoptosis was determined using agarose gel electrophoresis and TUNEL assay. The progression of cells through the cell cycle after irradiation and drug treatment was also determined with flow cytometry. Western blot analysis was used to monitor bcl-2, bcl-X-L and bax protein levels. Treatment with 10 Gy X-irradiation did not result in the induction of apoptosis. The HMA alone (500 nM) also failed to induce apoptosis. By contrast, incubation of K562 cells with HMA after irradiation resulted in a substantial induction of nuclear condensation and fragmentation by agarose gel electrophoresis and TUNEL assay. Genistein failed to enhance the ability of X-irradiation to induce DNA fragmentation. Enhancement of apoptosis by HMA was not attributable to downregulation of the bcl-2 or bcl-X-L anti-apoptotic proteins. When the cells were irradiated and maintained with HMA, the percentage of cells in G2/M phase decreased to 30-40% at 48 h. On the other hand, cells exposed to 10 Gy X-irradiation alone or maintained with genistein did not show marked cell cycle redistribution. We have shown that nanomolar concentrations of the PTK inhibitor HMA synergize with X-irradiation in inducing the apoptosis in Ph (+) K562 leukemia cell line. While, genistein, a PTK inhibitor which is not selective for p210 bcr/abl failed to enhance the radiation induced apoptosis in K562 cells. It is unlikely that the ability of HMA to enhance apoptosis in K562 cells is

  14. Macranthoidin B Modulates Key Metabolic Pathways to Enhance ROS Generation and Induce Cytotoxicity and Apoptosis in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Xing Fan

    2018-04-01

    Full Text Available Background/Aims: Induction of oxidative stress and reactive oxygen species (ROS mediated-apoptosis have been utilized as effective strategies in anticancer therapy. Macranthoidin B (MB is a potent inducer of ROS-mediated apoptosis in cancer, but its mechanism of action is poorly understood. Method: Superoxide production with MB exposure in colorectal cancer (CRC cells was measured using lucigenin chemiluminescence and real-time PCR. MB’s inhibitory effect on proliferation and viability of CRC cells was determined by proliferation assays. MB’s effect on apoptosis of CRC cells was determined by Western blotting and annexin V-FITC/PI staining. MB’s effect on the growth of CRC xenografts in mice was assessed. An established metabolomics profiling platform combining ultra-performance liquid chromatography-tandem mass spectrometry (LC-MS with gas chromatography-mass spectrometry (GC-MS was performed to determine MB’s effect on total metabolite variation in CRC cells. Results: We found that MB increases ROS generation via modulating key metabolic pathways. Using metabolomics profiling platform combining LC-MS with GC-MS, a total of 236 metabolites were identified in HCT-116 cells in which 31 metabolites were determined to be significantly regulated (p ≤ 0.05 after MB exposure. A number of key metabolites revealed by metabolomics analysis include glucose, fructose, citrate, arginine, phenylalanine, and S-adenosylhomocysteine (SAH, suggesting specific modulation of metabolism on carbohydrates, amino acids and peptides, lipids, nucleotide, cofactors and vitamins in HCT-116 CRC cells with MB treatment highly associated with apoptosis triggered by enhanced ROS and activated caspase-3. Conclusion: Our results demonstrate that MB represses CRC cell proliferation by inducing ROS-mediated apoptosis.

  15. Macranthoidin B Modulates Key Metabolic Pathways to Enhance ROS Generation and Induce Cytotoxicity and Apoptosis in Colorectal Cancer.

    Science.gov (United States)

    Fan, Xing; Rao, Jun; Zhang, Ziwei; Li, Dengfeng; Cui, Wenhao; Zhang, Jun; Wang, Hua; Tou, Fangfang; Zheng, Zhi; Shen, Qiang

    2018-01-01

    Induction of oxidative stress and reactive oxygen species (ROS) mediated-apoptosis have been utilized as effective strategies in anticancer therapy. Macranthoidin B (MB) is a potent inducer of ROS-mediated apoptosis in cancer, but its mechanism of action is poorly understood. Superoxide production with MB exposure in colorectal cancer (CRC) cells was measured using lucigenin chemiluminescence and real-time PCR. MB's inhibitory effect on proliferation and viability of CRC cells was determined by proliferation assays. MB's effect on apoptosis of CRC cells was determined by Western blotting and annexin V-FITC/PI staining. MB's effect on the growth of CRC xenografts in mice was assessed. An established metabolomics profiling platform combining ultra-performance liquid chromatography-tandem mass spectrometry (LC-MS) with gas chromatography-mass spectrometry (GC-MS) was performed to determine MB's effect on total metabolite variation in CRC cells. We found that MB increases ROS generation via modulating key metabolic pathways. Using metabolomics profiling platform combining LC-MS with GC-MS, a total of 236 metabolites were identified in HCT-116 cells in which 31 metabolites were determined to be significantly regulated (p ≤ 0.05) after MB exposure. A number of key metabolites revealed by metabolomics analysis include glucose, fructose, citrate, arginine, phenylalanine, and S-adenosylhomocysteine (SAH), suggesting specific modulation of metabolism on carbohydrates, amino acids and peptides, lipids, nucleotide, cofactors and vitamins in HCT-116 CRC cells with MB treatment highly associated with apoptosis triggered by enhanced ROS and activated caspase-3. Our results demonstrate that MB represses CRC cell proliferation by inducing ROS-mediated apoptosis. © 2018 The Author(s). Published by S. Karger AG, Basel.

  16. ADRA2B genotype differentially modulates stress-induced neural activity in the amygdala and hippocampus during emotional memory retrieval.

    Science.gov (United States)

    Li, Shijia; Weerda, Riklef; Milde, Christopher; Wolf, Oliver T; Thiel, Christiane M

    2015-02-01

    Noradrenaline interacts with stress hormones in the amygdala and hippocampus to enhance emotional memory consolidation, but the noradrenergic-glucocorticoid interaction at retrieval, where stress impairs memory, is less understood. We used a genetic neuroimaging approach to investigate whether a genetic variation of the noradrenergic system impacts stress-induced neural activity in amygdala and hippocampus during recognition of emotional memory. This study is based on genotype-dependent reanalysis of data from our previous publication (Li et al. Brain Imaging Behav 2014). Twenty-two healthy male volunteers were genotyped for the ADRA2B gene encoding the α2B-adrenergic receptor. Ten deletion carriers and 12 noncarriers performed an emotional face recognition task, while their brain activity was measured with fMRI. During encoding, 50 fearful and 50 neutral faces were presented. One hour later, they underwent either an acute stress (Trier Social Stress Test) or a control procedure which was followed immediately by the retrieval session, where participants had to discriminate between 100 old and 50 new faces. A genotype-dependent modulation of neural activity at retrieval was found in the bilateral amygdala and right hippocampus. Deletion carriers showed decreased neural activity in the amygdala when recognizing emotional faces in control condition and increased amygdala activity under stress. Noncarriers showed no differences in emotional modulated amygdala activation under stress or control. Instead, stress-induced increases during recognition of emotional faces were present in the right hippocampus. The genotype-dependent effects of acute stress on neural activity in amygdala and hippocampus provide evidence for noradrenergic-glucocorticoid interaction in emotional memory retrieval.

  17. Acute changes in mood induced by subthalamic deep brain stimulation in Parkinson disease are modulated by psychiatric diagnosis.

    Science.gov (United States)

    Eisenstein, Sarah A; Dewispelaere, William B; Campbell, Meghan C; Lugar, Heather M; Perlmutter, Joel S; Black, Kevin J; Hershey, Tamara

    2014-01-01

    Deep brain stimulation of the subthalamic nucleus (STN DBS) reduces Parkinson disease (PD) motor symptoms but has unexplained, variable effects on mood. The study tested the hypothesis that pre-existing mood and/or anxiety disorders or increased symptom severity negatively affects mood response to STN DBS. Thirty-eight PD participants with bilateral STN DBS and on PD medications were interviewed with Structured Clinical Interview for DSM-IV-TR Axis I Disorders (SCID) and completed Beck Depression Inventory (BDI) and Spielberger State Anxiety Inventory (SSAI) self-reports. Subsequently, during OFF and optimal ON (clinical settings) STN DBS conditions and while off PD medications, motor function was assessed with the United Parkinson Disease Rating Scale (UPDRS, part III), and participants rated their mood with Visual Analogue Scales (VAS), and again completed SSAI. VAS mood variables included anxiety, apathy, valence and emotional arousal. STN DBS improved UPDRS scores and mood. Unexpectedly, PD participants diagnosed with current anxiety or mood disorders experienced greater STN DBS-induced improvement in mood than those diagnosed with remitted disorders or who were deemed as having never met threshold criteria for diagnosis. BDI and SSAI scores did not modulate mood response to STN DBS, indicating that clinical categorical diagnosis better differentiates mood response to STN DBS than self-rated symptom severity. SCID diagnosis, BDI and SSAI scores did not modulate motor response to STN DBS. PD participants diagnosed with current mood or anxiety disorders are more sensitive to STN DBS-induced effects on mood, possibly indicating altered basal ganglia circuitry in this group. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Modulation of expression of Programmed Death-1 by administration of probiotic Dahi in DMH-induced colorectal carcinogenesis in rats.

    Science.gov (United States)

    Mohania, Dheeraj; Kansal, Vinod K; Kumar, Manoj; Nagpal, Ravinder; Yamashiro, Yuichiro; Marotta, Francesco

    2013-09-01

    Interaction of probiotic bacteria with the host immune system elicits beneficial immune modulating effects. Although, there are many published studies on interaction of probiotics with immune system focusing on activation of immune system by bacterial cell wall through the engagement of Toll-like receptor family; very few studies have focused on molecules involved in the T-cell activation, and not much work has been executed to study the correlation of probiotics and programmed death-1 in colorectal carcinogenesis in animal models. Hence, the present study was carried out to assess the effect of probiotic Dahi on expression of programmed death (PD-1) in colorectum of 1, 2-dimethylhydrazine treated Wistar rats. DMH was injected subcutaneously at the rate of 40 mg/kg body weight per animal twice a week for 2 weeks. A total of 168 male Wistar rats were randomly allocated to seven groups, each group having twenty-four animals. The rats were euthanized at the 8th, 16th and 32nd week of the experiment and examined for the expression of PD-1 in colorectal tissues by immunohistochemical staining. Expression of PD-1 was observed in colorectal tissues of normal and DMH-treated rats. Feeding rats with probiotic Dahi or the treatment with piroxicam decreased the expression of PD-1 in DMH-induced colorectal mucosa, and the combined treatment with probiotic Dahi and piroxicam was significantly more effective in reducing the expression of PD-1. PD-1 expressed independent of carcinogen administration in normal colonic mucosa and may play a role in modulation of immune response in DMH-induced colorectal carcinogenesis. The present study suggests that probiotic Dahi can be used as an effective chemopreventive agent in the management of colorectal cancer.

  19. Glycogen Synthase Kinase-3 Modulates Hyperosmotic-Induced Urea Transporter A1 Relocation in the Inner Medullary Collecting Duct Cells.

    Science.gov (United States)

    Li, Yong-Xia; Huang, Yun; Liu, Song; Mao, Yan; Yuan, Cheng-Yan; Yang, Xiao; Yao, Li-Jun

    2016-01-01

    Glycogen synthase kinase 3 (GSK3) regulates urine concentration by mediating the vasopressin-induced aquaporin 2 expression and water permeability, although it is unknown whether GSK3 also mediates the accumulation of the urea transporter A1 (UT-A1). The aim of this study is to investigate the effect of GSK3 on UT-A1 distribution. Mouse inner medullary collecting duct 3 cells were transfected with UT-A1-GFP construct. The stable transfected cells were cultured under hypertonic conditions, treated with GSK3 inhibitor lithium chloride, GSK3 activator, lysosome or proteasome inhibitor. The expression levels of UT-A1, GSK3, and phospho-GSK3 were analyzed using western blot. The interaction between UT-A1 and the Golgi apparatus was examined using confocal immunofluorescence microscope. The UT-A1 trafficking was examined using the biotinylation of surface membranes. UT-A1 dissociated away from the Golgi apparatus and translocated to the plasma membrane under hypertonic-NaCl and NaCl plus urea stimulation. This movement was accompanied by the increased phosphorylation of GSK3 and its localization on the cellular membrane. Moreover, these results were duplicated by treating the cells with the GSK3 inhibitor, and by contrast, were partially reversed by the GSK3 activator. Treating cells with a lysosome or proteasome inhibitor failed to attenuate the effects of hypertonic stimulus, indicating that the loss of UT-A1 from the Golgi was not due to degradation. Our results suggest that GSK3 may in part modulate the hypertonic-induced intracellular UT-A1 redistribution and its accumulation on the plasma membrane, which may constitute another mechanism by which GSK3 modulates urine concentration. © 2016 S. Karger AG, Basel.

  20. Buffer modulation of menadione-induced oxidative stress in Saccharomyces cerevisiae.

    Science.gov (United States)

    Lushchak, Oleh V; Bayliak, Maria M; Korobova, Olha V; Levine, Rodney L; Lushchak, Volodymyr I

    2009-01-01

    The objective of this study was to compare, in vivo, the effects of bicarbonate and phosphate buffers on survival and menadione-induced oxidative stress in yeast cells. The latter were treated with different concentrations of menadione in the presence of these two buffers. At 25 mM concentration of buffers, menadione only slightly reduced yeast surviving; at 50 mM concentration, cell killing by menadione was much more pronounced in bicarbonate than in phosphate buffer. Although the content of protein carbonyl groups did not show development of oxidative stress under menadione-induced stress, inactivation of aconitase and decrease in glutathione level mirrored its induction. However, cellular glutathione and aconitase activity decrease did not correlate with yeast survival. In vitro, aconitase was more quickly inactivated in 50 mM carbonate, than in 50 mM phosphate buffer. The possible involvement of the carbonate radical in these processes is discussed.

  1. Anti mutagenesis of chemical modulators against damage induced by reactor thermal neutrons

    International Nuclear Information System (INIS)

    Zambrano A, F.; Guzman R, J.; Garcia B, A.; Paredes G, L.; Delfin L, A.

    1999-01-01

    The mutations are changes in the genetic information whether for spontaneous form or induced by the exposure of the genetic material to certain agents, called mutagens: chemical or physical (diverse types of radiations). As well as exist a great variety of mutagens and pro mutagens (these last are agents which transform themselves in mutagens after the metabolic activation). Also several chemical compounds exist which are called antimutagens because they reduce the mutagens effect. The C vitamin or ascorbic acid (A A) presents antimutagenic and anti carcinogenic properties. On the other hand a sodium/copper salt derived from chlorophyll belonging to the porphyrin group (C L) contains a chelated metal ion in the center of molecule. It is also an antioxidant, antimutagenic and anti carcinogenic compound, it is called chlorophyllin. The objective of this work is to establish if the A A or the C L will reduce the damages induced by thermal and fast reactor neutrons. (Author)

  2. Modulation of ceramide metabolism in T-leukemia cell lines potentiates apoptosis induced by the cationic antimicrobial peptide bovine lactoferricin.

    Science.gov (United States)

    Furlong, Suzanne J; Ridgway, Neale D; Hoskin, David W

    2008-03-01

    Bovine lactoferricin (LfcinB) is a cationic antimicrobial peptide that selectively induces apoptosis in several different types of human cancer cells. However, the potential use of LfcinB as an anticancer agent is presently limited by the need for relatively high concentrations of the peptide to trigger apoptosis. Ceramide is a membrane sphingolipid that is believed to function as a second messenger during apoptosis. In this study, we investigated the role of ceramide in LfcinB-induced apoptosis in CCRF-CEM and Jurkat T-leukemia cell lines. Exposure to LfcinB caused nuclear condensation and fragmentation, poly(ADP-ribose) polymerase (PARP) cleavage, and DNA fragmentation in CCRF-CEM and Jurkat T-cell acute lymphoblastic leukemia cell lines. Treatment with C6 ceramide, a cell-permeable, short-chain ceramide analog, also induced apoptotic nuclear morphology, PARP cleavage, and DNA fragmentation in T-leukemia cells. Although LfcinB treatment did not cause ceramide to accumulate in CCRF-CEM or Jurkat cells, the addition of C6 ceramide to LfcinB-treated T-leukemia cells resulted in increased DNA fragmentation. Furthermore, modulation of cellular ceramide metabolism either by inhibiting ceramidases with D-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol or N-oleoylethanolamine, or by blocking glucosylceramide synthase activity with 1-phenyl-2-palmitoylamino-3-morpholino-1-propanol, enhanced the ability of LfcinB to trigger apoptosis in both Jurkat and CCRF-CEM cells. In addition, LfcinB-induced apoptosis of T-leukemia cells was enhanced in the presence of the antiestrogen tamoxifen, which has multiple effects on cancer cells, including inhibition of glucosylceramide synthase activity. We conclude that manipulation of cellular ceramide levels in combination with LfcinB therapy warrants further investigation as a novel strategy for the treatment of T cell-derived leukemias.

  3. Nitroxides protect horseradish peroxidase from H2O2-induced inactivation and modulate its catalase-like activity.

    Science.gov (United States)

    Samuni, Amram; Maimon, Eric; Goldstein, Sara

    2017-08-01

    Horseradish peroxidase (HRP) catalyzes H 2 O 2 dismutation while undergoing heme inactivation. The mechanism underlying this process has not been fully elucidated. The effects of nitroxides, which protect metmyoglobin and methemoglobin against H 2 O 2 -induced inactivation, have been investigated. HRP reaction with H 2 O 2 was studied by following H 2 O 2 depletion, O 2 evolution and heme spectral changes. Nitroxide concentration was followed by EPR spectroscopy, and its reactions with the oxidized heme species were studied using stopped-flow. Nitroxide protects HRP against H 2 O 2 -induced inactivation. The rate of H 2 O 2 dismutation in the presence of nitroxide obeys zero-order kinetics and increases as [nitroxide] increases. Nitroxide acts catalytically since its oxidized form is readily reduced to the nitroxide mainly by H 2 O 2 . The nitroxide efficacy follows the order 2,2,6,6-tetramethyl-piperidine-N-oxyl (TPO)>4-OH-TPO>3-carbamoyl proxyl>4-oxo-TPO, which correlates with the order of the rate constants of nitroxide reactions with compounds I, II, and III. Nitroxide catalytically protects HRP against inactivation induced by H 2 O 2 while modulating its catalase-like activity. The protective role of nitroxide at μM concentrations is attributed to its efficient oxidation by P940, which is the precursor of the inactivated form P670. Modeling the dismutation kinetics in the presence of nitroxide adequately fits the experimental data. In the absence of nitroxide the simulation fits the observed kinetics only if it does not include the formation of a Michaelis-Menten complex. Nitroxides catalytically protect heme proteins against inactivation induced by H 2 O 2 revealing an additional role played by nitroxide antioxidants in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Ameliorative effects of selenium on arsenic-induced cytotoxicity in PC12 cells via modulating autophagy/apoptosis.

    Science.gov (United States)

    Rahman, Md Mostafizur; Uson-Lopez, Rachael A; Sikder, Md Tajuddin; Tan, Gongxun; Hosokawa, Toshiyuki; Saito, Takeshi; Kurasaki, Masaaki

    2018-04-01

    Arsenic is well known toxicant responsible for human diseases including cancers. On the other hand, selenium is an essential trace element with significant chemopreventive effects, anticancer potentials and antioxidant properties. Although previous studies have reported antagonism/synergism between arsenic and selenium in biological systems, the biomolecular mechanism/s is still inconclusive. Therefore, to elucidate the molecular phenomena in cellular level, we hypothesized that co-exposure of selenium with arsenic may have suppressive effects on arsenic-induced cytotoxicity. We found that selenium in co-exposure with arsenic increases cell viability, and suppresses oxidative stress induced by arsenic in PC12 cells. Consequently, DNA fragmentation due to arsenic exposure was also reduced by arsenic and selenium co-exposure. Furthermore, western blot analyses revealed that simultaneous exposure of both metals significantly inhibited autophagy which further suppressed apoptosis through positively regulation of key proteins; p-mTOR, p-Akt, p-Foxo1A, p62, and expression of ubiquitin, Bax, Bcl2, NFкB, and caspases 3 and 9, although those are negatively regulated by arsenic. In addition, reverse transcriptase PCR analysis confirmed the involvement of caspase cascade in cell death process induced by arsenic and subsequent inhibition by co-exposure of selenium with arsenic. The cellular accumulation study of arsenic in presence/absence of selenium via inductively coupled plasma mass spectrometry confirmed that selenium effectively retarded the uptake of arsenic in PC12 cells. Finally, these findings imply that selenium is capable to modulate arsenic-induced intrinsic apoptosis pathway via enhancement of mTOR/Akt autophagy signaling pathway through employing antioxidant potentials and through inhibiting the cellular accumulation of arsenic in PC12 cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Nicotinic receptor-associated modulation of stimulatory and inhibitory neurotransmitters in NNK-induced adenocarcinoma of the lungs and pancreas

    Science.gov (United States)

    Al-Wadei, Hussein A. N.; Schuller, Hildegard M.

    2012-01-01

    Small airway-derived pulmonary adenocarcinoma (PAC) and pancreatic ductal adenocarcinoma (PDAC) are among the most common human cancers and smoking is a risk factor for both. Emerging research has identified cAMP signaling stimulated by the stress neurotransmitters adrenaline and noradrenaline as important stimulators of several adenocarcinomas, including PAC and PDAC. The nicotine-derived nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent mutagen and the most powerful tobacco carcinogen. NNK is also an agonist for nicotinic acetylcholine receptors (nAChRs). Using hamster models of NNK-induced PAC and PDAC, we have tested the hypothesis that in analogy to chronic effects of nicotine in the brain, NNK may modulate the α7- and α4β2nAChRs, causing an increase in stress neurotransmitters and decrease in the inhibitory neurotransmitter γ-aminobutyric acid (GABA). In support of our hypothesis, immunoassays showed a significant increase in serum adrenaline/noradrenaline and increased intracellular cAMP in the cellular fraction of blood of NNK treated hamsters. Western blots were done with cells harvested by laser capture microcopy from control small airway epithelia, alveolar epithelia, pancreatic islet and pancreatic duct epithelia and from NNK-induced PACs and PDACs. The GABA synthesizing enzyme glutamate decarboxylase 65 (GAD65) and GABA were suppressed in NNK-induced PACs and PDACs whereas protein expression of the α7nAChR, α4nAChR as well as p-CREB and p-ERK1/2 were upregulated. These findings suggest, for the first time, that NNK-induced alterations in regulatory nAChRs may contribute to the development of smoking-associated PAC and PDAC by disturbing the balance between cancer stimulating and inhibiting neurotransmitters. PMID:19274673

  6. MDMA, Methylone, and MDPV: Drug-Induced Brain Hyperthermia and Its Modulation by Activity State and Environment.

    Science.gov (United States)

    Kiyatkin, Eugene A; Ren, Suelynn E

    2017-01-01

    Psychomotor stimulants are frequently used by humans to intensify the subjective experience of different types of social interactions. Since psychomotor stimulants enhance metabolism and increase body temperatures, their use under conditions of physiological activation and in warm humid environments could result in pathological hyperthermia, a life-threatening symptom of acute drug intoxication. Here, we will describe the brain hyperthermic effects of MDMA, MDPV, and methylone, three structurally related recreational drugs commonly used by young adults during raves and other forms of social gatherings. After a short introduction on brain temperature and basic mechanisms underlying its physiological fluctuations, we will consider how MDMA, MDPV, and methylone affect brain and body temperatures in awake freely moving rats. Here, we will discuss the role of drug-induced heat production in the brain due to metabolic brain activation and diminished heat dissipation due to peripheral vasoconstriction as two primary contributors to the hyperthermic effects of these drugs. Then, we will consider how the hyperthermic effects of these drugs are modulated under conditions that model human drug use (social interaction and warm ambient temperature). Since social interaction results in brain and body heat production, coupled with skin vasoconstriction that impairs heat loss to the external environment, these physiological changes interact with drug-induced changes in heat production and loss, resulting in distinct changes in the hyperthermic effects of each tested drug. Finally, we present our recent data, in which we compared the efficacy of different pharmacological strategies for reversing MDMA-induced hyperthermia in both the brain and body. Specifically, we demonstrate increased efficacy of the centrally acting atypical neuroleptic compound clozapine over the peripherally acting vasodilator drug, carvedilol. These data could be important for understanding the potential

  7. Modulation of sibutramine-induced increases in extracellular noradrenaline concentration in rat frontal cortex and hypothalamus by α2-adrenoceptors

    Science.gov (United States)

    Wortley, K E; Heal, D J; Stanford, S C

    1999-01-01

    The effects of sibutramine (0.25–10 mg kg−1 i.p.) on extracellular noradrenaline concentration in the frontal cortex and hypothalamus of freely-moving rats were investigated using microdialysis. The role of presynaptic α2-adrenoceptors in modulating the effects of sibutramine in these brain areas was also determined.Sibutramine induced an increase in extracellular noradrenaline concentration, the magnitude of which paralleled dose, in both brain areas. In the cortex, this increase was gradual and sustained, whereas in the hypothalamus it was more rapid and of shorter duration.In both the cortex and hypothalamus, pretreatment of rats with the α2-adrenoceptor antagonist RX821002 (3 mg kg−1 i.p.) potentiated increases in the accumulation of extracellular noradrenaline induced by sibutramine (10 mg kg−1 i.p.), by 7 and 10 fold respectively. RX821002 also reduced the latency of sibutramine to reach its maximum effect in the cortex, but not in the hypothalamus.Infusion of RX821002 (1 μM) via the probe increased the accumulation of extracellular noradrenaline induced by sibutramine (10 mg kg−1 i.p.) in both brain areas. In the hypothalamus, the effects of RX821002 on the accumulation of noradrenaline induced by sibutramine were 2 fold greater than those in the cortex.These findings support evidence that sibutramine inhibits the reuptake of noradrenaline in vivo, but that the accumulation of extracellular noradrenaline is limited by noradrenergic activation of presynaptic α2-adrenoceptors. Furthermore, the data suggest that terminal α2-adrenoceptors in the hypothalamus exert a greater inhibitory effect over the control of extracellular noradrenaline accumulation than do those in the cortex. PMID:10516646

  8. Enhancement of fracture healing in the rat, modulated by compounds that stimulate inducible nitric oxide synthase

    OpenAIRE

    Rajfer, R. A.; Kilic, A.; Neviaser, A. S.; Schulte, L. M.; Hlaing, S. M.; Landeros, J.; Ferrini, M. G.; Ebramzadeh, E.; Park, S-H.

    2017-01-01

    Objectives We investigated the effects on fracture healing of two up-regulators of inducible nitric oxide synthase (iNOS) in a rat model of an open femoral osteotomy: tadalafil, a phosphodiesterase inhibitor, and the recently reported nutraceutical, COMB-4 (consisting of L-citrulline, Paullinia cupana, ginger and muira puama), given orally for either 14 or 42 days. Materials and Methods Unilateral femoral osteotomies were created in 58 male rats and fixed with an intramedullary compression na...

  9. TiO{sub 2} nanoparticle-induced ROS correlates with modulated immune cell function

    Energy Technology Data Exchange (ETDEWEB)

    Maurer-Jones, Melissa A.; Christenson, Jenna R.; Haynes, Christy L., E-mail: chaynes@umn.edu [University of Minnesota, Department of Chemistry (United States)

    2012-12-15

    Design of non-toxic nanoparticles will be greatly facilitated by understanding the nanoparticle-cell interaction mechanism on a cell function level. Mast cells are important cells for the immune system's first line of defense, and we can utilize their exocytotic behavior as a model cellular function as it is a conserved process across cell types and species. Perturbations in exocytosis can also have implications for whole organism health. One proposed mode of toxicity is nanoparticle-induced reactive oxygen species (ROS), particularly for titanium dioxide (TiO{sub 2}) nanoparticles. Herein, we have correlated changes in ROS with the perturbation of the critical cell function of exocytosis, using UV light to induce greater levels of ROS in TiO{sub 2} exposed cells. The primary culture mouse peritoneal mast cells (MPMCs) were exposed to varying concentrations of TiO{sub 2} nanoparticles for 24 h. ROS content was determined using 2,7-dihydrodichlorofluorescein diacetate (DCFDA). Cellular viability was determined with the MTT and Trypan blue assays, and exocytosis was measured by the analytical electrochemistry technique of carbon-fiber microelectrode amperometry. MPMCs exposed to TiO{sub 2} nanoparticles experienced a dose-dependent increase in total ROS content. While there was minimal impact of ROS on cellular viability, there is a correlation between ROS amount and exocytosis perturbation. As nanoparticle-induced ROS increases, there is a significant decrease (45 %) in the number of serotonin molecules being released during exocytosis, increase (26 %) in the amount of time for each exocytotic granule to release, and decrease (28 %) in the efficiency of granule trafficking and docking. This is the first evidence that nanoparticle-induced ROS correlates with chemical messenger molecule secretion, possibly making a critical connection between functional impairment and mechanisms contributing to that impairment.

  10. Fluoxetine induces vasodilatation of cerebral arterioles by co-modulating NO/muscarinic signalling

    Science.gov (United States)

    Ofek, Keren; Schoknecht, Karl; Melamed-Book, Naomi; Heinemann, Uwe; Friedman, Alon; Soreq, Hermona

    2012-01-01

    Ischaemic stroke patients treated with Selective Serotonin Reuptake Inhibitors (SSRI) show improved motor, cognitive and executive functions, but the underlying mechanism(s) are incompletely understood. Here, we report that cerebral arterioles in the rat brain superfused with therapeutically effective doses of the SSRI fluoxetine showed consistent, dose-dependent vasodilatation (by 1.2 to 1.6-fold), suppressible by muscarinic and nitric oxide synthase (NOS) antagonists [atropine, NG-nitro-l-arginine methyl ester (l-NAME)] but resistant to nicotinic and serotoninergic antagonists (mecamylamine, methylsergide). Fluoxetine administered 10–30 min. following experimental vascular photo-thrombosis increased arterial diameter (1.3–1.6), inducing partial, but lasting reperfusion of the ischaemic brain. In brain endothelial b.End.3 cells, fluoxetine induced rapid muscarinic receptor-dependent increases in intracellular [Ca2+] and promoted albumin- and eNOS-dependent nitric oxide (NO) production and HSP90 interaction. In vitro, fluoxetine suppressed recombinant human acetylcholinesterase (rhAChE) activity only in the presence of albumin. That fluoxetine induces vasodilatation of cerebral arterioles suggests co-promotion of endothelial muscarinic and nitric oxide signalling, facilitated by albumin-dependent inhibition of serum AChE. PMID:22697296

  11. Gonadal steroids modulate Fas-induced apoptosis of lactotropes and somatotropes.

    Science.gov (United States)

    Jaita, Gabriela; Zárate, Sandra; Ferrari, Luciana; Radl, Daniela; Ferraris, Jimena; Eijo, Guadalupe; Zaldivar, Verónica; Pisera, Daniel; Seilicovich, Adriana

    2011-02-01

    We have previously reported that Fas activation induces apoptosis of anterior pituitary cells from rats at proestrus but not at diestrus and in an estrogen-dependent manner. In this study, we evaluated the effect of Fas activation on apoptosis of lactotropes and somatotropes during the estrous cycle and explored the action of gonadal steroids on Fas-induced apoptosis. Also, we studied whether changes in Fas expression are involved in the apoptotic response of anterior pituitary cells. Fas activation increased the percentage of TUNEL-positive lactotropes and somatotropes at proestrus but not at diestrus. FasL triggered apoptosis of somatotropes only when cells from ovariectomized rats were cultured in the presence of 17 β-estradiol (E2). Progesterone (P4) blocked the apoptotic action of the Fas/FasL system in lactotropes and somatotropes incubated with E2. Both E2 and P4 increased the percentage of cells expressing Fas at the cell membrane. Our results show that Fas activation induces apoptosis of lactotropes and somatotropes at proestrus but not at diestrus. Gonadal steroids may be involved in the apoptotic response of lactotropes and somatotropes, suggesting that Fas activation is implicated in the renewal of these pituitary subpopulations during the estrous cycle. The effect of gonadal steroids on Fas expression may be only partially involved in regulation of the Fas/FasL apoptotic pathway in the anterior pituitary gland.

  12. Fatty acid nitroalkenes induce resistance to ischemic cardiac injury by modulating mitochondrial respiration at complex II

    Directory of Open Access Journals (Sweden)

    Jeffrey R. Koenitzer

    2016-08-01

    Full Text Available Nitro-fatty acids (NO2-FA are metabolic and inflammatory-derived electrophiles that mediate pleiotropic signaling actions. It was hypothesized that NO2-FA would impact mitochondrial redox reactions to induce tissue-protective metabolic shifts in cells. Nitro-oleic acid (OA-NO2 reversibly inhibited complex II-linked respiration in isolated rat heart mitochondria in a pH-dependent manner and suppressed superoxide formation. Nitroalkylation of Fp subunit was determined by BME capture and the site of modification by OA-NO2 defined by mass spectrometric analysis. These effects translated into reduced basal and maximal respiration and favored glycolytic metabolism in H9C2 cardiomyoblasts as assessed by extracellular H+ and O2 flux analysis. The perfusion of NO2-FA induced acute cardioprotection in an isolated perfused heart ischemia/reperfusion (IR model as evidenced by significantly higher rate-pressure products. Together these findings indicate that NO2-FA can promote cardioprotection by inducing a shift from respiration to glycolysis and suppressing reactive species formation in the post-ischemic interval.

  13. Consumption of milk-protein combined with green tea modulates diet-induced thermogenesis.

    Science.gov (United States)

    Hursel, Rick; Westerterp-Plantenga, Margriet S

    2011-08-01

    Green tea and protein separately are able to increase diet-induced thermogenesis. Although their effects on long-term weight-maintenance were present separately, they were not additive. Therefore, the effect of milk-protein (MP) in combination with green tea on diet-induced thermogenesis (DIT) was examined in 18 subjects (aged 18-60 years; BMI: 23.0 ± 2.1 kg/m(2)). They participated in an experiment with a randomized, 6 arms, crossover design, where energy expenditure and respiratory quotient (RQ) were measured. Green tea (GT)vs. placebo (PL) capsules were either given in combination with water or with breakfasts containing milk protein in two different dosages: 15 g (15 MP) (energy% P/C/F: 15/47/38; 1.7 MJ/500 mL), and 3.5 g (3.5 MP) (energy% P/C/F: 41/59/0; 146.4 kJ/100 mL). After measuring resting energy expenditure (REE) for 30 min, diet-induced energy expenditure was measured for another 3.5 h after the intervention. There was an overall significant difference observed between conditions (p milk-protein inhibits the effect of green tea on DIT.

  14. Exercise Prevents Diaphragm Wasting Induced by Cigarette Smoke through Modulation of Antioxidant Genes and Metalloproteinases

    Directory of Open Access Journals (Sweden)

    Gracielle Vieira Ramos

    2018-01-01

    Full Text Available Background. The present study aimed to analyze the effects of physical training on an antioxidant canonical pathway and metalloproteinases activity in diaphragm muscle in a model of cigarette smoke-induced chronic obstructive pulmonary disease (COPD. Methods. Male mice were randomized into control, smoke, exercise, and exercise + smoke groups, which were maintained in trial period of 24 weeks. Gene expression of kelch-like ECH-associated protein 1; nuclear factor erythroid-2 like 2; and heme-oxygenase1 by polymerase chain reaction was performed. Metalloproteinases 2 and 9 activities were analyzed by zymography. Exercise capacity was evaluated by treadmill exercise test before and after the protocol. Results. Aerobic training inhibited diaphragm muscle wasting induced by cigarette smoke exposure. This inhibition was associated with improved aerobic capacity in those animals that were submitted to 24 weeks of aerobic training, when compared to the control and smoke groups, which were not submitted to training. The aerobic training also downregulated the increase of matrix metalloproteinases (MMP-2 and MMP-9 and upregulated antioxidant genes, such as nuclear factor erythroid-2 like 2 (NRF2 and heme-oxygenase1 (HMOX1, in exercise + smoke group compared to smoke group. Conclusions. Treadmill aerobic training protects diaphragm muscle wasting induced by cigarette smoke exposure involving upregulation of antioxidant genes and downregulation of matrix metalloproteinases.

  15. Synaptic heterogeneity and stimulus-induced modulation of depression in central synapses.

    Science.gov (United States)

    Hunter, J D; Milton, J G

    2001-08-01

    Short-term plasticity is a pervasive feature of synapses. Synapses exhibit many forms of plasticity operating over a range of time scales. We develop an optimization method that allows rapid characterization of synapses with multiple time scales of facilitation and depression. Investigation of paired neurons that are postsynaptic to the same identified interneuron in the buccal ganglion of Aplysia reveals that the responses of the two neurons differ in the magnitude of synaptic depression. Also, for single neurons, prolonged stimulation of the presynaptic neuron causes stimulus-induced increases in the early phase of synaptic depression. These observations can be described by a model that incorporates two availability factors, e.g., depletable vesicle pools or desensitizing receptor populations, with different time courses of recovery, and a single facilitation component. This model accurately predicts the responses to novel stimuli. The source of synaptic heterogeneity is identified with variations in the relative sizes of the two availability factors, and the stimulus-induced decrement in the early synaptic response is explained by a slowing of the recovery rate of one of the availability factors. The synaptic heterogeneity and stimulus-induced modifications in synaptic depression observed here emphasize that synaptic efficacy depends on both the individual properties of synapses and their past history.

  16. Urtica dioica modulates hippocampal insulin signaling and recognition memory deficit in streptozotocin induced diabetic mice.

    Science.gov (United States)

    Patel, Sita Sharan; Gupta, Sahil; Udayabanu, Malairaman

    2016-06-01

    Diabetes mellitus has been associated with functional abnormalities in the hippocampus and performance of cognitive function. Urtica dioica (UD) has been used in the treatment of diabetes. In our previous report we observed that UD extract attenuate diabetes mediated associative and spatial memory dysfunction. The present study aimed to evaluate the effect of UD extract on mouse model of diabetes-induced recognition memory deficit and explore the possible mechanism behind it. Streptozotocin (STZ) (50 mg/kg, i.p. consecutively for 5 days) was used to induce diabetes followed by UD extract (50 mg/kg, oral) or rosiglitazone (ROSI) (5 mg/kg, oral) administration for 8 weeks. STZ induced diabetic mice showed significant decrease in hippocampal insulin signaling and translocation of glucose transporter type 4 (GLUT4) to neuronal membrane resulting in cognitive dysfunction and hypolocomotion. UD treatment effectively improved hippocampal insulin signaling, glucose tolerance and recognition memory performance in diabetic mice, which was comparable to ROSI. Further, diabetes mediated oxidative stress and inflammation was reversed by chronic UD or ROSI administration. UD leaves extract acts via insulin signaling pathway and might prove to be effective for the diabetes mediated central nervous system complications.

  17. Salivary peptide tyrosine-tyrosine 3-36 modulates ingestive behavior without inducing taste aversion.

    Science.gov (United States)

    Hurtado, Maria D; Sergeyev, Valeriy G; Acosta, Andres; Spegele, Michael; La Sala, Michael; Waler, Nickolas J; Chiriboga-Hurtado, Juan; Currlin, Seth W; Herzog, Herbert; Dotson, Cedrick D; Gorbatyuk, Oleg S; Zolotukhin, Sergei

    2013-11-20

    Hormone peptide tyrosine-tyrosine (PYY) is secreted into circulation from the gut L-endocrine cells in response to food intake, thus inducing satiation during interaction with its preferred receptor, Y2R. Clinical applications of systemically administered PYY for the purpose of reducing body weight were compromised as a result of the common side effect of visceral sickness. We describe here a novel approach of elevating PYY in saliva in mice, which, although reliably inducing strong anorexic responses, does not cause aversive reactions. The augmentation of salivary PYY activated forebrain areas known to mediate feeding, hunger, and satiation while minimally affecting brainstem chemoreceptor zones triggering nausea. By comparing neuronal pathways activated by systemic versus salivary PYY, we identified a metabolic circuit associated with Y2R-positive cells in the oral cavity and extending through brainstem nuclei into hypothalamic satiety centers. The discovery of this alternative circuit that regulates ingestive behavior without inducing taste aversion may open the possibility of a therapeutic application of PYY for the treatment of obesity via direct oral application.

  18. Erythrocyte Saturation with IgG Is Required for Inducing Antibody-Mediated Immune Suppression and Impacts Both Erythrocyte Clearance and Antigen-Modulation Mechanisms.

    Science.gov (United States)

    Cruz-Leal, Yoelys; Marjoram, Danielle; Lazarus, Alan H

    2018-02-15

    Anti-D prevents hemolytic disease of the fetus and newborn, and this mechanism has been referred to as Ab-mediated immune suppression (AMIS). Anti-D, as well as other polyclonal AMIS-inducing Abs, most often induce both epitope masking and erythrocyte clearance mechanisms. We have previously observed that some Abs that successfully induce AMIS effects could be split into those that mediate epitope masking versus those that induce erythrocyte clearance, allowing the ability to analyze these mechanisms separately. In addition, AMIS-inducing activity has recently been shown to induce Ag modulation (Ag loss from the erythrocyte surface). To assess these mechanisms, we immunized mice with transgenic murine RBCs expressing a single Ag protein comprising a recombinant Ag composed of hen egg lysozyme, OVA sequences comprising aa 251-349, and the human Duffy transmembrane protein (HOD-Ag) with serial doses of polyclonal anti-OVA IgG as the AMIS-inducing Ab. The anti-OVA Ab induced AMIS in the absence of apparent epitope masking. AMIS occurred only when the erythrocytes appeared saturated with IgG. This Ab was capable of inducing HOD-RBC clearance, as well as loss of the OVA epitope at doses of Ab that caused AMIS effects. HOD-RBCs also lost reactivity with Abs specific for the hen egg lysozyme and Duffy portions of the Ag consistent with the initiation of Ag modulation and/or trogocytosis mechanisms. These data support the concept that an AMIS-inducing Ab that does not cause epitope masking can induce AMIS effects in a manner consistent with RBC clearance and/or Ag modulation. Copyright © 2018 by The American Association of Immunologists, Inc.

  19. Modulation of radiation-induced histological and biochemical alterations in mice by Rosemary (Rosemarinus officinalis)

    International Nuclear Information System (INIS)

    Jindal, Archana; Goyal, P.K.

    2012-01-01

    Gamma radiation is the most commonly used source of ionizing radiation to treat neoplastic disorders in clinical conditions. Clinical success of radiotherapy depends on its ability to selectively kill tumor cells while sparing the normal surrounding tissues. The response of mammalian cells to ionizing radiation sat the cellular and molecular levels are complex and are an molecular levels is complex and is an irreversible process that is dependent on both the radiation dose and tissue-weighting factor. Recently, increased interest has developed on search for potential drugs of plant origin which can quench the reactive energy of free radicals and eliminate oxygen with minimum side effects. Due to lack of an effective protective agent, newer compounds are currently under investigation as possible adjuvant in the radiation treatment of cancer. This study was undertaken to investigate the radioprotective potential of Rosemarinus officinalis (a medicinal paint) extract (ROE) was studied in mice. For this purpose, Swiss albino mice were exposed to gamma rays (6 Gy) in the absence (control) or presence experimental) of ROE, orally 1000 mg/kg body weight, once daily for 5 consecutive days. A specimen of small intestine was removed from the mice and studied at different autopsy intervals from 12 h to 30 days. In irradiated control animals, crypt cell population, mitotic figures and villus length were markedly reduced on day 1, later these value started to increase progressively but did not attain the normal even till the last autopsy interval. Animals receiving ROE prior to irradiation had a high number of crypt cells, mitotic figures and increase in villus length when compared with non drug treated control at all the autopsy intervals. Irradiation of animals resulted in an elevation of lipid peroxidation and a reduction in glutathione as well as catalase activity in the intestine at 1 hr. post irradiation. In contrast, ROE treatment before irradiation caused a significant

  20. Medicinal lavender modulates the enteric microbiota to protect against Citrobacter rodentium-induced colitis.

    Science.gov (United States)

    Baker, J; Brown, K; Rajendiran, E; Yip, A; DeCoffe, D; Dai, C; Molcan, E; Chittick, S A; Ghosh, S; Mahmoud, S; Gibson, D L

    2012-10-01

    Inflammatory bowel disease, inclusive of Crohn's disease and ulcerative colitis, consists of immunologically mediated disorders involving the microbiota in the gastrointestinal tract. Lavender oil is a traditional medicine used to relieve many gastrointestinal disorders. The goal of this study was to examine the therapeutic effects of the essential oil obtained from a novel lavender cultivar, Lavandula×intermedia cultivar Okanagan lavender (OLEO), in a mouse model of acute colitis caused by Citrobacter rodentium. In colitic mice, oral gavage with OLEO resulted in less severe disease, including decreased morbidity and mortality, reduced intestinal tissue damage, and decreased infiltration of neutrophils and macrophages, with reduced levels of TNF-α, IFN-γ, IL-22, macrophage inflammatory protein-2α, and inducible nitric oxide synthase expression. This was associated with increased levels of regulatory T cell populations compared with untreated colitic mice. Recently, we demonstrated that the composition of the enteric microbiota affects susceptibility to C. rodentium-induced colitis. Here, we found that oral administration of OLEO induced microbiota enriched with members of the phylum Firmicutes, including segmented filamentous bacteria, which are known to protect against the damaging effects of C. rodentium. Additionally, during infection, OLEO treatment promoted the maintenance of microbiota loads, with specific increases in Firmicutes bacteria and decreases in γ-Proteobacteria. We observed that Firmicutes bacteria were intimately associated with the apical region of the intestinal epithelial cells during infection, suggesting that their protective effect was through contact with the gut wall. Finally, we show that OLEO inhibited C. rodentium growth and adherence to Caco-2 cells, primarily through the activities of 1,8-cineole and borneol. These results indicate that while OLEO promoted Firmicutes populations, it also controlled pathogen load through

  1. The pharmacological modulation of thrombin-induced cerebral thromboembolism in the rabbit.

    Science.gov (United States)

    May, G. R.; Paul, W.; Crook, P.; Butler, K. D.; Page, C. P.

    1992-01-01

    1. Intracarotid (i.c.) administration of thrombin induced a marked accumulation of 111indium-labelled platelets and 125I-labelled fibrinogen within the cranial vasculature of anaesthetized rabbits. 2. Thrombin (100 iu kg-1, i.c.) - induced platelet accumulation was completely abolished by pretreatment with desulphatohirudin (CGP 39393; 1 mg kg-1 i.c., 1 min prior to thrombin). Administration of CGP 39393 1 or 20 min after thrombin produced a significant reduction in platelet accumulation. 3. Intravenous (i.v.) administration of the platelet activating factor (PAF) receptor antagonist BN 52021 (10 mg kg-1) 5 min prior to thrombin (100 iu kg-1, i.c.) had no effect on platelet accumulation. 4. An inhibitor of NO biosynthesis, L-NG-nitro arginine methyl ester (L-NAME; 100 mg kg-1, i.c.), had no significant effect on the cranial platelet accumulation response to thrombin (10 iu kg-1, i.c.) when administered 5 min prior to thrombin. 5. Defibrotide (32 or 64 mg kg-1 bolus i.c. followed by 32 or 64 mg kg-1 h-1, i.c., infusion for 45 min) treatment begun 20 min after thrombin (100 iu kg-1, i.c.) did not significantly modify the cranial platelet accumulation response. 6. Cranial platelet accumulation induced by thrombin (100 iu kg-1, i.c.) was significantly reversed by the fibrinolytic drugs urokinase (20 iu kg-1, i.c., infusion for 45 min), anisoylated plasminogen streptokinase activator complex (APSAC) (200 micrograms kg-1, i.v. bolus) or recombinant tissue plasminogen activator (rt-PA; 100 micrograms kg-1, i.c. bolus followed by 20 micrograms kg-1 min-1, i.c., infusion for 45 min) administered 20 min after thrombin.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1504722

  2. Habenula and interpeduncular nucleus differentially modulate predator odor-induced innate fear behavior in rats.

    Science.gov (United States)

    Vincenz, Daniel; Wernecke, Kerstin E A; Fendt, Markus; Goldschmidt, Jürgen

    2017-08-14

    Fear is an important behavioral system helping humans and animals to survive potentially dangerous situations. Fear can be innate or learned. Whereas the neural circuits underlying learned fear are already well investigated, the knowledge about the circuits mediating innate fear is still limited. We here used a novel, unbiased approach to image in vivo the spatial patterns of neural activity in odor-induced innate fear behavior in rats. We intravenously injected awake unrestrained rats with a 99m-technetium labeled blood flow tracer (99mTc-HMPAO) during ongoing exposure to fox urine or water as control, and mapped the brain distribution of the trapped tracer using single-photon emission computed tomography (SPECT). Upon fox urine exposure blood flow increased in a number of brain regions previously associated with odor-induced innate fear such as the amygdala, ventromedial hypothalamus and dorsolateral periaqueductal grey, but, unexpectedly, decreased at higher significance levels in the interpeduncular nucleus (IPN). Significant flow changes were found in regions monosynaptically connected to the IPN. Flow decreased in the dorsal tegmentum and entorhinal cortex. Flow increased in the habenula (Hb) and correlated with odor effects on behavioral defensive strategy. Hb lesions reduced avoidance of but increased approach to the fox urine while IPN lesions only reduced avoidance behavior without approach behavior. Our study identifies a new component, the IPN, of the neural circuit mediating odor-induced innate fear behavior in mammals and suggests that the evolutionarily conserved Hb-IPN system, which has recently been implicated in cued fear, also forms an integral part of the innate fear circuitry. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Full-length characterization of A1/D intersubtype recombinant genomes from a therapy-induced HIV type 1 controller during acute infection and his noncontrolling partner

    DEFF Research Database (Denmark)

    Fomsgaard, A.; Vinner, L.; Therrien, D.

    2008-01-01

    To increase the understanding of mechanisms of HIV control we have genetically and immunologically characterized a full-length HIV-1 isolated from an acute infection in a rare case of undetectable viremia. The subject, a 43-year-old Danish white male (DK1), was diagnosed with acute HIV-1 infection...... and phylogenic trees were constructed and diversity and evolutionary distances were calculated. Intracellular IFN-gamma in CD8(+)CD3(+) T-lymphocyte reactions was investigated by intracellular flow cytometry (IC-FACS). Virus isolates from both patients were A1D intersubtype recombinants showing 98% sequence...

  4. Individual differences in learning correlate with modulation of brain activity induced by transcranial direct current stimulation

    Science.gov (United States)

    Falcone, Brian; Wada, Atsushi; Parasuraman, Raja

    2018-01-01

    Transcranial direct current stimulation (tDCS) has been shown to enhance cognitive performance on a variety of tasks. It is hypothesized that tDCS enhances performance by affecting task related cortical excitability changes in networks underlying or connected to the site of stimulation facilitating long term potentiation. However, many recent studies have called into question the reliability and efficacy of tDCS to induce modulatory changes in brain activity. In this study, our goal is to investigate the individual differences in tDCS induced modulatory effects on brain activity related to the degree of enhancement in performance, providing insight into this lack of reliability. In accomplishing this goal, we used functional magnetic resonance imaging (fMRI) concurrently with tDCS stimulation (1 mA, 30 minutes duration) using a visual search task simulating real world conditions. The experiment consisted of three fMRI sessions: pre-training (no performance feedback), training (performance feedback which included response accuracy and target location and either real tDCS or sham stimulation given), and post-training (no performance feedback). The right posterior parietal cortex was selected as the site of anodal tDCS based on its known role in visual search and spatial attention processing. Our results identified a region in the right precentral gyrus, known to be involved with visual spatial attention and orienting, that showed tDCS induced task related changes in cortical excitability that were associated with individual differences in improved performance. This same region showed greater activity during the training session for target feedback of incorrect (target-error feedback) over correct trials for the tDCS stim over sham group indicating greater attention to target features during training feedback when trials were incorrect. These results give important insight into the nature of neural excitability induced by tDCS as it relates to variability in

  5. Consumption of Milk-Protein Combined with Green Tea Modulates Diet-Induced Thermogenesis

    Directory of Open Access Journals (Sweden)

    Margriet S. Westerterp-Plantenga

    2011-07-01

    Full Text Available Green tea and protein separately are able to increase diet-induced thermogenesis. Although their effects on long-term weight-maintenance were present separately, they were not additive. Therefore, the effect of milk-protein (MP in combination with green tea on diet-induced thermogenesis (DIT was examined in 18 subjects (aged 18–60 years; BMI: 23.0 ± 2.1 kg/m2. They participated in an experiment with a randomized, 6 arms, crossover design, where energy expenditure and respiratory quotient (RQ were measured. Green tea (GT vs. placebo (PL capsules were either given in combination with water or with breakfasts containing milk protein in two different dosages: 15 g (15 MP (energy% P/C/F: 15/47/38; 1.7 MJ/500 mL, and 3.5 g (3.5 MP (energy% P/C/F: 41/59/0; 146.4 kJ/100 mL. After measuring resting energy expenditure (REE for 30 min, diet-induced energy expenditure was measured for another 3.5 h after the intervention. There was an overall significant difference observed between conditions (p < 0.001. Post-hoc, areas under the curve (AUCs for diet-induced energy expenditure were significantly different (P ≤ 0.001 for GT + water (41.11 [91.72] kJ·3.5 h vs. PL + water (10.86 [28.13] kJ·3.5 h, GT + 3.5 MP (10.14 [54.59] kJ·3.5 h and PL + 3.5 MP (12.03 [34.09] kJ·3.5 h, but not between GT + 3.5 MP, PL + 3.5 MP and PL + water, indicating that MP inhibited DIT following GT. DIT after GT + 15 MP (167.69 [141.56] kJ·3.5 h and PL + 15 MP (168.99 [186.56] kJ·3.5 h was significantly increased vs. PL + water (P < 0.001, but these were not different from each other indicating that 15 g MP stimulated DIT, but inhibited the GT effect on DIT. No significant differences in RQ were seen between conditions for baseline and post-treatment. In conclusion, consumption of milk-protein inhibits the effect of green tea on DIT.

  6. Modulation of radiation induced DNA damage by natural products in hemopoietic tissue of mice

    International Nuclear Information System (INIS)

    Jayakumar, S.; Bhilwade, H.N.; Chaubey, R.C.

    2014-01-01

    Ionizing radiation is known to induce oxidative stress through generation of ROS leading to a variety of DNA lesions. However, the most dangerous DNA lesions which are responsible for the origin of lethal effects, mutagenesis, genomic instability and carcinogenesis are the DSBs. During recent years efforts are being made to identify phytochemicals, antioxidants or neutraxeuticals which can reduce harmful effect of radiation during accidental exposure or prevent normal tissue injury during radiotherapy. In the present study, we have investigated the radioprotective role of curcumin, a dietary antioxidant, taurine, malabaricone-C, and umbelliferone, for their radioprotective properties in hemopoietic cells of mice. Groups of mice-were fed 1% of curcumin in diet for three weeks. Similarly other groups of mice were injected i.p. with 50 mg/kg body weight of taurine for five consecutive days. After the completion of the treatment mice pre-treated with curcumin and taurine were exposed to 3 Gy of gamma rays. Malabaricone-C was tested for its radiomodulation potential in vitro, in spleenocytes of mouse. Spleenocytes were isolated and treated with different concentrations (0.5-25 ìM) of malabaricone-C. Immediately after irradiation, alkaline comet assay were performed using standard procedures. Twenty four post radiation exposure mice were sacrificed for micronucleus test. Results of these studies showed significant reduction in DNA damage by curcumin. The micronucleus data showed marginal increase in the frequency of micronucleated erythrocytes in curcumin fed group as compared to the controls. Mice receiving curcumin for 3 weeks in diet followed by gamma radiation (3 Gy), showed approximately 50% reduction in the frequency of micro nucleated polychromatic erythrocytes. Pre-treatment of mice with taurine significantly (p < 0.01) reduced the frequency of gamma rays induced mn-PCEs in bone marrow tissue. Malabaricone-C at 1.5 ìM concentration showed very good protection

  7. Shh mediates PDGF-induced contractile-to-synthetic phenotypic modulation in vascular smooth muscle cells through regulation of KLF4

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Qiu [Department of Vascular Surgery, 1st Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Wei, Bin [Department of Dermatology, 1st Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Zhao, Yu; Wang, Xuehu; Fu, Qining; Liu, Hong [Department of Vascular Surgery, 1st Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Li, Fenghe, E-mail: lfh_cmu@126.com [Department of Vascular Surgery, 1st Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China)

    2016-07-01

    Platelet-derived growth factor (PDGF) is known to induce phenotypic switching of vascular smooth muscle cells (VSMCs) from contractile to a pathological synthetic state, which played an essential role in proliferation of VSMCs. Sonic hedgehog (Shh) contributes to the proliferation of VSMCs when induced by PDGF. Here, we investigated the probable role of Shh in PDGF-induced VSMC dedifferentiation and its underlying mechanisms. We found that PDGF stimulated Shh expression in VSMCs, which was mediated by activation of PDGFRβ/ERK1/2 cell signaling pathway. Further, we found PDGF-induced VSMC phenotypic modulation was accompanied by up-regulation of Shh/Gli family zinc finger 2 (Gli2) signaling and Krüppel-like factor 4 (KLF4). When inhibited Shh in the presence of PDGF, the expressions of KLF4 and VSMC dedifferentiation markers were down-regulated and the effect of PDGF in inducing VSMC dedifferentiation was blocked. In the absence of PDGF, Shh signaling activation increased the expression of KLF4 and promoted VSMC dedifferentiation. The results indicate Shh participated in the regulation of PDGF-induced VSMC dedifferentiation. Finally, we found that KLF4 was closely involved in this process. On inhibition of KLF4, PDGF induced VSMC dedifferentiation was abrogated, even in the presence of Shh. Taken together, the results provide critical insights into the newly discovered role of Shh in phenotypic modulation of VSMCs which depends on KLF4. - Highlights: • Shh as a downstream effector of PDGF participates in PDGF-induced VSMC phenotypic modulation. • Shh can promote VSMC phenotypic switching from contractile to synthetic state. • Shh mediates VSMC phenotypic modulation through regulation of KLF4.

  8. Shh mediates PDGF-induced contractile-to-synthetic phenotypic modulation in vascular smooth muscle cells through regulation of KLF4

    International Nuclear Information System (INIS)

    Zeng, Qiu; Wei, Bin; Zhao, Yu; Wang, Xuehu; Fu, Qining; Liu, Hong; Li, Fenghe

    2016-01-01

    Platelet-derived growth factor (PDGF) is known to induce phenotypic switching of vascular smooth muscle cells (VSMCs) from contractile to a pathological synthetic state, which played an essential role in proliferation of VSMCs. Sonic hedgehog (Shh) contributes to the proliferation of VSMCs when induced by PDGF. Here, we investigated the probable role of Shh in PDGF-induced VSMC dedifferentiation and its underlying mechanisms. We found that PDGF stimulated Shh expression in VSMCs, which was mediated by activation of PDGFRβ/ERK1/2 cell signaling pathway. Further, we found PDGF-induced VSMC phenotypic modulation was accompanied by up-regulation of Shh/Gli family zinc finger 2 (Gli2) signaling and Krüppel-like factor 4 (KLF4). When inhibited Shh in the presence of PDGF, the expressions of KLF4 and VSMC dedifferentiation markers were down-regulated and the effect of PDGF in inducing VSMC dedifferentiation was blocked. In the absence of PDGF, Shh signaling activation increased the expression of KLF4 and promoted VSMC dedifferentiation. The results indicate Shh participated in the regulation of PDGF-induced VSMC dedifferentiation. Finally, we found that KLF4 was closely involved in this process. On inhibition of KLF4, PDGF induced VSMC dedifferentiation was abrogated, even in the presence of Shh. Taken together, the results provide critical insights into the newly discovered role of Shh in phenotypic modulation of VSMCs which depends on KLF4. - Highlights: • Shh as a downstream effector of PDGF participates in PDGF-induced VSMC phenotypic modulation. • Shh can promote VSMC phenotypic switching from contractile to synthetic state. • Shh mediates VSMC phenotypic modulation through regulation of KLF4.

  9. Stress-induced changes of hippocampal NMDA receptors: modulation by duloxetine treatment.

    Directory of Open Access Journals (Sweden)

    Francesca Calabrese

    Full Text Available It is now well established that the glutamatergic system contributes to the pathophysiology of depression. Exposure to stress, a major precipitating factor for depression, enhances glutamate release that can contribute to structural abnormalities observed in the brain of depressed subjects. On the other hand, it has been demonstrated that NMDA antagonists, like ketamine, exert an antidepressant effect at preclinical and clinical levels. On these bases, the purpose of our study was to investigate whether chronic mild stress is associated with specific alterations of the NMDA receptor complex, in adult rats, and to establish whether concomitant antidepressant treatment could normalize such deficits. We found that chronic stress increases the expression of the obligatory GluN1 subunit, as well as of the accessory subunits GluN2A and GluN2B at transcriptional and translational levels, particularly in the ventral hippocampus. Concomitant treatment with the antidepressant duloxetine was able to normalize the increase of glutamatergic receptor subunit expression, and correct the changes in receptor phosphorylation produced by stress exposure. Our data suggest that prolonged stress, a condition that has etiologic relevance for depression, may enhance glutamate activity through post-synaptic mechanisms, by regulating NMDA receptors, and that antidepressants may in part normalize such changes. Our results provide support to the notion that antidepressants may exert their activity in the long-term also via modulation of the glutamatergic synapse.

  10. Bubble induced flow field modulation for pool boiling enhancement over a tubular surface

    Science.gov (United States)

    Raghupathi, P. A.; Joshi, I. M.; Jaikumar, A.; Emery, T. S.; Kandlikar, S. G.

    2017-06-01

    We demonstrate the efficacy of using a strategically placed enhancement feature to modify the trajectory of bubbles nucleating on a horizontal tubular surface to increase both the critical heat flux (CHF) and the heat transfer coefficient (HTC). The CHF on a plain tube is shown to be triggered by a local dryout at the bottom of the tube due to vapor agglomeration. To mitigate this effect and delay CHF, the nucleating bubble trajectory is modified by incorporating a bubble diverter placed axially at the bottom of the tube. The nucleating bubble at the base of the diverter experiences a tangential evaporation momentum force (EMF) which causes the bubble to grow sideways away from the tube and avoid localized bubble patches that are responsible for CHF initiation. High speed imaging confirmed the lateral displacement of the bubbles away from the diverter closely matched with the theoretical predictions using EMF and buoyancy forces. Since the EMF is stronger at higher heat fluxes, bubble displacement increases with heat flux and results in the formation of separate liquid-vapor pathways wherein the liquid enters almost unobstructed at the bottom and the vapor bubble leaves sideways. Experimental results yielded CHF and HTC enhancements of ˜60% and ˜75%, respectively, with the diverter configuration when compared to a plain tube. This work can be used for guidance in developing enhancement strategies to effectively modulate the liquid-vapor flow around the heater surface at various locations to enhance HTC and CHF.

  11. Selected spices and their combination modulate hypercholesterolemia-induced oxidative stress in experimental rats

    Directory of Open Access Journals (Sweden)

    Gloria A Otunola

    2014-01-01

    Full Text Available BACKGROUND: Effect of aqueous extracts of Allium sativum (garlic, Zingiber officinale (ginger, Capsicum fructensces (cayenne pepper and their mixture on oxidative stress in rats fed high Cholesterol/high fat diet was investigated. Rats were randomly distributed into six groups (n = 6 and given different dietary/spice treatments. Group 1 standard rat chow (control, group 2, hypercholesterolemic diet plus water, and groups 3, 4, 5, 6, hypercholesterolemic diet with 0.5 ml 200 mg · kg-1 aqueous extracts of garlic, ginger, cayenne pepper or their mixture respectively daily for 4 weeks. RESULTS: Pronounced oxidative stress in the hypercholesterolemic rats evidenced by significant (p < 0.05 increase in MDA levels, and suppression of the antioxidant enzymes system in rat's liver, kidney, heart and brain tissues was observed. Extracts of spices singly or combined administered at 200 mg.kg-1 body weight significantly (p < 0.05 reduced MDA levels and restored activities of antioxidant enzymes. CONCLUSIONS: It is concluded that consumption of garlic, ginger, pepper, or their mixture may help to modulate oxidative stress caused by hypercholesterolemia in rats.

  12. Control of seizures by ketogenic diet-induced modulation of metabolic pathways.

    Science.gov (United States)

    Clanton, Ryan M; Wu, Guoyao; Akabani, Gamal; Aramayo, Rodolfo

    2017-01-01

    Epilepsy is too complex to be considered as a disease; it is more of a syndrome, characterized by seizures, which can be caused by a diverse array of afflictions. As such, drug interventions that target a single biological pathway will only help the specific individuals where that drug's mechanism of action is relevant to their disorder. Most likely, this will not alleviate all forms of epilepsy nor the potential biological pathways causing the seizures, such as glucose/amino acid transport, mitochondrial dysfunction, or neuronal myelination. Considering our current inability to test every individual effectively for the true causes of their epilepsy and the alarming number of misdiagnoses observed, we propose the use of the ketogenic diet (KD) as an effective and efficient preliminary/long-term treatment. The KD mimics fasting by altering substrate metabolism from carbohydrates to fatty acids and ketone bodies (KBs). Here, we underscore the need to understand the underlying cellular mechanisms governing the KD's modulation of various forms of epilepsy and how a diverse array of metabolites including soluble fibers, specific fatty acids, and functional amino acids (e.g., leucine, D-serine, glycine, arginine metabolites, and N-acetyl-cysteine) may potentially enhance the KD's ability to treat and reverse, not mask, these neurological disorders that lead to epilepsy.

  13. Modulation of VEGF-induced migration and network formation by lymphatic endothelial cells: Roles of platelets and podoplanin.

    Science.gov (United States)

    Langan, Stacey A; Navarro-Núñez, Leyre; Watson, Steve P; Nash, Gerard B

    2017-07-20

    Lymphatic endothelial cells (LEC) express the transmembrane receptor podoplanin whose only known endogenous ligand CLEC-2 is found on platelets. Both podoplanin and CLEC-2 are required for normal lymphangiogenesis as mice lacking either protein develop a blood-lymphatic mixing phenotype. We investigated the roles of podoplanin and its interaction with platelets in migration and tube formation by LEC. Addition of platelets or antibody-mediated crosslinking of podoplanin inhibited LEC migration induced by vascular endothelial growth factors (VEGF-A or VEGF-C), but did not modify basal migration or the response to basic fibroblast growth factor or epidermal growth factor. In addition, platelets and podoplanin crosslinking disrupted networks of LEC formed in co-culture with fibroblasts. Depletion of podoplanin in LEC using siRNA negated the pro-migratory effect of VEGF-A and VEGF-C. Inhibition of RhoA or Rho-kinase reduced LEC migration induced by VEGF-C, but had no further effect after crosslinking of podoplanin, suggesting that podoplanin is required for signaling downstream of VEGF-receptors but upstream of RhoA. Together, these data reveal for the first time that podoplanin is an intrinsic specific regulator of VEGF-mediated migration and network formation in LEC and identify crosslinking of podoplanin by platelets or antibodies as mechanisms to modulate this pathway.

  14. Protective Effect of Prosopis cineraria Against N-Nitrosodiethylamine Induced Liver Tumor by Modulating Membrane Bound Enzymes and Glycoproteins

    Directory of Open Access Journals (Sweden)

    Naina Mohamed Pakkir Maideen

    2012-06-01

    Full Text Available Purpose: The objective of the present study was to evaluate the protective effect of methanol extract of Prosopis cineraria (MPC against N-nitrosodiethylamine (DEN, 200mg/kg induced Phenobarbital promoted experimental liver tumors in male Wistar rats. Methods: The rats were divided into four groups, each group consisting of six animals. Group 1 served as control animals. Liver tumor was induced in group 2, 3, and 4 and Group 3 animals received MPC 200mg/kg and Group 4 animals received MPC 400mg/kg. Results: Administration of DEN has brought down the levels of membrane bound enzymes like Na+/ K+ ATPase, Mg2+ ATPase and Ca2+ATPase which were later found to be increased by the administration of Prosopis cineraria (200 and 400mg/kg in dose dependent manner. The MPC extract also suppressed the levels of glycoproteins like Hexose, Hexosamine and Sialic acid when compared to liver tumor bearing animals. Conclusions: Our study suggests that MPC may extend its protective role by modulating the levels of membrane bound enzymes and suppressing glycoprotein levels.

  15. Watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai) juice modulates oxidative damage induced by low dose X-ray in mice.

    Science.gov (United States)

    Mohammad, Mohd Khairul Amran; Mohamed, Muhamad Idham; Zakaria, Ainul Mardhiyah; Abdul Razak, Hairil Rashmizal; Saad, Wan Mazlina Md

    2014-01-01

    Watermelon is a natural product that contains high level of antioxidants and may prevent oxidative damage in tissues due to free radical generation following an exposure to ionizing radiation. The present study aimed to investigate the radioprotective effects of watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai) juice against oxidative damage induced by low dose X-ray exposure in mice. Twelve adult male ICR mice were randomly divided into two groups consisting of radiation (Rx) and supplementation (Tx) groups. Rx received filtered tap water, while Tx was supplemented with 50% (v/v) watermelon juice for 28 days ad libitum prior to total body irradiation by 100 μGy X-ray on day 29. Brain, lung, and liver tissues were assessed for the levels of malondialdehyde (MDA), apurinic/apyrimidinic (AP) sites, glutathione (GSH), and superoxide dismutase (SOD) inhibition activities. Results showed significant reduction of MDA levels and AP sites formation of Tx compared to Rx (P watermelon juice restore the intracellular antioxidant activities by significantly increased SOD inhibition activities and GSH levels compared to Rx. These findings may postulate that supplementation of 50% watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai) juice could modulate oxidative damage induced by low dose X-ray exposure.

  16. [TLR2 modulates Staphylococcus aureus-induced inflammatory response and autophagy in macrophages through PI3K signaling pathway].

    Science.gov (United States)

    Li, Shuai; Fang, Lei; Wang, Jiong; Liu, Rongyu

    2017-09-01

    Objective To investigate the molecular mechanisms of Toll-like receptor 2 (TLR2) taking part in inflammatory response in Staphylococcus aureus (SA)-induced asthma. Methods We established the cell inflammatory response model through stimulating mouse RAW264.7 macrophages with SA. The TLR2, myeloid differentiation factor 88 (MyD88), phosphoinositide-3 kinase (PI3K), nuclear factor κBp65 (NF-κBp65), phospho-NF-κBp65, beclin-1 and microtubule-associated protein 1 light chain 3B (LC3B) were detected by Western blot analysis after treatment with TLR2 small interfering RNA (siRNA) and 3-methyladenine (3-MA), and the tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6) were determined by ELISA. In addition, the number of autolysosomes was observed by the laser scanning confocal microscope. Results SA-stimulated macrophages activated various signaling pathways including TLR2. TLR2 siRNA markedly repressed the expressions of PI3K, phospho-NF-κBp65, the autophagy protein beclin-1 and LC3B as well as the number of autolysosomes and the production of TNF- and IL-6. We also demonstrated that 3-MA had the same effect on autophagy and inflammation as TLR2 siRNA did. Conclusion TLR2 modulates SA-induced inflammatory response and autophagy in macrophages through PI3K signaling pathway.

  17. Engineering defined membrane-embedded elements of AMPA receptor induces opposing gating modulation by cornichon 3 and stargazin.

    Science.gov (United States)

    Hawken, Natalie M; Zaika, Elena I; Nakagawa, Terunaga

    2017-10-15

    diminished gating modulation. GluA2-C528L destabilized the AMPAR-CNIH3 complex but stabilized the AMPAR-Stg complex, with overall loss of function in gating modulation. Furthermore, loss-of-function mutations in this TMD region cancelled the effects of a gain-of-function Stg carrying mutation in its extracellular loop, demonstrating that both the extracellular and the TMD elements contribute independently to gating modulation. The elements of AMPAR functionally recruited by auxiliary subunits are, therefore, located not only in the extracellular domains but also in the lipid accessible surface of the AMPAR. The TMD surface we defined is a potential target for auxiliary subunit-specific compounds, because engineering of this hotspot induces opposing functional outcomes by Stg and CNIH3. The collection of mutant-phenotype mapping provides a framework for engineering AMPAR gating using auxiliary subunits. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  18. Modulation of mitomycin C-induced genotoxicity by acetyl- and thio- analogues of salicylic acid.

    Science.gov (United States)

    Pawar, Amol Ashok; Vikram, Ajit; Tripathi, Durga Nand; Padmanabhan, Shweta; Ramarao, Poduri; Jena, Gopabandhu

    2009-01-01

    Recent reports regarding acetylsalicylic acid (ASA) and its metabolites suggest suppressive effects against mitomycin C (MMC)-induced genotoxicity in a mice chromosomal aberration assay. Keeping this in mind, the potential anti-genotoxic effect of the thio-analogue of salicylic acid namely thio-salicylic acid (TSA) was speculated upon. The present study investigated and compared the anti-genotoxic potential of ASA and TSA. The study was performed in male swiss mice (20+/-2 g) using single-cell gel electrophoresis and a peripheral blood micronucleus assay. ASA and TSA (5, 10 or 20 mg/kg) were administered 15 minutes after MMC (1 mg/kg) once daily for 3 or 7 days. Both ASA and TSA significantly decreased the DNA damage induced by MMC as indicated by a decrease in the comet parameters in bone marrow cells and decreased frequencies of micronucleated reticulocytes in peripheral blood. The results clearly demonstrate the anti-genotoxic potential of ASA and TSA.

  19. PMA Induces Vaccine Adjuvant Activity by the Modulation of TLR Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Dool-Ri Oh

    2014-01-01

    Full Text Available Toll-like receptor (TLR ligands are being developed for use as vaccine adjuvants and as immunomodulators because of their ability to stimulate innate and adaptive immune responses. Flagellin, a TLR5 ligand, was reported to show potent mucosal vaccine adjuvant activity. To identify ligands that potentiate the adjuvant activity of flagellin, we screened a plant library using HEK293T cells transiently cotransfected with phTLR5 and pNF-κB-SEAP plasmids. The 90% EtOH extract from Croton tiglium showed significant NF-κB transactivation in a TLR5-independent manner along with the increase of a flagellin activity. We have studied to characterize an active component from Croton tiglium and to elucidate the action mechanisms. Phorbol 12-myristate 13-acetate (PMA was isolated as an active component of Croton tiglium by activity-guided fractionation, column chromatography, HPLC, NMR, and MS. PMA at a range of nM induced PKC-dependent NF-κB activation and IL-8 production in both TLR5− and TLR5+ assay systems. In in vivo mouse vaccination model, PMA induced antigen-specific IgG and IgA antibody responses and increased IL-12 production corresponding to T cell responses in spleen lymphocytes. These results suggest that PMA would serve as an efficacious mucosal vaccine adjuvant.

  20. Modulation of Radiation Induced Toxicity by Caffeine Pre injection in Female Rats

    International Nuclear Information System (INIS)

    Ashry, O.M.

    2003-01-01

    The present work aims to evaluate the antioxidative role of caffeine (80 mg/kg b.w.). injected 1hour before exposure of female rats to a dose of (7 Gy) gamma irradiation. Haematological parameters, lipid peroxides, glutathione, AST and ALT were investigated 1, 3 and 7 days post irradiation and/or caffeine treatment. Exposure to ionizing radiation resulted in haematological disorders, elevated lipid peroxides, dropped glutathione levels and disturbed AST and ALT levels. Caffeine preinjection led to noticeable limitation of the drop in RBCs, Hb and Ht, improved MCV, MCHC, elevated glutathione, depressed lipid peroxide levels and moderated ALT level. Caffeine is an alkaloid (purine derivative) that contains flavonoids, which increases the antioxidative capacity of blood plasma (Hempel et al., 1999). It is an antioxidant that may help to protect against chemically-induced or radiation induced cancer in mice (Abraham, 1991 and Haung et al., 1997). Caffeine competes with oxygen for electrons and also scavenges hydroxyl radicals and reactive oxygen (Devasagayam and Kesavan, 1996). Contrary to previous investigations, conducted since 1960 reporting that caffeine potentiates DNA damage (Kihlman, 1977 and George et al., 1999) administered caffeine i.p. at a dose of 80 mg/kg body weight 1hour before irradiation of mice at 7.5 Gy. They described remarkable protection by caffeine resulting in the survival of 70% of mice at the end of 25 days and the number remained the same till 90 days

  1. Laser-induced immune modulation inhibits tumor growth in vivo (Conference Presentation)

    Science.gov (United States)

    Ottaviani, Giulia; Martinelli, Valentina; Rupel, Katia; Caronni, Nicoletta; Naseem, Asma; Zandonà, Lorenzo; Perinetti, Giuseppe; Gobbo, Margherita; Di Lenarda, Roberto; Bussani, Rossana; Benvenuti, Federica; Giacca, Mauro; Biasotto, Matteo; Zacchigna, Serena

    2017-02-01

    Photobiomodulation stands as a recommended therapy for oral mucositis induced by oncological therapies. However, its mechanisms of action and, more importantly, its safety in cancer patients, are still unclear. We assessed cancer cell metabolism and proliferation in vitro and in vivo after exposure to different laser protocols. We exploited both ectopic melanoma and a more physiological oral carcinogenesis mouse model, followed by molecular, histological and immunohistochemical characterization. Laser irradiation resulted in a slightly increase in cell metabolism and proliferation in vitro, albeit each protocol exerted a difference response. Of notice, in vivo laser light reduced tumour growth and invasiveness, indicating e beneficial effect on tumor microenvironment. Laser-treated tumors were surrounded and infiltrated by immune cells, mainly lymphocytes and dendritic cells, paralleled by an enhanced secretion of type I interferons. In contrast, the number of pro-angiogenic macrophages was reduced in response to laser irradiation, with consequent normalization of the tumor vasculature. Based on these finding we have also started exploring the effect of photobiomodulation on lymphocyte response in an experimental model of vaccination. Preliminary data indicate that laser light induced antigen-specific CD8+ and CD4+ T cell responses. In conclusion, our data point toward photobiomodulation as an effective strategy to boost the immune response in vivo, with relevant, therapeutic activities in both cancer and vaccination experimental models. These results support the safe use of laser light on cancer patients and open the way to innovative therapeutic opportunities.

  2. Painful faces-induced attentional blink modulated by top-down and bottom-up mechanisms

    Directory of Open Access Journals (Sweden)

    Chun eZheng

    2015-06-01

    Full Text Available Pain-related stimuli can capture attention in an automatic (bottom-up or intentional (top-down fashion. Previous studies have examined attentional capture by pain-related information using spatial attention paradigms that involve mainly a bottom-up mechanism. In the current study, we investigated the pain information–induced attentional blink (AB using a rapid serial visual presentation (RSVP task, and compared the effects of task-irrelevant and task-relevant pain distractors. Relationships between accuracy of target identification and individual traits (i.e., empathy and catastrophizing thinking about pain were also examined. The results demonstrated that task-relevant painful faces had a significant pain information–induced AB effect, whereas task-irrelevant faces a near-significant trend of this effect, supporting the notion that pain-related stimuli can influence the temporal dynamics of attention. Furthermore, we found a significant negative correlation between response accuracy and pain catastrophizing score in task-relevant trials. These findings suggest that active scanning of environmental information related to pain produces greater deficits in cognition than does unintentional attention toward pain, which may represent the different ways in which healthy individuals and patients with chronic pain process pain-relevant information. These results may provide insight into the understanding of maladaptive attentional processing in patients with chronic pain.

  3. Endurance exercise modulates levodopa induced growth hormone release in patients with Parkinson's disease.

    Science.gov (United States)

    Müller, Thomas; Welnic, Jacub; Woitalla, Dirk; Muhlack, Siegfried

    2007-07-11

    Acute levodopa (LD) application and exercise release human growth hormone (GH). An earlier trial showed, that combined stimulus of exercise and LD administration is the best provocative test for GH response in healthy participants. Objective was to show this combined effect of LD application and exercise on GH response and to investigate the impact on LD metabolism in 20 previously treated patients with Parkinson's disease (PD). We measured GH- and LD plasma concentrations following soluble 200 mg LD/50 mg benserazide administration during endurance exercise and rest on two separate consecutive days. GH concentrations significantly increased on both days, but GH release was significantly delayed during rest. LD metabolism was not altered due to exercise in a clinical relevant manner. Exercise induced a significant faster LD stimulated GH release in comparison with the rest condition. We did not find the supposed increase of LD induced GH release by endurance exercise. We assume, that only a limited amount of GH is available for GH release in the anterior pituitary following an acute 200 mg LD administration. GH disposal also depends on growth hormone releasing hormone (GHRH), which is secreted into hypothalamic portal capillaries. During the exercise condition, the resulting higher blood pressure supports blood flow and thus GHRH transport towards the GH producing cells in the pituitary. This might additionally have caused the significant faster GH release during exercise.

  4. Patterns of Brain Activation and Meal Reduction Induced by Abdominal Surgery in Mice and Modulation by Rikkunshito.

    Directory of Open Access Journals (Sweden)

    Lixin Wang

    Full Text Available Abdominal surgery inhibits food intake and induces c-Fos expression in the hypothalamic and medullary nuclei in rats. Rikkunshito (RKT, a Kampo medicine improves anorexia. We assessed the alterations in meal microstructure and c-Fos expression in brain nuclei induced by abdominal surgery and the modulation by RKT in mice. RKT or vehicle was gavaged daily for 1 week. On day 8 mice had no access to food for 6-7 h and were treated twice with RKT or vehicle. Abdominal surgery (laparotomy-cecum palpation was performed 1-2 h before the dark phase. The food intake and meal structures were monitored using an automated monitoring system for mice. Brain sections were processed for c-Fos immunoreactivity (ir 2-h after abdominal surgery. Abdominal surgery significantly reduced bouts, meal frequency, size and duration, and time spent on meals, and increased inter-meal interval and satiety ratio resulting in 92-86% suppression of food intake at 2-24 h post-surgery compared with control group (no surgery. RKT significantly increased bouts, meal duration and the cumulative 12-h food intake by 11%. Abdominal surgery increased c-Fos in the prelimbic, cingulate and insular cortexes, and autonomic nuclei, such as the bed nucleus of the stria terminalis, central amygdala, hypothalamic supraoptic (SON, paraventricular and arcuate nuclei, Edinger-Westphal nucleus (E-W, lateral periaqueduct gray (PAG, lateral parabrachial nucleus, locus coeruleus, ventrolateral medulla and nucleus tractus solitarius (NTS. RKT induced a small increase in c-Fos-ir neurons in the SON and E-W of control mice, and in mice with surgery there was an increase in the lateral PAG and a decrease in the NTS. These findings indicate that abdominal surgery inhibits food intake by increasing both satiation (meal duration and satiety (meal interval and activates brain circuits involved in pain, feeding behavior and stress that may underlie the alterations of meal pattern and food intake inhibition

  5. Ginsenoside Re protects against phencyclidine-induced behavioral changes and mitochondrial dysfunction via interactive modulation of glutathione peroxidase-1 and NADPH oxidase in the dorsolateral cortex of mice.

    Science.gov (United States)

    Tran, The-Vinh; Shin, Eun-Joo; Dang, Duy-Khanh; Ko, Sung Kwon; Jeong, Ji Hoon; Nah, Seung-Yeol; Jang, Choon-Gon; Lee, Yu Jeung; Toriumi, Kazuya; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2017-12-01

    We investigated whether ginsenoside Re (Re) modulates phencyclidine (PCP)-induced sociability deficits and recognition memory impairments to extend our recent finding. We examined the role of GPx-1 gene in the pharmacological activity of Re against mitochondrial dysfunction induced by PCP in the dorsolateral cortex of mice. Since mitochondrial oxidative stress activates NADPH oxidase (PHOX), we applied PHOX inhibitor apocynin for evaluating interactive modulation between GPx-1 and PHOX against PCP neurotoxicity. Sociability deficits and recognition memory impairments induced by PCP were more pronounced in GPx-1 knockout (KO) than in wild type (WT) mice. PCP-induced mitochondrial oxidative stress, mitochondrial dysfunction, and membrane translocation of p47phox were more evident in GPx-1 KO than in WT. Re treatment significantly attenuated PCP-induced neurotoxic changes. Re also significantly attenuated PCP-induced sociability deficits and recognition memory impairments. The attenuation by Re was comparable to that by apocynin. The attenuation was more obvious in GPx-1 KO than in WT. Importantly, apocynin did not show any additional positive effects on the neuroprotective activity of Re, indicating that PHOX is a molecular target for therapeutic activity of Re. Our results suggest that Re requires interactive modulation between GPx activity and PHOX (p47phox) to exhibit neuroprotective potentials against PCP insult. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Induced quadrupolar singlet ground state of praseodymium in a modulated pyrochlore

    Science.gov (United States)

    van Duijn, J.; Kim, K. H.; Hur, N.; Ruiz-Bustos, R.; Adroja, D. T.; Bridges, F.; Daoud-Aladine, A.; Fernandez-Alonso, F.; Wen, J. J.; Kearney, V.; Huang, Q. Z.; Cheong, S.-W.; Perring, T. G.; Broholm, C.

    2017-09-01

    The complex structure and magnetism of Pr2 -xBixRu2O7 was investigated by neutron scattering and extended x-ray absorption fine structure. Pr has an approximate doublet ground state and the first excited state is a singlet. While the B -site (Ru) is well ordered throughout, this is not the case for the A -site (Pr/Bi). A broadened distribution for the Pr-O2 bond length at low temperature indicates the Pr environment varies from site to site even for x =0 . The environment about the Bi site is highly disordered ostensibly due to the 6 s lone pairs on Bi3 +. Correspondingly, we find that the non-Kramers doublet ground-state degeneracy, otherwise anticipated for Pr in the pyrochlore structure, is lifted so as to produce a quadrupolar singlet ground state with a spatially varying energy gap. For x =0 , below TN, the Ru sublattice orders antiferromagnetically, with propagation vector k =(0 ,0 ,0 ) as for Y2Ru2O7 . No ordering associated with the Pr sublattice is observed down to 100 mK. The low-energy magnetic response of Pr2 -xBixRu2O7 features a broad spectrum of magnetic excitations associated with inhomogeneous splitting of the Pr quasidoublet ground state. For x =0 (x =0.97 ), the spectrum is temperature dependent (independent). It appears disorder associated with Bi alloying enhances the inhomogeneous Pr crystal-field level splitting so that intersite interactions become irrelevant for x =0.97 . The structural complexity for the A -site may be reflected in the hysteretic uniform magnetization of B -site ruthenium in the Néel phase.

  7. Efficacy of wheat germ oil in modulating radiation-induced heart damage in rats

    International Nuclear Information System (INIS)

    Said, U.Z.; Azab, Kh.Sh.

    2006-01-01

    Wheat Germ oil is a natural unrefined vegetable oil. It is an excellent source of vitamin E, octacosanol, linoleic and linolenic essential fatty acids, which may be beneficial in neutralizing the free oxygen radicals. This study was designed to investigate the cardio-protective efficacy of wheat germ oil, on radiation-induced oxidative damage in rat's heart. Wheat germ oil was supplemented by gavage to rats at a dose of 81 mg/ kg body wt for 10 successive days pre- and 7 successive days post-exposure to 7 Gy (single dose) of whole body gamma irradiation. The dose of wheat germ oil is equivalent to daily human nutritional supplementation quantity. The results revealed that whole body ?-irradiation of rats produced significant alterations in blood cells picture. The erythrocyte, leucocyte, platelet counts and hemoglobin levels decreased after irradiation. Also, radiation-induced biochemical disorders manifested by significant elevation in xanthine oxidase activity (XO) and thiobarbituric acid reactive substances (TBARS) level, with decrease in reduced glutathione (GSH) content in heart tissues, indicating depression in the antioxidant status. Serum lipid profile as total cholesterol, high density lipoprotein-cholesterol (HDL-C), low density lipoprotein-cholesterol (LDL-C) and triglycerides levels (TG) were significantly higher than normal control rats. Radiation exposure produced a significant rise in the activities of serum markers for heart damage as creatine phosphokinase (CPK), aspartate aminotransferase (AST) and lactic dehydrogenase (LDH) indicating acute cardiac toxicity. Moreover, the obtained results revealed abnormal electrophoretic pattern of LDH isoenzymes in the 7th day after exposure to gamma rays. Three bands only appear on the agarose film comparing with 4 bands in normal control rats. The rats that received wheat germ oil supplement showed significantly less severe damage and remarkable improvement in all of the measured parameters when compared to

  8. Ethanol induced antidepressant-like effect in the mouse forced swimming test: modulation by serotonergic system.

    Science.gov (United States)

    Jain, Nishant S; Kannamwar, Uday; Verma, Lokesh

    2017-02-01

    The present investigation explored the modulatory role of serotonergic transmission in the acute ethanol-induced effects on immobility time in the mouse forced swim test (FST). Acute i.p. administration of ethanol (20% w/v, 2 or 2.5 g/kg, i.p.) decreased the immobility time in FST of mice, indicating its antidepressant-like effect while lower doses of ethanol (1, 1.5 g/kg, i.p.) were devoid of any effect in the FST. The mice pre-treated with a sub-effective dose of 5-HT 2A agonist, DOI (10 μg/mouse, i.c.v.) or 5-HT 1A receptor antagonist, WAY 100635 (0.1 μg/mouse, i.c.v.) but not with the 5-HT 2A/2C antagonist, ketanserin (1.5 μg/mouse, i.c.v.) exhibited a synergistic reduction in the immobility time induced by sub-effective dose of ethanol (1.5 g/kg, i.p.). On the other hand, ethanol (2.5 g/kg, i.p.) failed to decrease the immobility time in mice, pre-treated with 5-HT 1A agonist, 8-OH-DPAT (0.1 μg/mouse, i.c.v.) or ketanserin (1.5 μg/mouse, i.c.v.). In addition, pre-treatment with a 5-HT neuronal synthesis inhibitor, p-CPA (300 mg/kg, i.p. × 3 days) attenuated the anti-immobility effect ethanol (2.5 g/kg, i.p.) in mouse FST. Thus, the results of the present study points towards the essentiality of the central 5-HT transmission at the synapse for the ethanol-induced antidepressant-like effect in the FST wherein the regulatory role of the 5-HT 1A receptor or contributory role of the 5-HT 2A/2C receptor-mediated mechanism is proposed in the anti-immobility effect of acute ethanol in mouse FST.

  9. Nitric oxide modulates cadmium influx during cadmium-induced programmed cell death in tobacco BY-2 cells.

    Science.gov (United States)

    Ma, Wenwen; Xu, Wenzhong; Xu, Hua; Chen, Yanshan; He, Zhenyan; Ma, Mi

    2010-07-01

    Nitric oxide (NO) is a bioactive gas and functions as a signaling molecule in plants exposed to diverse biotic and abiotic stresses including cadmium (Cd(2+)). Cd(2+) is a non-essential and toxic heavy metal, which has been reported to induce programmed cell death (PCD) in plants. Here, we investigated the role of NO in Cd(2+)-induced PCD in tobacco BY-2 cells (Nicotiana tabacum L. cv. Bright Yellow 2). In this work, BY-2 cells exposed to 150 microM CdCl(2) underwent PCD with TUNEL-positive nuclei, significant chromatin condensation and the increasing expression of a PCD-related gene Hsr203J. Accompanied with the occurring of PCD, the production of NO increased significantly. The supplement of NO by sodium nitroprusside (SNP) had accelerated the PCD, whereas the NO synthase inhibitor Nomega-nitro-L-arginine methyl ester hydrochloride (L-NAME) and NO-specific scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) alleviated this toxicity. To investigate the mechanism by which NO exerted its function, Cd(2+) concentration was measured subsequently. SNP led more Cd(2+) content than Cd(2+) treatment alone. By contrast, the prevention of NO by L-NAME decreased Cd(2+) accumulation. Using the scanning ion-selective electrode technique, we analyzed the pattern and rate of Cd(2+) fluxes. This analysis revealed the promotion of Cd(2+) influxes into cells by application of SNP, while L-NAME and cPTIO reduced the rate of Cd(2+) uptake or even resulted in net Cd(2+) efflux. Based on these founding, we concluded that NO played a positive role in CdCl(2)-induced PCD by modulating Cd(2+) uptake and thus promoting Cd(2+) accumulation in BY-2 cells.

  10. Moderate long-term modulation of neuropeptide Y in hypothalamic arcuate nucleus induces energy balance alterations in adult rats.

    Directory of Open Access Journals (Sweden)

    Lígia Sousa-Ferreira

    Full Text Available Neuropeptide Y (NPY produced by arcuate nucleus (ARC neurons has a strong orexigenic effect on target neurons. Hypothalamic NPY levels undergo wide-ranging oscillations during the circadian cycle and in response to fasting and peripheral hormones (from 0.25 to 10-fold change. The aim of the present study was to evaluate the impact of a moderate long-term modulation of NPY within the ARC neurons on food consumption, body weight gain and hypothalamic neuropeptides. We achieved a physiological overexpression (3.6-fold increase and down-regulation (0.5-fold decrease of NPY in the rat ARC by injection of AAV vectors expressing NPY and synthetic microRNA that target the NPY, respectively. Our work shows that a moderate overexpression of NPY was sufficient to induce diurnal over-feeding, sustained body weight gain and severe obesity in adult rats. Additionally, the circulating levels of leptin were elevated but the immunoreactivity (ir of ARC neuropeptides was not in accordance (POMC-ir was unchanged and AGRP-ir increased, suggesting a disruption in the ability of ARC neurons to response to peripheral metabolic alterations. Furthermore, a dysfunction in adipocytes phenotype was observed in these obese rats. In addition, moderate down-regulation of NPY did not affect basal feeding or normal body weight gain but the response to food deprivation was compromised since fasting-induced hyperphagia was inhibited and fasting-induced decrease in locomotor activity was absent.These results highlight the importance of the physiological ARC NPY levels oscillations on feeding regulation, fasting response and body weight preservation, and are important for the design of therapeutic interventions for obesity that include the NPY.

  11. Ion Channels Induced by Antimicrobial Agents in Model Lipid Membranes are Modulated by Plant Polyphenols Through Surrounding Lipid Media.

    Science.gov (United States)

    Efimova, Svetlana S; Zakharova, Anastasiia A; Medvedev, Roman Ya; Ostroumova, Olga S

    2018-03-16

    The potential therapeutic applications of plant polyphenols in various neurological, cardiovascular, metabolic and malignant disorders determine the relevance of studying the molecular mechanisms of their action on the cell membranes. Here, the quantitative changes in the physical parameters of model bilayer lipid membranes upon the adsorption of plant polyphenols were evaluated. It was shown that butein and naringenin significantly decreased the intrinsic dipole potential of cholesterol-free and cholesterol-enriched membranes. Cardamonin, 4'-hydroxychalcone, licochalcone A and liquiritigenin demonstrated the average efficiency, while resveratrol did not characterized by the ability to modulate the bilayer electrostatics. At the same time, the tested polyphenols affected melting of phospholipids with saturated acyl chains. The effects were attributed to the lipid disordering and a promotion of the positive curvature stress. According to DSC data and results of measurements of the threshold voltages that cause bilayer breakdown licochalcone A is the most effective agent. Furthermore, the role of the polyphenol induced changes in the electric and elastic properties of lipid host in the regulation of reconstituted ion channels was examined. The ability of the tested polyphenols to decrease the conductance of single ion channels produced by the antifungal cyclic lipopeptide syringomycin E was in agreement with their effects on the dipole potential of the lipid bilayers. The greatest effect of licochalcone A on the steady-state membrane conductance induced by the antifungal polyene macrolide antibiotic nystatin correlated with its greatest efficacy to induce the positive curvature stress. We also found that butein and naringenin bind specifically to a single pore formed by α-hemolysin from Staphylococcus aureus.

  12. Propofol alleviates electroconvulsive shock-induced memory impairment by modulating proBDNF/mBDNF ratio in depressive rats.

    Science.gov (United States)

    Zhang, Fan; Luo, Jie; Min, Su; Ren, Li; Qin, Peipei

    2016-07-01

    This study investigated the effects of propofol and electroconvulsive shock (ECS), the analogue of electroconvulsive therapy (ECT) in animals, on tissue plasminogen activator (tPA) and its inhibitor (PAI-1) as well as the precursor of brain-derived neurotrophic factor (proBDNF)/mature BDNF (mBDNF) ratio in depressive rats. ECT is an effective treatment for depression, but can cause cognitive deficit. Some studies have indicated that propofol can ameliorate cognitive decline induced by ECT, but the underlying molecular mechanism is still unclear. Recent evidence has found that mBDNF and its precursor proBDNF are related to depression and cognitive function; they elicit opposite effects on cellular functions. Chronic unpredicted mild stress is widely used to induce depressive behaviors in rodents. This study found that the depression resulted in an increased expression of PAI-1 and upregulation of the proBDNF/mBDNF ratio, together with a decreased level of tPA, long-term potentiation (LTP) impairment, and cognitive decline. The proBDNF/mBDNF ratio was further upregulated after the ECS treatment in depressive rats, resulting in the deterioration of cognitive function and hippocampal LTP. Propofol alone did not reverse the changes in depressive rats, but when co-administered with ECS, it improved the cognitive function, alleviated the impairment of LTP, downregulated the proBDNF/mBDNF ratio, and increased the tPA expression. The results of this study suggest that propofol ameliorates cognitive decline induced by ECT, which was partly by modulating the proBDNF/mBDNF ratio and reversing the excessive changes in hippocampal synaptic plasticity, providing a new evidence for involving the proBDNF/mBDNF system in the progression and treatment of depression. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Metabolic modulation induced by oestradiol and DHT in immature rat Sertoli cells cultured in vitro.

    Science.gov (United States)

    Rato, Luís; Alves, Marco G; Socorro, Sílvia; Carvalho, Rui A; Cavaco, José E; Oliveira, Pedro F

    2012-02-01

    Sertoli cells actively metabolize glucose that is converted into lactate, which is used by developing germ cells for their energy metabolism. Androgens and oestrogens have general metabolic roles that reach far beyond reproductive processes. Hence, the main purpose of this study was to examine the effect of sex hormones on metabolite secretion/consumption in primary cultures of rat Sertoli cells. Sertoli cell-enriched cultures were maintained in a defined medium for 50 h. Glucose and pyruvate consumption, and lactate and alanine secretion were determined, by 1H-NMR (proton NMR) spectra analysis, in the presence or absence of 100 nM E2 (17β-oestradiol) or 100 nM 5α-DHT (dihydrotestosterone). Cells cultured in the absence (control) or presence of E2 consumed the same amount of glucose (29±2 pmol/cell) at similar rates during the 50 h. After 25 h of treatment with DHT, glucose consumption and glucose consumption rate significantly increased. Control and E2-treated cells secreted similar amounts of lactate during the 50 h, while the amount of lactate secreted by DHT-treated cells was significantly lower. Such a decrease was concomitant with a significant decrease in LDH A [LDH (lactate dehydrogenase) chain A] and MCT4 [MCT (monocarboxylate transporter) isoform 4] mRNA levels after 50 h treatment in hormonally treated groups, being more pronounced in DHT-treated groups. Finally, alanine production was significantly increased in E2-treated cells after 25 h treatment, which indicated a lower redox/higher oxidative state for the cells in those conditions. Together, these results support the existence of a relation between sex hormones action and energy metabolism, providing an important assessment of androgens and oestrogens as metabolic modulators in rat Sertoli cells.

  14. Neuronal modulation of lung injury induced by polymeric hexamethylene diisocyanate in mice

    International Nuclear Information System (INIS)

    Lee, C.-T.; Poovey, Halet G.; Rando, Roy J.; Hoyle, Gary W.

    2007-01-01

    1,6-Hexamethylene diisocyanate biuret trimer (HDI-BT) is a nonvolatile isocyanate that is a component of polyurethane spray paints. HDI-BT is a potent irritant that when inhaled stimulates sensory nerves of the respiratory tract. The role of sensory nerves in modulating lung injury following inhalation of HDI-BT was assessed in genetically manipulated mice with altered innervation of the lung. Knockout mice with a mutation in the low-affinity nerve growth factor receptor (NGFR), which have decreased innervation by nociceptive nerve fibers, and transgenic mice expressing nerve growth factor (NGF) from the lung-specific Clara cell secretory protein (CCSP) promoter, which have increased innervation of the airways, were exposed to HDI-BT aerosol and evaluated at various times after exposure. NGFR knockout mice exhibited significantly more, and CCSP-NGF transgenic mice exhibited significantly less injury and inflammation compared with wild-type mice, indicative of a protective effect of nociceptive nerves on the lung following HDI-BT inhalation. Transgenic mice overexpressing the tachykinin 1 receptor (Tacr1) in lung epithelial cells also showed less severe injury and inflammation compared with wild-type mice after HDI-BT exposure, establishing a role for released tachykinins acting through Tacr1 in mediating at least part of the protective effect. Treatment of lung fragments from Tacr1 transgenic mice with the Tacr1 ligand substance P resulted in increased cAMP accumulation, suggesting this compound as a possible signaling mediator of protective effects on the lung following nociceptive nerve stimulation. The results indicate that sensory nerves acting through Tacr1 can exert protective or anti-inflammatory effects in the lung following isocyanate exposure

  15. Temperature-dependency analysis and correction methods of in-situ power-loss estimation for crystalline silicon modules undergoing potential-induced degradation stress testing

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso

    2015-01-01

    We propose a method of in-situ characterization of the photovoltaic module power at standard test conditions using superposition of the dark current-voltage (I-V) curve measured at elevated stress temperature during potential-induced degradation (PID) testing. PID chamber studies were performed o...

  16. Modulation of formalin-induced pain-related behaviour by clonidine and yohimbine in the Speke's hinged tortoise (Kiniskys spekii)

    DEFF Research Database (Denmark)

    Makau, C M; Towett, P K; Abelson, K S P

    2017-01-01

    The study was designed to investigate the involvement of noradrenergic and serotonergic receptor systems in the modulation of formalin-induced pain-related behaviour in the Speke's hinged tortoise. Intradermal injection of 100 μL of formalin at a dilution of 12.5% caused pain-related behaviour (h...

  17. Critical role of p53 upregulated modulator of apoptosis in benzyl isothiocyanate-induced apoptotic cell death.

    Directory of Open Access Journals (Sweden)

    Marie Lue Antony

    Full Text Available Benzyl isothiocyanate (BITC, a constituent of edible cruciferous vegetables, decreases viability of cancer cells by causing apoptosis but the mechanism of cell death is not fully understood. The present study was undertaken to determine the role of Bcl-2 family proteins in BITC-induced apoptosis using MDA-MB-231 (breast, MCF-7 (breast, and HCT-116 (colon human cancer cells. The B-cell lymphoma 2 interacting mediator of cell death (Bim protein was dispensable for proapoptotic response to BITC in MCF-7 and MDA-MB-231 cells as judged by RNA interference studies. Instead, the BITC-treated MCF-7 and MDA-MB-231 cells exhibited upregulation of p53 upregulated modulator of apoptosis (PUMA protein. The BITC-mediated induction of PUMA was relatively more pronounced in MCF-7 cells due to the presence of wild-type p53 compared with MDA-MB-231 with mutant p53. The BITC-induced apoptosis was partially but significantly attenuated by RNA interference of PUMA in MCF-7 cells. The PUMA knockout variant of HCT-116 cells exhibited significant resistance towards BITC-induced apoptosis compared with wild-type HCT-116 cells. Attenuation of BITC-induced apoptosis in PUMA knockout HCT-116 cells was accompanied by enhanced G2/M phase cell cycle arrest due to induction of p21 and down regulation of cyclin-dependent kinase 1 protein. The BITC treatment caused a decrease in protein levels of Bcl-xL (MCF-7 and MDA-MB-231 cells and Bcl-2 (MCF-7 cells. Ectopic expression of Bcl-xL in MCF-7 and MDA-MB-231 cells and that of Bcl-2 in MCF-7 cells conferred protection against proapoptotic response to BITC. Interestingly, the BITC-treated MDA-MB-231 cells exhibited induction of Bcl-2 protein expression, and RNA interference of Bcl-2 in this cell line resulted in augmentation of BITC-induced apoptosis. The BITC-mediated inhibition of MDA-MB-231 xenograft growth in vivo was associated with the induction of PUMA protein in the tumor. In conclusion, the results of the present study

  18. Protective Effect of Edaravone Against Cyclosporine-Induced Chronic Nephropathy Through Antioxidant and Nitric Oxide Modulating Pathways in Rats

    Directory of Open Access Journals (Sweden)

    Elahe Sattarinezhad

    2017-03-01

    Full Text Available Background: Cyclosporine A (CsA is an immunosuppressant with therapeutic indications in various immunological diseases; however, its use is associated with chronic nephropathy. Oxidative stress has a crucial role in CsA-induced nephrotoxicity. The present study evaluates the protective effect of edaravone on CsA-induced chronic nephropathy and investigates its antioxidant and nitric oxide modulating property. Methods: Male Sprague-Dawley rats (n=66 were distributed into nine groups, including a control (group 1 (n=7. Eight groups received CsA (15 mg/kg for 28 days while being treated. The groups were categorized as: •\tGroup 2: Vehicle (n=10 •\tGroups 3, 4, and 5: Edaravone (1, 5, and 10 mg/kg (n=7 each •\tGroup 6: Diphenyliodonium chloride, a specific endothelial nitric oxide synthase (eNOS inhibitor (n=7 •\tGroup 7: Aminoguanidine, a specific inducible nitric oxide synthase (iNOS inhibitor (n=7 •\tGroup 8: Edaravone (10 mg/kg plus diphenyliodonium chloride (n=7 •\tGroup 9: Edaravone (10 mg/kg plus aminoguanidine (n=7 Blood urea nitrogen and serum creatinine levels, malondialdehyde, superoxide dismutase, and glutathione reductase enzyme activities were measured using standard kits. Renal histopathological evaluations and measurements of eNOS and iNOS gene expressions by RT-PCR were also performed. Data were analyzed using one-way analysis of variance (ANOVA followed by Tukey’s test (SPSS software version 18.0. Results: Edaravone (10 mg/kg significantly attenuated CsA-induced oxidative stress, renal dysfunction, and kidney tissue injury. Aminoguanidine improved the renoprotective effect of edaravone. Edaravone reduced the elevated mRNA level of iNOS, but could not alter the level of eNOS mRNA significantly. Conclusion: Edaravone protects against CsA-induced chronic nephropathy using antioxidant property and probably through inhibiting iNOS gene expression.

  19. Modulation of Δ9-tetrahydrocannabinol-induced MCF-7 breast cancer cell growth by cyclooxygenase and aromatase

    International Nuclear Information System (INIS)

    Takeda, Shuso; Yamamoto, Ikuo; Watanabe, Kazuhito

    2009-01-01

    Δ 9 -Tetrahydrocannabinol (Δ 9 -THC), a major constituent of marijuana, has been shown to stimulate the growth of MCF-7 breast cancer cells through cannabinoid receptor-independent signaling [Takeda, S., Yamaori, S., Motoya, E., Matsunaga, T., Kimura, T., Yamamoto, I., Watanabe, K., 2008. Δ 9 -Tetrahydrocannabinol enhances MCF-7 cell proliferation via cannabinoid receptor-independent signaling. Toxicology 245, 141-146]. Although the growth of MCF-7 cells is known to be stimulated by 17β-estradiol (E 2 ), the interaction of Δ 9 -THC and E 2 in MCF-7 cell growth is not fully clarified so far. In the present study, by using E 2 -sensitive MCF-7 cells that have expressed cyclooxygenase-2 (COX-2) and cytochrome P450 19 (aromatase), we studied whether or not COX-2 and aromatase are involved in Δ 9 -THC-mediated MCF-7 cell proliferation. It was shown that Δ 9 -THC-induced MCF-7 cell growth was inhibited by COX-2 inhibitors and was stimulated by arachidonic acid (a COX substrate). However, the growth of MCF-7 cells induced by Δ 9 -THC was not stimulated by PGE 2 , and the expression of aromatase was not affected by COX-2 inhibitors, arachidonic acid, and PGE 2 , suggesting that there is a disconnection between COX-2 (PGE 2 ) and aromatase in Δ 9 -THC-mediated MCF-7 cell proliferation. On the other hand, Δ 9 -THC-induced MCF-7 cell growth was elevated by two kinds of aromatase inhibitors. Taken together with the evidence that Δ 9 -THC-induced MCF-7 cell proliferation was interfered with testosterone (an aromatase substrate) and exogenously provided E 2 , it is suggested that (1) the growth stimulatory effects of Δ 9 -THC are mediated by the product(s) of COX-2 except for PGE 2 , (2) the action of Δ 9 -THC is modulated by E 2 , and (3) COX-2 and aromatase are individually engaged in the proliferation of MCF-7 cells induced by Δ 9 -THC.

  20. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange

    DEFF Research Database (Denmark)

    Liu, Yi; Dentin, Renaud; Chen, Danica

    2008-01-01

    During early fasting, increases in skeletal muscle proteolysis liberate free amino acids for hepatic gluconeogenesis in response to pancreatic glucagon. Hepatic glucose output diminishes during the late protein-sparing phase of fasting, when ketone body production by the liver supplies compensatory...... expression through the dephosphorylation and nuclear shuttling of forkhead box O1 (FOXO1). Here we show that a fasting-inducible switch, consisting of the histone acetyltransferase p300 and the nutrient-sensing deacetylase sirtuin 1 (SIRT1), maintains energy balance in mice through the sequential induction...... of CRTC2 and FOXO1. After glucagon induction, CRTC2 stimulated gluconeogenic gene expression by an association with p300, which we show here is also activated by dephosphorylation at Ser 89 during fasting. In turn, p300 increased hepatic CRTC2 activity by acetylating it at Lys 628, a site that also...

  1. Modulating sensitivity to drug-induced apoptosis: the future for chemotherapy?

    International Nuclear Information System (INIS)

    Makin, Guy; Dive, Caroline

    2001-01-01

    Drug resistance is a fundamental problem in the treatment of most common human cancers. Our understanding of the cellular mechanisms underlying death and survival has allowed the development of rational approaches to overcoming drug resistance. The mitogen activated protein kinase family of protein serine/threonine kinases has been implicated in this complex web of signalling, with some members acting to enhance death and other members to prevent it. A recent publication by MacKeigan et al is the first to demonstrate an enhancement of drug-induced cell death by simultaneous blockade of MEK-mediated survival signalling, and offers the potential for targeted adjuvant therapy as a means of overcoming drug resistance

  2. Bragg grating induced cladding mode coupling due to asymmetrical index modulation in depressed cladding fibers

    DEFF Research Database (Denmark)

    Berendt, Martin Ole; Grüne-Nielsen, Lars; Soccolich, C.F.

    1998-01-01

    to reduce this problem. None of these designs seems to give complete solutions. In particular, the otherwise promising depressed cladding design gives a pronounced coupling to one LP01 mode, this has been referred to as a Ghost grating. To find the modes of the fiber we have established a numerical mode......UV-written Bragg gratings find wide spread use as wavelength selective components. In reflection high extinction ratios are routinely obtained. However, coupling to cladding modes gives excess loss on the short wavelength side of the main reflection. Different fiber-designs have been proposed......-solver based on the staircase-approximation method. The Bragg grating causes coupling between the fundamental LP01 mode and higher order LP1p modes that satisfy phase-matching. The coupling strength is determined by the overlap integral of the LP01, the LP1p mode, and the UV-induced index perturbation. For LP0...

  3. Characterization of human septic sera induced gene expression modulation in human myocytes

    Science.gov (United States)

    Hussein, Shaimaa; Michael, Paul; Brabant, Danielle; Omri, Abdelwahab; Narain, Ravin; Passi, Kalpdrum; Ramana, Chilakamarti V.; Parrillo, Joseph E.; Kumar, Anand; Parissenti, Amadeo; Kumar, Aseem

    2009-01-01

    To gain a better understanding of the gene expression changes that occurs during sepsis, we have performed a cDNA microarray study utilizing a tissue culture model that mimics human sepsis. This study utilized an in vitro model of cultured human fetal cardiac myocytes treated with 10% sera from septic patients or 10% sera from healthy volunteers. A 1700 cDNA expression microarray was used to compare the transcription profile from human cardiac myocytes treated with septic sera vs normal sera. Septic sera treatment of myocytes resulted in the down-regulation of 178 genes and the up-regulation of 4 genes. Our data indicate that septic sera induced cell cycle, metabolic, transcription factor and apoptotic gene expression changes in human myocytes. Identification and characterization of gene expression changes that occur during sepsis may lead to the development of novel therapeutics and diagnostics. PMID:19684886

  4. Subcortical substrates of TMS induced modulation of the cortico-cortical connectivity

    DEFF Research Database (Denmark)

    Groppa, Sergiu; Muthuraman, Muthuraman; Otto, Birte

    2013-01-01

    pulse TMS to the primary motor cortex (M1) of healthy subjects to interfere the cortical oscillatory activity recorded by simultaneous EEG and calculated the cortico-cortical coherence and power in the alpha and beta band. To study the structural substrate of the functional connectivity we performed...... diffusion tensor imaging and fractional anisotropy analysis (FA). To capture the pathways involved we applied probabilistic tractography to reconstruct the entire network. RESULTS: Suprathreshold TMS of M1 induced a consistent enhancement of interhemispheric cortico-cortical alpha band coherence that lasted...... ca. 175 ms. after the pulse has been applied. The changes were confined to the interhemispheric central EEG electrodes (i.e. C3-C4). There were no consistent changes in the beta band. Power analysis revealed a longer lasting increase in the beta band after TMS pulses. A cluster in the contralateral...

  5. Are plant endogenous factors like ethylene modulators of the early oxidative stress induced by mercury?

    Directory of Open Access Journals (Sweden)

    M Belén eMontero-Palmero

    2014-08-01

    Full Text Available The induction of oxidative stress is one of the quickest symptoms appearing in plants subjected to metal stress. A transcriptional analysis of the early responses of alfalfa (Medicago sativa seedlings to mercury (Hg; 3 µM for 3, 6 and 24 h showed that up-regulation of genes responding to ethylene were up-regulated, a phytohormone known to mediate in the cellular redox homeostasis. In this mini-review we have compared these quick responses with two other concurrent transcriptomic analysis in Barrel medic (Medicago truncatula and barley (Hordeum vulgare under Hg stress. Besides ethylene, ABA and jasmonate related genes were up-regulated, all of them are endogenous factors known to intervene in oxidative stress responses. The information obtained may target future work to understand the cellular mechanisms triggered by Hg, enabling biotechnological approaches to diminish Hg-induced phytotoxicity.

  6. Therapeutic Down-Modulators of Staphylococcal Superantigen-Induced Inflammation and Toxic Shock

    Directory of Open Access Journals (Sweden)

    Teresa Krakauer

    2010-07-01

    Full Text Available Staphylococcal enterotoxin B (SEB and related superantigenic toxins are potent stimulators of the immune system and cause a variety of diseases in humans, ranging from food poisoning to toxic shock. These toxins bind directly to major histocompatibility complex (MHC class II molecules on antigen-presenting cells and specific Vb regions of T-cell receptors (TCR, resulting in hyperactivation of both monocytes/macrophages and T lymphocytes. Activated host cells produce massive amounts of proinflammatory cytokines and chemokines, activating inflammation and coagulation, causing clinical symptoms that include fever, hypotension, and shock. This review summarizes the in vitro and in vivo effects of staphylococcal superantigens, the role of pivotal mediators induced by these toxins in the pathogenic mechanisms of tissue injury, and the therapeutic agents to mitigate the toxic effects of superantigens.

  7. Thioredoxin 1 modulates apoptosis induced by bioactive compounds in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Aida Rodriguez-Garcia

    2017-08-01

    Full Text Available Accumulating evidence suggests that natural bioactive compounds, alone or in combination with traditional chemotherapeutic agents, could be used as potential therapies to fight cancer. In this study, we employed four natural bioactive compounds (curcumin, resveratrol, melatonin, and silibinin and studied their role in redox control and ability to promote apoptosis in androgen sensitive and insensitive prostate cancer cells. Here is shown that curcumin and resveratrol promote ROS production and induce apoptosis in LNCaP and PC-3. An increase in reactive species is a trigger event in curcumin-induced apoptosis and a consequence of resveratrol effects on other pathways within these cells. Moreover, here we demonstrated that these four compounds affect differently one of the main intracellular redox regulator, the thioredoxin system. Exposure to curcumin and resveratrol promoted TRX1 oxidation and altered its subcellular location. Furthermore, resveratrol diminished TRX1 levels in PC-3 cells and increased the expression of its inhibitor TXNIP. Conversly, melatonin and silibinin only worked as cytostatic agents, reducing ROS levels and showing preventive effects against TRX oxidation. All together, this work explores the effect of compounds currently tested as chemo-preventive agents in prostate cancer therapy, on the TRX1 redox state and function. Our work shows the importance that the TRX system might have within the differences found in their mechanisms of action. These bioactive compounds trigger different responses and affect ROS production and redox systems in prostate cancer cells, suggesting the key role that redox-related pathways might play in processes like differentiation or survival in prostate cancer. Keywords: Thioredoxin, Thioredoxin reductase, TXNIP, Prostate cancer, Redox signaling, Apoptosis

  8. Modulation of thioacetamide-induced hepatic inflammations, angiogenesis and fibrosis by andrographolide in mice.

    Science.gov (United States)

    Lee, Tzung-Yan; Chang, Hen-Hong; Wen, Chorng-Kai; Huang, Tse-Hung; Chang, Ya-Shu

    2014-12-02

    Liver fibrosis is a complex disease in which several pathological processes, such as inflammation and angiogenesis, are closely integrated. We hypothesised that treatment with the pharmacological agent, andrographolide (AP), which has multiple mechanisms of action, will provide a greater understanding of the role of AP during the multiple pathological processes that occur in advanced liver disease. Liver fibrogenesis was induced in mice using thioacetamide (TAA), which was administrated for 6 weeks. Andrographolide (5, 20 or 100mg/kg) was then given once daily following TAA injection. Liver collagen was examined using hydroxyproline and α-SMA, while the inflammatory response was quantified by Western blot and RT-PCR assays. Liver angiogenesis, neutrophil infiltration and hypoxia were assessed using CD11b+, vWF and HIF-1α immunostaining. Mice with liver injuries that were treated with andrographolide showed improved inflammatory response and diminished angiogenesis and hepatic fibrosis. Andrographolide treatment inhibited liver neutrophil infiltration, while a decreased in TNF-α and COX-2 signalling indicated macrophage activation. Andrographolide decreased overall liver hypoxia, as shown by the downregulation of hypoxia-inducible cascade genes, such as VEGF. Andrographolide treatment resulted in a significant decrease in hepatic fibrogenesis, α-SMA abundance, and TGF-βR1 expression. The present results suggest that multi-targeted therapies directed against angiogenesis, inflammation, and fibrosis should be considered for the treatment of advanced liver injury. They further suggest that andrographolide treatment may be a novel therapeutic agent for the treatment of liver disease. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Modulation of ionizing radiation induced oxidative imbalance by semi-fractionated extract of Piper betle

    Science.gov (United States)

    Verma, Savita; Dutta, Ajaswrata; Sankhwar, Sanghmitra; Shukla, Sandeep Kumar

    2010-01-01

    The study was planned to evaluate modulatory effect of aqueous extract of Piper betle leaf (PBL) on ionizing radiation mediated oxidative stress leading to normal tissues damage during radiotherapy and other radiation exposures. The total polyphenols and flavonoids known as free radical scavenger (chelators) were measured in the extract. To ascertain antioxidant potential of PBL extract, we studied free radical scavenging, metal chelation, reducing power, lipid peroxidation inhibition and ferric reducing antioxidant properties (FRAP ) using in vitro assays. Mice were exposed to varied radiation doses administered with the same extract prior to irradiation to confirm its oxidative stress minimizing efficacy by evaluating ferric reducing ability of plasma, reduced glutathione, lipid peroxidation and micro-nuclei frequency. PBL extract was effective in scavenging DPPH (up to 92% at 100 µg/ml) and superoxide radicals (up to 95% at 80 µg/ml), chelated metal ions (up to 83% at 50 µg/ml) and inhibited lipid peroxidation (up to 45.65% at 500 µg/ml) in a dose dependant manner using in vitro model. Oral administration of PBL extract (225 mg/kg body weight) 1 hr before irradiation in mice significantly enhanced (p < 0.01) radiation abated antioxidant potential of plasma and GSH level in all the observed organs. The treatment with extract effectively lowered the radiation induced lipid peroxidation at 24 hrs in all the selected organs with maximum inhibition in thymus (p < 0.01). After 48 hrs, lipid peroxidation was maximally inhibited in the group treated with the extract. Frequency of radiation induced micronucleated cells declined significantly (34.78%, p < 0.01) at 24 hrs post-irradiation interval by PBL extract administration. The results suggest that PBL extract has high antioxidant potential and relatively non-toxic and thus could be assertively used to mitigate radiotherapy inflicted normal tissues damage and also injuries caused by moderate doses of radiation

  10. Salidroside Inhibits Myogenesis by Modulating p-Smad3-Induced Myf5 Transcription

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2018-03-01

    Full Text Available Aim: Salidroside is an active compound extracted from Rhodiola rosea which is used to alleviate fatigue and enhance endurance in high altitude regions. Some studies have demonstrated that salidroside can affect precursor cell differentiation in hematopoietic stem cells, erythrocytes, and osteoblasts. The aim of this study was to investigate the effect of salidroside on myoblast differentiation and to explore the underlying molecular mechanisms of this effect.Methods: C2C12 myoblast cells were treated with different concentrations of salidroside in differentiation media. Real-time PCR, Western blotting, and immunofluorescence assay were employed to evaluate the effects of salidroside on C2C12 differentiation. RNA interference was used to reveal the important role of Myf5 in myogenesis inhibited by salidroside. Chromatin Immunoprecipitation and dual-luciferase reporter assay were utilized to explore the underlying mechanisms of salidroside-induced upregulation of Myf5.Results: We found that salidroside inhibits myogenesis by downregulating MyoD and myogenin, preserves undifferentiated reserve cell pools by upregulating Myf5. Knocking down Myf5 expression significantly rescued the myogenesis inhibited by salidroside. The effect of salidroside on myogenesis was associated with increased phosphorylated Smad3 (p-Smad3. Both SIS3 (Specific inhibitor of p-Smad3 and dominant negative Smad3 plasmid (DN-Smad3 attenuated the inhibitory effect of salidroside on C2C12 differentiation. Moreover, the induction of Myf5 transcription by salidroside was dependent on a Smad-binding site in the promoter region of Myf5 gene.Conclusion and Implications: Our findings identify a novel role and mechanism for salidroside in regulating myogenesis through p-Smad3-induced Myf5 transcription, which may have implications for its further application in combating degenerative muscular diseases caused by depletion of muscle stem cells, such as Duchenne muscular dystrophy or

  11. Modulation of Immune Disorders Induced-Arthritis in γ- Irradiated Rats

    International Nuclear Information System (INIS)

    Thabet, N.M.S.

    2013-01-01

    This study was to evaluate the antioxidant and anti-inflammatory capability of a laboratory preparation mixture Nano Selenium-lovastatin (Lov-Se) against oxidative stress and inflammatory cascade in irradiated and/or adjuvant arthritic rats. The experimental animals were divided into: adjuvant free groups and adjuvant induced groups. Rats were exposed to whole body γ-radiation (2 Gy every 3 days up to total dose of 8 Gy) and received oral administration of 1 ml Lov-Se mixture (≈ 20 mg kg - 1 Lov and 0.1 mg kg - 1 day - 1 Se) for 14 successive days. Animal model of arthritis was organized by subcutaneous injection of complete freund’s adjuvant. The antioxidant parameters (heart GSH-Px, CAT, SOD, XDH, GSH and blood Se), and oxidant markers (heart XO, NO, protein carbonyls and TBARS) and Also, the inflammatory molecules (serum TNF-α, CRP and RF) were determined. In irradiated Lov-Se rats, the results obtained reveals that, TBARS, protein carbonyl, TNF-α, CRP levels, and XO, CAT and SOD activities were significantly ameliorated as compared to irradiated rats. Also, heart GSH, NO levels, XDH, GSH-Px activities and blood Se level were significantly improved. In addition, the administration of Lov-Se to the arthritic and arthritic irradiated rats ameliorates the disturbance occurs in oxidative stress, inflammatory cascades and antioxidant indicators when compared to control rats. In conclusion, the proper administration of Lov-Se mixture might reduce the radiation-induced heart injury via amending the antioxidant molecules and decreasing lipid and protein oxidation. Also, it could be suggested that Lov-Se mixture might posses a considerable anti-inflammatory properties

  12. Modulation of interferon-induced genes by lipoxin analogue in anti-glomerular basement membrane nephritis.

    Science.gov (United States)

    Ohse, Takamoto; Ota, Tatsuru; Kieran, Niamh; Godson, Catherine; Yamada, Koei; Tanaka, Tetsuhiro; Fujita, Toshiro; Nangaku, Masaomi

    2004-04-01

    Immune complex deposition is associated with the accumulation of neutrophils, which play an important role in the various immune-mediated diseases. A novel anti-inflammatory agent, the lipoxin A (LXA) analogue (15-epi-16-(FPhO)-LXA-Me)), a stable synthetic analogue of aspirin-triggered 15-epi-lipoxin A4 (ATLa), was used in experimental anti-glomerular basement membrane (GBM) antibody nephritis in mice. ATLa was administered before the induction of the disease, and 2 h later, the animals were killed. ATLa reduced the infiltrating neutrophils and nitrotyrosine staining in glomeruli. Subsequent changes of gene expression in the early phase were evaluated, and 5674 genes were present under the basal conditions in kidneys from normal mice; 54 upregulated genes and 25 downregulated genes were detected in anti-GBM nephritis. Eighteen of these upregulated genes were those induced by IFN-gamma. Real-time quantitative PCR analysis confirmed the results of the microarrays. To investigate a role of IFN-gamma in neutrophil infiltration, anti-GBM nephritis was induced in IFN-gamma knockout mice. The number of infiltrating neutrophils in these mice did not differ from those in wild-type mice. Also examined were CD11b expression on neutrophils from mice treated with ATLa by flow cytometry, but suppression of this adhesion molecule was not observed. Neutrophil infiltration was successfully inhibited by ATLa in the early phase of murine anti-GBM nephritis. Microarray analysis detected the change of mRNA expression in anti-GBM nephritis and demonstrated amelioration of various genes by ATLa, which may provide a clue to the development of novel therapeutic approaches in immune renal injury.

  13. Novelty-induced emotional arousal modulates cannabinoid effects on recognition memory and adrenocortical activity.

    Science.gov (United States)

    Campolongo, Patrizia; Morena, Maria; Scaccianoce, Sergio; Trezza, Viviana; Chiarotti, Flavia; Schelling, Gustav; Cuomo, Vincenzo; Roozendaal, Benno

    2013-06-01

    Although it is well established that cannabinoid drugs can influence cognitive performance, the findings-describing both enhancing and impairing effects-have been ambiguous. Here, we investigated the effects of posttraining systemic administration of the synthetic cannabinoid agonist WIN55,212-2 (0.1, 0.3, or 1.0 mg/kg) on short- and long-term retention of object recognition memory under two conditions that differed in their training-associated arousal level. In male Sprague-Dawley rats that were not previously habituated to the experimental context, WIN55,212-2 administered immediately after a 3-min training trial, biphasically impaired retention performance at a 1-h interval. In contrast, WIN55,212-2 enhanced 1-h retention of rats that had received extensive prior habituation to the experimental context. Interestingly, immediate posttraining administration of WIN55,212-2 to non-habituated rats, in doses that impaired 1-h retention, enhanced object recognition performance at a 24-h interval. Posttraining WIN55,212-2 administration to habituated rats did not significantly affect 24-h retention. In light of intimate interactions between cannabinoids and the hypothalamic-pituitary-adrenal axis, we further investigated whether cannabinoid administration might differently influence training-induced glucocorticoid activity in rats in these two habituation conditions. WIN55,212-2 administered after object recognition training elevated plasma corticosterone levels in non-habituated rats whereas it decreased corticosterone levels in habituated rats. Most importantly, following pretreatment with the corticosterone-synthesis inhibitor metyrapone, WIN55,212-2 effects on 1- and 24-h retention of non-habituated rats became similar to those seen in the low-aroused habituated animals, indicating that cannabinoid-induced regulation of adrenocortical activity contributes to the environmentally sensitive effects of systemically administered cannabinoids on short- and long

  14. Bifidobacterium longum CECT 7347 modulates immune responses in a gliadin-induced enteropathy animal model.

    Directory of Open Access Journals (Sweden)

    José Moisés Laparra

    Full Text Available Coeliac disease (CD is an autoimmune disorder triggered by gluten proteins (gliadin that involves innate and adaptive immunity. In this study, we hypothesise that the administration of Bifidobacterium longum CECT 7347, previously selected for reducing gliadin immunotoxic effects in vitro, could exert protective effects in an animal model of gliadin-induced enteropathy. The effects of this bacterium were evaluated in newborn rats fed gliadin alone or sensitised with interferon (IFN-γ and fed gliadin. Jejunal tissue sections were collected for histological, NFκB mRNA expression and cytokine production analyses. Leukocyte populations and T-cell subsets were analysed in peripheral blood samples. The possible translocation of the bacterium to different organs was determined by plate counting and the composition of the colonic microbiota was quantified by real-time PCR. Feeding gliadin alone reduced enterocyte height and peripheral CD4+ cells, but increased CD4+/Foxp3+ T and CD8+ cells, while the simultaneous administration of B. longum CECT 7347 exerted opposite effects. Animals sensitised with IFN-γ and fed gliadin showed high cellular infiltration, reduced villi width and enterocyte height. Sensitised animals also exhibited increased NFκB mRNA expression and TNF-α production in tissue sections. B. longum CECT 7347 administration increased NFκB expression and IL-10, but reduced TNF-α, production in the enteropathy model. In sensitised gliadin-fed animals, CD4+, CD4+/Foxp3+ and CD8+ T cells increased, whereas the administration of B. longum CECT 7347 reduced CD4+ and CD4+/Foxp3+ cell populations and increased CD8+ T cell populations. The bifidobacterial strain administered represented between 75-95% of the total bifidobacteria isolated from all treated groups, and translocation to organs was not detected. These findings indicate that B. longum attenuates the production of inflammatory cytokines and the CD4+ T-cell mediated immune response in

  15. Heme oxygenase-1 gene expression modulates angiotensin II-induced increase in blood pressure.

    Science.gov (United States)

    Yang, Liming; Quan, Shuo; Nasjletti, Alberto; Laniado-Schwartzman, Michal; Abraham, Nader G

    2004-06-01

    The heme-heme oxygenase (HO) system has been implicated in the regulation of vascular reactivity and blood pressure. This study examines the notion that overexpression of HO decreases pressor responsiveness to angiotensin II (Ang II). Five-day-old Sprague-Dawley rats received an intraleft ventricular injection of approximately 5x10(9) cfu/mL of retroviruses containing human HO-1 sense (LSN-HHO-1), rat HO-1 antisense (LSN-RHO-1-AS), or control retrovirus (LXSN). Three months later, rats were instrumented with femoral arterial and venous catheters for mean arterial pressure (MAP) determination and Ang II administration, respectively. Rats injected with LSN-HHO-1, but not with LXSN, expressed human HO-1 mRNA and protein in several tissues. BP increased with administration of Ang II in rats expressing and not expressing human HO-1. However, the Ang II-induced pressor response (mm Hg) in LSN-HHO-1 rats (16+/-3, 27+/-3, and 38+/-3 at 0.5, 2, and 10 ng) was surpassed (PHHO-1 rats with the HO inhibitor tin mesoporphyrin (SnMP) enhanced (P<0.05) the Ang II-induced pressor response to a level not different from that observed in LXSN rats. Rats injected with LSN-RHO-1-AS showed a decrease in renal HO-1 protein expression and HO activity relative to control LXSN rats. Administration of Ang II (0.1 to 2 ng) caused small (4 to 5 mm Hg) but significant increases in MAP in rats injected with LSN-RHO-1-AS (P<0.05) compared with rats injected with LXSN. These data demonstrate that overexpression of HO-1 brings about a reduction in pressor responsiveness to Ang II, which is most likely due to increased generation of an HO-1 product, presumably CO, with the ability to inhibit vascular reactivity to constrictor stimuli.

  16. A Surfactant-Induced Functional Modulation of a Global Virulence Regulator from Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Sukhendu Mandal

    Full Text Available Triton X-100 (TX-100, a useful non-ionic surfactant, reduced the methicillin resistance in Staphylococcus aureus significantly. Many S. aureus proteins were expressed in the presence of TX-100. SarA, one of the TX-100-induced proteins, acts as a global virulence regulator in S. aureus. To understand the effects of TX-100 on the structure, and function of SarA, a recombinant S. aureus SarA (rSarA and its derivative (C9W have been investigated in the presence of varying concentrations of this surfactant using various probes. Our data have revealed that both rSarA and C9W bind to the cognate DNA with nearly similar affinity in the absence of TX-100. Interestingly, their DNA binding activities have been significantly increased in the presence of pre-micellar concentration of TX-100. The increase of TX-100 concentrations to micellar or post-micellar concentration did not greatly enhance their activities further. TX-100 molecules have altered the secondary and tertiary structures of both proteins to some extents. Size of the rSarA-TX-100 complex appears to be intermediate to those of rSarA and TX-100. Additional analyses show a relatively moderate interaction between C9W and TX-100. Binding of TX-100 to C9W has, however, occurred by a cooperative pathway particularly at micellar and higher concentrations of this surfactant. Taken together, TX-100-induced structural alteration of rSarA and C9W might be responsible for their increased DNA binding activity. As TX-100 has stabilized the somewhat weaker SarA-DNA complex effectively, it could be used to study its structure in the future.

  17. Curcumin mitigates lithium-induced thyroid dysfunction by modulating antioxidant status, apoptosis and inflammatory cytokines

    Directory of Open Access Journals (Sweden)

    Sanaa M. Abd El-Twab

    2016-08-01

    Full Text Available Lithium is an integral drug used in the management of acute mania, unipolar and bipolar depression and prophylaxis of bipolar disorders. It has also been shown to reduce suicidal risk and short term mortality. Few experimental studies have demonstrated the thyroid toxicity caused by lithium as well as the possible protective effect of curcumin. Twenty four male albino rats were divided into three groups; group I (control group, group II received lithium carbonate daily for 6 weeks and group III received the same dose of lithium carbonate as group II concomitantly with curcumin for 6 weeks. The specimens were prepared for histopathological, immunohistochemical and biochemical examination. Lithium-induced thyroid dysfunction evidenced by the histopathological and immunohistochemical changes represented by detached cells and vacuolated cytoplasm of some follicular cells and highly significant increase in positive immunostained of thyroglobulin and caspase-3 respectively. Moreover, a significant decrease in serum free triiodothyonine (FT3, free thyroxine (FT4 concomitant with significantly increased thyroid stimulating hormone (TSH and pro-inflammatory cytokines, and thyroid lipid peroxidation (MDA and nitric oxide (NO levels. Curcumin counteracted lithium-induced oxidative stress and inflammation as assessed by restoration of the antioxidant defenses and diminishing of pro-inflammatory cytokines and improvements in the degenerative changes of the thyroid gland. In conclusion, the present study provides evidence that curcumin exerts thyroprotective effects against lithium carbonate mediated by its antioxidant, anti-inflammatory and anti-apoptotic effect as indicated by caspase-3. This report also confers that the use of this drug should be justified for long treatment under direct medical supervision.

  18. Monitoring of antibiotic-induced alterations in the human intestinal microflora and detection of probiotic strains by use of terminal restriction fragment length polymorphism.

    Science.gov (United States)