Nonlinear Legendre Spectral Finite Elements for Wind Turbine Blade Dynamics: Preprint
Energy Technology Data Exchange (ETDEWEB)
Wang, Q.; Sprague, M. A.; Jonkman, J.; Johnson, N.
2014-01-01
This paper presents a numerical implementation and examination of new wind turbine blade finite element model based on Geometrically Exact Beam Theory (GEBT) and a high-order spectral finite element method. The displacement-based GEBT is presented, which includes the coupling effects that exist in composite structures and geometric nonlinearity. Legendre spectral finite elements (LSFEs) are high-order finite elements with nodes located at the Gauss-Legendre-Lobatto points. LSFEs can be an order of magnitude more efficient that low-order finite elements for a given accuracy level. Interpolation of the three-dimensional rotation, a major technical barrier in large-deformation simulation, is discussed in the context of LSFEs. It is shown, by numerical example, that the high-order LSFEs, where weak forms are evaluated with nodal quadrature, do not suffer from a drawback that exists in low-order finite elements where the tangent-stiffness matrix is calculated at the Gauss points. Finally, the new LSFE code is implemented in the new FAST Modularization Framework for dynamic simulation of highly flexible composite-material wind turbine blades. The framework allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples showing validation and LSFE performance will be provided in the final paper.
Khan, Sami Ullah; Ali, Ishtiaq
2018-03-01
Explicit solutions to delay differential equation (DDE) and stochastic delay differential equation (SDDE) can rarely be obtained, therefore numerical methods are adopted to solve these DDE and SDDE. While on the other hand due to unstable nature of both DDE and SDDE numerical solutions are also not straight forward and required more attention. In this study, we derive an efficient numerical scheme for DDE and SDDE based on Legendre spectral-collocation method, which proved to be numerical methods that can significantly speed up the computation. The method transforms the given differential equation into a matrix equation by means of Legendre collocation points which correspond to a system of algebraic equations with unknown Legendre coefficients. The efficiency of the proposed method is confirmed by some numerical examples. We found that our numerical technique has a very good agreement with other methods with less computational effort.
International Nuclear Information System (INIS)
Fernandes, A.
1991-01-01
A method to solve three dimensional neutron transport equation and it is based on the original work suggested by J.K. Fletcher (42, 43). The angular dependence of the flux is approximated by associated Legendre functions and the finite element method is applied to the space components is presented. When the angular flux, the scattering cross section and the neutrons source are expanded in associated Legendre functions, the first order neutron transport equation is reduced to a coupled set of second order diffusion like equations. These equations are solved in an iterative way by the finite element method to the moments. (author)
Spectral/ hp element methods: Recent developments, applications, and perspectives
Xu, Hui; Cantwell, Chris D.; Monteserin, Carlos; Eskilsson, Claes; Engsig-Karup, Allan P.; Sherwin, Spencer J.
2018-02-01
The spectral/ hp element method combines the geometric flexibility of the classical h-type finite element technique with the desirable numerical properties of spectral methods, employing high-degree piecewise polynomial basis functions on coarse finite element-type meshes. The spatial approximation is based upon orthogonal polynomials, such as Legendre or Chebychev polynomials, modified to accommodate a C 0 - continuous expansion. Computationally and theoretically, by increasing the polynomial order p, high-precision solutions and fast convergence can be obtained and, in particular, under certain regularity assumptions an exponential reduction in approximation error between numerical and exact solutions can be achieved. This method has now been applied in many simulation studies of both fundamental and practical engineering flows. This paper briefly describes the formulation of the spectral/ hp element method and provides an overview of its application to computational fluid dynamics. In particular, it focuses on the use of the spectral/ hp element method in transitional flows and ocean engineering. Finally, some of the major challenges to be overcome in order to use the spectral/ hp element method in more complex science and engineering applications are discussed.
Spectral element simulation of ultrafiltration
DEFF Research Database (Denmark)
Hansen, M.; Barker, Vincent A.; Hassager, Ole
1998-01-01
A spectral element method for simulating stationary 2-D ultrafiltration is presented. The mathematical model is comprised of the Navier-Stokes equations for the velocity field of the fluid and a transport equation for the concentration of the solute. In addition to the presence of the velocity...... vector in the transport equation, the system is coupled by the dependency of the fluid viscosity on the solute concentration and by a concentration-dependent boundary condition for the Navier-Stokes equations at the membrane surface. The spectral element discretization yields a nonlinear algebraic system....... The performance of the spectral element code when applied to several ultrafiltration problems is reported. (C) 1998 Elsevier Science Ltd. All rights reserved....
Brigham, John C; Aquino, Wilkins; Aguilo, Miguel A; Diamessis, Peter J
2011-01-15
An approach for efficient and accurate finite element analysis of harmonically excited soft solids using high-order spectral finite elements is presented and evaluated. The Helmholtz-type equations used to model such systems suffer from additional numerical error known as pollution when excitation frequency becomes high relative to stiffness (i.e. high wave number), which is the case, for example, for soft tissues subject to ultrasound excitations. The use of high-order polynomial elements allows for a reduction in this pollution error, but requires additional consideration to counteract Runge's phenomenon and/or poor linear system conditioning, which has led to the use of spectral element approaches. This work examines in detail the computational benefits and practical applicability of high-order spectral elements for such problems. The spectral elements examined are tensor product elements (i.e. quad or brick elements) of high-order Lagrangian polynomials with non-uniformly distributed Gauss-Lobatto-Legendre nodal points. A shear plane wave example is presented to show the dependence of the accuracy and computational expense of high-order elements on wave number. Then, a convergence study for a viscoelastic acoustic-structure interaction finite element model of an actual ultrasound driven vibroacoustic experiment is shown. The number of degrees of freedom required for a given accuracy level was found to consistently decrease with increasing element order. However, the computationally optimal element order was found to strongly depend on the wave number.
Brigham, John C.; Aquino, Wilkins; Aguilo, Miguel A.; Diamessis, Peter J.
2010-01-01
An approach for efficient and accurate finite element analysis of harmonically excited soft solids using high-order spectral finite elements is presented and evaluated. The Helmholtz-type equations used to model such systems suffer from additional numerical error known as pollution when excitation frequency becomes high relative to stiffness (i.e. high wave number), which is the case, for example, for soft tissues subject to ultrasound excitations. The use of high-order polynomial elements allows for a reduction in this pollution error, but requires additional consideration to counteract Runge's phenomenon and/or poor linear system conditioning, which has led to the use of spectral element approaches. This work examines in detail the computational benefits and practical applicability of high-order spectral elements for such problems. The spectral elements examined are tensor product elements (i.e. quad or brick elements) of high-order Lagrangian polynomials with non-uniformly distributed Gauss-Lobatto-Legendre nodal points. A shear plane wave example is presented to show the dependence of the accuracy and computational expense of high-order elements on wave number. Then, a convergence study for a viscoelastic acoustic-structure interaction finite element model of an actual ultrasound driven vibroacoustic experiment is shown. The number of degrees of freedom required for a given accuracy level was found to consistently decrease with increasing element order. However, the computationally optimal element order was found to strongly depend on the wave number. PMID:21461402
Towards an Entropy Stable Spectral Element Framework for Computational Fluid Dynamics
Carpenter, Mark H.
2016-01-04
Nonlinearly stable finite element methods of arbitrary type and order, are currently unavailable for discretizations of the compressible Navier-Stokes equations. Summation-by-parts (SBP) entropy stability analysis provides a means of constructing nonlinearly stable discrete operators of arbitrary order, but is currently limited to simple element types. Herein, recent progress is reported, on developing entropy-stable (SS) discontinuous spectral collocation formulations for hexahedral elements. Two complementary efforts are discussed. The first effort generalizes previous SS spectral collocation work to extend the applicable set of points from tensor product, Legendre-Gauss-Lobatto (LGL) to tensor product Legendre-Gauss (LG) points. The LG and LGL point formulations are compared on a series of test problems. Both the LGL and LG operators are of comparable efficiency and robustness, as is demonstrated using test problems for which conventional FEM techniques suffer instability. The second effort extends previous work on entropy stability to include p-refinement at nonconforming interfaces. A generalization of existing entropy stability theory is required to accommodate the nuances of fully multidimensional SBP operators. The entropy stability of the compressible Euler equations on nonconforming interfaces is demonstrated using the newly developed LG operators and multidimensional interface interpolation operators. Preliminary studies suggest design order accuracy at nonconforming interfaces.
Towards an Entropy Stable Spectral Element Framework for Computational Fluid Dynamics
Carpenter, Mark H.; Parsani, Matteo; Fisher, Travis C.; Nielsen, Eric J.
2016-01-01
Entropy stable (SS) discontinuous spectral collocation formulations of any order are developed for the compressible Navier-Stokes equations on hexahedral elements. Recent progress on two complementary efforts is presented. The first effort is a generalization of previous SS spectral collocation work to extend the applicable set of points from tensor product, Legendre-Gauss-Lobatto (LGL) to tensor product Legendre-Gauss (LG) points. The LG and LGL point formulations are compared on a series of test problems. Although being more costly to implement, it is shown that the LG operators are significantly more accurate on comparable grids. Both the LGL and LG operators are of comparable efficiency and robustness, as is demonstrated using test problems for which conventional FEM techniques suffer instability. The second effort generalizes previous SS work to include the possibility of p-refinement at non-conforming interfaces. A generalization of existing entropy stability machinery is developed to accommodate the nuances of fully multi-dimensional summation-by-parts (SBP) operators. The entropy stability of the compressible Euler equations on non-conforming interfaces is demonstrated using the newly developed LG operators and multi-dimensional interface interpolation operators.
Parallel Fast Legendre Transform
Alves de Inda, M.; Bisseling, R.H.; Maslen, D.K.
1998-01-01
We discuss a parallel implementation of a fast algorithm for the discrete polynomial Legendre transform We give an introduction to the DriscollHealy algorithm using polynomial arithmetic and present experimental results on the eciency and accuracy of our implementation The algorithms were
Kumar, Dinesh; Rai, K N
2016-12-01
Hyperthermia is a process that uses heat from the spatial heat source to kill cancerous cells without damaging the surrounding healthy tissues. Efficacy of hyperthermia technique is related to achieve temperature at the infected cells during the treatment process. A mathematical model on heat transfer in multilayer tissues in finite domain is proposed to predict the control temperature profile at hyperthermia position. The treatment technique uses dual-phase-lag model of heat transfer in multilayer tissues with modified Gaussian distribution heat source subjected to the most generalized boundary condition and interface at the adjacent layers. The complete dual-phase-lag model of bioheat transfer is solved using finite element Legendre wavelet Galerkin approach. The present solution has been verified with exact solution in a specific case and provides a good accuracy. The effect of the variability of different parameters such as lagging times, external heat source, metabolic heat source and the most generalized boundary condition on temperature profile in multilayer tissues is analyzed and also discussed the effective approach of hyperthermia treatment. Furthermore, we studied the modified thermal damage model with regeneration of healthy tissues as well. For viewpoint of thermal damage, the least thermal damage has been observed in boundary condition of second kind. The article concludes with a discussion of better opportunities for future clinical application of hyperthermia treatment. Copyright Â© 2016 Elsevier Ltd. All rights reserved.
Introduction to finite and spectral element methods using Matlab
Pozrikidis, Constantine
2014-01-01
The Finite Element Method in One Dimension. Further Applications in One Dimension. High-Order and Spectral Elements in One Dimension. The Finite Element Method in Two Dimensions. Quadratic and Spectral Elements in Two Dimensions. Applications in Mechanics. Viscous Flow. Finite and Spectral Element Methods in Three Dimensions. Appendices. References. Index.
Directory of Open Access Journals (Sweden)
Guangsong Chen
2014-01-01
Full Text Available This paper presents formulations for a Timoshenko beam subjected to an accelerating mass using spectral element method in time domain (TSEM. Vertical displacement and bending rotation of the beam were interpolated by Lagrange polynomials supported on the Gauss-Lobatto-Legendre (GLL points. By using GLL integration rule, the mass matrix was diagonal and the dynamic responses can be obtained efficiently and accurately. The results were compared with those obtained in the literature to verify the correctness. The variation of the vibration frequencies of the Timoshenko and moving mass system was researched. The effects of inertial force, centrifugal force, Coriolis force, and tangential force on a Timoshenko beam subjected to an accelerating mass were investigated.
A spectral-element discontinuous Galerkin lattice Boltzmann method for nearly incompressible flows
Min, Misun; Lee, Taehun
2011-01-01
We present a spectral-element discontinuous Galerkin lattice Boltzmann method for solving nearly incompressible flows. Decoupling the collision step from the streaming step offers numerical stability at high Reynolds numbers. In the streaming step, we employ high-order spectral-element discontinuous Galerkin discretizations using a tensor product basis of one-dimensional Lagrange interpolation polynomials based on Gauss-Lobatto-Legendre grids. Our scheme is cost-effective with a fully diagonal mass matrix, advancing time integration with the fourth-order Runge-Kutta method. We present a consistent treatment for imposing boundary conditions with a numerical flux in the discontinuous Galerkin approach. We show convergence studies for Couette flows and demonstrate two benchmark cases with lid-driven cavity flows for Re = 400-5000 and flows around an impulsively started cylinder for Re = 550-9500. Computational results are compared with those of other theoretical and computational work that used a multigrid method, a vortex method, and a spectral element model.
2D spectral element modeling of GPR wave propagation in inhomogeneous media
Zarei, Sajad; Oskooi, Behrooz; Amini, Navid; Dalkhani, Amin Rahimi
2016-10-01
We present a spectral element method, for simulation of ground-penetrating radar (GPR) in two dimensions. The technique is based upon a weak formulation of the equations of Maxwell and combines the flexibility of the elemental-based methods with the accuracy of the spectral based methods. The wave field on the elements is discretized using high-degree Lagrange interpolation and integration over an element is accomplished based upon the Gauss-Lobatto-Legendre integration rule. As a result, the mass matrix and the damping matrix are always diagonal, which drastically reduces the computational cost. We first develop the formulation of 2D spectral element method (SEM) in the time-domain based on Maxwell's equations. The presented formulation is with matrix notation that simplifies the implementation of the relations in computer programs, especially in MATLAB application. We discuss the differences between spectral element method and finite-element method in the time-domain. Also, we show that the SEM numerical dispersion is much lower than FEM. To absorb waves at the edges of the modeling domain, we implement first order Clayton and Engquist absorbing boundary conditions (CE-ABC) introduced in numerical finite-difference modeling of seismic wave propagation. We used the SEM to simulate a complex model to show its abilities and limitations. As well as, one distinct advantage of SEM is that we can easily define our model features in nodal points, because the integration points and the interpolation points are similar that makes it very flexible in simulation of complex models.
Spectral Element Multigrid. Part 2. Theoretical Justification
1988-12-01
R.VERFORTH - A note on multigrid methods for nonconforming finite element methods, Stochastische Mathematische Modellenumber 453, Mars 1988. Preprint...submitted to SIAM J. Numer. Anal. [MM] J. F. MAITRE & F. MUSY - Multigrid methods : Convergence theory in a variational framework, SINUM 21, 4,(1984) pp...Equations-M, SIAM (1984). [ZWHl] T.A. ZANG, Y. S. WONG & M.Y. HUSSAINI - Spectral multigrid methods for elliptic equations, J.CP. 49,(1982) pp485-50l
Spectral element method for wave propagation on irregular domains
Indian Academy of Sciences (India)
Yan Hui Geng
2018-03-14
Mar 14, 2018 ... A spectral element approximation of acoustic propagation problems combined with a new mapping method on irregular ... Spectral element method; curved quadrilateral element; isoparametric element; Chebyshev polynomial ... overcome this problem, such as meshless local strong form method [9], the ...
Delannoy numbers and Legendre polytopes
Hetyei, Gábor
2008-01-01
International audience; We construct an $n$-dimensional polytope whose boundary complex is compressed and whose face numbers for any pulling triangulation are the coefficients of the powers of $(x-1)/2$ in the $n$-th Legendre polynomial. We show that the non-central Delannoy numbers count all faces in the lexicographic pulling triangulation that contain a point in a given open quadrant. We thus provide a geometric interpretation of a relation between the central Delannoy numbers and Legendre ...
Stability estimates for hp spectral element methods for general ...
Indian Academy of Sciences (India)
Home; Journals; Proceedings – Mathematical Sciences; Volume 113; Issue 4. Stability Estimates for ℎ- Spectral ... We establish basic stability estimates for a non-conforming ℎ- spectral element method which allows for simultaneous mesh refinement and variable polynomial degree. The spectral element functions are ...
Stability estimates for hp spectral element methods for general ...
Indian Academy of Sciences (India)
We establish basic stability estimates for a non-conforming ℎ- spectral element method which allows for simultaneous mesh refinement and variable polynomial degree. The spectral element functions are non-conforming if the boundary conditions are Dirichlet. For problems with mixed boundary conditions they are ...
Spectral element method for wave propagation on irregular domains
Indian Academy of Sciences (India)
A spectral element approximation of acoustic propagation problems combined with a new mapping method on irregular domains is proposed. Following this method, the Gauss–Lobatto–Chebyshev nodes in the standard space are applied to the spectral element method (SEM). The nodes in the physical space are ...
Niu, Jun; Ren, Yi; Liu, Qing Huo
2017-10-02
In this work, we propose a numerical solver combining the spectral element - boundary integral (SEBI) method with the periodic layered medium dyadic Green's function. The periodic layered medium dyadic Green's function is formulated under matrix representation. The surface integral equations (SIEs) are then implemented as the radiation boundary condition to truncate the top and bottom computation domain. After describing the interior computation domain with the vector wave equations, and treating the lateral boundaries with Bloch periodic boundary conditions, the whole computation domains are discretized with mixed-order Gauss- Lobatto-Legendre basis functions in the SEBI method. This method avoids the discretization of the top and bottom layered media, so it can be much more efficient than conventional methods. Numerical results validate the proposed solver with fast convergence throughout the whole computation domain and good performance for typical multiscale nano-optical applications.
Legendre's and Kummer's Theorems Again
Indian Academy of Sciences (India)
mathematical education and mathematical contests. Dorel Mihet». Some results related to Legendre's Theorem and ... mentioned theorems in problem solving. We will see that many olympiad-type problems as: `If f(m) denotes the greatest k such that 2k divides m, prove that there are infinite many numbers m such that ...
Legendre's and Kummer's Theorems Again
Indian Academy of Sciences (India)
RESONANCE December 2010. GENERAL ARTICLE. 1 The formula commonly called Legendre's formula, appears in the second edition of 'Essai sur la la théorie des nombres' [1]. However, it may have been discovered in- dependently by various persons. For example, in [3] this formula is named De Polignac's ...
Spectral/hp element methods: Recent developments, applications, and perspectives
DEFF Research Database (Denmark)
Xu, Hui; Cantwell, Chris; Monteserin, Carlos
2018-01-01
The spectral/hp element method combines the geometric flexibility of the classical h-type finite element technique with the desirable numerical properties of spectral methods, employing high-degree piecewise polynomial basis functions on coarse finite element-type meshes. The spatial approximation...... regularity assumptions an exponential reduction in approximation error between numerical and exact solutions can be achieved. This method has now been applied in many simulation studies of both fundamental and practical engineering flows. This paper briefly describes the formulation of the spectral...... method in more complex science and engineering applications are discussed....
Directory of Open Access Journals (Sweden)
P.B. Silva
2013-01-01
Full Text Available Structural spectral elements are formulated using the analytical solution of the applicable elastodynamic equations and, therefore, mesh refinement is not needed to analyze high frequency behavior provided the elastodynamic equations used remain valid. However, for modeling complex structures, standard spectral elements require long and cumbersome analytical formulation. In this work, a method to build spectral finite elements from a finite element model of a slice of a structural waveguide (a structure with one dimension much larger than the other two is proposed. First, the transfer matrix of the structural waveguide is obtained from the finite element model of a thin slice. Then, the wavenumbers and wave propagation modes are obtained from the transfer matrix and used to build the spectral element matrix. These spectral elements can be used to model homogeneous waveguides with constant cross section over long spans without the need of refining the finite element mesh along the waveguide. As an illustrating example, spectral elements are derived for straight uniform rods and beams and used to calculate the forced response in the longitudinal and transverse directions. Results obtained with the spectral element formulation are shown to agree well with results obtained with a finite element model of the whole beam. The proposed approach can be used to generate spectral elements of waveguides of arbitrary cross section and, potentially, of arbitrary order.
Stability estimates for hp spectral element methods for elliptic ...
Indian Academy of Sciences (India)
Home; Journals; Proceedings – Mathematical Sciences; Volume 112; Issue 4. Stability Estimates for ℎ- Spectral Element Methods for Elliptic Problems. Pravir Dutt ... In a series of papers of which this is the first we study how to solve elliptic problems on polygonal domains using spectral methods on parallel computers.
hp Spectral element methods for three dimensional elliptic problems ...
Indian Academy of Sciences (India)
we use spectral element functions which are non-conforming and hence there are no com- mon boundary ... We assume our spectral element functions to be a sum of tensor product of polynomials of variable degree .... R3 with a Lipschitz boundary ∂O. Assume in addition that ∂O is piecewise C2. Let P be a point on ∂O ...
Some further results on Legendre numbers
Directory of Open Access Journals (Sweden)
Paul W. Haggard
1988-01-01
Full Text Available The Legendre numbers, Pnm, are expressed in terms of those numbers, Pkm−1, in the previous column down to Pnm and in terms of those, Pkm, above but in the same column. Other results are given for numbers close to a given number. The limit of the quotient of two consecutive non-zero numbers in any one column is shown to be −1. Bounds for the Legendre numbers are described by circles centered at the origin. A connection between Legendre numbers and Pascal numbers is exhibited by expressing the Legendre numbers in terms of combinations.
Spectral analysis of gluonic pole matrix elements for fragmentation
Gamberg, L. P.; Mukherjee, A.B.; Mulders, P.J.G.
2008-01-01
The nonvanishing of gluonic pole matrix elements can explain the appearance of single spin asymmetries in high-energy scattering processes. We use a spectator framework approach to investigate the spectral properties of quark-quark-gluon correlators and use this to study gluonic pole matrix
hp Spectral element methods for three dimensional elliptic problems ...
Indian Academy of Sciences (India)
125, No. 3, August 2015, pp. 413–447. c Indian Academy of Sciences h-p Spectral element methods for three dimensional elliptic problems on non-smooth domains, Part-II: Proof of stability theorem. P DUTT1, AKHLAQ HUSAIN2,∗, A S VASUDEVA MURTHY3 and C S UPADHYAY4. 1Department of Mathematics & Statistics ...
Unstructured Spectral Element Model for Dispersive and Nonlinear Wave Propagation
DEFF Research Database (Denmark)
Engsig-Karup, Allan Peter; Eskilsson, Claes; Bigoni, Daniele
2016-01-01
We introduce a new stabilized high-order and unstructured numerical model for modeling fully nonlinear and dispersive water waves. The model is based on a nodal spectral element method of arbitrary order in space and a -transformed formulation due to Cai, Langtangen, Nielsen and Tveito (1998). In...
Quadratic Lagrangians and Legendre transformation
International Nuclear Information System (INIS)
Magnano, G.
1988-01-01
In recent years interest is grown about the so-called non-linear Lagrangians for gravitation. In particular, the quadratic lagrangians are currently believed to play a fundamental role both for quantum gravity and for the super-gravity approach. The higher order and high degree of non-linearity of these theories make very difficult to extract physical information out of them. The author discusses how the Legendre transformation can be applied to a wide class of non-linear theories: it corresponds to a conformal transformation whenever the Lagrangian depends only on the scalar curvature, while it has a more general form if the Lagrangian depends on the full Ricci tensor
Element-by-element parallel spectral-element methods for 3-D teleseismic wave modeling
Liu, Shaolin
2017-09-28
The development of an efficient algorithm for teleseismic wave field modeling is valuable for calculating the gradients of the misfit function (termed misfit gradients) or Fréchet derivatives when the teleseismic waveform is used for adjoint tomography. Here, we introduce an element-by-element parallel spectral-element method (EBE-SEM) for the efficient modeling of teleseismic wave field propagation in a reduced geology model. Under the plane-wave assumption, the frequency-wavenumber (FK) technique is implemented to compute the boundary wave field used to construct the boundary condition of the teleseismic wave incidence. To reduce the memory required for the storage of the boundary wave field for the incidence boundary condition, a strategy is introduced to efficiently store the boundary wave field on the model boundary. The perfectly matched layers absorbing boundary condition (PML ABC) is formulated using the EBE-SEM to absorb the scattered wave field from the model interior. The misfit gradient can easily be constructed in each time step during the calculation of the adjoint wave field. Three synthetic examples demonstrate the validity of the EBE-SEM for use in teleseismic wave field modeling and the misfit gradient calculation.
The spectral-element method, Beowulf computing, and global seismology.
Komatitsch, Dimitri; Ritsema, Jeroen; Tromp, Jeroen
2002-11-29
The propagation of seismic waves through Earth can now be modeled accurately with the recently developed spectral-element method. This method takes into account heterogeneity in Earth models, such as three-dimensional variations of seismic wave velocity, density, and crustal thickness. The method is implemented on relatively inexpensive clusters of personal computers, so-called Beowulf machines. This combination of hardware and software enables us to simulate broadband seismograms without intrinsic restrictions on the level of heterogeneity or the frequency content.
Infinitesimal Legendre symmetry in the Geometrothermodynamics programme
Energy Technology Data Exchange (ETDEWEB)
García-Peláez, D., E-mail: dgarciap@up.edu.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A.P. 70-543, 04510 México D.F., México (Mexico); Universidad Panamericana, Tecoyotitla 366. Col. Ex Hacienda Guadalupe Chimalistac, 01050 México D.F., México (Mexico); López-Monsalvo, C. S., E-mail: cesar.slm@correo.nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A.P. 70-543, 04510 México D.F., México (Mexico)
2014-08-15
The work within the Geometrothermodynamics programme rests upon the metric structure for the thermodynamic phase-space. Such structure exhibits discrete Legendre symmetry. In this work, we study the class of metrics which are invariant along the infinitesimal generators of Legendre transformations. We solve the Legendre-Killing equation for a K-contact general metric. We consider the case with two thermodynamic degrees of freedom, i.e., when the dimension of the thermodynamic phase-space is five. For the generic form of contact metrics, the solution of the Legendre-Killing system is unique, with the sole restriction that the only independent metric function – Ω – should be dragged along the orbits of the Legendre generator. We revisit the ideal gas in the light of this class of metrics. Imposing the vanishing of the scalar curvature for this system results in a further differential equation for the metric function Ω which is not compatible with the Legendre invariance constraint. This result does not allow us to use Quevedo's interpretation of the curvature scalar as a measure of thermodynamic interaction for this particular class.
Bessel smoothing filter for spectral-element mesh
Trinh, P. T.; Brossier, R.; Métivier, L.; Virieux, J.; Wellington, P.
2017-06-01
Smoothing filters are extremely important tools in seismic imaging and inversion, such as for traveltime tomography, migration and waveform inversion. For efficiency, and as they can be used a number of times during inversion, it is important that these filters can easily incorporate prior information on the geological structure of the investigated medium, through variable coherent lengths and orientation. In this study, we promote the use of the Bessel filter to achieve these purposes. Instead of considering the direct application of the filter, we demonstrate that we can rely on the equation associated with its inverse filter, which amounts to the solution of an elliptic partial differential equation. This enhances the efficiency of the filter application, and also its flexibility. We apply this strategy within a spectral-element-based elastic full waveform inversion framework. Taking advantage of this formulation, we apply the Bessel filter by solving the associated partial differential equation directly on the spectral-element mesh through the standard weak formulation. This avoids cumbersome projection operators between the spectral-element mesh and a regular Cartesian grid, or expensive explicit windowed convolution on the finite-element mesh, which is often used for applying smoothing operators. The associated linear system is solved efficiently through a parallel conjugate gradient algorithm, in which the matrix vector product is factorized and highly optimized with vectorized computation. Significant scaling behaviour is obtained when comparing this strategy with the explicit convolution method. The theoretical numerical complexity of this approach increases linearly with the coherent length, whereas a sublinear relationship is observed practically. Numerical illustrations are provided here for schematic examples, and for a more realistic elastic full waveform inversion gradient smoothing on the SEAM II benchmark model. These examples illustrate well the
Nonconforming h-p spectral element methods for elliptic problems
Indian Academy of Sciences (India)
(ξ,η)}l} ∈. M,W , the space of spectral element func- tions. Here zk i,1 = bk for all i, zk i,j. (νk,φk) is a polynomial in νk and φk of degree Wj ,. Wj ≤ W and z p+1 l. (ξ,η) is a polynomial in ξ and η of degree W as defined in §3. We choose W proportional to M. Then we have the following error estimate. Theorem 5.1. Let ak = u(Ak).
Nonconforming h-p spectral element methods for elliptic problems
Indian Academy of Sciences (India)
and write p+1 = { p+1 l. : 1 ≤ l ≤ L}. Now define the space of spectral element functions. M,W. = {{uk i,j. (νk,φk)}i,j,k,. {u p+1 l. (ξ,η)}l}, where uk i,1 = hk a constant for all i and uk i,j (νk,φk) = Wj. ∑ r=1. Wj. ∑ s=1 gr,s νr k φs k, 1 < j ≤ M. Here 1 ≤ Wj ≤ W. Moreover there is an analytic mapping M p+1 l from the master square.
Stabilization of numerical interchange in spectral-element magnetohydrodynamics
Sovinec, C. R.
2016-08-01
Auxiliary numerical projections of the divergence of flow velocity and vorticity parallel to magnetic field are developed and tested for the purpose of suppressing unphysical interchange instability in magnetohydrodynamic simulations. The numerical instability arises with equal-order C0 finite- and spectral-element expansions of the flow velocity, magnetic field, and pressure and is sensitive to behavior at the limit of resolution. The auxiliary projections are motivated by physical field-line bending, and coercive responses to the projections are added to the flow-velocity equation. Their incomplete expansions are limited to the highest-order orthogonal polynomial in at least one coordinate of the spectral elements. Cylindrical eigenmode computations show that the projections induce convergence from the stable side with first-order ideal-MHD equations during h-refinement and p-refinement. Hyperbolic and parabolic projections and responses are compared, together with different methods for avoiding magnetic divergence error. The projections are also shown to be effective in linear and nonlinear time-dependent computations with the NIMROD code Sovinec et al. [17], provided that the projections introduce numerical dissipation.
Spectral Element Method for the Simulation of Unsteady Compressible Flows
Diosady, Laslo Tibor; Murman, Scott M.
2013-01-01
This work uses a discontinuous-Galerkin spectral-element method (DGSEM) to solve the compressible Navier-Stokes equations [1{3]. The inviscid ux is computed using the approximate Riemann solver of Roe [4]. The viscous fluxes are computed using the second form of Bassi and Rebay (BR2) [5] in a manner consistent with the spectral-element approximation. The method of lines with the classical 4th-order explicit Runge-Kutta scheme is used for time integration. Results for polynomial orders up to p = 15 (16th order) are presented. The code is parallelized using the Message Passing Interface (MPI). The computations presented in this work are performed using the Sandy Bridge nodes of the NASA Pleiades supercomputer at NASA Ames Research Center. Each Sandy Bridge node consists of 2 eight-core Intel Xeon E5-2670 processors with a clock speed of 2.6Ghz and 2GB per core memory. On a Sandy Bridge node the Tau Benchmark [6] runs in a time of 7.6s.
Spectral response of multi-element silicon detectors
Energy Technology Data Exchange (ETDEWEB)
Ludewigt, B.A.; Rossington, C.S.; Chapman, K. [Univ. of California, Berkeley, CA (United States)
1997-04-01
Multi-element silicon strip detectors, in conjunction with integrated circuit pulse-processing electronics, offer an attractive alternative to conventional lithium-drifted silicon Si(Li) and high purity germanium detectors (HPGe) for high count rate, low noise synchrotron x-ray fluorescence applications. One of the major differences between the segmented Si detectors and the commercially available single-element Si(Li) or HPGe detectors is that hundreds of elements can be fabricated on a single Si substrate using standard silicon processing technologies. The segmentation of the detector substrate into many small elements results in very low noise performance at or near, room temperature, and the count rate of the detector is increased many-fold due to the multiplication in the total number of detectors. Traditionally, a single channel of detector with electronics can handle {approximately}100 kHz count rates while maintaining good energy resolution; the segmented detectors can operate at greater than MHz count rates merely due to the multiplication in the number of channels. One of the most critical aspects in the development of the segmented detectors is characterizing the charge sharing and charge loss that occur between the individual detector strips, and determining how these affect the spectral response of the detectors.
Legendre Elliptic Curves over Finite Fields
Auer, Roland; Top, Jakob
2002-01-01
We show that every elliptic curve over a finite field of odd characteristic whose number of rational points is divisible by 4 is isogenous to an elliptic curve in Legendre form, with the sole exception of a minimal respectively maximal elliptic curve. We also collect some results concerning the
Discrete fractional solutions of a Legendre equation
Yılmazer, Resat
2018-01-01
One of the most popular research interests of science and engineering is the fractional calculus theory in recent times. Discrete fractional calculus has also an important position in fractional calculus. In this work, we acquire new discrete fractional solutions of the homogeneous and non homogeneous Legendre differential equation by using discrete fractional nabla operator.
Blurred image recognition by legendre moment invariants
Zhang, Hui; Shu, Huazhong; Han, Guo-Niu; Coatrieux, Gouenou; Luo, Limin; Coatrieux, Jean-Louis
2010-01-01
Processing blurred images is a key problem in many image applications. Existing methods to obtain blur invariants which are invariant with respect to centrally symmetric blur are based on geometric moments or complex moments. In this paper, we propose a new method to construct a set of blur invariants using the orthogonal Legendre moments. Some important properties of Legendre moments for the blurred image are presented and proved. The performance of the proposed descriptors is evaluated with various point-spread functions and different image noises. The comparison of the present approach with previous methods in terms of pattern recognition accuracy is also provided. The experimental results show that the proposed descriptors are more robust to noise and have better discriminative power than the methods based on geometric or complex moments. PMID:19933003
Legendre transformations and Clairaut-type equations
Energy Technology Data Exchange (ETDEWEB)
Lavrov, Peter M., E-mail: lavrov@tspu.edu.ru [Tomsk State Pedagogical University, Kievskaya St. 60, 634061 Tomsk (Russian Federation); National Research Tomsk State University, Lenin Av. 36, 634050 Tomsk (Russian Federation); Merzlikin, Boris S., E-mail: merzlikin@tspu.edu.ru [National Research Tomsk Polytechnic University, Lenin Av. 30, 634050 Tomsk (Russian Federation)
2016-05-10
It is noted that the Legendre transformations in the standard formulation of quantum field theory have the form of functional Clairaut-type equations. It is shown that in presence of composite fields the Clairaut-type form holds after loop corrections are taken into account. A new solution to the functional Clairaut-type equation appearing in field theories with composite fields is found.
On computation and use of Fourier coefficients for associated Legendre functions
Gruber, Christian; Abrykosov, Oleh
2016-06-01
The computation of spherical harmonic series in very high resolution is known to be delicate in terms of performance and numerical stability. A major problem is to keep results inside a numerical range of the used data type during calculations as under-/overflow arises. Extended data types are currently not desirable since the arithmetic complexity will grow exponentially with higher resolution levels. If the associated Legendre functions are computed in the spectral domain, then regular grid transformations can be applied to be highly efficient and convenient for derived quantities as well. In this article, we compare three recursive computations of the associated Legendre functions as trigonometric series, thereby ensuring a defined numerical range for each constituent wave number, separately. The results to a high degree and order show the numerical strength of the proposed method. First, the evaluation of Fourier coefficients of the associated Legendre functions has been done with respect to the floating-point precision requirements. Secondly, the numerical accuracy in the cases of standard double and long double precision arithmetic is demonstrated. Following Bessel's inequality the obtained accuracy estimates of the Fourier coefficients are directly transferable to the associated Legendre functions themselves and to derived functionals as well. Therefore, they can provide an essential insight to modern geodetic applications that depend on efficient spherical harmonic analysis and synthesis beyond [5~× ~5] arcmin resolution.
Efficiency of High Order Spectral Element Methods on Petascale Architectures
Hutchinson, Maxwell
2016-06-14
High order methods for the solution of PDEs expose a tradeoff between computational cost and accuracy on a per degree of freedom basis. In many cases, the cost increases due to higher arithmetic intensity while affecting data movement minimally. As architectures tend towards wider vector instructions and expect higher arithmetic intensities, the best order for a particular simulation may change. This study highlights preferred orders by identifying the high order efficiency frontier of the spectral element method implemented in Nek5000 and NekBox: the set of orders and meshes that minimize computational cost at fixed accuracy. First, we extract Nek’s order-dependent computational kernels and demonstrate exceptional hardware utilization by hardware-aware implementations. Then, we perform productionscale calculations of the nonlinear single mode Rayleigh-Taylor instability on BlueGene/Q and Cray XC40-based supercomputers to highlight the influence of the architecture. Accuracy is defined with respect to physical observables, and computational costs are measured by the corehour charge of the entire application. The total number of grid points needed to achieve a given accuracy is reduced by increasing the polynomial order. On the XC40 and BlueGene/Q, polynomial orders as high as 31 and 15 come at no marginal cost per timestep, respectively. Taken together, these observations lead to a strong preference for high order discretizations that use fewer degrees of freedom. From a performance point of view, we demonstrate up to 60% full application bandwidth utilization at scale and achieve ≈1PFlop/s of compute performance in Nek’s most flop-intense methods.
A mass and energy conserving spectral element atmospheric dynamical core on the cubed-sphere grid
International Nuclear Information System (INIS)
Taylor, M A; Edwards, J; Thomas, S; Nair, R
2007-01-01
We present results from a conservative formulation of the spectral element method applied to global atmospheric circulation modeling. Exact local conservation of both mass and energy is obtained via a new compatible formulation of the spectral element method. Compatibility insures that the key integral property of the divergence and gradient operators required to show conservation also hold in discrete form. The spectral element method is used on a cubed-sphere grid to discretize the horizontal directions on the sphere. It can be coupled to any conservative vertical/radial discretization. The accuracy and conservation properties of the method are illustrated using a baroclinic instability test case
Superiority of legendre polynomials to Chebyshev polynomial in ...
African Journals Online (AJOL)
In this paper, we proved the superiority of Legendre polynomial to Chebyshev polynomial in solving first order ordinary differential equation with rational coefficient. We generated shifted polynomial of Chebyshev, Legendre and Canonical polynomials which deal with solving differential equation by first choosing Chebyshev ...
On the derivative of the Legendre function of the first kind with respect to its degree
International Nuclear Information System (INIS)
Szmytkowski, Radoslaw
2006-01-01
We study the derivative of the Legendre function of the first kind, P ν (z), with respect to its degree ν. At first, we provide two contour integral representations for ∂P ν (z)/∂ν. Then, we proceed to investigate the case of [∂P ν (z)/∂ν] ν=n , with n being an integer; this case is met in some physical and engineering problems. Since it holds that [∂P ν' (z)/∂ν'] ν'==ν-1 -[∂P ν' (z0/∂ν'] ν'=ν , we focus on the sub-case of n being a non-negative integer. We show that ∂P ν (z)/∂ν vertical bar ν=n = P n (z) ln((z+1)/2) + R n (z) (n element of N) where R n (z) is a polynomial in z of degree n. We present alternative derivations of several known explicit expressions for R n (z) and also add some new. A generating function for R n (z) is also constructed. Properties of the polynomials V n (z) = [R n (z) + (-1) n R n (-z)]/2 and W n-1 (z) = -[R n (z) - (-1) n R n (-z)]/2 are also investigated. It is found that W n-1 (z) is the Christoffel polynomial, well known from the theory of the Legendre function of the second kind, Q n (z). As examples of applications of the results obtained, we present non-standard derivations of some representations of Q n (z), sum to closed forms some Legendre series, evaluate some definite integrals involving Legendre polynomials and also derive an explicit representation of the indefinite integral of the Legendre polynomial squared
Investigation of a two-dimensional spectral element method for Helmholtz's equation
International Nuclear Information System (INIS)
Mehdizadeh, Omid Z.; Paraschivoiu, Marius
2003-01-01
A spectral element method is developed for solving the two-dimensional Helmholtz's equation, which is the equation governing time-harmonic acoustic waves. Computational cost for solving Helmholtz's equation with the Galerkin finite element method increases as the wave number increases, due to the pollution effect. Therefore a more efficient numerical method is sought. The comparison between a spectral element method and a second-order finite element method shows that the spectral element method leads to fewer grid points per wavelength and less computational cost, for the same accuracy. It also offers the same advantage as the finite element method to address complex geometry and general material property. Some simple examples are addressed and compared with the exact solutions to confirm the accuracy of the method. For unbounded problems, the symmetric perfectly matched layer (PML) method is applied to treat the non-reflecting boundary conditions. In the PML method, a fictitious absorbing layer is introduced outside the truncated boundary
DEFF Research Database (Denmark)
Kim, Oleksiy S.; Meincke, Peter; Breinbjerg, Olav
2007-01-01
The problem of electromagnetic scattering by composite metallic and dielectric objects is solved using the coupled volume-surface integral equation (VSIE). The method of moments (MoM) based on higher-order hierarchical Legendre basis functions and higher-order curvilinear geometrical elements...... with the analytical Mie series solution. Scattering by more complex metal-dielectric objects are also considered to compare the presented technique with other numerical methods....
Spectral element filtering techniques for large eddy simulation with dynamic estimation
Blackburn, H M
2003-01-01
Spectral element methods have previously been successfully applied to direct numerical simulation of turbulent flows with moderate geometrical complexity and low to moderate Reynolds numbers. A natural extension of application is to large eddy simulation of turbulent flows, although there has been little published work in this area. One of the obstacles to such application is the ability to deal successfully with turbulence modelling in the presence of solid walls in arbitrary locations. An appropriate tool with which to tackle the problem is dynamic estimation of turbulence model parameters, but while this has been successfully applied to simulation of turbulent wall-bounded flows, typically in the context of spectral and finite volume methods, there have been no published applications with spectral element methods. Here, we describe approaches based on element-level spectral filtering, couple these with the dynamic procedure, and apply the techniques to large eddy simulation of a prototype wall-bounded turb...
Stability estimates for h-p spectral element methods for elliptic ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
which measures the jump in the function and its derivatives at inter-element boundaries, in an appropriate ...... the spectral element functions depends continuously on a quadratic form, which consists of the sum of the ...... by the interpolation inequality and the inverse inequality for differentiation in [12]. Thus for N large ...
A stabilised nodal spectral element method for fully nonlinear water waves
DEFF Research Database (Denmark)
Engsig-Karup, Allan Peter; Eskilsson, C.; Bigoni, Daniele
2016-01-01
We present an arbitrary-order spectral element method for general-purpose simulation of non-overturning water waves, described by fully nonlinear potential theory. The method can be viewed as a high-order extension of the classical finite element method proposed by Cai et al. (1998) [5], although...... the numerical implementation differs greatly. Features of the proposed spectral element method include: nodal Lagrange basis functions, a general quadrature-free approach and gradient recovery using global L2 projections. The quartic nonlinear terms present in the Zakharov form of the free surface conditions...... can cause severe aliasing problems and consequently numerical instability for marginally resolved or very steep waves. We show how the scheme can be stabilised through a combination of over-integration of the Galerkin projections and a mild spectral filtering on a per element basis. This effectively...
Chudnovsky-Ramanujan Type Formulae for the Legendre Family
Chen, Imin; Glebov, Gleb
2017-01-01
We apply the method established in our previous work to derive a Chudnovsky-Ramanujan type formula for the Legendre family of elliptic curves. As a result, we prove two identities for $1/\\pi$ in terms of hypergeometric functions.
Composite Gauss-Legendre Quadrature with Error Control
Prentice, J. S. C.
2011-01-01
We describe composite Gauss-Legendre quadrature for determining definite integrals, including a means of controlling the approximation error. We compare the form and performance of the algorithm with standard Newton-Cotes quadrature. (Contains 1 table.)
An Algorithm for the Convolution of Legendre Series
Hale, Nicholas
2014-01-01
An O(N2) algorithm for the convolution of compactly supported Legendre series is described. The algorithm is derived from the convolution theorem for Legendre polynomials and the recurrence relation satisfied by spherical Bessel functions. Combining with previous work yields an O(N 2) algorithm for the convolution of Chebyshev series. Numerical results are presented to demonstrate the improved efficiency over the existing algorithm. © 2014 Society for Industrial and Applied Mathematics.
Shock capturing in discontinuous Galerkin spectral elements via the entropy viscosity method
Hackl, Jason; Shringarpure, Mrugesh; Fischer, Paul; Balachandar, Sivaramakrishnan
2017-11-01
We present a 3D discontinuous Galerkin spectral element solver for compressible flows with shock waves using artificial viscosity to regularize the solution for representation by nested tensor products of high-order Lagrange polynomials. The viscosity is constructed from a smoothed evaluation of the residual of an entropy inequality, localizing the artificial viscosity around shock waves and other flow features that would otherwise not be representable in spectral elements without thermodynamic violations due to Gibbs oscillations. Applied to the Guermond-Popov (2014) stress tensor, this smoothed, continuous artificial viscosity is easily integrated with the non-symmetric numerical fluxes of Baumann and Oden (1999). The method is implemented on top of nek5000, leveraging an outstanding high-performance spectral element code to solve shocked flows over curved surfaces. The interaction of a Mach 3 shock with a sphere is shown to demonstrate this capability. Supported by the Department of Energy Predictive Science Academic Alliance Program Contract DE-NA0002378.
The next step in coastal numerical models: spectral/hp element methods?
DEFF Research Database (Denmark)
Eskilsson, Claes; Engsig-Karup, Allan Peter; Sherwin, Spencer J.
2005-01-01
In this paper we outline the application of spectral/hp element methods for modelling nonlinear and dispersive waves. We present one- and two-dimensional test cases for the shallow water equations and Boussinesqtype equations – including highly dispersive Boussinesq-type equations.......In this paper we outline the application of spectral/hp element methods for modelling nonlinear and dispersive waves. We present one- and two-dimensional test cases for the shallow water equations and Boussinesqtype equations – including highly dispersive Boussinesq-type equations....
Fast Minimum Variance Beamforming Based on Legendre Polynomials.
Bae, MooHo; Park, Sung Bae; Kwon, Sung Jae
2016-09-01
Currently, minimum variance beamforming (MV) is actively investigated as a method that can improve the performance of an ultrasound beamformer, in terms of the lateral and contrast resolution. However, this method has the disadvantage of excessive computational complexity since the inverse spatial covariance matrix must be calculated. Some noteworthy methods among various attempts to solve this problem include beam space adaptive beamforming methods and the fast MV method based on principal component analysis, which are similar in that the original signal in the element space is transformed to another domain using an orthonormal basis matrix and the dimension of the covariance matrix is reduced by approximating the matrix only with important components of the matrix, hence making the inversion of the matrix very simple. Recently, we proposed a new method with further reduced computational demand that uses Legendre polynomials as the basis matrix for such a transformation. In this paper, we verify the efficacy of the proposed method through Field II simulations as well as in vitro and in vivo experiments. The results show that the approximation error of this method is less than or similar to those of the above-mentioned methods and that the lateral response of point targets and the contrast-to-speckle noise in anechoic cysts are also better than or similar to those methods when the dimensionality of the covariance matrices is reduced to the same dimension.
Validation of a tetrahedral spectral element code for solving the Navier Stokes equation
International Nuclear Information System (INIS)
Niewiadomski, C.; Paraschivoiu, M.
2004-01-01
The tetrahedral spectral element method is considered to solve the incompressible Navier-Stokes equations because it is capable to capture complex geometries and obtain highly accurate solutions. This method allows accuracy improvements both by decreasing the spatial discretization as well as increasing the expansion order. The method is presented here-in as a modification of an standard finite element code. Some recent improvement to the baseline spectral element method for the tetrahedron described in References 3 and 2 are presented. These improvements include: the continuity enforcement procedure avoiding the need to change the global assembly operation and the removal of the reference coordinate system from the elemental evaluations thus simplifying greatly the method. A study is performed on the Stokes and Navier-Stokes equations to validate the method and the resulting code. (author)
Determination of rare-earth elements in Luna 16 regolith sample by chemical spectral method
Stroganova, N. S.; Ryabukhin, V. A.; Laktinova, N. V.; Ageyeva, L. V.; Galkina, I. P.; Gatinskaya, N. G.; Yermakov, A. N.; Karyakin, A. V.
1974-01-01
An analysis was made of regolith from layer A of the Luna 16 sample for rare earth elements, by a chemical spectral method. Chemical and ion exchange concentrations were used to determine the content of 12 elements and Y at the level 0.001 to 0.0001 percent with 10 to 15 percent reproducibility of the emission determination. Results within the limits of reproducibility agree with data obtained by mass spectra, activation, and X-ray fluorescent methods.
High-precision solution to the moving load problem using an improved spectral element method
Wen, Shu-Rui; Wu, Zhi-Jing; Lu, Nian-Li
2018-02-01
In this paper, the spectral element method (SEM) is improved to solve the moving load problem. In this method, a structure with uniform geometry and material properties is considered as a spectral element, which means that the element number and the degree of freedom can be reduced significantly. Based on the variational method and the Laplace transform theory, the spectral stiffness matrix and the equivalent nodal force of the beam-column element are established. The static Green function is employed to deduce the improved function. The proposed method is applied to two typical engineering practices—the one-span bridge and the horizontal jib of the tower crane. The results have revealed the following. First, the new method can yield extremely high-precision results of the dynamic deflection, the bending moment and the shear force in the moving load problem. In most cases, the relative errors are smaller than 1%. Second, by comparing with the finite element method, one can obtain the highly accurate results using the improved SEM with smaller element numbers. Moreover, the method can be widely used for statically determinate as well as statically indeterminate structures. Third, the dynamic deflection of the twin-lift jib decreases with the increase in the moving load speed, whereas the curvature of the deflection increases. Finally, the dynamic deflection, the bending moment and the shear force of the jib will all increase as the magnitude of the moving load increases.
High-precision solution to the moving load problem using an improved spectral element method
Wen, Shu-Rui; Wu, Zhi-Jing; Lu, Nian-Li
2017-06-01
In this paper, the spectral element method (SEM) is improved to solve the moving load problem. In this method, a structure with uniform geometry and material properties is considered as a spectral element, which means that the element number and the degree of freedom can be reduced significantly. Based on the variational method and the Laplace transform theory, the spectral stiffness matrix and the equivalent nodal force of the beam-column element are established. The static Green function is employed to deduce the improved function. The proposed method is applied to two typical engineering practices—the one-span bridge and the horizontal jib of the tower crane. The results have revealed the following. First, the new method can yield extremely high-precision results of the dynamic deflection, the bending moment and the shear force in the moving load problem. In most cases, the relative errors are smaller than 1%. Second, by comparing with the finite element method, one can obtain the highly accurate results using the improved SEM with smaller element numbers. Moreover, the method can be widely used for statically determinate as well as statically indeterminate structures. Third, the dynamic deflection of the twin-lift jib decreases with the increase in the moving load speed, whereas the curvature of the deflection increases. Finally, the dynamic deflection, the bending moment and the shear force of the jib will all increase as the magnitude of the moving load increases.
Li, Zhan; Schaefer, Michael; Strahler, Alan; Schaaf, Crystal; Jupp, David
2018-04-06
The Dual-Wavelength Echidna Lidar (DWEL), a full waveform terrestrial laser scanner (TLS), has been used to scan a variety of forested and agricultural environments. From these scanning campaigns, we summarize the benefits and challenges given by DWEL's novel coaxial dual-wavelength scanning technology, particularly for the three-dimensional (3D) classification of vegetation elements. Simultaneous scanning at both 1064 nm and 1548 nm by DWEL instruments provides a new spectral dimension to TLS data that joins the 3D spatial dimension of lidar as an information source. Our point cloud classification algorithm explores the utilization of both spectral and spatial attributes of individual points from DWEL scans and highlights the strengths and weaknesses of each attribute domain. The spectral and spatial attributes for vegetation element classification each perform better in different parts of vegetation (canopy interior, fine branches, coarse trunks, etc.) and under different vegetation conditions (dead or live, leaf-on or leaf-off, water content, etc.). These environmental characteristics of vegetation, convolved with the lidar instrument specifications and lidar data quality, result in the actual capabilities of spectral and spatial attributes to classify vegetation elements in 3D space. The spectral and spatial information domains thus complement each other in the classification process. The joint use of both not only enhances the classification accuracy but also reduces its variance across the multiple vegetation types we have examined, highlighting the value of the DWEL as a new source of 3D spectral information. Wider deployment of the DWEL instruments is in practice currently held back by challenges in instrument development and the demands of data processing required by coaxial dual- or multi-wavelength scanning. But the simultaneous 3D acquisition of both spectral and spatial features, offered by new multispectral scanning instruments such as the DWEL, opens
Huismann, Immo; Stiller, Jörg; Fröhlich, Jochen
2017-10-01
The paper proposes a novel factorization technique for static condensation of a spectral-element discretization matrix that yields a linear operation count of just 13N multiplications for the residual evaluation, where N is the total number of unknowns. In comparison to previous work it saves a factor larger than 3 and outpaces unfactored variants for all polynomial degrees. Using the new technique as a building block for a preconditioned conjugate gradient method yields linear scaling of the runtime with N which is demonstrated for polynomial degrees from 2 to 32. This makes the spectral-element method cost effective even for low polynomial degrees. Moreover, the dependence of the iterative solution on the element aspect ratio is addressed, showing only a slight increase in the number of iterations for aspect ratios up to 128. Hence, the solver is very robust for practical applications.
McGill, Matthew J. (Inventor); Scott, Vibart S. (Inventor); Marzouk, Marzouk (Inventor)
2001-01-01
A holographic optical element transforms a spectral distribution of light to image points. The element comprises areas, each of which acts as a separate lens to image the light incident in its area to an image point. Each area contains the recorded hologram of a point source object. The image points can be made to lie in a line in the same focal plane so as to align with a linear array detector. A version of the element has been developed that has concentric equal areas to match the circular fringe pattern of a Fabry-Perot interferometer. The element has high transmission efficiency, and when coupled with high quantum efficiency solid state detectors, provides an efficient photon-collecting detection system. The element may be used as part of the detection system in a direct detection Doppler lidar system or multiple field of view lidar system.
Spectral element method for elastic and acoustic waves in frequency domain
International Nuclear Information System (INIS)
Shi, Linlin; Zhou, Yuanguo; Wang, Jia-Min; Zhuang, Mingwei; Liu, Na; Liu, Qing Huo
2016-01-01
Numerical techniques in time domain are widespread in seismic and acoustic modeling. In some applications, however, frequency-domain techniques can be advantageous over the time-domain approach when narrow band results are desired, especially if multiple sources can be handled more conveniently in the frequency domain. Moreover, the medium attenuation effects can be more accurately and conveniently modeled in the frequency domain. In this paper, we present a spectral-element method (SEM) in frequency domain to simulate elastic and acoustic waves in anisotropic, heterogeneous, and lossy media. The SEM is based upon the finite-element framework and has exponential convergence because of the use of GLL basis functions. The anisotropic perfectly matched layer is employed to truncate the boundary for unbounded problems. Compared with the conventional finite-element method, the number of unknowns in the SEM is significantly reduced, and higher order accuracy is obtained due to its spectral accuracy. To account for the acoustic-solid interaction, the domain decomposition method (DDM) based upon the discontinuous Galerkin spectral-element method is proposed. Numerical experiments show the proposed method can be an efficient alternative for accurate calculation of elastic and acoustic waves in frequency domain.
Spectral element method for elastic and acoustic waves in frequency domain
Energy Technology Data Exchange (ETDEWEB)
Shi, Linlin; Zhou, Yuanguo; Wang, Jia-Min; Zhuang, Mingwei [Institute of Electromagnetics and Acoustics, and Department of Electronic Science, Xiamen, 361005 (China); Liu, Na, E-mail: liuna@xmu.edu.cn [Institute of Electromagnetics and Acoustics, and Department of Electronic Science, Xiamen, 361005 (China); Liu, Qing Huo, E-mail: qhliu@duke.edu [Department of Electrical and Computer Engineering, Duke University, Durham, NC, 27708 (United States)
2016-12-15
Numerical techniques in time domain are widespread in seismic and acoustic modeling. In some applications, however, frequency-domain techniques can be advantageous over the time-domain approach when narrow band results are desired, especially if multiple sources can be handled more conveniently in the frequency domain. Moreover, the medium attenuation effects can be more accurately and conveniently modeled in the frequency domain. In this paper, we present a spectral-element method (SEM) in frequency domain to simulate elastic and acoustic waves in anisotropic, heterogeneous, and lossy media. The SEM is based upon the finite-element framework and has exponential convergence because of the use of GLL basis functions. The anisotropic perfectly matched layer is employed to truncate the boundary for unbounded problems. Compared with the conventional finite-element method, the number of unknowns in the SEM is significantly reduced, and higher order accuracy is obtained due to its spectral accuracy. To account for the acoustic-solid interaction, the domain decomposition method (DDM) based upon the discontinuous Galerkin spectral-element method is proposed. Numerical experiments show the proposed method can be an efficient alternative for accurate calculation of elastic and acoustic waves in frequency domain.
A three-dimensional spectral element model for the solution of the hydrostatic primitive equations
International Nuclear Information System (INIS)
Iskandarani, M.; Haidvogel, D.B.; Levin, J.C.
2003-01-01
We present a spectral element model to solve the hydrostatic primitive equations governing large-scale geophysical flows. The highlights of this new model include unstructured grids, dual h-p paths to convergence, and good scalability characteristics on present day parallel computers including Beowulf-class systems. The behavior of the model is assessed on three process-oriented test problems involving wave propagation, gravitational adjustment, and nonlinear flow rectification, respectively. The first of these test problems is a study of the convergence properties of the model when simulating the linear propagation of baroclinic Kelvin waves. The second is an intercomparison of spectral element and finite-difference model solutions to the adjustment of a density front in a straight channel. Finally, the third problem considers the comparison of model results to measurements obtained from a laboratory simulation of flow around a submarine canyon. The aforementioned tests demonstrate the good performance of the model in the idealized/process-oriented limits
A three-dimensional spectral element model for the solution of the hydrostatic primitive equations
Iskandarani, M; Levin, J C
2003-01-01
We present a spectral element model to solve the hydrostatic primitive equations governing large-scale geophysical flows. The highlights of this new model include unstructured grids, dual h-p paths to convergence, and good scalability characteristics on present day parallel computers including Beowulf-class systems. The behavior of the model is assessed on three process-oriented test problems involving wave propagation, gravitational adjustment, and nonlinear flow rectification, respectively. The first of these test problems is a study of the convergence properties of the model when simulating the linear propagation of baroclinic Kelvin waves. The second is an intercomparison of spectral element and finite-difference model solutions to the adjustment of a density front in a straight channel. Finally, the third problem considers the comparison of model results to measurements obtained from a laboratory simulation of flow around a submarine canyon. The aforementioned tests demonstrate the good performance of th...
Multiscale finite element methods for high-contrast problems using local spectral basis functions
Efendiev, Yalchin
2011-02-01
In this paper we study multiscale finite element methods (MsFEMs) using spectral multiscale basis functions that are designed for high-contrast problems. Multiscale basis functions are constructed using eigenvectors of a carefully selected local spectral problem. This local spectral problem strongly depends on the choice of initial partition of unity functions. The resulting space enriches the initial multiscale space using eigenvectors of local spectral problem. The eigenvectors corresponding to small, asymptotically vanishing, eigenvalues detect important features of the solutions that are not captured by initial multiscale basis functions. Multiscale basis functions are constructed such that they span these eigenfunctions that correspond to small, asymptotically vanishing, eigenvalues. We present a convergence study that shows that the convergence rate (in energy norm) is proportional to (H/Λ*)1/2, where Λ* is proportional to the minimum of the eigenvalues that the corresponding eigenvectors are not included in the coarse space. Thus, we would like to reach to a larger eigenvalue with a smaller coarse space. This is accomplished with a careful choice of initial multiscale basis functions and the setup of the eigenvalue problems. Numerical results are presented to back-up our theoretical results and to show higher accuracy of MsFEMs with spectral multiscale basis functions. We also present a hierarchical construction of the eigenvectors that provides CPU savings. © 2010.
Co-simulation coupling spectral/finite elements for 3D soil/structure interaction problems
Zuchowski, Loïc; Brun, Michael; De Martin, Florent
2018-05-01
The coupling between an implicit finite elements (FE) code and an explicit spectral elements (SE) code has been explored for solving the elastic wave propagation in the case of soil/structure interaction problem. The coupling approach is based on domain decomposition methods in transient dynamics. The spatial coupling at the interface is managed by a standard coupling mortar approach, whereas the time integration is dealt with an hybrid asynchronous time integrator. An external coupling software, handling the interface problem, has been set up in order to couple the FE software Code_Aster with the SE software EFISPEC3D.
Energy Technology Data Exchange (ETDEWEB)
Fischer, P.F. [Brown Univ., Providence, RI (United States)
1996-12-31
Efficient solution of the Navier-Stokes equations in complex domains is dependent upon the availability of fast solvers for sparse linear systems. For unsteady incompressible flows, the pressure operator is the leading contributor to stiffness, as the characteristic propagation speed is infinite. In the context of operator splitting formulations, it is the pressure solve which is the most computationally challenging, despite its elliptic origins. We seek to improve existing spectral element iterative methods for the pressure solve in order to overcome the slow convergence frequently observed in the presence of highly refined grids or high-aspect ratio elements.
3D time-domain spectral elements for stress waves modelling
International Nuclear Information System (INIS)
Kudela, P; Ostachowicz, W
2009-01-01
Elastic stress waves induced by piezoelectric transducers are extensively used for damage detection purposes. Induced high frequency impulse signals cause that stress wave modelling by the finite element method is inefficient. Instead, numerical model based on the time-domain spectral element method has been developed to simulate stress wave propagation in metallic structures induced by the piezoelectric transducers. The model solves the coupled electromechanical field equations simultaneously in three-dimensional case. Visualisation of the propagating elastic waves generated by the actuator of different shapes and properties has been performed.
The Spectral/hp-Finite Element Method for Partial Differential Equations
DEFF Research Database (Denmark)
Engsig-Karup, Allan Peter
2009-01-01
dimensions. In the course the chosen programming environment is Matlab, however, this is by no means a necessary requirement. The mathematical level needed to grasp the details of this set of notes requires an elementary background in mathematical analysis and linear algebra. Each chapter is supplemented......This set of lecture notes provides an elementary introduction to both the classical Finite Element Method (FEM) and the extended Spectral/$hp$-Finite Element Method for solving Partial Differential Equations (PDEs). Many problems in science and engineering can be formulated mathematically...
On the efficient parallel computation of Legendre transforms
Inda, M.A.; Bisseling, R.H.; Maslen, D.K.
2001-01-01
In this article, we discuss a parallel implementation of efficient algorithms for computation of Legendre polynomial transforms and other orthogonal polynomial transforms. We develop an approach to the Driscoll-Healy algorithm using polynomial arithmetic and present experimental results on the
On the efficient parallel computation of Legendre transforms
Inda, M.A.; Bisseling, R.H.; Maslen, D.K.
1999-01-01
In this article we discuss a parallel implementation of efficient algorithms for computation of Legendre polynomial transforms and other orthogonal polynomial transforms. We develop an approach to the Driscoll-Healy algorithm using polynomial arithmetic and present experimental results on the
Higher-Order Hierarchical Legendre Basis Functions in Applications
DEFF Research Database (Denmark)
Kim, Oleksiy S.; Jørgensen, Erik; Meincke, Peter
2007-01-01
degree of orthogonality. The basis functions are well-suited for solution of complex electromagnetic problems involving multiple homogeneous or inhomogeneous dielectric regions, metallic surfaces, layered media, etc. This paper presents real-life complex antenna radiation problems modeled...... with electromagnetic simulation tools based on the higher-order hierarchical Legendre basis functions....
Composite Gauss-Legendre Formulas for Solving Fuzzy Integration
Directory of Open Access Journals (Sweden)
Xiaobin Guo
2014-01-01
Full Text Available Two numerical integration rules based on composition of Gauss-Legendre formulas for solving integration of fuzzy numbers-valued functions are investigated in this paper. The methods' constructions are presented and the corresponding convergence theorems are shown in detail. Two numerical examples are given to illustrate the proposed algorithms finally.
Characterizing the Lyα forest flux probability distribution function using Legendre polynomials
Energy Technology Data Exchange (ETDEWEB)
Cieplak, Agnieszka M.; Slosar, Anže, E-mail: acieplak@bnl.gov, E-mail: anze@bnl.gov [Brookhaven National Laboratory, Bldg 510, Upton, NY, 11973 (United States)
2017-10-01
The Lyman-α forest is a highly non-linear field with considerable information available in the data beyond the power spectrum. The flux probability distribution function (PDF) has been used as a successful probe of small-scale physics. In this paper we argue that measuring coefficients of the Legendre polynomial expansion of the PDF offers several advantages over measuring the binned values as is commonly done. In particular, the n -th Legendre coefficient can be expressed as a linear combination of the first n moments, allowing these coefficients to be measured in the presence of noise and allowing a clear route for marginalisation over mean flux. Moreover, in the presence of noise, our numerical work shows that a finite number of coefficients are well measured with a very sharp transition into noise dominance. This compresses the available information into a small number of well-measured quantities. We find that the amount of recoverable information is a very non-linear function of spectral noise that strongly favors fewer quasars measured at better signal to noise.
Element-specific spectral imaging of multiple contrast agents: a phantom study
Panta, R. K.; Bell, S. T.; Healy, J. L.; Aamir, R.; Bateman, C. J.; Moghiseh, M.; Butler, A. P. H.; Anderson, N. G.
2018-02-01
This work demonstrates the feasibility of simultaneous discrimination of multiple contrast agents based on their element-specific and energy-dependent X-ray attenuation properties using a pre-clinical photon-counting spectral CT. We used a photon-counting based pre-clinical spectral CT scanner with four energy thresholds to measure the X-ray attenuation properties of various concentrations of iodine (9, 18 and 36 mg/ml), gadolinium (2, 4 and 8 mg/ml) and gold (2, 4 and 8 mg/ml) based contrast agents, calcium chloride (140 and 280 mg/ml) and water. We evaluated the spectral imaging performances of different energy threshold schemes between 25 to 82 keV at 118 kVp, based on K-factor and signal-to-noise ratio and ranked them. K-factor was defined as the X-ray attenuation in the K-edge containing energy range divided by the X-ray attenuation in the preceding energy range, expressed as a percentage. We evaluated the effectiveness of the optimised energy selection to discriminate all three contrast agents in a phantom of 33 mm diameter. A photon-counting spectral CT using four energy thresholds of 27, 33, 49 and 81 keV at 118 kVp simultaneously discriminated three contrast agents based on iodine, gadolinium and gold at various concentrations using their K-edge and energy-dependent X-ray attenuation features in a single scan. A ranking method to evaluate spectral imaging performance enabled energy thresholds to be optimised to discriminate iodine, gadolinium and gold contrast agents in a single spectral CT scan. Simultaneous discrimination of multiple contrast agents in a single scan is likely to open up new possibilities of improving the accuracy of disease diagnosis by simultaneously imaging multiple bio-markers each labelled with a nano-contrast agent.
Spectral Finite Element Analysis of the Vibration of Straight Fluid-Filled Pipes with Flanges
Finnveden, S.
1997-01-01
A spectral finite element formulation for the analysis of stationary vibration of straight fluid-filled pipes is introduced. Element formulations for flanges and rigid masses attached to the pipe are also presented. In the spectral finite element formulation, the base functions are frequency-dependent solutions to the local equations of motion. The formulation is valid for arbitrarily long pipes and losses may be distributed in the system and may vary with frequency. The solutions of the equations of motion are expressed in terms of exponential functions, describing propagation in the waveguide, together with corresponding cross-sectional mode shapes. These solutions are found by using an FE discretization of the cross-sectional motion. To increase the numerical efficiency, methods for using FE shape functions with higher order polynomials are developed. The numerical accuracy is investigated by comparisons with results achieved with an exact formulation. It is found that, for frequencies of interest in many engineering problems, pipes may be modelled by using only one element to describe the fluid motion. The vibrations of a simple pipe structure with an infinite pipe, a flange and a small rigid mass are calculated. Just below the cut-on frequency of a shell mode, the stiffness controlled shell mode and the rigid mass may resonate, resulting in high vibration levels concentrated near the mass.
Turbulence statistics in a spectral element code: a toolbox for High-Fidelity Simulations
Energy Technology Data Exchange (ETDEWEB)
Vinuesa, Ricardo [KTH Mechanics, Stockholm (Sweden); Swedish e-Science Research Center (SeRC), Stockholm (Sweden); Fick, Lambert [Argonne National Lab. (ANL), Argonne, IL (United States); Negi, Prabal [KTH Mechanics, Stockholm (Sweden); Swedish e-Science Research Center (SeRC), Stockholm (Sweden); Marin, Oana [Argonne National Lab. (ANL), Argonne, IL (United States); Merzari, Elia [Argonne National Lab. (ANL), Argonne, IL (United States); Schlatter, Phillip [KTH Mechanics, Stockholm (Sweden); Swedish e-Science Research Center (SeRC), Stockholm (Sweden)
2017-02-01
In the present document we describe a toolbox for the spectral-element code Nek5000, aimed at computing turbulence statistics. The toolbox is presented for a small test case, namely a square duct with L_{x} = 2h, L_{y} = 2h and L_{z} = 4h, where x, y and z are the horizontal, vertical and streamwise directions, respectively. The number of elements in the xy-plane is 16 X 16 = 256, and the number of elements in z is 4, leading to a total of 1,204 spectral elements. A polynomial order of N = 5 is chosen, and the mesh is generated using the Nek5000 tool genbox. The toolbox presented here allows to compute mean-velocity components, the Reynolds-stress tensor as well as turbulent kinetic energy (TKE) and Reynolds-stress budgets. Note that the present toolbox allows to compute turbulence statistics in turbulent flows with one homogeneous direction (where the statistics are based on time-averaging as well as averaging in the homogeneous direction), as well as in fully three-dimensional flows (with no periodic directions, where only time-averaging is considered).
Dynamic analysis of smart composite beams by using the frequency domain spectral element method
Energy Technology Data Exchange (ETDEWEB)
Park, Il Wook; Lee, Usik [Inha Univ., Incheon (Korea, Republic of)
2012-08-15
To excite or measure the dynamic responses of a laminated composite structure for the active controls of vibrations or noises, wafertype piezoelectric transducers are often bonded on the surface of the composite structure to form a multi layer smart composite structure. Thus, for such smart composite structures, it is very important to develop and use a very reliable mathematical and/or computational model for predicting accurate dynamic characteristics. In this paper, the axial-bending coupled equations of motion and boundary conditions are derived for two layer smart composite beams by using the Hamilton's principle with Lagrange multipliers. The spectral element model is then formulated in the frequency domain by using the variation approach. Through some numerical examples, the extremely high accuracy of the present spectral element model is verified by comparing with the solutions by the conventional finite element model provided in this paper. The effects of the lay up of composite laminates and surface bonded wafer type piezoelectric (PZT) layer on the dynamics and wave characteristics of smart composite beams are investigated. The effective constraint forces at the interface between the base beam and PZT layer are also investigated via Lagrange multipliers.
On Parameter Differentiation for Integral Representations of Associated Legendre Functions
Directory of Open Access Journals (Sweden)
Howard S. Cohl
2011-05-01
Full Text Available For integral representations of associated Legendre functions in terms of modified Bessel functions, we establish justification for differentiation under the integral sign with respect to parameters. With this justification, derivatives for associated Legendre functions of the first and second kind with respect to the degree are evaluated at odd-half-integer degrees, for general complex-orders, and derivatives with respect to the order are evaluated at integer-orders, for general complex-degrees. We also discuss the properties of the complex function f: C{−1,1}→C given by f(z=z/((z+1^{1/2}(z−1^{1/2}.
Lapped Block Image Analysis via the Method of Legendre Moments
Directory of Open Access Journals (Sweden)
El Fadili Hakim
2003-01-01
Full Text Available Research investigating the use of Legendre moments for pattern recognition has been performed in recent years. This field of research remains quite open. This paper proposes a new technique based on block-based reconstruction method (BBRM using Legendre moments compared with the global reconstruction method (GRM. For alleviating the blocking artifact involved in the processing, we propose a new approach using lapped block-based reconstruction method (LBBRM. For the problem of selecting the optimal number of moment used to represent a given image, we propose the maximum entropy principle (MEP method. The main motivation of the proposed approaches is to allow fast and efficient reconstruction algorithm, with improvement of the reconstructed images quality. A binary handwritten musical character and multi-gray-level Lena image are used to demonstrate the performance of our algorithm.
N-Level Quantum Systems and Legendre Functions
Mazurenko, A. S.; Savva, V. A.
2001-01-01
An excitation dynamics of new quantum systems of N equidistant energy levels in a monochromatic field has been investigated. To obtain exact analytical solutions of dynamic equations an analytical method based on orthogonal functions of a real argument has been proposed. Using the orthogonal Legendre functions we have found an exact analytical expression for a population probability amplitude of the level n. Various initial conditions for the excitation of N-level quantum systems have been co...
Zhang, Lei; Cao, Ling; Zhao, Laishi; Algeo, Thomas J.; Chen, Zhong-Qiang; Li, Zhihong; Lv, Zhengyi; Wang, Xiangdong
2017-08-01
Conodont apatite has long been used in paleoenvironmental studies, often with minimal evaluation of the influence of diagenesis on measured elemental and isotopic signals. In this study, we evaluate diagenetic influences on conodonts using an integrated set of analytical techniques. A total of 92 points in 19 coniform conodonts from Ordovician marine units of South China were analyzed by micro-laser Raman spectroscopy (M-LRS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), high-resolution X-ray microdiffraction (HXRD), and secondary ion mass spectrometry (SIMS). Each conodont element was analyzed along its full length, including the albid crown, hyaline crown, and basal body, in either a whole specimen (i.e., reflecting the composition of its outer layer) or a split specimen (i.e., reflecting the composition of its interior). In the conodonts of this study, the outer surfaces consist of hydroxyfluorapatite and the interiors of strontian hydroxyfluorapatite. Ionic substitutions resulted in characteristic Raman spectral shifts in the position (SS1) and width (SS2) of the ν1-PO43- stretching band. Although multiple elements were enriched (Sr2+, Mg2+) and depleted (Fe3+, Mn2+, Ca2+) during diagenesis, geochemical modeling constraints and known Raman spectral patterns suggest that Sr uptake was the dominant influence on diagenetic redshifts of SS1. All study specimens show lower SS2 values than modern bioapatite and synthetic apatite, suggesting that band width decreases with time in ancient bioapatite, possibly through an annealing process that produces larger, more uniform crystal domains. Most specimens consist mainly of amorphous or poorly crystalline apatite, which is inferred to represent the original microstructure of conodonts. In a subset of specimens, some tissues (especially albid crown) exhibit an increased degree of crystallinity developed through aggrading neomorphism. However, no systematic relationship was observed between
Chen, Xiao-Li; Guo, Wen-Zhong; Xue, Xu-Zhang; Wang, Li-Chun; Li, Liang; Chen, Fei
2013-08-01
Mineral elements absorption and content of Lactuca sativa under different spectral component conditions were studied by ICP-AES technology. The results showed that: (1) For Lactuca sativa, the average proportion for Ca : Mg : K : Na : P was 5.5 : 2.5 : 2.3 : 1.5 : 1.0, the average proportion for Fe : Mn : Zn : Cu : B was 25.9 : 5.9 : 2.8 : 1.1 : 1.0; (2) The absorptions for K, P, Ca, Mg and B are the largest under the LED treatment R/B = 1 : 2.75, red light from fluorescent lamps and LED can both promote the absorptions of Fe and Cu; (3)The LED treatments exhibiting relatively higher content of mineral elements are R/B = 1 : 2.75 and R/W = 1 : 1 while higher dry matter accumulations are R/B = 1 : 2.75 and B/W = 1 : 1.
Hedayatrasa, Saeid; Bui, Tinh Quoc; Zhang, Chuanzeng; Lim, Chee Wah
2014-02-01
Numerical modeling of the Lamb wave propagation in functionally graded materials (FGMs) by a two-dimensional time-domain spectral finite element method (SpFEM) is presented. The high-order Chebyshev polynomials as approximation functions are used in the present formulation, which provides the capability to take into account the through thickness variation of the material properties. The efficiency and accuracy of the present model with one and two layers of 5th order spectral elements in modeling wave propagation in FGM plates are analyzed. Different excitation frequencies in a wide range of 28-350 kHz are investigated, and the dispersion properties obtained by the present model are verified by reference results. The through thickness wave structure of two principal Lamb modes are extracted and analyzed by the symmetry and relative amplitude of the vertical and horizontal oscillations. The differences with respect to Lamb modes generated in homogeneous plates are explained. Zero-crossing and wavelet signal processing-spectrum decomposition procedures are implemented to obtain phase and group velocities and their dispersion properties. So it is attested how this approach can be practically employed for simulation, calibration and optimization of Lamb wave based nondestructive evaluation techniques for the FGMs. The capability of modeling stress wave propagation through the thickness of an FGM specimen subjected to impact load is also investigated, which shows that the present method is highly accurate as compared with other existing reference data.
Discrete conservation properties for shallow water flows using mixed mimetic spectral elements
Lee, D.; Palha, A.; Gerritsma, M.
2018-03-01
A mixed mimetic spectral element method is applied to solve the rotating shallow water equations. The mixed method uses the recently developed spectral element histopolation functions, which exactly satisfy the fundamental theorem of calculus with respect to the standard Lagrange basis functions in one dimension. These are used to construct tensor product solution spaces which satisfy the generalized Stokes theorem, as well as the annihilation of the gradient operator by the curl and the curl by the divergence. This allows for the exact conservation of first order moments (mass, vorticity), as well as higher moments (energy, potential enstrophy), subject to the truncation error of the time stepping scheme. The continuity equation is solved in the strong form, such that mass conservation holds point wise, while the momentum equation is solved in the weak form such that vorticity is globally conserved. While mass, vorticity and energy conservation hold for any quadrature rule, potential enstrophy conservation is dependent on exact spatial integration. The method possesses a weak form statement of geostrophic balance due to the compatible nature of the solution spaces and arbitrarily high order spatial error convergence.
Post-earthquake relaxation using a spectral element method: 2.5-D case
Pollitz, Fred
2014-01-01
The computation of quasi-static deformation for axisymmetric viscoelastic structures on a gravitating spherical earth is addressed using the spectral element method (SEM). A 2-D spectral element domain is defined with respect to spherical coordinates of radius and angular distance from a pole of symmetry, and 3-D viscoelastic structure is assumed to be azimuthally symmetric with respect to this pole. A point dislocation source that is periodic in azimuth is implemented with a truncated sequence of azimuthal order numbers. Viscoelasticity is limited to linear rheologies and is implemented with the correspondence principle in the Laplace transform domain. This leads to a series of decoupled 2-D problems which are solved with the SEM. Inverse Laplace transform of the independent 2-D solutions leads to the time-domain solution of the 3-D equations of quasi-static equilibrium imposed on a 2-D structure. The numerical procedure is verified through comparison with analytic solutions for finite faults embedded in a laterally homogeneous viscoelastic structure. This methodology is applicable to situations where the predominant structure varies in one horizontal direction, such as a structural contrast across (or parallel to) a long strike-slip fault.
Su, Zhu; Jin, Guoyong
2016-11-01
This paper presents a Fourier spectral element method (FSEM) to analyze the free vibration of conical-cylindrical-spherical shells with arbitrary boundary conditions. Cylindrical-conical and cylindrical-spherical shells as special cases are also considered. In this method, each fundamental shell component (i.e., cylindrical, conical, and spherical shells) is divided into appropriate elements. The variational principle in conjunction with first-order shear deformation shell theory is employed to model the shell elements. Since the displacement and rotation components of each element are expressed as a linear superposition of nodeless Fourier sine functions and nodal Lagrangian polynomials, the global equations of the coupled shell structure can be obtained by adopting the assembly procedure. The Fourier sine series in the displacement field is introduced to enhance the accuracy and convergence of the solution. Numerical results show that the FSEM can be effectively applied to vibration analysis of the coupled shell structures. Numerous results for coupled shell structures with general boundary conditions are presented. Furthermore, the effects of geometric parameters and boundary conditions on the frequencies are investigated.
Spectral-element Method for 3D Marine Controlled-source EM Modeling
Liu, L.; Yin, C.; Zhang, B., Sr.; Liu, Y.; Qiu, C.; Huang, X.; Zhu, J.
2017-12-01
As one of the predrill reservoir appraisal methods, marine controlled-source EM (MCSEM) has been widely used in mapping oil reservoirs to reduce risk of deep water exploration. With the technical development of MCSEM, the need for improved forward modeling tools has become evident. We introduce in this paper spectral element method (SEM) for 3D MCSEM modeling. It combines the flexibility of finite-element and high accuracy of spectral method. We use Galerkin weighted residual method to discretize the vector Helmholtz equation, where the curl-conforming Gauss-Lobatto-Chebyshev (GLC) polynomials are chosen as vector basis functions. As a kind of high-order complete orthogonal polynomials, the GLC have the characteristic of exponential convergence. This helps derive the matrix elements analytically and improves the modeling accuracy. Numerical 1D models using SEM with different orders show that SEM method delivers accurate results. With increasing SEM orders, the modeling accuracy improves largely. Further we compare our SEM with finite-difference (FD) method for a 3D reservoir model (Figure 1). The results show that SEM method is more effective than FD method. Only when the mesh is fine enough, can FD achieve the same accuracy of SEM. Therefore, to obtain the same precision, SEM greatly reduces the degrees of freedom and cost. Numerical experiments with different models (not shown here) demonstrate that SEM is an efficient and effective tool for MSCEM modeling that has significant advantages over traditional numerical methods.This research is supported by Key Program of National Natural Science Foundation of China (41530320), China Natural Science Foundation for Young Scientists (41404093), and Key National Research Project of China (2016YFC0303100, 2017YFC0601900).
Energy Technology Data Exchange (ETDEWEB)
Liu, Youshan, E-mail: ysliu@mail.iggcas.ac.cn [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 (China); Teng, Jiwen, E-mail: jwteng@mail.iggcas.ac.cn [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 (China); Xu, Tao, E-mail: xutao@mail.iggcas.ac.cn [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 (China); CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100101 (China); Badal, José, E-mail: badal@unizar.es [Physics of the Earth, Sciences B, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain)
2017-05-01
The mass-lumped method avoids the cost of inverting the mass matrix and simultaneously maintains spatial accuracy by adopting additional interior integration points, known as cubature points. To date, such points are only known analytically in tensor domains, such as quadrilateral or hexahedral elements. Thus, the diagonal-mass-matrix spectral element method (SEM) in non-tensor domains always relies on numerically computed interpolation points or quadrature points. However, only the cubature points for degrees 1 to 6 are known, which is the reason that we have developed a p-norm-based optimization algorithm to obtain higher-order cubature points. In this way, we obtain and tabulate new cubature points with all positive integration weights for degrees 7 to 9. The dispersion analysis illustrates that the dispersion relation determined from the new optimized cubature points is comparable to that of the mass and stiffness matrices obtained by exact integration. Simultaneously, the Lebesgue constant for the new optimized cubature points indicates its surprisingly good interpolation properties. As a result, such points provide both good interpolation properties and integration accuracy. The Courant–Friedrichs–Lewy (CFL) numbers are tabulated for the conventional Fekete-based triangular spectral element (TSEM), the TSEM with exact integration, and the optimized cubature-based TSEM (OTSEM). A complementary study demonstrates the spectral convergence of the OTSEM. A numerical example conducted on a half-space model demonstrates that the OTSEM improves the accuracy by approximately one order of magnitude compared to the conventional Fekete-based TSEM. In particular, the accuracy of the 7th-order OTSEM is even higher than that of the 14th-order Fekete-based TSEM. Furthermore, the OTSEM produces a result that can compete in accuracy with the quadrilateral SEM (QSEM). The high accuracy of the OTSEM is also tested with a non-flat topography model. In terms of computational
International Nuclear Information System (INIS)
Liu, Youshan; Teng, Jiwen; Xu, Tao; Badal, José
2017-01-01
The mass-lumped method avoids the cost of inverting the mass matrix and simultaneously maintains spatial accuracy by adopting additional interior integration points, known as cubature points. To date, such points are only known analytically in tensor domains, such as quadrilateral or hexahedral elements. Thus, the diagonal-mass-matrix spectral element method (SEM) in non-tensor domains always relies on numerically computed interpolation points or quadrature points. However, only the cubature points for degrees 1 to 6 are known, which is the reason that we have developed a p-norm-based optimization algorithm to obtain higher-order cubature points. In this way, we obtain and tabulate new cubature points with all positive integration weights for degrees 7 to 9. The dispersion analysis illustrates that the dispersion relation determined from the new optimized cubature points is comparable to that of the mass and stiffness matrices obtained by exact integration. Simultaneously, the Lebesgue constant for the new optimized cubature points indicates its surprisingly good interpolation properties. As a result, such points provide both good interpolation properties and integration accuracy. The Courant–Friedrichs–Lewy (CFL) numbers are tabulated for the conventional Fekete-based triangular spectral element (TSEM), the TSEM with exact integration, and the optimized cubature-based TSEM (OTSEM). A complementary study demonstrates the spectral convergence of the OTSEM. A numerical example conducted on a half-space model demonstrates that the OTSEM improves the accuracy by approximately one order of magnitude compared to the conventional Fekete-based TSEM. In particular, the accuracy of the 7th-order OTSEM is even higher than that of the 14th-order Fekete-based TSEM. Furthermore, the OTSEM produces a result that can compete in accuracy with the quadrilateral SEM (QSEM). The high accuracy of the OTSEM is also tested with a non-flat topography model. In terms of computational
Geothermal reservoir monitoring based upon spectral-element and adjoint methods
Morency, C.; Templeton, D. C.; Harris, D.; Mellors, R. J.
2011-12-01
Induced seismicity associated with CO2 sequestration, enhanced oil recovery, and enhanced geothermal systems is triggered by fracturing during fluid injection. These events range from magnitude -1 (microseismicity) up to 3.5, for induced seismicity on pre-existing faults. In our approach, we are using seismic data collected at the Salton Sea geothermal field, to improve the current structural model (SCEC CVM4.0 including a 10m resolution topography) and to invert for the moment tensor and source location of the microseismic events. The key here is to refine the velocity model to then precisely invert for the location and mechanism (tensile or shear) of fracture openings. This information is crucial for geothermal reservoir assessment, especially in an unconventional setting where hydrofracturing is used to enhance productivity. The location of pre-existing and formed fractures as well as their type of openings are important elements for strategic decisions. Numerical simulations are performed using a spectral-element method, which contrary to finite-element methods (FEM), uses high degree Lagrange polynomials, allowing the technique to not only handle complex geometries, like the FEM, but also to retain the strength of exponential convergence and accuracy due to the use of high degree polynomials. Finite-frequency sensitivity kernels, used in the non-linear iterative inversions, are calculated based on an adjoint method.
Direct numerical simulation of the Rayleigh-Taylor instability with the spectral element method
International Nuclear Information System (INIS)
Zhang Xu; Tan Duowang
2009-01-01
A novel method is proposed to simulate Rayleigh-Taylor instabilities using a specially-developed unsteady three-dimensional high-order spectral element method code. The numerical model used consists of Navier-Stokes equations and a transport-diffusive equation. The code is first validated with the results of linear stability perturbation theory. Then several characteristics of the Rayleigh-Taylor instabilities are studied using this three-dimensional unsteady code, including instantaneous turbulent structures and statistical turbulent mixing heights under different initial wave numbers. These results indicate that turbulent structures of Rayleigh-Taylor instabilities are strongly dependent on the initial conditions. The results also suggest that a high-order numerical method should provide the capability of simulating small scale fluctuations of Rayleigh-Taylor instabilities of turbulent flows. (authors)
Direct Numerical Simulation of the Rayleigh−Taylor Instability with the Spectral Element Method
International Nuclear Information System (INIS)
Xu, Zhang; Duo-Wang, Tan
2009-01-01
A novel method is proposed to simulate Rayleigh−Taylor instabilities using a specially-developed unsteady three-dimensional high-order spectral element method code. The numerical model used consists of Navier–Stokes equations and a transport-diffusive equation. The code is first validated with the results of linear stability perturbation theory. Then several characteristics of the Rayleigh−Taylor instabilities are studied using this three-dimensional unsteady code, including instantaneous turbulent structures and statistical turbulent mixing heights under different initial wave numbers. These results indicate that turbulent structures of Rayleigh–Taylor instabilities are strongly dependent on the initial conditions. The results also suggest that a high-order numerical method should provide the capability of simulating small scale fluctuations of Rayleigh−Taylor instabilities of turbulent flows. (fundamental areas of phenomenology (including applications))
Using spectral element method to solve variational inequalities with applications in finance
International Nuclear Information System (INIS)
Moradipour, M.; Yousefi, S.A.
2015-01-01
Under the Black–Scholes model, the value of an American option solves a time dependent variational inequality problem (VIP). In this paper, first we discretize the variational inequality of American option in temporal direction by applying the Rannacher time stepping and achieve a sequence of elliptic variational inequalities. Second we discretize the spatial domain of variational inequalities by using spectral element methods with high order Lagrangian polynomials introduced on Gauss–Legendre–Lobatto points. Also by computing integrals by the Gauss–Legendre–Lobatto quadrature rule we derive a sequence of the linear complementarity problems (LCPs) having a positive definite sparse coefficient matrix. To find the unique solutions of the LCPs, we use the projected successive over-relaxation (PSOR) algorithm. Furthermore we present some existence and uniqueness theorems for the variational inequalities and LCPs. Finally, theoretical results are verified on the relevant numerical examples.
Gopalakrishnan, Srinivasan; Roy Mahapatra, Debiprosad
2008-01-01
The use of composites and Functionally Graded Materials (FGMs) in structural applications has increased. FGMs allow the user to design materials for a specified functionality and have many uses in structural engineering. However, the behaviour of these structures under high-impact loading is not well understood. This book is the first to apply the Spectral Finite Element Method (SFEM) to inhomogeneous and anisotropic structures in a unified and systematic manner. It focuses on some of the problems with this media which were previously thought unmanageable. Types of SFEM for regular and damaged 1-D and 2-D waveguides, solution techniques, methods of detecting the presence of damages and their locations, and methods for controlling the wave propagation responses are discussed. Tables, figures and graphs support the theory and case studies are included. This book is of value to senior undergraduates and postgraduates studying in this field, and researchers and practicing engineers in structural integrity.
Nguyen, Vu-Hieu; Naili, Salah
2013-01-01
This work deals with the ultrasonic wave propagation in the cortical layer of long bones which is known as being a functionally graded anisotropic material coupled with fluids. The viscous effects are taken into account. The geometrical configuration mimics the one of axial transmission technique used for evaluating the bone quality. We present a numerical procedure adapted for this purpose which is based on the spectral finite element method (FEM). By using a combined Laplace-Fourier transform, the vibroacoustic problem may be transformed into the frequency-wavenumber domain in which, as radiation conditions may be exactly introduced in the infinite fluid halfspaces, only the heterogeneous solid layer needs to be analysed using FEM. Several numerical tests are presented showing very good performance of the proposed approach. We present some results to study the influence of the frequency on the first arriving signal velocity in (visco)elastic bone plate.
Dissipation-preserving spectral element method for damped seismic wave equations
Cai, Wenjun; Zhang, Huai; Wang, Yushun
2017-12-01
This article describes the extension of the conformal symplectic method to solve the damped acoustic wave equation and the elastic wave equations in the framework of the spectral element method. The conformal symplectic method is a variation of conventional symplectic methods to treat non-conservative time evolution problems, which has superior behaviors in long-time stability and dissipation preservation. To reveal the intrinsic dissipative properties of the model equations, we first reformulate the original systems in their equivalent conformal multi-symplectic structures and derive the corresponding conformal symplectic conservation laws. We thereafter separate each system into a conservative Hamiltonian system and a purely dissipative ordinary differential equation system. Based on the splitting methodology, we solve the two subsystems respectively. The dissipative one is cheaply solved by its analytic solution. While for the conservative system, we combine a fourth-order symplectic Nyström method in time and the spectral element method in space to cover the circumstances in realistic geological structures involving complex free-surface topography. The Strang composition method is adopted thereby to concatenate the corresponding two parts of solutions and generate the completed conformal symplectic method. A relative larger Courant number than that of the traditional Newmark scheme is found in the numerical experiments in conjunction with a spatial sampling of approximately 5 points per wavelength. A benchmark test for the damped acoustic wave equation validates the effectiveness of our proposed method in precisely capturing dissipation rate. The classical Lamb problem is used to demonstrate the ability of modeling Rayleigh wave in elastic wave propagation. More comprehensive numerical experiments are presented to investigate the long-time simulation, low dispersion and energy conservation properties of the conformal symplectic methods in both the attenuating
Space applications: monolithic diffraction grating elements from EUV to NIR spectral range
Gatto, Alexandre; Pesch, Alexander; Erdmann, Lars H.; Burkhardt, Matthias; Kalies, Alexander; Diehl, Torsten; Triebel, Peter; Moeller, Tobias
2017-11-01
Monolithic diffraction gratings are one of the key components of high sensitive spectral imaging systems including spectrometer used in space instruments. These gratings are optimized for high efficiency, lowest line spacing errors and low scattering values to improve the performance of a spectral imaging system. Spectral imaging systems lead to enhanced remote sensing properties when the sensing system provides sufficient spectral resolution to identify materials from its spectral reflectance signature comprising low signal-to-noise ratios.
3D airborne EM modeling based on the spectral-element time-domain (SETD) method
Cao, X.; Yin, C.; Huang, X.; Liu, Y.; Zhang, B., Sr.; Cai, J.; Liu, L.
2017-12-01
In the field of 3D airborne electromagnetic (AEM) modeling, both finite-difference time-domain (FDTD) method and finite-element time-domain (FETD) method have limitations that FDTD method depends too much on the grids and time steps, while FETD requires large number of grids for complex structures. We propose a time-domain spectral-element (SETD) method based on GLL interpolation basis functions for spatial discretization and Backward Euler (BE) technique for time discretization. The spectral-element method is based on a weighted residual technique with polynomials as vector basis functions. It can contribute to an accurate result by increasing the order of polynomials and suppressing spurious solution. BE method is a stable tine discretization technique that has no limitation on time steps and can guarantee a higher accuracy during the iteration process. To minimize the non-zero number of sparse matrix and obtain a diagonal mass matrix, we apply the reduced order integral technique. A direct solver with its speed independent of the condition number is adopted for quickly solving the large-scale sparse linear equations system. To check the accuracy of our SETD algorithm, we compare our results with semi-analytical solutions for a three-layered earth model within the time lapse 10-6-10-2s for different physical meshes and SE orders. The results show that the relative errors for magnetic field B and magnetic induction are both around 3-5%. Further we calculate AEM responses for an AEM system over a 3D earth model in Figure 1. From numerical experiments for both 1D and 3D model, we draw the conclusions that: 1) SETD can deliver an accurate results for both dB/dt and B; 2) increasing SE order improves the modeling accuracy for early to middle time channels when the EM field diffuses fast so the high-order SE can model the detailed variation; 3) at very late time channels, increasing SE order has little improvement on modeling accuracy, but the time interval plays
Energy Technology Data Exchange (ETDEWEB)
Carella, Alfredo Raul
2012-09-15
Quantifying species transport rates is a main concern in chemical and petrochemical industries. In particular, the design and operation of many large-scale industrial chemical processes is as much dependent on diffusion as it is on reaction rates. However, the existing diffusion models sometimes fail to predict experimentally observed behaviors and their accuracy is usually insufficient for process optimization purposes. Fractional diffusion models offer multiple possibilities for generalizing Flick's law in a consistent manner in order to account for history dependence and nonlocal effects. These models have not been extensively applied to the study of real systems, mainly due to their computational cost and mathematical complexity. A least squares spectral formulation was developed for solving fractional differential equations. The proposed method was proven particularly well-suited for dealing with the numerical difficulties inherent to fractional differential operators. The practical implementation was explained in detail in order to enhance reproducibility, and directions were specified for extending it to multiple dimensions and arbitrarily shaped domains. A numerical framework based on the least-squares spectral element method was developed for studying and comparing anomalous diffusion models in pellets. This simulation tool is capable of solving arbitrary integro-differential equations and can be effortlessly adapted to various problems in any number of dimensions. Simulations of the flow around a cylindrical particle were achieved by extending the functionality of the developed framework. A test case was analyzed by coupling the boundary condition yielded by the fluid model with two families of anomalous diffusion models: hyperbolic diffusion and fractional diffusion. Qualitative guidelines for determining the suitability of diffusion models can be formulated by complementing experimental data with the results obtained from this approach.(Author)
2015-04-09
Refinement for Idealized Tropical Cyclone Problems in a Spectral Element Shallow Water Model 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...amined for idealized tropical cyclone (TC) simulations in a spectral element f-plane shallow water model. The SMR simulations have varying sizes of...adaptive mesh refinement1 for idealized tropical cyclone problems in a spectral element2 shallow water model3 Eric A. Hendricks ∗ Marine Meteorology Division
Seismoelectric Effects based on Spectral-Element Method for Subsurface Fluid Characterization
Morency, C.
2017-12-01
Present approaches for subsurface imaging rely predominantly on seismic techniques, which alone do not capture fluid properties and related mechanisms. On the other hand, electromagnetic (EM) measurements add constraints on the fluid phase through electrical conductivity and permeability, but EM signals alone do not offer information of the solid structural properties. In the recent years, there have been many efforts to combine both seismic and EM data for exploration geophysics. The most popular approach is based on joint inversion of seismic and EM data, as decoupled phenomena, missing out the coupled nature of seismic and EM phenomena such as seismoeletric effects. Seismoelectric effects are related to pore fluid movements with respect to the solid grains. By analyzing coupled poroelastic seismic and EM signals, one can capture a pore scale behavior and access both structural and fluid properties.Here, we model the seismoelectric response by solving the governing equations derived by Pride and Garambois (1994), which correspond to Biot's poroelastic wave equations and Maxwell's electromagnetic wave equations coupled electrokinetically. We will show that these coupled wave equations can be numerically implemented by taking advantage of viscoelastic-electromagnetic mathematical equivalences. These equations will be solved using a spectral-element method (SEM). The SEM, in contrast to finite-element methods (FEM) uses high degree Lagrange polynomials. Not only does this allow the technique to handle complex geometries similarly to FEM, but it also retains exponential convergence and accuracy due to the use of high degree polynomials. Finally, we will discuss how this is a first step toward full coupled seismic-EM inversion to improve subsurface fluid characterization. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Modified Legendre Wavelets Technique for Fractional Oscillation Equations
Directory of Open Access Journals (Sweden)
Syed Tauseef Mohyud-Din
2015-10-01
Full Text Available Physical Phenomena’s located around us are primarily nonlinear in nature and their solutions are of highest significance for scientists and engineers. In order to have a better representation of these physical models, fractional calculus is used. Fractional order oscillation equations are included among these nonlinear phenomena’s. To tackle with the nonlinearity arising, in these phenomena’s we recommend a new method. In the proposed method, Picard’s iteration is used to convert the nonlinear fractional order oscillation equation into a fractional order recurrence relation and then Legendre wavelets method is applied on the converted problem. In order to check the efficiency and accuracy of the suggested modification, we have considered three problems namely: fractional order force-free Duffing–van der Pol oscillator, forced Duffing–van der Pol oscillator and higher order fractional Duffing equations. The obtained results are compared with the results obtained via other techniques.
Carpenter, Mark H.; Parsani, Matteo; Fisher, Travis C.; Nielsen, Eric J.
2015-01-01
Staggered grid, entropy stable discontinuous spectral collocation operators of any order are developed for Burgers' and the compressible Navier-Stokes equations on unstructured hexahedral elements. This generalization of previous entropy stable spectral collocation work [1, 2], extends the applicable set of points from tensor product, Legendre-Gauss-Lobatto (LGL) to a combination of tensor product Legendre-Gauss (LG) and LGL points. The new semi-discrete operators discretely conserve mass, momentum, energy and satisfy a mathematical entropy inequality for both Burgers' and the compressible Navier-Stokes equations in three spatial dimensions. They are valid for smooth as well as discontinuous flows. The staggered LG and conventional LGL point formulations are compared on several challenging test problems. The staggered LG operators are significantly more accurate, although more costly to implement. The LG and LGL operators exhibit similar robustness, as is demonstrated using test problems known to be problematic for operators that lack a nonlinearly stability proof for the compressible Navier-Stokes equations (e.g., discontinuous Galerkin, spectral difference, or flux reconstruction operators).
Comment on 'Analytical results for a Bessel function times Legendre polynomials class integrals'
International Nuclear Information System (INIS)
Cregg, P J; Svedlindh, P
2007-01-01
A result is obtained, stemming from Gegenbauer, where the products of certain Bessel functions and exponentials are expressed in terms of an infinite series of spherical Bessel functions and products of associated Legendre functions. Closed form solutions for integrals involving Bessel functions times associated Legendre functions times exponentials, recently elucidated by Neves et al (J. Phys. A: Math. Gen. 39 L293), are then shown to result directly from the orthogonality properties of the associated Legendre functions. This result offers greater flexibility in the treatment of classical Heisenberg chains and may do so in other problems such as occur in electromagnetic diffraction theory. (comment)
Taneja, Ankur; Higdon, Jonathan
2018-01-01
A high-order spectral element discontinuous Galerkin method is presented for simulating immiscible two-phase flow in petroleum reservoirs. The governing equations involve a coupled system of strongly nonlinear partial differential equations for the pressure and fluid saturation in the reservoir. A fully implicit method is used with a high-order accurate time integration using an implicit Rosenbrock method. Numerical tests give the first demonstration of high order hp spatial convergence results for multiphase flow in petroleum reservoirs with industry standard relative permeability models. High order convergence is shown formally for spectral elements with up to 8th order polynomials for both homogeneous and heterogeneous permeability fields. Numerical results are presented for multiphase fluid flow in heterogeneous reservoirs with complex geometric or geologic features using up to 11th order polynomials. Robust, stable simulations are presented for heterogeneous geologic features, including globally heterogeneous permeability fields, anisotropic permeability tensors, broad regions of low-permeability, high-permeability channels, thin shale barriers and thin high-permeability fractures. A major result of this paper is the demonstration that the resolution of the high order spectral element method may be exploited to achieve accurate results utilizing a simple cartesian mesh for non-conforming geological features. Eliminating the need to mesh to the boundaries of geological features greatly simplifies the workflow for petroleum engineers testing multiple scenarios in the face of uncertainty in the subsurface geology.
Karaoǧlu, Haydar; Romanowicz, Barbara
2018-01-01
We present a global upper-mantle shear wave attenuation model that is built through a hybrid full-waveform inversion algorithm applied to long-period waveforms, using the Spectral Element Method for wavefield computations. Our inversion strategy is based on an iterative approach that involves the inversion for successive updates in the attenuation parameter (δ Q^{-1}_μ) and elastic parameters (isotropic velocity VS, and radial anisotropy parameter ξ) through a Gauss-Newton type optimization scheme that employs envelope- and waveform-type misfit functionals for the two steps, respectively. We also include source and receiver terms in the inversion steps for attenuation structure. We conducted a total of 8 iterations (6 for attenuation and 2 for elastic structure), and one inversion for updates to source parameters. The starting model included the elastic part of the relatively high resolution 3-D whole mantle seismic velocity model, SEMUCB-WM1, which served to account for elastic focusing effects. The data set is a subset of the three component surface waveform data set, filtered between 400 and 60 s, that contributed to the construction of the whole-mantle tomographic model SEMUCB-WM1. We applied strict selection criteria to this data set for the attenuation iteration steps, and investigated the effect of attenuation crustal structure on the retrieved mantle attenuation structure. While a constant 1-D Qμ model with a constant value of 165 throughout the upper-mantle was used as starting model for attenuation inversion, we were able to recover, in depth extent and strength, the high attenuation zone present in the depth range 80-200 km. The final three-dimensional model, SEMUCB-UMQ, shows strong correlation with tectonic features down to 200˜250 km depth, with low attenuation beneath the cratons, stable parts of continents and regions of old oceanic crust, and high attenuation along mid-ocean ridges and back-arcs. Below 250 km, we observe strong attenuation in
A Fast, Simple, and Stable Chebyshev--Legendre Transform Using an Asymptotic Formula
Hale, Nicholas
2014-02-06
A fast, simple, and numerically stable transform for converting between Legendre and Chebyshev coefficients of a degree N polynomial in O(N(log N)2/ log log N) operations is derived. The fundamental idea of the algorithm is to rewrite a well-known asymptotic formula for Legendre polynomials of large degree as a weighted linear combination of Chebyshev polynomials, which can then be evaluated by using the discrete cosine transform. Numerical results are provided to demonstrate the efficiency and numerical stability. Since the algorithm evaluates a Legendre expansion at an N +1 Chebyshev grid as an intermediate step, it also provides a fast transform between Legendre coefficients and values on a Chebyshev grid. © 2014 Society for Industrial and Applied Mathematics.
Parsani, Matteo
2016-10-04
Staggered grid, entropy stable discontinuous spectral collocation operators of any order are developed for the compressible Euler and Navier--Stokes equations on unstructured hexahedral elements. This generalization of previous entropy stable spectral collocation work [M. H. Carpenter, T. C. Fisher, E. J. Nielsen, and S. H. Frankel, SIAM J. Sci. Comput., 36 (2014), pp. B835--B867, M. Parsani, M. H. Carpenter, and E. J. Nielsen, J. Comput. Phys., 292 (2015), pp. 88--113], extends the applicable set of points from tensor product, Legendre--Gauss--Lobatto (LGL), to a combination of tensor product Legendre--Gauss (LG) and LGL points. The new semidiscrete operators discretely conserve mass, momentum, energy, and satisfy a mathematical entropy inequality for the compressible Navier--Stokes equations in three spatial dimensions. They are valid for smooth as well as discontinuous flows. The staggered LG and conventional LGL point formulations are compared on several challenging test problems. The staggered LG operators are significantly more accurate, although more costly from a theoretical point of view. The LG and LGL operators exhibit similar robustness, as is demonstrated using test problems known to be problematic for operators that lack a nonlinear stability proof for the compressible Navier--Stokes equations (e.g., discontinuous Galerkin, spectral difference, or flux reconstruction operators).
Spectral-element global waveform tomography: A second-generation upper-mantle model
French, S. W.; Lekic, V.; Romanowicz, B. A.
2012-12-01
The SEMum model of Lekic and Romanowicz (2011a) was the first global upper-mantle VS model obtained using whole-waveform inversion with spectral element (SEM: Komatitsch and Vilotte, 1998) forward modeling of time domain three component waveforms. SEMum exhibits stronger amplitudes of heterogeneity in the upper 200km of the mantle compared to previous global models - particularly with respect to low-velocity anomalies. To make SEM-based waveform inversion tractable at global scales, SEMum was developed using: (1) a version of SEM coupled to 1D mode computation in the earth's core (C-SEM, Capdeville et al., 2003); (2) asymptotic normal-mode sensitivity kernels, incorporating multiple forward scattering and finite-frequency effects in the great-circle plane (NACT: Li and Romanowicz, 1995); and (3) a smooth anisotropic crustal layer of uniform 60km thickness, designed to match global surface-wave dispersion while reducing the cost of time integration in the SEM. The use of asymptotic kernels reduced the number of SEM computations considerably (≥ 3x) relative to purely numerical approaches (e.g. Tarantola, 1984), while remaining sufficiently accurate at the periods of interest (down to 60s). However, while the choice of a 60km crustal-layer thickness is justifiable in the continents, it can complicate interpretation of shallow oceanic upper-mantle structure. We here present an update to the SEMum model, designed primarily to address these concerns. The resulting model, SEMum2, was derived using a crustal layer that again fits global surface-wave dispersion, but with a more geologically consistent laterally varying thickness: approximately honoring Crust2.0 (Bassin, et al., 2000) Moho depth in the continents, while saturating at 30km in the oceans. We demonstrate that this approach does not bias our upper mantle model, which is constrained not only by fundamental mode surface waves, but also by overtone waveforms. We have also improved our data-selection and
Asgharzadeh, M. F.; Hashemi, H.; von Frese, R. RB
2018-01-01
Forward modeling is the basis of gravitational anomaly inversion that is widely applied to map subsurface mass variations. This study uses numerical least-squares Gauss-Legendre quadrature (GLQ) integration to evaluate the gravitational potential, anomaly and gradient components of the vertical cylindrical prism element. These results, in turn, may be integrated to accurately model the complete gravitational effects of fluid bearing rock formations and other vertical cylinder-like geological bodies with arbitrary variations in shape and density. Comparing the GLQ gravitational effects of uniform density, vertical circular cylinders against the effects calculated by a number of other methods illustrates the veracity of the GLQ modeling method and the accuracy limitations of the other methods. Geological examples include modeling the gravitational effects of a formation washout to help map azimuthal variations of the formation's bulk densities around the borehole wall. As another application, the gravitational effects of a seismically and gravimetrically imaged salt dome within the Laurentian Basin are evaluated for the velocity, density and geometric properties of the Basin's sedimentary formations.
Stability Estimates for h-p Spectral Element Methods for Elliptic Problems
Dutt, Pravir; Tomar, S.K.; Kumar, B.V. Rathish
2002-01-01
In a series of papers of which this is the first we study how to solve elliptic problems on polygonal domains using spectral methods on parallel computers. To overcome the singularities that arise in a neighborhood of the corners we use a geometrical mesh. With this mesh we seek a solution which
Directory of Open Access Journals (Sweden)
Dmitriy Konovalov
2017-01-01
Full Text Available Modern high-performance computing systems allow us to explore and implement new technologies and mathematical modeling algorithms into industrial software systems of engineering analysis. For a long time the finite element method (FEM was considered as the basic approach to mathematical simulation of elasticity theory problems; it provided the problems solution within an engineering error. However, modern high-tech equipment allows us to implement design solutions with a high enough accuracy, which requires more sophisticated approaches within the mathematical simulation of elasticity problems in industrial packages of engineering analysis. One of such approaches is the spectral element method (SEM. The implementation of SEM in a CAE system for the solution of elasticity problems is considered. An important feature of the proposed variant of SEM implementation is a support of hybrid curvilinear meshes. The main advantages of SEM over the FEM are discussed. The shape functions for different classes of spectral elements are written. Some results of computations are given for model problems that have analytical solutions. The results show the better accuracy of SEM in comparison with FEM for the same meshes.
Smith, J. A.; Peter, D. B.; Tromp, J.; Komatitsch, D.; Lefebvre, M. P.
2015-12-01
We present both SPECFEM3D_Cartesian and SPECFEM3D_GLOBE open-source codes, representing high-performance numerical wave solvers simulating seismic wave propagation for local-, regional-, and global-scale application. These codes are suitable for both forward propagation in complex media and tomographic imaging. Both solvers compute highly accurate seismic wave fields using the continuous Galerkin spectral-element method on unstructured meshes. Lateral variations in compressional- and shear-wave speeds, density, as well as 3D attenuation Q models, topography and fluid-solid coupling are all readily included in both codes. For global simulations, effects due to rotation, ellipticity, the oceans, 3D crustal models, and self-gravitation are additionally included. Both packages provide forward and adjoint functionality suitable for adjoint tomography on high-performance computing architectures. We highlight the most recent release of the global version which includes improved performance, simultaneous MPI runs, OpenCL and CUDA support via an automatic source-to-source transformation library (BOAST), parallel I/O readers and writers for databases using ADIOS and seismograms using the recently developed Adaptable Seismic Data Format (ASDF) with built-in provenance. This makes our spectral-element solvers current state-of-the-art, open-source community codes for high-performance seismic wave propagation on arbitrarily complex 3D models. Together with these solvers, we provide full-waveform inversion tools to image the Earth's interior at unprecedented resolution.
Nguyen, Vu-Hieu; Naili, Salah
2012-08-01
This paper deals with the modeling of guided waves propagation in in vivo cortical long bone, which is known to be anisotropic medium with functionally graded porosity. The bone is modeled as an anisotropic poroelastic material by using Biot's theory formulated in high frequency domain. A hybrid spectral/finite element formulation has been developed to find the time-domain solution of ultrasonic waves propagating in a poroelastic plate immersed in two fluid halfspaces. The numerical technique is based on a combined Laplace-Fourier transform, which allows to obtain a reduced dimension problem in the frequency-wavenumber domain. In the spectral domain, as radiation conditions representing infinite fluid halfspaces may be exactly introduced, only the heterogeneous solid layer needs to be analyzed by using finite element method. Several numerical tests are presented showing very good performance of the proposed procedure. A preliminary study on the first arrived signal velocities computed by using equivalent elastic and poroelastic models will be presented. Copyright © 2012 John Wiley & Sons, Ltd.
Identification of chaotic memristor systems based on piecewise adaptive Legendre filters
International Nuclear Information System (INIS)
Zhao, Yibo; Zhang, Xiuzai; Xu, Jin; Guo, Yecai
2015-01-01
Memristor is a nonlinear device, which plays an important role in the design and implementation of chaotic systems. In order to be able to understand in-depth the complex nonlinear dynamic behaviors in chaotic memristor systems, modeling or identification of its nonlinear model is very important premise. This paper presents a chaotic memristor system identification method based on piecewise adaptive Legendre filters. The threshold decomposition is carried out for the input vector, and also the input signal subintervals via decomposition satisfy the convergence condition of the adaptive Legendre filters. Then the adaptive Legendre filter structure and adaptive weight update algorithm are derived. Final computer simulation results show the effectiveness as well as fast convergence characteristics.
International Nuclear Information System (INIS)
Pontaza, J.P.; Reddy, J.N.
2004-01-01
We consider least-squares finite element models for the numerical solution of the non-stationary Navier-Stokes equations governing viscous incompressible fluid flows. The paper presents a formulation where the effects of space and time are coupled, resulting in a true space-time least-squares minimization procedure, as opposed to a space-time decoupled formulation where a least-squares minimization procedure is performed in space at each time step. The formulation is first presented for the linear advection-diffusion equation and then extended to the Navier-Stokes equations. The formulation has no time step stability restrictions and is spectrally accurate in both space and time. To allow the use of practical C 0 element expansions in the resulting finite element model, the Navier-Stokes equations are expressed as an equivalent set of first-order equations by introducing vorticity as an additional independent variable and the least-squares method is used to develop the finite element model of the governing equations. High-order element expansions are used to construct the discrete model. The discrete model thus obtained is linearized by Newton's method, resulting in a linear system of equations with a symmetric positive definite coefficient matrix that is solved in a fully coupled manner by a preconditioned conjugate gradient method in matrix-free form. Spectral convergence of the L 2 least-squares functional and L 2 error norms in space-time is verified using a smooth solution to the two-dimensional non-stationary incompressible Navier-Stokes equations. Numerical results are presented for impulsively started lid-driven cavity flow, oscillatory lid-driven cavity flow, transient flow over a backward-facing step, and flow around a circular cylinder; the results demonstrate the predictive capability and robustness of the proposed formulation. Even though the space-time coupled formulation is emphasized, we also present the formulation and numerical results for least
Five-element Digital Corrector Receiver for the Chinese Spectral Radioheliograph
Zhao, An; Yan, Yihua; Wang, Wei; Chen, Linjie; Zhang, Jian; Liu, Fei
2013-07-01
The design of five-element digital receiver system is decribed. At first, we analyzed the process of data processing in the receiver system. Then we wrote programs to implement the FIR parallel filter and showed its simulation results. Finally the testing result of the correlation receiver system is demonstrated.
An optimized single run evaluation that would accurately determine the elemental composition of as many compounds present in an extract would greatly aid in the evaluation of plant tissues. For phytochemicals, we have used accurate mass analysis to quickly characterize the potential chemical formula...
Conjugation of fiber-coupled wide-band light sources and acousto-optical spectral elements
Machikhin, Alexander; Batshev, Vladislav; Polschikova, Olga; Khokhlov, Demid; Pozhar, Vitold; Gorevoy, Alexey
2017-12-01
Endoscopic instrumentation is widely used for diagnostics and surgery. The imaging systems, which provide the hyperspectral information of the tissues accessible by endoscopes, are particularly interesting and promising for in vivo photoluminescence diagnostics and therapy of tumour and inflammatory diseases. To add the spectral imaging feature to standard video endoscopes, we propose to implement acousto-optical (AO) filtration of wide-band illumination of incandescent-lamp-based light sources. To collect maximum light and direct it to the fiber-optic light guide inside the endoscopic probe, we have developed and tested the optical system for coupling the light source, the acousto-optical tunable filter (AOTF) and the light guide. The system is compact and compatible with the standard endoscopic components.
Legendre Wavelet Operational Matrix Method for Solution of Riccati Differential Equation
Directory of Open Access Journals (Sweden)
S. Balaji
2014-01-01
Full Text Available A Legendre wavelet operational matrix method (LWM is presented for the solution of nonlinear fractional-order Riccati differential equations, having variety of applications in quantum chemistry and quantum mechanics. The fractional-order Riccati differential equations converted into a system of algebraic equations using Legendre wavelet operational matrix. Solutions given by the proposed scheme are more accurate and reliable and they are compared with recently developed numerical, analytical, and stochastic approaches. Comparison shows that the proposed LWM approach has a greater performance and less computational effort for getting accurate solutions. Further existence and uniqueness of the proposed problem are given and moreover the condition of convergence is verified.
Ito, K.
1983-01-01
Approximation schemes based on Legendre-tau approximation are developed for application to parameter identification problem for delay and partial differential equations. The tau method is based on representing the approximate solution as a truncated series of orthonormal functions. The characteristic feature of the Legendre-tau approach is that when the solution to a problem is infinitely differentiable, the rate of convergence is faster than any finite power of 1/N; higher accuracy is thus achieved, making the approach suitable for small N.
Numerical solution of sixth-order boundary-value problems using Legendre wavelet collocation method
Sohaib, Muhammad; Haq, Sirajul; Mukhtar, Safyan; Khan, Imad
2018-03-01
An efficient method is proposed to approximate sixth order boundary value problems. The proposed method is based on Legendre wavelet in which Legendre polynomial is used. The mechanism of the method is to use collocation points that converts the differential equation into a system of algebraic equations. For validation two test problems are discussed. The results obtained from proposed method are quite accurate, also close to exact solution, and other different methods. The proposed method is computationally more effective and leads to more accurate results as compared to other methods from literature.
Solved problems in analysis as applied to gamma, beta, Legendre and Bessel functions
Farrell, Orin J
2013-01-01
Nearly 200 problems, each with a detailed, worked-out solution, deal with the properties and applications of the gamma and beta functions, Legendre polynomials, and Bessel functions. The first two chapters examine gamma and beta functions, including applications to certain geometrical and physical problems such as heat-flow in a straight wire. The following two chapters treat Legendre polynomials, addressing applications to specific series expansions, steady-state heat-flow temperature distribution, gravitational potential of a circular lamina, and application of Gauss's mechanical quadrature
Schneider, Barry I.; Segura, Javier; Gil, Amparo; Guan, Xiaoxu; Bartschat, Klaus
2018-04-01
This is a revised and updated version of a modern Fortran 90 code to compute the regular Plm (x) and irregular Qlm (x) associated Legendre functions for all x ∈(- 1 , + 1) (on the cut) and | x | > 1 and integer degree (l) and order (m). The necessity to revise the code comes as a consequence of some comments of Prof. James Bremer of the UC//Davis Mathematics Department, who discovered that there were errors in the code for large integer degree and order for the normalized regular Legendre functions on the cut.
Spectral and thermal behaviours of rare earth element complexes with 3,5-dimethoxybenzoic acid
Directory of Open Access Journals (Sweden)
JANUSZ CHRUŚCIEL
2003-10-01
Full Text Available The conditions for the formation of rare earth element 3,5-dimethytoxybenzoates were studied and their quantitative composition and solubilities in water at 293 K were determined. The complexes are anhydrous or hydrated salts and their solubilities are of the orders of 10-5 10-4 mol dm-3. Their FTIR, FIR and X-ray spectra were recorded. The compounds were also characterized by thermogravimetric studies in air and nitrogen atmospheres and by magnetic measurements. All complexes are crystalline compounds. The carboxylate group in these complexes is a bidentate, chelating ligand. On heating in air to 1173 K, the 3,5-dimethoxybenzoates of rare earth elements decompose in various ways. The hydrated complexes first dehydrate to form anhydrous salts which then decompose in air to the oxides of the respective metals while in nitrogen to mixtures of carbon and oxides of the respective metals. The complexes are more stable in air than in nitrogen.
Stability estimates for h-p spectral element methods for general ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
element method which allows for simultaneous mesh refinement and variable polynomial ... Finally, we indicate how the mesh refinement strategy and choice ..... We define σk. 1 = 0. Thus Ik,j = Ik for j ≤ M; in fact, we shall let Ik,j = Ik for j ≤ M +1. Moreover Ik,j ≤ I for all k, j where I is a fixed constant. Let k+j = {(rk,θk)|θk = f k.
International Nuclear Information System (INIS)
Schulte, R T; Fritzen, C-P; Moll, J
2010-01-01
During the last decades, guided waves have shown great potential for Structural Health Monitoring (SHM) applications. These waves can be excited and sensed by piezoelectric elements that can be permanently attached onto a structure offering online monitoring capability. However, the setup of wave based SHM systems for complex structures may be very difficult and time consuming. For that reason there is a growing demand for efficient simulation tools providing the opportunity to design wave based SHM systems in a virtual environment. As usually high frequency waves are used, the associated short wavelength leads to the necessity of a very dense mesh, which makes conventional finite elements not well suited for this purpose. Therefore in this contribution a flat shell spectral element approach is presented. By including electromechanical coupling a SHM system can be simulated entirely from actuator voltage to sensor voltage. Besides a comparison to measured data for anisotropic materials including delamination, a numerical example of a more complex, stiffened shell structure with debonding is presented.
He, Shuai; Ng, Ching Tai
2017-08-01
This study proposes a time-domain spectral finite element (SFE) model and investigates nonlinear guided wave interaction at a breathing crack. An extended time-domain SFE method based on the Mindlin-Hermann rod and Timoshenko beam theory is proposed to predict the nonlinear guided wave generation at the breathing crack. An SFE crack element is proposed to simulate the mode-conversion effect, in which a bilinear crack mechanism is implemented to take into account the contact nonlinearity at the breathing crack. There is good agreement between the results calculated using the proposed time-domain SFE method and three-dimensional finite element simulation. This demonstrates the accuracy of the proposed SFE method in simulating contact nonlinearity at the breathing crack. Parametric studies using the fundamental symmetric (S0) and anti-symmetric (A0) modes of guided waves are also carried out to provide physical insights into the higher harmonics generated due to the contact nonlinearity at the breathing crack. The magnitude of the higher harmonics generated as a function of the crack depth is investigated in detail. The results show that the mode-converted higher harmonic guided waves provide valuable information for damage detection.
International Nuclear Information System (INIS)
Koch, Stephan
2009-01-01
This thesis is concerned with the numerical simulation of electromagnetic fields in the quasi-static approximation which is applicable in many practical cases. Main emphasis is put on higher-order finite element methods. Quasi-static applications can be found, e.g., in accelerator physics in terms of the design of magnets required for beam guidance, in power engineering as well as in high-voltage engineering. Especially during the first design and optimization phase of respective devices, numerical models offer a cheap alternative to the often costly assembly of prototypes. However, large differences in the magnitude of the material parameters and the geometric dimensions as well as in the time-scales of the electromagnetic phenomena involved lead to an unacceptably long simulation time or to an inadequately large memory requirement. Under certain circumstances, the simulation itself and, in turn, the desired design improvement becomes even impossible. In the context of this thesis, two strategies aiming at the extension of the range of application for numerical simulations based on the finite element method are pursued. The first strategy consists in parallelizing existing methods such that the computation can be distributed over several computers or cores of a processor. As a consequence, it becomes feasible to simulate a larger range of devices featuring more degrees of freedom in the numerical model than before. This is illustrated for the calculation of the electromagnetic fields, in particular of the eddy-current losses, inside a superconducting dipole magnet developed at the GSI Helmholtzzentrum fuer Schwerionenforschung as a part of the FAIR project. As the second strategy to improve the efficiency of numerical simulations, a hybrid discretization scheme exploiting certain geometrical symmetries is established. Using this method, a significant reduction of the numerical effort in terms of required degrees of freedom for a given accuracy is achieved. The
He, Yue-Jing; Hung, Wei-Chih; Lai, Zhe-Ping
2016-02-04
In this study, a numerical simulation method was employed to investigate and analyze superstructure fiber Bragg gratings (SFBGs) with five duty cycles (50%, 33.33%, 14.28%, 12.5%, and 10%). This study focuses on demonstrating the relevance between design period and spectral characteristics of SFBGs (in the form of graphics) for SFBGs of all duty cycles. Compared with complicated and hard-to-learn conventional coupled-mode theory, the result of the present study may assist beginner and expert designers in understanding the basic application aspects, optical characteristics, and design techniques of SFBGs, thereby indirectly lowering the physical concepts and mathematical skills required for entering the design field. To effectively improve the accuracy of overall computational performance and numerical calculations and to shorten the gap between simulation results and actual production, this study integrated a perfectly matched layer (PML), perfectly reflecting boundary (PRB), object meshing method (OMM), and boundary meshing method (BMM) into the finite element method (FEM) and eigenmode expansion method (EEM). The integrated method enables designers to easily and flexibly design optical fiber communication systems that conform to the specific spectral characteristic by using the simulation data in this paper, which includes bandwidth, number of channels, and band gap size.
Directory of Open Access Journals (Sweden)
Yue-Jing He
2016-02-01
Full Text Available In this study, a numerical simulation method was employed to investigate and analyze superstructure fiber Bragg gratings (SFBGs with five duty cycles (50%, 33.33%, 14.28%, 12.5%, and 10%. This study focuses on demonstrating the relevance between design period and spectral characteristics of SFBGs (in the form of graphics for SFBGs of all duty cycles. Compared with complicated and hard-to-learn conventional coupled-mode theory, the result of the present study may assist beginner and expert designers in understanding the basic application aspects, optical characteristics, and design techniques of SFBGs, thereby indirectly lowering the physical concepts and mathematical skills required for entering the design field. To effectively improve the accuracy of overall computational performance and numerical calculations and to shorten the gap between simulation results and actual production, this study integrated a perfectly matched layer (PML, perfectly reflecting boundary (PRB, object meshing method (OMM, and boundary meshing method (BMM into the finite element method (FEM and eigenmode expansion method (EEM. The integrated method enables designers to easily and flexibly design optical fiber communication systems that conform to the specific spectral characteristic by using the simulation data in this paper, which includes bandwidth, number of channels, and band gap size.
International Nuclear Information System (INIS)
Fietier, Nicolas; Deville, Michel O.
2003-01-01
This paper presents the development of spectral element methods to simulate unsteady flows of viscoelastic fluids using a closed-form differential constitutive equation. The generation and decay Poiseuille planar flows are considered as benchmark problems to test the abilities of our computational method to deal with truly time-dependent flows. Satisfactory results converging toward steady-state regimes have been obtained for the flow through a four-to-one planar abrupt contraction with unsteady algorithms. Time-dependent simulations of viscoelastic flows are prone to numerical instabilities even for simple geometrical configurations. Possible methods to improve the numerical stability of the computational algorithms are discussed in view of the results carried out with numerical simulations for the flows through a straight channel and the four-to-one contraction
Spectral analysis of rare earth elements using laser-induced breakdown spectroscopy
Martin, Madhavi Z.; Fox, Robert V.; Miziolek, Andrzej W.; DeLucia, Frank C.; André, Nicolas
2015-06-01
There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to be able to quantify the concentrations of various REEs in realworld complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.
Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Martin, Madhavi Z [ORNL; Fox, Dr. Richard V [Idaho National Laboratory (INL); Miziolek, Andrzej W [United States Army Research Laboratory; DeLucia, Frank C [United States Army Research Laboratory; Andre, Nicolas O [ORNL
2015-01-01
There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to be able to quantify the concentrations of various REEs in real-world complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.
Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Martin, Madhavi Z [ORNL; Fox, Dr. Richard V [Idaho National Laboratory (INL); Miziolek, Andrzej W [United States Army Research Laboratory; DeLucia, Frank C [United States Army Research Laboratory; Andre, Nicolas O [ORNL
2015-01-01
There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to be able to quantify the concentrations of various REEs in realworld complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.
Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Madhavi Z. Martin; Robert V. Fox; Andrzej W. Miziolek; Frank C. DeLucia, Jr.; Nicolas Andre
2001-05-01
There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to be able to quantify the concentrations of various REEs in realworld complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.
A hybrid spectral and finite element method for coseismic and postseismic deformation
Pergler, Tomáš; Matyska, Ctirad
2007-08-01
We investigate the elastic and viscoelastic responses of the Earth to a sudden slip along a fault. Firstly, equations describing the Earth's infinitesimal deformations for elastic and viscoelastic rheological models are introduced within the weak formulation and the theorems of existence and uniqueness of solutions are demonstrated. Three-dimensional numerical method, which combines the 2D finite element method in a plane perpendicular to the fault with application of the Fourier transform in the direction along the fault, is described. We then discuss several numerical benchmarks. At the end, the coseismic deformation and the Coulomb stress for the August 14, 2003 earthquake on the Lefkada island in Greece are computed incorporating also the influence of topography. We demonstrate that the results are sensitive to both source interpretations and the epicenter area topography.
DEFF Research Database (Denmark)
Shekarchi, Sayedali; Hallam, John; Christensen-Dalsgaard, Jakob
2013-01-01
-moving-average (ARMA) filters whose coefficients are calculated using Prony's method. Such filters are specified by a few coefficients which can generate the full head-related impulse responses (HRIRs). Next, Legendre polynomials (LPs) are used to compress the ARMA filter coefficients. LPs are derived on the sphere...
Numerical solutions of integral and integro-differential equations using Legendre polynomials
Khater, A.; Shamardan, A.; Callebaut, D.; Sakran, M.
2007-11-01
In this paper, a finite Legendre expansion is developed to solve singularly perturbed integral equations, first order integro-differential equations of Volterra type arising in fluid dynamics and Volterra delay integro-differential equations. The error analysis is derived. Numerical results and comparisons with other methods in literature are considered.
Zheng, Mingfang; He, Cunfu; Lu, Yan; Wu, Bin
2018-01-01
We presented a numerical method to solve phase dispersion curve in general anisotropic plates. This approach involves an exact solution to the problem in the form of the Legendre polynomial of multiple integrals, which we substituted into the state-vector formalism. In order to improve the efficiency of the proposed method, we made a special effort to demonstrate the analytical methodology. Furthermore, we analyzed the algebraic symmetries of the matrices in the state-vector formalism for anisotropic plates. The basic feature of the proposed method was the expansion of field quantities by Legendre polynomials. The Legendre polynomial method avoid to solve the transcendental dispersion equation, which can only be solved numerically. This state-vector formalism combined with Legendre polynomial expansion distinguished the adjacent dispersion mode clearly, even when the modes were very close. We then illustrated the theoretical solutions of the dispersion curves by this method for isotropic and anisotropic plates. Finally, we compared the proposed method with the global matrix method (GMM), which shows excellent agreement.
Yu, Yue; Li, Zhanming; Pan, Jinming
2016-01-01
Objective. The objective of this study was to investigate changes in pigment, spectral transmission and element content of chicken eggshells with different intensities of pink pigment during the incubation period. We also investigated the effects of the region (small pole, equator and large pole) and pink pigment intensity of the chicken eggshell on the percent transmission of light passing through the chicken eggshells. Method. Eggs of comparable weight from a meat-type breeder (Meihuang) were used, and divided based on three levels of pink pigment (light, medium and dark) in the eggshells. During the incubation (0-21 d), the values of the eggshell pigment (ΔE, L (∗), a (∗), b (∗)) were measured. The percent transmission of light for different regions and intensities of eggshell pigmentation was measured by using the visible wavelength range of 380-780 nm. Result. Three measured indicators of eggshell color, ΔE, L (∗) and a (∗), did not change significantly during incubation. Compared with other regions and pigment intensities, eggshell at the small pole and with light pigmentation intensity showed the highest percent transmission of light. The transmission value varied significantly (P pink pigment showed that the potassium content of the eggshells for all pigment levels decreased significantly during incubation. Conclusion. In summary, pigment intensity and the region of the eggshell influenced the percent transmission of light of eggshell. Differences in the spectral characteristics of different eggshells may influence the effects of photostimulation during the incubation of eggs. All of these results will be applicable for perfecting the design of light intensity for lighted incubation to improve productivity.
Directory of Open Access Journals (Sweden)
Wan-You Li
2014-01-01
Full Text Available A novel hybrid method, which simultaneously possesses the efficiency of Fourier spectral method (FSM and the applicability of the finite element method (FEM, is presented for the vibration analysis of structures with elastic boundary conditions. The FSM, as one type of analytical approaches with excellent convergence and accuracy, is mainly limited to problems with relatively regular geometry. The purpose of the current study is to extend the FSM to problems with irregular geometry via the FEM and attempt to take full advantage of the FSM and the conventional FEM for structural vibration problems. The computational domain of general shape is divided into several subdomains firstly, some of which are represented by the FSM while the rest by the FEM. Then, fictitious springs are introduced for connecting these subdomains. Sufficient details are given to describe the development of such a hybrid method. Numerical examples of a one-dimensional Euler-Bernoulli beam and a two-dimensional rectangular plate show that the present method has good accuracy and efficiency. Further, one irregular-shaped plate which consists of one rectangular plate and one semi-circular plate also demonstrates the capability of the present method applied to irregular structures.
Sedov, A. V.; Kalinchuk, V. V.; Bocharova, O. V.
2017-10-01
The evaluation of static stresses and strength of units and components is a crucial task for increasing reliability in the operation of vehicles and equipment, to prevent emergencies, especially in structures made of metal and composite materials. At the stage of creation and commissioning of structures to control the quality of manufacturing of individual elements and components, diagnostic control methods are widely used. They are acoustic, ultrasonic, X-ray, radiation methods and others. The using of these methods to control the residual life and the degree of static stresses of units and parts during operation is fraught with great difficulties both in methodology and in instrumentation. In this paper, the authors propose an effective method of operative control of the degree of static stresses of units and parts of mechanical structures which are in working condition, based on recording the changing in the surface wave properties of a system consisting of a sensor and a controlled environment (unit, part). The proposed method of low-frequency diagnostics of static stresses presupposes adaptive-spectral decomposition analysis of a surface wave created by external action (impact).
Directory of Open Access Journals (Sweden)
E. H. Doha
2014-01-01
Full Text Available A new Legendre rational pseudospectral scheme is proposed and developed for solving numerically systems of linear and nonlinear multipantograph equations on a semi-infinite interval. A Legendre rational collocation method based on Legendre rational-Gauss quadrature points is utilized to reduce the solution of such systems to systems of linear and nonlinear algebraic equations. In addition, accurate approximations are achieved by selecting few Legendre rational-Gauss collocation points. The numerical results obtained by this method have been compared with various exact solutions in order to demonstrate the accuracy and efficiency of the proposed method. Indeed, for relatively limited nodes used, the absolute error in our numerical solutions is sufficiently small.
Khalili, Ashkan
Wave propagation analysis in 1-D and 2-D composite structures is performed efficiently and accurately through the formulation of a User-Defined Element (UEL) based on the wavelet spectral finite element (WSFE) method. The WSFE method is based on the first order shear deformation theory which yields accurate results for wave motion at high frequencies. The wave equations are reduced to ordinary differential equations using Daubechies compactly supported, orthonormal, wavelet scaling functions for approximations in time and one spatial dimension. The 1-D and 2-D WSFE models are highly efficient computationally and provide a direct relationship between system input and output in the frequency domain. The UEL is formulated and implemented in Abaqus for wave propagation analysis in composite structures with complexities. Frequency domain formulation of WSFE leads to complex valued parameters, which are decoupled into real and imaginary parts and presented to Abaqus as real values. The final solution is obtained by forming a complex value using the real number solutions given by Abaqus. Several numerical examples are presented here for 1-D and 2-D composite waveguides. Wave motions predicted by the developed UEL correlate very well with Abaqus simulations using shear flexible elements. The results also show that the UEL largely retains computational efficiency of the WSFE method and extends its ability to model complex features. An enhanced cross-correlation method (ECCM) is developed in order to accurately predict damage location in plates. Three major modifications are proposed to the widely used cross-correlation method (CCM) to improve damage localization capabilities, namely actuator-sensor configuration, signal pre-processing method, and signal post-processing method. The ECCM is investigated numerically (FEM simulation) and experimentally. Experimental investigations for damage detection employ a PZT transducer as actuator and laser Doppler vibrometer as sensor
Modified rational Legendre approach to laminar viscous flow over a semi-infinite flat plate
International Nuclear Information System (INIS)
Tajvidi, T.; Razzaghi, M.; Dehghan, M.
2008-01-01
A numerical method for solving the classical Blasius' equation is proposed. The Blasius' equation is a third order nonlinear ordinary differential equation , which arises in the problem of the two-dimensional laminar viscous flow over a semi-infinite flat plane. The approach is based on a modified rational Legendre tau method. The operational matrices for the derivative and product of the modified rational Legendre functions are presented. These matrices together with the tau method are utilized to reduce the solution of Blasius' equation to the solution of a system of algebraic equations. A numerical evaluation is included to demonstrate the validity and applicability of the method and a comparison is made with existing results
Energy Technology Data Exchange (ETDEWEB)
Scarfone, A.M., E-mail: antoniomaria.scarfone@cnr.it [Istituto dei Sistemi Complessi (ISC-CNR) c/o Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Matsuzoe, H. [Department of Computer Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Wada, T. [Department of Electrical and Electronic Engineering, Ibaraki University, Nakanarusawacho, Hitachi 316-8511 (Japan)
2016-09-07
We show the robustness of the structure of Legendre transform in thermodynamics against the replacement of the standard linear average with the Kolmogorov–Nagumo nonlinear average to evaluate the expectation values of the macroscopic physical observables. The consequence of this statement is twofold: 1) the relationships between the expectation values and the corresponding Lagrange multipliers still hold in the present formalism; 2) the universality of the Gibbs equation as well as other thermodynamic relations are unaffected by the structure of the average used in the theory. - Highlights: • The robustness of the Legendre structure has been shown within the KN average. • The relationships between the expectation values and the Lagrange multipliers still hold in the present formalism. • The universality of the Gibbs equation and other thermodynamic relations are unaffected by the structure of the average used.
Fast and Accurate Computation of Gauss--Legendre and Gauss--Jacobi Quadrature Nodes and Weights
Hale, Nicholas
2013-03-06
An efficient algorithm for the accurate computation of Gauss-Legendre and Gauss-Jacobi quadrature nodes and weights is presented. The algorithm is based on Newton\\'s root-finding method with initial guesses and function evaluations computed via asymptotic formulae. The n-point quadrature rule is computed in O(n) operations to an accuracy of essentially double precision for any n ≥ 100. © 2013 Society for Industrial and Applied Mathematics.
Ito, K.; Teglas, R.
1984-01-01
The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.
Ito, Kazufumi; Teglas, Russell
1987-01-01
The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.
Investigation of snow single scattering properties based on first order Legendre phase function
Eppanapelli, Lavan Kumar; Casselgren, Johan; Wåhlin, Johan; Sjödahl, Mikael
2017-04-01
Angularly resolved bidirectional reflectance measurements were modelled by approximating a first order Legendre expanded phase function to retrieve single scattering properties of snow. The measurements from 10 different snow types with known density and specific surface area (SSA) were investigated. A near infrared (NIR) spectrometer was used to measure reflected light above the snow surface over the hemisphere in the wavelength region of 900-1650 nm. A solver based on discrete ordinate radiative transfer (DISORT) model was used to retrieve the estimated Legendre coefficients of the phase function and a correlation between the coefficients and physical properties of different snow types is investigated. Results of this study suggest that the first two coefficients of the first order Legendre phase function provide sufficient information about the physical properties of snow where the latter captures the anisotropic behaviour of snow and the former provides a relative estimate of the single scattering albedo of snow. The coefficients of the first order phase function were compared with the experimental data and observed that both the coefficients are in good agreement with the experimental data. These findings suggest that our approach can be applied as a qualitative tool to investigate physical properties of snow and also to classify different snow types.
Blitz, Celine; Komatitsch, Dimitri; Lognonné, Philippe; Martin, Roland; Le Goff, Nicolas
The understanding of the interior structure of Near Earth Objects (NEOs) is a fundamental issue to determine their evolution and origin, and also, to design possible mitigation techniques (Walker and Huebner, 2004). Indeed, if an oncoming Potentially Hazardous Object (PHO) were to threaten the Earth, numerous methods are suggested to prevent it from colliding our planet. Such mitigation techniques may involve nuclear explosives on or below the object surface, impact by a projectile, or concentration of solar energy using giant mirrors (Holsapple, 2004). The energy needed in such mitigation techniques highly depends on the porosity of the hazardous threatening object (asteroid or comet), as suggested by Holsapple, 2004. Thus, for a given source, the seismic response of a coherent homogeneous asteroid should be very different from the seismic response of a fractured or rubble-pile asteroid. To assess this hypothesis, we performed numerical simulations of wave propagation in different interior models of the Near Earth Asteroid 433 Eros. The simulations of wave propagation required a shape model of asteroid Eros, kindly provided by A. Cheng and O. Barnouin-Jha (personal communication). A cross-section along the longest axis has been chosen to define our 2D geometrical model, and we study two models of the interior: a homogeneous one, and a complex one characterized by fault networks below the main crosscut craters, and covered by a regolith layer of thickness ranging from 50 m to 150 m. To perform the numerical simulations we use the spectral-element method, which solves the variational weak form of the seismic wave equation (Komatitsch and Tromp, 1999) on the meshes of the 2D models of asteroid Eros. The homogeneous model is composed of an elastic material characterized by a pressure wave velocity Vp = 3000 m.s-1 , a shear wave velocity Vs = 1700 m.s-1 and a density of 2700 kg.m-3 . The fractured model possesses the same characteristics except for the presence of
Oral, Elif; Gélis, Céline; Bonilla, Luis Fabián; Delavaud, Elise
2017-12-01
Numerical modelling of seismic wave propagation, considering soil nonlinearity, has become a major topic in seismic hazard studies when strong shaking is involved under particular soil conditions. Indeed, when strong ground motion propagates in saturated soils, pore pressure is another important parameter to take into account when successive phases of contractive and dilatant soil behaviour are expected. Here, we model 1-D seismic wave propagation in linear and nonlinear media using the spectral element numerical method. The study uses a three-component (3C) nonlinear rheology and includes pore-pressure excess. The 1-D-3C model is used to study the 1987 Superstition Hills earthquake (ML 6.6), which was recorded at the Wildlife Refuge Liquefaction Array, USA. The data of this event present strong soil nonlinearity involving pore-pressure effects. The ground motion is numerically modelled for different assumptions on soil rheology and input motion (1C versus 3C), using the recorded borehole signals as input motion. The computed acceleration-time histories show low-frequency amplification and strong high-frequency damping due to the development of pore pressure in one of the soil layers. Furthermore, the soil is found to be more nonlinear and more dilatant under triaxial loading compared to the classical 1C analysis, and significant differences in surface displacements are observed between the 1C and 3C approaches. This study contributes to identify and understand the dominant phenomena occurring in superficial layers, depending on local soil properties and input motions, conditions relevant for site-specific studies.
Shuxia, ZHAO; Lei, ZHANG; Jiajia, HOU; Yang, ZHAO; Wangbao, YIN; Weiguang, MA; Lei, DONG; Liantuan, XIAO; Suotang, JIA
2018-03-01
The chemical composition of alloys directly determines their mechanical behaviors and application fields. Accurate and rapid analysis of both major and minor elements in alloys plays a key role in metallurgy quality control and material classification processes. A quantitative calibration-free laser-induced breakdown spectroscopy (CF-LIBS) analysis method, which carries out combined correction of plasma temperature and spectral intensity by using a second-order iterative algorithm and two boundary standard samples, is proposed to realize accurate composition measurements. Experimental results show that, compared to conventional CF-LIBS analysis, the relative errors for major elements Cu and Zn and minor element Pb in the copper-lead alloys has been reduced from 12%, 26% and 32% to 1.8%, 2.7% and 13.4%, respectively. The measurement accuracy for all elements has been improved substantially.
DEFF Research Database (Denmark)
Kim, Oleksiy S.; Jørgensen, Erik; Meincke, Peter
2004-01-01
An efficient higher-order method of moments (MoM) solution of volume integral equations is presented. The higher-order MoM solution is based on higher-order hierarchical Legendre basis functions and higher-order geometry modeling. An unstructured mesh composed of 8-node trilinear and/or curved 27...... of magnitude in comparison to existing higher-order hierarchical basis functions. Consequently, an iterative solver can be applied even for high expansion orders. Numerical results demonstrate excellent agreement with the analytical Mie series solution for a dielectric sphere as well as with results obtained...
Directory of Open Access Journals (Sweden)
Şuayip Yüzbaşı
2017-03-01
Full Text Available In this paper, we suggest a matrix method for obtaining the approximate solutions of the delay linear Fredholm integro-differential equations with constant coefficients using the shifted Legendre polynomials. The problem is considered with mixed conditions. Using the required matrix operations, the delay linear Fredholm integro-differential equation is transformed into a matrix equation. Additionally, error analysis for the method is presented using the residual function. Illustrative examples are given to demonstrate the efficiency of the method. The results obtained in this study are compared with the known results.
S4 solution of the transport equation for eigenvalues using Legendre polynomials
Directory of Open Access Journals (Sweden)
Öztürk Hakan
2017-01-01
Full Text Available Numerical solution of the transport equation for monoenergetic neutrons scattered isotropically through the medium of a finite homogeneous slab is studied for the determination of the eigenvalues. After obtaining the discrete ordinates form of the transport equation, separated homogeneous and particular solutions are formed and then the eigenvalues are calculated using the Gauss-Legendre quadrature set. Then, the calculated eigenvalues for various values of the c0, the mean number of secondary neutrons per collision, are given in the tables.
Cieplak, Agnieszka; Slosar, Anze
2018-01-01
The Lyman-alpha forest has become a powerful cosmological probe at intermediate redshift. It is a highly non-linear field with much information present beyond the power spectrum. The flux probability flux distribution (PDF) in particular has been a successful probe of small scale physics. However, it is also sensitive to pixel noise, spectrum resolution, and continuum fitting, all of which lead to possible biased estimators. Here we argue that measuring the coefficients of the Legendre polynomial expansion of the PDF offers several advantages over measuring the binned values as is commonly done. Since the n-th Legendre coefficient can be expressed as a linear combination of the first n moments of the field, this allows for the coefficients to be measured in the presence of noise and allows for a clear route towards marginalization over the mean flux. Additionally, in the presence of noise, a finite number of these coefficients are well measured with a very sharp transition into noise dominance. This compresses the information into a small amount of well-measured quantities. Finally, we find that measuring fewer quasars with high signal-to-noise produces a higher amount of recoverable information.
Spectral methods for time dependent partial differential equations
Gottlieb, D.; Turkel, E.
1983-01-01
The theory of spectral methods for time dependent partial differential equations is reviewed. When the domain is periodic Fourier methods are presented while for nonperiodic problems both Chebyshev and Legendre methods are discussed. The theory is presented for both hyperbolic and parabolic systems using both Galerkin and collocation procedures. While most of the review considers problems with constant coefficients the extension to nonlinear problems is also discussed. Some results for problems with shocks are presented.
Martin, Roland; Chevrot, Sébastien; Komatitsch, Dimitri; Seoane, Lucia; Spangenberg, Hannah; Wang, Yi; Dufréchou, Grégory; Bonvalot, Sylvain; Bruinsma, Sean
2017-04-01
We image the internal density structure of the Pyrenees by inverting gravity data using an a priori density model derived by scaling a Vp model obtained by full waveform inversion of teleseismic P-waves. Gravity anomalies are computed via a 3-D high-order finite-element integration in the same high-order spectral-element grid as the one used to solve the wave equation and thus to obtain the velocity model. The curvature of the Earth and surface topography are taken into account in order to obtain a density model as accurate as possible. The method is validated through comparisons with exact semi-analytical solutions. We show that the spectral-element method drastically accelerates the computations when compared to other more classical methods. Different scaling relations between compressional velocity and density are tested, and the Nafe-Drake relation is the one that leads to the best agreement between computed and observed gravity anomalies. Gravity data inversion is then performed and the results allow us to put more constraints on the density structure of the shallow crust and on the deep architecture of the mountain range.
Directory of Open Access Journals (Sweden)
Maria Gabriela Campolina Diniz Peixoto
2014-05-01
Full Text Available The objective of this work was to compare random regression models for the estimation of genetic parameters for Guzerat milk production, using orthogonal Legendre polynomials. Records (20,524 of test-day milk yield (TDMY from 2,816 first-lactation Guzerat cows were used. TDMY grouped into 10-monthly classes were analyzed for additive genetic effect and for environmental and residual permanent effects (random effects, whereas the contemporary group, calving age (linear and quadratic effects and mean lactation curve were analized as fixed effects. Trajectories for the additive genetic and permanent environmental effects were modeled by means of a covariance function employing orthogonal Legendre polynomials ranging from the second to the fifth order. Residual variances were considered in one, four, six, or ten variance classes. The best model had six residual variance classes. The heritability estimates for the TDMY records varied from 0.19 to 0.32. The random regression model that used a second-order Legendre polynomial for the additive genetic effect, and a fifth-order polynomial for the permanent environmental effect is adequate for comparison by the main employed criteria. The model with a second-order Legendre polynomial for the additive genetic effect, and that with a fourth-order for the permanent environmental effect could also be employed in these analyses.
Bound-preserving Legendre-WENO finite volume schemes using nonlinear mapping
Smith, Timothy; Pantano, Carlos
2017-11-01
We present a new method to enforce field bounds in high-order Legendre-WENO finite volume schemes. The strategy consists of reconstructing each field through an intermediate mapping, which by design satisfies realizability constraints. Determination of the coefficients of the polynomial reconstruction involves nonlinear equations that are solved using Newton's method. The selection between the original or mapped reconstruction is implemented dynamically to minimize computational cost. The method has also been generalized to fields that exhibit interdependencies, requiring multi-dimensional mappings. Further, the method does not depend on the existence of a numerical flux function. We will discuss details of the proposed scheme and show results for systems in conservation and non-conservation form. This work was funded by the NSF under Grant DMS 1318161.
Spherical space Bessel-Legendre-Fourier mode solver for Maxwell's wave equations
Alzahrani, Mohammed A.; Gauthier, Robert C.
2015-02-01
For spherically symmetric dielectric structures, a basis set composed of Bessel, Legendre and Fourier functions, BLF, are used to cast Maxwell's wave equations into an eigenvalue problem from which the localized modes can be determined. The steps leading to the eigenmatrix are reviewed and techniques used to reduce the order of matrix and tune the computations for particular mode types are detailed. The BLF basis functions are used to expand the electric and magnetic fields as well as the inverse relative dielectric profile. Similar to the common plane wave expansion technique, the BLF matrix returns the eigen-frequencies and eigenvectors, but in BLF only steady states, non-propagated, are obtained. The technique is first applied to a air filled spherical structure with perfectly conducting outer surface and then to a spherical microsphere located in air. Results are compared published values were possible.
International Nuclear Information System (INIS)
Lawson, K.; Peacock, N.; Gianella, R.
1998-12-01
The derivation of elemental components of radiated powers and impurity concentrations in bulk tokamak plasmas is complex, often requiring a full description of the impurity transport. A novel, empirical method, the Line Intensity Normalization Technique (LINT) has been developed on the JET (Joint European Torus) tokamak to provide routine information about the impurity content of the plasma and elemental components of radiated power (P rad ). The technique employs a few VUV and XUV resonance line intensities to represent the intrinsic impurity elements in the plasma. From a data base comprising these spectral features, the total bolometric measurement of the radiated power and the Z eff measured by visible spectroscopy, separate elemental components of P rad and Z eff are derived. The method, which converts local spectroscopic signals into global plasma parameters, has the advantage of simplicity, allowing large numbers of pulses to be processed, and, in many operational modes of JET, is found to be both reliable and accurate. It relies on normalizing the line intensities to the absolute calibration of the bolometers and visible spectrometers, using coefficients independent of density and temperature. Accuracies of the order of ± 15% can be achieved for the elemental P rad components of the most significant impurities and the impurity concentrations can be determined to within ±30%. Trace elements can be monitored, although with reduced accuracy. The present paper deals with limiter discharges, which have been the main application to date. As a check on the technique and to demonstrate the value of the LINT results, they have been applied to the transport modelling of intrinsic impurities carried out with the SANCO transport code, which uses atomic data from ADAS. The simulations provide independent confirmation of the concentrations empirically derived using the LINT technique. For this analysis, the simple case of the L-mode regime is considered, the chosen
Energy Technology Data Exchange (ETDEWEB)
Fauqueux, S.
2003-02-01
We consider the propagation of elastic waves in unbounded domains. A new formulation of the linear elasticity system as an H (div) - L{sup 2} system enables us to use the 'mixed spectral finite element method', This new method is based on the definition of new spaces of approximation and the use of mass-lumping. It leads to an explicit scheme with reduced storage and provides the same solution as the spectral finite element method. Then, we model unbounded domains by using Perfectly Matched Layers. Instabilities in the PML in the case of particular 2D elastic media are pointed out and investigated. The numerical method is validated and tested in the case of acoustic and elastic realistic models. A plane wave analysis gives results about numerical dispersion and shows that meshes adapted to the physical and geometrical properties of the media are more accurate than the others. Then, an extension of the method to fluid-solid coupling is introduced for 2D seismic propagation. (author)
International Nuclear Information System (INIS)
Terry, J.L.; Manning, H.L.; Marmar, E.S.
1986-07-01
Two methods which together allow sensitivity calibration from 20 A to 430 A are described in detail. The first method, useful up to 120 A, uses a low power source to generate Kα x-rays which are alternately viewed by an absolute detector (a proportional counter) and the spectrometer. The second method extends that calibration to 430 A. It relies on the 2:1 brightness ratio of bright doublet lines from impurity ions which have a single outer shell electron and which are present in hot, magnetically confined plasmas. It requires that the absolute sensitivity of the spectrometer be known at one wavelength point, and in practice requires a multi-element spectral detector
Vaidya, Bhargav; Prasad, Deovrat; Mignone, Andrea; Sharma, Prateek; Rickler, Luca
2017-12-01
An important ingredient in numerical modelling of high temperature magnetized astrophysical plasmas is the anisotropic transport of heat along magnetic field lines from higher to lower temperatures. Magnetohydrodynamics typically involves solving the hyperbolic set of conservation equations along with the induction equation. Incorporating anisotropic thermal conduction requires to also treat parabolic terms arising from the diffusion operator. An explicit treatment of parabolic terms will considerably reduce the simulation time step due to its dependence on the square of the grid resolution (Δx) for stability. Although an implicit scheme relaxes the constraint on stability, it is difficult to distribute efficiently on a parallel architecture. Treating parabolic terms with accelerated super-time-stepping (STS) methods has been discussed in literature, but these methods suffer from poor accuracy (first order in time) and also have difficult-to-choose tuneable stability parameters. In this work, we highlight a second-order (in time) Runge-Kutta-Legendre (RKL) scheme (first described by Meyer, Balsara & Aslam 2012) that is robust, fast and accurate in treating parabolic terms alongside the hyperbolic conversation laws. We demonstrate its superiority over the first-order STS schemes with standard tests and astrophysical applications. We also show that explicit conduction is particularly robust in handling saturated thermal conduction. Parallel scaling of explicit conduction using RKL scheme is demonstrated up to more than 104 processors.
Żak, A.; Krawczuk, M.; Palacz, M.; Doliński, Ł.; Waszkowiak, W.
2017-11-01
In this work results of numerical simulations and experimental measurements related to the high frequency dynamics of an aluminium Timoshenko periodic beam are presented. It was assumed by the authors that the source of beam structural periodicity comes from periodical alterations to its geometry due to the presence of appropriately arranged drill-holes. As a consequence of these alterations dynamic characteristics of the beam are changed revealing a set of frequency band gaps. The presence of the frequency band gaps can help in the design process of effective sound filters or sound barriers that can selectively attenuate propagating wave signals of certain frequency contents. In order to achieve this a combination of three numerical techniques were employed by the authors. They comprise the application of the Time-domain Spectral Finite Element Method in the case of analysis of finite and semi-infinite computational domains, damage modelling in the case of analysis of drill-hole influence, as well as the Bloch reduction in the case of analysis of periodic computational domains. As an experimental technique the Scanning Laser Doppler Vibrometry was chosen. A combined application of all these numerical and experimental techniques appears as new for this purpose and not reported in the literature available.
He, Yue-Jing; Hung, Wei-Chih; Syu, Cheng-Jyun
2017-12-01
The finite-element method (FEM) and eigenmode expansion method (EEM) were adopted to analyze the guided modes and spectrum of phase-shift fiber Bragg grating at five phase-shift degrees (including zero, 1/4π, 1/2π, 3/4π, and π). In previous studies on optical fiber grating, conventional coupled-mode theory was crucial. This theory contains abstruse knowledge about physics and complex computational processes, and thus is challenging for users. Therefore, a numerical simulation method was coupled with a simple and rigorous design procedure to help beginners and users to overcome difficulty in entering the field; in addition, graphical simulation results were presented. To reduce the difference between the simulated context and the actual context, a perfectly matched layer and perfectly reflecting boundary were added to the FEM and the EEM. When the FEM was used for grid cutting, the object meshing method and the boundary meshing method proposed in this study were used to effectively enhance computational accuracy and substantially reduce the time required for simulation. In summary, users can use the simulation results in this study to easily and rapidly design an optical fiber communication system and optical sensors with spectral characteristics.
Tesoniero, A.; Leng, K.; Long, M. D.; Nissen-Meyer, T.
2017-12-01
Constraining the nature of the anisotropy in the core-mantle boundary region is a key factor for properly predicting the flow of the lowermost mantle. The lack of seismic waves sampling this region and their uneven azimuthal distribution hamper a correct representation of mantle dynamics. We present preliminary results for a series of SKS-SKKS splitting analysis based on numerical forward synthetic tests in a realistic 3-D Earth model using the software AXISEM3D, a newly developed efficient hybrid spectral element method solver for 3-D structures. The anisotropic property of the computational domain in the bottom 300km of the Earth's mantle is fully described with a fourth-order elastic tensor with 21 independent coefficients. We tested a single crystal mineralogy of postperovskite with different orientations that are consistent with realistic mantle flow models and accounted for a wide coverage of azimuthal seismic raypaths. We take advantage of the computational efficiency of the method to achieve resolutions for seismic periods as low as 8s. Our preliminary results, based on forward full waveform modeling, represent a step forward for validating hypotheses for the anisotropy in the D'' layer derived by direct splitting measurements and ray-theoretical mineral physics based modeling tests. Our study also highlights the capability of AXISEM3D to handle high degrees of model complexity in full anisotropy and its potentials for future endeavours.
Spectral Method with the Tensor-Product Nodal Basis for the Steklov Eigenvalue Problem
Directory of Open Access Journals (Sweden)
Xuqing Zhang
2013-01-01
Full Text Available This paper discusses spectral method with the tensor-product nodal basis at the Legendre-Gauss-Lobatto points for solving the Steklov eigenvalue problem. A priori error estimates of spectral method are discussed, and based on the work of Melenk and Wohlmuth (2001, a posterior error estimator of the residual type is given and analyzed. In addition, this paper combines the shifted-inverse iterative method and spectral method to establish an efficient scheme. Finally, numerical experiments with MATLAB program are reported.
International Nuclear Information System (INIS)
Rashid, M.A.
1984-08-01
Integrals involving powers of (1-x 2 ) and two associated Legendre functions or two Gegenbauer polynomials are evaluated as finite sums which can be expressed in terms of terminating hypergeometric function 4 F 3 . The integrals which are evaluated are ∫sub(-1)sup(1)[Psub(l)sup(m)(x)Psub(k)sup(n)(x)]/[(1-x 2 )sup(p+1)]dx and ∫sub(-1)sup(1)Csub(l)sup(α)(x)Csub(k)sup(β)(x)[(1-x 2 )sup[(α+β-3)/2-p
Nagaso, Masaru; Komatitsch, Dimitri; Moysan, Joseph; Lhuillier, Christian
2018-01-01
ASTRID project, French sodium cooled nuclear reactor of 4th generation, is under development at the moment by Alternative Energies and Atomic Energy Commission (CEA). In this project, development of monitoring techniques for a nuclear reactor during operation are identified as a measure issue for enlarging the plant safety. Use of ultrasonic measurement techniques (e.g. thermometry, visualization of internal objects) are regarded as powerful inspection tools of sodium cooled fast reactors (SFR) including ASTRID due to opacity of liquid sodium. In side of a sodium cooling circuit, heterogeneity of medium occurs because of complex flow state especially in its operation and then the effects of this heterogeneity on an acoustic propagation is not negligible. Thus, it is necessary to carry out verification experiments for developments of component technologies, while such kind of experiments using liquid sodium may be relatively large-scale experiments. This is why numerical simulation methods are essential for preceding real experiments or filling up the limited number of experimental results. Though various numerical methods have been applied for a wave propagation in liquid sodium, we still do not have a method for verifying on three-dimensional heterogeneity. Moreover, in side of a reactor core being a complex acousto-elastic coupled region, it has also been difficult to simulate such problems with conventional methods. The objective of this study is to solve these 2 points by applying three-dimensional spectral element method. In this paper, our initial results on three-dimensional simulation study on heterogeneous medium (the first point) are shown. For heterogeneity of liquid sodium to be considered, four-dimensional temperature field (three spatial and one temporal dimension) calculated by computational fluid dynamics (CFD) with Large-Eddy Simulation was applied instead of using conventional method (i.e. Gaussian Random field). This three-dimensional numerical
Cupillard, Paul; Delavaud, Elise; Burgos, Gaël.; Festa, Geatano; Vilotte, Jean-Pierre; Capdeville, Yann; Montagner, Jean-Paul
2012-03-01
The spectral element method, which provides an accurate solution of the elastodynamic problem in heterogeneous media, is implemented in a code, called RegSEM, to compute seismic wave propagation at the regional scale. By regional scale we here mean distances ranging from about 1 km (local scale) to 90° (continental scale). The advantage of RegSEM resides in its ability to accurately take into account 3-D discontinuities such as the sediment-rock interface and the Moho. For this purpose, one version of the code handles local unstructured meshes and another version manages continental structured meshes. The wave equation can be solved in any velocity model, including anisotropy and intrinsic attenuation in the continental version. To validate the code, results from RegSEM are compared to analytical and semi-analytical solutions available in simple cases (e.g. explosion in PREM, plane wave in a hemispherical basin). In addition, realistic simulations of an earthquake in different tomographic models of Europe are performed. All these simulations show the great flexibility of the code and point out the large influence of the shallow layers on the propagation of seismic waves at the regional scale. RegSEM is written in Fortran 90 but it also contains a couple of C routines. It is an open-source software which runs on distributed memory architectures. It can give rise to interesting applications, such as testing regional tomographic models, developing tomography using either passive (i.e. noise correlations) or active (i.e. earthquakes) data, or improving our knowledge on effects linked with sedimentary basins.
Directory of Open Access Journals (Sweden)
M. Gantri
2014-01-01
Full Text Available The present paper gives a new computational framework within which radiative transfer in a varying refractive index biological tissue can be studied. In our previous works, Legendre transform was used as an innovative view to handle the angular derivative terms in the case of uniform refractive index spherical medium. In biomedical optics, our analysis can be considered as a forward problem solution in a diffuse optical tomography imaging scheme. We consider a rectangular biological tissue-like domain with spatially varying refractive index submitted to a near infrared continuous light source. Interaction of radiation with the biological material into the medium is handled by a radiative transfer model. In the studied situation, the model displays two angular redistribution terms that are treated with Legendre integral transform. The model is used to study a possible detection of abnormalities in a general biological tissue. The effect of the embedded nonhomogeneous objects on the transmitted signal is studied. Particularly, detection of targets of localized heterogeneous inclusions within the tissue is discussed. Results show that models accounting for variation of refractive index can yield useful predictions about the target and the location of abnormal inclusions within the tissue.
International Nuclear Information System (INIS)
Saharian, A A
2009-01-01
By using the generalized Abel-Plana formula, we derive a summation formula for the series over the zeros of a combination of the associated Legendre functions with respect to the degree. The summation formula for the series over the zeros of the combination of the Bessel functions, previously discussed in the literature, is obtained as a limiting case. As an application we evaluate the Wightman function for a scalar field with a general curvature coupling parameter in the region between concentric spherical shells on a background of constant negative curvature space. For the Dirichlet boundary conditions the corresponding mode-sum contains the series over the zeros of the combination of the associated Legendre functions. The application of the summation formula allows us to present the Wightman function in the form of the sum of two integrals. The first one corresponds to the Wightman function for the geometry of a single spherical shell and the second one is induced by the presence of the second shell. The boundary-induced part in the vacuum expectation value of the field squared is investigated. For points away from the boundaries the corresponding renormalization procedure is reduced to that for the boundary-free part.
Kewei, E; Zhang, Chen; Li, Mengyang; Xiong, Zhao; Li, Dahai
2015-08-10
Based on the Legendre polynomials expressions and its properties, this article proposes a new approach to reconstruct the distorted wavefront under test of a laser beam over square area from the phase difference data obtained by a RSI system. And the result of simulation and experimental results verifies the reliability of the method proposed in this paper. The formula of the error propagation coefficients is deduced when the phase difference data of overlapping area contain noise randomly. The matrix T which can be used to evaluate the impact of high-orders Legendre polynomial terms on the outcomes of the low-order terms due to mode aliasing is proposed, and the magnitude of impact can be estimated by calculating the F norm of the T. In addition, the relationship between ratio shear, sampling points, terms of polynomials and noise propagation coefficients, and the relationship between ratio shear, sampling points and norms of the T matrix are both analyzed, respectively. Those research results can provide an optimization design way for radial shearing interferometry system with the theoretical reference and instruction.
Mechanical spectral shift reactor
International Nuclear Information System (INIS)
Wilson, J.F.; Sherwood, D.G.
1982-01-01
A mechanical spectral shift reactor comprises a reactive core having fuel assemblies accommodating both water displacer elements and neutron absorbing control rods for selectively changing the volume of water-moderator in the core. The fuel assemblies with displacer and control rods are arranged in alternating fashion so that one displacer element drive mechanism may move displacer elements in more than one fuel assembly without interfering with the movement of control rods of a corresponding control rod drive mechanisms. (author)
Bou Matar, Olivier; Gasmi, Noura; Zhou, Huan; Goueygou, Marc; Talbi, Abdelkrim
2013-03-01
A numerical method to compute propagation constants and mode shapes of elastic waves in layered piezoelectric-piezomagnetic composites, potentially deposited on a substrate, is described. The basic feature of the method is the expansion of particle displacement, stress fields, electric and magnetic potentials in each layer on different polynomial bases: Legendre for a layer of finite thickness and Laguerre for the semi-infinite substrate. The exponential convergence rate of the method for propagation of Love waves is numerically verified. The main advantage of the method is to directly determine complex wave numbers for a given frequency via a matricial eigenvalue problem, in a way that no transcendental equation has to be solved. Results are presented and the method is discussed.
Directory of Open Access Journals (Sweden)
Wei Li
2017-01-01
Full Text Available We find that the solution of the polar angular differential equation can be written as the universal associated Legendre polynomials. Its generating function is applied to obtain an analytical result for a class of interesting integrals involving complicated argument, that is, ∫-11Pl′m′xt-1/1+t2-2xtPk′m′(x/(1+t2-2tx(l′+1/2dx, where t∈(0,1. The present method can in principle be generalizable to the integrals involving other special functions. As an illustration we also study a typical Bessel integral with a complicated argument ∫0∞Jn(αx2+z2/(x2+z2nx2m+1dx.
Mota, L F M; Martins, P G M A; Littiere, T O; Abreu, L R A; Silva, M A; Bonafé, C M
2018-04-01
The objective was to estimate (co)variance functions using random regression models (RRM) with Legendre polynomials, B-spline function and multi-trait models aimed at evaluating genetic parameters of growth traits in meat-type quail. A database containing the complete pedigree information of 7000 meat-type quail was utilized. The models included the fixed effects of contemporary group and generation. Direct additive genetic and permanent environmental effects, considered as random, were modeled using B-spline functions considering quadratic and cubic polynomials for each individual segment, and Legendre polynomials for age. Residual variances were grouped in four age classes. Direct additive genetic and permanent environmental effects were modeled using 2 to 4 segments and were modeled by Legendre polynomial with orders of fit ranging from 2 to 4. The model with quadratic B-spline adjustment, using four segments for direct additive genetic and permanent environmental effects, was the most appropriate and parsimonious to describe the covariance structure of the data. The RRM using Legendre polynomials presented an underestimation of the residual variance. Lesser heritability estimates were observed for multi-trait models in comparison with RRM for the evaluated ages. In general, the genetic correlations between measures of BW from hatching to 35 days of age decreased as the range between the evaluated ages increased. Genetic trend for BW was positive and significant along the selection generations. The genetic response to selection for BW in the evaluated ages presented greater values for RRM compared with multi-trait models. In summary, RRM using B-spline functions with four residual variance classes and segments were the best fit for genetic evaluation of growth traits in meat-type quail. In conclusion, RRM should be considered in genetic evaluation of breeding programs.
Pereira, R J; Bignardi, A B; El Faro, L; Verneque, R S; Vercesi Filho, A E; Albuquerque, L G
2013-01-01
Studies investigating the use of random regression models for genetic evaluation of milk production in Zebu cattle are scarce. In this study, 59,744 test-day milk yield records from 7,810 first lactations of purebred dairy Gyr (Bos indicus) and crossbred (dairy Gyr × Holstein) cows were used to compare random regression models in which additive genetic and permanent environmental effects were modeled using orthogonal Legendre polynomials or linear spline functions. Residual variances were modeled considering 1, 5, or 10 classes of days in milk. Five classes fitted the changes in residual variances over the lactation adequately and were used for model comparison. The model that fitted linear spline functions with 6 knots provided the lowest sum of residual variances across lactation. On the other hand, according to the deviance information criterion (DIC) and bayesian information criterion (BIC), a model using third-order and fourth-order Legendre polynomials for additive genetic and permanent environmental effects, respectively, provided the best fit. However, the high rank correlation (0.998) between this model and that applying third-order Legendre polynomials for additive genetic and permanent environmental effects, indicates that, in practice, the same bulls would be selected by both models. The last model, which is less parameterized, is a parsimonious option for fitting dairy Gyr breed test-day milk yield records. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Ammari, Amara; Karoui, Abderrazek
2012-01-01
In this paper, we build a stable scheme for the solution of a deconvolution problem of the Abel integral equation type. This scheme is obtained by further developing the orthogonal polynomial-based techniques for solving the Abel integral equation of Ammari and Karoui (2010 Inverse Problems 26 105005). More precisely, this method is based on the simultaneous use of the two families of orthogonal polynomials of the Legendre and Jacobi types. In particular, we provide an explicit formula for the computation of the Legendre expansion coefficients of the solution. This explicit formula is based on some known formulae for the exact computation of the integrals of the product of some Jacobi polynomials with the derivatives of the Legendre polynomials. Besides the explicit and the exact computation of the expansion coefficients of the solution, our proposed method has the advantage of ensuring the stability of the solution under a fairly weak condition on the functional space to which the data function belongs. Finally, we provide the reader with some numerical examples that illustrate the results of this work. (paper)
Ntekas, Konstantinos; The ATLAS collaboration
2018-01-01
Many of the physics goals of ATLAS in the High Luminosity LHC era, including precision studies of the Higgs boson, require an unprescaled single muon trigger with a 20 GeV threshold. The selectivity of the current ATLAS first-level muon trigger is limited by the moderate spatial resolution of the muon trigger chambers. By incorporating the precise tracking of the MDT, the muon transverse momentum can be measured with an accuracy close to that of the offline reconstruction at the trigger level, sharpening the trigger turn-on curves and reducing the single muon trigger rate. A novel algorithm is proposed which reconstructs segments from MDT hits in an FPGA and find tracks within the tight latency constraints of the ATLAS first-level muon trigger. The algorithm represents MDT drift circles as curves in the Legendre space and returns one or more segment lines tangent to the maximum possible number of drift circles. This algorithm is implemented without the need of resource and time consuming hit position calcul...
Marras, Simone; Giraldo, Frank
2015-04-01
The prediction of extreme weather sufficiently ahead of its occurrence impacts society as a whole and coastal communities specifically (e.g. Hurricane Sandy that impacted the eastern seaboard of the U.S. in the fall of 2012). With the final goal of solving hurricanes at very high resolution and numerical accuracy, we have been developing the Non-hydrostatic Unified Model of the Atmosphere (NUMA) to solve the Euler and Navier-Stokes equations by arbitrary high-order element-based Galerkin methods on massively parallel computers. NUMA is a unified model with respect to the following criteria: (a) it is based on unified numerics in that element-based Galerkin methods allow the user to choose between continuous (spectral elements, CG) or discontinuous Galerkin (DG) methods and from a large spectrum of time integrators, (b) it is unified across scales in that it can solve flow in limited-area mode (flow in a box) or in global mode (flow on the sphere). NUMA is the dynamical core that powers the U.S. Naval Research Laboratory's next-generation global weather prediction system NEPTUNE (Navy's Environmental Prediction sysTem Utilizing the NUMA corE). Because the solution of the Euler equations by high order methods is prone to instabilities that must be damped in some way, we approach the problem of stabilization via an adaptive Large Eddy Simulation (LES) scheme meant to treat such instabilities by modeling the sub-grid scale features of the flow. The novelty of our effort lies in the extension to high order spectral elements for low Mach number stratified flows of a method that was originally designed for low order, adaptive finite elements in the high Mach number regime [1]. The Euler equations are regularized by means of a dynamically adaptive stress tensor that is proportional to the residual of the unperturbed equations. Its effect is close to none where the solution is sufficiently smooth, whereas it increases elsewhere, with a direct contribution to the
International Nuclear Information System (INIS)
Buravlev, Yu.M.; Zamarajev, V.P.; Chernyavskaya, N.V.
1989-01-01
The experimental technique consists in estimation of mutual arrangement of the calibration curves obtained using standard reference materials of low-alloyed and high-alloyed (high-chrome, stainless, high-speed) steels as well as of the curves for carbon steels and cast iron differing in their structure. ARL-31000 and Polyvac E-1000 quantometers with U=1300 V, I=0.12 A and argon pressure ∼1 kPa are used. The influence of third elements is shown in shift and slope changes of the curves for abovementioned high-alloyed steels in comparison to ones for low-alloyed steels accepted as basic. The influence magnitude runs up to 10-30 relative percents and more in the case of analysis of carbon, phosphorus, sulfur, silicon and other elements and depends on the type of the element and on the alloy composition. It is shown that the contribution of structure factor caused by different alloy thermal treatment makes up 10 to 20 relative percents. The experiments showed that the increase of influence of these factors caused by their imposing as well as the weakening of this influence caused by their counteraction is possible. When analyzed alloys differ in their composition and manufacturing technology it is necessary to take into consideration the influence of these effects. (author)
International Nuclear Information System (INIS)
Llobet, X.; Appert, K.; Bondeson, A.; Vaclavik, J.
1990-01-01
Finite difference and finite element approximations of eigenvalue problems, under certain circumstances exhibit spectral pollution, i.e. the appearance of eigenvalues that do not converge to the correct value when the mesh density is increased. In the present paper this phenomenon is investigated in a homogeneous case by means of discrete dispersion relations: the polluting modes belong to a branch of the dispersion relation that is strongly distorted by the discretization method employed, or to a new, spurious branch. The analysis is applied to finite difference methods and to finite element methods, and some indications about how to avoiding polluting schemes are given. (author) 5 figs., 10 refs
Ben Zaabza, Hafedh; Ben Gara, Abderrahmen; Rekik, Boulbaba
2017-08-16
The objective of this study was to estimate genetic parameters of milk, fat, and protein yields within and across lactations in Tunisian Holsteins using a random regression test-day model. A random regression multiple trait multiple lactation test-day (TD) model was used to estimate genetic parameters in the Tunisian dairy cattle population. Data were TD yields of milk, fat, and protein from the first three lactations. Random regressions were modeled with third-order Legendre polynomials for the additive genetic, and permanent environment effects. Heritabilities, and genetic correlations were estimated by Bayesian techniques using the Gibbs sampler. All variance components tended to be high in the beginning and the end of lactations. Additive genetic variances for milk, fat, and protein yields were the lowest and were the least variable compared to permanent variances. Heritability values tended to increase with parity. Estimates of heritabilities for 305-d yield-traits were low to moderate, 0.14 to 0.2, 0.12 to 0.17, and 0.13 to 0.18 for milk, fat, and protein yields, respectively. Within-parity, genetic correlations among traits were up to 0.74. Genetic correlations among lactations for the yield traits were relatively high and ranged from 0.78 0.01 to 0.82 0.03, between the first and second parities, from 0.73 0.03 to 0.8 0.04 between the first and third parities, and from 0.82 0.02 to 0.84 0.04 between the second and third parities. These results are comparable to previously reported estimates on the same population, indicating that the adoption of a random regression TD model as the official genetic evaluation for production traits in Tunisia, as developed by most Interbull countries, is possible in the Tunisian Holsteins.
International Nuclear Information System (INIS)
Abbott, T.I.; Jones, C.G.
1983-01-01
Radiographic elements are disclosed having first and second silver halide emulsion layers comprised of a dispersing medium and radiation-sensitive silver halide grains, and a support interposed between said silver halide emulsion layers capable of transmitting radiation to which said second silver halide emulsion layer is responsive. These elements are characterized in that at least said first silver halide emulsion layer contains tabular silver halide grains and spectral sensitizing dye adsorbed to the surface of the grains. Crossover can be improved in relation to the imaging characteristics. (author)
Davies, E B; Plum, M
2003-01-01
We discuss the problems arising when computing eigenvalues of self-adjoint operators which lie in a gap between two parts of the essential spectrum. Spectral pollution, i.e. the apparent existence of eigenvalues in numerical computations, when no such eigenvalues actually exist, is commonplace in problems arising in applied mathematics. We describe a geometrically inspired method which avoids this difficulty, and show that it yields the same results as an algorithm of Zimmermann and Mertins.
Othmani, Cherif; Takali, Farid; Njeh, Anouar; Ben Ghozlen, Mohamed Hédi
2016-09-01
The propagation of Rayleigh-Lamb waves in bi-layered structures is studied. For this purpose, an extension of the Legendre polynomial (LP) method is proposed to formulate the acoustic wave equation in the bi-layered structures induced by thin film Gallium Antimonide (GaSb) and with Aluminum Antimonide (AlSb) substrate in moderate thickness. Acoustic modes propagating along a bi-layer plate are shown to be quite different than classical Lamb modes, contrary to most of the multilayered structures. The validation of the LP method is illustrated by a comparison between the associated numerical results and those obtained using the ordinary differential equation (ODE) method. The convergency of the LP method is discussed through a numerical example. Moreover, the influences of thin film GaSb parameters on the characteristics Rayleigh-Lamb waves propagation has been studied in detail. Finally, the advantages of the Legendre polynomial (LP) method to analyze the multilayered structures are described. All the developments performed in this work were implemented in Matlab software.
Energy Technology Data Exchange (ETDEWEB)
Othmani, Cherif, E-mail: othmanicheriffss@gmail.com; Takali, Farid; Njeh, Anouar; Ben Ghozlen, Mohamed Hédi
2016-09-01
The propagation of Rayleigh–Lamb waves in bi-layered structures is studied. For this purpose, an extension of the Legendre polynomial (LP) method is proposed to formulate the acoustic wave equation in the bi-layered structures induced by thin film Gallium Antimonide (GaSb) and with Aluminum Antimonide (AlSb) substrate in moderate thickness. Acoustic modes propagating along a bi-layer plate are shown to be quite different than classical Lamb modes, contrary to most of the multilayered structures. The validation of the LP method is illustrated by a comparison between the associated numerical results and those obtained using the ordinary differential equation (ODE) method. The convergency of the LP method is discussed through a numerical example. Moreover, the influences of thin film GaSb parameters on the characteristics Rayleigh–Lamb waves propagation has been studied in detail. Finally, the advantages of the Legendre polynomial (LP) method to analyze the multilayered structures are described. All the developments performed in this work were implemented in Matlab software.
International Nuclear Information System (INIS)
Meyer, Chad D.; Balsara, Dinshaw S.; Aslam, Tariq D.
2014-01-01
Parabolic partial differential equations appear in several physical problems, including problems that have a dominant hyperbolic part coupled to a sub-dominant parabolic component. Explicit methods for their solution are easy to implement but have very restrictive time step constraints. Implicit solution methods can be unconditionally stable but have the disadvantage of being computationally costly or difficult to implement. Super-time-stepping methods for treating parabolic terms in mixed type partial differential equations occupy an intermediate position. In such methods each superstep takes “s” explicit Runge–Kutta-like time-steps to advance the parabolic terms by a time-step that is s 2 times larger than a single explicit time-step. The expanded stability is usually obtained by mapping the short recursion relation of the explicit Runge–Kutta scheme to the recursion relation of some well-known, stable polynomial. Prior work has built temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Chebyshev polynomials. Since their stability is based on the boundedness of the Chebyshev polynomials, these methods have been called RKC1 and RKC2. In this work we build temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Legendre polynomials. We call these methods RKL1 and RKL2. The RKL1 method is first-order accurate in time; the RKL2 method is second-order accurate in time. We verify that the newly-designed RKL1 and RKL2 schemes have a very desirable monotonicity preserving property for one-dimensional problems – a solution that is monotone at the beginning of a time step retains that property at the end of that time step. It is shown that RKL1 and RKL2 methods are stable for all values of the diffusion coefficient up to the maximum value. We call this a convex monotonicity preserving property and show by examples that it is very useful
Sun, Wenqing; Chen, Lei; Tuya, Wulan; He, Yong; Zhu, Rihong
2013-12-01
Chebyshev and Legendre polynomials are frequently used in rectangular pupils for wavefront approximation. Ideally, the dataset completely fits with the polynomial basis, which provides the full-pupil approximation coefficients and the corresponding geometric aberrations. However, if there are horizontal translation and scaling, the terms in the original polynomials will become the linear combinations of the coefficients of the other terms. This paper introduces analytical expressions for two typical situations after translation and scaling. With a small translation, first-order Taylor expansion could be used to simplify the computation. Several representative terms could be selected as inputs to compute the coefficient changes before and after translation and scaling. Results show that the outcomes of the analytical solutions and the approximated values under discrete sampling are consistent. With the computation of a group of randomly generated coefficients, we contrasted the changes under different translation and scaling conditions. The larger ratios correlate the larger deviation from the approximated values to the original ones. Finally, we analyzed the peak-to-valley (PV) and root mean square (RMS) deviations from the uses of the first-order approximation and the direct expansion under different translation values. The results show that when the translation is less than 4%, the most deviated 5th term in the first-order 1D-Legendre expansion has a PV deviation less than 7% and an RMS deviation less than 2%. The analytical expressions and the computed results under discrete sampling given in this paper for the multiple typical function basis during translation and scaling in the rectangular areas could be applied in wavefront approximation and analysis.
Spectral Decomposition Algorithm (SDA)
National Aeronautics and Space Administration — Spectral Decomposition Algorithm (SDA) is an unsupervised feature extraction technique similar to PCA that was developed to better distinguish spectral features in...
Spectral Imaging by Upconversion
DEFF Research Database (Denmark)
Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter
2011-01-01
We present a method to obtain spectrally resolved images using upconversion. By this method an image is spectrally shifted from one spectral region to another wavelength. Since the process is spectrally sensitive it allows for a tailored spectral response. We believe this will allow standard sili...... silicon based cameras designed for visible/near infrared radiation to be used for spectral images in the mid infrared. This can lead to much lower costs for such imaging devices, and a better performance.......We present a method to obtain spectrally resolved images using upconversion. By this method an image is spectrally shifted from one spectral region to another wavelength. Since the process is spectrally sensitive it allows for a tailored spectral response. We believe this will allow standard...
Energy Technology Data Exchange (ETDEWEB)
Sanchez Miro, J. J.; Sanz Martin, J. C.
1994-07-01
Obtaining polynomial fittings from observational data in two and three dimensions is an interesting and practical task. Such an arduous problem suggests the development of an automatic code. The main novelty we provide lies in the generalization of the classical least squares method in three FORTRAN 77 programs usable in any sampling problem. Furthermore, we introduce the orthogonal 2D-Legendre function in the fitting process. These FORTRAN 77 programs are equipped with the options to calculate the approximation quality standard indicators, obviously generalized to two and three dimensions (correlation nonlinear factor, confidence intervals, cuadratic mean error, and so on). The aim of this paper is to rectify the absence of fitting algorithms for more than one independent variable in mathematical libraries. (Author) 10 refs.
Othmani, Cherif; Takali, Farid; Njeh, Anouar
2017-06-01
In this paper, the propagation of the Lamb waves in the GaAs-FGPM-AlAs sandwich plate is studied. Based on the orthogonal function, Legendre polynomial series expansion is applied along the thickness direction to obtain the Lamb dispersion curves. The convergence and accuracy of this polynomial method are discussed. In addition, the influences of the volume fraction p and thickness hFGPM of the FGPM middle layer on the Lamb dispersion curves are developed. The numerical results also show differences between the characteristics of Lamb dispersion curves in the sandwich plate for various gradient coefficients of the FGPM middle layer. In fact, if the volume fraction p increases the phase velocity will increases and the number of modes will decreases at a given frequency range. All the developments performed in this paper were implemented in Matlab software. The corresponding results presented in this work may have important applications in several industry areas and developing novel acoustic devices such as sensors, electromechanical transducers, actuators and filters.
Naserkheil, Masoumeh; Miraie-Ashtiani, Seyed Reza; Nejati-Javaremi, Ardeshir; Son, Jihyun; Lee, Deukhwan
2016-12-01
The objective of this study was to estimate the genetic parameters of milk protein yields in Iranian Holstein dairy cattle. A total of 1,112,082 test-day milk protein yield records of 167,269 first lactation Holstein cows, calved from 1990 to 2010, were analyzed. Estimates of the variance components, heritability, and genetic correlations for milk protein yields were obtained using a random regression test-day model. Milking times, herd, age of recording, year, and month of recording were included as fixed effects in the model. Additive genetic and permanent environmental random effects for the lactation curve were taken into account by applying orthogonal Legendre polynomials of the fourth order in the model. The lowest and highest additive genetic variances were estimated at the beginning and end of lactation, respectively. Permanent environmental variance was higher at both extremes. Residual variance was lowest at the middle of the lactation and contrarily, heritability increased during this period. Maximum heritability was found during the 12th lactation stage (0.213±0.007). Genetic, permanent, and phenotypic correlations among test-days decreased as the interval between consecutive test-days increased. A relatively large data set was used in this study; therefore, the estimated (co)variance components for random regression coefficients could be used for national genetic evaluation of dairy cattle in Iran.
Parallel, adaptive finite element methods for conservation laws
Biswas, Rupak; Devine, Karen D.; Flaherty, Joseph E.
1994-01-01
We construct parallel finite element methods for the solution of hyperbolic conservation laws in one and two dimensions. Spatial discretization is performed by a discontinuous Galerkin finite element method using a basis of piecewise Legendre polynomials. Temporal discretization utilizes a Runge-Kutta method. Dissipative fluxes and projection limiting prevent oscillations near solution discontinuities. A posteriori estimates of spatial errors are obtained by a p-refinement technique using superconvergence at Radau points. The resulting method is of high order and may be parallelized efficiently on MIMD computers. We compare results using different limiting schemes and demonstrate parallel efficiency through computations on an NCUBE/2 hypercube. We also present results using adaptive h- and p-refinement to reduce the computational cost of the method.
DEFF Research Database (Denmark)
Kragh, Helge
2009-01-01
of the nineteenth century. In the modest form of a yellow spectral line known as D3, 'helium' was sometimes supposed to exist in the Sun's atmosphere, an idea which is traditionally ascribed to J. Norman Lockyer. Did Lockyer discover helium as a solar element? How was the suggestion received by chemists, physicists...... and astronomers in the period until the spring of 1895, when William Ramsay serendipitously found the gas in uranium minerals? The hypothetical element helium was fairly well known, yet Ramsay's discovery owed little or nothing to Lockyer's solar element. Indeed, for a brief while it was thought that the two...... elements might be different. The complex story of how helium became established as both a solar and terrestrial element involves precise observations as well as airy speculations. It is a story that is unique among the discovery histories of the chemical elements....
Adaptive Spectral Doppler Estimation
DEFF Research Database (Denmark)
Gran, Fredrik; Jakobsson, Andreas; Jensen, Jørgen Arendt
2009-01-01
. The methods can also provide better quality of the estimated power spectral density (PSD) of the blood signal. Adaptive spectral estimation techniques are known to pro- vide good spectral resolution and contrast even when the ob- servation window is very short. The 2 adaptive techniques are tested......In this paper, 2 adaptive spectral estimation techniques are analyzed for spectral Doppler ultrasound. The purpose is to minimize the observation window needed to estimate the spectrogram to provide a better temporal resolution and gain more flexibility when designing the data acquisition sequence...... and compared with the averaged periodogram (Welch’s method). The blood power spectral capon (BPC) method is based on a standard minimum variance technique adapted to account for both averaging over slow-time and depth. The blood amplitude and phase estimation technique (BAPES) is based on finding a set...
Holonomy loops, spectral triples and quantum gravity
DEFF Research Database (Denmark)
Johannes, Aastrup; Grimstrup, Jesper Møller; Nest, Ryszard
2009-01-01
We review the motivation, construction and physical interpretation of a semi-finite spectral triple obtained through a rearrangement of central elements of loop quantum gravity. The triple is based on a countable set of oriented graphs and the algebra consists of generalized holonomy loops...
Generalized Entropies and Legendre Duality
2012-04-22
Level surfaces of non-degenerate functions in Rn+1, Geometriae Dedicata 50 (1994), 193-204. [3] S.Ivanov: On dual-projectively flat affine... Geometriae Dedicata 56 (1995), 177-184. [8] H.Shima, The geometry of Hessian Structures, World Sci.,(2007). [9] K.Uohashi, A.Ohara and T.Fujii: 1...surfaces of non-degenerate functions in Rn+1, Geometriae Dedicata 50 (1994), 193-204. [3] S. Ivanov, On dual-projectively flat affine connections, J. of
Energy Technology Data Exchange (ETDEWEB)
Koch, Stephan
2009-03-30
This thesis is concerned with the numerical simulation of electromagnetic fields in the quasi-static approximation which is applicable in many practical cases. Main emphasis is put on higher-order finite element methods. Quasi-static applications can be found, e.g., in accelerator physics in terms of the design of magnets required for beam guidance, in power engineering as well as in high-voltage engineering. Especially during the first design and optimization phase of respective devices, numerical models offer a cheap alternative to the often costly assembly of prototypes. However, large differences in the magnitude of the material parameters and the geometric dimensions as well as in the time-scales of the electromagnetic phenomena involved lead to an unacceptably long simulation time or to an inadequately large memory requirement. Under certain circumstances, the simulation itself and, in turn, the desired design improvement becomes even impossible. In the context of this thesis, two strategies aiming at the extension of the range of application for numerical simulations based on the finite element method are pursued. The first strategy consists in parallelizing existing methods such that the computation can be distributed over several computers or cores of a processor. As a consequence, it becomes feasible to simulate a larger range of devices featuring more degrees of freedom in the numerical model than before. This is illustrated for the calculation of the electromagnetic fields, in particular of the eddy-current losses, inside a superconducting dipole magnet developed at the GSI Helmholtzzentrum fuer Schwerionenforschung as a part of the FAIR project. As the second strategy to improve the efficiency of numerical simulations, a hybrid discretization scheme exploiting certain geometrical symmetries is established. Using this method, a significant reduction of the numerical effort in terms of required degrees of freedom for a given accuracy is achieved. The
Stevanovic, Dragan
2015-01-01
Spectral Radius of Graphs provides a thorough overview of important results on the spectral radius of adjacency matrix of graphs that have appeared in the literature in the preceding ten years, most of them with proofs, and including some previously unpublished results of the author. The primer begins with a brief classical review, in order to provide the reader with a foundation for the subsequent chapters. Topics covered include spectral decomposition, the Perron-Frobenius theorem, the Rayleigh quotient, the Weyl inequalities, and the Interlacing theorem. From this introduction, the
Unmixing of spectrally similar minerals
CSIR Research Space (South Africa)
Debba, Pravesh
2009-01-01
Full Text Available techniques is complicated when considering very similar spectral signatures. Iron-bearing oxide/hydroxide/sulfate minerals have similar spectral signatures. The study focuses on how could estimates of abundances of spectrally similar iron-bearing oxide...
Vowel Inherent Spectral Change
Assmann, Peter
2013-01-01
It has been traditional in phonetic research to characterize monophthongs using a set of static formant frequencies, i.e., formant frequencies taken from a single time-point in the vowel or averaged over the time-course of the vowel. However, over the last twenty years a growing body of research has demonstrated that, at least for a number of dialects of North American English, vowels which are traditionally described as monophthongs often have substantial spectral change. Vowel Inherent Spectral Change has been observed in speakers’ productions, and has also been found to have a substantial effect on listeners’ perception. In terms of acoustics, the traditional categorical distinction between monophthongs and diphthongs can be replaced by a gradient description of dynamic spectral patterns. This book includes chapters addressing various aspects of vowel inherent spectral change (VISC), including theoretical and experimental studies of the perceptually relevant aspects of VISC, the relationship between ar...
High Resolution Spectral Analysis
2006-10-25
liable methods for high resolution spectral analysis of multivariable processes, as well as to distance measures for quantitative assessment of...called "modern nonlinear spectral analysis methods " [27]. An alternative way to reconstruct /„(#), based on Tn, is the periodogram/correlogram f{6...eie). A homotopy method was proposed in [8, 9] leading to a differential equation for A(T) in a homotopy variable r. If the statistics are consistent
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-08-01
Spectrally selective glazing is window glass that permits some portions of the solar spectrum to enter a building while blocking others. This high-performance glazing admits as much daylight as possible while preventing transmission of as much solar heat as possible. By controlling solar heat gains in summer, preventing loss of interior heat in winter, and allowing occupants to reduce electric lighting use by making maximum use of daylight, spectrally selective glazing significantly reduces building energy consumption and peak demand. Because new spectrally selective glazings can have a virtually clear appearance, they admit more daylight and permit much brighter, more open views to the outside while still providing the solar control of the dark, reflective energy-efficient glass of the past. This Federal Technology Alert provides detailed information and procedures for Federal energy managers to consider spectrally selective glazings. The principle of spectrally selective glazings is explained. Benefits related to energy efficiency and other architectural criteria are delineated. Guidelines are provided for appropriate application of spectrally selective glazing, and step-by-step instructions are given for estimating energy savings. Case studies are also presented to illustrate actual costs and energy savings. Current manufacturers, technology users, and references for further reading are included for users who have questions not fully addressed here.
International Nuclear Information System (INIS)
Vaeth, W.
1979-04-01
The correlation of signal components at different frequencies like higher harmonics cannot be detected by a normal power spectral density measurement, since this technique correlates only components at the same frequency. This paper describes a special method for measuring the correlation of two signal components at different frequencies: the CRISS power spectral density. From this new function in frequency analysis, the correlation of two components can be determined quantitatively either they stem from one signal or from two diverse signals. The principle of the method, suitable for the higher harmonics of a signal as well as for any other frequency combinations is shown for the digital frequency analysis technique. Two examples of CRISS power spectral densities demonstrates the operation of the new method. (orig.) [de
Parametric Explosion Spectral Model
Energy Technology Data Exchange (ETDEWEB)
Ford, S R; Walter, W R
2012-01-19
Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.
Optimization of compressive 4D-spatio-spectral snapshot imaging
Zhao, Xia; Feng, Weiyi; Lin, Lihua; Su, Wu; Xu, Guoqing
2017-10-01
In this paper, a modified 3D computational reconstruction method in the compressive 4D-spectro-volumetric snapshot imaging system is proposed for better sensing spectral information of 3D objects. In the design of the imaging system, a microlens array (MLA) is used to obtain a set of multi-view elemental images (EIs) of the 3D scenes. Then, these elemental images with one dimensional spectral information and different perspectives are captured by the coded aperture snapshot spectral imager (CASSI) which can sense the spectral data cube onto a compressive 2D measurement image. Finally, the depth images of 3D objects at arbitrary depths, like a focal stack, are computed by inversely mapping the elemental images according to geometrical optics. With the spectral estimation algorithm, the spectral information of 3D objects is also reconstructed. Using a shifted translation matrix, the contrast of the reconstruction result is further enhanced. Numerical simulation results verify the performance of the proposed method. The system can obtain both 3D spatial information and spectral data on 3D objects using only one single snapshot, which is valuable in the agricultural harvesting robots and other 3D dynamic scenes.
Spectral analysis by correlation
International Nuclear Information System (INIS)
Fauque, J.M.; Berthier, D.; Max, J.; Bonnet, G.
1969-01-01
The spectral density of a signal, which represents its power distribution along the frequency axis, is a function which is of great importance, finding many uses in all fields concerned with the processing of the signal (process identification, vibrational analysis, etc...). Amongst all the possible methods for calculating this function, the correlation method (correlation function calculation + Fourier transformation) is the most promising, mainly because of its simplicity and of the results it yields. The study carried out here will lead to the construction of an apparatus which, coupled with a correlator, will constitute a set of equipment for spectral analysis in real time covering the frequency range 0 to 5 MHz. (author) [fr
International Nuclear Information System (INIS)
Sanchez Miro, J. J.; Sanz Martin, J. C.
1994-01-01
Obtaining polynomial fittings from observational data in two and three dimensions is an interesting and practical task. Such an arduous problem suggests the development of an automatic code. The main novelty we provide lies in the generalization of the classical least squares method in three FORTRAN 77 programs usable in any sampling problem. Furthermore, we introduce the orthogonal 2D-Legendre function in the fitting process. These FORTRAN 77 programs are equipped with the options to calculate the approximation quality standard indicators, obviously generalized to two and three dimensions (correlation nonlinear factor, confidence intervals, cuadratic mean error, and so on). The aim of this paper is to rectify the absence of fitting algorithms for more than one independent variable in mathematical libraries. (Author) 10 refs
Bounded elements in Locally C*-algebras
International Nuclear Information System (INIS)
El Harti, Rachid
2001-09-01
In order to get more useful information about Locally C*-algebras, we introduce in this paper the notion of bounded elements. First, we study the connection between bounded elements and spectrally bounded elements. Some structural results of Locally C*-algebras are established in Theorems 1 , 2 and 3. As an immediate consequence of Theorem 3, we give a characterization of the connected component of the identity in the group of unitary elements for a Locally C*-algebra. (author)
DEFF Research Database (Denmark)
Hajeb, Parvaneh; Shakibazadeh, Shahram; Sloth, Jens Jørgen
2016-01-01
Food is considered the main source of toxic element (arsenic, cadmium, lead, and mercury) exposure to humans, and they can cause major public health effects. In this chapter, we discuss the most important sources for toxic element in food and the foodstuffs which are significant contributors...... to human exposure. The occurrence of each element in food classes from different regions is presented. Some of the current toxicological risk assessments on toxic elements, the human health effect of each toxic element, and their contents in the food legislations are presented. An overview of analytical...... techniques and challenges for determination of toxic elements in food is also given....
Spectral Ensemble Kalman Filters
Czech Academy of Sciences Publication Activity Database
Mandel, Jan; Kasanický, Ivan; Vejmelka, Martin; Fuglík, Viktor; Turčičová, Marie; Eben, Kryštof; Resler, Jaroslav; Juruš, Pavel
2014-01-01
Roč. 11, - (2014), EMS2014-446 [EMS Annual Meeting /14./ & European Conference on Applied Climatology (ECAC) /10./. 06.10.2014-10.10.2014, Prague] R&D Projects: GA ČR GA13-34856S Grant - others:NSF DMS -1216481 Institutional support: RVO:67985807 Keywords : data assimilation * spectral filter Subject RIV: DG - Athmosphere Sciences, Meteorology
Directory of Open Access Journals (Sweden)
Lizeth Torres
2018-05-01
Full Text Available The principal aim of a spectral observer is twofold: the reconstruction of a signal of time via state estimation and the decomposition of such a signal into the frequencies that make it up. A spectral observer can be catalogued as an online algorithm for time-frequency analysis because is a method that can compute on the fly the Fourier transform (FT of a signal, without having the entire signal available from the start. In this regard, this paper presents a novel spectral observer with an adjustable constant gain for reconstructing a given signal by means of the recursive identification of the coefficients of a Fourier series. The reconstruction or estimation of a signal in the context of this work means to find the coefficients of a linear combination of sines a cosines that fits a signal such that it can be reproduced. The design procedure of the spectral observer is presented along with the following applications: (1 the reconstruction of a simple periodical signal, (2 the approximation of both a square and a triangular signal, (3 the edge detection in signals by using the Fourier coefficients, (4 the fitting of the historical Bitcoin market data from 1 December 2014 to 8 January 2018 and (5 the estimation of a input force acting upon a Duffing oscillator. To round out this paper, we present a detailed discussion about the results of the applications as well as a comparative analysis of the proposed spectral observer vis-à-vis the Short Time Fourier Transform (STFT, which is a well-known method for time-frequency analysis.
Wavelength conversion based spectral imaging
DEFF Research Database (Denmark)
Dam, Jeppe Seidelin
There has been a strong, application driven development of Si-based cameras and spectrometers for imaging and spectral analysis of light in the visible and near infrared spectral range. This has resulted in very efficient devices, with high quantum efficiency, good signal to noise ratio and high...... resolution for this spectral region. Today, an increasing number of applications exists outside the spectral region covered by Si-based devices, e.g. within cleantech, medical or food imaging. We present a technology based on wavelength conversion which will extend the spectral coverage of state of the art...... visible or near infrared cameras and spectrometers to include other spectral regions of interest....
SPECTRAL FILTRATION OF IMAGES BY MEANS OF DISPERSIVE SYSTEMS
Directory of Open Access Journals (Sweden)
I. M. Gulis
2016-01-01
Full Text Available Instruments for spectral filtration of images are an important element of the systems used in remote sensing, medical diagnostics, in-process measurements. The aim of this study is analysis of the functional features and characteristics of the proposed two image monochromator versions which are based on dispersive spectral filtering. The first is based on the use of a dispersive monochromator, where collimating and camera lenses form a telescopic system, the dispersive element of which is within the intermediate image plane. The second version is based on an imaging double monochromator with dispersion subtraction by back propagation. For the telescopic system version, the spectral and spatial resolutions are estimated, the latter being limited by aberrations and diffraction from the entrance slit. The device has been numerically simulated and prototyped. It is shown that for the spectral bandwidth 10 nm (visible spectral range, the aberration-limited spot size is from 10–20 μm at the image center to about 30 μm at the image periphery for the image size 23–27 mm. The monochromator with dispersion subtraction enables one to vary the spectral resolution (up to 1 nm and higher by changing the intermediate slit width. But the distinctive feature is a significant change in the selected central wavelength over the image field. The considered designs of dispersive image monochromators look very promising due to the particular advantages over the systems based on tunable filters as regards the spectral resolution, fast tuning, and the spectral contrast. The monochromator based on a telescopic system has a simple design and a rather large image field but it also has a limited light throughput due to small aperture size. The monochromator with dispersion subtraction has higher light throughput, can provide high spectral resolution when recording a full data cube in a series of measuring acts for different dispersive element positions.
Elementary principles of spectral distributions
International Nuclear Information System (INIS)
French, J.B.
1980-01-01
It is a common observation that as we add particles, one by one, to a simple system, things get steadily more and more complicated. For example if the system is describable in shell-model terms, i.e., with a model space in which m particles are distributed over N single-particle states, then as long as m << N, the dimensionality increases rapidly with particle number. On the other hand, for the usual (1 + 2)-body Hamiltonian, the (m greater than or equal to 2)-particle spectrum and wave functions are determined by operators defined in the one-particle space (for the single-particle energies) and the two-particle space (for the interactions). We may say then that the input information becomes more and more fragmented as the particle number increases, the fixed amount of information being distributed over more and more matrix elements. On the other hand there arise also new simplicities whose origin is connected with the operation of statistical laws. There is a macroscopic simplicity corresponding to the fact that the smoothed spectrum takes on a characteristic shape defined by a few parameters (low-order moments) of the spectrum. There is a microscopic simplicity corresponding to a remarkable spectral rigidity which extends over the entire spectrum and guarantees us that the fluctuations from uniformity in the spectrum are small and in many cases carry little information. The purpose of spectral-distribution theory, as applied to these problems, is to deal with the complexities by taking advantage of the simplicities
Hybrid spectral CT reconstruction
Clark, Darin P.
2017-01-01
Current photon counting x-ray detector (PCD) technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID). In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM). Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with a spectral
Context Dependent Spectral Unmixing
2014-08-01
remote sensing [1–13]. It is also used in food safety [14–17], pharmaceutical process monitoring and quality control [18–22], as well as in biomedical...23,24], industrial [25], biometric [26] and forensic applications [27]. Hyperspectral sensors capture both the spatial and spectral information of a...imagery,” IEEE Signal Processing Magazine, vol. 19, no. 1, pp. 58–69, 2002. [12] A. Plaza, J. A. Benediktsson, J. W. Boardman, J. Brazile , L. Bruzzone, G
Hybrid spectral CT reconstruction.
Directory of Open Access Journals (Sweden)
Darin P Clark
Full Text Available Current photon counting x-ray detector (PCD technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID. In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM. Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with
Spectral distributions and symmetries
International Nuclear Information System (INIS)
Quesne, C.
1980-01-01
As it is now well known, the spectral distribution method has both statistical and group theoretical aspects which make for great simplifications in many-Fermion system calculations with respect to more conventional ones. Although both aspects intertwine and are equally essential to understand what is going on, we are only going to discuss some of the group theoretical aspects, namely those connected with the propagation of information, in view of their fundamental importance for the actual calculations of spectral distributions. To be more precise, let us recall that the spectral distribution method may be applied in principle to many-Fermion spaces which have a direct-product structure, i.e., are obtained by distributing a certain number n of Fermions over N single-particle states (O less than or equal to n less than or equal to N), as it is the case for instance for the nuclear shell model spaces. For such systems, the operation of a central limit theorem is known to provide us with a simplifying principle which, when used in conjunction with exact or broken symmetries, enables us to make definite predictions in those cases which are not amendable to exact shell model diagonalizations. The distribution (in energy) of the states corresponding to a fixed symmetry is then defined by a small number of low-order energy moments. Since the Hamiltonian is defined in few-particle subspaces embedded in the n-particlespace, the low-order moments, we are interested in, can be expressed in terms of simpler quantities defined in those few-particle subspaces: the information is said to propagate from the simple subspaces to the more complicated ones. The possibility of actually calculating spectral distributions depends upon the finding of simple ways to propagate the information
Spectral and Diffraction Tomography
Lionheart, William
2016-01-01
We discuss several cases of what we call "Rich Tomography" problems in which more data is measured than a scalar for each ray. We give examples of infra red spectral tomography and Bragg edge neutron tomography in which the data is insufficient. For diffraction tomography of strain for polycrystaline materials we give an explicit reconstruction procedure. We go on to describe a way to find six independent rotation axes using Pascal's theorem of projective geometry
The spectral cell method in nonlinear earthquake modeling
Giraldo, Daniel; Restrepo, Doriam
2017-12-01
This study examines the applicability of the spectral cell method (SCM) to compute the nonlinear earthquake response of complex basins. SCM combines fictitious-domain concepts with the spectral-version of the finite element method to solve the wave equations in heterogeneous geophysical domains. Nonlinear behavior is considered by implementing the Mohr-Coulomb and Drucker-Prager yielding criteria. We illustrate the performance of SCM with numerical examples of nonlinear basins exhibiting physically and computationally challenging conditions. The numerical experiments are benchmarked with results from overkill solutions, and using MIDAS GTS NX, a finite element software for geotechnical applications. Our findings show good agreement between the two sets of results. Traditional spectral elements implementations allow points per wavelength as low as PPW = 4.5 for high-order polynomials. Our findings show that in the presence of nonlinearity, high-order polynomials (p ≥ 3) require mesh resolutions above of PPW ≥ 10 to ensure displacement errors below 10%.
Unsupervised Classification of Mercury's Surface Spectral and Chemical Characteristics
D'Amore, M.; Helbert, J.; Ferrari, S.; Maturilli, A.; Nittler, L. R.; Domingue, D. L.; Vilas, F.; Weider, S. Z.; Starr, R. D.; Crapster-Pregont, E. J.; Ebel, D. S.; Solomon, S. C.
2014-12-01
The spectral reflectance of Mercury's surface has been mapped in the 400-1145 nm wavelength range by the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) instrument during orbital observations by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. Under the hypothesis that surface compositional information can be efficiently derived from such spectral measurements with the use of statistical techniques, we have conducted unsupervised hierarchical clustering analyses to identify and characterize spectral units from MASCS observations. The results display a large-scale dichotomy, with two spectrally distinct units: polar and equatorial, possibly linked to differences in surface environment or composition. The spatial extent of the polar unit in the northern hemisphere correlates approximately with that of the northern volcanic plains. To explore possible relations between composition and spectral behavior, we have compared the spectral units with elemental abundance maps derived from MESSENGER's X-Ray Spectrometer (XRS). It is important to note that the mapping coverage for XRS differs from that of MASCS, particularly for the heavy elements. Nonetheless, by comparing the visible and near-infrared MASCS and XRS datasets and investigating the links between them, we seek further clues to the formation and evolution of Mercury's crust. Moreover, the methodology will permit automation of the production of new maps of the spectral and chemical signature of the surface.
Power Spectral Density Conversions and Nonlinear Dynamics
Directory of Open Access Journals (Sweden)
Mostafa Rassaian
1994-01-01
Full Text Available To predict the vibration environment of a payload carried by a ground or air transporter, mathematical models are required from which a transfer function to a prescribed input can be calculated. For sensitive payloads these models typically include linear shock isolation system stiffness and damping elements relying on the assumption that the isolation system has a predetermined characteristic frequency and damping ratio independent of excitation magnitude. In order to achieve a practical spectral analysis method, the nonlinear system has to be linearized when the input transportation and handling vibration environment is in the form of an acceleration power spectral density. Test data from commercial isolators show that when nonlinear stiffness and damping effects exist the level of vibration input causes a variation in isolator resonant frequency. This phenomenon, described by the stationary response of the Duffing oscillator to narrow-band Gaussian random excitation, requires an alternative approach for calculation of power spectral density acceleration response at a shock isolated payload under random vibration. This article details the development of a plausible alternative approach for analyzing the spectral response of a nonlinear system subject to random Gaussian excitations.
Incompressible spectral-element method: Derivation of equations
Deanna, Russell G.
1993-01-01
A fractional-step splitting scheme breaks the full Navier-Stokes equations into explicit and implicit portions amenable to the calculus of variations. Beginning with the functional forms of the Poisson and Helmholtz equations, we substitute finite expansion series for the dependent variables and derive the matrix equations for the unknown expansion coefficients. This method employs a new splitting scheme which differs from conventional three-step (nonlinear, pressure, viscous) schemes. The nonlinear step appears in the conventional, explicit manner, the difference occurs in the pressure step. Instead of solving for the pressure gradient using the nonlinear velocity, we add the viscous portion of the Navier-Stokes equation from the previous time step to the velocity before solving for the pressure gradient. By combining this 'predicted' pressure gradient with the nonlinear velocity in an explicit term, and the Crank-Nicholson method for the viscous terms, we develop a Helmholtz equation for the final velocity.
Stability estimates for hp spectral element methods for elliptic ...
Indian Academy of Sciences (India)
In each of these sectoral neighborhoods we use a local coordinate system ( k , k ) where k = l n r k and ( r k , k ) are polar coordinates with origin at A k , as first proposed by Kondratiev. We then derive differentiability estimates with respect to these new variables and a stability estimate for the functional we minimize.
hp Spectral element methods for three dimensional elliptic problems ...
Indian Academy of Sciences (India)
exponential convergence. A method for obtaining a numerical solution to exponential accuracy for elliptic prob- lems on non-smooth domains in R2 was first .... The organization of this paper is as follows. In §2, we introduce the problem under.
Nonconforming hp spectral element methods for elliptic problems
Indian Academy of Sciences (India)
Geometrical mesh; stability estimate; least-squares solution; preconditioners; condition numbers; exponential accuracy. ... Department of Mathematics, Indian Institute of Technology Kanpur, Kanpur 208 016, India; Department of Aerospace Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016, India ...
h-p Spectral element methods for three dimensional elliptic ...
Indian Academy of Sciences (India)
2016-08-26
Aug 26, 2016 ... Home; Journals; Proceedings – Mathematical Sciences; Volume 125; Issue 2 ... Jaipur 302 031, India; TIFR Centre For Applicable Mathematics, Tata Institute of Fundamental Research, Bangalore 560 065, India; Department of Aerospace Engineering, Indian Institute of Technology, Kanpur 208 016, India ...
h-p Spectral element methods for three dimensional elliptic ...
Indian Academy of Sciences (India)
2016-08-26
Aug 26, 2016 ... Home; Journals; Proceedings – Mathematical Sciences; Volume 125; Issue 3 ... Jaipur 302 031, India; TIFR Centre For Applicable Mathematics, Tata Institute of Fundamental Research, Bangalore 560 065, India; Department of Aerospace Engineering, Indian Institute of Technology, Kanpur 208 016, India ...
hp Spectral element methods for three dimensional elliptic problems
Indian Academy of Sciences (India)
on non-smooth domains using parallel computers. In three .... parallel computers. The first paper deals with the regularity of the solution in the neigh- bourhoods of vertices, edges and vertex-edges and the stability theorem. The second ..... Let wv = w(v), denote the value of w at the vertex v and let ˜ v denote the image of.
A Spectral Element Eulerian-Lagrangian Atmospheric Model (SEELAM)
National Research Council Canada - National Science Library
Giraldo, Francis X
2008-01-01
...) method is presented. This paper represents a departure from previously published work on solving the atmospheric equations in that the horizontal operators are all written, discretized, and solved in 3D Cartesian space...
Tracking discontinuities in hyperbolic conservation laws with spectral accuracy
Touil, H.; Hussaini, M. Y.; Sussman, M.
2007-08-01
It is well known that the spectral solutions of conservation laws have the attractive distinguishing property of infinite-order convergence (also called spectral accuracy) when they are smooth (e.g., [C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods for Fluid Dynamics, Springer-Verlag, Heidelberg, 1988; J.P. Boyd, Chebyshev and Fourier Spectral Methods, second ed., Dover, New York, 2001; C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer-Verlag, Berlin Heidelberg, 2006]). If a discontinuity or a shock is present in the solution, this advantage is lost. There have been attempts to recover exponential convergence in such cases with rather limited success. The aim of this paper is to propose a discontinuous spectral element method coupled with a level set procedure, which tracks discontinuities in the solution of nonlinear hyperbolic conservation laws with spectral convergence in space. Spectral convergence is demonstrated in the case of the inviscid Burgers equation and the one-dimensional Euler equations.
Spectral signature selection for mapping unvegetated soils
May, G. A.; Petersen, G. W.
1975-01-01
Airborne multispectral scanner data covering the wavelength interval from 0.40-2.60 microns were collected at an altitude of 1000 m above the terrain in southeastern Pennsylvania. Uniform training areas were selected within three sites from this flightline. Soil samples were collected from each site and a procedure developed to allow assignment of scan line and element number from the multispectral scanner data to each sampling location. These soil samples were analyzed on a spectrophotometer and laboratory spectral signatures were derived. After correcting for solar radiation and atmospheric attenuation, the laboratory signatures were compared to the spectral signatures derived from these same soils using multispectral scanner data. Both signatures were used in supervised and unsupervised classification routines. Computer-generated maps using the laboratory and multispectral scanner derived signatures resulted in maps that were similar to maps resulting from field surveys. Approximately 90% agreement was obtained between classification maps produced using multispectral scanner derived signatures and laboratory derived signatures.
Spectral theory of linear operators and spectral systems in Banach algebras
Müller, Vladimir
2003-01-01
This book is dedicated to the spectral theory of linear operators on Banach spaces and of elements in Banach algebras. It presents a survey of results concerning various types of spectra, both of single and n-tuples of elements. Typical examples are the one-sided spectra, the approximate point, essential, local and Taylor spectrum, and their variants. The theory is presented in a unified, axiomatic and elementary way. Many results appear here for the first time in a monograph. The material is self-contained. Only a basic knowledge of functional analysis, topology, and complex analysis is assumed. The monograph should appeal both to students who would like to learn about spectral theory and to experts in the field. It can also serve as a reference book. The present second edition contains a number of new results, in particular, concerning orbits and their relations to the invariant subspace problem. This book is dedicated to the spectral theory of linear operators on Banach spaces and of elements in Banach alg...
Narison, Stéphan
The aim of the book is to give an introduction to the method of QCD Spectral Sum Rules and to review its developments. After some general introductory remarks, Chiral Symmetry, the Historical Developments of the Sum Rules and the necessary materials for perturbative QCD including the MS regularization and renormalization schemes are discussed. The book also gives a critical review and some improvements of the wide uses of the QSSR in Hadron Physics and QSSR beyond the Standard Hadron Phenomenology. The author has participated actively in this field since 1978 just before the expanding success
Spectral signatures of chirality
DEFF Research Database (Denmark)
Pedersen, Jesper Goor; Mortensen, Asger
2009-01-01
We present a new way of measuring chirality, via the spectral shift of photonic band gaps in one-dimensional structures. We derive an explicit mapping of the problem of oblique incidence of circularly polarized light on a chiral one-dimensional photonic crystal with negligible index contrast...... to the formally equivalent problem of linearly polarized light incident on-axis on a non-chiral structure with index contrast. We derive analytical expressions for the first-order shifts of the band gaps for negligible index contrast. These are modified to give good approximations to the band gap shifts also...
Li, Z.; Huang, S.; Karanassios, V.
2012-06-01
Spectral overlaps causing spectral interference are a key concern in elemental analysis by optical emission spectrometry. Spectral interferences are addressed using a variety of methods, including artificial neural networks (ANNs). In my lab, these methods are being developed using both experimentally-obtained results and spectral simulations. ANNs are being developed for inductively coupled plasma-atomic emission spectrometry (ICP-AES) and for optical emission measurements using microplasmas and portable emission spectrometers. In this paper, the application of ANNS for spectral interference correction is described in some detail.
Directory of Open Access Journals (Sweden)
Sergey P. Fedotov
2016-11-01
Full Text Available Article "Elements of Life" offers a hypothesis about the relationship of the phenomenon of traditional Chinese medicine with the physical laws. It shows the principle of forming a sequence of daily activity of the acupuncture meridians as a consequence of the Doppler effect in the process of flowing around the planet Earth by cosmic wind (by Ether. In accordance with this specification the daily structure of meridians had been built. It is suggested that the essence of the Chinese Qi (Chi are vibrations of a certain range in the medium. Consequently, it became possible to set the interrelation of frequencies of the visible spectrum with certain meridians. It is shown that the topological relationship of ancient (barrier points of the Five Elements (Wu-Shu points are associated with the wave lengths of the so-called Qi. It is shown also that the essence of the Wu-Xing law is based on daily circulation patterns of meridians. The examples of the surrounding world, including pulses processes in the human body, are confirming the above mentioned theses. A correlation diagram between the main elements by Dr. Samohotsky A.S. (dissertation "The experience of the definition of medical laws", 1946 and the Five Elements of traditional Chinese philosophy is established. The above represented hypotheses are yet introduced in practice in form of pulse spectral analysis system.
Directory of Open Access Journals (Sweden)
Claudio Napolis Costa
2008-04-01
Full Text Available Data comprising 263,390 test-day (TD records of 32,448 first parity cows calving in 467 herds between 1991 and 2001 from the Brazilian Holstein Association were used to estimate genetic and permanent environmental variance components in a random regression animal model using Legendre polynomials (LP of order three to five by REML. Residual variance was assumed to be constant in all or in some classes of lactation periods for each LP. Estimates of genetic and permanent environmental variances did not show any trend due to the increase in the LP order. Residual variance decreased as the order of LP increased when it was assumed constant, and it was highest at the beginning of lactation and relatively constant in mid lactation when assumed to vary between classes. The range for the estimates of heritability (0.27 - 0.42 was similar for all models and was higher in mid lactation. There were only slight differences between the models in both genetic and permanent environmental correlations. Genetic correlations decreased for near unity between adjacent days to values as low as 0.24 between early and late lactation. A five parameter LP to model both genetic and permanent environmental effects and assuming a homogeneous residual variance would be a parsimonious option to fit TD yields of Holstein cows in Brazil.Um total de 263.390 registros de produção de leite do dia do controle (PC de 32.448 primeiras lactações de vacas da raça Holandesa com partos entre 1991 e 2001, disponibilizados pela Associação Brasileira de Criadores de Bovinos da Raça Holandesa, foi usado para estimar componentes de variância para os efeitos genético e de ambiente permanente com modelos de regressão aleatória usando polinômios de Legendre (PL de ordens 3 a 5 por REML. A variância residual foi assumida como constante em todo ou em algumas classes do período de lactação para cada PL. As estimativas dos efeitos genético e permanente de ambiente não apresentaram
Intensity Conserving Spectral Fitting
Klimchuk, J. A.; Patsourakos, S.; Tripathi, D.
2015-01-01
The detailed shapes of spectral line profiles provide valuable information about the emitting plasma, especially when the plasma contains an unresolved mixture of velocities, temperatures, and densities. As a result of finite spectral resolution, the intensity measured by a spectrometer is the average intensity across a wavelength bin of non-zero size. It is assigned to the wavelength position at the center of the bin. However, the actual intensity at that discrete position will be different if the profile is curved, as it invariably is. Standard fitting routines (spline, Gaussian, etc.) do not account for this difference, and this can result in significant errors when making sensitive measurements. Detection of asymmetries in solar coronal emission lines is one example. Removal of line blends is another. We have developed an iterative procedure that corrects for this effect. It can be used with any fitting function, but we employ a cubic spline in a new analysis routine called Intensity Conserving Spline Interpolation (ICSI). As the name implies, it conserves the observed intensity within each wavelength bin, which ordinary fits do not. Given the rapid convergence, speed of computation, and ease of use, we suggest that ICSI be made a standard component of the processing pipeline for spectroscopic data.
Spectral clustering for water body spectral types analysis
Huang, Leping; Li, Shijin; Wang, Lingli; Chen, Deqing
2017-11-01
In order to study the spectral types of water body in the whole country, the key issue of reservoir research is to obtain and to analyze the information of water body in the reservoir quantitatively and accurately. A new type of weight matrix is constructed by utilizing the spectral features and spatial features of the spectra from GF-1 remote sensing images comprehensively. Then an improved spectral clustering algorithm is proposed based on this weight matrix to cluster representative reservoirs in China. According to the internal clustering validity index which called Davies-Bouldin(DB) index, the best clustering number 7 is obtained. Compared with two clustering algorithms, the spectral clustering algorithm based only on spectral features and the K-means algorithm based on spectral features and spatial features, simulation results demonstrate that the proposed spectral clustering algorithm based on spectral features and spatial features has a higher clustering accuracy, which can better reflect the spatial clustering characteristics of representative reservoirs in various provinces in China - similar spectral properties and adjacent geographical locations.
[Study on the arc spectral information for welding quality diagnosis].
Li, Zhi-Yong; Gu, Xiao-Yan; Li, Huan; Yang, Li-Jun
2009-03-01
Through collecting the spectral signals of TIG and MIG welding arc with spectrometer, the arc light radiations were analyzed based on the basic theory of plasma physics. The radiation of welding arc distributes over a broad range of frequency, from infrared to ultraviolet. The arc spectrum is composed of line spectra and continuous spectra. Due to the variation of metal density in the welding arc, there is great difference between the welding arc spectra of TIG and MIG in both their intensity and distribution. The MIG welding arc provides more line spectra of metal and the intensity of radiation is greater than TIG. The arc spectrum of TIG welding is stable during the welding process, disturbance factors that cause the spectral variations can be reflected by the spectral line related to the corresponding element entering the welding arc. The arc spectrum of MIG welding will fluctuate severely due to droplet transfer, which produces "noise" in the line spectrum aggregation zone. So for MIG welding, the spectral zone lacking spectral line is suitable for welding quality diagnosis. According to the characteristic of TIG and MIG, special spectral zones were selected for welding quality diagnosis. For TIG welding, the selected zone is in ultraviolet zone (230-300 nm). For MIG welding, the selected zone is in visible zone (570-590 nm). With the basic theory provided for welding quality diagnosis, the integral intensity of spectral signal in the selected zone of welding process with disturbing factor was studied to prove the theory. The results show that the welding quality and disturbance factors can be diagnosed with good signal to noise ratio in the selected spectral zone compared with signal in other spectral zone. The spectral signal can be used for real-time diagnosis of the welding quality.
Spectral Automorphisms in Quantum Logics
Ivanov, Alexandru; Caragheorgheopol, Dan
2010-12-01
In quantum mechanics, the Hilbert space formalism might be physically justified in terms of some axioms based on the orthomodular lattice (OML) mathematical structure (Piron in Foundations of Quantum Physics, Benjamin, Reading, 1976). We intend to investigate the extent to which some fundamental physical facts can be described in the more general framework of OMLs, without the support of Hilbert space-specific tools. We consider the study of lattice automorphisms properties as a “substitute” for Hilbert space techniques in investigating the spectral properties of observables. This is why we introduce the notion of spectral automorphism of an OML. Properties of spectral automorphisms and of their spectra are studied. We prove that the presence of nontrivial spectral automorphisms allow us to distinguish between classical and nonclassical theories. We also prove, for finite dimensional OMLs, that for every spectral automorphism there is a basis of invariant atoms. This is an analogue of the spectral theorem for unitary operators having purely point spectrum.
Rectangular spectral collocation
Driscoll, Tobin A.
2015-02-06
Boundary conditions in spectral collocation methods are typically imposed by removing some rows of the discretized differential operator and replacing them with others that enforce the required conditions at the boundary. A new approach based upon resampling differentiated polynomials into a lower-degree subspace makes differentiation matrices, and operators built from them, rectangular without any row deletions. Then, boundary and interface conditions can be adjoined to yield a square system. The resulting method is both flexible and robust, and avoids ambiguities that arise when applying the classical row deletion method outside of two-point scalar boundary-value problems. The new method is the basis for ordinary differential equation solutions in Chebfun software, and is demonstrated for a variety of boundary-value, eigenvalue and time-dependent problems.
[Review of digital ground object spectral library].
Zhou, Xiao-Hu; Zhou, Ding-Wu
2009-06-01
A higher spectral resolution is the main direction of developing remote sensing technology, and it is quite important to set up the digital ground object reflectance spectral database library, one of fundamental research fields in remote sensing application. Remote sensing application has been increasingly relying on ground object spectral characteristics, and quantitative analysis has been developed to a new stage. The present article summarized and systematically introduced the research status quo and development trend of digital ground object reflectance spectral libraries at home and in the world in recent years. Introducing the spectral libraries has been established, including desertification spectral database library, plants spectral database library, geological spectral database library, soil spectral database library, minerals spectral database library, cloud spectral database library, snow spectral database library, the atmosphere spectral database library, rocks spectral database library, water spectral database library, meteorites spectral database library, moon rock spectral database library, and man-made materials spectral database library, mixture spectral database library, volatile compounds spectral database library, and liquids spectral database library. In the process of establishing spectral database libraries, there have been some problems, such as the lack of uniform national spectral database standard and uniform standards for the ground object features as well as the comparability between different databases. In addition, data sharing mechanism can not be carried out, etc. This article also put forward some suggestions on those problems.
Spectral Theory of Chemical Bonding
National Research Council Canada - National Science Library
Langhoff, P. W; Boatz, J. A; Hinde, R. J; Sheehy, J. A
2004-01-01
New theoretical methods are reported for obtaining the binding energies of molecules and other chemical aggregates employing the spectral eigenstates and related properties of their atomic constituents...
Understanding Soliton Spectral Tunneling as a Spectral Coupling Effect
DEFF Research Database (Denmark)
Guo, Hairun; Wang, Shaofei; Zeng, Xianglong
2013-01-01
Soliton eigenstate is found corresponding to a dispersive phase profile under which the soliton phase changes induced by the dispersion and nonlinearity are instantaneously counterbalanced. Much like a waveguide coupler relying on a spatial refractive index profile that supports mode coupling...... between channels, here we suggest that the soliton spectral tunneling effect can be understood supported by a spectral phase coupler. The dispersive wave number in the spectral domain must have a coupler-like symmetric profile for soliton spectral tunneling to occur. We show that such a spectral coupler...... exactly implies phase as well as group-velocity matching between the input soliton and tunneled soliton, namely a soliton phase matching condition. Examples in realistic photonic crystal fibers are also presented....
Tani, Laurits
2015-01-01
To control Peltier elements, temperature controller was used. I used TEC-1091 that was manufactured my Meerstetter Engineering. To gain control with the temperature controller, software had to be intalled on a controlling PC. There were different modes to control the Peltier: Tempererature controller to control temperature, Static current/voltage to control voltage and current and LIVE ON/OFF to auto-tune the controller respectively to the system. Also, since near the collision pipe there is much radiation, radiation-proof Peltier elements have to be used. To gain the best results, I had to find the most efficient Peltier elements and try to get their cold side to -40 degrees Celsius.
Mercury's Pyroclastic Deposits and their spectral variability
Besse, Sebastien; Doressoundiram, Alain
2016-10-01
Observations of the MESSENGER spacecraft in orbit around Mercury have shown that volcanism is a very important process that has shaped the surface of the planet, in particular in its early history.In this study, we use the full range of the MASCS spectrometer (300-1400nm) to characterize the spectral properties of the pyroclastic deposits. Analysis of deposits within the Caloris Basin, and on other location of Mercury's surface (e.g., Hesiod, Rachmaninoff, etc.) show two main results: 1) Spectral variability is significant in the UV and VIS range between the deposits themselves, and also with respect to the rest of the planet and other features like hollows, 2) Deposits exhibit a radial variability similar to those found with the lunar pyroclastic deposits of floor fractured craters.These results are put in context with the latest analysis of other instruments of the MESSENGER spacecraft, in particular the visible observations from the imager MDIS, and the elemental composition given by the X-Ray spectrometer. Although all together, the results do not allow pointing to compositional variability of the deposits for certain, information on the formation mechanisms, the weathering and the age formation can be extrapolated from the radial variability and the elemental composition.
A smile insensitive method for spectral linewidth narrowing on high power laser diode arrays
Yang, Zining; Wang, Hongyan; Li, Yuandong; Lu, Qisheng; Hua, Weihong; Xu, Xiaojun; Chen, Jinbao
2011-10-01
To eliminate the smile effect in spectral linewidth narrowing on high power laser diode arrays, we have introduced a plane reflective mirror into a common Littrow configuration external cavity to enhance the correlation among emitters. By this way, we obtained uniform spectral distribution among emitters of a 64-elements laser diode array with 35 GHz linewidth and 41 W output laser power.
Bean, R.W.
1963-11-19
A ceramic fuel element for a nuclear reactor that has improved structural stability as well as improved cooling and fission product retention characteristics is presented. The fuel element includes a plurality of stacked hollow ceramic moderator blocks arranged along a tubular raetallic shroud that encloses a series of axially apertured moderator cylinders spaced inwardly of the shroud. A plurality of ceramic nuclear fuel rods are arranged in the annular space between the shroud and cylinders of moderator and appropriate support means and means for directing gas coolant through the annular space are also provided. (AEC)
SPECTRAL ANALYSIS OF EXCHANGE RATES
Directory of Open Access Journals (Sweden)
ALEŠA LOTRIČ DOLINAR
2013-06-01
Full Text Available Using spectral analysis is very common in technical areas but rather unusual in economics and finance, where ARIMA and GARCH modeling are much more in use. To show that spectral analysis can be useful in determining hidden periodic components for high-frequency finance data as well, we use the example of foreign exchange rates
Intersection numbers of spectral curves
Eynard, B
2011-01-01
We compute the symplectic invariants of an arbitrary spectral curve with only 1 branchpoint in terms of integrals of characteristic classes in the moduli space of curves. Our formula associates to any spectral curve, a characteristic class, which is determined by the laplace transform of the spectral curve. This is a hint to the key role of Laplace transform in mirror symmetry. When the spectral curve is y=\\sqrt{x}, the formula gives Kontsevich--Witten intersection numbers, when the spectral curve is chosen to be the Lambert function \\exp{x}=y\\exp{-y}, the formula gives the ELSV formula for Hurwitz numbers, and when one chooses the mirror of C^3 with framing f, i.e. \\exp{-x}=\\exp{-yf}(1-\\exp{-y}), the formula gives the topological vertex formula, i.e. the generating function of Gromov-Witten invariants of C^3. In some sense this formula generalizes ELSV formula, and Mumford formula.
Spectral imagery collection experiment
Romano, Joao M.; Rosario, Dalton; Farley, Vincent; Sohr, Brian
2010-04-01
The Spectral and Polarimetric Imagery Collection Experiment (SPICE) is a collaborative effort between the US Army ARDEC and ARL for the collection of mid-wave and long-wave infrared imagery using hyperspectral, polarimetric, and broadband sensors. The objective of the program is to collect a comprehensive database of the different modalities over the course of 1 to 2 years to capture sensor performance over a wide variety of adverse weather conditions, diurnal, and seasonal changes inherent to Picatinny's northern New Jersey location. Using the Precision Armament Laboratory (PAL) tower at Picatinny Arsenal, the sensors will autonomously collect the desired data around the clock at different ranges where surrogate 2S3 Self-Propelled Howitzer targets are positioned at different viewing perspectives at 549 and 1280m from the sensor location. The collected database will allow for: 1) Understand of signature variability under the different weather conditions; 2) Development of robust algorithms; 3) Development of new sensors; 4) Evaluation of hyperspectral and polarimetric technologies; and 5) Evaluation of fusing the different sensor modalities. In this paper, we will present the SPICE data collection objectives, the ongoing effort, the sensors that are currently deployed, and how this work will assist researches on the development and evaluation of sensors, algorithms, and fusion applications.
Xu, Jun; Xie, Cheng-Wang; Liu, Hai-Wen; Liu, Qiang; Li, Bin-Cheng
2013-05-01
A novel type of DMD-based Hadamard transform spectral imager is introduced. Taking the 7-order S-matrix as an example for discussion, the present paper develops an improved design of Hadamard encoding mask, which makes the dispersed spectrum of all pixels to be encoded by seven elements strictly. A correcting method for the recovered spectral images is proposed, and eventually 6 high-quality spectral images are obtained when Hadamard transform spectral imager operates based on 7-order S-matrix. Similarly, if the spectral imager operates based on n-order S-matrix, n--1 spectral images can be obtained. The experimental results show that the improved design and the correction method are feasible and effective.
ULTRAVIOLET RAMAN SPECTRAL SIGNATURE ACQUISITION: UV RAMAN SPECTRAL FINGERPRINTS.
Energy Technology Data Exchange (ETDEWEB)
SEDLACEK,III, A.J.FINFROCK,C.
2002-09-01
As a member of the science-support part of the ITT-lead LISA development program, BNL is tasked with the acquisition of UV Raman spectral fingerprints and associated scattering cross-sections for those chemicals-of-interest to the program's sponsor. In support of this role, the present report contains the first installment of UV Raman spectral fingerprint data on the initial subset of chemicals. Because of the unique nature associated with the acquisition of spectral fingerprints for use in spectral pattern matching algorithms (i.e., CLS, PLS, ANN) great care has been undertaken to maximize the signal-to-noise and to minimize unnecessary spectral subtractions, in an effort to provide the highest quality spectral fingerprints. This report is divided into 4 sections. The first is an Experimental section that outlines how the Raman spectra are performed. This is then followed by a section on Sample Handling. Following this, the spectral fingerprints are presented in the Results section where the data reduction process is outlined. Finally, a Photographs section is included.
Programmable spectral design and the binary supergrating
Levner, Daniel
Spectral operations such as wavelength selection, power level manipulation, and chromatic dispersion control are key to many processes in optical telecommunication, spectroscopy, and sensing. In their simplest forms, these functions can be performed using a number of successful devices such as the Fraunhofer ("diffraction") grating, Bragg grating, thin-film filter (TFF), and dispersion-compensating fiber (DCF). More complicated manipulations, however, often require either problematic cascades of many simple elements, the use of custom technologies that offer little adjustment, or the implementation of fully programmable devices, which allow for the desired spectral function to be synthesized ab initio. Here, I present the Binary Supergrating (BSG), a novel technology that permits the programmable and near-arbitrary control of optical amplitude and phase using a simple, robust and practical form. This guided-wave form consists of an aperiodic sequence of binary elements; the sequence, determined through the process of BSG synthesis, encodes an optical program that defines device functionality. The ability to derive optical programs that address broad spectral demands is central to the BSG's extensive capabilities. In consequence, I present a powerful approach to synthesis that exploits existing knowledge in the design of "analog" gratings. This approach is based on a two-step process, which first derives an analog diffractive structure using the best available methods and then transforms it into binary form. Accordingly, I discuss the notion of diffractive structure transformation and introduce the principle of key information. I identify such key information and illustrate its application in grating quantizers based on an atypical form of Delta-Sigma modulation. As a digital approach to spectral engineering, the BSG presents many of the same advantages offered by the digital approach to electronic signal processing (DSP) over its analog predecessors. As such, it
Two-dimensional finite element neutron diffusion analysis using hierarchic shape functions
International Nuclear Information System (INIS)
Carpenter, D.C.
1997-01-01
Recent advances have been made in the use of p-type finite element method (FEM) for structural and fluid dynamics problems that hold promise for reactor physics problems. These advances include using hierarchic shape functions, element-by-element iterative solvers and more powerful mapping techniques. Use of the hierarchic shape functions allows greater flexibility and efficiency in implementing energy-dependent flux expansions and incorporating localized refinement of the solution space. The irregular matrices generated by the p-type FEM can be solved efficiently using element-by-element conjugate gradient iterative solvers. These solvers do not require storage of either the global or local stiffness matrices and can be highly vectorized. Mapping techniques based on blending function interpolation allow exact representation of curved boundaries using coarse element grids. These features were implemented in a developmental two-dimensional neutron diffusion program based on the use of hierarchic shape functions (FEM2DH). Several aspects in the effective use of p-type analysis were explored. Two choices of elemental preconditioning were examined--the proper selection of the polynomial shape functions and the proper number of functions to use. Of the five shape function polynomials tested, the integral Legendre functions were the most effective. The serendipity set of functions is preferable over the full tensor product set. Two global preconditioners were also examined--simple diagonal and incomplete Cholesky. The full effectiveness of the finite element methodology was demonstrated on a two-region, two-group cylindrical problem but solved in the x-y coordinate space, using a non-structured element grid. The exact, analytic eigenvalue solution was achieved with FEM2DH using various combinations of element grids and flux expansions
Spectral Unmixing With Multiple Dictionaries
Cohen, Jeremy E.; Gillis, Nicolas
2018-02-01
Spectral unmixing aims at recovering the spectral signatures of materials, called endmembers, mixed in a hyperspectral or multispectral image, along with their abundances. A typical assumption is that the image contains one pure pixel per endmember, in which case spectral unmixing reduces to identifying these pixels. Many fully automated methods have been proposed in recent years, but little work has been done to allow users to select areas where pure pixels are present manually or using a segmentation algorithm. Additionally, in a non-blind approach, several spectral libraries may be available rather than a single one, with a fixed number (or an upper or lower bound) of endmembers to chose from each. In this paper, we propose a multiple-dictionary constrained low-rank matrix approximation model that address these two problems. We propose an algorithm to compute this model, dubbed M2PALS, and its performance is discussed on both synthetic and real hyperspectral images.
Special topics in spectral distributions
International Nuclear Information System (INIS)
French, J.B.
1980-01-01
We discuss two problems which relate to the foundations of the subject, and a third about asymptotic properties of spectral distributions. We give also a brief list of topics which should be further explored
Substitution dynamical systems spectral analysis
Queffélec, Martine
2010-01-01
This volume mainly deals with the dynamics of finitely valued sequences, and more specifically, of sequences generated by substitutions and automata. Those sequences demonstrate fairly simple combinatorical and arithmetical properties and naturally appear in various domains. As the title suggests, the aim of the initial version of this book was the spectral study of the associated dynamical systems: the first chapters consisted in a detailed introduction to the mathematical notions involved, and the description of the spectral invariants followed in the closing chapters. This approach, combined with new material added to the new edition, results in a nearly self-contained book on the subject. New tools - which have also proven helpful in other contexts - had to be developed for this study. Moreover, its findings can be concretely applied, the method providing an algorithm to exhibit the spectral measures and the spectral multiplicity, as is demonstrated in several examples. Beyond this advanced analysis, many...
A novel boundary element method for nonuniform neutron diffusion problems
International Nuclear Information System (INIS)
Itagaki, Masafumi; Nisiyama, Shusuke; Tomioka, Satoshi; Enoto, Takeaki
1999-01-01
An advanced boundary element formulation has been proposed to solve the neutron diffusion equation (NDE) for a 'nonuniform' system. The continuous spatial distribution of a nuclear constant is assumed to be described using a polynomial function. Part of the constant term in the polynomial is left on the left-hand-side of the NDE, while the reminding is added to the fission source term on the right-hand-side to create a fictitious source. When the neutron flux is also expanded using a polynomial, the boundary integral equation corresponding to the NDE contains a domain integral related to the polynomial source. This domain integral is transformed into an infinite series of boundary integrals, by repeated application of the particular solution for a Poisson-type equation with the polynomial source. In two-dimensional, one-group test calculations for rectangular domains, the orthogonality of Legendre polynomials was used to determine the polynomial expansion coefficients. The results show good agreement with those obtained from finite difference computations in which the nonuniformity was approximated by a large number of material regions. (author)
Spectral dimensionality reduction for HMMs
Foster, Dean P.; Rodu, Jordan; Ungar, Lyle H.
2012-01-01
Hidden Markov Models (HMMs) can be accurately approximated using co-occurrence frequencies of pairs and triples of observations by using a fast spectral method in contrast to the usual slow methods like EM or Gibbs sampling. We provide a new spectral method which significantly reduces the number of model parameters that need to be estimated, and generates a sample complexity that does not depend on the size of the observation vocabulary. We present an elementary proof giving bounds on the rel...
Compressive spectroscopy by spectral modulation
Oiknine, Yaniv; August, Isaac; Stern, Adrian
2017-05-01
We review two compressive spectroscopy techniques based on modulation in the spectral domain that we have recently proposed. Both techniques achieve a compression ratio of approximately 10:1, however each with a different sensing mechanism. The first technique uses a liquid crystal cell as a tunable filter to modulate the spectral signal, and the second technique uses a Fabry-Perot etalon as a resonator. We overview the specific properties of each of the techniques.
Spectral unmixing: estimating partial abundances
CSIR Research Space (South Africa)
Debba, Pravesh
2009-01-01
Full Text Available the ingredients for this chocolate cake? Debba (CSIR) Spectral Unmixing LQM 2009 3 / 22 Background and Research Question Ingredients Quantity unsweetened chocolate unsweetened cocoa powder boiling water flour baking powder baking soda salt unsalted... butter white sugar eggs pure vanilla extract milk Table: Chocolate cake ingredients Debba (CSIR) Spectral Unmixing LQM 2009 4 / 22 Background and Research Question Ingredients Quantity unsweetened chocolate 120 grams unsweetened cocoa powder 28...
Change Detection Analysis With Spectral Thermal Imagery
National Research Council Canada - National Science Library
Behrens, Richard
1998-01-01
... (LWIR) region. This study used analysis techniques of differencing, histograms, and principal components analysis to detect spectral changes and investigate the utility of spectral change detection...
Energy Technology Data Exchange (ETDEWEB)
Clark, Brian F.; Bagwell, Brett E.; Wick, David Victor
2007-01-01
The purpose of this LDRD was to demonstrate a compact, multi-spectral, refractive imaging systems using active optical compensation. Compared to a comparable, conventional lens system, our system has an increased operational bandwidth, provides for spectral selectivity and, non-mechanically corrects aberrations induced by the wavelength dependent properties of a passive refractive optical element (i.e. lens). The compact nature and low power requirements of the system lends itself to small platforms such as autonomous vehicles. In addition, the broad spectral bandwidth of our system would allow optimized performance for both day/night use, and the multi-spectral capability allows for spectral discrimination and signature identification.
A bolometer array for the spectral energy distribution (SPEED) camera
Energy Technology Data Exchange (ETDEWEB)
Silverberg, R.F. E-mail: Robert.F.Silverberg@nasa.gov; Ali, S.; Bier, A.; Campano, B.; Chen, T.C.; Cheng, E.S.; Cottingham, D.A.; Crawford, T.M.; Downes, T.; Finkbeiner, F.M.; Fixsen, D.J.; Logan, D.; Meyer, S.S.; O' Dell, C.; Perera, T.; Sharp, E.H.; Timbie, P.T.; Wilson, G.W
2004-03-11
The Spectral Energy Distribution (SPEED) Camera is being developed to study the spectral energy distributions of high redshift galaxies. Its initial use will be on the Heinrich Hertz Telescope and eventually on the Large Millimeter Telescope. SPEED requires a small cryogenic detector array of 2x2 pixels with each pixel having four frequency bands in the 150-375 GHz range. Here we describe the development of the detector array of these high-efficiency Frequency Selective Bolometers (FSB). The FSB design provides the multi-pixel, multi-spectral band capability required for SPEED in a compact stackable array. The SPEED bolometers will use proximity effect superconducting transition edge sensors as their temperature-sensing element, allowing for higher levels of electronic multiplexing in future applications.
Spectral Hounsfield units: a new radiological concept
International Nuclear Information System (INIS)
Hurrell, Michael Anthony; Butler, Anthony Philip Howard; Cook, Nicholas James; Butler, Philip Howard; Ronaldson, J.P.; Zainon, Rafidah
2012-01-01
Computed tomography (CT) uses radiographical density to depict different materials; although different elements have different absorption fingerprints across the range of diagnostic X-ray energies, this spectral absorption information is lost in conventional CT. The recent development of dual energy CT (DECT) allows extraction of this information to a useful but limited extent. However, the advent of new photon counting chips that have energy resolution capabilities has put multi-energy or spectral CT (SCT) on the clinical horizon. This paper uses a prototype SCT system to demonstrate how CT density measurements vary with kilovoltage. While radiologists learn about linear attenuation curves during radiology training, they do not usually need a detailed understanding of this phenomenon in their clinical practice. However SCT requires a paradigm shift in how radiologists think about CT density. Because radiologists are already familiar with the Hounsfield Unit (HU), it is proposed that a modified HU be used that includes the mean energy used to obtain the image, as a conceptual bridge between conventional CT and SCT. A suggested format would be: HU keV . (orig.)
Spectral Information System for Australian Spectroscopy Data
Chisholm, L. A.; Ong, C.; Hueni, A.; Suarez, L.; Restrepo-Coupe, N.
2013-12-01
Inherently field spectroscopy involves the study of the interrelationships between the spectral characteristics of objects and their biophysical attributes in the field environment (Bauer et al., 1986; Milton, 1987). Spectroscopy measurements taken of vegetated surfaces provide spectral characteristics indicative of the status, composition and structure of the components measured. However, additional elements are present that add undesired effects to the overall signal such as the soil background or the viewing and illumination geometry (Suarez etal 2013). Further, the leaf spectrum is affected by several factors including leaf age, phenology, a highly variable range of stressors, any of which may be the actual focus of study, and additionally influenced by a range of environmental conditions. There is a critical need to use acquired spectra to infer vegetation function, understand phenological cycles, characterise biodiversity or as part of the process to assess biogeochemical processes. However the collection of leaf spectra during field campaigns is undertaken on a project basis, where a large number of spectra tend to be collected, yet the value and ability to share and confidently re-use such collections is often restricted. Often this is because the data are stored in disparate silos with little, if any, consistency in formatting and content, and most importantly, lack metadata to aid their discovery and re-use. These datasets have significant potential for vegetation scientists but also benefit the wider earth observation remote sensing and other earth science communities. In Australia this problem has been addressed by the adoption and enhancement of the existing SPECCHIO system (Hueni et al. 2009) as a suitable standard for spectral data exchange. As a spectral database, the system provides storage of spectra and associated metadata, retrieval of spectral data using metadata space queries, information on provenance, all of which facilitate repeatability of
International Nuclear Information System (INIS)
Hirose, Yasuo.
1982-01-01
Purpose: To increase the plenum space in a fuel element used for a liquid metal cooled reactor. Constitution: A fuel pellet is secured at one end with an end plug and at the other with a coil spring in a tubular container. A mechanism for fixing the coil spring composed of a tubular unit is mounted by friction with the inner surface of the tubular container. Accordingly, the recoiling force of the coil spring can be retained by fixing mechanism with a small volume, and since a large amount of plenum space can be obtained, the internal pressure rise in the cladding tube can be suppressed even if large quantities of fission products are discharged. (Kamimura, M.)
Metaoptics for Spectral and Spatial Beam Manipulation
Raghu Srimathi, Indumathi
Laser beam combining and beam shaping are two important areas with applications in optical communications, high power lasers, and atmospheric propagation studies. In this dissertation, metaoptical elements have been developed for spectral and spatial beam shaping, and multiplexing. Beams carrying orbital angular momentum (OAM), referred to as optical vortices, have unique propagation properties. Optical vortex beams carrying different topological charges are orthogonal to each other and have low inter-modal crosstalk which allows for them to be (de)multiplexed. Efficient spatial (de)multiplexing of these beams have been carried out by using diffractive optical geometrical coordinate transformation elements. The spatial beam combining technique shown here is advantageous because the efficiency of the system is not dependent on the number of OAM states being combined. The system is capable of generating coaxially propagating beams in the far-field and the beams generated can either be incoherently or coherently multiplexed with applications in power scaling and dynamic intensity profile manipulations. Spectral beam combining can also be achieved with the coordinate transformation elements. The different wavelengths emitted by fiber sources can be spatially overlapped in the far-field plane and the generated beams are Bessel-Gauss in nature with enhanced depth of focus properties. Unique system responses and beam shapes in the far-field can be realized by controlling amplitude, phase, and polarization at the micro-scale. This has been achieved by spatially varying the structural parameters at the subwavelength scale and is analogous to local modification of material properties. With advancements in fabrication technology, it is possible to control not just the lithographic process, but also the deposition process. In this work, a unique combination of spatial structure variations in conjunction with the conformal coating properties of an atomic layer deposition tool
Spectral filtering for plant production
Energy Technology Data Exchange (ETDEWEB)
Young, R.E.; McMahon, M.J.; Rajapakse, N.C.; Becoteau, D.R.
1994-12-31
Research to date suggests that spectral filtering can be an effective alternative to chemical growth regulators for altering plant development. If properly implemented, it can be nonchemical and environmentally friendly. The aqueous CuSO{sub 4}, and CuCl{sub 2} solutions in channelled plastic panels have been shown to be effective filters, but they can be highly toxic if the solutions contact plants. Some studies suggest that spectral filtration limited to short EOD intervals can also alter plant development. Future research should be directed toward confirmation of the influence of spectral filters and exposure times on a broader range of plant species and cultivars. Efforts should also be made to identify non-noxious alternatives to aqueous copper solutions and/or to incorporate these chemicals permanently into plastic films and panels that can be used in greenhouse construction. It would also be informative to study the impacts of spectral filters on insect and microbal populations in plant growth facilities. The economic impacts of spectral filtering techniques should be assessed for each delivery methodology.
Solar Spectral Irradiance and Climate
Pilewskie, P.; Woods, T.; Cahalan, R.
2012-01-01
Spectrally resolved solar irradiance is recognized as being increasingly important to improving our understanding of the manner in which the Sun influences climate. There is strong empirical evidence linking total solar irradiance to surface temperature trends - even though the Sun has likely made only a small contribution to the last half-century's global temperature anomaly - but the amplitudes cannot be explained by direct solar heating alone. The wavelength and height dependence of solar radiation deposition, for example, ozone absorption in the stratosphere, absorption in the ocean mixed layer, and water vapor absorption in the lower troposphere, contribute to the "top-down" and "bottom-up" mechanisms that have been proposed as possible amplifiers of the solar signal. New observations and models of solar spectral irradiance are needed to study these processes and to quantify their impacts on climate. Some of the most recent observations of solar spectral variability from the mid-ultraviolet to the near-infrared have revealed some unexpected behavior that was not anticipated prior to their measurement, based on an understanding from model reconstructions. The atmospheric response to the observed spectral variability, as quantified in climate model simulations, have revealed similarly surprising and in some cases, conflicting results. This talk will provide an overview on the state of our understanding of the spectrally resolved solar irradiance, its variability over many time scales, potential climate impacts, and finally, a discussion on what is required for improving our understanding of Sun-climate connections, including a look forward to future observations.
Observation of the Optical and Spectral Characteristics of Ball Lightning
Cen, Jianyong; Yuan, Ping; Xue, Simin
2014-01-01
Ball lightning (BL) has been observed with two slitless spectrographs at a distance of 0.9 km. The BL is generated by a cloud-to-ground lightning strike. It moves horizontally during the luminous duration. The evolution of size, color, and light intensity is reported in detail. The spectral analysis indicates that the radiation from soil elements is present for the entire lifetime of the BL.
Spectrally resolved far-fields of terahertz quantum cascade lasers
Brandstetter, Martin; Schönhuber, Sebastian; Krall, Michael; Kainz, Martin A.; Detz, Hermann; Zederbauer, Tobias; Andrews, Aaron M.; Strasser, Gottfried; Unterrainer, Karl
2016-01-01
We demonstrate a convenient and fast method to measure the spectrally resolved far-fields of multimode terahertz quantum cascade lasers by combining a microbolometer focal plane array with an FTIR spectrometer. Far-fields of fundamental TM0 and higher lateral order TM1 modes of multimode Fabry-P\\'erot type lasers have been distinguished, which very well fit to the results obtained by a 3D finite-element simulation. Furthermore, multimode random laser cavities have been investigated, analyzing...
New estimators of spectral distributions of Wigner matrices
Zhou, Wang
2011-01-01
We introduce kernel estimators for the semicircle law. In this first part of our general theory on the estimators, we prove the consistency and conduct simulation study to show the performance of the estimators. We also point out that Wigner's semicircle law for our new estimators and the classical empirical spectral distributions is still true when the elements of Wigner matrices don't have finite variances but are in the domain of attraction of normal law.
Spectrally Compatible Iterative Water Filling
Verlinden, Jan; Bogaert, Etienne Vanden; Bostoen, Tom; Zanier, Francesca; Luise, Marco; Cendrillon, Raphael; Moonen, Marc
2006-12-01
Until now static spectrum management has ensured that DSL lines in the same cable are spectrally compatible under worst-case crosstalk conditions. Recently dynamic spectrum management (DSM) has been proposed aiming at an increased capacity utilization by adaptation of the transmit spectra of DSL lines to the actual crosstalk interference. In this paper, a new DSM method for downstream ADSL is derived from the well-known iterative water-filling (IWF) algorithm. The amount of boosting of this new DSM method is limited, such that it is spectrally compatible with ADSL. Hence it is referred to as spectrally compatible iterative water filling (SC-IWF). This paper focuses on the performance gains of SC-IWF. This method is an autonomous DSM method (DSM level 1) and it will be investigated together with two other DSM level-1 algorithms, under various noise conditions, namely, iterative water-filling algorithm, and flat power back-off (flat PBO).
Spectrally Compatible Iterative Water Filling
Directory of Open Access Journals (Sweden)
Cendrillon Raphael
2006-01-01
Full Text Available Until now static spectrum management has ensured that DSL lines in the same cable are spectrally compatible under worst-case crosstalk conditions. Recently dynamic spectrum management (DSM has been proposed aiming at an increased capacity utilization by adaptation of the transmit spectra of DSL lines to the actual crosstalk interference. In this paper, a new DSM method for downstream ADSL is derived from the well-known iterative water-filling (IWF algorithm. The amount of boosting of this new DSM method is limited, such that it is spectrally compatible with ADSL. Hence it is referred to as spectrally compatible iterative water filling (SC-IWF. This paper focuses on the performance gains of SC-IWF. This method is an autonomous DSM method (DSM level 1 and it will be investigated together with two other DSM level-1 algorithms, under various noise conditions, namely, iterative water-filling algorithm, and flat power back-off (flat PBO.
Near-infrared spectral imaging Michelson interferometer for astronomical applications
Wells, C. W.; Potter, A. E.; Morgan, T. H.
1980-01-01
The design and operation of an imaging Michelson interferometer-spectrometer used for near-infrared (0.8 micron to 2.5 microns) spectral imaging are reported. The system employs a rapid scan interferometer modified for stable low resolution (250/cm) performance and a 42 element PbS linear detector array. A microcomputer system is described which provides data acquisition, coadding, and Fourier transformation for near real-time presentation of the spectra of all 42 scene elements. The electronic and mechanical designs are discussed and telescope performance data presented.
Spectral scheme for spacetime physics
International Nuclear Information System (INIS)
Seriu, Masafumi
2002-01-01
Based on the spectral representation of spatial geometry, we construct an analysis scheme for spacetime physics and cosmology, which enables us to compare two or more universes with each other. In this scheme the spectral distance plays a central role, which is the measure of closeness between two geometries defined in terms of the spectra. We apply this scheme for analyzing the averaging problem in cosmology; we explicitly investigate the time evolution of the spectra, distance between two nearby spatial geometries, simulating the relation between the real Universe and its model. We then formulate the criteria for a model to be a suitable one
Spectral ellipsometry of nanodiamond composite
International Nuclear Information System (INIS)
Yastrebov, S.G.; Ivanov-Omskij, V.I.; Gordeev, S.K.; Garriga, M.; Alonso, I.A.
2006-01-01
Methods of spectral ellipsometry were applied for analysis of optical properties of nanodiamond based composite in spectral region 1.4-5 eV. The nanocomposite was synthesized by molding of ultradispersed nanodiamond powder in the course of heterogeneous chemical reaction of decomposition of methane, forming pyrocarbon interconnecting nanodiamond grains. The energy of σ + π plasmon of pyrocarbon component of nanodiamond composite was restored which proves to be ∼ 24 eV; using this value, an estimation was done of pyrocarbon matrix density, which occurs to be 2 g/cm 3 [ru
Directory of Open Access Journals (Sweden)
Fong Kah Soon
2017-01-01
Full Text Available The vibration of damped pipeline conveying fluid with the effect of fluid-structure interaction is known to pose challenging problems in oil and gas industry. In this study, the natural frequency of fluid-structure interaction in pipeline conveying fluid set on viscoelastic foundation is investigated by using finite element method. The governing partial differential equation is modelled based on Euler-Bernoulli beam theory. By applying Galerkin weighted residual method, the stiffness, damping, and mass matrices are obtained. For a given boundary condition which is simply supported, two components of the foundation (foundation stiffness and damping which are influencing the damped natural frequency of the pipeline are studied for different fluid velocity. The results indicate that increasing the foundation stiffness from 10 kN/m3 to 30 kN/m3 increases the natural frequency of the pipeline, while increasing the foundation damping from 1 kN.s/m3 to 3 kN.s/m3 and fluid velocity decrease the natural frequency of the pipeline. The accuracy of the results obtained is validated against data from literature.
Hu, Zhi-yu; Zhang, Lei; Ma, Wei-guang; Yan, Xiao-juan; Li, Zhi-xin; Zhang, Yong-zhi; Wang, Le; Dong, Lei; Yin, Wang-bao; Jia, Suo-tang
2012-03-01
Self-designed identifying software for LIBS spectral line was introduced. Being integrated with LabVIEW, the soft ware can smooth spectral lines and pick peaks. The second difference and threshold methods were employed. Characteristic spectrum of several elements matches the NIST database, and realizes automatic spectral line identification and qualitative analysis of the basic composition of sample. This software can analyze spectrum handily and rapidly. It will be a useful tool for LIBS.
SPECTRAL DEPENDENT ELECTRICAL CHARACTERISTICS OF ...
African Journals Online (AJOL)
ABSTRACT: The illuminated current-voltage characteristics of thin ﬁlm a-Si:H. p-i-n solar cells were measured for the visible and near infrared spectral regions. The ﬁll factor, the conversion efﬁciency, the open circuit Voltage and the short circuit current were compared to the parameters of crystalline silicon pit-junction.
Speech recognition from spectral dynamics
Indian Academy of Sciences (India)
Abstract. Information is carried in changes of a signal. The paper starts with revis- iting Dudley's concept of the carrier nature of speech. It points to its close connection to modulation spectra of speech and argues against short-term spectral envelopes as dominant carriers of the linguistic information in speech. The history of ...
Optical Spectral Variability of Blazars
Indian Academy of Sciences (India)
2016-01-27
Jan 27, 2016 ... It is well established that blazars show flux variations in the complete electromagnetic (EM) spectrum on all possible time scales ranging from a few tens of minutes to several years. Here, we report the review of optical flux and spectral variability properties of different classes of blazars on IDV and STV ...
Speech recognition from spectral dynamics
Indian Academy of Sciences (India)
2016-08-26
Aug 26, 2016 ... Some of the history of gradual infusion of the modulation spectrum concept into Automatic recognition of speech (ASR) comes next, pointing to the relationship of modulation spectrum processing to wellaccepted ASR techniques such as dynamic speech features or RelAtive SpecTrAl (RASTA) ﬁltering. Next ...
Spectral problems for operator matrices
Bátkai, A.; Binding, P.; Dijksma, A.; Hryniv, R.; Langer, H.
2005-01-01
We study spectral properties of 2 × 2 block operator matrices whose entries are unbounded operators between Banach spaces and with domains consisting of vectors satisfying certain relations between their components. We investigate closability in the product space, essential spectra and generation of
Spectral Methods for Numerical Relativity
Directory of Open Access Journals (Sweden)
Grandclément Philippe
2009-01-01
Full Text Available Equations arising in general relativity are usually too complicated to be solved analytically and one must rely on numerical methods to solve sets of coupled partial differential equations. Among the possible choices, this paper focuses on a class called spectral methods in which, typically, the various functions are expanded in sets of orthogonal polynomials or functions. First, a theoretical introduction of spectral expansion is given with a particular emphasis on the fast convergence of the spectral approximation. We then present different approaches to solving partial differential equations, first limiting ourselves to the one-dimensional case, with one or more domains. Generalization to more dimensions is then discussed. In particular, the case of time evolutions is carefully studied and the stability of such evolutions investigated. We then present results obtained by various groups in the field of general relativity by means of spectral methods. Work, which does not involve explicit time-evolutions, is discussed, going from rapidly-rotating strange stars to the computation of black-hole–binary initial data. Finally, the evolution of various systems of astrophysical interest are presented, from supernovae core collapse to black-hole–binary mergers.
Functional Analysis-Spectral Theoryl
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 4. Functional Analysis - Spectral Theory1. Cherian Varughese. Book Review Volume 6 Issue 4 April 2001 pp 91-92 ... Author Affiliations. Cherian Varughese1. Indian Statistical Institute, 8th Mile, Mysore Road, Bangalore 560 059, India.
Spectral Diagonal Ensemble Kalman Filters
Czech Academy of Sciences Publication Activity Database
Kasanický, Ivan; Mandel, Jan; Vejmelka, Martin
2015-01-01
Roč. 22, č. 4 (2015), s. 485-497 ISSN 1023-5809 R&D Projects: GA ČR GA13-34856S Grant - others:NSF(US) DMS -1216481 Institutional support: RVO:67985807 Keywords : data assimilation * ensemble Kalman filter * spectral representation Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.321, year: 2015
Speech recognition from spectral dynamics
Indian Academy of Sciences (India)
Some of the history of gradual infusion of the modulation spectrum concept into Automatic recognition of speech (ASR) comes next, pointing to the relationship of modulation spectrum processing to wellaccepted ASR techniques such as dynamic speech features or RelAtive SpecTrAl (RASTA) ﬁltering. Next, the frequency ...
Speech recognition from spectral dynamics
Indian Academy of Sciences (India)
automatic recognition of speech (ASR). Instead, likely for historical reasons, envelopes of power spectrum were adopted as main carrier of linguistic information in ASR. However, the relationships between phonetic values of sounds and their short-term spectral envelopes are not straightforward. Consequently, this asks for ...
Spectral representation of Gaussian semimartingales
DEFF Research Database (Denmark)
Basse-O'Connor, Andreas
2009-01-01
The aim of the present paper is to characterize the spectral representation of Gaussian semimartingales. That is, we provide necessary and sufficient conditions on the kernel K for X t =∫ K t (s) dN s to be a semimartingale. Here, N denotes an independently scattered Gaussian random measure...
Assessing FRET using Spectral Techniques
Leavesley, Silas J.; Britain, Andrea L.; Cichon, Lauren K.; Nikolaev, Viacheslav O.; Rich, Thomas C.
2015-01-01
Förster resonance energy transfer (FRET) techniques have proven invaluable for probing the complex nature of protein–protein interactions, protein folding, and intracellular signaling events. These techniques have traditionally been implemented with the use of one or more fluorescence band-pass filters, either as fluorescence microscopy filter cubes, or as dichroic mirrors and band-pass filters in flow cytometry. In addition, new approaches for measuring FRET, such as fluorescence lifetime and acceptor photobleaching, have been developed. Hyperspectral techniques for imaging and flow cytometry have also shown to be promising for performing FRET measurements. In this study, we have compared traditional (filter-based) FRET approaches to three spectral-based approaches: the ratio of acceptor-to-donor peak emission, linear spectral unmixing, and linear spectral unmixing with a correction for direct acceptor excitation. All methods are estimates of FRET efficiency, except for one-filter set and three-filter set FRET indices, which are included for consistency with prior literature. In the first part of this study, spectrofluorimetric data were collected from a CFP–Epac–YFP FRET probe that has been used for intracellular cAMP measurements. All comparisons were performed using the same spectrofluorimetric datasets as input data, to provide a relevant comparison. Linear spectral unmixing resulted in measurements with the lowest coefficient of variation (0.10) as well as accurate fits using the Hill equation. FRET efficiency methods produced coefficients of variation of less than 0.20, while FRET indices produced coefficients of variation greater than 8.00. These results demonstrate that spectral FRET measurements provide improved response over standard, filter-based measurements. Using spectral approaches, single-cell measurements were conducted through hyperspectral confocal microscopy, linear unmixing, and cell segmentation with quantitative image analysis
Energy Technology Data Exchange (ETDEWEB)
Dancer, K A; Links, J [Centre for Mathematical Physics, School of Physical Sciences, University of Queensland, Brisbane 4072 (Australia)], E-mail: dancer@maths.uq.edu.au, E-mail: jrl@maths.uq.edu.au
2009-01-30
Two universal spectral parameter-dependent Lax operators are presented in terms of the elements of the Drinfeld double D(D{sub 3}) of the dihedral group D{sub 3}. Applying representations of D(D{sub 3}) to these yields matrix solutions of the Yang-Baxter equation with a spectral parameter. (fast track communication)
Emission spectra of selected SSME elements and materials
Tejwani, Gopal D.; Vandyke, David B.; Bircher, Felix E.; Gardner, Donald G.; Chenevert, Donald J.
1992-01-01
Stennis Space Center (SSC) is pursuing the advancement of experimental techniques and theoretical developments in the field of plume spectroscopy for application to rocket development testing programs and engine health monitoring. Exhaust plume spectral data for the Space Shuttle Main Engine (SSME) are routinely acquired. The usefulness of this data depends upon qualitative and quantitative interpretation of spectral features and their correlation with the engine performance. A knowledge of the emission spectral characteristics of effluent materials in the exhaust plume is essential. A study of SSME critical components and their materials identified 30 elements and 53 materials whose engine exhaust plume spectral might be required. The most important were evaluated using SSC's Diagnostic Testbed Facility Thruster (DTFT), a 1200-lbf, liquid oxygen/gaseous hydrogen rocket engine which very nearly replicates the temperature and pressure conditions of the SSME exhaust plume in the first Mach diamond. This report presents the spectral data for the 10 most important elements and 27 most important materials which are strongly to moderately emitting in the DTFT exhaust plume. The covered spectral range is 300 to 426 nm and the spectral resolution is 0.25 nm. Spectral line identification information is provided and line interference effects are considered.
a Lock-Free Material Finite Element for Non-Linear Oscillations of Laminated Plates
SINGH, GAJBIR; VENKATESWARA RAO, G.
2000-02-01
The objective of the present paper is to propose an efficient, accurate and robust four-node shear flexible composite plate element with six degrees of freedom per node to investigate the non-linear oscillatory behavior of unsymmetrical laminated plates. The degrees of freedom considered are three displacement (u, v, w) along x-, y- and z -axis, two rotations (θx, θy) abouty - and x -axis and twist θxy. The elementc employs coupled displacement field, which is derived using moment-shear equilibrium and in-plane equilibrium of composite strips along the x - andy -axis. The displacement field so derived not only depend on the element co-ordinates but are a function of extensional, bending-extensional, bending and transverse shear stiffness coefficients as well. A bi-cubic polynomial distribution with 16 generalized undetermined coefficients for the transverse displacement is assumed. The element stiffness and mass matrices are computed numerically by employing 3×3 Gauss Legendre product rules. The element is found to be free of shear locking and does not exhibit any spurious modes. The element is found to be free of shear locking and does not exhibit any spurious modes. In order to compute the non-linear frequencies, linear mode shape corresponding to fundamental frequency is assumed as the spatial distribution and non-linear finite element equations are reduced to a single non-linear second order ordinary differential equation. This equation is solved by employing direct numerical integration method. A series of numerical examples is solved to demonstrate the efficacy of the proposed material finite element.
Chemical analysis of rare earth elements
International Nuclear Information System (INIS)
Tsukahara, Ryoichi; Sakoh, Takefumi; Nagai, Iwao
1994-01-01
Recently attention has been paid to ICP-AES or ICP-MS, and the reports on the analysis of rare earth elements by utilizing these methods continue to increase. These reports have become to take about 30% of the reports on rare earth analysis, and this is because these methods are highly sensitive to rare earth elements, and also these methods have spread widely. In ICP-AES and ICP-MS, mostly solution samples are measured, therefore, solids must be made into solution. At the time of quantitatively determining the rare earth elements of low concentration, separation and concentration are necessary. Referring to the literatures reported partially in 1990 and from 1991 to 1993, the progress of ICP-AES and ICP-MS is reported. Rare earth oxides and the alloys containing rare earth elements are easily decomposed with acids, but the decomposition of rocks is difficult, and its method is discussed. The separation of the rare earth elements from others in geochemical samples, cation exchange process is frequently utilized. Also solvent extraction process has been studied. For the separation of rare earth elements mutually, chromatography is used. The spectral interference in spectral analysis was studied. The comparison of these methods with other methods is reported. (K.I)
Comparison of Two Entropy Spectral Analysis Methods for Streamflow Forecasting in Northwest China
Directory of Open Access Journals (Sweden)
Zhenghong Zhou
2017-11-01
Full Text Available Monthly streamflow has elements of stochasticity, seasonality, and periodicity. Spectral analysis and time series analysis can, respectively, be employed to characterize the periodical pattern and the stochastic pattern. Both Burg entropy spectral analysis (BESA and configurational entropy spectral analysis (CESA combine spectral analysis and time series analysis. This study compared the predictive performances of BESA and CESA for monthly streamflow forecasting in six basins in Northwest China. Four criteria were selected to evaluate the performances of these two entropy spectral analyses: relative error (RE, root mean square error (RMSE, coefficient of determination (R2, and Nash–Sutcliffe efficiency coefficient (NSE. It was found that in Northwest China, both BESA and CESA forecasted monthly streamflow well with strong correlation. The forecast accuracy of BESA is higher than CESA. For the streamflow with weak correlation, the conclusion is the opposite.
Spectral Tensor-Train Decomposition
DEFF Research Database (Denmark)
Bigoni, Daniele; Engsig-Karup, Allan Peter; Marzouk, Youssef M.
2016-01-01
discretizations of the target function. We assess the performance of the method on a range of numerical examples: a modified set of Genz functions with dimension up to 100, and functions with mixed Fourier modes or with local features. We observe significant improvements in performance over an anisotropic......The accurate approximation of high-dimensional functions is an essential task in uncertainty quantification and many other fields. We propose a new function approximation scheme based on a spectral extension of the tensor-train (TT) decomposition. We first define a functional version of the TT.......e., the “cores”) comprising the functional TT decomposition. This result motivates an approximation scheme employing polynomial approximations of the cores. For functions with appropriate regularity, the resulting spectral tensor-train decomposition combines the favorable dimension-scaling of the TT...
Spectral computations for bounded operators
Ahues, Mario; Limaye, Balmohan
2001-01-01
Exact eigenvalues, eigenvectors, and principal vectors of operators with infinite dimensional ranges can rarely be found. Therefore, one must approximate such operators by finite rank operators, then solve the original eigenvalue problem approximately. Serving as both an outstanding text for graduate students and as a source of current results for research scientists, Spectral Computations for Bounded Operators addresses the issue of solving eigenvalue problems for operators on infinite dimensional spaces. From a review of classical spectral theory through concrete approximation techniques to finite dimensional situations that can be implemented on a computer, this volume illustrates the marriage of pure and applied mathematics. It contains a variety of recent developments, including a new type of approximation that encompasses a variety of approximation methods but is simple to verify in practice. It also suggests a new stopping criterion for the QR Method and outlines advances in both the iterative refineme...
Biomarkers and Biological Spectral Imaging
2001-01-23
karyotyping (SKY) in hematological neoplasia [4259-13] B. S. Preiss, R. K. Pedersen, G. B. Kerndrup, Odense Univ. Hospital (Denmark) 60 Structure of...astronomy and airborne monitoring to forensic and biomedical sciences or industrial qualit\\ and process monitoring. There is growing need for a sensitive...SPIE Vol. 4259 55 Spectral Karyotyping (SKY) in Hematologic Neoplasia. Birgitte S. Preiss*a, Rikke K. Pedersena, Gitte B. Kerndrupa aInstitute of
Chebyshev and Fourier spectral methods
Boyd, John P
2001-01-01
Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.
Abundance estimation of spectrally similar minerals
CSIR Research Space (South Africa)
Debba, Pravesh
2009-07-01
Full Text Available This paper evaluates a spectral unmixing method for estimating the partial abundance of spectrally similar minerals in complex mixtures. The method requires formulation of a linear function of individual spectra of individual minerals. The first...
Calibration with near-continuous spectral measurements
DEFF Research Database (Denmark)
Nielsen, Henrik Aalborg; Rasmussen, Michael; Madsen, Henrik
2001-01-01
In chemometrics traditional calibration in case of spectral measurements express a quantity of interest (e.g. a concentration) as a linear combination of the spectral measurements at a number of wavelengths. Often the spectral measurements are performed at a large number of wavelengths and in thi...... by an example in which the octane number of gasoline is related to near infrared spectral measurements. The performance is found to be much better that for the traditional calibration methods....
USGS Spectral Library Version 7
Kokaly, Raymond F.; Clark, Roger N.; Swayze, Gregg A.; Livo, K. Eric; Hoefen, Todd M.; Pearson, Neil C.; Wise, Richard A.; Benzel, William M.; Lowers, Heather A.; Driscoll, Rhonda L.; Klein, Anna J.
2017-04-10
We have assembled a library of spectra measured with laboratory, field, and airborne spectrometers. The instruments used cover wavelengths from the ultraviolet to the far infrared (0.2 to 200 microns [μm]). Laboratory samples of specific minerals, plants, chemical compounds, and manmade materials were measured. In many cases, samples were purified, so that unique spectral features of a material can be related to its chemical structure. These spectro-chemical links are important for interpreting remotely sensed data collected in the field or from an aircraft or spacecraft. This library also contains physically constructed as well as mathematically computed mixtures. Four different spectrometer types were used to measure spectra in the library: (1) Beckman™ 5270 covering the spectral range 0.2 to 3 µm, (2) standard, high resolution (hi-res), and high-resolution Next Generation (hi-resNG) models of Analytical Spectral Devices (ASD) field portable spectrometers covering the range from 0.35 to 2.5 µm, (3) Nicolet™ Fourier Transform Infra-Red (FTIR) interferometer spectrometers covering the range from about 1.12 to 216 µm, and (4) the NASA Airborne Visible/Infra-Red Imaging Spectrometer AVIRIS, covering the range 0.37 to 2.5 µm. Measurements of rocks, soils, and natural mixtures of minerals were made in laboratory and field settings. Spectra of plant components and vegetation plots, comprising many plant types and species with varying backgrounds, are also in this library. Measurements by airborne spectrometers are included for forested vegetation plots, in which the trees are too tall for measurement by a field spectrometer. This report describes the instruments used, the organization of materials into chapters, metadata descriptions of spectra and samples, and possible artifacts in the spectral measurements. To facilitate greater application of the spectra, the library has also been convolved to selected spectrometer and imaging spectrometers sampling and
Calibrating spectral images using penalized likelihood
Heijden, van der G.W.A.M.; Glasbey, C.
2003-01-01
A new method is presented for automatic correction of distortions and for spectral calibration (which band corresponds to which wavelength) of spectral images recorded by means of a spectrograph. The method consists of recording a bar-like pattern with an illumination source with spectral bands
Spectral properties of generalized eigenparameter dependent ...
African Journals Online (AJOL)
Jost function, spectrum, the spectral singularities, and the properties of the principal vectors corresponding to the spectral singularities of L, if. ∞Σn=1 n(∣1 - an∣ + ∣bnl) < ∞. Mathematics Subject Classication (2010): 34L05, 34L40, 39A70, 47A10, 47A75. Key words: Discrete equations, eigenparameter, spectral analysis, ...
Spectral Lag Evolution among -Ray Burst Pulses
Indian Academy of Sciences (India)
2016-01-27
Jan 27, 2016 ... We analyse the spectral lag evolution of -ray burst (GRB) pulses with observations by CGRO/BATSE. No universal spectral lag evolution feature and pulse luminosity-lag relation within a GRB is observed.Our results suggest that the spectral lag would be due to radiation physics and dynamics of a given ...
Kobayashi, Hiroyuki
2012-01-01
Single-molecule study of phenylenevinylene oligomers revealed distinct spectral forms due to different conjugation lengths which are determined by torsional defects. Large spectral jumps between different spectral forms were ascribed to torsional flips of a single phenylene ring. These spectral changes reflect the dynamic nature of electron delocalization in oligophenylenevinylenes and enable estimation of the phenylene torsional barriers. © 2012 The Owner Societies.
On spectral averages in nuclear spectroscopy
International Nuclear Information System (INIS)
Verbaarschot, J.J.M.
1982-01-01
In nuclear spectroscopy one tries to obtain a description of systems of bound nucleons. By means of theoretical models one attemps to reproduce the eigenenergies and the corresponding wave functions which then enable the computation of, for example, the electromagnetic moments and the transition amplitudes. Statistical spectroscopy can be used for studying nuclear systems in large model spaces. In this thesis, methods are developed and applied which enable the determination of quantities in a finite part of the Hilbert space, which is defined by specific quantum values. In the case of averages in a space defined by a partition of the nucleons over the single-particle orbits, the propagation coefficients reduce to Legendre interpolation polynomials. In chapter 1 these polynomials are derived with the help of a generating function and a generalization of Wick's theorem. One can then deduce the centroid and the variance of the eigenvalue distribution in a straightforward way. The results are used to calculate the systematic energy difference between states of even and odd parity for nuclei in the mass region A=10-40. In chapter 2 an efficient method for transforming fixed angular momentum projection traces into fixed angular momentum for the configuration space traces is developed. In chapter 3 it is shown that the secular behaviour can be represented by a Gaussian function of the energies. (Auth.)
[Spectral analysis in nanometer material science].
Chen, Wei; Sun, Shi-gang
2002-06-01
Spectral analysis is an important means in studies of nanometer scale systems, and is essential for deep understanding the structure and properties of nanometer materials. This paper reviews the recent progresses made in studies of nanometer materials using spectral analysis methods such as UV-Visible spectroscopy, FTIR spectroscopy, Raman spectroscopy, Mössbauer spectroscopy, positron annihilation and photoacoustic spectroscopy. The principle, characteristics and applications of most frequently employed spectral methods are introduced briefly and illustrated with typical examples. Future perspectives of spectral analysis in nanometer field are discussed. New directions of establishing spectral analysis methods at nanometer scale resolution and developing new spectroscopy technology in nanometer material studies are also emphasized.
Semiclassical Theory of Spectral Rigidity
Berry, M. V.
1985-08-01
The spectral rigidity Δ(L) of a set of quantal energy levels is the mean square deviation of the spectral staircase from the straight line that best fits it over a range of L mean level spacings. In the semiclassical limit (hslash-> 0), formulae are obtained giving Δ(L) as a sum over classical periodic orbits. When L ~= Lmax, where Lmax ~ hslash-(N-1) for a system of N freedoms, Δ(L) is shown to display the following universal behaviour as a result of properties of very long classical orbits: if the system is classically integrable (all periodic orbits filling tori), Δ(L) = 1/15L (as in an uncorrelated (Poisson) eigenvalue sequence); if the system is classically chaotic (all periodic orbits isolated and unstable) and has no symmetry, Δ(L) = ln L/2π^2 + D if 1 ~= L ~= Lmax (as in the gaussian unitary ensemble of random-matrix theory); if the system is chaotic and has time-reversal symmetry, Δ(L) = ln L/π^2 + E if 1 ~= L ~= Lmax (as in the gaussian orthogonal ensemble). When L >> Lmax, Δ(L) saturates non-universally at a value, determined by short classical orbits, of order hslash-(N-1) for integrable systems and ln (hslash-1) for chaotic systems. These results are obtained by using the periodic-orbit expansion for the spectral density, together with classical sum rules for the intensities of long orbits and a semiclassical sum rule restricting the manner in which their contributions interfere. For two examples Δ(L) is studied in detail: the rectangular billiard (integrable), and the Riemann zeta function (assuming its zeros to be the eigenvalues of an unknown quantum system whose unknown classical limit is chaotic).
Planck 2013 results. IX. HFI spectral response
Ade, P A R; Armitage-Caplan, C; Arnaud, M; Ashdown, M; Atrio-Barandela, F; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bobin, J; Bock, J J; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Bridges, M; Bucher, M; Burigana, C; Cardoso, J -F; Catalano, A; Challinor, A; Chamballu, A; Chary, R -R; Chen, X; Chiang, L -Y; Chiang, H C; Christensen, P R; Church, S; Clements, D L; Colombi, S; Colombo, L P L; Combet, C; Comis, B; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Delouis, J -M; Désert, F -X; Dickinson, C; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Dupac, X; Efstathiou, G; Enßlin, T A; Eriksen, H K; Falgarone, E; Finelli, F; Forni, O; Frailis, M; Franceschi, E; Galeotta, S; Ganga, K; Giard, M; Giraud-Héraud, Y; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Hansen, F K; Hanson, D; Harrison, D; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huffenberger, K M; Hurier, G; Jaffe, T R; Jaffe, A H; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Knox, L; Kunz, M; Kurki-Suonio, H; Lagache, G; Lamarre, J -M; Lasenby, A; Laureijs, R J; Lawrence, C R; Leahy, J P; Leonardi, R; Leroy, C; Lesgourgues, J; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maffei, B; Mandolesi, N; Maris, M; Marshall, D J; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Matthai, F; Mazzotta, P; McGehee, P; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; North, C; Noviello, F; Novikov, D; Novikov, I; Osborne, S; Oxborrow, C A; Paci, F; Pagano, L; Pajot, F; Paoletti, D; Pasian, F; Patanchon, G; Perdereau, O; Perotto, L; Perrotta, F; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Popa, L; Poutanen, T; Pratt, G W; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Reinecke, M; Remazeilles, M; Renault, C; Ricciardi, S; Riller, T; Ristorcelli, I; Rocha, G; Rosset, C; Roudier, G; Rusholme, B; Santos, D; Savini, G; Shellard, E P S; Spencer, L D; Starck, J -L; Stolyarov, V; Stompor, R; Sudiwala, R; Sureau, F; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Tavagnacco, D; Terenzi, L; Tomasi, M; Tristram, M; Tucci, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Vittorio, N; Wade, L A; Wandelt, B D; Yvon, D; Zacchei, A; Zonca, A
2014-01-01
The Planck High Frequency Instrument (HFI) spectral response was determined through a series of ground based tests conducted with the HFI focal plane in a cryogenic environment prior to launch. The main goal of the spectral transmission tests was to measure the relative spectral response (including out-of-band signal rejection) of all HFI detectors. This was determined by measuring the output of a continuously scanned Fourier transform spectrometer coupled with all HFI detectors. As there is no on-board spectrometer within HFI, the ground-based spectral response experiments provide the definitive data set for the relative spectral calibration of the HFI. The spectral response of the HFI is used in Planck data analysis and component separation, this includes extraction of CO emission observed within Planck bands, dust emission, Sunyaev-Zeldovich sources, and intensity to polarization leakage. The HFI spectral response data have also been used to provide unit conversion and colour correction analysis tools. Ver...
Spectral fluctuations and zeta functions
International Nuclear Information System (INIS)
Balazs, N.L.; Schmit, C.; Voros, A.
1987-01-01
The study theoretically and numerically the role of the fluctuations of eigenvalue spectra {μ/sub n} in a particular analytical continuation process applied to the (generalized) zeta function Z(s) = Σ/sub n/μ/sub n//sup -s/ for s large and positive. A particularly interesting example is the spectrum of the Laplacian on a triangular domain which tessellates a compact surface of constant negative curvature (of genus two). The authors indeed find that the fluctuations restrict the abscissa of convergence, and also affect the rate of convergence. This then initiates a new approach to the exploration of spectral fluctuations through the convergence of analytical continuation processes
A spectral atlas of λ Bootis stars
Directory of Open Access Journals (Sweden)
Paunzen E.
2014-01-01
Full Text Available Since the discovery of λ Bootis stars, a permanent confusion about their classification can be found in literature. This group of non-magnetic, Population I, metal-poor A to F-type stars, has often been used as some sort of trash can for "exotic" and spectroscopically dubious objects. Some attempts have been made to establish a homogeneous group of stars which share the same common properties. Unfortunately, the flood of "new" information (e.g. UV and IR data led again to a whole zoo of objects classified as λ Bootis stars, which, however, are apparent non-members. To overcome this unsatisfying situation, a spectral atlas of well established λ Bootis stars for the classical optical domain was compiled. It includes intermediate dispersion (40 and 120Å mm-1 spectra of three λ Bootis, as well as appropriate MK standard stars. Furthermore, "suspicious" objects, such as shell and Field Horizontal Branch stars, have been considered in order to provide to classifiers a homogeneous reference. As a further step, a high resolution (8Å mm-1 spectrum of one "classical" λ Bootis star in the same wavelength region (3800-4600Å is presented. In total, 55 lines can be used for this particular star to derive detailed abundances for nine heavy elements (Mg, Ca, Sc, Ti, Cr, Mn, Fe, Sr and Ba.
Spectral interferences in atomic absorption spectrometry, (5)
International Nuclear Information System (INIS)
Daidoji, Hidehiro
1979-01-01
Spectral interferences were observed in trace element analysis of concentrated solutions by atomic absorption spectrometry. Molecular absorption and emission spectra for strontium chloride and nitrate, barium chloride and nitrate containing 12 mg/ml of metal ion in airacetylene flame were measured in the wavelength range from 200 to 700 nm. The absorption and emission spectra of SrO were centered near 364.6 nm. The absorption spectra of SrOH around 606.0, 671.0 and 682.0 nm were very strong. And, emission spectrum of BaOH in the wavelength range from 480 to 550 nm was stronger. But, the absorption of this band spectrum was very weak. In the wavelength range from 200 to 400 nm, some unknown bands of absorption were observed for strontium and barium. Absorption spectra of SrCl and BaCl were observed in the argon-hydrogen flame. Also, in the carbon tube atomizer, the absorption spectra of SrCl and BaCl were detected clearly in the wavelength range from 185 to 400 nm. (author)
Spectral shift reactor control method
International Nuclear Information System (INIS)
Impink, A.J. Jr.
1981-01-01
A method of operating a nuclear reactor having a core and coolant displacer elements arranged in the core wherein is established a reator coolant temperature set point at which it is desired to operate said reactor and first reactor coolant temperature band limits are provided within which said set point is located and it is desired to operate said reactor charactrized in that said reactor coolant displacer elements are moved relative to the reactor core for adjusting the volume of reactor coolant in said core as said reactor coolant temperature approaches said first band limits thereby to maintain said reactor coolant temperature near said set point and within said first band limits
Pade approximants and the calculation of spectral functions of solids
International Nuclear Information System (INIS)
Grinstein, F.F.
1981-06-01
The computational approach of Chisholm, Genz and Pusterla for evaluating Feynman matrix elements in the physical region, is proposed for the calculation of spectral functions of solids. The method is based on the moment expansion of the functions, with a convenient choice of reference point, and its resummation with Pade approximants. The technique is tested in the calculation of the electron density of states for a one-dimensional system. In this case, the convergence of the method may be formally proved, while a numerical study shows its practical signification. (author)
Shwirl: Meaningful coloring of spectral cube data with volume rendering
Vohl, Dany
2017-04-01
Shwirl visualizes spectral data cubes with meaningful coloring methods. The program has been developed to investigate transfer functions, which combines volumetric elements (or voxels) to set the color, and graphics shaders, functions used to compute several properties of the final image such as color, depth, and/or transparency, as enablers for scientific visualization of astronomical data. The program uses Astropy (ascl:1304.002) to handle FITS files and World Coordinate System, Qt (and PyQt) for the user interface, and VisPy, an object-oriented Python visualization library binding onto OpenGL.
Iterated Differential Forms IV: C-Spectral Sequence
Vinogradov, A. M.; Vitagliano, L.
2006-01-01
For the multiple differential algebra of iterated differential forms (see math.DG/0605113 and math.DG/0609287) on a diffiety (O,C) an analogue of C-spectral sequence is constructed. The first term of it is naturally interpreted as the algebra of secondary iterated differential forms on (O,C). This allows to develop secondary tensor analysis on generic diffieties, some simplest elements of which are sketched here. The presented here general theory will be specified to infinite jet spaces and i...
Modern quantum kinetic theory and spectral line shapes
International Nuclear Information System (INIS)
Monchick, L.
1991-01-01
The modern quantum kinetic theory of spectral line shapes is outlined and a typical calculation of a Raman scattered line shape described. The distinguishing feature of this calculation is that it was completely ab initio and therefore constituted a test of modern quantum kinetic theory, the state of the art in computing molecular-scattering cross sections, and novel methods of solving kinetic equations. The computation employed a large assortment of tools: group theory, finite-element methods, classic methods of solving coupled sets of ordinary differential equations, graph methods of combining angular momenta, and matrix methods of solving integral equations. Agreement with experimental results was excellent. 13 refs
Directory of Open Access Journals (Sweden)
Hidehiko eOkamoto
2012-05-01
Full Text Available Natural sounds contain complex spectral components, which are temporally modulated as time-varying signals. Recent studies have suggested that the auditory system encodes spectral and temporal sound information differently. However, it remains unresolved how the human brain processes sounds containing both spectral and temporal changes. In the present study, we investigated human auditory evoked responses elicited by spectral, temporal, and spectral-temporal sound changes by means of magnetoencephalography (MEG. The auditory evoked responses elicited by the spectral-temporal change were very similar to those elicited by the spectral change, but those elicited by the temporal change were delayed by 30 – 50 ms and differed from the others in morphology. The results suggest that human brain responses corresponding to spectral sound changes precede those corresponding to temporal sound changes, even when the spectral and temporal changes occur simultaneously.
Light distribution system comprising spectral conversion means
DEFF Research Database (Denmark)
2012-01-01
System (200, 300) for the distribution of white light, having a supply side (201, 301, 401) and a delivery side (202, 302, 402), the system being configured for guiding light with a multitude of visible wavelengths in a propagation direction P from the supply side to the distribution side...... fibre being operationally connected to the spectral conversion fibre having a length extending from an input end (221, 321)to an output end (222, 322), the spectral conversion fibre comprising a photoluminescent agent (511, 611, 711) for converting light of a first wavelength to light of a second......, longer wavelength,a spectral conversion characteristics of the spectral conversion fibre being essentially determined by the spectral absorption and emission properties of the photoluminescent agent, the amount of photo- luminescent agent,and the distribution of the photoluminescent agent in the spectral...
Spectral functions in mathematics and physics
Kirsten, Klaus
2002-01-01
The literature on the spectral analysis of second order elliptic differential operators contains a great deal of information on the spectral functions for explicitly known spectra. The same is not true, however, for situations where the spectra are not explicitly known. Over the last several years, the author and his colleagues have developed new, innovative methods for the exact analysis of a variety of spectral functions occurring in spectral geometry and under external conditions in statistical mechanics and quantum field theory. Spectral Functions in Mathematics and Physics presents a detailed overview of these advances. The author develops and applies methods for analyzing determinants arising when the external conditions originate from the Casimir effect, dielectric media, scalar backgrounds, and magnetic backgrounds. The zeta function underlies all of these techniques, and the book begins by deriving its basic properties and relations to the spectral functions. The author then uses those relations to d...
Dinh, Nikita N; Winn, Bradley C; Arthur, Kelly K; Gabrielson, John P
2014-11-01
Previously, different approaches of spectral comparison were evaluated, and the spectral difference (SD) method was shown to be valuable for its linearity with spectral changes and its independence on data spacing (Anal. Biochem. 434 (2013) 153-165). In this note, we present an enhancement of the SD calculation, referred to as the "weighted spectral difference" (WSD), by implementing a weighting function based on relative signal magnitude. While maintaining the advantages of the SD method, WSD improves the method sensitivity to spectral changes and tolerance for baseline inclusion. Furthermore, a generalized formula is presented to unify further development of approaches to quantify spectral difference. Copyright © 2014 Elsevier Inc. All rights reserved.
Spectral Analysis of the Light Flash Produced by a Natural Dolomite Plate Under Strong Shock
International Nuclear Information System (INIS)
Tang Enling; Xu Mingyang; Shi Xiaohan; Wang Meng; Wang Di; Xiang Shenghai; Xia Jin; Han Yafei; Zhang Lijiao; Wu Jin; Zhang Shuang; Yuan Jianfei; Zhang Qingming
2015-01-01
In order to obtain the elemental compositions of the projectile and target materials during 2A12 aluminum projectile shot on a natural dolomite plate, three kinds of experiments have been conducted using a spectral acquirement system established on a two-stage light gas gun for impact velocities ranging from 2.20 km/s to 4.20 km/s, at the same projectile incidence angle of 30°. Experimental results show that the elemental compositions of the projectile and target materials in the strong shock experiments have a good agreement with the original elemental compositions of the projectile and target. In addition, the relations between spectral radiant intensity and elemental compositions of the projectile and target materials have been obtained for different impact velocities, in which the spectral radiant intensity of the main elements in the material increases with increasing impact velocity, and more elements appear with increasing impact velocity since more energy would result from a higher velocity impact. (paper)
Spectral properties of nuclear matter
International Nuclear Information System (INIS)
Bozek, P
2006-01-01
We review self-consistent spectral methods for nuclear matter calculations. The in-medium T-matrix approach is conserving and thermodynamically consistent. It gives both the global and the single-particle properties the system. The T-matrix approximation allows to address the pairing phenomenon in cold nuclear matter. A generalization of nuclear matter calculations to the super.uid phase is discussed and numerical results are presented for this case. The linear response of a correlated system going beyond the Hartree-Fock+ Random-Phase-Approximation (RPA) scheme is studied. The polarization is obtained by solving a consistent Bethe-Salpeter (BS) equation for the coupling of dressed nucleons to an external field. We find that multipair contributions are important for the spin(isospin) response when the interaction is spin(isospin) dependent
Signature spectrale des grains interstellaires.
Léger, A.
Notre connaissance de la nature des grains interstellaires reposait sur un nombre très restreint de signatures spectrales dans la courbe d'extinction du milieu interstellaire. Une information considérable est contenue dans les 40 bandes interstellaires diffuses dans le visible, mais reste inexploitée. L'interprétation récente des cinq bandes IR en émission, en terme de molécules d'hydrocarbures aromatiques polycycliques, est développée. Elle permet l'utilisation d'une information spectroscopique comparable, à elle seule, à ce sur quoi était basée jusqu'alors notre connaissance de la matière interstellaire condensée. Différentes implications de cette mise en évidence sont proposées.
Buckling feedback of the spectral calculations
International Nuclear Information System (INIS)
Jing Xingqing; Shan Wenzhi; Luo Jingyu
1992-01-01
This paper studies the problems about buckling feedback of spectral calculations in physical calculations of the reactor and presents a useful method by which the buckling feedback of spectral calculations is implemented. The effect of the buckling feedback in spectra and the broad group cross section, convergence of buckling feedback iteration and the effect of the spectral zones dividing are discussed in the calculations. This method has been used for the physical design of HTR-10 MW Test Module
Yeh, Benjamin M; FitzGerald, Paul F; Edic, Peter M; Lambert, Jack W; Colborn, Robert E; Marino, Michael E; Evans, Paul M; Roberts, Jeannette C; Wang, Zhen J; Wong, Margaret J; Bonitatibus, Peter J
2017-04-01
The introduction of spectral CT imaging in the form of fast clinical dual-energy CT enabled contrast material to be differentiated from other radiodense materials, improved lesion detection in contrast-enhanced scans, and changed the way that existing iodine and barium contrast materials are used in clinical practice. More profoundly, spectral CT can differentiate between individual contrast materials that have different reporter elements such that high-resolution CT imaging of multiple contrast agents can be obtained in a single pass of the CT scanner. These spectral CT capabilities would be even more impactful with the development of contrast materials designed to complement the existing clinical iodine- and barium-based agents. New biocompatible high-atomic number contrast materials with different biodistribution and X-ray attenuation properties than existing agents will expand the diagnostic power of spectral CT imaging without penalties in radiation dose or scan time. Copyright © 2016 Elsevier B.V. All rights reserved.
Affinement spectral dans les lasers à colorants pulsés.
Flamant, P
1978-03-15
Spectral narrowing in pulsed dye lasers is studied theoretically. Fabry-Perot etalons, gratings, and prisms are considered as tuning elements. Each one is characterized by a new parameter: the spectral width associated with a round trip in the laser cavity. Numerical examples show that depending on cavity parameters it is either the round-trip spectral width or the width due to beam divergence which limits the bandwidth of the laser emission. Instantaneous spectral narrowing is found to be proportional to the square root of the time elapsed after the laser onset when a Fabry-Perot etalon or grating is used. When a prism is set in the laser cavity the instantaneous narrowing is proportional to time.
Novel technology based on the spectral kurtosis and wavelet transform for rolling bearing diagnosis
Directory of Open Access Journals (Sweden)
Gabrijel Persin
2013-01-01
Full Text Available A novel diagnosis technology combining the benefits of spectral kurtosis and wavelet transform is proposed and validated for early defect diagnosis of rolling element bearings. A systematic procedure for feature calculation is proposed and rules for selection of technology parameters are explained. Experimental validation of the proposed method carried out for early detection of the inner race defect. A comparison between frequency band selection through wavelets and spectral kurtosis is also presented. It has been observed that the frequency band selected using spectral kurtosis provide better separation between healthy and defective bearings compared to the frequency band selection using wavelet. In terms of Fisher criterion the use of spectral kurtosis has a gain of 2.75 times compared to the wavelet.
International Nuclear Information System (INIS)
Noddack, W.; Tacke, I.; Berg, O.
1988-03-01
A recent study tends to revalidate the search for element 43 done in 1925. In ores with properties similar to the hypothetical chemical properties of the missing elements 43 and 75, the unknown elements were concentrated by chemical means. Roentgen-ray spectroscopy was applied in order to observe the characteristic Roentgen L lines for element 75 and K lines for element 43. Element 43 was observed in sperrylith, gadolinit, fergusonit and columbit. The name masurium was proposed. Similarly, element 75 was observed in tantalit, wolframit and platinit. The name rhenium was chosen. (MCB)
Spectral mapping theorems a bluffer's guide
Harte, Robin
2014-01-01
Written by an author who was at the forefront of developments in multi-variable spectral theory during the seventies and the eighties, this guide sets out to describe in detail the spectral mapping theorem in one, several and many variables. The basic algebraic systems – semigroups, rings and linear algebras – are summarised, and then topological-algebraic systems, including Banach algebras, to set up the basic language of algebra and analysis. Spectral Mapping Theorems is written in an easy-to-read and engaging manner and will be useful for both the beginner and expert. It will be of great importance to researchers and postgraduates studying spectral theory.
Spectrally-engineered solar thermal photovoltaic devices
Energy Technology Data Exchange (ETDEWEB)
Lenert, Andrej; Bierman, David; Chan, Walker; Celanovic, Ivan; Soljacic, Marin; Wang, Evelyn N.; Nam, Young Suk; McEnaney, Kenneth; Kraemer, Daniel; Chen, Gang
2018-03-27
A solar thermal photovoltaic device, and method of forming same, includes a solar absorber and a spectrally selective emitter formed on either side of a thermally conductive substrate. The solar absorber is configured to absorb incident solar radiation. The solar absorber and the spectrally selective emitter are configured with an optimized emitter-to-absorber area ratio. The solar thermal photovoltaic device also includes a photovoltaic cell in thermal communication with the spectrally selective emitter. The spectrally selective emitter is configured to permit high emittance for energies above a bandgap of the photovoltaic cell and configured to permit low emittance for energies below the bandgap.
Global and local aspects of spectral actions
Iochum, B.; Levy, C.; Vassilevich, D. V.
2012-09-01
The principal object in noncommutative geometry is the spectral triple consisting of an algebra {A}, a Hilbert space {H} and a Dirac operator {D}. Field theories are incorporated in this approach by the spectral action principle, which sets the field theory action to Tr\\,f( {D}^2/\\Lambda ^2), where f is a real function such that the trace exists and Λ is a cutoff scale. In the low-energy (weak-field) limit, the spectral action reproduces reasonably well the known physics including the standard model. However, not much is known about the spectral action beyond the low-energy approximation. In this paper, after an extensive introduction to spectral triples and spectral actions, we study various expansions of the spectral actions (exemplified by the heat kernel). We derive the convergence criteria. For a commutative spectral triple, we compute the heat kernel on the torus up to the second order in gauge connection and consider limiting cases. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker’s 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’.
A High-Order Finite Spectral Volume Method for Conservation Laws on Unstructured Grids
Wang, Z. J.; Liu, Yen; Kwak, Dochan (Technical Monitor)
2001-01-01
A time accurate, high-order, conservative, yet efficient method named Finite Spectral Volume (FSV) is developed for conservation laws on unstructured grids. The concept of a 'spectral volume' is introduced to achieve high-order accuracy in an efficient manner similar to spectral element and multi-domain spectral methods. In addition, each spectral volume is further sub-divided into control volumes (CVs), and cell-averaged data from these control volumes is used to reconstruct a high-order approximation in the spectral volume. Riemann solvers are used to compute the fluxes at spectral volume boundaries. Then cell-averaged state variables in the control volumes are updated independently. Furthermore, TVD (Total Variation Diminishing) and TVB (Total Variation Bounded) limiters are introduced in the FSV method to remove/reduce spurious oscillations near discontinuities. A very desirable feature of the FSV method is that the reconstruction is carried out only once, and analytically, and is the same for all cells of the same type, and that the reconstruction stencil is always non-singular, in contrast to the memory and CPU-intensive reconstruction in a high-order finite volume (FV) method. Discussions are made concerning why the FSV method is significantly more efficient than high-order finite volume and the Discontinuous Galerkin (DG) methods. Fundamental properties of the FSV method are studied and high-order accuracy is demonstrated for several model problems with and without discontinuities.
SNAPSHOT SPECTRAL AND COLOR IMAGING USING A REGULAR DIGITAL CAMERA WITH A MONOCHROMATIC IMAGE SENSOR
Directory of Open Access Journals (Sweden)
J. Hauser
2017-10-01
Full Text Available Spectral imaging (SI refers to the acquisition of the three-dimensional (3D spectral cube of spatial and spectral data of a source object at a limited number of wavelengths in a given wavelength range. Snapshot spectral imaging (SSI refers to the instantaneous acquisition (in a single shot of the spectral cube, a process suitable for fast changing objects. Known SSI devices exhibit large total track length (TTL, weight and production costs and relatively low optical throughput. We present a simple SSI camera based on a regular digital camera with (i an added diffusing and dispersing phase-only static optical element at the entrance pupil (diffuser and (ii tailored compressed sensing (CS methods for digital processing of the diffused and dispersed (DD image recorded on the image sensor. The diffuser is designed to mix the spectral cube data spectrally and spatially and thus to enable convergence in its reconstruction by CS-based algorithms. In addition to performing SSI, this SSI camera is capable to perform color imaging using a monochromatic or gray-scale image sensor without color filter arrays.
Chemical element abundance in K giant atmospheres
International Nuclear Information System (INIS)
Komarov, N.S.; Shcherbak, A.N.
1980-01-01
With the help of modified method of differential curves of growth studied are physical parameters of atmospheres of giant stars of KO111 spectral class of the NGC 752, M25 and UMa cluster. Observations have been made on reflector of Crimea astrophysical observatory of Academy of Sciences of the USSR in the period from February to May, 1978. Spectograms are obtained for the wave length range from 5000-5500 A. It is shown that the change of chemical content in the wide range in heavy element composition does not influence the star atmosphere structUre. It follows from the results of the investigation that the abundance of chemical elements in stars of various scattered clusters, is the same in the range of errors of measurements and is similar to the abundance of chemical elements in the Sun atmosphere
Determination of plutoniumn and transplutonium elements in the environment
International Nuclear Information System (INIS)
Willemot, J.M.; Verry, M.; Jeanmaire, L.
1988-01-01
Environmental samples made of many different stable elements and natural emitting radionuclides must undergo chemical analysis allowing to prepare quality sources. Plutonium and americium sources with a good resolution can be obtained from environmental samples by successive operations of co-precipitation ion-exchange separation and solvent extraction. Spectral analysis is then simple and consequently plutonium and transplutonium elements are determined easily in such samples. 15 refs [fr
Mikromechanisches Element und Sensor zur Ueberwachung eines mikromechanischen Elements
Klose, T.; Conrad, H.; Grasshoff, T.
2008-01-01
DE 102008049647 A1 UPAB: 20100428 NOVELTY - The micromechanical element (100) has a mobile functional element (110) and a retaining element (120), where a retaining element and the functional element are connected at a junction (122). Another retaining element (130) and the functional element are connected at another junction (132). The former retaining element has a piezoelectric drive element (124) and the latter retaining element has another piezoelectric drive element (134). DETAILED DESC...
Spectral filtering for plant production
Young, Roy E.; Mcmahon, Margaret J.; Rajapakse, Nihal C.; Decoteau, Dennis R.
1994-01-01
Both plants and animals have one general commonality in their perception of light. They both are sensitive primarily to the 400 to 700 nm wavelength portion of the electromagnetic spectrum. This is referred to as the visible spectrum for animals and as the photosynthetically active radiation (PAR) spectrum for plants. Within this portion of the spectrum, animals perceive colors. Relatively recently it has been learned that within this same spectral range plants also demonstrate varying responses at different wavelengths, somewhat analogous to the definition of various colors at specific wavelengths. Although invisible to the human eye, portions of the electromagnetic spectrum on either side of the visible range are relatively inactive photosynthetically but have been found to influence important biological functions. These portions include the ultraviolet (UV approximately equal to 280-400 nm) and the far-red (FR approximately equal to 700-800 nm). The basic photoreceptor of plants for photosynthesis is chlorophyll. It serves to capture radiant energy which combined with carbon dioxide and water produces oxygen and assimulated carbon, used for the synthesis of cell wall polysaccarides, proteins, membrane lipids and other cellular constituents. The energy and carbon building blocks of photosynthesis sustain growth of plants. On the other hand, however, there are other photoreceptors, or pigments, that function as signal transducers to provide information that controls many physiological and morphological responses of how a plant grows. Known photomorphogenic receptors include phytochrome (the red/far-red sensor in the narrow bands of 655-665 nm and 725-735 nm ranges, respectively) and 'cryptochrome' (the hypothetical UV-B sensor in the 280-320 nm range). Since the USDA team of W. L. Butler, S. B. Hendricks, H. A. Borthwick, H. A. Siegleman and K. Norris in Beltsville, MD detected by spectroscopy, extracted and identified phytochrome as a protein in the 1950's, many
A Black Hole Spectral Signature
Titarchuk, Lev; Laurent, Philippe
2000-03-01
An accreting black hole is, by definition, characterized by the drain. Namely, the matter falls into a black hole much the same way as water disappears down a drain matter goes in and nothing comes out. As this can only happen in a black hole, it provides a way to see ``a black hole'', an unique observational signature. The accretion proceeds almost in a free-fall manner close to the black hole horizon, where the strong gravitational field dominates the pressure forces. In this paper we present analytical calculations and Monte-Carlo simulations of the specific features of X-ray spectra formed as a result of upscattering of the soft (disk) photons in the converging inflow (CI) into the black hole. The full relativistic treatment has been implemented to reproduce these spectra. We show that spectra in the soft state of black hole systems (BHS) can be described as the sum of a thermal (disk) component and the convolution of some fraction of this component with the CI upscattering spread (Greens) function. The latter boosted photon component is seen as an extended power-law at energies much higher than the characteristic energy of the soft photons. We demonstrate the stability of the power spectral index over a wide range of the plasma temperature 0 - 10 keV and mass accretion rates (higher than 2 in Eddington units). We also demonstrate that the sharp high energy cutoff occurs at energies of 200-400 keV which are related to the average energy of electrons mec2 impinging upon the event horizon. The spectrum is practically identical to the standard thermal Comptonization spectrum when the CI plasma temperature is getting of order of 50 keV (the typical ones for the hard state of BHS). In this case one can see the effect of the bulk motion only at high energies where there is an excess in the CI spectrum with respect to the pure thermal one. Furthermore we demonstrate that the change of spectral shapes from the soft X-ray state to the hard X-ray state is clearly to be
Spectral affinity in protein networks.
Voevodski, Konstantin; Teng, Shang-Hua; Xia, Yu
2009-11-29
Protein-protein interaction (PPI) networks enable us to better understand the functional organization of the proteome. We can learn a lot about a particular protein by querying its neighborhood in a PPI network to find proteins with similar function. A spectral approach that considers random walks between nodes of interest is particularly useful in evaluating closeness in PPI networks. Spectral measures of closeness are more robust to noise in the data and are more precise than simpler methods based on edge density and shortest path length. We develop a novel affinity measure for pairs of proteins in PPI networks, which uses personalized PageRank, a random walk based method used in context-sensitive search on the Web. Our measure of closeness, which we call PageRank Affinity, is proportional to the number of times the smaller-degree protein is visited in a random walk that restarts at the larger-degree protein. PageRank considers paths of all lengths in a network, therefore PageRank Affinity is a precise measure that is robust to noise in the data. PageRank Affinity is also provably related to cluster co-membership, making it a meaningful measure. In our experiments on protein networks we find that our measure is better at predicting co-complex membership and finding functionally related proteins than other commonly used measures of closeness. Moreover, our experiments indicate that PageRank Affinity is very resilient to noise in the network. In addition, based on our method we build a tool that quickly finds nodes closest to a queried protein in any protein network, and easily scales to much larger biological networks. We define a meaningful way to assess the closeness of two proteins in a PPI network, and show that our closeness measure is more biologically significant than other commonly used methods. We also develop a tool, accessible at http://xialab.bu.edu/resources/pnns, that allows the user to quickly find nodes closest to a queried vertex in any protein
Spectral affinity in protein networks
Directory of Open Access Journals (Sweden)
Teng Shang-Hua
2009-11-01
Full Text Available Abstract Background Protein-protein interaction (PPI networks enable us to better understand the functional organization of the proteome. We can learn a lot about a particular protein by querying its neighborhood in a PPI network to find proteins with similar function. A spectral approach that considers random walks between nodes of interest is particularly useful in evaluating closeness in PPI networks. Spectral measures of closeness are more robust to noise in the data and are more precise than simpler methods based on edge density and shortest path length. Results We develop a novel affinity measure for pairs of proteins in PPI networks, which uses personalized PageRank, a random walk based method used in context-sensitive search on the Web. Our measure of closeness, which we call PageRank Affinity, is proportional to the number of times the smaller-degree protein is visited in a random walk that restarts at the larger-degree protein. PageRank considers paths of all lengths in a network, therefore PageRank Affinity is a precise measure that is robust to noise in the data. PageRank Affinity is also provably related to cluster co-membership, making it a meaningful measure. In our experiments on protein networks we find that our measure is better at predicting co-complex membership and finding functionally related proteins than other commonly used measures of closeness. Moreover, our experiments indicate that PageRank Affinity is very resilient to noise in the network. In addition, based on our method we build a tool that quickly finds nodes closest to a queried protein in any protein network, and easily scales to much larger biological networks. Conclusion We define a meaningful way to assess the closeness of two proteins in a PPI network, and show that our closeness measure is more biologically significant than other commonly used methods. We also develop a tool, accessible at http://xialab.bu.edu/resources/pnns, that allows the user to
Chacón Rebollo, Tomás
2015-03-01
This paper introduces a variational multi-scale method where the sub-grid scales are computed by spectral approximations. It is based upon an extension of the spectral theorem to non necessarily self-adjoint elliptic operators that have an associated base of eigenfunctions which are orthonormal in weighted L2 spaces. This allows to element-wise calculate the sub-grid scales by means of the associated spectral expansion. We propose a feasible VMS-spectral method by truncation of this spectral expansion to a finite number of modes. We apply this general framework to the convection-diffusion equation, by analytically computing the family of eigenfunctions. We perform a convergence and error analysis. We also present some numerical tests that show the stability of the method for an odd number of spectral modes, and an improvement of accuracy in the large resolved scales, due to the adding of the sub-grid spectral scales.
Total spectral distributions from Hawking radiation
Broda, Bogusław
2017-11-01
Taking into account the time dependence of the Hawking temperature and finite evaporation time of the black hole, the total spectral distributions of the radiant energy and of the number of particles have been explicitly calculated and compared to their temporary (initial) blackbody counterparts (spectral exitances).
A Spectral Emissivity Library of Spoil Substrates
Czech Academy of Sciences Publication Activity Database
Pivovarník, Marek; Pikl, Miroslav; Frouz, J.; Zemek, František; Kopačková, V.; Notesco, G.; Ben Dor, E.
2016-01-01
Roč. 1, č. 2 (2016) E-ISSN 2306-5729 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:86652079 Keywords : post- mining sites * spectral emissivity * spectral library * spoil substrates Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7)
Relaxation schemes for Chebyshev spectral multigrid methods
Kang, Yimin; Fulton, Scott R.
1993-01-01
Two relaxation schemes for Chebyshev spectral multigrid methods are presented for elliptic equations with Dirichlet boundary conditions. The first scheme is a pointwise-preconditioned Richardson relaxation scheme and the second is a line relaxation scheme. The line relaxation scheme provides an efficient and relatively simple approach for solving two-dimensional spectral equations. Numerical examples and comparisons with other methods are given.
Active spectral imaging nondestructive evaluation (SINDE) camera
Energy Technology Data Exchange (ETDEWEB)
Simova, E.; Rochefort, P.A., E-mail: eli.simova@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)
2016-06-15
A proof-of-concept video camera for active spectral imaging nondestructive evaluation has been demonstrated. An active multispectral imaging technique has been implemented in the visible and near infrared by using light emitting diodes with wavelengths spanning from 400 to 970 nm. This shows how the camera can be used in nondestructive evaluation to inspect surfaces and spectrally identify materials and corrosion. (author)
Total spectral distributions from Hawking radiation
Energy Technology Data Exchange (ETDEWEB)
Broda, Boguslaw [University of Lodz, Department of Theoretical Physics, Faculty of Physics and Applied Informatics, Lodz (Poland)
2017-11-15
Taking into account the time dependence of the Hawking temperature and finite evaporation time of the black hole, the total spectral distributions of the radiant energy and of the number of particles have been explicitly calculated and compared to their temporary (initial) blackbody counterparts (spectral exitances). (orig.)
Stellar Spectral Classification with Locality Preserving Projections ...
Indian Academy of Sciences (India)
With the help of computer tools and algorithms, automatic stellar spectral classification has become an area of current interest. The process of stellar spectral classification mainly includes two steps: dimension reduction and classification. As a popular dimensionality reduction technique, Principal Component Analysis (PCA) ...
Basic Functional Analysis Puzzles of Spectral Flow
DEFF Research Database (Denmark)
Booss-Bavnbek, Bernhelm
2011-01-01
We explain an array of basic functional analysis puzzles on the way to general spectral flow formulae and indicate a direction of future topological research for dealing with these puzzles.......We explain an array of basic functional analysis puzzles on the way to general spectral flow formulae and indicate a direction of future topological research for dealing with these puzzles....
Measurement of spectral linewidths of semiconductor lasers
Energy Technology Data Exchange (ETDEWEB)
Du Xiaocheng; He Zhengchuan; Tang Sulan
1987-03-01
Based on the van der Pol equation, formulas describing the measurement of spectral linewidths of semiconductor lasers with the delayed self-heterodyne method were deduced and the influence of the spectral parameters on the measurement are given. Experimental results of single frequency semiconductor lasers are reported.
Online Multi-Spectral Meat Inspection
DEFF Research Database (Denmark)
Nielsen, Jannik Boll; Larsen, Anders Boesen Lindbo
2013-01-01
We perform an explorative study on multi-spectral image data from a prototype device developed for fast online quality inspection of meat products. Because the camera setup is built for speed, we sacrifice exact pixel correspondences between the different bands of the multi-spectral images. Our...
Sums of two-dimensional spectral triples
DEFF Research Database (Denmark)
Christensen, Erik; Ivan, Cristina
2007-01-01
We study countable sums of two dimensional modules for the continuous complex functions on a compact metric space and show that it is possible to construct a spectral triple which gives the original metric back. This spectral triple will be finitely summable for any positive parameter. We also co...
Spectral features : How to reduce them
Brug, H. van; Bloemendal, D. ten; Goeij, B. de; Vink, R.; Maresi, L.
2009-01-01
Spectral features are introduced by the diffuser that is used during on-board sun calibration. New findings are presented on how to reduce the size of these spectral features. Reduction can be obtained via optical design of the calibration unit, but also in creating a better diffuser. A novel
Spectral Learning for Supervised Topic Models.
Ren, Yong; Wang, Yining; Zhu, Jun
2018-03-01
Supervised topic models simultaneously model the latent topic structure of large collections of documents and a response variable associated with each document. Existing inference methods are based on variational approximation or Monte Carlo sampling, which often suffers from the local minimum defect. Spectral methods have been applied to learn unsupervised topic models, such as latent Dirichlet allocation (LDA), with provable guarantees. This paper investigates the possibility of applying spectral methods to recover the parameters of supervised LDA (sLDA). We first present a two-stage spectral method, which recovers the parameters of LDA followed by a power update method to recover the regression model parameters. Then, we further present a single-phase spectral algorithm to jointly recover the topic distribution matrix as well as the regression weights. Our spectral algorithms are provably correct and computationally efficient. We prove a sample complexity bound for each algorithm and subsequently derive a sufficient condition for the identifiability of sLDA. Thorough experiments on synthetic and real-world datasets verify the theory and demonstrate the practical effectiveness of the spectral algorithms. In fact, our results on a large-scale review rating dataset demonstrate that our single-phase spectral algorithm alone gets comparable or even better performance than state-of-the-art methods, while previous work on spectral methods has rarely reported such promising performance.
Meson spectral functions at finite temperature
International Nuclear Information System (INIS)
Wetzorke, I.; Karsch, F.; Laermann, E.; Petreczky, P.; Stickan, S.
2002-01-01
The Maximum Entropy Method provides a Bayesian approach to reconstruct the spectral functions from discrete points in Euclidean time. The applicability of the approach at finite temperature is probed with the thermal meson correlation function. Furthermore the influence of fuzzing/smearing techniques on the spectral shape is investigated. We present first results for meson spectral functions at several temperatures below and above T c . The correlation functions were obtained from quenched calculations with Clover fermions on large isotropic lattices of the size (24 - 64) 3 x 16. We compare the resulting pole masses with the ones obtained from standard 2-exponential fits of spatial and temporal correlation functions at finite temperature and in the vacuum. The deviation of the meson spectral functions from free spectral functions is examined above the critical temperature
Meson spectral functions at finite temperature
International Nuclear Information System (INIS)
Wetzorke, I.; Karsch, F.; Laermann, E.; Petreczky, P.; Stickan, S.
2001-10-01
The Maximum Entropy Method provides a Bayesian approach to reconstruct the spectral functions from discrete points in Euclidean time. The applicability of the approach at finite temperature is probed with the thermal meson correlation function. Furthermore the influence of fuzzing/smearing techniques on the spectral shape is investigated. We present first results for meson spectral functions at several temperatures below and above T c . The correlation functions were obtained from quenched calculations with Clover fermions on large isotropic lattices of the size (24 - 64) 3 x 16. We compare the resulting pole masses with the ones obtained from standard 2-exponential fits of spatial and temporal correlation functions at finite temperature and in the vacuum. The deviation of the meson spectral functions from free spectral functions is examined above the critical temperature. (orig.)
Meson spectral functions at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Wetzorke, I.; Karsch, F.; Laermann, E.; Petreczky, P.; Stickan, S
2002-03-01
The Maximum Entropy Method provides a Bayesian approach to reconstruct the spectral functions from discrete points in Euclidean time. The applicability of the approach at finite temperature is probed with the thermal meson correlation function. Furthermore the influence of fuzzing/smearing techniques on the spectral shape is investigated. We present first results for meson spectral functions at several temperatures below and above T{sub c}. The correlation functions were obtained from quenched calculations with Clover fermions on large isotropic lattices of the size (24 - 64){sup 3} x 16. We compare the resulting pole masses with the ones obtained from standard 2-exponential fits of spatial and temporal correlation functions at finite temperature and in the vacuum. The deviation of the meson spectral functions from free spectral functions is examined above the critical temperature.
Meson spectral functions at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Wetzorke, I.; Karsch, F.; Laermann, E.; Petreczky, P.; Stickan, S. [Bielefeld Univ. (Germany). Fakultaet fuer Physik
2001-10-01
The Maximum Entropy Method provides a Bayesian approach to reconstruct the spectral functions from discrete points in Euclidean time. The applicability of the approach at finite temperature is probed with the thermal meson correlation function. Furthermore the influence of fuzzing/smearing techniques on the spectral shape is investigated. We present first results for meson spectral functions at several temperatures below and above T{sub c}. The correlation functions were obtained from quenched calculations with Clover fermions on large isotropic lattices of the size (24 - 64){sup 3} x 16. We compare the resulting pole masses with the ones obtained from standard 2-exponential fits of spatial and temporal correlation functions at finite temperature and in the vacuum. The deviation of the meson spectral functions from free spectral functions is examined above the critical temperature. (orig.)
Extracting attosecond delays from spectrally overlapping interferograms
Jordan, Inga; Wörner, Hans Jakob
2018-02-01
Attosecond interferometry is becoming an increasingly popular technique for measuring the dynamics of photoionization in real time. Whereas early measurements focused on atomic systems with very simple photoelectron spectra, the technique is now being applied to more complex systems including isolated molecules and solids. The increase in complexity translates into an augmented spectral congestion, unavoidably resulting in spectral overlap in attosecond interferograms. Here, we discuss currently used methods for phase retrieval and introduce two new approaches for determining attosecond photoemission delays from spectrally overlapping photoelectron spectra. We show that the previously used technique, consisting in the spectral integration of the areas of interest, does in general not provide reliable results. Our methods resolve this problem, thereby opening the technique of attosecond interferometry to complex systems and fully exploiting its specific advantages in terms of spectral resolution compared to attosecond streaking.
Spectral analysis of bedform dynamics
DEFF Research Database (Denmark)
Winter, Christian; Ernstsen, Verner Brandbyge; Noormets, Riko
Successive multibeam echo sounder surveys in tidal channels off Esbjerg (Denmark) on the North Sea coast reveal the dynamics of subaquatic compound dunes. Mainly driven by tidal currents, dune structures show complex migration patterns in all temporal and spatial scales. Common methods for the an....... The proposed method overcomes the above mentioned problems of common descriptive analysis as it is an objective and straightforward mathematical process. The spectral decomposition of superimposed dunes allows a detailed description and analysis of dune patterns and migration.......Successive multibeam echo sounder surveys in tidal channels off Esbjerg (Denmark) on the North Sea coast reveal the dynamics of subaquatic compound dunes. Mainly driven by tidal currents, dune structures show complex migration patterns in all temporal and spatial scales. Common methods...... allows the application of a procedure, which has been a standard for the analysis of water waves for long times: The bathymetric signal of a cross-section of subaquatic compound dunes is approximated by the sum of a set of harmonic functions, derived by Fourier transformation. If the wavelength...
Spectral Interferometry with Electron Microscopes.
Talebi, Nahid
2016-09-21
Interference patterns are not only a defining characteristic of waves, but also have several applications; characterization of coherent processes and holography. Spatial holography with electron waves, has paved the way towards space-resolved characterization of magnetic domains and electrostatic potentials with angstrom spatial resolution. Another impetus in electron microscopy has been introduced by ultrafast electron microscopy which uses pulses of sub-picosecond durations for probing a laser induced excitation of the sample. However, attosecond temporal resolution has not yet been reported, merely due to the statistical distribution of arrival times of electrons at the sample, with respect to the laser time reference. This is however, the very time resolution which will be needed for performing time-frequency analysis. These difficulties are addressed here by proposing a new methodology to improve the synchronization between electron and optical excitations through introducing an efficient electron-driven photon source. We use focused transition radiation of the electron as a pump for the sample. Due to the nature of transition radiation, the process is coherent. This technique allows us to perform spectral interferometry with electron microscopes, with applications in retrieving the phase of electron-induced polarizations and reconstructing dynamics of the induced vector potential.
Method of photon spectral analysis
Gehrke, Robert J.; Putnam, Marie H.; Killian, E. Wayne; Helmer, Richard G.; Kynaston, Ronnie L.; Goodwin, Scott G.; Johnson, Larry O.
1993-01-01
A spectroscopic method to rapidly measure the presence of plutonium in soils, filters, smears, and glass waste forms by measuring the uranium L-shell x-ray emissions associated with the decay of plutonium. In addition, the technique can simultaneously acquire spectra of samples and automatically analyze them for the amount of americium and .gamma.-ray emitting activation and fission products present. The samples are counted with a large area, thin-window, n-type germanium spectrometer which is equally efficient for the detection of low-energy x-rays (10-2000 keV), as well as high-energy .gamma. rays (>1 MeV). A 8192- or 16,384 channel analyzer is used to acquire the entire photon spectrum at one time. A dual-energy, time-tagged pulser, that is injected into the test input of the preamplifier to monitor the energy scale, and detector resolution. The L x-ray portion of each spectrum is analyzed by a linear-least-squares spectral fitting technique. The .gamma.-ray portion of each spectrum is analyzed by a standard Ge .gamma.-ray analysis program. This method can be applied to any analysis involving x- and .gamma.-ray analysis in one spectrum and is especially useful when interferences in the x-ray region can be identified from the .gamma.-ray analysis and accommodated during the x-ray analysis.
Spectral partitioning in equitable graphs.
Barucca, Paolo
2017-06-01
Graph partitioning problems emerge in a wide variety of complex systems, ranging from biology to finance, but can be rigorously analyzed and solved only for a few graph ensembles. Here, an ensemble of equitable graphs, i.e., random graphs with a block-regular structure, is studied, for which analytical results can be obtained. In particular, the spectral density of this ensemble is computed exactly for a modular and bipartite structure. Kesten-McKay's law for random regular graphs is found analytically to apply also for modular and bipartite structures when blocks are homogeneous. An exact solution to graph partitioning for two equal-sized communities is proposed and verified numerically, and a conjecture on the absence of an efficient recovery detectability transition in equitable graphs is suggested. A final discussion summarizes results and outlines their relevance for the solution of graph partitioning problems in other graph ensembles, in particular for the study of detectability thresholds and resolution limits in stochastic block models.
Spectral statistics of 'cellular' billiards
International Nuclear Information System (INIS)
Gutkin, Boris
2011-01-01
For a bounded domain Ω 0 subset of R 2 whose boundary contains a number of flat pieces Γ i , i = 1, ..., l we consider a family of non-symmetric billiards Ω constructed by patching several copies of Ω 0 along Γ i s. It is demonstrated that the length spectrum of the periodic orbits in Ω is degenerate with the multiplicities determined by a matrix group G. We study the energy spectrum of the corresponding quantum billiard problem in Ω and show that it can be split into a number of uncorrelated subspectra corresponding to a set of irreducible representations α of G. Assuming that the classical dynamics in Ω 0 are chaotic, we derive a semiclassical trace formula for each spectral component and show that their energy level statistics are the same as in standard random matrix ensembles. Depending on whether α is real, pseudo-real or complex, the spectrum has either Gaussian orthogonal, Gaussian symplectic or Gaussian unitary types of statistics, respectively
Spectral characterization of Quillaja saponaria (Mol.
Directory of Open Access Journals (Sweden)
T. Acuña
2016-12-01
Full Text Available This paper presents a spectral reflectance characterization of the specie Quillaja saponaria (Mol., endemic tree of Chile and valued by society due to its provision of several ecosystem services that gives to society and also for its high concentration of saponins in cortex widely used in the pharmacological industry. For spectral characterization a foliar spectral signatures protocol was designed which included standardized instrumental and environmental parameters. The spectral response of different individuals was measured to evaluate the spectral behaviour and degree of variability within species in the visible and near infrared ranges (VNIR; 400-990 nm with two hyperspectral sensors (ASD HH and camera PDF-65-V10E. The resulting spectral signatures obtained with ASD HH showed a variation less than 5% of reflectance in VNIR and lesser than that in the transition zone from red to near infrared (red-edge; 680-730 nm. Additionally, two distinctive spectral features were detected for the specie, the first is related to a fast increase of reflectance in bands 450-480 nm and the second, to a marked decrease in the 920-970 nm range associated with water absorption features. At branch level, these distinctive features are maintained but with a smaller magnitude of reflectance, which could indicate that they are useful characteristic spectral patterns that can eventually be used for monitoring the physical health state of the specie using remote sensing. On the other hand, we used a PDF-65 camera for study the plant vigour from different health states (healthy, ill, died with spectral vegetation index. The Plant Senescence Reflectance Index detected stress on leaves, and Triangular Vegetation Index allows for a gradually characterization of every state. This work provides the first spectral reference for one of the most important sclerophyll species of Chile.
Schamp, Homer W., Jr.
1989-01-01
Describes the historic development of the periodic table from the four-element theory to the Lavoisier's table. Presents a table listing the old and new names of chemicals and the Lavoisier's table of elements. Lists two references. (YP)
Data Element Registry Services
U.S. Environmental Protection Agency — Data Element Registry Services (DERS) is a resource for information about value lists (aka code sets / pick lists), data dictionaries, data elements, and EPA data...
International Nuclear Information System (INIS)
Lee, Byeong Hae
1992-02-01
This book gives descriptions of basic finite element method, which includes basic finite element method and data, black box, writing of data, definition of VECTOR, definition of matrix, matrix and multiplication of matrix, addition of matrix, and unit matrix, conception of hardness matrix like spring power and displacement, governed equation of an elastic body, finite element method, Fortran method and programming such as composition of computer, order of programming and data card and Fortran card, finite element program and application of nonelastic problem.
Application of Mass Lumped Higher Order Finite Elements
International Nuclear Information System (INIS)
J. Chen, H.R. Strauss, S.C. Jardin, W. Park, L.E. Sugiyama, G. Fu, J. Breslau
2005-01-01
There are many interesting phenomena in extended-MHD such as anisotropic transport, mhd, 2-fluid effects stellarator and hot particles. Any one of them challenges numerical analysts, and researchers are seeking for higher order methods, such as higher order finite difference, higher order finite elements and hp/spectral elements. It is true that these methods give more accurate solution than their linear counterparts. However, numerically they are prohibitively expensive. Here we give a successful solution of this conflict by applying mass lumped higher order finite elements. This type of elements not only keep second/third order accuracy but also scale closely to linear elements by doing mass lumping. This is especially true for second order lump elements. Full M3D and anisotropic transport models are studied
SPECTRAL SMILE CORRECTION IN CRISM HYPERSPECTRAL IMAGES
Ceamanos, X.; Doute, S.
2009-12-01
The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is affected by a common artifact in "push-broom" sensors, the so-called "spectral smile". As a consequence, both central wavelength and spectral width of the spectral response vary along the across-track dimension, thus giving rise to a shifting and smoothing of spectra (see Fig. 1 (left)). In fact, both effects are greater for spectra on the edges, while they are minimum for data acquired by central detectors, the so-called "sweet spot". The prior artifacts become particularly critical for Martian observations which contain steep spectra such as CO2 ice-rich polar images. Fig. 1 (right) shows the horizontal brightness gradient which appears in every band corresponding to a steep portion of spectra. The correction of CRISM spectral smile is addressed using a two-step method which aims at modifying data sensibly in order to mimic the optimal CRISM response. First, all spectra, which are previously interpolated by cubic splines, are resampled to the "sweet spot" wavelengths in order to overcome the spectra shift. Secondly, the non-uniform spectral width is overcome by mimicking an increase of spectral resolution thanks to a spectral sharpening. In order to minimize noise, only bands particularly suffering from smile are selected. First, bands corresponding to the outliers of the Minimum Noise Transformation (MNF) eigenvector, which corresponds to the MNF band related to smile (MNF-smile), are selected. Then, a spectral neighborhood Θi, which takes into account the local spectral convexity or concavity, is defined for every selected band in order to maximize spectral shape preservation. The proposed sharpening technique takes into account both the instrument parameters and the observed spectra. First, every reflectance value belonging to a Θi is reevaluated by a sharpening which depends on a ratio of the spectral width of the current detector and the "sweet spot" one. Then, the optimal degree of
Spectrally selective solar energy materials
International Nuclear Information System (INIS)
Sikkens, M.
1981-01-01
The performance and properties of spectrally selective materials are considered and, in particular, the selective absorption of solar radiation by free electrons is discussed, both in a homogeneous material in which these electrons are strongly scattered, and in a composite material consisting of small metal particles in a dielectric host. Such materials can be used as selective absorbers if they are deposited as a thin film onto a metal substrate, the latter providing the required low emittance. This type of selective surfaces is produced by reactive sputtering of Ni in an Ar/CH 4 gas mixture. This method can yield Ni films with a considerable carbon concentration. The carbon concentration can be varied over a wide range by adjusting the partial methane pressure. The associated experimental techniques are discussed. As the carbon concentration increases, the structure of the films changes from a Ni phase in which carbon is dissolved, via an intermediate Ni 3 C phase into an amorphous carbon phase with a high electrical resistivity in which small nickel particles are embedded. Both mechanisms of selective absorption by free electrons are observed and are found to be well described by rather simple models. The best selectivity is obtained at high carbon concentrations where the films consist of nickel particles in carbon. Depending on the film thickness and the substrate material, the solar absorptance varies between 0.78 and 0.90, while the thermal emittance varies between 0.025 and 0.04. Since the films are found to be stable at 400 0 C in vacuum, it appears that these films are good candidates for application in photothermal solar energy conversion at temperature levels around 200 0 C and higher. (Auth.)
Nonlinear spectral imaging of biological tissues
Palero, J. A.
2007-07-01
The work presented in this thesis demonstrates live high resolution 3D imaging of tissue in its native state and environment. The nonlinear interaction between focussed femtosecond light pulses and the biological tissue results in the emission of natural autofluorescence and second-harmonic signal. Because biological intrinsic emission is generally very weak and extends from the ultraviolet to the visible spectral range, a broad-spectral range and high sensitivity 3D spectral imaging system is developed. Imaging the spectral characteristics of the biological intrinsic emission reveals the structure and biochemistry of the cells and extra-cellular components. By using different methods in visualizing the spectral images, discrimination between different tissue structures is achieved without the use of any stain or fluorescent label. For instance, RGB real color spectral images of the intrinsic emission of mouse skin tissues show blue cells, green hair follicles, and purple collagen fibers. The color signature of each tissue component is directly related to its characteristic emission spectrum. The results of this study show that skin tissue nonlinear intrinsic emission is mainly due to the autofluorescence of reduced nicotinamide adenine dinucleotide (phosphate), flavins, keratin, melanin, phospholipids, elastin and collagen and nonlinear Raman scattering and second-harmonic generation in Type I collagen. In vivo time-lapse spectral imaging is implemented to study metabolic changes in epidermal cells in tissues. Optical scattering in tissues, a key factor in determining the maximum achievable imaging depth, is also investigated in this work.
Directory of Open Access Journals (Sweden)
Camilo Méndez
2014-12-01
Full Text Available Rare (Earth Elements is a cycle of works for solo piano. The cycle was inspired by James Dillon’s Book of Elements (Vol. I-V. The complete cycle will consist of 14 pieces; one for each selected rare (earth element. The chosen elements are Neodymium, Erbium, Tellurium, Hafnium, Tantalum, Technetium, Indium, Dysprosium, Lanthanium, Cerium, Europium, Terbium, Yttrium and Darmstadtium. These elements were selected due to their special atomic properties that in many cases make them extremely valuable for the development of new technologies, and also because of their scarcity. To date, only 4 works have been completed Yttrium, Technetium, Indium and Tellurium.
Spectral modeling of magnetohydrodynamic turbulent flows.
Baerenzung, J; Politano, H; Ponty, Y; Pouquet, A
2008-08-01
We present a dynamical spectral model for large-eddy simulation of the incompressible magnetohydrodynamic (MHD) equations based on the eddy damped quasinormal Markovian approximation. This model extends classical spectral large-eddy simulations for the Navier-Stokes equations to incorporate general (non-Kolmogorovian) spectra as well as eddy noise. We derive the model for MHD flows and show that the introduction of an eddy damping time for the dynamics of spectral tensors, in the absence of equipartition between the velocity and magnetic fields, leads to better agreement with direct numerical simulations, an important point for dynamo computations.
Chandra, Sulekh; Kumar, Umendra
2005-12-01
The paper presents the spectral analysis of cobalt(II) complexes with indoxyl thiosemicarbazone (ITSC) of general composition [CoL 2X 2] (where L = ITSC, X = Cl -, NO 3-, (1/2)SO 42-, NCS -). The geometry of the complexes have been characterized by elemental analysis, molar conductance, magnetic susceptibility measurements and spectral (electronic, IR, EPR, 1H NMR, mass) studies. The various physico-chemical techniques suggested a coordination number of six (octahedral) for chloro, nitrato and thiocyanato complexes. Whereas sulfato complex was found to have five coordinate trigonal-bipyramidal geometry. All the complexes are of high spin type showing magnetic moment corresponding to three unpaired electrons.
Electronic structure and spectral properties of RCuSi (R=Nd,Gd) compounds
Energy Technology Data Exchange (ETDEWEB)
Knyazev, Yu.V., E-mail: knyazev@imp.uran.ru [Institute of Metal Physics, Russian Academy of Sciences, Ural Branch, 620990 Yekaterinburg (Russian Federation); Lukoyanov, A.V. [Institute of Metal Physics, Russian Academy of Sciences, Ural Branch, 620990 Yekaterinburg (Russian Federation); Ural Federal University, 620002 Yekaterinburg (Russian Federation); Kuz’min, Yu.I. [Institute of Metal Physics, Russian Academy of Sciences, Ural Branch, 620990 Yekaterinburg (Russian Federation); Gupta, Sachin; Suresh, K.G. [Department of Physics, Indian Institute of Technology Bombay, 400076 Mumbai (India)
2016-04-15
We report a joint experimental and theoretical investigation of optical properties and electronic structure of NdCuSi and GdCuSi compounds. Optical characteristics have been studied employing ellipsometry in a spectral range 0.22–15 μm. Spin-polarized calculations of the electronic structure have been performed using LSDA+U method accounting for electronic correlations in the 4f shell of rare earth elements. Additionally, we probe our electronic structures by calculating the interband optical conductivities and comparing them with spectral measurement. We find that all main features of the experimental curves have been qualitative interpreted using the calculated densities of states.
Indium determination by spectral overlappings of lines in atomic absorption spectrometry
International Nuclear Information System (INIS)
Gomez, J.J.; Huicque, L. d'; Garcia Vior, L.O.
1991-01-01
A molybdenum hollow-cathode lamp filled with neon can be used to determine indium. Characteristic concentration for this element is 4.5 mg/L in the 325 nm spectral region for the Mo(I) 325.621 nm line. In addition, values of 0.4 mg/L and 0.3 mg/L are obtained with the Mo(I) 410.215 nm and Ne(I) 451.151 nm lines, respectively. These spectral overlappings allow the determination of indium in silver-cadmium-indium alloys. (Author) [es
Trace elemental imaging of rare earth elements discriminates tissues at microscale in flat fossils.
Directory of Open Access Journals (Sweden)
Pierre Gueriau
Full Text Available The interpretation of flattened fossils remains a major challenge due to compression of their complex anatomies during fossilization, making critical anatomical features invisible or hardly discernible. Key features are often hidden under greatly preserved decay prone tissues, or an unpreparable sedimentary matrix. A method offering access to such anatomical features is of paramount interest to resolve taxonomic affinities and to study fossils after a least possible invasive preparation. Unfortunately, the widely-used X-ray micro-computed tomography, for visualizing hidden or internal structures of a broad range of fossils, is generally inapplicable to flattened specimens, due to the very high differential absorbance in distinct directions. Here we show that synchrotron X-ray fluorescence spectral raster-scanning coupled to spectral decomposition or a much faster Kullback-Leibler divergence based statistical analysis provides microscale visualization of tissues. We imaged exceptionally well-preserved fossils from the Late Cretaceous without needing any prior delicate preparation. The contrasting elemental distributions greatly improved the discrimination of skeletal elements material from both the sedimentary matrix and fossilized soft tissues. Aside content in alkaline earth elements and phosphorus, a critical parameter for tissue discrimination is the distinct amounts of rare earth elements. Local quantification of rare earths may open new avenues for fossil description but also in paleoenvironmental and taphonomical studies.
Trace elemental imaging of rare earth elements discriminates tissues at microscale in flat fossils.
Gueriau, Pierre; Mocuta, Cristian; Dutheil, Didier B; Cohen, Serge X; Thiaudière, Dominique; Charbonnier, Sylvain; Clément, Gaël; Bertrand, Loïc
2014-01-01
The interpretation of flattened fossils remains a major challenge due to compression of their complex anatomies during fossilization, making critical anatomical features invisible or hardly discernible. Key features are often hidden under greatly preserved decay prone tissues, or an unpreparable sedimentary matrix. A method offering access to such anatomical features is of paramount interest to resolve taxonomic affinities and to study fossils after a least possible invasive preparation. Unfortunately, the widely-used X-ray micro-computed tomography, for visualizing hidden or internal structures of a broad range of fossils, is generally inapplicable to flattened specimens, due to the very high differential absorbance in distinct directions. Here we show that synchrotron X-ray fluorescence spectral raster-scanning coupled to spectral decomposition or a much faster Kullback-Leibler divergence based statistical analysis provides microscale visualization of tissues. We imaged exceptionally well-preserved fossils from the Late Cretaceous without needing any prior delicate preparation. The contrasting elemental distributions greatly improved the discrimination of skeletal elements material from both the sedimentary matrix and fossilized soft tissues. Aside content in alkaline earth elements and phosphorus, a critical parameter for tissue discrimination is the distinct amounts of rare earth elements. Local quantification of rare earths may open new avenues for fossil description but also in paleoenvironmental and taphonomical studies.
Multi-Configuration Matched Spectral Filter Core Project
National Aeronautics and Space Administration — OPTRA proposes an open-architecture spectral gas sensor based on compressive sensing concepts employed for both spatial and spectral domains. Our matched spectral...
Multi-Configuration Matched Spectral Filter Core, Phase I
National Aeronautics and Space Administration — OPTRA proposes an open-architecture spectral gas sensor based on compressive sensing concepts employed for both spatial and spectral domains. Our matched spectral...
Tweten, Dennis J.; Lipp, Genevieve M.; Khasawneh, Firas A.; Mann, Brian P.
2012-08-01
This paper provides the first comparison of the semi-discretization, spectral element, and Legendre collocation methods. Each method is a technique for solving delay differential equations (DDEs) as well as determining regions of stability in the DDE parameter space. We present the necessary concepts, assumptions, and equations required to implement each method. To compare the relative performance between the methods, the convergence rate and computational time for each method is compared in three numerical studies consisting of a ship stability example, the delayed damped Mathieu equation, and a helicopter rotor control problem. For each study, we present one or more stability diagrams in the parameter space and one or more convergence plots. The spectral element method is demonstrated to have the quickest convergence rate while the Legendre collocation method requires the least computational time. The semi-discretization method on the other hand has both the slowest convergence rate and requires the most computational time.
Account of spectral dependence of instrumental factor in quantitative X-ray fluorescence analysis
International Nuclear Information System (INIS)
Pershin, N.V.; Mosichev, V.I.
1990-01-01
A new method for calibration of X-ray fluorescence spectrometers using scanning spectrometric channel is proposed. The method is based on a separate account of matrix and instrumental effects and needs no calibration standards for the element analysed. For calibration in the whole spectral range of XRS (0.03-1.0 nm) it is sufficient to have from 10 to 15 pure element emitters made of most wide spread elements. The method provides rapid development of quantitative analysis for the elements which are not provided with standard samples and preparation of pure element emitters for which is impossible or problematic. The practical verification of the method was made by analysing a set of 146 standard samples covering a wide group of alloys. The mean relative error of the method was 3-5 % in an analytical range of 0.1-3.0 wt %
Spectral Shifting in Nondestructive Assay Instrumentation
Energy Technology Data Exchange (ETDEWEB)
Trellue, Holly Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nettleton, Anthony Steven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tutt, James Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Menlove, Howard Olsen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); LaFleur, Adrienne Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tobin, Stephen Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-11-17
This project involves spectrum tailoring research that endeavors to better distinguish energies of gamma rays using different spectral material thicknesses and determine neutron energies by coating detectors with various materials.
[Hygiene and the spectral energtic light pattern].
Kaptsov, V A; Deynego, V N; SoshMn, N P; Ulasyuk, V N
There are considered methodological bases of multicriteria synthesis of a spectral energetic pattern for the evaluation of the excessive share of blue and red light in the spectrum of artificial energy sources. The basis of this methodology is relied upon on the hygienic approach to the spectrum analysis of solar and led light. Relying upon on "photobiological paradox of vision" according to M. A. Ostrovsky, conditions of "melanopsin cross" and mechanisms of adverse impact of light on vision, all the spectral-energy characteristics of solar light were divided into subspaces. The border between them became a spectral energy pattern for the evaluation of artificial sources on the security of their impact on eye and human health according to criteria of the excessive dose of blue or red light. On two examples there was shown the effectiveness and clarity of this estimation with the using of the spectral energetic pattern of light.
Spectral properties of supersymmetric shape invariant potentials
Indian Academy of Sciences (India)
SIPs). Although the folded spectrum is completely random, unfolded spectrum shows that energy levels are highly correlated and absolutely rigid. All the SIPs exhibit harmonic oscillator-type spectral statistics in the unfolded spectrum.
Salinity and spectral reflectance of soils
Szilagyi, A.; Baumgardner, M. F.
1991-01-01
The basic spectral response related to the salt content of soils in the visible and reflective IR wavelengths is analyzed in order to explore remote sensing applications for monitoring processes of the earth system. The bidirectional reflectance factor (BRF) was determined at 10 nm of increments over the 520-2320-nm spectral range. The effect of salts on reflectance was analyzed on the basis of 162 spectral measurements. MSS and TM bands were simulated within the measured spectral region. A strong relationship was found in variations of reflectance and soil characteristics pertaining to salinization and desalinization. Although the individual MSS bands had high R-squared values and 75-79 percent of soil/treatment combinations were separable, there was a large number of soil/treatment combinations not distinguished by any of the four highly correlated MSS bands under consideration.
SSBUV middle ultraviolet solar spectral irradiance measurements
Cebula, Richard P.; Hilsenrath, Ernest
1994-01-01
The Shuttle Solar Backscatter Ultraviolet (SSBUV) instrument performs multiple solar spectral irradiance measurements in the wavelength region 200 to 400 nm at 1.1 nm resolution during yearly Space Shuttle flights. Solar spectral irradiance observations from the first three SSBUV Shuttle flights, October 1989, October 1990, and August 1991, are compared with one another and with solar measurements made by the NOAA-11 SBUV/2 instrument. The repeated SSBUV solar spectral observations, which agree to within plus or minus 1-2 percent from 200 to 400 nm, are valuable not only as a means of validating and calibrating the satellite-based solar irradiance measurements, but also as a distinct set of stand-alone solar measurements for monitoring long-term changes in the solar spectral irradiance, which are important for ozone photochemistry.
Broadband Advanced Spectral System, Phase I
National Aeronautics and Space Administration — NovaSol proposes to develop an advanced hyperspectral imaging system for earth science missions named BRASS (Broadband Advanced Spectral System). BRASS combines...
Algorithms for Spectral Decomposition with Applications
National Aeronautics and Space Administration — The analysis of spectral signals for features that represent physical phenomenon is ubiquitous in the science and engineering communities. There are two main...
Ultra-High Density Spectral Storage Materials
National Research Council Canada - National Science Library
Hasan, Zameer U
2002-01-01
.... Being atomic scale storage, spectral storage has the potential of providing orders of magnitude denser memories than present day memories that depend on the hulk properties of the storage medium...
Chromosome analysis using spectral karyotyping (SKY).
Imataka, George; Arisaka, Osamu
2012-01-01
Spectral karyotyping is a novel technique for chromosome analysis that has been developed based on the approach of the fluorescence in situ hybridization technique. Spectral karyotyping makes it feasible to diagnose a variety of diseases, because of its technology in painting each of the 24 human chromosomes with different colors. In recent years, it has become possible to adopt the usage of spectral karyotyping for research in general clinical practice, and its usability has attracted particular attention in the diagnosis of different diseases. In this review, we will explain the principle of the spectral karyotyping, as well as its specificity and limitation in detecting the genetic defects within clinical application by presenting two case reports.
Computer-assisted spectral design and synthesis
Vadakkumpadan, Fijoy; Wang, Qiqi; Sun, Yinlong
2005-01-01
In this paper, we propose a computer-assisted approach for spectral design and synthesis. This approach starts with some initial spectrum, modifies it interactively, evaluates the change, and decides the optimal spectrum. Given a requested change as function of wavelength, we model the change function using a Gaussian function. When there is the metameric constraint, from the Gaussian function of request change, we propose a method to generate the change function such that the result spectrum has the same color as the initial spectrum. We have tested the proposed method with different initial spectra and change functions, and implemented an interactive graphics environment for spectral design and synthesis. The proposed approach and graphics implementation for spectral design and synthesis can be helpful for a number of applications such as lighting of building interiors, textile coloration, and pigment development of automobile paints, and spectral computer graphics.
Spectral properties of almost-periodic Hamiltonians
International Nuclear Information System (INIS)
Lima, R.
1983-12-01
We give a description of some spectral properties of almost-periodic hamiltonians. We put the stress on some particular points of the proofs of the existence of absolutely continuous or pure point spectrum [fr
HIRES NIMS IDA SPECTRAL IMAGE CUBES
National Aeronautics and Space Administration — This data volume contains 17 channel spectral image cubes of asteroid 243 Ida ranging from 0.7 to 5.2 micrometers in wavelength in cgs units of radiance. These data...
GALILEO NIMS SPECTRAL IMAGE CUBES: JUPITER OPERATIONS
National Aeronautics and Space Administration — The natural form of imaging spectrometer data is the spectral image cube. It is normally in band sequential format, but has a dual nature. It is a series of 'images'...
GALILEO NIMS SPECTRAL IMAGE TUBES: JUPITER OPERATIONS
National Aeronautics and Space Administration — The natural form of imaging spectrometer data is the spectral image cube. It is normally in band sequential format, but has a dual nature. It is a series of 'images'...
Learning theory of distributed spectral algorithms
Guo, Zheng-Chu; Lin, Shao-Bo; Zhou, Ding-Xuan
2017-07-01
Spectral algorithms have been widely used and studied in learning theory and inverse problems. This paper is concerned with distributed spectral algorithms, for handling big data, based on a divide-and-conquer approach. We present a learning theory for these distributed kernel-based learning algorithms in a regression framework including nice error bounds and optimal minimax learning rates achieved by means of a novel integral operator approach and a second order decomposition of inverse operators. Our quantitative estimates are given in terms of regularity of the regression function, effective dimension of the reproducing kernel Hilbert space, and qualification of the filter function of the spectral algorithm. They do not need any eigenfunction or noise conditions and are better than the existing results even for the classical family of spectral algorithms.
Matched Spectral Filter Imager, Phase I
National Aeronautics and Space Administration — OPTRA proposes the development of an imaging spectrometer for greenhouse gas and volcanic gas imaging based on matched spectral filtering and compressive imaging....
Precise Multi-Spectral Dermatological Imaging
DEFF Research Database (Denmark)
Gomez, David Delgado; Carstensen, Jens Michael; Ersbøll, Bjarne Kjær
2004-01-01
In this work, an integrated imaging system to obtain accurate and reproducible multi-spectral dermatological images is proposed. The system is made up of an integrating sphere, light emitting diodes and a generic monochromatic camera. The system can collect up to 10 different spectral bands....... These spectral bands vary from ultraviolet to near infrared. The welldefined and diffuse illumination of the optically closed scene aims to avoid shadows and specular reflections. Furthermore, the system has been developed to guarantee the reproducibility of the collected images. This allows for comparative...... studies of time series of images. Two experiments are conducted to show the ability of the system to acquire highly precise and standardized multi-spectral images. The first experiment aims to show the capacity of the system to collect reproducible images. The second experiment demonstrates that the multi...
Learning theory of distributed spectral algorithms
International Nuclear Information System (INIS)
Guo, Zheng-Chu; Lin, Shao-Bo; Zhou, Ding-Xuan
2017-01-01
Spectral algorithms have been widely used and studied in learning theory and inverse problems. This paper is concerned with distributed spectral algorithms, for handling big data, based on a divide-and-conquer approach. We present a learning theory for these distributed kernel-based learning algorithms in a regression framework including nice error bounds and optimal minimax learning rates achieved by means of a novel integral operator approach and a second order decomposition of inverse operators. Our quantitative estimates are given in terms of regularity of the regression function, effective dimension of the reproducing kernel Hilbert space, and qualification of the filter function of the spectral algorithm. They do not need any eigenfunction or noise conditions and are better than the existing results even for the classical family of spectral algorithms. (paper)
Spectral properties of 441 radio pulsars
Jankowski, F.; van Straten, W.; Keane, E. F.; Bailes, M.; Barr, E. D.; Johnston, S.; Kerr, M.
2018-02-01
We present a study of the spectral properties of 441 pulsars observed with the Parkes radio telescope near the centre frequencies of 728, 1382 and 3100 MHz. The observations at 728 and 3100 MHz were conducted simultaneously using the dual-band 10-50 cm receiver. These high-sensitivity, multifrequency observations provide a systematic and uniform sample of pulsar flux densities. We combine our measurements with spectral data from the literature in order to derive the spectral properties of these pulsars. Using techniques from robust regression and information theory, we classify the observed spectra in an objective, robust and unbiased way into five morphological classes: simple or broken power law, power law with either low- or high-frequency cut-off and log-parabolic spectrum. While about 79 per cent of the pulsars that could be classified have simple power-law spectra, we find significant deviations in 73 pulsars, 35 of which have curved spectra, 25 with a spectral break and 10 with a low-frequency turn-over. We identify 11 gigahertz-peaked spectrum (GPS) pulsars, with 3 newly identified in this work and 8 confirmations of known GPS pulsars; 3 others show tentative evidence of GPS, but require further low-frequency measurements to support this classification. The weighted mean spectral index of all pulsars with simple power-law spectra is -1.60 ± 0.03. The observed spectral indices are well described by a shifted log-normal distribution. The strongest correlations of spectral index are with spin-down luminosity, magnetic field at the light-cylinder and spin-down rate. We also investigate the physical origin of the observed spectral features and determine emission altitudes for three pulsars.
Spectral Feature Selection for Data Mining
Zhao, Zheng Alan
2011-01-01
Spectral Feature Selection for Data Mining introduces a novel feature selection technique that establishes a general platform for studying existing feature selection algorithms and developing new algorithms for emerging problems in real-world applications. This technique represents a unified framework for supervised, unsupervised, and semisupervised feature selection. The book explores the latest research achievements, sheds light on new research directions, and stimulates readers to make the next creative breakthroughs. It presents the intrinsic ideas behind spectral feature selection, its th
Measuring Collimator Infrared (IR) Spectral Transmission
2016-05-01
TECHNICAL REPORT RDMR-WD-16-15 MEASURING COLLIMATOR INFRARED ( IR ) SPECTRAL TRANSMISSION Christopher L. Dobbins Weapons...AND DATES COVERED Final 4. TITLE AND SUBTITLE Measuring Collimator Infrared ( IR ) Spectral Transmission 5. FUNDING NUMBERS 6. AUTHOR(S) Christopher L...release; distribution is unlimited. 12b. DISTRIBUTION CODE A 13. ABSTRACT (Maximum 200 Words) Several Infrared ( IR ) imaging systems have been measured
Biomimetic joint spatial-spectral pattern recognition
Caulfield, H. John
2003-08-01
Most animals use color and shape to recognize things in their worlds. Shapes are properties of objects inferable from their 2D images. Colors are spectral discriminants computed by their brains using data sensed in 2-4 broad, spectrally overlapping bands. So color is not an object property. Both shape and color combine to make discrimination work well. I will describe Artificial Color and then ways to recognize an Artificially colored image.
A high throughput spectral image microscopy system
Gesley, M.; Puri, R.
2018-01-01
A high throughput spectral image microscopy system is configured for rapid detection of rare cells in large populations. To overcome flow cytometry rates and use of fluorophore tags, a system architecture integrates sample mechanical handling, signal processors, and optics in a non-confocal version of light absorption and scattering spectroscopic microscopy. Spectral images with native contrast do not require the use of exogeneous stain to render cells with submicron resolution. Structure may be characterized without restriction to cell clusters of differentiation.
Spectral evolution of galaxies: current views
International Nuclear Information System (INIS)
Bruzual, A.G.
1985-01-01
A summary of current views on the interpretation of the various evolutionary tests aimed at detecting spectral evolution in galaxies is presented. It is concluded that the evolution taking place in known galaxy samples is a slow process (perhaps consistent with no evolution at all), and that the early phases of rapid spectral evolution in early-type galaxies have not yet been detected. (author)
International Nuclear Information System (INIS)
Hoffman, D.C.
1990-05-01
Prior to 1940, the heaviest element known was uranium, discovered in 1789. Since that time the elements 93 through 109 have been synthesized and identified and the elements 43, 61, 85, and 87 which were missing form the periodic tables of the 1930's have been discovered. The techniques and problems involved in these discoveries and the placement of the transuranium elements in the periodic table will be discussed. The production and positive identification of elements heavier than Md (Z=101), which have very short half-lives and can only be produced an atom-at-a-time, are very difficult and there have been controversies concerning their discovery. Some of the new methods which have been developed and used in these studies will be described. The prospects for production of still heavier elements will be considered
Directory of Open Access Journals (Sweden)
Štekbauer Hynek
2016-12-01
Full Text Available The pulley is used in a number of structures for the mechanical advantage it gives. This paper presents an approach for the calculation of a pulley-cable system using a special pulley element in the finite element method. The Lagrange Multiplier method and Penalty method are used to define the pulley element, as described in this paper. Both approaches are easy to implement in general FEM codes.
Štekbauer Hynek
2016-01-01
The pulley is used in a number of structures for the mechanical advantage it gives. This paper presents an approach for the calculation of a pulley-cable system using a special pulley element in the finite element method. The Lagrange Multiplier method and Penalty method are used to define the pulley element, as described in this paper. Both approaches are easy to implement in general FEM codes.
International Nuclear Information System (INIS)
Vogel, J.S.; McAninch, J.; Freeman, S.
1996-08-01
AMS (Accelerator Mass Spectrometry) provides high detection sensitivity for isotopes whose half-lives are between 10 years and 100 million years. 14 C is the most developed of such isotopes and is used in tracing natural and anthropogenic organic compounds in the Earth's biosphere. Thirty-three elements in the main periodic table and 17 lanthanides or actinides have long lived isotopes, providing potential tracers for research in elemental biochemistry. Overlap of biologically interesting heavy elements and possible AMS tracers is discussed
International Nuclear Information System (INIS)
Arya, S.P; s.
1978-01-01
A nuclear fuel element loading system is described which conveys a plurality of fuel rods to longitudinal passages in fuel elements. Conveyor means successively position the fuel rods above the longitudinal passages in axial alignment therewith and adapter means guide the fuel rods from the conveyor means into the longitudinal passages. The fuel elements are vibrated to cause the fuel rods to fall into the longitudinal passages through the adapter means
Kamal, M.; Ningam, M. U. L.; Alqorina, F.
2017-12-01
Mapping mangrove species from remote sensing data through its spectral reflectance pattern collected in the field is challenging. There are high variations in light condition, leaf orientation, canopy structure, background objects and measurement distance when measuring mangrove spectral reflectance in the field. Spectral measurement distance to the object is one of the most important aspects controlling the result of spectral reflectance pattern. This research is aimed to assess the effect of spectral reflectance pattern of Rhizophora stylosa collected at various distances. Specific objectives of this research are to collect samples of mangrove spectral reflectance pattern in the field, to assess the effect of the observation scale to the result of the spectral reflectance pattern, and to characterize the mangrove spectral reflectance pattern resulted from different observation scales. Spectral reflectance data collection in the field was conducted using JAZ EL-350 field spectrometer at 2cm, 50cm, 1m, 2m, and 5m distance and was conducted in Karimunjawa Island, Jepara, Central Java, Indonesia. A visual comparison of the spectral reflectance curve was conducted to understand the effect of measurement distance. The results of this study indicate that the difference in the measurement distance of Rhizophora stylosa species was highly influential to the resulting spectral reflectance curve. The spectral reflectance curve recorded at close range to the leaf (i.e. 2 cm) has the lowest curve variation, as well as the furthest distance (i.e. 5 m). This study is a basic study that supports the development of the use of remote sensing imagery for mangrove species mapping.
Chemistry of superheavy elements
International Nuclear Information System (INIS)
Schaedel, M.
2012-01-01
The chemistry of superheavy elements - or transactinides from their position in the Periodic Table - is summarized. After giving an overview over historical developments, nuclear aspects about synthesis of neutron-rich isotopes of these elements, produced in hot-fusion reactions, and their nuclear decay properties are briefly mentioned. Specific requirements to cope with the one-atom-at-a-time situation in automated chemical separations and recent developments in aqueous-phase and gas-phase chemistry are presented. Exciting, current developments, first applications, and future prospects of chemical separations behind physical recoil separators ('pre-separator') are discussed in detail. The status of our current knowledge about the chemistry of rutherfordium (Rf, element 104), dubnium (Db, element 105), seaborgium (Sg, element 106), bohrium (Bh, element 107), hassium (Hs, element 108), copernicium (Cn, element 112), and element 114 is discussed from an experimental point of view. Recent results are emphasized and compared with empirical extrapolations and with fully-relativistic theoretical calculations, especially also under the aspect of the architecture of the Periodic Table. (orig.)
Directory of Open Access Journals (Sweden)
Hiroyuki Hara
2017-08-01
Full Text Available The soft x-ray spectra of heavy element plasmas are frequently dominated by unresolved transition array (UTA emission. We describe the spectral evolution of an intense UTA under optically thin conditions in platinum plasmas. The UTA was observed to have a peak wavelength around 4.6 nm at line-of-sight averaged electron temperatures less than 1.4 keV at electron densities of (2.5–7.5 × 1013 cm−3. The UTA spectral structure was due to emission from 4d–4f transitions in highly charged ions with average charge states of q = 20–40. A numerical simulation successfully reproduced the observed spectral behavior.
Simulating high-frequency seismograms in complicated media: A spectral approach
International Nuclear Information System (INIS)
Orrey, J.L.; Archambeau, C.B.
1993-01-01
The main attraction of using a spectral method instead of a conventional finite difference or finite element technique for full-wavefield forward modeling in elastic media is the increased accuracy of a spectral approximation. While a finite difference method accurate to second order typically requires 8 to 10 computational grid points to resolve the smallest wavelengths on a 1-D grid, a spectral method that approximates the wavefield by trignometric functions theoretically requires only 2 grid points per minimum wavelength and produces no numerical dispersion from the spatial discretization. The resultant savings in computer memory, which is very significant in 2 and 3 dimensions, allows for larger scale and/or higher frequency simulations
A Spectrum Detection Approach for Bearing Fault Signal Based on Spectral Kurtosis
Directory of Open Access Journals (Sweden)
Yunfeng Li
2017-01-01
Full Text Available According to the similarity between Morlet wavelet and fault signal and the sensitive characteristics of spectral kurtosis for the impact signal, a new wavelet spectrum detection approach based on spectral kurtosis for bearing fault signal is proposed. This method decreased the band-pass filter range and reduced the wavelet window width significantly. As a consequence, the bearing fault signal was detected adaptively, and time-frequency characteristics of the fault signal can be extracted accurately. The validity of this method was verified by the identifications of simulated shock signal and test bearing fault signal. The method provides a new understanding of wavelet spectrum detection based on spectral kurtosis for rolling element bearing fault signal.
Determination of the variation of mercury isotope concentration based on spectral-phase effects
International Nuclear Information System (INIS)
Ganeev, A.A.; Man', D.D.; Turkin, Yu.I.
1988-01-01
A method of isotopic atomic-absorption analysis, based on spectral-phase effects in which there is no need to use several sources of radiation with pure isotopes of the analyte element, was developed. The method made it possible to simplify the analysis and to determine the variation of the concentration of mercury isotopes from one deposit to another with an accuracy several times higher that of traditional methods of spectral isotopic analysis. The method was tested on mercury 198 and mercury 202. The isotopic analyzer is diagramed and described. The mechanism of spectral-phase effects was determined by the difference in effective photon lifetimes, corresponding to different components of the hyperfine structure of the resonance line of mercury at 254 nm
Hara, Hiroyuki; Ohashi, Hayato; Li, Bowen; Dunne, Padraig; O'Sullivan, Gerry; Sasaki, Akira; Suzuki, Chihiro; Tamura, Naoki; Sakaue, Hiroyuki A.; Kato, Daiji; Murakami, Izumi; Higashiguchi, Takeshi; LHD Experiment Group
2017-08-01
The soft x-ray spectra of heavy element plasmas are frequently dominated by unresolved transition array (UTA) emission. We describe the spectral evolution of an intense UTA under optically thin conditions in platinum plasmas. The UTA was observed to have a peak wavelength around 4.6 nm at line-of-sight averaged electron temperatures less than 1.4 keV at electron densities of (2.5-7.5) × 1013 cm-3. The UTA spectral structure was due to emission from 4d-4f transitions in highly charged ions with average charge states of q = 20-40. A numerical simulation successfully reproduced the observed spectral behavior.
Processing of spectral X-ray data with principal components analysis
Butler, A P H; Cook, N J; Butzer, J; Schleich, N; Tlustos, L; Scott, N; Grasset, R; de Ruiter, N; Anderson, N G
2011-01-01
The goal of the work was to develop a general method for processing spectral x-ray image data. Principle component analysis (PCA) is a well understood technique for multivariate data analysis and so was investigated. To assess this method, spectral (multi-energy) computed tomography (CT) data was obtained using a Medipix2 detector in a MARS-CT (Medipix All Resolution System). PCA was able to separate bone (calcium) from two elements with k-edges in the X-ray spectrum used (iodine and barium) within a mouse. This has potential clinical application in dual-energy CT systems and future Medipix3 based spectral imaging where up to eight energies can be recorded simultaneously with excellent energy resolution. (c) 2010 Elsevier B.V. All rights reserved.
USGS Digital Spectral Library splib06a
Clark, Roger N.; Swayze, Gregg A.; Wise, Richard A.; Livo, K. Eric; Hoefen, Todd M.; Kokaly, Raymond F.; Sutley, Stephen J.
2007-01-01
Introduction We have assembled a digital reflectance spectral library that covers the wavelength range from the ultraviolet to far infrared along with sample documentation. The library includes samples of minerals, rocks, soils, physically constructed as well as mathematically computed mixtures, plants, vegetation communities, microorganisms, and man-made materials. The samples and spectra collected were assembled for the purpose of using spectral features for the remote detection of these and similar materials. Analysis of spectroscopic data from laboratory, aircraft, and spacecraft instrumentation requires a knowledge base. The spectral library discussed here forms a knowledge base for the spectroscopy of minerals and related materials of importance to a variety of research programs being conducted at the U.S. Geological Survey. Much of this library grew out of the need for spectra to support imaging spectroscopy studies of the Earth and planets. Imaging spectrometers, such as the National Aeronautics and Space Administration (NASA) Airborne Visible/Infra Red Imaging Spectrometer (AVIRIS) or the NASA Cassini Visual and Infrared Mapping Spectrometer (VIMS) which is currently orbiting Saturn, have narrow bandwidths in many contiguous spectral channels that permit accurate definition of absorption features in spectra from a variety of materials. Identification of materials from such data requires a comprehensive spectral library of minerals, vegetation, man-made materials, and other subjects in the scene. Our research involves the use of the spectral library to identify the components in a spectrum of an unknown. Therefore, the quality of the library must be very good. However, the quality required in a spectral library to successfully perform an investigation depends on the scientific questions to be answered and the type of algorithms to be used. For example, to map a mineral using imaging spectroscopy and the mapping algorithm of Clark and others (1990a, 2003b
Synthesis and Spectral Evaluation of Some Unsymmetrical Mesoporphyrinic Complexes
Directory of Open Access Journals (Sweden)
Rica Boscencu
2012-06-01
Full Text Available Synthesis and spectral evaluation of new zinc and copper unsymmetrical mesoporphyrinic complexes are reported. Zn(II-5-(4-acetoxy-3-methoxyphenyl-10,15,20-tris-(4-carboxymethylphenylporphyrin, Zn(II-5-[(3,4-methylenedioxyphenyl]-10,15,20-tris-(4-carboxymethylphenylporphyrin, Cu(II-5-(4-acetoxy-3-methoxyphenyl-10,15,20-tris-(4-carboxymethylphenylporphyrin and Cu(II-5-[(3,4-methylenedioxyphenyl]-10,15,20-tris-(4-carboxymethylphenylporphyrin were synthesized using microwave-assisted synthesis. The complexes were characterized by elemental analysis, FT-IR, UV-Vis, EPR and NMR spectroscopy, which fully confirmed their structure. The spectral absorption properties of the porphyrinic complexes were studied in solvents with different polarities. Fluorescence emission and singlet oxygen formation quantum yields were evaluated for the compounds under study, revealing high yields for the zinc derivatives. The copper complexes are not emissive and only display residual capacity for singlet oxygen formation.
Spectral representation of infimum of bounded quantum observables
International Nuclear Information System (INIS)
Shen Jun; Wu Junde
2009-01-01
In 2006, Gudder [Math. Slovaca 56, 573 (2006)] introduced a logic order on bounded quantum observable set S(H). In 2007, Pulmannova and Vincekova [Math Slovaca 57, 589 (2007)] proved that for each subset D of S(H), the infimum of D exists with respect to the logic order. In 2008, Liu and Wu [J. Math. Phys. 49, 073521 (2008)] found a representation of the infimum A and B for A,B is an element of S(H), and by using the limit methods, they gave out a representation for the infimum of D. But, that representation is complicated. In this paper, we present a simpler spectral representation for the infimum of D with respect to the logic order.
Spectral measurements from laser-produced plasma in OMEGA
Burkhalter, P. G.; Newman, D. A.; Rosen, D. L.; Hudson, K.; Richardson, M.; Audebert, P.
1986-08-01
Curved- and flat-diffraction crystal spectrographs were developed to collect x-ray spectra from high-atomic-number elements (cadmium-rare earths) in the 5-17-Å region. The plasma source was generated by the 24-beam, frequency-tripled light of the OMEGA laser system. The spectral patterns were identified with the aid of atomic structure calculations and from Moseley plots of isoelectronic sequences. The Ne-like (third-order diffraction) and Na-like ionization stages were observed in the Cd and Sn spectra. The rare-earth spectra were predominantly 3d-4p, 4f transitions over a range of ionization stages involving the M shell. Calibration spectra were obtained with L-series transitions from Fe and Cu targets and K lines from Si plasma excited in the glass supporting stalk.
Source spectral index of heavy cosmic ray nuclei
International Nuclear Information System (INIS)
Engelmann, J.J.; Ferrando, P.; Koch-Miramond, L.; Masse, P.; Soutoul, A.; Webber, W.R.
1985-08-01
From the energy spectra of the heavy nuclei observed by the French-Danish experiment on HEAO-3, we have derived the source spectra of the mostly primary nuclei (C, O, Ne, Mg, Si, Ca and Fe) in the framework of an energy dependent leaky box model (Engelmann et al. 1985). In the present paper we want to derive more accurate spectral indices by using better values of the escape length based on the latest cross section measurements (Webber 1984, Soutoul et al. this conference). Our aim is also to extend the analysis to lower energies down to 0.4 GeV/n (kinetic energy observed near earth), using data obtained by other groups. The only nuclei for which we have a good data base in a broad range of energies are O and Fe, so the present study is restricted to these two elements
Solar spectral irradiance changes during cycle 24
Energy Technology Data Exchange (ETDEWEB)
Marchenko, S. V.; DeLand, M. T. [Also at NASA/Goddard Space Flight Center, Greenbelt, MD, USA. (United States)
2014-07-10
We use solar spectra obtained by the Ozone Monitoring Instrument (OMI) on board the Aura satellite to detect and follow long-term (years) and short-term (weeks) changes in the solar spectral irradiance (SSI) in the 265-500 nm spectral range. During solar Cycle 24, in the relatively line-free regions the SSI changed by ∼0.6% ± 0.2% around 265 nm. These changes gradually diminish to 0.15% ± 0.20% at 500 nm. All strong spectral lines and blends, with the notable exception of the upper Balmer lines, vary in unison with the solar 'continuum'. Besides the lines with strong chromospheric components, the most involved species include Fe I blends and all prominent CH, NH, and CN spectral bands. Following the general trend seen in the solar 'continuum', the variability of spectral lines also decreases toward longer wavelengths. The long-term solar cycle SSI changes are closely, to within the quoted 0.1%-0.2% uncertainties, matched by the appropriately adjusted short-term SSI variations derived from the 27 day rotational modulation cycles. This further strengthens and broadens the prevailing notion about the general scalability of the UV SSI variability to the emissivity changes in the Mg II 280 nm doublet on timescales from weeks to years. We also detect subtle deviations from this general rule: the prominent spectral lines and blends at λ ≳ 350 nm show slightly more pronounced 27 day SSI changes when compared to the long-term (years) trends. We merge the solar data from Cycle 21 with the current Cycle 24 OMI and GOME-2 observations and provide normalized SSI variations for the 170-795 nm spectral region.
International Nuclear Information System (INIS)
Ghiorso, A.
1975-09-01
The work done with element 106 is reviewed, and a new experiment which bears on the properties of the isotope of mass 260 with atomic number 104 is discussed. It is noted that in the case of element 106 a link is demonstrated to the granddaughter as well as the daughter
Energy Technology Data Exchange (ETDEWEB)
Muehling, G.
1983-01-01
The studies concerning breeders for the development of fuel elements carried out in Karlsruhe aim at: - optimization of fuel, - support of fuel rod and fuel element concepts from steady-state and field irradiation experiments and their evaluation, and - developing appropriate cladding and structural material and its adaptation to the requirements of high-output breeder reactors.
Vonk, J.A.; Smulders, Fee O.H.; Christianen, Marjolijn J.A.; Govers, Laura L.
2017-01-01
Knowledge on the role of seagrass leaf elements and in particular micronutrients and their ranges is limited. We present a global database, consisting of 1126 unique leaf values for ten elements, obtained from literature and unpublished data, spanning 25 different seagrass species from 28 countries.
Proceedings of transuranium elements
International Nuclear Information System (INIS)
Anon.
1992-01-01
The identification of the first synthetic elements was established by chemical evidence. Conclusive proof of the synthesis of the first artificial element, technetium, was published in 1937 by Perrier and Segre. An essential aspect of their achievement was the prediction of the chemical properties of element 43, which had been missing from the periodic table and which was expected to have properties similar to those of manganese and rhenium. The discovery of other artificial elements, astatine and francium, was facilitated in 1939-1940 by the prediction of their chemical properties. A little more than 50 years ago, in the spring of 1940, Edwin McMillan and Philip Abelson synthesized element 93, neptunium, and confirmed its uniqueness by chemical means. On August 30, 1940, Glenn Seaborg, Arthur Wahl, and the late Joseph Kennedy began their neutron irradiations of uranium nitrate hexahydrate. A few months later they synthesized element 94, later named plutonium, by observing the alpha particles emitted from uranium oxide targets that had been bombarded with deuterons. Shortly thereafter they proved that is was the second transuranium element by establishing its unique oxidation-reduction behavior. The symposium honored the scientists and engineers whose vision and dedication led to the discovery of the transuranium elements and to the understanding of the influence of 5f electrons on their electronic structure and bonding. This volume represents a record of papers presented at the symposium
Spectral analysis of turbulence propagation mechanisms in solar wind and tokamaks plasmas
International Nuclear Information System (INIS)
Dong, Yue
2014-01-01
This thesis takes part in the study of spectral transfers in the turbulence of magnetized plasmas. We will be interested in turbulence in solar wind and tokamaks. Spacecraft measures, first principle simulations and simple dynamical systems will be used to understand the mechanisms behind spectral anisotropy and spectral transfers in these plasmas. The first part of this manuscript will introduce the common context of solar wind and tokamaks, what is specific to each of them and present some notions needed to understand the work presented here. The second part deals with turbulence in the solar wind. We will present first an observational study on the spectral variability of solar wind turbulence. Starting from the study of Grappin et al. (1990, 1991) on Helios mission data, we bring a new analysis taking into account a correct evaluation of large scale spectral break, provided by the higher frequency data of the Wind mission. This considerably modifies the result on the spectral index distribution of the magnetic and kinetic energy. A second observational study is presented on solar wind turbulence anisotropy using autocorrelation functions. Following the work of Matthaeus et al. (1990); Dasso et al. (2005), we bring a new insight on this statistical, in particular the question of normalisation choices used to build the autocorrelation function, and its consequence on the measured anisotropy. This allows us to bring a new element in the debate on the measured anisotropy depending on the choice of the referential either based on local or global mean magnetic field. Finally, we study for the first time in 3D the effects of the transverse expansion of solar wind on its turbulence. This work is based on a theoretical and numerical scheme developed by Grappin et al. (1993); Grappin and Velli (1996), but never used in 3D. Our main results deal with the evolution of spectral and polarization anisotropy due to the competition between non-linear and linear (Alfven coupling
a Variable Resolution Global Spectral Model.
Hardiker, Vivek Manohar
A conformal transformation suggested by F. Schimdt is followed to implement a global spectral model with variable horizontal resolution. A conformal mapping is defined between the real physical sphere (Earth) to a transformed (Computational) sphere. The model equations are discretized on the computational sphere and the conventional spectral technique is applied to solve the model equations. There are two types of transformations used in the present study, namely, the Stretching transformation and the Rotation of the horizontal grid points. Application of the stretching transformation results in finer resolution along the meridional direction. The stretching is controlled by a parameter C. The rotation transformation can be used to relocate the North Pole of the model to any point on the geographic sphere. The idea is now to rotate the pole to the area of interest and refine the resolution around the new pole by applying the stretching transformation. The stretching transformation can be applied alone without the rotation. A T-42 Spectral Shallow-Water model is transformed by applying the stretching transformation alone as well as the two transformations together. A T-42 conventional Spectral Shallow-Water model is run as the control experiment and a conventional T-85 Spectral Shallow-Water model run is treated as the benchmark (Truth) solution. RMS error analysis for the geopotential field as well as the wind field is performed to evaluate the forecast made by the transformed model. It is observed that the RMS error of the transformed model is lower than that of the control run in a latitude band, for the case of stretching transformation alone, while for the total transformation (rotation followed by stretching), similar results are obtained for a rectangular domain. A multi-level global spectral model is designed from the current FSU global spectral model in order to implement the conformal transformation. The transformed T-85 model is used to study Hurricane
Si-Mohamed, Salim; Bar-Ness, Daniel; Sigovan, Monica; Cormode, David P.; Coulon, Philippe; Coche, Emmanuel; Vlassenbroek, Alain; Normand, Gabrielle; Boussel, Loic; Douek, Philippe
2017-11-01
Spectral photon-counting CT (SPCCT) is an emerging X-ray imaging technology that extends the scope of available diagnostic imaging tools. The main advantage of photon-counting CT technology is better sampling of the spectral information from the transmitted spectrum in order to benefit from additional physical information being produced during matter interaction, including photo-electric and Compton effects, and the K-edge effect. The K-edge, which is specific for a given element, is the increase in X-ray absorption of the element above the binding energy between its inner electronic shell and the nucleus. Hence, the spectral information contributes to better characterization of tissues and materials of interest, explaining the excitement surrounding this area of X-ray imaging. Other improvements of SPCCT compared with conventional CT, such as higher spatial resolution, lower radiation exposure and lower noise are also expected to provide benefits for diagnostic imaging. In this review, we describe multi-energy CT imaging, from dual energy to photon counting technology, and our initial experience results using a clinical-scale spectral photon counting CT (SPCCT) prototype system in vitro and in vivo. In addition, possible clinical applications are introduced.
Schrodinger Eigenmaps for spectral target detection
Dorado-Munoz, Leidy P.; Messinger, David W.
2015-05-01
Spectral imagery such as multispectral and hyperspectral data could be seen as a set of panchromatic images stacked as a 3d cube, with two spatial dimensions and one spectral. For hyperspectral imagery, the spectral dimension is highly sampled, which implies redundant information and a high spectral dimensionality. Therefore, it is necessary to use transformations on the data not only to reduce processing costs, but also to reveal some features or characteristics of the data that were hidden in the original space. Schrodinger Eigenmaps (SE) is a novel mathematical method for non-linear representation of a data set that attempts to preserve the local structure while the spectral dimension is reduced. SE could be seen as an extension of Laplacian Eigenmaps (LE), where the diffusion process could be steered in certain directions determined by a potential term. SE was initially introduced as a semi supervised classification technique and most recently, it has been applied to target detection showing promising performance. In target detection, only the barrier potential has been used, so different forms to define barrier potentials and its influence on the data embedding are studied here. In this way, an experiment to assess the target detection vs. how strong the influence of potentials is and how many eigenmaps are used in the detection, is proposed. The target detection is performed using a hyperspectral data set, where several targets with different complexity are presented in the same scene.
Efficient uncertainty minimization for fuzzy spectral clustering.
White, Brian S; Shalloway, David
2009-11-01
Spectral clustering uses the global information embedded in eigenvectors of an inter-item similarity matrix to correctly identify clusters of irregular shape, an ability lacking in commonly used approaches such as k -means and agglomerative clustering. However, traditional spectral clustering partitions items into hard clusters, and the ability to instead generate fuzzy item assignments would be advantageous for the growing class of domains in which cluster overlap and uncertainty are important. Korenblum and Shalloway [Phys. Rev. E 67, 056704 (2003)] extended spectral clustering to fuzzy clustering by introducing the principle of uncertainty minimization. However, this posed a challenging nonconvex global optimization problem that they solved by a brute-force technique unlikely to scale to data sets having more than O(10;{2}) items. Here we develop a method for solving the minimization problem, which can handle data sets at least two orders of magnitude larger. In doing so, we elucidate the underlying structure of uncertainty minimization using multiple geometric representations. This enables us to show how fuzzy spectral clustering using uncertainty minimization is related to and generalizes clustering motivated by perturbative analysis of almost-block-diagonal matrices. Uncertainty minimization can be applied to a wide variety of existing hard spectral clustering approaches, thus transforming them to fuzzy methods.
Spectral line polarimetry with a channeled polarimeter.
van Harten, Gerard; Snik, Frans; Rietjens, Jeroen H H; Martijn Smit, J; Keller, Christoph U
2014-07-01
Channeled spectropolarimetry or spectral polarization modulation is an accurate technique for measuring the continuum polarization in one shot with no moving parts. We show how a dual-beam implementation also enables spectral line polarimetry at the intrinsic resolution, as in a classic beam-splitting polarimeter. Recording redundant polarization information in the two spectrally modulated beams of a polarizing beam-splitter even provides the possibility to perform a postfacto differential transmission correction that improves the accuracy of the spectral line polarimetry. We perform an error analysis to compare the accuracy of spectral line polarimetry to continuum polarimetry, degraded by a residual dark signal and differential transmission, as well as to quantify the impact of the transmission correction. We demonstrate the new techniques with a blue sky polarization measurement around the oxygen A absorption band using the groundSPEX instrument, yielding a polarization in the deepest part of the band of 0.160±0.010, significantly different from the polarization in the continuum of 0.2284±0.0004. The presented methods are applicable to any dual-beam channeled polarimeter, including implementations for snapshot imaging polarimetry.
Directory of Open Access Journals (Sweden)
Cornelis van der Mee
2005-01-01
Full Text Available We present the complete version including proofs of the results announced in [van der Mee C., Pivovarchik V.: A Sturm-Liouville spectral problem with boundary conditions depending on the spectral parameter. Funct. Anal. Appl. 36 (2002, 315–317 [Funkts. Anal. Prilozh. 36 (2002, 74–77 (Russian
Metallicity and the spectral energy distribution and spectral types of dwarf O-stars
Mokiem, M.R.; Martín-Hernández, N.L.; Lenorzer, A.; de Koter, A.; Tielens, A.G.G.M.
2004-01-01
We present a systematic study of the effect of metallicity on the stellar spectral energy distribution (SED) of O main sequence (dwarf) stars, focussing on the hydrogen and helium ionizing continua, and on the optical and near-IR lines used for spectral classification. The spectra are based on
Spectral image reconstruction using an edge preserving spatio-spectral Wiener estimation.
Urban, Philipp; Rosen, Mitchell R; Berns, Roy S
2009-08-01
Reconstruction of spectral images from camera responses is investigated using an edge preserving spatio-spectral Wiener estimation. A Wiener denoising filter and a spectral reconstruction Wiener filter are combined into a single spatio-spectral filter using local propagation of the noise covariance matrix. To preserve edges the local mean and covariance matrix of camera responses is estimated by bilateral weighting of neighboring pixels. We derive the edge-preserving spatio-spectral Wiener estimation by means of Bayesian inference and show that it fades into the standard Wiener reflectance estimation shifted by a constant reflectance in case of vanishing noise. Simulation experiments conducted on a six-channel camera system and on multispectral test images show the performance of the filter, especially for edge regions. A test implementation of the method is provided as a MATLAB script at the first author's website.
Contreras Martínez, Ramiro; Garduño Mejía, Jesús; Rosete Aguilar, Martha; Román Moreno, Carlos J.
2016-08-01
We propose the design of a new technique for measuring the spectral resolution of a Czerny-Turner Spectrometer based on spectral interferometry of ultrashort laser pulses. It is well known that ultrashort pulse measurement like SPIDER and TADPOLE techniques requires a precise and well characterized spectrum, especially in fringe resolution. We developed a new technique, to our knowledge, in which by measuring the nominal fringe spacing of a spectral interferogram one can characterize the spectral resolution in a Czerny-Turner spectrometer using Ryleigh's criteria. This technique was tested in a commercial Czerny-Turner spectrometer. The results demonstrate a consistent spectral resolution between what was reported by the manufacturer. The actual calibration technique was applied in a homemade broadband astigmatism-free Czerny-Turner spectrometer. Theory and experimental results are presented.
International Nuclear Information System (INIS)
Villalobos Chaves, Alberto E.
2006-01-01
Spectral analysis capability of the information generated by a spectrophotometer broadcast / shimadzu AA 640-13 atomic absorption has increased, through the capture of data, using a digital multimeter as the interface between the spectrophotometer and a computer. To facilitate the identification of analytes was created Chromulan format files for the 99 chemical elements reported in the literature, and covering the region between 200 nm and 900 nm, the subject of this study. (author) [es
Spectral difference methods for solving the differential equations of chemical physics
Mazziotti, David A.
2002-08-01
Spectral differences [D. A. Mazziotti, Chem. Phys. Lett. 299, 473 (1999)] is a family of techniques for solving differential equations in which the summation in the numerical derivative is accelerated to produce a matrix representation that is not only exponentially convergent like the discrete variable representation (DVR) and other spectral methods but also sparse like traditional finite differences and finite elements. Building upon important work by Boyd [Comput. Methods Appl. Mech. Eng. 116, 1 (1994)] and Gray and Goldfield [J. Chem. Phys. 115, 8331 (2001)], we explore a new class of spectral difference methods which yields solutions that are more accurate than high-order finite differences by several orders of magnitude. With the generating weight for Gegenbauer polynomials we design a new spectral difference method where the limits of an adjustable parameter alpha generate both finite differences (alpha=infinity), emphasizing the low Fourier frequencies, and a truncated sinc-DVR (alpha=0), emphasizing all Fourier frequencies below the aliasing limit of the grid. A range of choices for alpha[set membership]0,infinity produces solutions which are significantly better than the equivalent order of finite differences. We compare the Gegenbauer-weighted spectral differences with methods by Boyd as well as Gray and Goldfield which employ a hyperbolic secant and a step function as frequency weights, respectively. The solutions from the Gegenbauer- and the sech-weighted differences are shown to be less sensitive to parameter selection than the step-weighted differences. We illustrate all of the spectral difference methods through vibrational and quantum control calculations with diatomic iodine and the van der Waals cluster NeCO. Spectral differences also have important applications in molecular dynamics and electronic structure as well as other areas of science and engineering.
Transposable elements in mosquitoes.
Boulesteix, M; Biémont, C
2005-01-01
We describe the current state of knowledge about transposable elements (TEs) in different mosquito species. DNA-based elements (class II elements), non-LTR retrotransposons (class I elements), and MITEs (Miniature Inverted Repeat Transposable Elements) are found in the three genera, Anopheles, Aedes and Culex, whereas LTR retrotransposons (class I elements) are found only in Anopheles and Aedes. Mosquitoes were the first insects in which MITEs were reported; they have several LTR retrotransposons belonging to the Pao family, which is distinct from the Gypsy-Ty3 and Copia-Ty1 families. The number of TE copies shows huge variations between classes of TEs within a given species (from 1 to 1000), in sharp contrast to Drosophila, which shows only relatively minor differences in copy number between elements (from 1 to 100). The genomes of these insects therefore display major differences in the amount of TEs and therefore in their structure and global composition. We emphasize the need for more population genetic data about the activity of TEs, their distribution over chromosomes and their frequencies in natural populations of mosquitoes, to further the current attempts to develop a transgenic mosquito unable to transmit malaria that is intended to replace the natural populations.
Listening talkers produce great spectral tilt contrasts
DEFF Research Database (Denmark)
Christiansen, Thomas Ulrich; Heegård, Jan; Henrichsen, Peter Juel
It is well known that the envelope of the long-term average speech spectrum flattens with vocal effort. A recent study [1] showed that content words had a flatter spectral envelope than content words at the same overall level for a specific Danish speech material. The present paper investigates...... of colored geometrical shapes taken from DanPASS [2]. The spectral tilt was gauged by calculating the band-level difference in dB between two frequency bands with pass-bands 150 to 803 Hz and 803 to 1358 Hz respectively in 5 ms intervals. This was done separately for intervals containing content words...... and function words and grouped by talker. The spectral tilt difference was then calculated as the average band-level difference for function words minus the average band-level difference for content words. This calculation was grouped per talker. For the monologues these differences ranged between 5 and 8 d...
Automated spectral classification and the GAIA project
Lasala, Jerry; Kurtz, Michael J.
1995-01-01
Two dimensional spectral types for each of the stars observed in the global astrometric interferometer for astrophysics (GAIA) mission would provide additional information for the galactic structure and stellar evolution studies, as well as helping in the identification of unusual objects and populations. The classification of the large quantity generated spectra requires that automated techniques are implemented. Approaches for the automatic classification are reviewed, and a metric-distance method is discussed. In tests, the metric-distance method produced spectral types with mean errors comparable to those of human classifiers working at similar resolution. Data and equipment requirements for an automated classification survey, are discussed. A program of auxiliary observations is proposed to yield spectral types and radial velocities for the GAIA-observed stars.
Spectrally resolved longitudinal spatial coherence inteferometry
Woodard, Ethan R.; Kudenov, Michael W.
2017-05-01
We present an alternative imaging technique using spectrally resolved longitudinal spatial coherence interferometry to encode a scene's angular information onto the source's power spectrum. Fourier transformation of the spectrally resolved channeled spectrum output yields a measurement of the incident scene's angular spectrum. Theory for the spectrally resolved interferometric technique is detailed, demonstrating analogies to conventional Fourier transform spectroscopy. An experimental proof of concept system and results are presented using an angularly-dependent Fabry-Perot interferometer-based optical design for successful reconstruction of one-dimensional sinusoidal angular spectra. Discussion for a potential future application of the technique, in which polarization information is encoded onto the source's power spectrum is also given.
Multiple spectral splits of supernova neutrinos.
Dasgupta, Basudeb; Dighe, Amol; Raffelt, Georg G; Smirnov, Alexei Yu
2009-07-31
Collective oscillations of supernova neutrinos swap the spectra f(nu(e))(E) and f(nu[over ](e))(E) with those of another flavor in certain energy intervals bounded by sharp spectral splits. This phenomenon is far more general than previously appreciated: typically one finds one or more swaps and accompanying splits in the nu and nu[over ] channels for both inverted and normal neutrino mass hierarchies. Depending on an instability condition, swaps develop around spectral crossings (energies where f(nu(e))=f(nu(x)), f(nu[over ](e))=f(nu[over ](x)) as well as E-->infinity where all fluxes vanish), and the widths of swaps are determined by the spectra and fluxes. Washout by multiangle decoherence varies across the spectrum and splits can survive as sharp spectral features.
Novel Base Station MIMO Antennas with Enhanced Spectral Efficiencies Using Angular Reuse
Directory of Open Access Journals (Sweden)
Miguel Mora-Andreu
2015-01-01
Full Text Available The true polarization diversity (TPD technique is combined with the spatial diversity technique in novel MIMO antenna array geometries with a large number of elements. The use of a large number of elements requires some angular reuse within the array for polarization diversity. With designs compatible with existing base station antenna array configurations, the novel geometries with combining diversity schemes are shown to be able to achieve near the maximum spectral efficiencies. True polarization diversity (TPD schemes are found to be an excellent complement to more conventional spatial diversity schemes for obtaining optimum MIMO array performance in base station antennas.
Neutronic fuel element fabrication
Korton, George
2004-02-24
This disclosure describes a method for metallurgically bonding a complete leak-tight enclosure to a matrix-type fuel element penetrated longitudinally by a multiplicity of coolant channels. Coolant tubes containing solid filler pins are disposed in the coolant channels. A leak-tight metal enclosure is then formed about the entire assembly of fuel matrix, coolant tubes and pins. The completely enclosed and sealed assembly is exposed to a high temperature and pressure gas environment to effect a metallurgical bond between all contacting surfaces therein. The ends of the assembly are then machined away to expose the pin ends which are chemically leached from the coolant tubes to leave the coolant tubes with internal coolant passageways. The invention described herein was made in the course of, or under, a contract with the U.S. Atomic Energy Commission. It relates generally to fuel elements for neutronic reactors and more particularly to a method for providing a leak-tight metal enclosure for a high-performance matrix-type fuel element penetrated longitudinally by a multiplicity of coolant tubes. The planned utilization of nuclear energy in high-performance, compact-propulsion and mobile power-generation systems has necessitated the development of fuel elements capable of operating at high power densities. High power densities in turn require fuel elements having high thermal conductivities and good fuel retention capabilities at high temperatures. A metal clad fuel element containing a ceramic phase of fuel intimately mixed with and bonded to a continuous refractory metal matrix has been found to satisfy the above requirements. Metal coolant tubes penetrate the matrix to afford internal cooling to the fuel element while providing positive fuel retention and containment of fission products generated within the fuel matrix. Metal header plates are bonded to the coolant tubes at each end of the fuel element and a metal cladding or can completes the fuel-matrix enclosure
Spectral Trends of Titan's Tropical Surface
Griffith, Caitlin Ann; Penteado, Paulo F.; Turner, Jake; Montiel, Nicholas; Schoenfeld, Ashley; Lopes, Rosaly M. C.; Soderblom, Laurence A.; Neish, Catherine; Radebaugh, Jani
2016-10-01
Titan's surface can be observed most clearly at 8 spectral regions that lie in between the strong methane bands in Titan's spectrum. Within these "windows", between 0.9 to 5 microns, the surface is nonetheless obscured by methane and haze, the latter of which is optically thick at lower wavelengths. Thus studies of Titan's surface must eliminate the effects of atmospheric extinction and extract the subtle spectral features that underlie the dominant spectral trends.To determine the subtle spectral features of Titan's tropical surface (30S--30N) we conducted a Principal Components Analysis (PCA) of the I/F at the 1.1, 1.3, 1.6 and 2.0 um wavelength windows, recorded by Cassini/VIMS. The PCA analysis identifies the spectral trend that defines the highest variance in the data (the principal component), as well as successively weaker orthogonal trends, without a priori assumptions about the surface composition, e.g. as needed in radiative transfer analyses.Our analysis derives the spectral features at the four wavelengths that describe Titan's tropical surface. We detect a large almost contiguous region that extends roughly 160 degrees in longitude and which exhibits absorption features at 1.6 and 2.0, as well as 2.8 um (characteristic of water ice). This vast and perhaps tectonic feature is, in part, associated with terrain that is hypothesized to be some of the oldest surfaces on Titan. In addition, the PCA analysis indicates at least 2 separate organic spectra signatures, potentially due to the separation of liquid and refractory sediments or to their chemically alteration over time. Here we discuss the PCA analysis and compare our derived compositional maps of Titan's surface with Radar maps of the topography and morphology, to entertain questions regarding the geology of Titan's surface the age of its atmosphere.
Beam profile assessment in spectral CT scanners.
Anjomrouz, Marzieh; Shamshad, Muhammad; Panta, Raj K; Broeke, Lieza Vanden; Schleich, Nanette; Atharifard, Ali; Aamir, Raja; Bheesette, Srinidhi; Walsh, Michael F; Goulter, Brian P; Bell, Stephen T; Bateman, Christopher J; Butler, Anthony P H; Butler, Philip H
2018-03-01
In this paper, we present a method that uses a combination of experimental and modeled data to assess properties of x-ray beam measured using a small-animal spectral scanner. The spatial properties of the beam profile are characterized by beam profile shape, the angular offset along the rotational axis, and the photon count difference between experimental and modeled data at the central beam axis. Temporal stability of the beam profile is assessed by measuring intra- and interscan count variations. The beam profile assessment method was evaluated on several spectral CT scanners equipped with Medipix3RX-based detectors. On a well-calibrated spectral CT scanner, we measured an integral count error of 0.5%, intrascan count variation of 0.1%, and an interscan count variation of less than 1%. The angular offset of the beam center ranged from 0.8° to 1.6° for the studied spectral CT scanners. We also demonstrate the capability of this method to identify poor performance of the system through analyzing the deviation of the experimental beam profile from the model. This technique can, therefore, aid in monitoring the system performance to obtain a robust spectral CT; providing the reliable quantitative images. Furthermore, the accurate offset parameters of a spectral scanner provided by this method allow us to incorporate a more realistic form of the photon distribution in the polychromatic-based image reconstruction models. Both improvements of the reliability of the system and accuracy of the volume reconstruction result in a better discrimination and quantification of the imaged materials. © 2018 MARS Bioimaging Ltd. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Dkeidek, Iyad M.
2003-05-01
This paper presents a game designed to convey chemical concepts related to periodic table elements: their symbols, electronic configurations, uses, and properties. Students answer questions and connect chemical symbols (as in a connect-the-dots game), so that correct answers yield a picture. Different pictures can be obtained depending on the elements chosen, their location in the figure of the game, and the questions asked. While this game was developed for first- or second-year high school students, teachers have the flexibility to choose different elements and alter the questions of the game to accommodate the level of the students in their classes.
DEFF Research Database (Denmark)
Heiselberg, Per; Nielsen, Peter V.
Air distribution in ventilated rooms is a flow process that can be divided into different elements such as supply air jets, exhaust flows, thermal plumes, boundary layer flows, infiltration and gravity currents. These flow elements are isolated volumes where the air movement is controlled...... by a restricted number of parameters, and the air movement is fairly independent of the general flow in the enclosure. In many practical situations, the most convenient· method is to design the air distribution system using flow element theory....
Energy Technology Data Exchange (ETDEWEB)
Vogel, J.S.; McAninch, J.; Freeman, S.
1996-08-01
AMS (Accelerator Mass Spectrometry) provides high detection sensitivity for isotopes whose half-lives are between 10 years and 100 million years. {sup 14}C is the most developed of such isotopes and is used in tracing natural and anthropogenic organic compounds in the Earth`s biosphere. Thirty-three elements in the main periodic table and 17 lanthanides or actinides have long lived isotopes, providing potential tracers for research in elemental biochemistry. Overlap of biologically interesting heavy elements and possible AMS tracers is discussed.
International Nuclear Information System (INIS)
Kuzin, S.V.; Shestov, S.V.; Pertsov, A.A.; Reva, A.A.; Zuev, S.Yu.; Lopatin, A.Ya.; Luchin, V.I.; Zhou, Kh.; Khuo, T.
2008-01-01
The full-sun EUV telescope for 13.2 nm spectral band for the TESIS experiment is designed to produce images of hot coronal plasma (T ∼ 10 MK). Calibration process of optical elements is presented. Spectral transmission of multilayer Zr/Si filters, sensitivity and radiation tolerance of CCD detector have been measured. Peak transmission of EUV filters in working, spectral band reaches 40-50% (filters with 50 and 55 layers are used), spectral dependence of transmission is close to calculated one. Transmission of filters in white light is equal to (1-2)x10 -6 . Sensitivity of CCD ranges from 0.01 to 0.1 ADC units per photon, radiation tolerance is better than 10 9 rad [ru
16 W output power by high-efficient spectral beam combining of DBR-tapered diode lasers
DEFF Research Database (Denmark)
Müller, André; Vijayakumar, Deepak; Jensen, Ole Bjarlin
2011-01-01
Up to 16 W output power has been obtained using spectral beam combining of two 1063 nm DBR-tapered diode lasers. Using a reflecting volume Bragg grating, a combining efficiency as high as 93.7% is achieved, resulting in a single beam with high spatial coherence. The result represents the highest...... output power achieved by spectral beam combining of two single element tapered diode lasers. Since spectral beam combining does not affect beam propagation parameters, M2-values of 1.8 (fast axis) and 3.3 (slow axis) match the M2- values of the laser with lowest spatial coherence. The principle...... of spectral beam combining used in our experiments can be expanded to combine more than two tapered diode lasers and hence it is expected that the output power may be increased even further in the future....
16 W output power by high-efficient spectral beam combining of DBR-tapered diode lasers.
Müller, André; Vijayakumar, Deepak; Jensen, Ole Bjarlin; Hasler, Karl-Heinz; Sumpf, Bernd; Erbert, Götz; Andersen, Peter E; Petersen, Paul Michael
2011-01-17
Up to 16 W output power has been obtained using spectral beam combining of two 1063 nm DBR-tapered diode lasers. Using a reflecting volume Bragg grating, a combining efficiency as high as 93.7% is achieved, resulting in a single beam with high spatial coherence. The result represents the highest output power achieved by spectral beam combining of two single element tapered diode lasers. Since spectral beam combining does not affect beam propagation parameters, M2-values of 1.8 (fast axis) and 3.3 (slow axis) match the M2-values of the laser with lowest spatial coherence. The principle of spectral beam combining used in our experiments can be expanded to combine more than two tapered diode lasers and hence it is expected that the output power may be increased even further in the future.
Universal fermionic spectral functions from string theory.
Gauntlett, Jerome P; Sonner, Julian; Waldram, Daniel
2011-12-09
We carry out the first holographic calculation of a fermionic response function for a strongly coupled d=3 system with an explicit D=10 or D=11 supergravity dual. By considering the supersymmetry current, we obtain a universal result applicable to all d=3 N=2 SCFTs with such duals. Surprisingly, the spectral function does not exhibit a Fermi surface, despite the fact that the system is at finite charge density. We show that it has a phonino pole and at low frequencies there is a depletion of spectral weight with a power-law scaling which is governed by a locally quantum critical point.
Glue Film Thickness Measurements by Spectral Reflectance
Energy Technology Data Exchange (ETDEWEB)
B. R. Marshall
2010-09-20
Spectral reflectance was used to determine the thickness of thin glue layers in a study of the effect of the glue on radiance and reflectance measurements of shocked-tin substrates attached to lithium fluoride windows. Measurements based on profilometry of the components were found to be inaccurate due to flatness variations and deformation of the tin substrate under pressure during the gluing process. The accuracy of the spectral reflectance measurements were estimated to be ±0.5 μm, which was sufficient to demonstrate a convincing correlation between glue thickness and shock-generated light.
Glue Film Thickness Measurements by Spectral Reflectance
International Nuclear Information System (INIS)
Marshall, B.R.
2010-01-01
Spectral reflectance was used to determine the thickness of thin glue layers in a study of the effect of the glue on radiance and reflectance measurements of shocked-tin substrates attached to lithium fluoride windows. Measurements based on profilometry of the components were found to be inaccurate due to flatness variations and deformation of the tin substrate under pressure during the gluing process. The accuracy of the spectral reflectance measurements were estimated to be ±0.5 (micro)m, which was sufficient to demonstrate a convincing correlation between glue thickness and shock-generated light.
Quantum BCH Codes Based on Spectral Techniques
International Nuclear Information System (INIS)
Guo Ying; Zeng Guihua
2006-01-01
When the time variable in quantum signal processing is discrete, the Fourier transform exists on the vector space of n-tuples over the Galois field F 2 , which plays an important role in the investigation of quantum signals. By using Fourier transforms, the idea of quantum coding theory can be described in a setting that is much different from that seen that far. Quantum BCH codes can be defined as codes whose quantum states have certain specified consecutive spectral components equal to zero and the error-correcting ability is also described by the number of the consecutive zeros. Moreover, the decoding of quantum codes can be described spectrally with more efficiency.
Spectral methods in numerical plasma simulation
International Nuclear Information System (INIS)
Coutsias, E.A.; Hansen, F.R.; Huld, T.; Knorr, G.; Lynov, J.P.
1989-01-01
An introduction is given to the use of spectral methods in numerical plasma simulation. As examples of the use of spectral methods, solutions to the two-dimensional Euler equations in both a simple, doubly periodic region, and on an annulus will be shown. In the first case, the solution is expanded in a two-dimensional Fourier series, while a Chebyshev-Fourier expansion is employed in the second case. A new, efficient algorithm for the solution of Poisson's equation on an annulus is introduced. Problems connected to aliasing and to short wavelength noise generated by gradient steepening are discussed. (orig.)
Spectral Methods in Numerical Plasma Simulation
DEFF Research Database (Denmark)
Coutsias, E.A.; Hansen, F.R.; Huld, T.
1989-01-01
in a two-dimensional Fourier series, while a Chebyshev-Fourier expansion is employed in the second case. A new, efficient algorithm for the solution of Poisson's equation on an annulus is introduced. Problems connected to aliasing and to short wavelength noise generated by gradient steepening are discussed.......An introduction is given to the use of spectral methods in numerical plasma simulation. As examples of the use of spectral methods, solutions to the two-dimensional Euler equations in both a simple, doubly periodic region, and on an annulus will be shown. In the first case, the solution is expanded...
Bedform characterization through 2D spectral analysis
DEFF Research Database (Denmark)
Lefebvre, Alice; Ernstsen, Verner Brandbyge; Winter, Christian
2011-01-01
characteristics using twodimensional (2D) spectral analysis is presented and tested on seabed elevation data from the Knudedyb tidal inlet in the Danish Wadden Sea, where large compound bedforms are found. The bathymetric data were divided into 20x20 m areas on which a 2D spectral analysis was applied. The most...... energetic peak of the 2D spectrum was found and its energy, frequency and direction were calculated. A power-law was fitted to the average of slices taken through the 2D spectrum; its slope and y-intercept were calculated. Using these results the test area was morphologically classified into 4 distinct...
Krein Spectral Triples and the Fermionic Action
International Nuclear Information System (INIS)
Dungen, Koen van den
2016-01-01
Motivated by the space of spinors on a Lorentzian manifold, we define Krein spectral triples, which generalise spectral triples from Hilbert spaces to Krein spaces. This Krein space approach allows for an improved formulation of the fermionic action for almost-commutative manifolds. We show by explicit calculation that this action functional recovers the correct Lagrangians for the cases of electrodynamics, the electro-weak theory, and the Standard Model. The description of these examples does not require a real structure, unless one includes Majorana masses, in which case the internal spaces also exhibit a Krein space structure.
Spectral Classification of Asteroids by Random Forest
Huang, C.; Ma, Y. H.; Zhao, H. B.; Lu, X. P.
2016-09-01
With the increasing asteroid spectral and photometric data, a variety of classification methods for asteroids have been proposed. This paper classifies asteroids based on the observations of Sloan Digital Sky Survey (SDSS) Moving Object Catalogue (MOC) by using the random forest algorithm. With the training data derived from the taxonomies of Tholen, Bus, Lazzaro, DeMeo, and Principal Component Analysis, we classify 48642 asteroids according to g, r, i, and z SDSS magnitudes. In this way, asteroids are divided into 8 spectral classes (C, X, S, B, D, K, L, and V).
Spectral Analysis of Large Particle Systems
DEFF Research Database (Denmark)
Dahlbæk, Jonas
2017-01-01
is on obtaining a framework which unifies and generalizes frameworks that have appeared previously in the literature. The end result is a calculus for creation/annihilation symbols, where Wick’s theorem provides a formula for the product of finitely many symbols. The framework is then applied to the Fröhlich...... polaron model. The framework is also applied to the spin boson model. The application to the spin boson model is based on the spectral renormalization group. It is shown that the spectral renormalization group scheme can be natu- rally posed as an iterated Grushin problem. While it is already known...
Bordism, stable homotopy and adams spectral sequences
Kochman, Stanley O
1996-01-01
This book is a compilation of lecture notes that were prepared for the graduate course "Adams Spectral Sequences and Stable Homotopy Theory" given at The Fields Institute during the fall of 1995. The aim of this volume is to prepare students with a knowledge of elementary algebraic topology to study recent developments in stable homotopy theory, such as the nilpotence and periodicity theorems. Suitable as a text for an intermediate course in algebraic topology, this book provides a direct exposition of the basic concepts of bordism, characteristic classes, Adams spectral sequences, Brown-Peter
Novel spectral features of nanoelectromechanical systems
Tahir, M.
2014-02-17
Electron transport through a quantum dot or single molecule coupled to a quantum oscillator is studied by the Keldysh nonequilibrium Green\\'s function formalism to obtain insight into the quantum dynamics of the electronic and oscillator degrees of freedom. We tune the electronic level of the quantum dot by a gate voltage, where the leads are kept at zero temperature. Due to the nonequilibrium distribution of the electrons in the quantum dot, the spectral function becomes a function of the gate voltage. Novel spectral features are identified for the ground and excited states of nanomechanical oscillators that can be used to enhance the measurement sensitivity.
Planck 2013 results. IX. HFI spectral response
DEFF Research Database (Denmark)
Planck Collaboration,; Ade, P. A. R.; Aghanim, N.
2013-01-01
-of-band signal rejection) of all HFI detectors to a known source of electromagnetic radiation individually. This was determined by measuring the output of all detection channels for radiation propagated through a continuously scanned polarizing Fourier transform spectrometer. As there is no on-board spectrometer......, this paper focuses on the analysis of the pre-flight spectral response measurements and the derivation of data products, e.g. band-average spectra, unit conversion coefficients, and colour correction coefficients, all with related uncertainties. Verifications of the HFI spectral response data are provided...
Reducing the spectral index in supernatural inflation
International Nuclear Information System (INIS)
Lin, C.-M.; Cheung, Kingman
2009-01-01
Supernatural inflation is an attractive model based on just a flat direction with soft supersymmetry breaking mass terms in the framework of supersymmetry. The beauty of the model is that it needs no fine-tuning. However, the prediction of the spectral index is n s > or approx. 1, in contrast to experimental data. In this paper, we discuss supernatural inflation with the spectral index reduced to n s =0.96 without any fine-tuning, considering the general feature that a flat direction is lifted by a nonrenormalizable term with an A-term.
Reducing the spectral index in supernatural inflation
Lin, Chia-Min; Cheung, Kingman
2009-04-01
Supernatural inflation is an attractive model based on just a flat direction with soft supersymmetry breaking mass terms in the framework of supersymmetry. The beauty of the model is that it needs no fine-tuning. However, the prediction of the spectral index is ns≳1, in contrast to experimental data. In this paper, we discuss supernatural inflation with the spectral index reduced to ns=0.96 without any fine-tuning, considering the general feature that a flat direction is lifted by a nonrenormalizable term with an A-term.
2010-03-01
Only and Spectrally-Temporally adapted SMSE signals at var - ious levels channel estimate MSE. Results based on a maximum BER constraint of PB = 10 −2...57. Tian, Z. and G. B. Giannakis. “A Wavelet Approach to Wideband Spectrum Sensing for Cognitive Radios”. Proceedings of the 1st International
International Nuclear Information System (INIS)
Hindle, E.D.
1981-01-01
An array of rods comprising zirconium alloy sheathed nuclear fuel pellets assembled to form a fuel element for a pressurised water reactor is claimed. The helium gas pressure within each rod differs substantially from that of its closest neighbours
International Nuclear Information System (INIS)
Hindle, E.D.
1984-01-01
The fuel elements for a pressurised water reactor comprise arrays of rods of zirconium alloy sheathed nuclear fuel pellets. The helium gas pressure within each rod differs substantially from that of its closest neighbours
Bridge element deterioration rates.
2008-10-01
This report describes the development of bridge element deterioration rates using the NYSDOT : bridge inspection database using Markov chains and Weibull-based approaches. It is observed : that Weibull-based approach is more reliable for developing b...