WorldWideScience

Sample records for left primary motor

  1. Modulation of left primary motor cortex excitability after bimanual training and intermittent theta burst stimulation to left dorsal premotor cortex.

    Science.gov (United States)

    Neva, Jason L; Vesia, Michael; Singh, Amaya M; Staines, W Richard

    2014-03-15

    Bimanual visuomotor movement training (BMT) enhances the excitability of human preparatory premotor and primary motor (M1) cortices compared to unimanual movement. This occurs when BMT involves mirror symmetrical movements of both upper-limbs (in-phase) but not with non-symmetrical movements (anti-phase). The neural mechanisms mediating the effect of BMT is unclear, but may involve interhemispheric connections between homologous M1 representations as well as the dorsal premotor cortices (PMd). The purpose of this study is to assess how intermittent theta burst stimulation (iTBS) of the left PMd affects left M1 excitability, and the possible combined effects of iTBS to left PMd applied before a single session of BMT. Left M1 excitability was quantified using transcranial magnetic stimulation (TMS) in terms of both the amplitudes and spatial extent of motor evoked potentials (MEPs) for the extensor carpi radialis (ECR) before and multiple time points following (1) BMT, (2) iTBS to left PMd or (3) iTBS to left PMd and BMT. Although there was not a greater increase in either specific measure of M1 excitability due to the combination of the interventions, iTBS applied before BMT showed that both the spatial extent and global MEP amplitude for the ECR became larger in parallel, whereas the spatial extent was enhanced with BMT alone and global MEP amplitude was enhanced with iTBS to left PMd alone. These results suggest that the modulation of rapid functional M1 excitability associated with BMT and iTBS of the left PMd could operate under related early markers of neuro-plastic mechanisms, which may be expressed in concurrent and distinct patterns of M1 excitability. Critically, this work may guide rehabilitation training and stimulation techniques that modulate cortical excitability after brain injury. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Bilateral primary motor cortex circuitry is modulated due to theta burst stimulation to left dorsal premotor cortex and bimanual training.

    Science.gov (United States)

    Neva, Jason L; Vesia, Michael; Singh, Amaya M; Staines, W Richard

    2015-08-27

    Motor preparatory and execution activity is enhanced after a single session of bimanual visuomotor training (BMT). Recently, we have shown that increased primary motor cortex (M1) excitability occurs when BMT involves simultaneous activation of homologous muscles and these effects are enhanced when BMT is preceded by intermittent theta burst stimulation (iTBS) to the left dorsal premotor cortex (lPMd). The neural mechanisms underlying these modulations are unclear, but may include interhemispheric interactions between homologous M1s and connectivity with premotor regions. The purpose of this study was to investigate the possible intracortical and interhemispheric modulations of the extensor carpi radials (ECR) representation in M1 bilaterally due to: (1) BMT, (2) iTBS to lPMd, and (3) iTBS to lPMd followed by BMT. This study tests three related hypotheses: (1) BMT will enhance excitability within and between M1 bilaterally, (2) iTBS to lPMd will primarily enhance left M1 (lM1) excitability, and (3) the combination of these interventions will cause a greater enhancement of bilateral M1 excitability. We used single and paired-pulse transcranial magnetic stimulation (TMS) to quantify M1 circuitry bilaterally. The results demonstrate the neural mechanisms underlying the early markers of rapid functional plasticity associated with BMT and iTBS to lPMd primarily relate to modulations of long-interval inhibitory (i.e. GABAB-mediated) circuitry within and between M1s. This work provides novel insight into the underlying neural mechanisms involved in M1 excitability changes associated with BMT and iTBS to lPMd. Critically, this work may inform rehabilitation training and stimulation techniques that modulate cortical plasticity after brain injury. Copyright © 2015. Published by Elsevier B.V.

  3. Cortical disconnection of the ipsilesional primary motor cortex is associated with gait speed and upper extremity motor impairment in chronic left hemispheric stroke.

    Science.gov (United States)

    Peters, Denise M; Fridriksson, Julius; Stewart, Jill C; Richardson, Jessica D; Rorden, Chris; Bonilha, Leonardo; Middleton, Addie; Gleichgerrcht, Ezequiel; Fritz, Stacy L

    2018-01-01

    Advances in neuroimaging have enabled the mapping of white matter connections across the entire brain, allowing for a more thorough examination of the extent of white matter disconnection after stroke. To assess how cortical disconnection contributes to motor impairments, we examined the relationship between structural brain connectivity and upper and lower extremity motor function in individuals with chronic stroke. Forty-three participants [mean age: 59.7 (±11.2) years; time poststroke: 64.4 (±58.8) months] underwent clinical motor assessments and MRI scanning. Nonparametric correlation analyses were performed to examine the relationship between structural connectivity amid a subsection of the motor network and upper/lower extremity motor function. Standard multiple linear regression analyses were performed to examine the relationship between cortical necrosis and disconnection of three main cortical areas of motor control [primary motor cortex (M1), premotor cortex (PMC), and supplementary motor area (SMA)] and motor function. Anatomical connectivity between ipsilesional M1/SMA and the (1) cerebral peduncle, (2) thalamus, and (3) red nucleus were significantly correlated with upper and lower extremity motor performance (P ≤ 0.003). M1-M1 interhemispheric connectivity was also significantly correlated with gross manual dexterity of the affected upper extremity (P = 0.001). Regression models with M1 lesion load and M1 disconnection (adjusted for time poststroke) explained a significant amount of variance in upper extremity motor performance (R 2  = 0.36-0.46) and gait speed (R 2  = 0.46), with M1 disconnection an independent predictor of motor performance. Cortical disconnection, especially of ipsilesional M1, could significantly contribute to variability seen in locomotor and upper extremity motor function and recovery in chronic stroke. Hum Brain Mapp 39:120-132, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Transcranial Direct Current Stimulation over the Medial Prefrontal Cortex and Left Primary Motor Cortex (mPFC-lPMC) Affects Subjective Beauty but Not Ugliness

    Science.gov (United States)

    Nakamura, Koyo; Kawabata, Hideaki

    2015-01-01

    Neuroaesthetics has been searching for the neural bases of the subjective experience of beauty. It has been demonstrated that neural activities in the medial prefrontal cortex (mPFC) and the left primary motor cortex (lPMC) correlate with the subjective experience of beauty. Although beauty and ugliness seem to be semantically and conceptually opposite, it is still unknown whether these two evaluations represent extreme opposites in unitary or bivariate dimensions. In this study, we applied transcranial direct current stimulation (tDCS) to examine whether non-invasive brain stimulation modulates two types of esthetic evaluation; evaluating beauty and ugliness. Participants rated the subjective beauty and ugliness of abstract paintings before and after the application of tDCS. Application of cathodal tDCS over the mPFC with anode electrode over the lPMC, which induced temporal inhibition of neural excitability of the mPFC, led to a decrease in beauty ratings but not ugliness ratings. There were no changes in ratings of both beauty and ugliness when applying anodal tDCS or sham stimulation over the mPFC. Results from our experiment indicate that the mPFC and the lPMC have a causal role in generating the subjective experience of beauty, with beauty and ugliness evaluations constituting two distinct dimensions. PMID:26696865

  5. Behavioral evidence for left-hemisphere specialization of motor planning

    NARCIS (Netherlands)

    Janssen, L.; Meulenbroek, R.G.; Steenbergen, B.

    2011-01-01

    Recent studies suggest that the left hemisphere is dominant for the planning of motor actions. This left-hemisphere specialization hypothesis was proposed in various lines of research, including patient studies, motor imagery studies, and studies involving neurophysiological techniques. However,

  6. Induction of motor associative plasticity in the posterior parietal cortex-primary motor network

    DEFF Research Database (Denmark)

    Chao, Chi-Chao; Karabanov, Anke Ninija; Paine, Rainer

    2015-01-01

    There is anatomical and functional connectivity between the primary motor cortex (M1) and posterior parietal cortex (PPC) that plays a role in sensorimotor integration. In this study, we applied corticocortical paired-associative stimuli to ipsilateral PPC and M1 (parietal ccPAS) in healthy right......-handed subjects to test if this procedure could modulate M1 excitability and PPC–M1 connectivity. One hundred and eighty paired transcranial magnetic stimuli to the PPC and M1 at an interstimulus interval (ISI) of 8 ms were delivered at 0.2 Hz. We found that parietal ccPAS in the left hemisphere increased...... the excitability of conditioned left M1 assessed by motor evoked potentials (MEPs) and the input–output curve. Motor behavior assessed by the Purdue pegboard task was unchanged compared with controls. At baseline, conditioning stimuli over the left PPC potentiated MEPs from left M1 when ISI was 8 ms...

  7. Enhancement Of Motor Recovery Through Left Dorsolateral Prefrontal Cortex Stimulation After Acute Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Shahram Oveisgharan

    2017-02-01

    Full Text Available Background: Two previous studies, which investigated transcranial direct current stimulation (tDCS use in motor recovery after acute ischemic stroke, did not show tDCS to be effective in this regard. We speculated that additional left dorsolateral prefrontal cortex ‎(DLPFC ‎stimulation may enhance post stroke motor recovery.  ‎ Methods: In the present randomized clinical trial, 20 acute ischemic stroke patients were recruited. Patients received real motor cortex (M1 stimulation in both arms of the trial. The two arms differed in terms of real vs. sham stimulation over the left DLPFC‎. Motor component of the Fugl-Meyer upper extremity assessment (FM and Action Research Arm Test (ARAT scores were used to assess primary outcomes, and non-linear mixed effects models were used for data analyses. Results: Primary outcome measures improved more and faster among the real stimulation group. During the first days of stimulations, sham group’s FM scores increased 1.2 scores per day, while real group’s scores increased 1.7 scores per day (P = 0.003. In the following days, FM improvement decelerated in both groups. Based on the derived models, a hypothetical stroke patient with baseline FM score of 15 improves to 32 in the sham stimulation group and to 41 in the real stimulation group within the first month after stroke. Models with ARAT scores yielded nearly similar results. Conclusion: The current study results showed that left DLPFC‎ stimulation in conjunction with M1 stimulation resulted in better motor recovery than M1 stimulation alone.

  8. Functional resting-state connectivity of the human motor network: differences between right- and left-handers.

    Science.gov (United States)

    Pool, Eva-Maria; Rehme, Anne K; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian

    2015-04-01

    Handedness is associated with differences in activation levels in various motor tasks performed with the dominant or non-dominant hand. Here we tested whether handedness is reflected in the functional architecture of the motor system even in the absence of an overt motor task. Using resting-state functional magnetic resonance imaging we investigated 18 right- and 18 left-handers. Whole-brain functional connectivity maps of the primary motor cortex (M1), supplementary motor area (SMA), dorsolateral premotor cortex (PMd), pre-SMA, inferior frontal junction and motor putamen were compared between right- and left-handers. We further used a multivariate linear support vector machine (SVM) classifier to reveal the specificity of brain regions for classifying handedness based on individual resting-state maps. Using left M1 as seed region, functional connectivity analysis revealed stronger interhemispheric functional connectivity between left M1 and right PMd in right-handers as compared to left-handers. This connectivity cluster contributed to the individual classification of right- and left-handers with 86.2% accuracy. Consistently, also seeding from right PMd yielded a similar handedness-dependent effect in left M1, albeit with lower classification accuracy (78.1%). Control analyses of the other resting-state networks including the speech and the visual network revealed no significant differences in functional connectivity related to handedness. In conclusion, our data revealed an intrinsically higher functional connectivity in right-handers. These results may help to explain that hand preference is more lateralized in right-handers than in left-handers. Furthermore, enhanced functional connectivity between left M1 and right PMd may serve as an individual marker of handedness. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Inhibition of the primary motor cortex and the upgoing thumb sign

    Directory of Open Access Journals (Sweden)

    Antonia Nucera

    2017-09-01

    Full Text Available Background: The upgoing thumb sign has been frequently observed in patients with minor strokes and transient ischemic attacks as an indicator of brain involvement. We assessed the effect of primary motor cortex (M1 inhibition in the development of the upgoing thumb sign. Methods: Used repetitive Transcranial Magnetic Stimulation (rTMS, 1Hz frequency for 15min, 1s ISI, 900 pulses at 60% of resting motor threshold to inhibit the right or left primary motor cortex of 10 healthy individuals. Participants were examined before and after rTMS by a neurologist who was blind to the site of motor cortex inhibition. Results: 10 neurological intact participants (5 women/5 men were recruited for this study. 2 cases were excluded due to pre-existing possible thumb signs. After the inhibition of the primary motor cortex, in 6 subjects out of 8, we observed a thumb sign contralateral to the site of primary motor cortex inhibition. In one subject an ipsilateral thumbs sign was noted. In another case, we did not find an upgoing thumb sign. Conclusion: The upgoing thumb sign is a subtle neurological finding that may be related to the primary motor cortex or corticospinal pathways involvements. Keywords: Corticospinal tract, Upper motor neuron lesions, Primary motor cortex, Transcranial magnetic stimulation

  10. Body-specific motor imagery of hand actions: neural evidence from right- and left-handers

    Directory of Open Access Journals (Sweden)

    Roel M Willems

    2009-11-01

    Full Text Available If motor imagery uses neural structures involved in action execution, then the neural correlates of imagining an action should differ between individuals who tend to execute the action differently. Here we report fMRI data showing that motor imagery is influenced by the way people habitually perform motor actions with their particular bodies; that is, motor imagery is ‘body-specific’ (Casasanto, 2009. During mental imagery for complex hand actions, activation of cortical areas involved in motor planning and execution was left-lateralized in right-handers but right-lateralized in left-handers. We conclude that motor imagery involves the generation of an action plan that is grounded in the participant’s motor habits, not just an abstract representation at the level of the action’s goal. People with different patterns of motor experience form correspondingly different neurocognitive representations of imagined actions.

  11. Electroencephalographic (eeg coherence between visual and motor areas of the left and the right brain hemisphere while performing visuomotor task with the right and the left hand

    Directory of Open Access Journals (Sweden)

    Simon Brežan

    2007-09-01

    Full Text Available Background: Unilateral limb movements are based on the activation of contralateral primary motor cortex and the bilateral activation of premotor cortices. Performance of a visuomotor task requires a visuomotor integration between motor and visual cortical areas. The functional integration (»binding« of different brain areas, is probably mediated by the synchronous neuronal oscillatory activity, which can be determined by electroencephalographic (EEG coherence analysis. We introduced a new method of coherence analysis and compared coherence and power spectra in the left and right hemisphere for the right vs. left hand visuomotor task, hypothesizing that the increase in coherence and decrease in power spectra while performing the task would be greater in the contralateral hemisphere.Methods: We analyzed 6 healthy subjects and recorded their electroencephalogram during visuomotor task with the right or the left hand. For data analysis, a special Matlab computer programme was designed. The results were statistically analysed by a two-way analysis of variance, one-way analysis of variance and post-hoc t-tests with Bonferroni correction.Results: We demonstrated a significant increase in coherence (p < 0.05 for the visuomotor task compared to control tasks in alpha (8–13 Hz in beta 1 (13–20 Hz frequency bands between visual and motor electrodes. There were no significant differences in coherence nor power spectra depending on the hand used. The changes of coherence and power spectra between both hemispheres were symmetrical.Conclusions: In previous studies, a specific increase of coherence and decrease of power spectra for the visuomotor task was found, but we found no conclusive asymmetries when performing the task with right vs. left hand. This could be explained in a way that increases in coherence and decreases of power spectra reflect symmetrical activation and cooperation between more complex visual and motor brain areas.

  12. Origin of human motor readiness field linked to left middle frontal gyrus by MEG and PET

    DEFF Research Database (Denmark)

    Pedersen, Jane Rygaard; Johannsen, P; Bak, Christen Kjeldahl

    1998-01-01

    Combined magnetoencephalography and positron emission tomography identified a prior source of activity in the left middle frontal gyrus duping uncued movements of the right index finger Voluntary movements gave rise to a change in the cortical electrical potential known as the Bereitschaftspotent......Combined magnetoencephalography and positron emission tomography identified a prior source of activity in the left middle frontal gyrus duping uncued movements of the right index finger Voluntary movements gave rise to a change in the cortical electrical potential known...... sources subsequently to be active were mapped to the supplementary motor area, premotor cortex, and motor cortex (M1), all in the left hemisphere. (C) 1998 Academic Press....

  13. Contribution of the primary motor cortex to motor imagery: a subthreshold TMS study.

    Science.gov (United States)

    Pelgrims, Barbara; Michaux, Nicolas; Olivier, Etienne; Andres, Michael

    2011-09-01

    Motor imagery (MI) mostly activates the same brain regions as movement execution (ME) including the primary motor cortex (Brodmann area 4, BA4). However, whether BA4 is functionally relevant for MI remains controversial. The finding that MI tasks are impaired by BA4 virtual lesions induced by transcranial magnetic stimulation (TMS) supports this view, though previous studies do not permit to exclude that BA4 is also involved in other processes such as hand recognition. Additionally, previous works largely underestimated the possible negative consequences of TMS-induced muscle twitches on MI task performance. Here we investigated the role of BA4 in MI by interfering with the function of the left or right BA4 in healthy subjects performing a MI task in which they had to make laterality judgements on rotated hand drawings. We used a subthreshold repetitive TMS protocol and monitored electromyographic activity to exclude undesirable effects of hand muscle twitches. We found that BA4 virtual lesions selectively increased reaction times in laterality judgments on hand drawings, leaving unaffected a task of equal difficulty, involving judgments on letters. Interestingly, the effects of virtual lesions of left and right BA4 on MI task performance were the same irrespective of the laterality (left/right) of hand drawings. A second experiment allowed us to rule out the possibility that BA4 lesions affect visual or semantic processing of hand drawings. Altogether, these results indicate that BA4 contribution to MI tasks is specifically related to the mental simulation process and further emphasize the functional coupling between ME and MI. Copyright © 2010 Wiley-Liss, Inc.

  14. Functional magnetic resonance imaging of the primary motor cortex

    Indian Academy of Sciences (India)

    Functional magnetic resonance imaging (fMRI) studies have been performed on 20 right handed volunteers at 1.5 Tesla using echo planar imaging (EPI) protocol. Index finger tapping invoked localized activation in the primary motor area. Consistent and highly reproducible activation in the primary motor area was observed ...

  15. Repetitive Transcranial Magnetic Stimulation to the Primary Motor Cortex Interferes with Motor Learning by Observing

    Science.gov (United States)

    Brown, Liana E.; Wilson, Elizabeth T.; Gribble, Paul L.

    2009-01-01

    Neural representations of novel motor skills can be acquired through visual observation. We used repetitive transcranial magnetic stimulation (rTMS) to test the idea that this "motor learning by observing" is based on engagement of neural processes for learning in the primary motor cortex (M1). Human subjects who observed another person learning…

  16. Early uneven ear input induces long-lasting differences in left-right motor function.

    Science.gov (United States)

    Antoine, Michelle W; Zhu, Xiaoxia; Dieterich, Marianne; Brandt, Thomas; Vijayakumar, Sarath; McKeehan, Nicholas; Arezzo, Joseph C; Zukin, R Suzanne; Borkholder, David A; Jones, Sherri M; Frisina, Robert D; Hébert, Jean M

    2018-03-01

    How asymmetries in motor behavior become established normally or atypically in mammals remains unclear. An established model for motor asymmetry that is conserved across mammals can be obtained by experimentally inducing asymmetric striatal dopamine activity. However, the factors that can cause motor asymmetries in the absence of experimental manipulations to the brain remain unknown. Here, we show that mice with inner ear dysfunction display a robust left or right rotational preference, and this motor preference reflects an atypical asymmetry in cortico-striatal neurotransmission. By unilaterally targeting striatal activity with an antagonist of extracellular signal-regulated kinase (ERK), a downstream integrator of striatal neurotransmitter signaling, we can reverse or exaggerate rotational preference in these mice. By surgically biasing vestibular failure to one ear, we can dictate the direction of motor preference, illustrating the influence of uneven vestibular failure in establishing the outward asymmetries in motor preference. The inner ear-induced striatal asymmetries identified here intersect with non-ear-induced asymmetries previously linked to lateralized motor behavior across species and suggest that aspects of left-right brain function in mammals can be ontogenetically influenced by inner ear input. Consistent with inner ear input contributing to motor asymmetry, we also show that, in humans with normal ear function, the motor-dominant hemisphere, measured as handedness, is ipsilateral to the ear with weaker vestibular input.

  17. Cortical motor representation of the rectus femoris does not differ between the left and right hemisphere.

    Science.gov (United States)

    Ward, Sarah; Bryant, Adam L; Pietrosimone, Brian; Bennell, Kim L; Clark, Ross; Pearce, Alan J

    2016-06-01

    Transcranial magnetic stimulation (TMS) involves non-invasive magnetic stimulation of the brain, and can be used to explore the corticomotor excitability and motor representations of skeletal muscles. However there is a lack of motor mapping studies in the lower limb and few conducted in healthy cohorts. The cortical motor representations of muscles can vary between individuals in terms of center position and area despite having a general localized region within the motor cortex. It is important to characterize the normal range for these variables in healthy cohorts to be able to evaluate changes in clinical populations. TMS was used in this cross-sectional study to assess the active motor threshold (AMT) and cortical representation area for rectus femoris in 15 healthy individuals (11M/4F 27.3±5.9years). No differences were found between hemispheres (Left vs. Right P=0.130) for AMT. In terms of y-axis center position no differences were found between hemispheres (Left vs. Right P=0.539), or for the x-axis center position (Left vs. Right P=0.076). Similarly, no differences in calculated area of the motor representation were found (Left vs. Right P=0.699) indicating symmetry between hemispheres. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Enhancing motor network activity using real-time functional MRI neurofeedback of left premotor cortex

    Directory of Open Access Journals (Sweden)

    Theo Ferreira Marins

    2015-12-01

    Full Text Available Neurofeedback by functional Magnetic Resonance Imaging (fMRI is a technique of potential therapeutic relevance that allows individuals to be aware of their own neurophysiological responses and to voluntarily modulate the activity of specific brain regions, such as the premotor cortex (PMC, important for motor recovery after brain injury. We investigated (i whether healthy human volunteers are able to up-regulate the activity of the left PMC during a right hand finger tapping motor imagery (MI task while receiving continuous fMRI-neurofeedback, and (ii whether successful modulation of brain activity influenced non-targeted motor control regions. During the MI task, participants of the neurofeedback group (NFB received ongoing visual feedback representing the level of fMRI responses within their left PMC. Control (CTL group participants were shown similar visual stimuli, but these were non-contingent on brain activity. Both groups showed equivalent levels of behavioral ratings on arousal and motor imagery, before and during the fMRI protocol. In the NFB, but not in CLT group, brain activation during the last run compared to the first run revealed increased activation in the left PMC. In addition, the NFB group showed increased activation in motor control regions extending beyond the left PMC target area, including the supplementary motor area, basal ganglia and cerebellum. Moreover, in the last run, the NFB group showed stronger activation in the left PMC/inferior frontal gyrus when compared to the CTL group. Our results indicate that modulation of PMC and associated motor control areas can be achieved during a single neurofeedback-fMRI session. These results contribute to a better understanding of the underlying mechanisms of MI-based neurofeedback training, with direct implications for rehabilitation strategies in severe brain disorders, such as stroke.

  19. Weak but Critical Links between Primary Somatosensory Centers and Motor Cortex during Movement

    Directory of Open Access Journals (Sweden)

    Pengxu Wei

    2018-01-01

    Full Text Available Motor performance is improved by stimulation of the agonist muscle during movement. However, related brain mechanisms remain unknown. In this work, we perform a functional magnetic resonance imaging (fMRI study in 21 healthy subjects under three different conditions: (1 movement of right ankle alone; (2 movement and simultaneous stimulation of the agonist muscle; or (3 movement and simultaneous stimulation of a control area. We constructed weighted brain networks for each condition by using functional connectivity. Network features were analyzed using graph theoretical approaches. We found that: (1 the second condition evokes the strongest and most widespread brain activations (5147 vs. 4419 and 2320 activated voxels; and (2 this condition also induces a unique network layout and changes hubs and the modular structure of the brain motor network by activating the most “silent” links between primary somatosensory centers and the motor cortex, particularly weak links from the thalamus to the left primary motor cortex (M1. Significant statistical differences were found when the strength values of the right cerebellum (P < 0.001 or the left thalamus (P = 0.006 were compared among the three conditions. Over the years, studies reported a small number of projections from the thalamus to the motor cortex. This is the first work to present functions of these pathways. These findings reveal mechanisms for enhancing motor function with somatosensory stimulation, and suggest that network function cannot be thoroughly understood when weak ties are disregarded.

  20. Initiating a Developmental Motor Skills Program for Identified Primary Students.

    Science.gov (United States)

    Harville, Valerie Terrill

    A physical education specialist at an elementary school in one of the fastest growing sections of the country developed and implemented a developmental motor skills program for primary school students. The program focused on: (1) developing a method of referring students for testing; (2) providing a specialized motor diagnostic test; (3) improving…

  1. Motor imagery training promotes motor learning in adolescents with cerebral palsy: comparison between left and right hemiparesis.

    Science.gov (United States)

    Cabral-Sequeira, Audrey Sartori; Coelho, Daniel Boari; Teixeira, Luis Augusto

    2016-06-01

    This experiment was designed to evaluate the effects of pure motor imagery training (MIT) and its combination with physical practice on learning an aiming task with the more affected arm in adolescents suffering from cerebral palsy. Effect of MIT was evaluated as a function of side of hemiparesis. The experiment was accomplished by 11- to 16-year-old participants (M = 13.58 years), who suffered left (n = 16) or right (n = 15) mild hemiparesis. They were exposed to pure MIT (day 1) followed by physical practice (day 2) on an aiming task demanding movement accuracy and speed. Posttraining movement kinematics of the group receiving MIT were compared with movement kinematics of the control group after receiving recreational activities (day 1) and physical practice (day 2). Kinematic analysis showed that MIT led to decreased movement time and straighter hand displacements to the target. Performance achievements from MIT were increased with further physical practice, leading to enhanced effects on motor learning. Retention evaluation indicated that performance improvement from pure MIT and its combination with physical practice were stable over time. Performance achievements were equivalent between adolescents with either right or left hemiparesis, suggesting similar capacity between these groups to achieve performance improvement from pure imagery training and from its association with physical practice. Our results suggest that motor imagery training is a procedure potentially useful to increase motor learning achievements in individuals suffering from cerebral palsy.

  2. Effects of TMS on different stages of motor and non-motor verb processing in the primary motor cortex.

    Directory of Open Access Journals (Sweden)

    Liuba Papeo

    Full Text Available The embodied cognition hypothesis suggests that motor and premotor areas are automatically and necessarily involved in understanding action language, as word conceptual representations are embodied. This transcranial magnetic stimulation (TMS study explores the role of the left primary motor cortex in action-verb processing. TMS-induced motor-evoked potentials from right-hand muscles were recorded as a measure of M1 activity, while participants were asked either to judge explicitly whether a verb was action-related (semantic task or to decide on the number of syllables in a verb (syllabic task. TMS was applied in three different experiments at 170, 350 and 500 ms post-stimulus during both tasks to identify when the enhancement of M1 activity occurred during word processing. The delays between stimulus onset and magnetic stimulation were consistent with electrophysiological studies, suggesting that word recognition can be differentiated into early (within 200 ms and late (within 400 ms lexical-semantic stages, and post-conceptual stages. Reaction times and accuracy were recorded to measure the extent to which the participants' linguistic performance was affected by the interference of TMS with M1 activity. No enhancement of M1 activity specific for action verbs was found at 170 and 350 ms post-stimulus, when lexical-semantic processes are presumed to occur (Experiments 1-2. When TMS was applied at 500 ms post-stimulus (Experiment 3, processing action verbs, compared with non-action verbs, increased the M1-activity in the semantic task and decreased it in the syllabic task. This effect was specific for hand-action verbs and was not observed for action-verbs related to other body parts. Neither accuracy nor RTs were affected by TMS. These findings suggest that the lexical-semantic processing of action verbs does not automatically activate the M1. This area seems to be rather involved in post-conceptual processing that follows the retrieval of motor

  3. MOTOR PERFORMANCE OF PRIMARY SCHOOL GIRLS ACCORDING TO BIRTH SEASON

    Directory of Open Access Journals (Sweden)

    Josip Lepeš

    2010-09-01

    Full Text Available Body height, weight and motor performances data of 348 junior level primary schools girls 122 seven, 151 eight, 76 nine year olds. The results show that girls born in summer and in autumn generally had better performances in most of the skills, than those born in spring and winter and the differences were proved statistically in each case, expect obstacle race test. Girls who were better than average at some motor skills, generally outdid their school maters or contemporary group average at other motor skill performance as well.

  4. Cognitive alterations in motor imagery process after left hemispheric ischemic stroke.

    Directory of Open Access Journals (Sweden)

    Jing Yan

    Full Text Available BACKGROUND: Motor imagery training is a promising rehabilitation strategy for stroke patients. However, few studies had focused on the neural mechanisms in time course of its cognitive process. This study investigated the cognitive alterations after left hemispheric ischemic stroke during motor imagery task. METHODOLOGY/PRINCIPAL FINDINGS: Eleven patients with ischemic stroke in left hemisphere and eleven age-matched control subjects participated in mental rotation task (MRT of hand pictures. Behavior performance, event-related potential (ERP and event-related (desynchronization (ERD/ERS in beta band were analyzed to investigate the cortical activation. We found that: (1 The response time increased with orientation angles in both groups, called "angle effect", however, stoke patients' responses were impaired with significantly longer response time and lower accuracy rate; (2 In early visual perceptual cognitive process, stroke patients showed hypo-activations in frontal and central brain areas in aspects of both P200 and ERD; (3 During mental rotation process, P300 amplitude in control subjects decreased while angle increased, called "amplitude modulation effect", which was not observed in stroke patients. Spatially, patients showed significant lateralization of P300 with activation only in contralesional (right parietal cortex while control subjects showed P300 in both parietal lobes. Stroke patients also showed an overall cortical hypo-activation of ERD during this sub-stage; (4 In the response sub-stage, control subjects showed higher ERD values with more activated cortical areas particularly in the right hemisphere while angle increased, named "angle effect", which was not observed in stroke patients. In addition, stroke patients showed significant lower ERD for affected hand (right response than that for unaffected hand. CONCLUSIONS/SIGNIFICANCE: Cortical activation was altered differently in each cognitive sub-stage of motor imagery after

  5. Primary left ventricular hydatid cyst in a child: case report

    International Nuclear Information System (INIS)

    Turkvatan, A.; Yelgec, N.S.; Calikoglu, U.; Olcer, T.

    2000-01-01

    The most common cause of echinococcosis in humans is Echinococcus granulosus. Although hydatid cyst is most frequently localized in liver (more than 65% of cases) and lung (25%) by means of portal and systemic circulation, it may involve other tissues and organs. Cardiac hydatid cysts account for only 0.5%-2% of all hydatid cysts, even in endemic areas. Of all cardiac hydatid cysts, the left ventricle accounts for 60%, right ventricle 10%, pericardium 7%, pulmonary artery 6%, left atrial appendage 6%, and interventricular septum 4%. We report the case of a myocardial hydatid cyst of the left ventricle in a 9-year-old boy. (author)

  6. Primary left ventricular hydatid cyst in a child: case report

    Energy Technology Data Exchange (ETDEWEB)

    Turkvatan, A. [Turkiye Yuksek Ihtisas Hospital, Dept. of Radiology, Ankara (Turkey); Yelgec, N.S. [Turkiye Yuksek Ihtisas Hospital, Dept. of Cardiology, Ankara (Turkey); Calikoglu, U.; Olcer, T. [Turkiye Yuksek Ihtisas Hospital, Dept. of Radiology, Ankara (Turkey)

    2000-12-01

    The most common cause of echinococcosis in humans is Echinococcus granulosus. Although hydatid cyst is most frequently localized in liver (more than 65% of cases) and lung (25%) by means of portal and systemic circulation, it may involve other tissues and organs. Cardiac hydatid cysts account for only 0.5%-2% of all hydatid cysts, even in endemic areas. Of all cardiac hydatid cysts, the left ventricle accounts for 60%, right ventricle 10%, pericardium 7%, pulmonary artery 6%, left atrial appendage 6%, and interventricular septum 4%. We report the case of a myocardial hydatid cyst of the left ventricle in a 9-year-old boy. (author)

  7. Primary Motor Cortex Excitability Is Modulated During the Mental Simulation of Hand Movement.

    Science.gov (United States)

    Hyde, Christian; Fuelscher, Ian; Lum, Jarrad A G; Williams, Jacqueline; He, Jason; Enticott, Peter G

    2017-02-01

    It is unclear whether the primary motor cortex (PMC) is involved in the mental simulation of movement [i.e., motor imagery (MI)]. The present study aimed to clarify PMC involvement using a highly novel adaptation of the hand laterality task (HLT). Participants were administered single-pulse transcranial magnetic stimulation (TMS) to the hand area of the left PMC (hPMC) at either 50 ms, 400 ms, or 650 ms post stimulus presentation. Motor-evoked potentials (MEPs) were recorded from the right first dorsal interosseous via electromyography. To avoid the confound of gross motor response, participant response (indicating left or right hand) was recorded via eye tracking. Participants were 22 healthy adults (18 to 36 years), 16 whose behavioral profile on the HLT was consistent with the use of a MI strategy (MI users). hPMC excitability increased significantly during HLT performance for MI users, evidenced by significantly larger right hand MEPs following single-pulse TMS 50 ms, 400 ms, and 650 ms post stimulus presentation relative to baseline. Subsequent analysis showed that hPMC excitability was greater for more complex simulated hand movements, where hand MEPs at 50 ms were larger for biomechanically awkward movements (i.e., hands requiring lateral rotation) compared to simpler movements (i.e., hands requiring medial rotation). These findings provide support for the modulation of PMC excitability during the HLT attributable to MI, and may indicate a role for the PMC during MI. (JINS, 2017, 23, 185-193).

  8. The role of left supplementary motor area in grip force scaling.

    Directory of Open Access Journals (Sweden)

    Olivier White

    Full Text Available Skilled tool use and object manipulation critically relies on the ability to scale anticipatorily the grip force (GF in relation to object dynamics. This predictive behaviour entails that the nervous system is able to store, and then select, the appropriate internal representation of common object dynamics, allowing GF to be applied in parallel with the arm motor commands. Although psychophysical studies have provided strong evidence supporting the existence of internal representations of object dynamics, known as "internal models", their neural correlates are still debated. Because functional neuroimaging studies have repeatedly designated the supplementary motor area (SMA as a possible candidate involved in internal model implementation, we used repetitive transcranial magnetic stimulation (rTMS to interfere with the normal functioning of left or right SMA in healthy participants performing a grip-lift task with either hand. TMS applied over the left, but not right, SMA yielded an increase in both GF and GF rate, irrespective of the hand used to perform the task, and only when TMS was delivered 130-180 ms before the fingers contacted the object. We also found that both left and right SMA rTMS led to a decrease in preload phase durations for contralateral hand movements. The present study suggests that left SMA is a crucial node in the network processing the internal representation of object dynamics although further experiments are required to rule out that TMS does not affect the GF gain. The present finding also further substantiates the left hemisphere dominance in scaling GF.

  9. Unilateral nasal obstruction affects motor representation development within the face primary motor cortex in growing rats.

    Science.gov (United States)

    Abe, Yasunori; Kato, Chiho; Uchima Koecklin, Karin Harumi; Okihara, Hidemasa; Ishida, Takayoshi; Fujita, Koichi; Yabushita, Tadachika; Kokai, Satoshi; Ono, Takashi

    2017-06-01

    Postnatal growth is influenced by genetic and environmental factors. Nasal obstruction during growth alters the electromyographic activity of orofacial muscles. The facial primary motor area represents muscles of the tongue and jaw, which are essential in regulating orofacial motor functions, including chewing and jaw opening. This study aimed to evaluate the effect of chronic unilateral nasal obstruction during growth on the motor representations within the face primary motor cortex (M1). Seventy-two 6-day-old male Wistar rats were randomly divided into control ( n = 36) and experimental ( n = 36) groups. Rats in the experimental group underwent unilateral nasal obstruction after cauterization of the external nostril at 8 days of age. Intracortical microstimulation (ICMS) mapping was performed when the rats were 5, 7, 9, and 11 wk old in control and experimental groups ( n = 9 per group per time point). Repeated-measures multivariate ANOVA was used for intergroup and intragroup statistical comparisons. In the control and experimental groups, the total number of positive ICMS sites for the genioglossus and anterior digastric muscles was significantly higher at 5, 7, and 9 wk, but there was no significant difference between 9 and 11 wk of age. Moreover, the total number of positive ICMS sites was significantly smaller in the experimental group than in the control at each age. It is possible that nasal obstruction induced the initial changes in orofacial motor behavior in response to the altered respiratory pattern, which eventually contributed to face-M1 neuroplasticity. NEW & NOTEWORTHY Unilateral nasal obstruction in rats during growth periods induced changes in arterial oxygen saturation (SpO 2 ) and altered development of the motor representation within the face primary cortex. Unilateral nasal obstruction occurring during growth periods may greatly affect not only respiratory function but also craniofacial function in rats. Nasal obstruction should be treated

  10. Primary motor cortex functionally contributes to language comprehension: An online rTMS study.

    Science.gov (United States)

    Vukovic, Nikola; Feurra, Matteo; Shpektor, Anna; Myachykov, Andriy; Shtyrov, Yury

    2017-02-01

    Among various questions pertinent to grounding human cognitive functions in a neurobiological substrate, the association between language and motor brain structures is a particularly debated one in neuroscience and psychology. While many studies support a broadly distributed model of language and semantics grounded, among other things, in the general modality-specific systems, theories disagree as to whether motor and sensory cortex activity observed during language processing is functional or epiphenomenal. Here, we assessed the role of motor areas in linguistic processing by investigating the responses of 28 healthy volunteers to different word types in semantic and lexical decision tasks, following repetitive transcranial magnetic stimulation (rTMS) of primary motor cortex. We found that early rTMS (delivered within 200ms of word onset) produces a left-lateralised and meaning-specific change in reaction speed, slowing down behavioural responses to action-related words, and facilitating abstract words - an effect present only during semantic, but not lexical, decision. We interpret these data in light of action-perception theory of language, bolstering the claim that motor cortical areas play a functional role in language comprehension. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Peripheral nerve injury induces glial activation in primary motor cortex

    OpenAIRE

    Julieta Troncoso; Julieta Troncoso; Efraín Buriticá; Efraín Buriticá

    2015-01-01

    Preliminary evidence suggests that peripheral facial nerve injuries are associated with sensorimotor cortex reorganization. We have characterized facial nerve lesion-induced structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with glial cell density using a rodent facial paralysis model. First, we used adult transgenic mice expressing green fluorescent protein in microglia and yellow fluorescent protein in pyramidal neurons which were subjected to eithe...

  12. Impedance calculations for power cables to primary coolant pump motors

    International Nuclear Information System (INIS)

    Hegerhorst, K.B.

    1977-01-01

    The LOFT primary system motor generator sets are located in Room B-239 and are connected to the primary coolant pumps by means of a power cable. The calculated average impedance of this cable is 0.005323 ohms per unit resistance and 0.006025 ohms per unit reactance based on 369.6 kVA and 480 volts. The report was written to show the development of power cable parameters that are to be used in the SICLOPS (Simulation of LOFT Reactor Coolant Loop Pumping System) digital computer program as written in LTR 1142-16 and also used in the pump coastdowns for the FSAR Analysis

  13. Classification of functional near-infrared spectroscopy signals corresponding to the right- and left-wrist motor imagery for development of a brain-computer interface.

    Science.gov (United States)

    Naseer, Noman; Hong, Keum-Shik

    2013-10-11

    This paper presents a study on functional near-infrared spectroscopy (fNIRS) indicating that the hemodynamic responses of the right- and left-wrist motor imageries have distinct patterns that can be classified using a linear classifier for the purpose of developing a brain-computer interface (BCI). Ten healthy participants were instructed to imagine kinesthetically the right- or left-wrist flexion indicated on a computer screen. Signals from the right and left primary motor cortices were acquired simultaneously using a multi-channel continuous-wave fNIRS system. Using two distinct features (the mean and the slope of change in the oxygenated hemoglobin concentration), the linear discriminant analysis classifier was used to classify the right- and left-wrist motor imageries resulting in average classification accuracies of 73.35% and 83.0%, respectively, during the 10s task period. Moreover, when the analysis time was confined to the 2-7s span within the overall 10s task period, the average classification accuracies were improved to 77.56% and 87.28%, respectively. These results demonstrate the feasibility of an fNIRS-based BCI and the enhanced performance of the classifier by removing the initial 2s span and/or the time span after the peak value. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Concurrent TMS to the primary motor cortex augments slow motor learning

    Science.gov (United States)

    Narayana, Shalini; Zhang, Wei; Rogers, William; Strickland, Casey; Franklin, Crystal; Lancaster, Jack L.; Fox, Peter T.

    2013-01-01

    Transcranial magnetic stimulation (TMS) has shown promise as a treatment tool, with one FDA approved use. While TMS alone is able to up- (or down-) regulate a targeted neural system, we argue that TMS applied as an adjuvant is more effective for repetitive physical, behavioral and cognitive therapies, that is, therapies which are designed to alter the network properties of neural systems through Hebbian learning. We tested this hypothesis in the context of a slow motor learning paradigm. Healthy right-handed individuals were assigned to receive 5 Hz TMS (TMS group) or sham TMS (sham group) to the right primary motor cortex (M1) as they performed daily motor practice of a digit sequence task with their non-dominant hand for 4 weeks. Resting cerebral blood flow (CBF) was measured by H215O PET at baseline and after 4 weeks of practice. Sequence performance was measured daily as the number of correct sequences performed, and modeled using a hyperbolic function. Sequence performance increased significantly at 4 weeks relative to baseline in both groups. The TMS group had a significant additional improvement in performance, specifically, in the rate of skill acquisition. In both groups, an improvement in sequence timing and transfer of skills to non-trained motor domains was also found. Compared to the sham group, the TMS group demonstrated increases in resting CBF specifically in regions known to mediate skill learning namely, the M1, cingulate cortex, putamen, hippocampus, and cerebellum. These results indicate that TMS applied concomitantly augments behavioral effects of motor practice, with corresponding neural plasticity in motor sequence learning network. These findings are the first demonstration of the behavioral and neural enhancing effects of TMS on slow motor practice and have direct application in neurorehabilitation where TMS could be applied in conjunction with physical therapy. PMID:23867557

  15. Temporal course of gene expression during motor memory formation in primary motor cortex of rats.

    Science.gov (United States)

    Hertler, B; Buitrago, M M; Luft, A R; Hosp, J A

    2016-12-01

    Motor learning is associated with plastic reorganization of neural networks in primary motor cortex (M1) that depends on changes in gene expression. Here, we investigate the temporal profile of these changes during motor memory formation in response to a skilled reaching task in rats. mRNA-levels were measured 1h, 7h and 24h after the end of a training session using microarray technique. To assure learning specificity, trained animals were compared to a control group. In response to motor learning, genes are sequentially regulated with high time-point specificity and a shift from initial suppression to later activation. The majority of regulated genes can be linked to learning-related plasticity. In the gene-expression cascade following motor learning, three different steps can be defined: (1) an initial suppression of genes influencing gene transcription. (2) Expression of genes that support translation of mRNA in defined compartments. (3) Expression of genes that immediately mediates plastic changes. Gene expression peaks after 24h - this is a much slower time-course when compared to hippocampus-dependent learning, where peaks of gene-expression can be observed 6-12h after training ended. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Selective left, right and bilateral stimulation of subthalamic nuclei in Parkinson's disease: differential effects on motor, speech and language function.

    Science.gov (United States)

    Schulz, Geralyn M; Hosey, Lara A; Bradberry, Trent J; Stager, Sheila V; Lee, Li-Ching; Pawha, Rajesh; Lyons, Kelly E; Metman, Leo Verhagen; Braun, Allen R

    2012-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus improves the motor symptoms of Parkinson's disease, but may produce a worsening of speech and language performance at rates and amplitudes typically selected in clinical practice. The possibility that these dissociated effects might be modulated by selective stimulation of left and right STN has never been systematically investigated. To address this issue, we analyzed motor, speech and language functions of 12 patients implanted with bilateral stimulators configured for optimal motor responses. Behavioral responses were quantified under four stimulator conditions: bilateral DBS, right-only DBS, left-only DBS and no DBS. Under bilateral and left-only DBS conditions, our results exhibited a significant improvement in motor symptoms but worsening of speech and language. These findings contribute to the growing body of literature demonstrating that bilateral STN DBS compromises speech and language function and suggests that these negative effects may be principally due to left-sided stimulation. These findings may have practical clinical consequences, suggesting that clinicians might optimize motor, speech and language functions by carefully adjusting left- and right-sided stimulation parameters.

  17. Cathodal Transcranial Direct Current Stimulation Over Left Dorsolateral Prefrontal Cortex Area Promotes Implicit Motor Learning in a Golf Putting Task.

    Science.gov (United States)

    Zhu, Frank F; Yeung, Andrew Y; Poolton, Jamie M; Lee, Tatia M C; Leung, Gilberto K K; Masters, Rich S W

    2015-01-01

    Implicit motor learning is characterized by low dependence on working memory and stable performance despite stress, fatigue, or multi-tasking. However, current paradigms for implicit motor learning are based on behavioral interventions that are often task-specific and limited when applied in practice. To investigate whether cathodal transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC) area during motor learning suppressed working memory activity and reduced explicit verbal-analytical involvement in movement control, thereby promoting implicit motor learning. Twenty-seven healthy individuals practiced a golf putting task during a Training Phase while receiving either real cathodal tDCS stimulation over the left DLPFC area or sham stimulation. Their performance was assessed during a Test phase on another day. Verbal working memory capacity was assessed before and after the Training Phase, and before the Test Phase. Compared to sham stimulation, real stimulation suppressed verbal working memory activity after the Training Phase, but enhanced golf putting performance during the Training Phase and the Test Phase, especially when participants were required to multi-task. Cathodal tDCS over the left DLPFC may foster implicit motor learning and performance in complex real-life motor tasks that occur during sports, surgery or motor rehabilitation. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Motor facilitation during observation of implied motion: Evidence for a role of the left dorsolateral prefrontal cortex.

    Science.gov (United States)

    Mineo, Ludovico; Fetterman, Alexander; Concerto, Carmen; Warren, Michael; Infortuna, Carmenrita; Freedberg, David; Chusid, Eileen; Aguglia, Eugenio; Battaglia, Fortunato

    2018-06-01

    The phenomenon of motor resonance (the increase in motor cortex excitability during observation of actions) has been previously described. Transcranial magnetic stimulation (TMS) studies have demonstrated a similar effect during perception of implied motion (IM). The left dorsolateral prefrontal cortex (DLPFC) seems to be activated during action observation. Furthermore, the role of this brain area in motor resonance to IM is yet to be investigated. Fourteen healthy volunteers were enrolled into the study. We used transcranial direct current stimulation (tDCS) to stimulate DLPFC aiming to investigate whether stimulation with different polarities would affect the amplitude of motor evoked potential collected during observation of images with and without IM. The results of our experiment indicated that Cathodal tDCS over the left DLPFC prevented motor resonance during observation of IM. On the contrary, anodal and sham tDCS did not significantly modulate motor resonance to IM. The current study expands the understanding of the neural circuits engaged during observation of IM. Our results are consistent with the hypothesis that action understanding requires the interaction of large networks and that the left DLPFC plays a crucial role in generating motor resonance to IM. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. The importance of left ventricular function for long-term outcome after primary percutaneous coronary intervention

    NARCIS (Netherlands)

    van der Vleuten, Pieter A.; Rasoul, Saman; Huurnink, Willem; van der Horst, Iwan C. C.; Slart, Riemer H. J. A.; Reiffers, Stoffer; Dierckx, Rudi A.; Tio, Rene A.; Ottervanger, Jan Paul; De Boer, Menko-Jan; Zijlstra, Felix

    2008-01-01

    Background: In the present study we sought to determine the long-term prognostic value of left ventricular ejection fraction (LVEF), assessed by planar radionuclide ventriculography (PRV), after ST-elevation myocardial infarction (STEMI) treated with primary percutaneous coronary intervention

  20. Learning-induced Dependence of Neuronal Activity in Primary Motor Cortex on Motor Task Condition.

    Science.gov (United States)

    Cai, X; Shimansky, Y; He, Jiping

    2005-01-01

    A brain-computer interface (BCI) system such as a cortically controlled robotic arm must have a capacity of adjusting its function to a specific environmental condition. We studied this capacity in non-human primates based on chronic multi-electrode recording from the primary motor cortex of a monkey during the animal's performance of a center-out 3D reaching task and adaptation to external force perturbations. The main condition-related feature of motor cortical activity observed before the onset of force perturbation was a phasic raise of activity immediately before the perturbation onset. This feature was observed during a series of perturbation trials, but were absent under no perturbations. After adaptation has been completed, it usually was taking the subject only one trial to recognize a change in the condition to switch the neuronal activity accordingly. These condition-dependent features of neuronal activity can be used by a BCI for recognizing a change in the environmental condition and making corresponding adjustments, which requires that the BCI-based control system possess such advanced properties of the neural motor control system as capacity to learn and adapt.

  1. Substance P signalling in primary motor cortex facilitates motor learning in rats.

    Directory of Open Access Journals (Sweden)

    Benjamin Hertler

    Full Text Available Among the genes that are up-regulated in response to a reaching training in rats, Tachykinin 1 (Tac1-a gene that encodes the neuropeptide Substance P (Sub P-shows an especially strong expression. Using Real-Time RT-PCR, a detailed time-course of Tac1 expression could be defined: a significant peak occurs 7 hours after training ended at the first and second training session, whereas no up-regulation could be detected at a later time-point (sixth training session. To assess the physiological role of Sub P during movement acquisition, microinjections into the primary motor cortex (M1 contralateral to the trained paw were performed. When Sub P was injected before the first three sessions of a reaching training, effectiveness of motor learning became significantly increased. Injections at a time-point when rats already knew the task (i.e. training session ten and eleven had no effect on reaching performance. Sub P injections did not influence the improvement of performance within a single training session, but retention of performance between sessions became strengthened at a very early stage (i.e. between baseline-training and first training session. Thus, Sub P facilitates motor learning in the very early phase of skill acquisition by supporting memory consolidation. In line with these findings, learning related expression of the precursor Tac1 occurs at early but not at later time-points during reaching training.

  2. Substance P signalling in primary motor cortex facilitates motor learning in rats.

    Science.gov (United States)

    Hertler, Benjamin; Hosp, Jonas Aurel; Blanco, Manuel Buitrago; Luft, Andreas Rüdiger

    2017-01-01

    Among the genes that are up-regulated in response to a reaching training in rats, Tachykinin 1 (Tac1)-a gene that encodes the neuropeptide Substance P (Sub P)-shows an especially strong expression. Using Real-Time RT-PCR, a detailed time-course of Tac1 expression could be defined: a significant peak occurs 7 hours after training ended at the first and second training session, whereas no up-regulation could be detected at a later time-point (sixth training session). To assess the physiological role of Sub P during movement acquisition, microinjections into the primary motor cortex (M1) contralateral to the trained paw were performed. When Sub P was injected before the first three sessions of a reaching training, effectiveness of motor learning became significantly increased. Injections at a time-point when rats already knew the task (i.e. training session ten and eleven) had no effect on reaching performance. Sub P injections did not influence the improvement of performance within a single training session, but retention of performance between sessions became strengthened at a very early stage (i.e. between baseline-training and first training session). Thus, Sub P facilitates motor learning in the very early phase of skill acquisition by supporting memory consolidation. In line with these findings, learning related expression of the precursor Tac1 occurs at early but not at later time-points during reaching training.

  3. Lack of LTP-like plasticity in primary motor cortex in Parkinson's disease.

    Science.gov (United States)

    Suppa, A; Marsili, L; Belvisi, D; Conte, A; Iezzi, E; Modugno, N; Fabbrini, G; Berardelli, A

    2011-02-01

    In this study in patients with Parkinson's disease (PD), off and on dopaminergic therapy, with and without L-dopa-induced dyskinesias (LIDs), we tested intermittent theta-burst stimulation (iTBS), a technique currently used for non-invasively inducing long-term potentiation (LTP)-like plasticity in primary motor cortex (M1). The study group comprised 20 PD patients on and off dopaminergic therapy (11 patients without and 9 patients with LIDs), and 14 age-matched healthy subjects. Patients had mild-to-moderate PD, and no additional neuropsychiatric disorders. We clinically evaluated patients using the Unified Parkinson's Disease Rating Scale (UPDRS) and the Unified Dyskinesia Rating Scale (UDysRS). The left M1 was conditioned with iTBS at 80% active motor threshold intensity. Twenty motor evoked potentials (MEPs) were recorded from right first interosseous muscle before and at 5, 15 and 30 min after iTBS. Between-group analysis of variance (ANOVA) testing healthy subjects versus patients with and without LIDs, on and off therapy showed a significant interaction between factors "Group" and "Time". After iTBS, MEP amplitudes in healthy subjects increased significantly at 5, 15 and 30 min (piTBS fails to increase MEP responses. This finding suggests lack of iTBS-induced LTP-like plasticity in M1 in PD regardless of patients' clinical features. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. High Working Memory Load Increases Intracortical Inhibition in Primary Motor Cortex and Diminishes the Motor Affordance Effect.

    Science.gov (United States)

    Freeman, Scott M; Itthipuripat, Sirawaj; Aron, Adam R

    2016-05-18

    Motor affordances occur when the visual properties of an object elicit behaviorally relevant motor representations. Typically, motor affordances only produce subtle effects on response time or on motor activity indexed by neuroimaging/neuroelectrophysiology, but sometimes they can trigger action itself. This is apparent in "utilization behavior," where individuals with frontal cortex damage inappropriately grasp affording objects. This raises the possibility that, in healthy-functioning individuals, frontal cortex helps ensure that irrelevant affordance provocations remain below the threshold for actual movement. In Experiment 1, we tested this "frontal control" hypothesis by "loading" the frontal cortex with an effortful working memory (WM) task (which ostensibly consumes frontal resources) and examined whether this increased EEG measures of motor affordances to irrelevant affording objects. Under low WM load, there were typical motor affordance signatures: an event-related desynchronization in the mu frequency and an increased P300 amplitude for affording (vs nonaffording) objects over centroparietal electrodes. Contrary to our prediction, however, these affordance measures were diminished under high WM load. In Experiment 2, we tested competing mechanisms responsible for the diminished affordance in Experiment 1. We used paired-pulse transcranial magnetic stimulation over primary motor cortex to measure long-interval cortical inhibition. We found greater long-interval cortical inhibition for high versus low load both before and after the affording object, suggesting that a tonic inhibition state in primary motor cortex could prevent the affordance from provoking the motor system. Overall, our results suggest that a high WM load "sets" the motor system into a suppressed state that mitigates motor affordances. Is an irrelevant motor affordance more likely to be triggered when you are under low or high cognitive load? We examined this using physiological measures

  5. Altered resting-state effective connectivity of fronto-parietal motor control systems on the primary motor network following stroke

    Science.gov (United States)

    Inman, Cory S.; James, G. Andrew; Hamann, Stephan; Rajendra, Justin K.; Pagnoni, Giuseppe; Butler, Andrew J.

    2011-01-01

    Previous brain imaging work suggests that stroke alters the effective connectivity (the influence neural regions exert upon each other) of motor execution networks. The present study examines the intrinsic effective connectivity of top-down motor control in stroke survivors (n=13) relative to healthy participants (n=12). Stroke survivors exhibited significant deficits in motor function, as assessed by the Fugl-Meyer Motor Assessment. We used structural equation modeling (SEM) of resting-state fMRI data to investigate the relationship between motor deficits and the intrinsic effective connectivity between brain regions involved in motor control and motor execution. An exploratory adaptation of SEM determined the optimal model of motor execution effective connectivity in healthy participants, and confirmatory SEM assessed stroke survivors’ fit to that model. We observed alterations in spontaneous resting-state effective connectivity from fronto-parietal guidance systems to the motor network in stroke survivors. More specifically, diminished connectivity was found in connections from the superior parietal cortex to primary motor cortex and supplementary motor cortex. Furthermore, the paths demonstrated large individual variance in stroke survivors but less variance in healthy participants. These findings suggest that characterizing the deficits in resting-state connectivity of top-down processes in stroke survivors may help optimize cognitive and physical rehabilitation therapies by individually targeting specific neural pathway. PMID:21839174

  6. Electrical and magnetic repetitive transcranial stimulation of the primary motor cortex in healthy subjects.

    Science.gov (United States)

    Gilio, Francesca; Iacovelli, Elisa; Frasca, Vittorio; Gabriele, Maria; Giacomelli, Elena; De Lena, Carlo; Cipriani, Anna Maria; Inghilleri, Maurizio

    2009-05-08

    Repetitive transcranial magnetic stimulation (rTMS) delivered in short trains at 5Hz frequency and suprathreshold intensity over the primary motor cortex (M1) in healthy subjects facilitates the motor-evoked potential (MEP) amplitude by increasing cortical excitability through mechanisms resembling short-term synaptic plasticity. In this study, to investigate whether rTES acts through similar mechanisms we compared the effects of rTMS and repetitive transcranial electrical stimulation (rTES) (10 stimuli-trains, 5Hz frequency, suprathreshold intensity) delivered over the M1 on the MEP amplitude. Four healthy subjects were studied in two separate sessions in a relaxed condition. rTMS and anodal rTES were delivered in trains to the left M1 over the motor area for evoking a MEP in the right first dorsal interosseous muscle. Changes in MEP size and latency during the course of the rTMS and rTES trains were compared. The possible effects of muscle activation on MEP amplitude were evaluated, and the possible effects of cutaneous trigeminal fibre activation on corticospinal excitability were excluded in a control experiment testing the MEP amplitude before and after supraorbital nerve repetitive electrical stimulation. Repeated measures analysis of variance (ANOVA) showed that rTES and rTMS trains elicited similar amplitude first MEPs and a similar magnitude MEP amplitude facilitation during the trains. rTES elicited a first MEP with a shorter latency than rTMS, without significant changes during the course of the train of stimuli. The MEP elicited by single-pulse TES delivered during muscle contraction had a smaller amplitude than the last MEP in the rTES trains. Repetitive supraorbital nerve stimulation left the conditioned MEP unchanged. Our results suggest that 5 Hz-rTES delivered in short trains increases cortical excitability and does so by acting on the excitatory interneurones probably through mechanisms similar to those underlying the rTMS-induced MEP facilitation.

  7. Region and task-specific activation of Arc in primary motor cortex of rats following motor skill learning.

    Science.gov (United States)

    Hosp, J A; Mann, S; Wegenast-Braun, B M; Calhoun, M E; Luft, A R

    2013-10-10

    Motor learning requires protein synthesis within the primary motor cortex (M1). Here, we show that the immediate early gene Arc/Arg3.1 is specifically induced in M1 by learning a motor skill. Arc mRNA was quantified using a fluorescent in situ hybridization assay in adult Long-Evans rats learning a skilled reaching task (SRT), in rats performing reaching-like forelimb movement without learning (ACT) and in rats that were trained in the operant but not the motor elements of the task (controls). Apart from M1, Arc expression was assessed within the rostral motor area (RMA), primary somatosensory cortex (S1), striatum (ST) and cerebellum. In SRT animals, Arc mRNA levels in M1 contralateral to the trained limb were 31% higher than ipsilateral (pmotor skill learning in rats. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Peripheral nerve injury induces glial activation in primary motor cortex

    Directory of Open Access Journals (Sweden)

    Julieta Troncoso

    2015-02-01

    Full Text Available Preliminary evidence suggests that peripheral facial nerve injuries are associated with sensorimotor cortex reorganization. We have characterized facial nerve lesion-induced structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with glial cell density using a rodent facial paralysis model. First, we used adult transgenic mice expressing green fluorescent protein in microglia and yellow fluorescent protein in pyramidal neurons which were subjected to either unilateral lesion of the facial nerve or sham surgery. Two-photon excitation microscopy was then used for evaluating both layer 5 pyramidal neurons and microglia in vibrissal primary motor cortex (vM1. It was found that facial nerve lesion induced long-lasting changes in dendritic morphology of vM1 layer 5 pyramidal neurons and in their surrounding microglia. Pyramidal cells’ dendritic arborization underwent overall shrinkage and transient spine pruning. Moreover, microglial cell density surrounding vM1 layer 5 pyramidal neurons was significantly increased with morphological bias towards the activated phenotype. Additionally, we induced facial nerve lesion in Wistar rats to evaluate the degree and extension of facial nerve lesion-induced reorganization processes in central nervous system using neuronal and glial markers. Immunoreactivity to NeuN (neuronal nuclei antigen, GAP-43 (growth-associated protein 43, GFAP (glial fibrillary acidic protein, and Iba 1 (Ionized calcium binding adaptor molecule 1 were evaluated 1, 3, 7, 14, 28 and 35 days after either unilateral facial nerve lesion or sham surgery. Patches of decreased NeuN immunoreactivity were found bilaterally in vM1 as well as in primary somatosensory cortex (CxS1. Significantly increased GAP-43 immunoreactivity was found bilaterally after the lesion in hippocampus, striatum, and sensorimotor cortex. One day after lesion GFAP immunoreactivity increased bilaterally in hippocampus, subcortical white

  9. Neurons in primary motor cortex engaged during action observation.

    Science.gov (United States)

    Dushanova, Juliana; Donoghue, John

    2010-01-01

    Neurons in higher cortical areas appear to become active during action observation, either by mirroring observed actions (termed mirror neurons) or by eliciting mental rehearsal of observed motor acts. We report the existence of neurons in the primary motor cortex (M1), an area that is generally considered to initiate and guide movement performance, responding to viewed actions. Multielectrode recordings in monkeys performing or observing a well-learned step-tracking task showed that approximately half of the M1 neurons that were active when monkeys performed the task were also active when they observed the action being performed by a human. These 'view' neurons were spatially intermingled with 'do' neurons, which are active only during movement performance. Simultaneously recorded 'view' neurons comprised two groups: approximately 38% retained the same preferred direction (PD) and timing during performance and viewing, and the remainder (62%) changed their PDs and time lag during viewing as compared with performance. Nevertheless, population activity during viewing was sufficient to predict the direction and trajectory of viewed movements as action unfolded, although less accurately than during performance. 'View' neurons became less active and contained poorer representations of action when only subcomponents of the task were being viewed. M1 'view' neurons thus appear to reflect aspects of a learned movement when observed in others, and form part of a broadly engaged set of cortical areas routinely responding to learned behaviors. These findings suggest that viewing a learned action elicits replay of aspects of M1 activity needed to perform the observed action, and could additionally reflect processing related to understanding, learning or mentally rehearsing action.

  10. 9 CFR 3.15 - Primary conveyances (motor vehicle, rail, air, and marine).

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.15 Section 3.15 Animals and Animal Products ANIMAL AND PLANT HEALTH... conveyances (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used to...

  11. 9 CFR 3.138 - Primary conveyances (motor vehicle, rail, air, and marine).

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.138 Section 3.138 Animals and Animal Products ANIMAL AND PLANT HEALTH... (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used in...

  12. 9 CFR 3.88 - Primary conveyances (motor vehicle, rail, air, and marine).

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.88 Section 3.88 Animals and Animal Products ANIMAL AND PLANT HEALTH... conveyances (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used to...

  13. 9 CFR 3.62 - Primary conveyances (motor vehicle, rail, air, and marine).

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.62 Section 3.62 Animals and Animal Products ANIMAL AND PLANT HEALTH... (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used in...

  14. 9 CFR 3.37 - Primary conveyances (motor vehicle, rail, air, and marine).

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.37 Section 3.37 Animals and Animal Products ANIMAL AND PLANT HEALTH... conveyances (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used in...

  15. Continuous theta-burst stimulation of the primary motor cortex in essential tremor

    DEFF Research Database (Denmark)

    Hellriegel, Helge; Schulz, Eva M; Siebner, Hartwig R

    2012-01-01

    We investigated whether essential tremor (ET) can be altered by suppressing the corticospinal excitability in the primary motor cortex (M1) with transcranial magnetic stimulation.......We investigated whether essential tremor (ET) can be altered by suppressing the corticospinal excitability in the primary motor cortex (M1) with transcranial magnetic stimulation....

  16. Left ventricular remodelling in chronic primary mitral regurgitation: implications for medical therapy.

    Science.gov (United States)

    McCutcheon, Keir; Manga, Pravin

    Surgical repair or replacement of the mitral valve is currently the only recommended therapy for severe primary mitral regurgitation. The chronic elevation of wall stress caused by the resulting volume overload leads to structural remodelling of the muscular, vascular and extracellular matrix components of the myocardium. These changes are initially compensatory but in the long term have detrimental effects, which ultimately result in heart failure. Understanding the changes that occur in the myocardium due to volume overload at the molecular and cellular level may lead to medical interventions, which potentially could delay or prevent the adverse left ventricular remodelling associated with primary mitral regurgitation. The pathophysiological changes involved in left ventricular remodelling in response to chronic primary mitral regurgitation and the evidence for potential medical therapy, in particular beta-adrenergic blockers, are the focus of this review.

  17. 'Virtual lesion' in pain research; a study on magnetic stimulation of the primary motor cortex.

    Science.gov (United States)

    Granovsky, Y; Liem, K S; Weissman-Fogel, I; Yarnitsky, D; Chistyakov, A; Sinai, A

    2016-02-01

    'Virtual lesion' ('VL') is a transient disruption of cortical activity during task performance. It can be induced by single pulses or short trains of transcranial magnetic stimulation (TMS) directed to functionally relevant brain areas. We applied 'VL' methodology of a short train of TMS given on top of experimental tonic pain, expecting to see changes in pain scores. Thirty young healthy subjects (15 women) were assessed with active ('VL') or 'sham' TMS in different sessions, randomly. In each session, 30 sec-long contact heat (47.5 °C, right forearm) was applied stand-alone ('baseline') and with 5 sec-long 10 Hz-TMS over left primary motor cortex (M1) starting at 17 sec of the heat stimulation. Pain scores decreased after 'VL' or 'sham' (p < 0.001). Independently of the type of TMS, pain reduction was stronger in women (p = 0.012). A triple Sex x Stimulation type ('VL' or 'sham') x Condition ('baseline' heat pain vs. heat pain with TMS) interaction (p = 0.027) indicated stronger pain reduction by 'VL' in women (p = 0.008) and not in men (p = 0.78) as compared to 'baseline'. Pain catastrophizing and perceived stress ratings affected the model (p = 0.010 and p < 0.001, respectively), but without sex differences. This study indicates that interactions between cortical excitability of the motor cortex and nociceptive processing may be gender-related. © 2015 European Pain Federation - EFIC®

  18. Motor Coordination and Body Mass Index in Primary School Children

    OpenAIRE

    Ingrid Ruzbarska; Martin Zvonar; Piotr Oleśniewicz; Julita Markiewicz-Patkowska; Krzysztof Widawski; Daniel Puciato

    2016-01-01

    Obese children will probably become obese adults, consequently exposed to an increased risk of comorbidity and premature mortality. Body weight may be indirectly determined by continuous development of coordination and motor skills. The level of motor skills and abilities is an important factor that promotes physical activity since early childhood. The aim of the study is to thoroughly understand the internal relations between motor coordination abilities and the somatic development of prepub...

  19. Task-dependent engagements of the primary visual cortex during kinesthetic and visual motor imagery.

    Science.gov (United States)

    Mizuguchi, Nobuaki; Nakamura, Maiko; Kanosue, Kazuyuki

    2017-01-01

    Motor imagery can be divided into kinesthetic and visual aspects. In the present study, we investigated excitability in the corticospinal tract and primary visual cortex (V1) during kinesthetic and visual motor imagery. To accomplish this, we measured motor evoked potentials (MEPs) and probability of phosphene occurrence during the two types of motor imageries of finger tapping. The MEPs and phosphenes were induced by transcranial magnetic stimulation to the primary motor cortex and V1, respectively. The amplitudes of MEPs and probability of phosphene occurrence during motor imagery were normalized based on the values obtained at rest. Corticospinal excitability increased during both kinesthetic and visual motor imagery, while excitability in V1 was increased only during visual motor imagery. These results imply that modulation of cortical excitability during kinesthetic and visual motor imagery is task dependent. The present finding aids in the understanding of the neural mechanisms underlying motor imagery and provides useful information for the use of motor imagery in rehabilitation or motor imagery training. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. The Effective Connectivity Between the Two Primary Motor Areas in the Brain during Bilateral Tapping of Hand Fingers

    Science.gov (United States)

    Yusoff, A. N.; Hamid, K. A.

    Dynamic causal modeling (DCM) was implemented on datasets obtained from an externally-triggered finger tapping functional MRI experiment performed by 5 male and female subjects. The objective was to model the effective connectivity between two significantly activated primary motor regions (M1). The left and right hemisphere M1s are found to be effectively and bidirectionally connected to each other. Both connections are modulated by the stimulus-free contextual input. These connectivities are however not gated (influenced) by any of the two M1s, ruling out the possibility of the non-linear behavior of connections between both M1s. A dynamic causal model was finally suggested.

  1. Single motor unit firing behaviour in the right trapezius muscle during rapid movement of right or left index finger.

    Directory of Open Access Journals (Sweden)

    Karen eSøgaard

    2014-11-01

    Full Text Available Computer work is associated with low level sustained activity in the trapezius muscle that may cause myalgia. The activity may be attention related or part of a general multijoint motor program providing stabilization of the shoulder girdle for precise finger manipulation. This study examines single motor unit (MU firing pattern in the right trapezius muscle during fast movements of ipsi or contralateral index finger. Modulated firing rate would support a general multi joint motor program, while a generally increased and continuous firing rate would support attention related activation. 12 healthy female subjects were seated at a computer work place with elbows and forearms supported. Ten double clicks (DC were performed with right and left index finger on a computer mouse instrumented with a trigger.Surface EMG was recorded from right and left trapezius muscle. Intramuscular EMG was recorded with a quadripolar wire electrode in the right trapezius.Surface EMG was analysed as %MVE. The intramuscular EMG was decomposed into individual MU action potential trains. Instantaneous firing rate (IFR was calculated from inter-spike interval with ISI shorter than 20 ms defined as doublets. IFR was averaged across 10 DC to show IFR modulation.Surface EMG in both right and left trapezius was 1.8-2.5%MVE. During right hand DC a total of 32 MUs were identified. Four subjects showed no activity. Four showed MU activity with weak or no variations related to the timing of DC. Four subjects showed large modulation in IFR with temporal relation to DC. During left hand DC 15 MUs were identified in 4 subjects, for two of the subjects with IFR modulations related to DC. Doublets was found as an integrated part of MU activation in the trapezius muscle and for one subject temporarily related to DC. In conclusion, DC with ipsi- and contralateral fast movements of the index finger was found to evoke biomechanically as well as attention related activity pattern in the

  2. Motor imagery beyond the motor repertoire: Activity in the primary visual cortex during kinesthetic motor imagery of difficult whole body movements.

    Science.gov (United States)

    Mizuguchi, N; Nakata, H; Kanosue, K

    2016-02-19

    To elucidate the neural substrate associated with capabilities for kinesthetic motor imagery of difficult whole-body movements, we measured brain activity during a trial involving both kinesthetic motor imagery and action observation as well as during a trial with action observation alone. Brain activity was assessed with functional magnetic resonance imaging (fMRI). Nineteen participants imagined three types of whole-body movements with the horizontal bar: the giant swing, kip, and chin-up during action observation. No participant had previously tried to perform the giant swing. The vividness of kinesthetic motor imagery as assessed by questionnaire was highest for the chin-up, less for the kip and lowest for the giant swing. Activity in the primary visual cortex (V1) during kinesthetic motor imagery with action observation minus that during action observation alone was significantly greater in the giant swing condition than in the chin-up condition within participants. Across participants, V1 activity of kinesthetic motor imagery of the kip during action observation minus that during action observation alone was negatively correlated with vividness of the kip imagery. These results suggest that activity in V1 is dependent upon the capability of kinesthetic motor imagery for difficult whole-body movements. Since V1 activity is likely related to the creation of a visual image, we speculate that visual motor imagery is recruited unintentionally for the less vivid kinesthetic motor imagery of difficult whole-body movements. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Enhancement of motor learning by focal intermittent theta burst stimulation (iTBS) of either the primary motor (M1) or somatosensory area (S1) in healthy human subjects.

    Science.gov (United States)

    Platz, Thomas; Adler-Wiebe, Marija; Roschka, Sybille; Lotze, Martin

    2018-01-01

    Motor rehabilitation after brain damage relies on motor re-learning as induced by specific training. Non-invasive brain stimulation (NIBS) can alter cortical excitability and thereby has a potential to enhance subsequent training-induced learning. Knowledge about any priming effects of NIBS on motor learning in healthy subjects can help to design targeted therapeutic applications in brain-damaged subjects. To examine whether complex motor learning in healthy subjects can be enhanced by intermittent theta burst stimulation (iTBS) to primary motor or sensory cortical areas. Eighteen young healthy subjects trained eight different arm motor tasks (arm ability training, AAT) once a day for 5 days using their left non-dominant arm. Except for day 1 (baseline), training was performed after applying an excitatory form of repetitive transcranial magnetic stimulation (iTBS) to either (I) right M1 or (II) S1, or (III) sham stimulation to the right M1. Subjects were randomly assigned to conditions I, II, or III. A principal component analysis of the motor behaviour data suggested eight independent motor abilities corresponding to the 8 trained tasks. AAT induced substantial motor learning across abilities with generalisation to a non-trained test of finger dexterity (Nine-Hole-Peg-Test, NHPT). Participants receiving iTBS (to either M1 or S1) showed better performance with the AAT tasks over the period of training compared to sham stimulation as well as a bigger improvement with the generalisation task (NHPT) for the trained left hand after training completion. Priming with an excitatory repetitive transcranial magnetic stimulation as iTBS of either M1 or S1 can enhance motor learning across different sensorimotor abilities.

  4. Cathodal transcranial direct current stimulation (tDCS) applied to the left premotor cortex (PMC) stabilizes a newly learned motor sequence.

    Science.gov (United States)

    Focke, Jan; Kemmet, Sylvia; Krause, Vanessa; Keitel, Ariane; Pollok, Bettina

    2017-01-01

    While the primary motor cortex (M1) is involved in the acquisition the premotor cortex (PMC) has been related to over-night consolidation of a newly learned motor skill. The present study aims at investigating the possible contribution of the left PMC for the stabilization of a motor sequence immediately after acquisition as determined by susceptibility to interference. Thirty six healthy volunteers received anodal, cathodal and sham transcranial direct current stimulation (tDCS) to the left PMC either immediately prior to or during training on a serial reaction time task (SRTT) with the right hand. TDCS was applied for 10min, respectively. Reaction times were measured prior to training (t1), at the end of training (t2), and after presentation of an interfering random pattern (t3). Beyond interference from learning, the random pattern served as control condition in order to estimate general effects of tDCS on reaction times. TDCS applied during SRTT training did not result in any significant effects neither on acquisition nor on susceptibility to interference. In contrast to this, tDCS prior to SRTT training yielded an unspecific facilitation of reaction times at t2 independent of tDCS polarity. At t3, reduced susceptibility to interference was found following cathodal stimulation. The results suggest the involvement of the PMC in early consolidation and reveal a piece of evidence for the hypothesis that behavioral tDCS effects vary with the activation state of the stimulated area. Copyright © 2016. Published by Elsevier B.V.

  5. How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain?

    Science.gov (United States)

    Lang, Nicolas; Siebner, Hartwig R; Ward, Nick S; Lee, Lucy; Nitsche, Michael A; Paulus, Walter; Rothwell, John C; Lemon, Roger N; Frackowiak, Richard S

    2005-07-01

    Transcranial direct current stimulation (tDCS) of the primary motor hand area (M1) can produce lasting polarity-specific effects on corticospinal excitability and motor learning in humans. In 16 healthy volunteers, O positron emission tomography (PET) of regional cerebral blood flow (rCBF) at rest and during finger movements was used to map lasting changes in regional synaptic activity following 10 min of tDCS (+/-1 mA). Bipolar tDCS was given through electrodes placed over the left M1 and right frontopolar cortex. Eight subjects received anodal or cathodal tDCS of the left M1, respectively. When compared to sham tDCS, anodal and cathodal tDCS induced widespread increases and decreases in rCBF in cortical and subcortical areas. These changes in rCBF were of the same magnitude as task-related rCBF changes during finger movements and remained stable throughout the 50-min period of PET scanning. Relative increases in rCBF after real tDCS compared to sham tDCS were found in the left M1, right frontal pole, right primary sensorimotor cortex and posterior brain regions irrespective of polarity. With the exception of some posterior and ventral areas, anodal tDCS increased rCBF in many cortical and subcortical regions compared to cathodal tDCS. Only the left dorsal premotor cortex demonstrated an increase in movement related activity after cathodal tDCS, however, modest compared with the relatively strong movement-independent effects of tDCS. Otherwise, movement related activity was unaffected by tDCS. Our results indicate that tDCS is an effective means of provoking sustained and widespread changes in regional neuronal activity. The extensive spatial and temporal effects of tDCS need to be taken into account when tDCS is used to modify brain function.

  6. iPad applications that required a range of motor skills promoted motor coordination in children commencing primary school.

    Science.gov (United States)

    Axford, Caitlin; Joosten, Annette V; Harris, Courtenay

    2018-04-01

    Children are reported to spend less time engaged in outdoor activity and object-related play than in the past. The increased use and mobility of technology, and the ease of use of tablet devices are some of the factors that have contributed to these changes. Concern has been raised that the use of such screen and surface devices in very young children is reducing their fine motor skill development. We examined the effectiveness of iPad applications that required specific motor skills designed to improve fine motor skills. We conducted a two-group non-randomised controlled trial with two pre-primary classrooms (53 children; 5-6 years) in an Australian co-educational school, using a pre- and post-test design. The effectiveness of 30 minutes daily use of specific iPad applications for 9 weeks was compared with a control class. Children completed the Beery Developmental Test of Visual Motor Integration (VMI) and observation checklist, the Shore Handwriting Screen, and self-care items from the Hawaii Early Learning Profile. On post testing, the experimental group made a statistically and clinically significant improvement on the VMI motor coordination standard scores with a moderate clinical effect size (P motor skill-specific applications as an intervention in occupational therapy practice and as part of at home or school play. © 2018 Occupational Therapy Australia.

  7. Handedness of a motor program in C. elegans is independent of left-right body asymmetry.

    Directory of Open Access Journals (Sweden)

    Joanna C Downes

    Full Text Available Complex animals display bilaterally asymmetric motor behavior, or "motor handedness," often revealed by preferential use of limbs on one side. For example, use of right limbs is dominant in a strong majority of humans. While the mechanisms that establish bilateral asymmetry in motor function are unknown in humans, they appear to be distinct from those for other handedness asymmetries, including bilateral visceral organ asymmetry, brain laterality, and ocular dominance. We report here that a simple, genetically homogeneous animal comprised of only ~1000 somatic cells, the nematode C. elegans, also shows a distinct motor handedness preference: on a population basis, males show a pronounced right-hand turning bias during mating. The handedness bias persists through much of adult lifespan, suggesting that, as in more complex animals, it is an intrinsic trait of each individual, which can differ from the population mean. Our observations imply that the laterality of motor handedness preference in C. elegans is driven by epigenetic factors rather than by genetic variation. The preference for right-hand turns is also seen in animals with mirror-reversed anatomical handedness and is not attributable to stochastic asymmetric loss of male sensory rays that occurs by programmed cell death. As with C. elegans, we also observed a substantial handedness bias, though not necessarily the same preference in direction, in several gonochoristic Caenorhabditis species. These findings indicate that the independence of bilaterally asymmetric motor dominance from overall anatomical asymmetry, and a population-level tendency away from ambidexterity, occur even in simple invertebrates, suggesting that these may be common features of bilaterian metazoans.

  8. Primary Neuroendocrine Tumor of the Left Hepatic Duct: A Case Report with Review of the Literature

    Directory of Open Access Journals (Sweden)

    Ajay H. Bhandarwar

    2012-01-01

    Full Text Available Primary Biliary Tract Neuroendocrine tumors (NET are extremely rare tumors with only 77 cases been reported in the literature till now. We describe a case of a left hepatic duct NET and review the literature for this rare malignancy. To the best of our knowledge the present case is the first reported case of a left hepatic duct NET in the literature. In spite of availability of advanced diagnostic tools like Computerized Tomography (CT Scan and Endoscopic Retrograde Cholangio Pancreaticography (ERCP a definitive diagnosis of these tumors is possible only after an accurate histopathologic diagnosis of operative specimens with immunohistochemistry and electron microscopy. Though surgical excision remains the gold standard treatment for such tumors, patients with unresectable tumors have good survival with newer biologic agents like Octreotride.

  9. Bringing transcranial mapping into shape: Sulcus-aligned mapping captures motor somatotopy in human primary motor hand area

    DEFF Research Database (Denmark)

    Raffin, Estelle; Pellegrino, Giovanni; Di Lazzaro, Vincenzo

    2015-01-01

    Motor representations express some degree of somatotopy in human primary motor hand area (M1HAND), but within-M1HAND corticomotor somatotopy has been difficult to study with transcranial magnetic stimulation (TMS). Here we introduce a “linear” TMS mapping approach based on the individual shape...... of the central sulcus to obtain mediolateral corticomotor excitability profiles of the abductor digiti minimi (ADM) and first dorsal interosseus (FDI) muscles. In thirteen young volunteers, we used stereotactic neuronavigation to stimulate the right M1HAND with a small eight-shaped coil at 120% of FDI resting...

  10. Direction of movement is encoded in the human primary motor cortex.

    Directory of Open Access Journals (Sweden)

    Carolien M Toxopeus

    Full Text Available The present study investigated how direction of hand movement, which is a well-described parameter in cerebral organization of motor control, is incorporated in the somatotopic representation of the manual effector system in the human primary motor cortex (M1. Using functional magnetic resonance imaging (fMRI and a manual step-tracking task we found that activation patterns related to movement in different directions were spatially disjoint within the representation area of the hand on M1. Foci of activation related to specific movement directions were segregated within the M1 hand area; activation related to direction 0° (right was located most laterally/superficially, whereas directions 180° (left and 270° (down elicited activation more medially within the hand area. Activation related to direction 90° was located between the other directions. Moreover, by investigating differences between activations related to movement along the horizontal (0°+180° and vertical (90°+270° axis, we found that activation related to the horizontal axis was located more anterolaterally/dorsally in M1 than for the vertical axis, supporting that activations related to individual movement directions are direction- and not muscle related. Our results of spatially segregated direction-related activations in M1 are in accordance with findings of recent fMRI studies on neural encoding of direction in human M1. Our results thus provide further evidence for a direct link between direction as an organizational principle in sensorimotor transformation and movement execution coded by effector representations in M1.

  11. Area 5 influences excitability within the primary motor cortex in humans.

    Directory of Open Access Journals (Sweden)

    Azra Premji

    Full Text Available In non-human primates, Brodmann's area 5 (BA 5 has direct connectivity with primary motor cortex (M1, is largely dedicated to the representation of the hand and may have evolved with the ability to perform skilled hand movement. Less is known about human BA 5 and its interaction with M1 neural circuits related to hand control. The present study examines the influence of BA 5 on excitatory and inhibitory neural circuitry within M1 bilaterally before and after continuous (cTBS, intermittent (iTBS, and sham theta-burst stimulation (sham TBS over left hemisphere BA 5. Using single and paired-pulse TMS, measurements of motor evoked potentials (MEPs, short interval intracortical inhibition (SICI, and intracortical facilitation (ICF were quantified for the representation of the first dorsal interosseous muscle. Results indicate that cTBS over BA 5 influences M1 excitability such that MEP amplitudes are increased bilaterally for up to one hour. ITBS over BA 5 results in an increase in MEP amplitude contralateral to stimulation with a delayed onset that persists up to one hour. SICI and ICF were unaltered following TBS over BA 5. Similarly, F-wave amplitude and latency were unaltered following cTBS over BA 5. The data suggest that BA 5 alters M1 output directed to the hand by influencing corticospinal neurons and not interneurons that mediate SICI or ICF circuitry. Targeting BA 5 via cTBS and iTBS is a novel mechanism to powerfully modulate activity within M1 and may provide an avenue for investigating hand control in healthy populations and modifying impaired hand function in clinical populations.

  12. The Usefulness of Intraoperative Colonic Irrigation and Primary Anastomosis in Patients Requiring a Left Colon Resection.

    Science.gov (United States)

    Hong, Youngki; Nam, Soomin; Kang, Jung Gu

    2017-06-01

    The aim of this study is to assess the short-term outcome of intraoperative colonic irrigation and primary anastomosis and to suggest the usefulness of the procedure when a preoperative mechanical bowel preparation is inappropriate. This retrospective study included 38 consecutive patients (19 male patients) who underwent intraoperative colonic irrigation and primary anastomosis for left colon disease between January 2010 and December 2016. The medical records of the patients were reviewed to evaluate the patients' characteristics, operative data, and postoperative short-term outcomes. Twenty-nine patients had colorectal cancer, 7 patients had perforated diverticulitis, and the remaining 2 patients included 1 with sigmoid volvulus and 1 with a perforated colon due to focal colonic ischemia. A diverting loop ileostomy was created in 4 patients who underwent a low anterior resection. Complications occurred in 15 patients (39.5%), and the majority was superficial surgical site infections (18.4%). Anastomotic leakage occurred in one patient (2.6%) who underwent an anterior resection due sigmoid colon cancer with obstruction. No significant difference in overall postoperative complications and superficial surgical site infections between patients with obstruction and those with peritonitis were noted. No mortality occurred during the first 30 postoperative days. The median hospital stay after surgery was 15 days (range, 8-39 days). Intraoperative colonic irrigation and primary anastomosis seem safe and feasible in selected patients. This procedure may reduce the burden of colostomy in patients requiring a left colon resection with an inappropriate preoperative mechanical bowel preparation.

  13. Motor Training Promotes Both Synaptic and Intrinsic Plasticity of Layer II/III Pyramidal Neurons in the Primary Motor Cortex.

    Science.gov (United States)

    Kida, Hiroyuki; Tsuda, Yasumasa; Ito, Nana; Yamamoto, Yui; Owada, Yuji; Kamiya, Yoshinori; Mitsushima, Dai

    2016-08-01

    Motor skill training induces structural plasticity at dendritic spines in the primary motor cortex (M1). To further analyze both synaptic and intrinsic plasticity in the layer II/III area of M1, we subjected rats to a rotor rod test and then prepared acute brain slices. Motor skill consistently improved within 2 days of training. Voltage clamp analysis showed significantly higher α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-d-aspartate (AMPA/NMDA) ratios and miniature EPSC amplitudes in 1-day trained rats compared with untrained rats, suggesting increased postsynaptic AMPA receptors in the early phase of motor learning. Compared with untrained controls, 2-days trained rats showed significantly higher miniature EPSC amplitude and frequency. Paired-pulse analysis further demonstrated lower rates in 2-days trained rats, suggesting increased presynaptic glutamate release during the late phase of learning. One-day trained rats showed decreased miniature IPSC frequency and increased paired-pulse analysis of evoked IPSC, suggesting a transient decrease in presynaptic γ-aminobutyric acid (GABA) release. Moreover, current clamp analysis revealed lower resting membrane potential, higher spike threshold, and deeper afterhyperpolarization in 1-day trained rats-while 2-days trained rats showed higher membrane potential, suggesting dynamic changes in intrinsic properties. Our present results indicate dynamic changes in glutamatergic, GABAergic, and intrinsic plasticity in M1 layer II/III neurons after the motor training. © The Author 2016. Published by Oxford University Press.

  14. A linear motor and compact cylinder-piston driver for left ventricular bypass.

    Science.gov (United States)

    Qian, K X

    1990-01-01

    A simple, portable, reliable and noise-free pneumatic driver has been developed. It consists of a linear motor attached to a cylinder piston, in one unit. The motor coil is directly wound on the cylinder, and the permanent magnet is fixed to the piston. As a continuous voltage square wave is applied to the coil, the cylinder reciprocates on the piston periodically, producing air pressure and vacuum alternately. In conjunction with a locally made diaphragm pump, the driver was tested in vitro and in vivo. Results demonstrated that the device could drive the diaphragm pump and so support the circulation of an experimental animal. The driver weighs 12 kg. For 200 mmHg air pressure and -80 mmHg vacuum the power consumed is 30 W. Its noise is about 30 dB, less than that of an artificial valve and pump.

  15. Repeatedly pairing vagus nerve stimulation with a movement reorganizes primary motor cortex.

    Science.gov (United States)

    Porter, Benjamin A; Khodaparast, Navid; Fayyaz, Tabbassum; Cheung, Ryan J; Ahmed, Syed S; Vrana, William A; Rennaker, Robert L; Kilgard, Michael P

    2012-10-01

    Although sensory and motor systems support different functions, both systems exhibit experience-dependent cortical plasticity under similar conditions. If mechanisms regulating cortical plasticity are common to sensory and motor cortices, then methods generating plasticity in sensory cortex should be effective in motor cortex. Repeatedly pairing a tone with a brief period of vagus nerve stimulation (VNS) increases the proportion of primary auditory cortex responding to the paired tone (Engineer ND, Riley JR, Seale JD, Vrana WA, Shetake J, Sudanagunta SP, Borland MS, Kilgard MP. 2011. Reversing pathological neural activity using targeted plasticity. Nature. 470:101-104). In this study, we predicted that repeatedly pairing VNS with a specific movement would result in an increased representation of that movement in primary motor cortex. To test this hypothesis, we paired VNS with movements of the distal or proximal forelimb in 2 groups of rats. After 5 days of VNS movement pairing, intracranial microstimulation was used to quantify the organization of primary motor cortex. Larger cortical areas were associated with movements paired with VNS. Rats receiving identical motor training without VNS pairing did not exhibit motor cortex map plasticity. These results suggest that pairing VNS with specific events may act as a general method for increasing cortical representations of those events. VNS movement pairing could provide a new approach for treating disorders associated with abnormal movement representations.

  16. 9 CFR 3.114 - Primary conveyances (motor vehicle, rail, air and marine).

    Science.gov (United States)

    2010-01-01

    ..., rail, air and marine). 3.114 Section 3.114 Animals and Animal Products ANIMAL AND PLANT HEALTH... conveyances (motor vehicle, rail, air and marine). (a) The animal cargo space of primary conveyances used in.... (e) The interiors of animal cargo spaces in primary conveyances must be kept clean. (f) Live marine...

  17. Hypoactivation of the primary sensorimotor cortex in de novo Parkinson's disease. A motor fMRI study under controlled conditions

    International Nuclear Information System (INIS)

    Tessa, Carlo; Vignali, Claudio; Lucetti, Claudio; Diciotti, Stefano; Paoli, Lorenzo; Ginestroni, Andrea; Mascalchi, Mario; Cecchi, Paolo; Baldacci, Filippo; Giannelli, Marco; Bonuccelli, Ubaldo

    2012-01-01

    Nuclear medicine studies in Parkinson's disease (PD) indicate that nigrostriatal damage causes a widespread cortical hypoactivity assumed to be due to reduced excitatory thalamic outflow. However, so far, functional MRI (fMRI) studies have provided controversial data about this ''functional deafferentation'' phenomenon. To further clarify this issue, we assessed, with fMRI, de novo drug-naive PD patients using a relatively complex motor task under strictly controlled conditions. Nineteen de novo PD patients with right-predominant or bilateral symptoms and 13 age-matched healthy volunteers performed continuous writing of ''8'' figures with the right-dominant hand using a MR-compatible device that enables identification of incorrectly performed tasks and measures the size and the frequency of the ''8''s. The data were analyzed with FSL software and correlated with the clinical severity rated according to the Hoehn and Yahr (HY) staging system. Fifteen (89%) of 19 PD patients and 12 (92%) of 13 controls correctly executed the task. PD patients showed significant hypoactivation of the left primary sensorimotor cortex (SM1) and cerebellum and no hyperactive areas as compared to controls. However, activation in SM1 and supplementary motor area bilaterally, in left supramarginal, parietal inferior, parietal superior and frontal superior gyri as well as in right parietal superior and angular gyri paralleled increasing disease severity as assessed with the HY stage. In line with the ''deafferentation hypothesis'', fMRI demonstrates hypoactivation of the SM1 in the early clinical stage of PD. (orig.)

  18. Dual-hemisphere transcranial direct current stimulation over primary motor cortex enhances consolidation of a ballistic thumb movement.

    Science.gov (United States)

    Koyama, Soichiro; Tanaka, Satoshi; Tanabe, Shigeo; Sadato, Norihiro

    2015-02-19

    Transcranial direct current stimulation (tDCS) is a noninvasive technique that modulates motor performance and learning. Previous studies have shown that tDCS over the primary motor cortex (M1) can facilitate consolidation of various motor skills. However, the effect of tDCS on consolidation of newly learned ballistic movements remains unknown. The present study tested the hypothesis that tDCS over M1 enhances consolidation of ballistic thumb movements in healthy adults. Twenty-eight healthy subjects participated in an experiment with a single-blind, sham-controlled, between-group design. Fourteen subjects practiced a ballistic movement with their left thumb during dual-hemisphere tDCS. Subjects received 1mA anodal tDCS over the contralateral M1 and 1mA cathodal tDCS over the ipsilateral M1 for 25min during the training session. The remaining 14 subjects underwent identical training sessions, except that dual-hemisphere tDCS was applied for only the first 15s (sham group). All subjects performed the task again at 1h and 24h later. Primary measurements examined improvement in peak acceleration of the ballistic thumb movement at 1h and 24h after stimulation. Improved peak acceleration was significantly greater in the tDCS group (144.2±15.1%) than in the sham group (98.7±9.1%) (Pballistic thumb movement in healthy adults. Dual-hemisphere tDCS over M1 may be useful to improve elemental motor behaviors, such as ballistic movements, in patients with subcortical strokes. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  19. Condition monitoring of primary coolant pump-motor units of Indian PHWR

    International Nuclear Information System (INIS)

    Rshikesan, P.B.; Sharma, S.S.; Mhetre, S.G.

    1994-01-01

    As the primary coolant pump motor units are located in shut down accessible area, their start up, satisfactory operation and shut down are monitored from control room. As unavailability of one pump in standardised 220 MWe station reduces the station power to about 110 MWe, satisfactory operation of the pump is also important from economic considerations. All the critical parameters of pump shaft, mechanical seal, bearing system, motor winding and shaft displacement (vibrations) are monitored/recorded to ensure satisfactory operation of critical, capital intensive pump-motor units. (author). 2 tabs., 1 fig

  20. The Relationship between Social and Motor Cognition in Primary School Age-Children

    Science.gov (United States)

    Kenny, Lorcan; Hill, Elisabeth; Hamilton, Antonia F. de C.

    2016-01-01

    There is increased interest in the relationship between motor skills and social skills in child development, with evidence that the mechanisms underlying these behaviors may be linked. We took a cognitive approach to this problem, and examined the relationship between four specific cognitive domains: theory of mind, motor skill, action understanding, and imitation. Neuroimaging and adult research suggest that action understanding and imitation are closely linked, but are somewhat independent of theory of mind and low-level motor control. Here, we test if a similar pattern is shown in child development. A sample of 101 primary school aged children with a wide ability range completed tests of IQ (Raven’s matrices), theory of mind, motor skill, action understanding, and imitation. Parents reported on their children’s social, motor and attention performance as well as developmental concerns. The results showed that action understanding and imitation correlate, with the latter having a weak link to motor control. Theory of mind was independent of the other tasks. These results imply that independent cognitive processes for social interaction (theory of mind) and for motor control can be identified in primary school age children, and challenge approaches that link all these domains together. PMID:26941685

  1. [An autopsied case of dominantly affecting upper motor neuron with atrophy of the frontal and temporal lobes--with special reference to primary lateral sclerosis].

    Science.gov (United States)

    Konagaya, M; Sakai, M; Iida, M; Hashizume, Y

    1995-04-01

    In this paper, the autopsy findings of a 78-year-old man mimicking primary lateral sclerosis (PLS) are reported. His clinical symptoms were slowly progressive spasticity, pseudobulbar palsy and character change. He died of sepsis 32 months after protracting the disease. The autopsy revealed severe atrophy of the frontal and temporal lobes. The histological findings were severe neuronal loss with gliosis in the precentral gyrus and left temporal lobe tip, loss of Betz cell, prominent demyelination throughout of the corticospinal tract, axonal swelling in the cerebral peduncule, severe degeneration of the amygdala, mild degeneration of the Ammon horn, normal substantia nigra, a few neuronal cells with central chromatolysis in the facial nerve nucleus and very mild neuronal cell loss in the spinal anterior horn. The anterior horn cell only occasionally demonstrated Bunina body by H & E and cystatin-C stainings, as well as, skein-like inclusion by ubiquitin staining. Thus, this is a case of uncommon amyotrophic lateral sclerosis (ALS) dominantly affecting the upper motor neuron including the motor cortex and temporal limbic system. In analysis of nine cases of putative primary lateral sclerosis in the literature, six cases showed loss of Betz cell in the precentral gyrus, and four cases very mild involvement of the lower motor neuron such as central chromatolysis and eosinophilic inclusion body. Degeneration of the limbic system was observed in two cases. We indicated a possible subgroup with concomitant involvement in the motor cortex and temporal lobe in motor neuron disease dominantly affecting the upper motor neuron.

  2. Non-primary motor areas in the human frontal lobe are connected directly to hand muscles.

    Science.gov (United States)

    Teitti, S; Määttä, S; Säisänen, L; Könönen, M; Vanninen, R; Hannula, H; Mervaala, E; Karhu, J

    2008-04-15

    Structural studies in primates have shown that, in addition to the primary motor cortex (M1), premotor areas are a source of corticospinal tracts. The function of these putative corticospinal neuronal tracts in humans is still unclear. We found frontal non-primary motor areas (NPMAs), which react to targeted non-invasive magnetic pulses and activate peripheral muscles as fast as or even faster than those in M1. Hand muscle movements were observed in all our subjects about 20 ms after transcranial stimulation of the superior frontal gyrus (Brodmann areas 6 and 8). Stimulation of NPMA could activate both proximal and distal upper limb muscles with the same delay as a stimulation of the M1, indicating converging motor representations with direct functional connections to the hand. We suggest that these non-primary cortical motor representations provide additional capacity for the fast execution of movements. Such a capacity may play a role in motor learning and in recovery from motor deficits.

  3. Long lasting structural changes in primary motor cortex after motor skill learning: a behavioural and stereological study

    Directory of Open Access Journals (Sweden)

    PAOLA MORALES

    2008-12-01

    Full Text Available Many motor skills, once acquired, are stored over a long time period, probably sustained by permanent neuronal changes. Thus, in this paper we have investigated with quantitative stereology the generation and persistence of neuronal density changes in primary motor cortex (MI following motor skill learning (skilled reaching task. Rats were trained a lateralised reaching task during an "early" (22-31 days oíd or "late" (362-371 days oíd postnatal period. The trained and corresponding control rats were sacrificed at day 372, immediately after the behavioural testing. The "early" trained group preserved the learned skilled reaching task when tested at day 372, without requiring any additional training. The "late" trained group showed a similar capacity to that of the "early" trained group for learning the skilled reaching task. All trained animáis ("early" and "late" trained groups showed a significant Ínter hemispheric decrease of neuronal density in the corresponding motor forelimb representation área of MI (cortical layers II-III

  4. Quantitation of right and left ventricular volume with MR imaging in patients with primary pulmonary hypertension

    International Nuclear Information System (INIS)

    Boxt, L.M.; Katz, J.; Kolb, T.; Czegledy, F.P.; Barst, R.J.

    1990-01-01

    This paper tests the utility of MR imaging in quantitating changes in ventricular volume and function in patients with primary pulmonary hypertension (PPH). Right ventricular (RV) and left ventricular (LV) end-diastolic (ED) and end-systolic (ES) volumes were determined in six patients with PPH and in eight controls. Short-axis images were obtained from the cardiac apex to the base at ED and ES, and the ventricular cavities were planimetered. Volumes were computed by summing the areas of the cavities times the thickness of the sections (12-14 mm). The intersection gap (1-3 mm) was averaged between adjacent sections. Results were indexed to the subject's body surface area. This technique was verified by comparison of results obtained by this method with the water displacement volumes of ventricular casts of eight excised bovine hearts and six water-filled balloons. Linear regression and the unpaired Students t test were used to test significance

  5. Physical fitness of primary school children in the reflection of different levels of gross motor coordination

    Directory of Open Access Journals (Sweden)

    Ingrid Ružbarská

    2016-12-01

    Full Text Available Background: Lower level of motor competences may result in unsuccessful engaging of children in physical activities as early as pre-school age and also prepubescent ages. This may subsequently lead to a spiral of forming negative attitudes towards an active lifestyle and may be accompanied by a negative trend in weight status and physical fitness outcomes. Objective: The aim of the study was to identify and analyze differences in physical fitness and somatic parameters of primary school-aged children according to level of their gross motor coordination. Methods:  A sample of 436 children aged 7 to 10 years, of which were 222 girls and 214 boys, performed physical fitness tests - Eurofit test battery. The level of motor coordination was assessed using the test battery Körperkoordination-Test-für-Kinder (KTK. The anthropometric data (body mass, body height, sum of five skinfolds were measured. The one-way ANOVA was used to assess differences in physical fitness test items and anthropometry parameters between children with normal motor quotient (MQ ≥ 86 and decreased levels of gross motor coordination (MQ ≤ 85. Results: Research findings indicate a strongly negative trend in physical development of children with motor deficits (MQ ≤ 85. The results of ANOVA revealed significantly less favourable level of most of the assessed physical fitness parameters in children with decreased level of motor coordination. Conclusions: The findings suggest that physical fitness outcomes of primary school-aged children are associated with a lower level of motor coordination. Motor coordination probably plays an important role in preventing, or moderating the so-called negative trajectory leading to childhood overweight or obesity.

  6. [Density of beta-adrenergic receptors and left ventricular mass in patients with primary essential hypertension].

    Science.gov (United States)

    Gajek, J; Zyśko, D; Spring, A

    2000-08-01

    Left ventricular hypertrophy (LVH) is one of the more important risk factors for sudden death. There are multiple factors for development of LVH in patients with hypertension. Sympathetic nervous system may play a key role causing afterload increase and neurohumoral mechanisms activation. The aim of the study was to determine beta-adrenergic receptors density and its relations to left ventricular mass in hypertensive subjects. The study was carried out in 63 patients (23 women and 40 men), mean age 43.3 +/- 11.6 yrs with primary hypertension: stage I--42 pts and stage II--21 pts. The control group consisted of 26 healthy persons matched for age and sex. We evaluated the density of beta-adrenergic receptors using 125I-cyanopindolol radioligand labeling method. Left ventricular dimensions were assessed by echocardiography (Hewlett-Packard 77010 CF) and left ventricular mass index (LVMI) was calculated. Systolic and diastolic blood pressure and LVMI was significantly higher in hypertension group 156.7 +/- 12.5 vs. 119.8 +/- 8.8 mmHg, p < 0.0001, 95.9/5.5 vs. 78.8 +/- 6.5 mmHg, p < 0.0001, 126.5 +/- 41.9 vs. 93.1 +/- 19.9 g/m2, p < 0.001 respectively. Beta-adrenergic receptors density was 40.7 +/- 29.9 fmol/ml in the hypertensive vs. 37.2 +/- 17.8 fmol/ml in control group (p = NS). There was no correlation between beta-adrenergic receptors density and LVMI. There was a statistically significant positive correlation between LVMI and systolic and diastolic blood pressure (r = 0.44, p < 0.05; r = 0.60, p < 0.01 respectively). 1. Beta-adrenergic receptors density was unchanged in patients with hypertension and did not correlate with LVMI. 2. A high positive correlation between blood pressure values and LVMI, but only in stage II hypertension was revealed.

  7. Short-term and long-term plasticity interaction in human primary motor cortex.

    Science.gov (United States)

    Iezzi, Ennio; Suppa, Antonio; Conte, Antonella; Li Voti, Pietro; Bologna, Matteo; Berardelli, Alfredo

    2011-05-01

    Repetitive transcranial magnetic stimulation (rTMS) over primary motor cortex (M1) elicits changes in motor evoked potential (MEP) size thought to reflect short- and long-term forms of synaptic plasticity, resembling short-term potentiation (STP) and long-term potentiation/depression (LTP/LTD) observed in animal experiments. We designed this study in healthy humans to investigate whether STP as elicited by 5-Hz rTMS interferes with LTP/LTD-like plasticity induced by intermittent and continuous theta-burst stimulation (iTBS and cTBS). The effects induced by 5-Hz rTMS and iTBS/cTBS were indexed as changes in MEP size. We separately evaluated changes induced by 5-Hz rTMS, iTBS and cTBS applied alone and those induced by iTBS and cTBS delivered after priming 5-Hz rTMS. Interactions between 5-Hz rTMS and iTBS/cTBS were investigated under several experimental conditions by delivering 5-Hz rTMS at suprathreshold and subthreshold intensity, allowing 1 and 5 min intervals to elapse between 5-Hz rTMS and TBS, and delivering one and ten 5-Hz rTMS trains. We also investigated whether 5-Hz rTMS induces changes in intracortical excitability tested with paired-pulse transcranial magnetic stimulation. When given alone, 5-Hz rTMS induced short-lasting and iTBS/cTBS induced long-lasting changes in MEP amplitudes. When M1 was primed with 10 suprathreshold 5-Hz rTMS trains at 1 min before iTBS or cTBS, the iTBS/cTBS-induced after-effects disappeared. The 5-Hz rTMS left intracortical excitability unchanged. We suggest that STP elicited by suprathreshold 5-Hz rTMS abolishes iTBS/cTBS-induced LTP/LTD-like plasticity through non-homeostatic metaplasticity mechanisms. Our study provides new information on interactions between short-term and long-term rTMS-induced plasticity in human M1. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  8. Factors associated with motor performance among overweight and nonoverweight Tyrolean primary school children.

    Science.gov (United States)

    Ruedl, Gerhard; Greier, Klaus; Kirschner, Werner; Kopp, Martin

    2016-01-01

    The increasing prevalence of overweight and obesity among children is often associated with motor deficits. Motor performance among children partly depends on modifiable factors, for example, weight status, electronic media use, sports club participation, and on nonmodifiable factors, for example, sex, age, migration background, or socio-economic status. To evaluate factors associated with motor performance among overweight and nonoverweight Tyrolean primary school children. Height, weight, and sport motor performance of primary school children were measured using the German motor performance test DMT 6-18. In addition, children were asked about migration background, sports club participation, and electronic media use in their room. A total of 304 children (48.7% girls) with a mean age of 8.0 ± 1.2 years were tested. In total, 61 (20.1%) children were overweight or obese. Regarding motor performance, nonoverweight children showed significantly higher total z-scores (106.8 ± 5.7 vs. 102.4 ± 6.8). For the total cohort, results of the multiple linear regression analysis (R (2) = 0.20) revealed that factors male sex (β = 0.12), nonoverweight children (β = 0.28), higher school grade (β = 0.23), sports club participation (β = 0.18),and > 2 weekly lessons of physical education (β = 0.26) were associated with an increased motor performance. For nonoverweight children results of the multiple linear regression analysis (R (2) = 0.09) found that a higher school grade (β = 0.17), sports club participation (β = 0.16),and more than 2 weekly lessons of physical education (β = 0.22) were associated with an increased motor performance. For the overweight children, results of the multiple linear regression analysis (R (2) = 0 .43) showed that no migration background (β = 0.23), a higher school grade (β = 0.55), sports club participation (β = 0.33) and more than 2 weekly lessons of physical

  9. EFFECTS OF OUTSCHOOL BODY ACTIVITIES ON QUALITATIVE CHANGES OF MOTORICAL STATUS PUPILS OF PRIMARY SCHOOL STRATURE

    Directory of Open Access Journals (Sweden)

    Izudin Tanović

    2011-09-01

    Full Text Available Population of pupil high classes primary school present one of cariks in chain of complex education and systematic social influence in body and health education, which are used a new generations (Mikić,1991. Including that we have a very sensibility population in way of strature and development in phase of adolescental period, it is necessary that throw the classes body education and extra outschool activities, give enough quantity of motorical activities, which will completly satisfied necessy of children this strature and also completly give them normal biopsychosocial growth. Explorations of effects extra outschool activities in frame of school sport sections pupils of primary school tell us that with a correct planning and programming work, which understand correctly choice adequate methods and operators of work could been very significant transformations of anthropological status of pupils (Malacko 2002. The basic target of this explorations was that confirm influence of outschool body activities on level qualitative changes of structure motorical space of pupils primary school strature, under influence applying programme of outschool activities. With help of factory analise, but also of method of congruation, it was explored structure of motorical space in the start but also at the end of this applying experimental programme of outschool body activities , and we concluded that changes which was appear in structure of explored motorical space, tell us on positive influence outschool body activities in sense transformation and progressing of motorical status of explorated sample.

  10. Effectiveness of Physical Education to Promote Motor Competence in Primary School Children

    Science.gov (United States)

    Lopes, Vítor P.; Stodden, David F.; Rodrigues, Luis P.

    2017-01-01

    Background: Motor skill (MS) competence is an important contributing factor for healthy development. Purpose: The goal was to test the effectiveness of primary school physical education (PE) on MS and physical fitness (PF) development. Methods: Three classes (n = 60, aged 9.0 ± 0.9) were randomly assigned to three diverse conditions during a…

  11. Cognitive Motor Coordination Training Improves Mental Rotation Performance in Primary School-Aged Children

    Science.gov (United States)

    Pietsch, Stefanie; Böttcher, Caroline; Jansen, Petra

    2017-01-01

    The long-term physical activity in specific sport activities can change the quality of mental rotation performance. This study investigates the influence of "Life Kinetik"--a motion program with tasks of cognition and motor coordination--on mental rotation performance of 44 primary school-aged children. While the experimental group…

  12. A numerical method to enhance the performance of a cam-type electric motor-driven left ventricular assist device.

    Science.gov (United States)

    Huang, Huan; Yang, Ming; Lu, Cunyue; Xu, Liang; Zhuang, Xiaoqi; Meng, Fan

    2013-10-01

    Pulsatile left ventricular assist devices (LVADs) driven by electric motors have been widely accepted as a treatment of heart failure. Performance enhancement with computer assistance for this kind of LVAD has seldom been reported. In this article, a numerical method is proposed to assist the design of a cam-type pump. The method requires an integrated model of an LVAD system, consisting of a motor, a transmission mechanism, and a cardiovascular circulation. Performance indices, that is, outlet pressure, outlet flow, and pump efficiency, were used to select the best cam profile from six candidates. A prototype pump connected to a mock circulatory loop (MCL) was used to calibrate the friction coefficient of the cam groove and preliminarily evaluate modeling accuracy. In vitro experiments show that the mean outlet pressure and flow can be predicted with high accuracy by the model, and gross geometries of the measurements can also be reproduced. Simulation results demonstrate that as the total peripheral resistance (TPR) is fixed at 1.1 mm Hg.s/mL, the two-cycle 2/3-rise profile is the best. Compared with other profiles, the maximum increases of pressure and flow indices are 75 and 76%, respectively, and the maximum efficiency increase is over 51%. For different TPRs (0.5∼1.5 mm Hg.s/mL) and operation intervals (0.1∼0.4 s) in counterpulsation, the conclusion is also acceptable. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.

  13. Events leading to foreign material being left in the primary heat transport system

    International Nuclear Information System (INIS)

    Groom, S.H.; Benton, A.J.

    1996-01-01

    On October 6,1995, following an extensive maintenance outage which had included boiler primary side cleaning, a Primary Heat Transport (PHT) system pump run was started in preparation for ultrasonic feeder flow measurements. Wooden debris in the system resulted in failure of the shaft seals of the PHT Pump 1. The subsequent investigation and assessment of this event provided an understanding of both the pump shaft failure mechanism and the origin of the debris in the PHT system. The pump shaft failed as a result of friction-generated heat resulting from contact between the rotating shaft and the stationary seal housing. This contact was initiated by mechanical and hydraulic imbalance in the pump impeller caused by wooden debris lodged in the impeller. The origin of the wooden debris was a temporary plywood cover which was inadvertently left in a boiler following maintenance. This cover moved from the boiler to the pump impeller when the PHT pumps were started. The cover was not accounted for and verified as being removed prior to boiler closure, although a visual inspection was conducted. A detailed institutional process for component accounting and verification of removal of materials did not exist at the time of this event. Details of the methods used to establish alternative heat sinks, provide debris recovery facilities and to assess the fitness for duty of the heat transport system and fuel channels prior to reactor startup are discussed in detail elsewhere. This report will concentrate on the events leading up to and following the events which ultimately resulted in failure of the PHT pump shaft

  14. The importance of left ventricular function for long-term outcome after primary percutaneous coronary intervention

    Directory of Open Access Journals (Sweden)

    Tio René A

    2008-02-01

    Full Text Available Abstract Background In the present study we sought to determine the long-term prognostic value of left ventricular ejection fraction (LVEF, assessed by planar radionuclide ventriculography (PRV, after ST-elevation myocardial infarction (STEMI treated with primary percutaneous coronary intervention (PPCI. Methods In total 925 patients underwent PRV for LVEF assessment after PPCI for myocardial infarction before discharge from the hospital. PRV was performed with a standard dose of 500 Mbq of 99mTc-pertechnetate. Average follow-up time was 2.5 years. Results Mean (± SD age was 60 ± 12 years. Mean (± SD LVEF was 45.7 ± 12.2 %. 1 year survival was 97.3 % and 3 year survival was 94.2 %. Killip class, multi vessel-disease, previous cardiovascular events, peak creatin kinase and its MB fraction, age and LVEF proved to be univariate predictors of mortality. When entered in a forward conditional Cox regression model age and LVEF were independent predictors of 1 and 3 year mortality. Conclusion LVEF assessed by PRV is a powerful independent predictor of long term mortality after PPCI for STEMI.

  15. Continuous theta-burst stimulation to primary motor cortex reveals asymmetric compensation for sensory attenuation in bimanual repetitive force production.

    Science.gov (United States)

    Therrien, Amanda S; Lyons, James; Balasubramaniam, Ramesh

    2013-08-01

    Studies of fingertip force production have shown that self-produced forces are perceived as weaker than externally generated forces. This is due to mechanisms of sensory reafference where the comparison between predicted and actual sensory feedback results in attenuated perceptions of self-generated forces. Without an external reference to calibrate attenuated performance judgments, a compensatory overproduction of force is exhibited. It remains unclear whether the force overproduction seen in the absence of visual reference stimuli differs when forces are produced bimanually. We studied performance of two versions of a bimanual sequential force production task compared with each hand performing the task unimanually. When the task goal was shared, force series produced by each hand in bimanual conditions were found to be uncorrelated. When the bimanual task required each hand to reach a target force level, we found asymmetries in the degree of force overproduction between the hands following visual feedback removal. Unilateral continuous theta-burst stimulation of the left primary motor cortex yielded a selective reduction of force overproduction in the hand contralateral to stimulation by disrupting sensory reafference processes. While variability was lower in bimanual trials when the task goal was shared, this influence of hand condition disappeared when the target force level was to be reached by each hand simultaneously. Our findings strengthen the notion that force control in bimanual action is less tightly coupled than other mechanisms of bimanual motor control and show that this effector specificity may be extended to the processing and compensation for mechanisms of sensory reafference.

  16. Right lower limb apraxia in a patient with left supplementary motor area infarction: intactness of the corticospinal tract confirmed by transcranial magnetic stimulation

    Directory of Open Access Journals (Sweden)

    Min Cheol Chang

    2015-01-01

    Full Text Available We reported a 50-year-old female patient with left supplementary motor area infarction who presented right lower limb apraxia and investigated the possible causes using transcranial magnetic stimulation. The patient was able to walk and climb stairs spontaneously without any assistance at 3 weeks after onset. However, she was unable to intentionally move her right lower limb although she understood what she supposed to do. The motor evoked potential evoked by transcranial magnetic stimulation from the right lower limb was within the normal range, indicating that the corticospinal tract innervating the right lower limb was uninjured. Thus, we thought that her motor dysfunction was not induced by motor weakness, and confirmed her symptoms as apraxia. In addition, these results also suggest that transcranial magnetic stimulation is helpful for diagnosing apraxia.

  17. Distinct Laterality in Forelimb-Movement Representations of Rat Primary and Secondary Motor Cortical Neurons with Intratelencephalic and Pyramidal Tract Projections.

    Science.gov (United States)

    Soma, Shogo; Saiki, Akiko; Yoshida, Junichi; Ríos, Alain; Kawabata, Masanori; Sakai, Yutaka; Isomura, Yoshikazu

    2017-11-08

    Two distinct motor areas, the primary and secondary motor cortices (M1 and M2), play crucial roles in voluntary movement in rodents. The aim of this study was to characterize the laterality in motor cortical representations of right and left forelimb movements. To achieve this goal, we developed a novel behavioral task, the Right-Left Pedal task, in which a head-restrained male rat manipulates a right or left pedal with the corresponding forelimb. This task enabled us to monitor independent movements of both forelimbs with high spatiotemporal resolution. We observed phasic movement-related neuronal activity (Go-type) and tonic hold-related activity (Hold-type) in isolated unilateral movements. In both M1 and M2, Go-type neurons exhibited bias toward contralateral preference, whereas Hold-type neurons exhibited no bias. The contralateral bias was weaker in M2 than M1. Moreover, we differentiated between intratelencephalic (IT) and pyramidal tract (PT) neurons using optogenetically evoked spike collision in rats expressing channelrhodopsin-2. Even in identified PT and IT neurons, Hold-type neurons exhibited no lateral bias. Go-type PT neurons exhibited bias toward contralateral preference, whereas IT neurons exhibited no bias. Our findings suggest a different laterality of movement representations of M1 and M2, in each of which IT neurons are involved in cooperation of bilateral movements, whereas PT neurons control contralateral movements. SIGNIFICANCE STATEMENT In rodents, the primary and secondary motor cortices (M1 and M2) are involved in voluntary movements via distinct projection neurons: intratelencephalic (IT) neurons and pyramidal tract (PT) neurons. However, it remains unclear whether the two motor cortices (M1 vs M2) and the two classes of projection neurons (IT vs PT) have different laterality of movement representations. We optogenetically identified these neurons and analyzed their functional activity using a novel behavioral task to monitor movements

  18. Transcranial direct current stimulation of the primary motor cortex improves word-retrieval in older adults.

    Directory of Open Access Journals (Sweden)

    Marcus eMeinzer

    2014-09-01

    Full Text Available Language facilitation by transcranial direct current stimulation (tDCS in healthy individuals has generated hope that tDCS may also allow improving language impairment after stroke (aphasia. However, current stimulation protocols have yielded variable results and may require identification of residual language cortex using functional magnetic resonance imaging (fMRI, which complicates incorporation into clinical practice. Based on previous behavioral studies that demonstrated improved language processing by motor system pre-activation, the present study assessed whether tDCS administered to the primary motor cortex (M1 can enhance language functions.This proof-of-concept study employed a sham-tDCS controlled, cross-over, within-subject design and assessed the impact of unilateral excitatory (anodal and bihemispheric (dual tDCS in eighteen healthy older adults during semantic word-retrieval and motor speech tasks. Simultaneous fMRI scrutinized the neural mechanisms underlying tDCS effects.Both active tDCS conditions significantly improved word-retrieval compared to sham-tDCS. The direct comparison of activity elicited by word-retrieval vs. motor-speech trials revealed bilateral frontal activity increases during both anodal- and dual-tDCS compared to sham-tDCS. This effect was driven by more pronounced deactivation of frontal regions during the motor-speech task, while activity during word-retrieval trials was unaffected by the stimulation. No effects were found in M1 and secondary motor regions.Our results show that tDCS administered to M1 can improve word-retrieval in healthy individuals, thereby providing a rationale to explore whether M1-tDCS may offer a novel approach to improve language functions in aphasia. fMRI revealed neural facilitation specifically during motor speech trials, which may have reduced switching costs between the overlapping neural systems for lexical retrieval and speech processing, thereby resulting in improved

  19. Transcranial direct current stimulation of the primary motor cortex improves word-retrieval in older adults.

    Science.gov (United States)

    Meinzer, Marcus; Lindenberg, Robert; Sieg, Mira M; Nachtigall, Laura; Ulm, Lena; Flöel, Agnes

    2014-01-01

    Language facilitation by transcranial direct current stimulation (tDCS) in healthy individuals has generated hope that tDCS may also allow improving language impairment after stroke (aphasia). However, current stimulation protocols have yielded variable results and may require identification of residual language cortex using functional magnetic resonance imaging (fMRI), which complicates incorporation into clinical practice. Based on previous behavioral studies that demonstrated improved language processing by motor system pre-activation, the present study assessed whether tDCS administered to the primary motor cortex (M1) can enhance language functions. This proof-of-concept study employed a sham-tDCS controlled, cross-over, within-subject design and assessed the impact of unilateral excitatory (anodal) and bihemispheric (dual) tDCS in 18 healthy older adults during semantic word-retrieval and motor speech tasks. Simultaneous fMRI scrutinized the neural mechanisms underlying tDCS effects. Both active tDCS conditions significantly improved word-retrieval compared to sham-tDCS. The direct comparison of activity elicited by word-retrieval vs. motor-speech trials revealed bilateral frontal activity increases during both anodal- and dual-tDCS compared to sham-tDCS. This effect was driven by more pronounced deactivation of frontal regions during the motor-speech task, while activity during word-retrieval trials was unaffected by the stimulation. No effects were found in M1 and secondary motor regions. Our results show that tDCS administered to M1 can improve word-retrieval in healthy individuals, thereby providing a rationale to explore whether M1-tDCS may offer a novel approach to improve language functions in aphasia. Functional magnetic resonance imaging revealed neural facilitation specifically during motor speech trials, which may have reduced switching costs between the overlapping neural systems for lexical retrieval and speech processing, thereby resulting in

  20. Task-Relevant Information Modulates Primary Motor Cortex Activity Before Movement Onset.

    Science.gov (United States)

    Calderon, Cristian B; Van Opstal, Filip; Peigneux, Philippe; Verguts, Tom; Gevers, Wim

    2018-01-01

    Monkey neurophysiology research supports the affordance competition hypothesis (ACH) proposing that cognitive information useful for action selection is integrated in sensorimotor areas. In this view, action selection would emerge from the simultaneous representation of competing action plans, in parallel biased by relevant task factors. This biased competition would take place up to primary motor cortex (M1). Although ACH is plausible in environments affording choices between actions, its relevance for human decision making is less clear. To address this issue, we designed an functional magnetic resonance imaging (fMRI) experiment modeled after monkey neurophysiology studies in which human participants processed cues conveying predictive information about upcoming button presses. Our results demonstrate that, as predicted by the ACH, predictive information (i.e., the relevant task factor) biases activity of primary motor regions. Specifically, first, activity before movement onset in contralateral M1 increases as the competition is biased in favor of a specific button press relative to activity in ipsilateral M1. Second, motor regions were more tightly coupled with fronto-parietal regions when competition between potential actions was high, again suggesting that motor regions are also part of the biased competition network. Our findings support the idea that action planning dynamics as proposed in the ACH are valid both in human and non-human primates.

  1. The primary motor and premotor areas of the human cerebral cortex.

    Science.gov (United States)

    Chouinard, Philippe A; Paus, Tomás

    2006-04-01

    Brodmann's cytoarchitectonic map of the human cortex designates area 4 as cortex in the anterior bank of the precentral sulcus and area 6 as cortex encompassing the precentral gyrus and the posterior portion of the superior frontal gyrus on both the lateral and medial surfaces of the brain. More than 70 years ago, Fulton proposed a functional distinction between these two areas, coining the terms primary motor area for cortex in Brodmann area 4 and premotor area for cortex in Brodmann area 6. The parcellation of the cortical motor system has subsequently become more complex. Several nonprimary motor areas have been identified in the brain of the macaque monkey, and associations between anatomy and function in the human brain are being tested continuously using brain mapping techniques. In the present review, the authors discuss the unique properties of the primary motor area (M1), the dorsal portion of the premotor cortex (PMd), and the ventral portion of the premotor cortex (PMv). They end this review by discussing how the premotor areas influence M1.

  2. CLINICAL, ENDOSCOPIC AND MANOMETRIC FEATURES OF THE PRIMARY MOTOR DISORDERS OF THE ESOPHAGUS

    OpenAIRE

    MARTINEZ, J?lio C?sar; LIMA, Gustavo Rosa de Almeida; SILVA, Diego Henrique; DUARTE, Alexandre Ferreira; NOVO, Neil Ferreira; da SILVA, Ernesto Carlos; PINTO, P?rsio Campos Correia; MAIA, Alexandre Moreira

    2015-01-01

    BACKGROUND: Significant incidence, diagnostic difficulties, clinical relevance and therapeutic efficacy associated with the small number of publications on the primary esophageal motor disorders, motivated the present study. AIM: To determine the manometric prevalence of these disorders and correlate them to the endoscopic and clinical findings. METHODS: A retrospective study of 2614 patients, being 1529 (58.49%) women and 1085 (41.51%) men. From 299 manometric examinations diagnosed with pri...

  3. Clinical, endoscopic and manometric features of the primary motor disorders of the esophagus.

    Science.gov (United States)

    Martinez, Júlio César; Lima, Gustavo Rosa de Almeida; Silva, Diego Henrique; Duarte, Alexandre Ferreira; Novo, Neil Ferreira; da Silva, Ernesto Carlos; Pinto, Pérsio Campos Correia; Maia, Alexandre Moreira

    2015-01-01

    Significant incidence, diagnostic difficulties, clinical relevance and therapeutic efficacy associated with the small number of publications on the primary esophageal motor disorders, motivated the present study. To determine the manometric prevalence of these disorders and correlate them to the endoscopic and clinical findings. A retrospective study of 2614 patients, being 1529 (58.49%) women and 1085 (41.51%) men. From 299 manometric examinations diagnosed with primary esophageal motor disorder, were sought-clinical data (heartburn, regurgitation, dysphagia, odynophagia, non-cardiac chest pain, pharyngeal globe and extra-esophageal symptoms) and/or endoscopic (hiatal hernia, erosive esophagitis, food waste) that motivated the performance of manometry. Were found 49 cases of achalasia, 73 diffuse spasm, 89 nutcracker esophagus, 82 ineffective esophageal motility, and six lower esophageal sphincter hypertension. In relation to the correlations, it was observed that in 119 patients clinical conditions were associated with dysphagia, found in achalasia more than in other conditions; in relationship between endoscopic findings and clinical conditions there was no statistical significance between data. The clinical and endoscopic findings have little value in the characterization of the primary motor disorders of the esophagus, showing even more the need for manometry, particularly in the preoperative period of gastroesophageal reflux disease.

  4. Primary cardiac tumor presenting as left ventricular outflow tract obstruction and complex arrhythmia.

    Science.gov (United States)

    Fries, R; Achen, S; O'Brien, M T; Jackson, N D; Gordon, S

    2017-10-01

    An adult female mixed breed dog presented for recurrent collapsing episodes over several weeks. Holter evaluation revealed periods of sinus arrest and echocardiography identified a soft tissue mass with subsequent severe dynamic obstruction of the left ventricular outflow tract. The patient was euthanized five days after presentation for severe dyspnea. Necropsy revealed an irregular mass circumferentially lining the left ventricular outflow tract as well as multiple myocardial metastases. The final diagnosis was an undifferentiated pleomorphic endocardial sarcoma. Published by Elsevier B.V.

  5. The human dorsal premotor cortex facilitates the excitability of ipsilateral primary motor cortex via a short latency cortico-cortical route

    DEFF Research Database (Denmark)

    Groppa, Sergiu; Schlaak, Boris H; Münchau, Alexander

    2012-01-01

    In non-human primates, invasive tracing and electrostimulation studies have identified strong ipsilateral cortico-cortical connections between dorsal premotor- (PMd) and the primary motor cortex (M1(HAND) ). Here, we applied dual-site transcranial magnetic stimulation (dsTMS) to left PMd and M1......(HAND) through specifically designed minicoils to selectively probe ipsilateral PMd-to-M1(HAND) connectivity in humans. A suprathreshold test stimulus (TS) was applied to M1(HAND) producing a motor evoked potential (MEP) of about 0.5 mV in the relaxed right first dorsal interosseus muscle (FDI......) facilitation did not change as a function of CS intensity. Even at higher intensities, the CS alone failed to elicit a MEP or a cortical silent period in the pre-activated FDI, excluding a direct spread of excitation from PMd to M1(HAND). No MEP facilitation was present while CS was applied rostrally over...

  6. An unavoidable modulation? Sensory attention and human primary motor cortex excitability.

    Science.gov (United States)

    Ruge, Diane; Muggleton, Neil; Hoad, Damon; Caronni, Antonio; Rothwell, John C

    2014-09-01

    The link between basic physiology and its modulation by cognitive states, such as attention, is poorly understood. A significant association becomes apparent when patients with movement disorders describe experiences with changing their attention focus and the fundamental effect that this has on their motor symptoms. Moreover, frequently used mental strategies for treating such patients, e.g. with task-specific dystonia, widely lack laboratory-based knowledge about physiological mechanisms. In this largely unexplored field, we looked at how the locus of attention, when it changed between internal (locus hand) and external (visual target), influenced excitability in the primary motor cortex (M1) in healthy humans. Intriguingly, both internal and external attention had the capacity to change M1 excitability. Both led to a reduced stimulation-induced GABA-related inhibition and a change in motor evoked potential size, i.e. an overall increased M1 excitability. These previously unreported findings indicated: (i) that cognitive state differentially interacted with M1 physiology, (ii) that our view of distraction (attention locus shifted towards external or distant location), which is used as a prevention or management strategy for use-dependent motor disorders, is too simple and currently unsupported for clinical application, and (iii) the physiological state reached through attention modulation represents an alternative explanation for frequently reported electrophysiology findings in neuropsychiatric disorders, such as an aberrant inhibition. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. Disassociation between primary motor cortical activity and movement kinematics during adaptation to reach perturbations.

    Science.gov (United States)

    Cai, X; Shimansky, Y P; Weber, D J; He, Jiping

    2004-01-01

    The relationship between movement kinematics and motor cortical activity was studied in monkeys performing a center-out reaching task during their adaptation to force perturbations applied to the wrist. The main feature of adaptive changes in movement kinematics was anticipatory deviation of hand paths in the direction opposite to that of the upcoming perturbation. We identified a group of neurons in the dorsal lateral portion of the primary motor cortex where a gradual buildup of spike activity immediately preceding the actual (in perturbation trials) or the "would-be" (in unperturbed/catch trials) perturbation onset was observed. These neurons were actively involved in the adaptation process, which was evident from the gradual increase in the amplitude of their movement-related modulation of spike activity from virtual zero and development of certain directional tuning pattern (DTP). However, the day-to-day dynamics of the kinematics adaptation was dramatically different from that of the neuronal activity. Hence, the adaptive modification of the motor cortical activity is more likely to reflect the development of the internal model of the perturbation dynamics, rather than motor instructions determining the adaptive behavior.

  8. Manometric assessment of esophageal motor function in patients with primary biliary cirrhosis.

    Science.gov (United States)

    Bektas, Mehmet; Seven, Gulseren; Idilman, Ramazan; Yakut, Mustafa; Doğanay, Beyza; Kabacam, Gökhan; Ustun, Yusuf; Korkut, Esin; Kalkan, Çağdaş; Sahin, Günay; Cetinkaya, Hulya; Bozkaya, Hakan; Yurdaydin, Cihan; Bahar, Kadir; Cinar, Kubilay; Soykan, Irfan

    2014-03-01

    Primary biliary cirrhosis is associated with other autoimmune diseases including Sjögren's syndrome, and scleroderma. Esophageal dysmotility is well known in scleroderma, and Sjögren's syndrome. The aim of this study is to investigate whether any esophageal motor dysfunction exists in patients with primary biliary cirrhosis. The study was performed in 37 patients (36 women, mean age: 56.29 ± 10.01 years) who met diagnostic criteria for primary biliary cirrhosis. Thirty-seven functional dyspepsia patients, were also included as a control group. Patients entering the study were asked to complete a symptom questionnaire. Distal esophageal contraction amplitude, and lower esophageal sphincter resting pressure were assessed. Manometric findings in primary biliary cirrhosis patients vs. controls were as follows: Median lower esophageal sphincter resting pressure (mmHg): (24 vs 20, p=0.033); median esophageal contraction amplitude (mmHg): (71 vs 56, p=0.050); mean lower esophageal sphincter relaxation duration (sc, x ± SD): (6.10 ± 1.18 vs 8.29 ± 1.92, pesophageal sphincter relaxation (%) (96 vs 98, p=0.019); respectively. No significant differences were evident in median peak velocity (sc) (3.20 vs 3.02, p=0.778) between patients with primary biliary cirrhosis and the functional dyspepsia patients. Esophageal dysmotility was found in 17 (45.9%) primary biliary cirrhosis patients (non-specific esophageal motor disorder in ten patients, hypomotility of esophagus in five patients, nutcracker esophagus in one patient and hypertensive lower esophageal sphincter in one patient). Esophageal dysmotility was detected in 45.9% of patients. The study suggests that subclinic esophageal dysmotility is frequent in patients with primary biliary cirrhosis. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  9. Primary motor and premotor cortex in implicit sequence learning--evidence for competition between implicit and explicit human motor memory systems.

    Science.gov (United States)

    Kantak, Shailesh S; Mummidisetty, Chaithanya K; Stinear, James W

    2012-09-01

    Implicit and explicit memory systems for motor skills compete with each other during and after motor practice. Primary motor cortex (M1) is known to be engaged during implicit motor learning, while dorsal premotor cortex (PMd) is critical for explicit learning. To elucidate the neural substrates underlying the interaction between implicit and explicit memory systems, adults underwent a randomized crossover experiment of anodal transcranial direct current stimulation (AtDCS) applied over M1, PMd or sham stimulation during implicit motor sequence (serial reaction time task, SRTT) practice. We hypothesized that M1-AtDCS during practice will enhance online performance and offline learning of the implicit motor sequence. In contrast, we also hypothesized that PMd-AtDCS will attenuate performance and retention of the implicit motor sequence. Implicit sequence performance was assessed at baseline, at the end of acquisition (EoA), and 24 h after practice (retention test, RET). M1-AtDCS during practice significantly improved practice performance and supported offline stabilization compared with Sham tDCS. Performance change from EoA to RET revealed that PMd-AtDCS during practice attenuated offline stabilization compared with M1-AtDCS and sham stimulation. The results support the role of M1 in implementing online performance gains and offline stabilization for implicit motor sequence learning. In contrast, enhancing the activity within explicit motor memory network nodes such as the PMd during practice may be detrimental to offline stabilization of the learned implicit motor sequence. These results support the notion of competition between implicit and explicit motor memory systems and identify underlying neural substrates that are engaged in this competition. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  10. Continuous Force Decoding from Local Field Potentials of the Primary Motor Cortex in Freely Moving Rats.

    Science.gov (United States)

    Khorasani, Abed; Heydari Beni, Nargess; Shalchyan, Vahid; Daliri, Mohammad Reza

    2016-10-21

    Local field potential (LFP) signals recorded by intracortical microelectrodes implanted in primary motor cortex can be used as a high informative input for decoding of motor functions. Recent studies show that different kinematic parameters such as position and velocity can be inferred from multiple LFP signals as precisely as spiking activities, however, continuous decoding of the force magnitude from the LFP signals in freely moving animals has remained an open problem. Here, we trained three rats to press a force sensor for getting a drop of water as a reward. A 16-channel micro-wire array was implanted in the primary motor cortex of each trained rat, and obtained LFP signals were used for decoding of the continuous values recorded by the force sensor. Average coefficient of correlation and the coefficient of determination between decoded and actual force signals were r = 0.66 and R 2  = 0.42, respectively. We found that LFP signal on gamma frequency bands (30-120 Hz) had the most contribution in the trained decoding model. This study suggests the feasibility of using low number of LFP channels for the continuous force decoding in freely moving animals resembling BMI systems in real life applications.

  11. Stimulation over primary motor cortex during action observation impairs effector recognition.

    Science.gov (United States)

    Naish, Katherine R; Barnes, Brittany; Obhi, Sukhvinder S

    2016-04-01

    Recent work suggests that motor cortical processing during action observation plays a role in later recognition of the object involved in the action. Here, we investigated whether recognition of the effector making an action is also impaired when transcranial magnetic stimulation (TMS) - thought to interfere with normal cortical activity - is applied over the primary motor cortex (M1) during action observation. In two experiments, single-pulse TMS was delivered over the hand area of M1 while participants watched short clips of hand actions. Participants were then asked whether an image (experiment 1) or a video (experiment 2) of a hand presented later in the trial was the same or different to the hand in the preceding video. In Experiment 1, we found that participants' ability to recognise static images of hands was significantly impaired when TMS was delivered over M1 during action observation, compared to when no TMS was delivered, or when stimulation was applied over the vertex. Conversely, stimulation over M1 did not affect recognition of dot configurations, or recognition of hands that were previously presented as static images (rather than action movie clips) with no object. In Experiment 2, we found that effector recognition was impaired when stimulation was applied part way through (300ms) and at the end (500ms) of the action observation period, indicating that 200ms of action-viewing following stimulation was not long enough to form a new representation that could be used for later recognition. The findings of both experiments suggest that interfering with cortical motor activity during action observation impairs subsequent recognition of the effector involved in the action, which complements previous findings of motor system involvement in object memory. This work provides some of the first evidence that motor processing during action observation is involved in forming representations of the effector that are useful beyond the action observation period

  12. Error-enhancing robot therapy to induce motor control improvement in childhood onset primary dystonia

    Directory of Open Access Journals (Sweden)

    Casellato Claudia

    2012-07-01

    Full Text Available Abstract Background Robot-generated deviating forces during multijoint reaching movements have been applied to investigate motor control and to tune neuromotor adaptation. Can the application of force to limbs improve motor learning? In this framework, the response to altered dynamic environments of children affected by primary dystonia has never been studied. Methods As preliminary pilot study, eleven children with primary dystonia and eleven age-matched healthy control subjects were asked to perform upper limb movements, triangle-reaching (three directions and circle-writing, using a haptic robot interacting with ad-hoc developed task-specific visual interfaces. Three dynamic conditions were provided, null additive external force (A, constant disturbing force (B and deactivation of the additive external force again (C. The path length for each trial was computed, from the recorded position data and interaction events. Results The results show that the disturbing force affects significantly the movement outcomes in healthy but not in dystonic subjects, already compromised in the reference condition: the external alteration uncalibrates the healthy sensorimotor system, while the dystonic one is already strongly uncalibrated. The lack of systematic compensation for perturbation effects during B condition is reflected into the absence of after-effects in C condition, which would be the evidence that CNS generates a prediction of the perturbing forces using an internal model of the environment. The most promising finding is that in dystonic population the altered dynamic exposure seems to induce a subsequent improvement, i.e. a beneficial after-effect in terms of optimal path control, compared with the correspondent reference movement outcome. Conclusions The short-time error-enhancing training in dystonia could represent an effective approach for motor performance improvement, since the exposure to controlled dynamic alterations induces a refining

  13. Primary motor cortex of the parkinsonian monkey: altered encoding of active movement

    Science.gov (United States)

    Pasquereau, Benjamin; DeLong, Mahlon R.

    2016-01-01

    Abnormalities in the movement-related activation of the primary motor cortex (M1) are thought to be a major contributor to the motor signs of Parkinson’s disease. The existing evidence, however, variably indicates that M1 is under-activated with movement, overactivated (due to a loss of functional specificity) or activated with abnormal timing. In addition, few models consider the possibility that distinct cortical neuron subtypes may be affected differently. Those gaps in knowledge were addressed by studying the extracellular activity of antidromically-identified lamina 5b pyramidal-tract type neurons (n = 153) and intratelencephalic-type corticostriatal neurons (n = 126) in the M1 of two monkeys as they performed a step-tracking arm movement task. We compared movement-related discharge before and after the induction of parkinsonism by administration of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and quantified the spike rate encoding of specific kinematic parameters of movement using a generalized linear model. The fraction of M1 neurons with movement-related activity declined following MPTP but only marginally. The strength of neuronal encoding of parameters of movement was reduced markedly (mean 29% reduction in the coefficients from the generalized linear model). This relative decoupling of M1 activity from kinematics was attributable to reductions in the coefficients that estimated the spike rate encoding of movement direction (−22%), speed (−40%), acceleration (−49%) and hand position (−33%). After controlling for MPTP-induced changes in motor performance, M1 activity related to movement itself was reduced markedly (mean 36% hypoactivation). This reduced activation was strong in pyramidal tract-type neurons (−50%) but essentially absent in corticostriatal neurons. The timing of M1 activation was also abnormal, with earlier onset times, prolonged response durations, and a 43% reduction in the prevalence of movement-related changes

  14. Fine Motor Skills Predict Maths Ability Better than They Predict Reading Ability in the Early Primary School Years

    Science.gov (United States)

    Pitchford, Nicola J.; Papini, Chiara; Outhwaite, Laura A.; Gulliford, Anthea

    2016-01-01

    Fine motor skills have long been recognized as an important foundation for development in other domains. However, more precise insights into the role of fine motor skills, and their relationships to other skills in mediating early educational achievements, are needed to support the development of optimal educational interventions. We explored concurrent relationships between two components of fine motor skills, Fine Motor Precision and Fine Motor Integration, and early reading and maths development in two studies with primary school children of low-to-mid socio-economic status in the UK. Two key findings were revealed. First, despite being in the first 2 years of primary school education, significantly better performance was found in reading compared to maths across both studies. This may reflect the protective effects of recent national-level interventions to promote early literacy skills in young children in the UK that have not been similarly promoted for maths. Second, fine motor skills were a better predictor of early maths ability than they were of early reading ability. Hierarchical multiple regression revealed that fine motor skills did not significantly predict reading ability when verbal short-term memory was taken into account. In contrast, Fine Motor Integration remained a significant predictor of maths ability, even after the influence of non-verbal IQ had been accounted for. These results suggest that fine motor skills should have a pivotal role in educational interventions designed to support the development of early mathematical skills. PMID:27303342

  15. Fine motor skills predict maths ability better than they predict reading ability in the early primary school years

    Directory of Open Access Journals (Sweden)

    Nicola J. Pitchford

    2016-05-01

    Full Text Available Fine motor skills have long been recognised as an important foundation for development in other domains. However, more precise insights into the role of fine motor skills, and their relationships to other skills in mediating early educational achievements, are needed to support the development of optimal educational interventions. We explored concurrent relationships between two components of fine motor skills, Fine Motor Precision and Fine Motor Integration, and early reading and maths development in two studies with primary school children of low-to-mid socio-economic status in the U.K. Two key findings were revealed. First, despite being in the first two years of primary school education, significantly better performance was found in reading compared to maths across both studies. This may reflect the protective effects of recent national-level interventions to promote early literacy skills in young children in the U.K. that have not been similarly promoted for maths. Second, fine motor skills were a better predictor of early maths ability than they were of early reading ability. Hierarchical multiple regression revealed that fine motor skills did not significantly predict reading ability when verbal short-term memory was taken into account. In contrast, Fine Motor Integration remained a significant predictor of maths ability, even after the influence of non-verbal IQ had been accounted for. These results suggest that fine motor skills should have a pivotal role in educational interventions designed to support the development of early mathematical skills.

  16. Fine Motor Skills Predict Maths Ability Better than They Predict Reading Ability in the Early Primary School Years.

    Science.gov (United States)

    Pitchford, Nicola J; Papini, Chiara; Outhwaite, Laura A; Gulliford, Anthea

    2016-01-01

    Fine motor skills have long been recognized as an important foundation for development in other domains. However, more precise insights into the role of fine motor skills, and their relationships to other skills in mediating early educational achievements, are needed to support the development of optimal educational interventions. We explored concurrent relationships between two components of fine motor skills, Fine Motor Precision and Fine Motor Integration, and early reading and maths development in two studies with primary school children of low-to-mid socio-economic status in the UK. Two key findings were revealed. First, despite being in the first 2 years of primary school education, significantly better performance was found in reading compared to maths across both studies. This may reflect the protective effects of recent national-level interventions to promote early literacy skills in young children in the UK that have not been similarly promoted for maths. Second, fine motor skills were a better predictor of early maths ability than they were of early reading ability. Hierarchical multiple regression revealed that fine motor skills did not significantly predict reading ability when verbal short-term memory was taken into account. In contrast, Fine Motor Integration remained a significant predictor of maths ability, even after the influence of non-verbal IQ had been accounted for. These results suggest that fine motor skills should have a pivotal role in educational interventions designed to support the development of early mathematical skills.

  17. Structural Gray Matter Changes in the Hippocampus and the Primary Motor Cortex on An-Hour-to-One- Day Scale Can Predict Arm-Reaching Performance Improvement

    Directory of Open Access Journals (Sweden)

    Midori Kodama

    2018-06-01

    Full Text Available Recent studies have revealed rapid (e.g., hours to days training-induced cortical structural changes using magnetic resonance imaging (MRI. Currently, there is great interest in studying how such a rapid brain structural change affects behavioral improvement. Structural reorganization contributes to memory or enhanced information processing in the brain and may increase its capability of skill learning. If the gray matter (GM is capable of such rapid structural reorganization upon training, the extent of volume increase may characterize the learning process. To shed light on this issue, we conducted a case series study of 5-day visuomotor learning using neuroanatomical imaging, and analyzed the effect of rapid brain structural change on motor performance improvement via regression analysis. Participants performed an upper-arm reaching task under left-right mirror-reversal for five consecutive days; T1-weighted MR imaging was performed before training, after the first and fifth days, and 1 week and 1 month after training. We detected increase in GM volume on the first day (i.e., a few hours after the first training session in the primary motor cortex (M1, primary sensory cortex (S1, and in the hippocampal areas. Notably, regression analysis revealed that individual differences in such short-term increases were associated with the learning levels after 5 days of training. These results suggest that GM structural changes are not simply a footprint of previous motor learning but have some relationship with future motor learning. In conclusion, the present study provides new insight into the role of structural changes in causing functional changes during motor learning.

  18. Effectiveness of physical education to promote motor competence in primary school children

    OpenAIRE

    Lopes, Vítor P.; Stodden, David F.; Rodrigues, Luis Paulo

    2017-01-01

    Motor skill (MS) competence is an important contributing factor for healthy development. The goal was to test the effectiveness of primary school physical education (PE) on MS and physical fitness (PF) development. Three classes (n = 60, aged 9.0 ± 0.9) were randomly assigned to three diverse conditions during a school year: two PE lessons/week (PE-2), three PE lessons/week (PE-3), and no PE lessons control group (CG). BMI, skinfolds, PF (9-min run/walk, sit-up, modified pull-ups), gymnast...

  19. Transcranial direct current stimulation over the primary motor vs prefrontal cortex in refractory chronic migraine: A pilot randomized controlled trial.

    Science.gov (United States)

    Andrade, Suellen Marinho; de Brito Aranha, Renata Emanuela Lyra; de Oliveira, Eliane Araújo; de Mendonça, Camila Teresa Ponce Leon; Martins, Wanessa Kallyne Nascimento; Alves, Nelson Torro; Fernández-Calvo, Bernardino

    2017-07-15

    Although transcranial direct current stimulation (tDCS) represents a therapeutic option for the prophylaxis of chronic migraine, the target area for application of the electrical current to the cortex has not yet been well established. Here we sought to determine whether a treatment protocol involving 12 sessions of 2mA, 20min anodal stimulation of the left primary motor (M1) or dorsolateral prefrontal cortex (DLPFC) could offer clinical benefits in the management of pain from migraine. Thirteen participants were assessed before and after treatment, using the Headache Impact Test-6, Visual Analogue Scale and Medical Outcomes Study 36 - Item Short - Form Health Survey. After treatment, group DLPFC exhibited a better performance compared with groups M1 and sham. On intragroup comparison, groups DLPFC and M1 exhibited a greater reduction in headache impact and pain intensity and a higher quality of life after treatment. No significant change was found in group sham. The participants in group M1 exhibited more adverse effects, especially headache, heartburn, and sleepiness, than did those in the other two groups. Transcranial direct current stimulation is a safe and efficacious technique for treating chronic migraine. However, it should be kept in mind that the site of cortical stimulation might modulate the patient's response to treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. An Investigation of the Differences and Similarities between Generated Small-World Networks for Right- and Left-Hand Motor Imageries.

    Science.gov (United States)

    Zhang, Jiang; Li, Yuyao; Chen, Huafu; Ding, Jurong; Yuan, Zhen

    2016-11-04

    In this study, small-world network analysis was performed to identify the similarities and differences between functional brain networks for right- and left-hand motor imageries (MIs). First, Pearson correlation coefficients among the nodes within the functional brain networks from healthy subjects were calculated. Then, small-world network indicators, including the clustering coefficient, the average path length, the global efficiency, the local efficiency, the average node degree, and the small-world index, were generated for the functional brain networks during both right- and left-hand MIs. We identified large differences in the small-world network indicators between the functional networks during MI and in the random networks. More importantly, the functional brain networks underlying the right- and left-hand MIs exhibited similar small-world properties in terms of the clustering coefficient, the average path length, the global efficiency, and the local efficiency. By contrast, the right- and left-hand MI brain networks showed differences in small-world characteristics, including indicators such as the average node degree and the small-world index. Interestingly, our findings also suggested that the differences in the activity intensity and range, the average node degree, and the small-world index of brain networks between the right- and left-hand MIs were associated with the asymmetry of brain functions.

  1. Magnetic susceptibility in the deep layers of the primary motor cortex in Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    M. Costagli

    2016-01-01

    Full Text Available Amyotrophic Lateral Sclerosis (ALS is a progressive neurological disorder that entails degeneration of both upper and lower motor neurons. The primary motor cortex (M1 in patients with upper motor neuron (UMN impairment is pronouncedly hypointense in Magnetic Resonance (MR T2* contrast. In the present study, 3D gradient-recalled multi-echo sequences were used on a 7 Tesla MR system to acquire T2*-weighted images targeting M1 at high spatial resolution. MR raw data were used for Quantitative Susceptibility Mapping (QSM. Measures of magnetic susceptibility correlated with the expected concentration of non-heme iron in different regions of the cerebral cortex in healthy subjects. In ALS patients, significant increases in magnetic susceptibility co-localized with the T2* hypointensity observed in the middle and deep layers of M1. The magnetic susceptibility, hence iron concentration, of the deep cortical layers of patients' M1 subregions corresponding to Penfield's areas of the hand and foot in both hemispheres significantly correlated with the clinical scores of UMN impairment of the corresponding limbs. QSM therefore reflects the presence of iron deposits related to neuroinflammatory reaction and cortical microgliosis, and might prove useful in estimating M1 iron concentration, as a possible radiological sign of severe UMN burden in ALS patients.

  2. Probing changes in corticospinal excitability following theta burst stimulation of the human primary motor cortex.

    Science.gov (United States)

    Goldsworthy, Mitchell R; Vallence, Ann-Maree; Hodyl, Nicolette A; Semmler, John G; Pitcher, Julia B; Ridding, Michael C

    2016-01-01

    To determine whether the intensity of transcranial magnetic stimulation (TMS) used to probe changes in corticospinal excitability influences the measured plasticity response to theta burst stimulation (TBS) of the human primary motor cortex. Motor evoked potential (MEP) input/output (I/O) curves were recorded before and following continuous TBS (cTBS) (Experiment 1; n=18) and intermittent TBS (iTBS) (Experiment 2; n=18). The magnitude and consistency of MEP depression induced by cTBS was greatest when probed using stimulus intensities at or above 150% of resting motor threshold (RMT). In contrast, facilitation of MEPs following iTBS was strongest and most consistent at 110% of RMT. The plasticity response to both cTBS and iTBS is influenced by the stimulus intensity used to probe the induced changes in corticospinal excitability. The results highlight the importance of the test stimulus intensity used to assess TBS-induced changes in corticospinal excitability when interpreting neuroplasticity data, and suggest that a number of test intensities may be required to reliably probe the plasticity response. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Supplementary motor area and primary auditory cortex activation in an expert break-dancer during the kinesthetic motor imagery of dance to music.

    Science.gov (United States)

    Olshansky, Michael P; Bar, Rachel J; Fogarty, Mary; DeSouza, Joseph F X

    2015-01-01

    The current study used functional magnetic resonance imaging to examine the neural activity of an expert dancer with 35 years of break-dancing experience during the kinesthetic motor imagery (KMI) of dance accompanied by highly familiar and unfamiliar music. The goal of this study was to examine the effect of musical familiarity on neural activity underlying KMI within a highly experienced dancer. In order to investigate this in both primary sensory and motor planning cortical areas, we examined the effects of music familiarity on the primary auditory cortex [Heschl's gyrus (HG)] and the supplementary motor area (SMA). Our findings reveal reduced HG activity and greater SMA activity during imagined dance to familiar music compared to unfamiliar music. We propose that one's internal representations of dance moves are influenced by auditory stimuli and may be specific to a dance style and the music accompanying it.

  4. The Effect of Visual and Auditory Enhancements on Excitability of the Primary Motor Cortex during Motor Imagery: A Pilot Study

    Science.gov (United States)

    Ikeda, Kohei; Higashi, Toshio; Sugawara, Kenichi; Tomori, Kounosuke; Kinoshita, Hiroshi; Kasai, Tatsuya

    2012-01-01

    The effect of visual and auditory enhancements of finger movement on corticospinal excitability during motor imagery (MI) was investigated using the transcranial magnetic stimulation technique. Motor-evoked potentials were elicited from the abductor digit minimi muscle during MI with auditory, visual and, auditory and visual information, and no…

  5. COMPARISON OF MOTOR ABILITIES OF YOUTH FOOTBALL PLAYERS AND PRIMARY SCHOOL PUPILS

    Directory of Open Access Journals (Sweden)

    Miroslav Smajić

    2014-06-01

    Full Text Available Introduction: Football as a complete sport that is rich in a wide variety of possible movements classified in polistructural, sports complex. To be a football player was able to perform tasks football has, among other things, and have the necessary level of motor abilities that can be achieved only through systematic implementation of training physical training. The aim of this research was to determine the differences in some of the motor abilities between the two researched groups. Methods: In a sample of 196 subjects average age of 12.45 ± 0.03 years, made a comparison of motor abilities. The first group consisted of 82 players - Pioneers FC "Red Star" from Belgrade and the other 114 primary school pupils from Novi Sad. A sample of 9 tests of motor abilities were: long jump from the place, running 20 m, 60 m running, bend straddle the gray, endurance in pull-ups, polygon backwards, slalom with three balls, hand tapping and lifting troops. Comparison of motor abilities of young players and pupils of primary schools was carried out by using multivariate analysis of variance (MANOVA. Results: An analysis of motor abilities between young players and primary school pupils were found statistically significant differences in all tested variables. Discussion: The research has shown that speed, endurance, coordination and muscle strength of the lower leg predominantly responsible for the success of matching the target foot at a distance, which is an integral part of the training process (Smajic and Molnar, 2007. It is also proven that there is a statistically significant correlation between the explosive and repetitive strength as a predictor of outcome-success rate for jumping in the air at youth players (Stankovic, 2011. References: Kuleš, B., Jerkovic, S. Maric, J. (1991. Influence of running different intentiteta to success in football. Kinesiology, 23 (1-2, 60-65. Malacko, J. (2000. Fundamentals of sports training - a quarter-supplemented and

  6. Automatic detection and quantitative analysis of cells in the mouse primary motor cortex

    Science.gov (United States)

    Meng, Yunlong; He, Yong; Wu, Jingpeng; Chen, Shangbin; Li, Anan; Gong, Hui

    2014-09-01

    Neuronal cells play very important role on metabolism regulation and mechanism control, so cell number is a fundamental determinant of brain function. Combined suitable cell-labeling approaches with recently proposed three-dimensional optical imaging techniques, whole mouse brain coronal sections can be acquired with 1-μm voxel resolution. We have developed a completely automatic pipeline to perform cell centroids detection, and provided three-dimensional quantitative information of cells in the primary motor cortex of C57BL/6 mouse. It involves four principal steps: i) preprocessing; ii) image binarization; iii) cell centroids extraction and contour segmentation; iv) laminar density estimation. Investigations on the presented method reveal promising detection accuracy in terms of recall and precision, with average recall rate 92.1% and average precision rate 86.2%. We also analyze laminar density distribution of cells from pial surface to corpus callosum from the output vectorizations of detected cell centroids in mouse primary motor cortex, and find significant cellular density distribution variations in different layers. This automatic cell centroids detection approach will be beneficial for fast cell-counting and accurate density estimation, as time-consuming and error-prone manual identification is avoided.

  7. High-order motor cortex in rats receives somatosensory inputs from the primary motor cortex via cortico-cortical pathways.

    Science.gov (United States)

    Kunori, Nobuo; Takashima, Ichiro

    2016-12-01

    The motor cortex of rats contains two forelimb motor areas; the caudal forelimb area (CFA) and the rostral forelimb area (RFA). Although the RFA is thought to correspond to the premotor and/or supplementary motor cortices of primates, which are higher-order motor areas that receive somatosensory inputs, it is unknown whether the RFA of rats receives somatosensory inputs in the same manner. To investigate this issue, voltage-sensitive dye (VSD) imaging was used to assess the motor cortex in rats following a brief electrical stimulation of the forelimb. This procedure was followed by intracortical microstimulation (ICMS) mapping to identify the motor representations in the imaged cortex. The combined use of VSD imaging and ICMS revealed that both the CFA and RFA received excitatory synaptic inputs after forelimb stimulation. Further evaluation of the sensory input pathway to the RFA revealed that the forelimb-evoked RFA response was abolished either by the pharmacological inactivation of the CFA or a cortical transection between the CFA and RFA. These results suggest that forelimb-related sensory inputs would be transmitted to the RFA from the CFA via the cortico-cortical pathway. Thus, the present findings imply that sensory information processed in the RFA may be used for the generation of coordinated forelimb movements, which would be similar to the function of the higher-order motor cortex in primates. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  8. Self-regulation of primary motor cortex activity with motor imagery induces functional connectivity modulation: A real-time fMRI neurofeedback study.

    Science.gov (United States)

    Makary, Meena M; Seulgi, Eun; Kyungmo Park

    2017-07-01

    Recent developments in data acquisition of functional magnetic resonance imaging (fMRI) have led to rapid preprocessing and analysis of brain activity in a quasireal-time basis, what so called real-time fMRI neurofeedback (rtfMRI-NFB). This information is fed back to subjects allowing them to gain a voluntary control over their own region-specific brain activity. Forty-one healthy participants were randomized into an experimental (NFB) group, who received a feedback directly proportional to their brain activity from the primary motor cortex (M1), and a control (CTRL) group who received a sham feedback. The M1 ROI was functionally localized during motor execution and imagery tasks. A resting-state functional run was performed before and after the neurofeedback training to investigate the default mode network (DMN) modulation after training. The NFB group revealed increased DMN functional connectivity after training to the cortical and subcortical sensory/motor areas (M1/S1 and caudate nucleus, respectively), which may be associated with sensorimotor processing of learning in the resting state. These results show that motor imagery training through rtfMRI-NFB could modulate the DMN functional connectivity to motor-related areas, suggesting that this modulation potentially subserved the establishment of motor learning in the NFB group.

  9. Motor Speech Apraxia in a 70-Year-Old Man with Left Dorsolateral Frontal Arachnoid Cyst: A [18F]FDG PET-CT Study

    Directory of Open Access Journals (Sweden)

    Nicolaas I. Bohnen

    2016-01-01

    Full Text Available Motor speech apraxia is a speech disorder of impaired syllable sequencing which, when seen with advancing age, is suggestive of a neurodegenerative process affecting cortical structures in the left frontal lobe. Arachnoid cysts can be associated with neurologic symptoms due to compression of underlying brain structures though indications for surgical intervention are unclear. We present the case of a 70-year-old man who presented with a two-year history of speech changes along with decreased initiation and talkativeness, shorter utterances, and dysnomia. [18F]Fluorodeoxyglucose (FDG Positron Emission and Computed Tomography (PET-CT and magnetic resonance imaging (MRI showed very focal left frontal cortical hypometabolism immediately adjacent to an arachnoid cyst but no specific evidence of a neurodegenerative process.

  10. Primary intimal sarcoma of the left atrium presenting with constitutional symptoms

    Science.gov (United States)

    Ferreira, António; Felgueiras, Paula; Silva, Augusta; Ribeiro, Carlos; Guerra, Diana; de Melo, Daniel Pereira; Manuel Lopes, José

    2017-01-01

    Abstract Intimal (spindle-cell) sarcomas are exceptionally rare and are highly aggressive cardiac tumors. The authors describe a case of a 43-year-old female, presenting with a 3-month history of constitutional symptoms with fever, night sweats, anorexia and weight loss, associated with productive cough and pleural effusion that was admitted with clinical suspicion of pulmonary tuberculosis. The patient developed sudden acute heart failure symptoms during hospitalization, leading to mechanical ventilation. Computed tomography scan with contrast showed a cardiac tumor filling the left atrium causing compression of pulmonary veins. Surgical resection was performed and histologic examination revealed an intimal sarcoma. Although commenced on adjuvant chemotherapy, local tumor recurrence occurred with pericardium invasion. The patient died within 4 months of initial diagnosis. This report aims to describe an unusual presentation of this rare disease entity, and to discuss its highly aggressive clinical course. PMID:28694971

  11. Association of Post-Saline Load Plasma Aldosterone Levels With Left Ventricular Hypertrophy in Primary Hypertension.

    Science.gov (United States)

    Catena, Cristiana; Verheyen, Nicolas D; Url-Michitsch, Marion; Kraigher-Krainer, Elisabeth; Colussi, GianLuca; Pilz, Stefan; Tomaschitz, Andreas; Pieske, Burkert; Sechi, Leonardo A

    2016-03-01

    Left ventricular hypertrophy (LVH) is an independent risk factor for cardiovascular morbidity in hypertension. Current evidence suggests a contribution to LVH of plasma aldosterone levels that are inappropriately elevated for the salt status. The aim of this study was to investigate whether inappropriate modulation of aldosterone production by a saline load is associated with left ventricular (LV) mass in hypertensive patients. In 90 hypertensive patients free of clinically relevant cardiovascular complications in whom secondary forms of hypertension were ruled out, we performed a standard intravenous saline load (0.9% NaCl, 2 l in 4 hours) with measurement of plasma aldosterone and active renin at baseline and end of infusion. Bi-dimensional echocardiography was performed for the assessment of cardiac morphology and function. LVH was present in 19% of patients who had significantly worse renal function and higher body mass, blood pressure, and plasma aldosterone levels measured both at baseline and after the saline load than patients without LVH. LV mass was directly related to age, body mass, systolic blood pressure, duration of hypertension, baseline, and post-saline load plasma aldosterone levels and inversely to glomerular filtration. Multivariate regression analysis showed independent correlation of LV mass with body mass, systolic blood pressure, and plasma aldosterone levels measured after intravenous saline load, but not at baseline. In patients with hypertension, aldosterone levels measured after intravenous saline load are related to LV mass independent of age, body mass, and blood pressure, suggesting that limited ability of salt to modulate aldosterone production could contribute to LVH. © American Journal of Hypertension, Ltd 2015. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Primary Meningeal Melanocytoma in the Left Temporal Lobe Associated with Nevus Ota

    DEFF Research Database (Denmark)

    Samadian, Mohammad; Nejad, Ali Mousavi; Bakhtevari, Mehrdad Hosseinzadeh

    2015-01-01

    BACKGROUND: Primary melanocytic neoplasms of the central nervous system are rare lesions arising from melanocytes of the leptomeninge that are found at highest density underneath the brain stem and along the upper cervical spinal cord. Thus most reported cases of meningeal melanocytomas are locat...

  13. The Non-motor Features of Essential Tremor: A Primary Disease Feature or Just a Secondary Phenomenon?

    Directory of Open Access Journals (Sweden)

    Ketan Jhunjhunwala

    2014-08-01

    Full Text Available Essential tremor (ET is a pathologically heterogeneous neurodegenerative disorder with both motor and increasingly recognized non-motor features. It is debated whether the non-motor manifestations in ET result from widespread neurodegeneration or are merely secondary to impaired motor functions and decreased quality of life due to tremor. It is important to review these features to determine how to best treat the non-motor symptoms of patients and to understand the basic pathophysiology of the disease and develop appropriate pharmacotherapies. In this review, retrospective and prospective clinical studies were critically analyzed to identify possible correlations between the severities of non-motor features and tremor. We speculated that if such a correlation existed, the non-motor features were likely to be secondary to tremor. According to the current literature, the deficits in executive function, attention, concentration, and memory often observed in ET are likely to be a primary manifestation of the disease. It has also been documented that patients with ET often exhibit characteristic personality traits. However, it remains to be determined whether the other non-motor features often seen in ET, such as anxiety, depression, and sleep disturbances are primary or secondary to motor manifestations of ET and subsequent poor quality of life. Finally, there is evidence that patients with ET can also have impaired color vision, disturbances of olfaction, and hearing impairments, though there are few studies in these areas. Further investigations of large cohorts of patients with ET are required to understand the prevalence, nature, and true significance of the non-motor features in ET.

  14. Observing how others lift light or heavy objects: which visual cues mediate the encoding of muscular force in the primary motor cortex?

    Science.gov (United States)

    Alaerts, Kaat; Swinnen, Stephan P; Wenderoth, Nicole

    2010-06-01

    Observers are able to judge quite accurately the weights lifted by others. Only recently, neuroscience has focused on the role of the motor system to accomplish this task. In this respect, a previous transcranial magnetic stimulation (TMS) study showed that the muscular force requirements of an observed action are encoded by the primary motor cortex (M1). Overall, three distinct visual sources may provide information on the applied force of an observed lifting action, namely, (i) the perceived kinematics, (ii) the hand contraction state and finally (iii) intrinsic object properties. The principal aim of the present study was to disentangle these three visual sources and to explore their importance in mediating the encoding of muscular force requirements in the observer's motor system. A series of experiments are reported in which TMS was used to measure 'force-related' responses from the hand representation in left M1 while subjects observed distinct action-stimuli. Overall, results indicated that observation-induced activity in M1 reflects the level of observed force when kinematic cues of the lift (exp. 1) or cues on the hand contraction state (exp. 2) are available. Moreover, when kinematic cues and intrinsic object properties provide distinct information on the force requirements of an observed lifting action, results from experiment 3 indicated a strong preference for the use of kinematic features in mapping the force requirements of the observed action. In general, these findings support the hypothesis that the primary motor cortex contributes to action observation by mapping the muscle-related features of observed actions. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. A Dextral Primary Progressive Aphasia Patient with Right Dominant Hypometabolism and Tau Accumulation and Left Dominant Amyloid Accumulation

    Directory of Open Access Journals (Sweden)

    Young Kyoung Jang

    2016-04-01

    Full Text Available Background: Primary progressive aphasia (PPA is a degenerative disease that presents as progressive decline of language ability with preservation of other cognitive functions in the early stages. Three subtypes of PPA are known: progressive nonfluent aphasia, semantic dementia, and logopenic aphasia (LPA. Patients and Methods: We report the case of a 77-year-old patient with PPA whose clinical findings did not correspond to the three subtypes but mainly fit LPA. Unlike other LPA patients, however, this patient showed a right hemisphere predominant glucose hypometabolism and tau accumulation and a left hemisphere predominant amyloid deposition. The right-handed patient presented with comprehension difficulty followed by problems naming familiar objects. This isolated language problem had deteriorated rapidly for 2 years, followed by memory difficulties and impairment of daily activities. Using a Korean version of the Western Aphasia Battery, aphasia was consistent with a severe form of Wernicke's aphasia. According to the brain magnetic resonance imaging and 18F-fludeoxyglucose positron emission tomography results, right hemisphere atrophy and hypometabolism, more predominant on the right hemisphere than the left, were apparent despite the fact that Edinburgh Handedness Questionnaire scores indicated strong right-handedness. On Pittsburgh compound B-PET, amyloid accumulation was asymmetrical with the left hemisphere being more predominant than the right, whereas 18F-T807-PET showed a right dominant tau accumulation. Conclusions: This is the first report of atypical PPA, in which the patient exhibited crossed aphasia and asymmetrical amyloid accumulation.

  16. GABA and primary motor cortex inhibition in young and older adults: a multimodal reliability study.

    Science.gov (United States)

    Mooney, Ronan A; Cirillo, John; Byblow, Winston D

    2017-07-01

    The effects of healthy aging on γ-aminobutyric acid (GABA) within primary motor cortex (M1) remain poorly understood. Studies have reported contrasting results, potentially due to limitations with the common assessment technique. The aim of the present study was to investigate the effect of healthy aging on M1 GABA concentration and neurotransmission using a multimodal approach. Fifteen young and sixteen older adults participated in this study. Magnetic resonance spectroscopy (MRS) was used to measure M1 GABA concentration. Single-pulse and threshold-tracking paired-pulse transcranial magnetic stimulation (TMS) protocols were used to examine cortical silent period duration, short- and long-interval intracortical inhibition (SICI and LICI), and late cortical disinhibition (LCD). The reliability of TMS measures was examined with intraclass correlation coefficient analyses. SICI at 1 ms was reduced in older adults (15.13 ± 2.59%) compared with young (25.66 ± 1.44%; P = 0.002). However, there was no age-related effect for cortical silent period duration, SICI at 3 ms, LICI, or LCD (all P > 0.66). The intersession reliability of threshold-tracking measures was good to excellent for both young (range 0.75-0.96) and older adults (range 0.88-0.93). Our findings indicate that extrasynaptic inhibition may be reduced with advancing age, whereas GABA concentration and synaptic inhibition are maintained. Furthermore, MRS and threshold-tracking TMS provide valid and reliable assessment of M1 GABA concentration and neurotransmission, respectively, in young and older adults. NEW & NOTEWORTHY γ-Aminobutyric acid (GABA) in primary motor cortex was assessed in young and older adults using magnetic resonance spectroscopy and threshold-tracking paired-pulse transcranial magnetic stimulation. Older adults exhibited reduced extrasynaptic inhibition (short-interval intracortical inhibition at 1 ms) compared with young, whereas GABA concentration and synaptic inhibition were

  17. Observing back pain provoking lifting actions modulates corticomotor excitability of the observer's primary motor cortex.

    Science.gov (United States)

    Lehner, Rea; Meesen, Raf; Wenderoth, Nicole

    2017-07-01

    Observing another person experiencing exogenously inflicted pain (e.g. by a sharp object penetrating a finger) modulates the excitability of the observer' primary motor cortex (M1). By contrast, far less is known about the response to endogenously evoked pain such as sudden back pain provoked by lifting a heavy object. Here, participants (n=26) observed the lifting of a heavy object. During this action the actor (1) flexed and extended the legs (LEG), (2) flexed and extended the back (BACK) or (3) flexed and extended the back which caused visible pain (BACKPAIN). Corticomotor excitability was measured by applying a single transcranial magnetic stimulation pulse to the M1 representation of the muscle erector spinae and participants scored their perception of the actor's pain on the numeric pain rating scale (NPRS). The participants scored vicarious pain as highest during the BACKPAIN condition and lowest during the LEG condition. MEP size was significantly lower for the LEG than the BACK and BACKPAIN condition. Although we found no statistical difference in the motor-evoked potential (MEP) size between the conditions BACK and BACKPAIN, there was a significant correlation between the difference in NPRS scores between the conditions BACKPAIN and BACK and the difference in MEP size between these conditions. Participants who believed the vicarious pain to be much stronger in the BACKPAIN than in the BACK condition also exhibited higher MEPs for the BACKPAIN than the BACK condition. Our results indicate that observing how others lift heavy objects facilitates motor representations of back muscles in the observer. Modulation occurs in a movement-specific manner and is additionally modulated by the extent to which the participants perceived the actor's pain. Our findings suggest that movement observation might be a promising paradigm to study the brain's response to back pain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Chronic treatment with rivastigmine in patients with Alzheimer's disease: a study on primary motor cortex excitability tested by 5 Hz-repetitive transcranial magnetic stimulation.

    Science.gov (United States)

    Trebbastoni, A; Gilio, F; D'Antonio, F; Cambieri, C; Ceccanti, M; de Lena, C; Inghilleri, M

    2012-05-01

    To investigate changes in cortical excitability and short-term synaptic plasticity we delivered 5 Hz repetitive transcranial magnetic stimulation (rTMS) over the primary motor cortex in 11 patients with mild-to-moderate Alzheimer's disease (AD) before and after chronic therapy with rivastigmine. Resting motor threshold (RMT), motor evoked potential (MEP), cortical silent period (CSP) after single stimulus and MEP facilitation during rTMS trains were tested three times during treatment. All patients underwent neuropsychological tests before and after receiving rivastigmine. rTMS data in patients were compared with those from age-matched healthy controls. At baseline, RMT was significantly lower in patients than in controls whereas CSP duration and single MEP amplitude were similar in both groups. In patients, rTMS failed to induce the normal MEP facilitation during the trains. Chronic rivastigmine intake significantly increased MEP amplitude after a single stimulus, whereas it left the other neurophysiological variables studied unchanged. No significant correlation was found between patients' neuropsychological test scores and TMS measures. Chronic treatment with rivastigmine has no influence on altered cortical excitability and short-term synaptic plasticity as tested by 5 Hz-rTMS. The limited clinical benefits related to cholinesterase inhibitor therapy in patients with AD depend on factors other than improved plasticity within the cortical glutamatergic circuits. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Topography and collateralization of dopaminergic projections to primary motor cortex in rats.

    Science.gov (United States)

    Hosp, Jonas A; Nolan, Helen E; Luft, Andreas R

    2015-05-01

    Dopaminergic signaling within the primary motor cortex (M1) is necessary for successful motor skill learning. Dopaminergic neurons projecting to M1 are located in the ventral tegmental area (VTA, nucleus A10) of the midbrain. It is unknown which behavioral correlates are encoded by these neurons. The objective here is to investigate whether VTA-M1 fibers are collaterals of projections to prefrontal cortex (PFC) or nucleus accumbens (NAc) or if they form a distinct pathway. In rats, multiple-site retrograde fluorescent tracers were injected into M1, PFC and the core region of the NAc and VTA sections investigated for concomitant labeling of different tracers. Dopaminergic neurons projecting to M1, PFC and NAc were found in nucleus A10 and to a lesser degree in the medial nucleus A9. Neurons show high target specificity, minimal collateral branching to other than their target area and hardly cross the midline. Whereas PFC- and NAc-projecting neurons are indistinguishably intermingled within the ventral portion of dopaminergic nuclei in middle and caudal midbrain, M1-projecting neurons are only located within the dorsal part of the rostral midbrain. Within M1, the forelimb representation receives sevenfold more dopaminergic projections than the hindlimb representation. This strong rostro-caudal gradient as well as the topographical preference to dorsal structures suggest that projections to M1 emerged late in the development of the dopaminergic systems in and form a functionally distinct system.

  20. Neurons in Primary Motor Cortex Encode Hand Orientation in a Reach-to-Grasp Task.

    Science.gov (United States)

    Ma, Chaolin; Ma, Xuan; Fan, Jing; He, Jiping

    2017-08-01

    It is disputed whether those neurons in the primary motor cortex (M1) that encode hand orientation constitute an independent channel for orientation control in reach-to-grasp behaviors. Here, we trained two monkeys to reach forward and grasp objects positioned in the frontal plane at different orientation angles, and simultaneously recorded the activity of M1 neurons. Among the 2235 neurons recorded in M1, we found that 18.7% had a high correlation exclusively with hand orientation, 15.9% with movement direction, and 29.5% with both movement direction and hand orientation. The distributions of neurons encoding hand orientation and those encoding movement direction were not uniform but coexisted in the same region. The trajectory of hand rotation was reproduced by the firing patterns of the orientation-related neurons independent of the hand reaching direction. These results suggest that hand orientation is an independent component for the control of reaching and grasping activity.

  1. Decoding complete reach and grasp actions from local primary motor cortex populations.

    Science.gov (United States)

    Vargas-Irwin, Carlos E; Shakhnarovich, Gregory; Yadollahpour, Payman; Mislow, John M K; Black, Michael J; Donoghue, John P

    2010-07-21

    How the activity of populations of cortical neurons generates coordinated multijoint actions of the arm, wrist, and hand is poorly understood. This study combined multielectrode recording techniques with full arm motion capture to relate neural activity in primary motor cortex (M1) of macaques (Macaca mulatta) to arm, wrist, and hand postures during movement. We find that the firing rate of individual M1 neurons is typically modulated by the kinematics of multiple joints and that small, local ensembles of M1 neurons contain sufficient information to reconstruct 25 measured joint angles (representing an estimated 10 functionally independent degrees of freedom). Beyond showing that the spiking patterns of local M1 ensembles represent a rich set of naturalistic movements involving the entire upper limb, the results also suggest that achieving high-dimensional reach and grasp actions with neuroprosthetic devices may be possible using small intracortical arrays like those already being tested in human pilot clinical trials.

  2. Posterior Thalamic Nucleus Modulation of Tactile Stimuli Processing in Rat Motor and Primary Somatosensory Cortices

    Directory of Open Access Journals (Sweden)

    Diana Casas-Torremocha

    2017-09-01

    Full Text Available Rodents move rhythmically their facial whiskers and compute differences between signals predicted and those resulting from the movement to infer information about objects near their head. These computations are carried out by a large network of forebrain structures that includes the thalamus and the primary somatosensory (S1BF and motor (M1wk cortices. Spatially and temporally precise mechanorreceptive whisker information reaches the S1BF cortex via the ventroposterior medial thalamic nucleus (VPM. Other whisker-related information may reach both M1wk and S1BF via the axons from the posterior thalamic nucleus (Po. However, Po axons may convey, in addition to direct sensory signals, the dynamic output of computations between whisker signals and descending motor commands. It has been proposed that this input may be relevant for adjusting cortical responses to predicted vs. unpredicted whisker signals, but the effects of Po input on M1wk and S1BF function have not been directly tested or compared in vivo. Here, using electrophysiology, optogenetics and pharmacological tools, we compared in adult rats M1wk and S1BF in vivo responses in the whisker areas of the motor and primary somatosensory cortices to passive multi-whisker deflection, their dependence on Po activity, and their changes after a brief intense activation of Po axons. We report that the latencies of the first component of tactile-evoked local field potentials in M1wk and S1BF are similar. The evoked potentials decrease markedly in M1wk, but not in S1BF, by injection in Po of the GABAA agonist muscimol. A brief high-frequency electrical stimulation of Po decreases the responsivity of M1wk and S1BF cells to subsequent whisker stimulation. This effect is prevented by the local application of omega-agatoxin, suggesting that it may in part depend on GABA release by fast-spiking parvalbumin (PV-expressing cortical interneurons. Local optogenetic activation of Po synapses in different

  3. Mirror therapy in lower limb amputees. A look beyond primary motor cortex reorganization

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, S.; Essmeister, M.; Sycha, T.; Auff, E. [Vienna Medical Univ. (Austria). Dept. of Neurology; Kasprian, G.; Furtner, J.; Schoepf, V.; Prayer, D. [Vienna Medical Univ. (Austria). Dept. of Neuroradiology

    2011-11-15

    Phantom pain in upper limb amputees is associated with the extent of reorganization in the primary sensorimotor cortex. Mirror visual feedback therapy has been shown to improve phantom pain. We investigated the extent of cortical reorganization in lower limb amputees and changes in neural activity induced by mirror therapy. Eight lower limb amputees underwent 12 sessions of MVFT and functional magnetic resonance imaging (fMRI) of the brain before the first and after the last MVFT session. FMRI sessions consisted of two runs in which subjects were instructed to perform repetitive movement of the healthy and phantom ankle. Before MVFT, the mean phantom pain intensity was 4.6 {+-} 3.1 on a visual analog scale and decreased to 1.8 {+-} 1.7 (p = 0.04). We did not observe a consistent pattern of cortical activation in primary sensorimotor areas during phantom limb movements. Following MVFT, increased activity was obtained in the right orbitofrontal cortex during phantom ankle movements. Comparison of cortical activity during movements of the phantom ankle and the intact ankle showed significantly higher activity in the left inferior frontal cortex (pars triangularis). These results question the known association between phantom pain and primary sensorimotor reorganization and propose reorganizational changes involving multiple cortical areas in lower limb amputees. Finally, reduction of phantom pain after mirror visual feedback therapy was associated with increased prefrontal cortical activity during phantom ankle movements. (orig.)

  4. Mirror therapy in lower limb amputees. A look beyond primary motor cortex reorganization

    International Nuclear Information System (INIS)

    Seidel, S.; Essmeister, M.; Sycha, T.; Auff, E.; Kasprian, G.; Furtner, J.; Schoepf, V.; Prayer, D.

    2011-01-01

    Phantom pain in upper limb amputees is associated with the extent of reorganization in the primary sensorimotor cortex. Mirror visual feedback therapy has been shown to improve phantom pain. We investigated the extent of cortical reorganization in lower limb amputees and changes in neural activity induced by mirror therapy. Eight lower limb amputees underwent 12 sessions of MVFT and functional magnetic resonance imaging (fMRI) of the brain before the first and after the last MVFT session. FMRI sessions consisted of two runs in which subjects were instructed to perform repetitive movement of the healthy and phantom ankle. Before MVFT, the mean phantom pain intensity was 4.6 ± 3.1 on a visual analog scale and decreased to 1.8 ± 1.7 (p = 0.04). We did not observe a consistent pattern of cortical activation in primary sensorimotor areas during phantom limb movements. Following MVFT, increased activity was obtained in the right orbitofrontal cortex during phantom ankle movements. Comparison of cortical activity during movements of the phantom ankle and the intact ankle showed significantly higher activity in the left inferior frontal cortex (pars triangularis). These results question the known association between phantom pain and primary sensorimotor reorganization and propose reorganizational changes involving multiple cortical areas in lower limb amputees. Finally, reduction of phantom pain after mirror visual feedback therapy was associated with increased prefrontal cortical activity during phantom ankle movements. (orig.)

  5. Artifact correction and source analysis of early electroencephalographic responses evoked by transcranial magnetic stimulation over primary motor cortex.

    Science.gov (United States)

    Litvak, Vladimir; Komssi, Soile; Scherg, Michael; Hoechstetter, Karsten; Classen, Joseph; Zaaroor, Menashe; Pratt, Hillel; Kahkonen, Seppo

    2007-08-01

    Analyzing the brain responses to transcranial magnetic stimulation (TMS) using electroencephalography (EEG) is a promising method for the assessment of functional cortical connectivity and excitability of areas accessible to this stimulation. However, until now it has been difficult to analyze the EEG responses during the several tens of milliseconds immediately following the stimulus due to TMS-induced artifacts. In the present study we show that by combining a specially adapted recording system with software artifact correction it is possible to remove a major part of the artifact and analyze the cortical responses as early as 10 ms after TMS. We used this methodology to examine responses of left and right primary motor cortex (M1) to TMS at different intensities. Based on the artifact-corrected data we propose a model for the cortical activation following M1 stimulation. The model revealed the same basic response sequence for both hemispheres. A large part of the response could be accounted for by two sources: a source close to the stimulation site (peaking approximately 15 ms after the stimulus) and a midline frontal source ipsilateral to the stimulus (peaking approximately 25 ms). In addition the model suggests responses in ipsilateral temporo-parietal junction areas (approximately 35 ms) and ipsilateral (approximately 30 ms) and middle (approximately 50 ms) cerebellum. Statistical analysis revealed significant dependence on stimulation intensity for the ipsilateral midline frontal source. The methodology developed in the present study paves the way for the detailed study of early responses to TMS in a wide variety of brain areas.

  6. Single motor unit firing behavior in the right trapezius muscle during rapid movement of right or left index finger

    DEFF Research Database (Denmark)

    Søgaard, Karen; Olsen, Henrik B; Blangsted, Anne K

    2014-01-01

    were defined as doublets. For all MU IFR was spike triggered averaged across the 10 DC to show the modulation during DC as well as for calculation of the cross correlation coefficient (CCC). RESULTS: All subjects showed surface EMG activity in both right and left trapezius ranging from 1.8 %MVE to 2...... as %MVE. The intramuscular EMG signals were decomposed into individual MU action potential trains using a computer algorithm based on signal shape recognition and manual editing. Instantaneous firing rate (IFR) was calculated as the inverse of each inter-spike interval (ISI). All ISI shorter than 20 ms...... in IFR with a clear temporal relation to the DC. During left hand DC 15 MUs were identified in four subjects, for two of the subjects with IFR modulations clearly related to DC. During both ipsi- and contralateral DC, doublets occurred sporadically as well as related to DC Conclusion: In conclusion, DC...

  7. Differences in short-term primary motor cortex synaptic potentiation as assessed by repetitive transcranial magnetic stimulation in migraine patients with and without aura.

    Science.gov (United States)

    Conte, Antonella; Barbanti, Piero; Frasca, Vittorio; Iacovelli, Elisa; Gabriele, Maria; Giacomelli, Elena; Aurilia, Cinzia; Pichiorri, Floriana; Gilio, Francesca; Inghilleri, Maurizio

    2010-01-01

    To find out more about glutamatergic and gabaergic transmission in migraine, in this study we investigated glutamate-dependent short-term synaptic potentiation and GABA-dependent inhibitory cortical interneuron excitability as assessed by 5Hz-rTMS delivered over primary motor cortex (M1) (motor evoked potential, MEP, amplitude facilitation and cortical silent period, CSP, duration lengthening) in migraine patients with (MA) and without aura (MwoA) and healthy controls. We studied 37 patients with migraine (19 MA and 18 MwoA) and 19 healthy control subjects. 5Hz-rTMS was delivered at 120% resting motor threshold to the hand motor area of the left hemisphere with the target muscle at rest and during contraction. Three of the MA patients were also tested at the end of visual aura during a spontaneous migraine attack. ANOVA showed that the MEP significantly increased in size and CSP significantly lengthened during 5Hz-rTMS in the three groups tested. The 5Hz-rTMS-induced MEP facilitation differed significantly being highest in MA patients. In the three patients tested both ictally and interictally the MEP increased during the interictal session but remained unchanged when the visual aura ended. Our study shows that the neurophysiological feature that differentiates MA patients from MwoA patients and healthy controls is an abnormal M1 susceptibility to 5Hz-rTMS both outside and during the attack suggesting that glutamate-dependent short-term M1 cortical potentiation patterns differ in migraine with and without aura. Copyright 2009 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  8. Different strategies do not moderate primary motor cortex involvement in mental rotation: a TMS study

    Directory of Open Access Journals (Sweden)

    Koeneke Susan

    2007-08-01

    Full Text Available Abstract Background Regions of the dorsal visual stream are known to play an essential role during the process of mental rotation. The functional role of the primary motor cortex (M1 in mental rotation is however less clear. It has been suggested that the strategy used to mentally rotate objects determines M1 involvement. Based on the strategy hypothesis that distinguishes between an internal and an external strategy, our study was designed to specifically test the relation between strategy and M1 activity. Methods Twenty-two subjects were asked to participate in a standard mental rotation task. We used specific picture stimuli that were supposed to trigger either the internal (e.g. pictures of hands or tools or the external strategy (e.g. pictures of houses or abstract figures. The strategy hypothesis predicts an involvement of M1 only in case of stimuli triggering the internal strategy (imagine grasping and rotating the object by oneself. Single-pulse Transcranial Magnetic Stimulation (TMS was employed to quantify M1 activity during task performance by measuring Motor Evoked Potentials (MEPs at the right hand muscle. Results Contrary to the strategy hypothesis, we found no interaction between stimulus category and corticospinal excitability. Instead, corticospinal excitability was generally increased compared with a resting baseline although subjects indicated more frequent use of the external strategy for all object categories. Conclusion This finding suggests that M1 involvement is not exclusively linked with the use of the internal strategy but rather directly with the process of mental rotation. Alternatively, our results might support the hypothesis that M1 is active due to a 'spill-over' effect from adjacent brain regions.

  9. Different strategies do not moderate primary motor cortex involvement in mental rotation: a TMS study.

    Science.gov (United States)

    Bode, Stefan; Koeneke, Susan; Jäncke, Lutz

    2007-08-07

    Regions of the dorsal visual stream are known to play an essential role during the process of mental rotation. The functional role of the primary motor cortex (M1) in mental rotation is however less clear. It has been suggested that the strategy used to mentally rotate objects determines M1 involvement. Based on the strategy hypothesis that distinguishes between an internal and an external strategy, our study was designed to specifically test the relation between strategy and M1 activity. Twenty-two subjects were asked to participate in a standard mental rotation task. We used specific picture stimuli that were supposed to trigger either the internal (e.g. pictures of hands or tools) or the external strategy (e.g. pictures of houses or abstract figures). The strategy hypothesis predicts an involvement of M1 only in case of stimuli triggering the internal strategy (imagine grasping and rotating the object by oneself). Single-pulse Transcranial Magnetic Stimulation (TMS) was employed to quantify M1 activity during task performance by measuring Motor Evoked Potentials (MEPs) at the right hand muscle. Contrary to the strategy hypothesis, we found no interaction between stimulus category and corticospinal excitability. Instead, corticospinal excitability was generally increased compared with a resting baseline although subjects indicated more frequent use of the external strategy for all object categories. This finding suggests that M1 involvement is not exclusively linked with the use of the internal strategy but rather directly with the process of mental rotation. Alternatively, our results might support the hypothesis that M1 is active due to a 'spill-over' effect from adjacent brain regions.

  10. Abnormal cortical synaptic plasticity in primary motor area in progressive supranuclear palsy.

    Science.gov (United States)

    Conte, Antonella; Belvisi, Daniele; Bologna, Matteo; Ottaviani, Donatella; Fabbrini, Giovanni; Colosimo, Carlo; Williams, David R; Berardelli, Alfredo

    2012-03-01

    No study has yet investigated whether cortical plasticity in primary motor area (M1) is abnormal in patients with progressive supranuclear palsy (PSP). We studied M1 plasticity in 15 PSP patients and 15 age-matched healthy subjects. We used intermittent theta-burst stimulation (iTBS) to investigate long-term potentiation (LTP) and continuous TBS (cTBS) to investigate long-term depression (LTD)-like cortical plasticity in M1. Ten patients underwent iTBS again 1 year later. We also investigated short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) in M1 with paired-pulse transcranial magnetic stimulation, tested H reflex from upper limb flexor muscles before and after iTBS, and measured motor evoked potential (MEP) input-output (I/O) curves before and after iTBS. iTBS elicited a significantly larger MEP facilitation after iTBS in patients than in healthy subjects. Whereas in healthy subjects, cTBS inhibited MEP, in patients it significantly facilitated MEPs. In patients, SICI was reduced, whereas ICF was normal. H reflex size remained unchanged after iTBS. Patients had steeper MEP I/O slopes than healthy subjects at baseline and became even more steeper after iTBS only in patients. The iTBS-induced abnormal MEP facilitation in PSP persisted at 1-year follow-up. In conclusion, patients with PSP have abnormal M1 LTP/LTD-like plasticity. The enhanced LTP-like cortical synaptic plasticity parallels disease progression.

  11. Altered neuronal activity in the primary motor cortex and globus pallidus after dopamine depletion in rats.

    Science.gov (United States)

    Wang, Min; Li, Min; Geng, Xiwen; Song, Zhimin; Albers, H Elliott; Yang, Maoquan; Zhang, Xiao; Xie, Jinlu; Qu, Qingyang; He, Tingting

    2015-01-15

    The involvement of dopamine (DA) neuron loss in the etiology of Parkinson's disease has been well documented. The neural mechanisms underlying the effects of DA loss and the resultant motor dysfunction remain unknown. To gain insights into how loss of DA disrupts the electrical processes in the cortico-subcortical network, the present study explores the effects of DA neuron depletion on electrical activity in the primary motor cortex (M1), on the external and the internal segment of the globus pallidus (GPe and GPi respectively), and on their temporal relationships. Comparison of local field potentials (LFPs) in these brain regions from unilateral hemispheric DA neuron depleted rats and neurologically intact rats revealed that the spectrum power of LFPs in 12-70Hz (for M1, and GPe) and in 25-40Hz (for GPi) was significantly greater in the DA depleted rats than that in the control group. These changes were associated with a shortening of latency in LFP activities between M1 and GPe, from several hundred milliseconds in the intact animals to close to zero in the DA depleted animals. LFP oscillations in M1 were significantly more synchronized with those in GPe in the DA depleted rats compared with those in the control rats. By contrast, the synchronization of oscillation in LFP activities between M1 and GPi did not differ between the DA depleted and intact rats. Not surprisingly, rats that had DA neuron depletion spent more time along the ladder compared with the control rats. These data suggest that enhanced oscillatory activity and increased synchronization of LFPs may contribute to movement impairment in the rat model of Parkinson's disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Intermittent θ burst stimulation over primary motor cortex enhances movement-related β synchronisation.

    Science.gov (United States)

    Hsu, Ya-Fang; Liao, Kwong-Kum; Lee, Po-Lei; Tsai, Yun-An; Yeh, Chia-Lung; Lai, Kuan-Lin; Huang, Ying-Zu; Lin, Yung-Yang; Lee, I-Hui

    2011-11-01

    The objective of this study is to investigate how transcranial magnetic intermittent theta burst stimulation (iTBS) with a prolonged protocol affects human cortical excitability and movement-related oscillations. Using motor-evoked potentials (MEPs) and movement-related magnetoencephalography (MEG), we assessed the changes of corticospinal excitability and cortical oscillations after iTBS with double the conventional stimulation time (1200 pulses, iTBS1200) over the primary motor cortex (M1) in 10 healthy subjects. Continuous TBS (cTBS1200) and sham stimulation served as controls. iTBS1200 facilitated MEPs evoked from the conditioned M1, while inhibiting MEPs from the contralateral M1 for 30 min. By contrast, cTBS1200 inhibited MEPs from the conditioned M1. Importantly, empirical mode decomposition-based MEG analysis showed that the amplitude of post-movement beta synchronisation (16-26 Hz) was significantly increased by iTBS1200 at the conditioned M1, but was suppressed at the nonconditioned M1. Alpha (8-13 Hz) and low gamma-ranged (35-45 Hz) rhythms were not notably affected. Movement kinetics remained consistent throughout. TBS1200 modulated corticospinal excitability in parallel with the direction of conventional paradigms with modestly prolonged efficacy. Moreover, iTBS1200 increased post-movement beta synchronisation of the stimulated M1, and decreased that of the contralateral M1, probably through interhemispheric interaction. Our results provide insight into the underlying mechanism of TBS and reinforce the connection between movement-related beta synchronisation and corticospinal output. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Central Motor Conduction Studies and Diagnostic Magnetic Resonance Imaging in Children with Severe Primary and Secondary Dystonia

    Science.gov (United States)

    McClelland, Verity; Mills, Kerry; Siddiqui, Ata; Selway, Richard; Lin, Jean-Pierre

    2011-01-01

    Aim: Dystonia in childhood has many causes. Imaging may suggest corticospinal tract dysfunction with or without coexistent basal ganglia damage. There are very few published neurophysiological studies on children with dystonia; one previous study has focused on primary dystonia. We investigated central motor conduction in 62 children (34 males, 28…

  14. RELATIONS BETWEEN GENERAL MOTOR SKILLS AND HANDBALL SPECIFIC TEST "BALL SLALOM" IN STUDENTS OF THE IV GRADE OF PRIMARY SCHOOL

    Directory of Open Access Journals (Sweden)

    Dragan Branković

    2012-09-01

    Full Text Available Teaching physical education and physical training of children, should be appropriate to their age abilities and needs. Acquire the diversified movement experience is a priority of physical education in junior school age. Students fourth grade of primary school - age 10-11 years, in the sensitive period for developing coordination and speed capabilities. Sports game handball and mode of the game "mini-handball", which is adapted to students age abilities and spatial characteristics of the majority of primary schools, abundant with various tasks, specifically dominated by natural forms of movement - running, jumping, throwing. Therefore, handball has a significant role in solving the tasks of physical education. The specific motor tests and relations with the general motor skills are particularly important for continuous monitoring of motor development of children. The survey was conducted on 79 boys fourth grade of primary school who participated in the electoral sport of handball in the regular physical education classes. The results of the handball test "ball slalom" and its relation with general motor skills of students fourth grade of primary school, should contribute to the perception of the value of handball as the content of physical education, but also to contribute to the selection and forecast performance of children in handball.

  15. Botulinum neurotoxins A and E undergo retrograde axonal transport in primary motor neurons.

    Directory of Open Access Journals (Sweden)

    Laura Restani

    2012-12-01

    Full Text Available The striking differences between the clinical symptoms of tetanus and botulism have been ascribed to the different fate of the parental neurotoxins once internalised in motor neurons. Tetanus toxin (TeNT is known to undergo transcytosis into inhibitory interneurons and block the release of inhibitory neurotransmitters in the spinal cord, causing a spastic paralysis. In contrast, botulinum neurotoxins (BoNTs block acetylcholine release at the neuromuscular junction, therefore inducing a flaccid paralysis. Whilst overt experimental evidence supports the sorting of TeNT to the axonal retrograde transport pathway, recent findings challenge the established view that BoNT trafficking is restricted to the neuromuscular junction by highlighting central effects caused by these neurotoxins. These results suggest a more complex scenario whereby BoNTs also engage long-range trafficking mechanisms. However, the intracellular pathways underlying this process remain unclear. We sought to fill this gap by using primary motor neurons either in mass culture or differentiated in microfluidic devices to directly monitor the endocytosis and axonal transport of full length BoNT/A and BoNT/E and their recombinant binding fragments. We show that BoNT/A and BoNT/E are internalised by spinal cord motor neurons and undergo fast axonal retrograde transport. BoNT/A and BoNT/E are internalised in non-acidic axonal carriers that partially overlap with those containing TeNT, following a process that is largely independent of stimulated synaptic vesicle endo-exocytosis. Following intramuscular injection in vivo, BoNT/A and TeNT displayed central effects with a similar time course. Central actions paralleled the peripheral spastic paralysis for TeNT, but lagged behind the onset of flaccid paralysis for BoNT/A. These results suggest that the fast axonal retrograde transport compartment is composed of multifunctional trafficking organelles orchestrating the simultaneous transfer

  16. Investigation of Current Situation of Learning Motivation, Social Anxiety and Loneliness of the Left-behind Children in Rural Primary School

    Directory of Open Access Journals (Sweden)

    Zhang Biyun

    2015-01-01

    Full Text Available Objective: To understand the situation of learning motivation, social anxiety and loneliness of the left-behind children. Method: Selecting three rural primary schools in Xian’an District of Xianning City to investigate left-behind situation, learning motivation, social anxiety and loneliness of pupils in Grades 4 to 6 in rural primary school in Xian’an District by the use of the MAAT-I-A which is revised by Zhou Bucheng, the Social Anxiety Scale for Children (SASC and the Children’s Loneliness Scale (CLS. Results: (1 The learning motivation of the left-behind children in rural primary school is in a slightly higher medium level. Social anxiety is significantly higher than normal level in Chinese city, and the level of loneliness of about 1/5 of the left-behind children is relatively high. (2 The score of learning motivation, social anxiety and loneliness of the left-behind children in the level of knowledge learning has significant grade differences, without significant gender differences. (3 The level of learning motivation, social anxiety and loneliness of the left-behind children is slightly higher than that of non-left-behind children, but both differences are not significant.

  17. Bi-phasic activation of the primary motor cortex by pain and its relation to pain-evoked potentials - an exploratory study.

    Science.gov (United States)

    Kisler, Lee-Bareket; Weissman-Fogel, Irit; Sinai, Alon; Sprecher, Elliot; Chistyakov, Andrei V; Shamay-Tsoory, Simone; Moscovitz, Nadav; Granovsky, Yelena

    2017-06-15

    The primary motor cortex (M1) is a known target for brain stimulation aimed at pain alleviation in chronic pain patients, yet the mechanisms through which analgesia occurs, and the exact pain-motor interrelations are not fully understood. We used noxious contact heat evoked potentials (CHEPs) and cortical source analysis to further explore the relevance of M1 in pain processing. Twenty-four healthy young females received brief noxious heat stimuli to their left non-dominant volar forearm, simultaneously with CHEPs recordings. Thereafter, the pain-evoked activity of M1 and a control area in the occipital cortex (OC) was analyzed and estimated using sLORETA (standardized low-resolution brain electromagnetic tomography). This analysis revealed two phases of M1 pain-evoked activation (phase 1: the peak at 261.5±25.7ms; phase 2: the peak at 381.3±28.3ms). Canonical correlations revealed that M1, but not the OC, was the main factor contributing to the relation with the CHEPs components. In detail, the activity magnitude of M1 first and second phases was related to the N2 and P2 amplitude, respectively. The latency of the second phase was associated with both N2 and P2 latencies. In relation to pain, the latency of M1's first activity phase was positively correlated with pain ratings, suggesting pain interference to synchronized activity in M1. Our results confirm the established relevance of the primary motor cortex to pain processing. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Quantitative differences in motor abilities and basic anthropometrics characteristics of boys and girls from fourth grade of primary school

    Directory of Open Access Journals (Sweden)

    Buišić Svetlana

    2013-01-01

    Full Text Available In order to determine the quantitative differences in motor abilities and basic anthropometric characteristics by gender, we were testing 123 students of the primary school (fourth grade, 10,5 years old. Testing was applied technique of research. Two basic anthropometric measures and 14 motor tests were selected for measuring instruments. Using canonical discriminant analysis leads to results which indicate the presence of statistically significant quantitative differences in motor abilities of boys and girls but not in the anthropometric chararacteristics. Boys were in almost all motor variables statistically significantly better, except in variables for evaluation of flexibility which is more expressed by girls, but in the anthropometric characteristics there is no statistically significant differences relating to gender. Based on research results it is deduced that we need to differentiate primary students of the fourth grade by gender, because of the different levels of motor skills. Fourth grade students do not only need different approach to the work, they also need more frequent physical activity which is indispensable for development and growth.

  19. Vision first? The development of primary visual cortical networks is more rapid than the development of primary motor networks in humans.

    Directory of Open Access Journals (Sweden)

    Patricia Gervan

    Full Text Available The development of cortical functions and the capacity of the mature brain to learn are largely determined by the establishment and maintenance of neocortical networks. Here we address the human development of long-range connectivity in primary visual and motor cortices, using well-established behavioral measures--a Contour Integration test and a Finger-tapping task--that have been shown to be related to these specific primary areas, and the long-range neural connectivity within those. Possible confounding factors, such as different task requirements (complexity, cognitive load are eliminated by using these tasks in a learning paradigm. We find that there is a temporal lag between the developmental timing of primary sensory vs. motor areas with an advantage of visual development; we also confirm that human development is very slow in both cases, and that there is a retained capacity for practice induced plastic changes in adults. This pattern of results seems to point to human-specific development of the "canonical circuits" of primary sensory and motor cortices, probably reflecting the ecological requirements of human life.

  20. Primary hyperparathyroidism simulating motor neuron disease: case report Hiperparatiroidismo primário simulando doença do neurônio motor: relato de caso

    Directory of Open Access Journals (Sweden)

    Alzira Alves Siqueira Carvalho

    2005-03-01

    Full Text Available We report a case of a 26-year-old man who presented a lower motor neuron syndrome due to hyperparathyroidism. Electromyography showed neurogenic features with normal nerve conduction studies. Hypercalcemia led to the discovery of a primary hyperparathyroidism with gland hyperplasia. Following parathyroid surgery there was recovery of the neurological symptoms.Descrevemos o caso de homem de 26 anos que apresentou síndrome do neurônio motor inferior devido a hiperparatiroidismo. A eletromiografia mostrou aspecto neurogênico com estudos da condução normal. Hipercalcemia levou à descoberta de hiperparatiroidismo primário com hiperplasia da glândula. Após a cirurgia de ressecção da paratiróide, houve regressão dos sintomas neurológicos.

  1. Primary motor cortex changes after amputation correlate with phantom limb pain and the ability to move the phantom limb

    DEFF Research Database (Denmark)

    Raffin, Estelle; Richard, Nathalie; Giraux, Pascal

    2016-01-01

    A substantial body of evidence documents massive reorganization of primary sensory and motor cortices following hand amputation, the extent of which is correlated with phantom limb pain. Many therapies for phantom limb pain are based upon the idea that plastic changes after amputation...... for the maladaptative plasticity model, we demonstrate for the first time that motor capacities of the phantom limb correlate with post-amputation reorganization, and that this reorganization is not limited to the face and hand representations but also includes the proximal upper-limb....

  2. Role of the primary motor cortex in the maintenance and treatment of pain in fibromyalgia.

    Science.gov (United States)

    Castillo Saavedra, Laura; Mendonca, Mariana; Fregni, Felipe

    2014-09-01

    Fibromyalgia is a highly prevalent, debilitating disease, characterized by chronic widespread pain. The mechanisms underlying pain are not completely understood, but it is believed to be associated with important neuroplastic changes in pain-related neural circuits. Although the involvement of the pain matrix in fibromyalgia is well established, another area that has been found to play a role in the maintenance and treatment of chronic pain is the primary motor cortex (M1). Maladaptive plasticity of M1 is a common finding in patients with chronic pain and many studies in animal models and in human subjects have shown that modulation of the activity of this cortical area induces significant analgesic effects. Furthermore, studies in other chronic pain syndromes have found alterations in baseline characteristics of M1, including an increase in cortical excitability and an abnormally enhanced response to incoming sensory stimuli. Given these findings, we hypothesize that M1 is a major modulator of pain in fibromyalgia and therefore its baseline activity reflects this strong feedback between M1 and pain-related neural areas. However, the feedback loop between M1 and the pain matrix is not enough to decrease pain in fibromyalgia per se, thus increasing its modulatory effect by engaging this network through different behavioral and modulatory techniques is a potentially beneficial treatment for pain in fibromyalgia. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Cultural entrainment of motor skill development: Learning to write hiragana in Japanese primary school.

    Science.gov (United States)

    Nonaka, Tetsushi

    2017-09-01

    The aim of the present study was to examine how the social norms shared in a classroom environment influence the development of movement dynamics of handwriting of children who participate in the environment. To look into this issue, the following aspects of the entire period of classroom learning of hiragana letters in Japanese 1st graders who had just entered primary school were studied: First, the structure of classroom events and the specific types of interaction and learning within such environment were described. Second, in the experiment involving 6-year-old children who participated in the class, writing movements of children and their changes over the period of hiragana education were analyzed for each stroke composing letters. It was found that writing movement of children became differentiated in a manner specific to the different types of stroke endings, to which children were systematically encouraged to attend in the classroom. The results provide a detailed description of the process of how dynamics of fine motor movement of children is modulated by the social norms of a populated, classroom environment in a non-Latin alphabet writing system. © 2017 The Authors. Developmental Psychobiology Published by Wiley Periodicals, Inc.

  4. Hypoactivation of the primary sensorimotor cortex in de novo Parkinson's disease. A motor fMRI study under controlled conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tessa, Carlo; Vignali, Claudio [Versilia Hospital, AUSL Versilia, Division of Radiology, Camaiore (Italy); Lucetti, Claudio [Versilia Hospital, AUSL Versilia, Division of Neurology, Camaiore (Italy); Diciotti, Stefano; Paoli, Lorenzo; Ginestroni, Andrea; Mascalchi, Mario [University of Florence, Radiodiagnostic Section, Department of Clinical Physiopathology, Florence (Italy); Cecchi, Paolo; Baldacci, Filippo [University of Pisa, Department of Neuroscience, Pisa (Italy); Giannelli, Marco [Azienda Ospedaliero-Universitaria Pisana, Unit of Medical Physics, Pisa (Italy); Bonuccelli, Ubaldo [Versilia Hospital, AUSL Versilia, Division of Neurology, Camaiore (Italy); University of Pisa, Department of Neuroscience, Pisa (Italy)

    2012-03-15

    Nuclear medicine studies in Parkinson's disease (PD) indicate that nigrostriatal damage causes a widespread cortical hypoactivity assumed to be due to reduced excitatory thalamic outflow. However, so far, functional MRI (fMRI) studies have provided controversial data about this ''functional deafferentation'' phenomenon. To further clarify this issue, we assessed, with fMRI, de novo drug-naive PD patients using a relatively complex motor task under strictly controlled conditions. Nineteen de novo PD patients with right-predominant or bilateral symptoms and 13 age-matched healthy volunteers performed continuous writing of ''8'' figures with the right-dominant hand using a MR-compatible device that enables identification of incorrectly performed tasks and measures the size and the frequency of the ''8''s. The data were analyzed with FSL software and correlated with the clinical severity rated according to the Hoehn and Yahr (HY) staging system. Fifteen (89%) of 19 PD patients and 12 (92%) of 13 controls correctly executed the task. PD patients showed significant hypoactivation of the left primary sensorimotor cortex (SM1) and cerebellum and no hyperactive areas as compared to controls. However, activation in SM1 and supplementary motor area bilaterally, in left supramarginal, parietal inferior, parietal superior and frontal superior gyri as well as in right parietal superior and angular gyri paralleled increasing disease severity as assessed with the HY stage. In line with the ''deafferentation hypothesis'', fMRI demonstrates hypoactivation of the SM1 in the early clinical stage of PD. (orig.)

  5. Investigation of Current Situation of Learning Motivation, Social Anxiety and Loneliness of the Left-behind Children in Rural Primary School

    OpenAIRE

    Zhang Biyun; Xu Ming

    2015-01-01

    Objective: To understand the situation of learning motivation, social anxiety and loneliness of the left-behind children. Method: Selecting three rural primary schools in Xian’an District of Xianning City to investigate left-behind situation, learning motivation, social anxiety and loneliness of pupils in Grades 4 to 6 in rural primary school in Xian’an District by the use of the MAAT-I-A which is revised by Zhou Bucheng, the Social Anxiety Scale for Children (SASC) and the Children’s Lonelin...

  6. Primary motor cortex alterations in Alzheimer disease: A study in the 3xTg-AD model.

    Science.gov (United States)

    Orta-Salazar, E; Feria-Velasco, A I; Díaz-Cintra, S

    2017-04-19

    In humans and animal models, Alzheimer disease (AD) is characterised by accumulation of amyloid-β peptide (Aβ) and hyperphosphorylated tau protein, neuronal degeneration, and astrocytic gliosis, especially in vulnerable brain regions (hippocampus and cortex). These alterations are associated with cognitive impairment (loss of memory) and non-cognitive impairment (motor impairment). The purpose of this study was to identify cell changes (neurons and glial cells) and aggregation of Aβ and hyperphosphorylated tau protein in the primary motor cortex (M1) in 3xTg-AD mouse models at an intermediate stage of AD. We used female 3xTg-AD mice aged 11 months and compared them to non-transgenic mice of the same age. In both groups, we assessed motor performance (open field test) and neuronal damage in M1 using specific markers: BAM10 (extracellular Aβ aggregates), tau 499 (hyperphosphorylated tau protein), GFAP (astrocytes), and Klüver-Barrera staining (neurons). Female 3xTg-AD mice in intermediate stages of the disease displayed motor and cellular alterations associated with Aβ and hyperphosphorylated tau protein deposition in M1. Patients with AD display signs and symptoms of functional impairment from early stages. According to our results, M1 cell damage in intermediate-stage AD affects motor function, which is linked to progression of the disease. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Adaptive threshold hunting for the effects of transcranial direct current stimulation on primary motor cortex inhibition.

    Science.gov (United States)

    Mooney, Ronan A; Cirillo, John; Byblow, Winston D

    2018-06-01

    Primary motor cortex excitability can be modulated by anodal and cathodal transcranial direct current stimulation (tDCS). These neuromodulatory effects may, in part, be dependent on modulation within gamma-aminobutyric acid (GABA)-mediated inhibitory networks. GABAergic function can be quantified non-invasively using adaptive threshold hunting paired-pulse transcranial magnetic stimulation (TMS). The previous studies have used TMS with posterior-anterior (PA) induced current to assess tDCS effects on inhibition. However, TMS with anterior-posterior (AP) induced current in the brain provides a more robust measure of GABA-mediated inhibition. The aim of the present study was to assess the modulation of corticomotor excitability and inhibition after anodal and cathodal tDCS using TMS with PA- and AP-induced current. In 16 young adults (26 ± 1 years), we investigated the response to anodal, cathodal, and sham tDCS in a repeated-measures double-blinded crossover design. Adaptive threshold hunting paired-pulse TMS with PA- and AP-induced current was used to examine separate interneuronal populations within M1 and their influence on corticomotor excitability and short- and long-interval inhibition (SICI and LICI) for up to 60 min after tDCS. Unexpectedly, cathodal tDCS increased corticomotor excitability assessed with AP (P = 0.047) but not PA stimulation (P = 0.74). SICI AP was reduced after anodal tDCS compared with sham (P = 0.040). Pearson's correlations indicated that SICI AP and LICI AP modulation was associated with corticomotor excitability after anodal (P = 0.027) and cathodal tDCS (P = 0.042). The after-effects of tDCS on corticomotor excitability may depend on the direction of the TMS-induced current used to make assessments, and on modulation within GABA-mediated inhibitory circuits.

  8. Dissociating movement from movement timing in the rat primary motor cortex.

    Science.gov (United States)

    Knudsen, Eric B; Powers, Marissa E; Moxon, Karen A

    2014-11-19

    Neural encoding of the passage of time to produce temporally precise movements remains an open question. Neurons in several brain regions across different experimental contexts encode estimates of temporal intervals by scaling their activity in proportion to the interval duration. In motor cortex the degree to which this scaled activity relies upon afferent feedback and is guided by motor output remains unclear. Using a neural reward paradigm to dissociate neural activity from motor output before and after complete spinal transection, we show that temporally scaled activity occurs in the rat hindlimb motor cortex in the absence of motor output and after transection. Context-dependent changes in the encoding are plastic, reversible, and re-established following injury. Therefore, in the absence of motor output and despite a loss of afferent feedback, thought necessary for timed movements, the rat motor cortex displays scaled activity during a broad range of temporally demanding tasks similar to that identified in other brain regions. Copyright © 2014 the authors 0270-6474/14/3415576-11$15.00/0.

  9. COMPARISON OF MOTOR ABILITIES OF YOUTH FOOTBALL PLAYERS AND PRIMARY SCHOOL PUPILS

    OpenAIRE

    Miroslav Smajić; Dejan Javorac; Slavko Molnar; Aleksandar Huba Barašić; Bogdan Tomić

    2014-01-01

    Introduction: Football as a complete sport that is rich in a wide variety of possible movements classified in polistructural, sports complex. To be a football player was able to perform tasks football has, among other things, and have the necessary level of motor abilities that can be achieved only through systematic implementation of training physical training. The aim of this research was to determine the differences in some of the motor abilities between the two researched groups. Methods:...

  10. Participation of primary motor cortex area 4a in complex sensory processing: 3.0-T fMRI study.

    Science.gov (United States)

    Terumitsu, Makoto; Ikeda, Kotaro; Kwee, Ingrid L; Nakada, Tsutomu

    2009-05-06

    The precise movement of human fingers requires continuous and reciprocal interaction between motor and sensory systems. Similar to other primates, there is double representation of the digits and wrists within the human primary motor cortex (M1), which are generally referred to as area 4 anterior (M1-4a) and area 4 posterior (M1-4p). In this high-field (3.0 T) functional magnetic resonance imaging (fMRI) study, we hypothesized that M1-4p is more important for initiation of motion, whereas M1-4a is important for execution of a given motion involving more complex sensoriomotor interaction. We investigated M1-4a and M1-4p activation associated with two representative motor tasks, namely, finger tapping (voluntary motion, VM) and passive finger movement accomplished by continuous pressure (passive motor, PM), and two representative sensory stimulations, namely, simple stimulation of flutter vibration (simple sensory, SS), and complex stimulation by a row of pins moving either vertically or horizontally (complex sensory, CS). Both M1-4a and M1-4p were activated in both motor tasks, VM and PM. M1-4p was not activated by either of the two sensory tasks, whereas M1-4a was activated by CS but not by SS. Analysis of the center of gravities (COG) of the activated areas showed that VM and PM moved COG towards M1-4p and 3a. SS moved COG towards somatosensory cortex Brodmann areas 1, 2, and 3b, whereas CS towards M1-4a. The result clearly showed that M1-4a represents the area of secondary motor execution, which actively participates in CS processing.

  11. Primary Lateral Sclerosis and Early Upper Motor Neuron Disease: Characteristics of a Cross-Sectional Population.

    Science.gov (United States)

    Fournier, Christina N; Murphy, Alyssa; Loci, Lorena; Mitsumoto, Hiroshi; Lomen-Hoerth, Catherine; Kisanuki, Yasushi; Simmons, Zachary; Maragakis, Nicholas J; McVey, April L; Al-Lahham, Tawfiq; Heiman-Patterson, Terry D; Andrews, Jinsy; McDonnell, Erin; Cudkowicz, Merit; Atassi, Nazem

    2016-03-01

    The goals of this study were to characterize clinical and electrophysiologic findings of subjects with upper motor neuron disease and to explore feasibility of clinical trials in this population. Twenty northeast amyotrophic lateral sclerosis consortium (northeast amyotrophic lateral sclerosis) sites performed chart reviews to identify active clinical pure upper motor neuron disease patients. Patients with hereditary spastic paraplegia or meeting revised El Escorial electrodiagnostic criteria for amyotrophic lateral sclerosis were excluded. Patients were classified into 2 groups according to the presence or absence of minor electromyography (EMG) abnormalities. Two hundred thirty-three subjects with upper motor neuron disease were identified; 217 had available EMG data. Normal EMGs were seen in 140 subjects, and 77 had minor denervation. Mean disease duration was 84 (±80) months for the entire cohort with no difference seen between the 2 groups. No difference was seen in clinical symptoms, disability, or outcome measures between the 2 groups after correcting for multiple comparisons. Minor EMG abnormalities were not associated with phenotypic differences in a clinical upper motor neuron disease population. These findings suggest that subtle EMG abnormalities can not necessarily be used as a prognostic tool in patients with clinical upper motor neuron disease. This study also demonstrates the availability of a large number of patients with upper motor neuron diseases within the northeast amyotrophic lateral sclerosis network and suggests feasibility for conducting clinical trials in this population.

  12. Analysis of both perceptual and motor skills of children with dyslalia before their entering of the first grade of primary school

    OpenAIRE

    Pešlová, Markéta

    2015-01-01

    The thesis deals with an analysis of both perceptual and motor skills of children with dyslalia before their entering of the first grade of primary school. The aim of this thesis is to determine the level of perceptual and motor skills of both preschool children with dyslalia and intact children. The preschool age of a child is described in the theoretical part of the thesis. The thesis also defines dyslalia. Further chapters deal with auditory and visual perception. The area of motor skills ...

  13. Ipsilateral corticotectal projections from the primary, premotor and supplementary motor cortical areas in adult macaque monkeys: a quantitative anterograde tracing study

    Science.gov (United States)

    Fregosi, Michela; Rouiller, Eric M.

    2018-01-01

    The corticotectal projection from cortical motor areas is one of several descending pathways involved in the indirect control of spinal motoneurons. In non-human primates, previous studies reported that cortical projections to the superior colliculus originated from the premotor cortex and the primary motor cortex, whereas no projection originated from the supplementary motor area. The aim of the present study was to investigate and compare the properties of corticotectal projections originating from these three cortical motor areas in intact adult macaques (n=9). The anterograde tracer BDA was injected into one of these cortical areas in each animal. Individual axonal boutons, both en passant and terminaux, were charted and counted in the different layers of the ipsilateral superior colliculus. The data confirmed the presence of strong corticotectal projections from the premotor cortex. A new observation was that strong corticotectal projections were also found to originate from the supplementary motor area (its proper division). The corticotectal projection from the primary motor cortex was quantitatively less strong than that from either the premotor or supplementary motor areas. The corticotectal projection from each motor area was directed mainly to the deep layer of the superior colliculus, although its intermediate layer was also a consistent target of fairly dense terminations. The strong corticotectal projections from non-primary motor areas are in position to influence the preparation and planning of voluntary movements. PMID:28921678

  14. A Genetic-Based Feature Selection Approach in the Identification of Left/Right Hand Motor Imagery for a Brain-Computer Interface.

    Science.gov (United States)

    Yaacoub, Charles; Mhanna, Georges; Rihana, Sandy

    2017-01-23

    Electroencephalography is a non-invasive measure of the brain electrical activity generated by millions of neurons. Feature extraction in electroencephalography analysis is a core issue that may lead to accurate brain mental state classification. This paper presents a new feature selection method that improves left/right hand movement identification of a motor imagery brain-computer interface, based on genetic algorithms and artificial neural networks used as classifiers. Raw electroencephalography signals are first preprocessed using appropriate filtering. Feature extraction is carried out afterwards, based on spectral and temporal signal components, and thus a feature vector is constructed. As various features might be inaccurate and mislead the classifier, thus degrading the overall system performance, the proposed approach identifies a subset of features from a large feature space, such that the classifier error rate is reduced. Experimental results show that the proposed method is able to reduce the number of features to as low as 0.5% (i.e., the number of ignored features can reach 99.5%) while improving the accuracy, sensitivity, specificity, and precision of the classifier.

  15. A Genetic-Based Feature Selection Approach in the Identification of Left/Right Hand Motor Imagery for a Brain-Computer Interface

    Directory of Open Access Journals (Sweden)

    Charles Yaacoub

    2017-01-01

    Full Text Available Electroencephalography is a non-invasive measure of the brain electrical activity generated by millions of neurons. Feature extraction in electroencephalography analysis is a core issue that may lead to accurate brain mental state classification. This paper presents a new feature selection method that improves left/right hand movement identification of a motor imagery brain-computer interface, based on genetic algorithms and artificial neural networks used as classifiers. Raw electroencephalography signals are first preprocessed using appropriate filtering. Feature extraction is carried out afterwards, based on spectral and temporal signal components, and thus a feature vector is constructed. As various features might be inaccurate and mislead the classifier, thus degrading the overall system performance, the proposed approach identifies a subset of features from a large feature space, such that the classifier error rate is reduced. Experimental results show that the proposed method is able to reduce the number of features to as low as 0.5% (i.e., the number of ignored features can reach 99.5% while improving the accuracy, sensitivity, specificity, and precision of the classifier.

  16. The activity of the primary motor cortex ipsilateral to the exercising hand decreases during repetitive handgrip exercise

    International Nuclear Information System (INIS)

    Shibuya, Kenichi

    2011-01-01

    The brain function controlling muscle force production is not yet fully understood. The purpose of this study was to examine bilateral primary motor cortex (M1) oxygenation during static-handgrip exercises performed with the right hand (60% maximal voluntary contraction; 10 s exercise/75 s rest; five sets). Twelve healthy, right-handed male subjects participated in this study. Near-infrared spectroscopy probes were positioned over the bilateral M1 to measure cortical oxygenation during handgrip exercises. The maximum values of the changes in concentrations of oxyhemoglobin (HbO 2 ) and deoxyhemoglobin (Hb) across the trials (i) did not change significantly during the contralateral M1 activation (p > 0.05), whereas (ii) in the case of the ipsilateral M1 activation a significant (p < 0.05) decrease in HbO 2 and a significant (p < 0.01) decrease in Hb could be measured. The activation in ipsilateral M1 at the fifth trial was significantly decreased compared with that in the first trial (HbO 2 : p < 0.001; Hb: p < 0.001). The present results suggest that the ipsilateral M1 is recruited during the motor task in compensation for the contralateral M1 and the habituation to motor task might alter the efficiency for interaction of the ipsilateral M1 to the contralateral M1. The interhemispheric interaction might change due to habituation to motor task

  17. Modulating Brain Connectivity by Simultaneous Dual-Mode Stimulation over Bilateral Primary Motor Cortices in Subacute Stroke Patients

    Directory of Open Access Journals (Sweden)

    Jungsoo Lee

    2018-01-01

    Full Text Available Repetitive transcranial magnetic stimulation (rTMS or transcranial direct current stimulation (tDCS has been used for the modulation of stroke patients’ motor function. Recently, more challenging approaches have been studied. In this study, simultaneous stimulation using both rTMS and tDCS (dual-mode stimulation over bilateral primary motor cortices (M1s was investigated to compare its modulatory effects with single rTMS stimulation over the ipsilesional M1 in subacute stroke patients. Twenty-four patients participated; 12 participants were assigned to the dual-mode stimulation group while the other 12 participants were assigned to the rTMS-only group. We assessed each patient’s motor function using the Fugl-Meyer assessment score and acquired their resting-state fMRI data at two times: prior to stimulation and 2 months after stimulation. Twelve healthy subjects were also recruited as the control group. The interhemispheric connectivity of the contralesional M1, interhemispheric connectivity between bilateral hemispheres, and global efficiency of the motor network noticeably increased in the dual-mode stimulation group compared to the rTMS-only group. Contrary to the dual-mode stimulation group, there was no significant change in the rTMS-only group. These data suggested that simultaneous dual-mode stimulation contributed to the recovery of interhemispheric interaction than rTMS only in subacute stroke patients. This trial is registered with NCT03279640.

  18. A novel dual-site transcranial magnetic stimulation paradigm to probe fast facilitatory inputs from ipsilateral dorsal premotor cortex to primary motor cortex

    DEFF Research Database (Denmark)

    Groppa, Sergiu; Werner-Petroll, Nicole; Münchau, Alexander

    2012-01-01

    The dorsal premotor cortex (PMd) plays an import role in action control, sensorimotor integration and motor recovery. Animal studies and human data have demonstrated direct connections between ipsilateral PMd and primary motor cortex hand area (M1(HAND)). In this study we adopted a multimodal app...

  19. Characterization of motor units in behaving adult mice shows a wide primary range.

    Science.gov (United States)

    Ritter, Laura K; Tresch, Matthew C; Heckman, C J; Manuel, Marin; Tysseling, Vicki M

    2014-08-01

    The mouse is essential for genetic studies of motor function in both normal and pathological states. Thus it is important to consider whether the structure of motor output from the mouse is in fact analogous to that recorded in other animals. There is a striking difference in the basic electrical properties of mouse motoneurons compared with those in rats, cats, and humans. The firing evoked by injected currents produces a unique frequency-current (F-I) function that emphasizes recruitment of motor units at their maximum force. These F-I functions, however, were measured in anesthetized preparations that lacked two key components of normal synaptic input: high levels of synaptic noise and neuromodulatory inputs. Recent studies suggest that the alterations in the F-I function due to these two components are essential for recreating firing behavior of motor units in human subjects. In this study we provide the first data on firing patterns of motor units in the awake mouse, focusing on steady output in quiet stance. The resulting firing patterns did not match the predictions from the mouse F-I behaviors but instead revealed rate modulation across a remarkably wide range (10-60 Hz). The low end of the firing range may be due to changes in the F-I relation induced by synaptic noise and neuromodulatory inputs. The high end of the range may indicate that, unlike other species, quiet standing in the mouse involves recruitment of relatively fast-twitch motor units. Copyright © 2014 the American Physiological Society.

  20. Timing-dependent modulation of the posterior parietal cortex-primary motor cortex pathway by sensorimotor training

    DEFF Research Database (Denmark)

    Karabanov, Anke Ninija; Jin, Seung-Hyun; Joutsen, Atte

    2012-01-01

    at baseline and at four time points (0, 30, 60, and 180 min) after training. For EEG, task-related power and coherence were calculated for early and late training phases. The conditioned MEP was facilitated at a 2-ms conditioning-test interval before training. However, facilitation was abolished immediately...... following training, but returned to baseline at subsequent time points. Regional EEG activity and interregional connectivity between PPC and M1 showed an initial increase during early training followed by a significant decrease in the late phases. The findings indicate that parietal-motor interactions......Interplay between posterior parietal cortex (PPC) and ipsilateral primary motor cortex (M1) is crucial during execution of movements. The purpose of the study was to determine whether functional PPC-M1 connectivity in humans can be modulated by sensorimotor training. Seventeen participants...

  1. Regional glucose hypometabolic spread within the primary motor cortex is associated with amyotrophic lateral sclerosis disease progression: A fluoro-deoxyglucose positron emission tomography study

    Directory of Open Access Journals (Sweden)

    Hironobu Endo

    2017-03-01

    Conclusions: In patients with ALS, glucose metabolism decreased in the impaired side of the primary motor cortex depending on the clinical symptom progression in the corresponding extremities, regardless of the presence of clinical UMN signs. A decrement in glucose metabolism on FDG-PET corresponding to symptoms in the primary motor cortex might be an indicator of the time-dependent course of ALS neurodegeneration.

  2. Primary control of a Mach scale swashplateless rotor using brushless DC motor actuated trailing edge flaps

    Science.gov (United States)

    Saxena, Anand

    The focus of this research was to demonstrate a four blade rotor trim in forward flight using integrated trailing edge flaps instead of using a swashplate controls. A compact brushless DC motor was evaluated as an on-blade actuator, with the possibility of achieving large trailing edge flap amplitudes. A control strategy to actuate the trailing edge flap at desired frequency and amplitude was developed and large trailing edge flap amplitudes from the motor (instead of rotational motion) were obtained. Once the actuator was tested on the bench-top, a lightweight mechanism was designed to incorporate the motor in the blade and actuate the trailing edge flaps. A six feet diameter, four bladed composite rotor with motor-flap system integrated into the NACA 0012 airfoil section was fabricated. Systematic testing was carried out for a range of load conditions, first in the vacuum chamber followed by hover tests. Large trailing edge flap deflections were observed during the hover testing, and a peak to peak trailing edge flap amplitude of 18 degree was achieved at 2000 rotor RPM with hover tip Mach number of 0.628. A closed loop controller was designed to demonstrate trailing edge flap mean position and the peak to peak amplitude control. Further, a soft pitch link was designed and fabricated, to replace the stiff pitch link and thereby reduce the torsional stiffness of the blade to 2/rev. This soft pitch link allowed for blade root pitch motion in response to the trailing edge flap inputs. Blade pitch response due to both steady as well as sinusoidal flap deflections were demonstrated. Finally, tests were performed in Glenn L. Martin wind tunnel using a model rotor rig to assess the performance of motor-flap system in forward flight. A swashplateless trim using brushless DC motor actuated trailing edge flaps was achieved for a rotor operating at 1200 RPM and an advance ratio of 0.28. Also, preliminary exploration was carried out to test the scalability of the motor

  3. Motor Performance of Primary Age Handicapped and Nonhandicapped Children in the Mainstream: A Comparison.

    Science.gov (United States)

    Sherrill, Claudine; Kelly, Luke

    A comparative study was made of mentally retarded and nonhandicapped children in the first through third grades on motor performance as measured by running (50-yard dash), jumping (standing broad jump), and throwing (softball throw for distance). The subjects had received all of their physical education instruction in a mainstream setting since…

  4. Prevalence of Persistent Primary Reflexes and Motor Problems in Children with Reading Difficulties

    Science.gov (United States)

    McPhillips, M.; Sheehy, N.

    2004-01-01

    It has been shown that some children with reading difficulties have underlying developmental delay and that this may be related to the persistence of primary reflexes. This study investigated the prevalence of persistent primary reflexes in the ordinary primary school population and how this related to other cognitive and social factors. Three…

  5. Primary School Teacher Perceived Self-Efficacy to Teach Fundamental Motor Skills

    Science.gov (United States)

    Callea, Micarle B.; Spittle, Michael; O'Meara, James; Casey, Meghan

    2008-01-01

    Fundamental Movement Skills (FMS) are a part of the school curricula, yet many Australian primary-age children are not mastering FMS. One reason may be a lack of perceived self-efficacy of primary teachers to teach FMS. This study investigated the level of perceived self-efficacy of primary school teachers to teach FMS in Victoria, Australia. A…

  6. Reading words and other people: A comparison of exception word, familiar face and affect processing in the left and right temporal variants of primary progressive aphasia.

    Science.gov (United States)

    Binney, Richard J; Henry, Maya L; Babiak, Miranda; Pressman, Peter S; Santos-Santos, Miguel A; Narvid, Jared; Mandelli, Maria Luisa; Strain, Paul J; Miller, Bruce L; Rankin, Katherine P; Rosen, Howard J; Gorno-Tempini, Maria Luisa

    2016-09-01

    Semantic variant primary progressive aphasia (svPPA) typically presents with left-hemisphere predominant rostral temporal lobe (rTL) atrophy and the most significant complaints within the language domain. Less frequently, patients present with right-hemisphere predominant temporal atrophy coupled with marked impairments in processing of famous faces and emotions. Few studies have objectively compared these patient groups in both domains and therefore it is unclear to what extent the syndromes overlap. Clinically diagnosed svPPA patients were characterized as left- (n = 21) or right-predominant (n = 12) using imaging and compared along with 14 healthy controls. Regarding language, our primary focus was upon two hallmark features of svPPA; confrontation naming and surface dyslexia. Both groups exhibited naming deficits and surface dyslexia although the impairments were more severe in the left-predominant group. Familiarity judgments on famous faces and affect processing were more profoundly impaired in the right-predominant group. Our findings suggest that the two syndromes overlap significantly but that early cases at the tail ends of the continuum constitute a challenge for current clinical criteria. Correlational neuroimaging analyses implicated a mid portion of the left lateral temporal lobe in exception word reading impairments in line with proposals that this region is an interface between phonology and semantic knowledge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Functional connectivity between somatosensory and motor brain areas predicts individual differences in motor learning by observing.

    Science.gov (United States)

    McGregor, Heather R; Gribble, Paul L

    2017-08-01

    Action observation can facilitate the acquisition of novel motor skills; however, there is considerable individual variability in the extent to which observation promotes motor learning. Here we tested the hypothesis that individual differences in brain function or structure can predict subsequent observation-related gains in motor learning. Subjects underwent an anatomical MRI scan and resting-state fMRI scans to assess preobservation gray matter volume and preobservation resting-state functional connectivity (FC), respectively. On the following day, subjects observed a video of a tutor adapting her reaches to a novel force field. After observation, subjects performed reaches in a force field as a behavioral assessment of gains in motor learning resulting from observation. We found that individual differences in resting-state FC, but not gray matter volume, predicted postobservation gains in motor learning. Preobservation resting-state FC between left primary somatosensory cortex and bilateral dorsal premotor cortex, primary motor cortex, and primary somatosensory cortex and left superior parietal lobule was positively correlated with behavioral measures of postobservation motor learning. Sensory-motor resting-state FC can thus predict the extent to which observation will promote subsequent motor learning. NEW & NOTEWORTHY We show that individual differences in preobservation brain function can predict subsequent observation-related gains in motor learning. Preobservation resting-state functional connectivity within a sensory-motor network may be used as a biomarker for the extent to which observation promotes motor learning. This kind of information may be useful if observation is to be used as a way to boost neuroplasticity and sensory-motor recovery for patients undergoing rehabilitation for diseases that impair movement such as stroke. Copyright © 2017 the American Physiological Society.

  8. Observing how others lift light or heavy objects: time-dependent encoding of grip force in the primary motor cortex.

    Science.gov (United States)

    Alaerts, Kaat; de Beukelaar, Toon T; Swinnen, Stephan P; Wenderoth, Nicole

    2012-07-01

    During movement observation, corticomotor excitability of the observer's primary motor cortex (M1) is modulated according to the force requirements of the observed action. Here, we explored the time course of observation-induced force encoding. Force-related changes in M1-excitability were assessed by delivering transcranial magnetic stimulations at distinct temporal phases of an observed reach-grasp-lift action. Temporal changes in force-related electromyographic activity were also assessed during active movement execution. In observation conditions in which a heavy object was lifted, M1-excitability was higher compared to conditions in which a light object was lifted. Both during observation and execution, differential force encoding tended to gradually increase from the grasping phase until the late lift phase. Surprisingly, however, during observation, force encoding was already present at the early reach phase: a time point at which no visual cues on the object's weight were available to the observer. As the observer was aware that the same weight condition was presented repeatedly, this finding may indicate that prior predictions concerning the upcoming weight condition are reflected by M1 excitability. Overall, findings may provide indications that the observer's motor system represents motor predictions as well as muscular requirements to infer the observed movement goal.

  9. Strength and fine dexterity recovery profiles after a primary motor cortex insult and effect of a neuronal cell graft.

    Science.gov (United States)

    Vaysse, Laurence; Conchou, Fabrice; Demain, Boris; Davoust, Carole; Plas, Benjamin; Ruggieri, Cyrielle; Benkaddour, Mehdi; Simonetta-Moreau, Marion; Loubinoux, Isabelle

    2015-08-01

    The aim of this study was to set up (a) a large primary motor cortex (M1) lesion in rodent and (b) the conditions for evaluating a long-lasting motor deficit in order to propose a valid model to test neuronal replacement therapies aimed at improving motor deficit recovery. A mitochondrial toxin, malonate, was injected to induce extensive destruction of the forelimb M1 cortex. Three key motor functions that are usually evaluated following cerebral lesion in the clinic-strength, target reaching, and fine dexterity-were assessed in rats by 2 tests, a forelimb grip strength test and a skilled reaching task (staircase) for reaching and dexterity. The potential enhancement of postlesion recovery induced by a neuronal cell transplantation was then explored and confirmed by histological analyses. Both tests showed a severe functional impairment 2 days post lesion, however, reaching remained intact. Deficits in forelimb strength were long lasting (up to 3 months) but spontaneously recovered despite the extensive lesion size. This natural grip strength recovery could be enhanced by cell therapy. Histological analyses confirmed the presence of grafted cells 3 months postgraft and showed partial tissue reconstruction with some living neuronal cells in the graft. In contrast, fine dexterity never recovered in the staircase test even after grafting. These results suggest that cell replacement was only partially effective and that the forelimb M1 area may be a node of the sensorimotor network, where compensation from secondary pathways could account for strength recovery but recovery of forelimb fine dexterity requires extensive tissue reconstruction. (c) 2015 APA, all rights reserved).

  10. COMMUNICATION: On variability and use of rat primary motor cortex responses in behavioral task discrimination

    Science.gov (United States)

    Jensen, Winnie; Rousche, Patrick J.

    2006-03-01

    The success of a cortical motor neuroprosthetic system will rely on the system's ability to effectively execute complex motor tasks in a changing environment. Invasive, intra-cortical electrodes have been successfully used to predict joint movement and grip force of a robotic arm/hand with a non-human primate (Chapin J K, Moxon K A, Markowitz R S and Nicolelis M A L 1999 Real-time control of a robotic arm using simultaneously recorded neurons in the motor cortex Nat. Neurosci. 2 664-70). It is well known that cortical encoding occurs with a high degree of cortical plasticity and depends on both the functional and behavioral context. Questions on the expected robustness of future motor prosthesis systems therefore still remain. The objective of the present work was to study the effect of minor changes in functional movement strategies on the M1 encoding. We compared the M1 encoding in freely moving, non-constrained animals that performed two similar behavioral tasks with the same end-goal, and investigated if these behavioral tasks could be discriminated based on the M1 recordings. The rats depressed a response paddle either with a set of restrictive bars ('WB') or without the bars ('WOB') placed in front of the paddle. The WB task required changes in the motor strategy to complete the paddle press and resulted in highly stereotyped movements, whereas in the WOB task the movement strategy was not restricted. Neural population activity was recorded from 16-channel micro-wire arrays and data up to 200 ms before a paddle hit were analyzed off-line. The analysis showed a significant neural firing difference between the two similar WB and WOB tasks, and using principal component analysis it was possible to distinguish between the two tasks with a best classification at 76.6%. While the results are dependent upon a small, randomly sampled neural population, they indicate that information about similar behavioral tasks may be extracted from M1 based on relatively few

  11. Left ventricular torsion assessed by two-dimensional echocardiography speckle tracking as a predictor of left ventricular remodeling and short-term outcome following primary percutaneous coronary intervention for acute myocardial infarction: A single-center experience.

    Science.gov (United States)

    Awadalla, Hany; Saleh, Mohamed Ayman; Abdel Kader, Mohamed; Mansour, Amr

    2017-08-01

    Left ventricular (LV) torsion is a novel method to assess systolic LV function. This study aimed at exploring the utility of 2D speckle tracking-based assessment of left ventricular torsion in patients with acute myocardial infarction (AMI) undertaking primary percutaneous intervention (pPCI) in predicting left ventricular remodeling. The study included 115 patients (mean±SD, age 52.2±9.67, males 84.3%) who underwent pPCI for AMI. Echocardiographic assessment of LV torsion by two-dimensional speckle tracking was performed early after the index pPCI. Patients underwent repeat echocardiography at 6 months to detect remodeling. LV torsion in the acute setting was significantly lower in those who demonstrated LV remodeling at follow-up compared to those without remodeling (7.56±1.95 vs 15.16±4.65; P<.005). Multivariate analysis identified peak CK & CK-MB elevation (β=-0.767 and -0.725; P<.001), SWMA index (β=-0.843; P<.001), and Simpson's derived LV ejection fraction (LVEF; β=0.802; P<.001) as independent predictors of baseline LV torsion. It also identified peak LV torsion (β: 0.27; 95% CI: 0.15-0.5, P=.001) and SWMA index (β: 1.07, 95% CI: 1.03-1.12, P=.005) as independent predictors of LV remodeling. Baseline Killip's grades II and higher (β: 48.6; 95% CI 5.5-428, P<.001) and diabetes mellitus (β: 29.7; 95% CI 1.1-763, P<.05) were independent predictors of mortality. Left ventricular torsion in acute MI setting is impaired and predicts subsequent LV remodeling at 6-month follow-up. © 2017, Wiley Periodicals, Inc.

  12. Motor cognitive processing speed estimation among the primary schoolchildren by deriving prediction formula: A cross-sectional study

    Directory of Open Access Journals (Sweden)

    Vencita Priyanka Aranha

    2017-01-01

    Full Text Available Objectives: Motor cognitive processing speed (MCPS is often reported in terms of reaction time. In spite of being a significant indicator of function, behavior, and performance, MCPS is rarely used in clinics and schools to identify kids with slowed motor cognitive processing. The reason behind this is the lack of availability of convenient formula to estimate MCPS. Thereby, the aim of this study is to estimate the MCPS in the primary schoolchildren. Materials and Methods: Two hundred and four primary schoolchildren, aged 6–12 years, were recruited by the cluster sampling method for this cross-sectional study. MCPS was estimated by the ruler drop method (RDM. By this method, a metallic stainless steel ruler was suspended vertically such that 5 cm graduation of the lower was aligned between the web space of the child's hand, and the child was asked to catch the moving ruler as quickly as possible, once released from the examiner's hand. Distance the ruler traveled was recorded and converted into time, which is the MCPS. Multiple regression analysis of variables was performed to determine the influence of independent variables on MCPS. Results: Mean MCPS of the entire sample of 204 primary schoolchildren is 230.01 ms ± 26.5 standard deviation (95% confidence interval; 226.4–233.7 ms that ranged from 162.9 to 321.6 ms. By stepwise regression analysis, we derived the regression equation, MCPS (ms = 279.625–5.495 × age, with 41.3% (R = 0.413 predictability and 17.1% (R2 = 0.171 and adjusted R2 = 0.166 variability. Conclusion: MCPS prediction formula through RDM in the primary schoolchildren has been established.

  13. ST peak during primary percutaneous coronary intervention predicts final infarct size, left ventricular function, and clinical outcome

    DEFF Research Database (Denmark)

    Lønborg, Jacob Thomsen; Kelbæk, Henning Skov; Holmvang, Lene

    2012-01-01

    One third of patients treated with primary percutaneous coronary intervention (PCI) for ST-elevation myocardial infarction develop a secondary increase in electrocardiographic ST segment (ST peak) during reperfusion. The purpose was to determine the clinical importance of ST peak during primary PCI....

  14. Single to Two Cluster State Transition of Primary Motor Cortex 4-posterior (MI-4p Activities in Humans

    Directory of Open Access Journals (Sweden)

    Kazunori Nakada

    2015-11-01

    Full Text Available The human primary motor cortex has dual representation of the digits, namely, area 4 anterior (MI-4a and area 4 posterior (MI-4p. We have previously demonstrated that activation of these two functional subunits can be identified independently by functional magnetic resonance imaging (fMRI using independent component-cross correlation-sequential epoch (ICS analysis. Subsequent studies in patients with hemiparesis due to subcortical lesions and monoparesis due to peripheral nerve injury demonstrated that MI-4p represents the initiation area of activation, whereas MI-4a is the secondarily activated motor cortex requiring a “long-loop” feedback input from secondary motor systems, likely the cerebellum. A dynamic model of hand motion based on the limit cycle oscillator predicts that the specific pattern of entrainment of neural firing may occur by applying appropriate periodic stimuli. Under normal conditions, such entrainment introduces a single phase-cluster. Under pathological conditions where entrainment stimuli have insufficient strength, the phase cluster splits into two clusters. Observable physiological phenomena of this shift from single cluster to two clusters are: doubling of firing rate of output neurons; or decay in group firing density of the system due to dampening of odd harmonics components. While the former is not testable in humans, the latter can be tested by appropriately designed fMRI experiments, the quantitative index of which is believed to reflect group behavior of neurons functionally localized, e.g., firing density in the dynamic theory. Accordingly, we performed dynamic analysis of MI-4p activation in normal volunteers and paretic patients. The results clearly indicated that MI-4p exhibits a transition from a single to a two phase-cluster state which coincided with loss of MI-4a activation. The study demonstrated that motor dysfunction (hemiparesis in patients with a subcortical infarct is not simply due to afferent

  15. Assessment value of 3-dimensional speckle tracking imaging for changes of early left ventricular longitudinal systolic function in patients with primary hypertension

    Directory of Open Access Journals (Sweden)

    Jing Yu

    2016-08-01

    Full Text Available Objective: To study the assessment value of 3-dimensional speckle tracking imaging for changes of early left ventricular longitudinal systolic function in patients with primary hypertension. Methods: Patients with primary hypertension who were treated in our hospital from May 2012 to October 2015 were selected, and 40 patients with left ventricular normal (LVN primary hypertension and 40 patients with left ventricular remodeling (LVR primary hypertension were screened according to Ganau typing and enrolled in the LVN group and LVR group of the study respectively; 40 cases of healthy volunteers who received physical examination in our hospital during the same period were selected as control group. Ultrasonic testing was conducted to determine conventional ultrasonic indicators and 3D-STI parameters, and serum was collected to determine AngII, ALD, TGF-β1 and Ang1-7 levels. Results: LVEDd, LVPWT and LVEF of LVN group were not significantly different from those of control group, LVEF of LVR group was not significantly different from those of LVN group and control group, and LVEDd and LVPWT of LVR group were significantly higher than those of LVN group and control group; absolute values of GLS, GCS, GRS and GAS as well as serum Ang1-7 level of LVN group was significantly lower than those of control group, serum AngII, ALD and TGF-β1 levels were higher than those of control group, absolute values of GLS, GCS, GRS and GAS as well as serum Ang1-7 level of LVR group was significantly lower than those of LVN group and control group, and serum AngII, ALD and TGF-β1 levels were higher than those of LVN group and control group; absolute values of GLS, GCS, GRS and GAS were negatively correlated with serum AngII, ALD and TGF-β1 levels, and positively correlated with serum Ang1-7 level. Conclusion: 3-dimensional speckle tracking imaging can be used for early evaluation of left ventricular longitudinal systolic function in patients with primary

  16. Final report for measurement of primary particulate matter emissions from light-duty motor vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Norbeck, J. M.; Durbin, T. D.; Truex, T. J.

    1998-12-31

    This report describes the results of a particulate emissions study conducted at the University of California, Riverside, College of Engineering-Center for Environmental Research and Technology (CE-CERT) from September of 1996 to August of 1997. The goal of this program was to expand the database of particulate emissions measurements from motor vehicles to include larger numbers of representative in-use vehicles. This work was co-sponsored by the Coordinating Research Council (CRC), the South Coast Air Quality Management District (SCAQMD), and the National Renewable Energy Laboratory (NREL) and was part of a larger study of particulate emissions being conducted in several states under sponsorship by CRC. For this work, FTP particulate mass emission rates were determined for gasoline and diesel vehicles, along with the fractions of particulates below 2.5 and 10 microns aerodynamic diameter. A total of 129 gasoline-fueled vehicles and 19 diesel-fueled vehicles were tested as part of the program.

  17. Effect of 30 Hz Theta Burst Transcranial Magnetic Stimulation on the Primary Motor Cortex in Children and Adolescents

    Directory of Open Access Journals (Sweden)

    Ernest ePedapati

    2015-02-01

    Full Text Available Fourteen healthy children (13.8±2.2 years, range 10 to 16; M:F=5:9 received 30 Hz intermittent theta burst transcranial magnetic stimulation (iTBS with a stimulation intensity of 70% of resting motor threshold (RMT with a total of 300 (iTBS300 pulses. All volunteers were free of neurologic, psychiatric and serious medical illnesses, not taking any neuropsychiatric medications, and did not have any contraindications to Transcranial Magnetic Stimulation. Changes in the mean amplitudes of motor-evoked potentials from baseline following iTBS were expressed as a ratio and assessed from 1 to 10 minutes (BLOCK1 and 1 to 30 minutes (BLOCK2 using repeated-measures analysis of variance. All 14 subjects completed iTBS300 over the dominant primary motor cortex (M1 without any clinically reported adverse events. ITBS300 produced significant M1 facilitation (F5,65=3.165, p=0.01 at BLOCK1 and trend level M1 facilitation at BLOCK2 (F10,129=1.69, p=0.089. Although iTBS300 (stimulation duration of 92 seconds at 70% RMT delivered over M1 in typically developed children was well-tolerated and produced on average significant facilitatory changes in cortical excitability, the post-iTBS300 neurophysiologic response was variable in our small sample. ITBS300-induced changes may represent a potential neuroplastic biomarker in healthy children and those with neuro-genetic or neuro-psychiatric disorders. However, a larger sample size is needed to address safety and concerns of response variability.

  18. Effect of 30 Hz theta burst transcranial magnetic stimulation on the primary motor cortex in children and adolescents

    Science.gov (United States)

    Pedapati, Ernest V.; Gilbert, Donald L.; Horn, Paul S.; Huddleston, David A.; Laue, Cameron S.; Shahana, Nasrin; Wu, Steve W.

    2015-01-01

    Fourteen healthy children (13.8 ± 2.2 years, range 10–16; M:F = 5:9) received 30 Hz intermittent theta burst transcranial magnetic stimulation (iTBS) with a stimulation intensity of 70% of resting motor threshold (RMT) with a total of 300 (iTBS300) pulses. All volunteers were free of neurologic, psychiatric and serious medical illnesses, not taking any neuropsychiatric medications, and did not have any contraindications to transcranial magnetic stimulation. Changes in the mean amplitudes of motor-evoked potentials from baseline following iTBS were expressed as a ratio and assessed from 1 to 10 min (BLOCK1) and 1–30 min (BLOCK2) using repeated-measures analysis of variance. All 14 subjects completed iTBS300 over the dominant primary motor cortex (M1) without any clinically reported adverse events. ITBS300 produced significant M1 facilitation [F(5, 65) = 3.165, p = 0.01] at BLOCK1 and trend level M1 facilitation at BLOCK2 [F(10, 129) = 1.69, p = 0.089]. Although iTBS300 (stimulation duration of 92 s at 70% RMT) delivered over M1 in typically developed children was well-tolerated and produced on average significant facilitatory changes in cortical excitability, the post-iTBS300 neurophysiologic response was variable in our small sample. ITBS300-induced changes may represent a potential neuroplastic biomarker in healthy children and those with neuro-genetic or neuro-psychiatric disorders. However, a larger sample size is needed to address safety and concerns of response variability. PMID:25762919

  19. Presence and Absence of Muscle Contraction Elicited by Peripheral Nerve Electrical Stimulation Differentially Modulate Primary Motor Cortex Excitability

    Science.gov (United States)

    Sasaki, Ryoki; Kotan, Shinichi; Nakagawa, Masaki; Miyaguchi, Shota; Kojima, Sho; Saito, Kei; Inukai, Yasuto; Onishi, Hideaki

    2017-01-01

    Modulation of cortical excitability by sensory inputs is a critical component of sensorimotor integration. Sensory afferents, including muscle and joint afferents, to somatosensory cortex (S1) modulate primary motor cortex (M1) excitability, but the effects of muscle and joint afferents specifically activated by muscle contraction are unknown. We compared motor evoked potentials (MEPs) following median nerve stimulation (MNS) above and below the contraction threshold based on the persistence of M-waves. Peripheral nerve electrical stimulation (PES) conditions, including right MNS at the wrist at 110% motor threshold (MT; 110% MNS condition), right MNS at the index finger (sensory digit nerve stimulation [DNS]) with stimulus intensity approximately 110% MNS (DNS condition), and right MNS at the wrist at 90% MT (90% MNS condition) were applied. PES was administered in a 4 s ON and 6 s OFF cycle for 20 min at 30 Hz. In Experiment 1 (n = 15), MEPs were recorded from the right abductor pollicis brevis (APB) before (baseline) and after PES. In Experiment 2 (n = 15), M- and F-waves were recorded from the right APB. Stimulation at 110% MNS at the wrist evoking muscle contraction increased MEP amplitudes after PES compared with those at baseline, whereas DNS at the index finger and 90% MNS at the wrist not evoking muscle contraction decreased MEP amplitudes after PES. M- and F-waves, which reflect spinal cord or muscular and neuromuscular junctions, did not change following PES. These results suggest that muscle contraction and concomitant muscle/joint afferent inputs specifically enhance M1 excitability. PMID:28392766

  20. Contribution of the resting-state functional connectivity of the contralesional primary sensorimotor cortex to motor recovery after subcortical stroke.

    Directory of Open Access Journals (Sweden)

    Huijuan Xu

    Full Text Available It remains uncertain if the contralesional primary sensorimotor cortex (CL_PSMC contributes to motor recovery after stroke. Here we investigated longitudinal changes in the resting-state functional connectivity (rsFC of the CL_PSMC and their association with motor recovery. Thirteen patients who had experienced subcortical stroke underwent a series of resting-state fMRI and clinical assessments over a period of 1 year at 5 time points, i.e., within the first week, at 2 weeks, 1 month, 3 months, and 1 year after stroke onset. Thirteen age- and gender-matched healthy subjects were recruited as controls. The CL_PSMC was defined as a region centered at the voxel that had greatest activation during hand motion task. The dynamic changes in the rsFCs of the CL_PSMC within the whole brain were evaluated and correlated with the Motricity Index (MI scores. Compared with healthy controls, the rsFCs of the CL_PSMC with the bilateral PSMC were initially decreased, then gradually increased, and finally restored to the normal level 1 year later. Moreover, the dynamic change in the inter-hemispheric rsFC between the bilateral PSMC in these patients was positively correlated with the MI scores. However, the intra-hemispheric rsFC of the CL_PSMC was not correlated with the MI scores. This study shows dynamic changes in the rsFCs of the CL_PSMC after stroke and suggests that the increased inter-hemispheric rsFC between the bilateral PSMC may facilitate motor recovery in stroke patients. However, generalization of our findings is limited by the small sample size of our study and needs to be confirmed.

  1. Impact of endothelial dysfunction on left ventricular remodeling after successful primary coronary angioplasty for acute myocardial infarction. Analysis by quantitative ECG-gated SPECT

    International Nuclear Information System (INIS)

    Matsuo, Shinro; Nakae, Ichiro; Matsumoto, Tetsuya; Horie, Minoru

    2006-01-01

    We hypothesized that endothelial cell integrity in the risk area would influence left ventricular remodeling after acute myocardial infarction. Twenty patients (61±8 y.o.) with acute myocardial infarction underwent 99m Tc-tetrofosmin imaging in the sub-acute phase and three months after successful primary angioplasty due to myocardial infarction. All patients were administered angiotensin-converting enzyme inhibitor after revascularization. Cardiac scintigraphies with quantitative gated SPECT were performed at the sub-acute stage and again 3 months after revascularization to evaluate left ventricular (LV) remodeling. The left ventricular ejection fraction (EF) and end-systolic and end-diastolic volume (ESV, EDV) were determined using a quantitative gated SPECT (QGS) program. Three months after myocardial infarction, all patients underwent cardiac catheterization examination with coronary endothelial function testing. Bradykinin (BK) (0.2, 0.6, 2.0 μg/min) was administered via the left coronary artery in a stepwise manner. Coronary blood flow was evaluated by Doppler flow velocity measurement. Patients were divided into two groups by BK-response: a preserved endothelial function group (n=10) and endothelial dysfunction group (n=10). At baseline, both global function and LV systolic and diastolic volumes were similar in both groups. However, LV ejection fraction was significantly improved in the preserved-endothelial function group, compared with that in the endothelial dysfunction group (42±10% to 48±9%, versus 41±4% to 42±13%, p<0.05). LV volumes progressively increased in the endothelial dysfunction group compared to the preserved-endothelial function group (123±45 ml to 128±43 ml, versus 111±47 ml to 109±49 ml, p<0.05). In re-perfused acute myocardial infarction, endothelial function within the risk area plays an important role with left ventricular remodeling after myocardial infarction. (author)

  2. Motor Cortex Activity During Functional Motor Skills: An fNIRS Study.

    Science.gov (United States)

    Nishiyori, Ryota; Bisconti, Silvia; Ulrich, Beverly

    2016-01-01

    Assessments of brain activity during motor task performance have been limited to fine motor movements due to technological constraints presented by traditional neuroimaging techniques, such as functional magnetic resonance imaging. Functional near-infrared spectroscopy (fNIRS) offers a promising method by which to overcome these constraints and investigate motor performance of functional motor tasks. The current study used fNIRS to quantify hemodynamic responses within the primary motor cortex in twelve healthy adults as they performed unimanual right, unimanual left, and bimanual reaching, and stepping in place. Results revealed that during both unimanual reaching tasks, the contralateral hemisphere showed significant activation in channels located approximately 3 cm medial to the C3 (for right-hand reach) and C4 (for left-hand reach) landmarks. Bimanual reaching and stepping showed activation in similar channels, which were located bilaterally across the primary motor cortex. The medial channels, surrounding Cz, showed significantly higher activations during stepping when compared to bimanual reaching. Our results extend the viability of fNIRS to study motor function and build a foundation for future investigation of motor development in infants during nascent functional behaviors and monitor how they may change with age or practice.

  3. Fine Motor Skills Predict Maths Ability Better than They Predict Reading Ability in the Early Primary School Years

    OpenAIRE

    Pitchford, Nicola J.; Papini, Chiara; Outhwaite, Laura A.; Gulliford, Anthea

    2016-01-01

    Fine motor skills have long been recognised as an important foundation for development in other domains. However, more precise insights into the role of fine motor skills, and their relationships to other skills in mediating early educational achievements, are needed to support the development of optimal educational interventions. We explored concurrent relationships between two components of fine motor skills, Fine Motor Precision and Fine Motor Integration, and early reading and maths devel...

  4. Comparison of Safety and Effectiveness Between Right Versus Left Radial Arterial Access in Primary Percutaneous Coronary Intervention for Acute ST Segment Elevation Myocardial Infarction.

    Science.gov (United States)

    Elmahdy, Mahmoud Farouk; ElMaghawry, Mohamed; Hassan, Mohamed; Kassem, Hussien Heshmat; Said, Karim; Elfaramawy, Amr AbdelAziz

    2017-01-01

    Transradial approach (TRA) is now considered the standard of care in many centres for elective and primary percutaneous intervention (PCI). The use of the radial approach in ST segment elevation myocardial infarction (STEMI) patients has been associated with a significant reduction in major adverse cardiac events. However, it is still unclear if the side of radial access (right vs. left) has impact on safety and effectiveness of TRA in primary PCI. So this study was conducted to compare the safety, feasibility, and outcomes of right radial access (RRA) vs. left radial access (LRA) in the setting of primary PCI. We retrospectively analysed the data of 400 consecutive patients presenting to our institution with STEMI for whom primary PCIs were performed via RRA and LRA. Mean age of the whole studied population was 57±12.8 years, with male predominance (77.2%). There were 202 cases in the RRA group and 198 in the LRA group, with no significant difference in demographics and clinical characteristics for patients included in both groups. There was no significant difference in procedure success rate (97.5% for RRA vs. 98.4% for LRA; P=0.77). In addition, no significant difference between both approaches was observed in the contrast volume, number of catheters, fluoroscopy time (FT), needle-to-balloon time, post-procedure vascular complications, in hospital reinfarction, stroke/transient ischaemic attack (TIA) or death. Right radial access and LRA are equally safe and effective in the setting of primary PCI. Both approaches have a high success rate and comparable needle-to-balloon time. Copyright © 2016 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  5. Motor Speech Phenotypes of Frontotemporal Dementia, Primary Progressive Aphasia, and Progressive Apraxia of Speech

    Science.gov (United States)

    Poole, Matthew L.; Brodtmann, Amy; Darby, David; Vogel, Adam P.

    2017-01-01

    Purpose: Our purpose was to create a comprehensive review of speech impairment in frontotemporal dementia (FTD), primary progressive aphasia (PPA), and progressive apraxia of speech in order to identify the most effective measures for diagnosis and monitoring, and to elucidate associations between speech and neuroimaging. Method: Speech and…

  6. Motor neuron disease (amyotrophic lateral sclerosis) arising from longstanding primary lateral sclerosis

    NARCIS (Netherlands)

    Bruyn, R. P.; Koelman, J. H.; Troost, D.; de Jong, J. M.

    1995-01-01

    Three men were initially diagnosed as having primary lateral sclerosis (PLS), but eventually developed amyotrophic lateral sclerosis (ALS) after 7.5, 9, and at least 27 years. Non-familial ALS and PLS might be different manifestations of a single disease or constitute completely distinct entities.

  7. Changes in neural resting state activity in primary and higher-order motor areas induced by a short sensorimotor intervention based on the Feldenkrais method

    Directory of Open Access Journals (Sweden)

    Julius eVerrel

    2015-04-01

    Full Text Available We use functional magnetic resonance imaging to investigate short-term neural effects of a brief sensorimotor intervention adapted from the Feldenkrais method, a movement-based learning method. Twenty-one participants (10 men, 19-30 years took part in the study. Participants were in a supine position in the scanner with extended legs while an experienced Feldenkrais practitioner used a planar board to touch and apply minimal force to different parts of the sole and toes of their left foot under two experimental conditions. In the local condition, the practitioner explored movement within foot and ankle. In the global condition, the practitioner focused on the connection and support from the foot to the rest of the body. Before (baseline and after each intervention (post-local, post-global, we measured brain activity during intermittent pushing/releasing with the left leg and during resting state. Independent localizer tasks were used to identify regions of interest (ROI.Brain activity during left-foot pushing did not significantly differ between conditions in sensorimotor areas. Resting state activity (regional homogeneity, ReHo increased from baseline to post-local in medial right motor cortex, and from baseline to post-global in the left supplementary/cingulate motor area. Contrasting post-global to post-local showed higher ReHo in right lateral motor cortex. ROI analyses showed significant increases in ReHo in pushing-related areas from baseline to both post-local and post-global, and this increase tended to be more pronounced post-local. The results of this exploratory study show that a short, non-intrusive sensorimotor intervention can have short-term effects on spontaneous cortical activity in functionally related brain regions. Increased resting state activity in higher-order motor areas supports the hypothesis that the global intervention engages action-related neural processes.

  8. Clinico-Radiologic Findings in Primary Cutaneous Extranodal Natural Killer/T-Cell Lymphoma, Nasal Type Mimicking Cellulitis of the Left Arm

    International Nuclear Information System (INIS)

    Kim, Soo Hyun; Seon, Hyun Ju; Choi, Yoo Duk; Yun, Sook Jung

    2015-01-01

    Extranodal natural killer (NK)/T-cell lymphoma is a very rare and aggressive disease characterized histopathologically by an Epstein-Barr virus (EBV)-positive atypical lymphoid cytotoxic infiltrate, extensive vascular destruction, and prominent tissue necrosis. It commonly shows cutaneous lesions that primarily or secondarily mimic cellulitis at the primary site. We report on a very rare case of extranodal NK/T-cell lymphoma, nasal type of skin/soft tissue, in a 64-year-old man, and describe the radiological findings. The condition was misdiagnosed as cellulitis of the left arm based on initial noninvasive clinical and radiologic work-up

  9. Deglutitive inhibition, latency between swallow and esophageal contractions and primary esophageal motor disorders.

    Science.gov (United States)

    Sifrim, Daniel; Jafari, Jafar

    2012-01-01

    Swallowing induces an inhibitory wave that is followed by a contractile wave along the esophageal body. Deglutitive inhibition in the skeletal muscle of the esophagus is controlled in the brain stem whilst in the smooth muscle, an intrinsic peripheral control mechanism is critical. The latency between swallow and contractions is determined by the pattern of activation of the inhibitory and excitatory vagal pathways, the regional gradients of inhibitory and excitatory myenteric nerves, and the intrinsic properties of the smooth muscle. A wave of inhibition precedes a swallow-induced peristaltic contraction in the smooth muscle part of the human oesophagus involving both circular and longitudinal muscles in a peristaltic fashion. Deglutitive inhibition is necessary for drinking liquids which requires multiple rapid swallows (MRS). During MRS the esophageal body remains inhibited until the last of the series of swallows and then a peristaltic contraction wave follows. A normal response to MRS requires indemnity of both inhibitory and excitatory mechanisms and esophageal muscle. MRS has recently been used to assess deglutitive inhibition in patients with esophageal motor disorders. Examples with impairment of deglutitive inhibition are achalasia of the LES and diffuse esophageal spasm.

  10. [Long-term result of total versus partial fundoplication following esophagomyotomy for primary esophageal motor disorders].

    Science.gov (United States)

    Zhu, Zi-jiang; Chen, Long-qi; Duranceau, Andre

    2008-02-15

    To compare the long-term results of total and partial fundoplication on esophagus myotomy. From January 1978 to October 1998, 64 patients with achalasia or diffuse esophageal spasm underwent esophagomyotomy and antireflux operation via left thoracotomy. Twenty-one patients underwent Nissen total fundoplication (Nissen group) and 43 patients underwent Belsey Marker IV partial fundoplication (Belsey group). Clinical, radiologic, radionuclide transit, manometric, 24-hour pH monitoring and endoscopic assessments were performed before and after the operation. There was no operative death and major complications for either group. At over 6 years follow-up and compared to Belsey group, patients in Nissen group revealed a higher frequency of dysphagia (P = 0.025) and more radionuclide material retention (P = 0.044). Both operative procedures reduced the lower esophageal sphincter pressure gradient. However, in Nissen group, the esophageal diameter observed on radiology was significantly increased from 3.9 cm preoperatively to 5.5 cm postoperatively (P = 0.012), while it kept the same for Belsey group (from 5.4 to 5.3 cm, P = 0.695). Reoperation in order to relieve the recurrent dysphagia and esophageal obstruction was performed on 8 patients in Nissen group and 1 in Belsey group (P < 0.01). When treating achalasia or diffuse esophageal spasm by esophageal myotomy and an antireflux operation, a total fundoplication is not appropriate, whereas a partial fundoplication provides proper antireflux effect without significant esophageal emptying difficulty.

  11. Association of time to reperfusion with left ventricular function and heart failure in patients with acute myocardial infarction treated with primary percutaneous coronary intervention: a systematic review.

    Science.gov (United States)

    Goel, Kashish; Pinto, Duane S; Gibson, C Michael

    2013-04-01

    Shorter time to reperfusion is associated with a significant reduction in mortality; however, its association with heart failure (HF) is not clearly documented. We conducted a systematic review to examine the association between time to reperfusion and incident HF and/or left ventricular dysfunction. MEDLINE/OVID, EMBASE, Cochrane Library, and Web of Science databases were searched from January 1974 to May 2012 for studies that reported the association between time to reperfusion and incident HF or left ventricular ejection fraction (LVEF) in patients undergoing primary percutaneous coronary intervention. Of 362 nonduplicate abstracts, 71 studies were selected for full-text review. Thirty-three studies were included in the final review, of which 16 were single-center studies, 7 were population-based studies, 7 were subanalyses from randomized controlled trials, and 3 were based on national samples. The pooled data demonstrate that every 1-hour delay in time to reperfusion is associated with a 4% to 12% increased risk of new-onset HF and a 4% relative increase in the risk of incident HF during follow-up. Early reperfusion was associated with a 2% to 8% greater LVEF before discharge and a 3% to 12% larger improvement in absolute LVEF at follow-up compared with the index admission. This systematic review presents evidence that longer time to reperfusion is not only associated with worsened left ventricular systolic function and new-onset HF at the time of index admission, but also with increased risk of HF and reduced improvement in left ventricular systolic function during follow-up. Copyright © 2013 Mosby, Inc. All rights reserved.

  12. Synergistic Utility of Brain Natriuretic Peptide and Left Ventricular Global Longitudinal Strain in Asymptomatic Patients With Significant Primary Mitral Regurgitation and Preserved Systolic Function Undergoing Mitral Valve Surgery.

    Science.gov (United States)

    Alashi, Alaa; Mentias, Amgad; Patel, Krishna; Gillinov, A Marc; Sabik, Joseph F; Popović, Zoran B; Mihaljevic, Tomislav; Suri, Rakesh M; Rodriguez, L Leonardo; Svensson, Lars G; Griffin, Brian P; Desai, Milind Y

    2016-07-01

    In asymptomatic patients with ≥3+ mitral regurgitation and preserved left ventricular (LV) ejection fraction who underwent mitral valve surgery, we sought to discover whether baseline LV global longitudinal strain (LV-GLS) and brain natriuretic peptide provided incremental prognostic utility. Four hundred and forty-eight asymptomatic patients (61±12 years and 69% men) with ≥3+ primary mitral regurgitation and preserved left ventricular ejection fraction, who underwent mitral valve surgery (92% repair) at our center between 2005 and 2008, were studied. Baseline clinical and echocardiographic data (including LV-GLS using Velocity Vector Imaging, Siemens, PA) were recorded. The Society of Thoracic Surgeons score was calculated. The primary outcome was death. Mean Society of Thoracic Surgeons score, left ventricular ejection fraction, mitral effective regurgitant orifice, indexed LV end-diastolic volume, and right ventricular systolic pressure were 4±1%, 62±3%, 0.55±0.2 cm(2), 58±13 cc/m(2), and 37±15 mm Hg, respectively. Forty-five percent of patients had flail. Median log-transformed BNP and LV-GLS were 4.04 (absolute brain natriuretic peptide: 60 pg/dL) and -20.7%. At 7.7±2 years, death occurred in 41 patients (9%; 0% at 30 days). On Cox analysis, a higher Society of Thoracic Surgeons score (hazard ratio 1.55), higher baseline right ventricular systolic pressure (hazard ratio 1.11), more abnormal LV-GLS (hazard ratio 1.17), and higher median log-transformed BNP (hazard ratio 2.26) were associated with worse longer-term survival (all Pright ventricular systolic pressure) provided incremental prognostic utility (χ(2) for longer-term mortality increased from 31-47 to 61; Pleft ventricular ejection fraction who underwent mitral valve surgery, brain natriuretic peptide and LV-GLS provided synergistic risk stratification, independent of established factors. © 2016 American Heart Association, Inc.

  13. Analysis of home-based rehabilitation in patients with motor impairment in primary care: a prospective observational study.

    Science.gov (United States)

    Vega-Ramírez, Francisco Antonio; López-Liria, Remedios; Granados-Gámez, Genoveva; Aguilar-Parra, Jose Manuel; Padilla-Góngora, David

    2017-07-14

    The purpose of health and social policies is to encourage older people more longevity, remain free of disability and experience quality of life while living in their homes. The aim of this study was to describe the characteristics of 473 patients diagnosed with motor impairment in primary care, the objectives of home-based rehabilitation and its functional impact. This prospective observational study was conducted in the Almería Health District. The analysed variables included age, gender, secondary diagnosis, Barthel Index (BI), physiotherapeutic objectives and techniques, and number of sessions. The sample had a mean age of 83 years, and 59% were women. The assessed conditions with a high prevalence included osteoarticular pathology (55%), Alzheimer's disease (15.1%), cardiovascular disease (13.7%) and stroke (6.5%). The techniques applied mainly consisted of functional exercises (57.1%), caregiver education (13.8%), and technical assistance (5.7%). There were statistically significant differences (t = -15.79; p physiotherapy. Lower patient age was correlated with higher initial and final functional capacities in primary care. This study aimed to present a useful starting point for decision making among management and health administration regarding this population group by approaching the process from the reality of practice and in relation to the rehabilitation provided. ClinicalTrials.gov identifier: NCT02715245 ; Date of registration: 18 January 2016.

  14. Developmental pathways of change in fitness and motor competence are related to overweight and obesity status at the end of primary school.

    Science.gov (United States)

    Rodrigues, Luis P; Stodden, David F; Lopes, Vítor P

    2016-01-01

    To test how different developmental pathways of health-related physical fitness and motor competence tests relate to weight status (overweight and obesity) at the end of primary school. Longitudinal study on growth, health-related physical fitness, and motor competence of 472 primary school children assessed yearly throughout 1st to 4th grade, with an average age of 6.3±0.7 years of age at 1st grade. Children's pathways of change on each of the fitness and motor competence tests were determined along the four years of the study. Participants were divided into three groups according to their rate of change in each test over time: Low Rate of Change, Average Rate of Change, and High Rate of Change. A logistic regression was used to predict the odds ratio of becoming overweight or obese, depending on the developmental pathway of change in fitness and motor competence across childhood. Children with a low or average rate of change in their developmental pathways of fitness and motor competence were several times more prone to become overweight or obese at the end of primary school (OR 2.0 to 6.3), independent of sex and body mass index at baseline. Specifically, a negative developmental pathway (Low Rate of Change) in cardiorespiratory fitness demonstrated over a six-fold elevated risk of being overweight or obese, compared to peers with a positive pathway. Not all children improve their motor competence and fitness levels over time and many actually regress over time. Developing positive fitness and motor competence pathways during childhood protects from obesity and overweight. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  15. Anodal tDCS over the Primary Motor Cortex Facilitates Long-Term Memory Formation Reflecting Use-Dependent Plasticity.

    Directory of Open Access Journals (Sweden)

    Orjon Rroji

    Full Text Available Previous research suggests that anodal transcranial direct current stimulation (tDCS over the primary motor cortex (M1 modulates NMDA receptor dependent processes that mediate synaptic plasticity. Here we test this proposal by applying anodal versus sham tDCS while subjects practiced to flex the thumb as fast as possible (ballistic movements. Repetitive practice of this task has been shown to result in performance improvements that reflect use-dependent plasticity resulting from NMDA receptor mediated, long-term potentiation (LTP-like processes. Using a double-blind within-subject cross-over design, subjects (n=14 participated either in an anodal or a sham tDCS session which were at least 3 months apart. Sham or anodal tDCS (1 mA was applied for 20 min during motor practice and retention was tested 30 min, 24 hours and one week later. All subjects improved performance during each of the two sessions (p < 0.001 and learning gains were similar. Our main result is that long term retention performance (i.e. 1 week after practice was significantly better when practice was performed with anodal tDCS than with sham tDCS (p < 0.001. This effect was large (Cohen's d=1.01 and all but one subject followed the group trend. Our data strongly suggest that anodal tDCS facilitates long-term memory formation reflecting use-dependent plasticity. Our results support the notion that anodal tDCS facilitates synaptic plasticity mediated by an LTP-like mechanism, which is in accordance with previous research.

  16. Peripheral facial nerve lesions induce changes in the firing properties of primary motor cortex layer 5 pyramidal cells.

    Science.gov (United States)

    Múnera, A; Cuestas, D M; Troncoso, J

    2012-10-25

    Facial nerve lesions elicit long-lasting changes in vibrissal primary motor cortex (M1) muscular representation in rodents. Reorganization of cortical representation has been attributed to potentiation of preexisting horizontal connections coming from neighboring muscle representation. However, changes in layer 5 pyramidal neuron activity induced by facial nerve lesion have not yet been explored. To do so, the effect of irreversible facial nerve injury on electrophysiological properties of layer 5 pyramidal neurons was characterized. Twenty-four adult male Wistar rats were randomly subjected to two experimental treatments: either surgical transection of mandibular and buccal branches of the facial nerve (n=18) or sham surgery (n=6). Unitary and population activity of vibrissal M1 layer 5 pyramidal neurons recorded in vivo under general anesthesia was compared between sham-operated and facial nerve-injured animals. Injured animals were allowed either one (n=6), three (n=6), or five (n=6) weeks recovery before recording in order to characterize the evolution of changes in electrophysiological activity. As compared to control, facial nerve-injured animals displayed the following sustained and significant changes in spontaneous activity: increased basal firing frequency, decreased spike-associated local field oscillation amplitude, and decreased spontaneous theta burst firing frequency. Significant changes in evoked-activity with whisker pad stimulation included: increased short latency population spike amplitude, decreased long latency population oscillations amplitude and frequency, and decreased peak frequency during evoked single-unit burst firing. Taken together, such changes demonstrate that peripheral facial nerve lesions induce robust and sustained changes of layer 5 pyramidal neurons in vibrissal motor cortex. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Alterations in primary motor cortex neurotransmission and gene expression in hemi-parkinsonian rats with drug-induced dyskinesia.

    Science.gov (United States)

    Lindenbach, D; Conti, M M; Ostock, C Y; Dupre, K B; Bishop, C

    2015-12-03

    Treatment of Parkinson's disease (PD) with dopamine replacement relieves symptoms of poverty of movement, but often causes drug-induced dyskinesias. Accumulating clinical and pre-clinical evidence suggests that the primary motor cortex (M1) is involved in the pathophysiology of PD and that modulating cortical activity may be a therapeutic target in PD and dyskinesia. However, surprisingly little is known about how M1 neurotransmitter tone or gene expression is altered in PD, dyskinesia or associated animal models. The present study utilized the rat unilateral 6-hydroxydopamine (6-OHDA) model of PD/dyskinesia to characterize structural and functional changes taking place in M1 monoamine innervation and gene expression. 6-OHDA caused dopamine pathology in M1, although the lesion was less severe than in the striatum. Rats with 6-OHDA lesions showed a PD motor impairment and developed dyskinesia when given L-DOPA or the D1 receptor agonist, SKF81297. M1 expression of two immediate-early genes (c-Fos and ARC) was strongly enhanced by either L-DOPA or SKF81297. At the same time, expression of genes specifically involved in glutamate and GABA signaling were either modestly affected or unchanged by lesion and/or treatment. We conclude that M1 neurotransmission and signal transduction in the rat 6-OHDA model of PD/dyskinesia mirror features of human PD, supporting the utility of the model to study M1 dysfunction in PD and the elucidation of novel pathophysiological mechanisms and therapeutic targets. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Aetiological factors in left-handedness

    Directory of Open Access Journals (Sweden)

    Milenković Sanja M.

    2005-01-01

    Full Text Available Lateralisation associates the extremities and senses of one side of the body, which are connected by afferent and efferent pathways, with the primary motor and sensory areas of the hemisphere on the opposite side. Dominant laterality denotes the appearance of a dominant extremity or sense in the performance of complex psychomotor activities. Laterality is manifested both as right-handedness or left-handedness, which are functionally equivalent and symmetrical in the performance of activities. Right-handedness is significantly more common than left-handedness. Genetic theory is most widely accepted in explaining the onset of lateralisation. According to this theory, the models of brain organisation asymmetry (anatomical, functional, and biochemical are strongly, genetically determined. However, the inability to clearly demonstrate the association between genetic factors and left-handedness has led researchers to investigate the effects of the environment on left-handedness. Of particular interest are the intrauterine environment and the factors influencing foetal development, of which hormones and ultrasound exposure are the most significant. It has been estimated that an extra five cases of nonright-handed lateralisation can be expected in every 100 males who were exposed to ultrasound in utero compared to those who were not. Socio-cultural pressure on left-handed individuals was much more severe in the past, which is confirmed by scientific findings that left-handedness is present in 13% of individuals in their twenties, while in less than 1% of individuals in their eighties.

  19. Inhalation of primary motor vehicle emissions: Effects of urbanpopulation and land area

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Julian D.; McKone, Thomas E.; Nazaroff, William W.

    2004-06-14

    Urban population density can influence transportation demand, as expressed through average daily vehicle-kilometers traveled per capita (VKT). In turn, changes in transportation demand influence total passenger vehicle emissions. Population density can also influence the fraction of total emissions that are inhaled by the exposed urban population. Equations are presented that describe these relationships for an idealized representation of an urban area. Using analytic solutions to these equations, we investigate the effect of three changes in urban population and urban land area (infill, sprawl, and constant-density growth) on per capita inhalation intake of primary pollutants from passenger vehicles. The magnitude of these effects depends on density-emissions elasticity ({var_epsilon}{sub e}), a normalized derivative relating change in population density to change in vehicle emissions. For example, if urban population increases, per capita intake is less with infill development than with constant-density growth if {var_epsilon}{sub e} is less than -0.5, while for {var_epsilon}{sub e} greater than -0.5 the reverse is true.

  20. Altered Primary Motor Cortex Structure, Organization, and Function in Chronic Pain: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Chang, Wei-Ju; O'Connell, Neil E; Beckenkamp, Paula R; Alhassani, Ghufran; Liston, Matthew B; Schabrun, Siobhan M

    2018-04-01

    Chronic pain can be associated with movement abnormalities. The primary motor cortex (M1) has an essential role in the formulation and execution of movement. A number of changes in M1 function have been reported in studies of people with chronic pain. This review systematically evaluated the evidence for altered M1 structure, organization, and function in people with chronic pain of neuropathic and non-neuropathic origin. Database searches were conducted and a modified STrengthening the Reporting of OBservational studies in Epidemiology checklist was used to assess the methodological quality of included studies. Meta-analyses, including preplanned subgroup analyses on the basis of condition were performed where possible. Sixty-seven studies (2,290 participants) using various neurophysiological measures were included. There is conflicting evidence of altered M1 structure, organization, and function for neuropathic and non-neuropathic pain conditions. Meta-analyses provided evidence of increased M1 long-interval intracortical inhibition in chronic pain populations. For most measures, the evidence of M1 changes in chronic pain populations is inconclusive. This review synthesizes the evidence of altered M1 structure, organization, and function in chronic pain populations. For most measures, M1 changes are inconsistent between studies and more research with larger samples and rigorous methodology is required to elucidate M1 changes in chronic pain populations. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Changes in corticomotor excitability and intracortical inhibition of the primary motor cortex forearm area induced by anodal tDCS.

    Directory of Open Access Journals (Sweden)

    Xue Zhang

    Full Text Available OBJECTIVE: Previous studies have investigated how tDCS over the primary motor cortex modulates excitability in the intrinsic hand muscles. Here, we tested if tDCS changes corticomotor excitability and/or cortical inhibition when measured in the extensor carpi radialis (ECR and if these aftereffects can be successfully assessed during controlled muscle contraction. METHODS: We implemented a double blind cross-over design in which participants (n = 16 completed two sessions where the aftereffects of 20 min of 1 mA (0.04 mA/cm2 anodal vs sham tDCS were tested in a resting muscle, and two more sessions where the aftereffects of anodal vs sham tDCS were tested in an active muscle. RESULTS: Anodal tDCS increased corticomotor excitability in ECR when aftereffects were measured with a low-level controlled muscle contraction. Furthermore, anodal tDCS decreased short interval intracortical inhibition but only when measured at rest and after non-responders (n = 2 were removed. We found no changes in the cortical silent period. CONCLUSION: These findings suggest that targeting more proximal muscles in the upper limb with anodal tDCS is achievable and corticomotor excitability can be assessed in the presence of a low-level controlled contraction of the target muscle.

  2. Functional MR imaging of the primary motor area in patients with brain tumors of the motor cortex. Evaluation with echo-planer imaging on a clinical 1.0 T MR imager

    International Nuclear Information System (INIS)

    Hara, Yoshie; Nakamura, Mitsugu; Tamaki, Norihiko; Ehara, Kazumasa; Kitamura, Junji

    1998-01-01

    The study included 3 healthy volunteers and 8 patients with a brain tumor of the motor cortex. The fMRI study was based on the spin echo (SE) type single shot echo-planer technique. Ten contiguous axial slices consisted of 40-60 echo-planer images acquired during 80-120 seconds of repeated task performances and resting periods. Activation maps were calculated by a Z-score method with thresholding, and interpolated on T1 images and surface anatomy scans. In all cases, areas of a significant signal increase were detected as clusters of several pixels on the precentral gyrus contralateral to the motor task performance. The mean signal change was 3.6±0.9% in normal subjects, and 7.2±4.1% in brain tumor patients. There was no significant difference between the two groups. In 5 brain tumor patients significant displacement of the precentral gyrus was observed on T1- or T2-weighted SE images. Of these, 2 also had marked peritumoral edema spreading over the precentral gyrus. There was no significant difference in the size, or the degree, of signal change between patients with or without compression or edema, nor between patients with and without preoperative motor impairment. During surgical intervention, displacement of the precentral gyrus was observed as had been demonstrated on preoperative images of patients. In all patients the precentral gyrus was preserved in all cases, and no deterioration of motor function occurred. Resolution of the displacement and edema was detected on postoperative MRI. Using the echo-planer technique on a clinical 1.0 T imager fMRI localization of the primary motor cortex was obtained in normal and brain tumor subjects. The activated areas were detected on the precentral gyrus of both groups, and even when there was marked brain compression or edema. It is important to identify and preserve the precentral gyrus during surgery to avoid deterioration of motor function. (K.H.)

  3. Motor recovery by improvement of limb-kinetic apraxia in a chronic stroke patient.

    Science.gov (United States)

    Jang, Sung Ho

    2013-01-01

    We report on a chronic stroke patient who showed motor recovery by improvement of limb-kinetic apraxia (LKA) after undergoing intensive rehabilitation for a period of one month, which was demonstrated by diffusion tensor tractography (DTT) and transcranial magnetic stimulation (TMS). A 50-year-old male patient presented with severe paralysis of the left extremities at the onset of thalamic hemorrhage. At thirty months after onset, the patient exhibited moderate weakness of his left upper and lower extremities. In addition, he exhibited a slow, clumsy, and mutilated movement pattern during grasp-release movements of his left hand. During a one-month period of intensive rehabilitation, which was started at thrity months after onset, the patient showed 22% motor recovery of the left extremities. The slow, clumsy, and mutilated movement pattern of the left hand almost disappeared. DTTs of the corticospinal tract (CST) in both hemispheres originated from the cerebral cortex, including the primary motor cortex, and passed along the known CST pathway. The DTT of the right CST was located anterior to the old hemorrhagic lesion. TMS study performed at thirty and thirty-one months after onset showed normal and similar findings for motor evoked potential in terms of latency and amplitude of the left hand muscle. We think that the motor weakness of the left extremities in this patient was mainly ascribed to LKA and that most of the motor recovery during a one-month period of rehabilitation was attributed to improvement of LKA.

  4. Transcranial magnetic stimulation probes the excitability of the primary motor cortex: A framework to account for the facilitating effects of acute whole-body exercise on motor processes

    Directory of Open Access Journals (Sweden)

    Karen Davranche

    2015-03-01

    Full Text Available The effects of exercise on decision-making performance have been studied using a wide variety of cognitive tasks and exercise interventions. Although the current literature supports a beneficial influence of acute exercise on cognitive performance, the mechanisms underlying this phenomenon have not yet been elucidated. We review studies that used single-pulse transcranial magnetic stimulation (TMS to probe the excitability of motor structures during whole-body exercise and present a framework to account for the facilitating effects of acute exercise on motor processes. Recent results suggest that, even in the absence of fatigue, the increase in corticospinal excitability classically reported during submaximal and exhausting exercises may be accompanied by a reduction in intracortical inhibition. We propose that reduced intracortical inhibition elicits an adaptive central mechanism that counteracts the progressive reduction in muscle responsiveness caused by peripheral fatigue. Such a reduction would render the motor cortex more sensitive to upstream influences, thus causing increased corticospinal excitability. Furthermore, reduction of intracortical inhibition may account for the more efficient descending drive and for the improvement of reaction time performance during exercise. The adaptive modulation in intracortical inhibition could be implemented through a general increase in reticular activation that would further account for enhanced sensory sensitivity.

  5. One-year Outcomes in Patients with ST-segment Elevation Myocardial Infarction Caused by Unprotected Left Main Coronary Artery Occlusion Treated by Primary Percutaneous Coronary Intervention.

    Science.gov (United States)

    Liu, Hai-Wei; Han, Ya-Ling; Jin, Quan-Min; Wang, Xiao-Zeng; Ma, Ying-Yan; Wang, Geng; Wang, Bin; Xu, Kai; Li, Yi; Chen, Shao-Liang

    2018-06-20

    Very few data have been reported for ST-segment elevation myocardial infarction (STEMI) caused by unprotected left main coronary artery (ULMCA) occlusion, and very little is known about the results of this subgroup of patients who underwent primary percutaneous coronary intervention (PCI). The aim of this study was to determine the clinical features and outcomes of patients with STEMI who underwent primary PCI for acute ULMCA occlusion. From January 2000 to February 2014, 372 patients with STEMI caused by ULMCA acute occlusion (ULMCA-STEMI) who underwent primary PCI at one of two centers were enrolled. The 230 patients with non-ST-segment elevation MI (NSTEMI) caused by ULMCA lesion (ULMCA-NSTEMI) who underwent emergency PCI were designated the control group. The main indexes were the major adverse cardiac events (MACEs) in-hospital, at 1 month, and at 1 year. Compared to the NSTEMI patients, the patients with STEMI had significantly higher rates of Killip class≥III (21.2% vs. 3.5%, χ 2 = 36.253, P 0.05) and TVR (all P > 0.05) in the intervals of 0-1 month as well as 1 month to 1 year. The results of Cox regression analysis showed that the differences in the independent predictors for MACE included the variables of Killip class ≥ III and intra-aortic balloon pump support for the STEMI patients and the variables of previous MI, ULMCA distal bifurcation, and 2-stent for distal ULMCA lesions for the NSTEMI patients. Compared to the NSTEMI patients, the patients with STEMI and ULMCA lesions still remain at a much higher risk for adverse events at 1 year, especially on 1 month. If a successful PCI procedure is performed, the 1-year outcomes in those patients might improve.

  6. Primary somatosensory/motor cortical thickness distinguishes paresthesia-dominant from pain-dominant carpal tunnel syndrome.

    Science.gov (United States)

    Maeda, Yumi; Kettner, Norman; Kim, Jieun; Kim, Hyungjun; Cina, Stephen; Malatesta, Cristina; Gerber, Jessica; McManus, Claire; Libby, Alexandra; Mezzacappa, Pia; Mawla, Ishtiaq; Morse, Leslie R; Audette, Joseph; Napadow, Vitaly

    2016-05-01

    Paresthesia-dominant and pain-dominant subgroups have been noted in carpal tunnel syndrome (CTS), a peripheral neuropathic disorder characterized by altered primary somatosensory/motor (S1/M1) physiology. We aimed to investigate whether brain morphometry dissociates these subgroups. Subjects with CTS were evaluated with nerve conduction studies, whereas symptom severity ratings were used to allocate subjects into paresthesia-dominant (CTS-paresthesia), pain-dominant (CTS-pain), and pain/paresthesia nondominant (not included in further analysis) subgroups. Structural brain magnetic resonance imaging data were acquired at 3T using a multiecho MPRAGE T1-weighted pulse sequence, and gray matter cortical thickness was calculated across the entire brain using validated, automated methods. CTS-paresthesia subjects demonstrated reduced median sensory nerve conduction velocity (P = 0.05) compared with CTS-pain subjects. In addition, cortical thickness in precentral and postcentral gyri (S1/M1 hand area) contralateral to the more affected hand was significantly reduced in CTS-paresthesia subgroup compared with CTS-pain subgroup. Moreover, in CTS-paresthesia subjects, precentral cortical thickness was negatively correlated with paresthesia severity (r(34) = -0.40, P = 0.016) and positively correlated with median nerve sensory velocity (r(36) = 0.51, P = 0.001), but not with pain severity. Conversely, in CTS-pain subjects, contralesional S1 (r(9) = 0.62, P = 0.042) and M1 (r(9) = 0.61, P = 0.046) cortical thickness were correlated with pain severity, but not median nerve velocity or paresthesia severity. This double dissociation in somatotopically specific S1/M1 areas suggests a neuroanatomical substrate for symptom-based CTS subgroups. Such fine-grained subgrouping of CTS may lead to improved personalized therapeutic approaches, based on superior characterization of the linkage between peripheral and central neuroplasticity.

  7. Quantitative assessment of primary mitral regurgitation using left ventricular volumes obtained with new automated three-dimensional transthoracic echocardiographic software: A comparison with 3-Tesla cardiac magnetic resonance.

    Science.gov (United States)

    Levy, Franck; Marechaux, Sylvestre; Iacuzio, Laura; Schouver, Elie Dan; Castel, Anne Laure; Toledano, Manuel; Rusek, Stephane; Dor, Vincent; Tribouilloy, Christophe; Dreyfus, Gilles

    2018-03-30

    Quantitative assessment of primary mitral regurgitation (MR) using left ventricular (LV) volumes obtained with three-dimensional transthoracic echocardiography (3D TTE) recently showed encouraging results. Nevertheless, 3D TTE is not incorporated into everyday practice, as current LV chamber quantification software products are time consuming. To investigate the accuracy and reproducibility of new automated fast 3D TTE software (HeartModel A.I. ; Philips Healthcare, Andover, MA, USA) for the quantification of LV volumes and MR severity in patients with isolated degenerative primary MR; and to compare regurgitant volume (RV) obtained with 3D TTE with a cardiac magnetic resonance (CMR) reference. Fifty-three patients (37 men; mean age 64±12 years) with at least mild primary isolated MR, and having comprehensive 3D TTE and CMR studies within 24h, were eligible for inclusion. MR RV was calculated using the proximal isovelocity surface area (PISA) method and the volumetric method (total LV stroke volume minus aortic stroke volume) with either CMR or 3D TTE. Inter- and intraobserver reproducibility of 3D TTE was excellent (coefficient of variation≤10%) for LV volumes. MR RV was similar using CMR and 3D TTE (57±23mL vs 56±28mL; P=0.22), but was significantly higher using the PISA method (69±30mL; P<0.05 compared with CMR and 3D TTE). The PISA method consistently overestimated MR RV compared with CMR (bias 12±21mL), while no significant bias was found between 3D TTE and CMR (bias 2±14mL). Concordance between echocardiography and CMR was higher using 3D TTE MR grading (intraclass correlation coefficient [ICC]=0.89) than with PISA MR grading (ICC=0.78). Complete agreement with CMR grading was more frequent with 3D TTE than with the PISA method (76% vs 63%). 3D TTE RV assessment using the new generation of automated software correlates well with CMR in patients with isolated degenerative primary MR. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  8. Preoperative intestinal stent decompression with primary laparoscopic surgery to treat left-sided colorectal cancer with obstruction: a report of 21 cases

    International Nuclear Information System (INIS)

    Zheng, Chao; Wu, Yu-Lian; Li, Qing

    2013-01-01

    This work aimed to study the safety and efficacy of preoperative intestinal stent decompression combined with laparoscopic surgery to treat left-sided colorectal cancer with obstruction (LCCO). Retrospective analysis was conducted on data obtained from 21 LCCO patients admitted to The First Affiliated Hospital of Zhejiang Chinese Medicine University during March 2008 and December 2011. To remove the intestinal obstruction, preoperative intestinal stent placement under colonoscopic guidance was performed. Approximately 7 to 10 days after the operation, laparoscopic radical surgery of colorectal cancer was conducted. Among the 21 cases studied, laparoscopic surgery was successful in 20 patients. Emergent laparotomy was conducted in one patient because of tumor invasion in the ureter. The duration of the operation ranged from 180 to 320 min, and the average time was 220 min. The recovery time for bowel function ranged from 2 to 5 days with an average time of 3 days. Postoperative infection of the incision occurred in one case. No anastomotic leakage was observed in any of the cases. Preoperative intestinal stent decompression, combined with primary stage laparoscopic surgery, is a safe and effective method for the treatment of LCCO

  9. Primary non-Hodgkin lymphoma of the right femur and subsequent metastasis to the left femur: A case report and literature review.

    Science.gov (United States)

    Hu, Jing-Yu; Yu, Dan; Wu, Yao-Hui

    2018-04-01

    Non-Hodgkin lymphoma of the bone is rare and typically causes an extensive bone lesion. The present study describes a case of diffuse large B-cell primary non-Hodgkin lymphoma of the bone, which occurred in the right femur, and was initially treated with surgery and chemotherapy. Following a 7-year period of complete remission, a new, similar lesion was identified in the left femur. With both lesions, there was no accompanying destruction of any other bones or organ involvement. Metastasis of PLB to the contralateral side is extremely rare and, to the best of our knowledge, this is the first report of this particular presentation in China or worldwide. We hypothesized that the present situation arose due to mechanisms involving the tumor microenvironment, circulating tumor cells, lymphocyte homing and self-seeding. The present report describes the case in detail, and discusses the possible underlying mechanisms and their potential contribution to the treatment of non-Hodgkin lymphoma, as well as the prevention of metastasis and recurrence, which may be of considerable clinical significance.

  10. Optimal time for predicting left ventricular remodeling after successful primary coronary angioplasty in acute myocardial infarction using serial myocardial contrast echocardiography and magnetic resonance imaging

    International Nuclear Information System (INIS)

    Sakuma, Tadamichi; Okada, Takenori; Hayashi, Yasuhiko; Otsuka, Masaya; Hirai, Yuukou

    2002-01-01

    The objective of this study was to determine the optimal time to assess microvascular integrity within the risk area for myocardial infarction in order to predict unfavorable left ventricular remodeling (LVR) after successful primary coronary angioplasty. Fifty-three patients who underwent myocardial contrast echocardiography (MCE) just before recanalization, shortly after and 1 day (Day 2) and 3 weeks after recanalization were studied. The no- and low-reflow ratio (LR ratio) was analyzed at each stage. The wall-tinning ratio within the risk area was determined using magnetic resonance imaging performed 3-4 weeks after the recanalization. Thirteen of the 53 patients showed LVR 3-8 months after recanalization. The optimal time to predict LVR was found to be Day 2 based on the receiver operating characteristic curves. The LR ratio on Day 2 (χ 2 =7.39, p=0.007) and the collateral circulation before recanalization (χ 2 =4.57, p=0.03) were chosen as independent variables for predicting LVR. Patients with greater than 0.43 in the LR ratio on Day 2 showed a lower wall-thinning ratio (58±19% vs 72±20%, p=0.05). This study shows that the optimal time to estimate the microvascular integrity for predicting LVR is 1 day after recanalization, which is neither shortly after recanalization nor during the convalescent stage. (author)

  11. Effective Connectivity Hierarchically Links Temporoparietal and Frontal Areas of the Auditory Dorsal Stream with the Motor Cortex Lip Area during Speech Perception

    Science.gov (United States)

    Murakami, Takenobu; Restle, Julia; Ziemann, Ulf

    2012-01-01

    A left-hemispheric cortico-cortical network involving areas of the temporoparietal junction (Tpj) and the posterior inferior frontal gyrus (pIFG) is thought to support sensorimotor integration of speech perception into articulatory motor activation, but how this network links with the lip area of the primary motor cortex (M1) during speech…

  12. Awake craniotomy for brain lesions within and near the primary motor area: A retrospective analysis of factors associated with worsened paresis in 102 consecutive patients

    Science.gov (United States)

    Shinoura, Nobusada; Midorikawa, Akira; Yamada, Ryoji; Hana, Taijun; Saito, Akira; Hiromitsu, Kentaro; Itoi, Chisato; Saito, Syoko; Yagi, Kazuo

    2013-01-01

    Background: We analyzed factors associated with worsened paresis in a large series of patients with brain lesions located within or near the primary motor area (M1) to establish protocols for safe, awake craniotomy of eloquent lesions. Methods: We studied patients with brain lesions involving M1, the premotor area (PMA) and the primary sensory area (S1), who underwent awake craniotomy (n = 102). In addition to evaluating paresis before, during, and one month after surgery, the following parameters were analyzed: Intraoperative complications; success or failure of awake surgery; tumor type (A or B), tumor location, tumor histology, tumor size, and completeness of resection. Results: Worsened paresis at one month of follow-up was significantly associated with failure of awake surgery, intraoperative complications and worsened paresis immediately after surgery, which in turn was significantly associated with intraoperative worsening of paresis. Intraoperative worsening of paresis was significantly related to preoperative paresis, type A tumor (motor tract running in close proximity to and compressed by the tumor), tumor location within or including M1 and partial removal (PR) of the tumor. Conclusions: Successful awake surgery and prevention of deterioration of paresis immediately after surgery without intraoperative complications may help prevent worsening of paresis at one month. Factors associated with intraoperative worsening of paresis were preoperative motor deficit, type A and tumor location in M1, possibly leading to PR of the tumor. PMID:24381792

  13. Methodology to monitor and diagnostic vibrations of the motor-pumps used in the primary cooling system of IEAR-1 nuclear research reactor

    International Nuclear Information System (INIS)

    Benevenuti, Erion de Lima

    2004-01-01

    The objectives of this study are to establish a strategy to monitor and diagnose vibrations of the motor pumps used in the primary reactor cooling system of the IEA-R1 nuclear research reactor, to verify the possibility of using the existing installed monitoring vibration system and to implement such strategy in a continuous way. Four types of mechanical problems were considered: unbalancing, misalignment, gaps and faults in bearings. An adequate set of analysis tools, well established by the industry, was selected. These are: global measurements of vibration, velocity spectrum and acceleration envelope spectrum. Three sources of data and information were used; the data measured from the primary pumps, experimental results obtained with a Spectra Quest machine used to simulate mechanical defects and data from the literature. The results show that, for the specific case of the motor-pumps of IEA-R1 nuclear research reactor, although the technique using the envelope of acceleration, which is not available in the current system used to monitor the vibration of the motor pumps, is the one with best performance, the other techniques available in the system are sufficient to monitor the four types of mechanical problems mentioned. The proposed strategy is shown and detailed in this work. (author)

  14. Layer 5 Pyramidal Neurons’ Dendritic Remodeling and Increased Microglial Density in Primary Motor Cortex in a Murine Model of Facial Paralysis

    Directory of Open Access Journals (Sweden)

    Diana Urrego

    2015-01-01

    Full Text Available This work was aimed at characterizing structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with microglial density induced by facial nerve lesion using a murine facial paralysis model. Adult transgenic mice, expressing green fluorescent protein in microglia and yellow fluorescent protein in projecting neurons, were submitted to either unilateral section of the facial nerve or sham surgery. Injured animals were sacrificed either 1 or 3weeks after surgery. Two-photon excitation microscopy was then used for evaluating both layer 5 pyramidal neurons and microglia in vibrissal primary motor cortex (vM1. It was found that facial nerve lesion induced long-lasting changes in the dendritic morphology of vM1 layer 5 pyramidal neurons and in their surrounding microglia. Dendritic arborization of the pyramidal cells underwent overall shrinkage. Apical dendrites suffered transient shortening while basal dendrites displayed sustained shortening. Moreover, dendrites suffered transient spine pruning. Significantly higher microglial cell density was found surrounding vM1 layer 5 pyramidal neurons after facial nerve lesion with morphological bias towards the activated phenotype. These results suggest that facial nerve lesions elicit active dendrite remodeling due to pyramidal neuron and microglia interaction, which could be the pathophysiological underpinning of some neuropathic motor sequelae in humans.

  15. Layer 5 Pyramidal Neurons' Dendritic Remodeling and Increased Microglial Density in Primary Motor Cortex in a Murine Model of Facial Paralysis

    Science.gov (United States)

    Urrego, Diana; Troncoso, Julieta; Múnera, Alejandro

    2015-01-01

    This work was aimed at characterizing structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with microglial density induced by facial nerve lesion using a murine facial paralysis model. Adult transgenic mice, expressing green fluorescent protein in microglia and yellow fluorescent protein in projecting neurons, were submitted to either unilateral section of the facial nerve or sham surgery. Injured animals were sacrificed either 1 or 3weeks after surgery. Two-photon excitation microscopy was then used for evaluating both layer 5 pyramidal neurons and microglia in vibrissal primary motor cortex (vM1). It was found that facial nerve lesion induced long-lasting changes in the dendritic morphology of vM1 layer 5 pyramidal neurons and in their surrounding microglia. Dendritic arborization of the pyramidal cells underwent overall shrinkage. Apical dendrites suffered transient shortening while basal dendrites displayed sustained shortening. Moreover, dendrites suffered transient spine pruning. Significantly higher microglial cell density was found surrounding vM1 layer 5 pyramidal neurons after facial nerve lesion with morphological bias towards the activated phenotype. These results suggest that facial nerve lesions elicit active dendrite remodeling due to pyramidal neuron and microglia interaction, which could be the pathophysiological underpinning of some neuropathic motor sequelae in humans. PMID:26064916

  16. Long-term neuroplasticity of the face primary motor cortex and adjacent somatosensory cortex induced by tooth loss can be reversed following dental implant replacement in rats.

    Science.gov (United States)

    Avivi-Arber, Limor; Lee, Jye-Chang; Sood, Mandeep; Lakschevitz, Flavia; Fung, Michelle; Barashi-Gozal, Maayan; Glogauer, Michael; Sessle, Barry J

    2015-11-01

    Tooth loss is common, and exploring the neuroplastic capacity of the face primary motor cortex (face-M1) and adjacent primary somatosensory cortex (face-S1) is crucial for understanding how subjects adapt to tooth loss and their prosthetic replacement. The aim was to test if functional reorganization of jaw and tongue motor representations in the rat face-M1 and face-S1 occurs following tooth extraction, and if subsequent dental implant placement can reverse this neuroplasticity. Rats (n = 22) had the right maxillary molar teeth extracted under local and general anesthesia. One month later, seven rats had dental implant placement into healed extraction sites. Naive rats (n = 8) received no surgical treatment. Intracortical microstimulation (ICMS) and recording of evoked jaw and tongue electromyographic responses were used to define jaw and tongue motor representations at 1 month (n = 8) or 2 months (n = 7) postextraction, 1 month postimplant placement, and at 1-2 months in naive rats. There were no significant differences across study groups in the onset latencies of the ICMS-evoked responses (P > 0.05), but in comparison with naive rats, tooth extraction caused a significant (P rats. These novel findings suggest that face-M1 and adjacent face-S1 may play a role in adaptive mechanisms related to tooth loss and their replacement with dental implants. © 2015 Wiley Periodicals, Inc.

  17. Detection of infarct size safety threshold for left ventricular ejection fraction impairment in acute myocardial infarction successfully treated with primary percutaneous coronary intervention.

    Science.gov (United States)

    Sciagrà, Roberto; Cipollini, Fabrizio; Berti, Valentina; Migliorini, Angela; Antoniucci, David; Pupi, Alberto

    2013-04-01

    In acute myocardial infarction (AMI) treated by primary percutaneous coronary intervention (PCI), there is a direct relationship between myocardial damage and consequent left ventricular (LV) functional impairment. It is however unclear whether there is a safety threshold below which infarct size does not significantly affect LV ejection fraction (EF). The aim of this study was to evaluate the relationship between infarct size and LVEF in AMI patients treated by successful PCI using a specific statistical approach to identify a possible safety threshold. Among patients with recent AMI submitted to perfusion gated single photon emission computed tomography (SPECT) to define the infarct size, the data of 427 subjects with sizable infarct size were considered. The relationship between infarct size and LVEF was analysed using a simple segmented regression (SSR) model and an iterative algorithm based on robust least squares (RLS) for parameter estimation. The RLS algorithm detected two break points in the SSR model, set at infarct size values of 11.0 and 51.5 %. Because the slope coefficients of the two extreme segments of the regression line were not significant, by constraining such segments to zero slope in the SSR model, the lower break point was identified at infarct size = 8 % and the upper one at 45 %. Using a rigorous statistical approach, it is possible to demonstrate that below a threshold of 8 % the infarct size apparently does not affect the LVEF and therefore a safety threshold could be set at this value. Furthermore, the same analysis suggests that the relationship between infarct size and LVEF impairment is lost for an infarct size > 45 %.

  18. Scaling of motor cortical excitability during unimanual force generation.

    Science.gov (United States)

    Perez, Monica A; Cohen, Leonardo G

    2009-10-01

    During performance of a unimanual force generation task primary motor cortices (M1s) experience clear functional changes. Here, we evaluated the way in which M1s interact during parametric increases in right wrist flexion force in healthy volunteers. We measured the amplitude and the slope of motor evoked potentials (MEP) recruitment curves to transcranial magnetic stimulation (TMS) in the left and right flexor carpi radialis (FCR) muscles at rest and during 10%, 30% and 70% of maximal wrist flexion force. At rest, no differences were observed in the amplitude and slope of MEP recruitment curves in the left and right FCR muscles. With increasing right wrist flexion force, MEP amplitudes increased in both FCR muscles, with larger amplitudes in the right FCR. We found a significant correlation between the left and right MEP amplitudes across conditions. The slope of right and left FCR MEP recruitment curve was significantly steeper at 70% of force compared to rest and 10% of force. A significant correlation between the slope of left and right FCR MEP amplitudes was found at 70% of force only. Our results indicate a differential scaling of excitability in the corticospinal system controlling right and left FCR muscles at increasing levels of unimanual force generation. Specifically, these data highlights that at strong levels of unimanual force the increases in motor cortical excitability with increasing TMS stimulus intensities follow a similar pattern in both M1s, while at low levels of force they do not.

  19. Effects of Various Physical Education Curriculum on Motor Skills in Students of Final Grades in Primary School

    Directory of Open Access Journals (Sweden)

    Milovan Ljubojević

    2016-02-01

    Full Text Available Results of many researches conducted in field of physical education show that the physical education curriculum is not on the appropriate and satisfactory level. The goal of this study is to determine effects of standard and experimental education curriculum on motor skills. This study lasted for one school year, and it was conducted on the sample consisting of 113 boys, divided into control (physical education and experimental group (basketball. In order to asses motor space, following variables of Eurofit battery of tests were monitored: flamingo, hand tapping, seated forward bend (modified functional reach test, long jump, dynamo-metrics of dominant hand, lay – sit for 30'', pull-up endurance, and pin running on 10x5m. Analysis of the results during the final measurement showed that students of control group had better results in final measurement in comparison to the initial one in six out of eight variables. Students of the experimental group had improved results in 7 out of 8 variables. Experimental education curriculum with emphasize on basketball contributed to development of motor skills of students, but not at the level that would imply superiority over the control – standard education curriculum.

  20. Effects of High-Definition Anodal Transcranial Direct Current Stimulation Applied Simultaneously to Both Primary Motor Cortices on Bimanual Sensorimotor Performance

    Directory of Open Access Journals (Sweden)

    Nils H. Pixa

    2017-07-01

    Full Text Available Many daily activities, such as tying one’s shoe laces, opening a jar of jam or performing a free throw in basketball, require the skillful coordinated use of both hands. Even though the non-invasive method of transcranial direct current stimulation (tDCS has been repeatedly shown to improve unimanual motor performance, little is known about its effects on bimanual motor performance. More knowledge about how tDCS may improve bimanual behavior would be relevant to motor recovery, e.g., in persons with bilateral impairment of hand function. We therefore examined the impact of high-definition anodal tDCS (HD-atDCS on the performance of a bimanual sequential sensorimotor task. Thirty-two volunteers (age M = 24.25; SD = 2.75; 14 females participated in this double-blind study and performed sport stacking in six experimental sessions. In sport stacking, 12 specially designed cups must be stacked (stacked up and dismantled (stacked down in predefined patterns as fast as possible. During a pretest, posttest and follow-up test, two sport stacking formations (3-6-3 stack and 1-10-1 stack were performed. Between the pretest and posttest, all participants were trained in sport stacking with concurrent brain stimulation for three consecutive days. The experimental group (STIM-M1 received HD-atDCS over both primary motor cortices (M1, while the control group received a sham stimulation (SHAM. Three-way analysis of variance (ANOVA revealed a significant main effect of TIME and a significant interaction of TIME × GROUP. No significant effects were found for GROUP, nor for the three-way interaction of TIME × GROUP × FORMATION. Further two-way ANOVAs showed a significant main effect of TIME and a non-significant main effect for GROUP in both sport stacking formations. A significant interaction between TIME × GROUP was found only for the 3-6-3 formation, indicating superior performance gains for the experimental group (STIM-M1. To account and control for

  1. Effects of High-Definition Anodal Transcranial Direct Current Stimulation Applied Simultaneously to Both Primary Motor Cortices on Bimanual Sensorimotor Performance

    Science.gov (United States)

    Pixa, Nils H.; Steinberg, Fabian; Doppelmayr, Michael

    2017-01-01

    Many daily activities, such as tying one’s shoe laces, opening a jar of jam or performing a free throw in basketball, require the skillful coordinated use of both hands. Even though the non-invasive method of transcranial direct current stimulation (tDCS) has been repeatedly shown to improve unimanual motor performance, little is known about its effects on bimanual motor performance. More knowledge about how tDCS may improve bimanual behavior would be relevant to motor recovery, e.g., in persons with bilateral impairment of hand function. We therefore examined the impact of high-definition anodal tDCS (HD-atDCS) on the performance of a bimanual sequential sensorimotor task. Thirty-two volunteers (age M = 24.25; SD = 2.75; 14 females) participated in this double-blind study and performed sport stacking in six experimental sessions. In sport stacking, 12 specially designed cups must be stacked (stacked up) and dismantled (stacked down) in predefined patterns as fast as possible. During a pretest, posttest and follow-up test, two sport stacking formations (3-6-3 stack and 1-10-1 stack) were performed. Between the pretest and posttest, all participants were trained in sport stacking with concurrent brain stimulation for three consecutive days. The experimental group (STIM-M1) received HD-atDCS over both primary motor cortices (M1), while the control group received a sham stimulation (SHAM). Three-way analysis of variance (ANOVA) revealed a significant main effect of TIME and a significant interaction of TIME × GROUP. No significant effects were found for GROUP, nor for the three-way interaction of TIME × GROUP × FORMATION. Further two-way ANOVAs showed a significant main effect of TIME and a non-significant main effect for GROUP in both sport stacking formations. A significant interaction between TIME × GROUP was found only for the 3-6-3 formation, indicating superior performance gains for the experimental group (STIM-M1). To account and control for baseline

  2. Whole-body water flow stimulation to the lower limbs modulates excitability of primary motor cortical regions innervating the hands: a transcranial magnetic stimulation study.

    Directory of Open Access Journals (Sweden)

    Daisuke Sato

    Full Text Available Whole-body water immersion (WI has been reported to change sensorimotor integration. However, primary motor cortical excitability is not affected by low-intensity afferent input. Here we explored the effects of whole-body WI and water flow stimulation (WF on corticospinal excitability and intracortical circuits. Eight healthy subjects participated in this study. We measured the amplitude of motor-evoked potentials (MEPs produced by single transcranial magnetic stimulation (TMS pulses and examined conditioned MEP amplitudes by paired-pulse TMS. We evaluated short-interval intracortical inhibition (SICI and intracortical facilitation (ICF using the paired-TMS technique before and after 15-min intervention periods. Two interventions used were whole-body WI with water flow to the lower limbs (whole-body WF and whole-body WI without water flow to the lower limbs (whole-body WI. The experimental sequence included a baseline TMS assessment (T0, intervention for 15 min, a second TMS assessment immediately after intervention (T1, a 10 min resting period, a third TMS assessment (T2, a 10 min resting period, a fourth TMS assessment (T3, a 10 min resting period, and the final TMS assessment (T4. SICI and ICF were evaluated using a conditioning stimulus of 90% active motor threshold and a test stimulus adjusted to produce MEPs of approximately 1-1.2 mV, and were tested at intrastimulus intervals of 3 and 10 ms, respectively. Whole-body WF significantly increased MEP amplitude by single-pulse TMS and led to a decrease in SICI in the contralateral motor cortex at T1, T2 and T3. Whole-body WF also induced increased corticospinal excitability and decreased SICI. In contrast, whole-body WI did not change corticospinal excitability or intracortical circuits.

  3. Whole-body water flow stimulation to the lower limbs modulates excitability of primary motor cortical regions innervating the hands: a transcranial magnetic stimulation study.

    Science.gov (United States)

    Sato, Daisuke; Yamashiro, Koya; Onishi, Hideaki; Baba, Yasuhiro; Nakazawa, Sho; Shimoyama, Yoshimitsu; Maruyama, Atsuo

    2014-01-01

    Whole-body water immersion (WI) has been reported to change sensorimotor integration. However, primary motor cortical excitability is not affected by low-intensity afferent input. Here we explored the effects of whole-body WI and water flow stimulation (WF) on corticospinal excitability and intracortical circuits. Eight healthy subjects participated in this study. We measured the amplitude of motor-evoked potentials (MEPs) produced by single transcranial magnetic stimulation (TMS) pulses and examined conditioned MEP amplitudes by paired-pulse TMS. We evaluated short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) using the paired-TMS technique before and after 15-min intervention periods. Two interventions used were whole-body WI with water flow to the lower limbs (whole-body WF) and whole-body WI without water flow to the lower limbs (whole-body WI). The experimental sequence included a baseline TMS assessment (T0), intervention for 15 min, a second TMS assessment immediately after intervention (T1), a 10 min resting period, a third TMS assessment (T2), a 10 min resting period, a fourth TMS assessment (T3), a 10 min resting period, and the final TMS assessment (T4). SICI and ICF were evaluated using a conditioning stimulus of 90% active motor threshold and a test stimulus adjusted to produce MEPs of approximately 1-1.2 mV, and were tested at intrastimulus intervals of 3 and 10 ms, respectively. Whole-body WF significantly increased MEP amplitude by single-pulse TMS and led to a decrease in SICI in the contralateral motor cortex at T1, T2 and T3. Whole-body WF also induced increased corticospinal excitability and decreased SICI. In contrast, whole-body WI did not change corticospinal excitability or intracortical circuits.

  4. Rehabilitative skilled forelimb training enhances axonal remodeling in the corticospinal pathway but not the brainstem-spinal pathways after photothrombotic stroke in the primary motor cortex.

    Science.gov (United States)

    Okabe, Naohiko; Himi, Naoyuki; Maruyama-Nakamura, Emi; Hayashi, Norito; Narita, Kazuhiko; Miyamoto, Osamu

    2017-01-01

    Task-specific rehabilitative training is commonly used for chronic stroke patients. Axonal remodeling is believed to be one mechanism underlying rehabilitation-induced functional recovery, and significant roles of the corticospinal pathway have previously been demonstrated. Brainstem-spinal pathways, as well as the corticospinal tract, have been suggested to contribute to skilled motor function and functional recovery after brain injury. However, whether axonal remodeling in the brainstem-spinal pathways is a critical component for rehabilitation-induced functional recovery is not known. In this study, rats were subjected to photothrombotic stroke in the caudal forelimb area of the primary motor cortex and received rehabilitative training with a skilled forelimb reaching task for 4 weeks. After completion of the rehabilitative training, the retrograde tracer Fast blue was injected into the contralesional lower cervical spinal cord. Fast blue-positive cells were counted in 32 brain areas located in the cerebral cortex, hypothalamus, midbrain, pons, and medulla oblongata. Rehabilitative training improved motor performance in the skilled forelimb reaching task but not in the cylinder test, ladder walk test, or staircase test, indicating that rehabilitative skilled forelimb training induced task-specific recovery. In the histological analysis, rehabilitative training significantly increased the number of Fast blue-positive neurons in the ipsilesional rostral forelimb area and secondary sensory cortex. However, rehabilitative training did not alter the number of Fast blue-positive neurons in any areas of the brainstem. These results indicate that rehabilitative skilled forelimb training enhances axonal remodeling selectively in the corticospinal pathway, which suggests a critical role of cortical plasticity, rather than brainstem plasticity, in task-specific recovery after subtotal motor cortex destruction.

  5. Assessment of sensorimotor cortical representation asymmetries and motor skills in violin players.

    Science.gov (United States)

    Schwenkreis, Peter; El Tom, Susan; Ragert, Patrick; Pleger, Burkhard; Tegenthoff, Martin; Dinse, Hubert R

    2007-12-01

    As a model for use-dependent plasticity, the brains of professional musicians have been extensively studied to examine structural and functional adaptation to unique requirements of skilled performance. Here we provide a combination of data on motor performance and hand representation in the primary motor and somatosensory cortex of professional violin players, with the aim of assessing possible behavioural consequences of sensorimotor cortical asymmetries. We studied 15 healthy right-handed professional violin players and 35 healthy nonmusician controls. Motor and somatosensory cortex asymmetry was assessed by recording the motor output map after transcranial magnetic stimulation from a small hand muscle, and by dipole source localization of somatosensory evoked potentials after electrical stimulation of the median and ulnar nerves. Motor performance was examined using a series of standardized motor tasks covering different aspects of hand function. Violin players showed a significant right-larger-than-left asymmetry of the motor and somatosensory cortex, whereas nonmusician controls showed no significant interhemispheric difference. The amount of asymmetry in the motor and somatosensory cortices of musicians was significantly correlated. At the behavioural level, motor performance did not significantly differ between musicians and nonmusicians. The results support a use-dependent enlargement of the left hand representation in the sensorimotor cortex of violin players. However, these cortical asymmetries were not paralleled by accompanying altered asymmetries at a behavioural level, suggesting that the reorganisation might be task-specific and does not lead to improved motor abilities in general.

  6. Convolutional neural network for high-accuracy functional near-infrared spectroscopy in a brain-computer interface: three-class classification of rest, right-, and left-hand motor execution.

    Science.gov (United States)

    Trakoolwilaiwan, Thanawin; Behboodi, Bahareh; Lee, Jaeseok; Kim, Kyungsoo; Choi, Ji-Woong

    2018-01-01

    The aim of this work is to develop an effective brain-computer interface (BCI) method based on functional near-infrared spectroscopy (fNIRS). In order to improve the performance of the BCI system in terms of accuracy, the ability to discriminate features from input signals and proper classification are desired. Previous studies have mainly extracted features from the signal manually, but proper features need to be selected carefully. To avoid performance degradation caused by manual feature selection, we applied convolutional neural networks (CNNs) as the automatic feature extractor and classifier for fNIRS-based BCI. In this study, the hemodynamic responses evoked by performing rest, right-, and left-hand motor execution tasks were measured on eight healthy subjects to compare performances. Our CNN-based method provided improvements in classification accuracy over conventional methods employing the most commonly used features of mean, peak, slope, variance, kurtosis, and skewness, classified by support vector machine (SVM) and artificial neural network (ANN). Specifically, up to 6.49% and 3.33% improvement in classification accuracy was achieved by CNN compared with SVM and ANN, respectively.

  7. MOTORIC SPEED AND MANUAL DEXTERITY OF CHILDERN WITH IMPAIRED VISION

    Directory of Open Access Journals (Sweden)

    Dženana Radžo Alibegović

    2017-04-01

    Full Text Available The aim of this study was to estimate the motoric speed and manual dexterity of children with visual impairments. The research is covered by a sample size of 35 participants with visual impairment, with ages between 7 and 15 years, of which 19 participants with visual impairment were male and 16 participants with impaired vision were female. The study was conducted in 17 primary schools in the municipality of Tuzla, Bosnia and Herzegovina. The results showed that the motoric speed and manual dexterity of children with visual impairment is evenly developed on the right and left hand, and also on both hands together and that there is a relationship between the motoric speed and manual dexterity of the right and left hand and both hands together.

  8. Charting the excitability of premotor to motor connections while withholding or initiating a selected movement

    DEFF Research Database (Denmark)

    Kroeger, Johan; Bäumer, Tobias; Jonas, Melanie

    2010-01-01

    In 19 healthy volunteers, we used transcranial magnetic stimulation (TMS) to probe the excitability in pathways linking the left dorsal premotor cortex and right primary motor cortex and those linking the left and right motor cortex during the response delay and the reaction time period while...... subjects performed a delayed response [symbol 1 (S1) - symbol 2 (S2)] Go-NoGo reaction time task with visual cues. Conditioning TMS pulses were applied to the left premotor or left motor cortex 8 ms before a test pulse was given to the right motor cortex at 300 or 1800 ms after S1 or 150 ms after S2. S1...... coded for right-hand or left-hand movement, and S2 for release or stopping the prepared movement. Conditioning of the left premotor cortex led to interhemispheric inhibition at 300 ms post-S1, interhemispheric facilitation at 150 ms post-S2, and shorter reaction times in the move-left condition...

  9. Convergence of human brain mapping tools: neuronavigated TMS parameters and fMRI activity in the hand motor area.

    Science.gov (United States)

    Sarfeld, Anna-Sophia; Diekhoff, Svenja; Wang, Ling E; Liuzzi, Gianpiero; Uludağ, Kamil; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian

    2012-05-01

    Functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) are well-established tools for investigating the human motor system in-vivo. We here studied the relationship between movement-related fMRI signal changes in the primary motor cortex (M1) and electrophysiological properties of the hand motor area assessed with neuronavigated TMS in 17 healthy subjects. The voxel showing the highest task-related BOLD response in the left hand motor area during right hand movements was identified for each individual subject. This fMRI peak voxel in M1 served as spatial target for coil positioning during neuronavigated TMS. We performed correlation analyses between TMS parameters, BOLD signal estimates and effective connectivity parameters of M1 assessed with dynamic causal modeling (DCM). The results showed a negative correlation between the movement-related BOLD signal in left M1 and resting as well as active motor threshold (MT) obtained for left M1. The DCM analysis revealed that higher excitability of left M1 was associated with a stronger coupling between left supplementary motor area (SMA) and M1. Furthermore, BOLD activity in left M1 correlated with ipsilateral silent period (ISP), i.e. the stronger the task-related BOLD response in left M1, the higher interhemispheric inhibition effects targeting right M1. DCM analyses revealed a positive correlation between the coupling of left SMA with left M1 and the duration of ISP. The data show that TMS parameters assessed for the hand area of M1 do not only reflect the intrinsic properties at the stimulation site but also interactions with remote areas in the human motor system. Copyright © 2011 Wiley-Liss, Inc.

  10. Information about the weight of grasped objects from vision and internal models interacts within the primary motor cortex.

    Science.gov (United States)

    Loh, Morrison N; Kirsch, Louise; Rothwell, John C; Lemon, Roger N; Davare, Marco

    2010-05-19

    When grasping and lifting different objects, visual cues and previously acquired knowledge enable us to prepare the upcoming grasp by scaling the fingertip forces according to the actual weight of the object. However, when no visual information is available, the weight of the object has to be predicted based on information learned from previous grasps. Here, we investigated how changes in corticospinal excitability (CSE) and grip force scaling depend on the presence of visual cues and the weight of previously lifted objects. CSE was assessed by delivering transcranial magnetic stimulation (TMS) at different times before grasp of the object. In conditions in which visual information was not provided, the size of motor evoked potentials (MEP) was larger when the object lifted was preceded by a heavy relative to a light object. Interestingly, the previous lift also affected MEP amplitude when visual cues about object weight were available but only in the period immediately after object presentation (50 ms); this effect had already declined for TMS delivered 150 ms after presentation. In a second experiment, we demonstrated that these CSE changes are used by the motor system to scale grip force. This suggests that the corticospinal system stores a "sensorimotor memory" of the grasp of different objects and relies on this memory when no visual cues are present. Moreover, visual information about weight interacts with this stored representation and allows the corticospinal system to switch rapidly to a different model of predictive grasp control.

  11. Information about the weight of grasped objects from vision and from internal models interacts within the primary motor cortex

    Science.gov (United States)

    Loh, Morrison N; Kirsch, Louise; Rothwell, John C; Lemon, Roger N; Davare, Marco

    2010-01-01

    When grasping and lifting different objects, visual cues and previously acquired knowledge enable us to prepare the upcoming grasp by scaling the fingertip forces according to the actual weight of the object. However, when no visual information is available, the object’s weight has to be predicted based on information learned from previous grasps. Here, we investigated changes in corticospinal excitability (CSE) and grip force scaling depending on the presence of visual cues and the weight of previously lifted objects. CSE was assessed by delivering transcranial magnetic stimulation (TMS) at different times before grasp of the object. In conditions where visual information was not provided, the size of motor evoked potentials (MEP) was larger when the object lifted was preceded by a heavy relative to a light object. Interestingly, the previous lift also affected MEP amplitude when visual cues about object weight were available, but only in the period immediately after (50 ms) object presentation; this effect had already declined for TMS delivered 150 ms after presentation. In a second experiment, we demonstrated that these CSE changes are used by the motor system to scale grip force. This suggests that the corticospinal system stores a ‘sensorimotor memory’ of the grasp of different objects and relies on this memory when no visual cues are present. Moreover, visual information about weight interacts with this stored representation and allows the corticospinal system to switch rapidly to a different model of predictive grasp control. PMID:20484640

  12. Unilateral implicit motor learning deficit in developmental dyslexia.

    Science.gov (United States)

    Yang, Yang; Hong-Yan, Bi

    2011-02-01

    It has been suggested that developmental dyslexia involves various literacy, sensory, motor skill, and processing speed deficits. Some recent studies have shown that individuals with developmental dyslexia exhibit implicit motor learning deficits, which may be related to cerebellar functioning. However, previous studies on implicit motor learning in developmental dyslexics have produced conflicting results. Findings from cerebellar lesion patients have shown that patients' implicit motor learning performance varied when different hands were used to complete tasks. This suggests that dyslexia may have different effects on implicit motor learning between the two hands if cerebellar dysfunction is involved. To specify this question, we used a one-handed version of a serial reaction time task to compare the performance of 27 Chinese children with developmental dyslexics with another 27 age-matched children without reading difficulties. All the subjects were students from two primary schools, Grades 4 to 6. The results showed that children with developmental dyslexic responded more slowly than nondyslexic children, and exhibited no implicit motor learning in the condition of left-hand response. In contrast, there was no significant difference in reaction time between two groups of children when they used the right hand to respond. This finding indicates that children with developmental dyslexia exhibited normal motor skill and implicit motor learning ability provided the right hand was used. Taken together, these results suggested that Chinese children with developmental dyslexia exhibit unilateral deficits in motor skill and implicit motor learning in the left hand. Our findings lend partial support to the cerebellar deficit theory of developmental dyslexia.

  13. Left ventricular hypertrophy is associated with increased infarct size and decreased myocardial salvage in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention

    DEFF Research Database (Denmark)

    Nepper-Christensen, Lars; Lønborg, Jacob; Ahtarovski, Kiril Aleksov

    2017-01-01

    Background--Approximately one third of patients with ST-segment elevation myocardial infarction (STEMI) have left ventricular hypertrophy (LVH), which is associated with impaired outcome. However, the causal association between LVH and outcome in STEMI is unknown. We evaluated the association bet...

  14. The neural career of sensory-motor metaphors.

    Science.gov (United States)

    Desai, Rutvik H; Binder, Jeffrey R; Conant, Lisa L; Mano, Quintino R; Seidenberg, Mark S

    2011-09-01

    The role of sensory-motor systems in conceptual understanding has been controversial. It has been proposed that many abstract concepts are understood metaphorically through concrete sensory-motor domains such as actions. Using fMRI, we compared neural responses with literal action (Lit; The daughter grasped the flowers), metaphoric action (Met; The public grasped the idea), and abstract (Abs; The public understood the idea) sentences of varying familiarity. Both Lit and Met sentences activated the left anterior inferior parietal lobule, an area involved in action planning, with Met sentences also activating a homologous area in the right hemisphere, relative to Abs sentences. Both Met and Abs sentences activated the left superior temporal regions associated with abstract language. Importantly, activation in primary motor and biological motion perception regions was inversely correlated with Lit and Met familiarity. These results support the view that the understanding of metaphoric action retains a link to sensory-motor systems involved in action performance. However, the involvement of sensory-motor systems in metaphor understanding changes through a gradual abstraction process whereby relatively detailed simulations are used for understanding unfamiliar metaphors, and these simulations become less detailed and involve only secondary motor regions as familiarity increases. Consistent with these data, we propose that anterior inferior parietal lobule serves as an interface between sensory-motor and conceptual systems and plays an important role in both domains. The similarity of abstract and metaphoric sentences in the activation of left superior temporal regions suggests that action metaphor understanding is not completely based on sensory-motor simulations but relies also on abstract lexical-semantic codes.

  15. Spared Primary Motor Cortex and the Presence of MEP in Cerebral Palsy Dictate the Responsiveness to tDCS During Gait Training

    Directory of Open Access Journals (Sweden)

    Luanda Collange Grecco

    2016-07-01

    Full Text Available The current priority of investigations involving transcranial direct current stimulation (tDCS and neurorehabilitation is to identify biomarkers associated with the positive results of the interventions such that respondent and non-respondent patients can be identified in the early phases of treatment. The aims were to determine whether; 1 present motor evoked potential (MEP and, 2 injuries involving the primary motor cortex, are associated with tDCS-enhancement in functional outcome following gait training in children with cerebral palsy (CP. We reviewed the data from our parallel, randomized, sham-controlled, double-blind studies. Fifty-six children with spastic CP received gait training (either treadmill training or virtual reality training and tDCS (active or sham. Univariate and multivariate logistic regression analyses were employed to identify clinical, neurophysiologic and neuroanatomic predictors associated with the responsiveness to treatment with tDCS. MEP presence during the initial evaluation and the subcortical injury were associated with positive effects in the functional results. The logistic regression revealed that present MEP was a significant predictor for the six-minute walk test (p=0.003 and gait speed (p=0.028, whereas the subcortical injury was a significant predictor of gait kinematics (p=0.013 and gross motor function (p = 0.021. In this preliminary study involving children with CP, two important prediction factors of good responses to anodal tDCS combined with gait training were identified. Apparently, MEP (integrity of the corticospinal tract and subcortical location of the brain injury exerted different influences on aspects related to gait, such as velocity and kinematics.

  16. Non-invasive modulation of somatosensory evoked potentials by the application of static magnetic fields over the primary and supplementary motor cortices.

    Science.gov (United States)

    Kirimoto, Hikari; Asao, Akihiko; Tamaki, Hiroyuki; Onishi, Hideaki

    2016-10-04

    This study was performed to investigate the possibility of non-invasive modulation of SEPs by the application of transcranial static magnetic field stimulation (tSMS) over the primary motor cortex (M1) and supplementary motor cortex (SMA), and to measure the strength of the NdFeB magnetic field by using a gaussmeter. An NdFeB magnet or a non-magnetic stainless steel cylinder (for sham stimulation) was settled on the scalp over M1 and SMA of 14 subjects for periods of 15 min. SEPs following right median nerve stimulation were recorded before and immediately after, 5 min after, and 10 min after tSMS from sites C3' and F3. Amplitudes of the N33 component of SEPs at C3' significantly decreased immediately after tSMS over M1 by up to 20%. However, tSMS over the SMA did not affect the amplitude of any of the SEP components. At a distance of 2-3 cm (rough depth of the cortex), magnetic field strength was in the range of 110-190 mT. Our results that tSMS over M1 can reduce the amplitude of SEPs are consistent with those of low-frequency repeated TMS and cathodal tDCS studies. Therefore, tSMS could be a useful tool for modulating cortical somatosensory processing.

  17. Characterization of primary organic aerosol emissions from meat cooking, trash burning, and motor vehicles with high-resolution aerosol mass spectrometry and comparison with ambient and chamber observations.

    Science.gov (United States)

    Mohr, Claudia; Huffman, Alex; Cubison, Michael J; Aiken, Allison C; Docherty, Kenneth S; Kimmel, Joel R; Ulbrich, Ingrid M; Hannigan, Michael; Jimenez, Jose L

    2009-04-01

    Organic aerosol (OA) emissions from motor vehicles, meat-cooking and trash burning are analyzed here using a high-resolution aerosol mass spectrometer (AMS). High resolution data show that aerosols emitted by combustion engines and plastic burning are dominated by hydrocarbon-like organic compounds. Meat cooking and especially paper burning emissions contain significant fractions of oxygenated organic compounds; however, their unit-resolution mass spectral signatures are very similar to those from ambient hydrocarbon-like OA, and very different from the mass spectra of ambient secondary or oxygenated OA (OOA). Thus, primary OA from these sources is unlikelyto be a significant direct source of ambient OOA. There are significant differences in high-resolution tracer m/zs that may be useful for differentiating some of these sources. Unlike in most ambient spectra, all of these sources have low total m/z 44 and this signal is not dominated by the CO2+ ion. All sources have high m/z 57, which is low during high OOA ambient periods. Spectra from paper burning are similar to some types of biomass burning OA, with elevated m/z 60. Meat cooking aerosols also have slightly elevated m/z 60, whereas motor vehicle emissions have very low signal at this m/z.

  18. Cortical Plasticity Induction by Pairing Subthalamic Nucleus Deep-Brain Stimulation and Primary Motor Cortical Transcranial Magnetic Stimulation in Parkinson's Disease.

    Science.gov (United States)

    Udupa, Kaviraja; Bahl, Nina; Ni, Zhen; Gunraj, Carolyn; Mazzella, Filomena; Moro, Elena; Hodaie, Mojgan; Lozano, Andres M; Lang, Anthony E; Chen, Robert

    2016-01-13

    Noninvasive brain stimulation studies have shown abnormal motor cortical plasticity in Parkinson's disease (PD). These studies used peripheral nerve stimulation paired with transcranial magnetic stimulation (TMS) to primary motor cortex (M1) at specific intervals to induce plasticity. Induction of cortical plasticity through stimulation of the basal ganglia (BG)-M1 connections has not been studied. In the present study, we used a novel technique of plasticity induction by repeated pairing of deep-brain stimulation (DBS) of the BG with M1 stimulation using TMS. We hypothesize that repeated pairing of subthalamic nucleus (STN)-DBS and M1-TMS at specific time intervals will lead to plasticity in the M1. Ten PD human patients with STN-DBS were studied in the on-medication state with DBS set to 3 Hz. The interstimulus intervals (ISIs) between STN-DBS and TMS that produced cortical facilitation were determined individually for each patient. Three plasticity induction conditions with repeated pairings (180 times) at specific ISIs (∼ 3 and ∼ 23 ms) that produced cortical facilitation and a control ISI of 167 ms were tested in random order. Repeated pairing of STN-DBS and M1-TMS at short (∼ 3 ms) and medium (∼ 23 ms) latencies increased M1 excitability that lasted for at least 45 min, whereas the control condition (fixed ISI of 167 ms) had no effect. There were no specific changes in motor thresholds, intracortical circuits, or recruitment curves. Our results indicate that paired-associative cortical plasticity can be induced by repeated STN and M1 stimulation at specific intervals. These results show that STN-DBS can modulate cortical plasticity. We introduced a new experimental paradigm to test the hypothesis that pairing subthalamic nucleus deep-brain stimulation (STN-DBS) with motor cortical transcranial magnetic stimulation (M1-TMS) at specific times can induce cortical plasticity in patients with Parkinson's disease (PD). We found that repeated pairing of STN

  19. Functional MRI of motor speech area combined with motor stimulation during resting period

    International Nuclear Information System (INIS)

    Lim, Yeong Su; Park, Hark Hoon; Chung, Gyung Ho; Lee, Sang Yong; Chon, Su Bin; Kang, Shin Hwa

    1999-01-01

    To evaluate functional MR imaging of the motor speech area with and without motor stimulation during the rest period. Nine healthy, right-handed volunteers(M:F=7:2, age:21-40years) were included in this study. Brain activity was mapped using a multislice, gradient echo single shot EPI on a 1.5T MR scanner. The paradigm consisted on a series of alternating rest and activation tasks, performed six times. Each volunteer in the first study(group A) was given examples of motor stimulation during the rest period, while each in the second study(group B) was not given examples of a rest period. Motor stimulation in group A was achieved by continuously flexing five fingers of the right hand. In both groups, maximum internal word generation was achieved during the activation period. Using fMRI analysis software(Stimulate 5.0) and a cross-correlation method(backgroud threshold, 200; correlation threshold, 0.3; ceiling, 1.0; floor, 0.3; minimal count, 3), functional images were analysed. After correlating the activated foci and a time-signal intensity curve, the activated brain cortex and number of pixels were analysed and compared between the two tasks. The t-test was used for statistical analysis. In all nine subjects in group A and B, activation was observed in and adjacent to the left Broca's area. The mean number of activated pixels was 31.6 in group A and 27.8 in group B, a difference which was not statistically significant(P>0.1). Activities in and adjacent to the right Broca's area were seen in seven of group A and four of group B. The mean number of activated pixels was 14.9 in group A and 18 in group B. Eight of nine volunteers in group A showed activity in the left primary motor area with negative correlation to the time-signal intensity curve. The mean number of activated pixels for this group was 17.5. In three volonteers, activation in the right primary motor area was also observed, the mean number of activated pixels in these cases was 10.0. During the rest

  20. Associations of object control motor skill proficiency, game play competence, physical activity and cardiorespiratory fitness among primary school children.

    Science.gov (United States)

    Miller, Andrew; Eather, Narelle; Duncan, Mitch; Lubans, David Revalds

    2018-06-18

    This study investigated if object control relates to children's game play competence, and examined these competencies as correlates of physical activity and cardiorespiratory fitness. Game play (Game Performance Assessment Instrument), object control (The Test Gross Motor Development-3), moderate-to-vigorous physical activity (Accelerometry), and cardiorespiratory fitness (20-metre shuttle) assessments were completed for 107 children (57% Female, 43% Male) aged 9-12 years (M 10.53, SD 0.65). Two-level regression of object control on game play competence, and object control and game play competence on physical activity and cardiorespiratory fitness assessed associations. Object control competence was positively associated with game play competence (Std. B = 0.25, t (104.77) = 2.38, p = 0.001). Game play competence (Std. B = 0.33, t (99.81) = 5.21, p competence (Std. B = 0.20, t (106.93) = 2.96, p = 0.003). Likewise, game competence (Std. B = 0.39, t (104.41) = 4.36, p fitness than object control competence (Std. B = 0.22, t (106.69) = 2.63, p = 0.002). Object control and game competence are both important as correlates of physical activity and cardiorespiratory fitness in children.

  1. The Role of Primary Motor Cortex (M1) Glutamate and GABA Signaling in l-DOPA-Induced Dyskinesia in Parkinsonian Rats.

    Science.gov (United States)

    Lindenbach, David; Conti, Melissa M; Ostock, Corinne Y; George, Jessica A; Goldenberg, Adam A; Melikhov-Sosin, Mitchell; Nuss, Emily E; Bishop, Christopher

    2016-09-21

    Long-term treatment of Parkinson's disease with l-DOPA almost always leads to the development of involuntary movements termed l-DOPA-induced dyskinesia. Whereas hyperdopaminergic signaling in the basal ganglia is thought to cause dyskinesia, alterations in primary motor cortex (M1) activity are also prominent during dyskinesia, suggesting that the cortex may represent a therapeutic target. The present study used the rat unilateral 6-hydroxydopamine lesion model of Parkinson's disease to characterize in vivo changes in GABA and glutamate neurotransmission within M1 and determine their contribution to behavioral output. 6-Hydroxydopamine lesion led to parkinsonian motor impairment that was partially reversed by l-DOPA. Among sham-lesioned rats, l-DOPA did not change glutamate or GABA efflux. Likewise, 6-hydroxydopamine lesion did not impact GABA or glutamate among rats chronically treated with saline. However, we observed an interaction of lesion and treatment whereby, among lesioned rats, l-DOPA given acutely (1 d) or chronically (14-16 d) reduced glutamate efflux and enhanced GABA efflux. Site-specific microinjections into M1 demonstrated that l-DOPA-induced dyskinesia was reduced by M1 infusion of a D1 antagonist, an AMPA antagonist, or a GABAA agonist. Overall, the present study demonstrates that l-DOPA-induced dyskinesia is associated with increased M1 inhibition and that exogenously enhancing M1 inhibition may attenuate dyskinesia, findings that are in agreement with functional imaging and transcranial magnetic stimulation studies in human Parkinson's disease patients. Together, our study suggests that increasing M1 inhibitory tone is an endogenous compensatory response designed to limit dyskinesia severity and that potentiating this response is a viable therapeutic strategy. Most Parkinson's disease patients will receive l-DOPA and eventually develop hyperkinetic involuntary movements termed dyskinesia. Such symptoms can be as debilitating as the disease

  2. The influence of rTMS over prefrontal and motor areas in a morphological task: grammatical vs. semantic effects.

    Science.gov (United States)

    Gerfo, Emanuele Lo; Oliveri, Massimiliano; Torriero, Sara; Salerno, Silvia; Koch, Giacomo; Caltagirone, Carlo

    2008-01-31

    We investigated the differential role of two frontal regions in the processing of grammatical and semantic knowledge. Given the documented specificity of the prefrontal cortex for the grammatical class of verbs, and of the primary motor cortex for the semantic class of action words, we sought to investigate whether the prefrontal cortex is also sensitive to semantic effects, and whether the motor cortex is also sensitive to grammatical class effects. We used repetitive transcranial magnetic stimulation (rTMS) to suppress the excitability of a portion of left prefontal cortex (first experiment) and of the motor area (second experiment). In the first experiment we found that rTMS applied to the left prefrontal cortex delays the processing of action verbs' retrieval, but is not critical for retrieval of state verbs and state nouns. In the second experiment we found that rTMS applied to the left motor cortex delays the processing of action words, both name and verbs, while it is not critical for the processing of state words. These results support the notion that left prefrontal and motor cortex are involved in the process of action word retrieval. Left prefrontal cortex subserves processing of both grammatical and semantic information, whereas motor cortex contributes to the processing of semantic representation of action words without any involvement in the representation of grammatical categories.

  3. Predicting Motor Skills from Strengths and Difficulties Questionnaire Scores, Language Ability, and Other Features of New Zealand Children Entering Primary School

    Science.gov (United States)

    Sargisson, Rebecca J.; Powell, Cheniel; Stanley, Peter; de Candole, Rosalind

    2014-01-01

    The motor and language skills, emotional and behavioural problems of 245 children were measured at school entry. Fine motor scores were significantly predicted by hyperactivity, phonetic awareness, prosocial behaviour, and the presence of medical problems. Gross motor scores were significantly predicted by the presence of medical problems. The…

  4. Anodal transcranial direct current stimulation over the primary motor cortex does not enhance the learning benefits of self-controlled feedback schedules.

    Science.gov (United States)

    Carter, Michael J; Smith, Victoria; Carlsen, Anthony N; Ste-Marie, Diane M

    2018-05-01

    A distinct learning advantage has been shown when participants control their knowledge of results (KR) scheduling during practice compared to when the same KR schedule is imposed on the learner without choice (i.e., yoked schedules). Although the learning advantages of self-controlled KR schedules are well-documented, the brain regions contributing to these advantages remain unknown. Identifying key brain regions would not only advance our theoretical understanding of the mechanisms underlying self-controlled learning advantages, but would also highlight regions that could be targeted in more applied settings to boost the already beneficial effects of self-controlled KR schedules. Here, we investigated whether applying anodal transcranial direct current stimulation (tDCS) to the primary motor cortex (M1) would enhance the typically found benefits of learning a novel motor skill with a self-controlled KR schedule. Participants practiced a spatiotemporal task in one of four groups using a factorial combination of KR schedule (self-controlled vs. yoked) and tDCS (anodal vs. sham). Testing occurred on two consecutive days with spatial and temporal accuracy measured on both days and learning was assessed using 24-h retention and transfer tests without KR. All groups improved their performance in practice and a significant effect for practicing with a self-controlled KR schedule compared to a yoked schedule was found for temporal accuracy in transfer, but a similar advantage was not evident in retention. There were no significant differences as a function of KR schedule or tDCS for spatial accuracy in retention or transfer. The lack of a significant tDCS effect suggests that M1 may not strongly contribute to self-controlled KR learning advantages; however, caution is advised with this interpretation as typical self-controlled learning benefits were not strongly replicated in the present experiment.

  5. Neurons in red nucleus and primary motor cortex exhibit similar responses to mechanical perturbations applied to the upper-limb during posture

    Directory of Open Access Journals (Sweden)

    Troy Michael Herter

    2015-04-01

    Full Text Available Primary motor cortex (M1 and red nucleus (RN are brain regions involved in limb motor control. Both structures are highly interconnected with the cerebellum and project directly to the spinal cord, although the contribution of RN is smaller than M1. It remains uncertain whether RN and M1 serve similar or distinct roles during posture and movement. Many neurons in M1 respond rapidly to mechanical disturbances of the limb, but it remains unclear whether RN neurons also respond to such limb perturbations. We have compared discharges of single neurons in RN (n = 49 and M1 (n = 109 of one monkey during a postural perturbation task. Neural responses to whole-limb perturbations were examined by transiently applying (300 ms flexor or extensor torques to the shoulder and/or elbow while the monkeys attempted to maintain a static hand posture. Relative to baseline discharges before perturbation onset, perturbations evoked rapid (<100 ms changes of neural discharges in many RN (28 of 49, 57% and M1 (43 of 109, 39% neurons. In addition to exhibiting a greater proportion of perturbation-related neurons, RN neurons also tended to exhibit higher peak discharge frequencies in response to perturbations than M1 neurons. Importantly, neurons in both structures exhibited similar response latencies and tuning properties (preferred torque directions and tuning widths in joint-torque space. Proximal arm muscles also displayed similar tuning properties in joint-torque space. These results suggest that RN is more sensitive than M1 to mechanical perturbations applied during postural control but both structures may play a similar role in feedback control of posture.

  6. Effect of l-DOPA on local field potential relationship between the pedunculopontine nucleus and primary motor cortex in a rat model of Parkinson's disease.

    Science.gov (United States)

    Geng, Xiwen; Wang, Xuenan; Xie, Jinlu; Zhang, Xiao; Wang, Xiusong; Hou, Yabing; Lei, Chengdong; Li, Min; Han, Hongyu; Yao, Xiaomeng; Zhang, Qun; Wang, Min

    2016-12-15

    Levodopa (l-DOPA) has been proved to reverse the pathologic neuron activities in many brain regions related to Parkinson's disease (PD). But little is known about the effect of l-DOPA on the altered electrophysiological coherent activities between pedunculopontine nucleus (PPN) and motor cortex. To investigate this, local field potentials (LFPs) of PPN and primary motor cortex (M1) were recorded simultaneously in control, 6-hydroxydopamine lesioned and lesioned rats with l-DOPA chronic treatment. The results revealed that in resting state, chronic l-DOPA treatment could correct the suppressed power of LFPs in PPN and M1 in low-frequency band (1-7Hz) and the enhanced power in high-frequency band (7-70Hz in PPN and 12-70Hz in M1) of lesioned rats. In locomotor state, l-DOPA treatment could correct the alterations in most of frequency bands except the δ band in PPN and α band in M1. Moreover, l-DOPA could also reverse the altered coherent relationships caused by dopamine depletion in resting state between PPN and M1 in β band. And in locomotor state, l-DOPA had therapeutic effect on the alterations in δ and β bands but not in the α band. These findings provide evidence that l-DOPA can reverse the altered LFP activities in PPN and M1 and their relationships in a rat model of PD, which contributes to better understanding the electrophysiological mechanisms of the pathophysiology and therapy of PD. Copyright © 2016. Published by Elsevier B.V.

  7. Cardiac sympathetic innervation assessed with (123)I-MIBG retains prognostic utility in diabetic patients with severe left ventricular dysfunction evaluated for primary prevention implantable cardioverter-defibrillator.

    Science.gov (United States)

    García-González, P; Fabregat-Andrés, Ó; Cozar-Santiago, P; Sánchez-Jurado, R; Estornell-Erill, J; Valle-Muñoz, A; Quesada-Dorador, A; Payá-Serrano, R; Ferrer-Rebolleda, J; Ridocci-Soriano, F

    2016-01-01

    Scintigraphy with iodine-123-metaiodobenzylguanidine ((123)I-MIBG) is a non-invasive tool for the assessment of cardiac sympathetic innervation (CSI) that has proven to be an independent predictor of survival. Recent studies have shown that diabetic patients with heart failure (HF) have a higher deterioration in CSI. It is unknown if (123)I-MIBG has the same predictive value for diabetic and non-diabetic patients with advanced HF. An analysis is performed to determine whether CSI with (123)I-MIBG retains prognostic utility in diabetic patients with HF, evaluated for a primary prevention implantable cardioverter-defibrillator (ICD). Seventy-eight consecutive HF patients (48 diabetic) evaluated for primary prevention ICD implantation were prospectively enrolled and underwent (123)I-MIBG to assess CSI (heart-to-mediastinum ratio - HMR). A Cox proportional hazards multivariate analysis was used to determine the influence of (123)I-MIBG images for prediction of cardiac events in both diabetic and non-diabetic patients. The primary end-point was a composite of arrhythmic event, cardiac death, or admission due to HF. During a mean follow-up of 19.5 [9.3-29.3] months, the primary end-point occurred in 24 (31%) patients. Late HMR was significantly lower in diabetic patients (1.30 vs. 1.41, p=0.014). Late HMR≤1.30 was an independent predictor of cardiac events in diabetic (hazard ratio 4.53; p=0.012) and non-diabetic patients (hazard ratio 12.31; p=0.023). Diabetic patients with HF evaluated for primary prevention ICD show a higher deterioration in CSI than non-diabetics; nevertheless (123)I-MIBG imaging retained prognostic utility for both diabetic and non-diabetic patients. Copyright © 2015 Elsevier España, S.L.U. and SEMNIM. All rights reserved.

  8. Functional significance of ipsilesional motor deficits after unilateral stroke.

    Science.gov (United States)

    Chestnut, Caitilin; Haaland, Kathleen Y

    2008-01-01

    To determine whether ipsilesional motor skills, which have been related to independent functioning, are present chronically after unilateral stroke and are more common in people with apraxia than in those without apraxia. Observational cohort comparing the performance of an able-bodied control group, stroke patients with left- or right-hemisphere damage matched for lesion volume, and left-hemisphere stroke patients with and without ideomotor limb apraxia. Primary care Veterans Affairs and private medical center. Volunteer right-handed sample; stroke patients with left- or right-hemisphere damage about 4 years poststroke; a control group of demographically matched, able-bodied adults. Not applicable. Total time to perform the (1) Williams doors test and the (2) timed manual performance test (TMPT), which includes parts of the Jebsen-Taylor Hand Function Test. Ipsilesional motor deficits were present after left- or right-hemisphere stroke when using both measures, but deficits were consistently more common in patients with limb apraxia only for the TMPT. These findings add to a growing literature that suggests that ipsilesional motor deficits may have a functional impact in unilateral stroke patients, especially in patients with ideomotor limb apraxia.

  9. Hypoplastic left heart syndrome

    Directory of Open Access Journals (Sweden)

    Thiagarajan Ravi

    2007-05-01

    Full Text Available Abstract Hypoplastic left heart syndrome(HLHS refers to the abnormal development of the left-sided cardiac structures, resulting in obstruction to blood flow from the left ventricular outflow tract. In addition, the syndrome includes underdevelopment of the left ventricle, aorta, and aortic arch, as well as mitral atresia or stenosis. HLHS has been reported to occur in approximately 0.016 to 0.036% of all live births. Newborn infants with the condition generally are born at full term and initially appear healthy. As the arterial duct closes, the systemic perfusion becomes decreased, resulting in hypoxemia, acidosis, and shock. Usually, no heart murmur, or a non-specific heart murmur, may be detected. The second heart sound is loud and single because of aortic atresia. Often the liver is enlarged secondary to congestive heart failure. The embryologic cause of the disease, as in the case of most congenital cardiac defects, is not fully known. The most useful diagnostic modality is the echocardiogram. The syndrome can be diagnosed by fetal echocardiography between 18 and 22 weeks of gestation. Differential diagnosis includes other left-sided obstructive lesions where the systemic circulation is dependent on ductal flow (critical aortic stenosis, coarctation of the aorta, interrupted aortic arch. Children with the syndrome require surgery as neonates, as they have duct-dependent systemic circulation. Currently, there are two major modalities, primary cardiac transplantation or a series of staged functionally univentricular palliations. The treatment chosen is dependent on the preference of the institution, its experience, and also preference. Although survival following initial surgical intervention has improved significantly over the last 20 years, significant mortality and morbidity are present for both surgical strategies. As a result pediatric cardiologists continue to be challenged by discussions with families regarding initial decision

  10. Functional organization and restoration of the brain motor-execution network after stroke and rehabilitation

    Directory of Open Access Journals (Sweden)

    Sahil eBajaj

    2015-03-01

    Full Text Available Multiple cortical areas of the human brain motor system interact coherently in the low frequency range (< 0.1 Hz, even in the absence of explicit tasks. Following stroke, cortical interactions are functionally disturbed. How these interactions are affected and how the functional organization is regained from rehabilitative treatments as people begin to recover motor behaviors has not been systematically studied. We recorded the intrinsic functional magnetic resonance imaging (fMRI signals from 30 participants: 17 young healthy controls and 13 aged stroke survivors. Stroke participants underwent mental practice (MP or both mental practice and physical therapy (MP + PT within 14-51 days following stroke. We investigated the network activity of five core areas in the motor-execution network, consisting of the left primary motor area (LM1, the right primary motor area (RM1, the left pre-motor cortex (LPMC, the right pre-motor cortex (RPMC and the supplementary motor area (SMA. We discovered that (i the network activity dominated in the frequency range 0.06 Hz – 0.08 Hz for all the regions, and for both able-bodied and stroke participants (ii the causal information flow between the regions: LM1 and SMA, RPMC and SMA, RPMC and LM1, SMA and RM1, SMA and LPMC, was reduced significantly for stroke survivors (iii the flow did not increase significantly after MP alone and (iv the flow among the regions during MP+PT increased significantly. We also found that sensation and motor scores were significantly higher and correlated with directed functional connectivity measures when the stroke-survivors underwent MP+PT but not MP alone. The findings provide evidence that a combination of mental practice and physical therapy can be an effective means of treatment for stroke survivors to recover or regain the strength of motor behaviors, and that the spectra of causal information flow can be used as a reliable biomarker for evaluating rehabilitation in stroke

  11. Sudden death as presenting symptom caused by cardiac primary multicentric left ventricle rhabdomyoma, in an 11-month-old baby. An immunohistochemical study

    Directory of Open Access Journals (Sweden)

    Neri Margherita

    2012-12-01

    Full Text Available Abstract This case report describes a sudden cardiac death in an apparent healthy 11-month-old infant caused by a multifocal cardiac rhabdomyoma. Parents reported that a few days before the child had fallen to the ground getting a little superficial injury to the scalp. The authors hypothesize that it may have been a transient loss of consciousness episode caused by the cardiac tumour. After the gross examination, histological investigation supported by immunohistochemical analysis using antibody anti- Myoglobin, Actin, Vimentin, Desmin, CD34, S-100, Ki-67 was carried out for the diagnosis. Death was attributed to a multifocal cardiac rhabdomyoma, a benign tumour of striated muscle, which has been completely asymptomatic. In particular, one mass filled the entire posterior wall of the left ventricle. The insidious development of benign cardiac tumours also in infants and children is outlined, focusing on the responsible mechanisms of sudden death in such cases and providing a reference for additional study on these subjects. Virtual slides The virtual slide(s for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/7163626988365078

  12. Identification of the primary motor cortex: value of T2 echo-planar imaging, diffusion-weighted imaging and quantitative apparent diffusion coefficient measurement at 3 T

    International Nuclear Information System (INIS)

    Dincer, Alp; Erzen, Canan; Oezyurt, Onur; Pamir, M.N.

    2010-01-01

    To investigate the primary motor cortex (PMC) concerning T2 shortening on T2 echo-planar imaging (EPI-T2) and the double-layer sign on diffusion-weighted imaging (DWI), and also to measure its apparent diffusion coefficient (ADC). 3-T MR DWI was performed in 134 adult volunteers and 64 patients. T2 shortening was graded as hypointense or isointense compared with the signal of the superior frontal cortex (SFC). The double-layer sign of the PMC was graded as present or absent. Both findings (T2 shortening and double-layer sign) were evaluated independently by two authors. ADC of the PMC and the SFC were calculated using manually selected ROIs. T2 shortening was found in 131 adults and 62 patients by author 1 and in 132 adults and 61 patients by author 2 (κ = 0.96 and 0.91). The double-layer sign was found in 131 adults and 61 patients by author 1 and in 127 adults and 58 patients by author 2 (κ = 0.94 and 0.91). ADC values of the PMC and the SFC were different for all subjects (p < 0.01). T2 shortening and/or the double-layer sign on 3-T MR can be used to locate the PMC. The difference in ADC values between PMC and SFC is a distinguishing feature. (orig.)

  13. Primary health care service use among women who have recently left an abusive partner: income and racialization, unmet need, fits of services, and health.

    Science.gov (United States)

    Stam, Marieka T; Ford-Gilboe, Marilyn; Regan, Sandra

    2015-01-01

    Primary health care (PHC) can improve the health of women who have experienced intimate partner violence; yet, access to and fit of PHC services may be shaped by income and racialization. We examined whether income and racialization were associated with differences in PHC service use, unmet needs, fit with needs, and mental and physical health in a sample of 286 women who had separated from an abusive partner. Mothers, unemployed women, and those with lower incomes used more PHC services and reported a poorer fit of services. Poorer fit of services was related to poorer mental and physical health.

  14. Greater Activity in the Frontal Cortex on Left Curves: A Vector-Based fNIRS Study of Left and Right Curve Driving.

    Directory of Open Access Journals (Sweden)

    Noriyuki Oka

    Full Text Available In the brain, the mechanisms of attention to the left and the right are known to be different. It is possible that brain activity when driving also differs with different horizontal road alignments (left or right curves, but little is known about this. We found driver brain activity to be different when driving on left and right curves, in an experiment using a large-scale driving simulator and functional near-infrared spectroscopy (fNIRS.The participants were fifteen healthy adults. We created a course simulating an expressway, comprising straight line driving and gentle left and right curves, and monitored the participants under driving conditions, in which they drove at a constant speed of 100 km/h, and under non-driving conditions, in which they simply watched the screen (visual task. Changes in hemoglobin concentrations were monitored at 48 channels including the prefrontal cortex, the premotor cortex, the primary motor cortex and the parietal cortex. From orthogonal vectors of changes in deoxyhemoglobin and changes in oxyhemoglobin, we calculated changes in cerebral oxygen exchange, reflecting neural activity, and statistically compared the resulting values from the right and left curve sections.Under driving conditions, there were no sites where cerebral oxygen exchange increased significantly more during right curves than during left curves (p > 0.05, but cerebral oxygen exchange increased significantly more during left curves (p < 0.05 in the right premotor cortex, the right frontal eye field and the bilateral prefrontal cortex. Under non-driving conditions, increases were significantly greater during left curves (p < 0.05 only in the right frontal eye field.Left curve driving was thus found to require more brain activity at multiple sites, suggesting that left curve driving may require more visual attention than right curve driving. The right frontal eye field was activated under both driving and non-driving conditions.

  15. Greater Activity in the Frontal Cortex on Left Curves: A Vector-Based fNIRS Study of Left and Right Curve Driving

    Science.gov (United States)

    Oka, Noriyuki; Yoshino, Kayoko; Yamamoto, Kouji; Takahashi, Hideki; Li, Shuguang; Sugimachi, Toshiyuki; Nakano, Kimihiko; Suda, Yoshihiro; Kato, Toshinori

    2015-01-01

    Objectives In the brain, the mechanisms of attention to the left and the right are known to be different. It is possible that brain activity when driving also differs with different horizontal road alignments (left or right curves), but little is known about this. We found driver brain activity to be different when driving on left and right curves, in an experiment using a large-scale driving simulator and functional near-infrared spectroscopy (fNIRS). Research Design and Methods The participants were fifteen healthy adults. We created a course simulating an expressway, comprising straight line driving and gentle left and right curves, and monitored the participants under driving conditions, in which they drove at a constant speed of 100 km/h, and under non-driving conditions, in which they simply watched the screen (visual task). Changes in hemoglobin concentrations were monitored at 48 channels including the prefrontal cortex, the premotor cortex, the primary motor cortex and the parietal cortex. From orthogonal vectors of changes in deoxyhemoglobin and changes in oxyhemoglobin, we calculated changes in cerebral oxygen exchange, reflecting neural activity, and statistically compared the resulting values from the right and left curve sections. Results Under driving conditions, there were no sites where cerebral oxygen exchange increased significantly more during right curves than during left curves (p > 0.05), but cerebral oxygen exchange increased significantly more during left curves (p right premotor cortex, the right frontal eye field and the bilateral prefrontal cortex. Under non-driving conditions, increases were significantly greater during left curves (p right frontal eye field. Conclusions Left curve driving was thus found to require more brain activity at multiple sites, suggesting that left curve driving may require more visual attention than right curve driving. The right frontal eye field was activated under both driving and non-driving conditions

  16. Motor Neurons

    DEFF Research Database (Denmark)

    Hounsgaard, Jorn

    2017-01-01

    Motor neurons translate synaptic input from widely distributed premotor networks into patterns of action potentials that orchestrate motor unit force and motor behavior. Intercalated between the CNS and muscles, motor neurons add to and adjust the final motor command. The identity and functional...... in in vitro preparations is far from complete. Nevertheless, a foundation has been provided for pursuing functional significance of intrinsic response properties in motoneurons in vivo during motor behavior at levels from molecules to systems....

  17. Primary Myelofibrosis

    Science.gov (United States)

    ... attack is higher. Patients also have an increased risk of acute myeloid leukemia or primary myelofibrosis . Symptoms of polycythemia vera include headaches and a feeling of fullness below the ribs on the left ...

  18. Changing Artificial Playback Speed and Real Movement Velocity Do Not Differentially Influence the Excitability of Primary Motor Cortex during Observation of a Repetitive Finger Movement

    Directory of Open Access Journals (Sweden)

    Takefumi Moriuchi

    2017-11-01

    Full Text Available Action observation studies have investigated whether changing the speed of the observed movement affects the action observation network. There are two types of speed-changing conditions; one involves “changes in actual movement velocity,” and the other is “manipulation of video speed.” Previous studies have investigated the effects of these conditions separately, but to date, no study has directly investigated the differences between the effects of these conditions. In the “movement velocity condition,” increased velocity is associated with increased muscle activity; however, this change of muscle activities is not shown in the “video speed condition.” Therefore, a difference in the results obtained under these conditions could be considered to reflect a difference in muscle activity of actor in the video. The aim of the present study was to investigate the effects of different speed-changing conditions and spontaneous movement tempo (SMT on the excitability of primary motor cortex (M1 during action observation, as assessed by motor-evoked potentials (MEPs amplitudes induced by transcranial magnetic stimulation (TMS. A total of 29 healthy subjects observed a video clip of a repetitive index or little finger abduction movement under seven different speed conditions. The video clip in the movement velocity condition showed repetitive finger abduction movements made in time with an auditory metronome, at frequencies of 0.5, 1, 2, and 3 Hz. In the video speed condition, playback of the 1-Hz movement velocity condition video clip was modified to show movement frequencies of 0.5, 2, or 3 Hz (Hz-Fake. TMS was applied at the time of maximal abduction and MEPs were recorded from two right-hand muscles. There were no differences in M1 excitability between the movement velocity and video speed conditions. Moreover, M1 excitability did not vary across the speed conditions for either presentation condition. Our findings suggest that changing

  19. Can Touch Screen Tablets be Used to Assess Cognitive and Motor Skills in Early Years Primary School Children? A Cross-Cultural Study.

    Science.gov (United States)

    Pitchford, Nicola J; Outhwaite, Laura A

    2016-01-01

    Assessment of cognitive and motor functions is fundamental for developmental and neuropsychological profiling. Assessments are usually conducted on an individual basis, with a trained examiner, using standardized paper and pencil tests, and can take up to an hour or more to complete, depending on the nature of the test. This makes traditional standardized assessments of child development largely unsuitable for use in low-income countries. Touch screen tablets afford the opportunity to assess cognitive functions in groups of participants, with untrained administrators, with precision recording of responses, thus automating the assessment process. In turn, this enables cognitive profiling to be conducted in contexts where access to qualified examiners and standardized assessments are rarely available. As such, touch screen assessments could provide a means of assessing child development in both low- and high-income countries, which would afford cross-cultural comparisons to be made with the same assessment tool. However, before touch screen tablet assessments can be used for cognitive profiling in low-to-high-income countries they need to be shown to provide reliable and valid measures of performance. We report the development of a new touch screen tablet assessment of basic cognitive and motor functions for use with early years primary school children in low- and high-income countries. Measures of spatial intelligence, visual attention, short-term memory, working memory, manual processing speed, and manual coordination are included as well as mathematical knowledge. To investigate if this new touch screen assessment tool can be used for cross-cultural comparisons we administered it to a sample of children ( N = 283) spanning standards 1-3 in a low-income country, Malawi, and a smaller sample of children ( N = 70) from first year of formal schooling from a high-income country, the UK. Split-half reliability, test-retest reliability, face validity, convergent

  20. Can touch screen tablets be used to assess cognitive and motor skills in early years primary school children? A cross-cultural study

    Directory of Open Access Journals (Sweden)

    Nicola Pitchford

    2016-10-01

    Full Text Available Assessment of cognitive and motor functions is fundamental for developmental and neuropsychological profiling. Assessments are usually conducted on an individual basis, with a trained examiner, using standardised paper and pencil tests, and can take up to an hour or more to complete, depending on the nature of the test. This makes traditional standardised assessments of child development largely unsuitable for use in low-income countries. Touch screen tablets afford the opportunity to assess cognitive functions in groups of participants, with untrained administrators, with precision recording of responses, thus automating the assessment process. In turn, this enables cognitive profiling to be conducted in contexts where access to qualified examiners and standardised assessments are rarely available. As such, touch screen assessments could provide a means of assessing child development in both low- and high-income countries, which would afford cross-cultural comparisons to be made with the same assessment tool. However, before touch screen tablet assessments can be used for cognitive profiling in low-to-high-income countries they need to be shown to provide reliable and valid measures of performance. We report the development of a new touch screen tablet assessment of basic cognitive and motor functions for use with early years primary school children in low- and high-income countries. Measures of spatial intelligence, visual attention, short-term memory, working memory, manual processing speed, and manual coordination are included as well as mathematical knowledge. To investigate if this new touch screen assessment tool can be used for cross-cultural comparisons we administered it to a sample of children (N=283 spanning standards 1-3 in a low-income country, Malawi, and a smaller sample of children (N=70 from first year of formal schooling from a high-income country, the UK. Split-half reliability, test-retest reliability, face validity

  1. D2 receptor genotype and striatal dopamine signaling predict motor cortical activity and behavior in humans.

    Science.gov (United States)

    Fazio, Leonardo; Blasi, Giuseppe; Taurisano, Paolo; Papazacharias, Apostolos; Romano, Raffaella; Gelao, Barbara; Ursini, Gianluca; Quarto, Tiziana; Lo Bianco, Luciana; Di Giorgio, Annabella; Mancini, Marina; Popolizio, Teresa; Rubini, Giuseppe; Bertolino, Alessandro

    2011-02-14

    Pre-synaptic D2 receptors regulate striatal dopamine release and DAT activity, key factors for modulation of motor pathways. A functional SNP of DRD2 (rs1076560 G>T) is associated with alternative splicing such that the relative expression of D2S (mainly pre-synaptic) vs. D2L (mainly post-synaptic) receptor isoforms is decreased in subjects with the T allele with a putative increase of striatal dopamine levels. To evaluate how DRD2 genotype and striatal dopamine signaling predict motor cortical activity and behavior in humans, we have investigated the association of rs1076560 with BOLD fMRI activity during a motor task. To further evaluate the relationship of this circuitry with dopamine signaling, we also explored the correlation between genotype based differences in motor brain activity and pre-synaptic striatal DAT binding measured with [(123)I] FP-CIT SPECT. Fifty healthy subjects, genotyped for DRD2 rs1076560 were studied with BOLD-fMRI at 3T while performing a visually paced motor task with their right hand; eleven of these subjects also underwent [(123)I]FP-CIT SPECT. SPM5 random-effects models were used for statistical analyses. Subjects carrying the T allele had greater BOLD responses in left basal ganglia, thalamus, supplementary motor area, and primary motor cortex, whose activity was also negatively correlated with reaction time at the task. Moreover, left striatal DAT binding and activity of left supplementary motor area were negatively correlated. The present results suggest that DRD2 genetic variation was associated with focusing of responses in the whole motor network, in which activity of predictable nodes was correlated with reaction time and with striatal pre-synaptic dopamine signaling. Our results in humans may help shed light on genetic risk for neurobiological mechanisms involved in the pathophysiology of disorders with dysregulation of striatal dopamine like Parkinson's disease. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Integration of BOLD-fMRI and DTI into radiation treatment planning for high-grade gliomas located near the primary motor cortexes and corticospinal tracts

    International Nuclear Information System (INIS)

    Wang, Minglei; Ma, Hui; Wang, Xiaodong; Guo, Yanhong; Xia, Xinshe; Xia, Hechun; Guo, Yulin; Huang, Xueying; He, Hong; Jia, Xiaoxiong; Xie, Yan

    2015-01-01

    The main objective of this study was to evaluate the efficacy of integrating the blood oxygen level dependent functional magnetic resonance imaging (BOLD-fMRI) and diffusion tensor imaging (DTI) data into radiation treatment planning for high-grade gliomas located near the primary motor cortexes (PMCs) and corticospinal tracts (CSTs). A total of 20 patients with high-grade gliomas adjacent to PMCs and CSTs between 2012 and 2014 were recruited. The bilateral PMCs and CSTs were located in the normal regions without any overlapping with target volume of the lesions. BOLD-fMRI, DTI and conventional MRI were performed on patients (Karnofsky performance score ≥ 70) before radical radiotherapy treatment. Four different imaging studies were conducted in each patient: a planning computed tomography (CT), an anatomical MRI, a DTI and a BOLD-fMRI. For each case, three treatment plans (3DCRT, IMRT and IMRT-PMC&CST) were developed by 3 different physicists using the Pinnacle planning system. Our study has shown that there was no significant difference between the 3DCRT and IMRT plans in terms of dose homogeneity, but IMRT displayed better planning target volume (PTV) dose conformity. In addition, we have found that the Dmax and Dmean to the ipsilateral and contralateral PMC and CST regions were considerably decreased in IMRT-PMC&CST group (p < 0.001). In conclusion, integration of BOLD-fMRI and DTI into radiation treatment planning is feasible and beneficial. With the assistance of the above-described techniques, the bilateral PMCs and CSTs adjacent to the target volume could be clearly marked as OARs and spared during treatment

  3. The network of causal interactions for beta oscillations in the pedunculopontine nucleus, primary motor cortex, and subthalamic nucleus of walking parkinsonian rats.

    Science.gov (United States)

    Li, Min; Zhou, Ming; Wen, Peng; Wang, Qiang; Yang, Yong; Xiao, Hu; Xie, Zhengyuan; Li, Xing; Wang, Ning; Wang, Jinyan; Luo, Fei; Chang, Jingyu; Zhang, Wangming

    2016-08-01

    Oscillatory activity has been well-studied in many structures within cortico-basal ganglia circuits, but it is not well understood within the pedunculopontine nucleus (PPN), which was recently introduced as a potential target for the treatment of gait and postural impairments in advanced stages of Parkinson's disease (PD). To investigate oscillatory activity in the PPN and its relationship with oscillatory activity in cortico-basal ganglia circuits, we simultaneously recorded local field potentials in the PPN, primary motor cortex (M1), and subthalamic nucleus (STN) of 6-hydroxydopamine (6-OHDA)-induced hemiparkinsonian rats during resting and walking. After analysis of power spectral density, coherence, and partial Granger causality, three major findings emerged: 1) after 6-OHDA lesions, beta band oscillations were enhanced in all three regions during walking; 2) the direction of information flow for beta oscillations among the three structures was STN→M1, STN→PPN, and PPN→M1; 3) after the treatment of levodopa, beta activity in the three regions was reduced significantly and the flow of beta band was also abrogated. Our results suggest that beta activity in the PPN is transmitted from the basal ganglia and probably comes from the STN, and the STN plays a dominant role in the network of causal interactions for beta activity. Thus, the STN may be a potential source of aberrant beta band oscillations in PD. Levodopa can inhibit beta activity in the PPN of parkinsonian rats but cannot relieve parkinsonian patients' axial symptoms clinically. Therefore, beta oscillations may not be the major cause of axial symptoms. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Detection of hand and leg motor tract injury using novel diffusion tensor MRI tractography in children with central motor dysfunction.

    Science.gov (United States)

    Jeong, Jeong-Won; Lee, Jessica; Kamson, David O; Chugani, Harry T; Juhász, Csaba

    2015-09-01

    To examine whether an objective segmenation of corticospinal tract (CST) associated with hand and leg movements can be used to detect central motor weakness in the corresponding extremities in a pediatric population. This retrospective study included diffusion tensor imaging (DTI) of 25 children with central paresis affecting at least one limb (age: 9.0±4.2years, 15 boys, 5/13/7 children with left/right/both hemispheric lesions including ischemia, cyst, and gliosis), as well as 42 pediatric control subjects with no motor dysfunction (age: 9.0±5.5years, 21 boys, 31 healthy/11 non-lesional epilepsy children). Leg- and hand-related CST pathways were segmented using DTI-maximum a posteriori (DTI-MAP) classification. The resulting CST volumes were then divided by total supratentorial white matter volume, resulting in a marker called "normalized streamline volume ratio (NSVR)" to quantify the degree of axonal loss in separate CST pathways associated with leg and hand motor functions. A receiver operating characteristic curve was applied to measure the accuracy of this marker to identify extremities with motor weakness. NSVR values of hand/leg CST selectively achieved the following values of accuracy/sensitivity/specificity: 0.84/0.84/0.57, 0.82/0.81/0.55, 0.78/0.75/0.55, 0.79/0.81/0.54 at a cut-off of 0.03/0.03/0.03/0.02 for right hand CST, left hand CST, right leg CST, and left leg CST, respectively. Motor weakness of hand and leg was most likely present at the cut-off values of hand and leg NSVR (i.e., 0.029/0.028/0.025/0.020 for left-hand/right-hand/left-leg/right-leg). The control group showed a moderate age-related increase in absolute CST volumes and a biphasic age-related variation of the normalized CST volumes, which were lacking in the paretic children. This study demonstrates that DTI-MAP classification may provide a new imaging tool to quantify axonal loss in children with central motor dysfunction. Using this technique, we found that early-life brain

  5. Effects of High-Definition Anodal Transcranial Direct Current Stimulation Applied Simultaneously to Both Primary Motor Cortices on Bimanual Sensorimotor Performance

    OpenAIRE

    Nils H. Pixa; Fabian Steinberg; Michael Doppelmayr; Michael Doppelmayr

    2017-01-01

    Many daily activities, such as tying one’s shoe laces, opening a jar of jam or performing a free throw in basketball, require the skillful coordinated use of both hands. Even though the non-invasive method of transcranial direct current stimulation (tDCS) has been repeatedly shown to improve unimanual motor performance, little is known about its effects on bimanual motor performance. More knowledge about how tDCS may improve bimanual behavior would be relevant to motor recovery, e.g., in pers...

  6. Enhanced motor learning following task-concurrent dual transcranial direct current stimulation.

    Directory of Open Access Journals (Sweden)

    Sophia Karok

    Full Text Available OBJECTIVE: Transcranial direct current stimulation (tDCS of the primary motor cortex (M1 has beneficial effects on motor performance and motor learning in healthy subjects and is emerging as a promising tool for motor neurorehabilitation. Applying tDCS concurrently with a motor task has recently been found to be more effective than applying stimulation before the motor task. This study extends this finding to examine whether such task-concurrent stimulation further enhances motor learning on a dual M1 montage. METHOD: Twenty healthy, right-handed subjects received anodal tDCS to the right M1, dual tDCS (anodal current over right M1 and cathodal over left M1 and sham tDCS in a repeated-measures design. Stimulation was applied for 10 mins at 1.5 mA during an explicit motor learning task. Response times (RT and accuracy were measured at baseline, during, directly after and 15 mins after stimulation. Motor cortical excitability was recorded from both hemispheres before and after stimulation using single-pulse transcranial magnetic stimulation. RESULTS: Task-concurrent stimulation with a dual M1 montage significantly reduced RTs by 23% as early as with the onset of stimulation (p<0.01 with this effect increasing to 30% at the final measurement. Polarity-specific changes in cortical excitability were observed with MEPs significantly reduced by 12% in the left M1 and increased by 69% in the right M1. CONCLUSION: Performance improvement occurred earliest in the dual M1 condition with a stable and lasting effect. Unilateral anodal stimulation resulted only in trendwise improvement when compared to sham. Therefore, task-concurrent dual M1 stimulation is most suited for obtaining the desired neuromodulatory effects of tDCS in explicit motor learning.

  7. Role of association cortices and cerebellum during motor consolidation process

    International Nuclear Information System (INIS)

    Nagata, Ken; Wright, David K.; Box, Georgia A.

    2008-01-01

    Positron emission tomography (PET) studies of cerebral circulation activated during the first (naive) and second (learned) visual-motor tasks were performed to confirm the hypothesis that activated brain regions are different before and after the motor work. Subjects were 30 normal healthy right-handed volunteers (av. age 21 y), who had the first 10 tasks of cursor tracing (regular tracing, rt), as rapidly and accurately as possible, along the given star features and then second 15 tasks of tracing with the cursor with inverse polarity (mirror tracing, mt). During the tasks, PET images were obtained at 7th and 9th rt, and 10 times (1st-15th) during mt, with the high-resolution positron camera (HEADTOME V) to measure the cerebral blood flow after intravenous 15 O-water and were processed into 3D for statistics. At the 1st mt (under the most unfamiliar condition), stimulated were the right frontal and supplementary motor areas and temporal lobe, bilateral centriciput lobe, anterior cingulated gyrus, and left cerebellum hemisphere. Under the learned condition (at 15th mt), the primary motor area, lingual gyrus, cuneus, anterior cuneus, occipital lobe involving posterior cingulated gyrus and left cerebellum hemisphere were activated. Thus the hypothesis above was confirmed: reconfirmation of the brain plasticity. (R.T.)

  8. The Effectiveness of 1 Hz rTMS Over the Primary Motor Area of the Unaffected Hemisphere to Improve Hand Function After Stroke Depends on Hemispheric Dominance.

    Science.gov (United States)

    Lüdemann-Podubecká, Jitka; Bösl, Kathrin; Theilig, Steven; Wiederer, Ralf; Nowak, Dennis Alexander

    2015-01-01

    Inhibition of motor cortex excitability of the contralesional hemisphere may improve dexterity of the affected hand after stroke. 40 patients (17 dominant hemispheric stroke, 23 non-dominant hemispheric stroke) with a mild to moderate upper limb motor impairment were enrolled in a double-blind, randomized, placebo-controlled trial with two parallel-groups. Both groups received 15 daily sessions of motor training preceded by either 1 Hz rTMS or sham rTMS. Behavioral and neurophysiological evaluations were performed at baseline, after the first week and after the third week of treatment, and after a 6 months follow-up. In both groups motor function of the affected hand improved significantly. Patients with stroke of the non-dominant hemisphere made a similar improvement, regardless of whether the motor training was preceded by sham or 1 Hz rTMS. Patients with stroke of the dominant hemisphere had a less favorable improvement than those with stroke of the non-dominant hemisphere after motor training preceded by sham rTMS. However, when 1 Hz rTMS preceded the motor training, patients with stroke of the dominant hemisphere made a similar improvement as those with stroke of the non-dominant hemisphere. Motor recovery of the affected upper limb after stroke is determined by dominance of the affected hemisphere. Stroke of the dominant hemisphere is associated with per se poorer improvement of the affected hand. 1 Hz rTMS over the contralesional M1 significantly improves dexterity of the affected hand in patients with stroke of the dominant hemisphere, but not in those with stroke of the non-dominant hemisphere. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Design of Temperature Measuring Instrument of The Primary Cooling System Bearing Motor At The RSG-GAS Based on Micro controller ATMEGA 8535

    International Nuclear Information System (INIS)

    Ranji Gusman; Cahyana; Heri Suherkiman; Sukino

    2012-01-01

    Controlling on the bearing of an electric motor is the thing that important to do, to know the performance of an electric motor is staying awake. One of the parameters that can be controlled is temperature of bearing electric motor. The bearing of an electric motors has three areas of work, namely the normal working temperature area(<45 °C), working area (45-50 °C) and critical shutdown area (<50 °C). On the design of this tool-making, we are going to control the electric motor on that condition. The micro controller ATMEGA 8535 is used as a controller. Micro controller serve control the input in the form of temperature bearing motor then cultivate it and will be displayed to output devices such as the LCD viewer, lights indicators and buzzer. On this design has the design of casing, power supply circuit, micro controller port, buzzer driver circuit, indicator light and relay circuits, as well as the LCD viewer circuit and flow chart. On the next activity, the design will be submitted to the manufacturing stage. (author)

  10. Higher Efficiency HVAC Motors

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Charles Joseph [QM Power, Inc., Kansas City, MO (United States)

    2018-02-13

    The objective of this project was to design and build a cost competitive, more efficient heating, ventilation, and air conditioning (HVAC) motor than what is currently available on the market. Though different potential motor architectures among QMP’s primary technology platforms were investigated and evaluated, including through the building of numerous prototypes, the project ultimately focused on scaling up QM Power, Inc.’s (QMP) Q-Sync permanent magnet synchronous motors from available sub-fractional horsepower (HP) sizes for commercial refrigeration fan applications to larger fractional horsepower sizes appropriate for HVAC applications, and to add multi-speed functionality. The more specific goal became the research, design, development, and testing of a prototype 1/2 HP Q-Sync motor that has at least two operating speeds and 87% peak efficiency compared to incumbent electronically commutated motors (EC or ECM, also known as brushless direct current (DC) motors), the heretofore highest efficiency HVACR fan motor solution, at approximately 82% peak efficiency. The resulting motor prototype built achieved these goals, hitting 90% efficiency and .95 power factor at full load and speed, and 80% efficiency and .7 power factor at half speed. Q-Sync, developed in part through a DOE SBIR grant (Award # DE-SC0006311), is a novel, patented motor technology that improves on electronically commutated permanent magnet motors through an advanced electronic circuit technology. It allows a motor to “sync” with the alternating current (AC) power flow. It does so by eliminating the constant, wasteful power conversions from AC to DC and back to AC through the synthetic creation of a new AC wave on the primary circuit board (PCB) by a process called pulse width modulation (PWM; aka electronic commutation) that is incessantly required to sustain motor operation in an EC permanent magnet motor. The Q-Sync circuit improves the power factor of the motor by removing all

  11. Upper motor neuron predominant degeneration with frontal and temporal lobe atrophy.

    Science.gov (United States)

    Konagaya, M; Sakai, M; Matsuoka, Y; Konagaya, Y; Hashizume, Y

    1998-11-01

    The autopsy findings of a 78-year-old man mimicking primary lateral sclerosis (PLS) are reported. He showed slowly progressive spasticity, pseudobulbar palsy and character change, and died 32 months after the onset of symptoms. Autopsy revealed severe atrophy of the frontal and temporal lobes, remarkable neuronal loss and gliosis in the precentral gyrus, left temporal lobe pole and amygdala, mild degeneration of the Ammon's horn, degeneration of the corticospinal tract, and very mild involvement of the lower motor neurons. The anterior horn cells only occasionally demonstrated Bunina body by cystatin-C staining, and skein-like inclusions by ubiquitin staining. This is a peculiar case with concomitant involvement in the motor cortex and temporal lobe in motor neuron disease predominantly affecting the upper motor neuron.

  12. Improving commercial motor vehicle safety in Oregon.

    Science.gov (United States)

    2010-08-01

    This study addressed the primary functions of the Oregon Department of Transportations (ODOTs) Motor Carrier Safety Assistance Program (MCSAP), which is administered by the Motor Carrier Transportation Division (MCTD). The study first documente...

  13. EDUCATIONAL PECULIARITIES AND DIFFICULTIES OF CHILDREN WITH LEFT-SIDED LATERALITY: THE TECHNOLOGICAL SOLUTION OF THE PROBLEM

    Directory of Open Access Journals (Sweden)

    Maria Sitnikova

    2011-09-01

    Full Text Available Nowadays there is a significant increase of the incidence of left-handedness and sinistrality among schoolchildren. Theydemonstrate a large number of left-sided motor and sensory preferences which are considered as external markers offunctional hemispheric asymmetry of the brain. The purposes of this study are to investigate gender peculiarities and specificityof age-related dynamics of laterality pattern’s formation in junior schoolchildren and to find out educational peculiarities anddifficulties of left-handed children. The findings show that left-handers differ greatly in their mental development by havingsome peculiarities of intelligence, world’s perception and prevailing thinking strategies, ways of memorization, specificity ofemotional-affective expression. The main problems of left-handed children in school performance are academic failure, lack ofperseverance, anxiety neurosis, and extreme emotional lability. Integrated development of the left hemisphere and the righthemisphere thinking of left-handed schoolchildren is a favorable condition for harmonious personal and intellectualdevelopment and effective mastering of various modules of the school curriculum. The technological solution of the problem ofteaching the children with left-sided laterality is to include in educational programs some special exercises to developimagination, emotional sensitivity, integrity of perception, global view to the problems, creativeness, and original approachesto tasks’ solving. So a complex program for the intensive development of the right hemisphere of children who demonstrateleft-sided laterality to overcome the possible failure at primary school is proposed in this paper.

  14. Libert-E Motor

    Science.gov (United States)

    Sieloff, Susan F.; Kinnunen, Raymond; Chevarley, Joseph

    2011-01-01

    Kei Yun Wong has big dreams. She has been entrusted with the United States launch of Libert-E Motor, a new line of Chinese-manufactured electric scooters. With only $750,000 of her original budget of $3 million left, she needs to make sure that the launch succeeds, as it represents the initial step in her desire to create the first Chinese global…

  15. Abnormal Gray Matter Shape, Thickness, and Volume in the Motor Cortico-Subcortical Loop in Idiopathic Rapid Eye Movement Sleep Behavior Disorder: Association with Clinical and Motor Features.

    Science.gov (United States)

    Rahayel, Shady; Postuma, Ronald B; Montplaisir, Jacques; Bedetti, Christophe; Brambati, Simona; Carrier, Julie; Monchi, Oury; Bourgouin, Pierre-Alexandre; Gaubert, Malo; Gagnon, Jean-François

    2018-02-01

    Idiopathic rapid eye movement sleep behavior disorder (iRBD) is a major risk factor for Parkinson's disease and dementia with Lewy bodies. Anatomical gray matter abnormalities in the motor cortico-subcortical loop areas remain under studied in iRBD patients. We acquired T1-weighted images and administrated quantitative motor tasks in 41 patients with polysomnography-confirmed iRBD and 41 healthy subjects. Cortical thickness and voxel-based morphometry (VBM) analyses were performed to investigate local cortical thickness and gray matter volume changes, vertex-based shape analysis to investigate shape of subcortical structures, and structure-based volumetric analyses to investigate volumes of subcortical and brainstem structures. Cortical thickness analysis revealed thinning in iRBD patients in bilateral medial superior frontal, orbitofrontal, anterior cingulate cortices, and the right dorsolateral primary motor cortex. VBM results showed lower gray matter volume in iRBD patients in the frontal lobes, anterior cingulate gyri, and caudate nucleus. Shape analysis revealed extensive surface contraction in the external and internal segments of the left pallidum. Clinical and motor impaired features in iRBD were associated with anomalies of the motor cortico-subcortical loop. In summary, iRBD patients showed numerous gray matter structural abnormalities in the motor cortico-subcortical loop, which are associated with lower motor performance and clinical manifestations of iRBD. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Network connectivity and individual responses to brain stimulation in the human motor system.

    Science.gov (United States)

    Cárdenas-Morales, Lizbeth; Volz, Lukas J; Michely, Jochen; Rehme, Anne K; Pool, Eva-Maria; Nettekoven, Charlotte; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian

    2014-07-01

    The mechanisms driving cortical plasticity in response to brain stimulation are still incompletely understood. We here explored whether neural activity and connectivity in the motor system relate to the magnitude of cortical plasticity induced by repetitive transcranial magnetic stimulation (rTMS). Twelve right-handed volunteers underwent functional magnetic resonance imaging during rest and while performing a simple hand motor task. Resting-state functional connectivity, task-induced activation, and task-related effective connectivity were assessed for a network of key motor areas. We then investigated the effects of intermittent theta-burst stimulation (iTBS) on motor-evoked potentials (MEP) for up to 25 min after stimulation over left primary motor cortex (M1) or parieto-occipital vertex (for control). ITBS-induced increases in MEP amplitudes correlated negatively with movement-related fMRI activity in left M1. Control iTBS had no effect on M1 excitability. Subjects with better response to M1-iTBS featured stronger preinterventional effective connectivity between left premotor areas and left M1. In contrast, resting-state connectivity did not predict iTBS aftereffects. Plasticity-related changes in M1 following brain stimulation seem to depend not only on local factors but also on interconnected brain regions. Predominantly activity-dependent properties of the cortical motor system are indicative of excitability changes following induction of cortical plasticity with rTMS. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder.

    Science.gov (United States)

    Voon, Valerie; Brezing, Christina; Gallea, Cecile; Hallett, Mark

    2011-11-01

    Conversion disorder (CD) is characterized by unexplained neurological symptoms presumed related to psychological issues. The main hypotheses to explain conversion paralysis, characterized by a lack of movement, include impairments in either motor intention or disruption of motor execution, and further, that hyperactive self-monitoring, limbic processing or top-down regulation from higher order frontal regions may interfere with motor execution. We have recently shown that CD with positive abnormal or excessive motor symptoms was associated with greater amygdala activity to arousing stimuli along with greater functional connectivity between the amygdala and supplementary motor area. Here we studied patients with such symptoms focusing on motor initiation. Subjects performed either an internally or externally generated 2-button action selection task in a functional MRI study. Eleven CD patients without major depression and 11 age- and gender-matched normal volunteers were assessed. During both internally and externally generated movement, conversion disorder patients relative to normal volunteers had lower left supplementary motor area (SMA) (implicated in motor initiation) and higher right amygdala, left anterior insula, and bilateral posterior cingulate activity (implicated in assigning emotional salience). These findings were confirmed in a subgroup analysis of patients with tremor symptoms. During internally versus externally generated action in CD patients, the left SMA had lower functional connectivity with bilateral dorsolateral prefrontal cortices. We propose a theory in which previously mapped conversion motor representations may in an arousing context hijack the voluntary action selection system, which is both hypoactive and functionally disconnected from prefrontal top-down regulation. Copyright © 2011 Movement Disorder Society.

  18. Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder

    Science.gov (United States)

    Voon, V; Brezing, C; Gallea, C; Hallett, M

    2014-01-01

    Background Conversion disorder is characterized by unexplained neurological symptoms presumed related to psychological issues. The main hypotheses to explain conversion paralysis, characterized by a lack of movement, include impairments in either motor intention or disruption of motor execution, and further, that hyperactive self-monitoring, limbic processing or top-down regulation from higher order frontal regions may interfere with motor execution. We have recently shown that conversion disorder with positive abnormal or excessive motor symptoms was associated with greater amygdala activity to arousing stimuli along with greater functional connectivity between the amgydala and supplementary motor area. Here we studied patients with such symptoms focusing on motor initiation. Methods Subjects performed either an internally or externally generated two-button action selection task in a functional MRI study. Results Eleven conversion disorder patients without major depression and 11 age- and gender-matched normal volunteers were assessed. During both internally and externally generated movement, conversion disorder patients relative to normal volunteers had lower left supplementary motor area (SMA) (implicated in motor initiation) and higher right amygdala, left anterior insula and bilateral posterior cingulate activity (implicated in assigning emotional salience). These findings were confirmed in a subgroup analysis of patients with tremor symptoms. During internally versus externally generated action in CD patients, the left SMA had lower functional connectivity with bilateral dorsolateral prefrontal cortices. Conclusion We propose a theory in which previously mapped conversion motor representations may in an arousing context hijack the voluntary action selection system which is both hypoactive and functionally disconnected from prefrontal top-down regulation. PMID:21935985

  19. Structural and functional evaluation of cortical motor areas in Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Cosottini, Mirco; Pesaresi, Ilaria; Piazza, Selina; Diciotti, Stefano; Cecchi, Paolo; Fabbri, Serena; Carlesi, Cecilia; Mascalchi, Mario; Siciliano, Gabriele

    2012-03-01

    The structural and functional data gathered with Magnetic Resonance Imaging (MRI) techniques about the brain cortical motor damage in Amyotrophic Lateral Sclerosis (ALS) are controversial. In fact some structural MRI studies showed foci of gray matter (GM) atrophy in the precentral gyrus, even in the early stage, while others did not. Most functional MRI (fMRI) studies in ALS reported hyperactivation of extra-primary motor cortices, while contradictory results were obtained on the activation of the primary motor cortex. We aimed to investigate the cortical motor circuitries in ALS patients by a combined structural and functional approach. Twenty patients with definite ALS and 16 healthy subjects underwent a structural examination with acquisition of a 3D T1-weighted sequence and fMRI examination during a maximal force handgrip task executed with the right-hand, the left-hand and with both hands simultaneously. The T1-weighted images were analyzed with Voxel-Based Morphometry (VBM) that showed several clusters of reduced cortical GM in ALS patients compared to controls including the pre and postcentral gyri, the superior, middle and inferior frontal gyri, the supplementary motor area, the superior and inferior parietal cortices and the temporal lobe, bilaterally but more extensive on the right side. In ALS patients a significant hypoactivation of the primary sensory motor cortex and frontal dorsal premotor areas as compared to controls was observed. The hypoactivated areas matched with foci of cortical atrophy demonstrated by VBM. The fMRI analysis also showed an enhanced activation in the ventral premotor frontal areas and in the parietal cortex pertaining to the fronto-parietal motor circuit which paralleled with disease progression rate and matched with cortical regions of atrophy. The hyperactivation of the fronto-parietal circuit was asymmetric and prevalent in the left hemisphere. VBM and fMRI identified structural and functional markers of an extended

  20. Functional rearrangement of the primary and secondary motor cortex in patients with primary tumors of the central nervous system located in the region of the central sulcus depending on the histopathological type and the size of tumor: Examination by means of functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Bryszewski, Bartosz; Pfajfer, Lucjan; Antosik-Biernacka, Aneta; Tybor, Krzysztof; Śmigielski, Janusz; Zawirski, Marek; Majos, Agata

    2012-01-01

    The aim of this study was to analyze the reorganization of the centers of the motor cortex in patients with primary neuroepithelial tumors of the central nervous system (CNS) located in the region of the central sulcus in relation to the histopathological type and the size of tumor, as determined by means of functional magnetic resonance imaging (fMRI). The fMRI was performed prior to the surgical treatment of patients with tumors located in the region of the central sulcus (WHO stage I and II, n=15; WHO stage III and IV, n=25). The analysis included a record of the activity in the areas of the primary motor cortex (M1) and the secondary motor cortex: the premotor cortex (PMA) and the accessory motor area (SMA). The results were correlated with the histopathological type of the tumor and its size expressed in cm 3 . The frequency of activation of the motor center was higher in the group of patients who had less aggressive tumors, such as low-grade glioma (LGG), as well as in tumors of lower volume, and this was true both for the hemisphere where the tumor was located and in the contralateral one. Mean values of t-statistics of activation intensity, mean numbers of activated clusters, and their ranges were lower in all analyzed motor areas of LGG tumors. The values of t-statistics and activation areas were higher in the case of small tumors located in ipsilateral centers, and in large tumors located in contralateral centers, aside from the SMA area where the values of t-statistics were equal for both groups. The contralateral SMA area was characterized by the highest stability of all examined centers of secondary motor cortex. No significant association (p>0.05) was observed between the absolute value of the mean registered activity (t-statistics) and the size of examined areas (number of clusters) when the groups were stratified with regards to the analyzed parameters. The presence of a neoplastic lesion, its histopathological type and finally its size modulate the

  1. Functional connectivity and laterality of the motor and sensory components in the volitional swallowing network.

    Science.gov (United States)

    Lowell, Soren Y; Reynolds, Richard C; Chen, Gang; Horwitz, Barry; Ludlow, Christy L

    2012-05-01

    Functional neuroimaging has shown that multiple brain regions are active during volitional swallowing. Little is known, however, about which regions integrate motor execution and sensory feedback in the swallowing system. Although unilateral brain lesions in either hemisphere can produce swallowing deficits, some functional neuroimaging studies indicate that the left hemisphere has greater activation in certain sensory and motor-related swallowing regions. In this study, correlation coefficients were computed for five seed regions during volitional saliva swallowing to determine the functional relationships of these regions with the rest of the brain: the anterior and posterior insula, inferior frontal gyrus (BA44), primary sensory cortex (S1), and primary motor cortex (M1). A laterality index (LI) was derived that accounts for relative differences in total, positive connected voxels for the left/right hemisphere seeds. Clusters of significantly connected voxels were greater from the anterior and posterior insula than from the other three seed regions. Interactions of the insula with other brain regions were greater on the left than on the right during volitional swallowing. Group means showed laterality in the anterior insula (LI = 0.25) and the posterior insula (LI = 0.33). BA44 showed a lesser degree of difference in left versus right hemisphere interactions (LI = 0.12) while S1 did not show lateralization (LI = 0.02) and M1 showed some predominance of interactions in the right hemisphere (LI = -0.19). The greater connectivity from the left hemisphere insula to brain regions within and across hemispheres suggests that the insula is a primary integrative region for volitional swallowing in humans.

  2. Compensatory cerebral motor control following presumed perinatal ischemic stroke

    NARCIS (Netherlands)

    van der Hoorn, Anouk; Potgieser, Adriaan R E; Brouwer, Oebele F; de Jong, Bauke M

    Case: A fifteen year-old left-handed girl presented with right-sided focal motor seizures. Neuroimaging showed a large left hemisphere lesion compatible with a middle cerebral artery stroke of presumed perinatal origin. She was not previously diagnosed with a motor deficit, although neurological

  3. Maturation of Sensori-Motor Functional Responses in the Preterm Brain.

    Science.gov (United States)

    Allievi, Alessandro G; Arichi, Tomoki; Tusor, Nora; Kimpton, Jessica; Arulkumaran, Sophie; Counsell, Serena J; Edwards, A David; Burdet, Etienne

    2016-01-01

    Preterm birth engenders an increased risk of conditions like cerebral palsy and therefore this time may be crucial for the brain's developing sensori-motor system. However, little is known about how cortical sensori-motor function matures at this time, whether development is influenced by experience, and about its role in spontaneous motor behavior. We aimed to systematically characterize spatial and temporal maturation of sensori-motor functional brain activity across this period using functional MRI and a custom-made robotic stimulation device. We studied 57 infants aged from 30 + 2 to 43 + 2 weeks postmenstrual age. Following both induced and spontaneous right wrist movements, we saw consistent positive blood oxygen level-dependent functional responses in the contralateral (left) primary somatosensory and motor cortices. In addition, we saw a maturational trend toward faster, higher amplitude, and more spatially dispersed functional responses; and increasing integration of the ipsilateral hemisphere and sensori-motor associative areas. We also found that interhemispheric functional connectivity was significantly related to ex-utero exposure, suggesting the influence of experience-dependent mechanisms. At term equivalent age, we saw a decrease in both response amplitude and interhemispheric functional connectivity, and an increase in spatial specificity, culminating in the establishment of a sensori-motor functional response similar to that seen in adults. © The Author 2015. Published by Oxford University Press.

  4. Inducing homeostatic-like plasticity in human motor cortex through converging corticocortical inputs

    DEFF Research Database (Denmark)

    Pötter-Nerger, Monika; Fischer, Sarah; Mastroeni, Claudia

    2009-01-01

    Transcranial stimulation techniques have revealed homeostatic-like metaplasticity in the hand area of the human primary motor cortex (M1(HAND)) that controls stimulation-induced changes in corticospinal excitability. Here we combined two interventional protocols that induce long-term depression......TMS) of the left dorsal premotor cortex (PMD) was first applied to produce an LTP-like increase (5 Hz rTMS) or LTD-like decrease (1 Hz rTMS) in corticospinal excitability in left M1(HAND) via premotor-to-motor inputs. Following PMD rTMS, paired-associative stimulation (PAS) was applied to the right median nerve...... and left M1(HAND) to induce spike-time-dependent plasticity in sensory-to-motor inputs to left M1(HAND). We adjusted the interstimulus interval to the N20 latency of the median nerve somatosensory-evoked cortical potential to produce an LTP-like increase (PAS(N20+2ms)) or an LTD-like decrease (PAS(N20-5ms...

  5. Inhibitory and facilitatory connectivity from ventral premotor to primary motor cortex in healthy humans at rest--a bifocal TMS study

    DEFF Research Database (Denmark)

    Bäumer, T; Schippling, S; Kroeger, J

    2009-01-01

    in ipsilateral M1 excitability was located at the border between ventral Brodmann area (BA) 6 and BA 44, the human homologue of monkey's PMv (area F5). CONCLUSION: We infer that the corticospinal motor output from M1 to contralateral hand muscles can be facilitated or inhibited by a CS over ipsilateral PMv....... SIGNIFICANCE: The fact that conditioning effects following PMd stimulation differ from those after PMv stimulation supports the concept that inputs from premotor cortices to M1 are functionally segregated....

  6. Surround inhibition in the primary motor cortex is task-specifically modulated in non-professional musicians but not in healthy controls during real piano playing

    DEFF Research Database (Denmark)

    Márquez, Gonzalo; Keller, Martin; Lundbye-Jensen, Jesper

    2018-01-01

    participants. Transcranial magnetic stimulation (TMS) was applied to the contralateral motor cortex to assess SI in the first dorsal interosseous (FDI), abductor pollicis brevis (APB) and abductor digiti minimi (ADM) during the movement preparation and the late phasic phases. The results reveal stronger SI...... that long-term training as observed in skilled musicians is accompanied by task-specific effects on SI modulation potentially relating to the ability to perform selective and complex finger movements....

  7. High-definition transcranial direct-current stimulation of the right M1 further facilitates left M1 excitability during crossed facilitation.

    Science.gov (United States)

    Cabibel, Vincent; Muthalib, Makii; Teo, Wei-Peng; Perrey, Stephane

    2018-04-01

    The crossed-facilitation (CF) effect refers to when motor-evoked potentials (MEPs) evoked in the relaxed muscles of one arm are facilitated by contraction of the opposite arm. The aim of this study was to determine whether high-definition transcranial direct-current stimulation (HD-tDCS) applied to the right primary motor cortex (M1) controlling the left contracting arm [50% maximum voluntary isometric contraction (MVIC)] would further facilitate CF toward the relaxed right arm. Seventeen healthy right-handed subjects participated in an anodal and cathodal or sham HD-tDCS session of the right M1 (2 mA for 20 min) separated by at least 48 h. Single-pulse transcranial magnetic stimulation (TMS) was used to elicit MEPs and cortical silent periods (CSPs) from the left M1 at baseline and 10 min into and after right M1 HD-tDCS. At baseline, compared with resting, CF (i.e., right arm resting, left arm 50% MVIC) increased left M1 MEP amplitudes (+97%) and decreased CSPs (-11%). The main novel finding was that right M1 HD-tDCS further increased left M1 excitability (+28.3%) and inhibition (+21%) from baseline levels during CF of the left M1, with no difference between anodal and cathodal HD-tDCS sessions. No modulation of CSP or MEP was observed during sham HD-tDCS sessions. Our findings suggest that CF of the left M1 combined with right M1 anodal or cathodal HD-tDCS further facilitated interhemispheric interactions during CF from the right M1 (contracting left arm) toward the left M1 (relaxed right arm), with effects on both excitatory and inhibitory processing. NEW & NOTEWORTHY This study shows modulation of the nonstimulated left M1 by right M1 HD-tDCS combined with crossed facilitation, which was probably achieved through modulation of interhemispheric interactions.

  8. Motor simulation and the coordination of self and other in real-time joint action.

    Science.gov (United States)

    Novembre, Giacomo; Ticini, Luca F; Schütz-Bosbach, Simone; Keller, Peter E

    2014-08-01

    Joint actions require the integration of simultaneous self- and other-related behaviour. Here, we investigated whether this function is underpinned by motor simulation, that is the capacity to represent a perceived action in terms of the neural resources required to execute it. This was tested in a music performance experiment wherein on-line brain stimulation (double-pulse transcranial magnetic stimulation, dTMS) was employed to interfere with motor simulation. Pianists played the right-hand part of piano pieces in synchrony with a recording of the left-hand part, which had (Trained) or had not (Untrained) been practiced beforehand. Training was assumed to enhance motor simulation. The task required adaptation to tempo changes in the left-hand part that, in critical conditions, were preceded by dTMS delivered over the right primary motor cortex. Accuracy of tempo adaptation following dTMS or sham stimulations was compared across Trained and Untrained conditions. Results indicate that dTMS impaired tempo adaptation accuracy only during the perception of trained actions. The magnitude of this interference was greater in empathic individuals possessing a strong tendency to adopt others' perspectives. These findings suggest that motor simulation provides a functional resource for the temporal coordination of one's own behaviour with others in dynamic social contexts. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  9. An Attempt to Determine the Construct Validity of Measures Hypothesized to Represent an Orientation to Right, Left, or Integrated Hemispheric Brain Function for a Sample of Primary School Children.

    Science.gov (United States)

    Dumbrower, Jule; And Others

    1981-01-01

    This study attempts to obtain evidence of the construct validity of pupil ability tests hypothesized to represent orientation to right, left, or integrated hemispheric function, and of teacher observation subscales intended to reveal behaviors in school setting that were hypothesized to portray preference for right or left brain function. (Author)

  10. Ratio of systolic blood pressure to left ventricular end-diastolic pressure at the time of primary percutaneous coronary intervention predicts in-hospital mortality in patients with ST-elevation myocardial infarction.

    Science.gov (United States)

    Sola, Michael; Venkatesh, Kiran; Caughey, Melissa; Rayson, Robert; Dai, Xuming; Stouffer, George A; Yeung, Michael

    2017-09-01

    To determine the ability of simple hemodynamic parameters obtained at the time of cardiac catheterization to predict in-hospital mortality following ST-elevation myocardial infarction (STEMI). Hemodynamic parameters measured at the time of primary percutaneous coronary intervention (PPCI) could potentially identify high-risk patients who would benefit from aggressive hemodynamic support in the Cardiac Catheterization laboratory. This is a retrospective single-center study of 219 consecutive patients with STEMI. Left ventricular end-diastolic pressure (LVEDP), systolic blood pressure (SBP), and aortic diastolic blood pressure were obtained after successful revascularization. The prognostic ability of LVEDP, pulse pressure, and SBP/LVEDP ratio were compared to major mortality risk scores. Patients had a mean age of 60 ±14 years, were predominantly white (73%), male (64%), with anterior wall infarcts in 39%. Comorbidities included diabetes mellitus (27%), heart failure (9%), and chronic kidney disease (7%). In-hospital mortality was 9%. Patients with SBP/LVEDP ≤ 4 had increased risk of in-hospital death (32% vs. 5.3%, P  4. The area under curve (AUC) for SBP/LVEDP ratio for in-hospital mortality (0.69) was more predictive than LVEDP (0.61, P = 0.04) or pulse pressure (0.55, P = 0.02) but similar to Shock Index (ratio of heart rate to SBP) and Modified Shock Index (ratio of HR to mean arterial pressure). An SBP/LVEDP ratio ≤ 4 identified a group of STEMI patients at high risk of in-hospital death. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. The electric motor handbook

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, R.W.; Feltham, P. (eds.)

    2004-05-01

    This handbook outlines the important role that electric motors play in modern society. It covers the field of motor applications from various motor types to their use and repair. It also presents practical applications of electric motors and methods on motor efficiency. More than half of all electricity generated, and 75 per cent of all industrial electricity consumption is consumed by electric motors. Electrical personnel must be aware of all factors involved in electric motors in order to choose and apply the appropriate size of electric motor. These factors include efficiency, sizing and proper application. The efficient use and maximum life expectancy of electric motors depends on proper motor protection, control and maintenance. This handbook includes articles from leading experts on electric motors in modern electrical systems. The content includes: design considerations; proper electric motor sizing techniques; optimal electric motor application; electric motor protection technology; electric motor control principles; electric motor maintenance and troubleshooting; induction electric motors; electric motor bearing currents; electric motor bearing lubrication; electromagnetism; electric motor enclosures; electric motor testing; electric motor repair; DC electric motor; electric motor starters; electric motor brushes; industrial electric motors; electric motor diagrams; AC electric motors; electric motor wiring; electric motor service; electric motor rewinding; electric motor winding; diagram of electric motor wiring; electric motor kit; and, troubleshooting electric motors. A directory of motor manufacturers and suppliers was also included. refs., tabs., figs.

  12. Brain changes following four weeks of unimanual motor training: Evidence from behavior, neural stimulation, cortical thickness, and functional MRI.

    Science.gov (United States)

    Sale, Martin V; Reid, Lee B; Cocchi, Luca; Pagnozzi, Alex M; Rose, Stephen E; Mattingley, Jason B

    2017-09-01

    Although different aspects of neuroplasticity can be quantified with behavioral probes, brain stimulation, and brain imaging assessments, no study to date has combined all these approaches into one comprehensive assessment of brain plasticity. Here, 24 healthy right-handed participants practiced a sequence of finger-thumb opposition movements for 10 min each day with their left hand. After 4 weeks, performance for the practiced sequence improved significantly (P left (mean increase: 53.0% practiced, 6.5% control) and right (21.0%; 15.8%) hands. Training also induced significant (cluster p-FWE right hemisphere, 301 voxel cluster; left hemisphere 700 voxel cluster), and sensorimotor cortices and superior parietal lobules (right hemisphere 864 voxel cluster; left hemisphere, 1947 voxel cluster). Transcranial magnetic stimulation over the right ("trained") primary motor cortex yielded a 58.6% mean increase in a measure of motor evoked potential amplitude, as recorded at the left abductor pollicis brevis muscle. Cortical thickness analyses based on structural MRI suggested changes in the right precentral gyrus, right post central gyrus, right dorsolateral prefrontal cortex, and potentially the right supplementary motor area. Such findings are consistent with LTP-like neuroplastic changes in areas that were already responsible for finger sequence execution, rather than improved recruitment of previously nonutilized tissue. Hum Brain Mapp 38:4773-4787, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. The "handwriting brain": a meta-analysis of neuroimaging studies of motor versus orthographic processes.

    Science.gov (United States)

    Planton, Samuel; Jucla, Mélanie; Roux, Franck-Emmanuel; Démonet, Jean-François

    2013-01-01

    Handwriting is a modality of language production whose cerebral substrates remain poorly known although the existence of specific regions is postulated. The description of brain damaged patients with agraphia and, more recently, several neuroimaging studies suggest the involvement of different brain regions. However, results vary with the methodological choices made and may not always discriminate between "writing-specific" and motor or linguistic processes shared with other abilities. We used the "Activation Likelihood Estimate" (ALE) meta-analytical method to identify the cerebral network of areas commonly activated during handwriting in 18 neuroimaging studies published in the literature. Included contrasts were also classified according to the control tasks used, whether non-specific motor/output-control or linguistic/input-control. These data were included in two secondary meta-analyses in order to reveal the functional role of the different areas of this network. An extensive, mainly left-hemisphere network of 12 cortical and sub-cortical areas was obtained; three of which were considered as primarily writing-specific (left superior frontal sulcus/middle frontal gyrus area, left intraparietal sulcus/superior parietal area, right cerebellum) while others related rather to non-specific motor (primary motor and sensorimotor cortex, supplementary motor area, thalamus and putamen) or linguistic processes (ventral premotor cortex, posterior/inferior temporal cortex). This meta-analysis provides a description of the cerebral network of handwriting as revealed by various types of neuroimaging experiments and confirms the crucial involvement of the left frontal and superior parietal regions. These findings provide new insights into cognitive processes involved in handwriting and their cerebral substrates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Hand grips strength effect on motor function in human brain using fMRI: a pilot study

    International Nuclear Information System (INIS)

    Ismail, S S; Mohamad, M; Syazarina, S O; Nafisah, W Y

    2014-01-01

    Several methods of motor tasks for fMRI scanning have been evolving from simple to more complex tasks. Motor tasks on upper extremity were applied in order to excite the increscent of motor activation on contralesional and ipsilateral hemispheres in brain. The main objective of this study is to study the different conditions for motor tasks on upper extremity that affected the brain activation. Ten healthy right handed with normal vision (3 male and 7 female, age range=20-30 years, mean=24.6 years, SD=2.21) participated in this study. Prior to the scanning, participants were trained on hand grip tasks using rubber ball and pressure gauge tool outside the scanner. During fMRI session, a block design with 30-s task blocks and alternating 30-s rest periods was employed while participants viewed a computer screen via a back projection-mirror system and instructed to follow the instruction by gripping their hand with normal and strong grips using a rubber ball. Statistical Parametric mapping (SPM8) software was used to determine the brain activation. Both tasks activated the primary motor (M1), supplementary motor area (SMA), dorsal and ventral of premotor cortex area (PMA) in left hemisphere while in right hemisphere the area of primary motor (M1) somatosensory was activated. However, the comparison between both tasks revealed that the strong hand grip showed the higher activation at M1, PMA and SMA on left hemisphere and also the area of SMA on right hemisphere. Both conditions of motor tasks could provide insights the functional organization on human brain

  15. Hand grips strength effect on motor function in human brain using fMRI: a pilot study

    Science.gov (United States)

    Ismail, S. S.; Mohamad, M.; Syazarina, S. O.; Nafisah, W. Y.

    2014-11-01

    Several methods of motor tasks for fMRI scanning have been evolving from simple to more complex tasks. Motor tasks on upper extremity were applied in order to excite the increscent of motor activation on contralesional and ipsilateral hemispheres in brain. The main objective of this study is to study the different conditions for motor tasks on upper extremity that affected the brain activation. Ten healthy right handed with normal vision (3 male and 7 female, age range=20-30 years, mean=24.6 years, SD=2.21) participated in this study. Prior to the scanning, participants were trained on hand grip tasks using rubber ball and pressure gauge tool outside the scanner. During fMRI session, a block design with 30-s task blocks and alternating 30-s rest periods was employed while participants viewed a computer screen via a back projection-mirror system and instructed to follow the instruction by gripping their hand with normal and strong grips using a rubber ball. Statistical Parametric mapping (SPM8) software was used to determine the brain activation. Both tasks activated the primary motor (M1), supplementary motor area (SMA), dorsal and ventral of premotor cortex area (PMA) in left hemisphere while in right hemisphere the area of primary motor (M1) somatosensory was activated. However, the comparison between both tasks revealed that the strong hand grip showed the higher activation at M1, PMA and SMA on left hemisphere and also the area of SMA on right hemisphere. Both conditions of motor tasks could provide insights the functional organization on human brain.

  16. Motor homopolar

    OpenAIRE

    Martín Muñoz, Agustín

    2007-01-01

    Mostramos la construcción de un modelo de motor homopolar, uno de los más antiguos tipos de motores eléctricos. Se caracterizan porque el campo magnético del imán mantiene siempre la misma polaridad (de ahí su nombre, del griego homos, igual), de modo que, cuando una corriente eléctrica atraviesa el campo magnético, aparece una fuerza que hace girar los elementos no fijados mecánicamente. En el sencillísimo motor homopolar colgado (Schlichting y Ucke 2004), el imán puede girar ...

  17. On how the motor cortices resolve an inter-hemispheric response conflict: an event-related EEG potential-guided TMS study of the flankers task

    DEFF Research Database (Denmark)

    Verleger, Rolf; Kuniecki, Michal; Möller, Friderike

    2009-01-01

    in the contralateral first dorsal interosseus muscle was taken as an index of corticospinal excitability. Guided by the previous LRP measurement, magnetic stimuli were applied 0-90 ms after the individual LRP peak, to cover the epoch of conflict resolution. When flankers were incompatible with the target, excitability......An important aspect of human motor control is the ability to resolve conflicting response tendencies. Here we used single-pulse transcranial magnetic stimulation (TMS) to track the time course of excitability changes in the primary motor hand areas (M1(HAND)) while the motor system resolved...... response conflicts. Healthy volunteers had to respond fast with their right and left index fingers to right- and left-pointing arrows. These central target stimuli were preceded by flanking arrows, inducing premature response tendencies which competed with correct response activation. The time point...

  18. Application of stepping motor

    International Nuclear Information System (INIS)

    1980-10-01

    This book is divided into three parts, which is about practical using of stepping motor. The first part has six chapters. The contents of the first part are about stepping motor, classification of stepping motor, basic theory og stepping motor, characteristic and basic words, types and characteristic of stepping motor in hybrid type and basic control of stepping motor. The second part deals with application of stepping motor with hardware of stepping motor control, stepping motor control by microcomputer and software of stepping motor control. The last part mentions choice of stepping motor system, examples of stepping motor, measurement of stepping motor and practical cases of application of stepping motor.

  19. How to make spinal motor neurons.

    Science.gov (United States)

    Davis-Dusenbery, Brandi N; Williams, Luis A; Klim, Joseph R; Eggan, Kevin

    2014-02-01

    All muscle movements, including breathing, walking, and fine motor skills rely on the function of the spinal motor neuron to transmit signals from the brain to individual muscle groups. Loss of spinal motor neuron function underlies several neurological disorders for which treatment has been hampered by the inability to obtain sufficient quantities of primary motor neurons to perform mechanistic studies or drug screens. Progress towards overcoming this challenge has been achieved through the synthesis of developmental biology paradigms and advances in stem cell and reprogramming technology, which allow the production of motor neurons in vitro. In this Primer, we discuss how the logic of spinal motor neuron development has been applied to allow generation of motor neurons either from pluripotent stem cells by directed differentiation and transcriptional programming, or from somatic cells by direct lineage conversion. Finally, we discuss methods to evaluate the molecular and functional properties of motor neurons generated through each of these techniques.

  20. Left heart ventricular angiography

    Science.gov (United States)

    ... blood vessels. These x-ray pictures create a "movie" of the left ventricle as it contracts rhythmically. ... 22578925 www.ncbi.nlm.nih.gov/pubmed/22578925 . Review Date 9/26/2016 Updated by: Michael A. ...

  1. Left heart catheterization

    Science.gov (United States)

    Catheterization - left heart ... to help guide the catheters up into your heart and arteries. Dye (sometimes called "contrast") will be ... in the blood vessels that lead to your heart. The catheter is then moved through the aortic ...

  2. Cortico-cortical white matter motor pathway microstructure is related to psychomotor retardation in major depressive disorder.

    Directory of Open Access Journals (Sweden)

    Tobias Bracht

    Full Text Available Alterations of brain structure and function have been associated with psychomotor retardation in major depressive disorder (MDD. However, the association of motor behaviour and white matter integrity of motor pathways in MDD is unclear. The aim of the present study was to first investigate structural connectivity of white matter motor pathways in MDD. Second, we explore the relation of objectively measured motor activity and white matter integrity of motor pathways in MDD. Therefore, 21 patients with MDD and 21 healthy controls matched for age, gender, education and body mass index underwent diffusion tensor imaging and 24 hour actigraphy (measure of the activity level the same day. Applying a probabilistic fibre tracking approach we extracted connection pathways between the dorsolateral prefrontal cortex (dlPFC, the rostral anterior cingulate cortex (rACC, the pre-supplementary motor area (pre-SMA, the SMA-proper, the primary motor cortex (M1, the caudate nucleus, the putamen, the pallidum and the thalamus. Patients had lower activity levels and demonstrated increased mean diffusivity (MD in pathways linking left pre-SMA and SMA-proper, and right SMA-proper and M1. Exploratory analyses point to a positive association of activity level and mean-fractional anisotropy in the right rACC-pre-SMA connection in MDD. Only MDD patients with low activity levels had a negative linear association of activity level and mean-MD in the left dlPFC-pre-SMA connection. Our results point to structural alterations of cortico-cortical white matter motor pathways in MDD. Altered white matter organisation of rACC-pre-SMA and dlPFC-pre-SMA pathways may contribute to movement initiation in MDD.

  3. Increased Reliance on Value-based Decision Processes Following Motor Cortex Disruption.

    Science.gov (United States)

    Zénon, Alexandre; Klein, Pierre-Alexandre; Alamia, Andrea; Boursoit, François; Wilhelm, Emmanuelle; Duque, Julie

    2015-01-01

    During motor decision making, the neural activity in primary motor cortex (M1) encodes dynamically the competition occurring between potential action plans. A common view is that M1 represents the unfolding of the outcome of a decision process taking place upstream. Yet, M1 could also be directly involved in the decision process. Here we tested this hypothesis by assessing the effect of M1 disruption on a motor decision-making task. We applied continuous theta burst stimulation (cTBS) to inhibit either left or right M1 in different groups of subjects and included a third control group with no stimulation. Following cTBS, participants performed a task that required them to choose between two finger key-presses with the right hand according to both perceptual and value-based information. Effects were assessed by means of generalized linear mixed models and computational simulations. In all three groups, subjects relied both on perceptual (P < 0.0001) and value-based information (P = 0.003) to reach a decision. Yet, left M1 disruption led to an increased reliance on value-based information (P = 0.03). This result was confirmed by a computational model showing an increased weight of the valued-based process on the right hand finger choices following left M1 cTBS (P < 0.01). These results indicate that M1 is involved in motor decision making, possibly by weighting the final integration of multiple sources of evidence driving motor behaviors. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. An Activation Likelihood Estimation Meta-Analysis Study of Simple Motor Movements in Older and Young Adults

    Science.gov (United States)

    Turesky, Ted K.; Turkeltaub, Peter E.; Eden, Guinevere F.

    2016-01-01

    The functional neuroanatomy of finger movements has been characterized with neuroimaging in young adults. However, less is known about the aging motor system. Several studies have contrasted movement-related activity in older versus young adults, but there is inconsistency among their findings. To address this, we conducted an activation likelihood estimation (ALE) meta-analysis on within-group data from older adults and young adults performing regularly paced right-hand finger movement tasks in response to external stimuli. We hypothesized that older adults would show a greater likelihood of activation in right cortical motor areas (i.e., ipsilateral to the side of movement) compared to young adults. ALE maps were examined for conjunction and between-group differences. Older adults showed overlapping likelihoods of activation with young adults in left primary sensorimotor cortex (SM1), bilateral supplementary motor area, bilateral insula, left thalamus, and right anterior cerebellum. Their ALE map differed from that of the young adults in right SM1 (extending into dorsal premotor cortex), right supramarginal gyrus, medial premotor cortex, and right posterior cerebellum. The finding that older adults uniquely use ipsilateral regions for right-hand finger movements and show age-dependent modulations in regions recruited by both age groups provides a foundation by which to understand age-related motor decline and motor disorders. PMID:27799910

  5. Study of asymmetry in motor areas related to handedness using the fMRI BOLD response Gaussian convolution model

    International Nuclear Information System (INIS)

    Gao Qing; Chen Huafu; Gong Qiyong

    2009-01-01

    Brain asymmetry is a phenomenon well known for handedness, and has been studied in the motor cortex. However, few studies have quantitatively assessed the asymmetrical cortical activities for handedness in motor areas. In the present study, we systematically and quantitatively investigated asymmetry in the left and right primary motor cortices during sequential finger movements using the Gaussian convolution model approach based on the functional magnetic resonance imaging (fMRI) blood oxygenation level dependent (BOLD) response. Six right-handed and six left-handed subjects were recruited to perform three types of hand movement tasks. The results for the expected value of the Gaussian convolution model showed that it took the dominant hand a longer average interval of response delay regardless of the handedness and bi- or uni-manual performance. The results for the standard deviation of the Gaussian model suggested that in the mass neurons, these intervals of the dominant hand were much more variable than those of the non-dominant hand. When comparing bi-manual movement conditions with uni-manual movement conditions in the primary motor cortex (PMC), both the expected value and standard deviation in the Gaussian function were significantly smaller (p < 0.05) in the bi-manual conditions, showing that the movement of the non-dominant hand influenced that of the dominant hand.

  6. Study of asymmetry in motor areas related to handedness using the fMRI BOLD response Gaussian convolution model

    Energy Technology Data Exchange (ETDEWEB)

    Gao Qing [School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); School of Applied Mathematics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Chen Huafu [School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); School of Applied Mathematics, University of Electronic Science and Technology of China, Chengdu 610054 (China)], E-mail: Chenhf@uestc.edu.cn; Gong Qiyong [Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041 (China)

    2009-10-30

    Brain asymmetry is a phenomenon well known for handedness, and has been studied in the motor cortex. However, few studies have quantitatively assessed the asymmetrical cortical activities for handedness in motor areas. In the present study, we systematically and quantitatively investigated asymmetry in the left and right primary motor cortices during sequential finger movements using the Gaussian convolution model approach based on the functional magnetic resonance imaging (fMRI) blood oxygenation level dependent (BOLD) response. Six right-handed and six left-handed subjects were recruited to perform three types of hand movement tasks. The results for the expected value of the Gaussian convolution model showed that it took the dominant hand a longer average interval of response delay regardless of the handedness and bi- or uni-manual performance. The results for the standard deviation of the Gaussian model suggested that in the mass neurons, these intervals of the dominant hand were much more variable than those of the non-dominant hand. When comparing bi-manual movement conditions with uni-manual movement conditions in the primary motor cortex (PMC), both the expected value and standard deviation in the Gaussian function were significantly smaller (p < 0.05) in the bi-manual conditions, showing that the movement of the non-dominant hand influenced that of the dominant hand.

  7. Motor network plasticity and low-frequency oscillations abnormalities in patients with brain gliomas: a functional MRI study.

    Directory of Open Access Journals (Sweden)

    Chen Niu

    Full Text Available Brain plasticity is often associated with the process of slow-growing tumor formation, which remodels neural organization and optimizes brain network function. In this study, we aimed to investigate whether motor function plasticity would display deficits in patients with slow-growing brain tumors located in or near motor areas, but who were without motor neurological deficits. We used resting-state functional magnetic resonance imaging to probe motor networks in 15 patients with histopathologically confirmed brain gliomas and 15 age-matched healthy controls. All subjects performed a motor task to help identify individual motor activity in the bilateral primary motor cortex (PMC and supplementary motor area (SMA. Frequency-based analysis at three different frequencies was then used to investigate possible alterations in the power spectral density (PSD of low-frequency oscillations. For each group, the average PSD was determined for each brain region and a nonparametric test was performed to determine the difference in power between the two groups. Significantly reduced inter-hemispheric functional connectivity between the left and right PMC was observed in patients compared with controls (P<0.05. We also found significantly decreased PSD in patients compared to that in controls, in all three frequency bands (low: 0.01-0.02 Hz; middle: 0.02-0.06 Hz; and high: 0.06-0.1 Hz, at three key motor regions. These findings suggest that in asymptomatic patients with brain tumors located in eloquent regions, inter-hemispheric connection may be more vulnerable. A comparison of the two approaches indicated that power spectral analysis is more sensitive than functional connectivity analysis for identifying the neurological abnormalities underlying motor function plasticity induced by slow-growing tumors.

  8. Vagus nerve stimulation delivered during motor rehabilitation improves recovery in a rat model of stroke.

    Science.gov (United States)

    Khodaparast, Navid; Hays, Seth A; Sloan, Andrew M; Fayyaz, Tabbassum; Hulsey, Daniel R; Rennaker, Robert L; Kilgard, Michael P

    2014-09-01

    Neural plasticity is widely believed to support functional recovery following brain damage. Vagus nerve stimulation paired with different forelimb movements causes long-lasting map plasticity in rat primary motor cortex that is specific to the paired movement. We tested the hypothesis that repeatedly pairing vagus nerve stimulation with upper forelimb movements would improve recovery of motor function in a rat model of stroke. Rats were separated into 3 groups: vagus nerve stimulation during rehabilitation (rehab), vagus nerve stimulation after rehab, and rehab alone. Animals underwent 4 training stages: shaping (motor skill learning), prelesion training, postlesion training, and therapeutic training. Rats were given a unilateral ischemic lesion within motor cortex and implanted with a left vagus nerve cuff. Animals were allowed 1 week of recovery before postlesion baseline training. During the therapeutic training stage, rats received vagus nerve stimulation paired with each successful trial. All 17 trained rats demonstrated significant contralateral forelimb impairment when performing a bradykinesia assessment task. Forelimb function was recovered completely to prelesion levels when vagus nerve stimulation was delivered during rehab training. Alternatively, intensive rehab training alone (without stimulation) failed to restore function to prelesion levels. Delivering the same amount of stimulation after rehab training did not yield improvements compared with rehab alone. These results demonstrate that vagus nerve stimulation repeatedly paired with successful forelimb movements can improve recovery after motor cortex ischemia and may be a viable option for stroke rehabilitation. © The Author(s) 2014.

  9. Apraxia and motor dysfunction in corticobasal syndrome.

    Directory of Open Access Journals (Sweden)

    James R Burrell

    Full Text Available BACKGROUND: Corticobasal syndrome (CBS is characterized by multifaceted motor system dysfunction and cognitive disturbance; distinctive clinical features include limb apraxia and visuospatial dysfunction. Transcranial magnetic stimulation (TMS has been used to study motor system dysfunction in CBS, but the relationship of TMS parameters to clinical features has not been studied. The present study explored several hypotheses; firstly, that limb apraxia may be partly due to visuospatial impairment in CBS. Secondly, that motor system dysfunction can be demonstrated in CBS, using threshold-tracking TMS, and is linked to limb apraxia. Finally, that atrophy of the primary motor cortex, studied using voxel-based morphometry analysis (VBM, is associated with motor system dysfunction and limb apraxia in CBS. METHODS: Imitation of meaningful and meaningless hand gestures was graded to assess limb apraxia, while cognitive performance was assessed using the Addenbrooke's Cognitive Examination - Revised (ACE-R, with particular emphasis placed on the visuospatial subtask. Patients underwent TMS, to assess cortical function, and VBM. RESULTS: In total, 17 patients with CBS (7 male, 10 female; mean age 64.4+/- 6.6 years were studied and compared to 17 matched control subjects. Of the CBS patients, 23.5% had a relatively inexcitable motor cortex, with evidence of cortical dysfunction in the remaining 76.5% patients. Reduced resting motor threshold, and visuospatial performance, correlated with limb apraxia. Patients with a resting motor threshold <50% performed significantly worse on the visuospatial sub-task of the ACE-R than other CBS patients. Cortical function correlated with atrophy of the primary and pre-motor cortices, and the thalamus, while apraxia correlated with atrophy of the pre-motor and parietal cortices. CONCLUSIONS: Cortical dysfunction appears to underlie the core clinical features of CBS, and is associated with atrophy of the primary motor and

  10. Jidosha's Motors

    OpenAIRE

    Shirakawa Okuma, Rosely; Calderón Orejuela, Javier

    2016-01-01

    La tesis narra la situación de una empresa concesionaria de vehículos nuevos, Jidosha's Motors, perteneciente a una corporación japonesa que cuenta con una cultura muy arraigada de ética y de cumplimiento. Se plantean respuestas, se identifican problemas y sus alternativas de solución para una toma adecuada de decisiones por parte de los directivos, siguiendo una estructura de análisis de situaciones de negocios (ASN). Tesis

  11. No Community Left Behind

    Science.gov (United States)

    Schlechty, Phillip C.

    2008-01-01

    The debate over the reauthorization of No Child Left Behind (NCLB) generally overlooks--or looks past--what may be the most fundamental flaw in that legislation. As the law is now written, decisions regarding what the young should know and be able to do are removed from the hands of parents and local community leaders and turned over to officials…

  12. The Children Left Behind

    Science.gov (United States)

    Gillard, Sarah A.; Gillard, Sharlett

    2012-01-01

    This article explores some of the deficits in our educational system in regard to non-hearing students. It has become agonizingly clear that non-hearing students are being left out of the gallant sweep to enrich our children's educations. The big five areas of literacy, at best, present unique challenges for non-hearing students and, in some…

  13. Left atrial appendage occlusion

    Directory of Open Access Journals (Sweden)

    Ahmad Mirdamadi

    2013-01-01

    Full Text Available Left atrial appendage (LAA occlusion is a treatment strategy to prevent blood clot formation in atrial appendage. Although, LAA occlusion usually was done by catheter-based techniques, especially percutaneous trans-luminal mitral commissurotomy (PTMC, it can be done during closed and open mitral valve commissurotomy (CMVC, OMVC and mitral valve replacement (MVR too. Nowadays, PTMC is performed as an optimal management of severe mitral stenosis (MS and many patients currently are treated by PTMC instead of previous surgical methods. One of the most important contraindications of PTMC is presence of clot in LAA. So, each patient who suffers of severe MS is evaluated by Trans-Esophageal Echocardiogram to rule out thrombus in LAA before PTMC. At open heart surgery, replacement of the mitral valve was performed for 49-year-old woman. Also, left atrial appendage occlusion was done during surgery. Immediately after surgery, echocardiography demonstrates an echo imitated the presence of a thrombus in left atrial appendage area, although there was not any evidence of thrombus in pre-pump TEE. We can conclude from this case report that when we suspect of thrombus of left atrial, we should obtain exact history of previous surgery of mitral valve to avoid misdiagnosis clotted LAA, instead of obliterated LAA. Consequently, it can prevent additional evaluations and treatments such as oral anticoagulation and exclusion or postponing surgeries including PTMC.

  14. Altered Modulation of Silent Period in Tongue Motor Cortex of Persistent Developmental Stuttering in Relation to Stuttering Severity.

    Science.gov (United States)

    Busan, Pierpaolo; Del Ben, Giovanni; Bernardini, Simona; Natarelli, Giulia; Bencich, Marco; Monti, Fabrizio; Manganotti, Paolo; Battaglini, Piero Paolo

    2016-01-01

    Motor balance in developmental stuttering (DS) was investigated with Transcranial Magnetic Stimulation (TMS), with the aim to define novel neural markers of persistent DS in adulthood. Eleven DS adult males were evaluated with TMS on tongue primary motor cortex, compared to 15 matched fluent speakers, in a "state" condition (i.e. stutterers vs. fluent speakers, no overt stuttering). Motor and silent period thresholds (SPT), recruitment curves, and silent period durations were acquired by recording tongue motor evoked potentials. Tongue silent period duration was increased in DS, especially in the left hemisphere (Pstuttering severity. Pre-TMS electromyography data gave overlapping evidence. Findings suggest the existence of a complex intracortical balance in DS tongue primary motor cortex, with a particular interplay between excitatory and inhibitory mechanisms, also in neural substrates related to silent periods. Findings are discussed with respect to functional and structural impairments in stuttering, and are also proposed as novel neural markers of a stuttering "state" in persistent DS, helping to define more focused treatments (e.g. neuro-modulation).

  15. Air pollution from motor vehicle emissions

    International Nuclear Information System (INIS)

    Petrushevska, Ljubica

    1996-01-01

    This paper presents some aspects of air pollution from motor vehicle emissions as: characteristic primary and secondary pollutants, dependence of the motor vehicle emission from the engine type; the relationship of typical engine emission and performance to air-fuel ratio, transport of pollutants from mobile sources of emissions, as well as some world experiences in the control approaches for exhaust emissions. (author)

  16. Primary leiomyosarcoma of epididymis

    Directory of Open Access Journals (Sweden)

    Dillip Kumar Muduly

    2012-01-01

    Full Text Available Primary leiomyosarcomas rarely arise from epididymis. But they are the most common histopathological types of sarcoma arising from the epididymis. Primary epididymal leiomyosarcoma occurs usually in older patients. We report a young patient of 35 years presenting with leiomyosarcoma of left epididymis. He did not have any metastasis and underwent left high inguinal orchiectomy. He is on regular follow-up and disease free for last two years.

  17. Actions to promote energy efficient electric motors. Motors study group

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, A.T. de [Coimbra Univ. (PT). Inst. of Systems and Robotics (ISR)

    1996-10-01

    Motor electricity consumption is influenced by many factors including: motor efficiency, motor speed controls, power supply quality, harmonics, systems oversizing, distribution network, mechanical transmission system, maintenance practices, load management and cycling, and the efficiency of the end-use device (e.g. fan, pump, etc.). Due to their importance, an overview of these factors is presented in this report. This study also describes the electricity use in the industrial and tertiary sectors and the electricity consumption associated with the different types of electric motors systems in the Member States of the European Union, as well as estimated future evolution until 2010. The studies for individual countries were carried out by the different partners of the motors study group at a previous stage. The study has found that there is a lack of accurate information about the motor electricity consumption, installed motor capacity and the motor market in almost all the European Union countries and only some general statistical sources are available. There is little field data, which is mainly available in Denmark, France, Italy and the Netherlands. Due to this lack of primary information, some common assumptions were made, based on the experience of the members of the study group. This lack of end-use characterisation data shows the need for improvement from the point of view of current knowledge. It is therefore recommended that further research is undertaken to arrive at more accurate figures. These could be the basis for a better understanding for motor use in practice and - as a consequence - for a more precise appraisal of potentials and barriers to energy efficiency. (orig.)

  18. Left neglect dyslexia: Perseveration and reading error types.

    Science.gov (United States)

    Ronchi, Roberta; Algeri, Lorella; Chiapella, Laura; Gallucci, Marcello; Spada, Maria Simonetta; Vallar, Giuseppe

    2016-08-01

    Right-brain-damaged patients may show a reading disorder termed neglect dyslexia. Patients with left neglect dyslexia omit letters on the left-hand-side (the beginning, when reading left-to-right) part of the letter string, substitute them with other letters, and add letters to the left of the string. The aim of this study was to investigate the pattern of association, if any, between error types in patients with left neglect dyslexia and recurrent perseveration (a productive visuo-motor deficit characterized by addition of marks) in target cancellation. Specifically, we aimed at assessing whether different productive symptoms (relative to the reading and the visuo-motor domains) could be associated in patients with left spatial neglect. Fifty-four right-brain-damaged patients took part in the study: 50 out of the 54 patients showed left spatial neglect, with 27 of them also exhibiting left neglect dyslexia. Neglect dyslexic patients who showed perseveration produced mainly substitution neglect errors in reading. Conversely, omissions were the prevailing reading error pattern in neglect dyslexic patients without perseveration. Addition reading errors were much infrequent. Different functional pathological mechanisms may underlie omission and substitution reading errors committed by right-brain-damaged patients with left neglect dyslexia. One such mechanism, involving the defective stopping of inappropriate responses, may contribute to both recurrent perseveration in target cancellation, and substitution errors in reading. Productive pathological phenomena, together with deficits of spatial attention to events taking place on the left-hand-side of space, shape the manifestations of neglect dyslexia, and, more generally, of spatial neglect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Prognostic value of motor evoked potentials elicited by multipulse magnetic stimulation in a surgically induced transitory lesion of the supplementary motor area: a case report

    OpenAIRE

    Sala, F; Krzan, M; Jallo, G; Epstein, F; Deletis, V

    2000-01-01

    Surgery involving the supplementary motor area (SMA) places the patient at risk of transient motor deficit. To predict outcome in patients with early postoperative hypokinesis would be relevant to both the patient and the surgical team. A 15 year old girl with a large left thalamic tumour removed through a left transcallosal approach is described. Despite intraoperatively preserved muscle motor evoked potentials (mMEPs) from all limbs, elicited by multipulse electrical st...

  20. Hemispheric lateralization of motor thresholds in relation to stuttering.

    Directory of Open Access Journals (Sweden)

    Per A Alm

    Full Text Available Stuttering is a complex speech disorder. Previous studies indicate a tendency towards elevated motor threshold for the left hemisphere, as measured using transcranial magnetic stimulation (TMS. This may reflect a monohemispheric motor system impairment. The purpose of the study was to investigate the relative side-to-side difference (asymmetry and the absolute levels of motor threshold for the hand area, using TMS in adults who stutter (n = 15 and in controls (n = 15. In accordance with the hypothesis, the groups differed significantly regarding the relative side-to-side difference of finger motor threshold (p = 0.0026, with the stuttering group showing higher motor threshold of the left hemisphere in relation to the right. Also the absolute level of the finger motor threshold for the left hemisphere differed between the groups (p = 0.049. The obtained results, together with previous investigations, provide support for the hypothesis that stuttering tends to be related to left hemisphere motor impairment, and possibly to a dysfunctional state of bilateral speech motor control.

  1. Hemispheric Lateralization of Motor Thresholds in Relation to Stuttering

    Science.gov (United States)

    Alm, Per A.; Karlsson, Ragnhild; Sundberg, Madeleine; Axelson, Hans W.

    2013-01-01

    Stuttering is a complex speech disorder. Previous studies indicate a tendency towards elevated motor threshold for the left hemisphere, as measured using transcranial magnetic stimulation (TMS). This may reflect a monohemispheric motor system impairment. The purpose of the study was to investigate the relative side-to-side difference (asymmetry) and the absolute levels of motor threshold for the hand area, using TMS in adults who stutter (n = 15) and in controls (n = 15). In accordance with the hypothesis, the groups differed significantly regarding the relative side-to-side difference of finger motor threshold (p = 0.0026), with the stuttering group showing higher motor threshold of the left hemisphere in relation to the right. Also the absolute level of the finger motor threshold for the left hemisphere differed between the groups (p = 0.049). The obtained results, together with previous investigations, provide support for the hypothesis that stuttering tends to be related to left hemisphere motor impairment, and possibly to a dysfunctional state of bilateral speech motor control. PMID:24146930

  2. Cortical reorganization associated lower extremity motor recovery as evidenced by functional MRI and diffusion tensor tractography in a stroke patient.

    Science.gov (United States)

    Jang, Sung Ho; You, Sung H; Kwon, Yong-Hyun; Hallett, Mark; Lee, Mi Young; Ahn, Sang Ho

    2005-01-01

    Recovery mechanisms supporting upper extremity motor recovery following stroke are well established, but cortical mechanism associated with lower extremity motor recovery is unknown. The aim of this study was to assess cortical reorganization associated with lower extremity motor recovery in a hemiparetic patient. Six control subjects and a 17 year-old woman with left intracerebral hemorrhage due to an arterio-venous malformation rupture were evaluated. The motor function of the paretic (left) hip and knee had recovered slowly to the extent of her being able to overcome gravity for 10 months after the onset of stroke. However, her paretic upper extremity showed no significant motor recovery. Blood oxygenation level dependent (BOLD) functional MRI at 1.5 Tesla was used to determine the acutual location of cortical activation in the predefined regions of interest. Concurrently, Diffusion Tensor Imaging (DTI) in combination with a novel 3D-fiber reconstruction algorithm was utilized to investigate the pattern of the corticospinal pathway connectivity between the areas of the motor stream. All subjects' body parts were secured in the scanner and performed a sequential knee flexion-extension with a predetermined angle of 0-60 degrees at 0.5 Hz. Controls showed anticipated activation in the contralateral sensorimotor cortex (SM1) and the descending corticospinal fibers stemming from motor cortex. In contrast to control normal subjects, the stroke patient showed fMRI activation only in the unaffected (right) primary SM1 during either paretic or nonparetic knee movements. DTT fiber tracing data showed that the corticospinal tract fibers were found only in the unaffected hemisphere but not in the affected hemisphere. Our results indicate that an ipsilateral motor pathway from the unaffected (right) motor cortex to the paretic (right) leg was present in this patient. This study raises the potential that the contralesional (ipsilateral) SM1 is involved in cortical

  3. Left Ventricular Assist Devices

    Directory of Open Access Journals (Sweden)

    Khuansiri Narajeenron

    2017-04-01

    Full Text Available Audience: The audience for this classic team-based learning (cTBL session is emergency medicine residents, faculty, and students; although this topic is applicable to internal medicine and family medicine residents. Introduction: A left ventricular assist device (LVAD is a mechanical circulatory support device that can be placed in critically-ill patients who have poor left ventricular function. After LVAD implantation, patients have improved quality of life.1 The number of LVAD patients worldwide continues to rise. Left-ventricular assist device patients may present to the emergency department (ED with severe, life-threatening conditions. It is essential that emergency physicians have a good understanding of LVADs and their complications. Objectives: Upon completion of this cTBL module, the learner will be able to: 1 Properly assess LVAD patients’ circulatory status; 2 appropriately resuscitate LVAD patients; 3 identify common LVAD complications; 4 evaluate and appropriately manage patients with LVAD malfunctions. Method: The method for this didactic session is cTBL.

  4. Modeling an electric motor in 1-D

    Science.gov (United States)

    Butler, Thomas G.

    1991-01-01

    Quite often the dynamicist will be faced with having an electric drive motor as a link in the elastic path of a structure such that the motor's characteristics must be taken into account to properly represent the dynamics of the primary structure. He does not want to model it so accurately that he could get detailed stress and displacements in the motor proper, but just sufficiently to represent its inertia loading and elastic behavior from its mounting bolts to its drive coupling. Described here is how the rotor and stator of such a motor can be adequately modeled as a colinear pair of beams.

  5. Hereditary motor neuropathies and motor neuron diseases: which is which.

    Science.gov (United States)

    Hanemann, Clemens O; Ludolph, Albert C

    2002-12-01

    When Charcot first defined amyotrophic lateral sclerosis (ALS) he used the clinical and neuropathological pattern of vulnerability as a guideline. Similarly other motor neuron diseases such as the spinal muscular atrophies (SMA) and the motor neuropathies (MN) were grouped following clinical criteria. However, ever since the etiology of these diseases has started to be disclosed by genetics, we have learnt that the limits of the syndromes are not as well defined as our forefathers thought. A mutation leading to ALS can also be associated with the clinical picture of spinal muscular atrophy; even more unexpected is the overlap of the so-called motor neuropathies with the clinical syndrome of slowly progressive ALS or that primary lateral sclerosis (PLS) can be caused by the same gene as that responsible for some cases of ALS. In this review we summarise recent work showing that there is a considerable overlap between CMT, MN, SMA, ALS and PLS. Insights into these phenotypes should lead to study of the variants of motor neuron disease and possibly to a reclassification. This comprehensive review should help to improve understanding of the pathogenesis of motor neuron degeneration and finally may aid the research for urgently needed new treatment strategies, perhaps with validity for the entire group of motor neuron diseases.

  6. Functional MR imaging of the motor cortex in healthy volunteers and patients with brain tumours: qualitative and quantitative results

    International Nuclear Information System (INIS)

    Fellner, C.; Friedrich-Alexander-Univ., Erlangen-Nuernberg; Schlaier, J.; Schwerdtner, J.; Brawanski, A.; Fellner, F.; Oberoesterreichische Landesnervenklinik, Linz; Held, P.; Blank, M.; Kalender, W.A.

    1999-01-01

    The purpose of this study was to compare functional magnetic resonance (MR) imaging of the motor cortex in healthy volunteers and patients with brain tumours. Functional MR imaging was performed in 14 healthy volunteers and 14 patients with tumours in or near the primary motor cortex with groups being matched for age, sex, and handedness. Functional images were acquired during motion of the right and left hand. Time courses of signal intensity within the contralateral, ipsilateral, and supplementary motor cortex as well as z-maps were calculated, their quality being assessed visually. Mean signal increase between activation and rest were evaluated within the contralateral, ipsilateral, and supplementary motor cortex, the activated area in those regions of interest was measured using z-maps. The quality of functional MR experiments was generally lower in patients than in volunteers. The quantitative results showed a trend towards increased ipsilateral activation in volunteers during left hand compared to right hand motion and in patients during motion of the affected compared to the non-affected hand. Considering quantitative and qualitative results, significantly increased ipsilateral activation was found in patients compared to healthy volunteers. In conclusion, functional MR imaging quality was significantly reduced in patient studies compared to healthy volunteers, even if influences of age, sex, and handedness were excluded. Increased ipsilateral activation was found in patients with brain tumours which can be interpreted by an improved connectivity between both hemispheres. (orig.) [de

  7. The Resting Motor Threshold - Restless or Resting?

    DEFF Research Database (Denmark)

    Karabanov, Anke Ninija; Raffin, Estelle Emeline; Siebner, Hartwig Roman

    2015-01-01

    , the RMT of the right first dorsal interosseus muscle was repeatedly determined using a threshold-hunting procedure while participants performed motor imagery and visual attention tasks with the right or left hand. Data were analyzed using repeated-measure ANOVA. Results RMT differed depending on which...

  8. Transcranial Direct Current Stimulation Targeting Primary Motor Versus Dorsolateral Prefrontal Cortices: Proof-of-Concept Study Investigating Functional Connectivity of Thalamocortical Networks Specific to Sensory-Affective Information Processing.

    Science.gov (United States)

    Sankarasubramanian, Vishwanath; Cunningham, David A; Potter-Baker, Kelsey A; Beall, Erik B; Roelle, Sarah M; Varnerin, Nicole M; Machado, Andre G; Jones, Stephen E; Lowe, Mark J; Plow, Ela B

    2017-04-01

    The pain matrix is comprised of an extensive network of brain structures involved in sensory and/or affective information processing. The thalamus is a key structure constituting the pain matrix. The thalamus serves as a relay center receiving information from multiple ascending pathways and relating information to and from multiple cortical areas. However, it is unknown how thalamocortical networks specific to sensory-affective information processing are functionally integrated. Here, in a proof-of-concept study in healthy humans, we aimed to understand this connectivity using transcranial direct current stimulation (tDCS) targeting primary motor (M1) or dorsolateral prefrontal cortices (DLPFC). We compared changes in functional connectivity (FC) with DLPFC tDCS to changes in FC with M1 tDCS. FC changes were also compared to further investigate its relation with individual's baseline experience of pain. We hypothesized that resting-state FC would change based on tDCS location and would represent known thalamocortical networks. Ten right-handed individuals received a single application of anodal tDCS (1 mA, 20 min) to right M1 and DLPFC in a single-blind, sham-controlled crossover study. FC changes were studied between ventroposterolateral (VPL), the sensory nucleus of thalamus, and cortical areas involved in sensory information processing and between medial dorsal (MD), the affective nucleus, and cortical areas involved in affective information processing. Individual's perception of pain at baseline was assessed using cutaneous heat pain stimuli. We found that anodal M1 tDCS and anodal DLPFC tDCS both increased FC between VPL and sensorimotor cortices, although FC effects were greater with M1 tDCS. Similarly, anodal M1 tDCS and anodal DLPFC tDCS both increased FC between MD and motor cortices, but only DLPFC tDCS modulated FC between MD and affective cortices, like DLPFC. Our findings suggest that M1 stimulation primarily modulates FC of sensory networks

  9. Improving motor performance without training: the effect of combining mirror visual feedback with transcranial direct current stimulation.

    Science.gov (United States)

    von Rein, Erik; Hoff, Maike; Kaminski, Elisabeth; Sehm, Bernhard; Steele, Christopher J; Villringer, Arno; Ragert, Patrick

    2015-04-01

    Mirror visual feedback (MVF) during motor training has been shown to improve motor performance of the untrained hand. Here we thought to determine if MVF-induced performance improvements of the left hand can be augmented by upregulating plasticity in right primary motor cortex (M1) by means of anodal transcranial direct current stimulation (a-tDCS) while subjects trained with the right hand. Participants performed a ball-rotation task with either their left (untrained) or right (trained) hand on two consecutive days (days 1 and 2). During training with the right hand, MVF was provided concurrent with two tDCS conditions: group 1 received a-tDCS over right M1 (n = 10), whereas group 2 received sham tDCS (s-tDCS, n = 10). On day 2, performance was reevaluated under the same experimental conditions compared with day 1 but without tDCS. While baseline performance of the left hand (day 1) was not different between groups, a-tDCS exhibited stronger MVF-induced performance improvements compared with s-tDCS. Similar results were observed for day 2 (without tDCS application). A control experiment (n = 8) with a-tDCS over right M1 as outlined above but without MVF revealed that left hand improvement was significantly less pronounced than that induced by combined a-tDCS and MVF. Based on these results, we provide novel evidence that upregulating activity in the untrained M1 by means of a-tDCS is capable of augmenting MVF-induced performance improvements in young normal volunteers. Our findings suggest that concurrent MVF and tDCS might have synergistic and additive effects on motor performance of the untrained hand, a result of relevance for clinical approaches in neurorehabilitation and/or exercise science. Copyright © 2015 the American Physiological Society.

  10. The lateralization of motor cortex activation to action words

    Directory of Open Access Journals (Sweden)

    Olaf eHauk

    2011-11-01

    Full Text Available What determines the laterality of activation in motor cortex for words whose meaning is related to bodily actions? It has been suggested that the neuronal representation of the meaning of action-words is shaped by individual experience. However, core language functions are left-lateralized in the majority of both right- and left-handers. It is still an open question to what degree connections between left-hemispheric core language areas and right-hemispheric motor areas can play a role in semantics. We investigated laterality of brain activation using fMRI in right- and left-handed participants in response to visually presented hand-related action-words, namely uni- and bi-manual actions (such as "throw" and "clap". These stimulus groups were matched with respect to general (hand-action-relatedness, but differed with respect to whether they are usually performed with the dominant hand or both hands. We may expect generally more left-hemispheric motor-cortex activation for hand-related words in both handedness groups, with possibly more bilateral activation for bimanual words as well as left-handers. In our study, both participant groups activated motor cortex bilaterally for bi-manual words. Interestingly, both groups also showed a left-lateralized activation pattern to uni-manual words. We argue that this reflects the effect of left-hemispheric language dominance on the formation of semantic brain circuits on the basis of Hebbian correlation learning.

  11. Motor and linguistic linking of space and time in the cerebellum.

    Science.gov (United States)

    Oliveri, Massimiliano; Bonnì, Sonia; Turriziani, Patrizia; Koch, Giacomo; Lo Gerfo, Emanuele; Torriero, Sara; Vicario, Carmelo Mario; Petrosini, Laura; Caltagirone, Carlo

    2009-11-20

    Recent literature documented the presence of spatial-temporal interactions in the human brain. The aim of the present study was to verify whether representation of past and future is also mapped onto spatial representations and whether the cerebellum may be a neural substrate for linking space and time in the linguistic domain. We asked whether processing of the tense of a verb is influenced by the space where response takes place and by the semantics of the verb. Responses to past tense were facilitated in the left space while responses to future tense were facilitated in the right space. Repetitive transcranial magnetic stimulation (rTMS) of the right cerebellum selectively slowed down responses to future tense of action verbs; rTMS of both cerebellar hemispheres decreased accuracy of responses to past tense in the left space and to future tense in the right space for non-verbs, and to future tense in the right space for state verbs. The results suggest that representation of past and future is mapped onto spatial formats and that motor action could represent the link between spatial and temporal dimensions. Right cerebellar, left motor brain networks could be part of the prospective brain, whose primary function is to use past experiences to anticipate future events. Both cerebellar hemispheres could play a role in establishing the grammatical rules for verb conjugation.

  12. Left regular bands of groups of left quotients

    International Nuclear Information System (INIS)

    El-Qallali, A.

    1988-10-01

    A semigroup S which has a left regular band of groups as a semigroup of left quotients is shown to be the semigroup which is a left regular band of right reversible cancellative semigroups. An alternative characterization is provided by using spinned products. These results are applied to the case where S is a superabundant whose set of idempotents forms a left normal band. (author). 13 refs

  13. Why Dora Left

    DEFF Research Database (Denmark)

    Gammelgård, Judy

    2017-01-01

    The question of why Dora left her treatment before it was brought to a satisfactory end and the equally important question of why Freud chose to publish this problematic and fragmentary story have both been dealt with at great length by Freud’s successors. Dora has been read by analysts, literary...... problem toward femininity, both Dora’s and his own. In Dora, it is argued, Freud took a new stance toward the object of his investigation, speaking from the position of the master. Freud presents himself as the one who knows, in great contrast to the position he takes when unraveling the dream. Here he...

  14. Neutrosophic Left Almost Semigroup

    Directory of Open Access Journals (Sweden)

    Mumtaz Ali

    2014-06-01

    Full Text Available In this paper we extend the theory of neutrosophy to study left almost semigroup shortly LAsemigroup. We generalize the concepts of LA-semigroup to form that for neutrosophic LA-semigroup. We also extend the ideal theory of LA-semigroup to neutrosophy and discuss different kinds of neutrosophic ideals. We also find some new type of neutrosophic ideal which is related to the strong or pure part of neutrosophy. We have given many examples to illustrate the theory of neutrosophic LA-semigroup and display many properties of neutrosophic LA-semigroup in this paper.

  15. Changes in corticospinal drive to spinal motoneurones following visuo-motor skill learning in humans

    DEFF Research Database (Denmark)

    Perez, Monica A.; Jensen, Jesper Lundbye; Nielsen, Jens Bo

    2006-01-01

    learning. Here we investigated the effect of visuo-motor skill training involving the ankle muscles on the coupling between electroencephalographic (EEG) activity recorded from the motor cortex (Cz) and electromyographic (EMG) activity recorded from the left tibialis anterior (TA) muscle in 11 volunteers...... between cortex and muscle as part of the motor learning process....

  16. Fine motor control

    Science.gov (United States)

    ... gross (large, general) motor control. An example of gross motor control is waving an arm in greeting. Problems ... out the child's developmental age. Children develop fine motor skills over time, by practicing and being taught. To ...

  17. Weight dependent modulation of motor resonance induced by weight estimation during observation of partially occluded lifting actions.

    Science.gov (United States)

    Valchev, Nikola; Zijdewind, Inge; Keysers, Christian; Gazzola, Valeria; Avenanti, Alessio; Maurits, Natasha M

    2015-01-01

    Seeing others performing an action induces the observers' motor cortex to "resonate" with the observed action. Transcranial magnetic stimulation (TMS) studies suggest that such motor resonance reflects the encoding of various motor features of the observed action, including the apparent motor effort. However, it is unclear whether such encoding requires direct observation or whether force requirements can be inferred when the moving body part is partially occluded. To address this issue, we presented participants with videos of a right hand lifting a box of three different weights and asked them to estimate its weight. During each trial we delivered one transcranial magnetic stimulation (TMS) pulse over the left primary motor cortex of the observer and recorded the motor evoked potentials (MEPs) from three muscles of the right hand (first dorsal interosseous, FDI, abductor digiti minimi, ADM, and brachioradialis, BR). Importantly, because the hand shown in the videos was hidden behind a screen, only the contractions in the actor's BR muscle under the bare skin were observable during the entire videos, while the contractions in the actor's FDI and ADM muscles were hidden during the grasp and actual lift. The amplitudes of the MEPs recorded from the BR (observable) and FDI (hidden) muscle increased with the weight of the box. These findings indicate that the modulation of motor excitability induced by action observation extends to the cortical representation of muscles with contractions that could not be observed. Thus, motor resonance appears to reflect force requirements of observed lifting actions even when the moving body part is occluded from view. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Orientaciones de Meta y Compromiso Físico-Motor en Educación Física. Un estudio en alumnos de 4º de Educación Primaria. (Goals orientations and level of motor commitment in physical activity in physical education. A study of students in 4th of primary education .

    Directory of Open Access Journals (Sweden)

    José Carlos Barbero Alvarez

    2008-04-01

    Full Text Available Resumen Partiendo de estudios previos que señalan la influencia que lo realizado en la infancia y adolescencia tiene en etapas vitales posteriores respecto a hábitos de participación en actividades físicas (Pate, Dowda, Baranowski y Puhl, 1993 y la relación existente entre nivel de capacidad física, orientaciones de meta y nivel de compromiso en actividades físicas (Goudas, Biddle y Fox, 1994; Tzetis, Goudas, Kourtesis y Zisi, 2002; Vlachopoulos y Biddle, 1996, en el presente trabajo se describe un estudio que se ha llevado a cabo con alumnos de 4º de Educación Primaria en Educación Física cuyo objetivo es determinar la existencia de relaciones entre orientaciones de meta, variables condicionales físicas (nivel de capacidad física y niveles de compromiso físico-motor en clases de Educación Física, medidas mediante el cuestionario TEOSQ, test deresistencia Shuttle-Run de 20 m y UPG (Unidad de posicionamiento global. Los resultados muestran la inexistencia de relaciones significativas entre orientación de meta y variables cinemáticas y fisiológicas, al considerar de forma global al conjunto de los sujetos. Al realizar el análisis en función del género se han encontrado relaciones significativas en el subgrupo mujeres entre la puntuación alcanzada en el factor orientación a la tarea y algunos parámetros cinemáticos y fisiológicos. Abstract Several previous studies pointed out to the influence of the experience acquired during childhood and adolescence on further vital stages, regarding the habits of taking part in physical activities, as well as therelation between physical capacity level, goal orientations and commitment level in physical activities. Therefore, in this paper we describe a study carried out with 4th-grade students in Primary Education in the Physical Education class. This study aims to determine the relations between goal orientations, physical conditional variables (physical capacity level and physical-motor

  19. Hemispheric Dominance for Stereognosis in a Patient With an Infarct of the Left Postcentral Sensory Hand Area.

    Science.gov (United States)

    Moll, Jorge; de Oliveira-Souza, Ricardo

    2017-09-01

    The concept of left hemispheric dominance for praxis, speech, and language has been one of the pillars of neurology since the mid-19th century. In 1906, Hermann Oppenheim reported a patient with bilateral stereoagnosia (astereognosis) caused by a left parietal lobe tumor and proposed that the left hemisphere was also dominant for stereognosis. Surprisingly, few cases of bilateral stereoagnosia caused by a unilateral cerebral lesion have been documented in the literature since then. Here we report a 75-year-old right-handed man who developed bilateral stereoagnosia after suffering a small infarct in the crown of the left postcentral gyrus. He could not recognize objects with either hand, but retained the ability to localize stimuli applied to the palm of his left (ipsilesional) hand. He was severely disabled in ordinary activities requiring the use of his hands. The lesion corresponded to Brodmann area 1, where probabilistic anatomic, functional, and electrophysiologic studies have located one of the multiple somatosensory representations of the hand. The lesion was in a strategic position to interrupt both the processing of afferent tactile information issuing from the primary somatosensory cortex (areas 3a and 3b) and the forward higher-order processing in area 2, the secondary sensory cortex, and the contralateral area 1. The lesion also deprived the motor hand area of its afferent regulation from the sensory hand area (grasping), while leaving intact the visuomotor projections from the occipital cortex (reaching). Our patient supports Oppenheim's proposal that the left postcentral gyrus of some individuals is dominant for stereognosis.

  20. Repeated Structural Imaging Reveals Nonlinear Progression of Experience-Dependent Volume Changes in Human Motor Cortex.

    Science.gov (United States)

    Wenger, Elisabeth; Kühn, Simone; Verrel, Julius; Mårtensson, Johan; Bodammer, Nils Christian; Lindenberger, Ulman; Lövdén, Martin

    2017-05-01

    Evidence for experience-dependent structural brain change in adult humans is accumulating. However, its time course is not well understood, as intervention studies typically consist of only 2 imaging sessions (before vs. after training). We acquired up to 18 structural magnetic resonance images over a 7-week period while 15 right-handed participants practiced left-hand writing and drawing. After 4 weeks, we observed increases in gray matter of both left and right primary motor cortices relative to a control group; 3 weeks later, these differences were no longer reliable. Time-series analyses revealed that gray matter in the primary motor cortices expanded during the first 4 weeks and then partially renormalized, in particular in the right hemisphere, despite continued practice and increasing task proficiency. Similar patterns of expansion followed by partial renormalization are also found in synaptogenesis, cortical map plasticity, and maturation, and may qualify as a general principle of structural plasticity. Research on human brain plasticity needs to encompass more than 2 measurement occasions to capture expansion and potential renormalization processes over time. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Motor control for a brushless DC motor

    Science.gov (United States)

    Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)

    1985-01-01

    This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.

  2. PS main supply: motor-generator set.

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    In picture 04 the motor is on the right in the background and the main view is of the generator. The peak power in each PS cycle drawn from the generator, up to 96 MW, is taken from the rotational kinetic energy of the rotor (a heavy-weight of 80 tons), which makes the rotational speed drop by only a few percent. The motor replenishes the average power of 2 to 4 MW. Photo 05: The motor-generator set is serviced every year and, in particular, bearings and slip-rings are carefully checked. To the left is the motor with its slip-rings visible. It has been detached from the axle and moved to the side, so that the rotor can be removed from the huge generator, looming at the right.

  3. Motor demand-dependent activation of ipsilateral motor cortex.

    Science.gov (United States)

    Buetefisch, Cathrin M; Revill, Kate Pirog; Shuster, Linda; Hines, Benjamin; Parsons, Michael

    2014-08-15

    The role of ipsilateral primary motor cortex (M1) in hand motor control during complex task performance remains controversial. Bilateral M1 activation is inconsistently observed in functional (f)MRI studies of unilateral hand performance. Two factors limit the interpretation of these data. As the motor tasks differ qualitatively in these studies, it is conceivable that M1 contributions differ with the demand on skillfulness. Second, most studies lack the verification of a strictly unilateral execution of the motor task during the acquisition of imaging data. Here, we use fMRI to determine whether ipsilateral M1 activity depends on the demand for precision in a pointing task where precision varied quantitatively while movement trajectories remained equal. Thirteen healthy participants used an MRI-compatible joystick to point to targets of four different sizes in a block design. A clustered acquisition technique allowed simultaneous fMRI/EMG data collection and confirmed that movements were strictly unilateral. Accuracy of performance increased with target size. Overall, the pointing task revealed activation in contralateral and ipsilateral M1, extending into contralateral somatosensory and parietal areas. Target size-dependent activation differences were found in ipsilateral M1 extending into the temporal/parietal junction, where activation increased with increasing demand on accuracy. The results suggest that ipsilateral M1 is active during the execution of a unilateral motor task and that its activity is modulated by the demand on precision. Copyright © 2014 the American Physiological Society.

  4. Changes of motor-cortical oscillations associated with motor learning.

    Science.gov (United States)

    Pollok, B; Latz, D; Krause, V; Butz, M; Schnitzler, A

    2014-09-05

    Motor learning results from practice but also between practice sessions. After skill acquisition early consolidation results in less interference with other motor tasks and even improved performance of the newly learned skill. A specific significance of the primary motor cortex (M1) for early consolidation has been suggested. Since synchronized oscillatory activity is assumed to facilitate neuronal plasticity, we here investigate alterations of motor-cortical oscillations by means of event-related desynchronization (ERD) at alpha (8-12 Hz) and beta (13-30 Hz) frequencies in healthy humans. Neuromagnetic activity was recorded using a 306-channel whole-head magnetoencephalography (MEG) system. ERD was investigated in 15 subjects during training on a serial reaction time task and 10 min after initial training. The data were compared with performance during a randomly varying sequence serving as control condition. The data reveal a stepwise decline of alpha-band ERD associated with faster reaction times replicating previous findings. The amount of beta-band suppression was significantly correlated with reduction of reaction times. While changes of alpha power have been related to lower cognitive control after initial skill acquisition, the present data suggest that the amount of beta suppression represents a neurophysiological marker of early cortical reorganization associated with motor learning. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Movement and afferent representations in human motor areas: a simultaneous neuroimaging and transcranial magnetic/peripheral nerve-stimulation study

    Directory of Open Access Journals (Sweden)

    Hitoshi eShitara

    2013-09-01

    Full Text Available Neuroimaging combined with transcranial magnetic stimulation (TMS to primary motor cortex (M1 is an emerging technique that can examine motor-system functionality through evoked activity. However, because sensory afferents from twitching muscles are widely represented in motor areas the amount of evoked activity directly resulting from TMS remains unclear. We delivered suprathreshold TMS to left M1 or electrically stimulated the right median nerve (MNS in 18 healthy volunteers while simultaneously conducting functional magnetic resonance imaging and monitoring with electromyography (EMG. We examined in detail the localization of TMS-, muscle afferent- and superficial afferent-induced activity in M1 subdivisions. Muscle afferent- and TMS-evoked activity occurred mainly in rostral M1, while superficial afferents generated a slightly different activation distribution. In 12 participants who yielded quantifiable EMG, differences in brain activity ascribed to differences in movement-size were adjusted using integrated information from the EMGs. Sensory components only explained 10-20% of the suprathreshold TMS-induced activity, indicating that locally and remotely evoked activity in motor areas mostly resulted from the recruitment of neural and synaptic activity. The present study appears to justify the use of fMRI combined with suprathreshold TMS to M1 for evoked motor network imaging.

  6. Poststimulation time interval-dependent effects of motor cortex anodal tDCS on reaction-time task performance.

    Science.gov (United States)

    Molero-Chamizo, Andrés; Alameda Bailén, José R; Garrido Béjar, Tamara; García López, Macarena; Jaén Rodríguez, Inmaculada; Gutiérrez Lérida, Carolina; Pérez Panal, Silvia; González Ángel, Gloria; Lemus Corchero, Laura; Ruiz Vega, María J; Nitsche, Michael A; Rivera-Urbina, Guadalupe N

    2018-02-01

    Anodal transcranial direct current stimulation (tDCS) induces long-term potentiation-like plasticity, which is associated with long-lasting effects on different cognitive, emotional, and motor performances. Specifically, tDCS applied over the motor cortex is considered to improve reaction time in simple and complex tasks. The timing of tDCS relative to task performance could determine the efficacy of tDCS to modulate performance. The aim of this study was to compare the effects of a single session of anodal tDCS (1.5 mA, for 15 min) applied over the left primary motor cortex (M1) versus sham stimulation on performance of a go/no-go simple reaction-time task carried out at three different time points after tDCS-namely, 0, 30, or 60 min after stimulation. Performance zero min after anodal tDCS was improved during the whole course of the task. Performance 30 min after anodal tDCS was improved only in the last block of the reaction-time task. Performance 60 min after anodal tDCS was not significantly different throughout the entire task. These findings suggest that the motor cortex excitability changes induced by tDCS can improve motor responses, and these effects critically depend on the time interval between stimulation and task performance.

  7. Task-dependent activation of distinct fast and slow(er) motor pathways during motor imagery.

    Science.gov (United States)

    Keller, Martin; Taube, Wolfgang; Lauber, Benedikt

    2018-02-22

    Motor imagery and actual movements share overlapping activation of brain areas but little is known about task-specific activation of distinct motor pathways during mental simulation of movements. For real contractions, it was demonstrated that the slow(er) motor pathways are activated differently in ballistic compared to tonic contractions but it is unknown if this also holds true for imagined contractions. The aim of the present study was to assess the activity of fast and slow(er) motor pathways during mentally simulated movements of ballistic and tonic contractions. H-reflexes were conditioned with transcranial magnetic stimulation at different interstimulus intervals to assess the excitability of fast and slow(er) motor pathways during a) the execution of tonic and ballistic contractions, b) motor imagery of these contraction types, and c) at rest. In contrast to the fast motor pathways, the slow(er) pathways displayed a task-specific activation: for imagined ballistic as well as real ballistic contractions, the activation was reduced compared to rest whereas enhanced activation was found for imagined tonic and real tonic contractions. This study provides evidence that the excitability of fast and slow(er) motor pathways during motor imagery resembles the activation pattern observed during real contractions. The findings indicate that motor imagery results in task- and pathway-specific subliminal activation of distinct subsets of neurons in the primary motor cortex. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Excitability of the motor system: A transcranial magnetic stimulation study on singing and speaking.

    Science.gov (United States)

    Royal, Isabelle; Lidji, Pascale; Théoret, Hugo; Russo, Frank A; Peretz, Isabelle

    2015-08-01

    The perception of movements is associated with increased activity in the human motor cortex, which in turn may underlie our ability to understand actions, as it may be implicated in the recognition, understanding and imitation of actions. Here, we investigated the involvement and lateralization of the primary motor cortex (M1) in the perception of singing and speech. Transcranial magnetic stimulation (TMS) was applied independently for both hemispheres over the mouth representation of the motor cortex in healthy participants while they watched 4-s audiovisual excerpts of singers producing a 2-note ascending interval (singing condition) or 4-s audiovisual excerpts of a person explaining a proverb (speech condition). Subjects were instructed to determine whether a sung interval/written proverb, matched a written interval/proverb. During both tasks, motor evoked potentials (MEPs) were recorded from the contralateral mouth muscle (orbicularis oris) of the stimulated motor cortex compared to a control task. Moreover, to investigate the time course of motor activation, TMS pulses were randomly delivered at 7 different time points (ranging from 500 to 3500 ms after stimulus onset). Results show that stimulation of the right hemisphere had a similar effect on the MEPs for both the singing and speech perception tasks, whereas stimulation of the left hemisphere significantly differed in the speech perception task compared to the singing perception task. Furthermore, analysis of the MEPs in the singing task revealed that they decreased for small musical intervals, but increased for large musical intervals, regardless of which hemisphere was stimulated. Overall, these results suggest a dissociation between the lateralization of M1 activity for speech perception and for singing perception, and that in the latter case its activity can be modulated by musical parameters such as the size of a musical interval. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. High efficiency motors; Motores de alta eficiencia

    Energy Technology Data Exchange (ETDEWEB)

    Uranga Favela, Ivan Jaime [Energia Controlada de Mexico, S. A. de C. V., Mexico, D. F. (Mexico)

    1993-12-31

    This paper is a technical-financial study of the high efficiency and super-premium motors. As it is widely known, more than 60% of the electrical energy generated in the country is used for the operation of motors, in industry as well as in commerce. Therefore the importance that the motors have in the efficient energy use. [Espanol] El presente trabajo es un estudio tecnico-financiero de los motores de alta eficiencia y los motores super premium. Como es ampliamente conocido, mas del 60% de la energia electrica generada en el pais, es utilizada para accionar motores, dentro de la industria y el comercio. De alli la importancia que los motores tienen en el uso eficiente de la energia.

  10. High efficiency motors; Motores de alta eficiencia

    Energy Technology Data Exchange (ETDEWEB)

    Uranga Favela, Ivan Jaime [Energia Controlada de Mexico, S. A. de C. V., Mexico, D. F. (Mexico)

    1992-12-31

    This paper is a technical-financial study of the high efficiency and super-premium motors. As it is widely known, more than 60% of the electrical energy generated in the country is used for the operation of motors, in industry as well as in commerce. Therefore the importance that the motors have in the efficient energy use. [Espanol] El presente trabajo es un estudio tecnico-financiero de los motores de alta eficiencia y los motores super premium. Como es ampliamente conocido, mas del 60% de la energia electrica generada en el pais, es utilizada para accionar motores, dentro de la industria y el comercio. De alli la importancia que los motores tienen en el uso eficiente de la energia.

  11. Anosognosia for hemiparesis after left-sided stroke.

    Science.gov (United States)

    Baier, Bernhard; Vucurevic, Goran; Müller-Forell, Wibke; Glassl, Oliver; Geber, Christian; Dieterich, Marianne; Karnath, Hans-Otto

    2014-12-01

    In patients with left-sided lesions, anosognosia for hemiparesis (AHP) seems to be a rare phenomenon. It has been discussed whether this rareness might be due to an inevitable bias due to language dysfunction and whether the left hemisphere's role for our self-awareness of motor actions thus is underestimated. By applying functional magnetic resonance imaging (fMRI) we examined whether patients with AHP following a left hemisphere stroke show a regular, left-sided or a reversed, right-sided lateralization of language functions. Only the former observation would argue for an original role of the left hemisphere in self-awareness about limb function. In a consecutive series of 44 acute left-sided stroke patients, only one patient (=2%) was identified showing AHP. In this case, we could verify by using fMRI that lateralization of AHP and spatial neglect on the one hand and of language functions on the other hand were reversed. The present single case observation thus argues against an original role of the left hemisphere in self-awareness about limb function. We discuss the data in the context of previous observations in the literature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Non-compact left ventricle/hypertrabeculated left ventricle

    International Nuclear Information System (INIS)

    Restrepo, Gustavo; Castano, Rafael; Marmol, Alejandro

    2005-01-01

    Non-compact left ventricle/hypertrabeculated left ventricle is a myocardiopatie produced by an arrest of the normal left ventricular compaction process during the early embryogenesis. It is associated to cardiac anomalies (congenital cardiopaties) as well as to extracardial conditions (neurological, facial, hematologic, cutaneous, skeletal and endocrinological anomalies). This entity is frequently unnoticed, being diagnosed only in centers with great experience in the diagnosis and treatment of myocardiopathies. Many cases of non-compact left ventricle have been initially misdiagnosed as hypertrophic myocardiopatie, endocardial fibroelastosis, dilated cardiomyopatie, restrictive cardiomyopathy and endocardial fibrosis. It is reported the case of a 74 years old man with a history of chronic arterial hypertension and diabetes mellitus, prechordial chest pain and mild dyspnoea. An echocardiogram showed signs of non-compact left ventricle with prominent trabeculations and deep inter-trabecular recesses involving left ventricular apical segment and extending to the lateral and inferior walls. Literature on this topic is reviewed

  13. Analysis on Bilateral Hindlimb Mapping in Motor Cortex of the Rat by an Intracortical Microstimulation Method

    OpenAIRE

    Seong, Han Yu; Cho, Ji Young; Choi, Byeong Sam; Min, Joong Kee; Kim, Yong Hwan; Roh, Sung Woo; Kim, Jeong Hoon; Jeon, Sang Ryong

    2014-01-01

    Intracortical microstimulation (ICMS) is a technique that was developed to derive movement representation of the motor cortex. Although rats are now commonly used in motor mapping studies, the precise characteristics of rat motor map, including symmetry and consistency across animals, and the possibility of repeated stimulation have not yet been established. We performed bilateral hindlimb mapping of motor cortex in six Sprague-Dawley rats using ICMS. ICMS was applied to the left and the righ...

  14. [Left-handedness and health].

    Science.gov (United States)

    Milenković, Sanja; Belojević, Goran; Kocijancić, Radojka

    2010-01-01

    Hand dominance is defined as a proneness to use one hand rather than another in performing the majority of activities and this is the most obvious example of cerebral lateralization and an exclusive human characteristic. Left-handed people comprise 6-14% of the total population, while in Serbia, this percentage is 5-10%, moving from undeveloped to developed environments, where a socio-cultural pressure is less present. There is no agreement between investigators who in fact may be considered a left-handed person, about the percentage of left-handers in the population and about the etiology of left-handedness. In the scientific literature left-handedness has been related to health disorders (spine deformities, immunological disorders, migraine, neurosis, depressive psychosis, schizophrenia, insomnia, homosexuality, diabetes mellitus, arterial hypertension, sleep apnea, enuresis nocturna and Down Syndrome), developmental disorders (autism, dislexia and sttutering) and traumatism. The most reliable scientific evidences have been published about the relationship between left-handedness and spinal deformities in school children in puberty and with traumatism in general population. The controversy of other results in up-to-now investigations of health aspects of left-handedness may partly be explained by a scientific disagreement whether writing with the left hand is a sufficient criterium for left-handedness, or is it necessary to investigate other parameters for laterality assessment. Explanation of health aspects of left-handedness is dominantly based on Geschwind-Galaburda model about "anomalous" cerebral domination, as a consequence of hormonal disbalance.

  15. Primary leiomyosarcoma of the innominate vein.

    Science.gov (United States)

    Illuminati, Giulio; Miraldi, Fabio; Mazzesi, Giuseppe; D'urso, Antonio; Ceccanei, Gianluca; Bezzi, Marcello

    2007-01-01

    Primary venous leiomyosarcoma is rare. We report the case of a primary leiomyosarcoma of the left innominate vein, with neoplastic thrombus extending into the left jugular and subclavian veins. The tumor was curatively resected en bloc with anterior mediastinal and laterocervical lymphatics, through a median sternotomy prolonged into left cervicotomy. Primary venous sarcomas may be associated with prolonged survival in individual cases, with curative resection recommended as the standard treatment, in the absence of distant spread.

  16. How thoughts give rise to action - conscious motor intention increases the excitability of target-specific motor circuits.

    Directory of Open Access Journals (Sweden)

    Volker R Zschorlich

    Full Text Available The present study shows evidence for conscious motor intention in motor preparation prior to movement execution. We demonstrate that conscious motor intention of directed movement, combined with minimally supra-threshold transcranial magnetic stimulation (TMS of the motor cortex, determines the direction and the force of resulting movements, whilst a lack of intention results in weak and omni-directed muscle activation. We investigated changes of consciously intended goal directed movements by analyzing amplitudes of motor-evoked potentials of the forearm muscle, flexor carpi radialis (FCR, and extensor carpi radialis (ECR, induced by transcranial magnetic stimulation over the right motor cortex and their motor outcome. Right-handed subjects were asked to develop a strong intention to move their left wrist (flexion or extension, without any overt motor output at the wrist, prior to brain stimulation. Our analyses of hand acceleration and electromyography showed that during the strong motor intention of wrist flexion movement, it evoked motor potential responses that were significantly larger in the FCR muscle than in the ECR, whilst the opposite was true for an extension movement. The acceleration data on flexion/extension corresponded to this finding. Under no-intention conditions again, which served as a reference for motor evoked potentials, brain stimulation resulted in undirected and minimally simultaneous extension/flexion innervation and virtually no movement. These results indicate that conscious intentions govern motor function, which in turn shows that a neuronal activation representing an "intention network" in the human brain pre-exists, and that it functionally represents target specific motor circuits. Until today, it was unclear whether conscious motor intention exists prior to movement, or whether the brain constructs such an intention after movement initiation. Our study gives evidence that motor intentions become aware before

  17. How Thoughts Give Rise to Action - Conscious Motor Intention Increases the Excitability of Target-Specific Motor Circuits

    Science.gov (United States)

    Zschorlich, Volker R.; Köhling, Rüdiger

    2013-01-01

    The present study shows evidence for conscious motor intention in motor preparation prior to movement execution. We demonstrate that conscious motor intention of directed movement, combined with minimally supra-threshold transcranial magnetic stimulation (TMS) of the motor cortex, determines the direction and the force of resulting movements, whilst a lack of intention results in weak and omni-directed muscle activation. We investigated changes of consciously intended goal directed movements by analyzing amplitudes of motor-evoked potentials of the forearm muscle, flexor carpi radialis (FCR), and extensor carpi radialis (ECR), induced by transcranial magnetic stimulation over the right motor cortex and their motor outcome. Right-handed subjects were asked to develop a strong intention to move their left wrist (flexion or extension), without any overt motor output at the wrist, prior to brain stimulation. Our analyses of hand acceleration and electromyography showed that during the strong motor intention of wrist flexion movement, it evoked motor potential responses that were significantly larger in the FCR muscle than in the ECR, whilst the opposite was true for an extension movement. The acceleration data on flexion/extension corresponded to this finding. Under no-intention conditions again, which served as a reference for motor evoked potentials, brain stimulation resulted in undirected and minimally simultaneous extension/flexion innervation and virtually no movement. These results indicate that conscious intentions govern motor function, which in turn shows that a neuronal activation representing an “intention network” in the human brain pre-exists, and that it functionally represents target specific motor circuits. Until today, it was unclear whether conscious motor intention exists prior to movement, or whether the brain constructs such an intention after movement initiation. Our study gives evidence that motor intentions become aware before any motor

  18. Left ventricular function in right ventricular overload

    International Nuclear Information System (INIS)

    Iwanaga, Shiro; Handa, Shunnosuke; Abe, Sumihisa; Onishi, Shohei; Nakamura, Yoshiro; Kunieda, Etsuo; Ogawa, Koichi; Kubo, Atsushi

    1989-01-01

    This study clarified regional and global functions of the distorted left ventricle due to right ventricular overload by gated radionuclide ventriculography (RNV). Cardiac catheterization and RNV were performed in 13 cases of atrial septal defect (ASD), 13 of pure mitral stenosis (MS), 10 of primary pulmonary hypertension (PPH), and 10 of normal subjects (NL). Right ventricular systolic pressure (RVSP) was 32.9±13.9, 45.0±12.2, 88.3±17.1, and 21.2±4.5 mmHg, respectively. The end-systolic LAO view of the left ventricle was halved into septal and free-wall sides. The end-diastolic halves were determined in the same plane. Ejection fractions of the global left ventricle (LVEF), global right ventricle (RVEF), the septal half of the left ventricle (SEPEF), and the free-wall half of the left ventricle (FWEF) were obtained. LVEF was 56.8±9.8% in NL, 52.8±10.5% in ASD, and 49.5±12.9% in PPH. In MS, LVEF (47.0±13.0%) was smaller than those in the other groups. RVEF was 37.0±5.2% in NL, 43.7±15.5% in ASD, and 32.8±11.5% in MS. In PPH, RVEF (25.0±10.6%) was smaller than those in the other groups. SEPEF was smaller in ASD (42.5±13.2%), MS (40.4±13.1%), PPH (40.5±12.5%) than in NL (53.5±8.5%). Systolic function of the septal half of the left ventricle was disturbed by right ventricular overload. RVEF (r=-0.35, p<0.05) and SEPEF (r=-0.51, p<0.01) had negative correlations with RVSP. As RVSP rose, systolic function of the septal half of the left ventricle was more severely disturbed. FWEF was the same among the four groups; NL (57.0±12.6%), ASD (48.6±15.2%), MS (50.5±12.0%), and PPH (51.1±12.3%). There was a good correlation between SEPEF and LVEF in NL (r=0.81), although in PPH this correlation was poor (r=0.64). These data showed that the distorted left ventricular due to right ventricular overload maintains its global function with preserved function of the free-wall side. (J.P.N.)

  19. [Motor neglect of thalamic origin: report on two cases (author's transl)].

    Science.gov (United States)

    Laplane, D; Escourolle, R; Degos, J D; Sauron, B; Massiou, H

    1982-01-01

    Two cases of thalamic lesions with motor neglect are presented. The syndrome of motor neglect was complete in those cases with a) underutilization of left limbs, but good utilization upon verbal orders, b) loss of placement reaction, c) weakness of movement when hand was approaching the target, d) weakness of motor reaction to nociceptive stimuli. Those cases confirm that motor neglect exists after thalamic lesions and bring pathologic clues for topographic discussion. Motor neglect seems to be a particular case of partial unilateral neglect throwing some doubt on the hypothesis of a global trouble of hemispheric activation. Prevalence of left motor neglects suggests some linkage between propositional motility and language. One may suppose that in the right hemisphere language is able to have a vicarious action when spontaneous activation is lost; at the opposite, in the left hemisphere language and motility would be too linked to let this dissociation be generally possible.

  20. Neurophysiology of spontaneous facial expressions: I. Motor control of the upper and lower face is behaviorally independent in adults.

    Science.gov (United States)

    Ross, Elliott D; Gupta, Smita S; Adnan, Asif M; Holden, Thomas L; Havlicek, Joseph; Radhakrishnan, Sridhar

    2016-03-01

    Facial expressions are described traditionally as monolithic entities. However, humans have the capacity to produce facial blends, in which the upper and lower face simultaneously display different emotional expressions. This, in turn, has led to the Component Theory of facial expressions. Recent neuroanatomical studies in monkeys have demonstrated that there are separate cortical motor areas for controlling the upper and lower face that, presumably, also occur in humans. The lower face is represented on the posterior ventrolateral surface of the frontal lobes in the primary motor and premotor cortices and the upper face is represented on the medial surface of the posterior frontal lobes in the supplementary motor and anterior cingulate cortices. Our laboratory has been engaged in a series of studies exploring the perception and production of facial blends. Using high-speed videography, we began measuring the temporal aspects of facial expressions to develop a more complete understanding of the neurophysiology underlying facial expressions and facial blends. The goal of the research presented here was to determine if spontaneous facial expressions in adults are predominantly monolithic or exhibit independent motor control of the upper and lower face. We found that spontaneous facial expressions are very complex and that the motor control of the upper and lower face is overwhelmingly independent, thus robustly supporting the Component Theory of facial expressions. Seemingly monolithic expressions, be they full facial or facial blends, are most likely the result of a timing coincident rather than a synchronous coordination between the ventrolateral and medial cortical motor areas responsible for controlling the lower and upper face, respectively. In addition, we found evidence that the right and left face may also exhibit independent motor control, thus supporting the concept that spontaneous facial expressions are organized predominantly across the horizontal facial

  1. Methodology to monitor and diagnostic vibrations of the motor-pumps used in the primary cooling system of IEAR-1 nuclear research reactor; Metodologia para monitoracao e diagnostico de vibracao das bombas moto-operadas do circuito primario de refrigeracao do Reator IEA-R1

    Energy Technology Data Exchange (ETDEWEB)

    Benevenuti, Erion de Lima

    2004-07-01

    The objectives of this study are to establish a strategy to monitor and diagnose vibrations of the motor pumps used in the primary reactor cooling system of the IEA-R1 nuclear research reactor, to verify the possibility of using the existing installed monitoring vibration system and to implement such strategy in a continuous way. Four types of mechanical problems were considered: unbalancing, misalignment, gaps and faults in bearings. An adequate set of analysis tools, well established by the industry, was selected. These are: global measurements of vibration, velocity spectrum and acceleration envelope spectrum. Three sources of data and information were used; the data measured from the primary pumps, experimental results obtained with a Spectra Quest machine used to simulate mechanical defects and data from the literature. The results show that, for the specific case of the motor-pumps of IEA-R1 nuclear research reactor, although the technique using the envelope of acceleration, which is not available in the current system used to monitor the vibration of the motor pumps, is the one with best performance, the other techniques available in the system are sufficient to monitor the four types of mechanical problems mentioned. The proposed strategy is shown and detailed in this work. (author)

  2. Gene Expression Changes in the Motor Cortex Mediating Motor Skill Learning

    Science.gov (United States)

    Cheung, Vincent C. K.; DeBoer, Caroline; Hanson, Elizabeth; Tunesi, Marta; D'Onofrio, Mara; Arisi, Ivan; Brandi, Rossella; Cattaneo, Antonino; Goosens, Ki A.

    2013-01-01

    The primary motor cortex (M1) supports motor skill learning, yet little is known about the genes that contribute to motor cortical plasticity. Such knowledge could identify candidate molecules whose targeting might enable a new understanding of motor cortical functions, and provide new drug targets for the treatment of diseases which impair motor function, such as ischemic stroke. Here, we assess changes in the motor-cortical transcriptome across different stages of motor skill acquisition. Adult rats were trained on a gradually acquired appetitive reach and grasp task that required different strategies for successful pellet retrieval, or a sham version of the task in which the rats received pellet reward without needing to develop the reach and grasp skill. Tissue was harvested from the forelimb motor-cortical area either before training commenced, prior to the initial rise in task performance, or at peak performance. Differential classes of gene expression were observed at the time point immediately preceding motor task improvement. Functional clustering revealed that gene expression changes were related to the synapse, development, intracellular signaling, and the fibroblast growth factor (FGF) family, with many modulated genes known to regulate synaptic plasticity, synaptogenesis, and cytoskeletal dynamics. The modulated expression of synaptic genes likely reflects ongoing network reorganization from commencement of training till the point of task improvement, suggesting that motor performance improves only after sufficient modifications in the cortical circuitry have accumulated. The regulated FGF-related genes may together contribute to M1 remodeling through their roles in synaptic growth and maturation. PMID:23637843

  3. Primary malignant intramedullary lymphoma

    International Nuclear Information System (INIS)

    Orrego P, E.; Heinicke Y, H.; Arbaiza A, D.; Yepez R, V.

    1999-01-01

    A case of primary malignant intramedullary lymphoma, localized in the dorsal part of the spinal cord is presented. The clinical symptoms were associated with motor and sensitive deficit. Clinical investigations excluded the presence of lymphoma in other locations in the central nervous system and the extra neural organs. Postoperative radiotherapy and chemotherapy improved relict neurological symptoms. (authors)

  4. Variable-Reluctance Motor For Electric Vehicles

    Science.gov (United States)

    Lang, Jeffrey H.

    1987-01-01

    Report describes research on variable-reluctance electric-motor drive for eventual use in electric-vehicle propulsion. Primary design and performance criteria were torque and power output per unit mass of motor, cost, and drive efficiency. For each criterion, optimized drive design developed, and designs unified to yield single electric-vehicle drive. Scaled-down motor performed as expected. Prototype of paraplegic lift operated by toggle switch and joystick. Lift plugs into household electrical outlet for recharging when not in use.

  5. 3D visualization of movements can amplify motor cortex activation during subsequent motor imagery

    Directory of Open Access Journals (Sweden)

    Teresa eSollfrank

    2015-08-01

    Full Text Available A repetitive movement practice by motor imagery (MI can influence motor cortical excitability in the electroencephalogram (EEG. The feedback and the feedback environment should be inherently motivating and relevant for the learner and should have an appeal of novelty, real-world relevance or aesthetic value (Ryan and Deci, 2000; Merrill, 2007. This study investigated if a realistic visualization in 3D of upper and lower limb movements can amplify motor related potentials during motor imagery. We hypothesized that a richer sensory visualization might be more effective during instrumental conditioning, resulting in a more pronounced event related desynchronisation (ERD of the upper alpha band (10-12 Hz over the sensorimotor cortices thereby potentially improving MI based BCI protocols for motor rehabilitation. The results show a strong increase of the characteristic patterns of ERD of the upper alpha band components for left and right limb motor imagery present over the sensorimotor areas in both visualization conditions. Overall, significant differences were observed as a function of visualization modality (2D vs. 3D. The largest upper alpha band power decrease was obtained during motor imagery after a 3-dimensional visualization. In total in 12 out of 20 tasks the end-user of the 3D visualization group showed an enhanced upper alpha ERD relative to 2D visualization modality group, with statistical significance in nine tasks.With a realistic visualization of the limb movements, we tried to increase motor cortex activation during MI. Realistic visual feedback, consistent with the participant’s motor imagery, might be helpful for accomplishing successful motor imagery and the use of such feedback may assist in making BCI a more natural interface for motor imagery based BCI rehabilitation.

  6. Impairments of motor-cortex responses to unilateral and bilateral direct current stimulation in schizophrenia

    Directory of Open Access Journals (Sweden)

    Alkomiet eHasan

    2013-10-01

    Full Text Available Transcranial direct current stimulation (tDCS is a non-invasive stimulation technique that can be applied to modulate cortical activity through induction of cortical plasticity. Since various neuropsychiatric disorders are characterised by fluctuations in cortical activity levels (e.g. schizophrenia, tDCS is increasingly investigated as a treatment tool. Several studies have shown that the induction of cortical plasticity following classical, unilateral tDCS is reduced or impaired in the stimulated and non-stimulated primary motor cortices (M1 of schizophrenia patients. Moreover, an alternative, bilateral tDCS setup has recently been shown to modulate cortical plasticity in both hemispheres in healthy subjects, highlighting another potential treatment approach. Here we present the first study comparing the efficacy of unilateral tDCS (cathode left M1, anode right supraorbital with simultaneous bilateral tDCS (cathode left M1, anode right M1 in schizophrenia patients. tDCS-induced cortical plasticity was monitored by investigating motor-evoked potentials induced by single-pulse transcranial magnetic stimulation applied to both hemispheres. Healthy subjects showed a reduction of left M1 excitability following unilateral tDCS on the stimulated left hemisphere and an increase in right M1 excitability following bilateral tDCS. In schizophrenia, no plasticity was induced following both stimulation paradigms. The pattern of these results indicates a complex interplay between plasticity and connectivity that is impaired in schizophrenia patients. Further studies are needed to clarify the biological underpinnings and clinical impact of these findings.

  7. Action observation versus motor imagery in learning a complex motor task: a short review of literature and a kinematics study.

    Science.gov (United States)

    Gatti, R; Tettamanti, A; Gough, P M; Riboldi, E; Marinoni, L; Buccino, G

    2013-04-12

    Both motor imagery and action observation have been shown to play a role in learning or re-learning complex motor tasks. According to a well accepted view they share a common neurophysiological basis in the mirror neuron system. Neurons within this system discharge when individuals perform a specific action and when they look at another individual performing the same or a motorically related action. In the present paper, after a short review of literature on the role of action observation and motor imagery in motor learning, we report the results of a kinematics study where we directly compared motor imagery and action observation in learning a novel complex motor task. This involved movement of the right hand and foot in the same angular direction (in-phase movement), while at the same time moving the left hand and foot in an opposite angular direction (anti-phase movement), all at a frequency of 1Hz. Motor learning was assessed through kinematics recording of wrists and ankles. The results showed that action observation is better than motor imagery as a strategy for learning a novel complex motor task, at least in the fast early phase of motor learning. We forward that these results may have important implications in educational activities, sport training and neurorehabilitation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Effector-independent brain activity during motor imagery of the upper and lower limbs: an fMRI study.

    Science.gov (United States)

    Mizuguchi, Nobuaki; Nakata, Hiroki; Kanosue, Kazuyuki

    2014-10-03

    We utilized functional magnetic resonance imaging (fMRI) to evaluate the common brain region of motor imagery for the right and left upper and lower limbs. The subjects were instructed to repeatedly imagined extension and flexion of the right or left hands/ankles. Brain regions, which included the supplemental motor area (SMA), premotor cortex and parietal cortex, were activated during motor imagery. Conjunction analysis revealed that the left SMA and inferior frontal gyrus (IFG)/ventral premotor cortex (vPM) were commonly activated with motor imagery of the right hand, left hand, right foot, and left foot. This result suggests that these brain regions are activated during motor imagery in an effector independent manner. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Learning from sensory and reward prediction errors during motor adaptation.

    Science.gov (United States)

    Izawa, Jun; Shadmehr, Reza

    2011-03-01

    Voluntary motor commands produce two kinds of consequences. Initially, a sensory consequence is observed in terms of activity in our primary sensory organs (e.g., vision, proprioception). Subsequently, the brain evaluates the sensory feedback and produces a subjective measure of utility or usefulness of the motor commands (e.g., reward). As a result, comparisons between predicted and observed consequences of motor commands produce two forms of prediction error. How do these errors contribute to changes in motor commands? Here, we considered a reach adaptation protocol and found that when high quality sensory feedback was available, adaptation of motor commands was driven almost exclusively by sensory prediction errors. This form of learning had a distinct signature: as motor commands adapted, the subjects altered their predictions regarding sensory consequences of motor commands, and generalized this learning broadly to neighboring motor commands. In contrast, as the quality of the sensory feedback degraded, adaptation of motor commands became more dependent on reward prediction errors. Reward prediction errors produced comparable changes in the motor commands, but produced no change in the predicted sensory consequences of motor commands, and generalized only locally. Because we found that there was a within subject correlation between generalization patterns and sensory remapping, it is plausible that during adaptation an individual's relative reliance on sensory vs. reward prediction errors could be inferred. We suggest that while motor commands change because of sensory and reward prediction errors, only sensory prediction errors produce a change in the neural system that predicts sensory consequences of motor commands.

  10. Developmental dyslexia: dysfunction of a left hemisphere reading network

    Directory of Open Access Journals (Sweden)

    Fabio eRichlan

    2012-05-01

    Full Text Available This mini-review summarizes and integrates findings from recent meta-analyses and original neuroimaging studies on functional brain abnormalities in dyslexic readers. Surprisingly, there is little empirical support for the standard neuroanatomical model of developmental dyslexia, which localizes the primary phonological decoding deficit in left temporo-parietal regions. Rather, recent evidence points to a dysfunction of a left hemisphere reading network, which includes occipito-temporal, inferior frontal, and inferior parietal regions.

  11. Electric motor handbook

    CERN Document Server

    Chalmers, B J

    2013-01-01

    Electric Motor Handbook aims to give practical knowledge in a wide range of capacities such as plant design, equipment specification, commissioning, operation and maintenance. The book covers topics such as the modeling of steady-state motor performance; polyphase induction, synchronous, and a.c. commutator motors; ambient conditions, enclosures, cooling and loss dissipation; and electrical supply systems and motor drives. Also covered are topics such as variable-speed drives and motor control; materials and motor components; insulation types, systems, and techniques; and the installation, sit

  12. Current direction-dependent modulation of human hand motor function by intermittent theta burst stimulation (iTBS).

    Science.gov (United States)

    Shirota, Yuichiro; Dhaka, Suman; Paulus, Walter; Sommer, Martin

    2017-05-22

    Transcranial magnetic stimulation (TMS) with different current directions can activate different sets of neurons. Current direction can also affect the results of repetitive TMS. To test the influence of uni-directional intermittent theta burst stimulation (iTBS) using different current directions, namely posteroanterior (PA) and anteroposterior (AP), on motor behaviour. In a cross-over design, PA- and AP-iTBS was applied over the left primary motor cortex in 19 healthy, right-handed volunteers. Performance of a finger-tapping task was recorded before and 0, 10, 20, and 30min after the iTBS. The task was conducted with the right and left hands separately at each time point. As a control, AP-iTBS with reduced intensity was applied to 14 participants in a separate session (AP weak condition). The finger-tapping count with the left hand was decreased after PA-iTBS. Neither AP- nor AP weak -iTBS altered the performance. Current direction had a significant impact on the after-effects of iTBS. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Motor learning in a complex balance task and associated neuroplasticity: a comparison between endurance athletes and nonathletes.

    Science.gov (United States)

    Seidel, Oliver; Carius, Daniel; Kenville, Rouven; Ragert, Patrick

    2017-09-01

    Studies suggested that motor expertise is associated with functional and structural brain alterations, which positively affect sensorimotor performance and learning capabilities. The purpose of the present study was to unravel differences in motor skill learning and associated functional neuroplasticity between endurance athletes (EA) and nonathletes (NA). For this purpose, participants had to perform a multimodal balance task (MBT) training on 2 sessions, which were separated by 1 wk. Before and after MBT training, a static balance task (SBT) had to be performed. MBT-induced functional neuroplasticity and neuromuscular alterations were assessed by means of functional near-infrared spectroscopy (fNIRS) and electromyography (EMG) during SBT performance. We hypothesized that EA would showed superior initial SBT performance and stronger MBT-induced improvements in SBT learning rates compared with NA. On a cortical level, we hypothesized that MBT training would lead to differential learning-dependent functional changes in motor-related brain regions [such as primary motor cortex (M1)] during SBT performance. In fact, EA showed superior initial SBT performance, whereas learning rates did not differ between groups. On a cortical level, fNIRS recordings (time × group interaction) revealed a stronger MBT-induced decrease in left M1 and inferior parietal lobe (IPL) for deoxygenated hemoglobin in EA. Even more interesting, learning rates were correlated with fNIRS changes in right M1/IPL. On the basis of these findings, we provide novel evidence for superior MBT training-induced functional neuroplasticity in highly trained athletes. Future studies should investigate these effects in different sports disciplines to strengthen previous work on experience-dependent neuroplasticity. NEW & NOTEWORTHY Motor expertise is associated with functional/structural brain plasticity. How such neuroplastic reorganization translates into altered motor learning processes remains elusive. We

  14. Left-handedness and health

    Directory of Open Access Journals (Sweden)

    Milenković Sanja

    2010-01-01

    Full Text Available Hand dominance is defined as a proneness to use one hand rather than another in performing the majority of activities and this is the most obvious example of cerebral lateralization and an exclusive human characteristic. Left-handed people comprise 6-14% of the total population, while in Serbia, this percentage is 5-10%, moving from undeveloped to developed environments, where a socio-cultural pressure is less present. There is no agreement between investigators who in fact may be considered a left-handed person, about the percentage of left-handers in the population and about the etiology of left-handedness. In the scientific literature left-handedness has been related to health disorders (spine deformities, immunological disorders, migraine, neurosis, depressive psychosis, schizophrenia, insomnia, homosexuality, diabetes mellitus, arterial hypertension, sleep apnea, enuresis nocturna and Down Syndrome, developmental disorders (autism, dislexia and sttutering and traumatism. The most reliable scientific evidences have been published about the relationship between left-handedness and spinal deformities in school children in puberty and with traumatism in general population. The controversy of other results in up-to-now investigations of health aspects of left-handedness may partly be explained by a scientific disagreement whether writing with the left hand is a sufficient criterium for left-handedness, or is it necessary to investigate other parameters for laterality assessment. Explanation of health aspects of left-handedness is dominantly based on Geschwind-Galaburda model about 'anomalous' cerebral domination, as a consequence of hormonal disbalance. .

  15. Handbook on linear motor application

    International Nuclear Information System (INIS)

    1988-10-01

    This book guides the application for Linear motor. It lists classification and speciality of Linear Motor, terms of linear-induction motor, principle of the Motor, types on one-side linear-induction motor, bilateral linear-induction motor, linear-DC Motor on basic of the motor, linear-DC Motor for moving-coil type, linear-DC motor for permanent-magnet moving type, linear-DC motor for electricity non-utility type, linear-pulse motor for variable motor, linear-pulse motor for permanent magneto type, linear-vibration actuator, linear-vibration actuator for moving-coil type, linear synchronous motor, linear electromagnetic motor, linear electromagnetic solenoid, technical organization and magnetic levitation and linear motor and sensor.

  16. Interacting adiabatic quantum motor

    Science.gov (United States)

    Bruch, Anton; Kusminskiy, Silvia Viola; Refael, Gil; von Oppen, Felix

    2018-05-01

    We present a field-theoretic treatment of an adiabatic quantum motor. We explicitly discuss a motor called the Thouless motor which is based on a Thouless pump operating in reverse. When a sliding periodic potential is considered to be the motor degree of freedom, a bias voltage applied to the electron channel sets the motor in motion. We investigate a Thouless motor whose electron channel is modeled as a Luttinger liquid. Interactions increase the gap opened by the periodic potential. For an infinite Luttinger liquid the coupling-induced friction is enhanced by electron-electron interactions. When the Luttinger liquid is ultimately coupled to Fermi liquid reservoirs, the dissipation reduces to its value for a noninteracting electron system for a constant motor velocity. Our results can also be applied to a motor based on a nanomagnet coupled to a quantum spin Hall edge.

  17. Chronic motor tic disorder

    Science.gov (United States)

    Chronic vocal tic disorder; Tic - chronic motor tic disorder ... Chronic motor tic disorder is more common than Tourette syndrome . Chronic tics may be forms of Tourette syndrome. Tics usually start ...

  18. Beta band transcranial alternating (tACS and direct current stimulation (tDCS applied after initial learning facilitate retrieval of a motor sequence

    Directory of Open Access Journals (Sweden)

    Vanessa eKrause

    2016-01-01

    Full Text Available The primary motor cortex (M1 contributes to the acquisition and early consolidation of a motor sequence. Although the relevance of M1 excitability for motor learning has been supported, the significance of M1 oscillations remains an open issue. This study aims at investigating to what extent retrieval of a newly learned motor sequence can be differentially affected by motor-cortical transcranial alternating (tACS and direct current stimulation (tDCS. Alpha (10 Hz, beta (20 Hz or sham tACS was applied in 36 right-handers. Anodal or cathodal tDCS was applied in 30 right-handers. Participants learned an eight-digit serial reaction time task (SRTT; sequential vs. random with the right hand. Stimulation was applied to the left M1 after SRTT acquisition at rest for ten minutes. Reaction times were analyzed at baseline, end of acquisition, retrieval immediately after stimulation and reacquisition after eight further sequence repetitions.Reaction times during retrieval were significantly faster following 20 Hz tACS as compared to 10 Hz and sham tACS indicating a facilitation of early consolidation. TDCS yielded faster reaction times, too, independent of polarity. No significant differences between 20 Hz tACS and tDCS effects on retrieval were found suggesting that 20 Hz effects might be associated with altered motor-cortical excitability. Based on the behavioural modulation yielded by tACS and tDCS one might speculate that altered motor-cortical beta oscillations support early motor consolidation possibly associated with neuroplastic reorganization.

  19. Atypical within- and between-hemisphere motor network functional connections in children with developmental coordination disorder and attention-deficit/hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Kevin R. McLeod

    2016-01-01

    Full Text Available Developmental coordination disorder (DCD and attention-deficit hyperactivity disorder (ADHD are highly comorbid neurodevelopmental disorders; however, the neural mechanisms of this comorbidity are poorly understood. Previous research has demonstrated that children with DCD and ADHD have altered brain region communication, particularly within the motor network. The structure and function of the motor network in a typically developing brain exhibits hemispheric dominance. It is plausible that functional deficits observed in children with DCD and ADHD are associated with neurodevelopmental alterations in within- and between-hemisphere motor network functional connection strength that disrupt this hemispheric dominance. We used resting-state functional magnetic resonance imaging to examine functional connections of the left and right primary and sensory motor (SM1 cortices in children with DCD, ADHD and DCD + ADHD, relative to typically developing children. Our findings revealed that children with DCD, ADHD and DCD + ADHD exhibit atypical within- and between-hemisphere functional connection strength between SM1 and regions of the basal ganglia, as well as the cerebellum. Our findings further support the assertion that development of atypical motor network connections represents common and distinct neural mechanisms underlying DCD and ADHD. In children with DCD and DCD + ADHD (but not ADHD, a significant correlation was observed between clinical assessment of motor function and the strength of functional connections between right SM1 and anterior cingulate cortex, supplementary motor area, and regions involved in visuospatial processing. This latter finding suggests that behavioral phenotypes associated with atypical motor network development differ between individuals with DCD and those with ADHD.

  20. Clinical and electrophysiological impact of repetitive low-frequency transcranial magnetic stimulation on the sensory–motor network in patients with restless legs syndrome

    Science.gov (United States)

    Cantone, Mariagiovanna; Aricò, Debora; Lanuzza, Bartolo; Cosentino, Filomena Irene Ilaria; Paci, Domenico; Papotto, Maurizio; Pennisi, Manuela; Bella, Rita; Pennisi, Giovanni; Paulus, Walter; Ferri, Raffaele

    2018-01-01

    Background: Based on the hyperexcitability and disinhibition observed in patients with restless legs syndrome (RLS) following transcranial magnetic stimulation (TMS), we conducted a study with low-frequency repetitive TMS (rTMS) over the primary motor (M1) and somatosensory cortical areas (S1) in patients with RLS. Methods: A total of 13 right-handed patients and 10 age-matched controls were studied using clinical scales and TMS. Measurements included resting motor threshold (rMT), motor-evoked potentials (MEPs), cortical silent period (CSP), and central motor conduction time (CMCT). A single evening session of rTMS (1 Hz, 20 trains, 50 stimuli each) was administered over the left M1, left S1, and sham stimulation over M1 in a random order. Clinical and TMS measures were repeated after each stimulation modality. Results: Baseline CSP was shorter in patients than in controls and remained shorter in patients for both motor and somatosensory stimulation. The patients reported a subjective improvement of both initiating and maintaining sleep the night after the rTMS over S1. Patients exhibited a decrease in rMT after rTMS of S1 only, although the effect was smaller than in controls. MEP latency and CMCT changed only in controls after stimulation. Sham stimulation was without effect on the observed variables. Conclusions: rTMS on S1-M1 connectivity alleviated the sensory–motor complaints of RLS patients. The TMS indexes of excitation and inhibition indicate an intracortical and corticospinal imbalance, mainly involving gamma-aminobutyric acid (GABA)ergic and glutamatergic circuitries, as well as an impairment of the short-term mechanisms of cortical plasticity. The rTMS-induced activation of the dorsal striatum with the consequent increase of dopamine release may have contributed to the clinical and neurophysiological outcome. PMID:29511386

  1. Clinical and electrophysiological impact of repetitive low-frequency transcranial magnetic stimulation on the sensory-motor network in patients with restless legs syndrome.

    Science.gov (United States)

    Lanza, Giuseppe; Cantone, Mariagiovanna; Aricò, Debora; Lanuzza, Bartolo; Cosentino, Filomena Irene Ilaria; Paci, Domenico; Papotto, Maurizio; Pennisi, Manuela; Bella, Rita; Pennisi, Giovanni; Paulus, Walter; Ferri, Raffaele

    2018-01-01

    Based on the hyperexcitability and disinhibition observed in patients with restless legs syndrome (RLS) following transcranial magnetic stimulation (TMS), we conducted a study with low-frequency repetitive TMS (rTMS) over the primary motor (M1) and somatosensory cortical areas (S1) in patients with RLS. A total of 13 right-handed patients and 10 age-matched controls were studied using clinical scales and TMS. Measurements included resting motor threshold (rMT), motor-evoked potentials (MEPs), cortical silent period (CSP), and central motor conduction time (CMCT). A single evening session of rTMS (1 Hz, 20 trains, 50 stimuli each) was administered over the left M1, left S1, and sham stimulation over M1 in a random order. Clinical and TMS measures were repeated after each stimulation modality. Baseline CSP was shorter in patients than in controls and remained shorter in patients for both motor and somatosensory stimulation. The patients reported a subjective improvement of both initiating and maintaining sleep the night after the rTMS over S1. Patients exhibited a decrease in rMT after rTMS of S1 only, although the effect was smaller than in controls. MEP latency and CMCT changed only in controls after stimulation. Sham stimulation was without effect on the observed variables. rTMS on S1-M1 connectivity alleviated the sensory-motor complaints of RLS patients. The TMS indexes of excitation and inhibition indicate an intracortical and corticospinal imbalance, mainly involving gamma-aminobutyric acid (GABA)ergic and glutamatergic circuitries, as well as an impairment of the short-term mechanisms of cortical plasticity. The rTMS-induced activation of the dorsal striatum with the consequent increase of dopamine release may have contributed to the clinical and neurophysiological outcome.

  2. Cerebral hemorrhage without manifest motor paralysis

    International Nuclear Information System (INIS)

    Taketani, Torao; Dohi, Ichiro; Miyazaki, Tadahiko; Handa, Akihisa

    1982-01-01

    Before the introduction of computerized tomography (CT) there were some cases of intracerebral bleeding who were wrongly diagnosed as hypertensive encephalopathy or senile psychosis. We here report 5 cases who did not show any sign of motor paralysis. The clinical aspects of these cases were nausea and vomiting with dizziness (case 1), nausea and vomiting with slight headache (case 2), agnosia of left side with several kinds of disorientation (case 3), nausea and vomiting (case 4), and visual disturbance of right, lower quadrant (case 5). All of these cases showed no motor paralysis or abnormal reflex activities. By examination with CT each of them exhibited a high density area in the subcortical area of the right parietal lobe, the subcortical area of the right occipital lobe, the right temporal and parietal lobe, rather small portion of the left putamen and external capsule, and the subcortical area of left occipital lobe, respectively. Patients of cerebral hemorrhage without motor or sensory disturbances might often be taken for some psychic abnormality. We here have emphasized the importance of CT in such a group of patients. But for this technique, most of them would not be given adequate treatment and might be exposed to lifethreatening situations. (author)

  3. Piezoelectric Motors, an Overview

    OpenAIRE

    Karl Spanner; Burhanettin Koc

    2016-01-01

    Piezoelectric motors are used in many industrial and commercial applications. Various piezoelectric motors are available in the market. All of the piezoelectric motors use the inverse piezoelectric effect, where microscopically small oscillatory motions are converted into continuous or stepping rotary or linear motions. Methods of obtaining long moving distance have various drive and functional principles that make these motors categorized into three groups: resonance-drive (piezoelectric ult...

  4. Investigation of left and right lateral fluid percussion injury in C57BL6/J mice: In vivo functional consequences.

    Science.gov (United States)

    Schurman, Lesley D; Smith, Terry L; Morales, Anthony J; Lee, Nancy N; Reeves, Thomas M; Phillips, Linda L; Lichtman, Aron H

    2017-07-13

    Although rodent models of traumatic brain injury (TBI) reliably produce cognitive and motor disturbances, behavioral characterization resulting from left and right hemisphere injuries remains unexplored. Here we examined the functional consequences of targeting the left versus right parietal cortex in lateral fluid percussion injury, on Morris water maze (MWM) spatial memory tasks (fixed platform and reversal) and neurological motor deficits (neurological severity score and rotarod). In the MWM fixed platform task, right lateral injury produced a small delay in acquisition rate compared to left. However, injury to either hemisphere resulted in probe trial deficits. In the MWM reversal task, left-right performance deficits were not evident, though left lateral injury produced mild acquisition and probe trial deficits compared to sham controls. Additionally, left and right injury produced similar neurological motor task deficits, impaired righting times, and lesion volumes. Injury to either hemisphere also produced robust ipsilateral, and modest contralateral, morphological changes in reactive microglia and astrocytes. In conclusion, left and right lateral TBI impaired MWM performance, with mild fixed platform acquisition rate differences, despite similar motor deficits, histological damage, and glial cell reactivity. Thus, while both left and right lateral TBI produce cognitive deficits, laterality in mouse MWM learning and memory merits consideration in the investigation of TBI-induced cognitive consequences. Copyright © 2017. Published by Elsevier B.V.

  5. Electric Motor Thermal Management

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, Kevin S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-01

    Thermal management enables more efficient and cost-effective motors. This Annual Merit Review presentation describes the technical accomplishments and progress in electric motor thermal management R&D over the last year. This project supports a broad industry demand for data, analysis methods, and experimental techniques to improve and better understand motor thermal management.

  6. Programmable dc motor controller

    Science.gov (United States)

    Hopwood, J. E.

    1982-11-01

    A portable programmable dc motor controller, with features not available on commercial instruments was developed for controlling fixtures during welding processes. The controller can be used to drive any dc motor having tachometer feedback and motor requirements not exceeding 30 volts, 3 amperes. Among the controller's features are delayed start time, upslope time, speed, and downslope time.

  7. Higher-order Brain Areas Associated with Real-time Functional MRI Neurofeedback Training of the Somato-motor Cortex.

    Science.gov (United States)

    Auer, Tibor; Dewiputri, Wan Ilma; Frahm, Jens; Schweizer, Renate

    2018-05-15

    Neurofeedback (NFB) allows subjects to learn self-regulation of neuronal brain activation based on information about the ongoing activation. The implementation of real-time functional magnetic resonance imaging (rt-fMRI) for NFB training now facilitates the investigation into underlying processes. Our study involved 16 control and 16 training right-handed subjects, the latter performing an extensive rt-fMRI NFB training using motor imagery. A previous analysis focused on the targeted primary somato-motor cortex (SMC). The present study extends the analysis to the supplementary motor area (SMA), the next higher brain area within the hierarchy of the motor system. We also examined transfer-related functional connectivity using a whole-volume psycho-physiological interaction (PPI) analysis to reveal brain areas associated with learning. The ROI analysis of the pre- and post-training fMRI data for motor imagery without NFB (transfer) resulted in a significant training-specific increase in the SMA. It could also be shown that the contralateral SMA exhibited a larger increase than the ipsilateral SMA in the training and the transfer runs, and that the right-hand training elicited a larger increase in the transfer runs than the left-hand training. The PPI analysis revealed a training-specific increase in transfer-related functional connectivity between the left SMA and frontal areas as well as the anterior midcingulate cortex (aMCC) for right- and left-hand trainings. Moreover, the transfer success was related with training-specific increase in functional connectivity between the left SMA and the target area SMC. Our study demonstrates that NFB training increases functional connectivity with non-targeted brain areas. These are associated with the training strategy (i.e., SMA) as well as with learning the NFB skill (i.e., aMCC and frontal areas). This detailed description of both the system to be trained and the areas involved in learning can provide valuable information

  8. Interpersonal motor resonance in autism spectrum disorder: Evidence against a global ‘mirror system’ deficit

    Directory of Open Access Journals (Sweden)

    Peter eEnticott

    2013-05-01

    Full Text Available The mirror neuron hypothesis of autism is highly controversial, in part because there are conflicting reports as to whether putative indices of mirror system activity are actually deficient in autism spectrum disorder (ASD. Recent evidence suggests that a typical putative mirror system response may be seen in people with an ASD when there is a degree of social relevance to the visual stimuli used to elicit that response. Individuals with ASD (n = 32 and matched neurotypical controls (n = 32 completed a transcranial magnetic stimulation (TMS experiment in which the left primary motor cortex was stimulated during the observation of static hands, individual (i.e., one person hand actions, and interactive (i.e., two person hand actions. Motor-evoked potentials (MEP were recorded from the contralateral first dorsal interosseous, and used to generate an index of interpersonal motor resonance (IMR; a putative measure of mirror system activity during action observation. There was no difference between ASD and NT groups in the level of IMR during the observation of these actions. These findings provide evidence against a global mirror system deficit in ASD, and this evidence appears to extend beyond stimuli that have social relevance. Attentional and visual processing influences may be important for understanding the apparent role of IMR in the pathophysiology of ASD.

  9. Interpersonal motor resonance in autism spectrum disorder: evidence against a global "mirror system" deficit.

    Science.gov (United States)

    Enticott, Peter G; Kennedy, Hayley A; Rinehart, Nicole J; Bradshaw, John L; Tonge, Bruce J; Daskalakis, Zafiris J; Fitzgerald, Paul B

    2013-01-01

    The mirror neuron hypothesis of autism is highly controversial, in part because there are conflicting reports as to whether putative indices of mirror system activity are actually deficient in autism spectrum disorder (ASD). Recent evidence suggests that a typical putative mirror system response may be seen in people with an ASD when there is a degree of social relevance to the visual stimuli used to elicit that response. Individuals with ASD (n = 32) and matched neurotypical controls (n = 32) completed a transcranial magnetic stimulation (TMS) experiment in which the left primary motor cortex (M1) was stimulated during the observation of static hands, individual (i.e., one person) hand actions, and interactive (i.e., two person) hand actions. Motor-evoked potentials (MEP) were recorded from the contralateral first dorsal interosseous, and used to generate an index of interpersonal motor resonance (IMR; a putative measure of mirror system activity) during action observation. There was no difference between ASD and NT groups in the level of IMR during the observation of these actions. These findings provide evidence against a global mirror system deficit in ASD, and this evidence appears to extend beyond stimuli that have social relevance. Attentional and visual processing influences may be important for understanding the apparent role of IMR in the pathophysiology of ASD.

  10. Trends and experiences in reactor coolant pump motors

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    A review of the requirements and features of these motors is given as background along with a discussion of trends and experiences. Included are a discussion of thrust bearings and a review of safety related requirements and design features. Primary coolant pump motors are vertical induction motors for pumps that circulate huge quantities of water through the reactor core to carry the heat generated there to steam generator heat exchangers. 4 refs

  11. Left bundle-branch block

    DEFF Research Database (Denmark)

    Risum, Niels; Strauss, David; Sogaard, Peter

    2013-01-01

    The relationship between myocardial electrical activation by electrocardiogram (ECG) and mechanical contraction by echocardiography in left bundle-branch block (LBBB) has never been clearly demonstrated. New strict criteria for LBBB based on a fundamental understanding of physiology have recently...

  12. Producing The New Regressive Left

    DEFF Research Database (Denmark)

    Crone, Christine

    members, this thesis investigates a growing political trend and ideological discourse in the Arab world that I have called The New Regressive Left. On the premise that a media outlet can function as a forum for ideology production, the thesis argues that an analysis of this material can help to trace...... the contexture of The New Regressive Left. If the first part of the thesis lays out the theoretical approach and draws the contextual framework, through an exploration of the surrounding Arab media-and ideoscapes, the second part is an analytical investigation of the discourse that permeates the programmes aired...... becomes clear from the analytical chapters is the emergence of the new cross-ideological alliance of The New Regressive Left. This emerging coalition between Shia Muslims, religious minorities, parts of the Arab Left, secular cultural producers, and the remnants of the political,strategic resistance...

  13. Left main percutaneous coronary intervention.

    Science.gov (United States)

    Teirstein, Paul S; Price, Matthew J

    2012-10-23

    The introduction of drug-eluting stents and advances in catheter techniques have led to increasing acceptance of percutaneous coronary intervention (PCI) as a viable alternative to coronary artery bypass graft (CABG) for unprotected left main disease. Current guidelines state that it is reasonable to consider unprotected left main PCI in patients with low to intermediate anatomic complexity who are at increased surgical risk. Data from randomized trials involving patients who are candidates for either treatment strategy provide novel insight into the relative safety and efficacy of PCI for this lesion subset. Herein, we review the current data comparing PCI with CABG for left main disease, summarize recent guideline recommendations, and provide an update on technical considerations that may optimize clinical outcomes in left main PCI. Copyright © 2012 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  14. Motor/generator

    Science.gov (United States)

    Hickam, Christopher Dale [Glasford, IL

    2008-05-13

    A motor/generator is provided for connecting between a transmission input shaft and an output shaft of a prime mover. The motor/generator may include a motor/generator housing, a stator mounted to the motor/generator housing, a rotor mounted at least partially within the motor/generator housing and rotatable about a rotor rotation axis, and a transmission-shaft coupler drivingly coupled to the rotor. The transmission-shaft coupler may include a clamp, which may include a base attached to the rotor and a plurality of adjustable jaws.

  15. Comparação entre ressecção com anastomose primária e ressecção em estágios nos tumores obstrutivos do cólon esquerdo Comparison between resection and primary anastomosis and staged resection in obstructing adenocarcinoma of the left colon

    Directory of Open Access Journals (Sweden)

    José Eduardo de Aguilar-Nascimento

    2002-10-01

    experience of our group in the treatment of malignant left-sided colonic obstruction focusing on the immediate results using either one-stage resection and primary anastomoses or staged resection. PATIENTS/METHODS: Twenty-three patients (median age = 52 (39-84 years; 10 males and 13 females with potentially resectable obstructed adenocarcinomas of the left colon entered the study. The patients were submitted to different surgical procedure: 14 (60,9% underwent one stage colonic resection (intra-operative lavage of colon (n = 10 or subtotal colectomy (n = 4; resection and primary anastomoses group and 9 patients (39,1% underwent staged resection (Hartmann's operation (n = 4 or loop colostomy (n = 5; staged resection group. RESULTS: Two patients (8,7% died. All were from the staged resection group. Four patients (44,4% of staged resection group did not complete the treatment with the closing of the colostomy. The incidence of complications was 28,6% in resection and primary anastomoses group (4/14 and 66,7% in staged resection group (6/9. Hospital stay was 15 (9-45 in staged resection patients and 8 (6-20 in resection and primary anastomoses group. There was one case (7,1% of anastomotic dehiscence in resection and primary anastomoses group and two cases (22,2% in staged resection group. CONCLUSIONS: The treatment of obstruction of left colon in one stage is safe and may be indicated for the management of the majority of cases.

  16. Left ventricular apical ballooning syndrome

    International Nuclear Information System (INIS)

    Rahman, N.; Tai, J.; Soofi, A.

    2007-01-01

    The transient left ventricular apical ballooning syndrome, also known as Takotsubo cardiomyopathy, is characterized by transient left ventricular dysfunction in the absence of obstructive epicardial coronary disease. Although the syndrome has been reported in Japan since 1990, it is rare in other regions. Rapid recognition of the syndrome can modify the diagnostic and therapeutic attitude i.e. avoiding thrombolysis and performing catheterization in the acute phase. (author)

  17. Apraxia in left-handers.

    Science.gov (United States)

    Goldenberg, Georg

    2013-08-01

    In typical right-handed patients both apraxia and aphasia are caused by damage to the left hemisphere, which also controls the dominant right hand. In left-handed subjects the lateralities of language and of control of the dominant hand can dissociate. This permits disentangling the association of apraxia with aphasia from that with handedness. Pantomime of tool use, actual tool use and imitation of meaningless hand and finger postures were examined in 50 consecutive left-handed subjects with unilateral hemisphere lesions. There were three aphasic patients with pervasive apraxia caused by left-sided lesions. As the dominant hand is controlled by the right hemisphere, they constitute dissociations of apraxia from handedness. Conversely there were also three patients with pervasive apraxia caused by right brain lesions without aphasia. They constitute dissociations of apraxia from aphasia. Across the whole group of patients dissociations from handedness and from aphasia were observed for all manifestations of apraxia, but their frequency depended on the type of apraxia. Defective pantomime and defective tool use occurred rarely without aphasia, whereas defective imitation of hand, but not finger, postures was more frequent after right than left brain damage. The higher incidence of defective imitation of hand postures in right brain damage was mainly due to patients who had also hemi-neglect. This interaction alerts to the possibility that the association of right hemisphere damage with apraxia has to do with spatial aptitudes of the right hemisphere rather than with its control of the dominant left hand. Comparison with data from right-handed patients showed no differences between the severity of apraxia for imitation of hand or finger postures, but impairment on pantomime of tool use was milder in apraxic left-handers than in apraxic right-handers. This alleviation of the severity of apraxia corresponded with a similar alleviation of the severity of aphasia as

  18. Expression analysis of the N-Myc downstream-regulated gene 1 indicates that myelinating Schwann cells are the primary disease target in hereditary motor and sensory neuropathy-Lom.

    Science.gov (United States)

    Berger, Philipp; Sirkowski, Erich E; Scherer, Steven S; Suter, Ueli

    2004-11-01

    Mutations in the gene encoding N-myc downstream-regulated gene-1 (NDRG1) lead to truncations of the encoded protein and are associated with an autosomal recessive demyelinating neuropathy--hereditary motor and sensory neuropathy-Lom. NDRG1 protein is highly expressed in peripheral nerve and is localized in the cytoplasm of myelinating Schwann cells, including the paranodes and Schmidt-Lanterman incisures. In contrast, sensory and motor neurons as well as their axons lack NDRG1. NDRG1 mRNA levels in developing and injured adult sciatic nerves parallel those of myelin-related genes, indicating that the expression of NDRG1 in myelinating Schwann cells is regulated by axonal interactions. Oligodendrocytes also express NDRG1, and the subtle CNS deficits of affected patients may result from a lack of NDRG1 in these cells. Our data predict that the loss of NDRG1 leads to a Schwann cell autonomous phenotype resulting in demyelination, with secondary axonal loss.

  19. Right colon cancer: Left behind.

    Science.gov (United States)

    Gervaz, P; Usel, M; Rapiti, E; Chappuis, P; Neyroud-Kaspar, I; Bouchardy, C

    2016-09-01

    Prognosis of colon cancer (CC) has steadily improved during the past three decades. This trend, however, may vary according to proximal (right) or distal (left) tumor location. We studied if improvement in survival was greater for left than for right CC. We included all CC recorded at the Geneva population-based registry between 1980 and 2006. We compared patients, tumor and treatment characteristics between left and right CC by logistic regression and compared CC specific survival by Cox models taking into account putative confounders. We also compared changes in survival between CC location in early and late years of observation. Among the 3396 CC patients, 1334 (39%) had right-sided and 2062 (61%) left-sided tumors. In the early 1980s, 5-year specific survival was identical for right and left CCs (49% vs. 48%). During the study period, a dramatic improvement in survival was observed for patients with left-sided cancers (Hazard ratio [HR]: 0.42, 95% confidence interval [CI]: 0.29-0.62, p colon cancer patients, those with right-sided lesions have by far the worse prognosis. Change of strategic management in this subgroup is warranted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The perception of peripersonal space in right and left brain damage hemiplegic patients

    Directory of Open Access Journals (Sweden)

    Angela eBartolo

    2014-01-01

    Full Text Available Peripersonal space, as opposed to extrapersonal space, is the space that contains reachable objects and in which multisensory and sensorimotor integration is enhanced. Thus, the perception of peripersonal space requires combining information on the spatial properties of the environment with information on the current capacity to act. In support of this, recent studies have provided converging evidences that perceiving objects in peripersonal space activates a neural network overlapping with that subtending voluntary motor action and motor imagery. Other studies have also underlined the dominant role of the right hemisphere in motor planning and of the left hemisphere in on-line motor guiding, respectively. In the present study, we investigated the effect of a right or left hemiplegia in the perception of peripersonal space. 16 hemiplegic patients with brain damage to the left (LH or right (RH hemisphere and 8 matched healthy controls (HC performed a colour discrimination, a motor imagery and a reachability judgment task. Analyses of response times and accuracy revealed no variation among the three groups in the colour discrimination task, suggesting the absence of any specific perceptual or decisional deficits in the patient groups. In contrast, the patient groups revealed longer response times in the motor imagery task when performed in reference to the hemiplegic arm (RH and LH or to the healthy arm (RH. Moreover, RH group showed longer response times in the reachability judgement task, but only for stimuli located at the boundary of peripersonal space, which was furthermore significantly reduced in size. Considered together, these results confirm the crucial role of the motor system in motor imagery task and the perception of peripersonal space. They also revealed that right hemisphere damage has a more detrimental effect on reachability estimates, suggesting that motor planning processes contribute specifically to the perception of

  1. Piezoelectric Motors, an Overview

    Directory of Open Access Journals (Sweden)

    Karl Spanner

    2016-02-01

    Full Text Available Piezoelectric motors are used in many industrial and commercial applications. Various piezoelectric motors are available in the market. All of the piezoelectric motors use the inverse piezoelectric effect, where microscopically small oscillatory motions are converted into continuous or stepping rotary or linear motions. Methods of obtaining long moving distance have various drive and functional principles that make these motors categorized into three groups: resonance-drive (piezoelectric ultrasonic motors, inertia-drive, and piezo-walk-drive. In this review, a comprehensive summary of piezoelectric motors, with their classification from initial idea to recent progress, is presented. This review also includes some of the industrial and commercial applications of piezoelectric motors that are presently available in the market as actuators.

  2. Motor degradation prediction methods

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.

    1996-12-01

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor`s duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures.

  3. Neuroplasticity & Motor Learning

    DEFF Research Database (Denmark)

    Jensen, Jesper Lundbye

    Practice of a new motor task is usually associated with an improvement in performance. Indeed, if we stop practicing and return the next day to the same task, we find that our performance has been maintained and may even be better than it was at the start of the first day. This improvement...... is a measure of our ability to form and store a motor memory of the task. However, the initial memory of the task is labile and may be subject to interference. During and following motor learning plastic changes occur within the central nervous system. On one hand these changes are driven by motor practice......, on the other hand the changes underlie the formation of motor memory and the retention of improved motor performance. During motor learning changes may occur at many different levels within the central nervous system dependent on the type of task and training. Here, we demonstrate different studies from our...

  4. Motor skills training promotes motor functional recovery and induces synaptogenesis in the motor cortex and striatum after intracerebral hemorrhage in rats.

    Science.gov (United States)

    Tamakoshi, Keigo; Ishida, Akimasa; Takamatsu, Yasuyuki; Hamakawa, Michiru; Nakashima, Hiroki; Shimada, Haruka; Ishida, Kazuto

    2014-03-01

    We investigated the effects of motor skills training on several types of motor function and synaptic plasticity following intracerebral hemorrhage (ICH) in rats. Male Wistar rats were injected with collagenase into the left striatum to induce ICH, and they were randomly assigned to the ICH or sham groups. Each group was divided into the motor skills training (acrobatic training) and control (no exercise) groups. The acrobatic group performed acrobatic training from 4 to 28 days after surgery. Motor functions were assessed by motor deficit score, the horizontal ladder test and the wide or narrow beam walking test at several time points after ICH. The number of ΔFosB-positive cells was counted using immunohistochemistry to examine neuronal activation, and the PSD95 protein levels were analyzed by Western blotting to examine synaptic plasticity in the bilateral sensorimotor cortices and striata at 14 and 29 days after ICH. Motor skills training following ICH significantly improved gross motor function in the early phase after ICH and skilled motor coordinated function in the late phase. The number of ΔFosB-positive cells in the contralateral sensorimotor cortex in the acrobatic group significantly increased compared to the control group. PSD95 protein expression in the motor cortex significantly increased in the late phase, and in the striatum, the protein level significantly increased in the early phase by motor skills training after ICH compared to no training after ICH. We demonstrated that motor skills training improved motor function after ICH in rats and enhanced the neural activity and synaptic plasticity in the striatum and sensorimotor cortex. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Body-specific representations of action word meanings in right and left handers

    OpenAIRE

    Daniel Casasanto

    2007-01-01

    If understanding action words involves mentally simulating our own actions, then the neurocognitive representation of word meanings must differ for people with different kinds of bodies, who perform actions in systematically different ways. In a test of the _Body-Specificity Hypothesis_, right- and left-handers were compared on two motor-meaning congruity tasks. Double dissociations in both action execution and recognition memory results showed that right and left handers form body-specific r...

  6. Etiological aspect of left-handedness in adolescents

    Directory of Open Access Journals (Sweden)

    Dragović Milan

    2013-01-01

    Full Text Available Introduction. Lateralization of brain functions such as language and manual dominance (hand preferences and fine motor control are most likely under genetic control. However, this does not preclude the effect of various environmental factors on functional brain lateralization. A strong association of non-right-handedness (left- and mixed-handedness with various neurodevelopmental conditions (e.g. schizophrenia, autism, Rett syndrome implies that in some cases, non-right-handedness may be acquired rather than inherited (i.e., pathologically determined. Objective. The aim of the study was: (a re-investigation of several known risk factors for left-handedness (age of mother and/or father, twin pregnancies, and birth order, and (b examination of hitherto uninvestigated factors (type of birth, Apgar score, maternal smoking during pregnancy. Methods. Putative, causative environmental agents for this shift in manual distributions are explored in a sample of 1031 high school students (404 males and 627 females from Belgrade. Both pre-existing (age of parents, twin pregnancy, and birth order and new (Apgar score, maternal smoking, type of birth putative agents are examined. Results. We found that maternal smoking and low Apgar score (2-6 can significantly increase risk for left-handedness (p=0.046 and p=0.042, respectively. The remaining factors showed no significant association with left-handedness in adolescents. Conclusion. Our study clearly demonstrates that left-handedness may be related to maternal smoking during pregnancy and a low Apgar score on birth.

  7. Etiological aspect of left-handedness in adolescents.

    Science.gov (United States)

    Dragović, Milan; Milenković, Sanja; Kocijancić, Dusica; Zlatko, Sram

    2013-01-01

    Lateralization of brain functions such as language and manual dominance (hand preferences and fine motor control) are most likely under genetic control. However, this does not preclude the effect of various environmental factors on functional brain lateralization. A strong association of non-right-handedness (left- and mixed-handedness) with various neurodevelopmental conditions (e.g. schizophrenia, autism, Rett syndrome) implies that in some cases, non-right-handedness may be acquired rather than inherited (i.e., pathologically determined). The aim of the study was: (a) re-investigation of several known risk factors for left-handedness (age of mother and/or father, twin pregnancies, and birth order), and (b) examination of hitherto uninvestigated factors (type of birth, Apgar score, maternal smoking during pregnancy). Putative, causative environmental agents for this shift in manual distributions are explored in a sample of 1031 high school students (404 males and 627 females) from Belgrade. Both pre-existing (age of parents, twin pregnancy, and birth order) and new (Apgar score, maternal smoking, type of birth) putative agents are examined. We found that maternal smoking and low Apgar score (2-6) can significantly increase risk for left-handedness (p=0.046 and p=0.042, respectively).The remaining factors showed no significant association with left-handedness in adolescents. Our study clearly demonstrates that left-handedness may be related to maternal smoking during pregnancy and a low Apgar score on birth.

  8. Influence analysis of structural parameters on electromagnetic properties of HTS linear induction motor

    International Nuclear Information System (INIS)

    Zhao, J.; Zheng, T.Q.; Zhang, W.; Fang, J.; Liu, Y.M.

    2011-01-01

    A new type high temperature superconductor linear induction motor is designed and analyzed as a prototype to ensure applicability aimed at industrial motors. Made of Bi-2223/Ag, primary windings are distributed with the double-layer concentrated structure. The motor is analyzed by 2D electromagnetic Finite Element Method to get magnetic field distribution, thrust force, vertical force and so on. The critical current of motor and the electromagnetic force are mostly decided by the leakage flux density of primary slot and by the main magnetic flux and eddy current respectively. The structural parameters of motor have a great influence on the distribution of magnetic field. Under constant currents, the properties of motor are analyzed with different slot widths, slot heights and winding turns. The properties of motor, such as the maximum slot leakage flux density, motor thrust and motor vertical force, are analyzed with different structural parameters.

  9. Gastric myoelectrical and antroduodenal motor activity in patients with achalasia

    NARCIS (Netherlands)

    Verhagen, M. A.; Samsom, M.; Smout, A. J.

    1998-01-01

    Achalasia is a primary motor disorder of the oesophagus, in which the myenteric plexus is involved. However, abnormalities in other parts of the digestive tract have also been described in achalasia. Whether gastric myoelectrical and duodenal motor activity in these patients is also affected is

  10. Improving Fine Motor Skills in Young Children: An Intervention Study

    Science.gov (United States)

    Brown, Carol G.

    2010-01-01

    The aim of this study was to evaluate the effect of the Primary Movement programme on the fine motor skills of children in an early years setting in an area of high social disadvantage. Primary Movement is a programme which can be used as an early intervention technique to help children inhibit persistent primary reflexes that have been shown to…

  11. Aphasia following left thalamic hemorrhage

    International Nuclear Information System (INIS)

    Makishita, Hideo; Miyasaka, Motomaro; Tanizaki, Yoshio; Yanagisawa, Nobuo; Sugishita, Morihiro.

    1984-01-01

    We reported 7 patients with left thalamic hemorrhage in the chronic stage (from 1.5 months to 4.5 months), and described language disorders examined by Western Aphasia Battery (WAB) and measured cerebral blood flow by single photon emission CT. Examination of language by WAB revealed 4 aphasics out of 7 cases, and 3 patients had no language deficit. The patient with Wernicke's aphasia showed low density area only in the left posterior thalamus in X-ray CT, and revealed severe low blood flow area extending to left temporal lobe in emission CT. In the case with transcortical sensory aphasia, although X-ray CT showed no obvious low density area, emission CT revealed moderate low flow area in watershed area that involved the territory between posterior cerebral and middle cerebral arteries in the left temporooccipital region in addition to low blood flow at the left thalamus. In one of the two patients classified as anomic aphasia, whose score of repetition (8.4) was higher than that of comprehension (7.4), emission CT showed slight low flow area at the temporo-occipital region similarly as the case with transcortical sensory aphasia. In another case with anomic aphasia, scored 9 on both fluensy and comprehension subtests and 10 on repetition, there was wide low density area all over the left thalamus and midline shift to the right in X-ray CT, and emission CT showed severe low blood flow in the same region spreading widely toward the cerebral surface. On the other hand, in all of the 3 patients without aphasia, emission CT showed low flow region restricted to the left thalamus. (J.P.N.)

  12. Upper motor neuron and extra-motor neuron involvement in amyotrophic lateral sclerosis: A clinical and brain imaging review

    NARCIS (Netherlands)

    van der Graaff, M. M.; de Jong, J. M. B. V.; Baas, F.; de Visser, M.

    2009-01-01

    There is an ongoing discussion whether ALS is primarily a disease of upper motor neurons or lower motor neurons. We undertook a review to assess how new insights have contributed to solve this controversy. For this purpose we selected relevant publications from 1995 onwards focussing on (1) primary

  13. Outcomes of primary repair and primary anastomosis in war-related colon injuries.

    Science.gov (United States)

    Vertrees, Amy; Wakefield, Matthew; Pickett, Chris; Greer, Lauren; Wilson, Abralena; Gillern, Sue; Nelson, Jeffery; Aydelotte, Jayson; Stojadinovic, Alexander; Shriver, Craig

    2009-05-01

    The role of primary repair (PR) of modern day war-related colon injuries remains controversial. Retrospective review of medical records of combat-wounded soldiers with colon injuries sustained during March 2003 to August 2006 was conducted. Injuries were analyzed according to location: right (n = 30), transverse (n = 13), and left (n = 24) sided colon injuries. Two-tailed Fisher's Exact or chi tests were used for statistical analysis. Seventy-seven soldiers returned to Walter Reed Army Medical Center with colon injuries suffered during Operations Enduring Freedom and Iraqi Freedom. Twelve patients with minor colon injuries were excluded. The remaining 65 patients (mean age, 28 +/- 7 years) sustained 67 colon injuries from secondary blast (n = 38); gunshot (n = 27); motor vehicle crash (n = 1) and crush injury (n = 1). Patients arrived at Walter Reed Army Medical Center 5 days (range, 2-16 days) after injury and damage control operations (n = 27, 42%), and were hospitalized for a median of 22 days (range, 1-306 days). Follow-up averaged 311 days (median, 198 days). PR was attempted in right (n = 18, 60%), transverse (n = 11, 85%), and left (n = 9, 38%) sided colon injuries. Delayed definitive treatment of colon injuries occurred in 42% of patients. Failure of repair occurred in 16% of patients and was more likely with concomitant pancreatic, stomach, splenic, diaphragm, and renal injuries. Overall morbidity for ostomy closure after primary ostomy formation was 30%, but increased to 75% for ostomy closure after primary anastomotic or repair failure. PR of war-related colon injuries can be performed safely in selected circumstances in the absence of concomitant organ injury. Delayed anastomosis can often be performed after damage control operations once the patient stabilizes. Ostomy closure complications are more likely after anastomotic failure.

  14. Increased motor cortex excitability during motor imagery in brain-computer interface trained subjects

    Science.gov (United States)

    Mokienko, Olesya A.; Chervyakov, Alexander V.; Kulikova, Sofia N.; Bobrov, Pavel D.; Chernikova, Liudmila A.; Frolov, Alexander A.; Piradov, Mikhail A.

    2013-01-01

    Background: Motor imagery (MI) is the mental performance of movement without muscle activity. It is generally accepted that MI and motor performance have similar physiological mechanisms. Purpose: To investigate the activity and excitability of cortical motor areas during MI in subjects who were previously trained with an MI-based brain-computer interface (BCI). Subjects and Methods: Eleven healthy volunteers without neurological impairments (mean age, 36 years; range: 24–68 years) were either trained with an MI-based BCI (BCI-trained, n = 5) or received no BCI training (n = 6, controls). Subjects imagined grasping in a blocked paradigm task with alternating rest and task periods. For evaluating the activity and excitability of cortical motor areas we used functional MRI and navigated transcranial magnetic stimulation (nTMS). Results: fMRI revealed activation in Brodmann areas 3 and 6, the cerebellum, and the thalamus during MI in all subjects. The primary motor cortex was activated only in BCI-trained subjects. The associative zones of activation were larger in non-trained subjects. During MI, motor evoked potentials recorded from two of the three targeted muscles were significantly higher only in BCI-trained subjects. The motor threshold decreased (median = 17%) during MI, which was also observed only in BCI-trained subjects. Conclusion: Previous BCI training increased motor cortex excitability during MI. These data may help to improve BCI applications, including rehabilitation of patients with cerebral palsy. PMID:24319425

  15. Increased motor cortex excitability during motor imagery in brain-computer interface trained subjects

    Directory of Open Access Journals (Sweden)

    Olesya eMokienko

    2013-11-01

    Full Text Available Background: Motor imagery (MI is the mental performance of movement without muscle activity. It is generally accepted that MI and motor performance have similar physiological mechanisms.Purpose: To investigate the activity and excitability of cortical motor areas during MI in subjects who were previously trained with an MI-based brain-computer interface (BCI.Subjects and methods: Eleven healthy volunteers without neurological impairments (mean age, 36 years; range: 24–68 years were either trained with an MI-based BCI (BCI-trained, n = 5 or received no BCI training (n = 6, controls. Subjects imagined grasping in a blocked paradigm task with alternating rest and task periods. For evaluating the activity and excitability of cortical motor areas we used functional MRI and navigated transcranial magnetic stimulation (nTMS.Results: fMRI revealed activation in Brodmann areas 3 and 6, the cerebellum, and the thalamus during MI in all subjects. The primary motor cortex was activated only in BCI-trained subjects. The associative zones of activation were larger in non-trained subjects. During MI, motor evoked potentials recorded from two of the three targeted muscles were significantly higher only in BCI-trained subjects. The motor threshold decreased (median = 17% during MI, which was also observed only in BCI-trained subjects.Conclusion: Previous BCI training increased motor cortex excitability during MI. These data may help to improve BCI applications, including rehabilitation of patients with cerebral palsy.

  16. Philosophy of Research in Motor Speech Disorders

    Science.gov (United States)

    Weismer, Gary

    2006-01-01

    The primary objective of this position paper is to assess the theoretical and empirical support that exists for the Mayo Clinic view of motor speech disorders in general, and for oromotor, nonverbal tasks as a window to speech production processes in particular. Literature both in support of and against the Mayo clinic view and the associated use…

  17. Deficit in complex sequence processing after a virtual lesion of left BA45.

    Directory of Open Access Journals (Sweden)

    Emeline Clerget

    Full Text Available Although the contribution of Broca's area to motor cognition is generally accepted, its exact role remains controversial. A previous functional imaging study has suggested that Broca's area implements hierarchically organised motor behaviours and, in particular, that its anterior (Brodmann area 45, BA45 and posterior (BA44 parts process, respectively, higher and lower-level hierarchical elements. This function of Broca's area could generalize to other cognitive functions, including language. However, because of the correlative nature of functional imaging data, the causal relationship between Broca's region activation and its behavioural significance cannot be ascertained. To circumvent this limitation, we used on-line repetitive transcranial magnetic stimulation to disrupt neuronal processing in left BA45, left BA44 or left dorsal premotor cortex, three areas that have been shown to exhibit a phasic activation when participants performed hierarchically organised motor behaviours. The experiment was conducted in healthy volunteers performing the same two key-press sequences as those used in a previous imaging study, and which differed in terms of hierarchical organisation. The performance of the lower-order hierarchical task (Experiment #1 was unaffected by magnetic stimulation. In contrast, in the higher-order hierarchical task (Experiment #2, "superordinate" task, we found that a virtual lesion of the anterior part of Broca's area (left BA45 delayed the processing of the cue initiating the sequence in an effector-independent way. Interestingly, in this task, the initiation cue only informed the subjects about the rules to be applied to produce the appropriate response but did not allow them to anticipate the entire motor sequence. A second important finding was a RT decrease following left PMd virtual lesions in the superordinate task, a result compatible with the view that PMd plays a critical role in impulse control. The present study

  18. Priming Hand Motor Training with Repetitive Stimulation of the Fingertips; Performance Gain and Functional Imaging of Training Effects.

    Science.gov (United States)

    Lotze, Martin; Ladda, Aija Marie; Roschka, Sybille; Platz, Thomas; Dinse, Hubert R

    Application of repetitive electrical stimulation (rES) of the fingers has been shown to improve tactile perception and sensorimotor performance in healthy individuals. To increase motor performance by priming the effects of active motor training (arm ability training; AAT) using rES. We compared the performance gain for the training increase of the averaged AAT tasks of both hands in two groups of strongly right-handed healthy volunteers. Functional Magnetic Resonance Imaging (fMRI) before and after AAT was assessed using three tasks for each hand separately: finger sequence tapping, visually guided grip force modulation, and writing. Performance during fMRI was controlled for preciseness and frequency. A total of 30 participants underwent a two-week unilateral left hand AAT, 15 participants with 20 minutes of rES priming of all fingertips of the trained hand, and 15 participants without rES priming. rES-primed AAT improved the trained left-hand performance across all training tasks on average by 32.9%, non-primed AAT improved by 29.5%. This gain in AAT performance with rES priming was predominantly driven by an increased finger tapping velocity. Functional imaging showed comparable changes for both training groups over time. Across all participants, improved AAT performance was associated with a higher contralateral primary somatosensory cortex (S1) fMRI activation magnitude during the grip force modulation task. This study highlights the importance of S1 for hand motor training gain. In addition, it suggests the usage of rES of the fingertips for priming active hand motor training. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Early functional impairment of sensory-motor connectivity in a mouse model of spinal muscular atrophy

    Science.gov (United States)

    Mentis, George Z.; Blivis, Dvir; Liu, Wenfang; Drobac, Estelle; Crowder, Melissa E.; Kong, Lingling; Alvarez, Francisco J.; Sumner, Charlotte J.; O'Donovan, Michael J.

    2011-01-01

    SUMMARY To define alterations of neuronal connectivity that occur during motor neuron degeneration, we characterized the function and structure of spinal circuitry in spinal muscular atrophy (SMA) model mice. SMA motor neurons show reduced proprioceptive reflexes that correlate with decreased number and function of synapses on motor neuron somata and proximal dendrites. These abnormalities occur at an early stage of disease in motor neurons innervating proximal hindlimb muscles and medial motor neurons innervating axial muscles, but only at end-stage disease in motor neurons innervating distal hindlimb muscles. Motor neuron loss follows afferent synapse loss with the same temporal and topographical pattern. Trichostatin A, which improves motor behavior and survival of SMA mice, partially restores spinal reflexes illustrating the reversibility of these synaptic defects. De-afferentation of motor neurons is an early event in SMA and may be a primary cause of motor dysfunction that is amenable to therapeutic intervention. PMID:21315257

  20. Normal motor milestone development for use to promote child care

    Directory of Open Access Journals (Sweden)

    Mahdin A. Husaini

    2016-10-01

    Full Text Available Background Motor behavior is an essential aspect of child development, and usually assessed in terms of age of achievement of motor milestone. The early detection of infants experiencing subtle delays in motor maturation can allow early intervention in developmental problems. Intervention can be more effective if delays are identified early. In order to facilitate the identification of early delays, the Center of Nutrition and Foods Research and Development in Bogor has designed a simple tool to monitor the child (aged 3 to 18 months motor development. Objective To develop an observable of normal gross motor maturation for use to detect deviance or motor delay. Methods A total of 2100 healthy children, aged 3-18 months, from high socio-economic group, in urban and suburban areas, were studied. Body length, weight and motor development were measured on all children. Gross motor development was measured 17 pre selected milestones: lie, sit, crawl, creep, stand Mth assistance, walk with assistance, stand alone, walk alone, and run. Results There were no differences between males and females in the comparison of attainment motor maturation therefore a sex combined curve was developed. Conclusion The curve of normal motor milestone development can be used as a tool to evaluate motor development over time, and/or as a child development card for use in primary health care.

  1. Intraoperative colonic irrigation in the management of left sided ...

    African Journals Online (AJOL)

    Objectives: To evaluate the safety and benefits of antegrade intraoperative colonic irrigation (lavage) and primary anastomosis, after colonic resection, in the treatment of left sided large bowel emergencies. Design: A prospective descriptive study. Setting: Jos University Teaching Hospital, Jos, Nigeria. Participants: Thirty ...

  2. When action turns into words. Activation of motor-based knowledge during categorization of manipulable objects

    DEFF Research Database (Denmark)

    Gerlach, Christian; Law, Ian; Paulson, Olaf B

    2002-01-01

    Functional imaging studies have demonstrated that processing of man-made objects activate the left ventral premotor cortex, which is known to be concerned with motor function. This has led to the suggestion that the comprehension of man-made objects may rely on motor-based knowledge of object uti...

  3. Short-lived brain state after cued motor imagery in naive subjects

    NARCIS (Netherlands)

    Pfurtscheller, G.; Scherer, R.; Müller-Putz, G.R.; Lopes da Silva, F.H.

    2008-01-01

    Multi-channel electroencephalography recordings have shown that a visual cue, indicating right hand, left hand or foot motor imagery, can induce a short-lived brain state in the order of about 500 ms. In the present study, 10 able-bodied subjects without any motor imagery experience (naive subjects)

  4. Motor degradation prediction methods

    International Nuclear Information System (INIS)

    Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.

    1996-01-01

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor's duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures

  5. Symmetry of fMRI activation in the primary sensorimotor cortex during unilateral chewing.

    Science.gov (United States)

    Lotze, M; Domin, M; Kordass, B

    2017-05-01

    Functional magnetic resonance imaging (fMRI) is one of the most advanced techniques to analyze the cerebral effects on many behavior aspects of the oral system such as chewing and mastication. Studies on imaging of the cerebral representation of chewing demonstrated differential results with respect to cortical lateralization during unilateral chewing. The aim of our study is to clarify the effects of cerebral responses during unilateral chewing. We used fMRI to compare brain activities during occlusal function in centric occlusion on natural teeth and chewing on a gum located on the right or the left teeth in 15 healthy subjects. Group data were performed by Talairach normalization and in addition by an assignment of activation maxima to individual anatomical landmarks in order to avoid possible loss of spatial preciseness of activation sites by normalization procedures. Evaluation of group data by Talairach normalization revealed representation sites for occlusal movements in bilateral primary (S1) and secondary (S2) somatosensory cortices, primary motor (M1) and premotor cortices, supplementary motor area (SMA) and medial cingulate gyrus, bilateral anterior cerebellar hemispheres and vermis, insula, orbitofrontal cortex, thalamus, and left pallidum. Right-sided chewing showed no differential activation to left-sided chewing, and both showed activation in areas also involved in bilateral occlusion. Both techniques, the one based on group normalization and the one based on an individual evaluation method, revealed remarkable low differences in activation maximum location in the primary motor, the primary and secondary somatosensory cortices, and the anterior cerebellar lobe. All chewing movements tested involved bilateral sensorimotor activation without a significant lateralization of activation intensities. Overall, a general lateralization of occlusion movements to the dominant side could not be verified in the present study. Chewing on the left or on the right

  6. [Trauma induced left maxillary sinus dislocation of eyeball--a case report].

    Science.gov (United States)

    Chen, Yu; Liu, Cuiping; Cui, Liping

    2013-01-01

    Patient male, 27 year old. Left facial and head trauma for 6 hours, due to motor vehicle accident. Patient state of mind was clear at arrival to hospital. Body temperature: 36C; Pulse: 80 Time/Minute; Breath: 20 Time/Minute; Blood pressure: 120/80 mm Hg. An irregular, horizontal laceration at arch of left eyebrow, approximately 8-10 cm. A laceration on left wing of nose skin, approximately 1 cm. A laceration also under lower eyelid skin of right eye, approximately 2 cm. Left blepharedema and enophthalmos. Orbital and nasal sinuses CT indications:contusion and laceration of the left frontal lobe of brain; fracture of the left orbital frontal, ethmoid, sphenoid bone, left nasal, maxillary sinus and zygoma with soft tissue contusion and laceration; the left eyeball and optic nerve sunk into the maxillary sinus (See figure 1). (1) Multiple orbital fractures; (2) Left maxillary sinus dislocation of eyeball; (3) The left frontal lobe contusion and laceration of brain.

  7. Left cytoarchitectonic BA 44 processes syntactic gender violations in determiner phrases.

    Science.gov (United States)

    Heim, Stefan; van Ermingen, Muna; Huber, Walter; Amunts, Katrin

    2010-10-01

    Recent neuroimaging studies make contradictory predictions about the involvement of left Brodmann's area (BA) 44 in processing local syntactic violations in determiner phrases (DPs). Some studies suggest a role for BA 44 in detecting local syntactic violations, whereas others attribute this function to the left premotor cortex. Therefore, the present event-related functional magnetic resonance imaging (fMRI) study investigated whether left-cytoarchitectonic BA 44 was activated when German DPs involving syntactic gender violations were compared with correct DPs (correct: 'der Baum'-the[masculine] tree[masculine]; violated: 'das Baum'--the[neuter] tree[masculine]). Grammaticality judgements were made for both visual and auditory DPs to be able to generalize the results across modalities. Grammaticality judgements involved, among others, left BA 44 and left BA 6 in the premotor cortex for visual and auditory stimuli. Most importantly, activation in left BA 44 was consistently higher for violated than for correct DPs. This finding was behaviourally corroborated by longer reaction times for violated versus correct DPs. Additional brain regions, showing the same effect, included left premotor cortex, supplementary motor area, right middle and superior frontal cortex, and left cerebellum. Based on earlier findings from the literature, the results indicate the involvement of left BA 44 in processing local syntactic violations when these include morphological features, whereas left premotor cortex seems crucial for the detection of local word category violations. © 2010 Wiley-Liss, Inc.

  8. The significance of clumsy gestures in apraxia following a left hemisphere stroke.

    Science.gov (United States)

    Kangas, Maria; Tate, Robyn L

    2006-02-01

    Individuals who sustain a cerebrovascular accident (CVA) in the dominant (typically left) hemisphere, are at increased risk of developing motor skill deficits due to motor-sensory impairments, as well as cognitive impairments (e.g., apraxia). Clumsiness is a central component affecting motor skills in individuals with a left hemisphere CVA (LCVA). The term "clumsiness" however, has not been adequately operationalised in the apraxia literature in clinical terms, thereby making diagnosis difficult and its contribution to apraxic disorders uncertain. Accordingly, in this study "clumsiness" was explicitly defined by establishing a set of four criteria. The non-dominant (left) hand movements of three groups of participants were examined: 10 individuals with limb-apraxia (APX); 8 individuals without limb apraxia who had sustained a LCVA (NAPX); and 19 healthy individuals without a history of brain impairment (NBD). Performance was examined on four sets of motor tasks, including a conventional praxis test, basic perceptual-motor co-ordination and fine movement tasks, and a naturalistic actions test. A striking finding that emerged was that clumsy errors occurred frequently in all groups, including the NBD group, particularly on the praxis and fine motor tasks. In terms of quantity of clumsy errors emitted, the APX group made significantly more clumsy gestures across all four tasks in comparison to the NBD group. No differences emerged between the two clinical groups, however, in terms of total clumsy gestures emitted on the naturalistic action tasks, or the type of clumsy errors emitted on the fine motor tasks. Thus, frequency and types of clumsy gestures were partly determined by task demands. These results highlight the need to consider the contribution of clumsy gestures in limb functioning following hemispheric brain damage. In broad terms, these findings emphasise the importance of adopting more detailed analyses of movement errors in apraxia and assessments of

  9. Cryogenic Electric Motor Tested

    Science.gov (United States)

    Brown, Gerald V.

    2004-01-01

    Technology for pollution-free "electric flight" is being evaluated in a number of NASA Glenn Research Center programs. One approach is to drive propulsive fans or propellers with electric motors powered by fuel cells running on hydrogen. For large transport aircraft, conventional electric motors are far too heavy to be feasible. However, since hydrogen fuel would almost surely be carried as liquid, a propulsive electric motor could be cooled to near liquid hydrogen temperature (-423 F) by using the fuel for cooling before it goes to the fuel cells. Motor windings could be either superconducting or high purity normal copper or aluminum. The electrical resistance of pure metals can drop to 1/100th or less of their room-temperature resistance at liquid hydrogen temperature. In either case, super or normal, much higher current density is possible in motor windings. This leads to more compact motors that are projected to produce 20 hp/lb or more in large sizes, in comparison to on the order of 2 hp/lb for large conventional motors. High power density is the major goal. To support cryogenic motor development, we have designed and built in-house a small motor (7-in. outside diameter) for operation in liquid nitrogen.

  10. Hybrid vehicle motor alignment

    Science.gov (United States)

    Levin, Michael Benjamin

    2001-07-03

    A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

  11. Short-Term Limb Immobilization Affects Cognitive Motor Processes

    Science.gov (United States)

    Toussaint, Lucette; Meugnot, Aurore

    2013-01-01

    We examined the effects of a brief period of limb immobilization on the cognitive level of action control. A splint placed on the participants' left hand was used as a means of immobilization. We used a hand mental rotation task to investigate the immobilization-induced effects on motor imagery performance (Experiments 1 and 2) and a number mental…

  12. Kinesthetic alexia due to left parietal lobe lesions.

    Science.gov (United States)

    Ihori, Nami; Kawamura, Mitsuru; Araki, Shigeo; Kawachi, Juro

    2002-01-01

    To investigate the neuropsychological mechanisms of kinesthetic alexia, we asked 7 patients who showed kinesthetic alexia with preserved visual reading after damage to the left parietal region to perform tasks consisting of kinesthetic written reproduction (writing down the same letter as the kinesthetic stimulus), kinesthetic reading aloud, visual written reproduction (copying letters), and visual reading aloud of hiragana (Japanese phonograms). We compared the performance in these tasks and the lesion sites in each patient. The results suggested that deficits in any one of the following functions might cause kinesthetic alexia: (1) the retrieval of kinesthetic images (motor engrams) of characters from kinesthetic stimuli, (2) kinesthetic images themselves, (3) access to cross-modal association from kinesthetic images, and (4) cross-modal association itself (retrieval of auditory and visual images from kinesthetic images of characters). Each of these factors seemed to be related to different lesion sites in the left parietal lobe. Copyright 2002 S. Karger AG, Basel

  13. Systolic left ventricular function according to left ventricular concentricity and dilatation in hypertensive patients

    DEFF Research Database (Denmark)

    Bang, Casper; Gerdts, Eva; Aurigemma, Gerard P

    2013-01-01

    Left ventricular hypertrophy [LVH, high left ventricular mass (LVM)] is traditionally classified as concentric or eccentric based on left ventricular relative wall thickness. We evaluated left ventricular systolic function in a new four-group LVH classification based on left ventricular dilatation...... [high left ventricular end-diastolic volume (EDV) index and concentricity (LVM/EDV)] in hypertensive patients....

  14. ''Natural'' left-right symmetry

    International Nuclear Information System (INIS)

    Mohapatra, R.N.; Pati, J.C.

    1975-01-01

    It is remarked that left-right symmetry of the starting gauge interactions is retained as a ''natural'' symmetry if it is broken in no way except possibly by mass terms in the Lagrangian. The implications of this result for the unification of coupling constants and for parity nonconservation at low and high energies are stressed

  15. Complex Regional Pain Syndrome Type I Affects Brain Structure in Prefrontal and Motor Cortex

    Science.gov (United States)

    Pleger, Burkhard; Draganski, Bogdan; Schwenkreis, Peter; Lenz, Melanie; Nicolas, Volkmar; Maier, Christoph; Tegenthoff, Martin

    2014-01-01

    The complex regional pain syndrome (CRPS) is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1) and motor cortex (M1) contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls) were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the “non-flipped” data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the “flipped” data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control. PMID:24416397

  16. Complex regional pain syndrome type I affects brain structure in prefrontal and motor cortex.

    Directory of Open Access Journals (Sweden)

    Burkhard Pleger

    Full Text Available The complex regional pain syndrome (CRPS is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1 and motor cortex (M1 contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the "non-flipped" data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the "flipped" data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control.

  17. Combining motor imagery with selective sensation toward a hybrid-modality BCI.

    Science.gov (United States)

    Yao, Lin; Meng, Jianjun; Zhang, Dingguo; Sheng, Xinjun; Zhu, Xiangyang

    2014-08-01

    A hybrid modality brain-computer interface (BCI) is proposed in this paper, which combines motor imagery with selective sensation to enhance the discrimination between left and right mental tasks, e.g., the classification between left/ right stimulation sensation and right/ left motor imagery. In this paradigm, wearable vibrotactile rings are used to stimulate both the skin on both wrists. Subjects are required to perform the mental tasks according to the randomly presented cues (i.e., left hand motor imagery, right hand motor imagery, left stimulation sensation or right stimulation sensation). Two-way ANOVA statistical analysis showed a significant group effect (F (2,20) = 7.17, p = 0.0045), and the Benferroni-corrected multiple comparison test (with α = 0.05) showed that the hybrid modality group is 11.13% higher on average than the motor imagery group, and 10.45% higher than the selective sensation group. The hybrid modality experiment exhibits potentially wider spread usage within ten subjects crossed 70% accuracy, followed by four subjects in motor imagery and five subjects in selective sensation. Six subjects showed statistically significant improvement ( Benferroni-corrected) in hybrid modality in comparison with both motor imagery and selective sensation. Furthermore, among subjects having difficulties in both motor imagery and selective sensation, the hybrid modality improves their performance to 90% accuracy. The proposed hybrid modality BCI has demonstrated clear benefits for those poorly performing BCI users. Not only does the requirement of motor and sensory anticipation in this hybrid modality provide basic function of BCI for communication and control, it also has the potential for enhancing the rehabilitation during motor recovery.

  18. Application of diagnostics to determine motor operated valve operational readiness

    International Nuclear Information System (INIS)

    Eissenberg, D.M.

    1987-01-01

    ORNL has been carrying out an aging assessment of motor-operated valves (MOVs) with the primary objective of recommending diagnostic methods for detecting and trending aging. As a result of experimental investigations at ORNL, it was discovered that the motor current during a valve stroke was a very useful diagnostic parameter for detecting and trending many MOV drive train load variations. The motor current signatures were analyzed at four levels: mean value for a stroke, gross trends during a stroke, transients, and noise frequency spectra. Examples illustrating the use of this technique are presented. The use of motor current signature analysis was also shown to apply to other electric motor driven equipment. Future work includes developing a data base of MOV diagnostics, including criteria for determining the extent of degradation and application of the technique to other LWR motor driven safety equipment

  19. Apraxia and spatial inattention dissociate in left hemisphere stroke.

    Science.gov (United States)

    Timpert, David C; Weiss, Peter H; Vossel, Simone; Dovern, Anna; Fink, Gereon R

    2015-10-01

    Theories of lateralized cognitive functions propose a dominance of the left hemisphere for motor control and of the right hemisphere for spatial attention. Accordingly, spatial attention deficits (e.g., neglect) are more frequently observed after right-hemispheric stroke, whereas apraxia is a common consequence of left-hemispheric stroke. Clinical reports of spatial attentional deficits after left hemisphere (LH) stroke also exist, but are often neglected. By applying parallel analysis (PA) and voxel-based lesion-symptom mapping (VLSM) to data from a comprehensive neuropsychological assessment of 74 LH stroke patients, we here systematically investigate the relationship between spatial inattention and apraxia and their neural bases. PA revealed that apraxic (and language comprehension) deficits loaded on one common component, while deficits in attention tests were explained by another independent component. Statistical lesion analyses with the individual component scores showed that apraxic (and language comprehension) deficits were significantly associated with lesions of the left superior longitudinal fascicle (SLF). Data suggest that in LH stroke spatial attention deficits dissociate from apraxic (and language comprehension) deficits. These findings contribute to models of lateralised cognitive functions in the human brain. Moreover, our findings strongly suggest that LH stroke patients should be assessed systematically for spatial attention deficits so that these can be included in their rehabilitation regime. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Modeling Induction Motor Imbalances

    DEFF Research Database (Denmark)

    Armah, Kabenla; Jouffroy, Jerome; Duggen, Lars

    2016-01-01

    This paper gives a study into the development of a generalized model for a three-phase induction motor that offers flexibility of simulating balanced and unbalanced parameter scenarios. By analyzing the interaction of forces within the motor, we achieve our main objective of deriving the system d...

  1. Artificial molecular motors

    NARCIS (Netherlands)

    Kassem, Salma; van Leeuwen, Thomas; Lubbe, Anouk S.; Wilson, Miriam R.; Feringa, Ben L.; Leigh, David A.

    2017-01-01

    Motor proteins are nature's solution for directing movement at the molecular level. The field of artificial molecular motors takes inspiration from these tiny but powerful machines. Although directional motion on the nanoscale performed by synthetic molecular machines is a relatively new

  2. Motor features in posterior cortical atrophy and their imaging correlates.

    Science.gov (United States)

    Ryan, Natalie S; Shakespeare, Timothy J; Lehmann, Manja; Keihaninejad, Shiva; Nicholas, Jennifer M; Leung, Kelvin K; Fox, Nick C; Crutch, Sebastian J

    2014-12-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by impaired highe