WorldWideScience

Sample records for left ventral frontostriatal

  1. Early White-Matter Abnormalities of the Ventral Frontostriatal Pathway in Fragile X Syndrome

    Science.gov (United States)

    Haas, Brian W.; Barnea-Goraly, Naama; Lightbody, Amy A.; Patnaik, Swetapadma S.; Hoeft, Fumiko; Hazlett, Heather; Piven, Joseph; Reiss, Allan L.

    2009-01-01

    Aim: Fragile X syndrome is associated with cognitive deficits in inhibitory control and with abnormal neuronal morphology and development. Method: In this study, we used a diffusion tensor imaging (DTI) tractography approach to reconstruct white-matter fibers in the ventral frontostriatal pathway in young males with fragile X syndrome (n = 17;…

  2. Fronto-striatal atrophy in behavioural variant frontotemporal dementia & Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Maxime eBertoux

    2015-07-01

    Full Text Available Behavioural variant frontotemporal dementia (bvFTD has only recently been associated with significant striatal atrophy, whereas the striatum appears to be relatively preserved in Alzheimer’s disease (AD. Considering the critical role the striatum has in cognition and behaviour, striatal degeneration, together with frontal atrophy, could be responsible of some characteristic symptoms in bvFTD and emerges therefore as promising novel diagnostic biomarker to distinguish bvFTD and AD. Previous studies have, however, only taken either cortical or striatal atrophy into account when comparing the two diseases. In this study, we establish for the first time a profile of fronto-striatal atrophy in 23 bvFTD and 29 AD patients at presentation, based on the structural connectivity of striatal and cortical regions. Patients are compared to 50 healthy controls by using a novel probabilistic connectivity atlas, which defines striatal regions by their cortical white matter connectivity, allowing us to explore the degeneration of the frontal and striatal regions that are functionally linked. Comparisons with controls revealed that bvFTD showed substantial fronto-striatal atrophy affecting the ventral as well as anterior and posterior dorso-lateral prefrontal cortices and the related striatal subregions. By contrast, AD showed few fronto-striatal atrophy, despite having significant posterior dorso-lateral prefrontal degeneration. Direct comparison between bvFTD and AD revealed significantly more atrophy in the ventral striatal-ventromedial prefrontal cortex regions in bvFTD. Consequently, deficits in ventral fronto-striatal regions emerge as promising novel and efficient diagnosis biomarker for bvFTD. Future investigations into the contributions of these fronto-striatal loops on bvFTD symptomology are needed to develop simple diagnostic and disease tracking algorithms.

  3. Narcissism is associated with weakened frontostriatal connectivity: a DTI study

    Science.gov (United States)

    Lynam, Donald R.; Powell, David K.; DeWall, C. Nathan

    2016-01-01

    Narcissism is characterized by the search for affirmation and admiration from others. Might this motivation to find external sources of acclaim exist to compensate for neurostructural deficits that link the self with reward? Greater structural connectivity between brain areas that process self-relevant stimuli (i.e. the medial prefrontal cortex) and reward (i.e. the ventral striatum) is associated with fundamentally positive self-views. We predicted that narcissism would be associated with less integrity of this frontostriatal pathway. We used diffusion tensor imaging to assess the frontostriatal structural connectivity among 50 healthy undergraduates (32 females, 18 males) who also completed a measure of grandiose narcissism. White matter integrity in the frontostriatal pathway was negatively associated with narcissism. Our findings, while purely correlational, suggest that narcissism arises, in part, from a neural disconnect between the self and reward. The exhibitionism and immodesty of narcissists may then be a regulatory strategy to compensate for this neural deficit. PMID:26048178

  4. Narcissism is associated with weakened frontostriatal connectivity: a DTI study.

    Science.gov (United States)

    Chester, David S; Lynam, Donald R; Powell, David K; DeWall, C Nathan

    2016-07-01

    Narcissism is characterized by the search for affirmation and admiration from others. Might this motivation to find external sources of acclaim exist to compensate for neurostructural deficits that link the self with reward? Greater structural connectivity between brain areas that process self-relevant stimuli (i.e. the medial prefrontal cortex) and reward (i.e. the ventral striatum) is associated with fundamentally positive self-views. We predicted that narcissism would be associated with less integrity of this frontostriatal pathway. We used diffusion tensor imaging to assess the frontostriatal structural connectivity among 50 healthy undergraduates (32 females, 18 males) who also completed a measure of grandiose narcissism. White matter integrity in the frontostriatal pathway was negatively associated with narcissism. Our findings, while purely correlational, suggest that narcissism arises, in part, from a neural disconnect between the self and reward. The exhibitionism and immodesty of narcissists may then be a regulatory strategy to compensate for this neural deficit. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  5. Structural integrity of frontostriatal connections predicts longitudinal changes in self-esteem.

    Science.gov (United States)

    Chavez, Robert S; Heatherton, Todd F

    2017-06-01

    Diverse neurological and psychiatric conditions are marked by a diminished sense of positive self-regard, and reductions in self-esteem are associated with risk for these disorders. Recent evidence has shown that the connectivity of frontostriatal circuitry reflects individual differences in self-esteem. However, it remains an open question as to whether the integrity of these connections can predict self-esteem changes over larger timescales. Using diffusion magnetic resonance imaging and probabilistic tractography, we demonstrate that the integrity of white matter pathways linking the medial prefrontal cortex to the ventral striatum predicts changes in self-esteem 8 months after initial scanning in a sample of 30 young adults. Individuals with greater integrity of this pathway during the scanning session at Time 1 showed increased levels of self-esteem at follow-up, whereas individuals with lower integrity showed stifled or decreased levels of self-esteem. These results provide evidence that frontostriatal white matter integrity predicts the trajectory of self-esteem development in early adulthood, which may contribute to blunted levels of positive self-regard seen in multiple psychiatric conditions, including depression and anxiety.

  6. Strength of Structural and Functional Frontostriatal Connectivity Predicts Self-Control in the Healthy Elderly

    Science.gov (United States)

    Hänggi, Jürgen; Lohrey, Corinna; Drobetz, Reinhard; Baetschmann, Hansruedi; Forstmeier, Simon; Maercker, Andreas; Jäncke, Lutz

    2016-01-01

    Self-regulation refers to the successful use of executive functions and initiation of top-down processes to control one's thoughts, behavior, and emotions, and it is crucial to perform self-control. Self-control is needed to overcome impulses and can be assessed by delay of gratification (DoG) and delay discounting (DD) paradigms. In children/adolescents, good DoG/DD ability depends on the maturity of frontostriatal connectivity, and its decline in strength with advancing age might adversely affect self-control because prefrontal brain regions are more prone to normal age-related atrophy than other regions. Here, we aimed at highlighting the relationship between frontostriatal connectivity strength and DoG performance in advanced age. We recruited 40 healthy elderly individuals (mean age 74.0 ± 7.7 years) and assessed the DoG ability using the German version of the DoG test for adults in addition to the delay discounting (DD) paradigm. Based on diffusion-weighted and resting-state functional magnetic resonance imaging data, respectively, the structural and functional whole-brain connectome were reconstructed based on 90 different brain regions of interest in addition to a 12-node frontostriatal DoG-specific network and the resulting connectivity matrices were subjected to network-based statistics. The 90-nodes whole-brain connectome analyses revealed subnetworks significantly associated with DoG and DD with a preponderance of frontostriatal nodes involved suggesting a high specificity of the findings. Structural and functional connectivity strengths between the putamen, caudate nucleus, and nucleus accumbens on the one hand and orbitofrontal, dorsal, and ventral lateral prefrontal cortices on the other hand showed strong positive correlations with DoG and negative correlations with DD corrected for age, sex, intracranial volume, and head motion parameters. These associations cannot be explained by differences in impulsivity and executive functioning. This pattern

  7. Multimodal frontostriatal connectivity underlies individual differences in self-esteem.

    Science.gov (United States)

    Chavez, Robert S; Heatherton, Todd F

    2015-03-01

    A heightened sense of self-esteem is associated with a reduced risk for several types of affective and psychiatric disorders, including depression, anxiety and eating disorders. However, little is known about how brain systems integrate self-referential processing and positive evaluation to give rise to these feelings. To address this, we combined diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) to test how frontostriatal connectivity reflects long-term trait and short-term state aspects of self-esteem. Using DTI, we found individual variability in white matter structural integrity between the medial prefrontal cortex and the ventral striatum was related to trait measures of self-esteem, reflecting long-term stability of self-esteem maintenance. Using fMRI, we found that functional connectivity of these regions during positive self-evaluation was related to current feelings of self-esteem, reflecting short-term state self-esteem. These results provide convergent anatomical and functional evidence that self-esteem is related to the connectivity of frontostriatal circuits and suggest that feelings of self-worth may emerge from neural systems integrating information about the self with positive affect and reward. This information could potentially inform the etiology of diminished self-esteem underlying multiple psychiatric conditions and inform future studies of evaluative self-referential processing. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  8. Intracerebral stimulation of left and right ventral temporal cortex during object naming.

    Science.gov (United States)

    Bédos Ulvin, Line; Jonas, Jacques; Brissart, Hélène; Colnat-Coulbois, Sophie; Thiriaux, Anne; Vignal, Jean-Pierre; Maillard, Louis

    2017-12-01

    While object naming is traditionally considered asa left hemisphere function, neuroimaging studies have reported activations related to naming in the ventral temporal cortex (VTC) bilaterally. Our aim was to use intracerebral electrical stimulation to specifically compare left and right VTC in naming. In twenty-three epileptic patients tested for visual object naming during stimulation, the proportion of naming impairments was significantly higher in the left than in the right VTC (31.3% vs 13.6%). The highest proportions of positive naming sites were found in the left fusiform gyrus and occipito-temporal sulcus (47.5% and 31.8%). For 17 positive left naming sites, an additional semantic picture matching was carried out, always successfully performed. Our results showed the enhanced role of the left compared to the right VTC in naming and suggest that it may be involved in lexical retrieval rather than in semantic processing. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Functional Disturbances Within Frontostriatal Circuits Across Multiple Childhood Psychopathologies

    Science.gov (United States)

    Marsh, Rachel; Maia, Tiago V.; Peterson, Bradley S.

    2009-01-01

    Objective Neuroimaging studies of healthy individuals inform us about the normative maturation of the frontostriatal circuits that subserve self-regulatory control processes. Findings from these studies can be used as a reference frame against which to compare the aberrant development of these processes in individuals across a wide range of childhood psychopathologies. Method The authors reviewed extensive neuroimaging evidence for the presence of abnormalities in frontostriatal circuits in children and adults with Tourette’s syndrome and obsessive-compulsive disorder (OCD) as well as a more limited number of imaging studies of adolescents and adults with anorexia nervosa or bulimia nervosa that, together, implicate dysregulation of frontostriatal control systems in the pathogenesis of these eating disorders. Results The presence of an impaired capacity for self-regulatory control that derives from abnormal development of frontostriatal circuits likely interacts in similar ways with normally occurring somatic sensations and motor urges, intrusive thoughts, sensations of hunger, and preoccupation with body shape and weight to contribute, respectively, to the development of the tics of Tourette’s syndrome, the obsessions of OCD, the binge eating behaviors of bulimia, and the self-starvation of anorexia. Conclusions Analogous brain mechanisms in parallel frontostriatal circuits, or even in differing portions of the same frontostriatal circuit, may underlie the differing behavioral disturbances in these multiple disorders, although further research is needed to confirm this hypothesis. PMID:19448188

  10. Laterotopic representation of left-right information onto the dorso-ventral axis of a zebrafish midbrain target nucleus.

    Science.gov (United States)

    Aizawa, Hidenori; Bianco, Isaac H; Hamaoka, Takanori; Miyashita, Toshio; Uemura, Osamu; Concha, Miguel L; Russell, Claire; Wilson, Stephen W; Okamoto, Hitoshi

    2005-02-08

    The habenulae are part of an evolutionarily highly conserved limbic-system conduction pathway that connects telencephalic nuclei to the interpeduncular nucleus (IPN) of the midbrain . In zebrafish, unilateral activation of the Nodal signaling pathway in the left brain specifies the laterality of the asymmetry of habenular size . We show "laterotopy" in the habenulo-interpeduncular projection in zebrafish, i.e., the stereotypic, topographic projection of left-sided habenular axons to the dorsal region of the IPN and of right-sided habenular axons to the ventral IPN. This asymmetric projection is accounted for by a prominent left-right (LR) difference in the size ratio of the medial and lateral habenular sub-nuclei, each of which specifically projects either to ventral or dorsal IPN targets. Asymmetric Nodal signaling directs the orientation of laterotopy but is dispensable for the establishment of laterotopy itself. Our results reveal a mechanism by which information distributed between left and right sides of the brain can be transmitted bilaterally without loss of LR coding, which may play a crucial role in functional lateralization of the vertebrate brain .

  11. Dissociated repetition deficits in aphasia can reflect flexible interactions between left dorsal and ventral streams and gender-dimorphic architecture of the right dorsal stream.

    Science.gov (United States)

    Berthier, Marcelo L; Froudist Walsh, Seán; Dávila, Guadalupe; Nabrozidis, Alejandro; Juárez Y Ruiz de Mier, Rocío; Gutiérrez, Antonio; De-Torres, Irene; Ruiz-Cruces, Rafael; Alfaro, Francisco; García-Casares, Natalia

    2013-01-01

    Assessment of brain-damaged subjects presenting with dissociated repetition deficits after selective injury to either the left dorsal or ventral auditory pathways can provide further insight on their respective roles in verbal repetition. We evaluated repetition performance and its neural correlates using multimodal imaging (anatomical MRI, DTI, fMRI, and(18)FDG-PET) in a female patient with transcortical motor aphasia (TCMA) and in a male patient with conduction aphasia (CA) who had small contiguous but non-overlapping left perisylvian infarctions. Repetition in the TCMA patient was fully preserved except for a mild impairment in nonwords and digits, whereas the CA patient had impaired repetition of nonwords, digits and word triplet lists. Sentence repetition was impaired, but he repeated novel sentences significantly better than clichés. The TCMA patient had tissue damage and reduced metabolism in the left sensorimotor cortex and insula. DTI showed damage to the left temporo-frontal and parieto-frontal segments of the arcuate fasciculus (AF) and part of the left ventral stream together with well-developed right dorsal and ventral streams, as has been reported in more than one-third of females. The CA patient had tissue damage and reduced metabolic activity in the left temporoparietal cortex with additional metabolic decrements in the left frontal lobe. DTI showed damage to the left temporo-parietal and temporo-frontal segments of the AF, but the ventral stream was spared. The direct segment of the AF in the right hemisphere was also absent with only vestigial remains of the other dorsal subcomponents present, as is often found in males. fMRI during word and nonword repetition revealed bilateral perisylvian activation in the TCMA patient suggesting recruitment of spared segments of the left dorsal stream and right dorsal stream with propagation of signals to temporal lobe structures suggesting a compensatory reallocation of resources via the ventral streams. The

  12. Functional specialization of the left ventral parietal cortex in working memory

    Directory of Open Access Journals (Sweden)

    Jennifer Lou Langel

    2014-06-01

    Full Text Available The function of the ventral parietal cortex (VPC is subject to much debate. Many studies suggest a lateralization of function in the VPC, with the left hemisphere facilitating verbal working memory and the right subserving stimulus-driven attention. However, many attentional tasks elicit activity in the VPC bilaterally. To elucidate the potential divides across the VPC in function, we assessed the pattern of activity in the VPC bilaterally across two tasks that require different demands, an oddball attentional task with low working memory demands and a working memory task. An anterior region of the VPC was bilaterally active during novel targets in the oddball task and during retrieval in WM, while more posterior regions of the VPC displayed dissociable functions in the left and right hemisphere, with the left being active during the encoding and retrieval of WM, but not during the oddball task and the right showing the reverse pattern. These results suggest that bilateral regions of the anterior VPC subserve non-mnemonic processes, such as stimulus-driven attention during WM retrieval and oddball detection. The left posterior VPC may be important for speech-related processing important for both working memory and perception, while the right hemisphere is more lateralized for attention.

  13. Impulse control disorder in PD: A lateralized monoaminergic frontostriatal disconnection syndrome?

    Science.gov (United States)

    Premi, E; Pilotto, A; Garibotto, V; Bigni, B; Turrone, R; Alberici, A; Cottini, E; Poli, L; Bianchi, M; Formenti, A; Cosseddu, M; Gazzina, S; Magoni, M; Bertoli, M; Paghera, B; Borroni, B; Padovani, A

    2016-09-01

    Impulse Control Disorder symptoms (ICD) in Parkinson's disease (PD) has been recently associated by magnetic Resonance imaging with impaired cortico-striatal connectivity, especially between left putamen and frontal associative areas. 84 patients entered the study (21 PD-ICD+ and 64 PD-ICD-) and underwent DATSCAN imaging. The striatal tracer uptake was evaluated using BRASS software (Hermes, Sweden). The whole-brain analysis was performed with Statistical Parametric Mapping (SPM). PD-ICD+ showed a significant reduction of left putaminal and left inferior frontal gyrus tracer uptake compared to PD-ICD-. Functional covariance analysis using left putamen as the seed point showed that, in contrast to ICD-patients, ICD+ patients had no functional covariance with contralateral basal ganglia and ipsilateral cingulate cortex, as index of an impaired inter- and intra-hemispheric dopamine binding in PD-ICD+. the results support and expand the concept of a functional disconnection syndrome linked to ICD symptoms in PD patients through an asymmetric molecular frontostriatal network breakdown with left basal ganglia as central hub. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Structural brain abnormalities in the frontostriatal system and cerebellum in pedophilia.

    Science.gov (United States)

    Schiffer, Boris; Peschel, Thomas; Paul, Thomas; Gizewski, Elke; Forsting, Michael; Leygraf, Norbert; Schedlowski, Manfred; Krueger, Tillmann H C

    2007-11-01

    Even though previous neuropsychological studies and clinical case reports have suggested an association between pedophilia and frontocortical dysfunction, our knowledge about the neurobiological mechanisms underlying pedophilia is still fragmentary. Specifically, the brain morphology of such disorders has not yet been investigated using MR imaging techniques. Whole brain structural T1-weighted MR images from 18 pedophile patients (9 attracted to males, 9 attracted to females) and 24 healthy age-matched control subjects (12 hetero- and 12 homosexual) from a comparable socioeconomic stratum were processed by using optimized automated voxel-based morphometry within multiple linear regression analyses. Compared to the homosexual and heterosexual control subjects, pedophiles showed decreased gray matter volume in the ventral striatum (also extending into the nucl. accumbens), the orbitofrontal cortex and the cerebellum. These observations further indicate an association between frontostriatal morphometric abnormalities and pedophilia. In this respect these findings may support the hypothesis that there is a shared etiopathological mechanism in all obsessive-compulsive spectrum disorders.

  15. Baseline frontostriatal-limbic connectivity predicts reward-based memory formation.

    Science.gov (United States)

    Hamann, Janne M; Dayan, Eran; Hummel, Friedhelm C; Cohen, Leonardo G

    2014-12-01

    Reward mediates the acquisition and long-term retention of procedural skills in humans. Yet, learning under rewarded conditions is highly variable across individuals and the mechanisms that determine interindividual variability in rewarded learning are not known. We postulated that baseline functional connectivity in a large-scale frontostriatal-limbic network could predict subsequent interindividual variability in rewarded learning. Resting-state functional MRI was acquired in two groups of subjects (n = 30) who then trained on a visuomotor procedural learning task with or without reward feedback. We then tested whether baseline functional connectivity within the frontostriatal-limbic network predicted memory strength measured immediately, 24 h and 1 month after training in both groups. We found that connectivity in the frontostriatal-limbic network predicted interindividual variability in the rewarded but not in the unrewarded learning group. Prediction was strongest for long-term memory. Similar links between connectivity and reward-based memory were absent in two control networks, a fronto-parieto-temporal language network and the dorsal attention network. The results indicate that baseline functional connectivity within the frontostriatal-limbic network successfully predicts long-term retention of rewarded learning. © 2014 Wiley Periodicals, Inc.

  16. Left-right functional asymmetry of ventral hippocampus depends on aversiveness of situations.

    Science.gov (United States)

    Sakaguchi, Yukitoshi; Sakurai, Yoshio

    2017-05-15

    Many studies suggest that animals exhibit lateralized behaviors during aversive situations, and almost all animals exhibit right hemisphere-dominant behaviors associated with fear or anxiety. However, which brain structure in each hemisphere underlies such lateralized function is unclear. In this study, we focused on the hippocampus and investigated the effects of bilateral and unilateral lesions of the ventral hippocampus (VH) on anxiety-like behavior using the successive alleys test. We also examined the expression of c-fos in the VH, which was induced by an aversive situation. Results revealed that consistent right VH dominance trended with the anxiety level. Weaker anxiety induced both right and left VH functions, whereas stronger anxiety induced right VH function. From these results, we conclude that animals are able to adaptively regulate their behaviors to avoid aversive stimuli by changing the functional dominance of their left and right VH. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Frontostriatal development and probabilistic reinforcement learning during adolescence.

    Science.gov (United States)

    DePasque, Samantha; Galván, Adriana

    2017-09-01

    Adolescence has traditionally been viewed as a period of vulnerability to increased risk-taking and adverse outcomes, which have been linked to neurobiological maturation of the frontostriatal reward system. However, growing research on the role of developmental changes in the adolescent frontostriatal system in facilitating learning will provide a more nuanced view of adolescence. In this review, we discuss the implications of existing research on this topic for learning during adolescence, and suggest that the very neural changes that render adolescents vulnerable to social pressure and risky decision making may also stand to play a role in scaffolding the ability to learn from rewards and from performance-related feedback. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Treatment for Alexia with Agraphia Following Left Ventral Occipito-Temporal Damage: Strengthening Orthographic Representations Common to Reading and Spelling

    Science.gov (United States)

    Kim, Esther S.; Rising, Kindle; Rapcsak, Steven Z.; Beeson, Pélagie M.

    2015-01-01

    Purpose: Damage to left ventral occipito-temporal cortex can give rise to written language impairment characterized by pure alexia/letter-by-letter (LBL) reading, as well as surface alexia and agraphia. The purpose of this study was to examine the therapeutic effects of a combined treatment approach to address concurrent LBL reading with surface…

  19. The implication of frontostriatal circuits in young smokers: A resting-state study.

    Science.gov (United States)

    Yuan, Kai; Yu, Dahua; Bi, Yanzhi; Li, Yangding; Guan, Yanyan; Liu, Jixin; Zhang, Yi; Qin, Wei; Lu, Xiaoqi; Tian, Jie

    2016-06-01

    The critical roles of frontostriatal circuits had been revealed in addiction. With regard to young smokers, the implication of frontostriatal circuits resting-state functional connectivity (RSFC) in smoking behaviors and cognitive control deficits remains unclear. In this study, the volume of striatum subsets, i.e., caudate, putamen, and nucleus accumbens, and corresponding RSFC differences were investigated between young smokers (n1  = 60) and nonsmokers (n2  = 60), which were then correlated with cigarette smoking measures, such as pack_years-cumulative effect of smoking, Fagerström Test for Nicotine Dependence (FTND)-severity of nicotine addiction, Questionnaire on Smoking Urges (QSU)-craving state, and Stroop task performances. Additionally, mediation analysis was carried out to test whether the frontostriatal RSFC mediates the relationship between striatum morphometry and cognitive control behaviors in young smokers when applicable. We revealed increased volume of right caudate and reduced RSFC between caudate and dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex in young smokers. Significant positive correlation between right caudate volume and QSU as well as negative correlation between anterior cingulate cortex-right caudate RSFC and FTND were detected in young smokers. More importantly, DLPFC-caudate RSFC strength mediated the relationship between caudate volume and incongruent errors during Stroop task in young smokers. Our results demonstrated that young smokers showed abnormal interactions within frontostriatal circuits, which were associated with smoking behaviors and cognitive control impairments. It is hoped that our study focusing on frontostriatal circuits could provide new insights into the neural correlates and potential novel therapeutic targets for treatment of young smokers. Hum Brain Mapp 37:2013-2026, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Accessing orthographic representations from speech: the role of left ventral occipitotemporal cortex in spelling.

    Science.gov (United States)

    Ludersdorfer, Philipp; Kronbichler, Martin; Wimmer, Heinz

    2015-04-01

    The present fMRI study used a spelling task to investigate the hypothesis that the left ventral occipitotemporal cortex (vOT) hosts neuronal representations of whole written words. Such an orthographic word lexicon is posited by cognitive dual-route theories of reading and spelling. In the scanner, participants performed a spelling task in which they had to indicate if a visually presented letter is present in the written form of an auditorily presented word. The main experimental manipulation distinguished between an orthographic word spelling condition in which correct spelling decisions had to be based on orthographic whole-word representations, a word spelling condition in which reliance on orthographic whole-word representations was optional and a phonological pseudoword spelling condition in which no reliance on such representations was possible. To evaluate spelling-specific activations the spelling conditions were contrasted with control conditions that also presented auditory words and pseudowords, but participants had to indicate if a visually presented letter corresponded to the gender of the speaker. We identified a left vOT cluster activated for the critical orthographic word spelling condition relative to both the control condition and the phonological pseudoword spelling condition. Our results suggest that activation of left vOT during spelling can be attributed to the retrieval of orthographic whole-word representations and, thus, support the position that the left vOT potentially represents the neuronal equivalent of the cognitive orthographic word lexicon. © 2014 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  1. Abnormal fronto-striatal activation as a marker of threshold and subthreshold Bulimia Nervosa.

    Science.gov (United States)

    Cyr, Marilyn; Yang, Xiao; Horga, Guillermo; Marsh, Rachel

    2018-04-01

    This study aimed to determine whether functional disturbances in fronto-striatal control circuits characterize adolescents with Bulimia Nervosa (BN) spectrum eating disorders regardless of clinical severity. FMRI was used to assess conflict-related brain activations during performance of a Simon task in two samples of adolescents with BN symptoms compared with healthy adolescents. The BN samples differed in the severity of their clinical presentation, illness duration and age. Multi-voxel pattern analyses (MVPAs) based on machine learning were used to determine whether patterns of fronto-striatal activation characterized adolescents with BN spectrum disorders regardless of clinical severity, and whether accurate classification of less symptomatic adolescents (subthreshold BN; SBN) could be achieved based on patterns of activation in adolescents who met DSM5 criteria for BN. MVPA classification analyses revealed that both BN and SBN adolescents could be accurately discriminated from healthy adolescents based on fronto-striatal activation. Notably, the patterns detected in more severely ill BN compared with healthy adolescents accurately discriminated less symptomatic SBN from healthy adolescents. Deficient activation of fronto-striatal circuits can characterize BN early in its course, when clinical presentations are less severe, perhaps pointing to circuit-based disturbances as useful biomarker or risk factor for the disorder, and a tool for understanding its developmental trajectory, as well as the development of early interventions. © 2018 Wiley Periodicals, Inc.

  2. Striatal activation and frontostriatal connectivity during non-drug reward anticipation in alcohol dependence.

    Science.gov (United States)

    Becker, Alena; Kirsch, Martina; Gerchen, Martin Fungisai; Kiefer, Falk; Kirsch, Peter

    2017-05-01

    According to prevailing neurobiological theories of addiction, altered function in neural reward circuitry is a central mechanism of alcohol dependence. Growing evidence postulates that the ventral striatum (VS), as well as areas of the prefrontal cortex, contribute to the increased incentive salience of alcohol-associated cues, diminished motivation to pursue non-drug rewards and weakened strength of inhibitory cognitive control, which are central to addiction. The present study aims to investigate the neural response and functional connectivity underlying monetary, non-drug reward processing in alcohol dependence. We utilized a reward paradigm to investigate the anticipation of monetary reward in 32 alcohol-dependent inpatients and 35 healthy controls. Functional magnetic resonance imaging was used to measure task-related brain activation and connectivity. Alcohol-dependent patients showed increased activation of the VS during anticipation of monetary gain compared with healthy controls. Generalized psychophysiological interaction analyses revealed decreased functional connectivity between the VS and the dorsolateral prefrontal cortex in alcohol dependent patients relative to controls. Increased activation of the VS and reduced frontostriatal connectivity were associated with increased craving. These findings provide evidence that alcohol dependence is rather associated with disrupted integration of striatal and prefrontal processes than with a global reward anticipation deficit. © 2016 Society for the Study of Addiction.

  3. Sex-dependent age modulation of frontostriatal and temporo-parietal activation during cognitive control.

    Science.gov (United States)

    Christakou, Anastasia; Halari, Rozmin; Smith, Anna B; Ifkovits, Eve; Brammer, Mick; Rubia, Katya

    2009-10-15

    Developmental functional imaging studies of cognitive control show progressive age-related increase in task-relevant fronto-striatal activation in male development from childhood to adulthood. Little is known, however, about how gender affects this functional development. In this study, we used event related functional magnetic resonance imaging to examine effects of sex, age, and their interaction on brain activation during attentional switching and interference inhibition, in 63 male and female adolescents and adults, aged 13 to 38. Linear age correlations were observed across all subjects in task-specific frontal, striatal and temporo-parietal activation. Gender analysis revealed increased activation in females relative to males in fronto-striatal areas during the Switch task, and laterality effects in the Simon task, with females showing increased left inferior prefrontal and temporal activation, and males showing increased right inferior prefrontal and parietal activation. Increased prefrontal activation clusters in females and increased parietal activation clusters in males furthermore overlapped with clusters that were age-correlated across the whole group, potentially reflecting more mature prefrontal brain activation patterns for females, and more mature parietal activation patterns for males. Gender by age interactions further supported this dissociation, revealing exclusive female-specific age correlations in inferior and medial prefrontal brain regions during both tasks, and exclusive male-specific age correlations in superior parietal (Switch task) and temporal regions (Simon task). These findings show increased recruitment of age-correlated prefrontal activation in females, and of age-correlated parietal activation in males, during tasks of cognitive control. Gender differences in frontal and parietal recruitment may thus be related to gender differences in the neurofunctional maturation of these brain regions.

  4. The role of human ventral visual cortex in motion perception

    Science.gov (United States)

    Saygin, Ayse P.; Lorenzi, Lauren J.; Egan, Ryan; Rees, Geraint; Behrmann, Marlene

    2013-01-01

    Visual motion perception is fundamental to many aspects of visual perception. Visual motion perception has long been associated with the dorsal (parietal) pathway and the involvement of the ventral ‘form’ (temporal) visual pathway has not been considered critical for normal motion perception. Here, we evaluated this view by examining whether circumscribed damage to ventral visual cortex impaired motion perception. The perception of motion in basic, non-form tasks (motion coherence and motion detection) and complex structure-from-motion, for a wide range of motion speeds, all centrally displayed, was assessed in five patients with a circumscribed lesion to either the right or left ventral visual pathway. Patients with a right, but not with a left, ventral visual lesion displayed widespread impairments in central motion perception even for non-form motion, for both slow and for fast speeds, and this held true independent of the integrity of areas MT/V5, V3A or parietal regions. In contrast with the traditional view in which only the dorsal visual stream is critical for motion perception, these novel findings implicate a more distributed circuit in which the integrity of the right ventral visual pathway is also necessary even for the perception of non-form motion. PMID:23983030

  5. Increases in frontostriatal connectivity are associated with response to dorsomedial repetitive transcranial magnetic stimulation in refractory binge/purge behaviors

    Directory of Open Access Journals (Sweden)

    Katharine Dunlop

    2015-01-01

    Conclusions: Enhanced frontostriatal connectivity was associated with responders to dmPFC-rTMS for binge/purge behavior. rTMS caused paradoxical suppression of frontostriatal connectivity in nonresponders. rs-fMRI could prove critical for optimizing stimulation parameters in a future sham-controlled trial of rTMS in disordered eating.

  6. Mapping a lateralisation gradient within the ventral stream for auditory speech perception

    OpenAIRE

    Karsten eSpecht

    2013-01-01

    Recent models on speech perception propose a dual stream processing network, with a dorsal stream, extending from the posterior temporal lobe of the left hemisphere through inferior parietal areas into the left inferior frontal gyrus, and a ventral stream that is assumed to originate in the primary auditory cortex in the upper posterior part of the temporal lobe and to extend towards the anterior part of the temporal lobe, where it may connect to the ventral part of the inferior frontal gyrus...

  7. Mapping a lateralization gradient within the ventral stream for auditory speech perception

    OpenAIRE

    Specht, Karsten

    2013-01-01

    Recent models on speech perception propose a dual-stream processing network, with a dorsal stream, extending from the posterior temporal lobe of the left hemisphere through inferior parietal areas into the left inferior frontal gyrus, and a ventral stream that is assumed to originate in the primary auditory cortex in the upper posterior part of the temporal lobe and to extend toward the anterior part of the temporal lobe, where it may connect to the ventral part of the inferior frontal gyrus....

  8. Contribution of fronto-striatal regions to emotional valence and repetition under cognitive conflict.

    Science.gov (United States)

    Chun, Ji-Won; Park, Hae-Jeong; Kim, Dai Jin; Kim, Eosu; Kim, Jae-Jin

    2017-07-01

    Conflict processing mediated by fronto-striatal regions may be influenced by emotional properties of stimuli. This study aimed to examine the effects of emotion repetition on cognitive control in a conflict-provoking situation. Twenty-one healthy subjects were scanned using functional magnetic resonance imaging while performing a sequential cognitive conflict task composed of emotional stimuli. The regional effects were analyzed according to the repetition or non-repetition of cognitive congruency and emotional valence between the preceding and current trials. Post-incongruence interference in error rate and reaction time was significantly smaller than post-congruence interference, particularly under repeated positive and non-repeated positive, respectively, and post-incongruence interference, compared to post-congruence interference, increased activity in the ACC, DLPFC, and striatum. ACC and DLPFC activities were significantly correlated with error rate or reaction time in some conditions, and fronto-striatal connections were related to the conflict processing heightened by negative emotion. These findings suggest that the repetition of emotional stimuli adaptively regulates cognitive control and the fronto-striatal circuit may engage in the conflict adaptation process induced by emotion repetition. Both repetition enhancement and repetition suppression of prefrontal activity may underlie the relationship between emotion and conflict adaptation. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Mapping a lateralisation gradient within the ventral stream for auditory speech perception

    Directory of Open Access Journals (Sweden)

    Karsten eSpecht

    2013-10-01

    Full Text Available Recent models on speech perception propose a dual stream processing network, with a dorsal stream, extending from the posterior temporal lobe of the left hemisphere through inferior parietal areas into the left inferior frontal gyrus, and a ventral stream that is assumed to originate in the primary auditory cortex in the upper posterior part of the temporal lobe and to extend towards the anterior part of the temporal lobe, where it may connect to the ventral part of the inferior frontal gyrus. This article describes and reviews the results from a series of complementary functional magnetic imaging (fMRI studies that aimed to trace the hierarchical processing network for speech comprehension within the left and right hemisphere with a particular focus on the temporal lobe and the ventral stream. As hypothesised, the results demonstrate a bilateral involvement of the temporal lobes in the processing of speech signals. However, an increasing leftward asymmetry was detected from auditory-phonetic to lexico-semantic processing and along the posterior-anterior axis, thus forming a lateralisation gradient. This increasing leftward lateralisation was particularly evident for the left superior temporal sulcus (STS and more anterior parts of the temporal lobe.

  10. Mapping a lateralization gradient within the ventral stream for auditory speech perception.

    Science.gov (United States)

    Specht, Karsten

    2013-01-01

    Recent models on speech perception propose a dual-stream processing network, with a dorsal stream, extending from the posterior temporal lobe of the left hemisphere through inferior parietal areas into the left inferior frontal gyrus, and a ventral stream that is assumed to originate in the primary auditory cortex in the upper posterior part of the temporal lobe and to extend toward the anterior part of the temporal lobe, where it may connect to the ventral part of the inferior frontal gyrus. This article describes and reviews the results from a series of complementary functional magnetic resonance imaging studies that aimed to trace the hierarchical processing network for speech comprehension within the left and right hemisphere with a particular focus on the temporal lobe and the ventral stream. As hypothesized, the results demonstrate a bilateral involvement of the temporal lobes in the processing of speech signals. However, an increasing leftward asymmetry was detected from auditory-phonetic to lexico-semantic processing and along the posterior-anterior axis, thus forming a "lateralization" gradient. This increasing leftward lateralization was particularly evident for the left superior temporal sulcus and more anterior parts of the temporal lobe.

  11. Reading skill related to left ventral occipitotemporal cortex during a phonological awareness task in 5–6-year old children

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2018-04-01

    Full Text Available The left ventral occipitotemporal cortex (vOT is important in visual word recognition. Studies have shown that the left vOT is generally observed to be involved in spoken language processing in skilled readers, suggesting automatic access to corresponding orthographic information. However, little is known about where and how the left vOT is involved in the spoken language processing of young children with emerging reading ability. In order to answer this question, we examined the relation of reading ability in 5–6-year-old kindergarteners to the activation of vOT during an auditory phonological awareness task. Two experimental conditions: onset word pairs that shared the first phoneme and rhyme word pairs that shared the final biphone/triphone, were compared to allow a measurement of vOT’s activation to small (i.e., onsets and large grain sizes (i.e., rhymes. We found that higher reading ability was associated with better accuracy of the onset, but not the rhyme, condition. In addition, higher reading ability was only associated with greater sensitivity in the posterior left vOT for the contrast of the onset versus rhyme condition. These results suggest that acquisition of reading results in greater specialization of the posterior vOT to smaller rather than larger grain sizes in young children. Keywords: Left vOT, Grain size, Phonological awareness, Spoken language

  12. Human left ventral premotor cortex mediates matching of hand posture to object use.

    Directory of Open Access Journals (Sweden)

    Guy Vingerhoets

    Full Text Available Visuomotor transformations for grasping have been associated with a fronto-parietal network in the monkey brain. The human homologue of the parietal monkey region (AIP has been identified as the anterior part of the intraparietal sulcus (aIPS, whereas the putative human equivalent of the monkey frontal region (F5 is located in the ventral part of the premotor cortex (vPMC. Results from animal studies suggest that monkey F5 is involved in the selection of appropriate hand postures relative to the constraints of the task. In humans, the functional roles of aIPS and vPMC appear to be more complex and the relative contribution of each region to grasp selection remains uncertain. The present study aimed to identify modulation in brain areas sensitive to the difficulty level of tool object - hand posture matching. Seventeen healthy right handed participants underwent fMRI while observing pictures of familiar tool objects followed by pictures of hand postures. The task was to decide whether the hand posture matched the functional use of the previously shown object. Conditions were manipulated for level of difficulty. Compared to a picture matching control task, the tool object - hand posture matching conditions conjointly showed increased modulation in several left hemispheric regions of the superior and inferior parietal lobules (including aIPS, the middle occipital gyrus, and the inferior temporal gyrus. Comparison of hard versus easy conditions selectively modulated the left inferior frontal gyrus with peak activity located in its opercular part (Brodmann area (BA 44. We suggest that in the human brain, vPMC/BA44 is involved in the matching of hand posture configurations in accordance with visual and functional demands.

  13. Mechanisms mediating parallel action monitoring in fronto-striatal circuits.

    Science.gov (United States)

    Beste, Christian; Ness, Vanessa; Lukas, Carsten; Hoffmann, Rainer; Stüwe, Sven; Falkenstein, Michael; Saft, Carsten

    2012-08-01

    Flexible response adaptation and the control of conflicting information play a pivotal role in daily life. Yet, little is known about the neuronal mechanisms mediating parallel control of these processes. We examined these mechanisms using a multi-methodological approach that integrated data from event-related potentials (ERPs) with structural MRI data and source localisation using sLORETA. Moreover, we calculated evoked wavelet oscillations. We applied this multi-methodological approach in healthy subjects and patients in a prodromal phase of a major basal ganglia disorder (i.e., Huntington's disease), to directly focus on fronto-striatal networks. Behavioural data indicated, especially the parallel execution of conflict monitoring and flexible response adaptation was modulated across the examined cohorts. When both processes do not co-incide a high integrity of fronto-striatal loops seems to be dispensable. The neurophysiological data suggests that conflict monitoring (reflected by the N2 ERP) and working memory processes (reflected by the P3 ERP) differentially contribute to this pattern of results. Flexible response adaptation under the constraint of high conflict processing affected the N2 and P3 ERP, as well as their delta frequency band oscillations. Yet, modulatory effects were strongest for the N2 ERP and evoked wavelet oscillations in this time range. The N2 ERPs were localized in the anterior cingulate cortex (BA32, BA24). Modulations of the P3 ERP were localized in parietal areas (BA7). In addition, MRI-determined caudate head volume predicted modulations in conflict monitoring, but not working memory processes. The results show how parallel conflict monitoring and flexible adaptation of action is mediated via fronto-striatal networks. While both, response monitoring and working memory processes seem to play a role, especially response selection processes and ACC-basal ganglia networks seem to be the driving force in mediating parallel conflict

  14. Reward-related frontostriatal activity and smoking behavior among adolescents in treatment for smoking cessation.

    Science.gov (United States)

    Garrison, Kathleen A; Yip, Sarah W; Balodis, Iris M; Carroll, Kathleen M; Potenza, Marc N; Krishnan-Sarin, Suchitra

    2017-08-01

    Tobacco use is often initiated during adolescence and continued into adulthood despite desires to quit. A better understanding of the neural correlates of abstinence from smoking in adolescents may inform more effective smoking cessation interventions. Neural reward systems are implicated in tobacco use disorder, and adolescent smokers have shown reduced reward-related ventral striatal activation related to increased smoking. The current study evaluated nondrug reward anticipation in adolescent smokers using a monetary incentive delay task in fMRI pre- and post- smoking cessation treatment (n=14). This study tested how changes in neural responses to reward anticipation pre- to post-treatment were related to reduced smoking. An exploratory analysis in a larger sample of adolescents with only pre-treatment fMRI (n=28) evaluated how neural responses to reward anticipation were related to behavioral inhibition and behavioral activation scales. Adolescent smokers showed pre- to post-treatment increases in reward anticipation-related activity in the bilateral nucleus accumbens and insula, and medial prefrontal cortex, and greater increases in reward anticipation-related activity were correlated with larger percent days of smoking abstinence during treatment. These findings suggest that reduced smoking during smoking cessation treatment is associated with a "recovery of function" in frontostriatal responses to nondrug reward anticipation in adolescent smokers, although comparison with a developmental control group of adolescent nonsmokers is warranted. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Structural covariance of neostriatal and limbic regions in patients with obsessive-compulsive disorder.

    Science.gov (United States)

    Subirà, Marta; Cano, Marta; de Wit, Stella J; Alonso, Pino; Cardoner, Narcís; Hoexter, Marcelo Q; Kwon, Jun Soo; Nakamae, Takashi; Lochner, Christine; Sato, João R; Jung, Wi Hoon; Narumoto, Jin; Stein, Dan J; Pujol, Jesus; Mataix-Cols, David; Veltman, Dick J; Menchón, José M; van den Heuvel, Odile A; Soriano-Mas, Carles

    2016-03-01

    Frontostriatal and frontoamygdalar connectivity alterations in patients with obsessive-compulsive disorder (OCD) have been typically described in functional neuroimaging studies. However, structural covariance, or volumetric correlations across distant brain regions, also provides network-level information. Altered structural covariance has been described in patients with different psychiatric disorders, including OCD, but to our knowledge, alterations within frontostriatal and frontoamygdalar circuits have not been explored. We performed a mega-analysis pooling structural MRI scans from the Obsessive-compulsive Brain Imaging Consortium and assessed whole-brain voxel-wise structural covariance of 4 striatal regions (dorsal and ventral caudate nucleus, and dorsal-caudal and ventral-rostral putamen) and 2 amygdalar nuclei (basolateral and centromedial-superficial). Images were preprocessed with the standard pipeline of voxel-based morphometry studies using Statistical Parametric Mapping software. Our analyses involved 329 patients with OCD and 316 healthy controls. Patients showed increased structural covariance between the left ventral-rostral putamen and the left inferior frontal gyrus/frontal operculum region. This finding had a significant interaction with age; the association held only in the subgroup of older participants. Patients with OCD also showed increased structural covariance between the right centromedial-superficial amygdala and the ventromedial prefrontal cortex. This was a cross-sectional study. Because this is a multisite data set analysis, participant recruitment and image acquisition were performed in different centres. Most patients were taking medication, and treatment protocols differed across centres. Our results provide evidence for structural network-level alterations in patients with OCD involving 2 frontosubcortical circuits of relevance for the disorder and indicate that structural covariance contributes to fully characterizing brain

  16. Dopamine release in ventral striatum of pathological gamblers losing money

    DEFF Research Database (Denmark)

    Linnet, J; Peterson, E; Doudet, D J

    2010-01-01

    Linnet J, Peterson E, Doudet DJ, Gjedde A, Møller A. Dopamine release in ventral striatum of pathological gamblers losing money. Objective: To investigate dopaminergic neurotransmission in relation to monetary reward and punishment in pathological gambling. Pathological gamblers (PG) often continue...... gambling despite losses, known as 'chasing one's losses'. We therefore hypothesized that losing money would be associated with increased dopamine release in the ventral striatum of PG compared with healthy controls (HC). Method: We used Positron Emission Tomography (PET) with [(11)C]raclopride to measure...... dopamine release in the ventral striatum of 16 PG and 15 HC playing the Iowa Gambling Task (IGT). Results: PG who lost money had significantly increased dopamine release in the left ventral striatum compared with HC. PG and HC who won money did not differ in dopamine release. Conclusion: Our findings...

  17. Fronto-striatal glutamate in children with Tourette's disorder and attention-deficit/hyperactivity disorder

    NARCIS (Netherlands)

    Naaijen, Jilly; Forde, Natalie J.; Lythgoe, David J.; Akkermans, Sophie E. A.; Openneer, Thaira J. C.; Dietrich, Andrea; Zwiers, Marcel P.; Hoekstra, Pieter J.; Buitelaar, Jan K.

    2017-01-01

    Objective: Both Tourette's disorder (TD) and attention-deficit/hyperactivity disorder (ADHD) have been related to abnormalities in glutamatergic neurochemistry in the fronto-striatal circuitry. TD and ADHD often co-occur and the neural underpinnings of this co-occurrence have been insufficiently

  18. Fronto-striatal glutamate in children with Tourette's disorder and attention-deficit/hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Jilly Naaijen

    2017-01-01

    Conclusion: We found no evidence for glutamatergic neuropathology in TD or ADHD within the fronto-striatal circuits. However, the correlation of OC-symptoms with ACC glutamate concentrations suggests that altered glutamatergic transmission is involved in OC-symptoms within TD, but this needs further investigation.

  19. Versatility of the ventral approach in bulbar urethroplasty using dorsal, ventral or dorsal plus ventral oral grafts.

    Science.gov (United States)

    Palminteri, Enzo; Berdondini, Elisa; Fusco, Ferdinando; De Nunzio, Cosimo; Giannitsas, Kostas; Shokeir, Ahmed A

    2012-06-01

    To investigate the versatility of the ventral urethrotomy approach in bulbar reconstruction with buccal mucosa (BM) grafts placed on the dorsal, ventral or dorsal plus ventral urethral surface. Between 1999 and 2008, 216 patients with bulbar strictures underwent BM graft urethroplasty using the ventral-sagittal urethrotomy approach. Of these patients, 32 (14.8%; mean stricture 3.2 cm, range 1.5-5) had a dorsal graft urethroplasty (DGU), 121 (56%; mean stricture 3.7, range 1.5-8) a ventral graft urethroplasty (VGU), and 63 (29.2%; mean stricture 3.4, range 1.5-10) a dorsal plus ventral graft urethroplasty (DVGU). The strictured urethra was opened by a ventral-sagittal urethrotomy and BM graft was inserted dorsally or ventrally or dorsal plus ventral to augment the urethral plate. The median follow-up was 37 months. The overall 5-year actuarial success rate was 91.4%. The 5-year actuarial success rates were 87.8%, 95.5% and 86.3% for the DGU, VGU and DVGU, respectively. There were no statistically significant differences among the three groups. Success rates decreased significantly only with a stricture length of >4 cm. In BM graft bulbar urethroplasties the ventral urethrotomy access is simple and versatile, allowing an intraoperative choice of dorsal, ventral or combined dorsal and ventral grafting, with comparable success rates.

  20. Ultrastructural changes of compressed lumbar ventral nerve roots following decompression

    International Nuclear Information System (INIS)

    El-Barrany, Wagih G.; Hamdy, Raid M.; Al-Hayani, Abdulmonem A.; Jalalah, Sawsan M.; Al-Sayyad, Mohammad J.

    2006-01-01

    To study whether there will be permanent lumbar nerve rot scanning or degeneration secondary to continuous compression followed by decompression on the nerve roots, which can account for postlaminectomy leg weakness or back pain. The study was performed at the Department of Anatomy, Faulty of Medicine, king Abdulaziz University, Jeddah, Kingdom of Saudi Arabia during 2003-2005. Twenty-six adult male New Zealand rabbits were used in the present study. The ventral roots of the left fourth lumbar nerve were clamped for 2 weeks then decompression was allowed by removal of the clips. The left ventral roots of the fourth lumbar nerve were excised for electron microscopic study. One week after nerve root decompression, the ventral root peripheral to the site of compression showed signs of Wallerian degeneration together with signs of regeneration. Schwann cells and myelinated nerve fibers showed severe degenerative changes. Two weeks after decompression, the endoneurium of the ventral root showed extensive edema with an increase in the regenerating myelinated and unmyentilated nerve fibers, and fibroblasts proliferation. Three weeks after decompression, the endoneurium showed an increase in the regenerating myelinated and unmyelinated nerve fibers with diminution of the endoneurial edema, and number of macrophages and an increase in collagen fibrils. Five and 6 weeks after decompression, the endoneurium showed marked diminution of the edema, macrophages, mast cells and fibroblasts. The enoneurium was filed of myelinated and unmyelinated nerve fibers and collagen fibrils. Decompression of the compressed roots of a spinal nerve is followed by regeneration of the nerve fibers and nerve and nerve recovery without endoneurial scarring. (author)

  1. The causal role of category-specific neuronal representations in the left ventral premotor cortex (PMv) in semantic processing.

    Science.gov (United States)

    Cattaneo, Zaira; Devlin, Joseph T; Salvini, Francesca; Vecchi, Tomaso; Silvanto, Juha

    2010-02-01

    The left ventral premotor cortex (PMv) is preferentially activated by exemplars of tools, suggestive of category specificity in this region. Here we used state-dependent transcranial magnetic stimulation (TMS) to investigate the causal role of such category-specific neuronal representations in the encoding of tool words. Priming to a category name (either "Tool" or "Animal") was used with the objective of modulating the initial activation state of this region prior to application of TMS and the presentation of the target stimulus. When the target word was an exemplar of the "Tool" category, the effects of TMS applied over PMv (but not PMd) interacted with priming history by facilitating reaction times on incongruent trials while not affecting congruent trials. This congruency/TMS interaction implies that the "Tool" and "Animal" primes had a differential effect on the initial activation state of the left PMv and implies that this region is one neural locus of category-specific behavioral priming for the "Tool" category. TMS applied over PMv had no behavioral effect when the target stimulus was an exemplar of the "Animal" category, regardless of whether the target word was congruent or incongruent with the prime. That TMS applied over the left PMv interacted with a priming effect that extended from the category name ("Tool") to exemplars of that category suggests that this region contains neuronal representation associated with a specific semantic category. Our results also demonstrate that the state-dependent effects obtained in the combination of visual priming and TMS are useful in the study of higher-level cognitive functions. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  2. Reduced Structural Connectivity in Frontostriatal White Matter Tracts in the Associative Loop in Schizophrenia.

    Science.gov (United States)

    Levitt, James J; Nestor, Paul G; Levin, Laura; Pelavin, Paula; Lin, Pan; Kubicki, Marek; McCarley, Robert W; Shenton, Martha E; Rathi, Yogesh

    2017-11-01

    The striatum receives segregated and integrative white matter tracts from the cortex facilitating information processing in the cortico-basal ganglia network. The authors examined both types of input tracts in the striatal associative loop in chronic schizophrenia patients and healthy control subjects. Structural and diffusion MRI scans were acquired on a 3-T system from 26 chronic schizophrenia patients and 26 matched healthy control subjects. Using FreeSurfer, the associative cortex was parcellated into ventrolateral prefrontal cortex and dorsolateral prefrontal cortex subregions. The striatum was manually parcellated into its associative and sensorimotor functional subregions. Fractional anisotropy and normalized streamlines, an estimate of fiber counts, were assessed in four frontostriatal tracts (dorsolateral prefrontal cortex-associative striatum, dorsolateral prefrontal cortex-sensorimotor striatum, ventrolateral prefrontal cortex-associative striatum, and ventrolateral prefrontal cortex-sensorimotor striatum). Furthermore, these measures were correlated with a measure of cognitive control, the Trail-Making Test, Part B. Results showed reduced fractional anisotropy and fewer streamlines in chronic schizophrenia patients for all four tracts, both segregated and integrative. Post hoc t tests showed reduced fractional anisotropy in the left ventrolateral prefrontal cortex-associative striatum and left ventrolateral prefrontal cortex-sensorimotor striatum and fewer normalized streamlines in the right dorsolateral prefrontal cortex-sensorimotor striatum and in the left and right ventrolateral prefrontal cortex-sensorimotor striatum in chronic schizophrenia patients. Furthermore, normalized streamlines in the right dorsolateral prefrontal cortex-sensorimotor striatum negatively correlated with Trail-Making Test, Part B, time spent in healthy control subjects but not in chronic schizophrenia patients. These findings demonstrated that structural connectivity is

  3. Versatility of the ventral approach in bulbar urethroplasty using dorsal, ventral or dorsal plus ventral oral grafts

    OpenAIRE

    Palminteri, Enzo; Berdondini, Elisa; Fusco, Ferdinando; Nunzio, Cosimo De; Giannitsas, Kostas; Shokeir, Ahmed A.

    2012-01-01

    Objectives To investigate the versatility of the ventral urethrotomy approach in bulbar reconstruction with buccal mucosa (BM) grafts placed on the dorsal, ventral or dorsal plus ventral urethral surface. Patients and methods Between 1999 and 2008, 216 patients with bulbar strictures underwent BM graft urethroplasty using the ventral-sagittal urethrotomy approach. Of these patients, 32 (14.8%; mean stricture 3.2?cm, range 1.5?5) had a dorsal graft urethroplasty (DGU), 121 (56%; mean stricture...

  4. Asymmetric right/left encoding of emotions in the human subthalamic nucleus

    Directory of Open Access Journals (Sweden)

    Renana eEitan

    2013-10-01

    Full Text Available Emotional processing is lateralized to the non-dominant brain hemisphere. However, there is no clear spatial model for lateralization of emotional domains in the basal ganglia. The subthalamic nucleus (STN, an input structure in the basal ganglia network, plays a major role in the pathophysiology of Parkinson’s disease (PD. This role is probably not limited only to the motor deficits of PD, but may also span the emotional and cognitive deficits commonly observed in PD patients. Beta oscillations (12-30Hz, the electrophysiological signature of PD, are restricted to the dorsolateral part of the STN that corresponds to the anatomically defined sensorimotor STN. The more medial, more anterior and more ventral parts of the STN are thought to correspond to the anatomically defined limbic and associative territories of the STN. Surprisingly, little is known about the electrophysiological properties of the non-motor domains of the STN, nor about electrophysiological differences between right and left STNs.In this study, microelectrodes were utilized to record the STN spontaneous spiking activity and responses to vocal non-verbal emotional stimuli during deep brain stimulation (DBS surgeries in human PD patients. The oscillation properties of the STN neurons were used to map the dorsal oscillatory and the ventral non-oscillatory regions of the STN. Emotive auditory stimulation evoked activity in the ventral non-oscillatory region of the right STN. These responses were not observed in the left ventral STN or in the dorsal regions of either the right or left STN. Therefore, our results suggest that the ventral non-oscillatory regions are asymmetrically associated with non-motor functions, with the right ventral STN associated with emotional processing. These results suggest that DBS of the right ventral STN may be associated with beneficial or adverse emotional effects observed in PD patients and may relieve mental symptoms in other neurological and

  5. Top-down and bottom-up influences on the left ventral occipito-temporal cortex during visual word recognition: an analysis of effective connectivity.

    Science.gov (United States)

    Schurz, Matthias; Kronbichler, Martin; Crone, Julia; Richlan, Fabio; Klackl, Johannes; Wimmer, Heinz

    2014-04-01

    The functional role of the left ventral occipito-temporal cortex (vOT) in visual word processing has been studied extensively. A prominent observation is higher activation for unfamiliar but pronounceable letter strings compared to regular words in this region. Some functional accounts have interpreted this finding as driven by top-down influences (e.g., Dehaene and Cohen [2011]: Trends Cogn Sci 15:254-262; Price and Devlin [2011]: Trends Cogn Sci 15:246-253), while others have suggested a difference in bottom-up processing (e.g., Glezer et al. [2009]: Neuron 62:199-204; Kronbichler et al. [2007]: J Cogn Neurosci 19:1584-1594). We used dynamic causal modeling for fMRI data to test bottom-up and top-down influences on the left vOT during visual processing of regular words and unfamiliar letter strings. Regular words (e.g., taxi) and unfamiliar letter strings of pseudohomophones (e.g., taksi) were presented in the context of a phonological lexical decision task (i.e., "Does the item sound like a word?"). We found no differences in top-down signaling, but a strong increase in bottom-up signaling from the occipital cortex to the left vOT for pseudohomophones compared to words. This finding can be linked to functional accounts which assume that the left vOT contains neurons tuned to complex orthographic features such as morphemes or words [e.g., Dehaene and Cohen [2011]: Trends Cogn Sci 15:254-262; Kronbichler et al. [2007]: J Cogn Neurosci 19:1584-1594]: For words, bottom-up signals converge onto a matching orthographic representation in the left vOT. For pseudohomophones, the propagated signals do not converge, but (partially) activate multiple orthographic word representations, reflected in increased effective connectivity. Copyright © 2013 Wiley Periodicals, Inc.

  6. Zygotic LvBMP5-8 is required for skeletal patterning and for left-right but not dorsal-ventral specification in the sea urchin embryo.

    Science.gov (United States)

    Piacentino, Michael L; Chung, Oliver; Ramachandran, Janani; Zuch, Daniel T; Yu, Jia; Conaway, Evan A; Reyna, Arlene E; Bradham, Cynthia A

    2016-04-01

    Skeletal patterning in the sea urchin embryo requires coordinated signaling between the pattern-dictating ectoderm and the skeletogenic primary mesenchyme cells (PMCs); recent studies have begun to uncover the molecular basis for this process. Using an unbiased RNA-Seq-based screen, we have previously identified the TGF-ß superfamily ligand, LvBMP5-8, as a skeletal patterning gene in Lytechinus variegatus embryos. This result is surprising, since both BMP5-8 and BMP2/4 ligands have been implicated in sea urchin dorsal-ventral (DV) and left-right (LR) axis specification. Here, we demonstrate that zygotic LvBMP5-8 is required for normal skeletal patterning on the left side, as well as for normal PMC positioning during gastrulation. Zygotic LvBMP5-8 is required for expression of the left-side marker soxE, suggesting that LvBMP5-8 is required for left-side specification. Interestingly, we also find that LvBMP5-8 knockdown suppresses serotonergic neurogenesis on the left side. While LvBMP5-8 overexpression is sufficient to dorsalize embryos, we find that zygotic LvBMP5-8 is not required for normal DV specification or development. In addition, ectopic LvBMP5-8 does not dorsalize LvBMP2/4 morphant embryos, indicating that, in the absence of BMP2/4, BMP5-8 is insufficient to specify dorsal. Taken together, our data demonstrate that zygotic LvBMP5-8 signaling is essential for left-side specification, and for normal left-side skeletal and neural patterning, but not for DV specification. Thus, while both BMP2/4 and BMP5-8 regulate LR axis specification, BMP2/4 but not zygotic BMP5-8 regulates DV axis specification in sea urchin embryos. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Lateralization and gender differences in the dopaminergic response to unpredictable reward in the human ventral striatum.

    Science.gov (United States)

    Martin-Soelch, Chantal; Szczepanik, Joanna; Nugent, Allison; Barhaghi, Krystle; Rallis, Denise; Herscovitch, Peter; Carson, Richard E; Drevets, Wayne C

    2011-05-01

    Electrophysiological studies have shown that mesostriatal dopamine (DA) neurons increase activity in response to unpredicted rewards. With respect to other functions of the mesostriatal dopaminergic system, dopamine's actions show prominent laterality effects. Whether changes in DA transmission elicited by rewards also are lateralized, however, has not been investigated. Using [¹¹C]raclopride-PET to assess the striatal DA response to unpredictable monetary rewards, we hypothesized that such rewards would induce an asymmetric reduction in [¹¹C]raclopride binding in the ventral striatum, reflecting lateralization of endogenous dopamine release. In 24 healthy volunteers, differences in the regional D₂/₃ receptor binding potential (ΔBP) between an unpredictable reward condition and a sensorimotor control condition were measured using the bolus-plus-constant-infusion [¹¹C]raclopride method. During the reward condition subjects randomly received monetary awards while performing a 'slot-machine' task. The ΔBP between conditions was assessed in striatal regions-of-interest and compared between left and right sides. We found a significant condition × lateralization interaction in the ventral striatum. A significant reduction in binding potential (BP(ND) ) in the reward condition vs. the control condition was found only in the right ventral striatum, and the ΔBP was greater in the right than the left ventral striatum. Unexpectedly, these laterality effects appeared to be partly accounted for by gender differences, as our data showed a significant bilateral BP(ND) reduction in women while in men the reduction reached significance only in the right ventral striatum. These data suggest that DA release in response to unpredictable reward is lateralized in the human ventral striatum, particularly in males. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  8. A Fate Map of the Murine Pancreas Buds Reveals a Multipotent Ventral Foregut Organ Progenitor

    Science.gov (United States)

    Angelo, Jesse R.; Guerrero-Zayas, Mara-Isel; Tremblay, Kimberly D.

    2012-01-01

    The definitive endoderm is the embryonic germ layer that gives rise to the budding endodermal organs including the thyroid, lung, liver and pancreas as well as the remainder of the gut tube. DiI fate mapping and whole embryo culture were used to determine the endodermal origin of the 9.5 days post coitum (dpc) dorsal and ventral pancreas buds. Our results demonstrate that the progenitors of each bud occupy distinct endodermal territories. Dorsal bud progenitors are located in the medial endoderm overlying somites 2–4 between the 2 and 11 somite stage (SS). The endoderm forming the ventral pancreas bud is found in 2 distinct regions. One territory originates from the left and right lateral endoderm caudal to the anterior intestinal portal by the 6 SS and the second domain is derived from the ventral midline of the endoderm lip (VMEL). Unlike the laterally located ventral foregut progenitors, the VMEL population harbors a multipotent progenitor that contributes to the thyroid bud, the rostral cap of the liver bud, ventral midline of the liver bud and the midline of the ventral pancreas bud in a temporally restricted manner. This data suggests that the midline of the 9.5 dpc thyroid, liver and ventral pancreas buds originates from the same progenitor population, demonstrating a developmental link between all three ventral foregut buds. Taken together, these data define the location of the dorsal and ventral pancreas progenitors in the prespecified endodermal sheet and should lead to insights into the inductive events required for pancreas specification. PMID:22815796

  9. Cephalad-renal ectopia: Bilateral subdiaphragmatic kidneys in a patient of omphalocele with ventral hernia

    Directory of Open Access Journals (Sweden)

    Jitendra Parmar

    2016-04-01

    Full Text Available Renal ectopia is a rare congenital anomaly. Thoracic ectopic kidney was being considered as rarest, however no case of bilateral subdiaphragmatic kidneys in omphalocele patients presented with ventral hernia has been reported yet, as per our best of knowledge. This is a report of a 5- year-old male patient who presented with ventral hernia after omphalocele. A thorough examination, laboratory, and radiological investigations including ultrasonography, plain abdominal x-ray, intravenous urogram, and computerized tomography revealed bilateral subdiaphragmatic ectopic kidneys with azygos continuation of inferior vena cava, retro-aortic left renal vein and spina bifida

  10. Ratio of dopamine synthesis capacity to D2 receptor availability in ventral striatum correlates with central processing of affective stimuli

    International Nuclear Information System (INIS)

    Kienast, Thorsten; Rapp, Michael; Siessmeier, Thomas; Buchholz, Hans G.; Schreckenberger, Mathias; Wrase, Jana; Heinz, Andreas; Braus, Dieter F.; Smolka, Michael N.; Mann, Karl; Roesch, Frank; Cumming, Paul; Gruender, Gerhard; Bartenstein, Peter

    2008-01-01

    Dopaminergic neurotransmission in the ventral striatum may interact with limbic processing of affective stimuli, whereas dorsal striatal dopaminergic neurotransmission can affect habitual processing of emotionally salient stimuli in the pre-frontal cortex. We investigated the dopaminergic neurotransmission in the ventral and dorsal striatum with respect to central processing of affective stimuli in healthy subjects. Subjects were investigated with positron emission tomography and [ 18 F]DOPA for measurements of dopamine synthesis capacity and [ 18 F]DMFP for estimation of dopamine D2 receptor binding potential. Functional magnetic resonance imaging was used to assess the blood-oxygen-level-dependent (BOLD) response to affective pictures, which was correlated with the ratio of [ 18 F]DOPA net influx constant K in app /[ 18 F]DMFP-binding potential (BP N D) in the ventral and dorsal striatum. The magnitude of the ratio in the ventral striatum was positively correlated with BOLD signal increases elicited by negative versus neutral pictures in the right medial frontal gyrus (BA10), right inferior parietal lobe and left post-central gyrus. In the dorsal striatum, the ratio was positively correlated with BOLD signal activation elicited by negative versus neutral stimuli in the left post-central gyrus. The BOLD signal elicited by positive versus neutral stimuli in the superior parietal gyrus was positively correlated with the dorsal and ventral striatal ratio. The correlations of the ratio in the ventral and dorsal striatum with processing of affective stimuli in the named cortical regions support the hypothesis that dopamine transmission in functional divisions of the striatum modulates processing of affective stimuli in specific cortical areas. (orig.)

  11. Efficient visual object and word recognition relies on high spatial frequency coding in the left posterior fusiform gyrus: evidence from a case-series of patients with ventral occipito-temporal cortex damage.

    Science.gov (United States)

    Roberts, Daniel J; Woollams, Anna M; Kim, Esther; Beeson, Pelagie M; Rapcsak, Steven Z; Lambon Ralph, Matthew A

    2013-11-01

    Recent visual neuroscience investigations suggest that ventral occipito-temporal cortex is retinotopically organized, with high acuity foveal input projecting primarily to the posterior fusiform gyrus (pFG), making this region crucial for coding high spatial frequency information. Because high spatial frequencies are critical for fine-grained visual discrimination, we hypothesized that damage to the left pFG should have an adverse effect not only on efficient reading, as observed in pure alexia, but also on the processing of complex non-orthographic visual stimuli. Consistent with this hypothesis, we obtained evidence that a large case series (n = 20) of patients with lesions centered on left pFG: 1) Exhibited reduced sensitivity to high spatial frequencies; 2) demonstrated prolonged response latencies both in reading (pure alexia) and object naming; and 3) were especially sensitive to visual complexity and similarity when discriminating between novel visual patterns. These results suggest that the patients' dual reading and non-orthographic recognition impairments have a common underlying mechanism and reflect the loss of high spatial frequency visual information normally coded in the left pFG.

  12. Ratio of dopamine synthesis capacity to D2 receptor availability in ventral striatum correlates with central processing of affective stimuli

    Energy Technology Data Exchange (ETDEWEB)

    Kienast, Thorsten; Rapp, Michael [Charite Campus Mitte, Department of Psychiatry and Psychotherapy of the Charite University Medical Center, Berlin (Germany); Siessmeier, Thomas; Buchholz, Hans G.; Schreckenberger, Mathias [University of Mainz, Department of Nuclear Medicine, Mainz (Germany); Wrase, Jana; Heinz, Andreas [Charite Campus Mitte, Department of Psychiatry and Psychotherapy of the Charite University Medical Center, Berlin (Germany); Central Institute of Mental Health, Mannheim (Germany); Braus, Dieter F. [University of Hamburg, Neuroimage Nord, Department of Psychiatry, Hamburg (Germany); Smolka, Michael N.; Mann, Karl [Central Institute of Mental Health, Mannheim (Germany); Roesch, Frank [University of Mainz, Institute of Nuclear Chemistry, Mainz (Germany); Cumming, Paul [PET Center and Center for Functionally Integrative Neuroscience, Aarhus (Denmark); Gruender, Gerhard [Aachen University Medical Center, Department of Psychiatry of the RWTH, Mainz (Germany); Bartenstein, Peter [Ludwig-Maximilians-University, Department of Nuclear Medicine, Munich (Germany)

    2008-06-15

    Dopaminergic neurotransmission in the ventral striatum may interact with limbic processing of affective stimuli, whereas dorsal striatal dopaminergic neurotransmission can affect habitual processing of emotionally salient stimuli in the pre-frontal cortex. We investigated the dopaminergic neurotransmission in the ventral and dorsal striatum with respect to central processing of affective stimuli in healthy subjects. Subjects were investigated with positron emission tomography and [{sup 18}F]DOPA for measurements of dopamine synthesis capacity and [{sup 18}F]DMFP for estimation of dopamine D2 receptor binding potential. Functional magnetic resonance imaging was used to assess the blood-oxygen-level-dependent (BOLD) response to affective pictures, which was correlated with the ratio of [{sup 18}F]DOPA net influx constant K{sub in}{sup app} /[{sup 18}F]DMFP-binding potential (BP{sub N}D) in the ventral and dorsal striatum. The magnitude of the ratio in the ventral striatum was positively correlated with BOLD signal increases elicited by negative versus neutral pictures in the right medial frontal gyrus (BA10), right inferior parietal lobe and left post-central gyrus. In the dorsal striatum, the ratio was positively correlated with BOLD signal activation elicited by negative versus neutral stimuli in the left post-central gyrus. The BOLD signal elicited by positive versus neutral stimuli in the superior parietal gyrus was positively correlated with the dorsal and ventral striatal ratio. The correlations of the ratio in the ventral and dorsal striatum with processing of affective stimuli in the named cortical regions support the hypothesis that dopamine transmission in functional divisions of the striatum modulates processing of affective stimuli in specific cortical areas. (orig.)

  13. Reward processing dysfunction in ventral striatum and orbitofrontal cortex in Parkinson's disease

    NARCIS (Netherlands)

    du Plessis, Stéfan; Bossert, Meija; Vink, Matthijs; van den Heuvel, Leigh; Bardien, Soraya; Emsley, Robin; Buckle, Chanelle; Seedat, Soraya; Carr, Jonathan

    BACKGROUND: Parkinson's disease is a growing concern as the longevity of the world's population steadily increases. Both ageing and Parkinson's disease have an impact on dopamine neurotransmission. It is therefore important to investigate their relative impact on the fronto-striatal reward system.

  14. Ventral pallidum roles in reward and motivation.

    Science.gov (United States)

    Smith, Kyle S; Tindell, Amy J; Aldridge, J Wayne; Berridge, Kent C

    2009-01-23

    In recent years the ventral pallidum has become a focus of great research interest as a mechanism of reward and incentive motivation. As a major output for limbic signals, the ventral pallidum was once associated primarily with motor functions rather than regarded as a reward structure in its own right. However, ample evidence now suggests that ventral pallidum function is a major mechanism of reward in the brain. We review data indicating that (1) an intact ventral pallidum is necessary for normal reward and motivation, (2) stimulated activation of ventral pallidum is sufficient to cause reward and motivation enhancements, and (3) activation patterns in ventral pallidum neurons specifically encode reward and motivation signals via phasic bursts of excitation to incentive and hedonic stimuli. We conclude that the ventral pallidum may serve as an important 'limbic final common pathway' for mesocorticolimbic processing of many rewards.

  15. Increased functional connectivity in the ventral and dorsal streams during retrieval of novel words in professional musicians.

    Science.gov (United States)

    Dittinger, Eva; Valizadeh, Seyed Abolfazl; Jäncke, Lutz; Besson, Mireille; Elmer, Stefan

    2018-02-01

    Current models of speech and language processing postulate the involvement of two parallel processing streams (the dual stream model): a ventral stream involved in mapping sensory and phonological representations onto lexical and conceptual representations and a dorsal stream contributing to sound-to-motor mapping, articulation, and to how verbal information is encoded and manipulated in memory. Based on previous evidence showing that music training has an influence on language processing, cognitive functions, and word learning, we examined EEG-based intracranial functional connectivity in the ventral and dorsal streams while musicians and nonmusicians learned the meaning of novel words through picture-word associations. In accordance with the dual stream model, word learning was generally associated with increased beta functional connectivity in the ventral stream compared to the dorsal stream. In addition, in the linguistically most demanding "semantic task," musicians outperformed nonmusicians, and this behavioral advantage was accompanied by increased left-hemispheric theta connectivity in both streams. Moreover, theta coherence in the left dorsal pathway was positively correlated with the number of years of music training. These results provide evidence for a complex interplay within a network of brain regions involved in semantic processing and verbal memory functions, and suggest that intensive music training can modify its functional architecture leading to advantages in novel word learning. © 2017 Wiley Periodicals, Inc.

  16. Reduced amygdala and ventral striatal activity to happy faces in PTSD is associated with emotional numbing.

    Directory of Open Access Journals (Sweden)

    Kim L Felmingham

    Full Text Available There has been a growing recognition of the importance of reward processing in PTSD, yet little is known of the underlying neural networks. This study tested the predictions that (1 individuals with PTSD would display reduced responses to happy facial expressions in ventral striatal reward networks, and (2 that this reduction would be associated with emotional numbing symptoms. 23 treatment-seeking patients with Posttraumatic Stress Disorder were recruited from the treatment clinic at the Centre for Traumatic Stress Studies, Westmead Hospital, and 20 trauma-exposed controls were recruited from a community sample. We examined functional magnetic resonance imaging responses during the presentation of happy and neutral facial expressions in a passive viewing task. PTSD participants rated happy facial expression as less intense than trauma-exposed controls. Relative to controls, PTSD participants revealed lower activation to happy (-neutral faces in ventral striatum and and a trend for reduced activation in left amygdala. A significant negative correlation was found between emotional numbing symptoms in PTSD and right ventral striatal regions after controlling for depression, anxiety and PTSD severity. This study provides initial evidence that individuals with PTSD have lower reactivity to happy facial expressions, and that lower activation in ventral striatal-limbic reward networks may be associated with symptoms of emotional numbing.

  17. Ventral Striatum Functional Connectivity as a Predictor of Adolescent Depressive Disorder in a Longitudinal Community-Based Sample.

    Science.gov (United States)

    Pan, Pedro Mario; Sato, João R; Salum, Giovanni A; Rohde, Luis A; Gadelha, Ary; Zugman, Andre; Mari, Jair; Jackowski, Andrea; Picon, Felipe; Miguel, Eurípedes C; Pine, Daniel S; Leibenluft, Ellen; Bressan, Rodrigo A; Stringaris, Argyris

    2017-11-01

    Previous studies have implicated aberrant reward processing in the pathogenesis of adolescent depression. However, no study has used functional connectivity within a distributed reward network, assessed using resting-state functional MRI (fMRI), to predict the onset of depression in adolescents. This study used reward network-based functional connectivity at baseline to predict depressive disorder at follow-up in a community sample of adolescents. A total of 637 children 6-12 years old underwent resting-state fMRI. Discovery and replication analyses tested intrinsic functional connectivity (iFC) among nodes of a putative reward network. Logistic regression tested whether striatal node strength, a measure of reward-related iFC, predicted onset of a depressive disorder at 3-year follow-up. Further analyses investigated the specificity of this prediction. Increased left ventral striatum node strength predicted increased risk for future depressive disorder (odds ratio=1.54, 95% CI=1.09-2.18), even after excluding participants who had depressive disorders at baseline (odds ratio=1.52, 95% CI=1.05-2.20). Among 11 reward-network nodes, only the left ventral striatum significantly predicted depression. Striatal node strength did not predict other common adolescent psychopathology, such as anxiety, attention deficit hyperactivity disorder, and substance use. Aberrant ventral striatum functional connectivity specifically predicts future risk for depressive disorder. This finding further emphasizes the need to understand how brain reward networks contribute to youth depression.

  18. Damage to white matter bottlenecks contributes to language impairments after left hemispheric stroke

    Directory of Open Access Journals (Sweden)

    Joseph C. Griffis

    2017-01-01

    Full Text Available Damage to the white matter underlying the left posterior temporal lobe leads to deficits in multiple language functions. The posterior temporal white matter may correspond to a bottleneck where both dorsal and ventral language pathways are vulnerable to simultaneous damage. Damage to a second putative white matter bottleneck in the left deep prefrontal white matter involving projections associated with ventral language pathways and thalamo-cortical projections has recently been proposed as a source of semantic deficits after stroke. Here, we first used white matter atlases to identify the previously described white matter bottlenecks in the posterior temporal and deep prefrontal white matter. We then assessed the effects of damage to each region on measures of verbal fluency, picture naming, and auditory semantic decision-making in 43 chronic left hemispheric stroke patients. Damage to the posterior temporal bottleneck predicted deficits on all tasks, while damage to the anterior bottleneck only significantly predicted deficits in verbal fluency. Importantly, the effects of damage to the bottleneck regions were not attributable to lesion volume, lesion loads on the tracts traversing the bottlenecks, or damage to nearby cortical language areas. Multivariate lesion-symptom mapping revealed additional lesion predictors of deficits. Post-hoc fiber tracking of the peak white matter lesion predictors using a publicly available tractography atlas revealed evidence consistent with the results of the bottleneck analyses. Together, our results provide support for the proposal that spatially specific white matter damage affecting bottleneck regions, particularly in the posterior temporal lobe, contributes to chronic language deficits after left hemispheric stroke. This may reflect the simultaneous disruption of signaling in dorsal and ventral language processing streams.

  19. Torakal Ventral Cord Herniation

    Directory of Open Access Journals (Sweden)

    Sermin Tok

    2015-11-01

    Full Text Available  Ventral cord herniation is a rare cause of focal myelopathy due to herniation of the thoracic cord through a dural defect.It is also known by a variety of other terms such as spontaneous thoracic cord herniation or idiopathic spinal cord herniation.The key feature is focal distortion and rotation of the cord with no CSF seen between it and the ventral theca.

  20. Neural alterations of fronto-striatal circuitry during reward anticipation in euthymic bipolar disorder.

    Science.gov (United States)

    Schreiter, S; Spengler, S; Willert, A; Mohnke, S; Herold, D; Erk, S; Romanczuk-Seiferth, N; Quinlivan, E; Hindi-Attar, C; Banzhaf, C; Wackerhagen, C; Romund, L; Garbusow, M; Stamm, T; Heinz, A; Walter, H; Bermpohl, F

    2016-11-01

    Bipolar disorder (BD), with the hallmark symptoms of elevated and depressed mood, is thought to be characterized by underlying alterations in reward-processing networks. However, to date the neural circuitry underlying abnormal responses during reward processing in BD remains largely unexplored. The aim of this study was to investigate whether euthymic BD is characterized by aberrant ventral striatal (VS) activation patterns and altered connectivity with the prefrontal cortex in response to monetary gains and losses. During functional magnetic resonance imaging 20 euthymic BD patients and 20 age-, gender- and intelligence quotient-matched healthy controls completed a monetary incentive delay paradigm, to examine neural processing of reward and loss anticipation. A priori defined regions of interest (ROIs) included the VS and the anterior prefrontal cortex (aPFC). Psychophysiological interactions (PPIs) between these ROIs were estimated and tested for group differences for reward and loss anticipation separately. BD participants, relative to healthy controls, displayed decreased activation selectively in the left and right VS during anticipation of reward, but not during loss anticipation. PPI analyses showed decreased functional connectivity between the left VS and aPFC in BD patients compared with healthy controls during reward anticipation. This is the first study showing decreased VS activity and aberrant connectivity in the reward-processing circuitry in euthymic, medicated BD patients during reward anticipation. Our findings contrast with research supporting a reward hypersensitivity model of BD, and add to the body of literature suggesting that blunted activation of reward processing circuits may be a vulnerability factor for mood disorders.

  1. Effective Connectivity between Ventral Occipito-Temporal and Ventral Inferior Frontal Cortex during Lexico-Semantic Processing. A Dynamic Causal Modeling Study

    Directory of Open Access Journals (Sweden)

    Marcela Perrone-Bertolotti

    2017-06-01

    Full Text Available It has been suggested that dorsal and ventral pathways support distinct aspects of language processing. Yet, the full extent of their involvement and their inter-regional connectivity in visual word recognition is still unknown. Studies suggest that they might reflect the dual-route model of reading, with the dorsal pathway more involved in grapho-phonological conversion during phonological tasks, and the ventral pathway performing lexico-semantic access during semantic tasks. Furthermore, this subdivision is also suggested at the level of the inferior frontal cortex, involving ventral and dorsal parts for lexico-semantic and phonological processing, respectively. In the present study, we assessed inter-regional brain connectivity and task-induced modulations of brain activity during a phoneme detection and semantic categorization tasks, using fMRI in healthy subject. We used a dynamic causal modeling approach to assess inter-regional connectivity and task demand modulation within the dorsal and ventral pathways, including the following network components: the ventral occipito-temporal cortex (vOTC; dorsal and ventral, the superior temporal gyrus (STG; dorsal, the dorsal inferior frontal gyrus (dIFG; dorsal, and the ventral IFG (vIFG; ventral. We report three distinct inter-regional interactions supporting orthographic information transfer from vOTC to other language regions (vOTC -> STG, vOTC -> vIFG and vOTC -> dIFG regardless of task demands. Moreover, we found that (a during semantic processing (direct ventral pathway the vOTC -> vIFG connection strength specifically increased and (b a lack of modulation of the vOTC -> dIFG connection strength by the task that could suggest a more general involvement of the dorsal pathway during visual word recognition. Results are discussed in terms of anatomo-functional connectivity of visual word recognition network.

  2. Vomeronasal inputs to the rodent ventral striatum.

    Science.gov (United States)

    Ubeda-Bañon, I; Novejarque, A; Mohedano-Moriano, A; Pro-Sistiaga, P; Insausti, R; Martinez-Garcia, F; Lanuza, E; Martinez-Marcos, A

    2008-03-18

    Vertebrates sense chemical signals through the olfactory and vomeronasal systems. In squamate reptiles, which possess the largest vomeronasal system of all vertebrates, the accessory olfactory bulb projects to the nucleus sphericus, which in turn projects to a portion of the ventral striatum known as olfactostriatum. Characteristically, the olfactostriatum is innervated by neuropeptide Y, tyrosine hydroxylase and serotonin immunoreactive fibers. In this study, the possibility that a structure similar to the reptilian olfactostriatum might be present in the mammalian brain has been investigated. Injections of dextran-amines have been aimed at the posteromedial cortical amygdaloid nucleus (the putative mammalian homologue of the reptilian nucleus sphericus) of rats and mice. The resulting anterograde labeling includes the olfactory tubercle, the islands of Calleja and sparse terminal fields in the shell of the nucleus accumbens and ventral pallidum. This projection has been confirmed by injections of retrograde tracers into the ventral striato-pallidum that render retrograde labeling in the posteromedial cortical amygdaloid nucleus. The analysis of the distribution of neuropeptide Y, tyrosine hydroxylase, serotonin and substance P in the ventral striato-pallidum of rats, and the anterograde tracing of the vomeronasal amygdaloid input in the same material confirm that, similar to reptiles, the ventral striatum of mammals includes a specialized vomeronasal structure (olfactory tubercle and islands of Calleja) displaying dense neuropeptide Y-, tyrosine hydroxylase- and serotonin-immunoreactive innervations. The possibility that parts of the accumbens shell and/or ventral pallidum could be included in the mammalian olfactostriatum cannot be discarded.

  3. Ventral hernia repair

    Science.gov (United States)

    ... incarcerated) in the hernia and become impossible to push back in. This is usually painful. The blood supply ... you are lying down or that you cannot push back in. Risks The risks of ventral hernia repair ...

  4. Primary ventral or groin hernia in pregnancy

    DEFF Research Database (Denmark)

    Oma, E; Bay-Nielsen, M; Jensen, K K

    2017-01-01

    BACKGROUND: Prevalence, management, and risk of emergency operation for primary ventral or groin hernia in pregnancy are unknown. The objective of this study was to estimate the prevalences of primary ventral or groin hernia in pregnancy and the potential risks for elective and emergency repair...... was conducted to identify patients registered with a primary ventral or groin hernia in pregnancy. Follow-up was conducted by review of medical record notes within the Capital Region of Denmark supplemented with structured telephone interviews on indication. RESULTS: In total, 20,714 pregnant women were...... included in the study cohort. Seventeen (0.08%) and 25 (0.12%) women were registered with a primary ventral and groin hernia, respectively. None underwent elective or emergency repair in pregnancy, and all had uncomplicated childbirth. In 10 women, the groin bulge disappeared spontaneously after delivery...

  5. A functional imaging study of self-regulatory capacities in persons who stutter.

    Directory of Open Access Journals (Sweden)

    Jie Liu

    Full Text Available Developmental stuttering is a disorder of speech fluency with an unknown pathogenesis. The similarity of its phenotype and natural history with other childhood neuropsychiatric disorders of frontostriatal pathology suggests that stuttering may have a closely related pathogenesis. We investigated in this study the potential involvement of frontostriatal circuits in developmental stuttering. We collected functional magnetic resonance imaging data from 46 persons with stuttering and 52 fluent controls during performance of the Simon Spatial Incompatibility Task. We examined differences between the two groups of blood-oxygen-level-dependent activation associated with two neural processes, the resolution of cognitive conflict and the context-dependent adaptation to changes in conflict. Stuttering speakers and controls did not differ on behavioral performance on the task. In the presence of conflict-laden stimuli, however, stuttering speakers activated more strongly the cingulate cortex, left anterior prefrontal cortex, right medial frontal cortex, left supplementary motor area, right caudate nucleus, and left parietal cortex. The magnitude of activation in the anterior cingulate cortex correlated inversely in stuttering speakers with symptom severity. Stuttering speakers also showed blunted activation during context-dependent adaptation in the left dorsolateral prefrontal cortex, a brain region that mediates cross-temporal contingencies. Frontostriatal hyper-responsivity to conflict resembles prior findings in other disorders of frontostriatal pathology, and therefore likely represents a general mechanism supporting functional compensation for an underlying inefficiency of neural processing in these circuits. The reduced activation of dorsolateral prefrontal cortex likely represents the inadequate readiness of stuttering speakers to execute a sequence of motor responses.

  6. Caenorhabditis elegans VEM-1, a novel membrane protein, regulates the guidance of ventral nerve cord-associated axons.

    Science.gov (United States)

    Runko, Erik; Kaprielian, Zaven

    2004-10-13

    In the developing CNS, pathfinding growth cones use intermediate target- and pioneer axon-associated guidance cues to navigate along stereotypical trajectories. We previously showed that the novel membrane-associated protein Vema is localized to the floor plate and the optic chiasm, intermediate targets located at the ventral midline of the spinal cord and diencephalon in the developing rodent CNS, respectively. Here, we report that the Caenorhabditis elegans ortholog of vema, vem-1, is expressed by the AVG pioneer midline neuron and by several neurons that extend longitudinally projecting axons into the ventral nerve cord (VNC). In vem-1 mutants and vem-1 (RNAi) animals, a subset of posteriorly projecting interneuron axons either fail to extend ventrally to the VNC and, instead, assume aberrant lateral positions or are inappropriately located in the left tract of the VNC. In addition, ventral motor neuron axons exhibit pathfinding errors within the VNC and along the dorsoventral body axis. The conserved UNC-40/DCC and SAX-3-/Robo receptors mediate signaling events that regulate axon guidance in a wide variety of systems. Double-mutant analyses reveal that vem-1 genetically interacts with unc-40 and is likely to function in parallel with sax-3 to regulate the guidance of a subset of VNC-associated interneuron and motor neuron axons. Consistent with these genetic data, we also show that VEM-1 is capable of physically interacting with UNC-40 but not SAX-3.

  7. Hyporeactivity of ventral striatum towards incentive stimuli in unmedicated depressed patients normalizes after treatment with escitalopram.

    Science.gov (United States)

    Stoy, Meline; Schlagenhauf, Florian; Sterzer, Philipp; Bermpohl, Felix; Hägele, Claudia; Suchotzki, Kristina; Schmack, Katharina; Wrase, Jana; Ricken, Roland; Knutson, Brian; Adli, Mazda; Bauer, Michael; Heinz, Andreas; Ströhle, Andreas

    2012-05-01

    Major Depressive Disorder (MDD) involves deficits in the reward system. While neuroimaging studies have focused on affective stimulus processing, few investigations have directly addressed deficits in the anticipation of incentives. We examined neural responses during gain and loss anticipation in patients with MDD before and after treatment with a selective serotonin reuptake inhibitor (SSRI). Fifteen adults with MDD and 15 healthy participants, matched for age, verbal IQ and smoking habits, were investigated in a functional magnetic resonance imaging (fMRI) study using a monetary incentive delay task. Patients were scanned drug-free and after 6 weeks of open-label treatment with escitalopram; controls were scanned twice at corresponding time points. We compared the blood oxygenation level dependent (BOLD) response during the anticipation of gain and loss with a neutral condition. A repeated measures ANOVA was calculated to identify effects of group (MDD vs. controls), time (first vs. second scan) and group-by-time interaction. Severity of depression was measured with the Hamilton Rating Scale of Depression and the Beck Depression Inventory. MDD patients showed significantly less ventral striatal activation during anticipation of gain and loss compared with controls before, but not after, treatment. There was a significant group-by-time interaction during anticipation of loss in the left ventral striatum due to a signal increase in patients after treatment. Ventral striatal hyporesponsiveness was associated with the severity of depression and in particular anhedonic symptoms. These findings suggest that MDD patients show ventral striatal hyporesponsiveness during incentive cue processing, which normalizes after successful treatment.

  8. Impulsivity and Concussion in Juvenile Rats: Examining Molecular and Structural Aspects of the Frontostriatal Pathway.

    Directory of Open Access Journals (Sweden)

    Harleen Hehar

    Full Text Available Impulsivity and poor executive control have been implicated in the pathogenesis of many developmental and neuropsychiatric disorders. Similarly, concussions/mild traumatic brain injuries (mTBI have been associated with increased risk for neuropsychiatric disorders and the development of impulsivity and inattention. Researchers and epidemiologists have therefore considered whether or not concussions induce symptoms of attention-deficit/hyperactivity disorder (ADHD, or merely unmask impulsive tendencies that were already present. The purpose of this study was to determine if a single concussion in adolescence could induce ADHD-like impulsivity and impaired response inhibition, and subsequently determine if inherent impulsivity prior to a pediatric mTBI would exacerbate post-concussion symptomology with a specific emphasis on impulsive and inattentive behaviours. As these behaviours are believed to be associated with the frontostriatal circuit involving the nucleus accumbens (NAc and the prefrontal cortex (PFC, the expression patterns of 8 genes (Comt, Drd2, Drd3, Drd4, Maoa, Sert, Tph1, and Tph2 from these two regions were examined. In addition, Golgi-Cox staining of medium spiny neurons in the NAc provided a neuroanatomical examination of mTBI-induced structural changes. The study found that a single early brain injury could induce impulsivity and impairments in response inhibition that were more pronounced in males. Interestingly, when animals with inherent impulsivity experienced mTBI, injury-related deficits were exacerbated in female animals. The single concussion increased dendritic branching, but reduced synaptic density in the NAc, and these changes were likely associated with the increase in impulsivity. Finally, mTBI-induced impulsivity was associated with modifications to gene expression that differed dramatically from the gene expression pattern associated with inherent impulsivity, despite very similar behavioural phenotypes. Our

  9. Sleep deprivation impairs object-selective attention: a view from the ventral visual cortex.

    Science.gov (United States)

    Lim, Julian; Tan, Jiat Chow; Parimal, Sarayu; Dinges, David F; Chee, Michael W L

    2010-02-05

    Most prior studies on selective attention in the setting of total sleep deprivation (SD) have focused on behavior or activation within fronto-parietal cognitive control areas. Here, we evaluated the effects of SD on the top-down biasing of activation of ventral visual cortex and on functional connectivity between cognitive control and other brain regions. Twenty-three healthy young adult volunteers underwent fMRI after a normal night of sleep (RW) and after sleep deprivation in a counterbalanced manner while performing a selective attention task. During this task, pictures of houses or faces were randomly interleaved among scrambled images. Across different blocks, volunteers responded to house but not face pictures, face but not house pictures, or passively viewed pictures without responding. The appearance of task-relevant pictures was unpredictable in this paradigm. SD resulted in less accurate detection of target pictures without affecting the mean false alarm rate or response time. In addition to a reduction of fronto-parietal activation, attending to houses strongly modulated parahippocampal place area (PPA) activation during RW, but this attention-driven biasing of PPA activation was abolished following SD. Additionally, SD resulted in a significant decrement in functional connectivity between the PPA and two cognitive control areas, the left intraparietal sulcus and the left inferior frontal lobe. SD impairs selective attention as evidenced by reduced selectivity in PPA activation. Further, reduction in fronto-parietal and ventral visual task-related activation suggests that it also affects sustained attention. Reductions in functional connectivity may be an important additional imaging parameter to consider in characterizing the effects of sleep deprivation on cognition.

  10. Sleep deprivation impairs object-selective attention: a view from the ventral visual cortex.

    Directory of Open Access Journals (Sweden)

    Julian Lim

    Full Text Available BACKGROUND: Most prior studies on selective attention in the setting of total sleep deprivation (SD have focused on behavior or activation within fronto-parietal cognitive control areas. Here, we evaluated the effects of SD on the top-down biasing of activation of ventral visual cortex and on functional connectivity between cognitive control and other brain regions. METHODOLOGY/PRINCIPAL FINDINGS: Twenty-three healthy young adult volunteers underwent fMRI after a normal night of sleep (RW and after sleep deprivation in a counterbalanced manner while performing a selective attention task. During this task, pictures of houses or faces were randomly interleaved among scrambled images. Across different blocks, volunteers responded to house but not face pictures, face but not house pictures, or passively viewed pictures without responding. The appearance of task-relevant pictures was unpredictable in this paradigm. SD resulted in less accurate detection of target pictures without affecting the mean false alarm rate or response time. In addition to a reduction of fronto-parietal activation, attending to houses strongly modulated parahippocampal place area (PPA activation during RW, but this attention-driven biasing of PPA activation was abolished following SD. Additionally, SD resulted in a significant decrement in functional connectivity between the PPA and two cognitive control areas, the left intraparietal sulcus and the left inferior frontal lobe. CONCLUSIONS/SIGNIFICANCE: SD impairs selective attention as evidenced by reduced selectivity in PPA activation. Further, reduction in fronto-parietal and ventral visual task-related activation suggests that it also affects sustained attention. Reductions in functional connectivity may be an important additional imaging parameter to consider in characterizing the effects of sleep deprivation on cognition.

  11. [Comparative anatomical study of the ventral brain arteries of the Pudu pudu (Molina, 1782) with those of the cow].

    Science.gov (United States)

    Schweitzer-Delaunoy, W

    1997-06-01

    Comparative anatomical study of the ventral brain arteries of the Pudú pudu (Molina, 1782) with those of the cow. A comparison using the corrosion method was made between Pudú pudu (Molina, 1782) ventral brain arteries and those of the cow. The Pudú's Rete mirabile epidurale rostrale (Nomina Anatomica Veterinaria, 1994) is ventrally formed by branches of the A. maxillaris, and caudally formed by the A. vertebralis. The Hypophysis is surrounded by the Rete mirabile rostrale. The lateral parts are rostrally joined to that gland by a thin vascular bridge and caudally by thick arteries. The Pudú's Circulus arteriosus cerebri asymmetrical, that is, on the right side the A. cerebri rostralis ends in the A. cerebri media. The left-side A. cerebri rostralis irrigates every rostral portion of the encephalon. In the cow, practically the same arteries come out of the Circulus arteriosus cerebri, which is not asymmetrical. The A. cerebri caudalis comes first out of the A. communicans caudalis and then the branches for the Pons, and finally the A. cerebelli rostralis. In this species, there are arterial blocks that are not present in Pudú.

  12. Planar cell polarity enables posterior localization of nodal cilia and left-right axis determination during mouse and Xenopus embryogenesis.

    Directory of Open Access Journals (Sweden)

    Dragana Antic

    2010-02-01

    Full Text Available Left-right asymmetry in vertebrates is initiated in an early embryonic structure called the ventral node in human and mouse, and the gastrocoel roof plate (GRP in the frog. Within these structures, each epithelial cell bears a single motile cilium, and the concerted beating of these cilia produces a leftward fluid flow that is required to initiate left-right asymmetric gene expression. The leftward fluid flow is thought to result from the posterior tilt of the cilia, which protrude from near the posterior portion of each cell's apical surface. The cells, therefore, display a morphological planar polarization. Planar cell polarity (PCP is manifested as the coordinated, polarized orientation of cells within epithelial sheets, or as directional cell migration and intercalation during convergent extension. A set of evolutionarily conserved proteins regulates PCP. Here, we provide evidence that vertebrate PCP proteins regulate planar polarity in the mouse ventral node and in the Xenopus gastrocoel roof plate. Asymmetric anterior localization of VANGL1 and PRICKLE2 (PK2 in mouse ventral node cells indicates that these cells are planar polarized by a conserved molecular mechanism. A weakly penetrant Vangl1 mutant phenotype suggests that compromised Vangl1 function may be associated with left-right laterality defects. Stronger functional evidence comes from the Xenopus GRP, where we show that perturbation of VANGL2 protein function disrupts the posterior localization of motile cilia that is required for leftward fluid flow, and causes aberrant expression of the left side-specific gene Nodal. The observation of anterior-posterior PCP in the mouse and in Xenopus embryonic organizers reflects a strong evolutionary conservation of this mechanism that is important for body plan determination.

  13. The role of the ventral dentate gyrus in olfactory pattern separation.

    Science.gov (United States)

    Weeden, Christy S S; Hu, Nathan J; Ho, Liana U N; Kesner, Raymond P

    2014-05-01

    Dorsoventral lesion studies of the hippocampus have indicated that the dorsal axis of the hippocampus is important for spatial processing and the ventral axis of the hippocampus is important for olfactory learning and memory and anxiety. There is some evidence to suggest that the ventral CA3 and ventral CA1 conduct parallel processes for pattern completion and temporal processing, respectively. Studies have indicated that the dorsal dentate gyrus (DG) is importantly involved in processes reflecting underlying pattern separation activity for spatial information. However, the ventral DG is less understood. The current study investigated the less-understood role of the ventral DG in olfactory pattern separation. A series of odor stimuli that varied on only one level, number of carbon chains (methyl groups), was used in a matching-to-sample paradigm in order to investigate ventral DG involvement in working memory for similar and less similar odors. Rats with ventral DG lesions were impaired at delays of 60 sec, but not at delays of 15 sec. A memory-based pattern separation effect was observed performance was poorest with only one carbon chain separation between trial odors and was highest for trials with four separations. The present study indicates that the ventral DG plays an important role in olfactory learning and memory processes for highly similar odors. The results also indicate a role for the ventral DG in pattern separation for odor information, which may have further implications for parallel processing across the dorsoventral axis for the DG in spatial (dorsal) and olfactory (ventral) pattern separation. Copyright © 2014 Wiley Periodicals, Inc.

  14. Amphioxus mouth after dorso-ventral inversion.

    Science.gov (United States)

    Kaji, Takao; Reimer, James D; Morov, Arseniy R; Kuratani, Shigeru; Yasui, Kinya

    2016-01-01

    Deuterostomes (animals with 'secondary mouths') are generally accepted to develop the mouth independently of the blastopore. However, it remains largely unknown whether mouths are homologous among all deuterostome groups. Unlike other bilaterians, in amphioxus the mouth initially opens on the left lateral side. This peculiar morphology has not been fully explained in the evolutionary developmental context. We studied the developmental process of the amphioxus mouth to understand whether amphioxus acquired a new mouth, and if so, how it is related to or differs from mouths in other deuterostomes. The left first somite in amphioxus produces a coelomic vesicle between the epidermis and pharynx that plays a crucial role in the mouth opening. The vesicle develops in association with the amphioxus-specific Hatschek nephridium, and first opens into the pharynx and then into the exterior as a mouth. This asymmetrical development of the anterior-most somites depends on the Nodal-Pitx signaling unit, and the perturbation of laterality-determining Nodal signaling led to the disappearance of the vesicle, producing a symmetric pair of anterior-most somites that resulted in larvae lacking orobranchial structures. The vesicle expressed bmp2/4, as seen in ambulacrarian coelomic pore-canals, and the mouth did not open when Bmp2/4 signaling was blocked. We conclude that the amphioxus mouth, which uniquely involves a mesodermal coelomic vesicle, shares its evolutionary origins with the ambulacrarian coelomic pore-canal. Our observations suggest that there are at least three types of mouths in deuterostomes, and that the new acquisition of chordate mouths was likely related to the dorso-ventral inversion that occurred in the last common ancestor of chordates.

  15. The ventralizing activity of Radar, a maternally expressed bone morphogenetic protein, reveals complex bone morphogenetic protein interactions controlling dorso-ventral patterning in zebrafish.

    Science.gov (United States)

    Goutel, C; Kishimoto, Y; Schulte-Merker, S; Rosa, F

    2000-12-01

    In Xenopus and zebrafish, BMP2, 4 and 7 have been implicated, after the onset of zygotic expression, in inducing and maintaining ventro-lateral cell fate during early development. We provide evidence here that a maternally expressed bone morphogenetic protein (BMP), Radar, may control early ventral specification in zebrafish. We show that Radar ventralizes zebrafish embryos and induces the early expression of bmp2b and bmp4. The analysis of Radar overexpression in both swirl/bmp2b mutants and embryos expressing truncated BMP receptors shows that Radar-induced ventralization is dependent on functional BMP2/4 pathways, and may initially rely on an Alk6-related signaling pathway. Finally, we show that while radar-injected swirl embryos still exhibit a strongly dorsalized phenotype, the overexpression of Radar into swirl/bmp2b mutant embryos restores ventral marker expression, including bmp4 expression. Our results suggest that a complex regulation of different BMP pathways controls dorso-ventral (DV) patterning from early cleavage stages until somitogenesis.

  16. A multicenter prospective study of patients undergoing open ventral hernia repair with intraperitoneal positioning using the monofilament polyester composite ventral patch

    DEFF Research Database (Denmark)

    Berrevoet, Frederik; Doerhoff, Carl; Muysoms, Filip

    2017-01-01

    PURPOSE: This study assessed the recurrence rate and other safety and efficacy parameters following ventral hernia repair with a polyester composite prosthesis (Parietex™ Composite Ventral Patch [PCO-VP]). PATIENTS AND METHODS: A single-arm, multicenter prospective study of 126 patients undergoing...

  17. Unimodal and multimodal regions for logographic language processing in left ventral occipitotemporal cortex

    Directory of Open Access Journals (Sweden)

    Yuan eDeng

    2013-09-01

    Full Text Available The human neocortex appears to contain a dedicated visual word form area (VWFA and an adjacent multimodal (visual/auditory area. However, these conclusions are based on functional magnetic resonance imaging (fMRI of alphabetic language processing, languages that have clear grapheme-to-phoneme correspondence (GPC rules that make it difficult to disassociate visual-specific processing from form-to-sound mapping. In contrast, the Chinese language has no clear GPC rules. Therefore, the current study examined whether native Chinese readers also have the same VWFA and multimodal area. Two cross-modal tasks, phonological retrieval of visual words and orthographic retrieval of auditory words, were adopted. Different task requirements were also applied to explore how different levels of cognitive processing modulate activation of putative VWFA-like and multimodal-like regions. Results showed that the left occipitotemporal sulcus responded exclusively to visual inputs and an adjacent region, the left inferior temporal gyrus, showed comparable activation for both visual and auditory inputs. Surprisingly, processing levels did not significantly alter activation of these two regions. These findings indicated that there are both unimodal and multimodal word areas for non-alphabetic language reading, and that activity in these two word-specific regions are independent of task demands at the linguistic level.

  18. Deep brain stimulation of the ventral hippocampus restores deficits in processing of auditory evoked potentials in a rodent developmental disruption model of schizophrenia.

    Science.gov (United States)

    Ewing, Samuel G; Grace, Anthony A

    2013-02-01

    Existing antipsychotic drugs are most effective at treating the positive symptoms of schizophrenia but their relative efficacy is low and they are associated with considerable side effects. In this study deep brain stimulation of the ventral hippocampus was performed in a rodent model of schizophrenia (MAM-E17) in an attempt to alleviate one set of neurophysiological alterations observed in this disorder. Bipolar stimulating electrodes were fabricated and implanted, bilaterally, into the ventral hippocampus of rats. High frequency stimulation was delivered bilaterally via a custom-made stimulation device and both spectral analysis (power and coherence) of resting state local field potentials and amplitude of auditory evoked potential components during a standard inhibitory gating paradigm were examined. MAM rats exhibited alterations in specific components of the auditory evoked potential in the infralimbic cortex, the core of the nucleus accumbens, mediodorsal thalamic nucleus, and ventral hippocampus in the left hemisphere only. DBS was effective in reversing these evoked deficits in the infralimbic cortex and the mediodorsal thalamic nucleus of MAM-treated rats to levels similar to those observed in control animals. In contrast stimulation did not alter evoked potentials in control rats. No deficits or stimulation-induced alterations were observed in the prelimbic and orbitofrontal cortices, the shell of the nucleus accumbens or ventral tegmental area. These data indicate a normalization of deficits in generating auditory evoked potentials induced by a developmental disruption by acute high frequency, electrical stimulation of the ventral hippocampus. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Inhibitory stimulation of the ventral premotor cortex temporarily interferes with musical beat rate preference.

    Science.gov (United States)

    Kornysheva, Katja; von Anshelm-Schiffer, Anne-Marike; Schubotz, Ricarda I

    2011-08-01

    Behavioral studies suggest that preference for a beat rate (tempo) in auditory sequences is tightly linked to the motor system. However, from a neuroscientific perspective the contribution of motor-related brain regions to tempo preference in the auditory domain remains unclear. A recent fMRI study (Kornysheva et al. [2010]: Hum Brain Mapp 31:48-64) revealed that the activity increase in the left ventral premotor cortex (PMv) is associated with the preference for a tempo of a musical rhythm. The activity increase correlated with how strongly the subjects preferred a tempo. Despite this evidence, it remains uncertain whether an interference with activity in the left PMv affects tempo preference strength. Consequently, we conducted an offline repetitive transcranial magnetic stimulation (rTMS) study, in which the cortical excitability in the left PMv was temporarily reduced. As hypothesized, 0.9 Hz rTMS over the left PMv temporarily affected individual tempo preference strength depending on the individual strength of tempo preference in the control session. Moreover, PMv stimulation temporarily interfered with the stability of individual tempo preference strength within and across sessions. These effects were specific to the preference for tempo in contrast to the preference for timbre, bound to the first half of the experiment following PMv stimulation and could not be explained by an impairment of tempo recognition. Our results corroborate preceding fMRI findings and suggest that activity in the left PMv is part of a network that affects the strength of beat rate preference. Copyright © 2010 Wiley-Liss, Inc.

  20. Premotor activations in response to visually presented single letters depend on the hand used to write: a study on left-handers.

    Science.gov (United States)

    Longcamp, Marieke; Anton, Jean-Luc; Roth, Muriel; Velay, Jean-Luc

    2005-01-01

    In a previous fMRI study on right-handers (Rhrs), we reported that part of the left ventral premotor cortex (BA6) was activated when alphabetical characters were passively observed and that the same region was also involved in handwriting [Longcamp, M., Anton, J. L., Roth, M., & Velay, J. L. (2003). Visual presentation of single letters activates a premotor area involved in writing. NeuroImage, 19, 1492-1500]. We therefore suggested that letter-viewing may induce automatic involvement of handwriting movements. In the present study, in order to confirm this hypothesis, we carried out a similar fMRI experiment on a group of left-handed subjects (Lhrs). We reasoned that if the above assumption was correct, visual perception of letters by Lhrs might automatically activate cortical motor areas coding for left-handed writing movements, i.e., areas located in the right hemisphere. The visual stimuli used here were either single letters, single pseudoletters, or a control stimulus. The subjects were asked to watch these stimuli attentively, and no response was required. The results showed that a ventral premotor cortical area (BA6) in the right hemisphere was specifically activated when Lhrs looked at letters and not at pseudoletters. This right area was symmetrically located with respect to the left one activated under the same circumstances in Rhrs. This finding supports the hypothesis that visual perception of written language evokes covert motor processes. In addition, a bilateral area, also located in the premotor cortex (BA6), but more ventrally and medially, was found to be activated in response to both letters and pseudoletters. This premotor region, which was not activated correspondingly in Rhrs, might be involved in the processing of graphic stimuli, whatever their degree of familiarity.

  1. Strong rightward lateralization of the dorsal attentional network in left-handers with right sighting-eye: an evolutionary advantage.

    Science.gov (United States)

    Petit, Laurent; Zago, Laure; Mellet, Emmanuel; Jobard, Gaël; Crivello, Fabrice; Joliot, Marc; Mazoyer, Bernard; Tzourio-Mazoyer, Nathalie

    2015-03-01

    Hemispheric lateralization for spatial attention and its relationships with manual preference strength and eye preference were studied in a sample of 293 healthy individuals balanced for manual preference. Functional magnetic resonance imaging was used to map this large sample while performing visually guided saccadic eye movements. This activated a bilateral distributed cortico-subcortical network in which dorsal and ventral attentional/saccadic pathways elicited rightward asymmetrical activation depending on manual preference strength and sighting eye. While the ventral pathway showed a strong rightward asymmetry irrespective of both manual preference strength and eye preference, the dorsal frontoparietal network showed a robust rightward asymmetry in strongly left-handers, even more pronounced in left-handed subjects with a right sighting-eye. Our findings brings support to the hypothesis that the origin of the rightward hemispheric dominance for spatial attention may have a manipulo-spatial origin neither perceptual nor motor per se but rather reflecting a mechanism by which a spatial context is mapped onto the perceptual and motor activities, including the exploration of the spatial environment with eyes and hands. Within this context, strongly left-handers with a right sighting-eye may benefit from the advantage of having the same right hemispheric control of their dominant hand and visuospatial attention processing. We suggest that this phenomenon explains why left-handed right sighting-eye athletes can outperform their competitors in sporting duels and that the prehistoric and historical constancy of the left-handers ratio over the general population may relate in part on the hemispheric specialization of spatial attention. © 2014 Wiley Periodicals, Inc.

  2. Solitary Osteochondroma of the Ventral Scapula Associated with Large Bursa Formation and Pseudowinging of the Scapula: A Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Kiyohisa Ogawa

    2018-01-01

    Full Text Available Osteochondroma (OC is the most common benign bone tumor and may occur on any bone in which endochondral ossification develops. Although scapular OC accounts for less than 5% of the cases of solitary OC, OC is the most common lesion among the tumors and tumor-like lesions of the scapula. OC that develops near the medial scapular border easily causes friction with the ribcage; hence, almost half the number of cases of OC associated with marked bursa formation develops in the ventral scapula. We report a case of a 27-year-old female with a painful OC of the ventral scapular surface associated with large bursa formation and pseudowinging of the scapula. After l2 years of follow-up with magnetic resonance imaging, we confirm that the accompanied bursa left at surgery disappears.

  3. De novo formation of left-right asymmetry by posterior tilt of nodal cilia.

    Directory of Open Access Journals (Sweden)

    Shigenori Nonaka

    2005-08-01

    Full Text Available In the developing mouse embryo, leftward fluid flow on the ventral side of the node determines left-right (L-R asymmetry. However, the mechanism by which the rotational movement of node cilia can generate a unidirectional flow remains hypothetical. Here we have addressed this question by motion and morphological analyses of the node cilia and by fluid dynamic model experiments. We found that the cilia stand, not perpendicular to the node surface, but tilted posteriorly. We further confirmed that such posterior tilt can produce leftward flow in model experiments. These results strongly suggest that L-R asymmetry is not the descendant of pre-existing L-R asymmetry within each cell but is generated de novo by combining three sources of spatial information: antero-posterior and dorso-ventral axes, and the chirality of ciliary movement.

  4. Single-minded and the evolution of the ventral midline in arthropods.

    Science.gov (United States)

    Linne, Viktoria; Eriksson, Bo Joakim; Stollewerk, Angelika

    2012-04-01

    In insects and crustaceans, ventral midline cells are present that subdivide the CNS into bilateral symmetric halves. In both arthropod groups unpaired midline neurons and glial cells have been identified that contribute to the embryonic patterning mechanisms. In the fruitfly Drosophila melanogaster, for example, the midline cells are involved in neural cell fate specification along the dorso-ventral axis but also in axonal pathfinding and organisation of the axonal scaffold. Both in insects and malacostracan crustaceans, the bHLH-PAS transcription factor single-minded is the master regulator of ventral midline development and homology has been suggested for individual midline precursors in these groups. The conserved arrangement of the axonal scaffold as well as the regular pattern of neural precursors in all euarthropod groups raises the question whether the ventral midline system is conserved in this phylum. In the remaining euarthropod groups, the chelicerates and myriapods, a single-minded homologue has been identified in the spider Achaearanea tepidariorum (chelicerate), however, the gene is not expressed in the ventral midline but in the median area of the ventral neuroectoderm. Here we show that At-sim is not required for ventral midline development. Furthermore, we identify sim homologues in representatives of arthropods that have not yet been analysed: the myriapod Strigamia maritima and a representative of an outgroup to the euarthropods, the onychophoran Euperipatoides kanangrensis. We compare the expression patterns to the A. tepidariorum sim homologue expression and furthermore analyse the nature of the arthropod midline cells. Our data suggest that in arthropods unpaired midline precursors evolved from the bilateral median domain of the ventral neuroectoderm in the last common ancestor of Mandibulata (insects, crustaceans, myriapods). We hypothesize that sim was expressed in this domain and recruited to ventral midline development. Subsequently, sim

  5. Opposing dorsal/ventral stream dynamics during figure-ground segregation.

    Science.gov (United States)

    Wokke, Martijn E; Scholte, H Steven; Lamme, Victor A F

    2014-02-01

    The visual system has been commonly subdivided into two segregated visual processing streams: The dorsal pathway processes mainly spatial information, and the ventral pathway specializes in object perception. Recent findings, however, indicate that different forms of interaction (cross-talk) exist between the dorsal and the ventral stream. Here, we used TMS and concurrent EEG recordings to explore these interactions between the dorsal and ventral stream during figure-ground segregation. In two separate experiments, we used repetitive TMS and single-pulse TMS to disrupt processing in the dorsal (V5/HMT⁺) and the ventral (lateral occipital area) stream during a motion-defined figure discrimination task. We presented stimuli that made it possible to differentiate between relatively low-level (figure boundary detection) from higher-level (surface segregation) processing steps during figure-ground segregation. Results show that disruption of V5/HMT⁺ impaired performance related to surface segregation; this effect was mainly found when V5/HMT⁺ was perturbed in an early time window (100 msec) after stimulus presentation. Surprisingly, disruption of the lateral occipital area resulted in increased performance scores and enhanced neural correlates of surface segregation. This facilitatory effect was also mainly found in an early time window (100 msec) after stimulus presentation. These results suggest a "push-pull" interaction in which dorsal and ventral extrastriate areas are being recruited or inhibited depending on stimulus category and task demands.

  6. Human V4 and ventral occipital retinotopic maps

    Science.gov (United States)

    Winawer, Jonathan; Witthoft, Nathan

    2016-01-01

    The ventral surface of the human occipital lobe contains multiple retinotopic maps. The most posterior of these maps is considered a potential homolog of macaque V4, and referred to as human V4 (‘hV4’). The location of the hV4 map, its retinotopic organization, its role in visual encoding, and the cortical areas it borders have been the subject of considerable investigation and debate over the last 25 years. We review the history of this map and adjacent maps in ventral occipital cortex, and consider the different hypotheses for how these ventral occipital maps are organized. Advances in neuroimaging, computational modeling, and characterization of the nearby anatomical landmarks and functional brain areas have improved our understanding of where human V4 is and what kind of visual representations it contains. PMID:26241699

  7. Modified semitendinosus muscle transposition to repair ventral perineal hernia in 14 dogs.

    Science.gov (United States)

    Morello, E; Martano, M; Zabarino, S; Piras, L A; Nicoli, S; Bussadori, R; Buracco, P

    2015-06-01

    To describe a modified technique of semitendinosus muscle transposition for the repair of ventral perineal hernia. Retrospective review of case records of dogs with ventral perineal hernia that were treated by transposing the medial half of the longitudinally split semitendinosus muscle of one limb. The transposition of the internal obturator muscle was used when uni- or bilateral rectal sacculation was also present in addition to ventral perineal hernia; colopexy and vas deferens pexy were also performed. Fourteen dogs were included. In addition to ventral perineal hernia, unilateral and bilateral perineal hernia was also present in five and six of the dogs, respectively. The mean follow-up time was 890 days. Ventral perineal hernia was successfully managed by the modified semitendinosus muscle transposition with minor complications in all the dogs included in the study. Despite the small number of dogs included, the unilateral transposition of the medial half of the longitudinally split semitendinosus muscle consistently supported the ventral rectal enlargement in perineal hernia without obvious adverse effects. © 2015 British Small Animal Veterinary Association.

  8. Establishment and initial experiences from the Danish Ventral Hernia Database

    DEFF Research Database (Denmark)

    Helgstrand, F; Rosenberg, J; Bay-Nielsen, M

    2010-01-01

    , use of mesh or no mesh, type of suture material, and placement of the mesh. A total of 5,629 elective and 661 acute ventral hernia repairs were registered. After the first 2 years the registration rate was 70%. CONCLUSION: The first national ventral hernia database has been established. Preliminary...... of the Danish Ventral Hernia Database (DVHD). Furthermore, the first 2-year data from 2007 to 2008 are presented. METHODS: Registrations were based on surgeons' web registrations and validated by cross checking with data from the Danish National Patient Register. RESULTS: The DVHD was established in June 2006...... and is based on prospective online web-registration of perioperative data, and individualised tracking of follow up data. During the first 2 years (2007-2008) data showed a large variation in almost all aspects of ventral hernia repair regarding surgical technique, use of open versus laparoscopic technique...

  9. Development of Tool Representations in the Dorsal and Ventral Visual Object Processing Pathways

    Science.gov (United States)

    Kersey, Alyssa J.; Clark, Tyia S.; Lussier, Courtney A.; Mahon, Bradford Z.; Cantlon, Jessica F.

    2016-01-01

    Tools represent a special class of objects, because they are processed across both the dorsal and ventral visual object processing pathways. Three core regions are known to be involved in tool processing: the left posterior middle temporal gyrus, the medial fusiform gyrus (bilaterally), and the left inferior parietal lobule. A critical and relatively unexplored issue concerns whether, in development, tool preferences emerge at the same time and to a similar degree across all regions of the tool-processing network. To test this issue, we used functional magnetic resonance imaging to measure the neural amplitude, peak location, and the dispersion of tool-related neural responses in the youngest sample of children tested to date in this domain (ages 4–8 years). We show that children recruit overlapping regions of the adult tool-processing network and also exhibit similar patterns of co-activation across the network to adults. The amplitude and co-activation data show that the core components of the tool-processing network are established by age 4. Our findings on the distributions of peak location and dispersion of activation indicate that the tool network undergoes refinement between ages 4 and 8 years. PMID:26108614

  10. The functional organization of the left STS: a large scale meta-analysis of PET and fMRI studies of healthy adults

    Science.gov (United States)

    Liebenthal, Einat; Desai, Rutvik H.; Humphries, Colin; Sabri, Merav; Desai, Anjali

    2014-01-01

    The superior temporal sulcus (STS) in the left hemisphere is functionally diverse, with sub-areas implicated in both linguistic and non-linguistic functions. However, the number and boundaries of distinct functional regions remain to be determined. Here, we present new evidence, from meta-analysis of a large number of positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) studies, of different functional specificity in the left STS supporting a division of its middle to terminal extent into at least three functional areas. The middle portion of the left STS stem (fmSTS) is highly specialized for speech perception and the processing of language material. The posterior portion of the left STS stem (fpSTS) is highly versatile and involved in multiple functions supporting semantic memory and associative thinking. The fpSTS responds to both language and non-language stimuli but the sensitivity to non-language material is greater. The horizontal portion of the left STS stem and terminal ascending branches (ftSTS) display intermediate functional specificity, with the anterior-dorsal ascending branch (fatSTS) supporting executive functions and motor planning and showing greater sensitivity to language material, and the horizontal stem and posterior-ventral ascending branch (fptSTS) supporting primarily semantic processing and displaying greater sensitivity to non-language material. We suggest that the high functional specificity of the left fmSTS for speech is an important means by which the human brain achieves exquisite affinity and efficiency for native speech perception. In contrast, the extreme multi-functionality of the left fpSTS reflects the role of this area as a cortical hub for semantic processing and the extraction of meaning from multiple sources of information. Finally, in the left ftSTS, further functional differentiation between the dorsal and ventral aspect is warranted. PMID:25309312

  11. Development of the ventral body wall in the human embryo

    NARCIS (Netherlands)

    Mekonen, Hayelom K.; Hikspoors, Jill P. J. M.; Mommen, Greet; Köhler, S. Eleonore; Lamers, Wouter H.

    2015-01-01

    Migratory failure of somitic cells is the commonest explanation for ventral body wall defects. However, the embryo increases ~ 25-fold in volume in the period that the ventral body wall forms, so that differential growth may, instead, account for the observed changes in topography. Human embryos

  12. Financial implications of ventral hernia repair: a hospital cost analysis.

    Science.gov (United States)

    Reynolds, Drew; Davenport, Daniel L; Korosec, Ryan L; Roth, J Scott

    2013-01-01

    Complicated ventral hernias are often referred to tertiary care centers. Hospital costs associated with these repairs include direct costs (mesh materials, supplies, and nonsurgeon labor costs) and indirect costs (facility fees, equipment depreciation, and unallocated labor). Operative supplies represent a significant component of direct costs, especially in an era of proprietary synthetic meshes and biologic grafts. We aim to evaluate the cost-effectiveness of complex abdominal wall hernia repair at a tertiary care referral facility. Cost data on all consecutive open ventral hernia repairs (CPT codes 49560, 49561, 49565, and 49566) performed between 1 July 2008 and 31 May 2011 were analyzed. Cases were analyzed based upon hospital status (inpatient vs. outpatient) and whether the hernia repair was a primary or secondary procedure. We examined median net revenue, direct costs, contribution margin, indirect costs, and net profit/loss. Among primary hernia repairs, cost data were further analyzed based upon mesh utilization (no mesh, synthetic, or biologic). Four-hundred and fifteen patients underwent ventral hernia repair (353 inpatients and 62 outpatients); 173 inpatients underwent ventral hernia repair as the primary procedure; 180 inpatients underwent hernia repair as a secondary procedure. Median net revenue ($17,310 vs. 10,360, p costs for cases performed without mesh were $5,432; median direct costs for those using synthetic and biologic mesh were $7,590 and 16,970, respectively (p financial loss was $8,370. Outpatient ventral hernia repairs, with and without synthetic mesh, resulted in median net losses of $1,560 and 230, respectively. Ventral hernia repair is associated with overall financial losses. Inpatient synthetic mesh repairs are essentially budget neutral. Outpatient and inpatient repairs without mesh result in net financial losses. Inpatient biologic mesh repairs result in a negative contribution margin and striking net financial losses. Cost

  13. Maternal control of the Drosophila dorsal–ventral body axis

    Science.gov (United States)

    Stein, David S.; Stevens, Leslie M.

    2016-01-01

    The pathway that generates the dorsal–ventral (DV) axis of the Drosophila embryo has been the subject of intense investigation over the previous three decades. The initial asymmetric signal originates during oogenesis by the movement of the oocyte nucleus to an anterior corner of the oocyte, which establishes DV polarity within the follicle through signaling between Gurken, the Drosophila Transforming Growth Factor (TGF)-α homologue secreted from the oocyte, and the Drosophila Epidermal Growth Factor Receptor (EGFR) that is expressed by the follicular epithelium cells that envelop the oocyte. Follicle cells that are not exposed to Gurken follow a ventral fate and express Pipe, a sulfotransferase that enzymatically modifies components of the inner vitelline membrane layer of the eggshell, thereby transferring DV spatial information from the follicle to the egg. These ventrally sulfated eggshell proteins comprise a localized cue that directs the ventrally restricted formation of the active Spätzle ligand within the perivitelline space between the eggshell and the embryonic membrane. Spätzle activates Toll, a transmembrane receptor in the embryonic membrane. Transmission of the Toll signal into the embryo leads to the formation of a ventral-to-dorsal gradient of the transcription factor Dorsal within the nuclei of the syncytial blastoderm stage embryo. Dorsal controls the spatially specific expression of a large constellation of zygotic target genes, the Dorsal gene regulatory network, along the embryonic DV circumference. This article reviews classic studies and integrates them with the details of more recent work that has advanced our understanding of the complex pathway that establishes Drosophila embryo DV polarity. PMID:25124754

  14. Reduced ventral cingulum integrity and increased behavioral problems in children with isolated optic nerve hypoplasia and mild to moderate or no visual impairment.

    Directory of Open Access Journals (Sweden)

    Emma A Webb

    Full Text Available OBJECTIVES: To assess the prevalence of behavioral problems in children with isolated optic nerve hypoplasia, mild to moderate or no visual impairment, and no developmental delay. To identify white matter abnormalities that may provide neural correlates for any behavioral abnormalities identified. PATIENTS AND METHODS: Eleven children with isolated optic nerve hypoplasia (mean age 5.9 years underwent behavioral assessment and brain diffusion tensor imaging, Twenty four controls with isolated short stature (mean age 6.4 years underwent MRI, 11 of whom also completed behavioral assessments. Fractional anisotropy images were processed using tract-based spatial statistics. Partial correlation between ventral cingulum, corpus callosum and optic radiation fractional anisotropy, and child behavioral checklist scores (controlled for age at scan and sex was performed. RESULTS: Children with optic nerve hypoplasia had significantly higher scores on the child behavioral checklist (p<0.05 than controls (4 had scores in the clinically significant range. Ventral cingulum, corpus callosum and optic radiation fractional anisotropy were significantly reduced in children with optic nerve hypoplasia. Right ventral cingulum fractional anisotropy correlated with total and externalising child behavioral checklist scores (r = -0.52, p<0.02, r = -0.46, p<0.049 respectively. There were no significant correlations between left ventral cingulum, corpus callosum or optic radiation fractional anisotropy and behavioral scores. CONCLUSIONS: Our findings suggest that children with optic nerve hypoplasia and mild to moderate or no visual impairment require behavioral assessment to determine the presence of clinically significant behavioral problems. Reduced structural integrity of the ventral cingulum correlated with behavioral scores, suggesting that these white matter abnormalities may be clinically significant. The presence of reduced fractional anisotropy in the optic

  15. The Danish ventral hernia database

    DEFF Research Database (Denmark)

    Helgstrand, Frederik; Jorgensen, Lars Nannestad

    2016-01-01

    Aim: The Danish Ventral Hernia Database (DVHD) provides national surveillance of current surgical practice and clinical postoperative outcomes. The intention is to reduce postoperative morbidity and hernia recurrence, evaluate new treatment strategies, and facilitate nationwide implementation of ...... of operations and is an excellent tool for observing changes over time, including adjustment of several confounders. This national database registry has impacted on clinical practice in Denmark and led to a high number of scientific publications in recent years.......Aim: The Danish Ventral Hernia Database (DVHD) provides national surveillance of current surgical practice and clinical postoperative outcomes. The intention is to reduce postoperative morbidity and hernia recurrence, evaluate new treatment strategies, and facilitate nationwide implementation...... to the surgical repair are recorded. Data registration is mandatory. Data may be merged with other Danish health registries and information from patient questionnaires or clinical examinations. Descriptive data: More than 37,000 operations have been registered. Data have demonstrated high agreement with patient...

  16. Functional asymmetry between the left and right human fusiform gyrus explored through electrical brain stimulation.

    Science.gov (United States)

    Rangarajan, Vinitha; Parvizi, Josef

    2016-03-01

    The ventral temporal cortex (VTC) contains several areas with selective responses to words, numbers, faces, and objects as demonstrated by numerous human and primate imaging and electrophysiological studies. Our recent work using electrocorticography (ECoG) confirmed the presence of face-selective neuronal populations in the human fusiform gyrus (FG) in patients implanted with intracranial electrodes in either the left or right hemisphere. Electrical brain stimulation (EBS) disrupted the conscious perception of faces only when it was delivered in the right, but not left, FG. In contrast to our previous findings, here we report both negative and positive EBS effects in right and left FG, respectively. The presence of right hemisphere language dominance in the first, and strong left-handedness and poor language processing performance in the second case, provide indirect clues about the functional architecture of the human VTC in relation to hemispheric asymmetries in language processing and handedness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Functional organization and visual representations in human ventral lateral prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Annie Wai Yiu Chan

    2013-07-01

    Full Text Available Recent neuroimaging studies in both human and non-human primates have identified face selective activation in the ventral lateral prefrontal cortex even in the absence of working memory demands. Further, research has suggested that this face-selective response is largely driven by the presence of the eyes. However, the nature and origin of visual category responses in the ventral lateral prefrontal cortex remain unclear. Further, in a broader sense, how do these findings relate to our current understandings of lateral prefrontal cortex? What do these findings tell us about the underlying function and organization principles of the ventral lateral prefrontal cortex? What is the future direction for investigating visual representations in this cortex? This review focuses on the function, topography, and circuitry of the ventral lateral prefrontal cortex to enhance our understanding of the evolution and development of this cortex.

  18. Radiographic identification of the equine ventral conchal bulla.

    Science.gov (United States)

    Finnegan, C M; Townsend, N B; Barnett, T P; Barakzai, S Z

    Involvement of the ventral conchal sinus (VCS) is an important diagnostic and prognostic feature in cases of the equine sinus disease. The authors aimed to ascertain if the caudo-dorsal extension of the VCS, the ventral conchal bulla (VCB) is identifiable on plain radiographs of cadaver skulls without sinus disease. Bilateral frontonasal sinus flaps were made in 10 equine cadaver skulls. Plain lateral, lateral oblique and dorso-ventral radiographs were then obtained followed by the same views taken with stainless steel wire outlining the caudal border of the VCB. Plain radiographs were randomised and blindly evaluated by two observers who marked where they believed the VCB to be positioned. This was then correlated with the true position of the VCB using radiographs with wires in place. The ease of identification of the VCB was classified as 'easy' or 'difficult'. The VCB was correctly identified in 70 per cent of lateral radiographs, but only 45 per cent of lateral oblique radiographs and 17 per cent of dorso-ventral radiographs. If a clinician was confident that he or she could identify the VCB, they were usually correct. Conversely if the clinician judged VCB identification as 'difficult', they usually identified it incorrectly. In the authors' clinical experience, the VCB of horses with sinusitis involving this compartment is more radiologically evident than in clinically normal horses. Knowledge of the normal radiographic anatomy of this structure should aid clinicians in identifying horses with sinusitis affecting the VCS.

  19. The issue of ventral versus dorsal approach in bulbar urethral ...

    African Journals Online (AJOL)

    E. Palminteri

    From surgical point of view, the Barbagli Dorsal Grafting by Dor- sal approach [8] gives a good support for the graft; Barbagli stated that his technique offers a wider augmentation than ventral or dorsal grafting using the ventral approach. The good spongiosum covering seems reduce the risk of fistula; in reality there is a ...

  20. Aversive counterconditioning attenuates reward signalling in the ventral striatum

    Directory of Open Access Journals (Sweden)

    Anne Marije Kaag

    2016-08-01

    Full Text Available Appetitive conditioning refers to the process of learning cue-reward associations and is mediated by the mesocorticolimbic system. Appetitive conditioned responses are difficult to extinguish, especially for highly salient rewards such as food and drugs. We investigate whether aversive counterconditioning can alter reward reinstatement in the ventral striatum in healthy volunteers using functional Magnetic Resonance Imaging (fMRI. In the initial conditioning phase, two different stimuli were reinforced with a monetary reward. In the subsequent counterconditioning phase, one of these stimuli was paired with an aversive shock to the wrist. In the following extinction phase, none of the stimuli were reinforced. In the final reinstatement phase, reward was reinstated by informing the participants that the monetary gain could be doubled. Our fMRI data revealed that reward signalling in the ventral striatum and ventral tegmental area following reinstatement was smaller for the stimulus that was counterconditioned with an electrical shock, compared to the non-counterconditioned stimulus. A functional connectivity analysis showed that aversive counterconditioning strengthened striatal connectivity with the hippocampus and insula. These results suggest that reward signalling in the ventral striatum can be attenuated through aversive counterconditioning, possibly by concurrent retrieval of the aversive association through enhanced connectivity with hippocampus and insula.

  1. Sizzled controls dorso-ventral polarity by repressing cleavage of the Chordin protein.

    Science.gov (United States)

    Muraoka, Osamu; Shimizu, Takashi; Yabe, Taijiro; Nojima, Hideaki; Bae, Young-Ki; Hashimoto, Hisashi; Hibi, Masahiko

    2006-04-01

    The Bone morphogenetic protein (Bmp) signalling gradient has a major function in the formation of the dorso-ventral axis. The zebrafish ventralized mutant, ogon, encodes Secreted Frizzled (Sizzled). sizzled is ventrally expressed in a Bmp-dependent manner and is required for the suppression of Bmp signalling on the ventral side of zebrafish embryos. However, it remains unclear how Sizzled inhibits Bmp signalling and controls ventro-lateral cell fate. We found that Sizzled stabilizes Chordin, a Bmp antagonist, by binding and inhibiting the Tolloid-family metalloproteinase, Bmp1a, which cleaves and inactivates Chordin. The cysteine-rich domain of Sizzled is required for inhibition of Bmp1a activity. Loss of both Bmp1a and Tolloid-like1 (Tll1; another Tolloid-family metalloproteinase) function leads to a complete suppression and reversal of the ogon mutant phenotype. These results indicate that Sizzled represses the activities of Tolloid-family proteins, thereby creating the Chordin-Bmp activity gradient along the dorso-ventral axis. Here, we describe a previously unrecognized role for a secreted Frizzled-related protein.

  2. Requirement of Xmsx-1 in the BMP-triggered ventralization of Xenopus embryos.

    Science.gov (United States)

    Yamamoto, T S; Takagi, C; Ueno, N

    2000-03-01

    Signaling triggered by polypeptide growth factors leads to the activation of their target genes. Several homeobox genes are known to be induced in response to polypeptide growth factors in early Xenopus development. In particular, Xmsx-1, an amphibian homologue of vertebrate Msx-1, is well characterized as a target gene of bone morphogenetic protein (BMP). Here, using a dominant-negative form of Xmsx-1 (VP-Xmsx-1), which is a fusion protein made with the virus-derived VP16 activation domain, we have examined whether Xmsx-1 activity is required in the endogenous ventralizing pathway. VP-Xmsx-1 induced a secondary body axis, complete with muscle and neural tissues, when overexpressed in ventral blastomeres, suggesting that Xmsx-1 activity is necessary for both mesoderm and ectoderm to be ventralized. We have also examined the epistatic relationship between Xmsx-1 and another ventralizing homeobox protein, Xvent-1, and show that Xmsx-1 is likely to be acting upstream of Xvent-1. We propose that Xmsx-1 is required in the BMP-stimulated ventralization pathway that involves the downstream activation of Xvent-1.

  3. Functional connectivity between prefrontal and parietal cortex drives visuo-spatial attention shifts.

    Science.gov (United States)

    Heinen, Klaartje; Feredoes, Eva; Ruff, Christian C; Driver, Jon

    2017-05-01

    It is well established that the frontal eye-fields (FEF) in the dorsal attention network (DAN) guide top-down selective attention. In addition, converging evidence implies a causal role for the FEF in attention shifting, which is also known to recruit the ventral attention network (VAN) and fronto-striatal regions. To investigate the causal influence of the FEF as (part of) a central hub between these networks, we applied thetaburst transcranial magnetic stimulation (TBS) off-line, combined with functional magnetic resonance (fMRI) during a cued visuo-spatial attention shifting paradigm. We found that TBS over the right FEF impaired performance on a visual discrimination task in both hemifields following attention shifts, while only left hemifield performance was affected when participants were cued to maintain the focus of attention. These effects recovered ca. 20min post stimulation. Furthermore, particularly following attention shifts, TBS suppressed the neural signal in bilateral FEF, right inferior and superior parietal lobule (IPL/SPL) and bilateral supramarginal gyri (SMG). Immediately post stimulation, functional connectivity was impaired between right FEF and right SMG as well as right putamen. Importantly, the extent of decreased connectivity between right FEF and right SMG correlated with behavioural impairment following attention shifts. The main finding of this study demonstrates that influences from right FEF on SMG in the ventral attention network causally underly attention shifts, presumably by enabling disengagement from the current focus of attention. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Decisions, Decisions: The Neurobiology of the effects of Dopamine Replacement Therapy on Decision-Making in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Julie Lee

    2015-05-01

    Full Text Available Dopamine replacement therapy (DRT alleviates motor symptoms in Parkinson’s disease but induces neuropsychiatric side-effects. This review evaluates recent research into the decision-making deficits caused by DRT arising because dopamine ‘overdoses’ a relatively-intact ventral striatum while replenishing the dorsal striatum. Consequently, patients on medication are worse at learning from losses but better at learning from wins than healthy controls. Additionally, due to greater disruption of medication on limbic than cognitive neural circuits, patients are poorer at decision-making under risk than decision-making under ambiguity. Particularly, task components related to ventral fronto-striatal and orbitofrontal regions are affected more than those related to dorsal and prefrontal regions. Selective deficits in feedback processing and outcome evaluation due to limbic overdose likely drive this effect.

  5. Nationwide analysis of prolonged hospital stay and readmission after elective ventral hernia repair

    DEFF Research Database (Denmark)

    Helgstrand, Frederik; Rosenberg, Jacob; Kehlet, Henrik

    2011-01-01

    Early outcome after elective ventral hernia repair is unsatisfactory, but detailed analyses are lacking. The aim of this study was to describe the aetiology of prolonged hospital stay (LOS), readmission and death <30 days after elective ventral hernia repair.......Early outcome after elective ventral hernia repair is unsatisfactory, but detailed analyses are lacking. The aim of this study was to describe the aetiology of prolonged hospital stay (LOS), readmission and death

  6. Novel structural components of the ventral disc and lateral crest in Giardia intestinalis.

    Directory of Open Access Journals (Sweden)

    Kari D Hagen

    2011-12-01

    Full Text Available Giardia intestinalis is a ubiquitous parasitic protist that is the causative agent of giardiasis, one of the most common protozoan diarrheal diseases in the world. Giardia trophozoites attach to the intestinal epithelium using a specialized and elaborate microtubule structure, the ventral disc. Surrounding the ventral disc is a less characterized putatively contractile structure, the lateral crest, which forms a continuous perimeter seal with the substrate. A better understanding of ventral disc and lateral crest structure, conformational dynamics, and biogenesis is critical for understanding the mechanism of giardial attachment to the host. To determine the components comprising the ventral disc and lateral crest, we used shotgun proteomics to identify proteins in a preparation of isolated ventral discs. Candidate disc-associated proteins, or DAPs, were GFP-tagged using a ligation-independent high-throughput cloning method. Based on disc localization, we identified eighteen novel DAPs, which more than doubles the number of known disc-associated proteins. Ten of the novel DAPs are associated with the lateral crest or outer edge of the disc, and are the first confirmed components of this structure. Using Fluorescence Recovery After Photobleaching (FRAP with representative novel DAP::GFP strains we found that the newly identified DAPs tested did not recover after photobleaching and are therefore structural components of the ventral disc or lateral crest. Functional analyses of the novel DAPs will be central toward understanding the mechanism of ventral disc-mediated attachment and the mechanism of disc biogenesis during cell division. Since attachment of Giardia to the intestine via the ventral disc is essential for pathogenesis, it is possible that some proteins comprising the disc could be potential drug targets if their loss or disruption interfered with disc biogenesis or function, preventing attachment.

  7. Altered neural reward and loss processing and prediction error signalling in depression

    Science.gov (United States)

    Ubl, Bettina; Kuehner, Christine; Kirsch, Peter; Ruttorf, Michaela

    2015-01-01

    Dysfunctional processing of reward and punishment may play an important role in depression. However, functional magnetic resonance imaging (fMRI) studies have shown heterogeneous results for reward processing in fronto-striatal regions. We examined neural responsivity associated with the processing of reward and loss during anticipation and receipt of incentives and related prediction error (PE) signalling in depressed individuals. Thirty medication-free depressed persons and 28 healthy controls performed an fMRI reward paradigm. Regions of interest analyses focused on neural responses during anticipation and receipt of gains and losses and related PE-signals. Additionally, we assessed the relationship between neural responsivity during gain/loss processing and hedonic capacity. When compared with healthy controls, depressed individuals showed reduced fronto-striatal activity during anticipation of gains and losses. The groups did not significantly differ in response to reward and loss outcomes. In depressed individuals, activity increases in the orbitofrontal cortex and nucleus accumbens during reward anticipation were associated with hedonic capacity. Depressed individuals showed an absence of reward-related PEs but encoded loss-related PEs in the ventral striatum. Depression seems to be linked to blunted responsivity in fronto-striatal regions associated with limited motivational responses for rewards and losses. Alterations in PE encoding might mirror blunted reward- and enhanced loss-related associative learning in depression. PMID:25567763

  8. Compulsivity in obsessive-compulsive disorder and addictions.

    Science.gov (United States)

    Figee, Martijn; Pattij, Tommy; Willuhn, Ingo; Luigjes, Judy; van den Brink, Wim; Goudriaan, Anneke; Potenza, Marc N; Robbins, Trevor W; Denys, Damiaan

    2016-05-01

    Compulsive behaviors are driven by repetitive urges and typically involve the experience of limited voluntary control over these urges, a diminished ability to delay or inhibit these behaviors, and a tendency to perform repetitive acts in a habitual or stereotyped manner. Compulsivity is not only a central characteristic of obsessive-compulsive disorder (OCD) but is also crucial to addiction. Based on this analogy, OCD has been proposed to be part of the concept of behavioral addiction along with other non-drug-related disorders that share compulsivity, such as pathological gambling, skin-picking, trichotillomania and compulsive eating. In this review, we investigate the neurobiological overlap between compulsivity in substance-use disorders, OCD and behavioral addictions as a validation for the construct of compulsivity that could be adopted in the Research Domain Criteria (RDoC). The reviewed data suggest that compulsivity in OCD and addictions is related to impaired reward and punishment processing with attenuated dopamine release in the ventral striatum, negative reinforcement in limbic systems, cognitive and behavioral inflexibility with diminished serotonergic prefrontal control, and habitual responding with imbalances between ventral and dorsal frontostriatal recruitment. Frontostriatal abnormalities of compulsivity are promising targets for neuromodulation and other interventions for OCD and addictions. We conclude that compulsivity encompasses many of the RDoC constructs in a trans-diagnostic fashion with a common brain circuit dysfunction that can help identifying appropriate prevention and treatment targets. Copyright © 2016. Published by Elsevier B.V.

  9. Hippocampal projections to the ventral striatum: from spatial memory to motivated behavior

    NARCIS (Netherlands)

    van der Meer, M.M.A; Ito, R.; Lansink, C.S.; Pennartz, C.M.A.; Derdikman, D.; Knierim, J.J.

    2014-01-01

    Multiple regions of the hippocampal formation project to the ventral striatum, a central node in brain circuits that subserve aspects of motivation. These projections emphasize information flow from the ventral (temporal) pole of the hippocampus and interact with converging projections and

  10. Crossmodal Recruitment of the Ventral Visual Stream in Congenital Blindness

    Directory of Open Access Journals (Sweden)

    Maurice Ptito

    2012-01-01

    Full Text Available We used functional MRI (fMRI to test the hypothesis that blind subjects recruit the ventral visual stream during nonhaptic tactile-form recognition. Congenitally blind and blindfolded sighted control subjects were scanned after they had been trained during four consecutive days to perform a tactile-form recognition task with the tongue display unit (TDU. Both groups learned the task at the same rate. In line with our hypothesis, the fMRI data showed that during nonhaptic shape recognition, blind subjects activated large portions of the ventral visual stream, including the cuneus, precuneus, inferotemporal (IT, cortex, lateral occipital tactile vision area (LOtv, and fusiform gyrus. Control subjects activated area LOtv and precuneus but not cuneus, IT and fusiform gyrus. These results indicate that congenitally blind subjects recruit key regions in the ventral visual pathway during nonhaptic tactile shape discrimination. The activation of LOtv by nonhaptic tactile shape processing in blind and sighted subjects adds further support to the notion that this area subserves an abstract or supramodal representation of shape. Together with our previous findings, our data suggest that the segregation of the efferent projections of the primary visual cortex into a dorsal and ventral visual stream is preserved in individuals blind from birth.

  11. Glutamatergic stimulation of the left dentate gyrus abolishes depressive-like behaviors in a rat learned helplessness paradigm.

    Science.gov (United States)

    Seo, Jeho; Cho, Hojin; Kim, Gun Tae; Kim, Chul Hoon; Kim, Dong Goo

    2017-10-01

    Episodic experiences of stress have been identified as the leading cause of major depressive disorder (MDD). The occurrence of MDD is profoundly influenced by the individual's coping strategy, rather than the severity of the stress itself. Resting brain activity has been shown to alter in several mental disorders. However, the functional relationship between resting brain activity and coping strategies has not yet been studied. In the present study, we observed different patterns of resting brain activity in rats that had determined either positive (resilient to stress) or negative (vulnerable to stress) coping strategies, and examined whether modulation of the preset resting brain activity could influence the behavioral phenotype associated with negative coping strategy (i.e., depressive-like behaviors). We used a learned helplessness paradigm-a well-established model of MDD-to detect coping strategies. Differences in resting state brain activity between animals with positive and negative coping strategies were assessed using 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET). Glutamatergic stimulation was used to modulate resting brain activity. After exposure to repeated uncontrollable stress, seven of 23 rats exhibited positive coping strategies, while eight of 23 rats exhibited negative coping strategies. Increased resting brain activity was observed only in the left ventral dentate gyrus of the positive coping rats using FDG-PET. Furthermore, glutamatergic stimulation of the left dentate gyrus abolished depressive-like behaviors in rats with negative coping strategies. Increased resting brain activity in the left ventral dentate gyrus helps animals to select positive coping strategies in response to future stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Suppression of the endoplasmic reticulum calcium pump during zebrafish gastrulation affects left-right asymmetry of the heart and brain.

    Science.gov (United States)

    Kreiling, Jill A; Balantac, Zaneta L; Crawford, Andrew R; Ren, Yuexin; Toure, Jamal; Zchut, Sigalit; Kochilas, Lazaros; Creton, Robbert

    2008-01-01

    Vertebrate embryos generate striking Ca(2+) patterns, which are unique regulators of dynamic developmental events. In the present study, we used zebrafish embryos as a model system to examine the developmental roles of Ca(2+) during gastrulation. We found that gastrula stage embryos maintain a distinct pattern of cytosolic Ca(2+) along the dorsal-ventral axis, with higher Ca(2+) concentrations in the ventral margin and lower Ca(2+) concentrations in the dorsal margin and dorsal forerunner cells. Suppression of the endoplasmic reticulum Ca(2+) pump with 0.5 microM thapsigargin elevates cytosolic Ca(2+) in all embryonic regions and induces a randomization of laterality in the heart and brain. Affected hearts, visualized in living embryos by a subtractive imaging technique, displayed either a reversal or loss of left-right asymmetry. Brain defects include a left-right reversal of pitx2 expression in the dorsal diencephalon and a left-right reversal of the prominent habenular nucleus in the brain. Embryos are sensitive to inhibition of the endoplasmic reticulum Ca(2+) pump during early and mid gastrulation and lose their sensitivity during late gastrulation and early segmentation. Suppression of the endoplasmic reticulum Ca(2+) pump during gastrulation inhibits expression of no tail (ntl) and left-right dynein related (lrdr) in the dorsal forerunner cells and affects development of Kupffer's vesicle, a ciliated organ that generates a counter-clockwise flow of fluid. Previous studies have shown that Ca(2+) plays a role in Kupffer's vesicle function, influencing ciliary motility and translating the vesicle's counter-clockwise flow into asymmetric patterns of gene expression. The present results suggest that Ca(2+) plays an additional role in the formation of Kupffer's vesicle.

  13. Left and right brain-oriented hemisity subjects show opposite behavioral preferences.

    Science.gov (United States)

    Morton, Bruce E

    2012-01-01

    Recently, three independent, intercorrelated biophysical measures have provided the first quantitative measures of a binary form of behavioral laterality called "Hemisity," a term referring to inherent opposite right or left brain-oriented differences in thinking and behavioral styles. Crucially, the right or left brain-orientation of individuals assessed by these methods was later found to be essentially congruent with the thicker side of their ventral gyrus of the anterior cingulate cortex (vgACC) as revealed by a 3 min MRI procedure. Laterality of this putative executive structural element has thus become the primary standard defining individual hemisity. Here, the behavior of 150 subjects, whose hemisity had been calibrated by MRI, was assessed using five MRI-calibrated preference questionnaires, two of which were new. Right and left brain-oriented subjects selected opposite answers (p > 0.05) for 47 of the 107 "either-or," forced choice type preference questionnaire items. The resulting 30 hemisity subtype preference differences were present in several areas. These were: (1) in logical orientation, (2) in type of consciousness, (3) in fear level and sensitivity, (4) in social-professional orientation, and (5) in pair bonding-spousal dominance style. The right and left brain-oriented hemisity subtype subjects, sorted on the anatomical basis of upon which brain side their vgACC was thickest, showed 30 significant differences in their "either-or" type of behavioral preferences.

  14. Left and right brain-oriented hemisity subjects show opposite behavioral preferences

    Directory of Open Access Journals (Sweden)

    Bruce Eldine Morton

    2012-11-01

    Full Text Available Introduction: Recently, three independent, intercorrelated biophysical measures have provided the first quantitative measures of a binary form of behavioral laterality called Hemisity, a term referring to inherent opposite right or left brain-oriented differences in thinking and behavioral styles. Crucially, the right or left brain-orientation of individuals assessed by these methods was later found to be essentially congruent with the thicker side of their ventral gyrus of the anterior cingulate cortex (vgACC as revealed by a 3 minute MRI procedure. Laterality of this putative executive structural element has thus become the primary standard defining individual hemisity. Methods: Here, the behavior of 150 subjects, whose hemisity had been calibrated by MRI, was assessed using five MRI-calibrated preference questionnaires, two of which were new.Results: Right and left brain-oriented subjects selected opposite answers (p > 0.05 for 47 of the 107 either-or, forced choice type preference questionnaire items. Hemisity subtype preference differences were present in several areas. They were in: a. logical orientation, b. type of consciousness, c. fear level and sensitivity, d. social-professional orientation, and e. pair bonding-spousal dominance style.Conclusions: The right and left brain-oriented hemisity subtype subjects, sorted on the anatomical basis of upon which brain side their vgACC was thickest, showed numerous significant differences in their either-or type of behavioral preferences.

  15. Environmental enrichment increases transcriptional and epigenetic differentiation between mouse dorsal and ventral dentate gyrus.

    Science.gov (United States)

    Zhang, Tie-Yuan; Keown, Christopher L; Wen, Xianglan; Li, Junhao; Vousden, Dulcie A; Anacker, Christoph; Bhattacharyya, Urvashi; Ryan, Richard; Diorio, Josie; O'Toole, Nicholas; Lerch, Jason P; Mukamel, Eran A; Meaney, Michael J

    2018-01-19

    Early life experience influences stress reactivity and mental health through effects on cognitive-emotional functions that are, in part, linked to gene expression in the dorsal and ventral hippocampus. The hippocampal dentate gyrus (DG) is a major site for experience-dependent plasticity associated with sustained transcriptional alterations, potentially mediated by epigenetic modifications. Here, we report comprehensive DNA methylome, hydroxymethylome and transcriptome data sets from mouse dorsal and ventral DG. We find genome-wide transcriptional and methylation differences between dorsal and ventral DG, including at key developmental transcriptional factors. Peripubertal environmental enrichment increases hippocampal volume and enhances dorsal DG-specific differences in gene expression. Enrichment also enhances dorsal-ventral differences in DNA methylation, including at binding sites of the transcription factor NeuroD1, a regulator of adult neurogenesis. These results indicate a dorsal-ventral asymmetry in transcription and methylation that parallels well-known functional and anatomical differences, and that may be enhanced by environmental enrichment.

  16. The ventral visual pathway: an expanded neural framework for the processing of object quality.

    Science.gov (United States)

    Kravitz, Dwight J; Saleem, Kadharbatcha S; Baker, Chris I; Ungerleider, Leslie G; Mishkin, Mortimer

    2013-01-01

    Since the original characterization of the ventral visual pathway, our knowledge of its neuroanatomy, functional properties, and extrinsic targets has grown considerably. Here we synthesize this recent evidence and propose that the ventral pathway is best understood as a recurrent occipitotemporal network containing neural representations of object quality both utilized and constrained by at least six distinct cortical and subcortical systems. Each system serves its own specialized behavioral, cognitive, or affective function, collectively providing the raison d'être for the ventral visual pathway. This expanded framework contrasts with the depiction of the ventral visual pathway as a largely serial staged hierarchy culminating in singular object representations and more parsimoniously incorporates attentional, contextual, and feedback effects. Published by Elsevier Ltd.

  17. Binocular depth processing in the ventral visual pathway.

    Science.gov (United States)

    Verhoef, Bram-Ernst; Vogels, Rufin; Janssen, Peter

    2016-06-19

    One of the most powerful forms of depth perception capitalizes on the small relative displacements, or binocular disparities, in the images projected onto each eye. The brain employs these disparities to facilitate various computations, including sensori-motor transformations (reaching, grasping), scene segmentation and object recognition. In accordance with these different functions, disparity activates a large number of regions in the brain of both humans and monkeys. Here, we review how disparity processing evolves along different regions of the ventral visual pathway of macaques, emphasizing research based on both correlational and causal techniques. We will discuss the progression in the ventral pathway from a basic absolute disparity representation to a more complex three-dimensional shape code. We will show that, in the course of this evolution, the underlying neuronal activity becomes progressively more bound to the global perceptual experience. We argue that these observations most probably extend beyond disparity processing per se, and pertain to object processing in the ventral pathway in general. We conclude by posing some important unresolved questions whose answers may significantly advance the field, and broaden its scope.This article is part of the themed issue 'Vision in our three-dimensional world'. © 2016 The Author(s).

  18. Visualization of nitric oxide production in the earthworm ventral nerve cord.

    Science.gov (United States)

    Kitamura, Y; Naganoma, Y; Horita, H; Tsuji, N; Shimizu, R; Ogawa, H; Oka, K

    2001-06-01

    Distribution of nitric oxide (NO)-producible neurons in the ventral nerve cord (VNC) of the earthworm was investigated by nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) histochemistry. Some neurons (20-30 microm in diameter) were intensely stained and were localized in areas between the 1st and 2nd lateral nerves in the ventral side of VNC. In contrast, no neurons including giant fibers were stained in the dorsal side. Endogenous NO production from VNC was visualized using a fluorescent dye, diaminofluorescein-2 diacethyl (DAF-2 DA). When VNC was incubated in a saline, a relative high level of NO was produced from the ventral side, especially from NADPH-d-positive neurons. Under high-K+ stimulation, NO was also detected in the giant fibers in the dorsal side of VNC. Our results suggest that the earthworm VNC constantly and relative highly produces NO as a neuromodulator, and that NO produced from the ventral side sometimes reaches and affects the giant fibers. In conclusion, we successfully visualized NO in the earthworm VNC by clarifying both the distribution of NO-producible neurons and the endogenous NO production.

  19. Mesh versus non-mesh repair of ventral abdominal hernias

    International Nuclear Information System (INIS)

    Jawaid, M.A.; Talpur, A.H.

    2008-01-01

    To investigate the relative effectiveness of mesh and suture repair of ventral abdominal hernias in terms of clinical outcome, quality of life and rate of recurrence in both the techniques. This is a retrospective descriptive analysis of 236 patients with mesh and non-mesh repair of primary ventral hernias performed between January 2000 to December 2004 at Surgery Department, Liaquat University of Medical and Health Sciences, Jamshoro. The record sheets of the patients were analyzed and data retrieved to compare the results of both techniques for short-term and long-term results. The data retrieved is statistically analyzed on SPSS version 11. There were 43 (18.22%) males and 193 (81.77%) females with a mean age of 51.79 years and a range of 59 (81-22). Para-umbilical hernia was the commonest of ventral hernia and accounted for 49.8% (n=118) of the total study population followed by incisional hernia comprising 24% (n=57) of the total number. There was a significant difference in the recurrent rate at 3 years interval with 23/101 (22.77%) recurrences in suture-repaired subjects compared to 10/135 (7.40%) in mesh repair group. Chronic pain lasting up to 1-2 years was noted in 14 patients with suture repair. Wound infection is comparatively more common (8.14%) in mesh group. The other variables such as operative and postoperative complications, total hospital stay and quality of life is also discussed. Mesh repair of ventral hernia is much superior to non-mesh suture repair in terms of recurrence and overall outcome. (author)

  20. Cocaine exposure shifts the balance of associative encoding from ventral to dorsolateral striatum

    Directory of Open Access Journals (Sweden)

    Yuji Takahashi

    2007-12-01

    Full Text Available Both dorsal and ventral striatum are implicated in the "habitization" of behavior that occurs in addiction. Here we examined the effect of cocaine exposure on associative encoding in these two regions. Neural activity was recorded during go/no-go discrimination learning and reversal. Activity in ventral striatum developed and reversed rapidly, tracking the valence of the predicted outcome, whereas activity in dorsolateral striatum developed and reversed more slowly, tracking discriminative responding. This difference is consistent with the putative roles of these two areas in promoting habit-like behavior. Dorsolateral striatum has been directly implicated in habit or stimulus response learning, whereas ventral striatum appears to be involved indirectly by allowing cues associated with reward to exert a general motivational influence on responding. Interestingly cocaine exposure did not uniformly enhance processing across both regions. Instead cocaine reduced the degree and flexibility of cue-evoked firing in ventral striatum while marginally enhanced cue-selective firing in dorsolateral striatum. Thus cocaine exposure causes regionally specific effects on neural processing in striatum; these effects may promote the habitization of behavior by shifting control from ventral to dorsolateral regions.

  1. Gastric dilatation volvulus: a retrospective study of 203 dogs with ventral midline gastropexy.

    Science.gov (United States)

    Ullmann, B; Seehaus, N; Hungerbühler, S; Meyer-Lindenberg, A

    2016-01-01

    To evaluate the recurrence rate of gastric dilatation volvulus and the incidence of complications in subsequent coeliotomies following ventral midline gastropexy. The medical records of dogs treated for gastric dilatation volvulus by ventral midline gastropexy were retrospectively reviewed. Owners were contacted and invited to complete a questionnaire and to return to the clinic for ultrasonographic and radiographic follow-up. The questionnaire was completed by 203 owners 2 to 123 months postoperatively, 24 of whom attended the follow-up examination. Of the 203 dogs, 13 (6 · 4%) underwent subsequent ventral midline coeliotomy and none developed complications related to the gastropexy site. In 23 of the 24 re-evaluated dogs, the stomach was closely associated with the abdominal on radiography and/or ultrasound. The recurrence rate for clinical signs of gastric dilatation or gastric dilatation volvulus after ventral midline gastropexy was 6 · 4%. This study shows that the recurrence of gastric dilatation volvulus after ventral midline gastropexy is low and adhesion of the stomach to the abdominal wall is persistent in almost all dogs that were re-examined. The gastropexy site did not appear to interfere with subsequent coeliotomy. © 2015 British Small Animal Veterinary Association.

  2. A neurobehavioral examination of individuals with high-functioning autism and Asperger's disorder using a fronto-striatal model of dysfunction.

    Science.gov (United States)

    Rinehart, Nicole J; Bradshaw, John L; Tonge, Bruce J; Brereton, Avril V; Bellgrove, Mark A

    2002-06-01

    The repetitive, stereotyped, and obsessive behaviors that characterize autism may in part be attributable to disruption of the region of the fronto-striatal system, which mediates executive abilities. Neuropsychological testing has shown that children with autism exhibit set-shifting deficiencies on tests such as the Wisconsin Card Sorting task but show normal inhibitory ability on variants of the Stroop color-word test. According to Minshew and Goldstein's multiple primary deficit theory, the complexity of the executive functioning task is important in determining the performance of individuals with autism. This study employed a visual-spatial task (with a Stroop-type component) to examine the integrity of executive functioning, in particular inhibition, in autism (n = 12) and Asperger's disorder (n = 12) under increasing levels of cognitive complexity. Whereas the Asperger's disorder group performed similarly to age- and IQ-matched control participants, even at the higher levels of cognitive complexity, the high-functioning autism group displayed inhibitory deficits specifically associated with increasing cognitive load.

  3. Crossmodal recruitment of the ventral visual stream in congenital blindness

    DEFF Research Database (Denmark)

    Ptito, Maurice; Matteau, Isabelle; Zhi Wang, Arthur

    2012-01-01

    We used functional MRI (fMRI) to test the hypothesis that blind subjects recruit the ventral visual stream during nonhaptic tactile-form recognition. Congenitally blind and blindfolded sighted control subjects were scanned after they had been trained during four consecutive days to perform......, inferotemporal (IT), cortex, lateral occipital tactile vision area (LOtv), and fusiform gyrus. Control subjects activated area LOtv and precuneus but not cuneus, IT and fusiform gyrus. These results indicate that congenitally blind subjects recruit key regions in the ventral visual pathway during nonhaptic...

  4. Representation of Gravity-Aligned Scene Structure in Ventral Pathway Visual Cortex.

    Science.gov (United States)

    Vaziri, Siavash; Connor, Charles E

    2016-03-21

    The ventral visual pathway in humans and non-human primates is known to represent object information, including shape and identity [1]. Here, we show the ventral pathway also represents scene structure aligned with the gravitational reference frame in which objects move and interact. We analyzed shape tuning of recently described macaque monkey ventral pathway neurons that prefer scene-like stimuli to objects [2]. Individual neurons did not respond to a single shape class, but to a variety of scene elements that are typically aligned with gravity: large planes in the orientation range of ground surfaces under natural viewing conditions, planes in the orientation range of ceilings, and extended convex and concave edges in the orientation range of wall/floor/ceiling junctions. For a given neuron, these elements tended to share a common alignment in eye-centered coordinates. Thus, each neuron integrated information about multiple gravity-aligned structures as they would be seen from a specific eye and head orientation. This eclectic coding strategy provides only ambiguous information about individual structures but explicit information about the environmental reference frame and the orientation of gravity in egocentric coordinates. In the ventral pathway, this could support perceiving and/or predicting physical events involving objects subject to gravity, recognizing object attributes like animacy based on movement not caused by gravity, and/or stabilizing perception of the world against changes in head orientation [3-5]. Our results, like the recent discovery of object weight representation [6], imply that the ventral pathway is involved not just in recognition, but also in physical understanding of objects and scenes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Differentiation of Mouse Embryonic Stem Cells into Ventral Foregut Precursors

    DEFF Research Database (Denmark)

    Rothová, Michaela; Hölzenspies, Jurriaan J; Livigni, Alessandra

    2016-01-01

    Anterior definitive endoderm (ADE), the ventral foregut precursor, is both an important embryonic signaling center and a unique multipotent precursor of liver, pancreas, and other organs. Here, a method is described for the differentiation of mouse embryonic stem cells (mESCs) to definitive...... endoderm with pronounced anterior character. ADE-containing cultures can be produced in vitro by suspension (embryoid body) culture or in a serum-free adherent monolayer culture. ESC-derived ADE cells are committed to endodermal fates and can undergo further differentiation in vitro towards ventral foregut...

  6. Ventral inlay buccal mucosal graft urethroplasty: a novel surgical technique for the management of urethral stricture disease.

    Science.gov (United States)

    Kovell, Robert Caleb; Terlecki, Ryan Patrick

    2015-02-01

    To describe the novel technique of ventral inlay substitution urethroplasty for the management of male anterior urethral stricture disease. A 58-year-old gentleman with multifocal bulbar stricture disease measuring 7 cm in length was treated using a ventral inlay substitution urethroplasty. A dorsal urethrotomy was created, and the ventral urethral plated was incised. The edges of the urethral plate were mobilized without violation of the ventral corpus spongiosum. A buccal mucosa graft was harvested and affixed as a ventral inlay to augment the caliber of the urethra. The dorsal urethrotomy was closed over a foley catheter. No intraoperative or postoperative complications occurred. Postoperative imaging demonstrated a widely patent urethra. After three years of follow-up, the patient continues to do well with no voiding complaints and low postvoid residuals. Ventral inlay substitution urethroplasty appears to be a safe and feasible technique for the management of bulbar urethral strictures.

  7. Correlation between early surgical complications and readmission rate after ventral hernia repair

    DEFF Research Database (Denmark)

    Kokotovic, D; Sjølander, H; Gögenur, I

    2017-01-01

    PURPOSE: Postoperative surgical complications arising from ventral hernia repair have been assessed by a variety of outcome measures. The objective of this study was to correlate the Clavien Dindo Classification (CDC) graded complications with the 30-day readmission rate as early outcome measures...... in ventral hernia repair. Secondarily, we wanted to investigate whether the risk factors for Clavien Dindo class ≥1 and 30-day readmission were comparable. METHODS: Single-centre retrospective study including all patients (≥18 years) who underwent ventral hernia repair between January 1, 2009 and September 1......). There was a significant association between a complication graded by the CDC ≥1 and 30-day readmission for both incisional and umbilical/epigastric hernia repair (p readmission. Recurrent...

  8. Concurrent TMS-fMRI Reveals Interactions between Dorsal and Ventral Attentional Systems

    DEFF Research Database (Denmark)

    Leitao, Joana; Thielscher, Axel; Tuennerhoff, Johannes

    2015-01-01

    interactively in this process. This fMRI study used concurrent transcranial magnetic stimulation (TMS) as a causal perturbation approach to investigate the interactions between dorsal and ventral attentional systems and sensory processing areas. In a sustained spatial attention paradigm, human participants......Adaptive behavior relies on combining bottom-up sensory inputs with top-down control signals to guide responses in line with current goals and task demands. Over the past decade, accumulating evidence has suggested that the dorsal and ventral frontoparietal attentional systems are recruited......-TMS relative to Sham-TMS increased activation in the parietal cortex regardless of sensory stimulation, confirming the neural effectiveness of TMS stimulation. Visual targets increased activations in the anterior insula, a component of the ventral attentional system responsible for salience detection...

  9. Pain and convalescence following laparoscopic ventral hernia repair

    DEFF Research Database (Denmark)

    Eriksen, Jens Ravn

    2011-01-01

    Severe pain is usual after laparoscopic ventral hernia repair (LVHR). Mesh fixation with titanium tacks may play a key role in the development of acute and chronic pain and alternative fixation methods should therefore be investigated. This PhD thesis was based on three studies and aimed too: 1...... abdominal wall. A mechanical peel test was performed for each tissue sample. The secondary outcome parameters were grade and strength of adhesions to the mesh, shrinkage and displacement/folding of the mesh and histological parameters. All nine pigs survived without complications until sacrifice. No meshes...... satisfaction. This issue must have first priority in future ventral hernia repair research. It is now documented, that the simple application of fibrin glue instead of titanium tacks for mesh fixation in LVHR of defects

  10. Pain and convalescence following laparoscopic ventral hernia repair

    DEFF Research Database (Denmark)

    Eriksen, Jens Ravn

    Severe pain is usual after laparoscopic ventral hernia repair (LVHR). Mesh fixation with titanium tacks may play a key role in the development of acute and chronic pain and alternative fixation methods should therefore be investigated. This PhD thesis was based on three studies and aimed too: 1...... abdominal wall. A mechanical peel test was performed for each tissue sample. The secondary outcome parameters were grade and strength of adhesions to the mesh, shrinkage and displacement/folding of the mesh and histological parameters. All nine pigs survived without complications until sacrifice. No meshes...... satisfaction. This issue must have first priority in future ventral hernia repair research. It is now documented, that the simple application of fibrin glue instead of titanium tacks for mesh fixation in LVHR of defects

  11. Ventral striatum activity when watching preferred pornographic pictures is correlated with symptoms of Internet pornography addiction.

    Science.gov (United States)

    Brand, Matthias; Snagowski, Jan; Laier, Christian; Maderwald, Stefan

    2016-04-01

    One type of Internet addiction is excessive pornography consumption, also referred to as cybersex or Internet pornography addiction. Neuroimaging studies found ventral striatum activity when participants watched explicit sexual stimuli compared to non-explicit sexual/erotic material. We now hypothesized that the ventral striatum should respond to preferred pornographic compared to non-preferred pornographic pictures and that the ventral striatum activity in this contrast should be correlated with subjective symptoms of Internet pornography addiction. We studied 19 heterosexual male participants with a picture paradigm including preferred and non-preferred pornographic materials. Subjects had to evaluate each picture with respect to arousal, unpleasantness, and closeness to ideal. Pictures from the preferred category were rated as more arousing, less unpleasant, and closer to ideal. Ventral striatum response was stronger for the preferred condition compared to non-preferred pictures. Ventral striatum activity in this contrast was correlated with the self-reported symptoms of Internet pornography addiction. The subjective symptom severity was also the only significant predictor in a regression analysis with ventral striatum response as dependent variable and subjective symptoms of Internet pornography addiction, general sexual excitability, hypersexual behavior, depression, interpersonal sensitivity, and sexual behavior in the last days as predictors. The results support the role for the ventral striatum in processing reward anticipation and gratification linked to subjectively preferred pornographic material. Mechanisms for reward anticipation in ventral striatum may contribute to a neural explanation of why individuals with certain preferences and sexual fantasies are at-risk for losing their control over Internet pornography consumption. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Ventral aspect of the visual form pathway is not critical for the perception of biological motion

    Science.gov (United States)

    Gilaie-Dotan, Sharon; Saygin, Ayse Pinar; Lorenzi, Lauren J.; Rees, Geraint; Behrmann, Marlene

    2015-01-01

    Identifying the movements of those around us is fundamental for many daily activities, such as recognizing actions, detecting predators, and interacting with others socially. A key question concerns the neurobiological substrates underlying biological motion perception. Although the ventral “form” visual cortex is standardly activated by biologically moving stimuli, whether these activations are functionally critical for biological motion perception or are epiphenomenal remains unknown. To address this question, we examined whether focal damage to regions of the ventral visual cortex, resulting in significant deficits in form perception, adversely affects biological motion perception. Six patients with damage to the ventral cortex were tested with sensitive point-light display paradigms. All patients were able to recognize unmasked point-light displays and their perceptual thresholds were not significantly different from those of three different control groups, one of which comprised brain-damaged patients with spared ventral cortex (n > 50). Importantly, these six patients performed significantly better than patients with damage to regions critical for biological motion perception. To assess the necessary contribution of different regions in the ventral pathway to biological motion perception, we complement the behavioral findings with a fine-grained comparison between the lesion location and extent, and the cortical regions standardly implicated in biological motion processing. This analysis revealed that the ventral aspects of the form pathway (e.g., fusiform regions, ventral extrastriate body area) are not critical for biological motion perception. We hypothesize that the role of these ventral regions is to provide enhanced multiview/posture representations of the moving person rather than to represent biological motion perception per se. PMID:25583504

  13. Transcriptome differentiation along the dorso-ventral axis in laser-captured microdissected rat hippocampal granular cell layer

    DEFF Research Database (Denmark)

    Christensen, T.; Bisgaard, C.F.; Nielsen, Henrik Bjørn

    2010-01-01

    Several findings suggest a functional and anatomical differentiation along the dorso-ventral axis of the hippocampus. Lesion studies in rats have indicated that the dorsal hippocampus preferentially plays a role in spatial learning and memory, while the ventral hippocampus is involved in anxiety...... and ventral granular cell layer with a false discovery rate below 5% and with a relative change in gene expression level of 20% or more. From this pool of genes 45 genes were more than two-fold regulated, 13 genes being dorsally enriched and 32 genes being ventrally enriched. Moreover, cluster analysis based...

  14. Frontostriatal Dysfunction During Decision Making in Attention-Deficit/Hyperactivity Disorder and Obsessive-Compulsive Disorder.

    Science.gov (United States)

    Norman, Luke J; Carlisi, Christina O; Christakou, Anastasia; Murphy, Clodagh M; Chantiluke, Kaylita; Giampietro, Vincent; Simmons, Andrew; Brammer, Michael; Mataix-Cols, David; Rubia, Katya

    2018-03-24

    The aim of the current paper is to provide the first comparison of computational mechanisms and neurofunctional substrates in adolescents with attention-deficit/hyperactivity disorder (ADHD) and adolescents with obsessive-compulsive disorder (OCD) during decision making under ambiguity. Sixteen boys with ADHD, 20 boys with OCD, and 20 matched control subjects (12-18 years of age) completed a functional magnetic resonance imaging version of the Iowa Gambling Task. Brain activation was compared between groups using three-way analysis of covariance. Hierarchical Bayesian analysis was used to compare computational modeling parameters between groups. Patient groups shared reduced choice consistency and relied less on reinforcement learning during decision making relative to control subjects, while adolescents with ADHD alone demonstrated increased reward sensitivity. During advantageous choices, both disorders shared underactivation in ventral striatum, while OCD patients showed disorder-specific underactivation in the ventromedial orbitofrontal cortex. During outcome evaluation, shared underactivation to losses in patients relative to control subjects was found in the medial prefrontal cortex and shared underactivation to wins was found in the left putamen/caudate. ADHD boys showed disorder-specific dysfunction in the right putamen/caudate, which was activated more to losses in patients with ADHD but more to wins in control subjects. The findings suggest shared deficits in using learned reward expectancies to guide decision making, as well as shared dysfunction in medio-fronto-striato-limbic brain regions. However, findings of unique dysfunction in the ventromedial orbitofrontal cortex in OCD and in the right putamen in ADHD indicate additional, disorder-specific abnormalities and extend similar findings from inhibitory control tasks in the disorders to the domain of decision making under ambiguity. Copyright © 2018 Society of Biological Psychiatry. Published by

  15. Abnormal asymmetry of white matter tracts between ventral posterior cingulate cortex and middle temporal gyrus in recent-onset schizophrenia.

    Science.gov (United States)

    Joo, Sung Woo; Chon, Myong-Wuk; Rathi, Yogesh; Shenton, Martha E; Kubicki, Marek; Lee, Jungsun

    2018-02-01

    Previous studies have reported abnormalities in the ventral posterior cingulate cortex (vPCC) and middle temporal gyrus (MTG) in schizophrenia patients. However, it remains unclear whether the white matter tracts connecting these structures are impaired in schizophrenia. Our study investigated the integrity of these white matter tracts (vPCC-MTG tract) and their asymmetry (left versus right side) in patients with recent onset schizophrenia. Forty-seven patients and 24 age-and sex-matched healthy controls were enrolled in this study. We extracted left and right vPCC-MTG tract on each side from T1W and diffusion MRI (dMRI) at 3T. We then calculated the asymmetry index of diffusion measures of vPCC-MTG tracts as well as volume and thickness of vPCC and MTG using the formula: 2×(right-left)/(right+left). We compared asymmetry indices between patients and controls and evaluated their correlations with the severity of psychiatric symptoms and cognition in patients using the Positive and Negative Syndrome Scale (PANSS), video-based social cognition scale (VISC) and the Wechsler Adult Intelligence Scale (WAIS-III). Asymmetry of fractional anisotropy (FA) and radial diffusivity (RD) in the vPCC-MTG tract, while present in healthy controls, was not evident in schizophrenia patients. Also, we observed that patients, not healthy controls, had a significant FA decrease and RD increase in the left vPCC-MTG tract. There was no significant association between the asymmetry indices of dMRI measures and IQ, VISC, or PANSS scores in schizophrenia. Disruption of asymmetry of the vPCC-MTG tract in schizophrenia may contribute to the pathophysiology of schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Imaging findings in patients with ventral dural defects and herniation of neural tissue

    International Nuclear Information System (INIS)

    Baur, A.; Staebler, A.; Reiser, M.; Psenner, K.; Hamburger, C.

    1997-01-01

    The aim of this paper is to describe clinical and imaging findings in three patients with ventral dural defects and herniation of the spinal cord or cauda equina. The literature is reviewed and the clinical, radiological and operative findings are compared. Three patients with ventral dural defects of different etiologies are presented. One patient gave a longstanding history of ankylosing spondylitis, the second patient presents 37 years after spinal trauma, and the third patient presents with spontaneous spinal cord herniation. All patients had typically slowly progressive neurological symptoms with multiple hospitalizations until diagnosis was made. Characteristic findings in postmyelographic CT included a ventral or ventrolateral displacement with deformation of the spinal cord or the cauda equina. Sagittal MRI showed this abrupt and localized anterior deviation of the spinal cord or the cauda equina to the posterior portions of a vertebral body with or without a bony vertebral defect optimally. Additionally, due to the ventral displacement of the spinal cord, the dorsal subarachnoid space was relatively enlarged without evidence of an arachnoid cyst, in all patients. Magnetic resonance imaging and postmyelographic CT can diagnose ventral dural defects with spinal cord herniation or nerve root entrapment. Dural defects must be considered in the presence of neurological symptoms in cases of longstanding ankylosing spondylitis, late sequelae of fractures of vertebral bodies, and without history of spinal trauma or surgery. (orig.). With 3 figs

  17. White matter abnormalities and their impact on attentional performance in adult attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Konrad, Andreas; Dielentheis, Thomas F; El Masri, Dschamil; Dellani, Paulo R; Stoeter, Peter; Vucurevic, Goran; Winterer, Georg

    2012-06-01

    Inattention is the most important behavioral feature of adult patients with attention-deficit/hyperactivity disorder (ADHD). Neuroimaging studies in ADHD have demonstrated abnormalities primarily in the frontostriatal circuitry and were mostly conducted in children. We investigated white matter (WM) integrity in adult ADHD patients and the correlation of WM microstructure and neuropsychological parameters in 37 (21 men) never-medicated adult ADHD patients and 34 age- and gender-matched healthy controls. All subjects underwent clinical interviews, rating scales, and neuropsychological tests of attentional performance. Diffusion tensor imaging (DTI) was acquired, and 12 WM regions-of-interest (ROIs) within the attentional network were chosen. Group differences of mean fractional anisotropy (FA) and mean diffusivity (MD) values were calculated for each ROI, and patients' DTI measures were then correlated with measures of attentional performance. FA values in ADHD patients were significantly reduced in the left inferior longitudinal fasciculus (ILF), while MD values were significantly increased in ADHD patients in the frontal portion of the left frontooccipital fasciculus (IFO). In ADHD patients, MD values were negatively correlated with attentional performance in the left ILF. Our findings provide further support for disturbed frontostriatal structural connectivity and also point to an involvement of the left temporal white matter with an impact on attentional performance.

  18. Context Dependent Effects of Ventral Tegmental Area Inactivation on Spatial Working Memory

    OpenAIRE

    Martig, Adria K.; Jones, Graham L.; Smith, Kelsey E.; Mizumori, Sheri J.Y.

    2009-01-01

    Rats were tested on a hippocampus dependent win-shift working memory task in familiar or novel environments after receiving bilateral ventral tegmental area infusions of baclofen. Baclofen infusion disrupted working memory performance in both familiar and novel environments. In addition, baclofen infusion selectively disrupted short-term working memory in the novel environment. This experiment confirms selective ventral tegmental area support of accurate performance during a context dependent...

  19. Craniocervical junction abnormalities with atlantoaxial subluxation caused by ventral subluxation of C2 in a dog

    Directory of Open Access Journals (Sweden)

    Harumichi Itoh

    2017-03-01

    Full Text Available Craniocervical junction abnormalities with atlantoaxial subluxation caused by ventral subluxation of C2 were diagnosed in a 6-month-old female Pomeranian with tetraplegia as a clinical sign. Lateral survey radiography of the neck with flexion revealed atlantoaxial subluxation with ventral subluxation of C2. Computed tomography revealed absence of dens and atlanto-occipital overlapping. Magnetic resonance imaging showed compression of the spinal cord and indentation of caudal cerebellum. The diagnosis was Chiari-like malformation, atlantoaxial subluxation with ventral displacement of C2, atlanto-occipital overlapping, and syringomyelia. The dog underwent foramen magnum decompression, dorsal laminectomy of C1, and ventral fixation of the atlantoaxial joint. Soon after the operation, voluntary movements of the legs were recovered. Finally, the dog could stand and walk without assistance. The dog had complicated malformations at the craniocervical junction but foramen magnum decompression and dorsal laminectomy for Chiari-like malformation, and ventral fixation for atlantoaxial subluxation resulted in an excellent clinical outcome.

  20. Correction of distal hypospadias: ventral adaption of the prepuce and meatal advancement.

    Science.gov (United States)

    Persson-Jünemann, C; Seemann, O; Köhrmann, K U; Potempa, D; Jünemann, K P; Alken, P

    1993-01-01

    In distal hypospadias without chordee, surgical correction has a purely cosmetic character. In contrast to standard techniques focusing on meatal position, parents often regard the redundant dorsal prepuce and its missing ventral fusion as the essential constituent of this malformation. The operative technique, presented in detail, emphasizes on foreskin reconstruction. The ventral adaption of the prepuce (VAP procedure) results in a penis with normal appearance. Complications presented reveal the importance of proper patient selection.

  1. Ventral hernia repair with poly-4-hydroxybutyrate mesh.

    Science.gov (United States)

    Plymale, Margaret A; Davenport, Daniel L; Dugan, Adam; Zachem, Amanda; Roth, John Scott

    2018-04-01

    Biomaterial research has made available a biologically derived fully resorbable poly-4-hydroxybutyrate (P4HB) mesh for use in ventral and incisional hernia repair (VIHR). This study evaluates outcomes of patients undergoing VIHR with P4HB mesh. An IRB-approved prospective pilot study was conducted to assess clinical and quality of life (QOL) outcomes for patients undergoing VIHR with P4HB mesh. Perioperative characteristics were defined. Clinical outcomes, employment status, QOL using 12-item short form survey (SF-12), and pain assessments were followed for 24 months postoperatively. 31 patients underwent VIHR with bioresorbable mesh via a Rives-Stoppa approach with retrorectus mesh placement. The median patient age was 52 years, median body mass index was 33 kg/m 2 , and just over half of the patients were female. Surgical site occurrences occurred in 19% of patients, most of which were seroma. Hernia recurrence rate was 0% (median follow-up = 414 days). Patients had significantly improved QOL at 24 months compared to baseline for SF-12 physical component summary and role emotional (p < 0.05). Ventral hernia repair with P4HB bioresorbable mesh results in favorable outcomes. Early hernia recurrence was not identified among the patient cohort. Quality of life improvements were noted at 24 months versus baseline for this cohort of patients with bioresorbable mesh. Use of P4HB mesh for ventral hernia repair was found to be feasible in this patient population. (ClinicalTrials.gov Identifier: NCT01863030).

  2. Functional Dissociations within the Ventral Object Processing Pathway: Cognitive Modules or a Hierarchical Continuum?

    Science.gov (United States)

    Cowell, Rosemary A.; Bussey, Timothy J.; Saksida, Lisa M.

    2010-01-01

    We examined the organization and function of the ventral object processing pathway. The prevailing theoretical approach in this field holds that the ventral object processing stream has a modular organization, in which visual perception is carried out in posterior regions and visual memory is carried out, independently, in the anterior temporal…

  3. Reduced activation in ventral striatum and ventral tegmental area during probabilistic decision-making in schizophrenia.

    Science.gov (United States)

    Rausch, Franziska; Mier, Daniela; Eifler, Sarah; Esslinger, Christine; Schilling, Claudia; Schirmbeck, Frederike; Englisch, Susanne; Meyer-Lindenberg, Andreas; Kirsch, Peter; Zink, Mathias

    2014-07-01

    Patients with schizophrenia suffer from deficits in monitoring and controlling their own thoughts. Within these so-called metacognitive impairments, alterations in probabilistic reasoning might be one cognitive phenomenon disposing to delusions. However, so far little is known about alterations in associated brain functionality. A previously established task for functional magnetic resonance imaging (fMRI), which requires a probabilistic decision after a variable amount of stimuli, was applied to 23 schizophrenia patients and 28 healthy controls matched for age, gender and educational levels. We compared activation patterns during decision-making under conditions of certainty versus uncertainty and evaluated the process of final decision-making in ventral striatum (VS) and ventral tegmental area (VTA). We replicated a pre-described extended cortical activation pattern during probabilistic reasoning. During final decision-making, activations in several fronto- and parietocortical areas, as well as in VS and VTA became apparent. In both of these regions schizophrenia patients showed a significantly reduced activation. These results further define the network underlying probabilistic decision-making. The observed hypo-activation in regions commonly associated with dopaminergic neurotransmission fits into current concepts of disrupted prediction error signaling in schizophrenia and suggests functional links to reward anticipation. Forthcoming studies with patients at risk for psychosis and drug-naive first episode patients are necessary to elucidate the development of these findings over time and the interplay with associated clinical symptoms. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Radiographic and ultrasonographic characteristics of ventral abdominal hernia in pigeons (Columba livia).

    Science.gov (United States)

    Amer, Mohammed S; Hassan, Elham A; Torad, Faisal A

    2018-02-20

    Five female egg-laying pigeons presented with painless, reducible, ventral abdominal swellings located between the keel and the pubis, or close to the cloaca. Based on clinical, radiographic, and ultrasonographic examination, these pigeons were diagnosed with ventral abdominal hernia requiring surgical interference. Reduction was successfully performed under general anesthesia. Radiographic and ultrasonographic examinations were beneficial for confirming the diagnosis and visualizing the hernial content for surgical planning. Lateral radiographs were more helpful than ventrodorsal radiographs for identification of the hernial content and its continuation with the abdominal muscles. Ultrasonographic examination offered a non-invasive diagnostic tool that allowed for the differentiation of hernia from other abdominal swellings. In addition, it played a beneficial role in identification of the hernial content and follow up after surgical interference. In conclusion, radiographic and ultrasonographic examinations were beneficial in the diagnosis, surgical planning, and follow up after surgical interference of ventral abdominal hernia in pigeons.

  5. Risk-Assessment Score and Patient Optimization as Cost Predictors for Ventral Hernia Repair.

    Science.gov (United States)

    Saleh, Sherif; Plymale, Margaret A; Davenport, Daniel L; Roth, John Scott

    2018-04-01

    Ventral hernia repair (VHR) is associated with complications that significantly increase healthcare costs. This study explores the associations between hospital costs for VHR and surgical complication risk-assessment scores, need for cardiac or pulmonary evaluation, and smoking or obesity counseling. An IRB-approved retrospective study of patients having undergone open VHR over 3 years was performed. Ventral Hernia Risk Score (VHRS) for surgical site occurrence and surgical site infection, and the Ventral Hernia Working Group grade were calculated for each case. Also recorded were preoperative cardiology or pulmonary evaluations, smoking cessation and weight reduction counseling, and patient goal achievement. Hospital costs were obtained from the cost accounting system for the VHR hospitalization stratified by major clinical cost drivers. Univariate regression analyses were used to compare the predictive power of the risk scores. Multivariable analysis was performed to develop a cost prediction model. The mean cost of index VHR hospitalization was $20,700. Total and operating room costs correlated with increasing CDC wound class, VHRS surgical site infection score, VHRS surgical site occurrence score, American Society of Anesthesiologists class, and Ventral Hernia Working Group (all p variance in costs (p optimization significantly reduced direct and operating room costs (p < 0.05). Cardiac evaluation was associated with increased costs. Ventral hernia repair hospital costs are more accurately predicted by CDC wound class than VHR risk scores. A straightforward 6-factor model predicted most cost variation for VHR. Copyright © 2018 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  6. Ventral simultanagnosia and prosopagnosia for unfamiliar faces due to a right posterior superior temporal sulcus and angular gyrus lesion.

    Science.gov (United States)

    Sakurai, Yasuhisa; Hamada, Kensuke; Tsugawa, Naoya; Sugimoto, Izumi

    2016-01-01

    We report a patient with ventral simultanagnosia, prosopagnosia for "unfamiliar faces" (dorsal prosopagnosia), spatial agraphia, and constructional disorder, particularly on the left spatial side, due to a lesion in the right posterior superior and middle temporal gyri and angular gyrus. The patient showed impairment of fundamental visual and visuospatial recognition, such as in object size, configuration, and horizontal point location, which probably underlay the mechanism of simultanagnosia and prosopagnosia. This case also suggests that the coexistence of simultanagnosia and prosopagnosia results from a right hemispheric insult, and damage to the temporoparietal area interrupts the incorporation of spatial information into object recognition. This disconnection of information flow, together with impaired object recognition per se, may impair the parallel processing of multiple objects, leading to object-by-object or part-by-part recognition.

  7. Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network.

    Directory of Open Access Journals (Sweden)

    François Lapraz

    2009-11-01

    Full Text Available Formation of the dorsal-ventral axis of the sea urchin embryo relies on cell interactions initiated by the TGFbeta Nodal. Intriguingly, although nodal expression is restricted to the ventral side of the embryo, Nodal function is required for specification of both the ventral and the dorsal territories and is able to restore both ventral and dorsal regions in nodal morpholino injected embryos. The molecular basis for the long-range organizing activity of Nodal is not understood. In this paper, we provide evidence that the long-range organizing activity of Nodal is assured by a relay molecule synthesized in the ventral ectoderm, then translocated to the opposite side of the embryo. We identified this relay molecule as BMP2/4 based on the following arguments. First, blocking BMP2/4 function eliminated the long-range organizing activity of an activated Nodal receptor in an axis rescue assay. Second, we demonstrate that BMP2/4 and the corresponding type I receptor Alk3/6 functions are both essential for specification of the dorsal region of the embryo. Third, using anti-phospho-Smad1/5/8 immunostaining, we show that, despite its ventral transcription, the BMP2/4 ligand triggers receptor mediated signaling exclusively on the dorsal side of the embryo, one of the most extreme cases of BMP translocation described so far. We further report that the pattern of pSmad1/5/8 is graded along the dorsal-ventral axis and that two BMP2/4 target genes are expressed in nested patterns centered on the region with highest levels of pSmad1/5/8, strongly suggesting that BMP2/4 is acting as a morphogen. We also describe the very unusual ventral co-expression of chordin and bmp2/4 downstream of Nodal and demonstrate that Chordin is largely responsible for the spatial restriction of BMP2/4 signaling to the dorsal side. Thus, unlike in most organisms, in the sea urchin, a single ventral signaling centre is responsible for induction of ventral and dorsal cell fates. Finally

  8. Slits Are Chemorepellents Endogenous to Hypothalamus and Steer Thalamocortical Axons into Ventral Telencephalon

    OpenAIRE

    Braisted, Janet E.; Ringstedt, Thomas; O'Leary, Dennis D. M.

    2009-01-01

    Thalamocortical axons (TCAs) originate in dorsal thalamus, extend ventrally along the lateral thalamic surface, and as they approach hypothalamus make a lateral turn into ventral telencephalon. In vitro studies show that hypothalamus releases a chemorepellent for TCAs, and analyses of knockout mice indicate that Slit chemorepellents and their receptor Robo2 influence TCA pathfinding. We show that Slit chemorepellents are the hypothalamic chemorepellent and act through Robos to steer TCAs into...

  9. Pain and convalescence following laparoscopic ventral hernia repair

    DEFF Research Database (Denmark)

    Eriksen, Jens Ravn

    Severe pain is usual after laparoscopic ventral hernia repair (LVHR). Mesh fixation with titanium tacks may play a key role in the development of acute and chronic pain and alternative fixation methods should therefore be investigated. This PhD thesis was based on three studies and aimed too: 1) ...

  10. Fronto-striatal atrophy correlates of neuropsychiatric dysfunction in frontotemporal dementia (FTD and Alzheimer's disease (AD

    Directory of Open Access Journals (Sweden)

    Dong Seok Yi

    Full Text Available ABSTRACT Behavioural disturbances in frontotemporal dementia (FTD are thought to reflect mainly atrophy of cortical regions. Recent studies suggest that subcortical brain regions, in particular the striatum, are also significantly affected and this pathology might play a role in the generation of behavioural symptoms. Objective: To investigate prefrontal cortical and striatal atrophy contributions to behavioural symptoms in FTD. Methods: One hundred and eighty-two participants (87 FTD patients, 39 AD patients and 56 controls were included. Behavioural profiles were established using the Cambridge Behavioural Inventory Revised (CBI-R and Frontal System Behaviour Scale (FrSBe. Atrophy in prefrontal (VMPFC, DLPFC and striatal (caudate, putamen regions was established via a 5-point visual rating scale of the MRI scans. Behavioural scores were correlated with atrophy rating scores. Results: Behavioural and atrophy ratings demonstrated that patients were significantly impaired compared to controls, with bvFTD being most severely affected. Behavioural-anatomical correlations revealed that VMPFC atrophy was closely related to abnormal behaviour and motivation disturbances. Stereotypical behaviours were associated with both VMPFC and striatal atrophy. By contrast, disturbance of eating was found to be related to striatal atrophy only. Conclusion: Frontal and striatal atrophy contributed to the behavioural disturbances seen in FTD, with some behaviours related to frontal, striatal or combined fronto-striatal pathology. Consideration of striatal contributions to the generation of behavioural disturbances should be taken into account when assessing patients with potential FTD.

  11. 'Batman excision' of ventral skin in hypospadias repair, clue to aesthetic repair (point of technique).

    Science.gov (United States)

    Hoebeke, P B; De Kuyper, P; Van Laecke, E

    2002-11-01

    In the hypospadiac penis the ventral skin is poorly developed, while dorsal skin is redundant. The classical Byars' flaps are a way to use the excess dorsal skin to cover the penile shaft. The appearance after Byars' flaps however is not natural. We use a more natural looking skin allocation with superior aesthetic results. The clue in this reconstruction is an inverted triangle shaped excision of ventral skin expanding over the edges of the hooded prepuce (which makes it look like Batman). After excision of the ventral skin it is possible to close the penile skin in the midline, thus mimicking the natural raphe. In case of preputial reconstruction the excised ventral skin makes the prepuce look more natural. The trend of further refining aesthetic appearance of the hypospadiac penis often neglects the penile skin reconstruction. A technique is presented by which the total penile appearances after surgery ameliorates due to better skin reconstruction.

  12. Polyester composite versus PTFE in laparoscopic ventral hernia repair.

    Science.gov (United States)

    Colon, Modesto J; Telem, Dana A; Chin, Edward; Weber, Kaare; Divino, Celia M; Nguyen, Scott Q

    2011-01-01

    Both polyester composite (POC) and polytetrafluoroethylene (PTFE) mesh are commonly used for laparoscopic ventral hernia repair. However, sparse information exists comparing perioperative and long-term outcome by mesh repair. A prospective database was utilized to identify 116 consecutive patients who underwent laparoscopic ventral hernia repair at The Mount Sinai Hospital from 2004-2009. Patients were grouped by type of mesh used, PTFE versus POC, and retrospectively compared. Follow-up at a mean of 12 months was achieved by telephone interview and office visit. Of the 116 patients, 66 underwent ventral hernia repair with PTFE and 50 with POC mesh. Patients were well matched by patient demographics. No difference in mean body mass index (BMI) was demonstrated between the PTFE and POC group (31.8 vs. 32.5, respectively; P=NS). Operative time was significantly longer in the PTFE group (136 vs.106 minutes, PPTFE group and none in the POC group (P NS). No other major complications occurred in the immediate postoperative period (30 days). At a mean follow-up of 12 months, no significant difference was demonstrated between the PTFE and POC groups in hernia recurrence (3% vs. 2%), wound complications (1% vs. 0%), mesh infection, requiring removal (3% vs. 0%), bowel obstruction (3% vs. 2%), or persistent pain or discomfort (28% vs. 32%), respectively (P=NS). Our study demonstrated no significant association between types of mesh used and postoperative complications. In the 12-month follow-up, no differences were noted in hernia recurrence.

  13. Aphasia with left occipitotemporal hypometabolism: a novel presentation of posterior cortical atrophy?

    Science.gov (United States)

    Wicklund, Meredith R; Duffy, Joseph R; Strand, Edythe A; Whitwell, Jennifer L; Machulda, Mary M; Josephs, Keith A

    2013-09-01

    Alzheimer's disease is a common neurodegenerative disease often characterized by initial episodic memory loss. Atypical focal cortical presentations have been described, including the logopenic variant of primary progressive aphasia (lvPPA) which presents with language impairment, and posterior cortical atrophy (PCA) which presents with prominent visuospatial deficits. Both lvPPA and PCA are characterized by specific patterns of hypometabolism: left temporoparietal in lvPPA and bilateral parietoccipital in PCA. However, not every patient fits neatly into these categories. We retrospectively identified two patients with progressive aphasia and visuospatial deficits from a speech and language based disorders study. The patients were further characterized by MRI, fluorodeoxyglucose F18 and Pittsburgh Compound B (PiB) positron emission tomography. Two women, aged 62 and 69, presented with a history of a few years of progressive aphasia characterized by fluent output with normal grammar and syntax, anomia without loss of word meaning, and relatively spared repetition. They demonstrated striking deficits in visuospatial function for which they were lacking insight. Prominent hypometabolism was noted in the left occipitotemporal region and diffuse retention of PiB was noted. Posterior cortical atrophy may present focally with left occipitotemporal metabolism characterized clinically with a progressive fluent aphasia and prominent ventral visuospatial deficits with loss of insight. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Impaired communication between the dorsal and ventral stream: indications from apraxia

    Directory of Open Access Journals (Sweden)

    Carys eEvans

    2016-02-01

    Full Text Available Patients with apraxia perform poorly when demonstrating how an object is used, particularly when pantomiming the action. However, these patients are able to accurately identify, and to pick up and move objects, demonstrating intact ventral and dorsal stream visuomotor processing. Appropriate object manipulation for skilled use is thought to rely on integration of known and visible object properties associated with ‘ventro-dorsal’ stream neural processes. In apraxia, it has been suggested that stored object knowledge from the ventral stream may be less readily available to incorporate into the action plan, leading to an over-reliance on the objects’ visual affordances in object-directed motor behaviour. The current study examined grasping performance in left hemisphere stroke patients with (N = 3 and without (N = 9 apraxia, and in age-matched healthy control participants (N = 14, where participants repeatedly grasped novel cylindrical objects of varying weight distribution. Across two conditions, object weight distribution was indicated by either a memory-associated cue (object colour or visual-spatial cue (visible dot over the weighted end. Participants were required to incorporate object-weight associations to effectively grasp and balance each object. Control groups appropriately adjusted their grasp according to each object’s weight distribution across each condition, whereas throughout the task two of the three apraxic patients performed poorly on both the memory-associated and visual-spatial cue conditions. A third apraxic patient seemed to compensate for these difficulties but still performed differently to control groups. Patients with apraxia performed normally on the neutral control condition when grasping the evenly weighted version. The pattern of behaviour in apraxic patients suggests impaired integration of visible and known object properties attributed to the ventro-dorsal stream: in learning to grasp the weighted object

  15. Biomimetic collagen/elastin meshes for ventral hernia repair in a rat model.

    Science.gov (United States)

    Minardi, Silvia; Taraballi, Francesca; Wang, Xin; Cabrera, Fernando J; Van Eps, Jeffrey L; Robbins, Andrew B; Sandri, Monica; Moreno, Michael R; Weiner, Bradley K; Tasciotti, Ennio

    2017-03-01

    Ventral hernia repair remains a major clinical need. Herein, we formulated a type I collagen/elastin crosslinked blend (CollE) for the fabrication of biomimetic meshes for ventral hernia repair. To evaluate the effect of architecture on the performance of the implants, CollE was formulated both as flat sheets (CollE Sheets) and porous scaffolds (CollE Scaffolds). The morphology, hydrophylicity and in vitro degradation were assessed by SEM, water contact angle and differential scanning calorimetry, respectively. The stiffness of the meshes was determined using a constant stretch rate uniaxial tensile test, and compared to that of native tissue. CollE Sheets and Scaffolds were tested in vitro with human bone marrow-derived mesenchymal stem cells (h-BM-MSC), and finally implanted in a rat ventral hernia model. Neovascularization and tissue regeneration within the implants was evaluated at 6weeks, by histology, immunofluorescence, and q-PCR. It was found that CollE Sheets and Scaffolds were not only biomechanically sturdy enough to provide immediate repair of the hernia defect, but also promoted tissue restoration in only 6weeks. In fact, the presence of elastin enhanced the neovascularization in both sheets and scaffolds. Overall, CollE Scaffolds displayed mechanical properties more closely resembling those of native tissue, and induced higher gene expression of the entire marker genes tested, associated with de novo matrix deposition, angiogenesis, adipogenesis and skeletal muscles, compared to CollE Sheets. Altogether, this data suggests that the improved mechanical properties and bioactivity of CollE Sheets and Scaffolds make them valuable candidates for applications of ventral hernia repair. Due to the elevated annual number of ventral hernia repair in the US, the lack of successful grafts, the design of innovative biomimetic meshes has become a prime focus in tissue engineering, to promote the repair of the abdominal wall, avoid recurrence. Our meshes (Coll

  16. Correlation between early surgical complications and readmission rate after ventral hernia repair.

    Science.gov (United States)

    Kokotovic, D; Sjølander, H; Gögenur, I; Helgstrand, F

    2017-08-01

    Postoperative surgical complications arising from ventral hernia repair have been assessed by a variety of outcome measures. The objective of this study was to correlate the Clavien Dindo Classification (CDC) graded complications with the 30-day readmission rate as early outcome measures in ventral hernia repair. Secondarily, we wanted to investigate whether the risk factors for Clavien Dindo class ≥1 and 30-day readmission were comparable. Single-centre retrospective study including all patients (≥18 years) who underwent ventral hernia repair between January 1, 2009 and September 1, 2014 at Zealand University Hospital. Data were obtained from hospital files and the Danish National Patient Registry. A 100% follow-up was obtained. In total, the study included 700 patients (261 patients with incisional hernia repair and 439 patients with umbilical or epigastric hernia repair). There was a significant association between a complication graded by the CDC ≥1 and 30-day readmission for both incisional and umbilical/epigastric hernia repair (p readmission. Recurrent (vs. primary) hernia repair was an independent risk factors for both CDC ≥1 and 30-day readmission in umbilical/epigastric hernia repair. Furthermore, hernia size 2-7 cm (vs. >2 cm) was a risk factor for CDC ≥1 but not for 30-day readmission in umbilical/epigastric hernia repair. Reports on 30-day readmission can be used as a general outcome measure in ventral hernia repair, however CDC provides a more precise and detailed registration of postoperative complications.

  17. Opposing dorsal/ventral stream dynamics during figure-ground segregation

    NARCIS (Netherlands)

    Wokke, M.E.; Scholte, H.S.; Lamme, V.A.F.

    2014-01-01

    The visual system has been commonly subdivided into two segregated visual processing streams: The dorsal pathway processes mainly spatial information, and the ventral pathway specializes in object perception. Recent findings, however, indicate that different forms of interaction (cross-talk) exist

  18. Genetic factors influencing frontostriatal dysfunction and the development of dementia in Parkinson's disease

    Science.gov (United States)

    Huertas, Ismael; Jesús, Silvia; García-Gómez, Francisco Javier; Lojo, José Antonio; Bernal-Bernal, Inmaculada; Bonilla-Toribio, Marta; Martín-Rodriguez, Juan Francisco; García-Solís, David; Gómez-Garre, Pilar; Mir, Pablo

    2017-01-01

    The dual syndrome hypothesis for cognitive impairment in Parkinson's disease (PD) establishes a dichotomy between a frontrostriatal dopamine-mediated syndrome, which leads to executive deficits, and a posterior cortical syndrome, which leads to dementia. Certain genes have been linked to these syndromes although the exact contribution is still controversial. The study’s objective was to investigate the role of APOE, MAPT, COMT, SNCA and GBA genes in the dual syndromes. We genotyped APOE (rs429358 and rs7412), MAPT (rs9468), COMT (rs4680) and SNCA (rs356219) risk polymorphisms and sequenced GBA in a cohort of 298 PD patients. The degree of dopaminergic depletion was investigated with [123I]FP-CIT SPECTs and the presence of dementia was ascertained with a long-term review based on established criteria. The association between genetic and imaging parameters was studied with linear regression, and the relationship with dementia onset with Cox regression. We found that APOE2 allele (Pput = 0.002; Pcau = 0.01), the minor allele 'G' in SNCA polymorphism (Pput = 0.02; Pcau = 0.006) and GBA deleterious variants in (Pput = 0.01; Pcau = 0.001) had a detrimental effect on striatal [123I]FP-CIT uptake in PD. Conversely, Met/Met carriers in COMT polymorphism had increased caudate uptake (Pcau = 0.03). The development of dementia was influenced by APOE4 allele (HR = 1.90; P = 0.03) and GBA deleterious variants (HR = 2.44; P = 0.01). Finally, we observed no role of MAPT locus in any of the syndromes. As a conclusion, APOE2, SNCA, COMT and GBA influence frontostriatal dysfunction whereas APOE4 and GBA influence the development of dementia, suggesting a double-edged role of GBA. The dichotomy of the dual syndromes may be driven by a broad dichotomy in these genetic factors. PMID:28399184

  19. Genetic factors influencing frontostriatal dysfunction and the development of dementia in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Ismael Huertas

    Full Text Available The dual syndrome hypothesis for cognitive impairment in Parkinson's disease (PD establishes a dichotomy between a frontrostriatal dopamine-mediated syndrome, which leads to executive deficits, and a posterior cortical syndrome, which leads to dementia. Certain genes have been linked to these syndromes although the exact contribution is still controversial. The study's objective was to investigate the role of APOE, MAPT, COMT, SNCA and GBA genes in the dual syndromes. We genotyped APOE (rs429358 and rs7412, MAPT (rs9468, COMT (rs4680 and SNCA (rs356219 risk polymorphisms and sequenced GBA in a cohort of 298 PD patients. The degree of dopaminergic depletion was investigated with [123I]FP-CIT SPECTs and the presence of dementia was ascertained with a long-term review based on established criteria. The association between genetic and imaging parameters was studied with linear regression, and the relationship with dementia onset with Cox regression. We found that APOE2 allele (Pput = 0.002; Pcau = 0.01, the minor allele 'G' in SNCA polymorphism (Pput = 0.02; Pcau = 0.006 and GBA deleterious variants in (Pput = 0.01; Pcau = 0.001 had a detrimental effect on striatal [123I]FP-CIT uptake in PD. Conversely, Met/Met carriers in COMT polymorphism had increased caudate uptake (Pcau = 0.03. The development of dementia was influenced by APOE4 allele (HR = 1.90; P = 0.03 and GBA deleterious variants (HR = 2.44; P = 0.01. Finally, we observed no role of MAPT locus in any of the syndromes. As a conclusion, APOE2, SNCA, COMT and GBA influence frontostriatal dysfunction whereas APOE4 and GBA influence the development of dementia, suggesting a double-edged role of GBA. The dichotomy of the dual syndromes may be driven by a broad dichotomy in these genetic factors.

  20. Prey selection of a captive Oystercatcher Haematopus ostralegus hammering Mussels Mytilus edulis from the ventral side

    NARCIS (Netherlands)

    Ens, Bruno J.; Alting, D

    1996-01-01

    We studied prey choice of a captive Oystercatcher:hat hammered Mussels from the ventral side. The results replicate previous findings that ventral hammerers select Mussels of intermediate size, select against thick-shelled Mussels, abandon an increasing proportion of Mussels with increasing size and

  1. Holmes’ Tremor with Shoulder Pain Treated by Deep Brain Stimulation of Unilateral Ventral Intermediate Thalamic Nucleus and Globus Pallidus Internus

    Directory of Open Access Journals (Sweden)

    Sabri Aydın

    2017-05-01

    Full Text Available A 21-year-old male was admitted with severe right arm and hand tremors after a thalamic hemorrhage caused by a traffic accident. He was also suffering from agonizing pain in his right shoulder that manifested after the tremor. Neurologic examination revealed a disabling, severe, and irregular kinetic and postural tremor in the right arm during target-directed movements. There was also an irregular ipsilateral rest tremor and dystonic movements in the distal part of the right arm. The amplitude was moderate at rest and extremely high during kinetic and intentional movements. The patient underwent left globus pallidum internus and ventral intermediate thalamic nucleus deep brain stimulation. The patient improved by more than 80% as rated by the Fahn-Tolosa-Marin Tremor Rating Scale and Visual Analog Scale six months after surgery.

  2. Orbitofrontal lesions eliminate signalling of biological significance in cue-responsive ventral striatal neurons.

    Science.gov (United States)

    Cooch, Nisha K; Stalnaker, Thomas A; Wied, Heather M; Bali-Chaudhary, Sheena; McDannald, Michael A; Liu, Tzu-Lan; Schoenbaum, Geoffrey

    2015-05-21

    The ventral striatum has long been proposed as an integrator of biologically significant associative information to drive actions. Although inputs from the amygdala and hippocampus have been much studied, the role of prominent inputs from orbitofrontal cortex (OFC) are less well understood. Here, we recorded single-unit activity from ventral striatum core in rats with sham or ipsilateral neurotoxic lesions of lateral OFC, as they performed an odour-guided spatial choice task. Consistent with prior reports, we found that spiking activity recorded in sham rats during cue sampling was related to both reward magnitude and reward identity, with higher firing rates observed for cues that predicted more reward. Lesioned rats also showed differential activity to the cues, but this activity was unbiased towards larger rewards. These data support a role for OFC in shaping activity in the ventral striatum to represent the biological significance of associative information in the environment.

  3. Preputial reconstruction and tubularized incised plate urethroplasty in proximal hypospadias with ventral penile curvature

    OpenAIRE

    Bhat, Amilal; Gandhi, Ajay; Saxena, Gajendra; Choudhary, Gautam Ram

    2010-01-01

    Aims : Objective of this study was to assess the feasibility and results of preputial reconstruction and tubularized incised plate urethroplasty (TIP) in patients of proximal hypospadias with ventral penile curvature. Materials and Methods : Twenty-seven patients of proximal hypospadias who underwent preputioplasty with TIP were evaluated retrospectively. Ventral curvature was corrected by mobilization of the urethral plate with the corpus spongiosum and the proximal urethra; dorsal plica...

  4. Chronic alcohol intake abolishes the relationship between dopamine synthesis capacity and learning signals in the ventral striatum

    DEFF Research Database (Denmark)

    Deserno, Lorenz; Beck, Anne; Huys, Quentin J. M.

    2015-01-01

    Drugs of abuse elicit dopamine release in the ventral striatum, possibly biasing dopamine-driven reinforcement learning towards drug-related reward at the expense of non-drug-related reward. Indeed, in alcohol-dependent patients, reactivity in dopaminergic target areas is shifted from non-drug......-related stimuli towards drug-related stimuli. Such ‘hijacked’ dopamine signals may impair flexible learning from non-drug-related rewards, and thus promote craving for the drug of abuse. Here, we used functional magnetic resonance imaging to measure ventral striatal activation by reward prediction errors (RPEs......) during a probabilistic reversal learning task in recently detoxified alcohol-dependent patients and healthy controls (N = 27). All participants also underwent 6-[18F]fluoro-DOPA positron emission tomography to assess ventral striatal dopamine synthesis capacity. Neither ventral striatal activation...

  5. Enhanced activation of the left inferior frontal gyrus in deaf and dyslexic adults during rhyming.

    Science.gov (United States)

    MacSweeney, Mairéad; Brammer, Michael J; Waters, Dafydd; Goswami, Usha

    2009-07-01

    Hearing developmental dyslexics and profoundly deaf individuals both have difficulties processing the internal structure of words (phonological processing) and learning to read. In hearing non-impaired readers, the development of phonological representations depends on audition. In hearing dyslexics, many argue, auditory processes may be impaired. In congenitally profoundly deaf individuals, auditory speech processing is essentially absent. Two separate literatures have previously reported enhanced activation in the left inferior frontal gyrus in both deaf and dyslexic adults when contrasted with hearing non-dyslexics during reading or phonological tasks. Here, we used a rhyme judgement task to compare adults from these two special populations to a hearing non-dyslexic control group. All groups were matched on non-verbal intelligence quotient, reading age and rhyme performance. Picture stimuli were used since this requires participants to generate their own phonological representations, rather than have them partially provided via text. By testing well-matched groups of participants on the same task, we aimed to establish whether previous literatures reporting differences between individuals with and without phonological processing difficulties have identified the same regions of differential activation in these two distinct populations. The data indicate greater activation in the deaf and dyslexic groups than in the hearing non-dyslexic group across a large portion of the left inferior frontal gyrus. This includes the pars triangularis, extending superiorly into the middle frontal gyrus and posteriorly to include the pars opercularis, and the junction with the ventral precentral gyrus. Within the left inferior frontal gyrus, there was variability between the two groups with phonological processing difficulties. The superior posterior tip of the left pars opercularis, extending into the precentral gyrus, was activated to a greater extent by deaf than dyslexic

  6. Blindness alters the microstructure of the ventral but not the dorsal visual stream.

    Science.gov (United States)

    Reislev, Nina L; Kupers, Ron; Siebner, Hartwig R; Ptito, Maurice; Dyrby, Tim B

    2016-07-01

    Visual deprivation from birth leads to reorganisation of the brain through cross-modal plasticity. Although there is a general agreement that the primary afferent visual pathways are altered in congenitally blind individuals, our knowledge about microstructural changes within the higher-order visual streams, and how this is affected by onset of blindness, remains scant. We used diffusion tensor imaging and tractography to investigate microstructural features in the dorsal (superior longitudinal fasciculus) and ventral (inferior longitudinal and inferior fronto-occipital fasciculi) visual pathways in 12 congenitally blind, 15 late blind and 15 normal sighted controls. We also studied six prematurely born individuals with normal vision to control for the effects of prematurity on brain connectivity. Our data revealed a reduction in fractional anisotropy in the ventral but not the dorsal visual stream for both congenitally and late blind individuals. Prematurely born individuals, with normal vision, did not differ from normal sighted controls, born at term. Our data suggest that although the visual streams are structurally developing without normal visual input from the eyes, blindness selectively affects the microstructure of the ventral visual stream regardless of the time of onset. We suggest that the decreased fractional anisotropy of the ventral stream in the two groups of blind subjects is the combined result of both degenerative and cross-modal compensatory processes, affecting normal white matter development.

  7. Ventral impressions on the hypopharynx

    International Nuclear Information System (INIS)

    Daschner, H.; Hannig, C.

    1991-01-01

    Two impressions can be seen on the ventral aspect of the hypopharynx and upper oesophagus; on static images it is difficult to differentiate these from small tumours. In order to evaluate this region more accurately, we have examined 150 patients by means of rapid rate cinematography. In 52.6% we found a constant irregular or convex impression formed by the cricoid; in the other cases this was not seen or was quite minimal. In 93% a sub-cricoid impression could be demonstrated which was due to lax mucosa. Characteristically this showed a variable appearance during the passage of a bolus. Only the cricoid impression was associated with dysphagia. (orig.) [de

  8. Pipe-dependent ventral processing of Easter by Snake is the defining step in Drosophila embryo DV axis formation.

    Science.gov (United States)

    Cho, Yong Suk; Stevens, Leslie M; Stein, David

    2010-06-22

    The establishment of Drosophila embryonic dorsal-ventral (DV) polarity relies on serine proteolytic activity in the perivitelline space between the embryonic membrane and the eggshell. Gastrulation Defective cleaves and activates Snake, which processes and activates Easter, which cleaves Spätzle to form the activating ligand for the Toll receptor. Ventral restriction of ligand formation depends on the Pipe sulfotransferase, which is expressed in ventral cells of the follicular epithelium surrounding the developing oocyte. Pipe modifies components of the developing eggshell to produce a ventral cue embedded in the vitelline membrane. This ventral cue is believed to promote one or more of the proteolysis steps in the perivitelline space. By examining the processing of transgenic, tagged versions of the perivitelline proteins during DV patterning, we find that the proteolysis of Easter by Snake is the first Pipe-dependent step and therefore the key ventrally restricted event in the protease cascade. We also find that Snake and Easter associate together in a complex in both wild-type and pipe mutant-derived embryos. This observation suggests a mechanism in which the sulfated target of Pipe promotes a productive interaction between Snake and Easter, perhaps by facilitating conformational changes in a complex containing the two proteins. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Imaging Frontostriatal Function in Ultra-High-Risk, Early, and Chronic Schizophrenia During Executive Processing

    Science.gov (United States)

    Morey, Rajendra A.; Inan, Seniha; Mitchell, Teresa V.; Perkins, Diana O.; Lieberman, Jeffrey A.; Belger, Aysenil

    2009-01-01

    Context Individuals experiencing prodromal symptoms of schizophrenia (ultra-high-risk group) demonstrate impaired performance on tasks of executive function, attention, and working memory. The neurobiological underpinnings of such executive deficits in ultra-high-risk individuals remains unclear. Objective We assessed frontal and striatal functions during a visual oddball continuous performance task, in ultra-high-risk, early, and chronic schizophrenic patients with the use of functional magnetic resonance imaging. Design Cross-sectional case-control design. Setting Community; outpatient clinic. Patients Fifty-two individuals (control, n = 16; ultra-high risk, n = 10; early, n = 15; chronic, n = 11) from a referred clinical sample and age- and sex-matched control volunteers underwent scanning. Main Outcome Measures Percentage of active voxels and percentage signal change calculated for the anterior cingulate gyrus (ACG), middle frontal gyrus (MFG), inferior frontal gyrus (IFG), basal ganglia, and thalamus. Performance on the visual oddball task was measured with percentage of hits and d′ (a measure based on the hit rate and the false-alarm rate). Results The ultra-high-risk group showed significantly smaller differential activation between task-relevant and task-irrelevant stimuli in the frontal regions (ACG, IFG, MFG) than the control group. Frontostriatal activation associated with target stimuli in the early and chronic groups was significantly lower than the control group, while the ultra-high-risk group showed a trend toward the early group. Conclusions Our findings suggest that prefrontal function begins to decline before the onset of syndromally defined illness and hence may represent a vulnerability marker in assessing the risk of developing psychotic disorders among ultra-high-risk individuals. PMID:15753238

  10. The Neural Representation of Goal-Directed Actions and Outcomes in the Ventral Striatum's Olfactory Tubercle

    Science.gov (United States)

    Gadziola, Marie A.

    2016-01-01

    The ventral striatum is critical for evaluating reward information and the initiation of goal-directed behaviors. The many cellular, afferent, and efferent similarities between the ventral striatum's nucleus accumbens and olfactory tubercle (OT) suggests the distributed involvement of neurons within the ventral striatopallidal complex in motivated behaviors. Although the nucleus accumbens has an established role in representing goal-directed actions and their outcomes, it is not known whether this function is localized within the nucleus accumbens or distributed also within the OT. Answering such a fundamental question will expand our understanding of the neural mechanisms underlying motivated behaviors. Here we address whether the OT encodes natural reinforcers and serves as a substrate for motivational information processing. In recordings from mice engaged in a novel water-motivated instrumental task, we report that OT neurons modulate their firing rate during initiation and progression of the instrumental licking behavior, with some activity being internally generated and preceding the first lick. We further found that as motivational drive decreases throughout a session, the activity of OT neurons is enhanced earlier relative to the behavioral action. Additionally, OT neurons discriminate the types and magnitudes of fluid reinforcers. Together, these data suggest that the processing of reward information and the orchestration of goal-directed behaviors is a global principle of the ventral striatum and have important implications for understanding the neural systems subserving addiction and mood disorders. SIGNIFICANCE STATEMENT Goal-directed behaviors are widespread among animals and underlie complex behaviors ranging from food intake, social behavior, and even pathological conditions, such as gambling and drug addiction. The ventral striatum is a neural system critical for evaluating reward information and the initiation of goal-directed behaviors. Here we

  11. Deep Neural Networks Reveal a Gradient in the Complexity of Neural Representations across the Ventral Stream.

    Science.gov (United States)

    Güçlü, Umut; van Gerven, Marcel A J

    2015-07-08

    Converging evidence suggests that the primate ventral visual pathway encodes increasingly complex stimulus features in downstream areas. We quantitatively show that there indeed exists an explicit gradient for feature complexity in the ventral pathway of the human brain. This was achieved by mapping thousands of stimulus features of increasing complexity across the cortical sheet using a deep neural network. Our approach also revealed a fine-grained functional specialization of downstream areas of the ventral stream. Furthermore, it allowed decoding of representations from human brain activity at an unsurpassed degree of accuracy, confirming the quality of the developed approach. Stimulus features that successfully explained neural responses indicate that population receptive fields were explicitly tuned for object categorization. This provides strong support for the hypothesis that object categorization is a guiding principle in the functional organization of the primate ventral stream. Copyright © 2015 the authors 0270-6474/15/3510005-10$15.00/0.

  12. Lateral prefrontal cortex is organized into parallel dorsal and ventral streams along the rostro-caudal axis.

    Science.gov (United States)

    Blumenfeld, Robert S; Nomura, Emi M; Gratton, Caterina; D'Esposito, Mark

    2013-10-01

    Anatomical connectivity differences between the dorsal and ventral lateral prefrontal cortex (PFC) of the non-human primate strongly suggests that these regions support different functions. However, after years of study, it remains unclear whether these regions are functionally distinct. In contrast, there has been a groundswell of recent studies providing evidence for a rostro-caudal functional organization, along the lateral as well as dorsomedial frontal cortex. Thus, it is not known whether dorsal and ventral regions of lateral PFC form distinct functional networks and how to reconcile any dorso-ventral organization with the medio-lateral and rostro-caudal axes. Here, we used resting-state connectivity data to identify parallel dorsolateral and ventrolateral streams of intrinsic connectivity with the dorsomedial frontal cortex. Moreover, we show that this connectivity follows a rostro-caudal gradient. Our results provide evidence for a novel framework for the intrinsic organization of the frontal cortex that incorporates connections between medio-lateral, dorso-ventral, and rostro-caudal axes.

  13. Radiographic heart-volume estimation in normal cats

    International Nuclear Information System (INIS)

    Ahlberg, N.E.; Hansson, K.; Svensson, L.; Iwarsson, K.

    1989-01-01

    Heart volume mensuration was evaluated on conventional radiographs from eight normal cats in different body positions using computed tomography (CT). Heart volumes were calculated from orthogonal thoracic radiographs in ventral and dorsal recumbency and from radiographs exposed with a vertical X-ray beam in dorsal and lateral recumbency using the formula for an ellipsoid body. Heart volumes were also estimated with CT in ventral, dorsal, right lateral and left lateral recumbency. No differences between heart volumes from CT in ventral recumbency and those from CT in right and left lateral recumbency were seen. In dorsal recumbency, however, significantly lower heart volumes were obtained. Heart volumes from CT in ventral recumbency were similar to those from radiographs in ventral and dorsal recumbency and dorsal/left lateral recumbency. Close correlation was also demonstrated between heart volumes from radiographs in dorsal/ left lateral recumbency and body weights of the eight cats

  14. The functional anatomy of speech perception: Dorsal and ventral processing pathways

    Science.gov (United States)

    Hickok, Gregory

    2003-04-01

    Drawing on recent developments in the cortical organization of vision, and on data from a variety of sources, Hickok and Poeppel (2000) have proposed a new model of the functional anatomy of speech perception. The model posits that early cortical stages of speech perception involve auditory fields in the superior temporal gyrus bilaterally (although asymmetrically). This cortical processing system then diverges into two broad processing streams, a ventral stream, involved in mapping sound onto meaning, and a dorsal stream, involved in mapping sound onto articulatory-based representations. The ventral stream projects ventrolaterally toward inferior posterior temporal cortex which serves as an interface between sound and meaning. The dorsal stream projects dorsoposteriorly toward the parietal lobe and ultimately to frontal regions. This network provides a mechanism for the development and maintenance of ``parity'' between auditory and motor representations of speech. Although the dorsal stream represents a tight connection between speech perception and speech production, it is not a critical component of the speech perception process under ecologically natural listening conditions. Some degree of bi-directionality in both the dorsal and ventral pathways is also proposed. A variety of recent empirical tests of this model have provided further support for the proposal.

  15. Amygdala, Hippocampus, and Ventral Medial Prefrontal Cortex Volumes Differ in Maltreated Youth with and without Chronic Posttraumatic Stress Disorder.

    Science.gov (United States)

    Morey, Rajendra A; Haswell, Courtney C; Hooper, Stephen R; De Bellis, Michael D

    2016-02-01

    Posttraumatic stress disorder (PTSD) is considered a disorder of recovery where individuals fail to learn and retain extinction of the traumatic fear response. In maltreated youth, PTSD is common, chronic, and associated with comorbidity. Studies of extinction-related structural volumes (amygdala, hippocampus, anterior cingulate cortex (ACC), and ventral medial prefrontal cortex (vmPFC)) and this stress diathesis, in maltreated youth were not previously investigated. In this cross-sectional study, neuroanatomical volumes associated with extinction in maltreated youth with PTSD (N=31), without PTSD (N=32), and in non-maltreated healthy volunteers (n=57) were examined using magnetic resonance imaging. Groups were sociodemographically similar. Participants underwent extensive assessments for strict inclusion/exclusion criteria and DSM-IV disorders. Maltreated youth with PTSD demonstrated decreased right vmPFC volumes compared with both maltreated youth without PTSD and non-maltreated controls. Maltreated youth without PTSD demonstrated larger left amygdala and right hippocampal volumes compared with maltreated youth with PTSD and non-maltreated control youth. PTSD symptoms inversely correlated with right and left hippocampal and left amygdala volumes. Confirmatory masked voxel base morphometry analyses demonstrated greater medial orbitofrontal cortex gray matter intensity in controls than maltreated youth with PTSD. Volumetric results were not influenced by psychopathology or maltreatment variables. We identified volumetric differences in extinction-related structures between maltreated youth with PTSD from those without PTSD. Alterations of the vmPFC may be one mechanism that mediates the pathway from PTSD to comorbidity. Further longitudinal work is needed to determine neurobiological factors related to chronic and persistent PTSD, and to PTSD resilience despite maltreatment.

  16. Long-term Results of Ventral Penile Curvature Repair in Childhood.

    Science.gov (United States)

    Golomb, Dor; Sivan, Bezalel; Livne, Pinhas M; Nevo, Amihay; Ben-Meir, David

    2018-02-01

    To assess the postpubertal outcome of ventral penile curvature repaired in infancy in terms of recurrence and aesthetics. Postpubertal patients treated for hypospadias and ventral penile curvature in infancy at a tertiary medical center were invited to undergo assessment of the quality of the repair. Findings were compared between patients with a straight penis after skin release and patients who required dorsal plication. The cohort included 27 patients of mean age 16.5 years who were reported with straight penis after surgery. Postpubertal curvature was found in 6 of 14 patients (43%) successfully treated by skin release and 10 of 13 patients (77%) who underwent dorsal plication (P = .087). Significant curvature (≥30 degrees) was found in 1 of 14 patients in the skin-release group and 4 of 13 in the dorsal plication group (P = .16). Rates of redo urethroplasty were 2 of 14 (14%) and 5 of 10 (50%), respectively. Patient satisfaction with the appearance of the penis did not differ significantly. Ventral penile curvature repaired in infancy often recurs after puberty. The need for dorsal plication has a trend-level association with recurrence of penile curvature in puberty. It might also be related to the degree of postpubertal penile curvature and the need for redo urethroplasty. Procedure type does not affect patient satisfaction with the postpubertal appearance of the penis. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Temporal lobe epilepsy and surgery selectively alter the dorsal, not the ventral, default-mode network

    Directory of Open Access Journals (Sweden)

    Gaelle Eve Doucet

    2014-03-01

    Full Text Available The default-mode network (DMN is a major resting-state network. It can be divided in 2 distinct networks: one is composed of dorsal and anterior regions (referred to as the dorsal DMN, dDMN, while the other involves the more posterior regions (referred to as the ventral DMN, vDMN. To date, no studies have investigated the potentially distinct impact of temporal lobe epilepsy (TLE on these networks. In this context, we explored the effect of TLE and anterior temporal lobectomy (ATL on the dDMN and vDMN. We utilized 2 resting-state fMRI sessions from left, right TLE patients (pre-/post-surgery and normal controls (NCs, sessions 1/2. Using independent component analysis, we identified the 2 networks. We then evaluated for differences in spatial extent for each network between the groups, and across the scanning sessions. The results revealed that, pre-surgery, the dDMN showed larger differences between the three groups than the vDMN, and more particularly between right and left TLE than between the TLE patients and controls. In terms of change post-surgery, in both TLE groups, the dDMN also demonstrated larger changes than the vDMN. For the vDMN, the only changes involved the resected temporal lobe for each ATL group. For the dDMN, the left ATL group showed post-surgical increases in several regions outside the ictal temporal lobe. In contrast, the right ATL group displayed a large reduction in the frontal cortex. The results highlight that the 2 DMNs are not impacted by TLE and ATL in an equivalent fashion. Importantly, the dDMN was the more affected, with right ATL having a more deleterious effects on the dDMN than left ATL. We are the first to highlight that the dDMN more strongly bears the negative impact of TLE than the vDMN, suggesting there is an interaction between the side of pathology and DM subnetwork activity. Our findings have implications for understanding the impact TLE and subsequent ATL on the functions implemented by the distinct

  18. Craving behavioral intervention for internet gaming disorder: remediation of functional connectivity of the ventral striatum.

    Science.gov (United States)

    Zhang, Jin-Tao; Ma, Shan-Shan; Li, Chiang-Shan R; Liu, Lu; Xia, Cui-Cui; Lan, Jing; Wang, Ling-Jiao; Liu, Ben; Yao, Yuan-Wei; Fang, Xiao-Yi

    2018-01-01

    Psychobehavioral intervention is an effective treatment of Internet addiction, including Internet gaming disorder (IGD). However, the neural mechanisms underlying its efficacy remain unclear. Cortical-ventral striatum (VS) circuitry is a common target of psychobehavioral interventions in drug addiction, and cortical-VS dysfunction has been reported in IGD; hence, the primary aim of the study was to investigate how the VS circuitry responds to psychobehavioral interventions in IGD. In a cross-sectional study, we examined resting-state functional connectivity of the VS in 74 IGD subjects (IGDs) and 41 healthy controls (HCs). In a follow-up craving behavioral intervention (CBI) study, of the 74 IGD subjects, 20 IGD subjects received CBI (CBI+) and 16 IGD subjects did not (CBI-). All participants were scanned twice with similar time interval to assess the effects of CBI. IGD subjects showed greater resting-state functional connectivity of the VS to left inferior parietal lobule (lIPL), right inferior frontal gyrus and left middle frontal gyrus, in positive association with the severity of IGD. Moreover, compared with CBI-, CBI+ showed significantly greater decrease in VS-lIPL connectivity, along with amelioration in addiction severity following the intervention. These findings demonstrated that functional connectivity between VS and lIPL, each presumably mediating gaming craving and attentional bias, may be a potential biomarker of the efficacy of psychobehavioral intervention. These results also suggested that non-invasive techniques such as transcranial magnetic or direct current stimulation targeting the VS-IPL circuitry may be used in the treatment of Internet gaming disorders. © 2016 Society for the Study of Addiction.

  19. Reward Expectancy Strengthens CA1 Theta and Beta Band Synchronization and Hippocampal-Ventral Striatal Coupling.

    Science.gov (United States)

    Lansink, Carien S; Meijer, Guido T; Lankelma, Jan V; Vinck, Martin A; Jackson, Jadin C; Pennartz, Cyriel M A

    2016-10-12

    The use of information from the hippocampal memory system in motivated behavior depends on its communication with the ventral striatum. When an animal encounters cues that signal subsequent reward, its reward expectancy is raised. It is unknown, however, how this process affects hippocampal dynamics and their influence on target structures, such as ventral striatum. We show that, in rats, reward-predictive cues result in enhanced hippocampal theta and beta band rhythmic activity during subsequent action, compared with uncued goal-directed navigation. The beta band component, also labeled theta's harmonic, involves selective hippocampal CA1 cell groups showing frequency doubling of firing periodicity relative to theta rhythmicity and it partitions the theta cycle into segments showing clear versus poor spike timing organization. We found that theta phase precession occurred over a wider range than previously reported. This was apparent from spikes emitted near the peak of the theta cycle exhibiting large "phase precessing jumps" relative to spikes in foregoing cycles. Neither this phenomenon nor the regular manifestation of theta phase precession was affected by reward expectancy. Ventral striatal neuronal firing phase-locked not only to hippocampal theta, but also to beta band activity. Both hippocampus and ventral striatum showed increased synchronization between neuronal firing and local field potential activity during cued compared with uncued goal approaches. These results suggest that cue-triggered reward expectancy intensifies hippocampal output to target structures, such as the ventral striatum, by which the hippocampus may gain prioritized access to systems modulating motivated behaviors. Here we show that temporally discrete cues raising reward expectancy enhance both theta and beta band activity in the hippocampus once goal-directed navigation has been initiated. These rhythmic activities are associated with increased synchronization of neuronal firing

  20. Region-specific roles of the prelimbic cortex, the dorsal CA1, the ventral DG and ventral CA1 of the hippocampus in the fear return evoked by a sub-conditioning procedure in rats.

    Science.gov (United States)

    Fu, Juan; Xing, Xiaoli; Han, Mengfi; Xu, Na; Piao, Chengji; Zhang, Yue; Zheng, Xigeng

    2016-02-01

    The return of learned fear is an important issue in anxiety disorder research since an analogous process may contribute to long-term fear maintenance or clinical relapse. A number of studies demonstrate that mPFC and hippocampus are important in the modulation of post-extinction re-expression of fear memory. However, the region-specific role of these structures in the fear return evoked by a sub-threshold conditioning (SC) is not known. In the present experiments, we first examined specific roles of the prelimbic cortex (PL), the dorsal hippocampus (DH, the dorsal CA1 area in particular), the ventral hippocampus (the ventral dentate gyrus (vDG) and the ventral CA1 area in particular) in this fear return process. Then we examined the role of connections between PL and vCA1 with this behavioral approach. Rats were subjected to five tone-shock pairings (1.0-mA shock) to induce conditioned fear (freezing), followed by three fear extinction sessions (25 tone-alone trials each session). After a post-test for extinction memory, some rats were retrained with the SC procedure to reinstate tone-evoked freezing. Rat groups were injected with low doses of the GABAA agonist muscimol to selectively inactivate PL, DH, vDG, or vCA1 120 min before the fear return test. A disconnection paradigm with ipsilateral or contralateral muscimol injection of the PL and the vCA1 was used to examine the role of this pathway in the fear return. We found that transient inactivation of these areas significantly impaired fear return (freezing): inactivation of the prelimbic cortex blocked SC-evoked fear return in particular but did not influence fear expression in general; inactivation of the DH area impaired fear return, but had no effect on the extinction retrieval process; both ventral DG and ventral CA1 are required for the return of extinguished fear whereas only ventral DG is required for the extinction retrieval. These findings suggest that PL, DH, vDG, and vCA1 all contribute to the fear

  1. Laparoscopic ventral rectopexy for external rectal prolapse improves constipation and avoids de novo constipation.

    Science.gov (United States)

    Boons, P; Collinson, R; Cunningham, C; Lindsey, I

    2010-06-01

    Abdominal rectopexy is ideal for otherwise healthy patients with rectal prolapse because of low recurrence, yet after posterior rectopexy, half of the patients complain of severe constipation. Resection mitigates this dysfunction but risks a pelvic anastomosis. The novel nerve-sparing ventral rectopexy appears to avoid postero-lateral rectal dissection denervation and thus postoperative constipation. We aimed to evaluate our functional results with laparoscopic ventral rectopexy. Consecutive rectal prolapse patients undergoing laparoscopic ventral rectopexy were prospectively assessed (Wexner Constipation and Faecal Incontinence Severity Index scores) pre-, 3 months postoperatively, and late (> 12 months). Sixty-five consecutive patients with external rectal prolapse (median age 72 years, 34% > 80 years, median follow up 19 months) underwent laparoscopic ventral rectopexy. There was one recurrence (2%) and one conversion. Morbidity (17%) and mortality (0%) were low. Median operating time was 140 min and median length of stay 2 days. At 3 months, constipation was improved in 72% and mildly induced in 2% (median pre-and postoperative Wexner scores 9 vs 4, P constipation and incontinence (P constipation and avoidance of de novo constipation appear superior to historical functional results of posterior rectopexy. A laparoscopic approach allows low morbidity and short hospital stay, even in those patients over 80 years of age in whom a perineal approach is usually preferred for safety.

  2. Opposing Amygdala and Ventral Striatum Connectivity during Emotion Identification

    Science.gov (United States)

    Satterthwaite, Theodore D.; Wolf, Daniel H.; Pinkham, Amy E.; Ruparel, Kosha; Elliott, Mark A.; Valdez, Jeffrey N.; Overton, Eve; Seubert, Janina; Gur, Raquel E.; Gur, Ruben C.; Loughead, James

    2011-01-01

    Lesion and electrophysiological studies in animals provide evidence of opposing functions for subcortical nuclei such as the amygdala and ventral striatum, but the implications of these findings for emotion identification in humans remain poorly described. Here we report a high-resolution fMRI study in a sample of 39 healthy subjects who performed…

  3. Structural changes in left fusiform areas and associated fiber connections in children with abacus training: Evidence from morphometry and tractography

    Directory of Open Access Journals (Sweden)

    Yongxin eLi

    2013-07-01

    Full Text Available Evidence supports the notion that the fusiform gyrus (FG, as an integral part of the ventral occipitotemporal junction, is involved widely in cognitive processes as perceiving faces, objects, places or words, and this region also might represent the visual form of an abacus in the abacus-based mental calculation process. The current study uses a combined voxel-based morphometry (VBM and diffusion tensor imaging (DTI analysis to test whether long-term abacus training could induce structural changes in the left FG and in the white matter (WM tracts distribution connecting with this region in school children. We found that, abacus-trained children exhibited significant smaller grey matter (GM volume than controls in the left FG. And the connectivity mapping identified left forceps major as a key pathway connecting left FG with other brain areas in the trained group, but not in the controls. Furthermore, mean fractional anisotropy (FA values within left forceps major were significantly increased in the trained group. Interestingly, a significant negative correlation was found in the trained group between the GM volume in left FG and the mean FA value in left forceps major, suggesting an inverse effect of the reported GM and WM structural changes. In the control group, a positive correlation between left FG GM volume and tract FA was found as well. This analysis visualized the group level differences in GM volume, FA and fiber tract between the abacus-trained children and the controls, and provided the first evidence that GM volume change in the left FG is intimately linked with the micro-structural properties of the left forceps major tracts. The present results demonstrate the structural changes in the left FG from the intracortical GM to the subcortical WM regions and provide insights into the neural mechanism of structural plasticity induced by abacus training.

  4. Amotivation is associated with smaller ventral striatum volumes in older patients with schizophrenia.

    Science.gov (United States)

    Caravaggio, Fernando; Fervaha, Gagan; Iwata, Yusuke; Plitman, Eric; Chung, Jun Ku; Nakajima, Shinichiro; Mar, Wanna; Gerretsen, Philip; Kim, Julia; Chakravarty, M Mallar; Mulsant, Benoit; Pollock, Bruce; Mamo, David; Remington, Gary; Graff-Guerrero, Ariel

    2018-03-01

    Motivational deficits are prevalent in patients with schizophrenia, persist despite antipsychotic treatment, and predict long-term outcomes. Evidence suggests that patients with greater amotivation have smaller ventral striatum (VS) volumes. We wished to replicate this finding in a sample of older, chronically medicated patients with schizophrenia. Using structural imaging and positron emission tomography, we examined whether amotivation uniquely predicted VS volumes beyond the effects of striatal dopamine D 2/3 receptor (D 2/3 R) blockade by antipsychotics. Data from 41 older schizophrenia patients (mean age: 60.2 ± 6.7; 11 female) were reanalysed from previously published imaging data. We constructed multivariate linear stepwise regression models with VS volumes as the dependent variable and various sociodemographic and clinical variables as the initial predictors: age, gender, total brain volume, and antipsychotic striatal D 2/3 R occupancy. Amotivation was included as a subsequent step to determine any unique relationships with VS volumes beyond the contribution of the covariates. In a reduced sample (n = 36), general cognition was also included as a covariate. Amotivation uniquely explained 8% and 6% of the variance in right and left VS volumes, respectively (right: β = -.38, t = -2.48, P = .01; left: β = -.31, t = -2.17, P = .03). Considering cognition, amotivation levels uniquely explained 9% of the variance in right VS volumes (β = -.43, t = -0.26, P = .03). We replicate and extend the finding of reduced VS volumes with greater amotivation. We demonstrate this relationship uniquely beyond the potential contributions of striatal D 2/3 R blockade by antipsychotics. Elucidating the structural correlates of amotivation in schizophrenia may help develop treatments for this presently irremediable deficit. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Dorsal and ventral streams across sensory modalities

    Institute of Scientific and Technical Information of China (English)

    Anna Sedda; Federica Scarpina

    2012-01-01

    In this review,we describe the current models of dorsal and ventral streams in vision,audition and touch.Available theories take their first steps from the model of Milner and Goodale,which was developed to explain how human actions can be efficiently carried out using visual information.Since then,similar concepts have also been applied to other sensory modalities.We propose that advances in the knowledge of brain functioning can be achieved through models explaining action and perception patterns independently from sensory modalities.

  6. The BACHD Rat Model of Huntington Disease Shows Signs of Fronto-Striatal Dysfunction in Two Operant Conditioning Tests of Short-Term Memory.

    Directory of Open Access Journals (Sweden)

    Erik Karl Håkan Clemensson

    Full Text Available The BACHD rat is a recently developed transgenic animal model of Huntington disease, a progressive neurodegenerative disorder characterized by extensive loss of striatal neurons. Cognitive impairments are common among patients, and characterization of similar deficits in animal models of the disease is therefore of interest. The present study assessed the BACHD rats' performance in the delayed alternation and the delayed non-matching to position test, two Skinner box-based tests of short-term memory function. The transgenic rats showed impaired performance in both tests, indicating general problems with handling basic aspects of the tests, while short-term memory appeared to be intact. Similar phenotypes have been found in rats with fronto-striatal lesions, suggesting that Huntington disease-related neuropathology might be present in the BACHD rats. Further analyses indicated that the performance deficit in the delayed alternation test might be due to impaired inhibitory control, which has also been implicated in Huntington disease patients. The study ultimately suggests that the BACHD rats might suffer from neuropathology and cognitive impairments reminiscent of those of Huntington disease patients.

  7. The BACHD Rat Model of Huntington Disease Shows Signs of Fronto-Striatal Dysfunction in Two Operant Conditioning Tests of Short-Term Memory.

    Science.gov (United States)

    Clemensson, Erik Karl Håkan; Clemensson, Laura Emily; Riess, Olaf; Nguyen, Huu Phuc

    2017-01-01

    The BACHD rat is a recently developed transgenic animal model of Huntington disease, a progressive neurodegenerative disorder characterized by extensive loss of striatal neurons. Cognitive impairments are common among patients, and characterization of similar deficits in animal models of the disease is therefore of interest. The present study assessed the BACHD rats' performance in the delayed alternation and the delayed non-matching to position test, two Skinner box-based tests of short-term memory function. The transgenic rats showed impaired performance in both tests, indicating general problems with handling basic aspects of the tests, while short-term memory appeared to be intact. Similar phenotypes have been found in rats with fronto-striatal lesions, suggesting that Huntington disease-related neuropathology might be present in the BACHD rats. Further analyses indicated that the performance deficit in the delayed alternation test might be due to impaired inhibitory control, which has also been implicated in Huntington disease patients. The study ultimately suggests that the BACHD rats might suffer from neuropathology and cognitive impairments reminiscent of those of Huntington disease patients.

  8. Interaction of Instrumental and Goal-Directed Learning Modulates Prediction Error Representations in the Ventral Striatum.

    Science.gov (United States)

    Guo, Rong; Böhmer, Wendelin; Hebart, Martin; Chien, Samson; Sommer, Tobias; Obermayer, Klaus; Gläscher, Jan

    2016-12-14

    Goal-directed and instrumental learning are both important controllers of human behavior. Learning about which stimulus event occurs in the environment and the reward associated with them allows humans to seek out the most valuable stimulus and move through the environment in a goal-directed manner. Stimulus-response associations are characteristic of instrumental learning, whereas response-outcome associations are the hallmark of goal-directed learning. Here we provide behavioral, computational, and neuroimaging results from a novel task in which stimulus-response and response-outcome associations are learned simultaneously but dominate behavior at different stages of the experiment. We found that prediction error representations in the ventral striatum depend on which type of learning dominates. Furthermore, the amygdala tracks the time-dependent weighting of stimulus-response versus response-outcome learning. Our findings suggest that the goal-directed and instrumental controllers dynamically engage the ventral striatum in representing prediction errors whenever one of them is dominating choice behavior. Converging evidence in human neuroimaging studies has shown that the reward prediction errors are correlated with activity in the ventral striatum. Our results demonstrate that this region is simultaneously correlated with a stimulus prediction error. Furthermore, the learning system that is currently dominating behavioral choice dynamically engages the ventral striatum for computing its prediction errors. This demonstrates that the prediction error representations are highly dynamic and influenced by various experimental context. This finding points to a general role of the ventral striatum in detecting expectancy violations and encoding error signals regardless of the specific nature of the reinforcer itself. Copyright © 2016 the authors 0270-6474/16/3612650-11$15.00/0.

  9. Ultrasonographic evaluation of the healing of ventral midline abdominal incisions in the horse.

    Science.gov (United States)

    Wilson, D A; Badertscher, R R; Boero, M J; Baker, G J; Foreman, J H

    1989-06-01

    Ultrasonography was used to evaluate the ventral midline incisions of 21 ponies following exploratory laparotomy. The incisions were evaluated before surgery and at weekly intervals from one to seven weeks after surgery. Both 5.0 and 7.5 MHz linear array and 7.5 MHz sector transducers were used for the evaluations. The incisional complications observed were drainage, oedema, suture sinus formation, suture abscess, superficial dehiscence and incisional hernia. Ultrasonographic imaging of the ventral midline incision was an easy, reliable and objective method for detecting and monitoring the progression of incisional complications in a non-invasive manner.

  10. Effects of unilatral- and bilateral inhibition of rostral ventral tegmental area and central nucleus of amygdala on morphine-induced place conditioning in male Wistar rat.

    Science.gov (United States)

    Mohammadian, Zahra; Sahraei, Hedayat; Meftahi, Gholam Hossein; Ali-Beik, Hengameh

    2017-03-01

    The rostral ventral tegmental area (VTAR) and central nucleus of amygdala (CeA) are considered the main regions for induction of psychological dependence on abused drugs, such as morphine. The main aim of this study was to investigate the transient inhibition of each right and left side as well as both sides of the VTAR and the CeA by lidocaine (2%) on morphine reward properties using the conditioned place preference (CPP) method. Male Wistar rats (250±20 g) 7 days after recovery from surgery and cannulation were conditioned to morphine (7.5 mg/kg) in CPP apparatus. Five minutes before morphine injection in conditioning phase, lidocaine was administered either uni- or bilaterally into the VTAR (0.25 μL/site) or CeA (0.5 μL/site). The results revealed that lidocaine administration into the left side, but not the right side of the VTAR and the CeA reduced morphine CPP significantly. The reduction was potentiated when lidocaine was injected into both sides of the VTAR and the CeA. The number of compartment crossings was reduced when lidocaine was injected into both sides of the VTAR and the CeA as well as the left side. Rearing was reduced when lidocaine was injected into the right, but not the left side of the VTAR. Sniffing and rearing increased when animals received lidocaine in the right side and reduced in the group that received lidocaine in the left side of the CeA. It was concluded that the right and the left side of VTAR and the CeA play different roles in morphine-induced activity and reward. © 2016 John Wiley & Sons Australia, Ltd.

  11. A Ventral Visual Stream Reading Center Independent of Sensory Modality and Visual Experience

    Directory of Open Access Journals (Sweden)

    Lior Reich

    2011-10-01

    Full Text Available The Visual Word Form Area (VWFA is a ventral-temporal-visual area that develops expertise for visual reading. It encodes letter-strings irrespective of case, font, or location in the visual-field, with striking anatomical reproducibility across individuals. In the blind, reading can be achieved using Braille, with a comparable level-of-expertise to that of sighted readers. We investigated which area plays the role of the VWFA in the blind. One would expect it to be at either parietal or bilateral occipital cortex, reflecting the tactile nature of the task and crossmodal plasticity, respectively. However, according to the notion that brain areas are task specific rather than sensory-modality specific, we predicted recruitment of the left-hemispheric VWFA, identically to the sighted and independent of visual experience. Using fMRI we showed that activation during Braille reading in congenitally blind individuals peaked in the VWFA, with striking anatomical consistency within and between blind and sighted. The VWFA was reading-selective when contrasted to high-level language and low-level sensory controls. Further preliminary results show that the VWFA is selectively activated also when people learn to read in a new language or using a different modality. Thus, the VWFA is a mutlisensory area specialized for reading regardless of visual experience.

  12. Reward Anticipation in Ventral Striatum and Individual Sensitivity to Reward: A Pilot Study of a Child-Friendly fMRI Task.

    Science.gov (United States)

    van Hulst, Branko M; de Zeeuw, Patrick; Lupas, Kellina; Bos, Dienke J; Neggers, Sebastiaan F W; Durston, Sarah

    2015-01-01

    Reward processing has been implicated in developmental disorders. However, the classic task to probe reward anticipation, the monetary incentive delay task, has an abstract coding of reward and no storyline and may therefore be less appropriate for use with developmental populations. We modified the task to create a version appropriate for use with children. We investigated whether this child-friendly version could elicit ventral striatal activation during reward anticipation in typically developing children and young adolescents (aged 9.5-14.5). In addition, we tested whether our performance-based measure of reward sensitivity was associated with anticipatory activity in ventral striatum. Reward anticipation was related to activity in bilateral ventral striatum. Moreover, we found an association between individual reward sensitivity and activity in ventral striatum. We conclude that this task assesses ventral striatal activity in a child-friendly paradigm. The combination with a performance-based measure of reward sensitivity potentially makes the task a powerful tool for developmental imaging studies of reward processing.

  13. Dopamine system dysregulation by the ventral subiculum as the common pathophysiological basis for schizophrenia psychosis, psychostimulant abuse, and stress.

    Science.gov (United States)

    Grace, Anthony A

    2010-11-01

    The dopamine system is under multiple forms of regulation, and in turn provides effective modulation of system responses. Dopamine neurons are known to exist in several states of activity. The population activity, or the proportion of dopamine neurons firing spontaneously, is controlled by the ventral subiculum of the hippocampus. In contrast, burst firing, which is proposed to be the behaviorally salient output of the dopamine system, is driven by the brainstem pedunculopontine tegmentum (PPTg). When an animal is exposed to a behaviorally salient stimulus, the PPTg elicits a burst of action potentials in the dopamine neurons. However, this bursting only occurs in the portion of the dopamine neuron population that is firing spontaneously. This proportion is regulated by the ventral subiculum. Therefore, the ventral subiculum provides the gain, or the amplification factor, for the behaviorally salient stimulus. The ventral subiculum itself is proposed to carry information related to the environmental context. Thus, the ventral subiculum will adjust the responsivity of the dopamine system based on the needs of the organism and the characteristics of the environment. However, this finely tuned system can be disrupted in disease states. In schizophrenia, a disruption of interneuronal regulation of the ventral subiculum is proposed to lead to an overdrive of the dopamine system, rendering the system in a constant hypervigilant state. Moreover, amphetamine sensitization and stressors also appear to cause an abnormal dopaminergic drive. Such an interaction could underlie the risk factors of drug abuse and stress in the precipitation of a psychotic event. On the other hand, this could point to the ventral subiculum as an effective site of therapeutic intervention in the treatment or even the prevention of schizophrenia.

  14. Dorsal and ventral changes of the occipital vertebrae

    International Nuclear Information System (INIS)

    Banki, Z.

    1981-01-01

    Based on his own observation and on the literature, the author discusses various types of calcification in the occipital-cervical region, beginning with those situated dorsally and followed by ventral forms. An attempt is made to classify these changes, depending on their morphology and situation, from an embryological point of view. The pro-atlantal and ante pro-atlanto origin of the occipital vertebrae is discussed. Differentiation depends on appearances. (orig.) [de

  15. Reduced activation in the ventral striatum during probabilistic decision-making in patients in an at-risk mental state

    NARCIS (Netherlands)

    Rausch, Franziska; Mier, Daniela; Eifler, Sarah; Fenske, Sabrina; Schirmbeck, Frederike; Englisch, Susanne; Schilling, Claudia; Meyer-Lindenberg, Andreas; Kirsch, Peter; Zink, Mathias

    2015-01-01

    Patients with schizophrenia display metacognitive impairments, such as hasty decision-making during probabilistic reasoning - the "jumping to conclusion" bias (JTC). Our recent fMRI study revealed reduced activations in the right ventral striatum (VS) and the ventral tegmental area (VTA) to be

  16. Asymmetric development of dorsal and ventral attention networks in the human brain

    Directory of Open Access Journals (Sweden)

    Kristafor Farrant

    2015-04-01

    Full Text Available Two neural systems for goal-directed and stimulus-driven attention have been described in the adult human brain; the dorsal attention network (DAN centered in the frontal eye fields (FEF and intraparietal sulcus (IPS, and the ventral attention network (VAN anchored in the temporoparietal junction (TPJ and ventral frontal cortex (VFC. Little is known regarding the processes governing typical development of these attention networks in the brain. Here we use resting state functional MRI data collected from thirty 7 to 12 year-old children and thirty 18 to 31 year-old adults to examine two key regions of interest from the dorsal and ventral attention networks. We found that for the DAN nodes (IPS and FEF, children showed greater functional connectivity with regions within the network compared with adults, whereas adults showed greater functional connectivity between the FEF and extra-network regions including the posterior cingulate cortex. For the VAN nodes (TPJ and VFC, adults showed greater functional connectivity with regions within the network compared with children. Children showed greater functional connectivity between VFC and nodes of the salience network. This asymmetric pattern of development of attention networks may be a neural signature of the shift from over-representation of bottom-up attention mechanisms to greater top-down attentional capacities with development.

  17. Cell cycle regulator E2F4 is essential for the development of the ventral telencephalon.

    Science.gov (United States)

    Ruzhynsky, Vladimir A; McClellan, Kelly A; Vanderluit, Jacqueline L; Jeong, Yongsu; Furimsky, Marosh; Park, David S; Epstein, Douglas J; Wallace, Valerie A; Slack, Ruth S

    2007-05-30

    Early forebrain development is characterized by extensive proliferation of neural precursors coupled with complex structural transformations; however, little is known regarding the mechanisms by which these processes are integrated. Here, we show that deficiency of the cell cycle regulatory protein, E2F4, results in the loss of ventral telencephalic structures and impaired self-renewal of neural precursor cells. The mechanism underlying aberrant ventral patterning lies in a dramatic loss of Sonic hedgehog (Shh) expression specifically in this region. The E2F4-deficient phenotype can be recapitulated by interbreeding mice heterozygous for E2F4 with those lacking one allele of Shh, suggesting a genetic interaction between these pathways. Treatment of E2F4-deficient cells with a Hh agonist rescues stem cell self-renewal and cells expressing the homeodomain proteins that specify the ventral telencephalic structures. Finally, we show that E2F4 deficiency results in impaired activity of Shh forebrain-specific enhancers. In conclusion, these studies establish a novel requirement for the cell cycle regulatory protein, E2F4, in the development of the ventral telencephalon.

  18. Abstract Representations of Object-Directed Action in the Left Inferior Parietal Lobule.

    Science.gov (United States)

    Chen, Quanjing; Garcea, Frank E; Jacobs, Robert A; Mahon, Bradford Z

    2018-06-01

    Prior neuroimaging and neuropsychological research indicates that the left inferior parietal lobule in the human brain is a critical substrate for representing object manipulation knowledge. In the present functional MRI study we used multivoxel pattern analyses to test whether action similarity among objects can be decoded in the inferior parietal lobule independent of the task applied to objects (identification or pantomime) and stimulus format in which stimuli are presented (pictures or printed words). Participants pantomimed the use of objects, cued by printed words, or identified pictures of objects. Classifiers were trained and tested across task (e.g., training data: pantomime; testing data: identification), stimulus format (e.g., training data: word format; testing format: picture) and specific objects (e.g., training data: scissors vs. corkscrew; testing data: pliers vs. screwdriver). The only brain region in which action relations among objects could be decoded across task, stimulus format and objects was the inferior parietal lobule. By contrast, medial aspects of the ventral surface of the left temporal lobe represented object function, albeit not at the same level of abstractness as actions in the inferior parietal lobule. These results suggest compulsory access to abstract action information in the inferior parietal lobe even when simply identifying objects.

  19. Impaired prefrontal cognitive control over interference by food images in binge-eating disorder and bulimia nervosa.

    Science.gov (United States)

    Lee, Jung Eun; Namkoong, Kee; Jung, Young-Chul

    2017-06-09

    Binge-eating disorder (BED)characterized by recurrent episodes of binge-eating without inappropriate compensatory behaviors is classified as an official diagnosis in DSM-5. However, the neural bases that differentiate BED from other eating disorders such as bulimia nervosa (BN), are still under debate. Thirty-nine participants (HC, n=14; BN, n=13; BED, n=12) underwent functional MRI while performing a Stroop-Match-to-Sample task. This pilot study investigated how food images interfered with the behavioral performances and blood-oxygenation-level-dependent neuronal activity. Compared to healthy controls, participants with BN showed lower accuracy indicating impaired cognitive control over interference. Compared to healthy controls, participants with BED demonstrated stronger activations in the ventral striatum in response to food images. By contrast, participants with BN exhibited stronger activations in the premotor cortex and dorsal striatum. These aberrant ventral and dorsal frontostriatal activations in response to food images are associated with increased reward sensitivity and habitual binge-eating/purging behaviors in BED and BN. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Differential activation of amygdala, dorsal and ventral hippocampus following an exposure to a reminder ofunderwater trauma

    Directory of Open Access Journals (Sweden)

    Gilad eRitov

    2014-01-01

    Full Text Available Recollection of emotional memories is attributed in part to the activation of the amygdala and the hippocampus. Recent hypothesis suggest a pivotal role for the ventral hippocampus in traumatic stress processing and emotional memory retrieval. Persistent re-experiencing and intrusive recollections are core symptoms in acute and posttraumatic stress disorders (ASD; PTSD. Such intrusive recollections are often triggered by reminders associated with the trauma.We examined the impact of exposure to a trauma reminder (under water trauma on the activation of the basolateral amygdala (BLA, dorsal and ventral hippocampus. Rats were exposed to underwater trauma and 24 hours later were re-exposed to the context of the trauma. Phosphorylation of the extracellular signal-regulated kinase (ERK was used as a marker for level of activation of these regions. Significant increase in ERK activation was found in the ventral hippocampus and BLA. Such pattern of activation was not found in animals exposed only to the trauma or in animals exposed only to the trauma reminder. Additionally, the dissociative pattern of activation of the ventral hippocampus sub-regions positively correlated with the activation of the BLA.Our findings suggest a specific pattern of neural activation during recollection of a trauma reminder, with a unique contribution of the ventral hippocampus. Measured 24 hrs after the exposure to the traumatic experience, the current findings relate to relatively early stages of traumatic memory consolidation. Understanding the neural mechanisms underlying these initial stages may contribute to developing intervention strategies that could reduce the risk of eventually developing PTSD.

  1. Ventral striatal activity correlates with memory confidence for old- and new-responses in a difficult recognition test.

    Directory of Open Access Journals (Sweden)

    Ulrike Schwarze

    Full Text Available Activity in the ventral striatum has frequently been associated with retrieval success, i.e., it is higher for hits than correct rejections. Based on the prominent role of the ventral striatum in the reward circuit, its activity has been interpreted to reflect the higher subjective value of hits compared to correct rejections in standard recognition tests. This hypothesis was supported by a recent study showing that ventral striatal activity is higher for correct rejections than hits when the value of rejections is increased by external incentives. These findings imply that the striatal response during recognition is context-sensitive and modulated by the adaptive significance of "oldness" or "newness" to the current goals. The present study is based on the idea that not only external incentives, but also other deviations from standard recognition tests which affect the subjective value of specific response types should modulate striatal activity. Therefore, we explored ventral striatal activity in an unusually difficult recognition test that was characterized by low levels of confidence and accuracy. Based on the human uncertainty aversion, in such a recognition context, the subjective value of all high confident decisions is expected to be higher than usual, i.e., also rejecting items with high certainty is deemed rewarding. In an accompanying behavioural experiment, participants rated the pleasantness of each recognition response. As hypothesized, ventral striatal activity correlated in the current unusually difficult recognition test not only with retrieval success, but also with confidence. Moreover, participants indicated that they were more satisfied by higher confidence in addition to perceived oldness of an item. Taken together, the results are in line with the hypothesis that ventral striatal activity during recognition codes the subjective value of different response types that is modulated by the context of the recognition test.

  2. Adhesive F-actin Waves: A Novel Integrin-Mediated Adhesion Complex Coupled to Ventral Actin Polymerization

    OpenAIRE

    Case, Lindsay B.; Waterman, Clare M.

    2011-01-01

    At the leading lamellipodium of migrating cells, protrusion of an Arp2/3-nucleated actin network is coupled to formation of integrin-based adhesions, suggesting that Arp2/3-mediated actin polymerization and integrin-dependent adhesion may be mechanistically linked. Arp2/3 also mediates actin polymerization in structures distinct from the lamellipodium, in "ventral F-actin waves" that propagate as spots and wavefronts along the ventral plasma membrane. Here we show that integrins engage the ex...

  3. Contingency learning in human fear conditioning involves the ventral striatum.

    Science.gov (United States)

    Klucken, Tim; Tabbert, Katharina; Schweckendiek, Jan; Merz, Christian Josef; Kagerer, Sabine; Vaitl, Dieter; Stark, Rudolf

    2009-11-01

    The ability to detect and learn contingencies between fearful stimuli and their predictive cues is an important capacity to cope with the environment. Contingency awareness refers to the ability to verbalize the relationships between conditioned and unconditioned stimuli. Although there is a heated debate about the influence of contingency awareness on conditioned fear responses, neural correlates behind the formation process of contingency awareness have gained only little attention in human fear conditioning. Recent animal studies indicate that the ventral striatum (VS) could be involved in this process, but in human studies the VS is mostly associated with positive emotions. To examine this question, we reanalyzed four recently published classical fear conditioning studies (n = 117) with respect to the VS at three distinct levels of contingency awareness: subjects, who did not learn the contingencies (unaware), subjects, who learned the contingencies during the experiment (learned aware) and subjects, who were informed about the contingencies in advance (instructed aware). The results showed significantly increased activations in the left and right VS in learned aware compared to unaware subjects. Interestingly, this activation pattern was only found in learned but not in instructed aware subjects. We assume that the VS is not involved when contingency awareness does not develop during conditioning or when contingency awareness is unambiguously induced already prior to conditioning. VS involvement seems to be important for the transition from a contingency unaware to a contingency aware state. Implications for fear conditioning models as well as for the contingency awareness debate are discussed.

  4. Expression and Function of Xmsx-2B in Dorso-Ventral Axis Formation in Gastrula Embryos.

    Science.gov (United States)

    Onitsuka, I; Takeda, M; Maéno, M

    2000-11-01

    Msx is a homeodomain-containing transcriptional factor that plays an essential role in pattern formation in vertebrata and invertebrata embryos. In Xenopus laevis, two msx genes have been identified (Xmsx-1 and Xmsx-2). In the present study, we attempted to elucidate the expression and function of Xmsx-2B (formerly designated as Xhox7.1') in early embryogenesis. Whole mount in situ hybridization analyses showed that the expression pattern of Xmsx-2B at gastrula and neurula stages was very similar to that of Xmsx-1: the transcript of Xmsx-2B was observed in ventral and lateral sides of the embryo. At the tailbud stage, however, the expression pattern of Xmsx-2B in neural tissues was distinct from that of Xmsx-1. An RNA injection experiment revealed that, like BMP-4, Xmsx-2B has a strong ventralizing activity. In the Xmsx-2B -injected embryos, differentiation of axial structures such as the notochord, muscle, and neural tissue was completely suppressed, whereas alpha-globin mRNA, a blood cell marker, was highly expressed. Simultaneous injection of Xmsx-1 and Xmsx-2B RNAs showed that they function in an additive manner. It was also shown that coinjection of Xmsx-2B with a dominant-negative BMP-4 receptor (tBR), which can induce formation of secondary axis when injected alone in ventral blastomeres, suppressed secondary axis formation. Furthermore, Xmsx-2B also suppressed secondary axis formation, which was induced by a dominant-negative form of Xmsx-1 (VP16/msx-1). Therefore, like Xmsx-1, Xmsx-2B is a downstream nuclear factor of the BMP-4-derived ventralizing signal, and these two factors probably share the same target molecules. In conclusion, Xmsx-1 and Xmsx-2B function in dorso-ventral axis formation in early Xenopus laevis development.

  5. Differential contributions of dorso-ventral and rostro-caudal prefrontal white matter tracts to cognitive control in healthy older adults.

    Directory of Open Access Journals (Sweden)

    Maren Strenziok

    Full Text Available Prefrontal cortex mediates cognitive control by means of circuitry organized along dorso-ventral and rostro-caudal axes. Along the dorso-ventral axis, ventrolateral PFC controls semantic information, whereas dorsolateral PFC encodes task rules. Along the rostro-caudal axis, anterior prefrontal cortex encodes complex rules and relationships between stimuli, whereas posterior prefrontal cortex encodes simple relationships between stimuli and behavior. Evidence of these gradients of prefrontal cortex organization has been well documented in fMRI studies, but their functional correlates have not been examined with regard to integrity of underlying white matter tracts. We hypothesized that (a the integrity of specific white matter tracts is related to cognitive functioning in a manner consistent with the dorso-ventral and rostro-caudal organization of the prefrontal cortex, and (b this would be particularly evident in healthy older adults. We assessed three cognitive processes that recruit the prefrontal cortex and can distinguish white matter tracts along the dorso-ventral and rostro-caudal dimensions -episodic memory, working memory, and reasoning. Correlations between cognition and fractional anisotropy as well as fiber tractography revealed: (a Episodic memory was related to ventral prefrontal cortex-thalamo-hippocampal fiber integrity; (b Working memory was related to integrity of corpus callosum body fibers subserving dorsolateral prefrontal cortex; and (c Reasoning was related to integrity of corpus callosum body fibers subserving rostral and caudal dorsolateral prefrontal cortex. These findings confirm the ventrolateral prefrontal cortex's role in semantic control and the dorsolateral prefrontal cortex's role in rule-based processing, in accordance with the dorso-ventral prefrontal cortex gradient. Reasoning-related rostral and caudal superior frontal white matter may facilitate different levels of task rule complexity. This study is the

  6. Differential contributions of dorso-ventral and rostro-caudal prefrontal white matter tracts to cognitive control in healthy older adults.

    Science.gov (United States)

    Strenziok, Maren; Greenwood, Pamela M; Santa Cruz, Sophia A; Thompson, James C; Parasuraman, Raja

    2013-01-01

    Prefrontal cortex mediates cognitive control by means of circuitry organized along dorso-ventral and rostro-caudal axes. Along the dorso-ventral axis, ventrolateral PFC controls semantic information, whereas dorsolateral PFC encodes task rules. Along the rostro-caudal axis, anterior prefrontal cortex encodes complex rules and relationships between stimuli, whereas posterior prefrontal cortex encodes simple relationships between stimuli and behavior. Evidence of these gradients of prefrontal cortex organization has been well documented in fMRI studies, but their functional correlates have not been examined with regard to integrity of underlying white matter tracts. We hypothesized that (a) the integrity of specific white matter tracts is related to cognitive functioning in a manner consistent with the dorso-ventral and rostro-caudal organization of the prefrontal cortex, and (b) this would be particularly evident in healthy older adults. We assessed three cognitive processes that recruit the prefrontal cortex and can distinguish white matter tracts along the dorso-ventral and rostro-caudal dimensions -episodic memory, working memory, and reasoning. Correlations between cognition and fractional anisotropy as well as fiber tractography revealed: (a) Episodic memory was related to ventral prefrontal cortex-thalamo-hippocampal fiber integrity; (b) Working memory was related to integrity of corpus callosum body fibers subserving dorsolateral prefrontal cortex; and (c) Reasoning was related to integrity of corpus callosum body fibers subserving rostral and caudal dorsolateral prefrontal cortex. These findings confirm the ventrolateral prefrontal cortex's role in semantic control and the dorsolateral prefrontal cortex's role in rule-based processing, in accordance with the dorso-ventral prefrontal cortex gradient. Reasoning-related rostral and caudal superior frontal white matter may facilitate different levels of task rule complexity. This study is the first to

  7. Premotor nitric oxide synthase immunoreactive pathway connecting lumbar segments with the ventral motor nucleus of the cervical enlargement in the dog.

    Science.gov (United States)

    Marsala, Jozef; Lukácová, Nadezda; Cízková, Dása; Lukác, Imrich; Kuchárová, Karolína; Marsala, Martin

    2004-03-01

    In this study we investigate the occurrence and origin of punctate nitric oxide synthase immunoreactivity in the neuropil of the ventral motor nucleus in C7-Th1 segments of the dog spine, which are supposed to be the terminal field of an ascending premotor propriospinal nitric oxide synthase-immunoreactive pathway. As the first step, nitric oxide synthase immunohistochemistry was used to distinguish nitric oxide synthase-immunoreactive staining of the ventral motor nucleus. Dense, punctate nitric oxide synthase immunoreactivity was found on control sections in the neuropil of the ventral motor nucleus. After hemisection at Th10-11, axotomy-induced retrograde changes consisting in a strong upregulation of nitric oxide synthase-containing neurons were found mostly unilaterally in lamina VIII, the medial part of lamina VII and in the pericentral region in all segments of the lumbosacral enlargement. Concurrently, a strong depletion of the punctate nitric oxide synthase immunopositivity in the neuropil of the ventral motor nucleus ipsilaterally with the hemisection was detected, thus revealing that an uncrossed ascending premotor propriospinal pathway containing a fairly high number of nitric oxide synthase-immunoreactive fibers terminates in the ventral motor nucleus. Application of the retrograde fluorescent tracer Fluorogold injected into the ventral motor nucleus and analysis of alternate sections processed for nitric oxide synthase immunocytochemistry revealed the presence of Fluorogold-labeled and nitric oxide synthase-immunoreactive axons in the ventrolateral funiculus and in the lateral and medial portions of the ventral column throughout the thoracic and upper lumbar segments. A noticeable number of Fluorogold-labeled and nitric oxide synthase-immunoreactive somata detected on consecutive sections were found in the lumbosacral enlargement, mainly in laminae VIII-IX, the medial part of lamina VII and in the pericentral region (lamina X), ipsilaterally with the

  8. Altered structure-function relations of semantic processing in youths with high-functioning autism: a combined diffusion and functional MRI study.

    Science.gov (United States)

    Lo, Yu-Chun; Chou, Tai-Li; Fan, Li-Ying; Gau, Susan Shur-Fen; Chiu, Yen-Nan; Tseng, Wen-Yih Isaac

    2013-12-01

    Deficits in language and communication are among the core symptoms of autism, a common neurodevelopmental disorder with long-term impairment. Despite the striking nature of the autistic language impairment, knowledge about its corresponding alterations in the brain is still evolving. We hypothesized that the dual stream language network is altered in autism, and that this alteration could be revealed by changes in the relationships between microstructural integrity and functional activation. The study recruited 20 right-handed male youths with autism and 20 carefully matched individually, typically developing (TD) youths. Microstructural integrity of the left dorsal and left ventral pathways responsible for language processing and the functional activation of the connected brain regions were investigated by using diffusion spectrum imaging and functional magnetic resonance imaging of a semantic task, respectively. Youths with autism had significantly poorer language function, and lower functional activation in left dorsal and left ventral regions of the language network, compared with TD youths. The TD group showed a significant correlation of the functional activation of the left dorsal region with microstructural integrity of the left ventral pathway, whereas the autism group showed a significant correlation of the functional activation of the left ventral region with microstructural integrity of the left dorsal pathway, and moreover verbal comprehension index was correlated with microstructural integrity of the left ventral pathway. These altered structure-function relationships in autism suggest possible involvement of the dual pathways in supporting deficient semantic processing. © 2013 International Society for Autism Research, Wiley Periodicals, Inc.

  9. S175. AMOTIVATION IS ASSOCIATED WITH SMALLER VENTRAL STRIATUM VOLUMES IN OLDER PATIENTS WITH SCHIZOPHRENIA

    Science.gov (United States)

    Caravaggio, Fernando; Fervaha, Gagan; Iwata, Yusuke; Plitman, Eric; Chung, Jun Ku; Nakajima, Shinichiro; Mar, Wanna; Gerretsen, Philip; Kim, Julia; Chakravarty, Mallar; Mulsant, Benoit; Pollock, Bruce; Mamo, David; Remington, Gary; Graff-Guerrero, Ariel

    2018-01-01

    Abstract Background Motivational deficits are prevalent in patients with schizophrenia, persist despite antipsychotic treatment, and predict long‐term outcomes. Evidence suggests that patients with greater amotivation have smaller ventral striatum (VS) volumes. We wished to replicate this finding in a sample of older, chronically medicated patients with schizophrenia. Using structural imaging and positron emission tomography, we examined whether amotivation uniquely predicted VS volumes beyond the effects of striatal dopamine D2/3 receptor (D2/3R) blockade by antipsychotics. Methods Data from 41 older schizophrenia patients (mean age: 60.2 ± 6.7; 11 female) were reanalysed from previously published imaging data. We constructed multivariate linear stepwise regression models with VS volumes as the dependent variable and various sociodemographic and clinical variables as the initial predictors: age, gender, total brain volume, and antipsychotic striatal D2/3R occupancy. Amotivation was included as a subsequent step to determine any unique relationships with VS volumes beyond the contribution of the covariates. In a reduced sample (n = 36), general cognition was also included as a covariate. Results Amotivation uniquely explained 8% and 6% of the variance in right and left VS volumes, respectively (right: β = -.38, t = -2.48, P = .01; left: β = -.31, t = -2.17, P = .03). Considering cognition, amotivation levels uniquely explained 9% of the variance in right VS volumes (β = -.43, t = -0.26, P = .03). Discussion We replicate and extend the finding of reduced VS volumes with greater amotivation. We demonstrate this relationship uniquely beyond the potential contributions of striatal D2/3R blockade by antipsychotics. Elucidating the structural correlates of amotivation in schizophrenia may help develop treatments for this presently irremediable deficit.

  10. Ventral Slit Scrotal Flap: A New Outpatient Surgical Option for Reconstruction of Adult Buried Penis Syndrome.

    Science.gov (United States)

    Westerman, Mary E; Tausch, Timothy J; Zhao, Lee C; Siegel, Jordan A; Starke, Nathan; Klein, Alexandra K; Morey, Allen F

    2015-06-01

    We present a novel technique using ventral slit with scrotal skin flaps (VSSF) for the reconstruction of adult buried penis without skin grafting. An initial ventral slit is made in the phimotic ring, and the penis is exposed. To cover the defect in the ventral shaft skin, local flaps are created by making a ventral midline scrotal incision with horizontal relaxing incisions. The scrotal flaps are rotated to resurface the ventral shaft. Clinical data analyzed included preoperative diagnoses, length of stay, blood loss, and operative outcomes. Complications were also recorded. Fifteen consecutive patients with a penis trapped due to lichen sclerosus (LS) or phimosis underwent repair with VSSF. Each was treated in the outpatient setting with no perioperative complications. Mean age was 51 years (range, 26-75 years), and mean body mass index was 42.6 kg/m(2) (range, 29.8-53.9 kg/m(2)). The majority of patients (13 of 15, 87%) had a pathologic diagnosis of LS. Mean estimated blood loss was 57 cc (range, 25-200 cc), mean operative time was 83 minutes (range, 35-145 minutes), and all patients were discharged on the day of surgery. The majority of patients (11 of 15, 73.3%) remain satisfied with their results and have required no further intervention. Recurrences in 3 of 15 (20.0%) were due to LS, panniculus migration, and concealment by edematous groin tissue; 2 of these patients underwent subsequent successful skin grafting. VSSF is a versatile, safe, and effective reconstructive option in appropriately selected patients with buried penis, which enables reconstruction of penile shaft skin defects without requiring complex skin grafting. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Genetic Analysis of Hedgehog Signaling in Ventral Body Wall Development and the Onset of Omphalocele Formation

    Science.gov (United States)

    Matsumaru, Daisuke; Haraguchi, Ryuma; Miyagawa, Shinichi; Motoyama, Jun; Nakagata, Naomi; Meijlink, Frits; Yamada, Gen

    2011-01-01

    Background An omphalocele is one of the major ventral body wall malformations and is characterized by abnormally herniated viscera from the body trunk. It has been frequently found to be associated with other structural malformations, such as genitourinary malformations and digit abnormalities. In spite of its clinical importance, the etiology of omphalocele formation is still controversial. Hedgehog (Hh) signaling is one of the essential growth factor signaling pathways involved in the formation of the limbs and urogenital system. However, the relationship between Hh signaling and ventral body wall formation remains unclear. Methodology/Principal Findings To gain insight into the roles of Hh signaling in ventral body wall formation and its malformation, we analyzed phenotypes of mouse mutants of Sonic hedgehog (Shh), GLI-Kruppel family member 3 (Gli3) and Aristaless-like homeobox 4 (Alx4). Introduction of additional Alx4Lst mutations into the Gli3Xt/Xt background resulted in various degrees of severe omphalocele and pubic diastasis. In addition, loss of a single Shh allele restored the omphalocele and pubic symphysis of Gli3Xt/+; Alx4Lst/Lst embryos. We also observed ectopic Hh activity in the ventral body wall region of Gli3Xt/Xt embryos. Moreover, tamoxifen-inducible gain-of-function experiments to induce ectopic Hh signaling revealed Hh signal dose-dependent formation of omphaloceles. Conclusions/Significance We suggest that one of the possible causes of omphalocele and pubic diastasis is ectopically-induced Hh signaling. To our knowledge, this would be the first demonstration of the involvement of Hh signaling in ventral body wall malformation and the genetic rescue of omphalocele phenotypes. PMID:21283718

  12. Genetic analysis of Hedgehog signaling in ventral body wall development and the onset of omphalocele formation.

    Directory of Open Access Journals (Sweden)

    Daisuke Matsumaru

    2011-01-01

    Full Text Available An omphalocele is one of the major ventral body wall malformations and is characterized by abnormally herniated viscera from the body trunk. It has been frequently found to be associated with other structural malformations, such as genitourinary malformations and digit abnormalities. In spite of its clinical importance, the etiology of omphalocele formation is still controversial. Hedgehog (Hh signaling is one of the essential growth factor signaling pathways involved in the formation of the limbs and urogenital system. However, the relationship between Hh signaling and ventral body wall formation remains unclear.To gain insight into the roles of Hh signaling in ventral body wall formation and its malformation, we analyzed phenotypes of mouse mutants of Sonic hedgehog (Shh, GLI-Kruppel family member 3 (Gli3 and Aristaless-like homeobox 4 (Alx4. Introduction of additional Alx4(Lst mutations into the Gli3(Xt/Xt background resulted in various degrees of severe omphalocele and pubic diastasis. In addition, loss of a single Shh allele restored the omphalocele and pubic symphysis of Gli3(Xt/+; Alx4(Lst/Lst embryos. We also observed ectopic Hh activity in the ventral body wall region of Gli3(Xt/Xt embryos. Moreover, tamoxifen-inducible gain-of-function experiments to induce ectopic Hh signaling revealed Hh signal dose-dependent formation of omphaloceles.We suggest that one of the possible causes of omphalocele and pubic diastasis is ectopically-induced Hh signaling. To our knowledge, this would be the first demonstration of the involvement of Hh signaling in ventral body wall malformation and the genetic rescue of omphalocele phenotypes.

  13. Increased ventral-striatal activity during monetary decision making is a marker of problem poker gambling severity.

    Science.gov (United States)

    Brevers, Damien; Noël, Xavier; He, Qinghua; Melrose, James A; Bechara, Antoine

    2016-05-01

    The aim of this study was to examine the impact of different neural systems on monetary decision making in frequent poker gamblers, who vary in their degree of problem gambling. Fifteen frequent poker players, ranging from non-problem to high-problem gambling, and 15 non-gambler controls were scanned using functional magnetic resonance imaging (fMRI) while performing the Iowa Gambling Task (IGT). During IGT deck selection, between-group fMRI analyses showed that frequent poker gamblers exhibited higher ventral-striatal but lower dorsolateral prefrontal and orbitofrontal activations as compared with controls. Moreover, using functional connectivity analyses, we observed higher ventral-striatal connectivity in poker players, and in regions involved in attentional/motor control (posterior cingulate), visual (occipital gyrus) and auditory (temporal gyrus) processing. In poker gamblers, scores of problem gambling severity were positively associated with ventral-striatal activations and with the connectivity between the ventral-striatum seed and the occipital fusiform gyrus and the middle temporal gyrus. Present results are consistent with findings from recent brain imaging studies showing that gambling disorder is associated with heightened motivational-reward processes during monetary decision making, which may hamper one's ability to moderate his level of monetary risk taking. © 2015 Society for the Study of Addiction.

  14. A biomechanical analysis of ventral furrow formation in the Drosophila melanogaster embryo.

    Directory of Open Access Journals (Sweden)

    Vito Conte

    Full Text Available The article provides a biomechanical analysis of ventral furrow formation in the Drosophila melanogaster embryo. Ventral furrow formation is the first large-scale morphogenetic movement in the fly embryo. It involves deformation of a uniform cellular monolayer formed following cellularisation, and has therefore long been used as a simple system in which to explore the role of mechanics in force generation. Here we use a quantitative framework to carry out a systematic perturbation analysis to determine the role of each of the active forces observed. The analysis confirms that ventral furrow invagination arises from a combination of apical constriction and apical-basal shortening forces in the mesoderm, together with a combination of ectodermal forces. We show that the mesodermal forces are crucial for invagination: the loss of apical constriction leads to a loss of the furrow, while the mesodermal radial shortening forces are the primary cause of the internalisation of the future mesoderm as the furrow rises. Ectodermal forces play a minor but significant role in furrow formation: without ectodermal forces the furrow is slower to form, does not close properly and has an aberrant morphology. Nevertheless, despite changes in the active mesodermal and ectodermal forces lead to changes in the timing and extent of furrow, invagination is eventually achieved in most cases, implying that the system is robust to perturbation and therefore over-determined.

  15. Correction of Residual Ventral Penile Curvature After Division of the Urethral Plate in the First Stage of a 2-Stage Proximal Hypospadias Repair.

    Science.gov (United States)

    Schlomer, Bruce J

    2017-02-01

    The first stage of a 2-stage proximal hypospadias repair involves division of the urethral plate and correction of any residual ventral penile curvature (VPC). Options to correct residual VPC include dorsal corporal shortening or ventral corporal lengthening techniques. This review discusses these options and suggests an approach to management. Recent reports of 2-stage proximal hypospadias repairs indicate low rates of recurrent VPC with either dorsal corporal shortening or ventral corporal lengthening. Dorsal corporal shortening with dorsal plication may be preferentially used for mild to moderate residual VPC after division of urethral plate and ventral corporal lengthening reserved for severe residual VPC. Ventral corporal lengthening with grafts has been associated with urethroplasty complications after the second stage hypospadias surgery. Ventral corporal lengthening with relaxing incisions of corpora has been reported, but concerns about adverse effects require longer term studies. Little guidance exists to choose the best technique for VPC correction during first stage hypospadias repair after division of urethral plate. Reported literature suggests good results with dorsal plication techniques and ventral corporal lengthening. A practical approach is to use dorsal plication techniques for mild to moderate residual VPC after division of urethral plate (lengthening for severe residual VPC (>45°).

  16. Behavior-driven arc expression is reduced in all ventral hippocampal subfields compared to CA1, CA3, and dentate gyrus in rat dorsal hippocampus.

    Science.gov (United States)

    Chawla, M K; Sutherland, V L; Olson, K; McNaughton, B L; Barnes, C A

    2018-02-01

    Anatomical connectivity and lesion studies reveal distinct functional heterogeneity along the dorsal-ventral axis of the hippocampus. The immediate early gene Arc is known to be involved in neural plasticity and memory and can be used as a marker for cell activity that occurs, for example, when hippocampal place cells fire. We report here, that Arc is expressed in a greater proportion of cells in dorsal CA1, CA3, and dentate gyrus (DG), following spatial behavioral experiences compared to ventral hippocampal subregions (dorsal CA1 = 33%; ventral CA1 = 13%; dorsal CA3 = 23%; ventral CA3 = 8%; and dorsal DG = 2.5%; ventral DG = 1.2%). The technique used here to obtain estimates of numbers of behavior-driven cells across the dorsal-ventral axis, however, corresponds quite well with samples from available single unit recording studies. Several explanations for the two- to-threefold reduction in spatial behavior-driven cell activity in the ventral hippocampus can be offered. These include anatomical connectivity differences, differential gain of the self-motion signals that appear to alter the scale of place fields and the proportion of active cells, and possibly variations in the neuronal responses to non-spatial information within the hippocampus along its dorso-ventral axis. © 2017 Wiley Periodicals, Inc.

  17. Which way is up? Asymmetric spectral input along the dorsal-ventral axis influences postural responses in an amphibious annelid.

    Science.gov (United States)

    Jellies, John

    2014-11-01

    Medicinal leeches are predatory annelids that exhibit countershading and reside in aquatic environments where light levels might be variable. They also leave the water and must contend with terrestrial environments. Yet, leeches generally maintain a dorsal upward position despite lacking statocysts. Leeches respond visually to both green and near-ultraviolet (UV) light. I used LEDs to test the hypothesis that ventral, but not dorsal UV would evoke compensatory movements to orient the body. Untethered leeches were tested using LEDs emitting at red (632 nm), green (513 nm), blue (455 nm) and UV (372 nm). UV light evoked responses in 100 % of trials and the leeches often rotated the ventral surface away from it. Visible light evoked no or modest responses (12-15 % of trials) and no body rotation. Electrophysiological recordings showed that ventral sensilla responded best to UV, dorsal sensilla to green. Additionally, a higher order interneuron that is engaged in a variety of parallel networks responded vigorously to UV presented ventrally, and both the visible and UV responses exhibited pronounced light adaptation. These results strongly support the suggestion that a dorsal light reflex in the leech uses spectral comparisons across the dorsal-ventral axis rather than, or in addition to, luminance.

  18. Reelin signaling in the migration of ventral brain stem and spinal cord neurons

    Directory of Open Access Journals (Sweden)

    Sandra eBlaess

    2016-03-01

    Full Text Available The extracellular matrix protein Reelin is an important orchestrator of neuronal migration during the development of the central nervous system. While its role and mechanism of action have been extensively studied and reviewed in the formation of dorsal laminar brain structures like the cerebral cortex, hippocampus, and cerebellum, its functions during the neuronal migration events that result in the nuclear organization of the ventral central nervous system are less well understood. In an attempt to delineate an underlying pattern of Reelin action in the formation of neuronal cell clusters, this review highlights the role of Reelin signaling in the migration of neuronal populations that originate in the ventral brain stem and the spinal cord.

  19. Ventral Tegmental Area and Substantia Nigra Neural Correlates of Spatial Learning

    Science.gov (United States)

    Martig, Adria K.; Mizumori, Sheri J. Y.

    2011-01-01

    The ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) may provide modulatory signals that, respectively, influence hippocampal (HPC)- and striatal-dependent memory. Electrophysiological studies investigating neural correlates of learning and memory of dopamine (DA) neurons during classical conditioning tasks have found DA…

  20. Islet-1 is required for ventral neuron survival in Xenopus

    International Nuclear Information System (INIS)

    Shi, Yu; Zhao, Shuhua; Li, Jiejing; Mao, Bingyu

    2009-01-01

    Islet-1 is a LIM domain transcription factor involved in several processes of embryonic development. Xenopus Islet-1 (Xisl-1) has been shown to be crucial for proper heart development. Here we show that Xisl-1 and Xisl-2 are differentially expressed in the nervous system in Xenopus embryos. Knock-down of Xisl-1 by specific morpholino leads to severe developmental defects, including eye and heart failure. Staining with the neuronal markers N-tubulin and Xisl-1 itself reveals that the motor neurons and a group of ventral interneurons are lost in the Xisl-1 morphants. Terminal dUTP nick-end labeling (TUNEL) analysis shows that Xisl-1 morpholino injection induces extensive apoptosis in the ventral neural plate, which can be largely inhibited by the apoptosis inhibitor M50054. We also find that over-expression of Xisl-1 is able to promote cell proliferation and induce Xstat3 expression in the injected side, suggesting a potential role for Xisl-1 in the regulation of cell proliferation in co-operation with the Jak-Stat pathway.

  1. Differences between Dorsal and Ventral Striatum in the Sensitivity of Tonically Active Neurons to Rewarding Events

    Directory of Open Access Journals (Sweden)

    Kevin Marche

    2017-07-01

    Full Text Available Within the striatum, cholinergic interneurons, electrophysiologically identified as tonically active neurons (TANs, represent a relatively homogeneous group in terms of their functional properties. They display typical pause in tonic firing in response to rewarding events which are of crucial importance for reinforcement learning. These responses are uniformly distributed throughout the dorsal striatum (i.e., motor and associative striatum, but it is unknown, at least in monkeys, whether differences in the modulation of TAN activity exist in the ventral striatum (i.e., limbic striatum, a region specialized for processing of motivational information. To address this issue, we examined the activity of dorsal and ventral TANs in two monkeys trained on a Pavlovian conditioning task in which a visual stimulus preceded the delivery of liquid reward by a fixed time interval. We found that the proportion of TANs responding to the stimulus predictive of reward did not vary significantly across regions (58%–80%, whereas the fraction of TANs responding to reward was higher in the limbic striatum (100% compared to the motor (65% and associative striatum (52%. By examining TAN modulation at the level of both the population and the individual neurons, we showed that the duration of pause responses to the stimulus and reward was longer in the ventral than in the dorsal striatal regions. Also, the magnitude of the pause was greater in ventral than dorsal striatum for the stimulus predictive of reward but not for the reward itself. We found similar region-specific differences in pause response duration to the stimulus when the timing of reward was less predictable (fixed replaced by variable time interval. Regional variations in the duration and magnitude of the pause response were transferred from the stimulus to reward when reward was delivered in the absence of any predictive stimulus. It therefore appears that ventral TANs exhibit stronger responses to

  2. Non-compact left ventricle/hypertrabeculated left ventricle

    International Nuclear Information System (INIS)

    Restrepo, Gustavo; Castano, Rafael; Marmol, Alejandro

    2005-01-01

    Non-compact left ventricle/hypertrabeculated left ventricle is a myocardiopatie produced by an arrest of the normal left ventricular compaction process during the early embryogenesis. It is associated to cardiac anomalies (congenital cardiopaties) as well as to extracardial conditions (neurological, facial, hematologic, cutaneous, skeletal and endocrinological anomalies). This entity is frequently unnoticed, being diagnosed only in centers with great experience in the diagnosis and treatment of myocardiopathies. Many cases of non-compact left ventricle have been initially misdiagnosed as hypertrophic myocardiopatie, endocardial fibroelastosis, dilated cardiomyopatie, restrictive cardiomyopathy and endocardial fibrosis. It is reported the case of a 74 years old man with a history of chronic arterial hypertension and diabetes mellitus, prechordial chest pain and mild dyspnoea. An echocardiogram showed signs of non-compact left ventricle with prominent trabeculations and deep inter-trabecular recesses involving left ventricular apical segment and extending to the lateral and inferior walls. Literature on this topic is reviewed

  3. Arteriosclerosis in the ventral aorta and epicarditis in the bulbus arteriosus of Atlantic salmon (Salmo salar L).

    Science.gov (United States)

    Dalum, A S; Kristthorsdottir, K H; Griffiths, D J; Bjørklund, K; Poppe, T T

    2017-06-01

    Spontaneous mortality of seemingly healthy, farmed Atlantic salmon (Salmo salar L) is an increasing problem in Norwegian aquaculture. In this study, we present a morphological study of the previously undescribed syndrome of arteriosclerosis of the ventral aorta and epicarditis of the adjacent bulbus arteriosus found in farmed Atlantic salmon, with wild-captured fish as a control group. Both the ventral aorta and epicardium are vital for correct arterial compliance and vascular resistance in the respiratory capillaries of the gills. We discuss the possible implications of ventral aorta arteriosclerosis and epicarditis for blood vascular health and in particular for the increasing frequency of spontaneous gill bleeding in farmed salmon. As both these conditions primarily occur in farmed salmon, we suggest that they should be considered pathological. © 2016 John Wiley & Sons Ltd.

  4. Initiation and slow propagation of epileptiform activity from ventral to dorsal medial entorhinal cortex is constrained by an inhibitory gradient.

    Science.gov (United States)

    Ridler, Thomas; Matthews, Peter; Phillips, Keith G; Randall, Andrew D; Brown, Jonathan T

    2018-03-31

    The medial entorhinal cortex (mEC) has an important role in initiation and propagation of seizure activity. Several anatomical relationships exist in neurophysiological properties of mEC neurons; however, in the context of hyperexcitability, previous studies often considered it as a homogeneous structure. Using multi-site extracellular recording techniques, ictal-like activity was observed along the dorso-ventral axis of the mEC in vitro in response to various ictogenic stimuli. This originated predominantly from ventral areas, spreading to dorsal mEC with a surprisingly slow velocity. Modulation of inhibitory tone was capable of changing the slope of ictal initiation, suggesting seizure propagation behaviours are highly dependent on levels of GABAergic function in this region. A distinct disinhibition model also showed, in the absence of inhibition, a prevalence for interictal-like initiation in ventral mEC, reflecting the intrinsic differences in mEC neurons. These findings suggest the ventral mEC is more prone to hyperexcitable discharge than the dorsal mEC, which may be relevant under pathological conditions. The medial entorhinal cortex (mEC) has an important role in the generation and propagation of seizure activity. The organization of the mEC is such that a number of dorso-ventral relationships exist in neurophysiological properties of neurons. These range from intrinsic and synaptic properties to density of inhibitory connectivity. We examined the influence of these gradients on generation and propagation of epileptiform activity in the mEC. Using a 16-shank silicon probe array to record along the dorso-ventral axis of the mEC in vitro, we found 4-aminopyridine application produces ictal-like activity originating predominantly in ventral areas. This activity spreads to dorsal mEC at a surprisingly slow velocity (138 μm s -1 ), while cross-site interictal-like activity appeared relatively synchronous. We propose that ictal propagation is constrained by

  5. Feasibility and outcome after laparoscopic ventral hernia repair using Proceed mesh

    DEFF Research Database (Denmark)

    Rosenberg, J.; Burcharth, J.

    2008-01-01

    laparoscopic ventral hernia repair using the Proceed mesh secured with tackers with a double crown technique. Patients were discharged according to standard discharge criteria, and follow-up was performed with a search in the national patient database and with manual search in the patients' files. RESULTS: Our...

  6. Attention supports verbal short-term memory via competition between dorsal and ventral attention networks.

    Science.gov (United States)

    Majerus, Steve; Attout, Lucie; D'Argembeau, Arnaud; Degueldre, Christian; Fias, Wim; Maquet, Pierre; Martinez Perez, Trecy; Stawarczyk, David; Salmon, Eric; Van der Linden, Martial; Phillips, Christophe; Balteau, Evelyne

    2012-05-01

    Interactions between the neural correlates of short-term memory (STM) and attention have been actively studied in the visual STM domain but much less in the verbal STM domain. Here we show that the same attention mechanisms that have been shown to shape the neural networks of visual STM also shape those of verbal STM. Based on previous research in visual STM, we contrasted the involvement of a dorsal attention network centered on the intraparietal sulcus supporting task-related attention and a ventral attention network centered on the temporoparietal junction supporting stimulus-related attention. We observed that, with increasing STM load, the dorsal attention network was activated while the ventral attention network was deactivated, especially during early maintenance. Importantly, activation in the ventral attention network increased in response to task-irrelevant stimuli briefly presented during the maintenance phase of the STM trials but only during low-load STM conditions, which were associated with the lowest levels of activity in the dorsal attention network during encoding and early maintenance. By demonstrating a trade-off between task-related and stimulus-related attention networks during verbal STM, this study highlights the dynamics of attentional processes involved in verbal STM.

  7. Mucoceles en Cara Ventral de Lengua: Reporte de 6 casos y manejo quirúrgico

    OpenAIRE

    Del Valle, Sol C.

    2002-01-01

    El "Mucocele" como todos sabemos es un término clínico que corresponde histopatológicamente a un fenómeno de retención o extravasación de moco, causado por obstrucción o ruptura del ducto de una glándula salival menor. La localización más frecuente es la mucosa del labio inferior seguida de mucosa bucal, paladar, y pocas veces en cara ventral de lengua. (1-2) Se estudiaron 6 pacientes con diagnóstico clínico de mucocele en cara ventral de lengua que acudieron el Servicio de Patología Clínica ...

  8. Chronic treatment with epidermal growth factor induces growth of the rat ventral prostate

    DEFF Research Database (Denmark)

    Tørring, N; Jensen, L V; Wen, J G

    2001-01-01

    of the prostate epithelium, the stroma and the lumen following EGF treatment, in a pattern resembling physiological growth of the ventral prostate. A significant correlation (r = 0.78, p testosterone...

  9. A Comparative Study of Dorsal Buccal Mucosa Graft Substitution Urethroplasty by Dorsal Urethrotomy Approach versus Ventral Sagittal Urethrotomy Approach

    Directory of Open Access Journals (Sweden)

    Mrinal Pahwa

    2013-01-01

    Full Text Available Objectives. To compare the outcome of dorsal buccal mucosal graft (BMG substitution urethroplasty by dorsal urethrotomy approach with ventral urethrotomy approach in management of stricture urethra. Methods and Materials. A total of 40 patients who underwent dorsal BMG substitution urethroplasty were randomized into two groups. 20 patients underwent dorsal onlay BMG urethroplasty as described by Barbagli, and the other 20 patients underwent dorsal BMG urethroplasty by ventral urethrotomy as described by Asopa. Operative time, success rate, satisfaction rate, and complications were compared between the two groups. Mean follow-up was 12 months (6–24 months. Results. Ventral urethrotomy group had considerably lesser operative time although the difference was not statistically significant. Patients in dorsal group had mean maximum flow rate of 19.6 mL/min and mean residual urine of 27 mL, whereas ventral group had a mean maximum flow rate of 18.8 and residual urine of 32 mL. Eighteen out of twenty patients voided well in each group, and postoperative imaging study in these patients showed a good lumen with no evidence of leak or extravasation. Conclusion. Though ventral sagittal urethrotomy preserves the blood supply of urethra and intraoperative time was less than dorsal urethrotomy technique, there was no statistically significant difference in final outcome using either technique.

  10. A Comparative Study of Dorsal Buccal Mucosa Graft Substitution Urethroplasty by Dorsal Urethrotomy Approach versus Ventral Sagittal Urethrotomy Approach.

    Science.gov (United States)

    Pahwa, Mrinal; Gupta, Sanjeev; Pahwa, Mayank; Jain, Brig D K; Gupta, Manu

    2013-01-01

    Objectives. To compare the outcome of dorsal buccal mucosal graft (BMG) substitution urethroplasty by dorsal urethrotomy approach with ventral urethrotomy approach in management of stricture urethra. Methods and Materials. A total of 40 patients who underwent dorsal BMG substitution urethroplasty were randomized into two groups. 20 patients underwent dorsal onlay BMG urethroplasty as described by Barbagli, and the other 20 patients underwent dorsal BMG urethroplasty by ventral urethrotomy as described by Asopa. Operative time, success rate, satisfaction rate, and complications were compared between the two groups. Mean follow-up was 12 months (6-24 months). Results. Ventral urethrotomy group had considerably lesser operative time although the difference was not statistically significant. Patients in dorsal group had mean maximum flow rate of 19.6 mL/min and mean residual urine of 27 mL, whereas ventral group had a mean maximum flow rate of 18.8 and residual urine of 32 mL. Eighteen out of twenty patients voided well in each group, and postoperative imaging study in these patients showed a good lumen with no evidence of leak or extravasation. Conclusion. Though ventral sagittal urethrotomy preserves the blood supply of urethra and intraoperative time was less than dorsal urethrotomy technique, there was no statistically significant difference in final outcome using either technique.

  11. Left regular bands of groups of left quotients

    International Nuclear Information System (INIS)

    El-Qallali, A.

    1988-10-01

    A semigroup S which has a left regular band of groups as a semigroup of left quotients is shown to be the semigroup which is a left regular band of right reversible cancellative semigroups. An alternative characterization is provided by using spinned products. These results are applied to the case where S is a superabundant whose set of idempotents forms a left normal band. (author). 13 refs

  12. Dorsal free graft urethroplasty for urethral stricture by ventral sagittal urethrotomy approach.

    Science.gov (United States)

    Asopa, H S; Garg, M; Singhal, G G; Singh, L; Asopa, J; Nischal, A

    2001-11-01

    To explore the feasibility of applying a dorsal free graft to treat urethral stricture by the ventral sagittal urethrotomy approach without mobilizing the urethra. Twelve patients with long or multiple strictures of the anterior urethra were treated by a dorsal free full-thickness preputial or buccal mucosa graft. The urethra was not separated from the corporal bodies and was opened in the midline over the stricture. The floor of the urethra was incised, and an elliptical raw area was created over the tunica on which a free full-thickness graft of preputial or buccal mucosa was secured. The urethra was retubularized in one stage. After a follow-up of 8 to 40 months, one recurrence developed and required dilation. The ventral sagittal urethrotomy approach for dorsal free graft urethroplasty is not only feasible and successful, but is easy to perform.

  13. Activation of right parietal cortex during memory retrieval of nonlinguistic auditory stimuli.

    Science.gov (United States)

    Klostermann, Ellen C; Loui, Psyche; Shimamura, Arthur P

    2009-09-01

    In neuroimaging studies, the left ventral posterior parietal cortex (PPC) is particularly active during memory retrieval. However, most studies have used verbal or verbalizable stimuli. We investigated neural activations associated with the retrieval of short, agrammatical music stimuli (Blackwood, 2004), which have been largely associated with right hemisphere processing. At study, participants listened to music stimuli and rated them on pleasantness. At test, participants made old/new recognition judgments with high/low confidence ratings. Right, but not left, ventral PPC activity was observed during the retrieval of these music stimuli. Thus, rather than indicating a special status of left PPC in retrieval, both right and left ventral PPC participate in memory retrieval, depending on the type of information that is to be remembered.

  14. The functional organization of the left STS: a large scale meta-analysis of PET and fMRI studies of healthy adults

    Directory of Open Access Journals (Sweden)

    Einat eLiebenthal

    2014-09-01

    Full Text Available The superior temporal sulcus (STS in the left hemisphere is functionally diverse, with sub-areas implicated in both linguistic and non-linguistic functions. However, the number and boundaries of distinct functional regions remain to be determined. Here, we present new evidence, from meta-analysis of a large number of positron emission tomography (PET and functional magnetic resonance imaging (fMRI studies, of different functional specificity in the left STS supporting a division of its middle to terminal extent into at least three functional areas. The middle portion of the left STS stem (fmSTS is highly specialized for speech perception and the processing of language material. The posterior portion of the left STS stem (fpSTS is highly versatile and involved in multiple functions supporting semantic memory and associative thinking. The fpSTS responds to both language and non-language stimuli but the sensitivity to non-language material is greater. The horizontal portion of the left STS stem and terminal ascending branches (ftSTS display intermediate functional specificity, with the anterior ascending branch adjoining the supramarginal gyrus (fatSTS supporting executive functions and motor planning and showing greater sensitivity to language material, and the horizontal stem and posterior ascending branch adjoining the angular gyrus (fptSTS supporting primarily semantic processing and displaying greater sensitivity to non-language material. We suggest that the high functional specificity of the left fmSTS for speech is an important means by which the human brain achieves exquisite affinity and efficiency for native speech perception. In contrast, the extreme multi-functionality of the left fpSTS reflects the role of this area as a cortical hub for semantic processing and the extraction of meaning from multiple sources of information. Finally, in the left ftSTS, further functional differentiation between the dorsal and ventral aspect is warranted.

  15. Pelvic ventral hernia repair in a pygopagus conjoint twin | Bhullar ...

    African Journals Online (AJOL)

    Pelvic ventral hernia repair in a surviving conjoint twin with multiple congenital anomalies that make surgery a challenge. Conjoint twins are a rare. The incidence is reported to be in the range of 1/50 000 to 1/100 000 live births. Of the conjoint twins, 40% are stillborn and an additional one-third die within 24 h of birth.

  16. A double dissociation of dorsal and ventral hippocampal function on a learning and memory task mediated by the dorso-lateral striatum.

    Science.gov (United States)

    McDonald, Robert J; Jones, Jana; Richards, Blake; Hong, Nancy S

    2006-09-01

    The objectives of this research were to further delineate the neural circuits subserving proposed memory-based behavioural subsystems in the hippocampal formation. These studies were guided by anatomical evidence showing a topographical organization of the hippocampal formation. Briefly, perpendicular to the medial/lateral entorhinal cortex division there is a second system of parallel circuits that separates the dorsal and ventral hippocampus. Recent work from this laboratory has provided evidence that the hippocampus incidentally encodes a context-specific inhibitory association during acquisition of a visual discrimination task. One question that emerges from this dataset is whether the dorsal or ventral hippocampus makes a unique contribution to this newly described function. Rats with neurotoxic lesions of the dorsal or ventral hippocampus were assessed on the acquisition of the visual discrimination task. Following asymptotic performance they were given reversal training in either the same or a different context from the original training. The results showed that the context-specific inhibition effect is mediated by a circuit that includes the ventral but not the dorsal hippocampus. Results from a control procedure showed that rats with either dorso-lateral striatum damage or dorsal hippocampal lesions were impaired on a tactile/spatial discrimination. Taken together, the results represent a double dissociation of learning and memory function between the ventral and dorsal hippocampus. The formation of an incidental inhibitory association was dependent on ventral but not dorsal hippocampal circuitry, and the opposite dependence was found for the spatial component of a tactile/spatial discrimination.

  17. A preliminary study of the sensory distribution of the penile dorsal and ventral nerves: implications for effective penile block for circumcision.

    LENUS (Irish Health Repository)

    Long, Ronan M

    2012-01-31

    OBJECTIVE: To determine the sensory innervation of the penis, as regional anaesthesia is often used either for postoperative analgesia or as the sole anaesthetic technique for circumcision. Since first described in 1978 the dorsal penile nerve block has become the standard technique, but some blocks are ineffective; a better understanding of the sensory innervation of the penis might improve the efficacy of the dorsal penile block technique. PATIENTS AND METHODS: In 13 men undergoing circumcision with local anaesthetic, cutaneous sensation was tested before and after infiltration of the dorsal aspect of the penis, and then again after infiltration of the ventral aspect. The area of anaesthesia was mapped using pin-prick sensation. RESULTS: Ten of the 13 patients showed a similar pattern of sensory distribution. After the dorsal block, the dorsal aspect of the shaft of the penis and glans penis became insensate. The ventral aspect of the shaft remained sensate up to and including the frenulum. After successful ventral infiltration all sensate areas became insensate and circumcision proceeded. In one case the frenulum and distal ventral foreskin was anaesthetized after the dorsal block and ventral infiltration was not required. No patient experienced pain during circumcision. CONCLUSION: For consistently successful regional anaesthesia of the foreskin in circumcision, a dorsal block must be used. This should be combined with ventral infiltration at the site of incision. This method will avoid inconsistencies and allow pain-free circumcision using local anaesthesia in most men.

  18. Comparison of the Schirmer tear test I values after placement in ventral and dorsal conjunctival fornices in healthy cats.

    Science.gov (United States)

    Aftab, Ghazal; Rajaei, Seyed Mehdi; Faghihi, Houman

    2017-09-01

    Objectives The objective of this study was to compare the Schirmer tear test I values obtained from placement of Schirmer tear test (STT) strips in ventral and dorsal conjunctival fornices and to investigate any correlation between age, body weight and STT values in clinically normal cats. Methods Twenty-eight intact adult domestic shorthair and Persian were used in this study. The cats were gently physically restrained in a sternal position, and a Schirmer tear strip was placed on each eye in the ventral conjunctival fornix at one-third of the distance from the temporal to nasal canthus for 60 s. Then, the wetted portion of the strips was measured as mm/min (L-STT I). After 48 h, the same procedure was performed on each eye in the dorsal conjunctival fornix (U-STT I). Results Mean ± SD STT values of the ventral and dorsal conjunctival fornices were 20.80 ± 2.25 mm/min (range 14-25 mm/min; 95% confidence interval [CI] 19.92-21.67) and 18.28 ± 2.27 mm/min (range 15-22 mm/min; 95% CI 17.39-19.16) in all of the study population, respectively. A significant difference was found between STT values obtained from the ventral and dorsal conjunctival fornices ( P <0.001). There was no correlation between the age and body weight of the animals and STT I values. Conclusions and relevance This study compared the STT I values of the dorsal and ventral conjunctival fornices in cats. The difference was significant between the L-STT I and U-STT I values; however, the L-STT I and U-STT I values were within normal reference intervals. The U-STT I data have diagnostic value that might be of benefit in cases where there is a problem in the ventral conjunctival fornix.

  19. HDAC I inhibition in the dorsal and ventral hippocampus differentially modulates predator-odor fear learning and generalization.

    Science.gov (United States)

    Yuan, Robin K; Hebert, Jenna C; Thomas, Arthur S; Wann, Ellen G; Muzzio, Isabel A

    2015-01-01

    Although predator odors are ethologically relevant stimuli for rodents, the molecular pathways and contribution of some brain regions involved in predator odor conditioning remain elusive. Inhibition of histone deacetylases (HDACs) in the dorsal hippocampus has been shown to enhance shock-induced contextual fear learning, but it is unknown if HDACs have differential effects along the dorso-ventral hippocampal axis during predator odor fear learning. We injected MS-275, a class I HDAC inhibitor, bilaterally in the dorsal or ventral hippocampus of mice and found that it had no effects on innate anxiety in either region. We then assessed the effects of MS-275 at different stages of fear learning along the longitudinal hippocampal axis. Animals were injected with MS-275 or vehicle after context pre-exposure (pre-conditioning injections), when a representation of the context is first formed, or after exposure to coyote urine (post-conditioning injections), when the context becomes associated with predator odor. When MS-275 was administered after context pre-exposure, dorsally injected animals showed enhanced fear in the training context but were able to discriminate it from a neutral environment. Conversely, ventrally injected animals did not display enhanced learning in the training context but generalized the fear response to a neutral context. However, when MS-275 was administered after conditioning, there were no differences between the MS-275 and vehicle control groups in either the dorsal or ventral hippocampus. Surprisingly, all groups displayed generalization to a neutral context, suggesting that predator odor exposure followed by a mild stressor such as restraint leads to fear generalization. These results may elucidate distinct functions of the dorsal and ventral hippocampus in predator odor-induced fear conditioning as well as some of the molecular mechanisms underlying fear generalization.

  20. Blindness alters the microstructure of the ventral but not the dorsal visual stream

    DEFF Research Database (Denmark)

    Reislev, Nina L; Kupers, Ron; Siebner, Hartwig R

    2016-01-01

    Visual deprivation from birth leads to reorganisation of the brain through cross-modal plasticity. Although there is a general agreement that the primary afferent visual pathways are altered in congenitally blind individuals, our knowledge about microstructural changes within the higher...... pathways in 12 congenitally blind, 15 late blind and 15 normal sighted controls. We also studied six prematurely born individuals with normal vision to control for the effects of prematurity on brain connectivity. Our data revealed a reduction in fractional anisotropy in the ventral but not the dorsal......-order visual streams, and how this is affected by onset of blindness, remains scant. We used diffusion tensor imaging and tractography to investigate microstructural features in the dorsal (superior longitudinal fasciculus) and ventral (inferior longitudinal and inferior fronto-occipital fasciculi) visual...

  1. PROJECTIONS OF DORSAL AND MEDIAN RAPHE NUCLEI TO DORSAL AND VENTRAL STRIATUM

    Directory of Open Access Journals (Sweden)

    G. R. Hassanzadeh G. Behzadi

    2007-08-01

    Full Text Available The ascending serotonergic projections are derived mainly from mesencephalic raphe nuclei. Topographical projections from mesencephalic raphe nuclei to the striatum were examined in the rat by the retrograde transport technique of HRP (horseradish peroxidase. In 29 rats stereotaxically injection of HRP enzyme were performed in dorsal and ventral parts of striatum separately. The extent of the injection sites and distribution of retrogradely labeled neuronal cell bodies were drawed on representative sections using a projection microscope. Following ipsilateral injection of HRP into the dorsal striatum, numerous labeled neurons were seen in rostral portion of dorsal raphe (DR nucleus. In the same level the cluster of labeled neurons were hevier through caudal parts of DR. A few neurons were also located in lateral wing of DR. More caudally some labeled neurons were found in lateral, medial line of DR. In median raphe nucleus (MnR the labeled neurons were scattered only in median portion of this nucleus. The ipsilateral injection of HRP into the ventral region of striatum resulted on labeling of numerous neurons in rostral, caudal and lateral portions of DR. Through the caudal extension of DR on 4th ventricle level, a large number of labeled neurons were distributed along the ventrocaudal parts of DR. In MnR, labeled neurons were observed only in median part of this nucleus. These findings suggest the mesencephalic raphe nuclei projections to caudo-putamen are topographically organized. In addition dorsal and median raphe nuclei have a stronger projection to the ventral striatum.

  2. Distinct fronto-striatal couplings reveal the double-faced nature of response-outcome relations in instruction-based learning.

    Science.gov (United States)

    Ruge, Hannes; Wolfensteller, Uta

    2015-06-01

    Higher species commonly learn novel behaviors by evaluating retrospectively whether actions have yielded desirable outcomes. By relying on explicit behavioral instructions, only humans can use an acquisition shortcut that prospectively specifies how to yield intended outcomes under the appropriate stimulus conditions. A recent and largely unexplored hypothesis suggests that striatal areas interact with lateral prefrontal cortex (LPFC) when novel behaviors are learned via explicit instruction, and that regional subspecialization exists for the integration of differential response-outcome contingencies into the current task model. Behaviorally, outcome integration during instruction-based learning has been linked to functionally distinct performance indices. This includes (1) compatibility effects, measured in a postlearning test procedure probing the encoding strength of outcome-response (O-R) associations, and (2) increasing response slowing across learning, putatively indicating active usage of O-R associations for the online control of goal-directed action. In the present fMRI study, we examined correlations between these behavioral indices and the dynamics of fronto-striatal couplings in order to mutually constrain and refine the interpretation of neural and behavioral measures in terms of separable subprocesses during outcome integration. We found that O-R encoding strength correlated with LPFC-putamen coupling, suggesting that the putamen is relevant for the formation of both S-R habits and habit-like O-R associations. By contrast, response slowing as a putative index of active usage of O-R associations correlated with LPFC-caudate coupling. This finding highlights the relevance of the caudate for the online control of goal-directed action also under instruction-based learning conditions, and in turn clarifies the functional relevance of the behavioral slowing effect.

  3. FETAL PORCINE VENTRAL MESENCEPHALON GRAFTS - DISSECTION PROCEDURE AND CELLULAR CHARACTERIZATION IN CULTURE

    NARCIS (Netherlands)

    VANROON, WMC; COPRAY, JCVM; HOGENESCH, RI; KEMA, [No Value; MEYER, EM; MOLENAAR, G; LUGARD, C; STAAL, MJ; GO, KG

    The objective of this study was to develop an optimal dissection procedure for fetal porcine ventral mesencephalon (VM) grafts and to characterize the cellular composition of such an explant, in particular with respect to the dopaminergic and GABAergic components. We have used a monolayer cell

  4. Large Ventral Hernia

    Directory of Open Access Journals (Sweden)

    Meryl Abrams, MD

    2018-04-01

    Full Text Available History of present illness: A 46-year-old female presented to the emergency department (ED with diffuse abdominal pain and three days of poor oral intake associated with non-bilious, non-bloody vomiting. Initial vital signs consisted of a mild resting tachycardia of 111 with a temperature of 38.0 degrees Celsius (°C. On examination, the patient had a large pannus extending to the knees, which contained a hernia. She was tender in this region on examination. Laboratory values included normal serum chemistries and mild leukocytosis of 12.2. The patient reports that her abdomen had been enlarging over the previous 8 years but had not been painful until 3 days prior to presentation. The patient had no associated fever, chills, diarrhea, constipation, chest pain or shortness of breath. Significant findings: Computed tomography (CT scan with intravenous (IV contrast of the abdomen and pelvis demonstrated a large pannus containing a ventral hernia with abdominal contents extending below the knees (white circle, elongation of mesenteric vessels to accommodate abdominal contents outside of the abdomen (white arrow and air fluid levels (white arrow indicating a small bowel obstruction. Discussion: Hernias are a common chief complaint seen in the emergency department. The estimated lifetime risk of a spontaneous abdominal hernia is 5%.1 The most common type of hernia is inguinal while the next most common type of hernia is femoral, which are more common in women.1 Ventral hernias can be epigastric, incisional, or primary abdominal. An asymptomatic, reducible hernia can be followed up as outpatient with a general surgeon for elective repair.2 Hernias become problematic when they are either incarcerated or strangulated. A hernia is incarcerated when the hernia is irreducible and strangulated when its blood supply is compromised. A complicated hernia, especially strangulated, can have a mortality of greater than 50%.1 It is key to perform a thorough history

  5. Clinical analysis on the treatment of 24 cases of severe traumatic brain injury with non ventral intestinal obstruction

    Directory of Open Access Journals (Sweden)

    Wei WANG

    2017-01-01

    Full Text Available Objective To discuss the clinical treatment for severe traumatic brain injury (sTBI with non ventral intestinal obstruction. Methods A total of 48 patients with sTBI were enrolled in this study, including 24 with (observation group and 24 without (control group non ventral intestinal obstruction. Among 24 patients with non ventral intestinal obstruction, 3 cases (12.50% were treated by craniotomy evacuation of hematoma, 5 cases (20.83% were treated by craniotomy evacuation of hematoma and decompressive craniectomy, and 16 cases (66.67% were treated by conservative treatment. They were all treated by gastrointestinal decompression and parenteral nutrition. Among 24 patients without non ventral intestinal obstruction, 4 cases (16.67% were treated by craniotomy evacuation of hematoma, 6 cases (25% were treated by craniotomy evacuation of hematoma and decompressive craniectomy, and 14 cases (58.33% were treated by conservative treatment. They were all treated by enteral nutrition. Hemoglobin (Hb, albumin (ALB and prealbumin (PA were detected 10 and 20 d after treatment. Results Compared with control group, the level of Hb (P = 0.008, ALB (P = 0.002 and PA (P = 0.031 were significantly reduced in observation group. Compared with 10 d after treatment, the level of Hb (P = 0.003, ALB (P = 0.000 and PA (P = 0.005 were significantly reduced 20 d after treatment. Conclusions Early diagnosis and timely treatment for non ventral intestinal obstruction in patients with severe traumatic brain injury could effectively relieve the symptoms of intestinal obstruction, and is favorable to early enteral nutrition, so as to enhance the patients' recovery. DOI: 10.3969/j.issn.1672-6731.2017.01.012

  6. p38 MAPK as an essential regulator of dorsal-ventral axis specification and skeletogenesis during sea urchin development: a re-evaluation.

    Science.gov (United States)

    Molina, Maria Dolores; Quirin, Magali; Haillot, Emmanuel; Jimenez, Felipe; Chessel, Aline; Lepage, Thierry

    2017-06-15

    Dorsal-ventral axis formation in the sea urchin embryo relies on the asymmetrical expression of the TGFβ Nodal. The p38-MAPK pathway has been proposed to be essential for dorsal-ventral axis formation by acting upstream of nodal expression. Here, we report that, in contrast to previous studies that used pharmacological inhibitors of p38, manipulating the activity of p38 by genetic means has no obvious impact on morphogenesis. Instead, we discovered that p38 inhibitors strongly disrupt specification of all germ layers by blocking signalling from the Nodal receptor and by interfering with the ERK pathway. Strikingly, while expression of a mutant p38 that is resistant to SB203580 did not rescue dorsal-ventral axis formation or skeletogenesis in embryos treated with this inhibitor, expression of mutant Nodal receptors that are resistant to SB203580 fully restored nodal expression in SB203580-treated embryos. Taken together, these results establish that p38 activity is not required for dorsal-ventral axis formation through nodal expression nor for skeletogenesis. Our results prompt a re-evaluation of the conclusions of several recent studies that linked p38 activity to dorsal-ventral axis formation and to patterning of the skeleton. © 2017. Published by The Company of Biologists Ltd.

  7. Brain structure and functional connectivity associated with pornography consumption: the brain on porn.

    Science.gov (United States)

    Kühn, Simone; Gallinat, Jürgen

    2014-07-01

    Since pornography appeared on the Internet, the accessibility, affordability, and anonymity of consuming visual sexual stimuli have increased and attracted millions of users. Based on the assumption that pornography consumption bears resemblance with reward-seeking behavior, novelty-seeking behavior, and addictive behavior, we hypothesized alterations of the frontostriatal network in frequent users. To determine whether frequent pornography consumption is associated with the frontostriatal network. In a study conducted at the Max Planck Institute for Human Development in Berlin, Germany, 64 healthy male adults covering a wide range of pornography consumption reported hours of pornography consumption per week. Pornography consumption was associated with neural structure, task-related activation, and functional resting-state connectivity. Gray matter volume of the brain was measured by voxel-based morphometry and resting state functional connectivity was measured on 3-T magnetic resonance imaging scans. We found a significant negative association between reported pornography hours per week and gray matter volume in the right caudate (P < .001, corrected for multiple comparisons) as well as with functional activity during a sexual cue-reactivity paradigm in the left putamen (P < .001). Functional connectivity of the right caudate to the left dorsolateral prefrontal cortex was negatively associated with hours of pornography consumption. The negative association of self-reported pornography consumption with the right striatum (caudate) volume, left striatum (putamen) activation during cue reactivity, and lower functional connectivity of the right caudate to the left dorsolateral prefrontal cortex could reflect change in neural plasticity as a consequence of an intense stimulation of the reward system, together with a lower top-down modulation of prefrontal cortical areas. Alternatively, it could be a precondition that makes pornography consumption more rewarding.

  8. Biochemical evidence for. gamma. -aminobutyrate containing fibres from the nucleus accumbens to the substantia nigra and ventral tegmental area in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Walaas, I; Fonnum, F

    1980-01-01

    Glutamate decarboxylase activity, a specific marker for ..gamma..-aminobutyrate-containing neurons, has been analysed in microdissected samples from rat mesencephalon following unilateral electrocoagulations of the nucleus accumbens. This lesion resulted in a consistent decrease of 50% in the enzyme activity in the rostromedial substantia nigra, and a slight, but insignificant decrease (- 15%) in the medial parts of the caudal pars compacta of the substantia nigra. No change was found in the lateral pars compacta or the central pars reticulata. In the ventral tegmental area, the highest activity was found in the rostromedial part, adjacent to the mammillary body. At this level, a significant decrease of 20% was found in the ventral tegmental area on the lesioned side. In contrast, the activities in the medial accessory optic nucleus and the caudal ventral tegmental area adjacent to the interpenduncular nucleus were unchanged. The results indicate that the nucleus accumbens sends ..gamma..-aminobutyrate-containing fibres to the rostromedial substantia nigra and to the rostral ventral tegmental area. The caudal ventral tegmental area, the lateral pars compacta and the central pars reticulata do not receive measurable amounts of such fibres.

  9. Drumming with dopamine neurons : Resonance and synchronization in the Ventral Tegmental Area

    NARCIS (Netherlands)

    van der Velden, L.J.J.

    2018-01-01

    The ventral tegmental area (VTA) is a dopaminergic nucleus in the midbrain with the propensity to exhibit spontaneous intrinsic rhythmic activity in the 1-5 Hz frequency range (ex vivo). Here, we combine in-vitro simultaneous action potential recording from a 60 channel multi-electro-array with

  10. An fMRI Study of Self-Regulatory Control and Conflict Resolution in Adolescents With Bulimia Nervosa

    Science.gov (United States)

    Marsh, Rachel; Horga, Guillermo; Wang, Zhishun; Wang, Pengwei; Klahr, Kristin W.; Berner, Laura A.; Walsh, B. Timothy; Peterson, Bradley S.

    2012-01-01

    Objective The authors examined functional activity in the frontostriatal systems that mediate self-regulatory capacities and conflict resolution in adolescents with bulimia nervosa. Method Functional magnetic resonance imaging was used to compare blood-oxygen-level-dependent response in 18 female adolescents with bulimia nervosa and 18 healthy female age-matched subjects during performance on a Simon spatial incompatibility task. Bayesian analyses were used to compare the two groups on patterns of brain activation during correct responses to conflict stimuli and to explore the effects of antecedent stimulus context on group differences in self-regulation and conflict resolution. Results Adolescents with and without bulimia nervosa performed similarly on the task. During correct responses in conflict trials, frontostriatal circuits—including the right inferolateral and dorsolateral prefrontal cortices and putamen—failed to activate to the same degree in adolescents with bulimia nervosa as in healthy comparison subjects. Instead, deactivation was seen in the left inferior frontal gyrus as well as a neural system encompassing the posterior cingulate cortex and superior frontal gyrus. Group differences in cortical and striatal regions were driven by the differential responses to stimuli preceded by conflict and nonconflict stimuli, respectively. Conclusions When engaging the self-regulatory control processes necessary to resolve conflict, adolescents with bulimia nervosa displayed abnormal patterns of activation in frontostriatal and default-mode systems. Their abnormal processing of the antecedent stimulus context conditioned their brain response to conflict differently from that of healthy comparison subjects, specifically in frontal regions. It is suspected that functional disturbances in frontal portions of frontostriatal systems may release feeding behaviors from regulatory control, thereby perpetuating the conflicting desires to consume fattening foods and

  11. Ventral medullary neurones excited from the hypothalamic and mid-brain defence areas.

    Science.gov (United States)

    Hilton, S M; Smith, P R

    1984-07-01

    In cats anaesthetised with chloralose, the ventral medulla was explored in and around the strip previously identified as the location of the efferent pathway from the hypothalamic and mid-brain defence areas to the spinal cord, in a search for neurones excited by electrical stimulation of the defence areas. Such units were found mostly in the caudal part of this strip, at a depth of not more than 500 microns from the surface. Nearly all were located in the ventral part of nucleus paragigantocellularis lateralis (PGL) at the level of the rostral pole of the inferior olive. There was evidence of temporal and spatial facilitation, indicating a convergent excitatory input from the defence areas onto neurones in PGL. This is consistent with earlier evidence of a synaptic relay in the efferent pathway at this site. When the pathway is blocked at this site, arterial blood pressure falls profoundly, so activity in these neurones may be essential for the normal level of sympathetic nerve activity.

  12. Comparison of four methods of measurement on [11C]Raclopride  binding potential using regional specificity in the striatum

    DEFF Research Database (Denmark)

    Peterson, Ericka; Gjedde, Albert; Møller, Arne

    Background: Dopamine transmission in the striatum and especially the ventral striatum (VST), a structure which includes the nucleus  accumbens, ventral caudate, and ventral putamen, plays a critical role in the pathophysiology of psychotic states and the reinforcing effects of virtually all drugs...... as reference for all three methods. Mean pB were calculated for left and right putamen, caudate and VST. Correlations between the left and right pB were examined for each striatal region. The results of the three methods were also compared. Results: For all three methods, there was a highly significant...... correlation between the left and right caudate and putamen (pVST (0.01

  13. The ventral hippocampus, but not the dorsal hippocampus is critical for learned approach-avoidance decision making.

    Science.gov (United States)

    Schumacher, Anett; Vlassov, Ekaterina; Ito, Rutsuko

    2016-04-01

    The resolution of an approach-avoidance conflict induced by ambivalent information involves the appraisal of the incentive value of the outcomes and associated stimuli to orchestrate an appropriate behavioral response. Much research has been directed at delineating the neural circuitry underlying approach motivation and avoidance motivation separately. Very little research, however, has examined the neural substrates engaged at the point of decision making when opposing incentive motivations are experienced simultaneously. We hereby examine the role of the dorsal and ventral hippocampus (HPC) in a novel approach-avoidance decision making paradigm, revisiting a once popular theory of HPC function, which posited the HPC to be the driving force of a behavioral inhibition system that is activated in situations of imminent threat. Rats received pre-training excitotoxic lesions of the dorsal or ventral HPC, and were trained to associate different non-spatial cues with appetitive, aversive and neutral outcomes in three separate arms of the radial maze. On the final day of testing, a state of approach-avoidance conflict was induced by simultaneously presenting two cues of opposite valences, and comparing the time the rats spent interacting with the superimposed 'conflict' cue, and the neutral cue. The ventral HPC-lesioned group showed significant preference for the conflict cue over the neutral cue, compared to the dorsal HPC-lesioned, and control groups. Thus, we provide evidence that the ventral, but not dorsal HPC, is a crucial component of the neural circuitry concerned with exerting inhibitory control over approach tendencies under circumstances in which motivational conflict is experienced. © 2015 Wiley Periodicals, Inc.

  14. Effect of paddock vs. stall housing on 24 hour gastric pH within the proximal and ventral equine stomach.

    Science.gov (United States)

    Husted, L; Sanchez, L C; Olsen, S N; Baptiste, K E; Merritt, A M

    2008-06-01

    Stall housing has been suggested as a risk factor for ulcer development in the equine stomach; however, the exact pathogenesis for this has not been established. To investigate the effect of 3 environmental situations (grass paddock, stall alone or stall with adjacent companion) on pH in the proximal and the ventral stomach. Six horses with permanently implanted gastric cannulae were used in a randomised, cross-over, block design. Each horse rotated through each of three 24 h environmental situations. Horses remained on their normal diet (grass hay ad libitum and grain b.i.d.) throughout the study. Intragastric pH was measured continuously for 72 h just inside the lower oesophageal sphincter (proximal stomach) and via a pH probe in the gastric cannula (ventral stomach). Neither proximal nor ventral 24 h gastric pH changed significantly between the 3 environmental situations. Mean hourly proximal gastric pH decreased significantly in the interval from 01.00-09.00 h compared to the interval from 13.00-20.00 h, regardless of environmental situation. Median hourly proximal pH only differed in the interval from 06.00-07.00 h compared to the interval 14.00-19.00 h. Neither mean nor median hourly ventral gastric pH varied significantly with the time of day. The change in housing status used in the current study did not affect acid exposure within either region of the equine stomach. The pH in the ventral stomach was uniformly stable throughout the study, while the proximal pH demonstrated a 24 h circadian pattern.

  15. Greater pre-stimulus effective connectivity from the left inferior frontal area to other areas is associated with better phonological decoding in dyslexic readers

    Directory of Open Access Journals (Sweden)

    Richard E Frye

    2010-12-01

    Full Text Available Functional neuroimaging studies suggest that neural networks that subserve reading are organized differently in dyslexic readers (DRs and typical readers (TRs, yet the hierarchical structure of these networks has not been well studied. We used Granger Causality (GC to examine the effective connectivity of the preparatory network that occurs prior to viewing a non-word stimulus that requires phonological decoding in 7 DRs and 10 TRs who were young adults. The neuromagnetic activity that occurred 500 ms prior to each rhyme trial was analyzed from sensors overlying the left and right inferior frontal areas (IFA, temporoparietal areas (TPA, and ventral occipitotemporal areas (VOTA within the low, medium, and high beta and gamma sub-bands. A mixed-model analysis determined whether connectivity to or from the left and right IFAs differed across connectivity direction (into vs. out of the IFAs, brain areas, reading group, and/or performance. Results indicated that greater connectivity in the low beta sub-band from the left IFA to other cortical areas was significantly related to better non-word rhyme discrimination in DRs but not TRs. This suggests that the left IFA is an important cortical area involved in compensating for poor phonological function in DRs. We suggest that the left IFA activates a wider-than usual network prior to each trial in the service of supporting otherwise effortful phonological decoding in DRs. The fact that the left IFA provides top-down activation to both posterior left hemispheres areas used by typical readers for phonological decoding and homologous right hemisphere areas is discussed. In contrast, within the high gamma sub-band, better performance was associated with decreased connectivity between the left IFA and other brain areas, in both reading groups. Overly strong gamma connectivity during the pre-stimulus period may interfere with subsequent transient activation and deactivation of sub-networks once the non

  16. High-grade hemorrhoids requiring surgical treatment are common after laparoscopic ventral mesh rectopexy

    NARCIS (Netherlands)

    van Iersel, J. J.; Formijne Jonkers, H. A.; Verheijen, P. M.; Draaisma, W. A.; Consten, E. C J; Broeders, I. A M J

    2016-01-01

    Purpose: To describe patients developing grade III and IV hemorrhoids requiring surgery after laparoscopic ventral mesh rectopexy (LVMR) and to explore the relationship between developing such hemorrhoids and recurrence of rectal prolapse after LVMR. Methods: All consecutive patients receiving LVMR

  17. Vaginal-sparing ventral buccal mucosal graft urethroplasty for female urethral stricture: A novel modification of surgical technique.

    Science.gov (United States)

    Hoag, Nathan; Gani, Johan; Chee, Justin

    2016-07-01

    To present a novel modification of surgical technique to treat female urethral stricture (FUS) by a vaginal-sparing ventral buccal mucosal urethroplasty. Recurrent FUS represents an uncommon, though difficult clinical scenario to manage definitively. A variety of surgical techniques have been described to date, yet a lack of consensus on the optimal procedure persists. We present a 51-year-old female with urethral stricture involving the entire urethra. Suspected etiology was iatrogenic from cystoscopy 17 years prior. Since then, the patient had undergone at least 25 formal urethral dilations and periods of self-dilation. In lithotomy position, the urethra was dilated to accommodate forceps, and ventral urethrotomy carried out sharply, exposing a bed of periurethral tissue. Buccal mucosa was harvested, and a ventral inlay technique facilitated by a nasal speculum, was used to place the graft from the proximal urethra/bladder neck to urethral meatus without a vaginal incision. Graft was sutured into place, and urethral Foley catheter inserted. The vaginal-sparing ventral buccal mucosal graft urethroplasty was deemed successful as of last follow-up. Flexible cystoscopy demonstrated patency of the repair at 6 months. At 10 months of follow-up, the patient was voiding well, with no urinary incontinence. No further interventions have been required. This case describes a novel modification of surgical technique for performing buccal mucosal urethroplasty for FUS. By avoiding incision of the vaginal mucosa, benefits may include reduced: morbidity, urinary incontinence, and wound complications including urethro-vaginal fistula.

  18. The 'ventral organs' of Pycnogonida (Arthropoda) are neurogenic niches of late embryonic and post-embryonic nervous system development.

    Science.gov (United States)

    Brenneis, Georg; Scholtz, Gerhard

    2014-01-01

    Early neurogenesis in arthropods has been in the focus of numerous studies, its cellular basis, spatio-temporal dynamics and underlying genetic network being by now comparably well characterized for representatives of chelicerates, myriapods, hexapods and crustaceans. By contrast, neurogenesis during late embryonic and/or post-embryonic development has received less attention, especially in myriapods and chelicerates. Here, we apply (i) immunolabeling, (ii) histology and (iii) scanning electron microscopy to study post-embryonic ventral nerve cord development in Pseudopallene sp., a representative of the sea spiders (Pycnogonida), the presumable sister group of the remaining chelicerates. During early post-embryonic development, large neural stem cells give rise to additional ganglion cell material in segmentally paired invaginations in the ventral ectoderm. These ectodermal cell regions - traditionally designated as 'ventral organs' - detach from the surface into the interior and persist as apical cell clusters on the ventral ganglion side. Each cluster is a post-embryonic neurogenic niche that features a tiny central cavity and initially still houses larger neural stem cells. The cluster stays connected to the underlying ganglionic somata cortex via an anterior and a posterior cell stream. Cell proliferation remains restricted to the cluster and streams, and migration of newly produced cells along the streams seems to account for increasing ganglion cell numbers in the cortex. The pycnogonid cluster-stream-systems show striking similarities to the life-long neurogenic system of decapod crustaceans, and due to their close vicinity to glomerulus-like neuropils, we consider their possible involvement in post-embryonic (perhaps even adult) replenishment of olfactory neurons - as in decapods. An instance of a potentially similar post-embryonic/adult neurogenic system in the arthropod outgroup Onychophora is discussed. Additionally, we document two transient posterior

  19. Regulator of G protein signaling-12 modulates the dopamine transporter in ventral striatum and locomotor responses to psychostimulants.

    Science.gov (United States)

    Gross, Joshua D; Kaski, Shane W; Schroer, Adam B; Wix, Kimberley A; Siderovski, David P; Setola, Vincent

    2018-02-01

    Regulators of G protein signaling are proteins that accelerate the termination of effector stimulation after G protein-coupled receptor activation. Many regulators of G protein signaling proteins are highly expressed in the brain and therefore considered potential drug discovery targets for central nervous system pathologies; for example, here we show that RGS12 is highly expressed in microdissected mouse ventral striatum. Given a role for the ventral striatum in psychostimulant-induced locomotor activity, we tested whether Rgs12 genetic ablation affected behavioral responses to amphetamine and cocaine. RGS12 loss significantly decreased hyperlocomotion to lower doses of both amphetamine and cocaine; however, other outcomes of administration (sensitization and conditioned place preference) were unaffected, suggesting that RGS12 does not function in support of the rewarding properties of these psychostimulants. To test whether observed response changes upon RGS12 loss were caused by changes to dopamine transporter expression and/or function, we prepared crude membranes from the brains of wild-type and RGS12-null mice and measured dopamine transporter-selective [ 3 H]WIN 35428 binding, revealing an increase in dopamine transporter levels in the ventral-but not dorsal-striatum of RGS12-null mice. To address dopamine transporter function, we prepared striatal synaptosomes and measured [ 3 H]dopamine uptake. Consistent with increased [ 3 H]WIN 35428 binding, dopamine transporter-specific [ 3 H]dopamine uptake in RGS12-null ventral striatal synaptosomes was found to be increased. Decreased amphetamine-induced locomotor activity and increased [ 3 H]WIN 35428 binding were recapitulated with an independent RGS12-null mouse strain. Thus, we propose that RGS12 regulates dopamine transporter expression and function in the ventral striatum, affecting amphetamine- and cocaine-induced increases in dopamine levels that specifically elicit acute hyperlocomotor responses.

  20. Association of contextual cues with morphine reward increases neural and synaptic plasticity in the ventral hippocampus of rats.

    Science.gov (United States)

    Alvandi, Mina Sadighi; Bourmpoula, Maria; Homberg, Judith R; Fathollahi, Yaghoub

    2017-11-01

    Drug addiction is associated with aberrant memory and permanent functional changes in neural circuits. It is known that exposure to drugs like morphine is associated with positive emotional states and reward-related memory. However, the underlying mechanisms in terms of neural plasticity in the ventral hippocampus, a region involved in associative memory and emotional behaviors, are not fully understood. Therefore, we measured adult neurogenesis, dendritic spine density and brain-derived neurotrophic factor (BDNF) and TrkB mRNA expression as parameters for synaptic plasticity in the ventral hippocampus. Male Sprague Dawley rats were subjected to the CPP (conditioned place preference) paradigm and received 10 mg/kg morphine. Half of the rats were used to evaluate neurogenesis by immunohistochemical markers Ki67 and doublecortin (DCX). The other half was used for Golgi staining to measure spine density and real-time quantitative reverse transcription-polymerase chain reaction to assess BDNF/TrkB expression levels. We found that morphine-treated rats exhibited more place conditioning as compared with saline-treated rats and animals that were exposed to the CPP without any injections. Locomotor activity did not change significantly. Morphine-induced CPP significantly increased the number of Ki67 and DCX-labeled cells in the ventral dentate gyrus. Additionally, we found increased dendritic spine density in both CA1 and dentate gyrus and an enhancement of BDNF/TrkB mRNA levels in the whole ventral hippocampus. Ki67, DCX and spine density were significantly correlated with CPP scores. In conclusion, we show that morphine-induced reward-related memory is associated with neural and synaptic plasticity changes in the ventral hippocampus. Such neural changes could underlie context-induced drug relapse. © 2017 Society for the Study of Addiction.

  1. Task-based and resting-state fMRI reveal compensatory network changes following damage to left inferior frontal gyrus.

    Science.gov (United States)

    Hallam, Glyn P; Thompson, Hannah E; Hymers, Mark; Millman, Rebecca E; Rodd, Jennifer M; Lambon Ralph, Matthew A; Smallwood, Jonathan; Jefferies, Elizabeth

    2018-02-01

    Damage to left inferior prefrontal cortex in stroke aphasia is associated with semantic deficits reflecting poor control over conceptual retrieval, as opposed to loss of knowledge. However, little is known about how functional recruitment within the semantic network changes in patients with executive-semantic deficits. The current study acquired functional magnetic resonance imaging (fMRI) data from 14 patients with semantic aphasia, who had difficulty with flexible semantic retrieval following left prefrontal damage, and 16 healthy age-matched controls, allowing us to examine activation and connectivity in the semantic network. We examined neural activity while participants listened to spoken sentences that varied in their levels of lexical ambiguity and during rest. We found group differences in two regions thought to be good candidates for functional compensation: ventral anterior temporal lobe (vATL), which is strongly implicated in comprehension, and posterior middle temporal gyrus (pMTG), which is hypothesized to work together with left inferior prefrontal cortex to support controlled aspects of semantic retrieval. The patients recruited both of these sites more than controls in response to meaningful sentences. Subsequent analysis identified that, in control participants, the recruitment of pMTG to ambiguous sentences was inversely related to functional coupling between pMTG and anterior superior temporal gyrus (aSTG) at rest, while the patients showed the opposite pattern. Moreover, stronger connectivity between pMTG and aSTG in patients was associated with better performance on a test of verbal semantic association, suggesting that this temporal lobe connection supports comprehension in the face of damage to left inferior prefrontal cortex. These results characterize network changes in patients with executive-semantic deficits and converge with studies of healthy participants in providing evidence for a distributed system underpinning semantic control that

  2. Effects of spatial attention on motion discrimination are greater in the left than right visual field.

    Science.gov (United States)

    Bosworth, Rain G; Petrich, Jennifer A F; Dobkins, Karen R

    2012-01-01

    In order to investigate differences in the effects of spatial attention between the left visual field (LVF) and the right visual field (RVF), we employed a full/poor attention paradigm using stimuli presented in the LVF vs. RVF. In addition, to investigate differences in the effects of spatial attention between the dorsal and ventral processing streams, we obtained motion thresholds (motion coherence thresholds and fine direction discrimination thresholds) and orientation thresholds, respectively. The results of this study showed negligible effects of attention on the orientation task, in either the LVF or RVF. In contrast, for both motion tasks, there was a significant effect of attention in the LVF, but not in the RVF. These data provide psychophysical evidence for greater effects of spatial attention in the LVF/right hemisphere, specifically, for motion processing in the dorsal stream. Published by Elsevier Ltd.

  3. A Comparative Study of Dorsal Buccal Mucosa Graft Substitution Urethroplasty by Dorsal Urethrotomy Approach versus Ventral Sagittal Urethrotomy Approach

    OpenAIRE

    Pahwa, Mrinal; Gupta, Sanjeev; Pahwa, Mayank; Jain, Brig D. K.; Gupta, Manu

    2013-01-01

    Objectives. To compare the outcome of dorsal buccal mucosal graft (BMG) substitution urethroplasty by dorsal urethrotomy approach with ventral urethrotomy approach in management of stricture urethra. Methods and Materials. A total of 40 patients who underwent dorsal BMG substitution urethroplasty were randomized into two groups. 20 patients underwent dorsal onlay BMG urethroplasty as described by Barbagli, and the other 20 patients underwent dorsal BMG urethroplasty by ventral urethrotomy as ...

  4. Investigating the dynamics of the brain response to music: A central role of the ventral striatum/nucleus accumbens.

    Science.gov (United States)

    Mueller, Karsten; Fritz, Thomas; Mildner, Toralf; Richter, Maxi; Schulze, Katrin; Lepsien, Jöran; Schroeter, Matthias L; Möller, Harald E

    2015-08-01

    Ventral striatal activity has been previously shown to correspond well to reward value mediated by music. Here, we investigate the dynamic brain response to music and manipulated counterparts using functional magnetic resonance imaging (fMRI). Counterparts of musical excerpts were produced by either manipulating the consonance/dissonance of the musical fragments or playing them backwards (or both). Results show a greater involvement of the ventral striatum/nucleus accumbens both when contrasting listening to music that is perceived as pleasant and listening to a manipulated version perceived as unpleasant (backward dissonant), as well as in a parametric analysis for increasing pleasantness. Notably, both analyses yielded a ventral striatal response that was strongest during an early phase of stimulus presentation. A hippocampal response to the musical stimuli was also observed, and was largely mediated by processing differences between listening to forward and backward music. This hippocampal involvement was again strongest during the early response to the music. Auditory cortex activity was more strongly evoked by the original (pleasant) music compared to its manipulated counterparts, but did not display a similar decline of activation over time as subcortical activity. These findings rather suggest that the ventral striatal/nucleus accumbens response during music listening is strongest in the first seconds and then declines. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Dietary zinc deficiency effects dorso-lateral and ventral prostate of Wistar rats: histological, biochemical and trace element study.

    Science.gov (United States)

    Joshi, Sangeeta; Nair, Neena; Bedwal, R S

    2014-10-01

    Zinc deficiency has become a global problem affecting the developed and developing countries due to inhibitors in the diet which prevents its absorption or due to a very low concentration of bioavailable zinc in the diet. Being present in high concentration in the prostate and having diverse biological function, we investigated the effects of dietary zinc deficiency for 2 and 4 weeks on dorso-lateral and ventral prostate. Sixty prepubertal rats were divided into three groups: zinc control (ZC), pair fed (PF) and zinc deficient (ZD) and fed on 100 μg/g (zinc control and pair fed groups) and 1 μg/g (zinc deficient) diet. Zinc deficiency was associated with degenerative changes in dorso-lateral and ventral prostate as made evident by karyolysis, karyorhexis, cytoplasmolysis, loss of cellularisation, decreased intraluminar secretion and degeneration of fibromuscular stroma. In response, protein carbonyl, nitric oxide, acid phosphatase, 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase increased, exhibiting variable level of significance. Total protein and total zinc concentration in dorso-lateral and ventral prostate as well as in serum decreased (P dorso-lateral and ventral prostate after dietary zinc deficiency as well as impairment of metabolic and secretory activity, reduced gonadotropin levels by hypothalamus -hypophysial system which is indicative of a critical role of zinc in maintaining the prostate integrity.

  6. The clinical effects of closure of the hernia gap after laparoscopic ventral hernia repair:

    DEFF Research Database (Denmark)

    Christoffersen, Mette W; Westen, Mikkel; Assadzadeh, Sami

    2014-01-01

    randomised controlled trials. The primary purpose of this paper is to compare early post-operative activity-related pain in patients undergoing laparoscopic ventral hernia repair with closure of the gap with patients undergoing standard laparoscopic ventral hernia repair (non-closure of the gap). Secondary...... outcomes are patient-rated cosmesis and hernia-specific quality of life. METHODS: A randomised, controlled, double-blinded study is planned. Based on power calculation, we will include 40 patients in each arm. Patients undergoing elective laparoscopic umbilical, epigastric or umbilical trocar-site hernia...... repair at Hvidovre Hospital and Herlev Hospital, Denmark, are invited to participate. CONCLUSION: The gap closure technique may induce more post-operative pain than the non-closure repair, but it may also be superior with regard to other important surgical outcomes. No studies have previously...

  7. The Extended Fronto-Striatal Model of Obsessive Compulsive Disorder: Convergence from Event-Related Potentials, Neuropsychology and Neuroimaging

    Directory of Open Access Journals (Sweden)

    Margherita eMelloni

    2012-09-01

    Full Text Available In this work, we explored convergent evidence supporting the fronto-striatal model of obsessive-compulsive disorder (FSMOCD and the contribution of event-related potential (ERP studies to this model. First, we considered minor modifications to the FSMOCD model based on neuroimaging and neuropsychological data. We noted the brain areas most affected in this disorder -anterior cingulate cortex (ACC, basal ganglia (BG and orbito-frontal cortex (OFC- and their related cognitive functions, such as monitoring and inhibition. Then, we assessed the ERPs that are directly related to the FSMOCD, including the error-related negativity (ERN, N200 and P600. Several OCD studies present enhanced ERN and N2 responses during conflict tasks as well as an enhanced P600 during working memory tasks. Evidence from ERP studies (especially regarding ERN and N200 amplitude enhancement, neuroimaging and neuropsychological findings suggests abnormal activity in the OFC, ACC and BG in OCD patients. Moreover, additional findings from these analyses suggest dorsolateral prefrontal and parietal cortex involvement, which might be related to executive function deficits. Thus, these convergent results suggest the existence of a self-monitoring imbalance involving inhibitory deficits and executive dysfunctions. OCD patients present an impaired ability to monitor, control, and inhibit intrusive thoughts, urges, feelings and behaviors. In the current model, this imbalance is triggered by an excitatory role of the BG (associated with cognitive or motor actions without volitional control and inhibitory activity of the OFC as well as excessive monitoring of the ACC to block excitatory impulses. This imbalance would interact with the reduced activation of the parietal-DLPC network, leading to executive dysfunction. ERP research may provide further insight regarding the temporal dynamics of action monitoring and executive functioning in OCD.

  8. The outcome of A. Double mesh intraperitoneal repair for complex ventral hernia: A retrospective cohort study.

    Science.gov (United States)

    Afifi, Raafat Y; Hamood, Mokhtar; Hassan, Maged

    2018-05-01

    Complex ventral hernia is a challenging surgical entity, commonly attended with huge defect, loss of domain and possible soft tissue infection. It is difficult to repair, especially with multiple recurrences. Numerous methods of repair have been described with no evidence-based data available to prefer one method over the other. The purpose of this study is to determine the long-term outcome of the proposed new modification of intraperitoneal mesh repair procedure in complex ventral hernia. This is a single-center retrospective analysis utilizing the prospectively-maintained dataset in our institution during the study period between January 2003 and June 2017. Patients who fit the inclusion criteria of having a complex ventral hernia, whether de-novo or recurrent and were subjected to A. Double Mesh Intraperitoneal Repair (ADMIR) procedure were included in the study. Patients were followed up till recurrence or lost to follow through a period ranging from 6 to 174 months (mean: 142.96 ± SE: 11.91). Forty-nine cases were included in this study (38 females and 11 males) with a female to male ratio of 3.5:1. The age range was from 28 to 81 years (mean 49 ± 12.4). BMI range from 25 to 42 (mean 33.6 ± 5.42). The ratio between the hernia sac volume and abdominal cavity volume was more than 20% in 12 patients (24.5%), who were subjected to preoperative progressive pneumoperitoneum (PPP) for an average period of two weeks. Hernias were recurrent in 28 cases (57%) and associated comorbidities were observed in 29 patients (63%). Postoperative complications occurred in 19 patients (38.7%), among them only 2 patients developed recurrence (4%) after a mean follow up period of 142 months. Five patients were lost to follow and were included in the Kaplan and Meier survival analysis. ADMIR procedure is successful for the repair of complex ventral hernias as it is applicable to all sites of ventral hernias. The mesh is tension free hidden within the abdomen allowing

  9. Y-type congenital urethral duplication with normal dorsal urethra and small ventral fistula to perineal skin – 28th reported case

    Directory of Open Access Journals (Sweden)

    Donald E. Meier

    2016-05-01

    Full Text Available There are numerous types of urethral duplication previously described in the literature including a Type IIA2Y where a large ventral channel branches from the hypoplastic, dorsal, orthotopic urethra. There have been 27 previously reported cases of a similar defect, called “congenital posterior urethrocutaneous fistula” (CUPF with the only difference being that the ventral urethra is hypoplastic and the dorsal, orthotopic one normal. The difference in treatment for these 2 entities is markedly different, and preoperative identification of the appropriate abnormality is essential. Treatment of CUPF requires only safe excision of the ventral segment, but treatment for a Type IIA2Y duplication requires resection of the hypoplastic, orthotopic urethra and transposition of the larger ventral segment into the dorsal orthotopic position. The outcome for treatment of CUPF is much better than for treatment of Type IIA2Y entities. We herein present the 28th case of CUPF in the English literature with discussion of the anatomy, appropriate diagnostic criteria, and safe method of treatment for these entities.

  10. Effect of naltrexone and ondansetron on alcohol cue-induced activation of the ventral striatum in alcohol-dependent people.

    Science.gov (United States)

    Myrick, Hugh; Anton, Raymond F; Li, Xingbao; Henderson, Scott; Randall, Patrick K; Voronin, Konstantin

    2008-04-01

    Medication for the treatment of alcoholism is currently not particularly robust. Neuroimaging techniques might predict which medications could be useful in the treatment of alcohol dependence. To explore the effect of naltrexone, ondansetron hydrochloride, or the combination of these medications on cue-induced craving and ventral striatum activation. Functional brain imaging was conducted during alcohol cue presentation. Participants were recruited from the general community following media advertisement. Experimental procedures were performed in the magnetic resonance imaging suite of a major training hospital and medical research institute. Ninety non-treatment-seeking alcohol-dependent (by DSM-IV criteria) and 17 social drinking (analysis but intermediate in a region-specific analysis. Consistent with animal data that suggest that both naltrexone and ondansetron reduce alcohol-stimulated dopamine output in the ventral striatum, the current study found evidence that these medications, alone or in combination, could decrease alcohol cue-induced activation of the ventral striatum, consistent with their putative treatment efficacy.

  11. Boolean modelling reveals new regulatory connections between transcription factors orchestrating the development of the ventral spinal cord.

    KAUST Repository

    Lovrics, Anna

    2014-11-14

    We have assembled a network of cell-fate determining transcription factors that play a key role in the specification of the ventral neuronal subtypes of the spinal cord on the basis of published transcriptional interactions. Asynchronous Boolean modelling of the network was used to compare simulation results with reported experimental observations. Such comparison highlighted the need to include additional regulatory connections in order to obtain the fixed point attractors of the model associated with the five known progenitor cell types located in the ventral spinal cord. The revised gene regulatory network reproduced previously observed cell state switches between progenitor cells observed in knock-out animal models or in experiments where the transcription factors were overexpressed. Furthermore the network predicted the inhibition of Irx3 by Nkx2.2 and this prediction was tested experimentally. Our results provide evidence for the existence of an as yet undescribed inhibitory connection which could potentially have significance beyond the ventral spinal cord. The work presented in this paper demonstrates the strength of Boolean modelling for identifying gene regulatory networks.

  12. Cryopreservation of porcine fetal ventral mesencephalic tissue for intrastriatal transplantation in Parkinson's disease

    NARCIS (Netherlands)

    Koopmans, J.; Hogenesch, I.; Copray, S.; Middel, B.; van Dijk, H.; Go, K-G.; Staal, M.

    2001-01-01

    In this study we examined the efficacy of cryopreserving porcine fetal mesencephalic tissue. After microscopical dissection of the ventral mesencephalon (VM) from E28 pig fetuses, the collection of explants was randomly divided into two equal parts. One part was directly prepared as cell suspension.

  13. Morphine withdrawal enhances constitutive μ-opioid receptor activity in the ventral tegmental area

    NARCIS (Netherlands)

    Meye, F.J.; van Zessen, R.; Smidt, M.P.; Adan, R.A.H.; Ramakers, G.M.J.

    2012-01-01

    μ-opioid receptors (MORs) in the ventral tegmental area (VTA) are pivotally involved in addictive behavior. While MORs are typically activated by opioids, they can also become constitutively active in the absence of any agonist. In the current study, we present evidence that MOR constitutive

  14. Efeito da rotação da cabeça na pressão intraocular em decúbito ventral: estudo randomizado

    Directory of Open Access Journals (Sweden)

    M. Nuri Deniz

    2013-04-01

    Full Text Available JUSTIFICATIVA E OBJETIVOS: A elevação da pressão intraocular (PIO, que diminui a pressão de perfusão do nervo óptico, é aumentada pelo posicionamento em decúbito ventral. O objetivo de nosso estudo foi comparar o efeito da rotação lateral da cabeça a 45º em decúbito ventral no aumento da PIO de olhos posicionados para cima e olhos posicionados para baixo em pacientes submetidos à nefrolitotomia percutânea (NLPC. MÉTODOS: Quarenta e cinco pacientes foram randomicamente alocados em dois grupos. A PIO dos pacientes foi registrada bilateralmente em posição supina antes do início da operação. Os pacientes foram posicionados em decúbito ventral. A cabeça foi posicionada sobre um apoio sem compressão externa direta em ambos os olhos. Os pacientes do Grupo I foram estritamente mantidos em pronação neutra, enquanto os pacientes do Grupo II foram posicionados em pronação com rotação da cabeça a 45º para o lado direito. No fim da operação, os pacientes foram reposicionados em decúbito dorsal e a PIO foi imediatamente medida. RESULTADOS: Não houve diferença entre os dados demográficos, na duração da cirurgia, perda de sangue e reposição de líquido dos pacientes. Os valores pós-cirúrgicos da PIO em decúbito ventral aumentaram significativamente em comparação com os valores pré-operatórios em ambos os grupos (p < 0,05. Após a cirurgia em decúbito ventral, os valores da PIO nos olhos posicionados para cima no Grupo II foram significativamente menores do que no Grupo I e nos olhos posicionados para baixo no Grupo II (p < 0,05. CONCLUSÃO: A posição em decúbito ventral aumenta a PIO. Nos pacientes posicionados em decúbito ventral com rotação lateral da cabeça a 45º, a PIO nos olhos posicionados para cima foi significativamente menor.

  15. Vaginal-sparing ventral buccal mucosal graft urethroplasty for female urethral stricture: A novel modification of surgical technique

    Directory of Open Access Journals (Sweden)

    Nathan Hoag

    2016-07-01

    Full Text Available Purpose: To present a novel modification of surgical technique to treat female urethral stricture (FUS by a vaginal-sparing ventral buccal mucosal urethroplasty. Recurrent FUS represents an uncommon, though difficult clinical scenario to manage definitively. A variety of surgical techniques have been described to date, yet a lack of consensus on the optimal procedure persists. Materials and Methods: We present a 51-year-old female with urethral stricture involving the entire urethra. Suspected etiology was iatrogenic from cystoscopy 17 years prior. Since then, the patient had undergone at least 25 formal urethral dilations and periods of self-dilation. In lithotomy position, the urethra was dilated to accommodate forceps, and ventral urethrotomy carried out sharply, exposing a bed of periurethral tissue. Buccal mucosa was harvested, and a ventral inlay technique facilitated by a nasal speculum, was used to place the graft from the proximal urethra/bladder neck to urethral meatus without a vaginal incision. Graft was sutured into place, and urethral Foley catheter inserted. Results: The vaginal-sparing ventral buccal mucosal graft urethroplasty was deemed successful as of last follow-up. Flexible cystoscopy demonstrated patency of the repair at 6 months. At 10 months of follow-up, the patient was voiding well, with no urinary incontinence. No further interventions have been required. Conclusions: This case describes a novel modification of surgical technique for performing buccal mucosal urethroplasty for FUS. By avoiding incision of the vaginal mucosa, benefits may include reduced: morbidity, urinary incontinence, and wound complications including urethro-vaginal fistula.

  16. An elusive persistent left superior vena cava draining into left atrium

    NARCIS (Netherlands)

    A. Soward; F.J. ten Cate (Folkert); P.M. Fioretti (Paolo); P.W.J.C. Serruys (Patrick); J.R.T.C. Roelandt (Jos)

    1986-01-01

    textabstractA case report of a persistent left superior vena cava draining into left atrium with a fibromuscular left ventricular outflow tract obstruction and a small atrial septal defect. The anomalous vessel escaped detection during two right and left heart catheterizations from the right arm and

  17. Effects of neonatal excitotoxic lesions in ventral thalamus on social interaction in the rat.

    Science.gov (United States)

    Wolf, Rainer; Dobrowolny, Henrik; Nullmeier, Sven; Bogerts, Bernhard; Schwegler, Herbert

    2017-03-30

    The role of the thalamus in schizophrenia has increasingly been studied in recent years. Deficits in the ventral thalamus have been described in only few postmortem and neuroimaging studies. We utilised our previously introduced neurodevelopmental animal model, the neonatal excitotoxic lesion of the ventral thalamus of Sprague-Dawley rats (Wolf et al., Pharmacopsychiatry 43:99-109, 22). At postnatal day (PD7), male pubs received bilateral thalamic infusions with ibotenic acid (IBA) or artificial cerebrospinal fluid (control). In adulthood, social interaction of two animals not familiar to each other was studied by a computerised video tracking system. This study displays clear lesion effects on social interaction of adult male rats. The significant reduction of total contact time and the significant increase in distance between the animals in the IBA group compared to controls can be interpreted as social withdrawal modelling a negative symptom of schizophrenia. The significant increase of total distance travelled in the IBA group can be hypothesised as agitation modelling a positive symptom of schizophrenia. Using a triple concept of social interaction, the percentage of no social interaction (Non-SI%) was significantly larger, and inversely, the percentage of passive social interaction (SI-passive%) was significantly smaller in the IBA group when compared to controls. In conclusion, on the background of findings in schizophrenic patients, the effects of neonatal ventral thalamic IBA lesions in adult male rats support the hypothesis of face and construct validity as animal model of schizophrenia.

  18. Ventral striatum activation to prosocial rewards predicts longitudinal declines in adolescent risk taking.

    Science.gov (United States)

    Telzer, Eva H; Fuligni, Andrew J; Lieberman, Matthew D; Galván, Adriana

    2013-01-01

    Adolescence is a period of intensified emotions and an increase in motivated behaviors and passions. Evidence from developmental neuroscience suggests that this heightened emotionality occurs, in part, due to a peak in functional reactivity to rewarding stimuli, which renders adolescents more oriented toward reward-seeking behaviors. Most prior work has focused on how reward sensitivity may create vulnerabilities, leading to increases in risk taking. Here, we test whether heightened reward sensitivity may potentially be an asset for adolescents when engaged in prosocial activities. Thirty-two adolescents were followed over a one-year period to examine whether ventral striatum activation to prosocial rewards predicts decreases in risk taking over a year. Results show that heightened ventral striatum activation to prosocial stimuli relates to longitudinal declines in risk taking. Therefore, the very same neural region that has conferred vulnerability for adolescent risk taking may also be protective against risk taking. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Effects of Forskolin on Trefoil factor 1 expression in cultured ventral mesencephalic dopaminergic neurons

    DEFF Research Database (Denmark)

    Jensen, Pia; Ducray, A D; Widmer, H R

    2015-01-01

    shown that TFF1 is expressed in developing and adult rat ventral mesencephalic tyrosine hydroxylase-immunoreactive (TH-ir) dopaminergic neurons. Here, we investigated the expression of TFF1 in rat ventral mesencephalic dopaminergic neurons (embryonic day 14) grown in culture for 5, 7 or 10days......, suggesting that Forskolin induced TFF1 expression through diverse signaling pathways. In conclusion, distinct populations of cultured dopaminergic neurons express TFF1, and their numbers can be increased by factors known to influence survival and differentiation of dopaminergic cells....... to neuronal cells, and the percentage of TH/TFF1 co-expressing cells was increased to the same extent in GDNF and Forskolin-treated cultures (4-fold) as compared to controls. Interestingly, the combination of GDNF and Forskolin resulted in a significantly increased co-expression (8-fold) of TH/TFF1, which...

  20. Histamine H3 Receptors Decrease Dopamine Release in the Ventral Striatum by Reducing the Activity of Striatal Cholinergic Interneurons.

    Science.gov (United States)

    Varaschin, Rafael Koerich; Osterstock, Guillaume; Ducrot, Charles; Leino, Sakari; Bourque, Marie-Josée; Prado, Marco A M; Prado, Vania Ferreira; Salminen, Outi; Rannanpää Née Nuutinen, Saara; Trudeau, Louis-Eric

    2018-04-15

    Histamine H 3 receptors are widely distributed G i -coupled receptors whose activation reduces neuronal activity and inhibits release of numerous neurotransmitters. Although these receptors are abundantly expressed in the striatum, their modulatory role on activity-dependent dopamine release is not well understood. Here, we observed that histamine H 3 receptor activation indirectly diminishes dopamine overflow in the ventral striatum by reducing cholinergic interneuron activity. Acute brain slices from C57BL/6 or channelrhodopsin-2-transfected DAT-cre mice were obtained, and dopamine transients evoked either electrically or optogenetically were measured by fast-scan cyclic voltammetry. The H 3 agonist α-methylhistamine significantly reduced electrically- evoked dopamine overflow, an effect blocked by the nicotinic acetylcholine receptor antagonist dihydro-β-erythroidine, suggesting involvement of cholinergic interneurons. None of the drug treatments targeting H 3 receptors affected optogenetically evoked dopamine overflow, indicating that direct H 3 -modulation of dopaminergic axons is unlikely. Next, we used qPCR and confirmed the expression of histamine H 3 receptor mRNA in cholinergic interneurons, both in ventral and dorsal striatum. Activation of H 3 receptors by α-methylhistamine reduced spontaneous firing of cholinergic interneurons in the ventral, but not in the dorsal striatum. Resting membrane potential and number of spontaneous action potentials in ventral-striatal cholinergic interneurons were significantly reduced by α-methylhistamine. Acetylcholine release from isolated striatal synaptosomes, however, was not altered by α-methylhistamine. Together, these results indicate that histamine H 3 receptors are important modulators of dopamine release, specifically in the ventral striatum, and that they do so by decreasing the firing rate of cholinergic neurons and, consequently, reducing cholinergic tone on dopaminergic axons. Copyright © 2018 IBRO

  1. Dorsal-ventral patterning in amphioxus: current understanding, unresolved issues, and future directions

    Czech Academy of Sciences Publication Activity Database

    Kozmiková, Iryna; Yu, J.K.

    2017-01-01

    Roč. 61, č. 10-12 (2017), s. 601-610 ISSN 0214-6282 R&D Projects: GA ČR GC15-21285J Institutional support: RVO:68378050 Keywords : dorsal-ventral patterning * organizer * signaling pathway * chordate * evolution Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology Impact factor: 1.981, year: 2016

  2. Optimizing Penile Length in Patients Undergoing Partial Penectomy for Penile Cancer: Novel Application of the Ventral Phalloplasty Oncoplastic Technique

    Directory of Open Access Journals (Sweden)

    Jared J. Wallen

    2014-10-01

    Full Text Available The ventral phalloplasty (VP has been well described in modern day penile prosthesis surgery. The main objectives of this maneuver are to increase perceived length and patient satisfaction and to counteract the natural 1-2 cm average loss in length when performing implantation of an inflatable penile prosthesis. Similarly, this video represents a new adaptation for partial penectomy patients. One can only hope that the addition of the VP for partial penectomy patients with good erectile function will increase their quality of life. The patient in this video is a 56-year-old male who presented with a 4.0x3.5x1.0 cm, pathologic stage T2 squamous cell carcinoma of the glans penis. After partial penectomy with VP and inguinal lymph node dissection, pathological specimen revealed negative margins, 3/5 right superficial nodes and 1/5 left superficial nodes positive for malignancy. The patient has been recommended post-operative systemic chemotherapy (with external beam radiotherapy based on the multiple node positivity and presence of extranodal extension. The patient’s pre-operative penile length was 9.5 cm, and after partial penectomy with VP, penile length is 7 cm.

  3. The homeobox gene mirror links EGF signalling to embryonic dorso-ventral axis formation through notch activation.

    Science.gov (United States)

    Jordan, K C; Clegg, N J; Blasi, J A; Morimoto, A M; Sen, J; Stein, D; McNeill, H; Deng, W M; Tworoger, M; Ruohola-Baker, H

    2000-04-01

    Recent studies in vertebrates and Drosophila melanogaster have revealed that Fringe-mediated activation of the Notch pathway has a role in patterning cell layers during organogenesis. In these processes, a homeobox-containing transcription factor is responsible for spatially regulating fringe (fng) expression and thus directing activation of the Notch pathway along the fng expression border. Here we show that this may be a general mechanism for patterning epithelial cell layers. At three stages in Drosophila oogenesis, mirror (mirr) and fng have complementary expression patterns in the follicle-cell epithelial layer, and at all three stages loss of mirr enlarges, and ectopic expression of mirr restricts, fng expression, with consequences for follicle-cell patterning. These morphological changes are similar to those caused by Notch mutations. Ectopic expression of mirr in the posterior follicle cells induces a stripe of rhomboid (rho) expression and represses pipe (pip), a gene with a role in the establishment of the dorsal-ventral axis, at a distance. Ectopic Notch activation has a similar long-range effect on pip. Our results suggest that Mirror and Notch induce secretion of diffusible morphogens and we have identified TGF-beta (encoded by dpp) as such a molecule in germarium. We also found that mirr expression in dorsal follicle cells is induced by the EGF-receptor (EGFR) pathway and that mirr then represses pip expression in all but the ventral follicle cells, connecting EGFR activation in the dorsal follicle cells to repression of pip in the dorsal and lateral follicle cells. Our results suggest that the differentiation of ventral follicle cells is not a direct consequence of germline signalling, but depends on long-range signals from dorsal follicle cells, and provide a link between early and late events in Drosophila embryonic dorsal-ventral axis formation.

  4. HIV Distal Neuropathic Pain Is Associated with Smaller Ventral Posterior Cingulate Cortex.

    Science.gov (United States)

    Keltner, John R; Connolly, Colm G; Vaida, Florin; Jenkinson, Mark; Fennema-Notestine, Christine; Archibald, Sarah; Akkari, Cherine; Schlein, Alexandra; Lee, Jisu; Wang, Dongzhe; Kim, Sung; Li, Han; Rennels, Austin; Miller, David J; Kesidis, George; Franklin, Donald R; Sanders, Chelsea; Corkran, Stephanie; Grant, Igor; Brown, Gregory G; Atkinson, J Hampton; Ellis, Ronald J

    2017-03-01

    . Despite modern antiretroviral therapy, HIV-associated neuropathy is one of the most prevalent, disabling and treatment-resistant complications of HIV disease. The presence and intensity of distal neuropathic pain is not fully explained by the degree of peripheral nerve damage. A better understanding of brain structure in HIV distal neuropathic pain may help explain why some patients with HIV neuropathy report pain while the majority does not. Previously, we reported that more intense distal neuropathic pain was associated with smaller total cerebral cortical gray matter volumes. The objective of this study was to determine which parts of the cortex are smaller. . HIV positive individuals with and without distal neuropathic pain enrolled in the multisite (N = 233) CNS HIV Antiretroviral Treatment Effects (CHARTER) study underwent structural brain magnetic resonance imaging. Voxel-based morphometry was used to investigate regional brain volumes in these structural brain images. . Left ventral posterior cingulate cortex was smaller for HIV positive individuals with versus without distal neuropathic pain (peak P  = 0.017; peak t = 5.15; MNI coordinates x = -6, y = -54, z = 20). Regional brain volumes within cortical gray matter structures typically associated with pain processing were also smaller for HIV positive individuals having higher intensity ratings of distal neuropathic pain. . The posterior cingulate is thought to be involved in inhibiting the perception of painful stimuli. Mechanistically a smaller posterior cingulate cortex structure may be related to reduced anti-nociception contributing to increased distal neuropathic pain. © 2016 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  5. Multicenter review of robotic versus laparoscopic ventral hernia repair: is there a role for robotics?

    Science.gov (United States)

    Walker, Peter A; May, Audriene C; Mo, Jiandi; Cherla, Deepa V; Santillan, Monica Rosales; Kim, Steven; Ryan, Heidi; Shah, Shinil K; Wilson, Erik B; Tsuda, Shawn

    2018-04-01

    The utilization of robotic platforms for general surgery procedures such as hernia repair is growing rapidly in the United States. A limited amount of data are available evaluating operative outcomes in comparison to standard laparoscopic surgery. We completed a retrospective review comparing robotic and laparoscopic ventral hernia repair to provide safety and outcomes data to help design a future prospective trial design. A retrospective review of 215 patients undergoing ventral hernia repair (142 robotic and 73 laparoscopic) was completed at two large academic centers. Primary outcome measure evaluated was recurrence. Secondary outcomes included incidence of primary fascial closure, and surgical site occurrences. Propensity for treatment match comparison demonstrated that robotic repair was associated with a decreased incidence of recurrence (2.1 versus 4.2%, p robotic repair was associated with increased incidence of primary fascial closure (77.1 versus 66.7%, p robotic repairs were completed on patients with lower body mass index (28.1 ± 3.6 versus 34.2 ± 6.4, p robotic repair was associated with decreased recurrence and surgical site occurrence. However, the differences noted in the patient populations limit the interpretability of these results. As adoption of robotic ventral hernia repair increases, prospective trials need to be designed in order to investigate the efficacy, safety, and cost effectiveness of this evolving technique.

  6. Microsurgical anatomy of the ventral callosal radiations: new destination, correlations with diffusion tensor imaging fiber-tracking, and clinical relevance.

    Science.gov (United States)

    Peltier, Johann; Verclytte, Sébastien; Delmaire, Christine; Deramond, Hervé; Pruvo, Jean-Pierre; Le Gars, Daniel; Godefroy, Olivier

    2010-03-01

    In the current literature, there is a lack of a detailed map of the origin, course, and connections of the ventral callosal radiations of the human brain. The authors used an older dissection technique based on a freezing process as well as diffusion tensor imaging to investigate this area of the human brain. The authors demonstrated interconnections between areas 11, 12, and 25 for the callosal radiations of the trunk and rostrum of the corpus callosum; between areas 9, 10, and 32 for the genu; and between areas 6, 8, and 9 for the ventral third of the body. The authors identified new ventral callosal connections crossing the rostrum between both temporal poles and coursing within the temporal stem, and they named these connections the "callosal radiations of Peltier." They found that the breadth of the callosal radiations slightly increases along their course from the rostrum to the first third of the body of the corpus callosum. The fiber dissection and diffusion tensor imaging techniques are complementary not only in their application to the study of the commissural system in the human brain, but also in their practical use for diagnosis and surgical planning. Further investigations, neurocognitive tests, and other contributions will permit elucidation of the functional relevance of the newly identified callosal radiations in patients with disease involving the ventral corpus callosum.

  7. Perceptual load-dependent neural correlates of distractor interference inhibition.

    Directory of Open Access Journals (Sweden)

    Jiansong Xu

    2011-01-01

    Full Text Available The load theory of selective attention hypothesizes that distractor interference is suppressed after perceptual processing (i.e., in the later stage of central processing at low perceptual load of the central task, but in the early stage of perceptual processing at high perceptual load. Consistently, studies on the neural correlates of attention have found a smaller distractor-related activation in the sensory cortex at high relative to low perceptual load. However, it is not clear whether the distractor-related activation in brain regions linked to later stages of central processing (e.g., in the frontostriatal circuits is also smaller at high rather than low perceptual load, as might be predicted based on the load theory.We studied 24 healthy participants using functional magnetic resonance imaging (fMRI during a visual target identification task with two perceptual loads (low vs. high. Participants showed distractor-related increases in activation in the midbrain, striatum, occipital and medial and lateral prefrontal cortices at low load, but distractor-related decreases in activation in the midbrain ventral tegmental area and substantia nigra (VTA/SN, striatum, thalamus, and extensive sensory cortices at high load.Multiple levels of central processing involving midbrain and frontostriatal circuits participate in suppressing distractor interference at either low or high perceptual load. For suppressing distractor interference, the processing of sensory inputs in both early and late stages of central processing are enhanced at low load but inhibited at high load.

  8. Perceptual load-dependent neural correlates of distractor interference inhibition.

    Science.gov (United States)

    Xu, Jiansong; Monterosso, John; Kober, Hedy; Balodis, Iris M; Potenza, Marc N

    2011-01-18

    The load theory of selective attention hypothesizes that distractor interference is suppressed after perceptual processing (i.e., in the later stage of central processing) at low perceptual load of the central task, but in the early stage of perceptual processing at high perceptual load. Consistently, studies on the neural correlates of attention have found a smaller distractor-related activation in the sensory cortex at high relative to low perceptual load. However, it is not clear whether the distractor-related activation in brain regions linked to later stages of central processing (e.g., in the frontostriatal circuits) is also smaller at high rather than low perceptual load, as might be predicted based on the load theory. We studied 24 healthy participants using functional magnetic resonance imaging (fMRI) during a visual target identification task with two perceptual loads (low vs. high). Participants showed distractor-related increases in activation in the midbrain, striatum, occipital and medial and lateral prefrontal cortices at low load, but distractor-related decreases in activation in the midbrain ventral tegmental area and substantia nigra (VTA/SN), striatum, thalamus, and extensive sensory cortices at high load. Multiple levels of central processing involving midbrain and frontostriatal circuits participate in suppressing distractor interference at either low or high perceptual load. For suppressing distractor interference, the processing of sensory inputs in both early and late stages of central processing are enhanced at low load but inhibited at high load.

  9. Radiographic appearance of the middle ear after ventral bulla osteotomy in five dogs with otitis media

    International Nuclear Information System (INIS)

    Holt, D.E.; Walker, L.

    1997-01-01

    Radiographs of the middle ear were made in five dogs 60 to 78 months after ventral bulla osteotomy was performed to treat otitis media. The clinical results of surgery were considered satisfactory in four dogs and unsatisfactory in one. In 4 dogs with satisfactory results, radiographs demonstrated complete reformation of the bulla in 3 operated middle ears (3 dogs), with partial bulla reformation in the three middle ears (3 dogs). Radiographs in one dog with unsatisfactory results showed complete bulla reformation with no increase in lumen opacity. The proliferative bony response obliterating the middle ear previously reported in normal dogs after ventral bulla osteotomy was not seen in any of these patients

  10. The 'ventral organs' of Pycnogonida (Arthropoda are neurogenic niches of late embryonic and post-embryonic nervous system development.

    Directory of Open Access Journals (Sweden)

    Georg Brenneis

    Full Text Available Early neurogenesis in arthropods has been in the focus of numerous studies, its cellular basis, spatio-temporal dynamics and underlying genetic network being by now comparably well characterized for representatives of chelicerates, myriapods, hexapods and crustaceans. By contrast, neurogenesis during late embryonic and/or post-embryonic development has received less attention, especially in myriapods and chelicerates. Here, we apply (i immunolabeling, (ii histology and (iii scanning electron microscopy to study post-embryonic ventral nerve cord development in Pseudopallene sp., a representative of the sea spiders (Pycnogonida, the presumable sister group of the remaining chelicerates. During early post-embryonic development, large neural stem cells give rise to additional ganglion cell material in segmentally paired invaginations in the ventral ectoderm. These ectodermal cell regions - traditionally designated as 'ventral organs' - detach from the surface into the interior and persist as apical cell clusters on the ventral ganglion side. Each cluster is a post-embryonic neurogenic niche that features a tiny central cavity and initially still houses larger neural stem cells. The cluster stays connected to the underlying ganglionic somata cortex via an anterior and a posterior cell stream. Cell proliferation remains restricted to the cluster and streams, and migration of newly produced cells along the streams seems to account for increasing ganglion cell numbers in the cortex. The pycnogonid cluster-stream-systems show striking similarities to the life-long neurogenic system of decapod crustaceans, and due to their close vicinity to glomerulus-like neuropils, we consider their possible involvement in post-embryonic (perhaps even adult replenishment of olfactory neurons - as in decapods. An instance of a potentially similar post-embryonic/adult neurogenic system in the arthropod outgroup Onychophora is discussed. Additionally, we document two

  11. Xenopus msx-1 regulates dorso-ventral axis formation by suppressing the expression of organizer genes.

    Science.gov (United States)

    Takeda, M; Saito, Y; Sekine, R; Onitsuka, I; Maeda, R; Maéno, M

    2000-06-01

    We demonstrated previously that Xmsx-1 is involved in mesoderm patterning along the dorso-ventral axis, under the regulation of BMP-4 signaling. When Xmsx-1 RNA was injected into the dorsal blastomeres, a mass of muscle tissue formed instead of notochord. This activity was similar to that of Xwnt-8 reported previously. In this study, we investigated whether the activity of Xmsx-1 is related to the ventralizing signal and myogenesis promoting factor, Xwnt-8. Whole-mount in situ hybridization showed that Xmsx-1, Xwnt-8, and XmyoD were expressed in overlapping areas, including the ventro-lateral marginal zone at mid-gastrula stage. The expression of XmyoD was induced by the ectopic expression of either Xmsx-1 or Xwnt-8 in dorsal blastomeres, and Xwnt-8 was induced by the ectopic expression of Xmsx-1. On the other hand, the expression of Xmsx-1 was not affected by the loading of pCSKA-Xwnt-8 or dominant-negative Xwnt-8 (DN-Xwnt-8) RNA. In addition, Xmsx-1 RNA did not abrogate the formation of notochord if coinjected with DN-Xwnt-8 RNA. These results suggest that Xmsx-1 functions upstream of the Xwnt-8 signal. Furthermore, the antagonistic function of Xmsx-1 to the expression of organizer genes, such as Xlim-1 and goosecoid, was shown by in situ hybridization analysis and luciferase reporter assay using the goosecoid promoter construct. Finally if Xmsx-1/VP-16 fusion RNA, which was expected to function as a dominant-negative Xmsx-1, was injected into ventral blastomeres, a partial secondary axis formed in a significant number of embryos. In such embryos, the activity of luciferase, under the control of goosecoid promoter sequence, was significantly elevated at gastrula stage. These results led us to conclude that Xmsx-1 plays a central role in establishing dorso-ventral axis in gastrulating embryo, by suppressing the expression of organizer genes.

  12. Increased turnover of dopamine in caudate nucleus of detoxified alcoholic patients

    DEFF Research Database (Denmark)

    Kumakura, Yoshitaka; Gjedde, Albert; Caprioli, Daniele

    2013-01-01

    ventral striatum. We conclude that craving is most pronounced in the individuals with relatively rapid dopamine turnover in the left ventral striatum. The blood-brain clearance rate (K), corrected for subsequent loss of radiolabeled molecules from brain, was completely normal throughout the brain...... of the alcoholics, in whom the volume of distribution (V(d)) was found to be significantly lower in the left caudate nucleus. The magnitude of Vd in the left caudate head was reduced by 43% relative to the 16 controls, consistent with a 58% increase of k(loss). We interpret the findings as indicating that a trait...... for rapid dopamine turnover in the ventral striatum subserves craving and reward-dependence, leading to an acquired state of increased dopamine turnover in the dorsal striatum of detoxified alcoholic patients....

  13. Optogenetic Activation of a Lateral Hypothalamic-Ventral Tegmental Drive-Reward Pathway.

    Science.gov (United States)

    Gigante, Eduardo D; Benaliouad, Faiza; Zamora-Olivencia, Veronica; Wise, Roy A

    2016-01-01

    Electrical stimulation of the lateral hypothalamus can motivate feeding or can serve as a reward in its own right. It remains unclear whether the same or independent but anatomically overlapping circuitries mediate the two effects. Electrical stimulation findings implicate medial forebrain bundle (MFB) fibers of passage in both effects, and optogenetic studies confirm a contribution from fibers originating in the lateral hypothalamic area and projecting to or through the ventral tegmental area. Here we report that optogenetic activation of ventral tegmental fibers from cells of origin in more anterior or posterior portions of the MFB failed to induce either reward or feeding. The feeding and reward induced by optogenetic activation of fibers from the lateral hypothalamic cells of origin were influenced similarly by variations in stimulation pulse width and pulse frequency, consistent with the hypothesis of a common substrate for the two effects. There were, however, several cases where feeding but not self-stimulation or self-stimulation but not feeding were induced, consistent with the hypothesis that distinct but anatomically overlapping systems mediate the two effects. Thus while optogenetic stimulation provides a more selective tool for characterizing the mechanisms of stimulation-induced feeding and reward, it does not yet resolve the question of common or independent substrates.

  14. Ventral dermatitis in rowi (Apteryx rowi) due to cutaneous larval migrans.

    Science.gov (United States)

    Gartrell, B D; Argilla, L; Finlayson, S; Gedye, K; Gonzalez Argandona, A K; Graham, I; Howe, L; Hunter, S; Lenting, B; Makan, T; McInnes, K; Michael, S; Morgan, K J; Scott, I; Sijbranda, D; van Zyl, N; Ward, J M

    2015-04-01

    The rowi is a critically endangered species of kiwi. Young birds on a crèche island showed loss of feathers from the ventral abdomen and a scurfy dermatitis of the abdominal skin and vent margin. Histology of skin biopsies identified cutaneous larval migrans, which was shown by molecular sequencing to be possibly from a species of Trichostrongylus as a cause of ventral dermatitis and occasional ulcerative vent dermatitis. The predisposing factors that led to this disease are suspected to be the novel exposure of the rowi to parasites from seabirds or marine mammals due to the island crèche and the limited management of roost boxes. This is the first instance of cutaneous larval migrans to be recorded in birds. Severe and fatal complications of the investigation resulted in the death of eight birds of aspergillosis and pulmonary complications associated with the use of bark as a substrate in hospital. Another bird died of renal failure during the period of hospitalisation despite oral and intravenous fluid therapy. The initiating cause of the renal failure was not determined. These complications have the potential to undermine the working relationship between wildlife veterinarians and conservation managers. This case highlights that intensive conservation management can result in increased opportunities for novel routes of cross-species pathogen transmission.

  15. Preputial reconstruction and tubularized incised plate urethroplasty in proximal hypospadias with ventral penile curvature.

    Science.gov (United States)

    Bhat, Amilal; Gandhi, Ajay; Saxena, Gajendra; Choudhary, Gautam Ram

    2010-10-01

    Objective of this study was to assess the feasibility and results of preputial reconstruction and tubularized incised plate urethroplasty (TIP) in patients of proximal hypospadias with ventral penile curvature. Twenty-seven patients of proximal hypospadias who underwent preputioplasty with TIP were evaluated retrospectively. Ventral curvature was corrected by mobilization of the urethral plate with the corpus spongiosum and the proximal urethra; dorsal plication was added according to the severity of curvature. Feasibility of preputial reconstruction was assessed by applying 3 stay sutures-the first to fix the skin at the corona, the second at the junction of the inner and outer preputial skin for pulling up the skin over the glans, and the third stay on penile skin at the level of the corona for retracting the skin. Preputial reconstruction consisted of a standard 3 layered re-approximation of the margins of the dorsal hood. Age of the patients varied from 10 months to 21 years with an average of 6 years and 4 months. Ventral curvature (mild 10, moderate 13, and severe 4 cases) was corrected by the mobilization of the urethral plate and spongiosum in 14 patients, 11 cases had mobilization of the proximal urethra in addition and 2 patients required single stitch dorsal plication with the above-mentioned steps. Two patients developed urethral fistula and 1 had preputial dehiscence. Preputioplasty with TIP is feasible in proximal hypospadias with curvature without increasing the complication rate. Postoperative phimosis can be prevented by on-table testing of the adequacy of preputial skin by 3 stay sutures.

  16. Ventral and Dorsal Striatum Networks in Obesity: Link to Food Craving and Weight Gain.

    Science.gov (United States)

    Contreras-Rodríguez, Oren; Martín-Pérez, Cristina; Vilar-López, Raquel; Verdejo-Garcia, Antonio

    2017-05-01

    The food addiction model proposes that obesity overlaps with addiction in terms of neurobiological alterations in the striatum and related clinical manifestations (i.e., craving and persistence of unhealthy habits). Therefore, we aimed to examine the functional connectivity of the striatum in excess-weight versus normal-weight subjects and to determine the extent of the association between striatum connectivity and individual differences in food craving and changes in body mass index (BMI). Forty-two excess-weight participants (BMI > 25) and 39 normal-weight participants enrolled in the study. Functional connectivity in the ventral and dorsal striatum was indicated by seed-based analyses on resting-state data. Food craving was indicated with subjective ratings of visual cues of high-calorie food. Changes in BMI between baseline and 12 weeks follow-up were assessed in 28 excess-weight participants. Measures of connectivity in the ventral striatum and dorsal striatum were compared between groups and correlated with craving and BMI change. Participants with excess weight displayed increased functional connectivity between the ventral striatum and the medial prefrontal and parietal cortices and between the dorsal striatum and the somatosensory cortex. Dorsal striatum connectivity correlated with food craving and predicted BMI gains. Obesity is linked to alterations in the functional connectivity of dorsal striatal networks relevant to food craving and weight gain. These neural alterations are associated with habit learning and thus compatible with the food addiction model of obesity. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. Regulation of actions and habits by ventral hippocampal trkB and adolescent corticosteroid exposure.

    Science.gov (United States)

    Barfield, Elizabeth T; Gerber, Kyle J; Zimmermann, Kelsey S; Ressler, Kerry J; Parsons, Ryan G; Gourley, Shannon L

    2017-11-01

    In humans and rodents, stress promotes habit-based behaviors that can interfere with action-outcome decision-making. Further, developmental stressor exposure confers long-term habit biases across rodent-primate species. Despite these homologies, mechanisms remain unclear. We first report that exposure to the primary glucocorticoid corticosterone (CORT) in adolescent mice recapitulates multiple neurobehavioral consequences of stressor exposure, including long-lasting biases towards habit-based responding in a food-reinforced operant conditioning task. In both adolescents and adults, CORT also caused a shift in the balance between full-length tyrosine kinase receptor B (trkB) and a truncated form of this neurotrophin receptor, favoring the inactive form throughout multiple corticolimbic brain regions. In adolescents, phosphorylation of the trkB substrate extracellular signal-regulated kinase 42/44 (ERK42/44) in the ventral hippocampus was also diminished, a long-term effect that persisted for at least 12 wk. Administration of the trkB agonist 7,8-dihydroxyflavone (7,8-DHF) during adolescence at doses that stimulated ERK42/44 corrected long-lasting corticosterone-induced behavioral abnormalities. Meanwhile, viral-mediated overexpression of truncated trkB in the ventral hippocampus reduced local ERK42/44 phosphorylation and was sufficient to induce habit-based and depression-like behaviors. Together, our findings indicate that ventral hippocampal trkB is essential to goal-directed action selection, countering habit-based behavior otherwise facilitated by developmental stress hormone exposure. They also reveal an early-life sensitive period during which trkB-ERK42/44 tone determines long-term behavioral outcomes.

  18. Amygdaloid projections to the ventral striatum in mice: direct and indirect chemosensory inputs to the brain reward system.

    Science.gov (United States)

    Novejarque, Amparo; Gutiérrez-Castellanos, Nicolás; Lanuza, Enrique; Martínez-García, Fernando

    2011-01-01

    Rodents constitute good models for studying the neural basis of sociosexual behavior. Recent findings in mice have revealed the molecular identity of the some pheromonal molecules triggering intersexual attraction. However, the neural pathways mediating this basic sociosexual behavior remain elusive. Since previous work indicates that the dopaminergic tegmento-striatal pathway is not involved in pheromone reward, the present report explores alternative pathways linking the vomeronasal system with the tegmento-striatal system (the limbic basal ganglia) by means of tract-tracing experiments studying direct and indirect projections from the chemosensory amygdala to the ventral striato-pallidum. Amygdaloid projections to the nucleus accumbens, olfactory tubercle, and adjoining structures are studied by analyzing the retrograde transport in the amygdala from dextran amine and fluorogold injections in the ventral striatum, as well as the anterograde labeling found in the ventral striato-pallidum after dextran amine injections in the amygdala. This combination of anterograde and retrograde tracing experiments reveals direct projections from the vomeronasal cortex to the ventral striato-pallidum, as well as indirect projections through different nuclei of the basolateral amygdala. Direct projections innervate mainly the olfactory tubercle and the islands of Calleja, whereas indirect projections are more widespread and reach the same structures and the shell and core of nucleus accumbens. These pathways are likely to mediate innate responses to pheromones (direct projections) and conditioned responses to associated chemosensory and non-chemosensory stimuli (indirect projections). Comparative studies indicate that similar connections are present in all the studied amniote vertebrates and might constitute the basic circuitry for emotional responses to conspecifics in most vertebrates, including humans.

  19. Interest in politics modulates neural activity in the amygdala and ventral striatum.

    Science.gov (United States)

    Gozzi, Marta; Zamboni, Giovanna; Krueger, Frank; Grafman, Jordan

    2010-11-01

    Studies on political participation have found that a person's interest in politics contributes to the likelihood that he or she will be involved in the political process. Here, we looked at whether or not interest in politics affects patterns of brain activity when individuals think about political matters. Using functional magnetic resonance imaging (fMRI), we scanned individuals (either interested or uninterested in politics based on a self-report questionnaire) while they were expressing their agreement or disagreement with political opinions. After scanning, participants were asked to rate each political opinion presented in the scanner for emotional valence and emotional intensity. Behavioral results showed that those political opinions participants agreed with were perceived as more emotionally intense and more positive by individuals interested in politics relative to individuals uninterested in politics. In addition, individuals interested in politics showed greater activation in the amygdala and the ventral striatum (ventral putamen) relative to individuals uninterested in politics when reading political opinions in accordance with their own views. This study shows that having an interest in politics elicits activations in emotion- and reward-related brain areas even when simply agreeing with written political opinions. © 2010 Wiley-Liss, Inc.

  20. [EFFECTIVENESS OF ADVANCED SKIN FLAP AND V-SHAPED VENTRAL INCISION ALONG THE ROOT OF PENILE SHAFT FOR CONCEALED PENIS].

    Science.gov (United States)

    Lin, Junshan; Li, Dumiao; Zhang, Jianxing; Wu, Qiang; Xu, Yali; Lin, Li

    2015-09-01

    To investigate effectiveness of advanced skin flap and V-shaped ventral incision along the root of penile shaft for concealed penis in children. Between July 2007 and January 2015, 121 boys with concealed penis were treated with advanced skin flap and V-shaped ventral incision along the root of penile shaft. The age varied from 18 months to 13 years (mean, 7.2 years). Repair was based on a vertical incision in median raphe, complete degloving of penis and tacking its base to the dermis of the skin. Advanced skin flap and a V-shaped ventral incision along the root of penile shaft were used to cover the penile shaft. The operation time ranged from 60 to 100 minutes (mean, 75 minutes). Disruption of wound occurred in 1 case, and was cured after dressing change; and primary healing of incision was obtained in the others. The follow-up period ranged from 3 months to 7 years (median, 24 months). All patients achieved good to excellent cosmetic results with a low incidence of complications. The results were satisfactory in exposure of penis and prepuce appearance. No obvious scar was observed. The penis had similar appearance to that after prepuce circumcision. A combination of advanced skin flap and V-shaped ventral incision along the root of penile shaft is a simple, safe, and effective procedure for concealed penis with a similar appearance result to the prepuce circumcision.

  1. Art for reward's sake: visual art recruits the ventral striatum.

    Science.gov (United States)

    Lacey, Simon; Hagtvedt, Henrik; Patrick, Vanessa M; Anderson, Amy; Stilla, Randall; Deshpande, Gopikrishna; Hu, Xiaoping; Sato, João R; Reddy, Srinivas; Sathian, K

    2011-03-01

    A recent study showed that people evaluate products more positively when they are physically associated with art images than similar non-art images. Neuroimaging studies of visual art have investigated artistic style and esthetic preference but not brain responses attributable specifically to the artistic status of images. Here we tested the hypothesis that the artistic status of images engages reward circuitry, using event-related functional magnetic resonance imaging (fMRI) during viewing of art and non-art images matched for content. Subjects made animacy judgments in response to each image. Relative to non-art images, art images activated, on both subject- and item-wise analyses, reward-related regions: the ventral striatum, hypothalamus and orbitofrontal cortex. Neither response times nor ratings of familiarity or esthetic preference for art images correlated significantly with activity that was selective for art images, suggesting that these variables were not responsible for the art-selective activations. Investigation of effective connectivity, using time-varying, wavelet-based, correlation-purged Granger causality analyses, further showed that the ventral striatum was driven by visual cortical regions when viewing art images but not non-art images, and was not driven by regions that correlated with esthetic preference for either art or non-art images. These findings are consistent with our hypothesis, leading us to propose that the appeal of visual art involves activation of reward circuitry based on artistic status alone and independently of its hedonic value. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Single-Institution Experience With Component Separation for Ventral Hernia Repair: A Retrospective Review.

    Science.gov (United States)

    Hill, Brian; Kambeyanda, Rohan; Fewell, Donna; Bryant, Stewart; Delaney, Kevin O; Herrera, Fernando A

    2018-06-01

    In this study, we reviewed our institution's experience using component separation for repair of ventral hernias. This was a retrospective review of all component separations for ventral hernia between July 2009 and December 2015. Recorded data included body mass index (BMI), preoperative albumin, smoking history, comorbidities, additional procedures, length of surgery, hospitalization, recurrence, and postoperative complications. One hundred ninety-six component separations were performed in the study period. The average patient age was 56 years, and 65.3% of patients were female. The average BMI was 32.6 kg/m; preoperative albumin was 3.59; 18.4% were current smokers; 28.1% were diabetic; and 14.3% had heart disease. Postoperative complications developed in 16.8% of patients. Recurrence developed in 8.7% of patients. Patients who developed a postoperative complication had a higher BMI (P = 0.025) and lower albumin (P = 0.047) compared with patients who did not develop complications. Current smokers were more likely to develop complications (P = 0.008). More than one third of patients had additional procedures at the time of the ventral hernia repair. The addition of a plastic surgery procedure was not associated with an increased risk of developing a complication (P = 0.25). Patients who developed complications had a significantly longer hospital course (P < 0.001) but no difference in total operative time (P = 0.975). Increased number of comorbidities did not statistically correlate with an increased complication rate (P = 0.65) or length of hospital stay (P = 0.43). We identified risk factors that increase the likelihood of postoperative complications and length of hospital stay. In addition, this study suggests that more comorbidities and additional procedures at the time of the hernia repair may not have as large of impact on complication risk as previously thought.

  3. Lateral and medial ventral occipitotemporal regions interact during the recognition of images revealed from noise

    Directory of Open Access Journals (Sweden)

    Barbara eNordhjem

    2016-01-01

    Full Text Available Several studies suggest different functional roles for the medial and the lateral ventral sections in object recognition. Texture and surface information is processed in medial regions, while shape information is processed in lateral sections. This begs the question whether and how these functionally specialized sections interact with each other and with early visual cortex to facilitate object recognition. In the current research, we set out to answer this question. In an fMRI study, thirteen subjects viewed and recognized images of objects and animals that were gradually revealed from noise while their brains were being scanned. We applied dynamic causal modeling (DCM – a method to characterize network interactions – to determine the modulatory effect of object recognition on a network comprising the primary visual cortex (V1, the lingual gyrus (LG in medial ventral cortex and the lateral occipital cortex (LO. We found that object recognition modulated the bilateral connectivity between LG and LO. Moreover, the feed-forward connectivity from V1 to LG and LO was modulated, while there was no evidence for feedback from these regions to V1 during object recognition. In particular, the interaction between medial and lateral areas supports a framework in which visual recognition of objects is achieved by networked regions that integrate information on image statistics, scene content and shape – rather than by a single categorically specialized region – within the ventral visual cortex.

  4. A negative relationship between ventral striatal loss anticipation response and impulsivity in borderline personality disorder.

    Science.gov (United States)

    Herbort, Maike C; Soch, Joram; Wüstenberg, Torsten; Krauel, Kerstin; Pujara, Maia; Koenigs, Michael; Gallinat, Jürgen; Walter, Henrik; Roepke, Stefan; Schott, Björn H

    2016-01-01

    Patients with borderline personality disorder (BPD) frequently exhibit impulsive behavior, and self-reported impulsivity is typically higher in BPD patients when compared to healthy controls. Previous functional neuroimaging studies have suggested a link between impulsivity, the ventral striatal response to reward anticipation, and prediction errors. Here we investigated the striatal neural response to monetary gain and loss anticipation and their relationship with impulsivity in 21 female BPD patients and 23 age-matched female healthy controls using functional magnetic resonance imaging (fMRI). Participants performed a delayed monetary incentive task in which three categories of objects predicted a potential gain, loss, or neutral outcome. Impulsivity was assessed using the Barratt Impulsiveness Scale (BIS-11). Compared to healthy controls, BPD patients exhibited significantly reduced fMRI responses of the ventral striatum/nucleus accumbens (VS/NAcc) to both reward-predicting and loss-predicting cues. BIS-11 scores showed a significant positive correlation with the VS/NAcc reward anticipation responses in healthy controls, and this correlation, while also nominally positive, failed to reach significance in BPD patients. BPD patients, on the other hand, exhibited a significantly negative correlation between ventral striatal loss anticipation responses and BIS-11 scores, whereas this correlation was significantly positive in healthy controls. Our results suggest that patients with BPD show attenuated anticipation responses in the VS/NAcc and, furthermore, that higher impulsivity in BPD patients might be related to impaired prediction of aversive outcomes.

  5. Ventral striatal regulation of CREM mediates impulsive action and drug addiction vulnerability

    OpenAIRE

    Miller, Michael L.; Ren, Yanhua; Szutorisz, Henrietta; Warren, Noël A.; Tessereau, Chloé; Egervári, Gábor; Mlodnicka, Agnieszka; Kapoor, Manav; Chaarani, Bader; Morris, Claudia V.; Schumann, Gunter; Garavan, Hugh; Goate, Alison M.; Bannon, Michael J.; Halperin, Jeffrey M.

    2017-01-01

    Impulsivity, a multifaceted behavioral hallmark of attention-deficit/hyperactivity disorder (ADHD), strongly influences addiction vulnerability and other psychiatric disorders that incur enormous medical and societal burdens yet the neurobiological underpinnings linking impulsivity to disease remain poorly understood. Here we report the critical role of ventral striatal cAMP-response element modulator (CREM) in mediating impulsivity relevant to drug abuse vulnerability. Using an ADHD rat mode...

  6. Ventral striatum and amygdala activity as convergence sites for early adversity and conduct disorder

    NARCIS (Netherlands)

    Holz, N.E.; Boecker-Schlier, R.; Buchmann, A.F.; Blomeyer, D.; Jennen-Steinmetz, C.; Baumeister, S.; Plichta, M.M.; Cattrell, A.; Schumann, G.; Esser, G.; Schmidt, M.; Buitelaar, J.K.; Meyer-Lindenberg, A.; Banaschewski, T.; Brandeis, D.; Laucht, M.

    2017-01-01

    Childhood family adversity (CFA) increases the risk for conduct disorder (CD) and has been associated with alterations in regions of affective processing like ventral striatum (VS) and amygdala. However, no study so far has demonstrated neural converging effects of CFA and CD in the same sample. At

  7. Neural correlates of consciousness: a definition of the dorsal and ventral streams and their relation to phenomenology.

    Science.gov (United States)

    Vakalopoulos, Costa

    2005-01-01

    The paper presents a hypothesis for a neural correlate of consciousness. A proposal is made that both the dorsal and ventral streams must be concurrently active to generate conscious awareness and that V1 (striate cortex) provides a serial link between them. An argument is presented against a true extrastriate communication between the dorsal and ventral streams. Secondly, a detailed theory is developed for the structure of the visual hierarchy. Premotor theory states that each organism-object interaction can be described by the two quantitative measures of torque and change in joint position served by the basal ganglia and cerebellum, respectively. This leads to a component theory of motor efference copy providing a fundamental tool for categorizing dorsal and ventral stream networks. The rationale for this is that the dorsal stream specifies spatial coordinates of the external world, which can be coded by the reafference of changes in joint position. The ventral stream is concerned with object recognition and is coded for by forces exerted on the world during a developmental exploratory phase of the organism. The proposed pathways for a component motor efference copy from both the cerebellum and basal ganglia converge on the thalamus and modulate thalamocortical projections via the thalamic reticular nucleus. The origin of the corticopontine projections, which are a massive pathway for cortical information to reach the cerebellum, coincides with the area typically considered as part of the dorsal stream, whereas the entire cortex projects to the striatum. This adds empirical support for a new conceptualization of the visual streams. The model also presents a solution to the binding problem of a neural correlate of consciousness, that is, how a distributed neural network synchronizes its activity during a cognitive event. It represents a reinterpretation of the current status of the visual hierarchy.

  8. The ‘Ventral Organs’ of Pycnogonida (Arthropoda) Are Neurogenic Niches of Late Embryonic and Post-Embryonic Nervous System Development

    Science.gov (United States)

    Brenneis, Georg; Scholtz, Gerhard

    2014-01-01

    Early neurogenesis in arthropods has been in the focus of numerous studies, its cellular basis, spatio-temporal dynamics and underlying genetic network being by now comparably well characterized for representatives of chelicerates, myriapods, hexapods and crustaceans. By contrast, neurogenesis during late embryonic and/or post-embryonic development has received less attention, especially in myriapods and chelicerates. Here, we apply (i) immunolabeling, (ii) histology and (iii) scanning electron microscopy to study post-embryonic ventral nerve cord development in Pseudopallene sp., a representative of the sea spiders (Pycnogonida), the presumable sister group of the remaining chelicerates. During early post-embryonic development, large neural stem cells give rise to additional ganglion cell material in segmentally paired invaginations in the ventral ectoderm. These ectodermal cell regions – traditionally designated as ‘ventral organs’ – detach from the surface into the interior and persist as apical cell clusters on the ventral ganglion side. Each cluster is a post-embryonic neurogenic niche that features a tiny central cavity and initially still houses larger neural stem cells. The cluster stays connected to the underlying ganglionic somata cortex via an anterior and a posterior cell stream. Cell proliferation remains restricted to the cluster and streams, and migration of newly produced cells along the streams seems to account for increasing ganglion cell numbers in the cortex. The pycnogonid cluster-stream-systems show striking similarities to the life-long neurogenic system of decapod crustaceans, and due to their close vicinity to glomerulus-like neuropils, we consider their possible involvement in post-embryonic (perhaps even adult) replenishment of olfactory neurons – as in decapods. An instance of a potentially similar post-embryonic/adult neurogenic system in the arthropod outgroup Onychophora is discussed. Additionally, we document two transient

  9. Investigating category- and shape-selective neural processing in ventral and dorsal visual stream under interocular suppression.

    Science.gov (United States)

    Ludwig, Karin; Kathmann, Norbert; Sterzer, Philipp; Hesselmann, Guido

    2015-01-01

    Recent behavioral and neuroimaging studies using continuous flash suppression (CFS) have suggested that action-related processing in the dorsal visual stream might be independent of perceptual awareness, in line with the "vision-for-perception" versus "vision-for-action" distinction of the influential dual-stream theory. It remains controversial if evidence suggesting exclusive dorsal stream processing of tool stimuli under CFS can be explained by their elongated shape alone or by action-relevant category representations in dorsal visual cortex. To approach this question, we investigated category- and shape-selective functional magnetic resonance imaging-blood-oxygen level-dependent responses in both visual streams using images of faces and tools. Multivariate pattern analysis showed enhanced decoding of elongated relative to non-elongated tools, both in the ventral and dorsal visual stream. The second aim of our study was to investigate whether the depth of interocular suppression might differentially affect processing in dorsal and ventral areas. However, parametric modulation of suppression depth by varying the CFS mask contrast did not yield any evidence for differential modulation of category-selective activity. Together, our data provide evidence for shape-selective processing under CFS in both dorsal and ventral stream areas and, therefore, do not support the notion that dorsal "vision-for-action" processing is exclusively preserved under interocular suppression. © 2014 Wiley Periodicals, Inc.

  10. The Role of Parieto-Occipital Junction in the Interaction between Dorsal and Ventral Streams in Disparity-Defined Near and Far Space Processing.

    Directory of Open Access Journals (Sweden)

    Aijun Wang

    Full Text Available Neuropsychological and functional MRI data suggest that two functionally and anatomically dissociable streams of visual processing exist: a ventral perception-related stream and a dorsal action-related stream. However, relatively little is known about how the two streams interact in the intact brain during the production of adaptive behavior. Using functional MRI and a virtual three-dimensional paradigm, we aimed at examining whether the parieto-occipital junction (POJ acts as an interface for the integration and processing of information between the dorsal and ventral streams in the near and far space processing. Virtual reality three-dimensional near and far space was defined by manipulating binocular disparity, with -68.76 arcmin crossed disparity for near space and +68.76 arcmin uncrossed disparity for near space. Our results showed that the POJ and bilateral superior occipital gyrus (SOG showed relative increased activity when responded to targets presented in the near space than in the far space, which was independent of the retinotopic and perceived sizes of target. Furthermore, the POJ showed the enhanced functional connectivity with both the dorsal and ventral streams during the far space processing irrespective of target sizes, supporting that the POJ acts as an interface between the dorsal and ventral streams in disparity-defined near and far space processing. In contrast, the bilateral SOG showed the enhanced functional connectivity only with the ventral stream if retinotopic sizes of targets in the near and far spaces were matched, which suggested there was a functional dissociation between the POJ and bilateral SOG.

  11. Systolic left ventricular function according to left ventricular concentricity and dilatation in hypertensive patients

    DEFF Research Database (Denmark)

    Bang, Casper; Gerdts, Eva; Aurigemma, Gerard P

    2013-01-01

    Left ventricular hypertrophy [LVH, high left ventricular mass (LVM)] is traditionally classified as concentric or eccentric based on left ventricular relative wall thickness. We evaluated left ventricular systolic function in a new four-group LVH classification based on left ventricular dilatation...... [high left ventricular end-diastolic volume (EDV) index and concentricity (LVM/EDV)] in hypertensive patients....

  12. The Anterior Branch of the Left Inferior Phrenic Artery Arising from the Right Inferior Phrenic Artery: An Angiographic and CT Study

    International Nuclear Information System (INIS)

    Hieda, Masashi; Toyota, Naoyuki; Kakizawa, Hideaki; Ishikawa, Masaki; Horiguchi, Jun; Ito, Katsuhide

    2009-01-01

    The purpose of this study was to retrospectively analyze the frequency and anatomical pattern of the anterior branch of the left inferior phrenic artery (LIPA) arising from the right inferior phrenic artery (RIPA). Angiography of the RIPA for patients (n = 140) with hepatic malignancy was retrospectively reviewed. The frequency at which the anterior branch of the LIPA arose from the RIPA was 14.3% (20 of 140 patients [pts]). Among the three branches that may arise from the RIPA in these cases (the anterior branch of the LIPA and the anterior and posterior branches of the RIPA), the anterior branch of the LIPA was the first branch of the RIPA in 9 of 20 pts (45%), and the posterior branch of the RIPA in 11 of 20 pts (55%). The anterior branch of the LIPA ran along the ventral side of the esophagus or stomach and supplied the esophagogastric region and dome of the left diaphragm in all cases. In conclusion, the anterior branch of the LIPA arises from the RIPA at a comparatively high frequency. In embolization of the RIPA, to effectively treat and avoid possible complications, interventionalists should be aware of this potential variant anatomy.

  13. Inclusions of amyotrophic lateral sclerosis-linked superoxide dismutase in ventral horns, liver, and kidney

    DEFF Research Database (Denmark)

    Jonsson, P.A.; Bergemalm, D.; Andersen, P.M.

    2008-01-01

    Mutant superoxide dismutases type 1 (SOD1s) cause amyotrophic lateral sclerosis by an unidentified toxic property. In a patient carrying the G127X truncation mutation, minute amounts of SOD1 were found in ventral horns using a mutant-specific antibody. Still, both absolute levels and ratios versus...

  14. Modificação da técnica de abordagem ventral à articulação atlantoxial sem a secção do músculo esternotireóideo Modification of ventral technique approach to the articulation atlantoxial with no section of the muscle sternothyreoid

    Directory of Open Access Journals (Sweden)

    Rafael Festugatto

    2009-07-01

    Full Text Available O objetivo deste trabalho foi apresentar uma variação na técnica de acesso ventral à articulação atlantoaxial para tratamento da instabilidade atlantoaxial sem a secção do músculo esternotireóideo. Foram utilizados 15 cães, pesando entre oito e 12kg, sem raça definida, independente do sexo, distribuídos aleatoriamente em três grupos iguais de acordo com o período pós-operatório (PO denominados de I (30dias, II (60 dias e III (90 dias para avaliações clínicas diárias. A articulação atlantoaxial foi submetida à artrodese por meio do acesso ventral utilizando pinos de Steinmann associados à resina acrílica autopolimerizável. O acesso e a exposição da articulação atlantoaxial sem a secção do músculo esternotireóideo foram realizados sem complicações ou limitações adicionais. Nenhum cão desta pesquisa apresentou tosse, dispnéia, regurgitação, paralisia laríngea ou Síndrome de Horner. Pode-se concluir que a secção do músculo esternotireóideo é um procedimento desnecessário e que não interfere na exposição da articulação atlantoaxial e na realização da artrodese em cães por meio do acesso ventral.The aim of this research was to present a variation of the ventral technique access to the atlantoaxial joint, for treatment of atlantoaxial instability with no section of sternothyreoid muscle. Fifteen dogs, with weight between 8 and 12kg, were randomly distributed in three groups denominated one (30 days, two (60 days and three (90 days for daily clinical evaluations. The atlantoaxial joint was submitted to the arthrodesis through the ventral access using pins of Steinmann associated to acrylic resin. The access and exhibition of the atlantoaxial joint with no section of the sternothyreoid muscle was obtained without complications or additional limitations. No dog of this research presented coughing, dyspnea, regurgitation, laryngeal paralysis or Horner's syndrome. It can be concluded that the

  15. Cytoskeleton and gravity at work in the establishment of dorso-ventral polarity in the egg of Xenopus laevis

    Science.gov (United States)

    Ubbels, Geertje A.; Brom, Tim G.

    The establishment of polarities during early embryogenesis is essential for normal development. Amphibian eggs are appropriate models for studies on embryonic pattern formation. The animal-vegetal axis of the axially symmetrical amphibian egg originates during oogenesis and foreshadows the main body axis of the embryo. The dorso-ventral polarity is epigenetically established before first cleavage. Recent experiments strongly suggest that in the monospermic eggs of the anuran Xenopus laevis both the cytoskeleton and gravity act in the determination of the dorso-ventral polarity. In order to test the role of gravity in this process, eggs will be fertilized under microgravity conditions during the SL-D1 flight in 1985. In a fully automatic experiment container eggs will be kept under well-defined conditions and artificially fertilized as soon as microgravity is reached; eggs and embryos at different stages will then be fixed for later examination. Back on earth the material will be analysed and we will know whether fertilization under microgravity conditions is possible. If so, the relation of the dorso-ventral axis to the former sperm entry point will be determined on the whole embryos; in addition eggs and embryos will be analysed cytologically.

  16. The Maternal Maverick/GDF15-like TGF-β Ligand Panda Directs Dorsal-Ventral Axis Formation by Restricting Nodal Expression in the Sea Urchin Embryo

    Science.gov (United States)

    Haillot, Emmanuel; Molina, Maria Dolores; Lapraz, François; Lepage, Thierry

    2015-01-01

    Specification of the dorsal-ventral axis in the highly regulative sea urchin embryo critically relies on the zygotic expression of nodal, but whether maternal factors provide the initial spatial cue to orient this axis is not known. Although redox gradients have been proposed to entrain the dorsal-ventral axis by acting upstream of nodal, manipulating the activity of redox gradients only has modest consequences, suggesting that other factors are responsible for orienting nodal expression and defining the dorsal-ventral axis. Here we uncover the function of Panda, a maternally provided transforming growth factor beta (TGF-β) ligand that requires the activin receptor-like kinases (Alk) Alk3/6 and Alk1/2 receptors to break the radial symmetry of the embryo and orient the dorsal-ventral axis by restricting nodal expression. We found that the double inhibition of the bone morphogenetic protein (BMP) type I receptors Alk3/6 and Alk1/2 causes a phenotype dramatically more severe than the BMP2/4 loss-of-function phenotype, leading to extreme ventralization of the embryo through massive ectopic expression of nodal, suggesting that an unidentified signal acting through BMP type I receptors cooperates with BMP2/4 to restrict nodal expression. We identified this ligand as the product of maternal Panda mRNA. Double inactivation of panda and bmp2/4 led to extreme ventralization, mimicking the phenotype caused by inactivation of the two BMP receptors. Inhibition of maternal panda mRNA translation disrupted the early spatial restriction of nodal, leading to persistent massive ectopic expression of nodal on the dorsal side despite the presence of Lefty. Phylogenetic analysis indicates that Panda is not a prototypical BMP ligand but a member of a subfamily of TGF-β distantly related to Inhibins, Lefty, and TGF-β that includes Maverick from Drosophila and GDF15 from vertebrates. Indeed, overexpression of Panda does not appear to directly or strongly activate phosphoSmad1

  17. The Maternal Maverick/GDF15-like TGF-β Ligand Panda Directs Dorsal-Ventral Axis Formation by Restricting Nodal Expression in the Sea Urchin Embryo.

    Science.gov (United States)

    Haillot, Emmanuel; Molina, Maria Dolores; Lapraz, François; Lepage, Thierry

    2015-01-01

    Specification of the dorsal-ventral axis in the highly regulative sea urchin embryo critically relies on the zygotic expression of nodal, but whether maternal factors provide the initial spatial cue to orient this axis is not known. Although redox gradients have been proposed to entrain the dorsal-ventral axis by acting upstream of nodal, manipulating the activity of redox gradients only has modest consequences, suggesting that other factors are responsible for orienting nodal expression and defining the dorsal-ventral axis. Here we uncover the function of Panda, a maternally provided transforming growth factor beta (TGF-β) ligand that requires the activin receptor-like kinases (Alk) Alk3/6 and Alk1/2 receptors to break the radial symmetry of the embryo and orient the dorsal-ventral axis by restricting nodal expression. We found that the double inhibition of the bone morphogenetic protein (BMP) type I receptors Alk3/6 and Alk1/2 causes a phenotype dramatically more severe than the BMP2/4 loss-of-function phenotype, leading to extreme ventralization of the embryo through massive ectopic expression of nodal, suggesting that an unidentified signal acting through BMP type I receptors cooperates with BMP2/4 to restrict nodal expression. We identified this ligand as the product of maternal Panda mRNA. Double inactivation of panda and bmp2/4 led to extreme ventralization, mimicking the phenotype caused by inactivation of the two BMP receptors. Inhibition of maternal panda mRNA translation disrupted the early spatial restriction of nodal, leading to persistent massive ectopic expression of nodal on the dorsal side despite the presence of Lefty. Phylogenetic analysis indicates that Panda is not a prototypical BMP ligand but a member of a subfamily of TGF-β distantly related to Inhibins, Lefty, and TGF-β that includes Maverick from Drosophila and GDF15 from vertebrates. Indeed, overexpression of Panda does not appear to directly or strongly activate phosphoSmad1

  18. The ventral stream offers more affordance and the dorsal stream more memory than believed

    NARCIS (Netherlands)

    Postma, Albert; van der Lubbe, Robert Henricus Johannes; Zuidhoek, Sander

    2002-01-01

    Opposed to Norman's proposal, processing of affordance is likely to occur not solely in the dorsal stream but also in the ventral stream. Moreover, the dorsal stream might do more than just serve an important role in motor actions. It supports egocentric location coding as well. As such, it would

  19. Neural sources of visual working memory maintenance in human parietal and ventral extrastriate visual cortex.

    Science.gov (United States)

    Becke, Andreas; Müller, Notger; Vellage, Anne; Schoenfeld, Mircea Ariel; Hopf, Jens-Max

    2015-04-15

    Maintaining information in visual working memory is reliably indexed by the contralateral delay activity (CDA) - a sustained modulation of the event-related potential (ERP) with a topographical maximum over posterior scalp regions contralateral to the memorized input. Based on scalp topography, it is hypothesized that the CDA reflects neural activity in the parietal cortex, but the precise cortical origin of underlying electric activity was never determined. Here we combine ERP recordings with magnetoencephalography based source localization to characterize the cortical current sources generating the CDA. Observers performed a cued delayed match to sample task where either the color or the relative position of colored dots had to be maintained in memory. A detailed source-localization analysis of the magnetic activity in the retention interval revealed that the magnetic analog of the CDA (mCDA) is generated by current sources in the parietal cortex. Importantly, we find that the mCDA also receives contribution from current sources in the ventral extrastriate cortex that display a time-course similar to the parietal sources. On the basis of the magnetic responses, forward modeling of ERP data reveals that the ventral sources have non-optimal projections and that these sources are therefore concealed in the ERP by overlapping fields with parietal projections. The present observations indicate that visual working memory maintenance, as indexed by the CDA, involves the parietal cortical regions as well as the ventral extrastriate regions, which code the sensory representation of the memorized content. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. New gene evolution in the bonus-TIF1-γ/TRIM33 family impacted the architecture of the vertebrate dorsal-ventral patterning network.

    Science.gov (United States)

    Wisotzkey, Robert G; Quijano, Janine C; Stinchfield, Michael J; Newfeld, Stuart J

    2014-09-01

    Uncovering how a new gene acquires its function and understanding how the function of a new gene influences existing genetic networks are important topics in evolutionary biology. Here, we demonstrate nonconservation for the embryonic functions of Drosophila Bonus and its newest vertebrate relative TIF1-γ/TRIM33. We showed previously that TIF1-γ/TRIM33 functions as an ubiquitin ligase for the Smad4 signal transducer and antagonizes the Bone Morphogenetic Protein (BMP) signaling network underlying vertebrate dorsal-ventral axis formation. Here, we show that Bonus functions as an agonist of the Decapentaplegic (Dpp) signaling network underlying dorsal-ventral axis formation in flies. The absence of conservation for the roles of Bonus and TIF1-γ/TRIM33 reveals a shift in the dorsal-ventral patterning networks of flies and mice, systems that were previously considered wholly conserved. The shift occurred when the new gene TIF1-γ/TRIM33 replaced the function of the ubiquitin ligase Nedd4L in the lineage leading to vertebrates. Evidence of this replacement is our demonstration that Nedd4 performs the function of TIF1-γ/TRIM33 in flies during dorsal-ventral axis formation. The replacement allowed vertebrate Nedd4L to acquire novel functions as a ubiquitin ligase of vertebrate-specific Smad proteins. Overall our data reveal that the architecture of the Dpp/BMP dorsal-ventral patterning network continued to evolve in the vertebrate lineage, after separation from flies, via the incorporation of new genes. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. P300 amplitude variation is related to ventral striatum BOLD response during gain and loss anticipation: an EEG and fMRI experiment.

    Science.gov (United States)

    Pfabigan, Daniela M; Seidel, Eva-Maria; Sladky, Ronald; Hahn, Andreas; Paul, Katharina; Grahl, Arvina; Küblböck, Martin; Kraus, Christoph; Hummer, Allan; Kranz, Georg S; Windischberger, Christian; Lanzenberger, Rupert; Lamm, Claus

    2014-08-01

    The anticipation of favourable or unfavourable events is a key component in our daily life. However, the temporal dynamics of anticipation processes in relation to brain activation are still not fully understood. A modified version of the monetary incentive delay task was administered during separate functional magnetic resonance imaging (fMRI) and electroencephalogram (EEG) sessions in the same 25 participants to assess anticipatory processes with a multi-modal neuroimaging set-up. During fMRI, gain and loss anticipation were both associated with heightened activation in ventral striatum and reward-related areas. EEG revealed most pronounced P300 amplitudes for gain anticipation, whereas CNV amplitudes distinguished neutral from gain and loss anticipation. Importantly, P300, but not CNV amplitudes, were correlated to neural activation in the ventral striatum for both gain and loss anticipation. Larger P300 amplitudes indicated higher ventral striatum blood oxygen level dependent (BOLD) response. Early stimulus evaluation processes indexed by EEG seem to be positively related to higher activation levels in the ventral striatum, indexed by fMRI, which are usually associated with reward processing. The current results, however, point towards a more general motivational mechanism processing salient stimuli during anticipation. Copyright © 2014. Published by Elsevier Inc.

  2. GENE ARRAY ANALYSIS OF THE VENTRAL PROSTATE IN RATS EXPOSED TO EITHER VINCLOZOLIN OR PROCYMIDONE

    Science.gov (United States)

    GENE ARRAY ANALYSIS OF THE VENTRAL PROSTATE IN RATS EXPOSED TO EITHER VINCLOZOLIN OR PROCYMIDONE. MB Rosen, VS Wilson, JE Schmid, and LE Gray Jr. US EPA, ORD, NHEERL, RTP, NC.Vinclozolin (Vi) and procymidone (Pr) are antiandrogenic fungicides. While changes in gene expr...

  3. Suture, synthetic, or biologic in contaminated ventral hernia repair.

    Science.gov (United States)

    Bondre, Ioana L; Holihan, Julie L; Askenasy, Erik P; Greenberg, Jacob A; Keith, Jerrod N; Martindale, Robert G; Roth, J Scott; Liang, Mike K

    2016-02-01

    Data are lacking to support the choice between suture, synthetic mesh, or biologic matrix in contaminated ventral hernia repair (VHR). We hypothesize that in contaminated VHR, suture repair is associated with the lowest rate of surgical site infection (SSI). A multicenter database of all open VHR performed at from 2010-2011 was reviewed. All patients with follow-up of 1 mo and longer were included. The primary outcome was SSI as defined by the Centers for Disease Control and Prevention. The secondary outcome was hernia recurrence (assessed clinically or radiographically). Multivariate analysis (stepwise regression for SSI and Cox proportional hazard model for recurrence) was performed. A total of 761 VHR were reviewed for a median (range) follow-up of 15 (1-50) mo: there were 291(38%) suture, 303 (40%) low-density and/or mid-density synthetic mesh, and 167(22%) biologic matrix repair. On univariate analysis, there were differences in the three groups including ethnicity, ASA, body mass index, institution, diabetes, primary versus incisional hernia, wound class, hernia size, prior VHR, fascial release, skin flaps, and acute repair. The unadjusted outcomes for SSI (15.1%; 17.8%; 21.0%; P = 0.280) and recurrence (17.8%; 13.5%; 21.5%; P = 0.074) were not statistically different between groups. On multivariate analysis, biologic matrix was associated with a nonsignificant reduction in both SSI and recurrences, whereas synthetic mesh associated with fewer recurrences compared to suture (hazard ratio = 0.60; P = 0.015) and nonsignificant increase in SSI. Interval estimates favored biologic matrix repair in contaminated VHR; however, these results were not statistically significant. In the absence of higher level evidence, surgeons should carefully balance risk, cost, and benefits in managing contaminated ventral hernia repair. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Left-handedness and health

    Directory of Open Access Journals (Sweden)

    Milenković Sanja

    2010-01-01

    Full Text Available Hand dominance is defined as a proneness to use one hand rather than another in performing the majority of activities and this is the most obvious example of cerebral lateralization and an exclusive human characteristic. Left-handed people comprise 6-14% of the total population, while in Serbia, this percentage is 5-10%, moving from undeveloped to developed environments, where a socio-cultural pressure is less present. There is no agreement between investigators who in fact may be considered a left-handed person, about the percentage of left-handers in the population and about the etiology of left-handedness. In the scientific literature left-handedness has been related to health disorders (spine deformities, immunological disorders, migraine, neurosis, depressive psychosis, schizophrenia, insomnia, homosexuality, diabetes mellitus, arterial hypertension, sleep apnea, enuresis nocturna and Down Syndrome, developmental disorders (autism, dislexia and sttutering and traumatism. The most reliable scientific evidences have been published about the relationship between left-handedness and spinal deformities in school children in puberty and with traumatism in general population. The controversy of other results in up-to-now investigations of health aspects of left-handedness may partly be explained by a scientific disagreement whether writing with the left hand is a sufficient criterium for left-handedness, or is it necessary to investigate other parameters for laterality assessment. Explanation of health aspects of left-handedness is dominantly based on Geschwind-Galaburda model about 'anomalous' cerebral domination, as a consequence of hormonal disbalance. .

  5. [Left-handedness and health].

    Science.gov (United States)

    Milenković, Sanja; Belojević, Goran; Kocijancić, Radojka

    2010-01-01

    Hand dominance is defined as a proneness to use one hand rather than another in performing the majority of activities and this is the most obvious example of cerebral lateralization and an exclusive human characteristic. Left-handed people comprise 6-14% of the total population, while in Serbia, this percentage is 5-10%, moving from undeveloped to developed environments, where a socio-cultural pressure is less present. There is no agreement between investigators who in fact may be considered a left-handed person, about the percentage of left-handers in the population and about the etiology of left-handedness. In the scientific literature left-handedness has been related to health disorders (spine deformities, immunological disorders, migraine, neurosis, depressive psychosis, schizophrenia, insomnia, homosexuality, diabetes mellitus, arterial hypertension, sleep apnea, enuresis nocturna and Down Syndrome), developmental disorders (autism, dislexia and sttutering) and traumatism. The most reliable scientific evidences have been published about the relationship between left-handedness and spinal deformities in school children in puberty and with traumatism in general population. The controversy of other results in up-to-now investigations of health aspects of left-handedness may partly be explained by a scientific disagreement whether writing with the left hand is a sufficient criterium for left-handedness, or is it necessary to investigate other parameters for laterality assessment. Explanation of health aspects of left-handedness is dominantly based on Geschwind-Galaburda model about "anomalous" cerebral domination, as a consequence of hormonal disbalance.

  6. A new look at the ventral nerve centre of Sagitta: implications for the phylogenetic position of Chaetognatha (arrow worms and the evolution of the bilaterian nervous system

    Directory of Open Access Journals (Sweden)

    Müller Carsten HG

    2007-05-01

    Full Text Available Abstract Background The Chaetognatha (arrow worms are a group of marine carnivores whose phylogenetic relationships are still vigorously debated. Molecular studies have as yet failed to come up with a stable hypothesis on their phylogenetic position. In a wide range of metazoans, the nervous system has proven to provide a wealth of characters for analysing phylogenetic relationships (neurophylogeny. Therefore, in the present study we explored the structure of the ventral nerve centre ("ventral ganglion" in Sagitta setosa with a set of histochemical and immunohistochemical markers. Results In specimens that were immunolabeled for acetylated-alpha tubulin the ventral nerve centre appeared to be a condensed continuation of the peripheral intraepidermal nerve plexus. Yet, synapsin immunolocalization showed that the ventral nerve centre is organized into a highly ordered array of ca. 80 serially arranged microcompartments. Immunohistochemistry against RFamide revealed a set of serially arranged individually identifiable neurons in the ventral nerve centre that we charted in detail. Conclusion The new information on the structure of the chaetognath nervous system is compared to previous descriptions of the ventral nerve centre which are critically evaluated. Our findings are discussed with regard to the debate on nervous system organisation in the last common bilaterian ancestor and with regard to the phylogenetic affinities of this Chaetognatha. We suggest to place the Chaetognatha within the Protostomia and argue against hypotheses which propose a deuterostome affinity of Chaetognatha or a sister-group relationship to all other Bilateria.

  7. A gene expression study of dorso-ventrally restricted pigment pattern in adult fins of Neolamprologus meeli, an African cichlid species

    Directory of Open Access Journals (Sweden)

    Ehsan Pashay Ahi

    2017-01-01

    Full Text Available Fish color patterns are among the most diverse phenotypic traits found in the animal kingdom. Understanding the molecular and cellular mechanisms that control in chromatophore distribution and pigmentation underlying this diversity is a major goal in developmental and evolutionary biology, which has predominantly been pursued in the zebrafish model system. Here, we apply results from zebrafish work to study a naturally occurring color pattern phenotype in the fins of an African cichlid species from Lake Tanganyika. The cichlid fish Neolamprologus meeli displays a distinct dorsal color pattern, with black and white stripes along the edges of the dorsal fin and of the dorsal half of the caudal fin, corresponding with differences in melanophore density. To elucidate the molecular mechanisms controlling the differences in dorsal and ventral color patterning in the fins, we quantitatively assessed the expression of 15 candidate target genes involved in adult zebrafish pigmentation and stripe formation. For reference gene validation, we screened the expression stability of seven widely expressed genes across the investigated tissue samples and identified tbp as appropriate reference. Relative expression levels of the candidate target genes were compared between the dorsal, striped fin regions and the corresponding uniform, grey-colored regions in the anal and ventral caudal fin. Dorso-ventral expression differences, with elevated levels in both white and black stripes, were observed in two genes, the melanosome protein coding gene pmel and in igsf11, which affects melanophore adhesion, migration and survival. Next, we predicted potential shared upstream regulators of pmel and igsf11. Testing the expression patterns of six predicted transcriptions factors revealed dorso-ventral expression difference of irf1 and significant, negative expression correlation of irf1 with both pmel and igsf11. Based on these results, we propose pmel, igsf11 and irf1 as

  8. Projections from the posterolateral olfactory amygdala to the ventral striatum: neural basis for reinforcing properties of chemical stimuli

    Directory of Open Access Journals (Sweden)

    Lanuza Enrique

    2007-11-01

    Full Text Available Abstract Background Vertebrates sense chemical stimuli through the olfactory receptor neurons whose axons project to the main olfactory bulb. The main projections of the olfactory bulb are directed to the olfactory cortex and olfactory amygdala (the anterior and posterolateral cortical amygdalae. The posterolateral cortical amygdaloid nucleus mainly projects to other amygdaloid nuclei; other seemingly minor outputs are directed to the ventral striatum, in particular to the olfactory tubercle and the islands of Calleja. Results Although the olfactory projections have been previously described in the literature, injection of dextran-amines into the rat main olfactory bulb was performed with the aim of delimiting the olfactory tubercle and posterolateral cortical amygdaloid nucleus in our own material. Injection of dextran-amines into the posterolateral cortical amygdaloid nucleus of rats resulted in anterograde labeling in the ventral striatum, in particular in the core of the nucleus accumbens, and in the medial olfactory tubercle including some islands of Calleja and the cell bridges across the ventral pallidum. Injections of Fluoro-Gold into the ventral striatum were performed to allow retrograde confirmation of these projections. Conclusion The present results extend previous descriptions of the posterolateral cortical amygdaloid nucleus efferent projections, which are mainly directed to the core of the nucleus accumbens and the medial olfactory tubercle. Our data indicate that the projection to the core of the nucleus accumbens arises from layer III; the projection to the olfactory tubercle arises from layer II and is much more robust than previously thought. This latter projection is directed to the medial olfactory tubercle including the corresponding islands of Calleja, an area recently described as critical node for the neural circuit of addiction to some stimulant drugs of abuse.

  9. The ventral premammillary nucleus links leptin action and reproduction

    Directory of Open Access Journals (Sweden)

    Jose eDonato

    2011-10-01

    Full Text Available The amount of body fat and the energy balance are important factors that influence the timing of puberty and the normal reproductive function. Leptin is a key hormone that conveys to the central nervous system information about the individual energy reserve and modulates the hypothalamus-pituitary-gonad axis. Recent findings suggest that the ventral premammillary nucleus (PMV mediates the effects of leptin as a permissive factor for the onset of puberty and the coordinated secretion of luteinizing hormone during conditions of negative energy balance. Thus, in this review we will summarize the existing literature about the potential role played by PMV neurons in the regulation of the hypothalamus-pituitary-gonad axis.

  10. Reading front to back: MEG evidence for early feedback effects during word recognition.

    Science.gov (United States)

    Woodhead, Z V J; Barnes, G R; Penny, W; Moran, R; Teki, S; Price, C J; Leff, A P

    2014-03-01

    Magnetoencephalography studies in humans have shown word-selective activity in the left inferior frontal gyrus (IFG) approximately 130 ms after word presentation ( Pammer et al. 2004; Cornelissen et al. 2009; Wheat et al. 2010). The role of this early frontal response is currently not known. We tested the hypothesis that the IFG provides top-down constraints on word recognition using dynamic causal modeling of magnetoencephalography data collected, while subjects viewed written words and false font stimuli. Subject-specific dipoles in left and right occipital, ventral occipitotemporal and frontal cortices were identified using Variational Bayesian Equivalent Current Dipole source reconstruction. A connectivity analysis tested how words and false font stimuli differentially modulated activity between these regions within the first 300 ms after stimulus presentation. We found that left inferior frontal activity showed stronger sensitivity to words than false font and a stronger feedback connection onto the left ventral occipitotemporal cortex (vOT) in the first 200 ms. Subsequently, the effect of words relative to false font was observed on feedforward connections from left occipital to ventral occipitotemporal and frontal regions. These findings demonstrate that left inferior frontal activity modulates vOT in the early stages of word processing and provides a mechanistic account of top-down effects during word recognition.

  11. Brain-derived neurotrophic factor in the ventral midbrain-nucleus accumbens pathway: A role in depression

    NARCIS (Netherlands)

    Eisch, A.J.; Bolanos, C.A.; de Wit, J.; Simonak, R.D.; Pudiak, C.M.; Barrot, M.; Verhaagen, J.; Nestler, E.J.

    2003-01-01

    Background: Previous work has shown that brain-derived neurotrophic factor (BDNF) and its receptor, tyrosine kinase receptor B (TrkB), are involved in appetitive behavior. Here we show that BDNF in the ventral tegmental area-nucleus accumbens (VTA-NAc) pathway is also involved in the development of

  12. Dorsal and ventral working memory-related brain areas support distinct processes in contextual cueing.

    Science.gov (United States)

    Manginelli, Angela A; Baumgartner, Florian; Pollmann, Stefan

    2013-02-15

    Behavioral evidence suggests that the use of implicitly learned spatial contexts for improved visual search may depend on visual working memory resources. Working memory may be involved in contextual cueing in different ways: (1) for keeping implicitly learned working memory contents available during search or (2) for the capture of attention by contexts retrieved from memory. We mapped brain areas that were modulated by working memory capacity. Within these areas, activation was modulated by contextual cueing along the descending segment of the intraparietal sulcus, an area that has previously been related to maintenance of explicit memories. Increased activation for learned displays, but not modulated by the size of contextual cueing, was observed in the temporo-parietal junction area, previously associated with the capture of attention by explicitly retrieved memory items, and in the ventral visual cortex. This pattern of activation extends previous research on dorsal versus ventral stream functions in memory guidance of attention to the realm of attentional guidance by implicit memory. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Fox (forkhead) genes are involved in the dorso-ventral patterning of the Xenopus mesoderm.

    Science.gov (United States)

    El-Hodiri, H; Bhatia-Dey, N; Kenyon, K; Ault, K; Dirksen, M; Jamrich, M

    2001-01-01

    Fox (forkhead/winged helix) genes encode a family of transcription factors that are involved in embryonic pattern formation, regulation of tissue specific gene expression and tumorigenesis. Several of them are transcribed during Xenopus embryogenesis and are important for the patterning of ectoderm, mesoderm and endoderm. We have isolated three forkhead genes that are activated during gastrulation and play an important role in the dorso-ventral patterning of the mesoderm. XFKH1 (FoxA4b), the first vertebrate forkhead gene to be implicated in embryonic pattern formation, is expressed in the Spemann-Mangold organizer region and later in the embryonic notochord. XFKH7, the Xenopus orthologue of the murine Mfh1(Foxc2), is expressed in the presomitic mesoderm, but not in the notochord or lateral plate mesoderm. Finally, XFD-13'(FoxF1b)1 is expressed in the lateral plate mesoderm, but not in the notochord or presomitic mesoderm. Expression pattern and functional experiments indicate that these three forkhead genes are involved in the dorso-ventral patterning of the mesoderm.

  14. Identification of dorsal root synaptic terminals on monkey ventral horn cells by electron microscopic autoradiography

    International Nuclear Information System (INIS)

    Ralston, H.J.; Ralston, D.D.

    1979-01-01

    The projection of dorsal root fibres to the motor nucleus of the macaque monkey spinal cord has been examined utilizing light and electron microscopic autoradiography. Light microscopy demonstrates a very sparse labelling of primary afferent fibres in the ventral horn. Silver grains overlying radioactive sources are frequently clustered into small groups, often adjacent to dendritic profiles. Under the electron microscope, myelinated axons and a few large synaptic profiles containing rounded synaptic vesicles were overlain by numerous silver grains. These labelled profiles made synaptic contact with dendrites 1 - 3 micrometers in diameter. The labelled profiles did not contact cell bodies or large proximal dendrites of ventral horn neutrons. Frequently, small synaptic profiles containing flattened vesicles were presynaptic to the large labelled terminals and it is suggested that these axoaxonal synapses may mediate presynaptic inhibition of the primary afferent fibres. The relationship of the present findings to previously published physiological and anatomical studies is discussed. (author)

  15. Reciprocal neural response within lateral and ventral medial prefrontal cortex during hot and cold reasoning.

    Science.gov (United States)

    Goel, Vinod; Dolan, Raymond J

    2003-12-01

    Logic is widely considered the basis of rationality. Logical choices, however, are often influenced by emotional responses, sometimes to our detriment, sometimes to our advantage. To understand the neural basis of emotionally neutral ("cold") and emotionally salient ("hot") reasoning we studied 19 volunteers using event-related fMRI, as they made logical judgments about arguments that varied in emotional saliency. Despite identical logical form and content categories across "hot" and "cold" reasoning conditions, lateral and ventral medial prefrontal cortex showed reciprocal response patterns as a function of emotional saliency of content. "Cold" reasoning trials resulted in enhanced activity in lateral/dorsal lateral prefrontal cortex (L/DLPFC) and suppression of activity in ventral medial prefrontal cortex (VMPFC). By contrast, "hot" reasoning trials resulted in enhanced activation in VMPFC and suppression of activation in L/DLPFC. This reciprocal engagement of L/DLPFC and VMPFC provides evidence for a dynamic neural system for reasoning, the configuration of which is strongly influenced by emotional saliency.

  16. Novel insights into the interplay between ventral neck muscles in individuals with whiplash-associated disorders

    Science.gov (United States)

    Peterson, Gunnel; Nilsson, David; Trygg, Johan; Falla, Deborah; Dedering, Åsa; Wallman, Thorne; Peolsson, Anneli

    2015-01-01

    Chronic whiplash-associated disorder (WAD) is common after whiplash injury, with considerable personal, social, and economic burden. Despite decades of research, factors responsible for continuing pain and disability are largely unknown, and diagnostic tools are lacking. Here, we report a novel model of mechanical ventral neck muscle function recorded from non-invasive, real-time, ultrasound measurements. We calculated the deformation area and deformation rate in 23 individuals with persistent WAD and compared them to 23 sex- and age-matched controls. Multivariate statistics were used to analyse interactions between ventral neck muscles, revealing different interplay between muscles in individuals with WAD and healthy controls. Although the cause and effect relation cannot be established from this data, for the first time, we reveal a novel method capable of detecting different neck muscle interplay in people with WAD. This non-invasive method stands to make a major breakthrough in the assessment and diagnosis of people following a whiplash trauma. PMID:26472599

  17. Serotonin-induced nitric oxide production in the ventral nerve cord of the earthworm, Eisenia fetida.

    Science.gov (United States)

    Kitamura, Y; Naganoma, Y; Horita, H; Ogawa, H; Oka, K

    2001-10-01

    Effect of serotonin on nitric oxide (NO) production in the ventral nerve cord (VNC) of the earthworm Eisenia fetida was investigated by a bio-imaging and an electrochemical technique. In the bio-imaging, the spatial pattern of NO production in VNC was visualized using an NO-specific fluorescent dye, diaminofluorescein-2 diacethyl (DAF-2 DA). Application of serotonin (100 microM) increased NO production in VNC by about 65% (PVNC. In the electrochemical technique, real-time basal and serotonin-induced NO production was estimated with an NO-specific electrode. On the ventral surface of VNC, the estimated basal NO production was stable at 200+/-52 nM, and was transiently augmented to 840+/-193 nM by the addition of 10 microM serotonin. In conclusion, the estimated basal NO production in the earthworm VNC is relatively high compared with other nervous systems earlier reported, and transiently augmented by serotonin. Our results suggest that NO signaling in VNC is involved in neuromodulation by serotonin.

  18. Neural dynamics of event segmentation in music: converging evidence for dissociable ventral and dorsal networks.

    Science.gov (United States)

    Sridharan, Devarajan; Levitin, Daniel J; Chafe, Chris H; Berger, Jonathan; Menon, Vinod

    2007-08-02

    The real world presents our sensory systems with a continuous stream of undifferentiated information. Segmentation of this stream at event boundaries is necessary for object identification and feature extraction. Here, we investigate the neural dynamics of event segmentation in entire musical symphonies under natural listening conditions. We isolated time-dependent sequences of brain responses in a 10 s window surrounding transitions between movements of symphonic works. A strikingly right-lateralized network of brain regions showed peak response during the movement transitions when, paradoxically, there was no physical stimulus. Model-dependent and model-free analysis techniques provided converging evidence for activity in two distinct functional networks at the movement transition: a ventral fronto-temporal network associated with detecting salient events, followed in time by a dorsal fronto-parietal network associated with maintaining attention and updating working memory. Our study provides direct experimental evidence for dissociable and causally linked ventral and dorsal networks during event segmentation of ecologically valid auditory stimuli.

  19. Serotonin has early, cilia-independent roles in Xenopus left-right patterning

    Directory of Open Access Journals (Sweden)

    Laura N. Vandenberg

    2013-01-01

    Consistent left-right (LR patterning of the heart and viscera is a crucial part of normal embryogenesis. Because errors of laterality form a common class of birth defects, it is important to understand the molecular mechanisms and stage at which LR asymmetry is initiated. Frog embryos are a system uniquely suited to analysis of the mechanisms involved in orientation of the LR axis because of the many genetic and pharmacological tools available for use and the fate-map and accessibility of early blastomeres. Two major models exist for the origin of LR asymmetry and both implicate pre-nervous serotonergic signaling. In the first, the charged serotonin molecule is instructive for LR patterning; it is redistributed asymmetrically along the LR axis and signals intracellularly on the right side at cleavage stages. A second model suggests that serotonin is a permissive factor required to specify the dorsal region of the embryo containing chiral cilia that generate asymmetric fluid flow during neurulation, a much later process. We performed theory-neutral experiments designed to distinguish between these models. The results uniformly support a role for serotonin in the cleavage-stage embryo, long before the appearance of cilia, in ventral right blastomeres that do not contribute to the ciliated organ.

  20. New strict left bundle branch block criteria reflect left ventricular activation differences

    DEFF Research Database (Denmark)

    Emerek, Kasper Janus Grønn; Risum, Niels; Hjortshøj, Søren Pihlkjær

    2015-01-01

    AIMS: Pacing lead electrical delays and strict left bundle branch block (LBBB) criteria were assessed against cardiac resynchronization therapy (CRT) outcome. METHODS: Forty-nine patients with LBBB and QRS duration >130 milliseconds underwent CRT-implantation. Sensed right ventricular to left ven....... CONCLUSION: Interventricular electrical delay predicts left ventricular remodeling after CRT and new, strict ECG criteria of LBBB are superior in predicting remodeling.......AIMS: Pacing lead electrical delays and strict left bundle branch block (LBBB) criteria were assessed against cardiac resynchronization therapy (CRT) outcome. METHODS: Forty-nine patients with LBBB and QRS duration >130 milliseconds underwent CRT-implantation. Sensed right ventricular to left...... ventricular electrical delay (RV-LV-IED) was measured. Response to CRT was defined as ≥15% decrease in left ventricular end-systolic volume. RESULTS: Eighteen of 20 (90%) patients with non-ischemic dilated cardiomyopathy (DCM) and 18 of 29 (62%) with ischemic heart disease (IHD) responded to CRT, p

  1. Penetrating Osseous Spicules Causing High-Flow Ventral CSF Leaks in the Setting of Relatively Low BMI : A Preliminary Study.

    Science.gov (United States)

    Rosebrock, Richard E; Diehn, Felix E; Luetmer, Patrick H; Wald, John T; Lane, John I; Morris, Jonathan M; Lehman, Vance T; Carr, Carrie M; Mokri, Bahram; Thielen, Kent R

    2017-05-16

    We have anecdotally observed patients with high-flow ventral cerebrospinal fluid (CSF) leaks resulting from penetrating osseous spicules or calcified discs to be relatively thin. The purpose of this study was to explore the validity of this observation and determine if a potential association exists between low body mass index (BMI) and high-flow spinal ventral CSF leaks resulting from such dura-penetrating lesions. Sixteen consecutive patients with precisely localized high-flow ventral spinal CSF leaks on dynamic myelography were identified. The cause of the CSF leak was determined. The BMI on the date nearest to and within 2 weeks of myelography was recorded. Utilizing exact sign test, the body mass index was compared to the average BMI from the National Health and Nutrition Examination Survey (Centers for Disease Control), matched to sex and age-range. The cohort consisted of 10 males (63%) and 6 females with a mean age of 54 years (range 37-72 years). In all patients, a spiculated osteophyte/calcified disc was identified at the site of the leak. Fourteen patients (88%) had a BMI below the matched national average, while only two patients (13%) had values above the national average (p = 0.004). Patients with high-flow ventral CSF leaks resulting from spiculated osteophyte or calcified disc as identified by dynamic myelography are more likely to have a BMI below the U.S. national average, matched for gender and age-range. This exploratory analysis requires confirmation as well as further characterization of potential pathophysiologic mechanisms and impact on radiographic and clinical assessments.

  2. Wingless, decapentaplegic and EGF receptor signaling pathways interact to specify dorso-ventral pattern in the adult abdomen of Drosophila.

    Science.gov (United States)

    Kopp, A; Blackman, R K; Duncan, I

    1999-08-01

    Adult abdominal segments of Drosophila are subdivided along the dorso-ventral axis into a dorsal tergite, a ventral sternite and ventro-lateral pleural cuticle. We report that this pattern is largely specified during the pupal stage by Wingless (Wg), Decapentaplegic (Dpp) and Drosophila EGF Receptor (DER) signaling. Expression of wg and dpp is activated at the posterior edge of the anterior compartment by Hedgehog signaling. Within this region, wg and dpp are expressed in domains that are mutually exclusive along the dorso-ventral axis: wg is expressed in the sternite and medio-lateral tergite, whereas dpp expression is confined to the pleura and the dorsal midline. Neither gene is expressed in the lateral tergite. Shirras and Couso (1996, Dev. Biol. 175, 24-36) have shown that tergite and sternite cell fates are specified by Wg signaling. We find that DER acts synergistically with Wg to promote tergite and sternite identities, and that Wg and DER activities are opposed by Dpp signaling, which promotes pleural identity. Wg and Dpp interact antagonistically at two levels. First, their expression is confined to complementary domains by mutual transcriptional repression. Second, Wg and Dpp compete directly with one another by exerting opposite effects on cell fate. DER signaling does not affect the expression of wg or dpp, indicating that it interacts with Wg and Dpp at the level of cell fate determination. Within the tergite, the requirements for Wg and DER function are roughly complementary: Wg is required mainly in the medial region, whereas DER is most important laterally. Finally, we show that Dpp signaling at the dorsal midline controls dorso-ventral patterning within the tergite by promoting pigmentation in the medial region.

  3. Macroscopic anatomy of the reproductive tract of the reproductively quiescent female emu (Dromaius novaehollandiae).

    Science.gov (United States)

    Reed, Robert B; Cope, Lee A; Blackford, James T

    2011-04-01

    Three reproductively quiescent female emus (Dromaius novaehollandiae) were embalmed with 10% formalin solution. The reproductive tract was dissected and described. The reproductive tract consists of an ovary and oviduct situated on the left side of the abdominal cavity. The left ovary is dark brown to black in colour with follicles covering the ventral surface. The ovary is located medial to the spleen and closely associated with the ventral surface of the cranial and middle lobes of the left kidney. The oviduct is a relatively straight tube that extends from the level of the cranial extent of the left ilium to the caudal border of the left pubic bone. The oviduct is grossly divided into the infundibulum, magnum, isthmus, uterus and vagina using variations in the mucosal fold pattern. © 2010 Blackwell Verlag GmbH.

  4. Failing to learn from negative prediction errors: Obesity is associated with alterations in a fundamental neural learning mechanism.

    Science.gov (United States)

    Mathar, David; Neumann, Jane; Villringer, Arno; Horstmann, Annette

    2017-10-01

    Prediction errors (PEs) encode the difference between expected and actual action outcomes in the brain via dopaminergic modulation. Integration of these learning signals ensures efficient behavioral adaptation. Obesity has recently been linked to altered dopaminergic fronto-striatal circuits, thus implying impairments in cognitive domains that rely on its integrity. 28 obese and 30 lean human participants performed an implicit stimulus-response learning paradigm inside an fMRI scanner. Computational modeling and psycho-physiological interaction (PPI) analysis was utilized for assessing PE-related learning and associated functional connectivity. We show that human obesity is associated with insufficient incorporation of negative PEs into behavioral adaptation even in a non-food context, suggesting differences in a fundamental neural learning mechanism. Obese subjects were less efficient in using negative PEs to improve implicit learning performance, despite proper coding of PEs in striatum. We further observed lower functional coupling between ventral striatum and supplementary motor area in obese subjects subsequent to negative PEs. Importantly, strength of functional coupling predicted task performance and negative PE utilization. These findings show that obesity is linked to insufficient behavioral adaptation specifically in response to negative PEs, and to associated alterations in function and connectivity within the fronto-striatal system. Recognition of neural differences as a central characteristic of obesity hopefully paves the way to rethink established intervention strategies: Differential behavioral sensitivity to negative and positive PEs should be considered when designing intervention programs. Measures relying on penalization of unwanted behavior may prove less effective in obese subjects than alternative approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Evaluation of inter-fraction error during prostate radiotherapy

    International Nuclear Information System (INIS)

    Komiyama, Takafumi; Nakamura, Koji; Motoyama, Tsuyoshi; Onishi, Hiroshi; Sano, Naoki

    2008-01-01

    The purpose of this study was to evaluate inter-fraction error (inter-fraction set-up error+inter-fraction internal organ motion) between treatment planning and delivery during radiotherapy for localized prostate cancer. Twenty three prostate cancer patients underwent image-guided radical irradiation with the CT-linac system. All patients were treated in the supine position. After set-up with external skin markers, using CT-linac system, pretherapy CT images were obtained and isocenter displacement was measured. The mean displacement of the isocenter was 1.8 mm, 3.3 mm, and 1.7 mm in the left-right, ventral-dorsal, and cranial-caudal directions, respectively. The maximum displacement of the isocenter was 7 mm, 12 mm, and 9 mm in the left-right, ventral-dorsal, and cranial-caudal directions, respectively. The mean interquartile range of displacement of the isocenter was 1.8 mm, 3.7 mm, and 2.0 mm in the left-right, ventral-dorsal, and cranial-caudal directions, respectively. In radiotherapy for localized prostate cancer, inter-fraction error was largest in the ventral-dorsal directions. Errors in the ventral-dorsal directions influence both local control and late adverse effects. Our study suggested the set-up with external skin markers was not enough for radical radiotherapy for localized prostate cancer, thereby those such as a CT-linac system for correction of inter-fraction error being required. (author)

  6. Left atrial systolic force in hypertensive patients with left ventricular hypertrophy: the LIFE study

    DEFF Research Database (Denmark)

    Chinali, M.; Simone, G. de; Wachtell, K.

    2008-01-01

    In hypertensive patients without prevalent cardiovascular disease, enhanced left atrial systolic force is associated with left ventricular hypertrophy and increased preload. It also predicts cardiovascular events in a population with high prevalence of obesity. Relations between left atrial...... systolic force and left ventricular geometry and function have not been investigated in high-risk hypertrophic hypertensive patients. Participants in the Losartan Intervention For Endpoint reduction in hypertension echocardiography substudy without prevalent cardiovascular disease or atrial fibrillation (n...... = 567) underwent standard Doppler echocardiography. Left atrial systolic force was obtained from the mitral orifice area and Doppler mitral peak A velocity. Patients were divided into groups with normal or increased left atrial systolic force (>14.33 kdyn). Left atrial systolic force was high in 297...

  7. Separate populations of neurons in ventral striatum encode value and motivation.

    Science.gov (United States)

    Bissonette, Gregory B; Burton, Amanda C; Gentry, Ronny N; Goldstein, Brandon L; Hearn, Taylor N; Barnett, Brian R; Kashtelyan, Vadim; Roesch, Matthew R

    2013-01-01

    Neurons in the ventral striatum (VS) fire to cues that predict differently valued rewards. It is unclear whether this activity represents the value associated with the expected reward or the level of motivation induced by reward anticipation. To distinguish between the two, we trained rats on a task in which we varied value independently from motivation by manipulating the size of the reward expected on correct trials and the threat of punishment expected upon errors. We found that separate populations of neurons in VS encode expected value and motivation.

  8. Laparoscopic ventral rectopexy in an elderly population with external rectal prolapse

    DEFF Research Database (Denmark)

    Bjerke, Trine; Mynster, Tommie

    2014-01-01

    AIM: We report the clinical and anal manometric results of elderly patients treated with laparoscopic ventral rectopexy (LVR) for full-thickness rectal prolapse. METHOD: From March 2009 to June 2012, patients were consecutively included. A modified laparoscopic Orr-Loygue procedure with posterior...... mobilisation was used. The patients were evaluated preoperatively, 2 months postoperatively and after 1 year. We registered Wexner incontinence scores and laxative uses by a questionnaire and performed simple anal manometry. RESULTS: A total of 46 patients underwent operation, all women. The median age was 83...

  9. Genetic analysis of Hedgehog signaling in ventral body wall development and the onset of omphalocele formation

    NARCIS (Netherlands)

    Matsumaru, D.; Haraguchi, R.; Miyagawa, S.; Motoyama, J.; Nakagata, N.; Meijlink, F.; Yamada, G.

    2011-01-01

    BACKGROUND: An omphalocele is one of the major ventral body wall malformations and is characterized by abnormally herniated viscera from the body trunk. It has been frequently found to be associated with other structural malformations, such as genitourinary malformations and digit abnormalities. In

  10. Fetal porcine ventral mesencephalon graft. Determination of the optimal gestational age for implantation in Parkinsonian patients

    NARCIS (Netherlands)

    HogenEsch, RI; Koopmans, J; Copray, JCVM; van Roon, WMC; Kema, [No Value; Molenaar, G; Go, KG; Staal, MJ

    Human fetal ventral mesencephalon tissue has been used as dopaminergic striatal implants in Parkinsonian patients, so far with variable effects. Fetuses from animals that breed in large litters, e.g., pigs, have been considered as alternative donors of dopaminergic tissue. The optimal gestational

  11. A Rare Case of Strangulated Meckel%u2019s Diverticulum in an Incarcerated Ventral Incisional Hernia

    Directory of Open Access Journals (Sweden)

    Murat Kilic

    2014-02-01

    Full Text Available Incisional or postoperative hernia, one of the most common surgical procedure in general surgery practice, mostly occurs in the first years following abdominal operations. Incarceration or strangulation is a serious complication of these hernias, and mostly requires emergent surgery. Meckel%u2019s diverticulum, the most frequent congenital anomaly of the gastrointestinal tract, is rarely found within a hernial sac and this unusual condition is called as Littre%u2019s hernia. In addition, preoperative diagnosis of this unusual condition is rather difficult and it is almost always first discovered during operation. A small number of cases of strangulated Meckel%u2019s Diverticulum in an incarcerated ventral incisional hernia have been reported in the literature. Herein, we report a strangulated Meckel%u2019s Diverticulum through a ventral incisional hernia in a 65 year-old woman who presented with clinical signs of intestinal obstruction.

  12. A functional difference in information processing between orbitofrontal cortex and ventral striatum during decision-making behaviour.

    Science.gov (United States)

    Stott, Jeffrey J; Redish, A David

    2014-11-05

    Both orbitofrontal cortex (OFC) and ventral striatum (vStr) have been identified as key structures that represent information about value in decision-making tasks. However, the dynamics of how this information is processed are not yet understood. We recorded ensembles of cells from OFC and vStr in rats engaged in the spatial adjusting delay-discounting task, a decision-making task that involves a trade-off between delay to and magnitude of reward. Ventral striatal neural activity signalled information about reward before the rat's decision, whereas such reward-related signals were absent in OFC until after the animal had committed to its decision. These data support models in which vStr is directly involved in action selection, but OFC processes decision-related information afterwards that can be used to compare the predicted and actual consequences of behaviour. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  13. Direct Exploration of the Role of the Ventral Anterior Temporal Lobe in Semantic Memory: Cortical Stimulation and Local Field Potential Evidence From Subdural Grid Electrodes.

    Science.gov (United States)

    Shimotake, Akihiro; Matsumoto, Riki; Ueno, Taiji; Kunieda, Takeharu; Saito, Satoru; Hoffman, Paul; Kikuchi, Takayuki; Fukuyama, Hidenao; Miyamoto, Susumu; Takahashi, Ryosuke; Ikeda, Akio; Lambon Ralph, Matthew A

    2015-10-01

    Semantic memory is a crucial higher cortical function that codes the meaning of objects and words, and when impaired after neurological damage, patients are left with significant disability. Investigations of semantic dementia have implicated the anterior temporal lobe (ATL) region, in general, as crucial for multimodal semantic memory. The potentially crucial role of the ventral ATL subregion has been emphasized by recent functional neuroimaging studies, but the necessity of this precise area has not been selectively tested. The implantation of subdural electrode grids over this subregion, for the presurgical assessment of patients with partial epilepsy or brain tumor, offers the dual yet rare opportunities to record cortical local field potentials while participants complete semantic tasks and to stimulate the functionally identified regions in the same participants to evaluate the necessity of these areas in semantic processing. Across 6 patients, and utilizing a variety of semantic assessments, we evaluated and confirmed that the anterior fusiform/inferior temporal gyrus is crucial in multimodal, receptive, and expressive, semantic processing. © The Author 2014. Published by Oxford University Press.

  14. Technical Case Report of Deep Brain Stimulation: Is it Possible Single Electrode Reach to Both of Subthalamic Nucleus and Ventral Intermediate Nucleus in One Stage?

    Science.gov (United States)

    Kaptan, Hülagu; Çakmur, Raif

    2018-04-15

    The primary target of this operation is Ventral Intermediate Nucleus (VIM); however VIM - Subthalamic Nucleus (STN) were tried to be reached with one electrode, adjusting the angle well, the coronal section; medial of VIM can partially reach the STN. Using the properties of the electrode; we believe we could act on a wide area. An analysis was performed on one patient who underwent VIM Deep Brain Stimulation (DBS) in 3 periods (pre - peri - post-operation). A 53 - year - old woman diagnosed with Parkinson's disease 8 years earlier including symptoms of severe tremor on the right than left underwent bilateral DBS VIM. Obtaining a satisfactory improvement of tremor, the patient did well, and postoperative complications were not observed. The patient was discharged from hospital on postoperative thirty day. It is certain that more research and experience are needed. However, we believe that the two targets can reach the same point and the second operations for another target can be avoided.We believe that this initiative is advantageous and promising regarding patient and cost.

  15. Ramification and distribution of the phrenic nerves in diaphragm of horses

    Directory of Open Access Journals (Sweden)

    Wilson Santiago

    1990-12-01

    Full Text Available The phrenic nerve distribution in 50 diaphragmas from mixed breeding adult horses (25 males and 25 females obtained from a slaughter house ("Avante", located in Araguari, State of Minas Gerais, was studied. The results indicated the following characteristics: 1 the ventral branch and laterodorsal trunk were extended 42 times (84% to the right side, 5 times (10% to the left, while the dorsal and the lateroventral trunk were 40 times (80% to the left and 2 times (4% to the right. The common origin of the dorsal, lateral and ventral branch were 6 times (12% to the right and 5 times (10% to the left. 2 The right and left bifurcation of the phrenic nerve were symmetrically arranged in: laterodorsal trunk and ventral branch 9 times (18%; lateroventral trunk and dorsal branch 5 times (10% and simultaneously in lateral and ventral dorsal branches 2 times (4%. 3 The right and left dorsal branches of the phrenic nerve were always distributed on the limbar portion (medial and lateral pillar in relation to their origins. The distribution of the nervous fillets from the right dorsal branch to the dorsal foliolo was: one fillet 10 times (20% and 2 fillets 1 time (2% respectively. To the tendinous center one fillet (2% was observed. From the left dorsal branch in 50 times (100% there was one fillet going to the right medial pillar. In relation to the left dorsal foliolo there was: one fillet 3 times (6% and 2 fillets 3 times (6% and in relation to the tendinous center there was: one fillet 3 times (6%; 2 fillets 2 times (4% and 4 fillets just once (2%. 4 From the right and left lateral branches of the phrenic nerve in all observations (100% there were fillets going to the lateral dorsal region in both sides. The distribution of the emerging fibers from the right lateral branch to the do sal foliolo was 1  fillet 6 times (12%; 2 fillets 3 times (6%; 3 fillets 1 time (2% and to the right lateral pillar 1 fillet 2 times (4%. The distribution of the emerging

  16. Boolean modelling reveals new regulatory connections between transcription factors orchestrating the development of the ventral spinal cord.

    KAUST Repository

    Lovrics, Anna; Gao, Yu; Juhá sz, Bianka; Bock, Istvá n; Byrne, Helen M; Dinnyé s, Andrá s; Ková cs, Krisztiá n A

    2014-01-01

    with the five known progenitor cell types located in the ventral spinal cord. The revised gene regulatory network reproduced previously observed cell state switches between progenitor cells observed in knock-out animal models or in experiments where

  17. Repair of aorto-left ventricular tunnel arising from the left sinus of valsalva.

    Science.gov (United States)

    Nezafati, Mohammad Hassan; Maleki, Mahmood Hosseinzadeh; Javan, Hadi; Zirak, Nahid

    2010-05-01

    Aortico-left ventricular tunnel (ALVT) is a rare congenital cardiac defect that bypasses the aortic valve via a para-valvular connection from the left ventricle to the aorta. In most cases, the tunnel arises from the right aortic sinus. In this case report, we are presenting a case of ALVT, of which the aortic orifice arose from the left aortic sinus, requiring special attention to avoid the left coronary artery injury at the time of surgical repair.

  18. Real-time parallel processing of grammatical structure in the fronto-striatal system: a recurrent network simulation study using reservoir computing.

    Science.gov (United States)

    Hinaut, Xavier; Dominey, Peter Ford

    2013-01-01

    Sentence processing takes place in real-time. Previous words in the sentence can influence the processing of the current word in the timescale of hundreds of milliseconds. Recent neurophysiological studies in humans suggest that the fronto-striatal system (frontal cortex, and striatum--the major input locus of the basal ganglia) plays a crucial role in this process. The current research provides a possible explanation of how certain aspects of this real-time processing can occur, based on the dynamics of recurrent cortical networks, and plasticity in the cortico-striatal system. We simulate prefrontal area BA47 as a recurrent network that receives on-line input about word categories during sentence processing, with plastic connections between cortex and striatum. We exploit the homology between the cortico-striatal system and reservoir computing, where recurrent frontal cortical networks are the reservoir, and plastic cortico-striatal synapses are the readout. The system is trained on sentence-meaning pairs, where meaning is coded as activation in the striatum corresponding to the roles that different nouns and verbs play in the sentences. The model learns an extended set of grammatical constructions, and demonstrates the ability to generalize to novel constructions. It demonstrates how early in the sentence, a parallel set of predictions are made concerning the meaning, which are then confirmed or updated as the processing of the input sentence proceeds. It demonstrates how on-line responses to words are influenced by previous words in the sentence, and by previous sentences in the discourse, providing new insight into the neurophysiology of the P600 ERP scalp response to grammatical complexity. This demonstrates that a recurrent neural network can decode grammatical structure from sentences in real-time in order to generate a predictive representation of the meaning of the sentences. This can provide insight into the underlying mechanisms of human cortico

  19. What's Left of the Left-Right Dimension? Why the Economic Policy Positions of Europeans Do Not Fit the Left-Right Dimension.

    Science.gov (United States)

    Otjes, Simon

    2018-01-01

    In political science the economic left-right dimension plays a central role. A growing body of evidence shows that the economic policy preferences of a large segment of citizens do not scale sufficiently. Using Mokken scale analysis, this study determines the causes of this phenomenon. Differences in the extent to which the economic policy preferences of citizens fit the left-right dimension can be explained in terms of the interaction between individual level and political system-level variables: citizens who spend more attention to politicians with views that conform to the left-right dimension, have views that conform to the left-right dimension. There is also a role for the legacy of communist dictatorship: citizens who were socialised in democratic countries have views that fit the left-right dimension better than those socialised during communism.

  20. Anatomic relationship between left coronary artery and left atrium in patients undergoing atrial fibrillation ablation.

    Science.gov (United States)

    Anselmino, Matteo; Torri, Federica; Ferraris, Federico; Calò, Leonardo; Castagno, Davide; Gili, Sebastiano; Rovera, Chiara; Giustetto, Carla; Gaita, Fiorenzo

    2017-07-01

    Atrial fibrillation transcatheter ablation (TCA) is, within available atrial fibrillation rhythm control strategies, one of the most effective. To potentially improve ablation outcome in case of recurrent atrial fibrillation after a first procedure or in presence of structural myocardial disease, isolation of the pulmonary veins may be associated with extensive lesions within the left atrium. To avoid rare, but potentially life-threatening, complications, thorough knowledge and assessment of left atrium anatomy and its relation to structures in close proximity are, therefore, mandatory. Aim of the present study is to describe, by cardiac computed tomography, the anatomic relationship between aortic root, left coronary artery and left atrium in patients undergoing atrial fibrillation TCA. The cardiac computed tomography scan of 21 patients affected by atrial fibrillation was elaborated to segment left atrium, aortic root and left coronary artery from the surrounding structures and the following distances measured: left atrium and aortic root; left atrium roof and aortic root; left main coronary artery and left atrium; circumflex artery and left atrium appendage; and circumflex artery and mitral valve annulus. Above all, the median distance between left atrium and aortic root (1.9, 1.5-2.1 mm), and between circumflex artery and left atrium appendage ostium (3.0, 2.1-3.4 mm) were minimal (≤3 mm). None of measured distances significantly varied between patients presenting paroxysmal versus persistent atrial fibrillation. The anatomic relationship between left atrium and coronary arteries is extremely relevant when performing atrial fibrillation TCA by extensive lesions. Therefore, at least in the latter case, preablation imaging should be recommended to avoid rare, but potentially life-threatening, complications with the aim of an as well tolerated as possible procedure.

  1. Relative Contributions of the Dorsal vs. Ventral Speech Streams to Speech Perception are Context Dependent: a lesion study

    Directory of Open Access Journals (Sweden)

    Corianne Rogalsky

    2014-04-01

    , (iii two sentence comprehension tasks (sentence-picture matching, plausibility judgments, and (iv two sensory-motor tasks (a non-word repetition task and BDAE repetition subtest. Our results indicate that the neural bases of speech perception are task-dependent. The syllable discrimination and sensory-motor tasks all identified a dorsal temporal-parietal voxel cluster, including area Spt, primary auditory and somatosensory cortex. Conversely, the auditory comprehension task identified left mid-temporal regions. This suggest that syllable discrimination deficits do not stem from impairments in the perceptual analysis of speech sounds but rather involve temporary maintenance of the stimulus trace and/or the similarity comparison process. The ventral stream (anterior and posterior clusters in the superior and middle temporal gyri, were associated with both sentence tasks. However, the dorsal stream’s involvement was more selective: inferior frontal regions were identified in the sentence–to-picture matching task, not the semantic plausibility task. Within the sentence-to-picture matching task, these inferior frontal regions were only identified by the trials with the most difficult sentences. This suggests that the dorsal stream’s contribution to sentence comprehension is not driven by perception per se. These initial findings highlight the task-dependent nature of speech processing, challenge claims regarding any specific motor region being critical for speech perception, and refute the notion that speech perception relies on dorsal stream auditory-motor systems.

  2. Differential Signatures of Second Language Syntactic Performance and Age on the Structural Properties of the Left Dorsal Pathway

    Directory of Open Access Journals (Sweden)

    Kayako Yamamoto

    2017-05-01

    Full Text Available In adult second language (L2 acquisition, individual differences are considerably large even among people with similar experiences. The neural mechanisms underlying this variability would include structural plasticity of language-related pathways. To elucidate such neuroplasticity, we focused on the transitional period of adolescence, which is associated with certain plasticity toward maturation following the sensitive period of language acquisition (≤12 years old. The adolescent brain would thus be influenced by age-dependent factors, as well as performances in L2. Here, we examined individual differences in L2 performances controlling the duration of experience to reveal the differential signatures of performances and age on the plasticity of structural properties in major language-related pathways. We recruited Japanese students at two ages, i.e., junior (age: 13–14 and senior (age: 16–17 high-school students, all of whom started to expose to English at age 12 or 13. We divided them into subgroups, so that either L2 performance [Junior (High/Senior (Low] or age [Senior (Low/Senior (High] was matched in group comparisons; the duration of L2 experience was also controlled between the Senior (Low and Senior (High groups. We then examined the thickness and fractional anisotropy (FA of the dorsal and ventral pathways, i.e., the arcuate fasciculus (Arcuate and inferior fronto-occipital fasciculus (IFOF, respectively, using semi-automatic methods for selecting regions without branches. Regarding FA in the left Arcuate, the Senior (High group showed significantly higher FA than the other two groups, indicating performance-related group differences. Further, FA in the left Arcuate was selectively correlated with the accuracy of a syntactic task. Regarding the thickness of the left Arcuate, the Senior (High and Senior (Low groups showed significantly larger thickness than the Junior (High group, indicating age-related group differences. These

  3. Mapping of the left-sided phrenic nerve course in patients undergoing left atrial catheter ablations.

    Science.gov (United States)

    Huemer, Martin; Wutzler, Alexander; Parwani, Abdul S; Attanasio, Philipp; Haverkamp, Wilhelm; Boldt, Leif-Hendrik

    2014-09-01

    Catheter ablation of atrial fibrillation has been associated with left-sided phrenic nerve palsy. Knowledge of the individual left phrenic nerve course therefore is essential to prevent nerve injury. The aim of this study was to test the feasibility of an intraprocedural pace mapping and reconstruction of the left phrenic nerve course and to characterize which anatomical areas are affected. In patients undergoing left atrial catheter ablation, a three-dimensional map of the left atrial anatomical structures was created. The left-sided phrenic nerve course was determined by high-output pace mapping and reconstructed in the map. In this study, 40 patients with atrial fibrillation or atrial tachycardias were included. Left phrenic nerve capture was observed in 23 (57.5%) patients. Phrenic nerve was captured in 22 (55%) patients inside the left atrial appendage, in 22 (55%) in distal parts, in 21 (53%) in medial parts, and in two (5%) in ostial parts of the appendage. In three (7.5%) patients, capture was found in the distal coronary sinus and in one (2.5%) patient in the left atrium near the left atrial appendage ostium. Ablation target was changed due to direct spatial relationship to the phrenic nerve in three (7.5%) patients. No phrenic nerve palsy was observed. Left-sided phrenic nerve capture was found inside and around the left atrial appendage in the majority of patients and additionally in the distal coronary sinus. Phrenic nerve mapping and reconstruction can easily be performed and should be considered prior catheter ablations in potential affected areas. ©2014 Wiley Periodicals, Inc.

  4. Description of the celiac artery in domestic pigeons (Columba livia

    Directory of Open Access Journals (Sweden)

    Cibele Geeverghese

    2012-06-01

    Full Text Available This paper aimed to define the origin and distribution of the celiac artery and its collateral branches in 15 fowls from the Columba livia species, which were obtained from the Zoonosis Control Center of Brasilia, Brazil. In order to mark the arterial system of the specimens, the left brachiocephalic trunk was canullated and a colored water-latex solution was injected there. Afterwards, fowls were fixed in a 10% v/v formaldehyde solution and dissected with appropriate equipment, presenting the results described in this paper. The celiac artery originated from the ventral face of the descendent aorta. The first collateral branch arose from the celiac artery itself, forming the esophageal artery. Then, the celiac artery has bifurcated into two branches, named left and right branches of the celiac artery. The left branch emitted the proventricular ventral artery, followed by the splenic arteries, proventricular dorsal artery, and the left hepatic artery. The left branch has bifurcated into two branches, known as ventral and left gastric arteries. The right branch emitted the right hepatic artery, followed by the ileal artery and the right gastric artery. Finally, the right branch turned into the pancreaticoduodenal artery. Our findings showed a great similarity with the avian lineages of the Gallus gallus species, except for the lack of ileocecal artery, cystic branches, and dorsal gastric artery.

  5. Altered white matter tract property related to impaired focused attention, sustained attention, cognitive impulsivity and vigilance in attention-deficit/ hyperactivity disorder.

    Science.gov (United States)

    Chiang, Huey-Ling; Chen, Yu-Jen; Lo, Yu-Chun; Tseng, Wen-Yih I; Gau, Susan S

    2015-09-01

    The neural substrate for clinical symptoms and neuropsychological performance in individuals with attention-deficit/hyperactivity disorder (ADHD) has rarely been studied and has yielded inconsistent results. We sought to compare the microstructural property of fibre tracts associated with the prefrontal cortex and its association with ADHD symptoms and a wide range of attention performance in youth with ADHD and healthy controls. We assessed youths with ADHD and age-, sex-, handedness-, coil- and intelligence-matched controls using the Conners' Continuous Performance Test (CCPT) for attention performance and MRI. The 10 target tracts, including the bilateral frontostriatal tracts (caudate to dorsolateral prefrontal cortex, ventrolateral prefrontal cortex and orbitofrontal cortex), superior longitudinal fasciculus (SLF) and cingulum bundle were reconstructed using diffusion spectrum imaging tractography. We computed generalized fractional anisotropy (GFA) values to indicate tract-specific microstructural property. We included 50 youths with ADHD and 50 healthy controls in our study. Youths with ADHD had lower GFA in the left frontostriatal tracts, bilateral SLF and right cingulum bundle and performed worse in the CCPT than controls. Furthermore, alteration of the right SLF GFA was most significantly associated with the clinical symptom of inattention in youths with ADHD. Finally, youths with ADHD had differential association patterns of the 10 fibre tract GFA values with attention performance compared with controls. Ten of the youths with ADHD were treated with methylphenidate, which may have long-term effects on microstructural property. Our study highlights the importance of the SLF, cingulum bundle and frontostriatal tracts for clinical symptoms and attention performance in youths with ADHD and demonstrates the involvement of different fibre tracts in attention performance in these individuals.

  6. [Comparison of dorso-lateral and dorso-ventral stabilization procedures in the treatment of vertebral fractures].

    Science.gov (United States)

    Bertram, R; Bessem, H; Diedrich, O; Wagner, U; Schmitt, O

    2003-01-01

    The radiological and clinical outcome of surgical treated thoracolumbal fractures were followed up after 6.7 years. The study encompassed 97 patients. The degrees of the bony deformation and the local kyphosis were measured on the lateral view X-ray at 4 different time points: post trauma, after the operation, before implant removal and at the follow up examination. The clinical outcome was evaluated by the Oswestry score. 74 fractures were treated with a fixateur intern and a dorsal fusion by apposition of autologous bone postero-laterally. 23 fractures were fused in a combined dorso-ventral manner by intervertebral fusion with tricortical autologous bone. The lateral X-rays showed a loss of correction up to 48 % in the dorsal fused group and 10 % loss of correction in the combined group. The local kyphosis increased up to 84 % in the dorsal operated group due to degeneration of the injured disk. The clinical Oswestry score showed no significant difference in both groups. The additional ventral surgery should be evaluated carefully.

  7. Word meaning in the ventral visual path: a perceptual to conceptual gradient of semantic coding.

    Science.gov (United States)

    Borghesani, Valentina; Pedregosa, Fabian; Buiatti, Marco; Amadon, Alexis; Eger, Evelyn; Piazza, Manuela

    2016-12-01

    The meaning of words referring to concrete items is thought of as a multidimensional representation that includes both perceptual (e.g., average size, prototypical color) and conceptual (e.g., taxonomic class) dimensions. Are these different dimensions coded in different brain regions? In healthy human subjects, we tested the presence of a mapping between the implied real object size (a perceptual dimension) and the taxonomic categories at different levels of specificity (conceptual dimensions) of a series of words, and the patterns of brain activity recorded with functional magnetic resonance imaging in six areas along the ventral occipito-temporal cortical path. Combining multivariate pattern classification and representational similarity analysis, we found that the real object size implied by a word appears to be primarily encoded in early visual regions, while the taxonomic category and sub-categorical cluster in more anterior temporal regions. This anteroposterior gradient of information content indicates that different areas along the ventral stream encode complementary dimensions of the semantic space. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Oral, intestinal, and skin bacteria in ventral hernia mesh implants

    Directory of Open Access Journals (Sweden)

    Odd Langbach

    2016-07-01

    Full Text Available Background: In ventral hernia surgery, mesh implants are used to reduce recurrence. Infection after mesh implantation can be a problem and rates around 6–10% have been reported. Bacterial colonization of mesh implants in patients without clinical signs of infection has not been thoroughly investigated. Molecular techniques have proven effective in demonstrating bacterial diversity in various environments and are able to identify bacteria on a gene-specific level. Objective: The purpose of this study was to detect bacterial biofilm in mesh implants, analyze its bacterial diversity, and look for possible resemblance with bacterial biofilm from the periodontal pocket. Methods: Thirty patients referred to our hospital for recurrence after former ventral hernia mesh repair, were examined for periodontitis in advance of new surgical hernia repair. Oral examination included periapical radiographs, periodontal probing, and subgingival plaque collection. A piece of mesh (1×1 cm from the abdominal wall was harvested during the new surgical hernia repair and analyzed for bacteria by PCR and 16S rRNA gene sequencing. From patients with positive PCR mesh samples, subgingival plaque samples were analyzed with the same techniques. Results: A great variety of taxa were detected in 20 (66.7% mesh samples, including typical oral commensals and periodontopathogens, enterics, and skin bacteria. Mesh and periodontal bacteria were further analyzed for similarity in 16S rRNA gene sequences. In 17 sequences, the level of resemblance between mesh and subgingival bacterial colonization was 98–100% suggesting, but not proving, a transfer of oral bacteria to the mesh. Conclusion: The results show great bacterial diversity on mesh implants from the anterior abdominal wall including oral commensals and periodontopathogens. Mesh can be reached by bacteria in several ways including hematogenous spread from an oral site. However, other sites such as gut and skin may also

  9. Watchful waiting as a treatment strategy for patients with a ventral hernia appears to be safe

    DEFF Research Database (Denmark)

    Kokotovic, D; Sjølander, H; Gögenur, I

    2016-01-01

    PURPOSE: Due to risks of postoperative morbidity and recurrence some patients with a ventral hernia are not offered surgical repair. There is limited data on the rate and consequences of a watchful waiting (WW) strategy for these patients. The objective of this cohort study was to analyse outcome...

  10. Preoperative Botulinum toxin A enabling defect closure and laparoscopic repair of complex ventral hernia.

    Science.gov (United States)

    Rodriguez-Acevedo, Omar; Elstner, Kristen E; Jacombs, Anita S W; Read, John W; Martins, Rodrigo Tomazini; Arduini, Fernando; Wehrhahm, Michael; Craft, Colette; Cosman, Peter H; Dardano, Anthony N; Ibrahim, Nabeel

    2018-02-01

    Operative management of complex ventral hernia still remains a significant challenge for surgeons. Closure of large defects in the unprepared abdomen has serious pathophysiological consequences due to chronic contraction and retraction of the lateral abdominal wall muscles. We report outcomes of 56 consecutive patients who had preoperative Botulinum toxin A (BTA) abdominal wall relaxation facilitating closure and repair. This was a prospective observational study of 56 patients who underwent ultrasound-guided BTA into the lateral abdominal oblique muscles prior to elective ventral hernia repair between November 2012 and January 2017. Serial non-contrast abdominal CT imaging was performed to evaluate changes in lateral oblique muscle length and thickness. All hernias were repaired laparoscopically, or laparoscopic-open-laparoscopic (LOL) using intraperitoneal onlay mesh. 56 patients received BTA injections at predetermined sites to the lateral oblique muscles, which were well tolerated. Mean patient age was 59.7 years, and mean BMI was 30.9 kg/m 2 (range 21.8-54.0). Maximum defect size was 24 × 27 cm. A subset of 18 patients underwent preoperative pneumoperitoneum as an adjunct procedure. A comparison of pre-BTA to post-BTA imaging demonstrated an increase in mean lateral abdominal wall length from 16.1 cm to 20.1 cm per side, a mean gain of 4.0 cm/side (range 1.0-11.7 cm/side) (p LOL primary closure was achieved in all cases, with no clinical evidence of raised intra-abdominal pressures. One patient presented with a new fascial defect 26 months post-operative. Preoperative BTA to the lateral abdominal wall muscles is a safe and effective technique for the preparation of patients prior to operative management of complex ventral hernias. BTA temporary flaccid paralysis relaxes, elongates and thins the chronically contracted abdominal musculature. This in turn reduces lateral traction forces facilitating laparoscopic repair and fascial closure of large

  11. Restructuring Reward Mechanisms in Nicotine Addiction: A Pilot fMRI Study of Mindfulness-Oriented Recovery Enhancement for Cigarette Smokers

    Directory of Open Access Journals (Sweden)

    B. Froeliger

    2017-01-01

    Full Text Available The primary goal of this pilot feasibility study was to examine the effects of Mindfulness-Oriented Recovery Enhancement (MORE, a behavioral treatment grounded in dual-process models derived from cognitive science, on frontostriatal reward processes among cigarette smokers. Healthy adult (N=13; mean (SD age 49 ± 12.2 smokers provided informed consent to participate in a 10-week study testing MORE versus a comparison group (CG. All participants underwent two fMRI scans: pre-tx and after 8-weeks of MORE. Emotion regulation (ER, smoking cue reactivity (CR, and resting-state functional connectivity (rsFC were assessed at each fMRI visit; smoking and mood were assessed throughout. As compared to the CG, MORE significantly reduced smoking (d=2.06 and increased positive affect (d=2.02. MORE participants evidenced decreased CR-BOLD response in ventral striatum (VS; d=1.57 and ventral prefrontal cortex (vPFC; d=1.7 and increased positive ER-BOLD in VS (dVS=2.13 and vPFC (dvmPFC=2.66. Importantly, ER was correlated with smoking reduction (r’s = .68 to .91 and increased positive affect (r’s = .52 to .61. These findings provide preliminary evidence that MORE may facilitate the restructuring of reward processes and play a role in treating the pathophysiology of nicotine addiction.

  12. Ventral striatal activity links adversity and reward processing in children

    Directory of Open Access Journals (Sweden)

    Niki H. Kamkar

    2017-08-01

    Full Text Available Adversity impacts many aspects of psychological and physical development including reward-based learning and decision-making. Mechanisms relating adversity and reward processing in children, however, remain unclear. Here, we show that adversity is associated with potentiated learning from positive outcomes and impulsive decision-making, but unrelated to learning from negative outcomes. We then show via functional magnetic resonance imaging that the link between adversity and reward processing is partially mediated by differences in ventral striatal response to rewards. The findings suggest that early-life adversity is associated with alterations in the brain’s sensitivity to rewards accounting, in part, for the link between adversity and altered reward processing in children.

  13. Endogenous Opioid-Induced Neuroplasticity of Dopaminergic Neurons in the Ventral Tegmental Area Influences Natural and Opiate Reward

    NARCIS (Netherlands)

    Pitchers, Kyle K.; Coppens, Caroline M.; Beloate, Lauren N.; Fuller, Jonathan; Van, Sandy; Frohmader, Karla S.; Laviolette, Steven R.; Lehman, Michael N.; Coolen, Lique M.

    2014-01-01

    Natural reward and drugs of abuse converge on the mesolimbic pathway and activate common mechanism of neural plasticity in the nucleus accumbens. Chronic exposure to opiates induces plasticity in dopaminergic neurons of the ventral tegmental area (VTA), which regulates morphine reward tolerance.

  14. Gene expression patterns in the ventral tegmental area relate to oestrus behaviour in high-producing dairy cows

    NARCIS (Netherlands)

    Wyszynska-Koko, J.; Wit, de A.A.C.; Beerda, B.; Veerkamp, R.F.; Pas, te M.F.W.

    2011-01-01

    Reduced oestrus behaviour expression or its absence (silent oestrus) results in subfertility in high-producing dairy cows. Insight into the genomic regulation of oestrus behaviour is likely to help alleviate reproduction problems. Here, gene expression was recorded in the ventral tegmental area

  15. Dopamine release in ventral striatum during Iowa Gambling Task performance is associated with increased excitement levels in pathological gambling

    DEFF Research Database (Denmark)

    Linnet, Jakob; Møller, Arne; Peterson, Ericka

    2011-01-01

    Aims Gambling excitement is believed to be associated with biological measures of pathological gambling. Here, we tested the hypothesis that dopamine release would be associated with increased excitement levels in Pathological Gamblers compared with Healthy Controls. Design Pathological Gamblers...... and Healthy Controlswere experimentally compared in a non-gambling (baseline) and gambling condition. Measurements We used Positron Emission Tomography (PET) with the tracer raclopride to measure dopamine D 2/3 receptor availability in the ventral striatum during a non-gambling and gambling condition...... of the Iowa GamblingTask (IGT). After each condition participants rated their excitement level. Setting Laboratory experiment. Participants 18 Pathological Gamblers and 16 Healthy Controls. Findings Pathological Gamblers with dopamine release in the ventral striatum had significantly higher excitement levels...

  16. The improbability of dorso-ventral axis inversion during animal evolution, as presumed by Geoffroy Saint Hilaire

    NARCIS (Netherlands)

    Biggelaar, van den J.A.M.; Edsinger-Gonzales, E.; Schram, F.R.

    2002-01-01

    Recent discoveries in the field of developmental genetics have lead to the resurrection of the old idea, first proposed in the early 19th century, that the dorso-ventral axis of deuterostomes, such as vertebrates, has been inverted during the course of evolution from that noted in protostomes, i.e.,

  17. Characterization of organotypic ventral mesencephalic cultures from embryonic mice and protection against MPP toxicity by GDNF

    DEFF Research Database (Denmark)

    Jakobsen, B; Gramsbergen, J B; Møller Dall, A

    2005-01-01

    We characterized organotypic ventral mesencephalic (VM) cultures derived from embryonic day 12 (E12) mice (CBL57/bL6) in terms of number of dopaminergic neurons, cell soma size and dopamine production in relation to time in vitro and tested the effects of 1-methyl-4-phenylpyridinium (MPP(+)) and ...

  18. Dynamic Functional Connectivity States Between the Dorsal and Ventral Sensorimotor Networks Revealed by Dynamic Conditional Correlation Analysis of Resting-State Functional Magnetic Resonance Imaging.

    Science.gov (United States)

    Syed, Maleeha F; Lindquist, Martin A; Pillai, Jay J; Agarwal, Shruti; Gujar, Sachin K; Choe, Ann S; Caffo, Brian; Sair, Haris I

    2017-12-01

    Functional connectivity in resting-state functional magnetic resonance imaging (rs-fMRI) has received substantial attention since the initial findings of Biswal et al. Traditional network correlation metrics assume that the functional connectivity in the brain remains stationary over time. However, recent studies have shown that robust temporal fluctuations of functional connectivity among as well as within functional networks exist, challenging this assumption. In this study, these dynamic correlation differences were investigated between the dorsal and ventral sensorimotor networks by applying the dynamic conditional correlation model to rs-fMRI data of 20 healthy subjects. k-Means clustering was used to determine an optimal number of discrete connectivity states (k = 10) of the sensorimotor system across all subjects. Our analysis confirms the existence of differences in dynamic correlation between the dorsal and ventral networks, with highest connectivity found within the ventral motor network.

  19. Left-Deviating Prism Adaptation in Left Neglect Patient: Reflexions on a Negative Result

    Directory of Open Access Journals (Sweden)

    Jacques Luauté

    2012-01-01

    Full Text Available Adaptation to right-deviating prisms is a promising intervention for the rehabilitation of patients with left spatial neglect. In order to test the lateral specificity of prism adaptation on left neglect, the present study evaluated the effect of left-deviating prism on straight-ahead pointing movements and on several classical neuropsychological tests in a group of five right brain-damaged patients with left spatial neglect. A group of healthy subjects was also included for comparison purposes. After a single session of exposing simple manual pointing to left-deviating prisms, contrary to healthy controls, none of the patients showed a reliable change of the straight-ahead pointing movement in the dark. No significant modification of attentional paper-and-pencil tasks was either observed immediately or 2 hours after prism adaptation. These results suggest that the therapeutic effect of prism adaptation on left spatial neglect relies on a specific lateralized mechanism. Evidence for a directional effect for prism adaptation both in terms of the side of the visuomanual adaptation and therefore possibly in terms of the side of brain affected by the stimulation is discussed.

  20. Selection of appropriate medial branch of the optic tract by fibres of ventral retinal origin during development and in regeneration: an autoradiographic study in Xenopus

    International Nuclear Information System (INIS)

    Straznicky, C.; Gaze, R.M.; Horder, T.J.

    1979-01-01

    The formation of the branches of the optic tract has been studied with the use of [ 3 H] -proline autoradiography, during development and during regeneration of the optic nerve in Xenopus with one compound ventral (VV) eye made by the embryonic fusion of two ventral eye fragments. The formation of the optic pathway was abnormal in that the lateral branch failed to develop, suggesting that fibres from a VV retina selectively entered the tectum via the medial branch during development. Three months after section of the optic nerve of a VV eye, regenerated fibres were present both in the contralateral and ipsilateral tecta. On the ipsilateral side regenerated fibres entered the tectum via the medial branch only. Retinal fibres entered the contralateral tectum through both branches in some animals and through the medial branch only in others. It is concluded that mechanical factors alone are insufficient to explain the phenomenon of selection of the appropriate medial branch fibres of ventral retinal origin either during development or in regeneration. Some form of fibre-substrate interaction seems to be necessary; and this ability of fibres from a VV eye to take the path appropriate for ventral retina argues strongly that the VV eye is not a regulated system in terms of cell specificities. 8author)

  1. Histamine ameliorates spatial memory deficits induced by MK-801 infusion into ventral hippocampus as evaluated by radial maze task in rats

    Institute of Scientific and Technical Information of China (English)

    Li-sha XU; Li-xia YANG; Wei-wei HU; Xiao YU; Li MA; Lu-ying LIU; Er-qing WEI; Zhong CHEN

    2005-01-01

    Aim: To investigate the role of histamine in memory deficits induced by MK-801 infusion into the ventral hippocampus in rats. Methods: An 8-arm radial maze (4arms baited) was used to assess spatial memory. Results: Bilateral ventral intrahippocampal (ih) infusion of MK-801 (0.3 μg/site), an N-methyl-D-aspartate (NMDA) antagonist, impaired the retrieval process in both working memory and reference memory. Intrahippocampal injection of histamine (25 or 50 ng/site) or intraperitoneal (ip) injection of histidine (25, 50 or 100 mg/kg) markedly ameliorated the spatial memory deficits induced by MK-801. Both the histamine H1 antagonist pyrilamine (0.5 or 1.0 μg/site, ih) and the H2 antagonist cimetidine (2.5 μg/site,ih) abolished the ameliorating effect of histidine (100 mg/kg, ip) on reference memory deficits, but not that on working memory deficits induced by MK-801. Conclusion:The results indicate that histamine in the ventral hippocampus can ameliorate MK-801-induced spatial memory deficits, and that histamine's effect on reference memory is mediated by postsynaptic histamine H1 and H2 receptors.

  2. The Visual Word Form Area remains in the dominant hemisphere for language in late-onset left occipital lobe epilepsies: A postsurgery analysis of two cases.

    Science.gov (United States)

    Lopes, Ricardo; Nunes, Rita Gouveia; Simões, Mário Rodrigues; Secca, Mário Forjaz; Leal, Alberto

    2015-05-01

    Automatic recognition of words from letter strings is a critical processing step in reading that is lateralized to the left-hemisphere middle fusiform gyrus in the so-called Visual Word Form Area (VWFA). Surgical lesions in this location can lead to irreversible alexia. Very early left hemispheric lesions can lead to transfer of the VWFA to the nondominant hemisphere, but it is currently unknown if this capability is preserved in epilepsies developing after reading acquisition. In this study, we aimed to determine the lateralization of the VWFA in late-onset left inferior occipital lobe epilepsies and also the effect of surgical disconnection from the adjacent secondary visual areas. Two patients with focal epilepsies with onset near the VWFA underwent to surgery for epilepsy, with sparing of this area. Neuropsychology evaluations were performed before and after surgery, as well as quantitative evaluation of the speed of word reading. Comparison of the surgical localization of the lesion, with the BOLD activation associated with the contrast of words-strings, was performed, as well as a study of the associated main white fiber pathways using diffusion-weighted imaging. Neither of the patients developed alexia after surgery (similar word reading speed before and after surgery) despite the fact that the inferior occipital surgical lesions reached the neighborhood (less than 1cm) of the VWFA. Surgeries partly disconnected the VWFA from left secondary visual areas, suggesting that pathways connecting to the posterior visual ventral stream were severely affected but did not induce alexia. The anterior and superior limits of the resection suggest that the critical connection between the VWFA and the Wernicke's Angular Gyrus cortex was not affected, which is supported by the detection of this tract with probabilistic tractography. Left occipital lobe epilepsies developing after reading acquisition did not produce atypical localizations of the VWFA, even with foci in the

  3. Evidence for Non-Opponent Coding of Colour Information in Human Visual Cortex: Selective Loss of "Green" Sensitivity in a Subject with Damaged Ventral Occipito-Temporal Cortex.

    Science.gov (United States)

    Rauscher, Franziska G; Plant, Gordon T; James-Galton, Merle; Barbur, John L

    2011-01-01

    Damage to ventral occipito-temporal extrastriate visual cortex leads to the syndrome of prosopagnosia often with coexisting cerebral achromatopsia. A patient with this syndrome resulting in a left upper homonymous quadrantanopia, prosopagnosia, and incomplete achromatopsia is described. Chromatic sensitivity was assessed at a number of locations in the intact visual field using a dynamic luminance contrast masking technique that isolates the use of colour signals. In normal subjects chromatic detection thresholds form an elliptical contour when plotted in the Commission Internationale d'Eclairage, (x-y), chromaticity diagram. Because the extraction of colour signals in early visual processing involves opponent mechanisms, subjects with Daltonism (congenital red/green loss of sensitivity) show symmetric increase in thresholds towards the long wavelength ("red") and middle wavelength ("green") regions of the spectrum locus. This is also the case with acquired loss of chromatic sensitivity as a result of retinal or optic nerve disease. Our patient's results were an exception to this rule. Whilst his chromatic sensitivity in the central region of the visual field was reduced symmetrically for both "red/green" and "yellow/blue" directions in colour space, the subject's lower left quadrant showed a marked asymmetry in "red/green" thresholds with the greatest loss of sensitivity towards the "green" region of the spectrum locus. This spatially localized asymmetric loss of "green" but not "red" sensitivity has not been reported previously in human vision. Such loss is consistent with selective damage of neural substrates in the visual cortex that process colour information, but are spectrally non-opponent.

  4. Ventral medial prefrontal cortex (vmPFC) as a target of the dorsolateral prefrontal modulation by transcranial direct current stimulation (tDCS) in drug addiction.

    Science.gov (United States)

    Nakamura-Palacios, Ester Miyuki; Lopes, Isabela Bittencourt Coutinho; Souza, Rodolpho Albuquerque; Klauss, Jaisa; Batista, Edson Kruger; Conti, Catarine Lima; Moscon, Janine Andrade; de Souza, Rodrigo Stênio Moll

    2016-10-01

    Here, we report some electrophysiologic and imaging effects of the transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex (dlPFC) in drug addiction, notably in alcohol and crack-cocaine dependence. The low resolution electromagnetic tomography (LORETA) analysis obtained through event-related potentials (ERPs) under drug-related cues, more specifically in its P3 segment (300-500 ms) in both, alcoholics and crack-cocaine users, showed that the ventral medial prefrontal cortex (vmPFC) was the brain area with the largest change towards increasing activation under drug-related cues in those subjects that kept abstinence during and after the treatment with bilateral tDCS (2 mA, 35 cm(2), cathodal left and anodal right) over dlPFC, applied repetitively (five daily sessions). In an additional study in crack-cocaine, which showed craving decreases after repetitive bilateral tDCS, we examined data originating from diffusion tensor imaging (DTI), and we found increased DTI parameters in the left connection between vmPFC and nucleus accumbens (NAcc), such as the number of voxels, fractional anisotropy (FA) and apparent diffusion coefficient (ADC), in tDCS-treated crack-cocaine users when compared to the sham-tDCS group. This increasing of DTI parameters was significantly correlated with craving decreasing after the repetitive tDCS. The vmPFC relates to the control of drug seeking, possibly by extinguishing this behavior. In our studies, the bilateral dlPFC tDCS reduced relapses and craving to the drug use, and increased the vmPFC activation under drug cues, which may be of a great importance in the control of drug use in drug addiction.

  5. Investigation of Financial Conflict of Interest among Published Ventral Hernia Research.

    Science.gov (United States)

    Cherla, Deepa V; Olavarria, Oscar A; Bernardi, Karla; Viso, Cristina P; Moses, Maya L; Holihan, Julie L; Ko, Tien C; Kao, Lillian S; Liang, Mike K

    2018-03-01

    Discordance exists between author self-disclosure and the Open Payments Database in various surgical fields, but the effects of this discordance on study design and presentation are unknown. We hypothesized that, among ventral hernia publications, discordance exists between industry and physician self-reported conflicts of interest (COIs); authors disclose relevant COIs; and disclosure and relevant COIs affect study favorability. We conducted a double-blinded, prospective, observational study of published articles. PubMed was searched in reverse chronological order for clinical articles pertaining to ventral hernias. Authors' self-disclosed conflicts were compared with those on the Open Payments Database. Two reviewers blinded to article disclosure status determined jointly whether the COIs were relevant to the article. Three blinded referees independently voted whether each article was favorable to discussed subject matter. The primary end point was study favorability. Secondary outcomes included disclosure status and relevance. One hundred articles were included. Compared with authors with no COIs, authors with a COI, self-disclosed or not, were twice as likely to write results favorable to industry. Of those with a COI, most of the articles had a relevant COI (37 of 45 [82.2%]), and 25% of relevant COIs were not disclosed by authors. Among authors with a relevant COI, study favorability remained unchanged at 68.5% (control: no COI 33.3%; p reporting of COI is discordant in 63% of articles. Twenty-five percent of relevant COI are not disclosed. Having a COI increases the chances that an article will cast a favorable impression on the company paying the authors by 200%. Copyright © 2017 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  6. First-Pass Processing of Value Cues in the Ventral Visual Pathway.

    Science.gov (United States)

    Sasikumar, Dennis; Emeric, Erik; Stuphorn, Veit; Connor, Charles E

    2018-02-19

    Real-world value often depends on subtle, continuously variable visual cues specific to particular object categories, like the tailoring of a suit, the condition of an automobile, or the construction of a house. Here, we used microelectrode recording in behaving monkeys to test two possible mechanisms for category-specific value-cue processing: (1) previous findings suggest that prefrontal cortex (PFC) identifies object categories, and based on category identity, PFC could use top-down attentional modulation to enhance visual processing of category-specific value cues, providing signals to PFC for calculating value, and (2) a faster mechanism would be first-pass visual processing of category-specific value cues, immediately providing the necessary visual information to PFC. This, however, would require learned mechanisms for processing the appropriate cues in a given object category. To test these hypotheses, we trained monkeys to discriminate value in four letter-like stimulus categories. Each category had a different, continuously variable shape cue that signified value (liquid reward amount) as well as other cues that were irrelevant. Monkeys chose between stimuli of different reward values. Consistent with the first-pass hypothesis, we found early signals for category-specific value cues in area TE (the final stage in monkey ventral visual pathway) beginning 81 ms after stimulus onset-essentially at the start of TE responses. Task-related activity emerged in lateral PFC approximately 40 ms later and consisted mainly of category-invariant value tuning. Our results show that, for familiar, behaviorally relevant object categories, high-level ventral pathway cortex can implement rapid, first-pass processing of category-specific value cues. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Sirenomelia in Bmp7 and Tsg compound mutant mice: requirement for Bmp signaling in the development of ventral posterior mesoderm.

    Science.gov (United States)

    Zakin, Lise; Reversade, Bruno; Kuroda, Hiroki; Lyons, Karen M; De Robertis, Eddy M

    2005-05-01

    Sirenomelia or mermaid-like phenotype is one of the principal human congenital malformations that can be traced back to the stage of gastrulation. Sirenomelia is characterized by the fusion of the two hindlimbs into a single one. In the mouse, sirens have been observed in crosses between specific strains and as the consequence of mutations that increase retinoic acid levels. We report that the loss of bone morphogenetic protein 7 (Bmp7) in combination with a half dose or complete loss of twisted gastrulation (Tsg) causes sirenomelia in the mouse. Tsg is a Bmp- and chordin-binding protein that has multiple effects on Bmp metabolism in the extracellular space; Bmp7 is one of many Bmps and is shown here to bind to Tsg. In Xenopus, co-injection of Tsg and Bmp7 morpholino oligonucleotides (MO) has a synergistic effect, greatly inhibiting formation of ventral mesoderm and ventral fin tissue. In the mouse, molecular marker studies indicate that the sirenomelia phenotype is associated with a defect in the formation of ventroposterior mesoderm. These experiments demonstrate that dorsoventral patterning of the mouse posterior mesoderm is regulated by Bmp signaling, as is the case in other vertebrates. Sirens result from a fusion of the hindlimb buds caused by a defect in the formation of ventral mesoderm.

  8. The dorsal striatum and ventral striatum play different roles in the programming of social behaviour: a tribute to Lex Cools.

    Science.gov (United States)

    van den Bos, Ruud

    2015-02-01

    Early work by Lex Cools suggested that the caudate nucleus (dorsal striatum) plays a role in programming social behaviour: enhanced activity in the caudate nucleus increased the extent to which ongoing behaviour is controlled by the individual's own behaviour (internal control) rather than by that of its partners (external control). Interestingly, later studies by others have indicated that the ventral striatum plays a role in external rather than internal control. Here, I discuss the role of these different striatal areas - and the emotional (ventral striatum) and cognitive control (dorsal striatum) system in which they are embedded - in the organization of social behaviour in the context of locus of control. Following on from this discussion, I will pay particular attention to individual differences in social behaviour (individuals with more internal or external control), focusing on the role of dopamine, serotonin and the effects of stress-related challenges in relation to their different position in a dominance hierarchy. I will subsequently allude to potential psychological and behavioural problems in the social domain following on from these differences in locus of control ['social obliviousness' (dorsal stratum) and 'social impulsivity' (ventral striatum)]. In doing so, I provide as a tribute a historical account of the early research by Lex Cools.

  9. TMS over the Left Angular Gyrus Impairs the Ability to Discriminate Left from Right

    Science.gov (United States)

    Hirnstein, Marco; Bayer, Ulrike; Ellison, Amanda; Hausmann, Markus

    2011-01-01

    The underlying cognitive and neural mechanisms of the ability to discriminate left from right are hardly explored. Clinical studies from patients with impairments of left-right discrimination (LRD) and neuroimaging data suggest that the left angular gyrus is particularly involved in LRD. Moreover, it is argued that the often reported sex…

  10. Decreased functional connectivity between ventral tegmental area and nucleus accumbens in Internet gaming disorder: evidence from resting state functional magnetic resonance imaging.

    Science.gov (United States)

    Zhang, Jin-Tao; Ma, Shan-Shan; Yip, Sarah W; Wang, Ling-Jiao; Chen, Chao; Yan, Chao-Gan; Liu, Lu; Liu, Ben; Deng, Lin-Yuan; Liu, Qin-Xue; Fang, Xiao-Yi

    2015-11-18

    Internet gaming disorder (IGD) has become an increasing mental health problem worldwide. Decreased resting-state functional connectivity (rsFC) between the ventral tegmental area (VTA) and the nucleus accumbens (NAcc) has been found in substance use and is thought to play an important role in the development of substance addiction. However, rsFC between the VTA and NAcc in a non-substance addiction, such as IGD, has not been assessed previously. The current study aimed to investigate: (1) if individuals with IGD exhibit alterations in VTA-NAcc functional connectivity; and (2) whether VTA-NAcc functional connectivity is associated with subjective Internet craving. Thirty-five male participants with IGD and 24 healthy control (HC) individuals participated in resting-state functional magnetic resonance imaging. Regions of interest (left NAcc, right NAcc and VTA) were selected based on the literature and were defined by placing spheres centered on Talairach Daemon coordinates. In comparison with HCs, individuals with IGD had significantly decreased rsFC between the VTA and right NAcc. Resting-state functional connectivity strength between the VTA and right NAcc was negatively correlated with self-reported subjective craving for the Internet. These results suggest possible neural functional similarities between individuals with IGD and individuals with substance addictions.

  11. Org-1-dependent lineage reprogramming generates the ventral longitudinal musculature of the Drosophila heart.

    Science.gov (United States)

    Schaub, Christoph; März, Johannes; Reim, Ingolf; Frasch, Manfred

    2015-02-16

    Only few examples of transdifferentiation, which denotes the conversion of one differentiated cell type to another, are known to occur during normal development, and more often, it is associated with regeneration processes. With respect to muscles, dedifferentiation/redifferentiation processes have been documented during post-traumatic muscle regeneration in blastema of newts as well as during myocardial regeneration. As shown herein, the ventral longitudinal muscles of the adult Drosophila heart arise from specific larval alary muscles in a process that represents the first known example of syncytial muscle transdifferentiation via dedifferentiation into mononucleate myoblasts during normal development. We demonstrate that this unique process depends on the reinitiation of a transcriptional program previously employed for embryonic alary muscle development, in which the factors Org-1 (Drosophila Tbx1) and Tailup (Drosophila Islet1) are key components. During metamorphosis, the action of these factors is combined with cell-autonomous inputs from the ecdysone steroid and the Hox gene Ultrabithorax, which provide temporal and spatial specificity to the transdifferentiation events. Following muscle dedifferentiation, inductive cues, particularly from the remodeling heart tube, are required for the redifferentiation of myoblasts into ventral longitudinal muscles. Our results provide new insights into mechanisms of lineage commitment and cell-fate plasticity during development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Reflectivity of the gyroid biophotonic crystals in the ventral wing scales of the Green Hairstreak butterfly, Callophrys rubi

    NARCIS (Netherlands)

    Michielsen, K.; De Raedt, H.; Stavenga, D. G.

    2010-01-01

    We present a comparison of the computer simulation data of gyroid nanostructures with optical measurements (reflectivity spectra and scattering diagrams) of ventral wing scales of the Green Hairstreak butterfly, Callophrys rubi. We demonstrate that the omnidirectional green colour arises from the

  13. Ventral striatal activity links adversity and reward processing in children.

    Science.gov (United States)

    Kamkar, Niki H; Lewis, Daniel J; van den Bos, Wouter; Morton, J Bruce

    2017-08-01

    Adversity impacts many aspects of psychological and physical development including reward-based learning and decision-making. Mechanisms relating adversity and reward processing in children, however, remain unclear. Here, we show that adversity is associated with potentiated learning from positive outcomes and impulsive decision-making, but unrelated to learning from negative outcomes. We then show via functional magnetic resonance imaging that the link between adversity and reward processing is partially mediated by differences in ventral striatal response to rewards. The findings suggest that early-life adversity is associated with alterations in the brain's sensitivity to rewards accounting, in part, for the link between adversity and altered reward processing in children. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Role of the Astroglial Glutamate Exchanger xCT in Ventral Hippocampus in Resilience to Stress.

    Science.gov (United States)

    Nasca, Carla; Bigio, Benedetta; Zelli, Danielle; de Angelis, Paolo; Lau, Timothy; Okamoto, Masahiro; Soya, Hideyo; Ni, Jason; Brichta, Lars; Greengard, Paul; Neve, Rachael L; Lee, Francis S; McEwen, Bruce S

    2017-10-11

    We demonstrate that stress differentially regulates glutamate homeostasis in the dorsal and ventral hippocampus and identify a role for the astroglial xCT in ventral dentate gyrus (vDG) in stress and antidepressant responses. We provide an RNA-seq roadmap for the stress-sensitive vDG. The transcription factor REST binds to xCT promoter in co-occupancy with the epigenetic marker H3K27ac to regulate expression of xCT, which is also reduced in a genetic mouse model of inherent susceptibility to depressive-like behavior. Pharmacologically, modulating histone acetylation with acetyl-L-carnitine (LAC) or acetyl-N-cysteine (NAC) rapidly increases xCT and activates a network with mGlu2 receptors to prime an enhanced glutamate homeostasis that promotes both pro-resilient and antidepressant-like responses. Pharmacological xCT blockage counteracts NAC prophylactic effects. GFAP + -Cre-dependent overexpression of xCT in vDG mimics pharmacological actions in promoting resilience. This work establishes a mechanism by which vDG protection leads to stress resilience and antidepressant responses via epigenetic programming of an xCT-mGlu2 network. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Interleukin-10 Protection against Lipopolysaccharide-Induced Neuro-Inflammation and Neurotoxicity in Ventral Mesencephalic Cultures

    OpenAIRE

    Yan Zhu; Xiao Chen; Zhan Liu; Yu-Ping Peng; Yi-Hua Qiu

    2015-01-01

    Interleukin (IL)-10, an anti-inflammatory cytokine, is expressed in the brain and can inhibit microglial activation. Herein, we utilized lipopolysaccharide (LPS)-induced inflammatory Parkinson?s disease (PD) cell model to determine whether microglia and astrocytes are necessary targets for IL-10 neuroprotection. Primary ventral mesencephalic (VM) cultures with different composition of neurons, microglia and astrocytes were prepared. The cells were exposed to IL-10 (15, 50 or 150 ng/mL) 1 h pr...

  16. Neuropsychiatric effects of neurodegeneration of the medial vs. lateral ventral prefrontal cortex in humans

    OpenAIRE

    Huey, Edward D.; Lee, Seonjoo; Brickman, Adam M.; Manoochehri, Masood; Griffith, Erica; Devanand, D.P.; Stern, Yaakov; Grafman, Jordan

    2015-01-01

    Animal evidence suggests that a brain network involving the medial and rostral ventral prefrontal cortex (PFC) is central for threat response and arousal and a network involving the lateral and caudal PFC plays an important role in reward learning and behavioral control. In this study, we contrasted the neuropsychiatric effects of degeneration of the medial versus lateral PFC in 43 patients with Frontotemporal dementia and 11 patients with Corticobasal Syndrome using MRI, the Neuropsychiatric...

  17. Focal inflammation in the embryological ventral pancreas: assessment using CT and MRI

    International Nuclear Information System (INIS)

    Itoh, S.; Suzuki, K.; Kawai, H.; Naganawa, S.

    2008-01-01

    Aim: To identify the characteristic computed tomography (CT) and magnetic resonance imaging (MRI) findings of nonuniform inflammation between the posterior aspect of the head and the remainder of the pancreas. Materials and methods: Two radiologists retrospectively evaluated images of 19 patients in whom the degree of attenuation in the CT images and/or the signal intensity in the MRI images differed between the posterior aspect of the head (ventral primordium) and the remainder of the pancreas (dorsal primordium) due to benign disorders other than uneven fatty replacement. Multiphase, contrast-enhanced CT examinations were performed in 17 patients. In five, T1- and T2-weighted images with and without fat suppression were obtained using a 1.5 T superconducting MRI system. Results: The lesions were localized in the posterior aspect of the head in 17 patients. In two patients, the lesions occupied the posterior aspect of the head and extended to the neck. The lesions exhibited the following findings: inhomogeneous hypoattenuation (with spotty areas of relatively well-maintained contrast enhancement) during the pancreatic phase (17/17) and no intense peripheral enhancement or central necrotic areas (17/17) in CT images, hypointensity in T1-weighed images (5/5), hyperintensity in T2-weighed images (4/5), no vascular invasion (19/19), failure to depict the entire course of Wirsung's duct (17/19), and calcification (13/19). Santorini's ducts were depicted in all but three patients. Conclusion: Focal inflammation in the embryological ventral pancreas exhibits a unique anatomical distribution and characteristic findings

  18. Sp6 and Sp8 Transcription Factors Control AER Formation and Dorsal-Ventral Patterning in Limb Development

    Science.gov (United States)

    Haro, Endika; Delgado, Irene; Junco, Marisa; Yamada, Yoshihiko; Mansouri, Ahmed; Oberg, Kerby C.; Ros, Marian A.

    2014-01-01

    The formation and maintenance of the apical ectodermal ridge (AER) is critical for the outgrowth and patterning of the vertebrate limb. The induction of the AER is a complex process that relies on integrated interactions among the Fgf, Wnt, and Bmp signaling pathways that operate within the ectoderm and between the ectoderm and the mesoderm of the early limb bud. The transcription factors Sp6 and Sp8 are expressed in the limb ectoderm and AER during limb development. Sp6 mutant mice display a mild syndactyly phenotype while Sp8 mutants exhibit severe limb truncations. Both mutants show defects in AER maturation and in dorsal-ventral patterning. To gain further insights into the role Sp6 and Sp8 play in limb development, we have produced mice lacking both Sp6 and Sp8 activity in the limb ectoderm. Remarkably, the elimination or significant reduction in Sp6;Sp8 gene dosage leads to tetra-amelia; initial budding occurs, but neither Fgf8 nor En1 are activated. Mutants bearing a single functional allele of Sp8 (Sp6−/−;Sp8+/−) exhibit a split-hand/foot malformation phenotype with double dorsal digit tips probably due to an irregular and immature AER that is not maintained in the center of the bud and on the abnormal expansion of Wnt7a expression to the ventral ectoderm. Our data are compatible with Sp6 and Sp8 working together and in a dose-dependent manner as indispensable mediators of Wnt/βcatenin and Bmp signaling in the limb ectoderm. We suggest that the function of these factors links proximal-distal and dorsal-ventral patterning. PMID:25166858

  19. A negative relationship between ventral striatal loss anticipation response and impulsivity in borderline personality disorder

    OpenAIRE

    Herbort, Maike C.; Soch, Joram; W?stenberg, Torsten; Krauel, Kerstin; Pujara, Maia; Koenigs, Michael; Gallinat, J?rgen; Walter, Henrik; Roepke, Stefan; Schott, Bj?rn H.

    2016-01-01

    Patients with borderline personality disorder (BPD) frequently exhibit impulsive behavior, and self-reported impulsivity is typically higher in BPD patients when compared to healthy controls. Previous functional neuroimaging studies have suggested a link between impulsivity, the ventral striatal response to reward anticipation, and prediction errors. Here we investigated the striatal neural response to monetary gain and loss anticipation and their relationship with impulsivity in 21 female BP...

  20. Moderation of the Relationship Between Reward Expectancy and Prediction Error-Related Ventral Striatal Reactivity by Anhedonia in Unmedicated Major Depressive Disorder: Findings From the EMBARC Study.

    Science.gov (United States)

    Greenberg, Tsafrir; Chase, Henry W; Almeida, Jorge R; Stiffler, Richelle; Zevallos, Carlos R; Aslam, Haris A; Deckersbach, Thilo; Weyandt, Sarah; Cooper, Crystal; Toups, Marisa; Carmody, Thomas; Kurian, Benji; Peltier, Scott; Adams, Phillip; McInnis, Melvin G; Oquendo, Maria A; McGrath, Patrick J; Fava, Maurizio; Weissman, Myrna; Parsey, Ramin; Trivedi, Madhukar H; Phillips, Mary L

    2015-09-01

    Anhedonia, disrupted reward processing, is a core symptom of major depressive disorder. Recent findings demonstrate altered reward-related ventral striatal reactivity in depressed individuals, but the extent to which this is specific to anhedonia remains poorly understood. The authors examined the effect of anhedonia on reward expectancy (expected outcome value) and prediction error- (discrepancy between expected and actual outcome) related ventral striatal reactivity, as well as the relationship between these measures. A total of 148 unmedicated individuals with major depressive disorder and 31 healthy comparison individuals recruited for the multisite EMBARC (Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care) study underwent functional MRI during a well-validated reward task. Region of interest and whole-brain data were examined in the first- (N=78) and second- (N=70) recruited cohorts, as well as the total sample, of depressed individuals, and in healthy individuals. Healthy, but not depressed, individuals showed a significant inverse relationship between reward expectancy and prediction error-related right ventral striatal reactivity. Across all participants, and in depressed individuals only, greater anhedonia severity was associated with a reduced reward expectancy-prediction error inverse relationship, even after controlling for other symptoms. The normal reward expectancy and prediction error-related ventral striatal reactivity inverse relationship concords with conditioning models, predicting a shift in ventral striatal responding from reward outcomes to reward cues. This study shows, for the first time, an absence of this relationship in two cohorts of unmedicated depressed individuals and a moderation of this relationship by anhedonia, suggesting reduced reward-contingency learning with greater anhedonia. These findings help elucidate neural mechanisms of anhedonia, as a step toward identifying potential biosignatures

  1. Dyscalculia, Dysgraphia, and Left-Right Confusion from a Left Posterior Peri-Insular Infarct

    Directory of Open Access Journals (Sweden)

    S. Bhattacharyya

    2014-01-01

    Full Text Available The Gerstmann syndrome of dyscalculia, dysgraphia, left-right confusion, and finger agnosia is generally attributed to lesions near the angular gyrus of the dominant hemisphere. A 68-year-old right-handed woman presented with sudden difficulty completing a Sudoku grid and was found to have dyscalculia, dysgraphia, and left-right confusion. Magnetic resonance imaging (MRI showed a focus of abnormal reduced diffusivity in the left posterior insula and temporoparietal operculum consistent with acute infarct. Gerstmann syndrome from an insular or peri-insular lesion has not been described in the literature previously. Pathological and functional imaging studies show connections between left posterior insular region and inferior parietal lobe. We postulate that the insula and operculum lesion disrupted key functional networks resulting in a pseudoparietal presentation.

  2. Dyscalculia, dysgraphia, and left-right confusion from a left posterior peri-insular infarct.

    Science.gov (United States)

    Bhattacharyya, S; Cai, X; Klein, J P

    2014-01-01

    The Gerstmann syndrome of dyscalculia, dysgraphia, left-right confusion, and finger agnosia is generally attributed to lesions near the angular gyrus of the dominant hemisphere. A 68-year-old right-handed woman presented with sudden difficulty completing a Sudoku grid and was found to have dyscalculia, dysgraphia, and left-right confusion. Magnetic resonance imaging (MRI) showed a focus of abnormal reduced diffusivity in the left posterior insula and temporoparietal operculum consistent with acute infarct. Gerstmann syndrome from an insular or peri-insular lesion has not been described in the literature previously. Pathological and functional imaging studies show connections between left posterior insular region and inferior parietal lobe. We postulate that the insula and operculum lesion disrupted key functional networks resulting in a pseudoparietal presentation.

  3. Apraxia in left-handers.

    Science.gov (United States)

    Goldenberg, Georg

    2013-08-01

    In typical right-handed patients both apraxia and aphasia are caused by damage to the left hemisphere, which also controls the dominant right hand. In left-handed subjects the lateralities of language and of control of the dominant hand can dissociate. This permits disentangling the association of apraxia with aphasia from that with handedness. Pantomime of tool use, actual tool use and imitation of meaningless hand and finger postures were examined in 50 consecutive left-handed subjects with unilateral hemisphere lesions. There were three aphasic patients with pervasive apraxia caused by left-sided lesions. As the dominant hand is controlled by the right hemisphere, they constitute dissociations of apraxia from handedness. Conversely there were also three patients with pervasive apraxia caused by right brain lesions without aphasia. They constitute dissociations of apraxia from aphasia. Across the whole group of patients dissociations from handedness and from aphasia were observed for all manifestations of apraxia, but their frequency depended on the type of apraxia. Defective pantomime and defective tool use occurred rarely without aphasia, whereas defective imitation of hand, but not finger, postures was more frequent after right than left brain damage. The higher incidence of defective imitation of hand postures in right brain damage was mainly due to patients who had also hemi-neglect. This interaction alerts to the possibility that the association of right hemisphere damage with apraxia has to do with spatial aptitudes of the right hemisphere rather than with its control of the dominant left hand. Comparison with data from right-handed patients showed no differences between the severity of apraxia for imitation of hand or finger postures, but impairment on pantomime of tool use was milder in apraxic left-handers than in apraxic right-handers. This alleviation of the severity of apraxia corresponded with a similar alleviation of the severity of aphasia as

  4. Activity of Protein Kinase C is Important for 3α,5α-THP’s Actions at Dopamine Type 1-like and/or GABAA receptors in the Ventral Tegmental Area for Lordosis of Rats

    Science.gov (United States)

    Frye, Cheryl A.; Walf, Alicia A.

    2008-01-01

    In the ventral tegmental area, progestogens facilitate sexual receptivity of rodents via actions at dopamine type 1-like and/or γ-aminobutyric type A receptors and activation of downstream signal transduction molecules. In the present study, we investigated whether effects of progesterone’s metabolite, 3α,5α-THP, to enhance lordosis via actions at these receptors in the ventral tegmental area requires phospholipase C-dependent protein kinase C. The objective of this study was to test the hypothesis that: if progestogens’ actions through dopamine type 1-like and/or γ-aminobutyric type A receptors in the ventral tegmental area for lordosis require protein kinase C, then inhibiting protein kinase C in the ventral tegmental area should reduce 3α,5α-THP-facilitated lordosis and its enhancement by dopamine type 1-like or γ-aminobutyric type A receptor agonists. Ovariectomized, E2 (10 μg s.c. at hr 0)-primed rats were tested for their baseline lordosis responses and then received a series of three infusions to the ventral tegmental area: first, bisindolylmaleimide (75 nM/side) or vehicle; second, SKF38393 (100 ng/side), muscimol (100 ng/side), or vehicle; third, 3α,5α-THP (100, 200 ng) or vehicle. Rats were pre-tested for lordosis and motor behavior and then tested for lordosis after each infusion and 10 and 60 mins after the last infusion. Rats were tested for motor behavior following their last lordosis test. As has been previously demonstrated, 3α,5α-THP infusions to the ventral tegmental area increased lordosis and effects were further enhanced by infusions of SKF38393 and muscimol. Infusions of bisindolylmaleimide to the ventral tegmental area attenuated 3α,5α-THP-, SKF38393-, and/or muscimol-facilitated lordosis. Effects on lordosis were not solely due to changes in general motor behavior. Thus, 3α,5α-THP’s actions in the ventral tegmental area through membrane receptors may require activity of protein kinase C. PMID:18675324

  5. Haptically guided grasping. FMRI shows right-hemisphere parietal stimulus encoding, and bilateral dorso-ventral parietal gradients of object- and action-related processing during grasp execution

    Directory of Open Access Journals (Sweden)

    Mattia eMarangon

    2016-01-01

    Full Text Available The neural bases of haptically-guided grasp planning and execution are largely unknown, especially for stimuli having no visual representations. Therefore, we used functional magnetic resonance imaging (fMRI to monitor brain activity during haptic exploration of novel 3D complex objects, subsequent grasp planning, and the execution of the pre-planned grasps. Haptic object exploration, involving extraction of shape, orientation and length of the to-be-grasped targets, was associated with the fronto-parietal, temporo-occipital, and insular cortex activity. Yet, only the anterior divisions of the posterior parietal cortex (PPC of the right hemisphere were significantly more engaged in exploration of complex objects (vs. simple control disks. None of these regions were re-recruited during the planning phase. Even more surprisingly, the left-hemisphere intraparietal, temporal, and occipital areas that were significantly invoked for grasp planning did not show sensitivity to object features. Finally, grasp execution, involving the re-recruitment of the critical right-hemisphere PPC clusters, was also significantly associated with two kinds of bilateral parieto-frontal processes. The first represents transformations of grasp-relevant target features and is linked to the dorso-dorsal (lateral and medial parieto-frontal networks. The second monitors grasp kinematics and belongs to the ventro-dorsal networks. Indeed, signal modulations associated with these distinct functions follow dorso-ventral gradients, with left aIPS showing significant sensitivity to both target features and the characteristics of the required grasp. Thus, our results from the haptic domain are consistent with the notion that the parietal processing for action guidance reflects primarily transformations from object-related to effector-related coding, and these mechanisms are rather independent of sensory input modality.

  6. Postoperative analgesic efficiency of transversus abdominis plane block after ventral hernia repair: a prospective, randomized, controlled clinical trial.

    Science.gov (United States)

    Chesov, Ion; Belîi, Adrian

    2017-10-01

    Effective postoperative analgesia is a key element in reducing postoperative morbidity, accelerating recovery and avoiding chronic postoperative pain. The aim of this study was to evaluate the effectiveness of ultrasound-guided Transversus Abdominis Plane (TAP) block, performed before surgical incision, in providing postoperative analgesia for patients undergoing open ventral hernia repair under general anaesthesia. Seventy elective patients scheduled for open ventral hernia repair surgery under general anaesthesia were divided randomly into two equal groups: Group I received bilateral TAP block performed before surgical incision (n = 35); Group II received systemic postoperative analgesia with parenteral opioid (morphine) alone (n = 35). Postoperatively pain scores at rest and with movement, total morphine consumption and opioid related side effects were recorded. Postoperative pain scores at rest and mobilization/cough were significantly higher in patients without TAP block (p consumption was comparable between the two groups: 0.75 ± 0.31 mg in group I (TAP) and 0.86 ± 0.29 mg in group II (MO), p = 0.1299. Patients undergoing preincisional TAP block had reduced morphine requirements during the first 24 hours after surgery, compared to patients from group II, without TAP block (p = 0.0001). There was no difference in the incidence of opioid related side effects (nausea, vomiting) in the both groups during the first 24 postoperative hours. The use of preincisional ultrasound guided TAP block reduced the pain scores at rest and with movement/cough, opioid consumption and opioid-related side effects after ventral hernia repair when compared with opioid-only analgesia.

  7. Delayed action does not always require the ventral stream: a study on a patient with visual form agnosia.

    Science.gov (United States)

    Hesse, Constanze; Schenk, Thomas

    2014-05-01

    It has been suggested that while movements directed at visible targets are processed within the dorsal stream, movements executed after delay rely on the visual representations of the ventral stream (Milner & Goodale, 2006). This interpretation is supported by the observation that a patient with ventral stream damage (D.F.) has trouble performing accurate movements after a delay, but performs normally when the target is visible during movement programming. We tested D.F.'s visuomotor performance in a letter-posting task whilst varying the amount of visual feedback available. Additionally, we also varied whether D.F. received tactile feedback at the end of each trial (posting through a letter box vs posting on a screen) and whether environmental cues were available during the delay period (removing the target only vs suppressing vision completely with shutter glasses). We found that in the absence of environmental cues patient D.F. was unaffected by the introduction of delay and performed as accurately as healthy controls. However, when environmental cues and vision of the moving hand were available during and after the delay period, D.F.'s visuomotor performance was impaired. Thus, while healthy controls benefit from the availability of environmental landmarks and/or visual feedback of the moving hand, such cues seem less beneficial to D.F. Taken together our findings suggest that ventral stream damage does not always impact the ability to make delayed movements but compromises the ability to use environmental landmarks and visual feedback efficiently. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Differential effects of 2-difluoromethylornithine and methylglyoxal bis(guanylhydrazone) on the testosterone-induced growth of ventral prostate and seminal vesicles of castrated rats.

    Science.gov (United States)

    Käpyaho, K; Kallio, A; Jänne, J

    1984-05-01

    2-Difluoromethylornithine totally prevented any increases in putrescine and spermidine concentrations in the ventral prostate of castrated rats during a 6-day testosterone treatment. Prostatic ornithine decarboxylase activity was inhibited by 80%, whereas S-adenosylmethionine decarboxylase was stimulated by more than 9-fold. In seminal vesicle, the inhibition of putrescine and spermidine accumulation, as well as of ornithine decarboxylase activity, was only minimal, and no stimulation of S-adenosylmethionine decarboxylase was observed. Administration of methylglyoxal bis(guanylhydrazone) to castrated androgen-treated rats resulted in a marked increase in concentrations of all prostatic polyamines. Prostatic ornithine decarboxylase activity was nearly 2 times and adenosylmethionine decarboxylase activity 9 times higher than that of the testosterone-treated animals. In contrast with ventral prostate, methylglyoxal bis(guanylhydrazone) treatment inhibited moderately the accumulation of spermidine and spermine in seminal vesicle, although both ornithine decarboxylase and S-adenosylmethionine decarboxylase activities were stimulated. Difluoromethylornithine inhibited significantly the weight gain of ventral prostate, but methylglyoxal bis(guanylhydrazone) produced a substantial increase in prostatic weight. These changes were largely due to the fact that the volume of prostatic secretion was greatly decreased by difluoromethylornithine, whereas methylglyoxal bis(guanylhydrazone) increased the amount of secretion. Treatment with difluoromethylornithine strikingly increased the methylglyoxal bis(guanylhydrazone) content of both ventral prostate and seminal vesicle, but even under these conditions the drug concentration remained low in comparison with other tissues. The results indicate that a combined use of these two polyamine anti-metabolites does not necessarily result in a synergistic growth inhibition of the androgen-induced growth of male accessory sexual glands.

  9. Effects of sustained serotonin reuptake inhibition on the firing of dopamine neurons in the rat ventral tegmental area

    NARCIS (Netherlands)

    Dremencov, Eliyahu; El Mansari, Mostafa; Blier, Pierre

    Background: Selective serotonin (5-HT) reuptake inhibitors (SSRIs) are efficacious in depression because of their ability to increase 5-HT neurotransmission. However, owing to a purported inhibitory effect of 5- HT on dopamine (DA) neuronal activity in the ventral tegmental area (VTA), this increase

  10. Left ventricular filling under elevated left atrial pressure

    Science.gov (United States)

    Gaddam, Manikantam; Samaee, Milad; Santhanakrishnan, Arvind

    2017-11-01

    Left atrial pressure (LAP) is elevated in diastolic dysfunction, where left ventricular (LV) filling is impaired due to increase in ventricular stiffness. The impact of increasing LAP and LV stiffness on intraventricular filling hemodynamics remains unclear. We conducted particle image velocimetry and hemodynamics measurements in a left heart simulator (LHS) under increasing LAP and LV stiffness at a heart rate of 70 bpm. The LHS consisted of a flexible-walled LV physical model fitted within a fluid-filled chamber. LV wall motion was generated by a piston pump that imparted pressure fluctuations in the chamber. Resistance and compliance elements in the flow loop were adjusted to obtain bulk physiological hemodynamics in the least stiff LV model. Two LV models of increasing stiffness were subsequently tested under unchanged loop settings. LAP was varied between 5-20 mm Hg for each LV model, by adjusting fluid level in a reservoir upstream of the LV. For constant LV stiffness, increasing LAP lowered cardiac output (CO), while ejection fraction (EF) and E/A ratio were increased. For constant LAP, increasing LV stiffness lowered CO and EF, and increased E/A ratio. The implications of these altered hemodynamics on intraventricular filling vortex characteristics will be presented.

  11. A Rare Case of Atypical Renal Arteries Arrangement with Ectopic Kidneys in a Guinea Pig

    Directory of Open Access Journals (Sweden)

    Maženský D.

    2016-12-01

    Full Text Available We recorded a very rare case of atypical renal arteries arrangement in a guinea pig using the corrosion technique in the study of the arterial system. The right renal artery originated from the ventral wall of the abdominal aorta at the level of the caudal aspect of the 5th lumbar vertebra. The left renal artery originated from the left common iliac artery approximately 12 mm caudally to the aortic bifurcation. The right kidney was located ventral to the aortic bifurcation and the left kidney inside the pelvic cavity between the common iliac arteries. According to the vascular pattern, we determined that the ectopic kidneys in this guinea pig were unusual. This is the first case describing bilateral ectopic kidneys in a guinea pig.

  12. DORSAL ROOT REGENERATION INTO TRANSPLANTS OF DORSAL OR VENTRAL HALF OF EMBRYONIC SPINAL CORD

    OpenAIRE

    Ohta, Tohru; Itoh, Yasunobu; Tessler, Alan; Mizoi, Kazuo

    2009-01-01

    Adult cut dorsal root axons regenerate into the transplants of embryonic spinal cord (ESC) and form functional synapses within the transplants. It is unknown whether the growth is specific to transplants of dorsal half of ESC, a normal target of most dorsal root axons, or whether it is due to properties shared by transplants of ventral half of ESC. We used calcitonin gene-related peptide (CGRP) immunohistochemistry to label to the subpopulations of regenerated adult dorsal root axons, quantit...

  13. Steroidogenic factor 1 directs programs regulating diet-induced thermogenesis and leptin action in the ventral medial hypothalamic nucleus

    Science.gov (United States)

    The transcription factor steroidogenic factor 1 (SF-1) is exclusively expressed in the brain in the ventral medial hypothalamic nucleus (VMH) and is required for the development of this nucleus. However, the physiological importance of transcriptional programs regulated by SF-1 in the VMH is not wel...

  14. Catecholaminergic development of fetal rat ventral mesencephalon : Characterization by high-performance liquid chromatography with electrochemical detection and immunohistochemistry

    NARCIS (Netherlands)

    Tomasini, R; Kema, IP; Muskiet, FAJ; Meiborg, G; Staal, MJ; Go, KG

    We determined dopamine (DA), noradrenaline (NA), and adrenaline (A), as well as immunohistochemically stained tyrosine hydroxylase (TH) and DA in dissected rat ventral mesencephalon (VM) tissue from Embryonic Day (ED) 14 to Postnatal Day (P) 17. Whole VM tissue DA, NA, and A contents increased with

  15. Wnt5a regulates ventral midbrain morphogenesis and the development of A9-A10 dopaminergic cells in vivo

    Czech Academy of Sciences Publication Activity Database

    Andersson, E.R.; Prakash, N.; Čajánek, L.; Minina, E.; Bryja, Vítězslav; Bryjová, Lenka; Yamaguchi, T.P.; Hall, A.C.; Wurst, W.; Arenas, E.

    2008-01-01

    Roč. 3, č. 10 (2008), s. 1-14 E-ISSN 1932-6203 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : Wnt 5a deficient mouse * ventral midbrain * planar cell polarity Subject RIV: BO - Biophysics

  16. Moderation of the Relationship Between Reward Expectancy and Prediction Error-Related Ventral Striatal Reactivity by Anhedonia in Unmedicated Major Depressive Disorder: Findings From the EMBARC Study

    Science.gov (United States)

    Greenberg, Tsafrir; Chase, Henry W.; Almeida, Jorge R.; Stiffler, Richelle; Zevallos, Carlos R.; Aslam, Haris A.; Deckersbach, Thilo; Weyandt, Sarah; Cooper, Crystal; Toups, Marisa; Carmody, Thomas; Kurian, Benji; Peltier, Scott; Adams, Phillip; McInnis, Melvin G.; Oquendo, Maria A.; McGrath, Patrick J.; Fava, Maurizio; Weissman, Myrna; Parsey, Ramin; Trivedi, Madhukar H.; Phillips, Mary L.

    2016-01-01

    Objective Anhedonia, disrupted reward processing, is a core symptom of major depressive disorder. Recent findings demonstrate altered reward-related ventral striatal reactivity in depressed individuals, but the extent to which this is specific to anhedonia remains poorly understood. The authors examined the effect of anhedonia on reward expectancy (expected outcome value) and prediction error-(discrepancy between expected and actual outcome) related ventral striatal reactivity, as well as the relationship between these measures. Method A total of 148 unmedicated individuals with major depressive disorder and 31 healthy comparison individuals recruited for the multisite EMBARC (Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care) study underwent functional MRI during a well-validated reward task. Region of interest and whole-brain data were examined in the first- (N=78) and second- (N=70) recruited cohorts, as well as the total sample, of depressed individuals, and in healthy individuals. Results Healthy, but not depressed, individuals showed a significant inverse relationship between reward expectancy and prediction error-related right ventral striatal reactivity. Across all participants, and in depressed individuals only, greater anhedonia severity was associated with a reduced reward expectancy-prediction error inverse relationship, even after controlling for other symptoms. Conclusions The normal reward expectancy and prediction error-related ventral striatal reactivity inverse relationship concords with conditioning models, predicting a shift in ventral striatal responding from reward outcomes to reward cues. This study shows, for the first time, an absence of this relationship in two cohorts of unmedicated depressed individuals and a moderation of this relationship by anhedonia, suggesting reduced reward-contingency learning with greater anhedonia. These findings help elucidate neural mechanisms of anhedonia, as a step toward

  17. Topography of the accessory left gastric artery (ALGA) analyzed by CT angiography from the left hepatic artery

    International Nuclear Information System (INIS)

    Shioyama, Yasukazu; Takasaka, Isao; Onaya, Hiroaki

    2003-01-01

    To avoid gastric complications when we perform transcatheter treatment via left hepatic artery, we analyzed the topography of ALGA (accessory left gastric artery) by left hepatic arteriography and CT angiography from left hepatic artery. Six hundred seventy eight cases of CT angiography were performed between 1995 and 2000. Among them, selective left hepatic arteriography was done in 85 cases. We analyzed the frequency and the course of ALGA on the hepatic angiogram and CT angiogram. ALGA were identified in eighteen (21.2 %) of the 85 cases. We classified them into eleven cases of the proximal type and six cases of the distal type. When ALGA bifurcated from the left hepatic artery very close to the bifurcation of A2 (dorsolateral branch) and A3 (ventrolateral branch), we classified them as the distal type on hepatic angiogram. On the other hand, when ALGA bifurcated from the left hepatic artery apart from the bifurcation of A2 and A3 they were classified as the proximal type. In one rare case ALGA originated from the dorsolateral branch of the left hepatic artery. ALGA were classified as the distal and proximal types. Distal type of ALGA often overlapped dorsolateral branch of the left hepatic artery, and it was sometimes difficult to notice the existence of them. We should check the existence of ALGA on the arterial phase of dynamic CT before we plan to make a transcatheter treatment from the left hepatic artery. Then we can avoid gastric complications caused by a transcatheter treatment from the left hepatic artery. (author)

  18. Surgical Repair of Bulbar Urethral Strictures: Advantages of Ventral, Dorsal, and Lateral Approaches and When to Choose Them

    Directory of Open Access Journals (Sweden)

    Krishnan Venkatesan

    2015-01-01

    Full Text Available Objectives. To review the available literature describing the three most common approaches for buccal mucosal graft (BMG augmentation during reconstruction of bulbar urethral strictures. Due to its excellent histological properties, buccal mucosa graft is now routinely used in urethral reconstruction. The best approach for the placement of such a graft remains controversial. Methods. PubMed search was conducted for available English literature describing outcomes of bulbar urethroplasty augmentation techniques using dorsal, ventral, and lateral approaches. Prospective and retrospective studies as well as meta-analyses and latest systematic reviews were included. Results. Most of the studies reviewed are of retrospective nature and majority described dorsal or ventral approaches. Medium- and long-term outcomes of all three approaches were comparable ranging between 80 and 88%. Conclusion. Various techniques of BMG augmentation urethroplasty have been described for repairs of bulbar urethral strictures. In this review, we describe and compare the three most common “competing” approaches for bulbar urethroplasty with utilization of BMG.

  19. Representation of Glossy Material Surface in Ventral Superior Temporal Sulcal Area of Common Marmosets.

    Science.gov (United States)

    Miyakawa, Naohisa; Banno, Taku; Abe, Hiroshi; Tani, Toshiki; Suzuki, Wataru; Ichinohe, Noritaka

    2017-01-01

    The common marmoset ( Callithrix jacchus ) is one of the smallest species of primates, with high visual recognition abilities that allow them to judge the identity and quality of food and objects in their environment. To address the cortical processing of visual information related to material surface features in marmosets, we presented a set of stimuli that have identical three-dimensional shapes (bone, torus or amorphous) but different material appearances (ceramic, glass, fur, leather, metal, stone, wood, or matte) to anesthetized marmoset, and recorded multiunit activities from an area ventral to the superior temporal sulcus (STS) using multi-shanked, and depth resolved multi-electrode array. Out of 143 visually responsive multiunits recorded from four animals, 29% had significant main effect only of the material, 3% only of the shape and 43% of both the material and the shape. Furthermore, we found neuronal cluster(s), in which most cells: (1) showed a significant main effect in material appearance; (2) the best stimulus was a glossy material (glass or metal); and (3) had reduced response to the pixel-shuffled version of the glossy material images. The location of the gloss-selective area was in agreement with previous macaque studies, showing activation in the ventral bank of STS. Our results suggest that perception of gloss is an important ability preserved across wide range of primate species.

  20. Left Atrial Decompression by Percutaneous Left Atrial Venting Cannula Insertion during Venoarterial Extracorporeal Membrane Oxygenation Support

    Directory of Open Access Journals (Sweden)

    Ha Eun Kim

    2016-06-01

    Full Text Available Patients with venoarterial extracorporeal membrane oxygenation (ECMO frequently suffer from pulmonary edema due to left ventricular dysfunction that accompanies left heart dilatation, which is caused by left atrial hypertension. The problem can be resolved by left atrium (LA decompression. We performed a successful percutaneous LA decompression with an atrial septostomy and placement of an LA venting cannula in a 38-month-old child treated with venoarterial ECMO for acute myocarditis.

  1. Social aspects of left-handedness

    Directory of Open Access Journals (Sweden)

    Belojević Goran

    2010-01-01

    Full Text Available Throughout human history left-handedness has been considered as sinful. It has been associated with the devil, weakness, female gender, unhealthiness, evil, something that has to be turned to a “good” - right side by force. Left-handedness is being more and more acceptable at rational level, but in everyday life it is still considered to be unusual if someone writes with the left hand. Lessening of the number of lefthanders is associated with ageing. There are about 13% lefthanders among people in twenties and less than 1% lefthanders among those in eighties. This finding may be explaned with more pronounced socio-cultural pressure on left-handed people in the past, compared to nowadays. On the other hand, this may also support the hypothesis about a reduced life span of lefthanded people. With cross-exercising of left-handedness, certain typical characteristics and behavioral patterns appear in these people. This was a sort of provoked behavior and an attack on the integrity of an emotional attitude toward oneself. Stuttering may also appear as a consequence of unsuccessful cross-exercising of left-handedness. The hypothesis about left-handedness as an advantage is supported with the reports about relatively more lefthanders in some specific groups such as: mathematicians, sculptors, architects, painters, musicians, actors, tennis players, as well as famous army commanders and rulers.

  2. [Effectiveness of penile ventral scrotum cohesion place wedge cutting and improved Brisson technique for congenital buried penis].

    Science.gov (United States)

    Zhang, Huafeng

    2013-09-01

    To investigate the effectiveness of the penile ventral scrotum cohesion place wedge cutting and improved Brisson technique for congenital buried penis. Between March 2010 and June 2012, 68 boys with congenital buried penis were treated by the penile ventral scrotum cohesion place wedge cutting and improved Brisson technique, with a median age of 4 years and 10 months (range, 3 months-13 years). Of 68 cases, 14 were classified as phimosis type, 14 as rope belt type, 20 as moderate type, and 20 as severe type. The body of penis developed well and had no deformity. After operation, complications were observed, and the effectiveness was evaluated by the designed questionnaire. Early postoperative complications occurred in 11 cases, including obvious adhesion of the outside wrapping mouth in 4 cases, scrotal skin bloat in 5 cases, and distal foreskin necrosis in 2 cases; long-term complications occurred in 9 cases, including abdominal incision scar formation in 4 cases, wrapping mouth scar stricture in 3 cases, and short penis in 2 cases. Primary healing of incision was obtained in the other boys. Fifty-four cases were followed up 6-12 months (mean, 8 months). According to the designed questionnaire, satisfaction rate with the overall view in parents was 77.78% (42/54); the clinical improvement rate was 85.19% (46/54); exposure of the penis was satisfactory in parents of 50 cases; and the parents had no psychological burden of penis exposure in 46 cases, which were significantly improved when compared with preoperative ones (P penis exposure in 29 cases (53.70%) after operation, showing no significant difference when compared with preoperative one (18 cases, 33.33%) (chi2 = 1.22, P = 0.31). Application of the penile ventral scrotum cohesion place wedge cutting and improved Brisson technique can effectively correct congenital buried penis.

  3. A multivariate surface-based analysis of the putamen in premature newborns: regional differences within the ventral striatum.

    Directory of Open Access Journals (Sweden)

    Jie Shi

    Full Text Available Many children born preterm exhibit frontal executive dysfunction, behavioral problems including attentional deficit/hyperactivity disorder and attention related learning disabilities. Anomalies in regional specificity of cortico-striato-thalamo-cortical circuits may underlie deficits in these disorders. Nonspecific volumetric deficits of striatal structures have been documented in these subjects, but little is known about surface deformation in these structures. For the first time, here we found regional surface morphological differences in the preterm neonatal ventral striatum. We performed regional group comparisons of the surface anatomy of the striatum (putamen and globus pallidus between 17 preterm and 19 term-born neonates at term-equivalent age. We reconstructed striatal surfaces from manually segmented brain magnetic resonance images and analyzed them using our in-house conformal mapping program. All surfaces were registered to a template with a new surface fluid registration method. Vertex-based statistical comparisons between the two groups were performed via four methods: univariate and multivariate tensor-based morphometry, the commonly used medial axis distance, and a combination of the last two statistics. We found statistically significant differences in regional morphology between the two groups that are consistent across statistics, but more extensive for multivariate measures. Differences were localized to the ventral aspect of the striatum. In particular, we found abnormalities in the preterm anterior/inferior putamen, which is interconnected with the medial orbital/prefrontal cortex and the midline thalamic nuclei including the medial dorsal nucleus and pulvinar. These findings support the hypothesis that the ventral striatum is vulnerable, within the cortico-stiato-thalamo-cortical neural circuitry, which may underlie the risk for long-term development of frontal executive dysfunction, attention deficit hyperactivity

  4. Major depression in mothers predicts reduced ventral striatum activation in adolescent female offspring with and without depression.

    Science.gov (United States)

    Sharp, Carla; Kim, Sohye; Herman, Levi; Pane, Heather; Reuter, Tyson; Strathearn, Lane

    2014-05-01

    Prior research has identified reduced reward-related brain activation as a promising endophenotype for the early identification of adolescents with major depressive disorder (MDD). However, it is unclear whether reduced reward-related brain activation constitutes a true vulnerability for MDD. One way of studying vulnerability is through a high-risk design. Therefore, the aim of the current study was to determine whether reward-related activation of the ventral striatum is reduced in nondepressed daughters of mothers with a history of MDD (high-risk) similarly to currently depressed adolescent girls, compared with healthy controls. By directly comparing groups with a shared risk profile during differing states, we aimed to shed light on the endophenotypic nature of reduced reward processing for adolescent depression. We compared reward-related neural activity through functional magnetic resonance imaging (fMRI) between three groups of female biological offspring (N = 52) of mothers with differential MDD status: (a) currently depressed daughters of mothers with a history of MDD (MDD group; n = 14), (b) age- and socioeconomic status (SES)-matched never-depressed daughters of mothers with a history of MDD (high-risk group; n = 19), and (c) age- and SES-matched control daughters of mothers with no past or current psychopathology in either the mother or the daughter (healthy control group; n = 19). For the outcome phase of the reward task, right-sided ventral striatum activation was reduced for both currently depressed and high-risk girls compared with healthy controls. This ventral striatal activity correlated significantly with maternal depression scores. These findings provide further evidence of aberrant functioning for the United States Department of Health & Human Services, National Institutes of Health, National Institute of Mental Health (NIMH) Research Domain Criteria (RDoC)-defined domain of positive valence systems as a vulnerability factor for MDD and a

  5. Mirror System Activity for Action and Language Is Embedded in the Integration of Dorsal and Ventral Pathways

    Science.gov (United States)

    Arbib, Michael A.

    2010-01-01

    We develop the view that the involvement of mirror neurons in embodied experience grounds brain structures that underlie language, but that many other brain regions are involved. We stress the cooperation between the dorsal and ventral streams in praxis and language. Both have perceptual and motor schemas but the perceptual schemas in the dorsal…

  6. Left ventricular assist device implantation via left thoracotomy: alternative to repeat sternotomy.

    Science.gov (United States)

    Pierson, Richard N; Howser, Renee; Donaldson, Terri; Merrill, Walter H; Dignan, Rebecca J; Drinkwater, Davis C; Christian, Karla G; Butler, Javed; Chomsky, Don; Wilson, John R; Clark, Rick; Davis, Stacy F

    2002-03-01

    Repeat sternotomy for left ventricular assist device insertion may result in injury to the right heart or patent coronary grafts, complicating intraoperative and postoperative management. In 4 critically ill patients, left thoracotomy was used as an alternative to repeat sternotomy. Anastomosis of the outflow conduit to the descending thoracic aorta provided satisfactory hemodynamic support.

  7. Haptically Guided Grasping. fMRI Shows Right-Hemisphere Parietal Stimulus Encoding, and Bilateral Dorso-Ventral Parietal Gradients of Object- and Action-Related Processing during Grasp Execution.

    Science.gov (United States)

    Marangon, Mattia; Kubiak, Agnieszka; Króliczak, Gregory

    2015-01-01

    The neural bases of haptically-guided grasp planning and execution are largely unknown, especially for stimuli having no visual representations. Therefore, we used functional magnetic resonance imaging (fMRI) to monitor brain activity during haptic exploration of novel 3D complex objects, subsequent grasp planning, and the execution of the pre-planned grasps. Haptic object exploration, involving extraction of shape, orientation, and length of the to-be-grasped targets, was associated with the fronto-parietal, temporo-occipital, and insular cortex activity. Yet, only the anterior divisions of the posterior parietal cortex (PPC) of the right hemisphere were significantly more engaged in exploration of complex objects (vs. simple control disks). None of these regions were re-recruited during the planning phase. Even more surprisingly, the left-hemisphere intraparietal, temporal, and occipital areas that were significantly invoked for grasp planning did not show sensitivity to object features. Finally, grasp execution, involving the re-recruitment of the critical right-hemisphere PPC clusters, was also significantly associated with two kinds of bilateral parieto-frontal processes. The first represents transformations of grasp-relevant target features and is linked to the dorso-dorsal (lateral and medial) parieto-frontal networks. The second monitors grasp kinematics and belongs to the ventro-dorsal networks. Indeed, signal modulations associated with these distinct functions follow dorso-ventral gradients, with left aIPS showing significant sensitivity to both target features and the characteristics of the required grasp. Thus, our results from the haptic domain are consistent with the notion that the parietal processing for action guidance reflects primarily transformations from object-related to effector-related coding, and these mechanisms are rather independent of sensory input modality.

  8. Does site of buccal mucosa graft for bulbar urethra stricture affect outcome? A comparative analysis of ventral, dorso-lateral and dorsal buccal mucosa graft augmentation urethroplasty.

    Science.gov (United States)

    Pathak, Hemant R; Jain, Tarunkumar Prakash; Bhujbal, Sachin A; Meshram, Kunal R; Gadekar, Chetan; Parab, Sandesh

    2017-09-01

    To compare long- term outcomes of buccal mucosa graft (BMG) augmentation urethroplasty for long segment bulbar urethral strictures done by placing the graft ventrally, dorso-laterally and dorsally. We conducted a single institution retrospective study on 112 who underwent BMG augmentation urethroplasty for non-traumatic bulbar urethral strictures between January 2005 to December 2014. The cases were divided into three groups based on the site of placement of BMG graft i.e. (a) Ventral (n=44), (b) Dorso-lateral (n=48) and (c) Dorsal (n=20). Follow-up period was from one year to five years. Patients with failed outcomes underwent urethroscopy or retrograde urethrogram to note the site of recurrence of stricture. Out of 112 cases 91 (81%) were successful and 21 (19%) failed. The success rates for ventral, dorso-lateral and dorsal BMG augmentation procedures were 89%, 79% and 70%, respectively (p=0.18). Among 21 failed cases, 12 cases (57%) had stricture at proximal anastomotic site, 4 cases (19%) at graft and 5 cases (24%) at distal anastomotic site (p=0.01). The overall success rate for BMG augmentation urethroplasty is equal for all techniques. Ventral onlay urethroplasty provides better exposure of proximal anastomotic site thus it is associated with minimum proximal anastomotic site recurrence rates. Patients with extensive spongiofibrosis and long segment strictures had higher rates of failure.

  9. VARIATION IN THE OPENINGS (OSTIA OF LEFT PULMONARY VEINS INTO THE LEFT ATRIUM: A CASE REPORT

    Directory of Open Access Journals (Sweden)

    Sesi

    2015-03-01

    Full Text Available During early embryonic development, absorption of pulmonary venous network by the left primitive atrial chamber results in opening of four pulmonary veins which drain independently into its chamber. The extent of absorption and hence, the number of pulmon ary veins which open into the left atrium, may vary. Here we report a variation in the opening of the Left upper (superior pulmonary vein into the Left atrium. A total of six openings observed

  10. Are cocaine users too sensitive? Functional and structural brain imaging studies in regular cocaine users

    NARCIS (Netherlands)

    Kaag, A.M.

    2016-01-01

    While previous research primarily focused on the involvement of the frontostriatal network in the etiology of substance use disorder, it has recently been suggested that the amygdala, and its interaction with the frontostriatal circuitry, may play a key role in habitual drug seeking, and therefore

  11. Avaliação fitoterápica da Jatropha gossypiifolia L. na cicatrização de suturas na parede abdominal ventral de ratos Phytotherapic evaluation of Jatropha gossypiifolia L. on rats ventral abdominal wall wound healing

    Directory of Open Access Journals (Sweden)

    José Ulcijara Aquino

    2006-01-01

    Full Text Available INTRODUÇÃO: A espécie vegetal Jatropha gossypiifolia L., conhecida também como pião roxo, é utilizada na medicina popular como cicatrizante, anti-hipertensivo, purgativo e diurético. OBJETIVO: Avaliar a influência da administração intraperitoneal da Jatropha gossypiifolia L., na cicatrização de suturas da parede abdominal ventral de ratos, observando-se os seus aspectos macroscópicos, tensiométricos e microscópicos. MÉTODOS: Foram utilizados no procedimento 40 ratos da linhagem Wistar, machos, distribuídos em dois grupos de 20. Após incisão da parede e abertura da cavidade abdominal, foi instilado 1 ml/kg/peso de cloreto de sódio a 0,9% no grupo controle e no grupo Jatropha o extrato bruto etanólico da Jatropha gossypiifolia L., na concentração de 1 ml/kg/ peso. Realizou-se a sutura da parede abdominal com fio de polipropileno, com pontos separados. Os animais foram avaliados na sua evolução pós-operatória e mortos em dois subgrupos, no 3º e 7º dia. Analisou-se a parede abdominal ventral macroscopicamente, mediu-se a força de resistência a tensão e foram estudados os aspectos histológicos do reparo cicatricial. RESULTADOS: No exame macroscópico encontraram-se aderências mais intensas nos subgrupos Jatropha no 3º e 7º dia. A avaliação tensiométrica foi significantemente maior nos subgrupos Jatropha no 3º e 7º dia. A avaliação histológica comparativa entre os subgrupos demonstrou que o processo inflamatório agudo foi significantemente maior no subgrupo Jatropha no 3º e 7º dia; a neoformação capilar foi significantemente maior no 3º dia pós-operatório do subgrupo Jatropha sendo os outros parâmetros histológicos semelhantes. CONCLUSÃO: O uso do extrato bruto de Jatropha gossypiifolia L. intraperitoneal não demonstrou melhora significativa no processo de cicatrização da sutura da parede abdominal ventral de ratos com a dose e concentração utilizadas.INTRODUCTION: The Jatropha gossypiifolia

  12. Effect of left ventricular diastolic dysfunction on left atrial appendage function and thrombotic potential in nonvalvular atrial fibrillation.

    Science.gov (United States)

    Demirçelik, Muhammed Bora; Çetin, Mustafa; Çiçekcioğlu, Hülya; Uçar, Özgül; Duran, Mustafa

    2014-05-01

    We aimed to investigate effects of left ventricular diastolic dysfunction on left atrial appendage functions, spontaneous echo contrast and thrombus formation in patients with nonvalvular atrial fibrillation. In 58 patients with chronic nonvalvular atrial fibrilation and preserved left ventricular systolic function, left atrial appendage functions, left atrial spontaneous echo contrast grading and left ventricular diastolic functions were evaluated using transthoracic and transoesophageal echocardiogram. Patients divided in two groups: Group D (n=30): Patients with diastolic dysfunction, Group N (n=28): Patients without diastolic dysfunction. Categorical variables in two groups were evaluated with Pearson's chi-square or Fisher's exact test. The significance of the lineer correlation between the degree of spontaneous echo contrast (SEC) and clinical measurements was evaluated with Spearman's correlation analysis. Peak pulmonary vein D velocity of the Group D was significantly higher than the Group N (p=0.006). However, left atrial appendage emptying velocity, left atrial appendage lateral wall velocity, peak pulmonary vein S, pulmonary vein S/D ratio were found to be significantly lower in Group D (p=0.028, patrial appendage emptying, filling, pulmonary vein S/D levels and lateral wall velocities respectively (r=-0.438, r=-0.328, r=-0.233, r=-0.447). Left atrial appendage emptying, filling, pulmonary vein S/D levels and lateral wall velocities were significantly lower in SEC 2-3-4 than SEC 1 (p=0.003, p=0.029, patrial fibrillation and preserved left ventricular ejection fraction, left atrial appendage functions are decreased in patients with left ventricular diastolic dysfunction. Left ventricular diastolic dysfunction may constitute a potential risk for formation of thrombus and stroke.

  13. Right colon cancer: Left behind.

    Science.gov (United States)

    Gervaz, P; Usel, M; Rapiti, E; Chappuis, P; Neyroud-Kaspar, I; Bouchardy, C

    2016-09-01

    Prognosis of colon cancer (CC) has steadily improved during the past three decades. This trend, however, may vary according to proximal (right) or distal (left) tumor location. We studied if improvement in survival was greater for left than for right CC. We included all CC recorded at the Geneva population-based registry between 1980 and 2006. We compared patients, tumor and treatment characteristics between left and right CC by logistic regression and compared CC specific survival by Cox models taking into account putative confounders. We also compared changes in survival between CC location in early and late years of observation. Among the 3396 CC patients, 1334 (39%) had right-sided and 2062 (61%) left-sided tumors. In the early 1980s, 5-year specific survival was identical for right and left CCs (49% vs. 48%). During the study period, a dramatic improvement in survival was observed for patients with left-sided cancers (Hazard ratio [HR]: 0.42, 95% confidence interval [CI]: 0.29-0.62, p colon cancer patients, those with right-sided lesions have by far the worse prognosis. Change of strategic management in this subgroup is warranted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Occipitalization of the ventral part and the vertebralization of the dorsal part of the atlas with insufficiency of the transverse ligament

    International Nuclear Information System (INIS)

    Wackenheim, A.

    1982-01-01

    Occipitalization and vertebralization of the atlas are well known. We observed the first case of ventral occipitalization associated with dorsal vertebralization of the atlas in a 15-year-old female. (orig.)

  15. Professional training in creative writing is associated with enhanced fronto-striatal activity in a literary text continuation task.

    Science.gov (United States)

    Erhard, K; Kessler, F; Neumann, N; Ortheil, H-J; Lotze, M

    2014-10-15

    The aim of the present study was to explore brain activities associated with creativity and expertise in literary writing. Using functional magnetic resonance imaging (fMRI), we applied a real-life neuroscientific setting that consisted of different writing phases (brainstorming and creative writing; reading and copying as control conditions) to well-selected expert writers and to an inexperienced control group. During creative writing, experts showed cerebral activation in a predominantly left-hemispheric fronto-parieto-temporal network. When compared to inexperienced writers, experts showed increased left caudate nucleus and left dorsolateral and superior medial prefrontal cortex activation. In contrast, less experienced participants recruited increasingly bilateral visual areas. During creative writing activation in the right cuneus showed positive association with the creativity index in expert writers. High experience in creative writing seems to be associated with a network of prefrontal (mPFC and DLPFC) and basal ganglia (caudate) activation. In addition, our findings suggest that high verbal creativity specific to literary writing increases activation in the right cuneus associated with increased resources obtained for reading processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Exploring the Behavioral and Metabolic Phenotype Generated by Re-Introduction of the Ghrelin Receptor in the Ventral Tegmental Area

    DEFF Research Database (Denmark)

    Skov, Louise J; Jensen, Morten; Christiansen, Søren H

    2017-01-01

    Ghrelin receptor (Ghr-R) signaling in neurons of the ventral tegmental area (VTA) can modulate dopaminergic function and the reward-related effects of both palatable foods and drugs of abuse. In this study, we re-introduced the Ghr-R in VTA neurons in Ghr-R knockout mice (Ghr-R(VTA) mice) to spec...... for the reward-related effects of activation of VTA neurons. Overall, our data suggest that re-introduction of the Ghr-R in the mesolimbic reward system of Ghr-R knockout mice increases the level of activation induced by both cocaine and novelty stress.......Ghrelin receptor (Ghr-R) signaling in neurons of the ventral tegmental area (VTA) can modulate dopaminergic function and the reward-related effects of both palatable foods and drugs of abuse. In this study, we re-introduced the Ghr-R in VTA neurons in Ghr-R knockout mice (Ghr-R(VTA) mice...

  17. The effect of percutaneous transcatheter occlusion of left atrial appendage on left atrium and adjacent anatomic structure in canine

    International Nuclear Information System (INIS)

    Yang Zhihong; Wu Hong; Qin Yongwen; Hu Jianqiang; Ding Zhongru; Liu Zongjun; Liu Biao; Zheng Xing

    2009-01-01

    Objective: To observe the effect of percutaneous transcatheter occlusion of left atrial appendage (LAA) with a new self-manufactured LAA occluder on left atrium and adjacent anatomic structure in canine. Methods: A new self-manufactured LAA occluder was implanted into the LAA through a transseptal catheter in 20 dogs. Before and after the procedure, the experimental dogs were anaesthetized and examined by transthoracic echocardiography (TTE) to measure the diameter and the volume of the left atrium, the left superior pulmonary vein flow velocity and the left atrioventricular valve flow velocity separately. The contrast radiography of the LAA and the left coronary arteriography were performed. Results: The new LAA occluder was implanted successfully in 14 dogs. No obvious changes in the diameter and the volume of the left atrium, in left superior pulmonary vein flow velocity and in left atrioventricular valve flow velocity were found. On arteriography, left circumflex artery was normally displayed after the procedure. No migration of the occluder was seen on TTE and angiography after procedure. Conclusion: Percutaneous transcatheter occlusion of left atrial appendage with a new self-manufactured LAA occluder has no obvious effect on left atrium and adjacent anatomic structure in experimental canine, which indicates that the new-type device is a safe and feasible occluder for LAA. (authors)

  18. GDNF family ligands display distinct action profiles on cultured GABAergic and serotonergic neurons of rat ventral mesencephalon

    DEFF Research Database (Denmark)

    Ducray, Angélique; Krebs, Sandra H:; Schaller, Benoft

    2006-01-01

    Glial-cell-line-derived neurotrophic factor (GDNF), neurturin (NRTN), artemin (ARTN) and persephin (PSPN), known as the GDNF family ligands (GFLs), influence the development, survival and differentiation of cultured dopaminergic neurons from ventral mesencephalon (VM). Detailed knowledge about...... factors for VM GABAergic and serotonergic neurons, demonstrating characteristic individual action profiles emphasizing their important and distinct roles during brain development....

  19. The New Left in the European Democracies: The Case of the German Radical Left

    Directory of Open Access Journals (Sweden)

    Marco Damiani

    2015-03-01

    Full Text Available The new form of the social and political conflict cannot be explained by the traditional categories of right and left, but it articulates to them on two plans, that of the establishment, intended like plan of the structured political conflict from the traditional actors, and that of the anti-establishment, in which new representations of politics emerge. The New Left is characterized by type of intermittent participation and new perspectives on mobilization inside the parties and the social movements. This type of parties differs moreover from the traditional ones left of the socialist and social democratic left in not arranging of organizations collaterals placed under the direction of the leadership of the same party. The mobilization that spontaneously assumes not conventional forms of active participation of the citizens, or is primed by the action of an associative network of which the same parties take part, than however does not monopo-lize the collective action. In this regard, the attention will be dedicated to the study of Die Linke: an anti-establishment party of the non-socialist German left-wing, heir to the communist tradition. The choice was affected to the German model because: 1 Germany is a country with a strong social democratic tradition, but 25 years after the fall of the Berlin Wall the German political system identifies a new antagonist political party; 2 Die Linke represents an interesting case in the political landscape of the European radical left because is a one-party that gives up at the federation of parties to try to unify the political parties of German radical left-wing.

  20. What is Beyond Right/Left?

    DEFF Research Database (Denmark)

    Dyrberg, Torben Bech

    2009-01-01

    The article looks at New Labour's move beyond right/left in the mid/late 1990s, which is an occasion to spell out the nature of right/left and what it means for democracy. In contrast to both defenders and critics of this move I argue in the first part that right/left is not an empty label bound up...... with the cleavage-lines of industrial society, but that it is an orientational metaphor which is articulated with others-in/out, up/down and front/back-and that we are in the process of moving beyond the industrial society right/left prototype. The second part looks at where New Labour is heading when moving beyond...... right/left. I argue that the new hegemonic orientation is that of front/back, which designs political renewal as a response to the social changes cutting across the outdated lines of contestation of partisan politics. The democratic problem of this move lies in squeezing politics between technocratic...

  1. ERK1/2 activation in rat ventral tegmental area by the mu-opioid agonist fentanyl : An in vitro study

    NARCIS (Netherlands)

    Lesscher, HMB; Burbach, JPH; Van Ree, JM; Gerrits, MAFM

    2003-01-01

    Opioid receptors in the ventral tegmental area, predominantly the mu-opioid receptors, have been suggested to modulate reinforcement sensitivity for both opioid and non-opioid drugs of abuse. The present study was conducted to study signal transduction proteins, which may mediate the functioning of

  2. The Pathogenesis of Ventral Idiopathic Herniation of the Spinal Cord: A Hypothesis Based on the Review of the Literature

    NARCIS (Netherlands)

    Bartels, R.H.M.A.; Brunner, H.G.; Hosman, A.J.; Alfen, N. van; Grotenhuis, J.A.

    2017-01-01

    Idiopathic ventral herniation of the spinal cord (SC) is not often encountered in daily practice. Its clinical prevalence, however, will increase through increasing awareness and more frequent use of MRI. A clear explanation of its pathophysiology has never been formulated. It was hypothesized that

  3. Transvaginal Repair of a Large Chronic Porcine Ventral Hernia with Synthetic Mesh Using NOTES

    OpenAIRE

    Powell, Ben; Whang, Susan H.; Bachman, Sharon L.; Andres Astudillo, J.; Sporn, Emanuel; Miedema, Brent W.; Thaler, Klaus

    2010-01-01

    Background: Ventral incisional hernias still remain a common surgical problem. We tested the feasibility of transvaginal placement of a large synthetic mesh to repair a porcine hernia. Methods: Seven pigs were used in this survival model. Each animal had creation of a 5-cm hernia defect and underwent a transvaginal repair of the defect with synthetic mesh. A single colpotomy was made using a 12-cm trocar for an overtube. The mesh was cut to size and placed through the trocar. A single-channel...

  4. Early Left Parietal Activity Elicited by Direct Gaze: A High-Density EEG Study

    Science.gov (United States)

    Burra, Nicolas; Kerzel, Dirk; George, Nathalie

    2016-01-01

    Gaze is one of the most important cues for human communication and social interaction. In particular, gaze contact is the most primary form of social contact and it is thought to capture attention. A very early-differentiated brain response to direct versus averted gaze has been hypothesized. Here, we used high-density electroencephalography to test this hypothesis. Topographical analysis allowed us to uncover a very early topographic modulation (40–80 ms) of event-related responses to faces with direct as compared to averted gaze. This modulation was obtained only in the condition where intact broadband faces–as opposed to high-pass or low-pas filtered faces–were presented. Source estimation indicated that this early modulation involved the posterior parietal region, encompassing the left precuneus and inferior parietal lobule. This supports the idea that it reflected an early orienting response to direct versus averted gaze. Accordingly, in a follow-up behavioural experiment, we found faster response times to the direct gaze than to the averted gaze broadband faces. In addition, classical evoked potential analysis showed that the N170 peak amplitude was larger for averted gaze than for direct gaze. Taken together, these results suggest that direct gaze may be detected at a very early processing stage, involving a parallel route to the ventral occipito-temporal route of face perceptual analysis. PMID:27880776

  5. First human use of hybrid synthetic/biologic mesh in ventral hernia repair: a multicenter trial.

    Science.gov (United States)

    Bittner, James G; El-Hayek, Kevin; Strong, Andrew T; LaPinska, Melissa Phillips; Yoo, Jin S; Pauli, Eric M; Kroh, Matthew

    2018-03-01

    Mesh options for reinforcement of ventral/incisional hernia (VIH) repair include synthetic or biologic materials. While each material has known advantages and disadvantages, little is understood about outcomes when these materials are used in combination. This multicenter study reports on the first human use of a novel synthetic/biologic hybrid mesh (Zenapro ® Hybrid Hernia Repair Device) for VIH repair. This prospective, multicenter post-market clinical trial enrolled consecutive adults who underwent elective VIH repair with hybrid mesh placed in the intraperitoneal or retromuscular/preperitoneal position. Patients were classified as Ventral Hernia Working Group (VHWG) grades 1-3 and had clean or clean-contaminated wounds. Outcomes of ventral and incisional hernia were compared using appropriate parametric tests. In all, 63 patients underwent VIH repair with hybrid mesh. Most were females (54.0%), had a mean age of 54.8 ± 10.9 years and mean body mass index of 34.5 ± 7.8 kg/m 2 , and classified as VHWG grade 2 (87.3%). Most defects were midline (92.1%) with a mean area of 106 ± 155 cm 2 . Cases were commonly classified as clean (92.1%) and were performed laparoscopically (60.3%). Primary fascial closure was achieved in 82.5% with 28.2% requiring component separation. Mesh location was frequently intraperitoneal (69.8%). Overall, 39% of patients available for follow-up at 12 months suffered surgical site events, which were generally more frequent after incisional hernia repair. Of these, seroma (23.7%) was most common, but few (8.5%) required procedural intervention. Other surgical site events that required procedural intervention included hematoma (1.7%), wound dehiscence (1.7%), and surgical site infection (3.4%). Recurrence rate was 6.8% (95% CI 2.2-16.6%) at 12-months postoperatively. Zenapro ® Hybrid Hernia Repair Device is safe and effective in VHWG grade 1-2 patients with clean wounds out to 12 months. Short-term outcomes and recurrence rate

  6. Evidence for Non-Opponent Coding of Colour Information in Human Visual Cortex: Selective Loss of “Green” Sensitivity in a Subject with Damaged Ventral Occipito-Temporal Cortex

    Science.gov (United States)

    Rauscher, Franziska G.; Plant, Gordon T.; James-Galton, Merle; Barbur, John L.

    2011-01-01

    Damage to ventral occipito-temporal extrastriate visual cortex leads to the syndrome of prosopagnosia often with coexisting cerebral achromatopsia. A patient with this syndrome resulting in a left upper homonymous quadrantanopia, prosopagnosia, and incomplete achromatopsia is described. Chromatic sensitivity was assessed at a number of locations in the intact visual field using a dynamic luminance contrast masking technique that isolates the use of colour signals. In normal subjects chromatic detection thresholds form an elliptical contour when plotted in the Commission Internationale d’Eclairage, (x-y), chromaticity diagram. Because the extraction of colour signals in early visual processing involves opponent mechanisms, subjects with Daltonism (congenital red/green loss of sensitivity) show symmetric increase in thresholds towards the long wavelength (“red”) and middle wavelength (“green”) regions of the spectrum locus. This is also the case with acquired loss of chromatic sensitivity as a result of retinal or optic nerve disease. Our patient’s results were an exception to this rule. Whilst his chromatic sensitivity in the central region of the visual field was reduced symmetrically for both “red/green” and “yellow/blue” directions in colour space, the subject’s lower left quadrant showed a marked asymmetry in “red/green” thresholds with the greatest loss of sensitivity towards the “green” region of the spectrum locus. This spatially localized asymmetric loss of “green” but not “red” sensitivity has not been reported previously in human vision. Such loss is consistent with selective damage of neural substrates in the visual cortex that process colour information, but are spectrally non-opponent. PMID:27956924

  7. On the context-dependent nature of the contribution of the ventral premotor cortex to speech perception

    Science.gov (United States)

    Tremblay, Pascale; Small, Steven L.

    2011-01-01

    What is the nature of the interface between speech perception and production, where auditory and motor representations converge? One set of explanations suggests that during perception, the motor circuits involved in producing a perceived action are in some way enacting the action without actually causing movement (covert simulation) or sending along the motor information to be used to predict its sensory consequences (i.e., efference copy). Other accounts either reject entirely the involvement of motor representations in perception, or explain their role as being more supportive than integral, and not employing the identical circuits used in production. Using fMRI, we investigated whether there are brain regions that are conjointly active for both speech perception and production, and whether these regions are sensitive to articulatory (syllabic) complexity during both processes, which is predicted by a covert simulation account. A group of healthy young adults (1) observed a female speaker produce a set of familiar words (perception), and (2) observed and then repeated the words (production). There were two types of words, varying in articulatory complexity, as measured by the presence or absence of consonant clusters. The simple words contained no consonant cluster (e.g. “palace”), while the complex words contained one to three consonant clusters (e.g. “planet”). Results indicate that the left ventral premotor cortex (PMv) was significantly active during speech perception and speech production but that activation in this region was scaled to articulatory complexity only during speech production, revealing an incompletely specified efferent motor signal during speech perception. The right planum temporal (PT) was also active during speech perception and speech production, and activation in this region was scaled to articulatory complexity during both production and perception. These findings are discussed in the context of current theories theory of

  8. Transient inactivation of the ventral hippocampus in neonatal rats impairs the mesolimbic regulation of prefrontal glutamate release in adulthood

    DEFF Research Database (Denmark)

    Bortz, D M; Jørgensen, Christinna Vangsgaard; Mikkelsen, J D

    2014-01-01

    Cognitive deficits in schizophrenia (SZ) reflect maturational disruptions within a neural system that includes the ventral hippocampus (VH), nucleus accumbens (NAc), basal forebrain, and prefrontal cortex (PFC). A better understanding of these changes may reveal drug targets for more efficacious ...

  9. Inter- and intrahemispheric connectivity differences when reading Japanese Kanji and Hiragana.

    Science.gov (United States)

    Kawabata Duncan, Keith J; Twomey, Tae; Parker Jones, 'Ōiwi; Seghier, Mohamed L; Haji, Tomoki; Sakai, Katsuyuki; Price, Cathy J; Devlin, Joseph T

    2014-06-01

    Unlike most languages that are written using a single script, Japanese uses multiple scripts including morphographic Kanji and syllabographic Hiragana and Katakana. Here, we used functional magnetic resonance imaging with dynamic causal modeling to investigate competing theories regarding the neural processing of Kanji and Hiragana during a visual lexical decision task. First, a bilateral model investigated interhemispheric connectivity between ventral occipito-temporal (vOT) cortex and Broca's area ("pars opercularis"). We found that Kanji significantly increased the connection strength from right-to-left vOT. This is interpreted in terms of increased right vOT activity for visually complex Kanji being integrated into the left (i.e. language dominant) hemisphere. Secondly, we used a unilateral left hemisphere model to test whether Kanji and Hiragana rely preferentially on ventral and dorsal paths, respectively, that is, they have different intrahemispheric functional connectivity profiles. Consistent with this hypothesis, we found that Kanji increased connectivity within the ventral path (V1 ↔ vOT ↔ Broca's area), and that Hiragana increased connectivity within the dorsal path (V1 ↔ supramarginal gyrus ↔ Broca's area). Overall, the results illustrate how the differential processing demands of Kanji and Hiragana influence both inter- and intrahemispheric interactions.

  10. Sleep Deprivation Alters Rat Ventral Prostate Morphology, Leading to Glandular Atrophy: A Microscopic Study Contrasted with the Hormonal Assays

    Directory of Open Access Journals (Sweden)

    Daniel P. Venâncio

    2012-01-01

    Full Text Available We investigated the effect of 96 h paradoxical sleep deprivation (PSD and 21-day sleep restriction (SR on prostate morphology using stereological assays in male rats. After euthanasia, the rat ventral prostate was removed, weighed, and prepared for conventional light microscopy. Microscopic analysis of the prostate reveals that morphology of this gland was altered after 96 h of PSD and 21 days of SR, with the most important alterations occurring in the epithelium and stroma in the course of both procedures compared with the control group. Both 96 h PSD and 21-day SR rats showed lower serum testosterone and higher corticosterone levels than control rats. The significance of our result referring to the sleep deprivation was responsible for deep morphological alterations in ventral prostate tissue, like to castration microscopic modifications. This result is due to the marked alterations in hormonal status caused by PSD and SR.

  11. Sleep Deprivation Alters Rat Ventral Prostate Morphology, Leading to Glandular Atrophy: A Microscopic Study Contrasted with the Hormonal Assays

    Science.gov (United States)

    Venâncio, Daniel P.; Andersen, Monica L.; Vilamaior, Patricia S. L.; Santos, Fernanda C.; Zager, Adriano; Tufik, Sérgio; Taboga, Sebastião R.; De Mello, Marco T.

    2012-01-01

    We investigated the effect of 96 h paradoxical sleep deprivation (PSD) and 21-day sleep restriction (SR) on prostate morphology using stereological assays in male rats. After euthanasia, the rat ventral prostate was removed, weighed, and prepared for conventional light microscopy. Microscopic analysis of the prostate reveals that morphology of this gland was altered after 96 h of PSD and 21 days of SR, with the most important alterations occurring in the epithelium and stroma in the course of both procedures compared with the control group. Both 96 h PSD and 21-day SR rats showed lower serum testosterone and higher corticosterone levels than control rats. The significance of our result referring to the sleep deprivation was responsible for deep morphological alterations in ventral prostate tissue, like to castration microscopic modifications. This result is due to the marked alterations in hormonal status caused by PSD and SR. PMID:22927719

  12. Photoperiod and aggression induce changes in ventral gland compounds exclusively in male Siberian hamsters.

    Science.gov (United States)

    Rendon, Nikki M; Soini, Helena A; Scotti, Melissa-Ann L; Weigel, Ellen R; Novotny, Milos V; Demas, Gregory E

    2016-05-01

    Chemical communication is a critical component of social behavior as it facilitates social encounters, allows for evaluation of the social partner, defines territories and resources, and advertises information such as sex and physiological state of an animal. Odors provide a key source of information about the social environment to rodents; however, studies identifying chemical compounds have thus far focused primarily on few species, particularly the house mouse. Moreover, considerably less attention has been focused on how environmental factors, reproductive phenotype, and behavioral context alter these compounds outside of reproduction. We examined the effects of photoperiod, sex, and social context on chemical communication in the seasonally breeding Siberian hamster. We sampled ventral gland secretions in both male and female hamsters before and after an aggressive encounter and identified changes in a range of volatile compounds. Next, we investigated how photoperiod, reproductive phenotype, and aggression altered ventral gland volatile compound composition across the sexes. Males exhibited a more diverse chemical composition, more sex-specific volatiles, and showed higher levels of excretion compared to females. Individual volatiles were also differentially excreted across photoperiod and reproductive phenotype, as well as differentially altered in response to an aggressive encounter. Female volatile compound composition, in contrast, did not differ across photoperiods or in response to aggression. Collectively, these data contribute to a greater understanding of context-dependent changes in chemical communication in a seasonally breeding rodent. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. The Prognostic Value of Left Atrial Peak Reservoir Strain in Acute Myocardial Infarction Is Dependent on Left Ventricular Longitudinal Function and Left Atrial Size

    DEFF Research Database (Denmark)

    Ersbøll, Mads; Andersen, Mads J; Valeur, Nana

    2013-01-01

    of PALS and left ventricular longitudinal strain (global longitudinal strain) in large-scale populations in regard to prognosis. METHODS AND RESULTS: We prospectively included 843 patients (mean age 62.1+/-11.8; 74% male) with acute myocardial infarction and measured global longitudinal strain, left......BACKGROUND: Peak atrial longitudinal strain (PALS) during the reservoir phase has been proposed as a measure of left atrium function in a range of cardiac conditions, with the potential for added pathophysiological insight and prognostic value. However, no studies have assessed the interrelation...

  14. Aphasia following left thalamic hemorrhage

    International Nuclear Information System (INIS)

    Makishita, Hideo; Miyasaka, Motomaro; Tanizaki, Yoshio; Yanagisawa, Nobuo; Sugishita, Morihiro.

    1984-01-01

    We reported 7 patients with left thalamic hemorrhage in the chronic stage (from 1.5 months to 4.5 months), and described language disorders examined by Western Aphasia Battery (WAB) and measured cerebral blood flow by single photon emission CT. Examination of language by WAB revealed 4 aphasics out of 7 cases, and 3 patients had no language deficit. The patient with Wernicke's aphasia showed low density area only in the left posterior thalamus in X-ray CT, and revealed severe low blood flow area extending to left temporal lobe in emission CT. In the case with transcortical sensory aphasia, although X-ray CT showed no obvious low density area, emission CT revealed moderate low flow area in watershed area that involved the territory between posterior cerebral and middle cerebral arteries in the left temporooccipital region in addition to low blood flow at the left thalamus. In one of the two patients classified as anomic aphasia, whose score of repetition (8.4) was higher than that of comprehension (7.4), emission CT showed slight low flow area at the temporo-occipital region similarly as the case with transcortical sensory aphasia. In another case with anomic aphasia, scored 9 on both fluensy and comprehension subtests and 10 on repetition, there was wide low density area all over the left thalamus and midline shift to the right in X-ray CT, and emission CT showed severe low blood flow in the same region spreading widely toward the cerebral surface. On the other hand, in all of the 3 patients without aphasia, emission CT showed low flow region restricted to the left thalamus. (J.P.N.)

  15. Understanding the Dorsal and Ventral Systems of the Human Cerebral Cortex: Beyond Dichotomies

    Science.gov (United States)

    Borst, Gregoire; Thompson, William L.; Kosslyn, Stephen M.

    2011-01-01

    Traditionally, characterizations of the macrolevel functional organization of the human cerebral cortex have focused on the left and right cerebral hemispheres. However, the idea of left brain versus right brain functions has been shown to be an oversimplification. We argue here that a top-bottom divide, rather than a left-right divide, is a more…

  16. [Knockdown of InR gene in ventral nephrocytes promotes resistance to toxic stress in Drosophila melanogaster females].

    Science.gov (United States)

    Andreenkova, O V; Karpova, E K; Menshanov, P N; Rauschenbach, I Yu

    2015-02-01

    Hemolymph filtration in insects is performed by nephrocytes, additional cells of the circulatory system that are not connected to Malpighian vessels. Drosophila has two types of nephrocytes: the ventral ("garland"), which are situated around the connection site of the esophagus and proventriculus, and the pericardial, which are localized around the heart. In this study, we examined the role of the of insulin-like receptor (InR)gene in regulation of the function of ventral nephrocytes (VNC) in D. melanogaster females. Immunofluorescent analysis of female VNC with anti-InR antibodies revealed for the first time that the InR gene is expressed in VNC cells. To determine whether a change in the level of InR expression has an effect on VNC function in Drosophila females, we implemented an antisense suppressor of the InR gene, together with a driver that is expressed specifically in VNC. VNC function was evaluated by survival of the females exposed to toxic stress (treatment with AgNO3). This study has shown for the first time that suppression of InR expression in VNC leads to a rise in the survival of flies under conditions of toxic stress.

  17. Enhanced haemolymph circulation by insect ventral nerve cord: hormonal control by Pseudaletia unipuncta allatotropin and serotonin.

    Science.gov (United States)

    Koladich, P M; Tobe, S S; McNeil, J N

    2002-10-01

    The ventral diaphragm (VD) in many insects is a muscular membrane that essentially partitions a perineural sinus from the rest of the abdomen. In the true armyworm moth Pseudaletia unipuncta (Lepidoptera: Noctuidae) we describe how the VD is characterized by a series of aliform muscles inserted into a tissue matrix that is fused to the dorsal surface of the ventral nerve cord (VNC) itself. Because of this arrangement, the abdominal VNC can attain high rates of lateral oscillation, and is capable of directing haemolymph flow. We have previously demonstrated Manduca sexta allatotropin (Manse-AT)-like immunoreactivity throughout the central nervous system (CNS) in P. unipuncta, and that both Manse-AT and serotonin (5-HT) are dose-dependent stimulators of the dorsal vessel. Here we describe both Manse-AT- and 5-HT-like immunoreactivity associated with the VD. Furthermore, both Manse-AT and 5-HT are dose-dependent stimulators of the rates of VNC oscillation, and together are capable of maintaining highly elevated rates of VNC oscillation for extended periods of time. These data indicate that both the dorsal vessel and the VD/VNC are similarly modulated by both Manse-AT and 5-HT, and that VNC oscillations play a more active role in overall haemolymph circulation than previously recognized.

  18. Evaluation of left ventricular function by cardiac CT

    International Nuclear Information System (INIS)

    Naito, Hiroaki; Kozuka, Takahiro

    1982-01-01

    Left ventricular function was evaluated by CT, which was compared with the data of left ventriculography for various cardiac diseases. The end diastolic volume of the left ventricle can be readily computed from CT, with a satisfactory correlation with that of left ventriculography (r = 0.95). The left ventricular ejection fraction, calculated from the areal ratio of the left ventricular lumen in end-diastolic imaging to that in end-sytolic imaging, also roughly reflects left ventricular contractile function, but shows correlation with left ventriculography by only r = 0.79. Although the cardiac output is not sensitive for functional evaluation, it can be directly calculated by means of dynamic scanning and shows a satisfactory correlation with the ear piece pigment dilution (r = 0.85). Evaluation of left ventricular function by CT shows a high precision in comparison with left ventriculography, but still lacks temporal resolving power. (Chiba, N.)

  19. Local injection of d-lys-3-GHRP-6 in the rat amygdala, dentate gyrus or ventral tegmental area impairs memory consolidation.

    Science.gov (United States)

    Beheshti, Siamak; Aslani, Neda

    2018-02-01

    It is well known that the hormone ghrelin affects learning and memory in different experimental models of learning. Though, the effect of antagonism of ghrelin receptor type 1a (GHS-R1a) in various regions of the brain and on different stages of learning has not been examined. In this study the effect of injection of a GHS-R1a selective antagonist (d-Lys-3-GHRP-6) into the basolateral amygdala, dentate gyrus or ventral tegmental area was examined on memory consolidation in the passive avoidance task. Adult male Wistar rats weighing 230-280g were used. Animals underwent stereotaxic surgery and cannulated in their amygdala, dentate gyrus or ventral tegmental area. One week after surgery, the rats received different doses of d-Lys-3-GHRP-6 (0.08, 0.8, and 8nM), immediately after training. The control groups received solvent of the drug. Twenty four hours later in the test day, memory retrieval was assessed. In all groups, post-training injection of d-Lys-3-GHRP-6 decreased step-through latency and increased entries into the dark compartment and time spent in the dark compartment, significantly and in a dose-dependent manner. The results indicate that antagonism of the GHS-R1a in the rat amygdala, dentate gyrus or ventral tegmental area impairs memory consolidation and show that the ghrelin signaling has a widespread influence on cognitive performance. Copyright © 2017. Published by Elsevier Ltd.

  20. Aetiological factors in left-handedness

    Directory of Open Access Journals (Sweden)

    Milenković Sanja M.

    2005-01-01

    Full Text Available Lateralisation associates the extremities and senses of one side of the body, which are connected by afferent and efferent pathways, with the primary motor and sensory areas of the hemisphere on the opposite side. Dominant laterality denotes the appearance of a dominant extremity or sense in the performance of complex psychomotor activities. Laterality is manifested both as right-handedness or left-handedness, which are functionally equivalent and symmetrical in the performance of activities. Right-handedness is significantly more common than left-handedness. Genetic theory is most widely accepted in explaining the onset of lateralisation. According to this theory, the models of brain organisation asymmetry (anatomical, functional, and biochemical are strongly, genetically determined. However, the inability to clearly demonstrate the association between genetic factors and left-handedness has led researchers to investigate the effects of the environment on left-handedness. Of particular interest are the intrauterine environment and the factors influencing foetal development, of which hormones and ultrasound exposure are the most significant. It has been estimated that an extra five cases of nonright-handed lateralisation can be expected in every 100 males who were exposed to ultrasound in utero compared to those who were not. Socio-cultural pressure on left-handed individuals was much more severe in the past, which is confirmed by scientific findings that left-handedness is present in 13% of individuals in their twenties, while in less than 1% of individuals in their eighties.

  1. Concomitant release of ventral tegmental acetylcholine and accumbal dopamine by ghrelin in rats.

    Directory of Open Access Journals (Sweden)

    Elisabet Jerlhag

    Full Text Available Ghrelin, an orexigenic peptide, regulates energy balance specifically via hypothalamic circuits. Growing evidence suggest that ghrelin increases the incentive value of motivated behaviours via activation of the cholinergic-dopaminergic reward link. It encompasses the cholinergic afferent projection from the laterodorsal tegmental area (LDTg to the dopaminergic cells of the ventral tegmental area (VTA and the mesolimbic dopamine system projecting from the VTA to nucleus accumbens (N.Acc.. Ghrelin receptors (GHS-R1A are expressed in these reward nodes and ghrelin administration into the LDTg increases accumbal dopamine, an effect involving nicotinic acetylcholine receptors in the VTA. The present series of experiments were undertaken directly to test this hypothesis. Here we show that ghrelin, administered peripherally or locally into the LDTg concomitantly increases ventral tegmental acetylcholine as well as accumbal dopamine release. A GHS-R1A antagonist blocks this synchronous neurotransmitter release induced by peripheral ghrelin. In addition, local perfusion of the unselective nicotinic antagonist mecamylamine into the VTA blocks the ability of ghrelin (administered into the LDTg to increase N.Acc.-dopamine, but not VTA-acetylcholine. Collectively our data indicate that ghrelin activates the LDTg causing a release of acetylcholine in the VTA, which in turn activates local nicotinic acetylcholine receptors causing a release of accumbal dopamine. Given that a dysfunction in the cholinergic-dopaminergic reward system is involved in addictive behaviours, including compulsive overeating and alcohol use disorder, and that hyperghrelinemia is associated with such addictive behaviours, ghrelin-responsive circuits may serve as a novel pharmacological target for treatment of alcohol use disorder as well as binge eating.

  2. Left main percutaneous coronary intervention.

    Science.gov (United States)

    Teirstein, Paul S; Price, Matthew J

    2012-10-23

    The introduction of drug-eluting stents and advances in catheter techniques have led to increasing acceptance of percutaneous coronary intervention (PCI) as a viable alternative to coronary artery bypass graft (CABG) for unprotected left main disease. Current guidelines state that it is reasonable to consider unprotected left main PCI in patients with low to intermediate anatomic complexity who are at increased surgical risk. Data from randomized trials involving patients who are candidates for either treatment strategy provide novel insight into the relative safety and efficacy of PCI for this lesion subset. Herein, we review the current data comparing PCI with CABG for left main disease, summarize recent guideline recommendations, and provide an update on technical considerations that may optimize clinical outcomes in left main PCI. Copyright © 2012 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  3. Left-handedness and language lateralization in children.

    Science.gov (United States)

    Szaflarski, Jerzy P; Rajagopal, Akila; Altaye, Mekibib; Byars, Anna W; Jacola, Lisa; Schmithorst, Vincent J; Schapiro, Mark B; Plante, Elena; Holland, Scott K

    2012-01-18

    This fMRI study investigated the development of language lateralization in left- and righthanded children between 5 and 18 years of age. Twenty-seven left-handed children (17 boys, 10 girls) and 54 age- and gender-matched right-handed children were included. We used functional MRI at 3T and a verb generation task to measure hemispheric language dominance based on either frontal or temporo-parietal regions of interest (ROIs) defined for the entire group and applied on an individual basis. Based on the frontal ROI, in the left-handed group, 23 participants (85%) demonstrated left-hemispheric language lateralization, 3 (11%) demonstrated symmetric activation, and 1 (4%) demonstrated right-hemispheric lateralization. In contrast, 50 (93%) of the right-handed children showed left-hemispheric lateralization and 3 (6%) demonstrated a symmetric activation pattern, while one (2%) demonstrated a right-hemispheric lateralization. The corresponding values for the temporo-parietal ROI for the left-handed children were 18 (67%) left-dominant, 6 (22%) symmetric, 3 (11%) right-dominant and for the right-handed children 49 (91%), 4 (7%), 1 (2%), respectively. Left-hemispheric language lateralization increased with age in both groups but somewhat different lateralization trajectories were observed in girls when compared to boys. The incidence of atypical language lateralization in left-handed children in this study was similar to that reported in adults. We also found similar rates of increase in left-hemispheric language lateralization with age between groups (i.e., independent of handedness) indicating the presence of similar mechanisms for language lateralization in left- and right-handed children. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Passive Avoidance Training and Recall are Associated With Increased Glutamate Levels in the Intermediate Medial Hyperstriatum Ventrale of the Day-Old Chick

    Directory of Open Access Journals (Sweden)

    Jonathan N. Daisley

    1998-01-01

    glutamate levels in the intermediate medial hyperstriatum ventrale accompany pecking at either the water- or the methylanthranylate-bead. The taste of the aversant may be responsible for the greater increases found in methylanthranylate-trained birds.

  5. Preoperative left ventricular ejection fraction and left atrium reverse remodeling after mitral regurgitation surgery.

    Science.gov (United States)

    Machado, Lucia R; Meneghelo, Zilda M; Le Bihan, David C S; Barretto, Rodrigo B M; Carvalho, Antonio C; Moises, Valdir A

    2014-11-06

    Left atrium enlargement has been associated with cardiac events in patients with mitral regurgitation (MR). Left atrium reverse remodeling (LARR) occur after surgical correction of MR, but the preoperative predictors of this phenomenon are not well known. It is therefore important to identify preoperative predictors for postoperative LARR. We enrolled 62 patients with chronic severe MR (prolapse or flail leaflet) who underwent successful mitral valve surgery (repair or replacement); all with pre- and postoperative echocardiography. LARR was defined as a reduction in left atrium volume index (LAVI) of ≥ 25%. Stepwise multiple regression analysis was used to identify independent predictors of LARR. LARR occurred in 46 patients (74.2%), with the mean LAVI decreasing from 85.5 mL/m2 to 49.7 mL/m2 (p <0.001). These patients had a smaller preoperative left ventricular systolic volume (p =0.022) and a higher left ventricular ejection fraction (LVEF) (p =0.034). LVEF was identified as the only preoperative variable significantly associated with LARR (odds ratio, 1.086; 95% confidence interval, 1.002-1.178). A LVEF cutoff value of 63.5% identified patients with LARR of ≥ 25% with a sensitivity of 71.7% and a specificity of 56.3%. LARR occurs frequently after mitral valve surgery and is associated with preoperative LVEF higher than 63.5%.

  6. Producing The New Regressive Left

    DEFF Research Database (Denmark)

    Crone, Christine

    members, this thesis investigates a growing political trend and ideological discourse in the Arab world that I have called The New Regressive Left. On the premise that a media outlet can function as a forum for ideology production, the thesis argues that an analysis of this material can help to trace...... the contexture of The New Regressive Left. If the first part of the thesis lays out the theoretical approach and draws the contextual framework, through an exploration of the surrounding Arab media-and ideoscapes, the second part is an analytical investigation of the discourse that permeates the programmes aired...... becomes clear from the analytical chapters is the emergence of the new cross-ideological alliance of The New Regressive Left. This emerging coalition between Shia Muslims, religious minorities, parts of the Arab Left, secular cultural producers, and the remnants of the political,strategic resistance...

  7. Rostro-caudal and dorso-ventral gradients in medial and lateral prefrontal cortex during cognitive control of affective and cognitive interference.

    Science.gov (United States)

    Rahm, Christoffer; Liberg, Benny; Wiberg-Kristoffersen, Maria; Aspelin, Peter; Msghina, Mussie

    2013-04-01

    Characterizing the anatomical substrates of major brain functions such as cognition and emotion is of utmost importance to the ongoing efforts of understanding the nature of psychiatric ailments and their potential treatment. The aim of our study was to investigate how the brain handles affective and cognitive interferences on cognitive processes. Functional magnetic resonance imaging investigation was performed on healthy individuals, comparing the brain oxygenation level dependent activation patterns during affective and cognitive counting Stroop tasks. The affective Stroop task activated rostral parts of medial prefrontal cortex (PFC) and rostral and ventral parts of lateral PFC, while cognitive Stroop activated caudal parts of medial PFC and caudal and dorsal parts of lateral PFC. Our findings suggest that the brain may handle affective and cognitive interference on cognitive processes differentially, with affective interference preferentially activating rostral and ventral PFC networks and cognitive interference activating caudal and dorsal PFC networks. © 2013 The Authors. Scandinavian Journal of Psychology © 2013 The Scandinavian Psychological Associations.

  8. Bronchial compression by an enlarged left atrium in infants; a cause of hypovascularity of the left lung

    Energy Technology Data Exchange (ETDEWEB)

    Corr, L.; Hallidie-Smith, K.A.; McCarthy, P.A.; Lavender, J.P.

    1988-09-01

    In three infants seen recently at our institution we noted signs of compression of the left main bronchus associated with enlarged left atria. None of our cases demonstrated the more usual signs of hyperinflation which are a hyperlucent lung field, depressed hemidiaphragm and mediastinal shift away from the affected side. In addition, hypoperfusion of the left lung was noted in each case. We believe that bronchial compression due to an enlarged left atrium, with consequent hypoxic vasoconstriction is a clinically significant entity, which is not well described and may be unappreciated in infants in whom the typical signs of hyperinflation are absent.

  9. Amygdala and ventral striatum make distinct contributions to reinforcement learning

    Science.gov (United States)

    Costa, Vincent D.; Monte, Olga Dal; Lucas, Daniel R.; Murray, Elisabeth A.; Averbeck, Bruno B.

    2016-01-01

    Summary Reinforcement learning (RL) theories posit that dopaminergic signals are integrated within the striatum to associate choices with outcomes. Often overlooked is that the amygdala also receives dopaminergic input and is involved in Pavlovian processes that influence choice behavior. To determine the relative contributions of the ventral striatum (VS) and amygdala to appetitive RL we tested rhesus macaques with VS or amygdala lesions on deterministic and stochastic versions of a two-arm bandit reversal learning task. When learning was characterized with a RL model relative to controls, amygdala lesions caused general decreases in learning from positive feedback and choice consistency. By comparison, VS lesions only affected learning in the stochastic task. Moreover, the VS lesions hastened the monkeys’ choice reaction times, which emphasized a speed-accuracy tradeoff that accounted for errors in deterministic learning. These results update standard accounts of RL by emphasizing distinct contributions of the amygdala and VS to RL. PMID:27720488

  10. Cognitive Neurostimulation: Learning to Volitionally Sustain Ventral Tegmental Area Activation.

    Science.gov (United States)

    MacInnes, Jeff J; Dickerson, Kathryn C; Chen, Nan-Kuei; Adcock, R Alison

    2016-03-16

    Activation of the ventral tegmental area (VTA) and mesolimbic networks is essential to motivation, performance, and learning. Humans routinely attempt to motivate themselves, with unclear efficacy or impact on VTA networks. Using fMRI, we found untrained participants' motivational strategies failed to consistently activate VTA. After real-time VTA neurofeedback training, however, participants volitionally induced VTA activation without external aids, relative to baseline, Pre-test, and control groups. VTA self-activation was accompanied by increased mesolimbic network connectivity. Among two comparison groups (no neurofeedback, false neurofeedback) and an alternate neurofeedback group (nucleus accumbens), none sustained activation in target regions of interest nor increased VTA functional connectivity. The results comprise two novel demonstrations: learning and generalization after VTA neurofeedback training and the ability to sustain VTA activation without external reward or reward cues. These findings suggest theoretical alignment of ideas about motivation and midbrain physiology and the potential for generalizable interventions to improve performance and learning. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. NEURAL CORRELATES FOR APATHY: FRONTAL - PREFRONTAL AND PARIETAL CORTICAL - SUBCORTICAL CIRCUITS

    Directory of Open Access Journals (Sweden)

    Rita Moretti

    2016-12-01

    Full Text Available Apathy is an uncertain nosographical entity, which includes reduced motivation, abulia, decreased empathy, and lack of emotional invovlement; it is an important and heavy-burden clinical condition which strongly impacts in every day life events, affects the common daily living abilities, reduced the inner goal directed behavior, and gives the heaviest burden on caregivers. Is a quite common comorbidity of many neurological disease, However, there is no definite consensus on the role of apathy in clinical practice, no definite data on anatomical circuits involved in its development, and no definite instrument to detect it at bedside. As a general observation, the occurrence of apathy is connected to damage of prefrontal cortex (PFC and basal ganglia; emotional affective apathy may be related to the orbitomedial PFC and ventral striatum; cognitive apathy may be associated with dysfunction of lateral PFC and dorsal caudate nuclei; deficit of autoactivation may be due to bilateral lesions of the internal portion of globus pallidus, bilateral paramedian thalamic lesions, or the dorsomedial portion of PFC. On the other hand, apathy severity has been connected to neurofibrillary tangles density in the anterior cingulate gyrus and to grey matter atrophy in the anterior cingulate (ACC and in the left medial frontal cortex, confirmed by functional imaging studies. These neural networks are linked to projects, judjing and planning, execution and selection common actions, and through the basolateral amygdala and nucleus accumbens projects to the frontostriatal and to the dorsolateral prefrontal cortex. Therefore, an alteration of these circuitry caused a lack of insight, a reduction of decision-making strategies and a reduced speedness in action decsion, major resposnible for apathy. Emergent role concerns also the parietal cortex, with its direct action motivation control.We will discuss the importance of these circuits in different pathologies

  12. REGENERATIVE GROWTH OF CORTICOSPINAL TRACT AXONS VIA THE VENTRAL COLUMN AFTER SPINAL CORD INJURY IN MICE

    OpenAIRE

    Steward, Oswald; Zheng, Binhai; Tessier-Lavigne, Marc; Hofstadter, Maura; Sharp, Kelli; Yee, Kelly Matsudaira

    2008-01-01

    Studies that have assessed regeneration of corticospinal tract (CST) axons in mice following genetic modifications or other treatments have tacitly assumed that there is little if any regeneration of CST axons in normal mice in the absence of some intervention. Here, we document a previously unrecognized capability for regenerative growth of CST axons in normal mice that involves growth past the lesion via the ventral column. Mice received dorsal hemisection injuries at thoracic level 6–7, wh...

  13. Post-Training Reversible Disconnection of the Ventral Hippocampal-Basolateral Amygdaloid Circuits Impairs Consolidation of Inhibitory Avoidance Memory in Rats

    Science.gov (United States)

    Wang, Gong-Wu; Liu, Jian; Wang, Xiao-Qin

    2017-01-01

    The ventral hippocampus (VH) and the basolateral amygdala (BLA) are both crucial in inhibitory avoidance (IA) memory. However, the exact role of the VH-BLA circuit in IA memory consolidation is unclear. This study investigated the effect of post-training reversible disconnection of the VH-BLA circuit in IA memory consolidation. Male Wistar rats…

  14. Circadian rhythms in the pineal organ persist in zebrafish larvae that lack ventral brain

    Directory of Open Access Journals (Sweden)

    Goldstein-Kral Lauren

    2011-01-01

    Full Text Available Abstract Background The mammalian suprachiasmatic nucleus (SCN, located in the ventral hypothalamus, is a major regulator of circadian rhythms in mammals and birds. However, the role of the SCN in lower vertebrates remains poorly understood. Zebrafish cyclops (cyc mutants lack ventral brain, including the region that gives rise to the SCN. We have used cyc embryos to define the function of the zebrafish SCN in regulating circadian rhythms in the developing pineal organ. The pineal organ is the major source of the circadian hormone melatonin, which regulates rhythms such as daily rest/activity cycles. Mammalian pineal rhythms are controlled almost exclusively by the SCN. In zebrafish and many other lower vertebrates, the pineal has an endogenous clock that is responsible in part for cyclic melatonin biosynthesis and gene expression. Results We find that pineal rhythms are present in cyc mutants despite the absence of an SCN. The arginine vasopressin-like protein (Avpl, formerly called Vasotocin is a peptide hormone expressed in and around the SCN. We find avpl mRNA is absent in cyc mutants, supporting previous work suggesting the SCN is missing. In contrast, expression of the putative circadian clock genes, cryptochrome 1b (cry1b and cryptochrome 3 (cry3, in the brain of the developing fish is unaltered. Expression of two pineal rhythmic genes, exo-rhodopsin (exorh and serotonin-N-acetyltransferase (aanat2, involved in photoreception and melatonin synthesis, respectively, is also similar between cyc embryos and their wildtype (WT siblings. The timing of the peaks and troughs of expression are the same, although the amplitude of expression is slightly decreased in the mutants. Cyclic gene expression persists for two days in cyc embryos transferred to constant light or constant dark, suggesting a circadian clock is driving the rhythms. However, the amplitude of rhythms in cyc mutants kept in constant conditions decreased more quickly than in their

  15. Dorsal buccal mucosal graft urethroplasty by a ventral sagittal urethrotomy and minimal-access perineal approach for anterior urethral stricture.

    Science.gov (United States)

    Gupta, N P; Ansari, M S; Dogra, P N; Tandon, S

    2004-06-01

    To present the technique of dorsal buccal mucosal graft urethroplasty through a ventral sagittal urethrotomy and minimal access perineal approach for anterior urethral stricture. From July 2001 to December 2002, 12 patients with a long anterior urethral stricture had the anterior urethra reconstructed, using a one-stage urethroplasty with a dorsal onlay buccal mucosal graft through a ventral sagittal urethrotomy. The urethra was approached via a small perineal incision irrespective of the site and length of the stricture. The penis was everted through the perineal wound. No urethral dissection was used on laterally or dorsally, so as not to jeopardize the blood supply. The mean (range) length of the stricture was 5 (3-16) cm and the follow-up 12 (10-16) months. The results were good in 11 of the 12 patients. One patient developed a stricture at the proximal anastomotic site and required optical internal urethrotomy. Dorsal buccal mucosal graft urethroplasty via a minimal access perineal approach is a simple technique with a good surgical outcome; it does not require urethral dissection and mobilization and hence preserves the blood supply.

  16. The time-course of activation in the dorsal and ventral visual streams during landmark cueing and perceptual discrimination tasks.

    Science.gov (United States)

    Lambert, Anthony J; Wootton, Adrienne

    2017-08-01

    Different patterns of high density EEG activity were elicited by the same peripheral stimuli, in the context of Landmark Cueing and Perceptual Discrimination tasks. The C1 component of the visual event-related potential (ERP) at parietal - occipital electrode sites was larger in the Landmark Cueing task, and source localisation suggested greater activation in the superior parietal lobule (SPL) in this task, compared to the Perceptual Discrimination task, indicating stronger early recruitment of the dorsal visual stream. In the Perceptual Discrimination task, source localisation suggested widespread activation of the inferior temporal gyrus (ITG) and fusiform gyrus (FFG), structures associated with the ventral visual stream, during the early phase of the P1 ERP component. Moreover, during a later epoch (171-270ms after stimulus onset) increased temporal-occipital negativity, and stronger recruitment of ITG and FFG were observed in the Perceptual Discrimination task. These findings illuminate the contrasting functions of the dorsal and ventral visual streams, to support rapid shifts of attention in response to contextual landmarks, and conscious discrimination, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The left atrium, atrial fibrillation, and the risk of stroke in hypertensive patients with left ventricular hypertrophy

    DEFF Research Database (Denmark)

    Wachtell, K.; Devereux, R.B.; Lyle, P.A.

    2008-01-01

    was superior to atenolol-based treatment for reducing new-onset AF and complications, especially stroke, associated with new-onset or pre-existing AF. Potential mechanisms of AF prevention by angiotensin receptor blockade supported by LIFE results include greater reduction in left atrial size and LV......The Losartan Intervention For Endpoint reduction in hypertension (LIFE) study provided extensive data on predisposing factors, consequences, and prevention of atrial fibrillation (AF) in patients with hypertension and left ventricular (LV) hypertrophy. Randomized losartan-based treatment...... hypertrophy. Differential effects of antihypertensive treatment on the left atrium and left ventricle may help prevent AF and reduce risk of stroke associated with hypertensive heart disease Udgivelsesdato: 2008/12...

  18. Transurethral ventral buccal mucosa graft inlay urethroplasty for reconstruction of fossa navicularis and distal urethral strictures: surgical technique and preliminary results.

    Science.gov (United States)

    Nikolavsky, Dmitriy; Abouelleil, Mourad; Daneshvar, Michael

    2016-11-01

    To introduce a novel surgical technique for the reconstruction of distal urethral strictures using buccal mucosal graft (BMG) through a transurethral approach. A retrospective institution chart review was conducted of all the patients who underwent a transurethral ventral BMG inlay urethroplasty from March 2014 to March 2016. Patients with greater than one-year follow-up were included. Steps of the procedure: transurethral ventral wedge resection of the stenosed segment and transurethral delivery and spread fixation of appropriate BMG inlay into the resultant urethrotomy. The patients were followed for post-operative complications and stricture recurrence with uroflow, PVR, cystoscopy and outcome questionnaires. Three patients with a minimum of 12-month follow-up are included in this case series. The mean age of the patients was 42 years (35-53); mean stricture length was 2.1 cm (1-4). All patients had at least 2 previous failed procedures. Mean follow-up was 18 months (12-24). There were no stricture recurrences or fistula. Mean pre- and post-operative uroflow values were 4.3 (0-8) and 19 (16-26), respectively. Neither penile chordee nor changes in sexual function were noted in patients on follow-up. Transurethral ventral BMG inlay urethroplasty is a feasible option for treatment of fossa navicularis strictures. This single-stage technique allows for avoiding skin incision or urethral mobilization. It helps to prevent glans dehiscence, fistula formation and avoids the use of genital skin flaps in all patients, especially those affected with LS. This novel surgical technique is an effective treatment alternative for men with distal urethral strictures.

  19. Age-related reduction in microcolumnar structure correlates with cognitive decline in ventral but not dorsal area 46 of the rhesus monkey.

    Science.gov (United States)

    Cruz, L; Roe, D L; Urbanc, B; Inglis, A; Stanley, H E; Rosene, D L

    2009-02-18

    The age-related decline in cognitive function that is observed in normal aging monkeys and humans occurs without significant loss of cortical neurons. This suggests that cognitive impairment results from subtle, sub-lethal changes in the cortex. Recently, changes in the structural coherence in mini- or microcolumns without loss of neurons have been linked to loss of function. Here we use a density map method to quantify microcolumnar structure in both banks of the sulcus principalis (prefrontal cortical area 46) of 16 (ventral) and 19 (dorsal) behaviorally tested female rhesus monkeys from 6 to 33 years of age. While total neuronal density does not change with age in either of these banks, there is a significant age-related reduction in the strength of microcolumns in both regions on the order of 40%. This likely reflects a subtle but definite loss of organization in the structure of the cortical microcolumn. The reduction in strength in ventral area 46 correlates with cognitive impairments in learning and memory while the reduction in dorsal area 46 does not. This result is congruent with published data attributing cognitive functions to ventral area 46 that are similar to our particular cognitive battery which does not optimally tap cognitive functions attributed to dorsal area 46. While the exact mechanisms underlying this loss of microcolumnar organization remain to be determined, it is plausible that they reflect age-related alterations in dendritic and/or axonal organization which alter connectivity and may contribute to age-related declines in cognitive performance.

  20. Balloon-occluded retrograde transvenous obliteration of gastric varix draining via the left inferior phrenic vein into the left hepatic vein

    International Nuclear Information System (INIS)

    Ibukuro, Kenji; Mori, Koichi; Tsukiyama, Toshitaka; Inoue, Yoshihiro; Iwamoto, Yukako; Tagawa, Kazumi

    1999-01-01

    We encountered a patient with gastric varix draining not via the usual left suprarenal vein but via the left inferior phrenic vein joining the left hepatic vein. Transfemoral balloon-occluded retrograde transvenous obliteration (BRTO) of the varix was performed under balloon occlusion of the left inferior phrenic vein via the left hepatic vein and retrograde injection of the sclerosing agent (5% of ethanolamine oleate) into the gastric varix. Disappearance of the gastric varix was confirmed on endoscopic examination 2 months later.

  1. Origin Level of the Ventral Branches of the Abdominal Aorta in the Rabbit and European Hare

    Directory of Open Access Journals (Sweden)

    Maženský D.

    2017-06-01

    Full Text Available The aim of this research was to describe the level of origin of the branches originating from the ventral surface of the abdominal aorta in the rabbit and hare. The study was carried out on ten adult rabbits and ten adult European hares using the corrosion cast technique. After euthanasia, the vascular network was perfused with saline. Batson’s corrosion casting kit No. 17 was used as a casting medium. After polymerization of the medium, the maceration was carried out in a KOH solution. We found variable levels of the origin of the celiac, cranial mesenteric and caudal mesenteric arteries in both species. In the rabbit, the celiac artery originated in the majority of cases at the cranial end of the first lumbar vertebra and in the hare at the middle part of the vertebral body of the same vertebra. The cranial mesenteric artery in the rabbit originated predominantly at the level of the first lumbar vertebra and in the hare at the level of the second lumbar vertebra. In the rabbit, the caudal mesenteric artery originated mainly at the level of the sixth lumbar vertebra and in the hare, at the level of the fifth lumbar vertebra. We concluded that there were higher variabilities of the origins of the ventral branches of the abdominal aorta in domesticated rabbit in comparison with the European hare.

  2. Implantation of a HeartMate II left ventricular assist device via left thoracotomy.

    Science.gov (United States)

    Cho, Yang Hyun; Deo, Salil V; Schirger, John A; Pereira, Naveen L; Stulak, John M; Park, Soon J

    2012-11-01

    Left thoracotomy was used as an approach for the implantation of pulsatile ventricular assist devices. Avoiding the standard approach of median sternotomy is attractive in patients undergoing complicated redo cardiac surgery, especially with prior mediastinal radiation. We report a case of the use of left thoracotomy for the implantation of the HeartMate II axial-flow pump. Copyright © 2012 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  3. Tribological analysis of the ventral scale structure in a Python regius in relation to laser textured surfaces

    International Nuclear Information System (INIS)

    Abdel-Aal, H A; El Mansori, M

    2013-01-01

    Laser texturing is one of the leading technologies applied to modify surface topography. To date, however, a standardized procedure to generate deterministic textures is virtually non-existent. In nature, especially in squamata, there are many examples of deterministic structured textures that allow species to control friction and condition their tribological response for efficient function. In this work, we draw a comparison between industrial surfaces and reptilian surfaces. We chose the Python regius species as a bio-analogue with a deterministic surface. We first study the structural make up of the ventral scales of the snake (both construction and metrology). We further compare the metrological features of the ventral scales to experimentally recommended performance indicators of industrial surfaces extracted from open literature. The results indicate the feasibility of engineering a laser textured surface based on the reptilian ornamentation constructs. It is shown that the metrological features, key to efficient function of a rubbing deterministic surface, are already optimized in the reptile. We further show that optimization in reptilian surfaces is based on synchronizing surface form, textures and aspects to condition the frictional response. Mimicking reptilian surfaces, we argue, may form a design methodology potentially capable of generating advanced deterministic surface constructs capable of efficient tribological function. (paper)

  4. Connexins in the early development of the African clawed frog Xenopus laevis (Amphibia: The role of the connexin43 carboxyl terminal tail in the establishment of the dorso-ventral axis

    Directory of Open Access Journals (Sweden)

    Jaime Cofre

    2007-03-01

    Full Text Available Connexins are a family of related proteins identified in vertebrate forming gap junctions, which mediate cell-to-cell communication in early embryos, with an important role in establishing embryonic asymmetry and ‘communication compartments’. By in situ hybridization, immunocytochemistry, reverse transcriptase PCR (RT-PCR and western blotting we show that a Cx43-like molecule is present in oocytes and embryos of the African clawed frog Xenopus laevis, with specific localization in the animal-vegetal axis. This specific distribution is suggestive for an important role for this protein in the establishment of the dorso-ventral axis. Antisense RNA and antibodies directed against rat carboxyl terminal tail of the Cx43 (CT-Cx43 and injected in 1-cell stage Xenopus embryos, induced pronounced alterations in nervous system development, with a severe ventralization phenotype. Coherently, the overexpression of CT-Cx43 produced a dorsalization of the embryos. In antisense treated embryos, the expression of the beta-catenin gene is eliminated from the Nieuwkoop center, the pattern expression of the Chordin, Xnot and Xbra is modified, with no effect in expression of the Goosecoid gene. In CT-Cx43 mRNA treated embryos the pattern of expression of the beta-catenin, Chordin, Goosecoid, Xnot and engrailed-2 genes is modified. The expression of beta-catenin is increased in the Nieuwkoop center, the expression pattern of Chordin and Goosecoid is expanded to the posterior neural plate and engrailed-2 presents ectopic expression in the ventral region. Taken together our data suggest a role for CT-Cx43 as a maternal determinant with a critical function in the formation of the dorso-ventral axis in Xenopus laevis. The Cx43 may be one of the earliest markers of the dorso-ventral axis in these embryos and could possibly be acting through regionalization of factors responsible for the establishment of this axis.

  5. Dual Coding of Frequency Modulation in the Ventral Cochlear Nucleus.

    Science.gov (United States)

    Paraouty, Nihaad; Stasiak, Arkadiusz; Lorenzi, Christian; Varnet, Léo; Winter, Ian M

    2018-04-25

    Frequency modulation (FM) is a common acoustic feature of natural sounds and is known to play a role in robust sound source recognition. Auditory neurons show precise stimulus-synchronized discharge patterns that may be used for the representation of low-rate FM. However, it remains unclear whether this representation is based on synchronization to slow temporal envelope (ENV) cues resulting from cochlear filtering or phase locking to faster temporal fine structure (TFS) cues. To investigate the plausibility of those encoding schemes, single units of the ventral cochlear nucleus of guinea pigs of either sex were recorded in response to sine FM tones centered at the unit's best frequency (BF). The results show that, in contrast to high-BF units, for modulation depths within the receptive field, low-BF units (modulation depths extending beyond the receptive field, the discharge patterns follow the ENV and fluctuate at the modulation rate. The receptive field proved to be a good predictor of the ENV responses for most primary-like and chopper units. The current in vivo data also reveal a high level of diversity in responses across unit types. TFS cues are mainly conveyed by low-frequency and primary-like units and ENV cues by chopper and onset units. The diversity of responses exhibited by cochlear nucleus neurons provides a neural basis for a dual-coding scheme of FM in the brainstem based on both ENV and TFS cues. SIGNIFICANCE STATEMENT Natural sounds, including speech, convey informative temporal modulations in frequency. Understanding how the auditory system represents those frequency modulations (FM) has important implications as robust sound source recognition depends crucially on the reception of low-rate FM cues. Here, we recorded 115 single-unit responses from the ventral cochlear nucleus in response to FM and provide the first physiological evidence of a dual-coding mechanism of FM via synchronization to temporal envelope cues and phase locking to temporal

  6. Left atrial appendage occlusion

    Directory of Open Access Journals (Sweden)

    Ahmad Mirdamadi

    2013-01-01

    Full Text Available Left atrial appendage (LAA occlusion is a treatment strategy to prevent blood clot formation in atrial appendage. Although, LAA occlusion usually was done by catheter-based techniques, especially percutaneous trans-luminal mitral commissurotomy (PTMC, it can be done during closed and open mitral valve commissurotomy (CMVC, OMVC and mitral valve replacement (MVR too. Nowadays, PTMC is performed as an optimal management of severe mitral stenosis (MS and many patients currently are treated by PTMC instead of previous surgical methods. One of the most important contraindications of PTMC is presence of clot in LAA. So, each patient who suffers of severe MS is evaluated by Trans-Esophageal Echocardiogram to rule out thrombus in LAA before PTMC. At open heart surgery, replacement of the mitral valve was performed for 49-year-old woman. Also, left atrial appendage occlusion was done during surgery. Immediately after surgery, echocardiography demonstrates an echo imitated the presence of a thrombus in left atrial appendage area, although there was not any evidence of thrombus in pre-pump TEE. We can conclude from this case report that when we suspect of thrombus of left atrial, we should obtain exact history of previous surgery of mitral valve to avoid misdiagnosis clotted LAA, instead of obliterated LAA. Consequently, it can prevent additional evaluations and treatments such as oral anticoagulation and exclusion or postponing surgeries including PTMC.

  7. Anosognosia for hemiparesis after left-sided stroke.

    Science.gov (United States)

    Baier, Bernhard; Vucurevic, Goran; Müller-Forell, Wibke; Glassl, Oliver; Geber, Christian; Dieterich, Marianne; Karnath, Hans-Otto

    2014-12-01

    In patients with left-sided lesions, anosognosia for hemiparesis (AHP) seems to be a rare phenomenon. It has been discussed whether this rareness might be due to an inevitable bias due to language dysfunction and whether the left hemisphere's role for our self-awareness of motor actions thus is underestimated. By applying functional magnetic resonance imaging (fMRI) we examined whether patients with AHP following a left hemisphere stroke show a regular, left-sided or a reversed, right-sided lateralization of language functions. Only the former observation would argue for an original role of the left hemisphere in self-awareness about limb function. In a consecutive series of 44 acute left-sided stroke patients, only one patient (=2%) was identified showing AHP. In this case, we could verify by using fMRI that lateralization of AHP and spatial neglect on the one hand and of language functions on the other hand were reversed. The present single case observation thus argues against an original role of the left hemisphere in self-awareness about limb function. We discuss the data in the context of previous observations in the literature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Direct monitoring of dopamine and 5-HT release in substantia nigra and ventral tegmental area in vitro

    DEFF Research Database (Denmark)

    Rice, M E; Richards, C D; Nedergaard, S

    1994-01-01

    Fast-scan cyclic voltammetry with carbon fibre microelectrodes was used to detect endogenous dopamine (DA) and 5-hydroxytryptamine (5-HT) release from three distinct regions of guinea-pig mid-brain in vitro: rostral and caudal substantia nigra (SN) and the ventral tegmental area (VTA). Previous...... these regions with in situ electrodes and demonstrates the utility of fast-scan cyclic voltammetry to investigate the mechanisms and possible non-classical functions of somato-dendritic DA release....

  9. Long-lasting enhancement of synaptic excitability of CA1/subiculum neurons of the rat ventral hippocampus by vasopressin and vasopressin(4-8)

    NARCIS (Netherlands)

    Gispen, W.H.; Chepkova, A.N.; French, P.; Wied, D. de; Ontskul, A.H.; Ramakers, G.M.J.; Skrebitski, V.G.; Urban, I.J.A.

    1995-01-01

    Vasopressin (VP) is axonally distributed in many brain structures, including the ventral hippocampus. Picogram quantities of VP injected into the hippocampus improve the passive avoidance response of rats, presumably by enhancing memory processes. Vasopressin is metabolized by the brain tissue into

  10. Effects of Environmental Enrichment on Doublecortin and BDNF Expression along the Dorso-Ventral Axis of the Dentate Gyrus.

    Science.gov (United States)

    Gualtieri, Fabio; Brégère, Catherine; Laws, Grace C; Armstrong, Elena A; Wylie, Nicholas J; Moxham, Theo T; Guzman, Raphael; Boswell, Timothy; Smulders, Tom V

    2017-01-01

    Adult hippocampal neurogenesis (AHN) in the dentate gyrus is known to respond to environmental enrichment, chronic stress, and many other factors. The function of AHN may vary across the septo-temporal axis of the hippocampus, as different subdivisions are responsible for different functions. The dorsal pole regulates cognitive-related behaviors, while the ventral pole mediates mood-related responses through the hypothalamic-pituitary-adrenal (HPA) axis. In this study, we investigate different methods of quantifying the effect of environmental enrichment on AHN in the dorsal and ventral parts of the dentate gyrus (dDG and vDG). To this purpose, 11-week-old female CD-1 mice were assigned for 8 days to one of two conditions: the Environmental Enrichment (E) group received (i) running wheels, (ii) larger cages, (iii) plastic tunnels, and (iv) bedding with male urine, while the Control (C) group received standard housing. Dorsal CA ( Cornu Ammonis ) and DG regions were larger in the E than the C animals. Distance run linearly predicted the volume of the dorsal hippocampus, as well as of the intermediate and ventral CA regions. In the dDG, the amount of Doublecortin (DCX) immunoreactivity was significantly higher in E than in C mice. Surprisingly, this pattern was the opposite in the vDG (C > E). Real-time PCR measurement of Dcx mRNA and DCX protein analysis using ELISA showed the same pattern. Brain Derived Neurotrophic Factor (BDNF) immunoreactivity and mRNA displayed no difference between E and C, suggesting that upregulation of DCX was not caused by changes in BDNF levels. BDNF levels were higher in vDG than in dDG, as measured by both methods. Bdnf expression in vDG correlated positively with the distance run by individual E mice. The similarity in the patterns of immunoreactivity, mRNA and protein for differential DCX expression and for BDNF distribution suggests that the latter two methods might be effective tools for more rapid quantification of AHN.

  11. Effects of Environmental Enrichment on Doublecortin and BDNF Expression along the Dorso-Ventral Axis of the Dentate Gyrus

    Directory of Open Access Journals (Sweden)

    Fabio Gualtieri

    2017-09-01

    Full Text Available Adult hippocampal neurogenesis (AHN in the dentate gyrus is known to respond to environmental enrichment, chronic stress, and many other factors. The function of AHN may vary across the septo-temporal axis of the hippocampus, as different subdivisions are responsible for different functions. The dorsal pole regulates cognitive-related behaviors, while the ventral pole mediates mood-related responses through the hypothalamic-pituitary-adrenal (HPA axis. In this study, we investigate different methods of quantifying the effect of environmental enrichment on AHN in the dorsal and ventral parts of the dentate gyrus (dDG and vDG. To this purpose, 11-week-old female CD-1 mice were assigned for 8 days to one of two conditions: the Environmental Enrichment (E group received (i running wheels, (ii larger cages, (iii plastic tunnels, and (iv bedding with male urine, while the Control (C group received standard housing. Dorsal CA (Cornu Ammonis and DG regions were larger in the E than the C animals. Distance run linearly predicted the volume of the dorsal hippocampus, as well as of the intermediate and ventral CA regions. In the dDG, the amount of Doublecortin (DCX immunoreactivity was significantly higher in E than in C mice. Surprisingly, this pattern was the opposite in the vDG (C > E. Real-time PCR measurement of Dcx mRNA and DCX protein analysis using ELISA showed the same pattern. Brain Derived Neurotrophic Factor (BDNF immunoreactivity and mRNA displayed no difference between E and C, suggesting that upregulation of DCX was not caused by changes in BDNF levels. BDNF levels were higher in vDG than in dDG, as measured by both methods. Bdnf expression in vDG correlated positively with the distance run by individual E mice. The similarity in the patterns of immunoreactivity, mRNA and protein for differential DCX expression and for BDNF distribution suggests that the latter two methods might be effective tools for more rapid quantification of AHN.

  12. Distribution of serotonin 2A and 2C receptor mRNA expression in the cervical ventral horn and phrenic motoneurons following spinal cord hemisection.

    Science.gov (United States)

    Basura, G J; Zhou, S Y; Walker, P D; Goshgarian, H G

    2001-06-01

    Cervical spinal cord injury leads to a disruption of bulbospinal innervation from medullary respiratory centers to phrenic motoneurons. Animal models utilizing cervical hemisection result in inhibition of ipsilateral phrenic nerve activity, leading to paralysis of the hemidiaphragm. We have previously demonstrated a role for serotonin (5-HT) as one potential modulator of respiratory recovery following cervical hemisection, a mechanism that likely occurs via 5-HT2A and/or 5-HT2C receptors. The present study was designed to specifically examine if 5-HT2A and/or 5-HT2C receptors are colocalized with phrenic motoneurons in both intact and spinal-hemisected rats. Adult female rats (250-350 g; n = 6 per group) received a left cervical (C2) hemisection and were injected with the fluorescent retrograde neuronal tracer Fluorogold into the left hemidiaphragm. Twenty-four hours later, animals were killed and spinal cords processed for in situ hybridization and immunohistochemistry. Using (35)S-labeled cRNA probes, cervical spinal cords were probed for 5-HT2A and 5-HT2C receptor mRNA expression and double-labeled using an antibody to Fluorogold to detect phrenic motoneurons. Expression of both 5-HT2A and 5-HT2C receptor mRNA was detected in motoneurons of the cervical ventral horn. Despite positive expression of both 5-HT2A and 5-HT2C receptor mRNA-hybridization signal over phrenic motoneurons, only 5-HT2A silver grains achieved a signal-to-noise ratio representative of colocalization. 5-HT2A mRNA levels in identified phrenic motoneurons were not significantly altered following cervical hemisection compared to sham-operated controls. Selective colocalization of 5-HT2A receptor mRNA with phrenic motoneurons may have implications for recently observed 5-HT2A receptor-mediated regulation of respiratory activity and/or recovery in both intact and injury-compromised states. Copyright 2001 Academic Press.

  13. Merge processing in the human brain: a sub-region based functional investigation in the left pars opercularis

    Directory of Open Access Journals (Sweden)

    Emiliano eZaccarella

    2015-11-01

    Full Text Available Language is thought to represent one of the most complex cognitive functions in humans. Here we break down complexity of language to its most basic syntactic computation which hierarchically binds single words together to form larger phrases and sentences. So far, the neural implementation of this basic operation has only been inferred indirectly from studies investigating more complex linguistic phenomena. In the present sub-region based functional magnetic resonance imaging (fMRI study we directly assessed the neuroanatomical nature of this process. Our results showed that syntactic phrases—compared to word-list sequences—corresponded to increased neural activity in the ventral-anterior portion of the left pars opercularis (Brodmann Area (BA 44, whereas the adjacently located deep frontal operculum/anterior insula (FOP/aINS, a phylogenetically older and less specialized region, was found to be equally active for both conditions. Crucially, the functional activity of syntactic binding was confined to one out of five clusters proposed by a recent fine-grained sub-anatomical parcellation for BA 44, with consistency across individuals. Neuroanatomically, the present results call for a redefinition of BA 44 as a region with internal functional specializations. Neurocomputationally, they support the idea of invariance within BA 44 in the location of activation across participants for basic syntactic building processing.

  14. Functional μ-Opioid-Galanin Receptor Heteromers in the Ventral Tegmental Area.

    Science.gov (United States)

    Moreno, Estefanía; Quiroz, César; Rea, William; Cai, Ning-Sheng; Mallol, Josefa; Cortés, Antoni; Lluís, Carme; Canela, Enric I; Casadó, Vicent; Ferré, Sergi

    2017-02-01

    The neuropeptide galanin has been shown to interact with the opioid system. More specifically, galanin counteracts the behavioral effects of the systemic administration of μ-opioid receptor (MOR) agonists. Yet the mechanism responsible for this galanin-opioid interaction has remained elusive. Using biophysical techniques in mammalian transfected cells, we found evidence for selective heteromerization of MOR and the galanin receptor subtype Gal1 (Gal1R). Also in transfected cells, a synthetic peptide selectively disrupted MOR-Gal1R heteromerization as well as specific interactions between MOR and Gal1R ligands: a negative cross talk, by which galanin counteracted MAPK activation induced by the endogenous MOR agonist endomorphin-1, and a cross-antagonism, by which a MOR antagonist counteracted MAPK activation induced by galanin. These specific interactions, which represented biochemical properties of the MOR-Gal1R heteromer, could then be identified in situ in slices of rat ventral tegmental area (VTA) with MAPK activation and two additional cell signaling pathways, AKT and CREB phosphorylation. Furthermore, in vivo microdialysis experiments showed that the disruptive peptide selectively counteracted the ability of galanin to block the dendritic dopamine release in the rat VTA induced by local infusion of endomorphin-1, demonstrating a key role of MOR-Gal1R heteromers localized in the VTA in the direct control of dopamine cell function and their ability to mediate antagonistic interactions between MOR and Gal1R ligands. The results also indicate that MOR-Gal1R heteromers should be viewed as targets for the treatment of opioid use disorders. The μ-opioid receptor (MOR) localized in the ventral tegmental area (VTA) plays a key role in the reinforcing and addictive properties of opioids. With parallel in vitro experiments in mammalian transfected cells and in situ and in vivo experiments in rat VTA, we demonstrate that a significant population of these MORs form

  15. Left bronchial artery arising from a replaced left hepatic artery in a patient with massive hemoptysis

    Energy Technology Data Exchange (ETDEWEB)

    Khil, Eun Kyung; Lee, Jae Myung [Dept. of Radiology, Soonchunhyang University College of Medicine, Bucheon Hospital, Bucheon (Korea, Republic of)

    2015-09-15

    A 70-year-old man with a 3-year history of bronchiectasis presented with massive hemoptysis that had lasted for 3 days. In our attempt to perform bronchial artery embolization, upper abdominal angiography was required to locate the left bronchial artery, which in this case was of anomalous origin, arising from a replaced left hepatic artery, which arose from the left gastric artery-a very unusual anatomical variant. We performed embolization with polyvinyl alcohol particles, and the patient's symptoms resolved completely, with no additional complications after conservative treatment.

  16. Left Ventricular Assist Devices

    Directory of Open Access Journals (Sweden)

    Khuansiri Narajeenron

    2017-04-01

    Full Text Available Audience: The audience for this classic team-based learning (cTBL session is emergency medicine residents, faculty, and students; although this topic is applicable to internal medicine and family medicine residents. Introduction: A left ventricular assist device (LVAD is a mechanical circulatory support device that can be placed in critically-ill patients who have poor left ventricular function. After LVAD implantation, patients have improved quality of life.1 The number of LVAD patients worldwide continues to rise. Left-ventricular assist device patients may present to the emergency department (ED with severe, life-threatening conditions. It is essential that emergency physicians have a good understanding of LVADs and their complications. Objectives: Upon completion of this cTBL module, the learner will be able to: 1 Properly assess LVAD patients’ circulatory status; 2 appropriately resuscitate LVAD patients; 3 identify common LVAD complications; 4 evaluate and appropriately manage patients with LVAD malfunctions. Method: The method for this didactic session is cTBL.

  17. Visceral subpleural hematoma of the left diaphragmatic surface following left upper division segmentectomy

    Directory of Open Access Journals (Sweden)

    Yasushi Mizukami

    2017-10-01

    Full Text Available Abstract Background Pulmonary visceral subpleural hematoma is rare. We report visceral subpleural hematoma of the left diaphragmatic surface following left upper division segmentectomy. This very rare case was difficult to distinguish from thoracic abscess. Case presentation A 68-year-old man with hypertension had undergone video-assisted thoracoscopic left upper division segmentectomy for suspected lung carcinoma. Deep vein thrombosis of the lower leg was identified and edoxaban, a so-called novel oral anticoagulant, was started on postoperative day 7. The chest drainage tube was removed on postoperative day 12 because of persistent air leakage, but fever appeared the same day. Computed tomography revealed a cavity with mixed air and fluid, so antibiotics were started on suspicion of abscess. Computed tomography-guided drainage was attempted, but proved unsuccessful. Fever continued and surgical investigation was therefore performed. Visceral subpleural hematoma was identified under the diaphragmatic surface of the left basal lung. We excised the pleura, then performed drainage and applied running sutures. The parenchyma and visceral pleura were covered with polyglycolic acid sheet and fibrin glue. Edoxaban was restarted on postoperative day 12 of video-assisted thoracoscopic surgery and no recurrence of hematoma has been revealed. Conclusions Visceral subpleural hematoma after thoracic surgery is extremely rare. Furthermore, correct diagnosis was difficult and surgery offered a good diagnostic and therapeutic procedure.

  18. Seroma in ventral incisional herniorrhaphy: incidence, predictors and outcome.

    Science.gov (United States)

    Kaafarani, Haytham M A; Hur, Kwan; Hirter, Angie; Kim, Lawrence T; Thomas, Anthony; Berger, David H; Reda, Domenic; Itani, Kamal M F

    2009-11-01

    Factors leading to seroma following ventral incisional herniorrhaphy (VIH) are poorly understood. Between 2004 and 2006, patients were prospectively randomized at 4 Veterans Affairs hospitals to undergo laparoscopic or open VIH. Patients who developed seromas within 8 weeks postoperatively were compared with those who did not. Multivariate analyses were performed to identify predictors of seroma. Of 145 patients who underwent VIH, 24 (16.6%) developed seromas. Patients who underwent open VIH had more seromas than those who underwent laparoscopic VIH (23.3% vs 6.8%, P = .011). Seroma patients had hernias that were never spontaneously reducible (0% vs 21%, P = .015), had more abdominal incisions preoperatively (mean, 2.4 vs 1.8; P = .037), and were less likely to have drain catheters placed than those without seromas (30.0% vs 63.1%, P = .011). In multivariate analyses, open VIH predicted seroma (odds ratio, 5.5; 95% confidence interval, 1.6-18.8), as well as the specific hospital at which the procedure was performed. Spontaneous resolution occurred in 71% of seromas; 29% required aspiration. Procedural characteristics and hernia characteristics rather than patient comorbidities predicted seroma in VIH.

  19. Cerebral Activations Related to Writing and Drawing with Each Hand

    Science.gov (United States)

    Potgieser, Adriaan R. E.; van der Hoorn, Anouk; de Jong, Bauke M.

    2015-01-01

    Background Writing is a sequential motor action based on sensorimotor integration in visuospatial and linguistic functional domains. To test the hypothesis of lateralized circuitry concerning spatial and language components involved in such action, we employed an fMRI paradigm including writing and drawing with each hand. In this way, writing-related contributions of dorsal and ventral premotor regions in each hemisphere were assessed, together with effects in wider distributed circuitry. Given a right-hemisphere dominance for spatial action, right dorsal premotor cortex dominance was expected in left-hand writing while dominance of the left ventral premotor cortex was expected during right-hand writing. Methods Sixteen healthy right-handed subjects were scanned during audition-guided writing of short sentences and simple figure drawing without visual feedback. Tapping with a pencil served as a basic control task for the two higher-order motor conditions. Activation differences were assessed with Statistical Parametric Mapping (SPM). Results Writing and drawing showed parietal-premotor and posterior inferior temporal activations in both hemispheres when compared to tapping. Drawing activations were rather symmetrical for each hand. Activations in left- and right-hand writing were left-hemisphere dominant, while right dorsal premotor activation only occurred in left-hand writing, supporting a spatial motor contribution of particularly the right hemisphere. Writing contrasted to drawing revealed left-sided activations in the dorsal and ventral premotor cortex, Broca’s area, pre-Supplementary Motor Area and posterior middle and inferior temporal gyri, without parietal activation. Discussion The audition-driven postero-inferior temporal activations indicated retrieval of virtual visual form characteristics in writing and drawing, with additional activation concerning word form in the left hemisphere. Similar parietal processing in writing and drawing pointed at a

  20. Cerebral activations related to writing and drawing with each hand.

    Science.gov (United States)

    Potgieser, Adriaan R E; van der Hoorn, Anouk; de Jong, Bauke M

    2015-01-01

    Writing is a sequential motor action based on sensorimotor integration in visuospatial and linguistic functional domains. To test the hypothesis of lateralized circuitry concerning spatial and language components involved in such action, we employed an fMRI paradigm including writing and drawing with each hand. In this way, writing-related contributions of dorsal and ventral premotor regions in each hemisphere were assessed, together with effects in wider distributed circuitry. Given a right-hemisphere dominance for spatial action, right dorsal premotor cortex dominance was expected in left-hand writing while dominance of the left ventral premotor cortex was expected during right-hand writing. Sixteen healthy right-handed subjects were scanned during audition-guided writing of short sentences and simple figure drawing without visual feedback. Tapping with a pencil served as a basic control task for the two higher-order motor conditions. Activation differences were assessed with Statistical Parametric Mapping (SPM). Writing and drawing showed parietal-premotor and posterior inferior temporal activations in both hemispheres when compared to tapping. Drawing activations were rather symmetrical for each hand. Activations in left- and right-hand writing were left-hemisphere dominant, while right dorsal premotor activation only occurred in left-hand writing, supporting a spatial motor contribution of particularly the right hemisphere. Writing contrasted to drawing revealed left-sided activations in the dorsal and ventral premotor cortex, Broca's area, pre-Supplementary Motor Area and posterior middle and inferior temporal gyri, without parietal activation. The audition-driven postero-inferior temporal activations indicated retrieval of virtual visual form characteristics in writing and drawing, with additional activation concerning word form in the left hemisphere. Similar parietal processing in writing and drawing pointed at a common mechanism by which such visually