WorldWideScience

Sample records for left motor areas

  1. The role of left supplementary motor area in grip force scaling.

    Directory of Open Access Journals (Sweden)

    Olivier White

    Full Text Available Skilled tool use and object manipulation critically relies on the ability to scale anticipatorily the grip force (GF in relation to object dynamics. This predictive behaviour entails that the nervous system is able to store, and then select, the appropriate internal representation of common object dynamics, allowing GF to be applied in parallel with the arm motor commands. Although psychophysical studies have provided strong evidence supporting the existence of internal representations of object dynamics, known as "internal models", their neural correlates are still debated. Because functional neuroimaging studies have repeatedly designated the supplementary motor area (SMA as a possible candidate involved in internal model implementation, we used repetitive transcranial magnetic stimulation (rTMS to interfere with the normal functioning of left or right SMA in healthy participants performing a grip-lift task with either hand. TMS applied over the left, but not right, SMA yielded an increase in both GF and GF rate, irrespective of the hand used to perform the task, and only when TMS was delivered 130-180 ms before the fingers contacted the object. We also found that both left and right SMA rTMS led to a decrease in preload phase durations for contralateral hand movements. The present study suggests that left SMA is a crucial node in the network processing the internal representation of object dynamics although further experiments are required to rule out that TMS does not affect the GF gain. The present finding also further substantiates the left hemisphere dominance in scaling GF.

  2. Functional MRI evaluation of supplementary motor area language dominance in right- and left-handed subjects.

    Science.gov (United States)

    Dalacorte, Amauri; Portuguez, Mirna Wetters; Maurer das Neves, Carlos Magno; Anes, Maurício; Dacosta, Jaderson Costa

    2012-01-01

    Functional magnetic resonance imaging (fMRI) is a non-invasive brain imaging technique widely used in the evaluation of the brain function that provides images with high temporal and spatial resolution. Investigation of the supplementary motor area (SMA) function is critical in the pre-surgical evaluation of neurological patients, since marked individual differences and complex overlapping with adjacent cortical areas exist, and it is important to spare the SMA from lesions when adjacent cortical tissue is surgically removed. We used fMRI to assess the activity of SMA in six right-handed and six left-handed healthy volunteers when a task requiring silent repetition of a series of words was given. Brain activation areas in each of the subjects were localized according to the standard Talairach coordinate space, and the individual voxels for each map were compared after 3D sagittal images were created and SMA was delimited. Quantitative analysis of hemispheric and bilateral SMA activation was described as mean ± standard deviation of hot points/total points. The results show that the language task induced bilateral SMA activation. Left SMA activation was significantly higher than right SMA activation in both right-handed and left-handed subjects.

  3. Electroencephalographic (eeg coherence between visual and motor areas of the left and the right brain hemisphere while performing visuomotor task with the right and the left hand

    Directory of Open Access Journals (Sweden)

    Simon Brežan

    2007-09-01

    Full Text Available Background: Unilateral limb movements are based on the activation of contralateral primary motor cortex and the bilateral activation of premotor cortices. Performance of a visuomotor task requires a visuomotor integration between motor and visual cortical areas. The functional integration (»binding« of different brain areas, is probably mediated by the synchronous neuronal oscillatory activity, which can be determined by electroencephalographic (EEG coherence analysis. We introduced a new method of coherence analysis and compared coherence and power spectra in the left and right hemisphere for the right vs. left hand visuomotor task, hypothesizing that the increase in coherence and decrease in power spectra while performing the task would be greater in the contralateral hemisphere.Methods: We analyzed 6 healthy subjects and recorded their electroencephalogram during visuomotor task with the right or the left hand. For data analysis, a special Matlab computer programme was designed. The results were statistically analysed by a two-way analysis of variance, one-way analysis of variance and post-hoc t-tests with Bonferroni correction.Results: We demonstrated a significant increase in coherence (p < 0.05 for the visuomotor task compared to control tasks in alpha (8–13 Hz in beta 1 (13–20 Hz frequency bands between visual and motor electrodes. There were no significant differences in coherence nor power spectra depending on the hand used. The changes of coherence and power spectra between both hemispheres were symmetrical.Conclusions: In previous studies, a specific increase of coherence and decrease of power spectra for the visuomotor task was found, but we found no conclusive asymmetries when performing the task with right vs. left hand. This could be explained in a way that increases in coherence and decreases of power spectra reflect symmetrical activation and cooperation between more complex visual and motor brain areas.

  4. Left posterior-dorsal area 44 couples with parietal areas to promote speech fluency, while right area 44 activity promotes the stopping of motor responses.

    Science.gov (United States)

    Neef, Nicole E; Bütfering, Christoph; Anwander, Alfred; Friederici, Angela D; Paulus, Walter; Sommer, Martin

    2016-11-15

    Area 44 is a cytoarchitectonically distinct portion of Broca's region. Parallel and overlapping large-scale networks couple with this region thereby orchestrating heterogeneous language, cognitive, and motor functions. In the context of stuttering, area 44 frequently comes into focus because structural and physiological irregularities affect developmental trajectories, stuttering severity, persistency, and etiology. A remarkable phenomenon accompanying stuttering is the preserved ability to sing. Speaking and singing are connatural behaviours recruiting largely overlapping brain networks including left and right area 44. Analysing which potential subregions of area 44 are malfunctioning in adults who stutter, and what effectively suppresses stuttering during singing, may provide a better understanding of the coordination and reorganization of large-scale brain networks dedicated to speaking and singing in general. We used fMRI to investigate functionally distinct subregions of area 44 during imagery of speaking and imaginary of humming a melody in 15 dextral males who stutter and 17 matched control participants. Our results are fourfold. First, stuttering was specifically linked to a reduced activation of left posterior-dorsal area 44, a subregion that is involved in speech production, including phonological word processing, pitch processing, working memory processes, sequencing, motor planning, pseudoword learning, and action inhibition. Second, functional coupling between left posterior area 44 and left inferior parietal lobule was deficient in stuttering. Third, despite the preserved ability to sing, males who stutter showed bilaterally a reduced activation of area 44 when imagine humming a melody, suggesting that this fluency-enhancing condition seems to bypass posterior-dorsal area 44 to achieve fluency. Fourth, time courses of the posterior subregions in area 44 showed delayed peak activations in the right hemisphere in both groups, possibly signaling the

  5. Right lower limb apraxia in a patient with left supplementary motor area infarction: intactness of the corticospinal tract confirmed by transcranial magnetic stimulation

    Directory of Open Access Journals (Sweden)

    Min Cheol Chang

    2015-01-01

    Full Text Available We reported a 50-year-old female patient with left supplementary motor area infarction who presented right lower limb apraxia and investigated the possible causes using transcranial magnetic stimulation. The patient was able to walk and climb stairs spontaneously without any assistance at 3 weeks after onset. However, she was unable to intentionally move her right lower limb although she understood what she supposed to do. The motor evoked potential evoked by transcranial magnetic stimulation from the right lower limb was within the normal range, indicating that the corticospinal tract innervating the right lower limb was uninjured. Thus, we thought that her motor dysfunction was not induced by motor weakness, and confirmed her symptoms as apraxia. In addition, these results also suggest that transcranial magnetic stimulation is helpful for diagnosing apraxia.

  6. Body-specific motor imagery of hand actions: neural evidence from right- and left-handers

    Directory of Open Access Journals (Sweden)

    Roel M Willems

    2009-11-01

    Full Text Available If motor imagery uses neural structures involved in action execution, then the neural correlates of imagining an action should differ between individuals who tend to execute the action differently. Here we report fMRI data showing that motor imagery is influenced by the way people habitually perform motor actions with their particular bodies; that is, motor imagery is ‘body-specific’ (Casasanto, 2009. During mental imagery for complex hand actions, activation of cortical areas involved in motor planning and execution was left-lateralized in right-handers but right-lateralized in left-handers. We conclude that motor imagery involves the generation of an action plan that is grounded in the participant’s motor habits, not just an abstract representation at the level of the action’s goal. People with different patterns of motor experience form correspondingly different neurocognitive representations of imagined actions.

  7. Are there excitability changes in the hand motor cortex during speech in left-handed subjects?

    Science.gov (United States)

    Tokimura, Hiroshi; Tokimura, Yoshika; Arita, Kazunori

    2012-01-01

    Hemispheric dominance was investigated in left-handed subjects using single transcranial magnetic stimulation to assess the possible effect of forced change in the dominant hand. Single transcranial magnetic stimuli were delivered randomly over the hand area of the left or right motor cortex of 8 Japanese self-declared left-handed adult volunteers. Electromyographic responses were recorded in the relaxed first dorsal interosseous muscle while the subjects read aloud. Laterality quotient calculated by the Edinburgh Inventory ranged from -100 to -5.26 and laterality index calculated from motor evoked potentials ranged from -86.2 to 38.8. There was no significant correlation between laterality quotient and laterality index. Mean data values across all 8 subjects indicated significant increases only in the left hand. Our ratio analysis of facilitation of the hand motor potentials showed that 2 each of the 8 self-declared left-handers were right- and left-hand dominant and the other 4 were bilateral-hand dominant. Speech dominancy was localized primarily in the right cerebral hemisphere in left-handed subjects, but some individuals exhibited bilateral or left dominance, possibly attributable to the forced change of hand preference for writing in childhood. Our findings suggest changes in the connections between the speech and hand motor areas.

  8. Enhancing motor network activity using real-time functional MRI neurofeedback of left premotor cortex

    Directory of Open Access Journals (Sweden)

    Theo Ferreira Marins

    2015-12-01

    Full Text Available Neurofeedback by functional Magnetic Resonance Imaging (fMRI is a technique of potential therapeutic relevance that allows individuals to be aware of their own neurophysiological responses and to voluntarily modulate the activity of specific brain regions, such as the premotor cortex (PMC, important for motor recovery after brain injury. We investigated (i whether healthy human volunteers are able to up-regulate the activity of the left PMC during a right hand finger tapping motor imagery (MI task while receiving continuous fMRI-neurofeedback, and (ii whether successful modulation of brain activity influenced non-targeted motor control regions. During the MI task, participants of the neurofeedback group (NFB received ongoing visual feedback representing the level of fMRI responses within their left PMC. Control (CTL group participants were shown similar visual stimuli, but these were non-contingent on brain activity. Both groups showed equivalent levels of behavioral ratings on arousal and motor imagery, before and during the fMRI protocol. In the NFB, but not in CLT group, brain activation during the last run compared to the first run revealed increased activation in the left PMC. In addition, the NFB group showed increased activation in motor control regions extending beyond the left PMC target area, including the supplementary motor area, basal ganglia and cerebellum. Moreover, in the last run, the NFB group showed stronger activation in the left PMC/inferior frontal gyrus when compared to the CTL group. Our results indicate that modulation of PMC and associated motor control areas can be achieved during a single neurofeedback-fMRI session. These results contribute to a better understanding of the underlying mechanisms of MI-based neurofeedback training, with direct implications for rehabilitation strategies in severe brain disorders, such as stroke.

  9. Reduction in left supplementary motor area grey matter in adult female fibromyalgia sufferers with marked fatigue and without affective disorder: a pilot controlled 3-T magnetic resonance imaging voxel-based morphometry study.

    Science.gov (United States)

    Puri, B K; Agour, M; Gunatilake, K Dr; Fernando, K Ac; Gurusinghe, A I; Treasaden, I H

    2010-01-01

    This study aimed to test the hypothesis that structural grey matter brain changes might occur in the chronic intractable pain disorder fibromyalgia when this is associated with marked fatigue in the absence of a DSM-IV-TR (Diagnostic and Statistical Manual of Mental Disorders, 4th edition, text revision) diagnosis of affective disorder. High-resolution 3-T cerebral magnetic resonance imaging scans were acquired in 10 female, right-handed, non-smoking, white Caucasian subjects: five patients with fibromyalgia associated with marked fatigue and five age-matched healthy women. Voxel-wise generalized linear modelling of the processed neuroanatomical data using permutation-based non-parametric testing, forming clusters at t > 2.3 and testing clusters for significance at P fibromyalgia and marked fatigue in the left supplementary motor area. This brain region plays an important role in cognitive or executive control and in the translation of painful cognition; these functions are impaired in fibromyalgia associated with marked fatigue.

  10. Motor resonance in left- and right-handers: evidence for effector-independent motor representations

    Directory of Open Access Journals (Sweden)

    Luisa eSartori

    2013-02-01

    Full Text Available The idea of motor resonance was born at the time that it was demonstrated that cortical and spinal pathways of the motor system are specifically activated during both action-observation and execution. What is not known is if the human action observation-execution matching system simulates actions through motor representations specifically attuned to the laterality of the observed effectors (i.e., effector-dependent representations or through abstract motor representations unconnected to the observed effector (i.e., effector-independent representations.To answer that question we need to know how the information necessary for motor resonance is represented or integrated within the representation of an effector. Transcranial magnetic stimulation (TMS-induced motor evoked potentials (MEPs were thus recorded from the dominant and non-dominant hands of left- and right-handed participants while they observed a left- or a right-handed model grasping an object. The anatomical correspondence between the effector being observed and the observer’s effector classically reported in the literature was confirmed by the MEP response in the dominant hand of participants observing models with their same hand preference. This effect was found in both left- as well as in right-handers. When a broader spectrum of options, such as actions performed by a model with a different hand preference, was instead considered, that correspondence disappeared. Motor resonance was noted in the observer’s dominant effector regardless of the laterality of the hand being observed. This would indicate that there is a more sophisticated mechanism which works to convert someone else’s pattern of movement into the observer’s optimal motor commands and that effector-independent representations specifically modulate motor resonance.

  11. Motor imagery cognitive network after left ischemic stroke: study of the patients during mental rotation task.

    Directory of Open Access Journals (Sweden)

    Jing Yan

    Full Text Available Although motor imagery could improve motor rehabilitation, the detailed neural mechanisms of motor imagery cognitive process of stroke patients, particularly from functional network perspective, remain unclear. This study investigated functional brain network properties in each cognitive sub-stage of motor imagery of stroke patients with ischemic lesion in left hemisphere to reveal the impact of stroke on the cognition of motor imagery. Both stroke patients and control subjects participated in mental rotation task, which includes three cognitive sub-stages: visual stimulus perception, mental rotation and response cognitive process. Event-related electroencephalograph was recorded and interdependence between two different cortical areas was assessed by phase synchronization. Both global and nodal properties of functional networks in three sub-stages were statistically analyzed. Phase synchronization of stroke patients significantly reduced in mental rotation sub-stage. Longer characteristic path length and smaller global clustering coefficient of functional network were observed in patients in mental rotation sub-stage which implied the impaired segregation and integration. Larger nodal clustering coefficient and betweenness in contralesional occipitoparietal and frontal area respectively were observed in patients in all sub-stages. In addition, patients also showed smaller betweenness in ipsilesional central-parietal area in response sub-stage. The compensatory effects on local connectedness and centrality indicated the neuroplasticity in contralesional hemisphere. The functional brain networks of stroke patients demonstrated significant alterations and compensatory effects during motor imagery.

  12. Cognitive alterations in motor imagery process after left hemispheric ischemic stroke.

    Directory of Open Access Journals (Sweden)

    Jing Yan

    Full Text Available BACKGROUND: Motor imagery training is a promising rehabilitation strategy for stroke patients. However, few studies had focused on the neural mechanisms in time course of its cognitive process. This study investigated the cognitive alterations after left hemispheric ischemic stroke during motor imagery task. METHODOLOGY/PRINCIPAL FINDINGS: Eleven patients with ischemic stroke in left hemisphere and eleven age-matched control subjects participated in mental rotation task (MRT of hand pictures. Behavior performance, event-related potential (ERP and event-related (desynchronization (ERD/ERS in beta band were analyzed to investigate the cortical activation. We found that: (1 The response time increased with orientation angles in both groups, called "angle effect", however, stoke patients' responses were impaired with significantly longer response time and lower accuracy rate; (2 In early visual perceptual cognitive process, stroke patients showed hypo-activations in frontal and central brain areas in aspects of both P200 and ERD; (3 During mental rotation process, P300 amplitude in control subjects decreased while angle increased, called "amplitude modulation effect", which was not observed in stroke patients. Spatially, patients showed significant lateralization of P300 with activation only in contralesional (right parietal cortex while control subjects showed P300 in both parietal lobes. Stroke patients also showed an overall cortical hypo-activation of ERD during this sub-stage; (4 In the response sub-stage, control subjects showed higher ERD values with more activated cortical areas particularly in the right hemisphere while angle increased, named "angle effect", which was not observed in stroke patients. In addition, stroke patients showed significant lower ERD for affected hand (right response than that for unaffected hand. CONCLUSIONS/SIGNIFICANCE: Cortical activation was altered differently in each cognitive sub-stage of motor imagery after

  13. Functional MRI of motor speech area combined with motor stimulation during resting period

    International Nuclear Information System (INIS)

    Lim, Yeong Su; Park, Hark Hoon; Chung, Gyung Ho; Lee, Sang Yong; Chon, Su Bin; Kang, Shin Hwa

    1999-01-01

    To evaluate functional MR imaging of the motor speech area with and without motor stimulation during the rest period. Nine healthy, right-handed volunteers(M:F=7:2, age:21-40years) were included in this study. Brain activity was mapped using a multislice, gradient echo single shot EPI on a 1.5T MR scanner. The paradigm consisted on a series of alternating rest and activation tasks, performed six times. Each volunteer in the first study(group A) was given examples of motor stimulation during the rest period, while each in the second study(group B) was not given examples of a rest period. Motor stimulation in group A was achieved by continuously flexing five fingers of the right hand. In both groups, maximum internal word generation was achieved during the activation period. Using fMRI analysis software(Stimulate 5.0) and a cross-correlation method(backgroud threshold, 200; correlation threshold, 0.3; ceiling, 1.0; floor, 0.3; minimal count, 3), functional images were analysed. After correlating the activated foci and a time-signal intensity curve, the activated brain cortex and number of pixels were analysed and compared between the two tasks. The t-test was used for statistical analysis. In all nine subjects in group A and B, activation was observed in and adjacent to the left Broca's area. The mean number of activated pixels was 31.6 in group A and 27.8 in group B, a difference which was not statistically significant(P>0.1). Activities in and adjacent to the right Broca's area were seen in seven of group A and four of group B. The mean number of activated pixels was 14.9 in group A and 18 in group B. Eight of nine volunteers in group A showed activity in the left primary motor area with negative correlation to the time-signal intensity curve. The mean number of activated pixels for this group was 17.5. In three volonteers, activation in the right primary motor area was also observed, the mean number of activated pixels in these cases was 10.0. During the rest

  14. Modulation of left primary motor cortex excitability after bimanual training and intermittent theta burst stimulation to left dorsal premotor cortex.

    Science.gov (United States)

    Neva, Jason L; Vesia, Michael; Singh, Amaya M; Staines, W Richard

    2014-03-15

    Bimanual visuomotor movement training (BMT) enhances the excitability of human preparatory premotor and primary motor (M1) cortices compared to unimanual movement. This occurs when BMT involves mirror symmetrical movements of both upper-limbs (in-phase) but not with non-symmetrical movements (anti-phase). The neural mechanisms mediating the effect of BMT is unclear, but may involve interhemispheric connections between homologous M1 representations as well as the dorsal premotor cortices (PMd). The purpose of this study is to assess how intermittent theta burst stimulation (iTBS) of the left PMd affects left M1 excitability, and the possible combined effects of iTBS to left PMd applied before a single session of BMT. Left M1 excitability was quantified using transcranial magnetic stimulation (TMS) in terms of both the amplitudes and spatial extent of motor evoked potentials (MEPs) for the extensor carpi radialis (ECR) before and multiple time points following (1) BMT, (2) iTBS to left PMd or (3) iTBS to left PMd and BMT. Although there was not a greater increase in either specific measure of M1 excitability due to the combination of the interventions, iTBS applied before BMT showed that both the spatial extent and global MEP amplitude for the ECR became larger in parallel, whereas the spatial extent was enhanced with BMT alone and global MEP amplitude was enhanced with iTBS to left PMd alone. These results suggest that the modulation of rapid functional M1 excitability associated with BMT and iTBS of the left PMd could operate under related early markers of neuro-plastic mechanisms, which may be expressed in concurrent and distinct patterns of M1 excitability. Critically, this work may guide rehabilitation training and stimulation techniques that modulate cortical excitability after brain injury. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Lower motor neuron findings after upper motor neuron injury: Insights from postoperative supplementary motor area syndrome

    Directory of Open Access Journals (Sweden)

    Jeffrey E Florman

    2013-03-01

    Full Text Available Hypertonia and hypereflexia are classically described responses to upper motor neuron injury. However, acute hypotonia and areflexia with motor deficit are hallmark findings after many central nervous system insults such as acute stroke and spinal shock. Historic theories to explain these contradictory findings have implicated a number of potential mechanisms mostly relying on the loss of descending corticospinal input as the underlying etiology. Unfortunately, these simple descriptions consistently fail to adequately explain the pathophysiology and connectivity leading to acute hyporeflexia and delayed hypereflexia that result from such insult. This article highlights the common observation of acute hyporeflexia after central nervous system insults and explores the underlying anatomy and physiology. Further, evidence for the underlying connectivity is presented and implicates the dominant role of supraspinal inhibitory influence originating in the supplementary motor area descending through the corticospinal tracts. Unlike traditional explanations, this theory more adequately explains the findings of postoperative supplementary motor area syndrome in which hyporeflexive motor deficit is observed acutely in the face of intact primary motor cortex connections to the spinal cord. Further, the proposed connectivity can be generalized to help explain other insults including stroke, atonic seizures, and spinal shock.

  16. Reflex sympathetic dystrophy of the left hand and motor impairments of the unaffected right hand : impaired central motor processing?

    NARCIS (Netherlands)

    Ribbers, Gerard M.; Mulder, Theo; Geurts, Alexander C.; Den Otter, R.A.

    Objective: To test whether central motor processing can be impaired in chronic reflex sympathetic dystrophy (RSD). Design: Experimental 2-group analysis. Setting: Tertiary care center in the Netherlands. Participants: Five patients with stage 3 RSD of the left forearm, free of symptoms and

  17. Effective Connectivity Hierarchically Links Temporoparietal and Frontal Areas of the Auditory Dorsal Stream with the Motor Cortex Lip Area during Speech Perception

    Science.gov (United States)

    Murakami, Takenobu; Restle, Julia; Ziemann, Ulf

    2012-01-01

    A left-hemispheric cortico-cortical network involving areas of the temporoparietal junction (Tpj) and the posterior inferior frontal gyrus (pIFG) is thought to support sensorimotor integration of speech perception into articulatory motor activation, but how this network links with the lip area of the primary motor cortex (M1) during speech…

  18. Supplementary motor area and other cortical areas in organization of voluntary movements in man

    DEFF Research Database (Denmark)

    Roland, P E; Larsen, B; Lassen, N A

    1980-01-01

    the blood flow in the contralateral primary motor and sensory hand area. 5. A pure somatosensory discrimination of the shapes of objects, without any concomitant voluntary movements, also leaves the supplementary motor areas silent. 6. We conclude that the primary motor area and the part of the motor system...

  19. Reduced asymmetry in motor skill learning in left-handed compared to right-handed individuals.

    Science.gov (United States)

    McGrath, Robert L; Kantak, Shailesh S

    2016-02-01

    Hemispheric specialization for motor control influences how individuals perform and adapt to goal-directed movements. In contrast to adaptation, motor skill learning involves a process wherein one learns to synthesize novel movement capabilities in absence of perturbation such that they are performed with greater accuracy, consistency and efficiency. Here, we investigated manual asymmetry in acquisition and retention of a complex motor skill that requires speed and accuracy for optimal performance in right-handed and left-handed individuals. We further determined if degree of handedness influences motor skill learning. Ten right-handed (RH) and 10 left-handed (LH) adults practiced two distinct motor skills with their dominant or nondominant arms during separate sessions two-four weeks apart. Learning was quantified by changes in the speed-accuracy tradeoff function measured at baseline and one-day retention. Manual asymmetry was evident in the RH group but not the LH group. RH group demonstrated significantly greater skill improvement for their dominant-right hand than their nondominant-left hand. In contrast, for the LH group, both dominant and nondominant hands demonstrated comparable learning. Less strongly-LH individuals (lower EHI scores) exhibited more learning of their dominant hand. These results suggest that while hemispheric specialization influences motor skill learning, these effects may be influenced by handedness. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Convergence of human brain mapping tools: neuronavigated TMS parameters and fMRI activity in the hand motor area.

    Science.gov (United States)

    Sarfeld, Anna-Sophia; Diekhoff, Svenja; Wang, Ling E; Liuzzi, Gianpiero; Uludağ, Kamil; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian

    2012-05-01

    Functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) are well-established tools for investigating the human motor system in-vivo. We here studied the relationship between movement-related fMRI signal changes in the primary motor cortex (M1) and electrophysiological properties of the hand motor area assessed with neuronavigated TMS in 17 healthy subjects. The voxel showing the highest task-related BOLD response in the left hand motor area during right hand movements was identified for each individual subject. This fMRI peak voxel in M1 served as spatial target for coil positioning during neuronavigated TMS. We performed correlation analyses between TMS parameters, BOLD signal estimates and effective connectivity parameters of M1 assessed with dynamic causal modeling (DCM). The results showed a negative correlation between the movement-related BOLD signal in left M1 and resting as well as active motor threshold (MT) obtained for left M1. The DCM analysis revealed that higher excitability of left M1 was associated with a stronger coupling between left supplementary motor area (SMA) and M1. Furthermore, BOLD activity in left M1 correlated with ipsilateral silent period (ISP), i.e. the stronger the task-related BOLD response in left M1, the higher interhemispheric inhibition effects targeting right M1. DCM analyses revealed a positive correlation between the coupling of left SMA with left M1 and the duration of ISP. The data show that TMS parameters assessed for the hand area of M1 do not only reflect the intrinsic properties at the stimulation site but also interactions with remote areas in the human motor system. Copyright © 2011 Wiley-Liss, Inc.

  1. Enhancement Of Motor Recovery Through Left Dorsolateral Prefrontal Cortex Stimulation After Acute Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Shahram Oveisgharan

    2017-02-01

    Full Text Available Background: Two previous studies, which investigated transcranial direct current stimulation (tDCS use in motor recovery after acute ischemic stroke, did not show tDCS to be effective in this regard. We speculated that additional left dorsolateral prefrontal cortex ‎(DLPFC ‎stimulation may enhance post stroke motor recovery.  ‎ Methods: In the present randomized clinical trial, 20 acute ischemic stroke patients were recruited. Patients received real motor cortex (M1 stimulation in both arms of the trial. The two arms differed in terms of real vs. sham stimulation over the left DLPFC‎. Motor component of the Fugl-Meyer upper extremity assessment (FM and Action Research Arm Test (ARAT scores were used to assess primary outcomes, and non-linear mixed effects models were used for data analyses. Results: Primary outcome measures improved more and faster among the real stimulation group. During the first days of stimulations, sham group’s FM scores increased 1.2 scores per day, while real group’s scores increased 1.7 scores per day (P = 0.003. In the following days, FM improvement decelerated in both groups. Based on the derived models, a hypothetical stroke patient with baseline FM score of 15 improves to 32 in the sham stimulation group and to 41 in the real stimulation group within the first month after stroke. Models with ARAT scores yielded nearly similar results. Conclusion: The current study results showed that left DLPFC‎ stimulation in conjunction with M1 stimulation resulted in better motor recovery than M1 stimulation alone.

  2. Excitability changes in the left primary motor cortex innervating the hand muscles induced during speech about hand or leg movements.

    Science.gov (United States)

    Onmyoji, Yusuke; Kubota, Shinji; Hirano, Masato; Tanaka, Megumi; Morishita, Takuya; Uehara, Kazumasa; Funase, Kozo

    2015-05-06

    In the present study, we used transcranial magnetic stimulation (TMS) to investigate the changes in the excitability of the left primary motor cortex (M1) innervating the hand muscles and in short-interval intracortical inhibition (SICI) during speech describing hand or leg movements. In experiment 1, we investigated the effects of the contents of speech on the amplitude of the motor evoked potentials (MEPs) induced during reading aloud and silent reading. In experiment 2, we repeated experiment 1 with an additional condition, the non-vocal oral movement (No-Voc OM) condition, and investigated the change in SICI induced in each condition using the paired TMS paradigm. The MEP observed in the reading aloud and No-Voc OM conditions exhibited significantly greater amplitudes than those seen in the silent reading conditions, irrespective of the content of the sentences spoken by the subjects or the timing of the TMS. There were no significant differences in SICI between the experimental conditions. Our findings suggest that the increased excitability of the left M1 hand area detected during speech was mainly caused by speech-related oral movements and the activation of language processing-related brain functions. The increased left M1 excitability was probably also mediated by neural mechanisms other than reduced SICI; i.e., disinhibition. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Kinesthetic illusion of wrist movement activates motor-related areas.

    Science.gov (United States)

    Naito, E; Ehrsson, H H

    2001-12-04

    We used positron emission tomography (PET) to test the hypothesis that illusory movement of the right wrist activates the motor-related areas that are activated by real wrist movements. We vibrated the tendons of the relaxed right wrist extensor muscles which elicits a vivid illusory palmar flexion. In a control condition, we vibrated the skin surface over the processes styloideus ulnae, which does not elicit the illusion, using the identical frequency (83 Hz). We provide evidence that kinesthetic illusory wrist movement activates the contralateral primary sensorimotor cortices, supplementary motor area (SMA) and cingulate motor area (CMA). These areas are also active when executing the limb movement.

  4. Sensory-motor integration during speech production localizes to both left and right plana temporale.

    Science.gov (United States)

    Simmonds, Anna J; Leech, Robert; Collins, Catherine; Redjep, Ozlem; Wise, Richard J S

    2014-09-24

    Speech production relies on fine voluntary motor control of respiration, phonation, and articulation. The cortical initiation of complex sequences of coordinated movements is thought to result in parallel outputs, one directed toward motor neurons while the "efference copy" projects to auditory and somatosensory fields. It is proposed that the latter encodes the expected sensory consequences of speech and compares expected with actual postarticulatory sensory feedback. Previous functional neuroimaging evidence has indicated that the cortical target for the merging of feedforward motor and feedback sensory signals is left-lateralized and lies at the junction of the supratemporal plane with the parietal operculum, located mainly in the posterior half of the planum temporale (PT). The design of these studies required participants to imagine speaking or generating nonverbal vocalizations in response to external stimuli. The resulting assumption is that verbal and nonverbal vocal motor imagery activates neural systems that integrate the sensory-motor consequences of speech, even in the absence of primary motor cortical activity or sensory feedback. The present human functional magnetic resonance imaging study used univariate and multivariate analyses to investigate both overt and covert (internally generated) propositional and nonpropositional speech (noun definition and counting, respectively). Activity in response to overt, but not covert, speech was present in bilateral anterior PT, with no increased activity observed in posterior PT or parietal opercula for either speech type. On this evidence, the response of the left and right anterior PTs better fulfills the criteria for sensory target and state maps during overt speech production. Copyright © 2014 Simmonds et al.

  5. Glial tumors in brodmann area 6: spread pattern and relationships to motor areas.

    Science.gov (United States)

    Shah, Komal B; Hayman, L Anne; Chavali, Lakshmi S; Hamilton, Jackson D; Prabhu, Sujit S; Wangaryattawanich, Pattana; Kumar, Vinodh A; Kumar, Ashok J

    2015-01-01

    The posterior frontal lobe of the brain houses Brodmann area 4, which is the primary motor cortex, and Brodmann area 6, which consists of the supplementary motor area on the medial portion of the hemisphere and the premotor cortex on the lateral portion. In this area, safe resection is dependent on accurate localization of the motor cortex and the central sulcus, which can usually be achieved by using thin-section imaging and confirmed by using other techniques. The most reliable anatomic landmarks are the "hand knob" area and the marginal ramus of the cingulate sulcus. Postoperatively, motor deficits can occur not only because of injury to primary motor cortex but also because of injury to the supplementary motor area. Unlike motor cortex injury, the supplementary motor area syndrome is transient, if it occurs at all. On the lateral hemisphere, motor and language deficits can also occur because of premotor cortex injury, but a dense motor deficit would indicate subcortical injury to the corticospinal tract. The close relationship of the subcortical motor fibers and premotor cortex is illustrated. In contrast to the more constant landmarks of the central sulcus and marginal ramus, which aid in preoperative localization, the variable interruptions in the precentral and cingulate sulci of the posterior frontal lobe seem to provide "cortical bridges" for spread of infiltrating gliomas. (©)RSNA, 2015.

  6. Role of Broca's Area in Implicit Motor Skill Learning: Evidence from Continuous Theta-Burst Magnetic Stimulation

    Science.gov (United States)

    Clerget, Emeline; Poncin, William; Fadiga, Luciano; Olivier, Etienne

    2012-01-01

    Complex actions can be regarded as a concatenation of simple motor acts, arranged according to specific rules. Because the caudal part of the Broca's region (left Brodmann's area 44, BA 44) is involved in processing hierarchically organized behaviors, we aimed to test the hypothesis that this area may also play a role in learning structured motor…

  7. Millisecond-scale motor encoding in a cortical vocal area.

    Directory of Open Access Journals (Sweden)

    Claire Tang

    2014-12-01

    Full Text Available Studies of motor control have almost universally examined firing rates to investigate how the brain shapes behavior. In principle, however, neurons could encode information through the precise temporal patterning of their spike trains as well as (or instead of through their firing rates. Although the importance of spike timing has been demonstrated in sensory systems, it is largely unknown whether timing differences in motor areas could affect behavior. We tested the hypothesis that significant information about trial-by-trial variations in behavior is represented by spike timing in the songbird vocal motor system. We found that neurons in motor cortex convey information via spike timing far more often than via spike rate and that the amount of information conveyed at the millisecond timescale greatly exceeds the information available from spike counts. These results demonstrate that information can be represented by spike timing in motor circuits and suggest that timing variations evoke differences in behavior.

  8. Contribution of writing to reading: Dissociation between cognitive and motor process in the left dorsal premotor cortex.

    Science.gov (United States)

    Pattamadilok, Chotiga; Ponz, Aurélie; Planton, Samuel; Bonnard, Mireille

    2016-04-01

    Functional brain imaging studies reported activation of the left dorsal premotor cortex (PMd), that is, a main area in the writing network, in reading tasks. However, it remains unclear whether this area is causally relevant for written stimulus recognition or its activation simply results from a passive coactivation of reading and writing networks. Here, we used chronometric paired-pulse transcranial magnetic stimulation (TMS) to address this issue by disrupting the activity of the PMd, the so-called Exner's area, while participants performed a lexical decision task. Both words and pseudowords were presented in printed and handwritten characters. The latter was assumed to be closely associated with motor representations of handwriting gestures. We found that TMS over the PMd in relatively early time-windows, i.e., between 60 and 160 ms after the stimulus onset, increased reaction times to pseudoword without affecting word recognition. Interestingly, this result pattern was found for both printed and handwritten characters, that is, regardless of whether the characters evoked motor representations of writing actions. Our result showed that under some circumstances the activation of the PMd does not simply result from passive association between reading and writing networks but has a functional role in the reading process. At least, at an early stage of written stimuli recognition, this role seems to depend on a common sublexical and serial process underlying writing and pseudoword reading rather than on an implicit evocation of writing actions during reading as typically assumed. © 2016 Wiley Periodicals, Inc.

  9. An Analysis of Children Left Unattended in Parked Motor Vehicles in Brazil

    Directory of Open Access Journals (Sweden)

    Driely Costa

    2016-07-01

    Full Text Available Our study investigates the incidence of children left unattended in parked motor vehicles in Brazil. These events have been widely explored in the United States but less so abroad, and never in Brazil. Over the period from 2006 to 2015, we collected data from news reports on 31 cases, including 21 fatalities. The circumstances mostly involved a caregiver, especially a parent, forgetting the child (71%, but cases also included the child being intentionally left in the vehicle (23% or gaining access to the vehicle (3%. Children tended to be forgotten more frequently in fatal cases (86%, particularly on the way to daycare, than non-fatal incidents where circumstances were more evenly distributed between forgetting (40% and being intentionally left behind (50%. Incidents occurred throughout the country but mostly in the southeastern region near the city of São Paulo. Additionally, the danger for children is present year-round as we observed cases in every season, albeit with a peak in the summer. This heat-related hazard is not well recognized across Brazil and we recommend increasing awareness through education. Further, given the high percentage of cases involving parents forgetting to leave their children at daycare, we recommend arrangements between daycare providers and parents to communicate when a child does not attend as expected.

  10. An Analysis of Children Left Unattended in Parked Motor Vehicles in Brazil.

    Science.gov (United States)

    Costa, Driely; Grundstein, Andrew

    2016-07-07

    Our study investigates the incidence of children left unattended in parked motor vehicles in Brazil. These events have been widely explored in the United States but less so abroad, and never in Brazil. Over the period from 2006 to 2015, we collected data from news reports on 31 cases, including 21 fatalities. The circumstances mostly involved a caregiver, especially a parent, forgetting the child (71%), but cases also included the child being intentionally left in the vehicle (23%) or gaining access to the vehicle (3%). Children tended to be forgotten more frequently in fatal cases (86%), particularly on the way to daycare, than non-fatal incidents where circumstances were more evenly distributed between forgetting (40%) and being intentionally left behind (50%). Incidents occurred throughout the country but mostly in the southeastern region near the city of São Paulo. Additionally, the danger for children is present year-round as we observed cases in every season, albeit with a peak in the summer. This heat-related hazard is not well recognized across Brazil and we recommend increasing awareness through education. Further, given the high percentage of cases involving parents forgetting to leave their children at daycare, we recommend arrangements between daycare providers and parents to communicate when a child does not attend as expected.

  11. Selective left, right and bilateral stimulation of subthalamic nuclei in Parkinson's disease: differential effects on motor, speech and language function.

    Science.gov (United States)

    Schulz, Geralyn M; Hosey, Lara A; Bradberry, Trent J; Stager, Sheila V; Lee, Li-Ching; Pawha, Rajesh; Lyons, Kelly E; Metman, Leo Verhagen; Braun, Allen R

    2012-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus improves the motor symptoms of Parkinson's disease, but may produce a worsening of speech and language performance at rates and amplitudes typically selected in clinical practice. The possibility that these dissociated effects might be modulated by selective stimulation of left and right STN has never been systematically investigated. To address this issue, we analyzed motor, speech and language functions of 12 patients implanted with bilateral stimulators configured for optimal motor responses. Behavioral responses were quantified under four stimulator conditions: bilateral DBS, right-only DBS, left-only DBS and no DBS. Under bilateral and left-only DBS conditions, our results exhibited a significant improvement in motor symptoms but worsening of speech and language. These findings contribute to the growing body of literature demonstrating that bilateral STN DBS compromises speech and language function and suggests that these negative effects may be principally due to left-sided stimulation. These findings may have practical clinical consequences, suggesting that clinicians might optimize motor, speech and language functions by carefully adjusting left- and right-sided stimulation parameters.

  12. Motor skill for tool-use is associated with asymmetries in Broca's area and the motor hand area of the precentral gyrus in chimpanzees (Pan troglodytes).

    Science.gov (United States)

    Hopkins, William D; Meguerditchian, Adrien; Coulon, Olivier; Misiura, Maria; Pope, Sarah; Mareno, Mary Catherine; Schapiro, Steven J

    2017-02-01

    Among nonhuman primates, chimpanzees are well known for their sophistication and diversity of tool use in both captivity and the wild. The evolution of tool manufacture and use has been proposed as a driving mechanism for the development of increasing brain size, complex cognition and motor skills, as well as the population-level handedness observed in modern humans. Notwithstanding, our understanding of the neurological correlates of tool use in chimpanzees and other primates remains poorly understood. Here, we assessed the hand preference and performance skill of chimpanzees on a tool use task and correlated these data with measures of neuroanatomical asymmetries in the inferior frontal gyrus (IFG) and the pli-de-passage fronto-parietal moyen (PPFM). The IFG is the homolog to Broca's area in the chimpanzee brain and the PPFM is a buried gyrus that connects the pre- and post-central gyri and corresponds to the motor-hand area of the precentral gyrus. We found that chimpanzees that performed the task better with their right compared to left hand showed greater leftward asymmetries in the IFG and PPFM. This association between hand performance and PPFM asymmetry was particularly robust for right-handed individuals. Based on these findings, we propose that the evolution of tool use was associated with increased left hemisphere specialization for motor skill. We further suggest that lateralization in motor planning, rather than hand preference per se, was selected for with increasing tool manufacture and use in Hominid evolution. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Supplementary motor area-primary motor cortex facilitation in younger but not older adults.

    Science.gov (United States)

    Green, Peta E; Ridding, Michael C; Hill, Keith D; Semmler, John G; Drummond, Peter D; Vallence, Ann-Maree

    2018-04-01

    Growing evidence implicates a decline in white matter integrity in the age-related decline in motor control. Functional neuroimaging studies show significant associations between functional connectivity in the cortical motor network, including the supplementary motor area (SMA), and motor performance. Dual-coil transcranial magnetic stimulation studies show facilitatory connections between SMA and the primary motor cortex (M1) in younger adults. Here, we investigated whether SMA-M1 facilitation is affected by age and whether the strength of SMA-M1 facilitation is associated with bilateral motor control. Dual-coil transcranial magnetic stimulation was used to measure SMA-M1 connectivity in younger (N = 20) and older adults (N = 18), and bilateral motor control was measured with the assembly subtest of the Purdue Pegboard and clinical measures of dynamic balance. SMA-M1 facilitation was seen in younger but not older adults, and a significant positive association was found between SMA-M1 facilitation and bimanual performance. These results show that SMA-M1 facilitation is reduced in older adults compared to younger adults and provide evidence of the functional importance of SMA-M1 facilitation. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Pre-surgical evaluation of the cerebral tumor in the left language related areas by functional MRI

    International Nuclear Information System (INIS)

    Zou Zhitong; Ma Lin; Weng Xuchu

    2010-01-01

    Objective: To evaluate the application of combination of BOLD-fMRI and diffusion tensor tractography (DTT) in pre-operative evaluation of cerebral tumors located at the left language related areas. Methods: A non-vocal button pressing semantic judging paradigm was developed and validated in 10 right-handed volunteers at 3 T. After validation, this protocol combined with DTI were applied to 15 patients with left cerebral tumor prior to surgical resection, and 3 of them had aphasia. fMRI data analysis was on subject-specific basis by one-sampled t-test. The distance from the tumor to Broca area and pre-central 'hand-knot' area were measured separately. Functional language laterality index (LI) was calculated by taking out Broca area and Wernicke area. Three dimensional architecture of frontal lobe white matter fibers, especially arcuate fasciculus, were visualized using diffusion tensor tractography on Volume-one software. The images demonstrating relationship among tumor, language activation areas and white matter fibers were reviewed by neurosurgeons as part of pre-operative planning. One year after the operation, patients were followed up with MRI and language function test. Results: The non-vocal semantic judging paradigm successfully detect Broca area, Wernicke area and pre-central 'hand-knot' area. In 12 of 15 patients, the relationship of Broca area and pre-central motor area to the left brain tumor in language related areas was identified, which make the pre-operative neurosurgical plan applicable to minimize the disruption of language and motor. 8 patients had the left language dominant hemisphere, 3 patients with the right language dominant hemisphere and 1 patient with bilateral dominance. The other 3 patients' fMRI data were corrupted by patients' motion. Diffusion tensor images were corrupted by motion in 1 patient but demonstrated the impact of tumor on left accouter fasciculus in 14 patients. Diffusion tensor tractography showed disruption of left

  15. Speech dynamics are coded in the left motor cortex in fluent speakers but not in adults who stutter.

    Science.gov (United States)

    Neef, Nicole E; Hoang, T N Linh; Neef, Andreas; Paulus, Walter; Sommer, Martin

    2015-03-01

    The precise excitability regulation of neuronal circuits in the primary motor cortex is central to the successful and fluent production of speech. Our question was whether the involuntary execution of undesirable movements, e.g. stuttering, is linked to an insufficient excitability tuning of neural populations in the orofacial region of the primary motor cortex. We determined the speech-related time course of excitability modulation in the left and right primary motor tongue representation. Thirteen fluent speakers (four females, nine males; aged 23-44) and 13 adults who stutter (four females, nine males, aged 21-55) were asked to build verbs with the verbal prefix 'auf'. Single-pulse transcranial magnetic stimulation was applied over the primary motor cortex during the transition phase between a fixed labiodental articulatory configuration and immediately following articulatory configurations, at different latencies after transition onset. Bilateral electromyography was recorded from self-adhesive electrodes placed on the surface of the tongue. Off-line, we extracted the motor evoked potential amplitudes and normalized these amplitudes to the individual baseline excitability during the fixed configuration. Fluent speakers demonstrated a prominent left hemisphere increase of motor cortex excitability in the transition phase (P = 0.009). In contrast, the excitability of the right primary motor tongue representation was unchanged. Interestingly, adults afflicted with stuttering revealed a lack of left-hemisphere facilitation. Moreover, the magnitude of facilitation was negatively correlated with stuttering frequency. Although orofacial midline muscles are bilaterally innervated from corticobulbar projections of both hemispheres, our results indicate that speech motor plans are controlled primarily in the left primary speech motor cortex. This speech motor planning-related asymmetry towards the left orofacial motor cortex is missing in stuttering. Moreover, a negative

  16. Cortical disconnection of the ipsilesional primary motor cortex is associated with gait speed and upper extremity motor impairment in chronic left hemispheric stroke.

    Science.gov (United States)

    Peters, Denise M; Fridriksson, Julius; Stewart, Jill C; Richardson, Jessica D; Rorden, Chris; Bonilha, Leonardo; Middleton, Addie; Gleichgerrcht, Ezequiel; Fritz, Stacy L

    2018-01-01

    Advances in neuroimaging have enabled the mapping of white matter connections across the entire brain, allowing for a more thorough examination of the extent of white matter disconnection after stroke. To assess how cortical disconnection contributes to motor impairments, we examined the relationship between structural brain connectivity and upper and lower extremity motor function in individuals with chronic stroke. Forty-three participants [mean age: 59.7 (±11.2) years; time poststroke: 64.4 (±58.8) months] underwent clinical motor assessments and MRI scanning. Nonparametric correlation analyses were performed to examine the relationship between structural connectivity amid a subsection of the motor network and upper/lower extremity motor function. Standard multiple linear regression analyses were performed to examine the relationship between cortical necrosis and disconnection of three main cortical areas of motor control [primary motor cortex (M1), premotor cortex (PMC), and supplementary motor area (SMA)] and motor function. Anatomical connectivity between ipsilesional M1/SMA and the (1) cerebral peduncle, (2) thalamus, and (3) red nucleus were significantly correlated with upper and lower extremity motor performance (P ≤ 0.003). M1-M1 interhemispheric connectivity was also significantly correlated with gross manual dexterity of the affected upper extremity (P = 0.001). Regression models with M1 lesion load and M1 disconnection (adjusted for time poststroke) explained a significant amount of variance in upper extremity motor performance (R 2  = 0.36-0.46) and gait speed (R 2  = 0.46), with M1 disconnection an independent predictor of motor performance. Cortical disconnection, especially of ipsilesional M1, could significantly contribute to variability seen in locomotor and upper extremity motor function and recovery in chronic stroke. Hum Brain Mapp 39:120-132, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Association between Hypometabolism in the Supplementary Motor Area and Fear of Falling in Older Adults

    Directory of Open Access Journals (Sweden)

    Ryota Sakurai

    2017-07-01

    Full Text Available Background: A better understanding of the neural mechanisms that underlie the development of fear of falling (FoF in seniors may help to detect potential treatable factors and reduce future falls. We therefore investigate the neural correlates of FoF in older adults using 18F-fluorodeoxyglucose-positron emission tomography (FDG-PET.Methods: This cohort study included 117 community-dwelling older adults. At baseline, participants were assessed for FoF, psychiatric symptoms, walking speed, global cognition and cerebral glucose metabolism with FDG-PET. The incidence of FoF in the participants who did not report FoF (N-FoF at baseline was again ascertained 2 years later. FDG uptake was compared between the FoF and non-FoF groups. Logistic regression analyses to examine the predictors of newly developed FoF (D-FoF using normalized regional FDG uptake were then performed.Results: At baseline, 50.4% (n = 59 of participants had FoF. The FoF group had significantly decreased glucose metabolism in the left superior frontal gyrus (supplementary motor area, SMA; BA6 compared to the non-FoF group. After 2 years, 19 out of the 58 participants in the non-FoF group developed FoF. Logistic regression analysis revealed that decreased cerebral glucose metabolism in the left SMA at the baseline was a significant predictor of the future development of FoF, independently of psychiatric symptoms and walking speed.Conclusion: In healthy older adults, hypometabolism in the left SMA, which is involved in motor planning and motor coordination, contributes to the development of FoF. Our result might help elucidate underlying mechanism of the association between deficits in motor control and FoF.

  18. Age-specific activation of cerebral areas in motor imagery - a fMRI study

    International Nuclear Information System (INIS)

    Wang, Li; Qiu, Mingguo; Zhang, Jingna; Zhang, Ye; Sang, Linqiong; Liu, Chen; Yang, Jun; Yan, Rubing; Zheng, Xiaolin

    2014-01-01

    The objectives of this study were to study the age-specific activation patterns of cerebral areas during motor execution (ME) and motor imaging (MI) of the upper extremities and to discuss the age-related neural mechanisms associated with ME or MI. The functional magnetic resonance imaging technique was used to monitor the pattern and intensity of brain activation during the ME and MI of the upper extremities in 20 elderly (>50 years) and 19 young healthy subjects (<25 years). No major differences were identified regarding the activated brain areas during ME or MI between the two groups; however, a minor difference was noted. The intensity of the activated brain area during ME was stronger in the older group than in the younger group, while the results with MI were the opposite. The posterior central gyrus and supplementary motor area during MI were more active in the younger group than in the older group. The putamen, lingual, and so on demonstrated stronger activation during dominant hand MI in the older group. The results of this study revealed that the brain structure was altered and that neuronal activity was attenuated with age, and the cerebral cortex and subcortical tissues were found to be over-activated to achieve the same level of ME and MI, indicating that the activating effects of the left hemisphere enhanced with age, whereas the inhibitory effects declined during ME, and activation of the right hemisphere became more difficult during MI. (orig.)

  19. Controversies over the mechanisms underlying the crucial role of the left fronto-parietal areas in the representation of tools

    Directory of Open Access Journals (Sweden)

    Guido eGainotti

    2013-10-01

    Full Text Available Anatomo-clinical and neuroimaging data show that the left fronto-parietal areas play an important role in representing tools. As manipulation is an important source of knowledge about tools, it has been assumed that motor activity explains the link between tool knowledge and the left fronto-parietal areas. However, controversies exist over the exact mechanisms underlying this relationship. According to a strong version of the ‘embodied cognition theory’, activation of a tool concept necessarily involves re-enactment of the corresponding kind of action. Impairment of the ability to use tools should, therefore, lead to impairment of tool knowledge. Both the ‘domains of knowledge hypothesis’ and the ‘sensory-motor model of conceptual knowledge’ refute the strong version of the ‘embodied cognition hypothesis’ but acknowledge that manipulation and other action schemata play an important role in our knowledge of tools. The basic difference between these two models is that the former is based on an innatist model and the latter holds that the brain’s organization of categories is experience dependent. Data supporting and arguing against each of these models are briefly reviewed. In particular, the following lines of research, which argue against the innate nature of the brain’s categorical organization, are discussed: (1 the observation that in patients with category-specific disorders the semantic impairment does not respect the boundaries between biological entities and artefact items; (2 data showing that experience-driven neuroplasticity in musicians is not confined to alterations of perceptual and motor maps but also leads to the establishment of higher-level semantic representations for musical instruments; (3 results of experiments using previously unfamiliar materials showing that the history of our sensory-motor experience with an object significantly affects its neural representation.

  20. Cerebral areas associated with motor control of speech in humans.

    Science.gov (United States)

    Murphy, K; Corfield, D R; Guz, A; Fink, G R; Wise, R J; Harrison, J; Adams, L

    1997-11-01

    We have defined areas in the brain activated during speaking, utilizing positron emission tomography. Six normal subjects continuously repeated the phrase "Buy Bobby a poppy" (requiring minimal language processing) in four ways: A) spoken aloud, B) mouthed silently, C) without articulation, and D) thought silently. Statistical comparison of images from conditions A with C and B with D highlighted areas associated with articulation alone, because control of breathing for speech was controlled for; we found bilateral activations in sensorimotor cortex and cerebellum with right-sided activation in the thalamus/caudate nucleus. Contrasting images from conditions A with B and C with D highlighted areas associated with the control of breathing for speech, vocalization, and hearing, because articulation was controlled for; we found bilateral activations in sensorimotor and motor cortex, close to but distinct from the activations in the preceding contrast, together with activations in thalamus, cerebellum, and supplementary motor area. In neither subtraction was there activation in Broca's area. These results emphasize the bilaterality of the cerebral control of "speaking" without language processing.

  1. Functional Semi-Blind Source Separation Identifies Primary Motor Area Without Active Motor Execution.

    Science.gov (United States)

    Porcaro, Camillo; Cottone, Carlo; Cancelli, Andrea; Salustri, Carlo; Tecchio, Franca

    2018-04-01

    High time resolution techniques are crucial for investigating the brain in action. Here, we propose a method to identify a section of the upper-limb motor area representation (FS_M1) by means of electroencephalographic (EEG) signals recorded during a completely passive condition (FS_M1bySS). We delivered a galvanic stimulation to the median nerve and we applied to EEG the semi-Blind Source Separation (s-BSS) algorithm named Functional Source Separation (FSS). In order to prove that FS_M1bySS is part of FS_M1, we also collected EEG in a motor condition, i.e. during a voluntary movement task (isometric handgrip) and in a rest condition, i.e. at rest with eyes open and closed. In motor condition, we show that the cortico-muscular coherence (CMC) of FS_M1bySS does not differ from FS_ M1 CMC (0.04 for both sources). Moreover, we show that the FS_M1bySS's ongoing whole band activity during Motor and both rest conditions displays high mutual information and time correlation with FS_M1 (above 0.900 and 0.800, respectively) whereas much smaller ones with the primary somatosensory cortex [Formula: see text] (about 0.300 and 0.500, [Formula: see text]). FS_M1bySS as a marker of the upper-limb FS_M1 representation obtainable without the execution of an active motor task is a great achievement of the FSS algorithm, relevant in most experimental, neurological and psychiatric protocols.

  2. Borders of left gastric lymph node area in 124 patients with esophageal and gastric cardia carcinoma

    International Nuclear Information System (INIS)

    Qian Pudong; Guo Yesong; Li Jianzhong; Wang Yufen; Feng Chunwei; Lv Hong; Fei Wenlong

    2006-01-01

    Objective: To measure and define the distribution of left gastric lymph nodes. Methods: From Jan. 2004 to Apr. 2005, silver clips were set around the root of the left gastric artery in 124 patients with esophageal and gastric cardia carcinoma, X-ray films at 0 degree and 90 degree simulator gantry in the radio- therapeutic position were taken. Then, the data of the superior, lower, left, right, anterior and posterior bor- der in each patient was recorded. With SAS 8.02 software, data of minimum area which covered the left gastric lymph node in different incidences were obtained. Results: According to the analysis of Shapiro-Wilk, Kolmogorov-Smimov, Cramervon Mises and Anderson-Darling tests, each border' was of normal distribution, with equal frequency in the male and female, despite the actual results in different genders. Pearson Correlation Coefficients analysis did not suggest a significant relationship between the border and height, weight and size of vertebrae, which formed the minimum area covering the left gastric area at frequency of 100%, 95%, 90% and 85%, which were drawn out through the calculation. Conclusions: Aiming at completely identifying the normal distribution of the left gastric lymph node, more patients are required to be in the pool. For the time being, location in the left gastric area can be obtained from details of the results in the present study. (authors)

  3. Allograph errors and impaired access to graphic motor codes in a case of unilateral agraphia of the dominant left hand.

    Science.gov (United States)

    Hanley, J R; Peters, S

    2001-06-01

    This paper describes the case of a unilateral agraphic patient (GG) who makes letter substitutions only when writing letters and words with his dominant left hand. Accuracy is significantly greater when he is writing with his right hand and when he is asked to spell words orally. GG also makes case errors when writing letters, and will sometimes write words in mixed case. However, these allograph errors occur regardless of which hand he is using to write. In terms of cognitive models of peripheral dysgraphia (e.g., Ellis, 1988), it appears that he has an allograph level impairment that affects writing with both hands, and a separate problem in accessing graphic motor patterns that disrupts writing with the left hand only. In previous studies of left-handed patients with unilateral agraphia (Zesiger & Mayer, 1992; Zesiger, Pegna, & Rilliet, 1994), it has been suggested that allographic knowledge used for writing with both hands is stored exclusively in the left hemisphere, but that graphic motor patterns are represented separately in each hemisphere. The pattern of performance demonstrated by GG strongly supports such a conclusion.

  4. The laterality of stop and go processes of the motor response in left-handed and right-handed individuals.

    Science.gov (United States)

    Hiraoka, Koichi; Igawa, Kyudo; Kashiwagi, Mina; Nakahara, Chisato; Oshima, Yuki; Takakura, Yu

    2018-01-01

    The objective of the present study was to investigate whether the stop and go processes of the motor response are asymmetrical and whether the asymmetries are dependent on handedness and the response selection process that is engaged. Both right-handed and left-handed participants abducted either the left or right index finger in response to an imperative cue in the choice reaction time (choice RT) or the simple RT task. A stop cue was presented after the imperative cue with a probability of .25. When the stop cue was presented, the participants withheld the prepared response. On the choice RT task, left-handed participants had significantly shorter RT and stop signal reaction time (SSRT) with the left versus the right hand, whereas right-handers showed no difference between hands on either measure. In the simple RT task, the RT and SSRT were not significantly different between the groups or the response sides. These results indicate that both the stop and go processes of the prepared left-hand response are completed earlier than those of the right-hand response in left-handed individuals when the stimulus-response process involves a response selection process.

  5. Functional MRI-navigated repetitive transcranial magnetic stimulation over supplementary motor area in chronic tic disorders.

    Science.gov (United States)

    Wu, Steve W; Maloney, Thomas; Gilbert, Donald L; Dixon, Stephan G; Horn, Paul S; Huddleston, David A; Eaton, Kenneth; Vannest, Jennifer

    2014-01-01

    Open label studies have shown repetitive transcranial magnetic stimulation to be effective in reducing tics. To determine whether 8 sessions of continuous theta burst stimulation (cTBS) over supplementary motor area (SMA) given over 2 days may reduce tics and motor cortical network activity in Tourette syndrome/chronic tic disorders. This was a randomized (1:1), double-blind, sham-controlled trial of functional MRI (fMRI)-navigated, 30 Hz cTBS at 90% of resting motor threshold (RMT) over SMA in 12 patients ages 10-22 years. Comorbid ADHD (n = 8), OCD (n = 8), and stable concurrent medications (n = 9) were permitted. Neuro-navigation utilized each individual's event-related fMRI signal. Primary clinical and cortical outcomes were: 1) Yale Global Tic Severity Scale (YGTSS) at one week; 2) fMRI event-related signal in SMA and primary motor cortex (M1) during a finger-tapping motor task. Baseline characteristics were not statistically different between groups (age, current tic/OCD/ADHD severities, tic-years, number of prior medication trials, RMT). Mean YGTSS scores decreased in both active (27.5 ± 7.4 to 23.2 ± 9.8) and sham (26.8 ± 4.8 to 21.7 ± 7.7) groups. However, no significant difference in video-based tic severity rating was detected between the two groups. Two-day post-treatment fMRI activation during finger tapping decreased significantly in active vs. sham groups for SMA (P = 0.02), left M1 (P = 0.0004), and right M1 (P tic reduction at 7 days. Larger sample size and protocol modifications may be needed to produce clinically significant tic reduction beyond placebo effect. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Individual structural differences in left inferior parietal area are associated with schoolchildrens’ arithmetic scores

    Directory of Open Access Journals (Sweden)

    Yongxin eLi

    2013-12-01

    Full Text Available Arithmetic skill is of critical importance for academic achievement, professional success and everyday life, and childhood is the key period to acquire this skill. Neuroimaging studies have identified that left parietal regions are a key neural substrate for representing arithmetic skill. Although the relationship between functional brain activity in left parietal regions and arithmetic skill has been studied in detail, it remains unclear about the relationship between arithmetic achievement and structural properties in left inferior parietal area in schoolchildren. The current study employed a combination of voxel-based morphometry (VBM for high-resolution T1-weighted images and fiber tracking on diffusion tensor imaging (DTI to examine the relationship between structural properties in the inferior parietal area and arithmetic achievement in 10-year-old schoolchildren. VBM of the T1-weighted images revealed that individual differences in arithmetic scores were significantly and positively correlated with the grey matter (GM volume in the left intraparietal sulcus (IPS. Fiber tracking analysis revealed that the forceps major, left superior longitudinal fasciculus (SLF, bilateral inferior longitudinal fasciculus (ILF and inferior fronto-occipital fasciculus (IFOF were the primary pathways connecting the left IPS with other brain areas. Furthermore, the regression analysis of the probabilistic pathways revealed a significant and positive correlation between the fractional anisotropy (FA values in the left SLF, ILF and bilateral IFOF and arithmetic scores. The brain structure-behavior correlation analyses indicated that the GM volumes in the left IPS and the FA values in the tract pathways connecting left IPS were both related to children’s arithmetic achievement. The present findings provide evidence that individual structural differences in the left IPS are associated with arithmetic scores in schoolchildren.

  7. Single motor unit firing behaviour in the right trapezius muscle during rapid movement of right or left index finger.

    Directory of Open Access Journals (Sweden)

    Karen eSøgaard

    2014-11-01

    Full Text Available Computer work is associated with low level sustained activity in the trapezius muscle that may cause myalgia. The activity may be attention related or part of a general multijoint motor program providing stabilization of the shoulder girdle for precise finger manipulation. This study examines single motor unit (MU firing pattern in the right trapezius muscle during fast movements of ipsi or contralateral index finger. Modulated firing rate would support a general multi joint motor program, while a generally increased and continuous firing rate would support attention related activation. 12 healthy female subjects were seated at a computer work place with elbows and forearms supported. Ten double clicks (DC were performed with right and left index finger on a computer mouse instrumented with a trigger.Surface EMG was recorded from right and left trapezius muscle. Intramuscular EMG was recorded with a quadripolar wire electrode in the right trapezius.Surface EMG was analysed as %MVE. The intramuscular EMG was decomposed into individual MU action potential trains. Instantaneous firing rate (IFR was calculated from inter-spike interval with ISI shorter than 20 ms defined as doublets. IFR was averaged across 10 DC to show IFR modulation.Surface EMG in both right and left trapezius was 1.8-2.5%MVE. During right hand DC a total of 32 MUs were identified. Four subjects showed no activity. Four showed MU activity with weak or no variations related to the timing of DC. Four subjects showed large modulation in IFR with temporal relation to DC. During left hand DC 15 MUs were identified in 4 subjects, for two of the subjects with IFR modulations related to DC. Doublets was found as an integrated part of MU activation in the trapezius muscle and for one subject temporarily related to DC. In conclusion, DC with ipsi- and contralateral fast movements of the index finger was found to evoke biomechanically as well as attention related activity pattern in the

  8. Auditory-motor interaction revealed by fMRI: speech, music, and working memory in area Spt.

    Science.gov (United States)

    Hickok, Gregory; Buchsbaum, Bradley; Humphries, Colin; Muftuler, Tugan

    2003-07-01

    The concept of auditory-motor interaction pervades speech science research, yet the cortical systems supporting this interface have not been elucidated. Drawing on experimental designs used in recent work in sensory-motor integration in the cortical visual system, we used fMRI in an effort to identify human auditory regions with both sensory and motor response properties, analogous to single-unit responses in known visuomotor integration areas. The sensory phase of the task involved listening to speech (nonsense sentences) or music (novel piano melodies); the "motor" phase of the task involved covert rehearsal/humming of the auditory stimuli. A small set of areas in the superior temporal and temporal-parietal cortex responded both during the listening phase and the rehearsal/humming phase. A left lateralized region in the posterior Sylvian fissure at the parietal-temporal boundary, area Spt, showed particularly robust responses to both phases of the task. Frontal areas also showed combined auditory + rehearsal responsivity consistent with the claim that the posterior activations are part of a larger auditory-motor integration circuit. We hypothesize that this circuit plays an important role in speech development as part of the network that enables acoustic-phonetic input to guide the acquisition of language-specific articulatory-phonetic gestures; this circuit may play a role in analogous musical abilities. In the adult, this system continues to support aspects of speech production, and, we suggest, supports verbal working memory.

  9. Bringing transcranial mapping into shape: Sulcus-aligned mapping captures motor somatotopy in human primary motor hand area

    DEFF Research Database (Denmark)

    Raffin, Estelle; Pellegrino, Giovanni; Di Lazzaro, Vincenzo

    2015-01-01

    Motor representations express some degree of somatotopy in human primary motor hand area (M1HAND), but within-M1HAND corticomotor somatotopy has been difficult to study with transcranial magnetic stimulation (TMS). Here we introduce a “linear” TMS mapping approach based on the individual shape of...

  10. The role of the left Brodmann's areas 44 and 45 in reading words and pseudowords

    OpenAIRE

    Heim, S.; Alter, K.; Ischebeck, A.; Amunts, K.; Eickhoff, S.; Mohlberg, H.; Zilles, K.; von Cramon, D.; Friederici, A.

    2005-01-01

    In this functional magnetic resonance imaging (fMRI) study, we investigated the influence of two task (lexical decision, LDT; phonological decision, PDT) on activation in Broca's region (left Brodmann's areas [BA] 44 and 45) during the processing of visually presented words and pseudowords. Reaction times were longer for pseudowords than words in LDT but did not differ in PDT. By combining the fMRI data with cytoarchitectonic anatomical probability maps, we demonstrated that the left BA 44 an...

  11. Resection of Navigated Transcranial Magnetic Stimulation-Positive Prerolandic Motor Areas Causes Permanent Impairment of Motor Function.

    Science.gov (United States)

    Moser, Tobias; Bulubas, Lucia; Sabih, Jamil; Conway, Neal; Wildschutz, Noémie; Sollmann, Nico; Meyer, Bernhard; Ringel, Florian; Krieg, Sandro M

    2017-07-01

    Navigated transcranial magnetic stimulation (nTMS) helps to determine the distribution of motor eloquent areas prior to brain surgery. Yet, the eloquence of primary motor areas frontal to the precentral gyrus identified via nTMS is unclear. To investigate the resection of nTMS-positive prerolandic motor areas and its correlation with postsurgical impairment of motor function. Forty-three patients with rolandic or prerolandic gliomas (WHO grade I-IV) underwent nTMS prior to surgery. Only patients without ischemia within the motor system in postoperative MRI diffusion sequences were enrolled. Based on the 3-dimensional fusion of preoperative nTMS motor mapping data with postsurgical MRI scans, we identified nTMS points that were resected in the infiltration zone of the tumor. We then classified the resected points according to the localization and latency of their motor evoked potentials. Surgery-related paresis was graded as transient (≤6 weeks) or permanent (>6 weeks). Out of 43, 31 patients (72%) showed nTMS-positive motor points in the prerolandic gyri. In general, 13 out of 43 patients (30%) underwent resection of nTMS points. Ten out of these patients showed postoperative paresis. There were 2 (15%) patients with a transient and 8 (62%) with a permanent surgery-related paresis. In 3 cases (23%), motor function remained unimpaired. After resection of nTMS-positive motor points, 62% of patients suffered from a new permanent paresis. Thus, even though they are located in the superior or middle frontal gyrus, these cortical areas must undergo intraoperative mapping. Copyright © 2017 by the Congress of Neurological Surgeons.

  12. Motor unit activity in biceps brachii of left-handed humans during sustained contractions with two load types.

    Science.gov (United States)

    Gould, Jeffrey R; Cleland, Brice T; Mani, Diba; Amiridis, Ioannis G; Enoka, Roger M

    2016-09-01

    The purpose of the study was to compare the discharge characteristics of single motor units during sustained isometric contractions that required either force or position control in left-handed individuals. The target force for the two sustained contractions (24.9 ± 10.5% maximal force) was identical for each biceps brachii motor unit (n = 32) and set at 4.7 ± 2.0% of maximal voluntary contraction (MVC) force above its recruitment threshold (range: 0.5-41.2% MVC force). The contractions were not sustained to task failure, but the duration (range: 60-330 s) was identical for each motor unit and the decline in MVC force immediately after the sustained contractions was similar for the two tasks (force: 11.1% ± 13.7%; position: 11.6% ± 9.9%). Despite a greater increase in the rating of perceived exertion during the position task (task × time interaction, P < 0.006), the amplitude of the surface-recorded electromyogram for the agonist and antagonist muscles increased similarly during the two tasks. Nonetheless, mean discharge rate of the biceps brachii motor units declined more during the position task (task × time interaction, P < 0.01) and the variability in discharge times (coefficient of variation for interspike interval) increased only during the position task (task × time interaction, P < 0.008). When combined with the results of an identical study on right-handers (Mottram CJ, Jakobi JM, Semmler JG, Enoka RM. J Neurophysiol 93: 1381-1392, 2005), the findings indicate that handedness does not influence the adjustments in biceps brachii motor unit activity during sustained submaximal contractions requiring either force or position control. Copyright © 2016 the American Physiological Society.

  13. Movement and afferent representations in human motor areas: a simultaneous neuroimaging and transcranial magnetic/peripheral nerve-stimulation study

    Directory of Open Access Journals (Sweden)

    Hitoshi eShitara

    2013-09-01

    Full Text Available Neuroimaging combined with transcranial magnetic stimulation (TMS to primary motor cortex (M1 is an emerging technique that can examine motor-system functionality through evoked activity. However, because sensory afferents from twitching muscles are widely represented in motor areas the amount of evoked activity directly resulting from TMS remains unclear. We delivered suprathreshold TMS to left M1 or electrically stimulated the right median nerve (MNS in 18 healthy volunteers while simultaneously conducting functional magnetic resonance imaging and monitoring with electromyography (EMG. We examined in detail the localization of TMS-, muscle afferent- and superficial afferent-induced activity in M1 subdivisions. Muscle afferent- and TMS-evoked activity occurred mainly in rostral M1, while superficial afferents generated a slightly different activation distribution. In 12 participants who yielded quantifiable EMG, differences in brain activity ascribed to differences in movement-size were adjusted using integrated information from the EMGs. Sensory components only explained 10-20% of the suprathreshold TMS-induced activity, indicating that locally and remotely evoked activity in motor areas mostly resulted from the recruitment of neural and synaptic activity. The present study appears to justify the use of fMRI combined with suprathreshold TMS to M1 for evoked motor network imaging.

  14. Origin of human motor readiness field linked to left middle frontal gyrus by MEG and PET

    DEFF Research Database (Denmark)

    Pedersen, Jane Rygaard; Johannsen, P; Bak, Christen Kjeldahl

    1998-01-01

    Combined magnetoencephalography and positron emission tomography identified a prior source of activity in the left middle frontal gyrus duping uncued movements of the right index finger Voluntary movements gave rise to a change in the cortical electrical potential known as the Bereitschaftspotent...

  15. A linear motor and compact cylinder-piston driver for left ventricular bypass.

    Science.gov (United States)

    Qian, K X

    1990-01-01

    A simple, portable, reliable and noise-free pneumatic driver has been developed. It consists of a linear motor attached to a cylinder piston, in one unit. The motor coil is directly wound on the cylinder, and the permanent magnet is fixed to the piston. As a continuous voltage square wave is applied to the coil, the cylinder reciprocates on the piston periodically, producing air pressure and vacuum alternately. In conjunction with a locally made diaphragm pump, the driver was tested in vitro and in vivo. Results demonstrated that the device could drive the diaphragm pump and so support the circulation of an experimental animal. The driver weighs 12 kg. For 200 mmHg air pressure and -80 mmHg vacuum the power consumed is 30 W. Its noise is about 30 dB, less than that of an artificial valve and pump.

  16. Enhancement of motor learning by focal intermittent theta burst stimulation (iTBS) of either the primary motor (M1) or somatosensory area (S1) in healthy human subjects.

    Science.gov (United States)

    Platz, Thomas; Adler-Wiebe, Marija; Roschka, Sybille; Lotze, Martin

    2018-01-01

    Motor rehabilitation after brain damage relies on motor re-learning as induced by specific training. Non-invasive brain stimulation (NIBS) can alter cortical excitability and thereby has a potential to enhance subsequent training-induced learning. Knowledge about any priming effects of NIBS on motor learning in healthy subjects can help to design targeted therapeutic applications in brain-damaged subjects. To examine whether complex motor learning in healthy subjects can be enhanced by intermittent theta burst stimulation (iTBS) to primary motor or sensory cortical areas. Eighteen young healthy subjects trained eight different arm motor tasks (arm ability training, AAT) once a day for 5 days using their left non-dominant arm. Except for day 1 (baseline), training was performed after applying an excitatory form of repetitive transcranial magnetic stimulation (iTBS) to either (I) right M1 or (II) S1, or (III) sham stimulation to the right M1. Subjects were randomly assigned to conditions I, II, or III. A principal component analysis of the motor behaviour data suggested eight independent motor abilities corresponding to the 8 trained tasks. AAT induced substantial motor learning across abilities with generalisation to a non-trained test of finger dexterity (Nine-Hole-Peg-Test, NHPT). Participants receiving iTBS (to either M1 or S1) showed better performance with the AAT tasks over the period of training compared to sham stimulation as well as a bigger improvement with the generalisation task (NHPT) for the trained left hand after training completion. Priming with an excitatory repetitive transcranial magnetic stimulation as iTBS of either M1 or S1 can enhance motor learning across different sensorimotor abilities.

  17. Improved Discriminability of Spatiotemporal Neural Patterns in Rat Motor Cortical Areas as Directional Choice Learning Progresses

    Directory of Open Access Journals (Sweden)

    Hongwei eMao

    2015-03-01

    Full Text Available Animals learn to choose a proper action among alternatives to improve their odds of success in food foraging and other activities critical for survival. Through trial-and-error, they learn correct associations between their choices and external stimuli. While a neural network that underlies such learning process has been identified at a high level, it is still unclear how individual neurons and a neural ensemble adapt as learning progresses. In this study, we monitored the activity of single units in the rat medial and lateral agranular (AGm and AGl, respectively areas as rats learned to make a left or right side lever press in response to a left or right side light cue. We noticed that rat movement parameters during the performance of the directional choice task quickly became stereotyped during the first 2-3 days or sessions. But learning the directional choice problem took weeks to occur. Accompanying rats’ behavioral performance adaptation, we observed neural modulation by directional choice in recorded single units. Our analysis shows that ensemble mean firing rates in the cue-on period did not change significantly as learning progressed, and the ensemble mean rate difference between left and right side choices did not show a clear trend of change either. However, the spatiotemporal firing patterns of the neural ensemble exhibited improved discriminability between the two directional choices through learning. These results suggest a spatiotemporal neural coding scheme in a motor cortical neural ensemble that may be responsible for and contributing to learning the directional choice task.

  18. To leave an area after disaster: how evacuees from the WTC buildings left the WTC area following the attacks.

    Science.gov (United States)

    Zimmerman, Rae; Sherman, Martin F

    2011-05-01

    How people leave a devastated area after a disaster is critical to understanding their ability to cope with risks they face while evacuating. Knowledge of their needs for communications about these risks is particularly crucial in planning for emergency responses. A convenience sample of 1,444 persons who survived the World Trade Center (WTC) attacks on September 11, 2001 were surveyed to ascertain their initial and ultimate destinations once they had left the buildings, how they arrived there, the role of types of obstacles they encountered, and the need for information and the seeking of other people as potential factors in influencing the process of leaving immediately. This survey was part of a larger, original survey. Results showed differences in how people traveled by mode to initial and ultimate destinations, how immediately they left the area, and factors associated with when they left. How they traveled and when they left were associated with where people lived, their tendency in times of stress to seek out other people including who they knew in the immediate area (e.g., co-workers or friends), the physical conditions surrounding them, and the importance to some of waiting for more information. Many people indicated they did not leave immediately because they had no information about where to go or what services would be available to them. Perceptions and communications about risks they were facing were reflected in the choices they considered in how and when to leave the area. These findings have numerous ramifications for understanding and guiding personal behavior in catastrophic situations. © 2010 Society for Risk Analysis.

  19. Repeatability and reproducibility of measurements obtained via two-dimensional speckle tracking echocardiography of the left atrium and time-left atrial area curve analysis in healthy dogs.

    Science.gov (United States)

    Osuga, Tatsuyuki; Nakamura, Kensuke; Lim, Sue Yee; Tamura, Yu; Kumara, Wickramasekara Rajapakshage Bandula; Murakami, Masahiro; Sasaki, Noboru; Morishita, Keitaro; Ohta, Hiroshi; Yamasaki, Masahiro; Takiguchi, Mitsuyoshi

    2013-06-01

    To evaluate left atrial phasic function in healthy dogs by means of 2-D speckle tracking echocardiography with time-left atrial area curve analysis and to assess repeatability and reproducibility of obtained measurements. 6 healthy Beagles. Each dog underwent echocardiography twice on different days (3 nonconsecutive examinations/d). Images were analyzed with offline software; area of the left atrium was automatically calculated in each frame throughout the cardiac cycle to derive time-left atrial area curves. Variables used to assess left atrial phasic function (total, passive, and active emptying area and emptying fractions and mean active and total emptying rates) were calculated. Agreement between variables measured via speckle tracking echocardiography and a manual tracing method was assessed with modified Bland-Altman analysis. Within-day and between-day coefficients of variation were determined. Mean ± SD total, passive, and active emptying fractions of the left atrium were 49.8 ± 3.5%, 277 ± 4.0%, and 30.5 ± 4.3%, respectively. Mean ± SD total and active emptying rates were 16.0 ± 2.5 cm(2)/s and 25.1 ± 4.9 cm(2)/s, respectively. Within-day and between-day coefficients of variation were canine patients.

  20. Insights from the supplementary motor area syndrome in balancing movement initiation and inhibition

    Directory of Open Access Journals (Sweden)

    Adriaan R.E. Potgieser

    2014-11-01

    Full Text Available The supplementary motor area syndrome is a characteristic neurosurgical syndrome that can occur after unilateral resection of the supplementary motor area. Clinical symptoms may vary from none to a global akinesia, predominantly on the contralateral side, with preserved muscle strength, and mutism. A remarkable feature is that these symptoms completely resolve within weeks to months, leaving only a disturbance in alternating bimanual movements. In this review we give an overview of the old and new insights from the supplementary motor area syndrome and extrapolate these findings to seemingly unrelated diseases and symptoms such as Parkinson’s disease and tics. Furthermore, we integrate findings from lesion, stimulation and functional imaging studies to provide insight in the motor function of the supplementary motor area.

  1. Dynamic Reconfiguration of the Supplementary Motor Area Network during Imagined Music Performance

    OpenAIRE

    Tanaka, Shoji; Kirino, Eiji

    2017-01-01

    The supplementary motor area (SMA) has been shown to be the center for motor planning and is active during music listening and performance. However, limited data exist on the role of the SMA in music. Music performance requires complex information processing in auditory, visual, spatial, emotional, and motor domains, and this information is integrated for the performance. We hypothesized that the SMA is engaged in multimodal integration of information, distributed across several regions of th...

  2. Dopamine replacement modulates oscillatory coupling between premotor and motor cortical areas in Parkinson's disease

    DEFF Research Database (Denmark)

    Herz, Damian Marc; Florin, Esther; Christensen, Mark Schram

    2014-01-01

    Efficient neural communication between premotor and motor cortical areas is critical for manual motor control. Here, we used high-density electroencephalography to study cortical connectivity in patients with Parkinson's disease (PD) and age-matched healthy controls while they performed repetitiv...

  3. Similar circuits but different connectivity patterns between the cerebellum, basal ganglia, and supplementary motor area in early Parkinson's disease patients and controls during predictive motor timing.

    Science.gov (United States)

    Husárová, Ivica; Mikl, Michal; Lungu, Ovidiu V; Mareček, Radek; Vaníček, Jiří; Bareš, Martin

    2013-10-01

    The cerebellum, basal ganglia (BG), and other cortical regions, such as supplementary motor area (SMA) have emerged as important structures dealing with various aspects of timing, yet the modulation of functional connectivity between them during motor timing tasks remains unexplored. We used dynamic causal modeling to investigate the differences in effective connectivity (EC) between these regions and its modulation by behavioral outcome during a motor timing prediction task in a group of 16 patients with early Parkinson's disease (PD) and 17 healthy controls. Behavioral events (hits and errors) constituted the driving input connected to the cerebellum, and the modulation in connectivity was assessed relative to the hit condition (successful interception of target). The driving input elicited response in the target area, while modulatory input changed the specific connection strength. The neuroimaging data revealed similar structure of intrinsic connectivity in both groups with unidirectional connections from cerebellum to both sides of the BG, from BG to the SMA, and then from SMA to the cerebellum. However, the type of intrinsic connection was different between two groups. In the PD group, the connection between the SMA and cerebellum was inhibitory in comparison to the HC group, where the connection was activated. Furthermore, the modulation of connectivity by the performance in the task was different between the two groups, with decreased connectivity between the cerebellum and left BG and SMA and a more pronounced symmetry of these connections in controls. In the same time, there was an increased EC between the cerebellum and both sides of BG with more pronounced asymmetry (stronger connection with left BG) in patients. In addition, in the PD group the modulatory input strengthened inhibitory connectivity between the SMA and the cerebellum, while in the HC group the excitatory connection was slightly strengthened. Our findings indicate that although early PD

  4. Perturbation of the left inferior frontal gyrus triggers adaptive plasticity in the right homologous area during speech production

    DEFF Research Database (Denmark)

    Hartwigsen, Gesa; Saur, Dorothee; Price, Cathy J

    2013-01-01

    The role of the right hemisphere in aphasia recovery after left hemisphere damage remains unclear. Increased activation of the right hemisphere has been observed after left hemisphere damage. This may simply reflect a release from transcallosal inhibition that does not contribute to language...... hemisphere lesion. Our findings lend further support to the notion that increased activation of homologous right hemisphere areas supports aphasia recovery after left hemisphere damage....

  5. Changes in neural resting state activity in primary and higher-order motor areas induced by a short sensorimotor intervention based on the Feldenkrais method.

    Science.gov (United States)

    Verrel, Julius; Almagor, Eilat; Schumann, Frank; Lindenberger, Ulman; Kühn, Simone

    2015-01-01

    We use functional magnetic resonance imaging to investigate short-term neural effects of a brief sensorimotor intervention adapted from the Feldenkrais method, a movement-based learning method. Twenty-one participants (10 men, 19-30 years) took part in the study. Participants were in a supine position in the scanner with extended legs while an experienced Feldenkrais practitioner used a planar board to touch and apply minimal force to different parts of the sole and toes of their left foot under two experimental conditions. In the local condition, the practitioner explored movement within foot and ankle. In the global condition, the practitioner focused on the connection and support from the foot to the rest of the body. Before (baseline) and after each intervention (post-local, post-global), we measured brain activity during intermittent pushing/releasing with the left leg and during resting state. Independent localizer tasks were used to identify regions of interest (ROI). Brain activity during left-foot pushing did not significantly differ between conditions in sensorimotor areas. Resting state activity (regional homogeneity, ReHo) increased from baseline to post-local in medial right motor cortex, and from baseline to post-global in the left supplementary/cingulate motor area. Contrasting post-global to post-local showed higher ReHo in right lateral motor cortex. ROI analyses showed significant increases in ReHo in pushing-related areas from baseline to both post-local and post-global, and this increase tended to be more pronounced post-local. The results of this exploratory study show that a short, non-intrusive sensorimotor intervention can have short-term effects on spontaneous cortical activity in functionally related brain regions. Increased resting state activity in higher-order motor areas supports the hypothesis that the global intervention engages action-related neural processes.

  6. Changes in neural resting state activity in primary and higher-order motor areas induced by a short sensorimotor intervention based on the Feldenkrais method

    Directory of Open Access Journals (Sweden)

    Julius eVerrel

    2015-04-01

    Full Text Available We use functional magnetic resonance imaging to investigate short-term neural effects of a brief sensorimotor intervention adapted from the Feldenkrais method, a movement-based learning method. Twenty-one participants (10 men, 19-30 years took part in the study. Participants were in a supine position in the scanner with extended legs while an experienced Feldenkrais practitioner used a planar board to touch and apply minimal force to different parts of the sole and toes of their left foot under two experimental conditions. In the local condition, the practitioner explored movement within foot and ankle. In the global condition, the practitioner focused on the connection and support from the foot to the rest of the body. Before (baseline and after each intervention (post-local, post-global, we measured brain activity during intermittent pushing/releasing with the left leg and during resting state. Independent localizer tasks were used to identify regions of interest (ROI.Brain activity during left-foot pushing did not significantly differ between conditions in sensorimotor areas. Resting state activity (regional homogeneity, ReHo increased from baseline to post-local in medial right motor cortex, and from baseline to post-global in the left supplementary/cingulate motor area. Contrasting post-global to post-local showed higher ReHo in right lateral motor cortex. ROI analyses showed significant increases in ReHo in pushing-related areas from baseline to both post-local and post-global, and this increase tended to be more pronounced post-local. The results of this exploratory study show that a short, non-intrusive sensorimotor intervention can have short-term effects on spontaneous cortical activity in functionally related brain regions. Increased resting state activity in higher-order motor areas supports the hypothesis that the global intervention engages action-related neural processes.

  7. The primary motor and premotor areas of the human cerebral cortex.

    Science.gov (United States)

    Chouinard, Philippe A; Paus, Tomás

    2006-04-01

    Brodmann's cytoarchitectonic map of the human cortex designates area 4 as cortex in the anterior bank of the precentral sulcus and area 6 as cortex encompassing the precentral gyrus and the posterior portion of the superior frontal gyrus on both the lateral and medial surfaces of the brain. More than 70 years ago, Fulton proposed a functional distinction between these two areas, coining the terms primary motor area for cortex in Brodmann area 4 and premotor area for cortex in Brodmann area 6. The parcellation of the cortical motor system has subsequently become more complex. Several nonprimary motor areas have been identified in the brain of the macaque monkey, and associations between anatomy and function in the human brain are being tested continuously using brain mapping techniques. In the present review, the authors discuss the unique properties of the primary motor area (M1), the dorsal portion of the premotor cortex (PMd), and the ventral portion of the premotor cortex (PMv). They end this review by discussing how the premotor areas influence M1.

  8. In vivo optogenetic tracing of functional corticocortical connections between motor forelimb areas

    Directory of Open Access Journals (Sweden)

    Riichiro eHira

    2013-04-01

    Full Text Available Interactions between distinct motor cortical areas are essential for coordinated motor behaviors. In rodents, the motor cortical forelimb areas are divided into at least two distinct areas: the rostral forelimb area (RFA and the caudal forelimb area (CFA. The RFA is thought to be an equivalent of the premotor cortex in primates, whereas the CFA is believed to be an equivalent of the primary motor cortex. Although reciprocal connections between the RFA and the CFA have been anatomically identified in rats, it is unknown whether there are functional connections between these areas that can induce postsynaptic spikes. In this study, we used an in vivo Channelrhodopsin-2 photostimulation method to trace the functional connections between the mouse RFA and CFA. Simultaneous electrical recordings were utilized to detect spiking activities induced by synaptic inputs originating from photostimulated areas. This method, in combination with anatomical tracing, demonstrated that the RFA receives strong functional projections from layer 2/3 and/or layer 5a, but not from layer 5b, of the CFA. Further, the CFA receives strong projections from layer 5b neurons of the RFA. The onset latency of electrical responses evoked in remote areas upon photostimulation of the other areas was approximately 10 ms, which is consistent with the synaptic connectivity between these areas. Our results suggest that neuronal activities in the RFA and the CFA during movements are formed through asymmetric reciprocal connections.

  9. Differential activity patterns of putaminal neurons with inputs from the primary motor cortex and supplementary motor area in behaving monkeys.

    Science.gov (United States)

    Takara, Sayuki; Hatanaka, Nobuhiko; Takada, Masahiko; Nambu, Atsushi

    2011-09-01

    Activity patterns of projection neurons in the putamen were investigated in behaving monkeys. Stimulating electrodes were implanted chronically into the proximal (MI(proximal)) and distal (MI(distal)) forelimb regions of the primary motor cortex (MI) and the forelimb region of the supplementary motor area (SMA). Cortical inputs to putaminal neurons were identified by excitatory orthodromic responses to stimulation of these motor cortices. Then, neuronal activity was recorded during the performance of a goal-directed reaching task with delay. Putaminal neurons with inputs from the MI and SMA showed different activity patterns, i.e., movement- and delay-related activity, during task performance. MI-recipient neurons increased activity in response to arm-reach movements, whereas SMA-recipient neurons increased activity during delay periods, as well as during movements. The activity pattern of MI + SMA-recipient neurons was of an intermediate type between those of MI- and SMA-recipient neurons. Approximately one-half of MI(proximal)-, SMA-, and MI + SMA-recipient neurons changed activities before the onset of movements, whereas a smaller number of MI(distal)- and MI(proximal + distal)-recipient neurons did. Movement-related activity of MI-recipient neurons was modulated by target directions, whereas SMA- and MI + SMA-recipient neurons had a lower directional selectivity. MI-recipient neurons were located mainly in the ventrolateral part of the caudal aspect of the putamen, whereas SMA-recipient neurons were located in the dorsomedial part. MI + SMA-recipient neurons were found in between. The present results suggest that a subpopulation of putaminal neurons displays specific activity patterns depending on motor cortical inputs. Each subpopulation receives convergent or nonconvergent inputs from the MI and SMA, retains specific motor information, and sends it to the globus pallidus and the substantia nigra through the direct and indirect pathways of the basal ganglia.

  10. Left atrial area index predicts adverse cardiovascular events in patients with unstable angina pectoris.

    Science.gov (United States)

    Li, Yi-Fan; Li, Wei-Hong; Li, Zhao-Ping; Feng, Xin-Heng; Xu, Wei-Xian; Chen, Shao-Min; Gao, Wei

    2016-08-01

    The left atrial size has been considered as a useful marker of adverse cardiovascular outcomes. However, it is not well known whether left atrial area index (LAAI) has predictive value for prognosis in patients with unstable angina pectoris (UAP). This study was aimed to assess the association between LAAI and outcomes in UAP patients. We enrolled a total of 391 in-hospital patients diagnosed as UAP. Clinical and echocardiographic data at baseline were collected. The patients were followed for the development of adverse cardiovascular (CV) events, including hospital readmission for angina pectoris, acute myocardial infarction (AMI), congestive heart failure (CHF), stroke and all-cause mortality. During a mean follow-up time of 26.3 ± 8.6 months, 98 adverse CV events occurred (84 hospital readmission for angina pectoris, four AMI, four CHF, one stroke and five all-cause mortality). In a multivariate Cox model, LAAI [OR: 1.140, 95% CI: 1.016-1.279, P = 0.026], diastolic blood pressure (OR: 0.976, 95% CI: 0.956-0.996, P = 0.020) and pulse pressure (OR: 1.020, 95% CI: 1.007-1.034, P = 0.004) were independent predictors for adverse CV events in UAP patients. LAAI is a predictor of adverse CV events independent of clinical and other echocardiographic parameters in UAP patients.

  11. Broca's Area as a Pre-articulatory Phonetic Encoder: Gating the Motor Program.

    Science.gov (United States)

    Ferpozzi, Valentina; Fornia, Luca; Montagna, Marcella; Siodambro, Chiara; Castellano, Antonella; Borroni, Paola; Riva, Marco; Rossi, Marco; Pessina, Federico; Bello, Lorenzo; Cerri, Gabriella

    2018-01-01

    The exact nature of the role of Broca's area in control of speech and whether it is exerted at the cognitive or at the motor level is still debated. Intraoperative evidence of a lack of motor responses to direct electrical stimulation (DES) of Broca's area and the observation that its stimulation induces a "speech arrest" without an apparent effect on the ongoing activity of phono-articulatory muscles, raises the argument. Essentially, attribution of direct involvement of Broca's area in motor control of speech, requires evidence of a functional connection of this area with the phono-articulatory muscles' motoneurons. With a quantitative approach we investigated, in 20 patients undergoing surgery for brain tumors, whether DES delivered on Broca's area affects the recruitment of the phono-articulatory muscles' motor units. The electromyography (EMG) of the muscles active during two speech tasks (object picture naming and counting) was recorded during and in absence of DES on Broca's area. Offline, the EMG of each muscle was analyzed in frequency (power spectrum, PS) and time domain (root mean square, RMS) and the two conditions compared. Results show that DES on Broca's area induces an intensity-dependent "speech arrest." The intensity of DES needed to induce "speech arrest" when applied on Broca's area was higher when compared to the intensity effective on the neighboring pre-motor/motor cortices. Notably, PS and RMS measured on the EMG recorded during "speech arrest" were superimposable to those recorded at baseline. Partial interruptions of speech were not observed. Speech arrest was an "all-or-none" effect: muscle activation started only by removing DES, as if DES prevented speech onset. The same effect was observed when stimulating directly the subcortical fibers running below Broca's area. Intraoperative data point to Broca's area as a functional gate authorizing the phonetic translation to be executed by the motor areas. Given the absence of a direct effect

  12. Non-primary motor areas in the human frontal lobe are connected directly to hand muscles.

    Science.gov (United States)

    Teitti, S; Määttä, S; Säisänen, L; Könönen, M; Vanninen, R; Hannula, H; Mervaala, E; Karhu, J

    2008-04-15

    Structural studies in primates have shown that, in addition to the primary motor cortex (M1), premotor areas are a source of corticospinal tracts. The function of these putative corticospinal neuronal tracts in humans is still unclear. We found frontal non-primary motor areas (NPMAs), which react to targeted non-invasive magnetic pulses and activate peripheral muscles as fast as or even faster than those in M1. Hand muscle movements were observed in all our subjects about 20 ms after transcranial stimulation of the superior frontal gyrus (Brodmann areas 6 and 8). Stimulation of NPMA could activate both proximal and distal upper limb muscles with the same delay as a stimulation of the M1, indicating converging motor representations with direct functional connections to the hand. We suggest that these non-primary cortical motor representations provide additional capacity for the fast execution of movements. Such a capacity may play a role in motor learning and in recovery from motor deficits.

  13. Greater pre-stimulus effective connectivity from the left inferior frontal area to other areas is associated with better phonological decoding in dyslexic readers

    Directory of Open Access Journals (Sweden)

    Richard E Frye

    2010-12-01

    Full Text Available Functional neuroimaging studies suggest that neural networks that subserve reading are organized differently in dyslexic readers (DRs and typical readers (TRs, yet the hierarchical structure of these networks has not been well studied. We used Granger Causality (GC to examine the effective connectivity of the preparatory network that occurs prior to viewing a non-word stimulus that requires phonological decoding in 7 DRs and 10 TRs who were young adults. The neuromagnetic activity that occurred 500 ms prior to each rhyme trial was analyzed from sensors overlying the left and right inferior frontal areas (IFA, temporoparietal areas (TPA, and ventral occipitotemporal areas (VOTA within the low, medium, and high beta and gamma sub-bands. A mixed-model analysis determined whether connectivity to or from the left and right IFAs differed across connectivity direction (into vs. out of the IFAs, brain areas, reading group, and/or performance. Results indicated that greater connectivity in the low beta sub-band from the left IFA to other cortical areas was significantly related to better non-word rhyme discrimination in DRs but not TRs. This suggests that the left IFA is an important cortical area involved in compensating for poor phonological function in DRs. We suggest that the left IFA activates a wider-than usual network prior to each trial in the service of supporting otherwise effortful phonological decoding in DRs. The fact that the left IFA provides top-down activation to both posterior left hemispheres areas used by typical readers for phonological decoding and homologous right hemisphere areas is discussed. In contrast, within the high gamma sub-band, better performance was associated with decreased connectivity between the left IFA and other brain areas, in both reading groups. Overly strong gamma connectivity during the pre-stimulus period may interfere with subsequent transient activation and deactivation of sub-networks once the non

  14. [Surgical treatment of eloquent brain area tumors using neurophysiological mapping of the speech and motor areas and conduction tracts].

    Science.gov (United States)

    Zuev, A A; Korotchenko, E N; Ivanova, D S; Pedyash, N V; Teplykh, B A

    To evaluate the efficacy of intraoperative neurophysiological mapping in removing eloquent brain area tumors (EBATs). Sixty five EBAT patients underwent surgical treatment using intraoperative neurophysiological mapping at the Pirogov National Medical and Surgical Center in the period from 2014 to 2015. On primary neurological examination, 46 (71%) patients were detected with motor deficits of varying severity. Speech disorders were diagnosed in 17 (26%) patients. Sixteen patients with concomitant or isolated lesions of the speech centers underwent awake surgery using the asleep-awake-asleep protocol. Standard neurophysiological monitoring included transcranial stimulation as well as motor and, if necessary, speech mapping. The motor and speech areas were mapped with allowance for the preoperative planning data (obtained with a navigation station) synchronized with functional MRI. In this case, a broader representation of the motor and speech centers was revealed in 12 (19%) patients. During speech mapping, no speech disorders were detected in 7 patients; in 9 patients, stimulation of the cerebral cortex in the intended surgical area induced motor (3 patients), sensory (4), and amnesic (2) aphasia. In the total group, we identified 11 patients in whom the tumor was located near the internal capsule. Upon mapping of the conduction tracts in the internal capsule area, the stimulus strength during tumor resection was gradually decreased from 10 mA to 5 mA. Tumor resection was stopped when responses retained at a stimulus strength of 5 mA, which, when compared to the navigation data, corresponded to a distance of about 5 mm to the internal capsule. Completeness of tumor resection was evaluated (contrast-enhanced MRI) in all patients on the first postoperative day. According to the control MRI data, the tumor was resected totally in 60% of patients, subtotally in 24% of patients, and partially in 16% of patients. In the early postoperative period, the development or

  15. Heteromodal Cortical Areas Encode Sensory-Motor Features of Word Meaning.

    Science.gov (United States)

    Fernandino, Leonardo; Humphries, Colin J; Conant, Lisa L; Seidenberg, Mark S; Binder, Jeffrey R

    2016-09-21

    The capacity to process information in conceptual form is a fundamental aspect of human cognition, yet little is known about how this type of information is encoded in the brain. Although the role of sensory and motor cortical areas has been a focus of recent debate, neuroimaging studies of concept representation consistently implicate a network of heteromodal areas that seem to support concept retrieval in general rather than knowledge related to any particular sensory-motor content. We used predictive machine learning on fMRI data to investigate the hypothesis that cortical areas in this "general semantic network" (GSN) encode multimodal information derived from basic sensory-motor processes, possibly functioning as convergence-divergence zones for distributed concept representation. An encoding model based on five conceptual attributes directly related to sensory-motor experience (sound, color, shape, manipulability, and visual motion) was used to predict brain activation patterns associated with individual lexical concepts in a semantic decision task. When the analysis was restricted to voxels in the GSN, the model was able to identify the activation patterns corresponding to individual concrete concepts significantly above chance. In contrast, a model based on five perceptual attributes of the word form performed at chance level. This pattern was reversed when the analysis was restricted to areas involved in the perceptual analysis of written word forms. These results indicate that heteromodal areas involved in semantic processing encode information about the relative importance of different sensory-motor attributes of concepts, possibly by storing particular combinations of sensory and motor features. The present study used a predictive encoding model of word semantics to decode conceptual information from neural activity in heteromodal cortical areas. The model is based on five sensory-motor attributes of word meaning (color, shape, sound, visual motion, and

  16. Reorganization and stability for motor and language areas using cortical stimulation: case example and review of the literature.

    Science.gov (United States)

    Serafini, Sandra; Komisarow, Jordan M; Gallentine, William; Mikati, Mohamad A; Bonner, Melanie J; Kranz, Peter G; Haglund, Michael M; Grant, Gerald

    2013-11-26

    The cerebral organization of language in epilepsy patients has been studied with invasive procedures such as Wada testing and electrical cortical stimulation mapping and more recently with noninvasive neuroimaging techniques, such as functional MRI. In the setting of a chronic seizure disorder, clinical variables have been shown to contribute to cerebral language reorganization underscoring the need for language lateralization and localization procedures. We present a 14-year-old pediatric patient with a refractory epilepsy disorder who underwent two neurosurgical resections of a left frontal epileptic focus separated by a year. He was mapped extraoperatively through a subdural grid using cortical stimulation to preserve motor and language functions. The clinical history and extensive workup prior to surgery is discussed as well as the opportunity to compare the cortical maps for language, motor, and sensory function before each resection. Reorganization in cortical tongue sensory areas was seen concomitant with a new zone of ictal and interictal activity in the previous tongue sensory area. Detailed neuropsychological data is presented before and after any surgical intervention to hypothesize about the extent of reorganization between epochs. We conclude that intrahemispheric cortical plasticity does occur following frontal lobe resective surgery in a teenager with medically refractory seizures.

  17. Reorganization and Stability for Motor and Language Areas Using Cortical Stimulation: Case Example and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Sandra Serafini

    2013-11-01

    Full Text Available The cerebral organization of language in epilepsy patients has been studied with invasive procedures such as Wada testing and electrical cortical stimulation mapping and more recently with noninvasive neuroimaging techniques, such as functional MRI. In the setting of a chronic seizure disorder, clinical variables have been shown to contribute to cerebral language reorganization underscoring the need for language lateralization and localization procedures. We present a 14-year-old pediatric patient with a refractory epilepsy disorder who underwent two neurosurgical resections of a left frontal epileptic focus separated by a year. He was mapped extraoperatively through a subdural grid using cortical stimulation to preserve motor and language functions. The clinical history and extensive workup prior to surgery is discussed as well as the opportunity to compare the cortical maps for language, motor, and sensory function before each resection. Reorganization in cortical tongue sensory areas was seen concomitant with a new zone of ictal and interictal activity in the previous tongue sensory area. Detailed neuropsychological data is presented before and after any surgical intervention to hypothesize about the extent of reorganization between epochs. We conclude that intrahemispheric cortical plasticity does occur following frontal lobe resective surgery in a teenager with medically refractory seizures.

  18. Risk stratification in motor area-related glioma surgery based on navigated transcranial magnetic stimulation data.

    Science.gov (United States)

    Rosenstock, Tizian; Grittner, Ulrike; Acker, Güliz; Schwarzer, Vera; Kulchytska, Nataliia; Vajkoczy, Peter; Picht, Thomas

    2017-04-01

    OBJECTIVE Navigated transcranial magnetic stimulation (nTMS) is a noninvasive method for preoperatively localizing functional areas in patients with tumors in presumed motor eloquent areas. The aim of this study was to establish an nTMS-based risk stratification model by examining whether the results of nTMS mapping and its neurophysiological data predict postoperative motor outcome in glioma surgery. METHODS Included in this study were prospectively collected data for 113 patients undergoing bihemispheric nTMS examination prior to surgery for gliomas in presumed motor eloquent locations. Multiple ordinal logistic regression analysis was performed to test for any association between preoperative nTMS-related variables and postoperative motor outcome. RESULTS A new motor deficit or deterioration due to a preexisting deficit was observed in 20% of cases after 7 days and in 22% after 3 months. In terms of tumor location, no new permanent deficit was observed when the distance between tumor and corticospinal tract was greater than 8 mm and the precentral gyrus was not infiltrated (p = 0.014). New postoperative deficits on Day 7 were associated with a pathological excitability of the motor cortices (interhemispheric resting motor threshold [RMT] ratio 110%, p = 0.031). Interestingly, motor function never improved when the RMT was significantly higher in the tumorous hemisphere than in the healthy hemisphere (RMT ratio > 110%). CONCLUSIONS The proposed risk stratification model, based on objective functional-anatomical and neurophysiological measures, enables one to counsel patients about the risk of functional deterioration or the potential for recovery.

  19. Representation of action semantics in the motor cortex and Broca's area.

    Science.gov (United States)

    Zhang, Zuo; Sun, Yaoru; Wang, Zijian

    2018-04-01

    Previous studies have shown that both reading action words and observing actions engage the motor cortex and Broca's area, but it is still controversial whether a somatotopic representation exists for action verbs within the motor cortex and whether Broca's area encodes action-specific semantics for verbs. Here we examined these two issues using a set of functional MRI experiments, including word reading, action observation and a movement localiser task. Results from multi-voxel pattern analysis (MVPA) showed a somatotopic organisation within the motor areas and action-specific activation in Broca's area for observed actions, suggesting the representation of action semantics for observed actions in these neural regions. For action verbs, however, a lack of finding for the somatotopic activation argues against semantic somatotopy within the motor cortex. Furthermore, activation patterns in Broca's area were not separable between action verbs and unrelated verbs, suggesting that Broca's area does not encode action-specific semantics for verbs. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Structural changes in left fusiform areas and associated fiber connections in children with abacus training: Evidence from morphometry and tractography

    Directory of Open Access Journals (Sweden)

    Yongxin eLi

    2013-07-01

    Full Text Available Evidence supports the notion that the fusiform gyrus (FG, as an integral part of the ventral occipitotemporal junction, is involved widely in cognitive processes as perceiving faces, objects, places or words, and this region also might represent the visual form of an abacus in the abacus-based mental calculation process. The current study uses a combined voxel-based morphometry (VBM and diffusion tensor imaging (DTI analysis to test whether long-term abacus training could induce structural changes in the left FG and in the white matter (WM tracts distribution connecting with this region in school children. We found that, abacus-trained children exhibited significant smaller grey matter (GM volume than controls in the left FG. And the connectivity mapping identified left forceps major as a key pathway connecting left FG with other brain areas in the trained group, but not in the controls. Furthermore, mean fractional anisotropy (FA values within left forceps major were significantly increased in the trained group. Interestingly, a significant negative correlation was found in the trained group between the GM volume in left FG and the mean FA value in left forceps major, suggesting an inverse effect of the reported GM and WM structural changes. In the control group, a positive correlation between left FG GM volume and tract FA was found as well. This analysis visualized the group level differences in GM volume, FA and fiber tract between the abacus-trained children and the controls, and provided the first evidence that GM volume change in the left FG is intimately linked with the micro-structural properties of the left forceps major tracts. The present results demonstrate the structural changes in the left FG from the intracortical GM to the subcortical WM regions and provide insights into the neural mechanism of structural plasticity induced by abacus training.

  1. Structural changes in left fusiform areas and associated fiber connections in children with abacus training: evidence from morphometry and tractography.

    Science.gov (United States)

    Li, Yongxin; Wang, Yunqi; Hu, Yuzheng; Liang, Yurong; Chen, Feiyan

    2013-01-01

    Evidence supports the notion that the fusiform gyrus (FG), as an integral part of the ventral occipitotemporal junction, is involved widely in cognitive processes as perceiving faces, objects, places or words, and this region also might represent the visual form of an abacus in the abacus-based mental calculation process. The current study uses a combined voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) analysis to test whether long-term abacus training could induce structural changes in the left FG and in the white matter (WM) tracts distribution connecting with this region in school children. We found that, abacus-trained children exhibited significant smaller gray matter (GM) volume than controls in the left FG. And the connectivity mapping identified left forceps major as a key pathway connecting left FG with other brain areas in the trained group, but not in the controls. Furthermore, mean fractional anisotropy (FA) values within left forceps major were significantly increased in the trained group. Interestingly, a significant negative correlation was found in the trained group between the GM volume in left FG and the mean FA value in left forceps major, suggesting an inverse effect of the reported GM and WM structural changes. In the control group, a positive correlation between left FG GM volume and tract FA was found as well. This analysis visualized the group level differences in GM volume, FA and fiber tract between the abacus-trained children and the controls, and provided the first evidence that GM volume change in the left FG is intimately linked with the micro-structural properties of the left forceps major tracts. The present results demonstrate the structural changes in the left FG from the intracortical GM to the subcortical WM regions and provide insights into the neural mechanism of structural plasticity induced by abacus training.

  2. Rostro-Caudal Organization of Connectivity between Cingulate Motor Areas and Lateral Frontal Regions

    Directory of Open Access Journals (Sweden)

    Kep Kee Loh

    2018-01-01

    Full Text Available According to contemporary views, the lateral frontal cortex is organized along a rostro-caudal functional axis with increasingly complex cognitive/behavioral control implemented rostrally, and increasingly detailed motor control implemented caudally. Whether the medial frontal cortex follows the same organization remains to be elucidated. To address this issue, the functional connectivity of the 3 cingulate motor areas (CMAs in the human brain with the lateral frontal cortex was investigated. First, the CMAs and their representations of hand, tongue, and eye movements were mapped via task-related functional magnetic resonance imaging (fMRI. Second, using resting-state fMRI, their functional connectivity with lateral prefrontal and lateral motor cortical regions of interest (ROIs were examined. Importantly, the above analyses were conducted at the single-subject level to account for variability in individual cingulate morphology. The results demonstrated a rostro-caudal functional organization of the CMAs in the human brain that parallels that in the lateral frontal cortex: the rostral CMA has stronger functional connectivity with prefrontal regions and weaker connectivity with motor regions; conversely, the more caudal CMAs have weaker prefrontal and stronger motor connectivity. Connectivity patterns of the hand, tongue and eye representations within the CMAs are consistent with that of their parent CMAs. The parallel rostral-to-caudal functional organization observed in the medial and lateral frontal cortex could likely contribute to different hierarchies of cognitive-motor control.

  3. Non-invasive mapping of bilateral motor speech areas using navigated transcranial magnetic stimulation and functional magnetic resonance imaging.

    Science.gov (United States)

    Könönen, Mervi; Tamsi, Niko; Säisänen, Laura; Kemppainen, Samuli; Määttä, Sara; Julkunen, Petro; Jutila, Leena; Äikiä, Marja; Kälviäinen, Reetta; Niskanen, Eini; Vanninen, Ritva; Karjalainen, Pasi; Mervaala, Esa

    2015-06-15

    Navigated transcranial magnetic stimulation (nTMS) is a modern precise method to activate and study cortical functions noninvasively. We hypothesized that a combination of nTMS and functional magnetic resonance imaging (fMRI) could clarify the localization of functional areas involved with motor control and production of speech. Navigated repetitive TMS (rTMS) with short bursts was used to map speech areas on both hemispheres by inducing speech disruption during number recitation tasks in healthy volunteers. Two experienced video reviewers, blinded to the stimulated area, graded each trial offline according to possible speech disruption. The locations of speech disrupting nTMS trials were overlaid with fMRI activations of word generation task. Speech disruptions were produced on both hemispheres by nTMS, though there were more disruptive stimulation sites on the left hemisphere. Grade of the disruptions varied from subjective sensation to mild objectively recognizable disruption up to total speech arrest. The distribution of locations in which speech disruptions could be elicited varied among individuals. On the left hemisphere the locations of disturbing rTMS bursts with reviewers' verification followed the areas of fMRI activation. Similar pattern was not observed on the right hemisphere. The reviewer-verified speech disruptions induced by nTMS provided clinically relevant information, and fMRI might explain further the function of the cortical area. nTMS and fMRI complement each other, and their combination should be advocated when assessing individual localization of speech network. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Insights from the supplementary motor area syndrome in balancing movement initiation and inhibition

    NARCIS (Netherlands)

    Potgieser, A. R. E.; de Jong, BM; Wagemakers, M.; Hoving, E. W.; Groen, R. J. M.

    2014-01-01

    The supplementary motor area (SMA) syndrome is a characteristic neurosurgical syndrome that can occur after unilateral resection of the SMA. Clinical symptoms may vary from none to a global akinesia, predominantly on the contralateral side, with preserved muscle strength and mutism. A remarkable

  5. Probabilistic fiber tracking of the language and motor white matter pathways of the supplementary motor area (SMA) in patients with brain tumors.

    Science.gov (United States)

    Jenabi, Mehrnaz; Peck, Kyung K; Young, Robert J; Brennan, Nicole; Holodny, Andrei I

    2014-12-01

    Accurate localization of anatomically and functionally separate SMA tracts is important to improve planning prior to neurosurgery. Using fMRI and probabilistic DTI techniques, we assessed the connectivity between the frontal language area (Broca's area) and the rostral pre-SMA (language SMA) and caudal SMA proper (motor SMA). Twenty brain tumor patients completed motor and language fMRI paradigms and DTI. Peaks of functional activity in the language SMA, motor SMA and Broca's area were used to define seed regions for probabilistic tractography. fMRI and probabilistic tractography identified separate and unique pathways connecting the SMA to Broca's area - the language SMA pathway and the motor SMA pathway. For all subjects, the language SMA pathway had a larger number of voxels (PProbabilistic tractography can identify unique white matter tracts that connect language SMA and motor SMA to Broca's area. The language SMA is more significantly connected to Broca's area than is the motor subdivision of the SMA proper. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  6. Comparison of neurodegeneration between right and left hippocampus area in rats

    Directory of Open Access Journals (Sweden)

    Arezo Nahavandi

    2015-02-01

    Conclusion: Our study showed different manifestations of depression after UCMS. It showed that UCMS could lead to mental depression. This study showed that the right hippocampus was more sensitive to stress than the left hippocampus. In fact, UCMS resulted in depression. The study showed that the right hippocampus was more sensitive to stress than the left hippocampus. Therefore, the main function of the right hemisphere, which is adaptation to the new environment, is disturbed more.

  7. 78 FR 9044 - Adequacy Status of the Motor Vehicle Emission Budgets for Metropolitan Washington DC Area (DC-MD...

    Science.gov (United States)

    2013-02-07

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9777-4] Adequacy Status of the Motor Vehicle Emission Budgets for Metropolitan Washington DC Area (DC-MD-VA) 1997 8-Hour Ozone Non- Attainment Area's 2009... adequacy. SUMMARY: In this notice, EPA is notifying the public that the Motor Vehicle Emissions Budgets...

  8. Motor Speech Apraxia in a 70-Year-Old Man with Left Dorsolateral Frontal Arachnoid Cyst: A [18F]FDG PET-CT Study

    Directory of Open Access Journals (Sweden)

    Nicolaas I. Bohnen

    2016-01-01

    Full Text Available Motor speech apraxia is a speech disorder of impaired syllable sequencing which, when seen with advancing age, is suggestive of a neurodegenerative process affecting cortical structures in the left frontal lobe. Arachnoid cysts can be associated with neurologic symptoms due to compression of underlying brain structures though indications for surgical intervention are unclear. We present the case of a 70-year-old man who presented with a two-year history of speech changes along with decreased initiation and talkativeness, shorter utterances, and dysnomia. [18F]Fluorodeoxyglucose (FDG Positron Emission and Computed Tomography (PET-CT and magnetic resonance imaging (MRI showed very focal left frontal cortical hypometabolism immediately adjacent to an arachnoid cyst but no specific evidence of a neurodegenerative process.

  9. Single motor unit firing behavior in the right trapezius muscle during rapid movement of right or left index finger

    DEFF Research Database (Denmark)

    Søgaard, Karen; Olsen, Henrik B; Blangsted, Anne K

    2014-01-01

    of a general multi joint motor program, while a generally increased and continuous firing rate would support the attention related muscle activation. METHOD: Twelve healthy female subjects were seated at a computer work place with elbows and forearms supported. Ten double clicks (DC) were performed with right......BACKGROUND: Computer work is associated with low level sustained activity in the trapezius muscle that may cause development of trapezius myalgia. Such a low level activity may be attention related or alternatively, be part of a general multi joint motor program providing stabilization...... of the shoulder joint as a biomechanical prerequisite for precise finger manipulation. This study examines single motor unit (MU) firing pattern in the right trapezius muscle during fast movements of ipsilateral or contralateral index finger. A modulation of the MU firing rate would support the existence...

  10. Centre-surround organization of fast sensorimotor integration in human motor hand area

    DEFF Research Database (Denmark)

    Dubbioso, Raffaele; Raffin, Estelle; Karabanov, Anke

    2017-01-01

    Using the short-latency afferent inhibition (SAI) paradigm, transcranial magnetic stimulation (TMS) of the primary motor hand area (M1HAND) can probe how sensory input from limbs modulates corticomotor output in humans. Here we applied a novel TMS mapping approach to chart the spatial representat......Using the short-latency afferent inhibition (SAI) paradigm, transcranial magnetic stimulation (TMS) of the primary motor hand area (M1HAND) can probe how sensory input from limbs modulates corticomotor output in humans. Here we applied a novel TMS mapping approach to chart the spatial...... in M1HAND. Like homotopic SAI, heterotopic SAF was somatotopically expressed in M1HAND. Together, the results provide first-time evidence that fast sensorimotor integration involves centre-inhibition and surround-facilitation in human M1HAND....

  11. Does the supplementary motor area keep patients with Ondine's curse syndrome breathing while awake?

    Directory of Open Access Journals (Sweden)

    Lysandre Tremoureux

    Full Text Available BACKGROUND: Congenital central hypoventilation syndrome (CCHS is a rare neuro-respiratory disorder associated with mutations of the PHOX2B gene. Patients with this disease experience severe hypoventilation during sleep and are consequently ventilator-dependent. However, they breathe almost normally while awake, indicating the existence of cortical mechanisms compensating for the deficient brainstem generation of automatic breathing. Current evidence indicates that the supplementary motor area plays an important role in modulating ventilation in awake normal humans. We hypothesized that the wake-related maintenance of spontaneous breathing in patients with CCHS could involve supplementary motor area. METHODS: We studied 7 CCHS patients (5 women; age: 20-30; BMI: 22.1 ± 4 kg.m(-2 during resting breathing and during exposure to carbon dioxide and inspiratory mechanical constraints. They were compared with 8 healthy individuals. Segments of electroencephalographic tracings were selected according to ventilatory flow signal, from 2.5 seconds to 1.5 seconds after the onset of inspiration. After artefact rejection, 80 or more such segments were ensemble averaged. A slow upward shift of the EEG signal starting between 2 and 0.5 s before inspiration (pre-inspiratory potential was considered suggestive of supplementary motor area activation. RESULTS: In the control group, pre-inspiratory potentials were generally absent during resting breathing and carbon dioxide stimulation, and consistently identified in the presence of inspiratory constraints (expected. In CCHS patients, pre-inspiratory potentials were systematically identified in all study conditions, including resting breathing. They were therefore significantly more frequent than in controls. CONCLUSIONS: This study provides a neurophysiological substrate to the wakefulness drive to breathe that is characteristic of CCHS and suggests that the supplementary motor area contributes to this phenomenon

  12. Does the supplementary motor area keep patients with Ondine's curse syndrome breathing while awake?

    Science.gov (United States)

    Tremoureux, Lysandre; Raux, Mathieu; Hudson, Anna L; Ranohavimparany, Anja; Straus, Christian; Similowski, Thomas

    2014-01-01

    Congenital central hypoventilation syndrome (CCHS) is a rare neuro-respiratory disorder associated with mutations of the PHOX2B gene. Patients with this disease experience severe hypoventilation during sleep and are consequently ventilator-dependent. However, they breathe almost normally while awake, indicating the existence of cortical mechanisms compensating for the deficient brainstem generation of automatic breathing. Current evidence indicates that the supplementary motor area plays an important role in modulating ventilation in awake normal humans. We hypothesized that the wake-related maintenance of spontaneous breathing in patients with CCHS could involve supplementary motor area. We studied 7 CCHS patients (5 women; age: 20-30; BMI: 22.1 ± 4 kg.m(-2)) during resting breathing and during exposure to carbon dioxide and inspiratory mechanical constraints. They were compared with 8 healthy individuals. Segments of electroencephalographic tracings were selected according to ventilatory flow signal, from 2.5 seconds to 1.5 seconds after the onset of inspiration. After artefact rejection, 80 or more such segments were ensemble averaged. A slow upward shift of the EEG signal starting between 2 and 0.5 s before inspiration (pre-inspiratory potential) was considered suggestive of supplementary motor area activation. In the control group, pre-inspiratory potentials were generally absent during resting breathing and carbon dioxide stimulation, and consistently identified in the presence of inspiratory constraints (expected). In CCHS patients, pre-inspiratory potentials were systematically identified in all study conditions, including resting breathing. They were therefore significantly more frequent than in controls. This study provides a neurophysiological substrate to the wakefulness drive to breathe that is characteristic of CCHS and suggests that the supplementary motor area contributes to this phenomenon. Whether or not this "cortical breathing" can be taken

  13. Impact of Motor Vehicle Emissions on Air Quality in Urban and Sub Urban Area

    OpenAIRE

    Karim, A. Ikhsan; SUGITO, Sugito

    2014-01-01

    One of the effects of development and growth in urban areas is the increasing number of vehicles from year to year . Improved transportation needs to support the activities of the community , the problems faced by large cities today . Along with these problems , the most crucial in the presence of the number of vehicles is the problem of congestion .Vehicle congestion and concentrated on a spot will cause air pollution . Air pollution comes from motor vehicle exhaust emissions contain toxic s...

  14. The role of the supplementary motor area for speech and language processing.

    Science.gov (United States)

    Hertrich, Ingo; Dietrich, Susanne; Ackermann, Hermann

    2016-09-01

    Apart from its function in speech motor control, the supplementary motor area (SMA) has largely been neglected in models of speech and language processing in the brain. The aim of this review paper is to summarize more recent work, suggesting that the SMA has various superordinate control functions during speech communication and language reception, which is particularly relevant in case of increased task demands. The SMA is subdivided into a posterior region serving predominantly motor-related functions (SMA proper) whereas the anterior part (pre-SMA) is involved in higher-order cognitive control mechanisms. In analogy to motor triggering functions of the SMA proper, the pre-SMA seems to manage procedural aspects of cognitive processing. These latter functions, among others, comprise attentional switching, ambiguity resolution, context integration, and coordination between procedural and declarative memory structures. Regarding language processing, this refers, for example, to the use of inner speech mechanisms during language encoding, but also to lexical disambiguation, syntax and prosody integration, and context-tracking. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Localization of area prostriata and its projection to the cingulate motor cortex in the rhesus monkey.

    Science.gov (United States)

    Morecraft, R J; Rockland, K S; Van Hoesen, G W

    2000-02-01

    Area prostriata is a poorly understood cortical area located in the anterior portion of the calcarine sulcus. It has attracted interest as a separate visual area and progenitor for the cortex of this modality. In this report we describe a direct projection from area prostriata to the rostral cingulate motor cortex (M3) that forms the fundus and lower bank of the anterior part of the cingulate sulcus. Injections of retrograde tracers in M3 resulted in labeled neurons in layers III, V and VI of prostriate cortex. However, injections of anterograde tracers in M3 did not demonstrate axon terminals in area prostriata. This connection was organized topographically such that the rostral part of M3 received input from the dorsal region of prostriate cortex, whereas middle and caudal levels of M3 received input from more ventral locations. Injections of retrograde and anterograde tracers in the caudal cingulate motor cortex (M4) did not produce labeling in prostriate cortex. Cytoarchitectural analysis confirmed the identity of area prostriata and further clarified its extent and borders with the parasubiculum of the hippocampal formation rostrally, and V1 of the visual cortex caudally. This linkage between cortex bordering V1 and cortex giving rise to a component of the corticofacial and corticospinal pathways demonstrates a more direct visuomotor route than visual association projections coursing laterally.

  16. Reduced recruitment of motor association areas during bimanual coordination in concert pianists.

    Science.gov (United States)

    Haslinger, Bernhard; Erhard, Peter; Altenmüller, Eckart; Hennenlotter, Andreas; Schwaiger, Markus; Gräfin von Einsiedel, Helga; Rummeny, Ernst; Conrad, Bastian; Ceballos-Baumann, Andrés O

    2004-07-01

    Bimanual motor coordination is essential for piano playing. The functional neuronal substrate for high-level bimanual performance achieved by professional pianists is unclear. We compared professional pianists to musically naïve controls while carrying out in-phase (mirror) and anti-phase (parallel) bimanual sequential finger movements during functional magnetic resonance imaging (fMRI). This task corresponds to bimanually playing scales practiced daily by pianists from the beginning of piano playing. Musicians and controls showed significantly different functional activation patterns. When comparing performance of parallel movements to rest, musically naïve controls showed stronger activations than did pianists within a network including anterior cingulate cortex, right dorsal premotor cortex, both cerebellar hemispheres, and right basal ganglia. The direct comparison of bimanual parallel to mirror movements between both groups revealed stronger signal increases in controls within mesial premotor cortex (SMA), bilateral cerebellar hemispheres and vermis, bilateral prefrontal cortex, left ventral premotor cortex, right anterior insula, and right basal ganglia. These findings suggest increased efficiency of cortical and subcortical systems for bimanual movement control in musicians. This may be fundamental to achieve high-level motor skills allowing the musician to focus on artistic aspects of musical performance. Copyright 2004 Wiley-Liss, Inc.

  17. Robust tactile sensory responses in finger area of primate motor cortex relevant to prosthetic control

    Science.gov (United States)

    Schroeder, Karen E.; Irwin, Zachary T.; Bullard, Autumn J.; Thompson, David E.; Bentley, J. Nicole; Stacey, William C.; Patil, Parag G.; Chestek, Cynthia A.

    2017-08-01

    Objective. Challenges in improving the performance of dexterous upper-limb brain-machine interfaces (BMIs) have prompted renewed interest in quantifying the amount and type of sensory information naturally encoded in the primary motor cortex (M1). Previous single unit studies in monkeys showed M1 is responsive to tactile stimulation, as well as passive and active movement of the limbs. However, recent work in this area has focused primarily on proprioception. Here we examined instead how tactile somatosensation of the hand and fingers is represented in M1. Approach. We recorded multi- and single units and thresholded neural activity from macaque M1 while gently brushing individual finger pads at 2 Hz. We also recorded broadband neural activity from electrocorticogram (ECoG) grids placed on human motor cortex, while applying the same tactile stimulus. Main results. Units displaying significant differences in firing rates between individual fingers (p  sensory information was present in M1 to correctly decode stimulus position from multiunit activity above chance levels in all monkeys, and also from ECoG gamma power in two human subjects. Significance. These results provide some explanation for difficulties experienced by motor decoders in clinical trials of cortically controlled prosthetic hands, as well as the general problem of disentangling motor and sensory signals in primate motor cortex during dextrous tasks. Additionally, examination of unit tuning during tactile and proprioceptive inputs indicates cells are often tuned differently in different contexts, reinforcing the need for continued refinement of BMI training and decoding approaches to closed-loop BMI systems for dexterous grasping.

  18. Pragmatics in action: indirect requests engage theory of mind areas and the cortical motor network.

    Science.gov (United States)

    van Ackeren, Markus J; Casasanto, Daniel; Bekkering, Harold; Hagoort, Peter; Rueschemeyer, Shirley-Ann

    2012-11-01

    motor areas reliably more than comprehension of sentences devoid of any implicit motor information. This is true despite the fact that IR sentences contain no lexical reference to action. (2) Comprehension of IR sentences also reliably activates substantial portions of the theory of mind network, known to be involved in making inferences about mental states of others. The implications of these findings for embodied theories of language are discussed.

  19. DIFFERENCES BETWEEN PUPILS FROM URBAN AND RURAL AREAS IN MORPHOLOGICAL AND MOTORIC DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Mamaj Driton

    2015-05-01

    Full Text Available One of the most important preconditions for effective influence of physical body exercises among pupils during regular classes of physical education in schools is increased volume and quality of work and study. In order to increase volume and quality of work and study, it is necessary to carry out reform of education at elementary and lower level secondary education in Kosova in order to advance professional personnel and increase number of hours for sport and health education classes. Methods: This research is of a transversal nature, meaning that there has been a measurement of morphological and motoric indicators in the sample of 26 pupils of the age group of 15 years of the elementary and lower level school “Faik Konica” from Prishtina as an urbane center and sample of 30 pupils of elementary and lower level school „Avdulla Tahiri“ from Malisheva. 6 anthropometric and 4 motoric variables have been used (Kurelić et al., 1975. Anthropometric variables included: body height (ATV, length of foot (ADS, body mass (ATT, volume of upper arm in down position (AONL, volume of upper leg (AONK, volume of lower leg (AOPK. Motoric variables included: standing position distance jump (MFESDM, 30 meters distance running (MTR30V, bench bending (MFLPRK, and push-ups (MSKLEK. T-test analysis has been used for independent variables. Results: Obtained results from the statistical analysis demonstrate that anthropometric characteristics and motoric skills of two independent groups of pupils have normal distribution and no visible asymmetry and have tendency toward higher values (epikurtic. T-test analysis demonstrates that pupils from rural areas have lower muscular mass and lower motoric results. Discussion: Conditions for execution of physical education classes and lack of physical activities in the rural environment have strong influence on developments of morphological and motoric characteristics of pupils. Significant statistical differences obtained

  20. Unexpected Improvement of Hand Motor Function with a Left Temporoparietal Low-Frequency Repetitive Transcranial Magnetic Stimulation Regime Suppressing Auditory Hallucinations in a Brainstem Chronic Stroke Patient

    Directory of Open Access Journals (Sweden)

    Fanny Thomas

    2017-11-01

    Full Text Available We here report paradoxical hand function recovery in a 61-year-old male tetra-paretic chronic patient following a stroke of the brainstem (with highly degraded right and abolished left-hand finger flexion/extension disabling him to manipulate objects who experienced insidious auditory hallucinations (AHs 4 years after such event. Symptomatic treatment for AHs was provided with periodical double sessions of low-frequency repetitive transcranial magnetic stimulation (rTMS (daily 1 Hz, 2 × 1,200 pulses interleaved by 1 h interval delivered to the left temporoparietal junction across two periods of 5 and 3 weeks, respectively. At the end of each stimulation period, AHs disappeared completely. Most surprisingly and totally unexpectedly, the patient experienced beneficial improvements of long-lasting impairments in his right-hand function. Detailed examination of onset and offset of rTMS stimulation regimes strongly suggests a temporal relation with the remission and re-appearance of AHs and also with a fragile but clinically meaningful improvements of right (but not left hand function contingent to the accrual of stimulation sessions. On the basis of post-recovery magnetic resonance imaging structural and functional evidence, mechanistic hypotheses that could subtend such unexpected motor recovery are critically discussed.

  1. Bridging the gap between motor imagery and motor execution with a brain-robot interface.

    Science.gov (United States)

    Bauer, Robert; Fels, Meike; Vukelić, Mathias; Ziemann, Ulf; Gharabaghi, Alireza

    2015-03-01

    According to electrophysiological studies motor imagery and motor execution are associated with perturbations of brain oscillations over spatially similar cortical areas. By contrast, neuroimaging and lesion studies suggest that at least partially distinct cortical networks are involved in motor imagery and execution. We sought to further disentangle this relationship by studying the role of brain-robot interfaces in the context of motor imagery and motor execution networks. Twenty right-handed subjects performed several behavioral tasks as indicators for imagery and execution of movements of the left hand, i.e. kinesthetic imagery, visual imagery, visuomotor integration and tonic contraction. In addition, subjects performed motor imagery supported by haptic/proprioceptive feedback from a brain-robot-interface. Principal component analysis was applied to assess the relationship of these indicators. The respective cortical resting state networks in the α-range were investigated by electroencephalography using the phase slope index. We detected two distinct abilities and cortical networks underlying motor control: a motor imagery network connecting the left parietal and motor areas with the right prefrontal cortex and a motor execution network characterized by transmission from the left to right motor areas. We found that a brain-robot-interface might offer a way to bridge the gap between these networks, opening thereby a backdoor to the motor execution system. This knowledge might promote patient screening and may lead to novel treatment strategies, e.g. for the rehabilitation of hemiparesis after stroke. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Pre-operative fMRI localization of the supplementary motor area and its relationship with postoperative speech deficits.

    Science.gov (United States)

    Lyo, John K; Arevalo-Perez, Julio; Petrovich Brennan, Nicole; Peck, Kyung K; Holodny, Andrei I

    2015-06-01

    Neurosurgery of the supplementary motor area (SMA) is associated with transient speech defects. We investigated whether SMA laterality correlates with postoperative speech defects. The authors reviewed 17 patients with SMA-area lesion resection and preoperative language fMRI. SMA laterality was calculated by comparison of voxel activation in paired SMAs by hand-drawn regions of interest (ROIs) (drawn by a neuroradiologist), and compared with qualitative assessment by two neuroradiologists. Postoperative speech defects before and after surgery were assessed by chart review. Six patients developed new speech defects that resolved within several months. Two of the patients had a pre-existing speech defect that had developed after prior SMA-area surgery. All these patients had left-sided lesions, while none of the four patients with a right-sided lesion developed a speech defect. Neuroradiologists' assessment of SMA laterality agreed with ROI calculation for the SMAs that were lateralized. However, for the SMAs in the "codominant" range by ROI, the neuroradiologists felt that all but one of the cases clearly lateralized, with the exception deemed indeterminate or codominant. No correlation between laterality of SMA and speech defect was identified. Twelve patients showed lateralization contralateral to the lesion. fMRI lateralization does not correlate with transient speech defects that developed from SMA-area surgery. Qualitative/visual assessment of SMA laterality was superior to ROI calculation because of the close proximity and possible overlap of signal from midline SMA. A majority of patients showed SMA lateralization contralateral to the SMA lesion. © The Author(s) 2015.

  3. Importance of the left auditory areas in chord discrimination in music experts as demonstrated by MEG.

    Science.gov (United States)

    Tervaniemi, Mari; Sannemann, Christian; Noyranen, Maiju; Salonen, Johanna; Pihko, Elina

    2011-08-01

    The brain basis behind musical competence in its various forms is not yet known. To determine the pattern of hemispheric lateralization during sound-change discrimination, we recorded the magnetic counterpart of the electrical mismatch negativity (MMNm) responses in professional musicians, musical participants (with high scores in the musicality tests but without professional training in music) and non-musicians. While watching a silenced video, they were presented with short sounds with frequency and duration deviants and C major chords with C minor chords as deviants. MMNm to chord deviants was stronger in both musicians and musical participants than in non-musicians, particularly in their left hemisphere. No group differences were obtained in the MMNm strength in the right hemisphere in any of the conditions or in the left hemisphere in the case of frequency or duration deviants. Thus, in addition to professional training in music, musical aptitude (combined with lower-level musical training) is also reflected in brain functioning related to sound discrimination. The present magnetoencephalographic evidence therefore indicates that the sound discrimination abilities may be differentially distributed in the brain in musically competent and naïve participants, especially in a musical context established by chord stimuli: the higher forms of musical competence engage both auditory cortices in an integrative manner. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  4. Difference in activity in the supplementary motor area depending on limb combination of hand-foot coordinated movements

    Directory of Open Access Journals (Sweden)

    Kento Nakagawa

    2016-10-01

    Full Text Available Periodic interlimb coordination shows lower performance when the ipsilateral hand and foot (e.g. right hand and right foot are simultaneously moved than when the contralateral hand and foot (e.g. right hand and left foot are simultaneously moved. The present study aimed to investigate how brain activity that is related to the dependence of hand-foot coordination on limb combination, using functional magnetic imaging (fMRI. Twenty-one right-handed subjects performed periodic coordinated movements of the ipsilateral or contralateral hand and foot in the same or opposite direction in the sagittal plane. Kinematic data showed that performance was lower for the ipsilateral hand-foot coordination than for the contralateral one. A comparison of brain activity between the same and opposite directions showed that there was a greater activation of supplemental motor area (SMA for ipsilateral hand-foot coordination as compared to that seen during contralateral hand-foot coordination. We speculate that this might reflect a difference in the degree of inhibition of the neural circuit that disrupts opposite directional movements between ipsilateral and contralateral hand-foot coordinated movements.

  5. Supplementary motor area and primary auditory cortex activation in an expert break-dancer during the kinesthetic motor imagery of dance to music.

    Science.gov (United States)

    Olshansky, Michael P; Bar, Rachel J; Fogarty, Mary; DeSouza, Joseph F X

    2015-01-01

    The current study used functional magnetic resonance imaging to examine the neural activity of an expert dancer with 35 years of break-dancing experience during the kinesthetic motor imagery (KMI) of dance accompanied by highly familiar and unfamiliar music. The goal of this study was to examine the effect of musical familiarity on neural activity underlying KMI within a highly experienced dancer. In order to investigate this in both primary sensory and motor planning cortical areas, we examined the effects of music familiarity on the primary auditory cortex [Heschl's gyrus (HG)] and the supplementary motor area (SMA). Our findings reveal reduced HG activity and greater SMA activity during imagined dance to familiar music compared to unfamiliar music. We propose that one's internal representations of dance moves are influenced by auditory stimuli and may be specific to a dance style and the music accompanying it.

  6. Control and Monitoring of a Stepper Motor through a Local Area Network

    Directory of Open Access Journals (Sweden)

    POPOVICI, D.

    2007-11-01

    Full Text Available In these days due to the information technology there are many ways to control a remote servomotor. In the paper it is shown a simple and reliable way to handle the control and monitoring of a remote stepper motor using a Local Area Network (LAN. The hardware uses a common PIC microcontroller and a stand-alone Ethernet controller. The main program located in the flash program memory solves the following tasks: read packs through SPI (Serial Peripheral Interface from the Ethernet controller's buffer and decode them, encapsulate data to be sent with the Ethernet controller, control the on-off state of the transistors from the static converter and receive feedback directly from the optical sensor to monitor the actual position of the shaft. The microcontroller supervises also the Ethernet controller. The Ethernet controller's job is to receive data from the main application remote program that runs on a computer, via UTP cable. Then it stores the data for a short time in a buffer from which the microcontroller can read it. The microcontroller stores data on this Ethernet controller too and can command it to send data to the main application program running remotely. The main remote program is written in Visual C++ and has a friendly interface allowing to the operator to send commands to the stepper motor drive and monitor in a dedicated window position, speed or the control sequences for the power transistor drivers of the stepper motor. The operator can send specific commands to the drive such as Start, Stop, Accelerate, Decelerate, Spin Clockwise/Counter clockwise and the number of steps. The microcontroller stepper motor drive system shows good performance and reliability.

  7. Dynamic Reconfiguration of the Supplementary Motor Area Network during Imagined Music Performance.

    Science.gov (United States)

    Tanaka, Shoji; Kirino, Eiji

    2017-01-01

    The supplementary motor area (SMA) has been shown to be the center for motor planning and is active during music listening and performance. However, limited data exist on the role of the SMA in music. Music performance requires complex information processing in auditory, visual, spatial, emotional, and motor domains, and this information is integrated for the performance. We hypothesized that the SMA is engaged in multimodal integration of information, distributed across several regions of the brain to prepare for ongoing music performance. To test this hypothesis, functional networks involving the SMA were extracted from functional magnetic resonance imaging (fMRI) data that were acquired from musicians during imagined music performance and during the resting state. Compared with the resting condition, imagined music performance increased connectivity of the SMA with widespread regions in the brain including the sensorimotor cortices, parietal cortex, posterior temporal cortex, occipital cortex, and inferior and dorsolateral prefrontal cortex. Increased connectivity of the SMA with the dorsolateral prefrontal cortex suggests that the SMA is under cognitive control, while increased connectivity with the inferior prefrontal cortex suggests the involvement of syntax processing. Increased connectivity with the parietal cortex, posterior temporal cortex, and occipital cortex is likely for the integration of spatial, emotional, and visual information. Finally, increased connectivity with the sensorimotor cortices was potentially involved with the translation of thought planning into motor programs. Therefore, the reconfiguration of the SMA network observed in this study is considered to reflect the multimodal integration required for imagined and actual music performance. We propose that the SMA network construct "the internal representation of music performance" by integrating multimodal information required for the performance.

  8. Dynamic Reconfiguration of the Supplementary Motor Area Network during Imagined Music Performance

    Directory of Open Access Journals (Sweden)

    Shoji Tanaka

    2017-12-01

    Full Text Available The supplementary motor area (SMA has been shown to be the center for motor planning and is active during music listening and performance. However, limited data exist on the role of the SMA in music. Music performance requires complex information processing in auditory, visual, spatial, emotional, and motor domains, and this information is integrated for the performance. We hypothesized that the SMA is engaged in multimodal integration of information, distributed across several regions of the brain to prepare for ongoing music performance. To test this hypothesis, functional networks involving the SMA were extracted from functional magnetic resonance imaging (fMRI data that were acquired from musicians during imagined music performance and during the resting state. Compared with the resting condition, imagined music performance increased connectivity of the SMA with widespread regions in the brain including the sensorimotor cortices, parietal cortex, posterior temporal cortex, occipital cortex, and inferior and dorsolateral prefrontal cortex. Increased connectivity of the SMA with the dorsolateral prefrontal cortex suggests that the SMA is under cognitive control, while increased connectivity with the inferior prefrontal cortex suggests the involvement of syntax processing. Increased connectivity with the parietal cortex, posterior temporal cortex, and occipital cortex is likely for the integration of spatial, emotional, and visual information. Finally, increased connectivity with the sensorimotor cortices was potentially involved with the translation of thought planning into motor programs. Therefore, the reconfiguration of the SMA network observed in this study is considered to reflect the multimodal integration required for imagined and actual music performance. We propose that the SMA network construct “the internal representation of music performance” by integrating multimodal information required for the performance.

  9. A Parietal-Temporal Sensory-Motor Integration Area for the Human Vocal Tract: Evidence from an fMRI Study of Skilled Musicians

    Science.gov (United States)

    Pa, Judy; Hickok, Gregory

    2008-01-01

    Several sensory-motor integration regions have been identified in parietal cortex, which appear to be organized around motor-effectors (e.g., eyes, hands). We investigated whether a sensory-motor integration area might exist for the human vocal tract. Speech requires extensive sensory-motor integration, as does other abilities such as vocal…

  10. Influence of hypertensive left ventricular hypertrophy on detection of ischemic area with exercise thallium-201 myocardial scintigraphy

    International Nuclear Information System (INIS)

    Toyama, Takuji; Nishimura, Tsunehiko; Uehara, Toshiisa

    1992-01-01

    Sixty-four patients with single left anterior descending artery disease having effort angina (group A: 40 patients with hypertrophic hypertension, group B: 10 patients with hypertrophic hypertension, group C: 14 patients with non-hypertrophic hypertension) were assessed to determine the influence of hypertensive left ventricular (LV) hypertrophy on detection of ischemic area. The criterion of hypertrophy by two-dimensional echocardiography was >12 mm in the wall thickness of interventricular septal or posterior wall. Population in Group B might show low detectability in ischemic area by 201 Tl myocardial scintigraphy (positive thallium rate 60%, defect score 2.7±3.6), and high lung thallium uptake and high frequence of ECG positive among three groups. In semiquantitative analysis, the washout rate of the posterolateral wall and %RD (delayed %uptake-initial %uptake) of the septal wall in patients with Group B were lowest among three groups. However, the washout rate in the septal wall against the posterior wall, and the initial %uptake and the delayed %uptake of the septal wall were not significantly different among three groups. We could conclude that the decreased washout rate in nonischemic area with hypertensive LV hypertrophy might make the ischemic area masked. (author)

  11. Areas of Left Perisylvian Cortex Mediate Auditory-Verbal Short-Term Memory

    Science.gov (United States)

    Koenigs, Michael; Acheson, Daniel J.; Barbey, Aron K.; Solomon, Jeffrey; Postle, Bradley R.; Grafman, Jordan

    2011-01-01

    A contentious issue in memory research is whether verbal short-term memory (STM) depends on a neural system specifically dedicated to the temporary maintenance of information, or instead relies on the same brain areas subserving the comprehension and production of language. In this study, we examined a large sample of adults with acquired brain…

  12. A novel approach for detail surveys by the motorized GPSSIT concept in residentials areas and its application

    Directory of Open Access Journals (Sweden)

    Ibrahim Kalayci

    Full Text Available This paper introduces the usage and reliability of Motorized GPSSIT technique which is a novel approach for surveying. It reviews the advantages of Motorized GPSSIT concept and also considers to provide GNSS accuracy in the process of surveying especially for the cases which cannot be surveyed directly by the satellite navigation systems (GPS-GNSS, such as closely packed residential areas, tall buildings, trees, etc., and also places which GNSS receivers cannot be work efficiently due to signal interferences. In this technique, all the survey instruments are installed on a bed of a pick-up truck whereas in present techniques they are installed on the ground, therefore it is called Motorized GPSSIT. Study area was chosen within the housing area of our campus. In this area, classical surveying, GPSSIT and Motorized GPSSIT were performed to collect data for comparison and for the analysis of this technique's usability and reliability. Stop and Go and RTK surveying techniques were performed with GPSSIT and Motorized GPSSIT concepts. It is shown that the Motorized GPSSIT technique is applicable as other present techniques in terms of accuracy and reliability.

  13. Functional connectivity of the human rostral and caudal cingulate motor areas in the brain resting state at 3T

    Energy Technology Data Exchange (ETDEWEB)

    Habas, Christophe [CHNO des Quinze-Vingts, UPMC Paris 6, Service de NeuroImagerie, Paris (France)

    2010-01-15

    Three cingulate motor areas have been described in monkeys, the rostral, dorsal, and ventral cingulate motor areas, and would control limbic-related motor activity. However, little anatomical data are available in human about the functional networks these cingulate areas underlie. Therefore, networks anchored in the rostral and caudal cingulate motor areas (rCMA and cCMA, respectively) were studied in human using functional connectivity during the brain resting state. Since the rCMA and cCMA are located just under the pre-supplementary and supplementary motor areas (pre-SMA and SMA), the pre-SMA- and SMA-centered networks were also studied to ensure that these four circuits were correctly dissociated. Data from 14 right-handed healthy volunteers were acquired at rest and analyzed by region of interest (ROI)-based functional connectivity. The blood oxygenation level-dependent (BOLD) signal fluctuations of separate ROIs located in rCMA, cCMA, pre-SMA, and SMA were successively used to identify significant temporal correlations with BOLD signal fluctuations of other brain regions. Low-frequency BOLD signal of the CMA was correlated with signal fluctuations in the prefrontal, cingulate, insular, premotor, motor, medial and inferior parietal cortices, putamen and thalamus, and anticorrelated with the default-mode network. rCMA was more in relation with prefrontal, orbitofrontal, and language-associated cortices than cCMA more related to sensory cortex. These cingulate networks were very similar to the pre-SMA- and SMA-centered networks, although pre-SMA and SMA showed stronger correlation with the prefrontal and inferior parietal cortices and with the cerebellum and the superior parietal cortex, respectively. The human cingulate motor areas constitute an interface between sensorimotor, limbic and executive systems, sharing common cortical, striatal, and thalamic relays with the overlying premotor medial areas. (orig.)

  14. T-wave area predicts response to cardiac resynchronization therapy in patients with left bundle branch block.

    Science.gov (United States)

    Engels, Elien B; Végh, Eszter M; Van Deursen, Caroline J M; Vernooy, Kevin; Singh, Jagmeet P; Prinzen, Frits W

    2015-02-01

    Chronic heart failure patients with a left ventricular (LV) conduction delay, mostly due to left bundle branch block (LBBB), generally derive benefit from cardiac resynchronization therapy (CRT). However, 30-50% of patients do not show a clear response to CRT. We investigated whether T-wave analysis of the ECG can improve patient selection. The study population comprised 244 CRT recipients with baseline 12-lead electrocardiogram recordings. Echocardiographic response after 6-month CRT was defined as a ≥5% increase in LV ejection fraction (LVEF). Vectorcardiograms (VCGs) were constructed from the measured 12-lead ECGs using an adapted Kors algorithm on digitized ECGs. Logistic regression models indicated repolarization variables as good predictors of CRT response. The VCG-derived T-wave area predicted CRT response (odds ratio [OR] per 10 μVs increase 1.172 [P < 0.001]) even better than QRS-wave area (OR = 1.116 [P = 0.001]). T-wave area had especially predictive value in the LBBB patient group (OR = 2.77 in LBBB vs. 1.09 in non-LBBB). This predictive value persisted after adjustment of multiple covariates, such as gender, ischemia, age, hypertension, coronary artery bypass graft, and the usage of diuretics and β-blockers. In LBBB patients, the increase in LVEF was 6.1 ± 9.7% and 11.3 ± 9.1% in patients with T-wave area below and above the median value, respectively (P < 0.01). In patients with LBBB morphology of the QRS complex, a larger baseline T-wave area is an important independent predictor of LVEF increase following CRT. © 2014 Wiley Periodicals, Inc.

  15. A Possible Output Area of Torque and Suspension Force in a Switched Reluctance Type Bearingless Motor with One Phase Excitation

    Science.gov (United States)

    Takemoto, Masatsugu; Chiba, Akira; Akagi, Hirofumi; Fukao, Tadashi

    Switched reluctance type bearingless motors are characterized by integration of switched reluctance motors and magnetic bearings. Therefore, these motors can control radial rotor positions with magnetic force actively. Production of suspension force for rotor shaft magnetic suspension is explained with differential stator windings. In the previous paper, accurate theoretical formulae of instantaneous torque and suspension force generated by one phase excitation were derived from an assumption of simple permeance distribution. From the derived theoretical formulae, it is found that there exist cross coupling between the instantaneous torque and the suspension force. This paper derives a possible output area of the instantaneous torque and the suspension force considering the cross coupling in order to realize a stable operation. It is shown with experimental results that the possible output area of the proposed motors is very accurate in terms of practical application.

  16. A synergy-based hand control is encoded in human motor cortical areas

    Science.gov (United States)

    Leo, Andrea; Handjaras, Giacomo; Bianchi, Matteo; Marino, Hamal; Gabiccini, Marco; Guidi, Andrea; Scilingo, Enzo Pasquale; Pietrini, Pietro; Bicchi, Antonio; Santello, Marco; Ricciardi, Emiliano

    2016-01-01

    How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional modules that may simplify the control of hand postures by simultaneously recruiting sets of muscles and joints. However, whether and to what extent synergic hand postures are encoded as such at a cortical level remains unknown. Here, we combined kinematic, electromyography, and brain activity measures obtained by functional magnetic resonance imaging while subjects performed a variety of movements towards virtual objects. Hand postural information, encoded through kinematic synergies, were represented in cortical areas devoted to hand motor control and successfully discriminated individual grasping movements, significantly outperforming alternative somatotopic or muscle-based models. Importantly, hand postural synergies were predicted by neural activation patterns within primary motor cortex. These findings support a novel cortical organization for hand movement control and open potential applications for brain-computer interfaces and neuroprostheses. DOI: http://dx.doi.org/10.7554/eLife.13420.001 PMID:26880543

  17. Effects of coil orientation on the electric field induced by TMS over the hand motor area

    International Nuclear Information System (INIS)

    Laakso, Ilkka; Hirata, Akimasa; Ugawa, Yoshikazu

    2014-01-01

    Responses elicited by transcranial magnetic stimulation (TMS) over the hand motor area depend on the position and orientation of the stimulating coil. In this work, we computationally investigate the induced electric field for multiple coil orientations and locations in order to determine which parts of the brain are affected and how the sensitivity of motor cortical activation depends on the direction of the electric field. The finite element method is used for calculating the electric field induced by TMS in two individual anatomical models of the head and brain. The orientation of the coil affects both the strength and depth of penetration of the electric field, and the field strongly depends on the direction of the sulcus, where the target neurons are located. The coil position that gives the strongest electric field in the target cortical region may deviate from the closest scalp location by a distance on the order of 1 cm. Together with previous experimental data, the results support the hypothesis that the cortex is most sensitive to fields oriented perpendicular to the cortical layers, while it is relatively insensitive to fields parallel to them. This has important implications for targeting of TMS. To determine the most effective coil position and orientation, it is essential to consider both biological (the direction of the targeted axons) and physical factors (the strength and direction of the electric field). (paper)

  18. High-Frequency Electroencephalographic Activity in Left Temporal Area Is Associated with Pleasant Emotion Induced by Video Clips

    Directory of Open Access Journals (Sweden)

    Jukka Kortelainen

    2015-01-01

    Full Text Available Recent findings suggest that specific neural correlates for the key elements of basic emotions do exist and can be identified by neuroimaging techniques. In this paper, electroencephalogram (EEG is used to explore the markers for video-induced emotions. The problem is approached from a classifier perspective: the features that perform best in classifying person’s valence and arousal while watching video clips with audiovisual emotional content are searched from a large feature set constructed from the EEG spectral powers of single channels as well as power differences between specific channel pairs. The feature selection is carried out using a sequential forward floating search method and is done separately for the classification of valence and arousal, both derived from the emotional keyword that the subject had chosen after seeing the clips. The proposed classifier-based approach reveals a clear association between the increased high-frequency (15–32 Hz activity in the left temporal area and the clips described as “pleasant” in the valence and “medium arousal” in the arousal scale. These clips represent the emotional keywords amusement and joy/happiness. The finding suggests the occurrence of a specific neural activation during video-induced pleasant emotion and the possibility to detect this from the left temporal area using EEG.

  19. Specific properties of the SI and SII somatosensory areas and their effects on motor control: a system neurophysiological study.

    Science.gov (United States)

    Friedrich, Julia; Mückschel, Moritz; Beste, Christian

    2018-03-01

    Sensorimotor integration is essential for successful motor control and the somatosensory modality has been shown to have strong effects on the execution of motor plans. The primary (SI) and the secondary somatosensory (SII) cortices are known to differ in their neuroanatomical connections to prefrontal areas, as well as in their involvement to encode cognitive aspects of tactile processing. Here, we ask whether the area-specific processing architecture or the structural neuroanatomical connections with prefrontal areas determine the efficacy of sensorimotor integration processes for motor control. In a system neurophysiological study including EEG signal decomposition (i.e., residue iteration decomposition, RIDE) and source localization, we investigated this question using vibrotactile stimuli optimized for SI or SII processing. The behavioral data show that when being triggered via the SI area, inhibitory control of motor processes is stronger as when being triggered via the SII area. On a neurophysiological level, these effects were reflected in the C-cluster as a result of a temporal decomposition of EEG data, indicating that the sensory processes affecting motor inhibition modulate the response selection level. These modulations were associated with a stronger activation of the right inferior frontal gyrus extending to the right middle frontal gyrus as parts of a network known to be involved in inhibitory motor control when response inhibition is triggered over SI. In addition, areas important for sensorimotor integration like the postcentral gyrus and superior parietal cortex showed activation differences. The data suggest that connection patterns are more important for sensorimotor integration and control than the more restricted area-specific processing architecture.

  20. Transcranial Direct Current Stimulation over the Medial Prefrontal Cortex and Left Primary Motor Cortex (mPFC-lPMC) Affects Subjective Beauty but Not Ugliness

    Science.gov (United States)

    Nakamura, Koyo; Kawabata, Hideaki

    2015-01-01

    Neuroaesthetics has been searching for the neural bases of the subjective experience of beauty. It has been demonstrated that neural activities in the medial prefrontal cortex (mPFC) and the left primary motor cortex (lPMC) correlate with the subjective experience of beauty. Although beauty and ugliness seem to be semantically and conceptually opposite, it is still unknown whether these two evaluations represent extreme opposites in unitary or bivariate dimensions. In this study, we applied transcranial direct current stimulation (tDCS) to examine whether non-invasive brain stimulation modulates two types of esthetic evaluation; evaluating beauty and ugliness. Participants rated the subjective beauty and ugliness of abstract paintings before and after the application of tDCS. Application of cathodal tDCS over the mPFC with anode electrode over the lPMC, which induced temporal inhibition of neural excitability of the mPFC, led to a decrease in beauty ratings but not ugliness ratings. There were no changes in ratings of both beauty and ugliness when applying anodal tDCS or sham stimulation over the mPFC. Results from our experiment indicate that the mPFC and the lPMC have a causal role in generating the subjective experience of beauty, with beauty and ugliness evaluations constituting two distinct dimensions. PMID:26696865

  1. Comparison of left and right ventricular volume measurement using the Simpson's method and the area length method

    International Nuclear Information System (INIS)

    Hergan, Klaus; Schuster, Antonius; Fruehwald, Julia; Mair, Michael; Burger, Ralph; Toepker, Michael

    2008-01-01

    Purpose: To compare ventricular volume measurement using a volumetric approach in the three standard cardiac planes and ventricular volume estimation by a geometrical model, the Area-Length method (ALM). Materials and methods: Fifty-six healthy volunteers were examined (27 males, 29 females) on a 1.5 T MR-unit with ECG-triggered steady state free precision (SSFP) Cine-MR sequences and parallel image acquisition. Multiple slices in standardized planes including the short-axis view (sa), 4-chamber view (4ch), left and right 2-chamber views (2ch) were used to cover the whole heart. End-systolic and end-diastolic ventricular volumes (EDV, ESV), stroke volume (SV), and ejection fraction (EF) were calculated with Simpson's rule in all planes and with ALM in the 2ch and 4ch planes. Global function parameters measured in the sa plane were compared with those obtained in the other imaging planes. Results: A very good correlation is observed when comparing functional parameters calculated with Simpson's rule in all imaging planes: for instance, the mean EDV/ESV of the left and right ventricle of the female population group measured in sa, 4ch, and 2ch: left ventricle EDV/ESV 114.3/44.4, 120.9/46.5, and 117.7/45.3 ml; right ventricle EDV/ESV 106.6/46.0, 101.2/41.1, and 103.5/43.0 ml. Functional parameters of the left ventricle calculated with ALM in 2ch and 4ch correlate to parameters obtained in sa with Simpson's rule in the range of 5-10%: for instance, the EDV/ESV of the left ventricle of the male population group measured in the sa, 4ch, and 2ch: 160.3/63.5, 163.1/59.0, and 167.0/65.7 ml. Functional parameters of the right ventricle measured with ALM in 4ch are 40-50% lower and calculated in 2ch almost double as high as compared with the parameters obtained in sa with Simpson's rule: for instance, male right ventricular EDV/ESV measured in sa, 4ch, and 2ch: 153.4/68.1, 97.5/34.5, and 280.2/123.2 ml. The EF correlates for all imaging planes measured with the Simpson's rule

  2. Comparison of left and right ventricular volume measurement using the Simpson's method and the area length method

    Energy Technology Data Exchange (ETDEWEB)

    Hergan, Klaus [Department of Radiology, Paracelsus Medical University Salzburg (Austria)], E-mail: k.hergan@salk.at; Schuster, Antonius [Department of Radiology, LKH Feldkirch (Austria); Fruehwald, Julia [Department of Radiology, Medical University Vienna (Austria); Mair, Michael; Burger, Ralph; Toepker, Michael [Department of Radiology, LKH Feldkirch (Austria)

    2008-02-15

    Purpose: To compare ventricular volume measurement using a volumetric approach in the three standard cardiac planes and ventricular volume estimation by a geometrical model, the Area-Length method (ALM). Materials and methods: Fifty-six healthy volunteers were examined (27 males, 29 females) on a 1.5 T MR-unit with ECG-triggered steady state free precision (SSFP) Cine-MR sequences and parallel image acquisition. Multiple slices in standardized planes including the short-axis view (sa), 4-chamber view (4ch), left and right 2-chamber views (2ch) were used to cover the whole heart. End-systolic and end-diastolic ventricular volumes (EDV, ESV), stroke volume (SV), and ejection fraction (EF) were calculated with Simpson's rule in all planes and with ALM in the 2ch and 4ch planes. Global function parameters measured in the sa plane were compared with those obtained in the other imaging planes. Results: A very good correlation is observed when comparing functional parameters calculated with Simpson's rule in all imaging planes: for instance, the mean EDV/ESV of the left and right ventricle of the female population group measured in sa, 4ch, and 2ch: left ventricle EDV/ESV 114.3/44.4, 120.9/46.5, and 117.7/45.3 ml; right ventricle EDV/ESV 106.6/46.0, 101.2/41.1, and 103.5/43.0 ml. Functional parameters of the left ventricle calculated with ALM in 2ch and 4ch correlate to parameters obtained in sa with Simpson's rule in the range of 5-10%: for instance, the EDV/ESV of the left ventricle of the male population group measured in the sa, 4ch, and 2ch: 160.3/63.5, 163.1/59.0, and 167.0/65.7 ml. Functional parameters of the right ventricle measured with ALM in 4ch are 40-50% lower and calculated in 2ch almost double as high as compared with the parameters obtained in sa with Simpson's rule: for instance, male right ventricular EDV/ESV measured in sa, 4ch, and 2ch: 153.4/68.1, 97.5/34.5, and 280.2/123.2 ml. The EF correlates for all imaging planes measured

  3. Gastric bare area and left adrenal gland involvement on abdominal computed tomography and their prognostic value in acute pancreatitis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zaiyi [Guangdong Provincial People' s Hospital, Department of Radiology, Guangzhou, Guangdong Province (China); Sichuan University, Department of Radiology, West China Hospital, Chengdu, Sichuan Province (China); Yan, Zhihan [Wenzhou Medical College, Department of Radiology, Second Affiliated Hospital, Wenzhou, Zhejiang Province (China); Min, Pengqiu [Sichuan University, Department of Radiology, West China Hospital, Chengdu, Sichuan Province (China); Liang, Changhong [Guangdong Provincial People' s Hospital, Department of Radiology, Guangzhou, Guangdong Province (China); Wang, Ying [Sun Yatsen University, Department of Medical Ultrasonics, First Affiliated Hospital, Guangzhou, Guangdong Province (China)

    2008-08-15

    To demonstrate the CT manifestations of gastric bare area involvement (GBAI) and left adrenal gland involvement (LAGI) in acute pancreatitis (AP) and evaluate their prognostic value. From January 2003 to December 2006, CT examinations of 116 patients with AP were retrospectively reviewed. There were 34 (29.3%) patients with GBAI showing haziness and streaky density or fluid collection in the gastric bare area, and 18 (15.5%) with LAGI showing deformity and hypoattenuation of left adrenal gland. The mean duration of hospital stay in patients with GBAI and LAGI was longer than that of patients without (P<0.001). The sensitivity and specificity of GBAI for predicting complications were 43.3% (0.31, 0.55) and 89.8% (0.81, 0.98), respectively; and 83.3% (0.36, 1.00) and 73.6% (0.65, 0.82) for predicting mortality. A patient with GBAI was 6.7 (2.4, 19.1) and 14.0 (1.6, 124.6) times more likely to have complications and die than was a patient without. The sensitivity and specificity of LAGI for predicting complications were 23.9% (0.14, 0.34) and 95.9% (0.86, 0.99), respectively, and 66.7% (0.22, 0.96) and 87.3% (0.81, 0.94) for predicting mortality. A patient with LAGI was 7.4 (1.6, 33.8) and 13.7 (2.3, 81.9) times more likely to have complications and die than was a patient without. Our results showed that GBAI and LAGI were characteristic CT findings in AP and could serve as useful prognostic indicators for this disease. (orig.)

  4. The Effective Connectivity Between the Two Primary Motor Areas in the Brain during Bilateral Tapping of Hand Fingers

    Science.gov (United States)

    Yusoff, A. N.; Hamid, K. A.

    Dynamic causal modeling (DCM) was implemented on datasets obtained from an externally-triggered finger tapping functional MRI experiment performed by 5 male and female subjects. The objective was to model the effective connectivity between two significantly activated primary motor regions (M1). The left and right hemisphere M1s are found to be effectively and bidirectionally connected to each other. Both connections are modulated by the stimulus-free contextual input. These connectivities are however not gated (influenced) by any of the two M1s, ruling out the possibility of the non-linear behavior of connections between both M1s. A dynamic causal model was finally suggested.

  5. Gravity Cues Embedded in the Kinematics of Human Motion Are Detected in Form-from-Motion Areas of the Visual System and in Motor-Related Areas.

    Science.gov (United States)

    Cignetti, Fabien; Chabeauti, Pierre-Yves; Menant, Jasmine; Anton, Jean-Luc J J; Schmitz, Christina; Vaugoyeau, Marianne; Assaiante, Christine

    2017-01-01

    The present study investigated the cortical areas engaged in the perception of graviceptive information embedded in biological motion (BM). To this end, functional magnetic resonance imaging was used to assess the cortical areas active during the observation of human movements performed under normogravity and microgravity (parabolic flight). Movements were defined by motion cues alone using point-light displays. We found that gravity modulated the activation of a restricted set of regions of the network subtending BM perception, including form-from-motion areas of the visual system (kinetic occipital region, lingual gyrus, cuneus) and motor-related areas (primary motor and somatosensory cortices). These findings suggest that compliance of observed movements with normal gravity was carried out by mapping them onto the observer's motor system and by extracting their overall form from local motion of the moving light points. We propose that judgment on graviceptive information embedded in BM can be established based on motor resonance and visual familiarity mechanisms and not necessarily by accessing the internal model of gravitational motion stored in the vestibular cortex.

  6. A study on the activation of supplementary motor area in functional magnetic resonance imaging of the brain

    International Nuclear Information System (INIS)

    Jin, Gong Yong; Chung, Gyung Ho; Park, Hark Hoon; Oh, Hee Sul; Kim, Chong Soo; Chung, Jin Young

    1999-01-01

    To evaluate the activated zone of the supplementary motor area through motor and sensory stimulation of both hands by fMRI. Twenty-four healthy volunteers, ranging in age from 20 to 30 years, served as subjects. They were divided into four groups and performed one of the four activation tasks : complex movement, fine movement, touch sensation, heat sensation. Complex movement consisted of a finger task in which subjects flexed and extended all fingers repeatedly in union, without the fingers touching each other(group I). Fine movement involved a thumb task in which subjects flexed and extended the thumb repeatedly without touching the other fingers(group II). Touch sensation consisted of a palm task in which another person repeatedly drew a circle on the subject's palm (group III), and heat sensation involved of a palm task in which subject's palm was touched by another person with a 40 deg C water-bag (group IV). F-MRI was conducted on a commercial 1.5-T scanner equipped with echo-planar imaging. After overlapping images were obtained using a Z-s-core, and the mean/curve in the MR devices was evaluated, the activated zone of the supplementary motor area was also evalvated. Thirty-two of 48 images(20 of the 24 men) revealed activated zones in the supplementary motor area. In group I, activation was observed in five subjects, in three of whom it was bilateral (contralateral activation). In group II, activation was observed in five subjects, in one of whom it was bilateral. In group III, activation occurred in five subjects(bilateral in four, and contralateral in three), and In group IV, activation was also observed in five;in three of these it was bilateral. Using fMRI, and in association with motor and sensory tasks, the supplementary motor area was activated in 66.7% of healthy volunteers (32/48)

  7. Validity of the Fine Motor Area of the 12-Month Ages and Stages Questionnaire in Infants Following Major Surgery

    Science.gov (United States)

    Smith, Cally; Wallen, Margaret; Walker, Karen; Bundy, Anita; Rolinson, Rachel; Badawi, Nadia

    2012-01-01

    The Ages and Stages Questionnaires (ASQ) are parent-report screening tools to identify infants at risk of developmental difficulties. The purpose of this study was to examine validity and internal reliability of the fine motor developmental area of the ASQ, 2nd edition (ASQ2-FM) for screening 12-month-old infants following major surgery. The…

  8. Limb-kinetic apraxia due to injury of corticofugal tracts from secondary motor area in patients with corona radiata infarct.

    Science.gov (United States)

    Jang, Sung Ho; Seo, Jeong Pyo

    2016-12-01

    Limb-kinetic apraxia (LKA) is defined as an execution disorder of movements, resulting from injury of the corticofugal tract (CFT) from the secondary motor area. Diagnosis of LKA is difficult because it is made by clinical observation of movements. In this study, using diffusion tensor tractography (DTT), we attempted to investigate injury of the CFT from the secondary motor area in patients with corona radiata infarct. Twenty patients with corona radiata infarct were recruited. A probabilistic tractography method was used in fiber tracking for reconstruction of the corticospinal tract (CST) and CFT. Fractional anisotropy (FA), mean diffusivity, and tract volume of the CSTs and CFTs from the dorsal premotor cortex (dPMC) and supplementary motor area (SMA) were measured. In the affected hemisphere, FA values of the CST from the precentral hand knob and the CFT from the dPMC were significantly decreased compared with those of the unaffected hemisphere (p < 0.05). The tract volumes of the CST from the precentral hand knob and the CFTs from the dPMC and SMA in the affected hemisphere were also significantly decreased compared with those of the unaffected hemisphere (p < 0.05). We demonstrated concurrent injury of the CFTs from the secondary motor area along with injury of the CST in patients with corona radiata infarct, using DTT. Our results suggest that LKA ascribed to injury of the CFTs from the secondary motor area could be accompanied by injury of the CST ascribed to the corona radiata infarct.

  9. Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder

    Science.gov (United States)

    Voon, V; Brezing, C; Gallea, C; Hallett, M

    2014-01-01

    Background Conversion disorder is characterized by unexplained neurological symptoms presumed related to psychological issues. The main hypotheses to explain conversion paralysis, characterized by a lack of movement, include impairments in either motor intention or disruption of motor execution, and further, that hyperactive self-monitoring, limbic processing or top-down regulation from higher order frontal regions may interfere with motor execution. We have recently shown that conversion disorder with positive abnormal or excessive motor symptoms was associated with greater amygdala activity to arousing stimuli along with greater functional connectivity between the amgydala and supplementary motor area. Here we studied patients with such symptoms focusing on motor initiation. Methods Subjects performed either an internally or externally generated two-button action selection task in a functional MRI study. Results Eleven conversion disorder patients without major depression and 11 age- and gender-matched normal volunteers were assessed. During both internally and externally generated movement, conversion disorder patients relative to normal volunteers had lower left supplementary motor area (SMA) (implicated in motor initiation) and higher right amygdala, left anterior insula and bilateral posterior cingulate activity (implicated in assigning emotional salience). These findings were confirmed in a subgroup analysis of patients with tremor symptoms. During internally versus externally generated action in CD patients, the left SMA had lower functional connectivity with bilateral dorsolateral prefrontal cortices. Conclusion We propose a theory in which previously mapped conversion motor representations may in an arousing context hijack the voluntary action selection system which is both hypoactive and functionally disconnected from prefrontal top-down regulation. PMID:21935985

  10. Changes in regional cerebral blood flow in the right cortex homologous to left language areas are directly affected by left hemispheric damage in aphasic stroke patients: evaluation by Tc-ECD SPECT and novel analytic software.

    Science.gov (United States)

    Uruma, G; Kakuda, W; Abo, M

    2010-03-01

    The objective of this study was to clarify the influence of regional cerebral blood flow (rCBF) changes in language-relevant areas of the dominant hemisphere on rCBF in each region in the non-dominant hemisphere in post-stroke aphasic patients. The study subjects were 27 aphasic patients who suffered their first symptomatic stroke in the left hemisphere. In each subject, we measured rCBF by means of 99mTc-ethylcysteinate dimmer single photon emission computed tomography (SPECT). The SPECT images were analyzed by the statistical imaging analysis programs easy Z-score Imaging System (eZIS) and voxel-based stereotactic extraction estimation (vbSEE). Segmented into Brodmann Area (BA) levels, Regions of Interest (ROIs) were set in language-relevant areas bilaterally, and changes in the relative rCBF as average negative and positive Z-values were computed fully automatically. To assess the relationship between rCBF changes of each ROIs in the left and right hemispheres, the Spearman ranked correlation analysis and stepwise multiple regression analysis were applied. Globally, a negative and asymmetric influence of rCBF changes in the language-relevant areas of the dominant hemisphere on the right hemisphere was found. The rCBF decrease in left BA22 significantly influenced the rCBF increase in right BA39, BA40, BA44 and BA45. The results suggested that the chronic increase in rCBF in the right language-relevant areas is due at least in part to reduction in the trancallosal inhibitory activity of the language-dominant left hemisphere caused by the stroke lesion itself and that these relationships are not always symmetric.

  11. Functional magnetic resonance imaging of the human motor cortex

    Energy Technology Data Exchange (ETDEWEB)

    Sasahira, Masahiro; Asakura, Tetsuhiko; Niiro, Masaki; Haruzono, Akihiro; Hirakawa, Wataru [Kagoshima Univ. (Japan). Faculty of Medicine; Matsumoto, Tetsuro; Fujimoto, Toshiro

    1995-05-01

    Functional magnetic resonance (MR) imaging of the brain was performed during motor task activation in five normal subjects and a patient with meningioma using conventional fast low-angle shot sequences and a 2.0 T system. A high intensity area in the motor cortex was observed in all normal subjects. Single-slice studies showed the right-sided finger task produced an increase of 1.9-23.5% (6.67{+-}4.36%) in the signal intensity of the left motor cortex, while the left-sided finger task increased the signal by 1.5-18.2% (6.09{+-}3.34%) in the right motor cortex. There was no significant difference between the sides. Multiple-slice studies also showed the activated motor cortex as a high intensity area. The maximum signal intensity increase in the activated motor area was 11.0% for the left motor cortex and 8.8% for the right motor cortex. There was no significant difference between the sides. Preoperative mapping of the patient with meningioma showed that the motor cortex was displaced posteriorly by the tumor. Functional MR imaging is possible with a standard MR imaging system and conventional gradient echo sequences. Useful clinical information can be obtained by preoperative mapping of the motor cortex. (author).

  12. [Left ventricular hypertrophy in black African subjects with artery hypertension: Results of a cross-sectional survey conducted in semi-rural area in Senegal].

    Science.gov (United States)

    Mbaye, A; Dodo, B; Ngaïde, A A; Sy, N F; Babaka, K; Mingou, J S; Faye, M; Niang, K; Sarr, S A; Dioum, M; Bodian, M; Ndiaye, M B; Kane, A D; Ndour-Mbaye, M; Diao, M; Diack, B; Kane, M; Diagne-Sow, D; Thiaw, I; Kane, A

    2017-09-01

    To assess the prevalence of left ventricular hypertrophy according to electrocardiographic and echocardiographic criteria among hypertensive patients living in semi-rural Senegalese area. According to the World Health Organization STEPSwise approach, we conducted, in November 2012, a cross-sectional and exhaustive study in the population aged at least 35 years old and living for at least six months in the semi-rural area of Guéoul. We researched electrocardiographic and echocardiographic left ventricular hypertrophy in hypertensive subjects. Data were analyzed with SPSS 18.0 software version. The significance level was agreed for a value of P<0.05. We examined 1411 subjects aged on average of 48.5±12.7 years. In total, 654 subjects were hypertensive and screening of left ventricular hypertrophy (LVH) was effective in 515 of them. According to Sokolow-Lyon index, 86 subjects (16.7%) presented electrocardiographic LVH, more frequently in men (P=0.002). According to Cornell index and Cornell product, LVH was founded respectively in 66 (12.8%) and 52 subjects (10.1%), more frequently in female (P=0.0001; P=0.004). It was more common in grade 3 of hypertension however criteria. In echocardiography, prevalence of LVH was 2.2% (13 cases) according to the left ventricular mass, 9.3% (48 cases) according to the left ventricular mass indexed to body surface area and 8.2% (42 cases) according to the left ventricular mass indexed to height 2.7 . LVH was significantly correlated with the electrocardiographic LVH according to Sokolow-Lyon index (P<0.0001) and the grade 3 of hypertension (P=0.003). Although rare in hypertensive Senegalese living in semi-rural area, left ventricular hypertrophy is correlated with severity of grade of hypertension. Screening by electrocardiogram will allow better follow-up of these hypertensive subjects. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. 75 FR 65650 - Notice of Closure to Motorized Vehicle Travel on Public Lands in the Big Pole Fire Area in Tooele...

    Science.gov (United States)

    2010-10-26

    ... Land Management (BLM), within the Big Pole Fire area in Tooele County, Utah. DATES: This temporary... of Closure to Motorized Vehicle Travel on Public Lands in the Big Pole Fire Area in Tooele County, UT... 65651

  14. The threshold of cortical electrical stimulation for mapping sensory and motor functional areas.

    Science.gov (United States)

    Guojun, Zhang; Duanyu, Ni; Fu, Paul; Lixin, Cai; Tao, Yu; Wei, Du; Liang, Qiao; Zhiwei, Ren

    2014-02-01

    This study aimed to investigate the threshold of cortical electrical stimulation (CES) for functional brain mapping during surgery for the treatment of rolandic epilepsy. A total of 21 patients with rolandic epilepsy who underwent surgical treatment at the Beijing Institute of Functional Neurosurgery between October 2006 and March 2008 were included in this study. Their clinical data were retrospectively collected and analyzed. The thresholds of CES for motor response, sensory response, and after discharge production along with other threshold-related factors were investigated. The thresholds (mean ± standard deviation) for motor response, sensory response, and after discharge production were 3.48 ± 0.87, 3.86 ± 1.31, and 4.84 ± 1.38 mA, respectively. The threshold for after discharge production was significantly higher than those of both the motor and sensory response (both pstimulation frequency of 50 Hz and a pulse width of 0.2 ms, the threshold of sensory and motor responses were similar, and the threshold of after discharge production was higher than that of sensory and motor response. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Sleepwalking episodes are preceded by arousal-related activation in the cingulate motor area: EEG current density imaging.

    Science.gov (United States)

    Januszko, Piotr; Niemcewicz, Szymon; Gajda, Tomasz; Wołyńczyk-Gmaj, Dorota; Piotrowska, Anna Justyna; Gmaj, Bartłomiej; Piotrowski, Tadeusz; Szelenberger, Waldemar

    2016-01-01

    To investigate local arousal fluctuations in adults who received ICSD-2 diagnosis of somnambulism. EEG neuroimaging (eLORETA) was utilized to compare current density distribution for 4s epochs immediately preceding sleepwalking episode (from -4.0 s to 0 s) to the distribution during earlier 4s epochs (from -8.0 s to -4.0 s) in 20 EEG segments from 15 patients. Comparisons between eLORETA images revealed significant (t>4.52; psleepwalking, with greater current density within beta 3 frequency range (24-30 Hz) in Brodmann areas 33 and 24. Sleepwalking motor events are associated with arousal-related activation of cingulate motor area. These results support the notion of blurred boundaries between wakefulness and NREM sleep in sleepwalking. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. Repetitive transcranial magnetic stimulation over the supplementary motor area modifies breathing patternin response to inspiratory loading in normal humans

    Directory of Open Access Journals (Sweden)

    Marie-Cécile eNierat

    2015-09-01

    Full Text Available In awake humans, breathing depends on automatic brainstem pattern generators. It is also heavily influenced by cortical networks. For example, functional magnetic resonance imaging and electroencephalographic data show that the supplementary motor area becomes active when breathing is made difficult by inspiratory mechanical loads like resistances or threshold valves This is associated with perceived respiratory discomfort. We hypothesized that manipulating the excitability of the supplementary motor area with repetitive transcranial magnetic stimulation would modify the breathing pattern response to an experimental inspiratory load possibly respiratory discomfort. Seven subjects (3 men, age 25±4 were studied. Breathing pattern and respiratory discomfort during inspiratory loading were described before and after conditioning the supplementary motor area with repetitive stimulation, using an excitatory paradigm (5Hz stimulation, an inhibitory paradigm, or sham stimulation. No significant change in breathing pattern during loading was observed after sham conditioning. Excitatory conditioning shortened inspiratory time (p=0.001, decreased tidal volume (p=0.016, and decreased ventilation (p=0.003, as corroborated by an increased end-tidal expired carbon dioxide (p=0.013. Inhibitory conditioning did not affect ventilation, but lengthened expiratory time (p=0.031. Respiratory discomfort was mild under baseline conditions, and unchanged after conditioning of the supplementary motor area. This is the first study to show that repetitive transcranial magnetic stimulation conditioning of the cerebral cortex can alter breathing pattern. A 5 Hz conditioning protocol, known to enhance corticophrenic excitability, can reduce the amount of hyperventilation induced by inspiratory threshold loading. Further studies are needed to determine whether and under what circumstances rTMS can have an effect on dyspnoea.

  17. Sensory-motor transformations for speech occur bilaterally.

    Science.gov (United States)

    Cogan, Gregory B; Thesen, Thomas; Carlson, Chad; Doyle, Werner; Devinsky, Orrin; Pesaran, Bijan

    2014-03-06

    Historically, the study of speech processing has emphasized a strong link between auditory perceptual input and motor production output. A kind of 'parity' is essential, as both perception- and production-based representations must form a unified interface to facilitate access to higher-order language processes such as syntax and semantics, believed to be computed in the dominant, typically left hemisphere. Although various theories have been proposed to unite perception and production, the underlying neural mechanisms are unclear. Early models of speech and language processing proposed that perceptual processing occurred in the left posterior superior temporal gyrus (Wernicke's area) and motor production processes occurred in the left inferior frontal gyrus (Broca's area). Sensory activity was proposed to link to production activity through connecting fibre tracts, forming the left lateralized speech sensory-motor system. Although recent evidence indicates that speech perception occurs bilaterally, prevailing models maintain that the speech sensory-motor system is left lateralized and facilitates the transformation from sensory-based auditory representations to motor-based production representations. However, evidence for the lateralized computation of sensory-motor speech transformations is indirect and primarily comes from stroke patients that have speech repetition deficits (conduction aphasia) and studies using covert speech and haemodynamic functional imaging. Whether the speech sensory-motor system is lateralized, like higher-order language processes, or bilateral, like speech perception, is controversial. Here we use direct neural recordings in subjects performing sensory-motor tasks involving overt speech production to show that sensory-motor transformations occur bilaterally. We demonstrate that electrodes over bilateral inferior frontal, inferior parietal, superior temporal, premotor and somatosensory cortices exhibit robust sensory-motor neural

  18. The role of language areas in motor control dysfunction in Parkinson's disease

    NARCIS (Netherlands)

    Albani, G; Kunig, G; Soelch, CM; Mauro, A; Priano, L; Martignoni, E; Leenders, K.L.

    We evaluated the differences in motor control organization between parkinsonian patients with (seven cases) and without(ten cases) gait disorder. We used positron emission tomography (O-15-H2O-PET) to measure regional cerebral blood flow as a correlate for local neuronal activation. This has been

  19. Remodeling of cortical activity for motor control following upper limb loss

    Science.gov (United States)

    Williams, Laura; Pirouz, Nikta; Mizelle, J.C.; Cusack, William; Kistenberg, Rob; Wheaton, Lewis A.

    2016-01-01

    Objective Upper extremity loss presents immediate and lasting challenges for motor control. While sensory and motor representations of the amputated limb undergo plasticity to adjacent areas of the sensorimotor homunculus, it remains unclear whether laterality of motor-related activity is affected by neural reorganization following amputation. Methods Using electroencephalography, we evaluated neural activation patterns of formerly right hand dominant persons with upper limb loss (amputees) performing a motor task with their residual right limb, then their sound left limb. We compared activation patterns with left- and right-handed persons performing the same task. Results Amputees have involvement of contralateral motor areas when using their sound limb and atypically increased activation of posterior parietal regions when using the affected limb. When using the non-amputated left arm, patterns of activation remains similar to right handed persons using their left arm. Conclusions A remodeling of activations from traditionally motor areas into posterior parietal areas occurs for motor planning and execution when using the amputated limb. This may reflect an amputation-specific adaptation of heightened visuospatial feedback for motor control involving the amputated limb. Significance These results identify a neuroplastic mechanism for motor control in amputees, which may have great relevance to development of motor rehabilitation paradigms and prosthesis adaptation. PMID:27472549

  20. Contralateral cortico-ponto-cerebellar pathways reconstruction in humans in vivo: implications for reciprocal cerebro-cerebellar structural connectivity in motor and non-motor areas.

    Science.gov (United States)

    Palesi, Fulvia; De Rinaldis, Andrea; Castellazzi, Gloria; Calamante, Fernando; Muhlert, Nils; Chard, Declan; Tournier, J Donald; Magenes, Giovanni; D'Angelo, Egidio; Gandini Wheeler-Kingshott, Claudia A M

    2017-10-09

    Cerebellar involvement in cognition, as well as in sensorimotor control, is increasingly recognized and is thought to depend on connections with the cerebral cortex. Anatomical investigations in animals and post-mortem humans have established that cerebro-cerebellar connections are contralateral to each other and include the cerebello-thalamo-cortical (CTC) and cortico-ponto-cerebellar (CPC) pathways. CTC and CPC characterization in humans in vivo is still challenging. Here advanced tractography was combined with quantitative indices to compare CPC to CTC pathways in healthy subjects. Differently to previous studies, our findings reveal that cerebellar cognitive areas are reached by the largest proportion of the reconstructed CPC, supporting the hypothesis that a CTC-CPC loop provides a substrate for cerebro-cerebellar communication during cognitive processing. Amongst the cerebral areas identified using in vivo tractography, in addition to the cerebral motor cortex, major portions of CPC streamlines leave the prefrontal and temporal cortices. These findings are useful since provide MRI-based indications of possible subtending connectivity and, if confirmed, they are going to be a milestone for instructing computational models of brain function. These results, together with further multi-modal investigations, are warranted to provide important cues on how the cerebro-cerebellar loops operate and on how pathologies involving cerebro-cerebellar connectivity are generated.

  1. [A case of combined sensation disturbance and clumsiness of the left hand caused by an infarction localized to brodmann areas 1 and 2].

    Science.gov (United States)

    Kutoku, Yumiko; Hagiwara, Hiroki; Ichikawa, Yaeko; Takeda, Katsuhiko; Sunada, Yoshihide

    2007-04-01

    A 70-year-old woman was admitted to our hospital with a complaint of numbness and clumsiness of the left hand. On physical examination 23 days after the onset of cerebral infarction, she showed no apparent muscle weakness. Although her elementary somatosensory function was mostly intact with a minimal joint position sensation disturbance, she showed disturbances in tactile recognition, two-point discrimination, and weight perception. She also had difficulty in discrete finger movement of her left hand, especially when her eyes were closed. Brain MRI disclosed a small infarction localized to Brodmann areas 1 and 2 in the right postcentral gyrus. In the left median nerve short-latency somatosensory evoked potentials (s-SEPs), the N20 potential was normally evoked. This finding also indicated that the area 3b was preserved. The sensory symptoms observed in this patient were compatible with the hierarchical somatosensory processing model in the postcentral gyrus proposed by Iwamura et al, in which the elementary sensation recognized in area 3 is transferred to areas 1 and 2, and then processed to discriminative sensation. The disturbed discrete finger movement in this patient probably resulted from impaired tactile recognition which could be compensated for by visual information.

  2. Modulation of motor area activity by the outcome for a player during observation of a baseball game.

    Science.gov (United States)

    Shimada, Sotaro

    2009-11-25

    Observing competitive games such as sports is a pervasive entertainment among humans. The inclination to watch others play may be based on our social-cognitive ability to understand the internal states of others. The mirror neuron system, which is activated when a subject observes the actions of others, as well as when they perform the same action themselves, seems to play a crucial role in this process. Our previous study showed that activity of the mirror neuron system was modulated by the outcome of the subject's favored player during observation of a simple competitive game (rock-paper-scissors). However, whether the mirror neuron system responds similarly in a more complex and naturalistic sports game has not yet been fully investigated. In the present study, we measured the activity of motor areas when the subjects, who were amateur baseball field players (non-pitchers), watched short movie clips of scenes in professional baseball games. The subjects were instructed to support either a batter or a pitcher when observing the movie clip. The results showed that activity in the motor area exhibited a strong interaction between the subject's supported side (batter or pitcher) and the outcome (a hit or an out). When the subject supported the batter, motor area activity was significantly higher when the batter made an out than when he made a hit. However, such modulation was not apparent when the subject supported the pitcher. This result indicates that mirror neuron system activity is modulated by the outcome for a particular player in a competitive game even when observing a complex and naturalistic sports game. We suggest that our inclination to watch competitive games is facilitated by this characteristic of the mirror neuron system.

  3. Modulation of motor area activity by the outcome for a player during observation of a baseball game.

    Directory of Open Access Journals (Sweden)

    Sotaro Shimada

    Full Text Available BACKGROUND: Observing competitive games such as sports is a pervasive entertainment among humans. The inclination to watch others play may be based on our social-cognitive ability to understand the internal states of others. The mirror neuron system, which is activated when a subject observes the actions of others, as well as when they perform the same action themselves, seems to play a crucial role in this process. Our previous study showed that activity of the mirror neuron system was modulated by the outcome of the subject's favored player during observation of a simple competitive game (rock-paper-scissors. However, whether the mirror neuron system responds similarly in a more complex and naturalistic sports game has not yet been fully investigated. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we measured the activity of motor areas when the subjects, who were amateur baseball field players (non-pitchers, watched short movie clips of scenes in professional baseball games. The subjects were instructed to support either a batter or a pitcher when observing the movie clip. The results showed that activity in the motor area exhibited a strong interaction between the subject's supported side (batter or pitcher and the outcome (a hit or an out. When the subject supported the batter, motor area activity was significantly higher when the batter made an out than when he made a hit. However, such modulation was not apparent when the subject supported the pitcher. CONCLUSIONS/SIGNIFICANCE: This result indicates that mirror neuron system activity is modulated by the outcome for a particular player in a competitive game even when observing a complex and naturalistic sports game. We suggest that our inclination to watch competitive games is facilitated by this characteristic of the mirror neuron system.

  4. [Methodical approaches to evaluation of air pollution by emissions of motor vehicles in population areas].

    Science.gov (United States)

    Lyapkalo, A A; Dement'ev, A A; Tsurgan, A M

    2014-01-01

    There are results of comparative analysis of air pollution by emissions of motor vehicles in the residential districts of Ryazan via different methodical approaches. Emissions were calculated regarding analysis of the traffic intensity on the elements of the city traffic network. Relative emissions, equivalent relative emissions and relative coefficient of emission hazard were calculated for each district. Rating of the comparing districts was done according to the pollution level using the above-mentioned indices. Gorodskaya Roscha was detected as the most polluted district. The most informative approach was comparison of the residential districts according to the equivalent relative emissions and relative coefficient of emission hazard.

  5. The supplementary motor area exerts a tonic excitatory influence on corticospinal projections to phrenic motoneurons in awake humans.

    Science.gov (United States)

    Laviolette, Louis; Niérat, Marie-Cécile; Hudson, Anna L; Raux, Mathieu; Allard, Etienne; Similowski, Thomas

    2013-01-01

    In humans, cortical mechanisms can interfere with autonomic breathing. Respiratory-related activation of the supplementary motor area (SMA) has been documented during voluntary breathing and in response to inspiratory constraints. The SMA could therefore participate in the increased resting state of the respiratory motor system during wake (i.e. "wakefulness drive to breathe"). The SMA was conditioned by continuous theta burst magnetic stimulation (cTBS, inhibitory) and 5 Hz conventional rTMS (5 Hz, excitatory). The ensuing effects were described in terms of the diaphragm motor evoked response (DiMEPs) to single-pulse transcranial magnetic stimulation over the motor cortex. DiMEPs were recorded at baseline, and at 3 time-points ("post1", "post2", "post3") up to 15 minutes following conditioning of the SMA. cTBS reduced the amplitude of DiMEPs from 327.5 ± 159.8 µV at baseline to 243.3 ± 118.7 µV, 217.8 ± 102.9 µV and 240.6 ± 123.9 µV at post 1, post 2 and post 3, respectively (F = 6.341, p = 0.002). 5 Hz conditioning increased the amplitude of DiMEPs from 184.7 ± 96.5 µV at baseline to 270.7 ± 135.4 µV at post 3 (F = 4.844, p = 0.009). The corticospinal pathway to the diaphragm can be modulated in both directions by conditioning the SMA. This suggests that the baseline respiratory activity of the SMA represents an equipoise from which it is possible to move in either direction. The resting corticofugal outflow from the SMA to phrenic motoneurones that this study evidences could putatively contribute to the wakefulness drive to breathe.

  6. Complex motor task associated with non-linear BOLD responses in cerebro-cortical areas and cerebellum.

    Science.gov (United States)

    Alahmadi, Adnan A S; Samson, Rebecca S; Gasston, David; Pardini, Matteo; Friston, Karl J; D'Angelo, Egidio; Toosy, Ahmed T; Wheeler-Kingshott, Claudia A M

    2016-06-01

    Previous studies have used fMRI to address the relationship between grip force (GF) applied to an object and BOLD response. However, whilst the majority of these studies showed a linear relationship between GF and neural activity in the contralateral M1 and ipsilateral cerebellum, animal studies have suggested the presence of non-linear components in the GF-neural activity relationship. Here, we present a methodology for assessing non-linearities in the BOLD response to different GF levels, within primary motor as well as sensory and cognitive areas and the cerebellum. To be sensitive to complex forms, we designed a feasible grip task with five GF targets using an event-related visually guided paradigm and studied a cohort of 13 healthy volunteers. Polynomial functions of increasing order were fitted to the data. (1) activated motor areas irrespective of GF; (2) positive higher-order responses in and outside M1, involving premotor, sensory and visual areas and cerebellum; (3) negative correlations with GF, predominantly involving the visual domain. Overall, our results suggest that there are physiologically consistent behaviour patterns in cerebral and cerebellar cortices; for example, we observed the presence of a second-order effect in sensorimotor areas, consistent with an optimum metabolic response at intermediate GF levels, while higher-order behaviour was found in associative and cognitive areas. At higher GF levels, sensory-related cortical areas showed reduced activation, interpretable as a redistribution of the neural activity for more demanding tasks. These results have the potential of opening new avenues for investigating pathological mechanisms of neurological diseases.

  7. Pain and motor processing in the human cerebellum.

    Science.gov (United States)

    Coombes, Stephen A; Misra, Gaurav

    2016-01-01

    Pain-related adaptations in movement require a network architecture that allows for integration across pain and motor circuits. Previous studies addressing this issue have focused on cortical areas such as the midcingulate cortex. Here, we focus on pain and motor processing in the human cerebellum. The goal of this study was to identify areas of activation in the cerebellum, which are common to pain and motor processing, and to determine whether the activation is limited to the superior and inferior cerebellar motor maps or extends into multimodal areas of the posterior cerebellum. Our observations identified overlapping activity in left and right lobules VI and VIIb during pain and motor processing. Activation in these multimodal regions persisted when pain and motor processes were combined within the same trial, and activation in contralateral left lobule VIIb persisted when stimulation was controlled for. Functional connectivity analyses revealed significant correlations in the BOLD time series between multimodal cerebellar regions and sensorimotor regions in the cerebrum including anterior midcingulate cortex, supplementary motor area, and thalamus. The current findings are the first to show multimodal processing in lobules VI and VIIb for motor control and pain processing and suggest that the posterior cerebellum may be important in understanding pain-related adaptations in motor control.

  8. Four-dimensional echocardiography area strain combined with exercise stress echocardiography to evaluate left ventricular regional systolic function in patients with mild single vessel coronary artery stenosis.

    Science.gov (United States)

    Deng, Yan; Peng, Long; Liu, Yuan-Yuan; Yin, Li-Xue; Li, Chun-Mei; Wang, Yi; Rao, Li

    2017-09-01

    The aim of this prospective study was to assess the diagnosis value of four-dimensional echocardiography area strain (AS) combined with exercise stress echocardiography to evaluate left ventricular regional systolic function in patients with mild single vessel coronary artery stenosis. Based on treadmill exercise load status, two-dimensional conventional echocardiography and four-dimensional echocardiography area strain were performed on patients suspected coronary artery disease before coronary angiogram. Thirty patients (case group) with mild left anterior descending coronary artery stenosis (stenosis coronary artery stenosis according to the coronary angiogram results were prospectively enrolled. All the patients had no left ventricular regional wall motion abnormality in two-dimensional echocardiography at rest and exercise stress. There was no significant difference in the 16 segmental systolic peak AS at rest between two groups. After exercise stress, the peak systolic AS rest-stress at mid anterior wall (-7.00%±10.90% vs 2.80%±23.69%) and mid anterolateral wall (-4.40%±18.81% vs 8.80%±19.16%) were decreased, while increased at basal inferolateral wall (14.00%±19.27% vs -5.60%±15.94%) in case group compared with control group (Pcoronary artery stenosis, the area strain was decreased at involved segments, while compensatory increased at noninvolved segments after exercise stress. Four-dimensional echocardiography area strain combined with exercise stress echocardiography could sensitively find left ventricular regional systolic function abnormality in patients with mild single vessel coronary artery stenosis, and locate stenosis coronary artery accordingly. © 2017, Wiley Periodicals, Inc.

  9. Asymmetric oculomotor apraxia, optic ataxia, and simultanagnosia with right hemispatial neglect from a predominantly left-sided lesion of the parieto-occipital area.

    Science.gov (United States)

    Sakurai, Yasuhisa; Fujimoto, Masanori; Hamada, Kensuke; Sugimoto, Izumi

    2018-01-01

    Bálint's syndrome involves bilateral damage to the parieto-occipital area. The extent of the effect of unilateral damage on the Bálint's triad (oculomotor apraxia, optic ataxia, and simultanagnosia) remains unknown. We examined a 63-year-old, right-handed woman who developed right hemianopia, oculomotor apraxia, optic ataxia, simultanagnosia, and hemispatial neglect (HSN) for the right after a cerebral infarction, with detailed neuropsychological tests, magnetic resonance imaging, and single photon emission computed tomography (SPECT). Neuropsychological examination showed that oculomotor apraxia, optic ataxia, and simultanagnosia were more pronounced in the right hemi-space, probably due to the limited eye movement in the right visual field, whereas HSN was restricted to the right hemi-space. Diffusion-weighted MR images revealed hyperintensity in the left parieto-temporo-occipital region, and several spotty areas of the bilateral frontal and parietal subcortical regions. SPECT revealed hypoperfusion in the left parieto-occipital region and frontal operculum and small areas of the right superior parietal lobule. The case suggests that asymmetric (more pronounced in the right hemi-space) oculomotor apraxia, optic ataxia, and simultanagnosia occur in an extensive lesion of the left parieto-occipital cortices. Although HSN is not a prerequisite for simultanagnosia, the coexistence of HSN aggravates simultanagnosia in the hemi-space opposite the lesion.

  10. Hemispheric lateralization of motor thresholds in relation to stuttering.

    Directory of Open Access Journals (Sweden)

    Per A Alm

    Full Text Available Stuttering is a complex speech disorder. Previous studies indicate a tendency towards elevated motor threshold for the left hemisphere, as measured using transcranial magnetic stimulation (TMS. This may reflect a monohemispheric motor system impairment. The purpose of the study was to investigate the relative side-to-side difference (asymmetry and the absolute levels of motor threshold for the hand area, using TMS in adults who stutter (n = 15 and in controls (n = 15. In accordance with the hypothesis, the groups differed significantly regarding the relative side-to-side difference of finger motor threshold (p = 0.0026, with the stuttering group showing higher motor threshold of the left hemisphere in relation to the right. Also the absolute level of the finger motor threshold for the left hemisphere differed between the groups (p = 0.049. The obtained results, together with previous investigations, provide support for the hypothesis that stuttering tends to be related to left hemisphere motor impairment, and possibly to a dysfunctional state of bilateral speech motor control.

  11. The cooperation of the functional activation areas in human brain: an application of event-related fMRI study of the voluntary motor function

    International Nuclear Information System (INIS)

    Li Enzhong; Tian Jie; Dai Ruwei

    2002-01-01

    Objective: To detect the cooperation of the functional activation areas in human brain using event-related fMRI technique developed in recent years. Methods: Forty-four subjects were selected in this experiment and scanned by GE Signa Horizon 1.5 Tesla superconductive MR system. A CUE-GO paradigm was used in this experiment. The data were analyzed in SUN and SGI workstation. Results: The activation areas were found in contralateral primary motor area (Ml), bilateral supplementary motor areas (SMA), pre-motor areas (PMA), basal ganglia, and cerebellar cortices. The time-signal curve of Ml was a typical single-peak curve, but the curves in PMA, basal ganglia, and cerebellar cortices were double-peak curves. SMA had 2 parts, one was Pre-SMA, and another was SMA Proper. The curve was double-peak type in Pre-SMA and single-peak type in SMA Proper. There was difference between the time-signal intensity curves in above-mentioned areas. Conclusion: (1) Ml is mainly associated with motor execution, while others with both motor preparation and execution. There are differences in the function at the variant areas in the brain. (2) The fact that bilateral SMA, PMA, basal ganglia, and cerebellar cortices were activated, is different from what the classical theories told. (3) Event-related fMRI technique has higher temporary and spatial resolutions. (4) There is cooperation among different cortical areas, basal ganglia, and cerebellum

  12. Quantitative comparisons on hand motor functional areas determined by resting state and task BOLD fMRI and anatomical MRI for pre-surgical planning of patients with brain tumors

    Directory of Open Access Journals (Sweden)

    Bob L. Hou

    2016-01-01

    Full Text Available For pre-surgical planning we present quantitative comparison of the location of the hand motor functional area determined by right hand finger tapping BOLD fMRI, resting state BOLD fMRI, and anatomically using high resolution T1 weighted images. Data were obtained on 10 healthy subjects and 25 patients with left sided brain tumors. Our results show that there are important differences in the locations (i.e., >20 mm of the determined hand motor voxels by these three MR imaging methods. This can have significant effect on the pre-surgical planning of these patients depending on the modality used. In 13 of the 25 cases (i.e., 52% the distances between the task-determined and the rs-fMRI determined hand areas were more than 20 mm; in 13 of 25 cases (i.e., 52% the distances between the task-determined and anatomically determined hand areas were >20 mm; and in 16 of 25 cases (i.e., 64% the distances between the rs-fMRI determined and anatomically determined hand areas were more than 20 mm. In just three cases, the distances determined by all three modalities were within 20 mm of each other. The differences in the location or fingerprint of the hand motor areas, as determined by these three MR methods result from the different underlying mechanisms of these three modalities and possibly the effects of tumors on these modalities.

  13. Motor inhibition in hysterical conversion paralysis.

    Science.gov (United States)

    Cojan, Yann; Waber, Lakshmi; Carruzzo, Alain; Vuilleumier, Patrik

    2009-09-01

    Brain mechanisms underlying hysterical conversion symptoms are still poorly known. Recent hypotheses suggested that activation of motor pathways might be suppressed by inhibitory signals based on particular emotional situations. To assess motor and inhibitory brain circuits during conversion paralysis, we designed a go-nogo task while a patient underwent functional magnetic resonance imaging (fMRI). Preparatory activation arose in right motor cortex despite left paralysis, indicating preserved motor intentions, but with concomitant increases in vmPFC regions that normally mediate motivational and affective processing. Failure to execute movement on go trials with the affected left hand was associated with activations in precuneus and ventrolateral frontal gyrus. However, right frontal areas normally subserving inhibition were activated by nogo trials for the right (normal) hand, but not during go trials for the left hand (affected by conversion paralysis). By contrast, a group of healthy controls who were asked to feign paralysis showed similar activation on nogo trials and left-go trials with simulated weakness, suggesting that distinct inhibitory mechanisms are implicated in simulation and conversion paralysis. In the patient, right motor cortex also showed enhanced functional connectivity with the posterior cingulate cortex, precuneus, and vmPFC. These results suggest that conversion symptoms do not act through cognitive inhibitory circuits, but involve selective activations in midline brain regions associated with self-related representations and emotion regulation.

  14. Cortical plasticity of motor-eloquent areas measured by navigated transcranial magnetic stimulation in patients with glioma.

    Science.gov (United States)

    Conway, Neal; Wildschuetz, Noémie; Moser, Tobias; Bulubas, Lucia; Sollmann, Nico; Tanigawa, Noriko; Meyer, Bernhard; Krieg, Sandro M

    2017-11-01

    OBJECTIVE The goal of this study was to obtain a better understanding of the mechanisms underlying cerebral plasticity. Coupled with noninvasive detection of its occurrence, such an understanding has huge potential to improve glioma therapy. The authors aimed to demonstrate the frequency of plastic reshaping, find clues to the patterns behind it, and prove that it can be recognized noninvasively using navigated transcranial magnetic stimulation (nTMS). METHODS The authors used nTMS to map cortical motor representation in 22 patients with gliomas affecting the precentral gyrus, preoperatively and 3-42 months postoperatively. Location changes of the primary motor area, defined as hotspots and map centers of gravity, were measured. RESULTS Spatial normalization and analysis of hotspots showed an average shift of 5.1 ± 0.9 mm (mean ± SEM) on the mediolateral axis, and 10.7 ± 1.6 mm on the anteroposterior axis. Map centers of gravity were found to have shifted by 4.6 ± 0.8 mm on the mediolateral, and 8.7 ± 1.5 mm on the anteroposterior axis. Motor-eloquent points tended to shift toward the tumor by 4.5 ± 3.6 mm if the lesion was anterior to the rolandic region and by 2.6 ± 3.3 mm if it was located posterior to the rolandic region. Overall, 9 of 16 (56%) patients with high-grade glioma and 3 of 6 (50%) patients with low-grade glioma showed a functional shift > 10 mm at the cortical level. CONCLUSIONS Despite the small size of this series, analysis of these data showed that cortical functional reorganization occurs quite frequently. Moreover, nTMS was shown to detect such plastic reorganization noninvasively.

  15. Quantification of aortic valve area and left ventricular muscle mass in healthy subjects and patients with symptomatic aortic valve stenosis by MRI.

    Science.gov (United States)

    Haimerl, J; Freitag-Krikovic, A; Rauch, A; Sauer, E

    2005-03-01

    MRI allows visualization and planimetry of the aortic valve orifice and accurate determination of left ventricular muscle mass, which are important parameters in aortic stenosis. In contrast to invasive methods, MRI planimetry of the aortic valve area (AVA) is flow independent. AVA is usually indexed to body surface area. Left ventricular muscle mass is dependent on weight and height in healthy individuals. We studied AVA, left ventricular muscle mass (LMM) and ejection fraction (EF) in 100 healthy individuals and in patients with symptomatic aortic valve stenosis (AS). All were examined by MRI (1.5 Tesla Siemens Sonate) and the AVA was visualized in segmented 2D flash sequences and planimetry of the performed AVA was manually. The aortic valve area in healthy individuals was 3.9+/-0.7 cm(2), and the LMM was 99+/-27 g. In a correlation analysis, the strongest correlation of AVA was to height (r=0.75, pvalve stenosis, AVA was 1.0+/-0.35 cm(2), in correlation to cath lab r=0.72, and LMM was 172+/-56 g. We compared the AS patients results with the data of the healthy subjects, where the reduction of the AVA was 28+/-10% of the expected normal value, while LMM was 42% higher in patients with AS. There was no correlation to height, weight or BSA in patients with AS. With cardiac MRI, planimetry of AVA for normal subjects and patients with AS offered a simple, fast and non-invasive method to quantify AVA. In addition LMM and EF could be determined. The strong correlation between height and AVA documented in normal subjects offered the opportunity to integrate this relation between expected valve area and definitive orifice in determining the disease of the aortic valve for the individual patient. With diagnostic MRI in patients with AS, invasive measurements of the systolic transvalvular gradient does not seem to be necessary.

  16. Problem area descriptions : motor vehicle crashes - data analysis and IVI program analysis

    Science.gov (United States)

    In general, the IVI program focuses on the more significant safety problem categories as : indicated by statistical analyses of crash data. However, other factors were considered in setting : program priorities and schedules. For some problem areas, ...

  17. Scaling the Equipment and Play Area in Children's Sport to improve Motor Skill Acquisition: A Systematic Review.

    Science.gov (United States)

    Buszard, Tim; Reid, Machar; Masters, Rich; Farrow, Damian

    2016-06-01

    This review investigated the influence of scaling sports equipment and play area (e.g., field size) on children's motor skill acquisition. Peer-reviewed studies published prior to February 2015 were searched using SPORTDiscus and MEDLINE. Studies were included if the research (a) was empirical, (b) involved participants younger than 18 years, (c) assessed the efficacy of scaling in relation to one or more factors affecting skill learning (psychological factors, skill performance and skill acquisition factors, biomechanical factors, cognitive processing factors), and (d) had a sport or movement skills context. Risk of bias was assessed in relation to selection bias, detection bias, attrition bias, reporting bias and other bias. Twenty-five studies involving 989 children were reviewed. Studies revealed that children preferred using scaled equipment over adult equipment (n = 3), were more engaged in the task (n = 1) and had greater self-efficacy to execute skills (n = 2). Eighteen studies demonstrated that children performed skills better when the equipment and play area were scaled. Children also acquired skills faster in such conditions (n = 2); albeit the practice interventions were relatively short. Five studies showed that scaling led to children adopting more desirable movement patterns, and one study associated scaling with implicit motor learning. Most of the studies reviewed provide evidence in support of equipment and play area scaling. However, the conclusions are limited by the small number of studies that examined learning (n = 5), poor ecological validity and skills tests of few trials.

  18. Disinhibition of upper limb motor area by voluntary contraction of the lower limb muscle.

    Science.gov (United States)

    Tazoe, Toshiki; Endoh, Takashi; Nakajima, Tsuyoshi; Sakamoto, Masanori; Komiyama, Tomoyoshi

    2007-03-01

    It is well known that monosynaptic spinal reflexes and motor evoked potentials following transcranial magnetic stimulation (TMS) are reinforced during phasic and intensive voluntary contraction in the remote segment (remote effect). However, the remote effect on the cortical silent period (CSP) is less known. The purpose of the present study is to determine to what extent the CSP in the intrinsic hand muscle following TMS is modified by voluntary ankle dorsiflexion and to elucidate the origin of the modulation of CSP by the remote effect. CSP was recorded in the right first dorsal interosseous while subjects performed phasic dorsiflexion in the ipsilateral side under self-paced and reaction-time conditions. Modulation of the peripherally-induced silent period (PSP) induced by electrical stimulation of the ulnar nerve was also investigated under the same conditions. In addition, modulation of the CSP was investigated during ischemic nerve block of the lower limb and during application of vibration to the tibialis anterior tendon. The duration of CSP was significantly shortened by phasic dorsiflexion, and the extent of shortening was proportional to dorsiflexion force. Shortening of the CSP duration was also observed during tonic dorsiflexion. In contrast, the PSP duration following ulnar nerve stimulation was not altered during phasic dorsiflexion. Furthermore, the remote effect on the CSP duration was seen during ischemic nerve block of the lower limb and the pre-movement period in the reaction-time paradigm, but shortening of the CSP was not observed during tendon vibration. These findings suggest that phasic muscle contraction in the remote segment results in a decrease in intracortical inhibitory pathways to the corticospinal tract innervating the muscle involved in reflex testing and that the remote effect on the CSP is predominantly cortical in origin.

  19. Manual activity shapes structure and function in contralateral human motor hand area

    DEFF Research Database (Denmark)

    Granert, Oliver; Peller, Martin; Gaser, Christian

    2011-01-01

    From longitudinal voxel-based morphometry (VBM) studies we know that relatively short periods of training can increase regional grey matter volume in trained cortical areas. In 14 right-handed patients with writer's cramp, we employed VBM to test whether suppression (i.e., immobilization) or enha...

  20. Contribution of hippocampal area CA1 to acetone cyanohydrin-induced loss of motor coordination in rats.

    Science.gov (United States)

    Rivadeneyra-Domínguez, E; Vázquez-Luna, A; Díaz-Sobac, R; Briones-Céspedes, E E; Rodríguez-Landa, J F

    2017-05-01

    Some vegetable foodstuffs contain toxic compounds that, when consumed, favour the development of certain diseases. Cassava (Manihot esculenta Crantz) is an important food source, but it contains cyanogenic glucosides (linamarin and lotaustralin) that have been associated with the development of tropical ataxic neuropathy and konzo. In rats, intraperitoneal administration of acetone cyanohydrin (a metabolite of linamarin) produces neurological disorders and neuronal damage in the hippocampus. However, it is unknown whether hippocampal area CA1 plays a role in neurological disorders associated with acetone cyanohydrin. A total of 32 male Wistar rats 3 months old were assigned to 4 groups (n=8 per group) as follows: vehicle (1μl physiological saline), and 3 groups with acetone cyanohydrin (1μl of 10, 15, and 20mM solution, respectively). The substances were microinjected intrahippocampally every 24hours for 7 consecutive days, and their effects on locomotor activity, rota-rod and swim tests were assessed daily. On the fifth day post-treatment, rats underwent further assessment with behavioural tests to identify or rule out permanent damage induced by acetone cyanohydrin. Microinjection of acetone cyanohydrin 20mM resulted in hyperactivity, motor impairment, and reduced exploration from the third day of treatment. All concentrations of acetone cyanohydrin produced rotational behaviour in the swim test from the first day of microinjection. The hippocampal area CA1 is involved in motor alterations induced by microinjection of acetone cyanohydrin, as has been reported for other cassava compounds. Copyright © 2015 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. [The application of cortical and subcortical stimulation threshold in identifying the motor pathway and guiding the resection of gliomas in the functional areas].

    Science.gov (United States)

    Ren, X H; Yang, X C; Huang, W; Yang, K Y; Liu, L; Qiao, H; Guo, L J; Cui, Y; Lin, S

    2018-03-06

    Objective: This study aimed to analyze the application of cortical and subcortical stimulation threshold in identifying the motor pathway and guiding the resection of gliomas in the functional area, and to illustrate the minimal safe threshold by ROC method. Methods: Fifty-seven patients with gliomas in the functional areas were enrolled in the study at Beijing Tiantan Hospital from 2015 to 2017. Anesthesia was maintained intravenously with propofol 10% and remifentanil. Throughout the resection process, cortical or subcortical stimulation threshold was determined along tumor border using monopolar or bipolar electrodes. The motor pathway was identified and protected from resection according to the stimulation threshold and transcranial MEPs. Minimal threshold in each case was recorded. Results: Total resection was achieved in 32 cases(56.1%), sub-total resection in 22 cases(38.6%), and partial resection in 3 cases(5.3%). Pre-operative motor disability was found in 9 cases. Compared with pre-operative motor scores, 19 exhibited impaired motor functions on day 1 after surgery, 5 had quick recovery by day 7 after surgery, and 7 had late recovery by 3 months after surgery. At 3 months, 7 still had impaired motor function. The frequency of intraoperative seizure was 1.8%(1/57). No other side effect was found during electronic monitoring in the operation. The ROC curve revealed that the minimal safe monopolar subcortical threshold was 5.70 mA for strength deterioration on day 1 and day 7 after surgery. Univariate analysis revealed that decreased transcranial MEPs and minimal subcortical threshold ≤5.7 mA were correlated with postoperative strength deterioration. Conclusions: Cortical and subcortical stimulation threshold has its merit in identifying the motor pathway and guiding the resection for tumors within the functional areas. 5.7 mA can be used as the minimal safe threshold to protect the motor pathway from injury.

  2. Adaptive coding of orofacial and speech actions in motor and somatosensory spaces with and without overt motor behavior.

    Science.gov (United States)

    Sato, Marc; Vilain, Coriandre; Lamalle, Laurent; Grabski, Krystyna

    2015-02-01

    Studies of speech motor control suggest that articulatory and phonemic goals are defined in multidimensional motor, somatosensory, and auditory spaces. To test whether motor simulation might rely on sensory-motor coding common with those for motor execution, we used a repetition suppression (RS) paradigm while measuring neural activity with sparse sampling fMRI during repeated overt and covert orofacial and speech actions. RS refers to the phenomenon that repeated stimuli or motor acts lead to decreased activity in specific neural populations and are associated with enhanced adaptive learning related to the repeated stimulus attributes. Common suppressed neural responses were observed in motor and posterior parietal regions in the achievement of both repeated overt and covert orofacial and speech actions, including the left premotor cortex and inferior frontal gyrus, the superior parietal cortex and adjacent intraprietal sulcus, and the left IC and the SMA. Interestingly, reduced activity of the auditory cortex was observed during overt but not covert speech production, a finding likely reflecting a motor rather an auditory imagery strategy by the participants. By providing evidence for adaptive changes in premotor and associative somatosensory brain areas, the observed RS suggests online state coding of both orofacial and speech actions in somatosensory and motor spaces with and without motor behavior and sensory feedback.

  3. CONNECTION BETWEEN SOME MOTORIC ABILITIES WITH SUCCESS IN REALIZATION OF PROGRAMMED CONTENTS FROM THE AREA OF GYMNASTICS OF THE FOURTH GRADE OF HIGH SCHOOL

    Directory of Open Access Journals (Sweden)

    Jovica Petković

    2007-05-01

    Full Text Available This research is undertaken for the purpose of defi ning and determinating of the le vel of connection between some motoric abilities with effi ciency in realization of some pro gramme issnes in the area of gymnastic (stretched – legged jump and folded – legged jump. On the sample of fi fty students from the fourth grade of High school, examined stu dents have been tested on ten motoric tests and on two specifi c motoric assignmentsstre tched – legged jump and folded – legged jump. The results of this research clearly point that there exist the multitude of statistically important coeffi cients of correlation between treated motoric abilities and applied assignments

  4. Inhalation of primary motor vehicle emissions: Effects of urbanpopulation and land area

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Julian D.; McKone, Thomas E.; Nazaroff, William W.

    2004-06-14

    Urban population density can influence transportation demand, as expressed through average daily vehicle-kilometers traveled per capita (VKT). In turn, changes in transportation demand influence total passenger vehicle emissions. Population density can also influence the fraction of total emissions that are inhaled by the exposed urban population. Equations are presented that describe these relationships for an idealized representation of an urban area. Using analytic solutions to these equations, we investigate the effect of three changes in urban population and urban land area (infill, sprawl, and constant-density growth) on per capita inhalation intake of primary pollutants from passenger vehicles. The magnitude of these effects depends on density-emissions elasticity ({var_epsilon}{sub e}), a normalized derivative relating change in population density to change in vehicle emissions. For example, if urban population increases, per capita intake is less with infill development than with constant-density growth if {var_epsilon}{sub e} is less than -0.5, while for {var_epsilon}{sub e} greater than -0.5 the reverse is true.

  5. Thoracic aortic stent-graft placement combined with left subclavian artery 'chimney operation': therapeutic analysis of 15 cases with insufficient proximal anchor area

    International Nuclear Information System (INIS)

    Liu Jiayi; Huang Lianjun; Fan Zhanming; Zhang Zhaoqi

    2012-01-01

    Objective: To discuss the strategies for the management of insufficient proximal anchoring area during the performance of transluminal stent-graft placement (TSGP), and to evaluate the feasibility of intentional coverage of the left subclavian artery (LSA) together with left subclavian artery stent-graft placement by using 'chimney operation' technique. Methods: A total of 15 patients with thoracic aortic diseases complicated by insufficient proximal anchoring area, who were encountered in authors' hospital during the period from Dec. 2009 to April 2011, were enrolled in this study. The clinical data were retrospectively analyzed. The thoracic aortic diseases included aortic dissection (n=6), aortic pseudoaneurysm (n=1), aortic aneurysm (n=4) and penetrating ulcer (n=4). Of the 15 patients, the distance between the lesion and LSA anchoring site 15 mm in 2. TSGP was carried out. The ostium of LSA was intentionally and completely covered by thoracic aortic stent-graft and left subclavian artery stent-graft placement was subsequently performed. The patients were kept under observation for symptoms of cerebral and upper limb ischemia. The postoperative complications such as endoleak and the patency of LSA were assessed with angiography. Results: Thoracic aortic stent-graft placement was successfully carried out in all 15 patients. In addition, one 'chimney' stent was properly implanted in LSA in each patient. After the procedure, no complications of nervous system or severe ischemia of upper extremity occurred. Follow-up examinations performed between 5 days to 3 months after the treatment revealed that the aortic stent-graft remained in stable condition and no type Ⅰ endoleak occurred, meanwhile the blood flow in 'chimney' stent was unobstructed. Conclusion: Intentional LSA coverage with 'chimney operation' can expand the applicability of TSGP with high tolerability. It is especially useful for patients with left vertebral artery blood supply dominance or with

  6. Deficit in complex sequence processing after a virtual lesion of left BA45.

    Directory of Open Access Journals (Sweden)

    Emeline Clerget

    Full Text Available Although the contribution of Broca's area to motor cognition is generally accepted, its exact role remains controversial. A previous functional imaging study has suggested that Broca's area implements hierarchically organised motor behaviours and, in particular, that its anterior (Brodmann area 45, BA45 and posterior (BA44 parts process, respectively, higher and lower-level hierarchical elements. This function of Broca's area could generalize to other cognitive functions, including language. However, because of the correlative nature of functional imaging data, the causal relationship between Broca's region activation and its behavioural significance cannot be ascertained. To circumvent this limitation, we used on-line repetitive transcranial magnetic stimulation to disrupt neuronal processing in left BA45, left BA44 or left dorsal premotor cortex, three areas that have been shown to exhibit a phasic activation when participants performed hierarchically organised motor behaviours. The experiment was conducted in healthy volunteers performing the same two key-press sequences as those used in a previous imaging study, and which differed in terms of hierarchical organisation. The performance of the lower-order hierarchical task (Experiment #1 was unaffected by magnetic stimulation. In contrast, in the higher-order hierarchical task (Experiment #2, "superordinate" task, we found that a virtual lesion of the anterior part of Broca's area (left BA45 delayed the processing of the cue initiating the sequence in an effector-independent way. Interestingly, in this task, the initiation cue only informed the subjects about the rules to be applied to produce the appropriate response but did not allow them to anticipate the entire motor sequence. A second important finding was a RT decrease following left PMd virtual lesions in the superordinate task, a result compatible with the view that PMd plays a critical role in impulse control. The present study

  7. Influences of Chronic Mild Stress Exposure on Motor, Non-Motor Impairments and Neurochemical Variables in Specific Brain Areas of MPTP/Probenecid Induced Neurotoxicity in Mice.

    Science.gov (United States)

    Janakiraman, Udaiyappan; Manivasagam, Thamilarasan; Thenmozhi, Arokiasamy Justin; Essa, Musthafa Mohamed; Barathidasan, Rajamani; SaravanaBabu, Chidambaram; Guillemin, Gilles J; Khan, Mohammed A S

    2016-01-01

    Parkinson's disease (PD) is regarded as a movement disorder mainly affecting the elderly population and occurs due to progressive loss of dopaminergic (DAergic) neurons in nigrostriatal pathway. Patients suffer from non-motor symptoms (NMS) such as depression, anxiety, fatigue and sleep disorders, which are not well focussed in PD research. Depression in PD is a predominant /complex symptom and its pathology lies exterior to the nigrostriatal system. The main aim of this study is to explore the causative or progressive effect of chronic mild stress (CMS), a paradigm developed as an animal model of depression in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (25 mg/kg. body wt.) with probenecid (250 mg/kg, s.c.) (MPTP/p) induced mice model of PD. After ten i.p. injections (once in 3.5 days for 5 weeks) of MPTP/p or exposure to CMS for 4 weeks, the behavioural (motor and non-motor) impairments, levels and expressions of dopamine (DA), serotonin (5-HT), DAergic markers such as tyrosine hydroxylase (TH), dopamine transporter (DAT), vesicular monoamine transporters-2 (VMAT 2) and α-synuclein in nigrostriatal (striatum (ST) and substantia nigra (SN)) and extra-nigrostriatal (hippocampus, cortex and cerebellum) tissues were analysed. Significantly decreased DA and 5-HT levels, TH, DAT and VMAT 2 expressions and increased motor deficits, anhedonia-like behaviour and α-synuclein expression were found in MPTP/p treated mice. Pre and/or post exposure of CMS to MPTP/p mice further enhanced the MPTP/p induced DA and 5-HT depletion, behaviour abnormalities and protein expressions. Our results could strongly confirm that the exposure of stress after MPTP/p injections worsens the symptoms and neurochemicals status of PD.

  8. Influences of Chronic Mild Stress Exposure on Motor, Non-Motor Impairments and Neurochemical Variables in Specific Brain Areas of MPTP/Probenecid Induced Neurotoxicity in Mice.

    Directory of Open Access Journals (Sweden)

    Udaiyappan Janakiraman

    Full Text Available Parkinson's disease (PD is regarded as a movement disorder mainly affecting the elderly population and occurs due to progressive loss of dopaminergic (DAergic neurons in nigrostriatal pathway. Patients suffer from non-motor symptoms (NMS such as depression, anxiety, fatigue and sleep disorders, which are not well focussed in PD research. Depression in PD is a predominant /complex symptom and its pathology lies exterior to the nigrostriatal system. The main aim of this study is to explore the causative or progressive effect of chronic mild stress (CMS, a paradigm developed as an animal model of depression in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (25 mg/kg. body wt. with probenecid (250 mg/kg, s.c. (MPTP/p induced mice model of PD. After ten i.p. injections (once in 3.5 days for 5 weeks of MPTP/p or exposure to CMS for 4 weeks, the behavioural (motor and non-motor impairments, levels and expressions of dopamine (DA, serotonin (5-HT, DAergic markers such as tyrosine hydroxylase (TH, dopamine transporter (DAT, vesicular monoamine transporters-2 (VMAT 2 and α-synuclein in nigrostriatal (striatum (ST and substantia nigra (SN and extra-nigrostriatal (hippocampus, cortex and cerebellum tissues were analysed. Significantly decreased DA and 5-HT levels, TH, DAT and VMAT 2 expressions and increased motor deficits, anhedonia-like behaviour and α-synuclein expression were found in MPTP/p treated mice. Pre and/or post exposure of CMS to MPTP/p mice further enhanced the MPTP/p induced DA and 5-HT depletion, behaviour abnormalities and protein expressions. Our results could strongly confirm that the exposure of stress after MPTP/p injections worsens the symptoms and neurochemicals status of PD.

  9. [The use of seatbelts and child seats in drivers and passengers of motor vehicles in four metropolitan areas in Mexico].

    Science.gov (United States)

    Cervantes-Trejo, Arturo; Leenen, Iwin

    2015-01-01

    To estimate the rate of seatbelt and child seat use in drivers and passengers of motor vehicles in four metropolitan areas in Mexico (Guadalajara, León, Monterrey and Mexico City). To evaluate the impact of the Mexican Initiative for Road Safety (IMESEVI) in this respect. Data were collected at the start of IMESEVI (June 2008) and one year after the program's implementation (October 2009) in the four participating metropolitan areas. In particular, the use of seatbelts and child seats was observed in occupants of automobiles, station wagons, and light trucks. The sample included 28,412 (pre) and 52,274 (post) individuals, of which 1,454 (pre) and 1,679 (post) were younger than five years old. The data analysis was based on a hierarchical logistic model. Globally, the probability of using either safety device is 46% (95% CI: 43-49%) at baseline and 52% (95% CI: 48-55%) at the post measurement, with large differences, though, among the four participating metropolitan areas. Factors that significantly affect their use include the individual's position in the vehicle, the type and age of the vehicle, and the individual's sex. Child seat use is very limited. At baseline, about 17% (95% CI: 11-25%) of children below five years old travelled in a special seat, with this number increasing to 26% (95% CI: 19-34%) after the implementation of IMESEVI. Child seat use for children above four years is virtually nonexistent. Continued efforts are required to raise the public awareness of the importance of using safety devices, especially for passengers in the back of the car as well as with respect to the use of adapted seats for small children.

  10. Magnetoencephalogram recording from secondary motor areas during imagined movements Registro magnetoencefalográfico de áreas motoras secundárias durante simulação interna do movimento

    Directory of Open Access Journals (Sweden)

    Carlos Amo

    2006-06-01

    Full Text Available This study determined whether the activity of the secondary motor cortex (M2 could be recorded during imagined movements (IM of the right and left hand using magnetoencephalography (MEG. Results during IM were compared with a somatosensory trial during a passive tactile stimulation in one subject. During the somatosensory trial, dipoles were detected in somatosensory (SS and motor primary (M1 areas, scoring 94.4-98.4% for SS, 1.6-5.6% for M1 and 0% for M2. During the IM trial, dipoles were detected in SS, M1 and M2 areas, scoring 61.1-68.8% for SS, 2.6-9.3% for M1 and 28.6-29.6% for M2. These data support the hypothesis that M2 areas are activated during imagined hand movements. This study aims for the development of a diagnosis test for patients with motor deficits by evaluating the whole somatomotor network with specific interest in M2 areas.Este estudo determina se a atividade motora secundária cortical (M2 pode ser gravada durante simulação interna do movimento (IM das mãos direita e esquerda utilizando-se magnetencefalografia (MEG. Os resultados da simulação dos movimentos estudados foram comparados com um ensaio somato-sensorial com estimulação tactil passiva em um sujeito. Durante o ensaio somato-sensorial dipolos foram detectados em áreas somato-sensoriais (SS e motoras primarias (MI tendo como score 94,4-98,4% para SS, 1,6-5,6% para M1 e 0% para M2. Durante o ensaio de simulação dos movimentos também foram detectados dipolos em SS 61,1-68,8%, M1 2,6-9,3% e M2 28,6-29,6%. Estes dados evidenciam a hipótese de que as áreas M2 são ativadas durante a simulação dos movimentos das mãos. Este estudo sugere o desenvolvimento de um teste diagnóstico para pacientes com deficites motores, que avalie a rede somatomotora com interesse específico nas áreas M2.

  11. Electrophysiological signs of supplementary-motor-area deficits in high-functioning autism but not Asperger syndrome: an examination of internally cued movement-related potentials.

    Science.gov (United States)

    Enticott, Peter G; Bradshaw, John L; Iansek, Robert; Tonge, Bruce J; Rinehart, Nicole J

    2009-10-01

    Motor dysfunction is common to both autism and Asperger syndrome, but the underlying neurophysiological impairments are unclear. Neurophysiological examinations of motor dysfunction can provide information about likely sites of functional impairment and can contribute to the debate about whether autism and Asperger syndrome are variants of the same disorder or fundamentally distinct neurodevelopmental conditions. We investigated the neurophysiology of internally determined motor activity in autism and Asperger syndrome via examination of movement-related potentials (MRPs). We used electroencephalography to investigate MRPs, via an internally cued movement paradigm, in the following three groups: (1) individuals with high-functioning autism (14 males, one female; mean age 13 y 1 mo, SD 4 y 2 mo, range 7 y 8 mo to 20 y 9 mo; mean Full-scale IQ 93.40, SD 20.72); (2) individuals with Asperger syndrome (10 males, two females; mean age 13 y 7 mo, SD 3 y 9 mo, range 8 y 11 mo to 20 y 4 mo; mean Full-scale IQ 103.25, SD 19.37), and (3) a healthy control group (13 males, seven females; mean age 14 y 0 mo, SD 3 y 11 mo; range 8 y 4 mo to 21 y 0 mo; mean Full-scale IQ 114.25, SD 11.29). Abnormal MRPs can reflect disruption of motor-related neural networks involving the basal ganglia, thalamus, and supplementary motor area. There was evidence for abnormal MRPs in autism (e.g. increased post-movement cortical activity, abnormal peak time) but not in Asperger syndrome. The results support basal ganglia, thalamus, and supplementary motor area involvement as a likely source of motor dysfunction in autism, and provide further evidence for the neurobiological separateness of autism and Asperger syndrome.

  12. The Left Superior Longitudinal Fasciculus within the Primary Sensory Area of Inferior Parietal Lobe Plays a Role in Dysgraphia of Kana Omission within Sentences

    Directory of Open Access Journals (Sweden)

    Nobusada Shinoura

    2012-01-01

    Full Text Available Functional neurological changes after surgery combined with diffusion tensor imaging (DTI tractography can directly provide evidence of anatomical localization of brain function. Using these techniques, a patient with dysgraphia before surgery was analyzed at our hospital in 2011. The patient showed omission of kana within sentences before surgery, which improved after surgery. The brain tumor was relatively small and was located within the primary sensory area (S1 of the inferior parietal lobe (IPL. DTI tractography before surgery revealed compression of the branch of the superior longitudinal fasciculus (SLF by the brain tumor. These results suggest that the left SLF within the S1 of IPL plays a role in the development of dysgraphia of kana omission within sentences.

  13. Dramatic Response of Resistant Obsessive Compulsive Disorder to Repeated Transcranial Magnetic Stimulation on Right Supplementary Motor Area

    Directory of Open Access Journals (Sweden)

    Ali Talaei

    2009-12-01

    Full Text Available The response rate to the treatment of obsessive compulsivedisorder (OCD is 21.6% to 61.3%, which shows a relativeresistance to current treatments and a need for noveltherapeutic approaches. Here we report a case of resistantOCD with fast and dramatic response to a relatively newmethod of repeated transcranial magnetic stimulation. In thismethod a pulse magnetic field emits from a coil over thesurface of the scalp to induce a localized electrical current inthe cortex below. Cortical activity can then be either inhibitedor stimulated. The patient was a 40-year-old woman withsevere OCD who admitted to our psychiatric hospital. She wastreated with 10 sessions of rTMS (110% intensity, 1 Hzfrequency and duration of 30 minutes per day / a total of 1200pulses per day on right supplementary motor area. Herimprovement evaluated serially with Yale Brown Scale. Bythe end of the 2nd day she reported a major improvement ofsymptoms. Dramatic improvement was observed in herobsessive and compulsive behaviors, and avoidance recoveredcompletely. She also reported significant improvement inability to control obsessive thoughts and impulses, and anxietysymptoms. Since repeated transcranial magnetic stimulation isa low risk method with almost no interaction with the commonmedications, as well as the faster response obtained by usingthis method, it can be used as an add-on treatment in resistantcases of OCD and even in the initial stages of this disorder.

  14. Cerebral hemorrhage without manifest motor paralysis

    International Nuclear Information System (INIS)

    Taketani, Torao; Dohi, Ichiro; Miyazaki, Tadahiko; Handa, Akihisa

    1982-01-01

    Before the introduction of computerized tomography (CT) there were some cases of intracerebral bleeding who were wrongly diagnosed as hypertensive encephalopathy or senile psychosis. We here report 5 cases who did not show any sign of motor paralysis. The clinical aspects of these cases were nausea and vomiting with dizziness (case 1), nausea and vomiting with slight headache (case 2), agnosia of left side with several kinds of disorientation (case 3), nausea and vomiting (case 4), and visual disturbance of right, lower quadrant (case 5). All of these cases showed no motor paralysis or abnormal reflex activities. By examination with CT each of them exhibited a high density area in the subcortical area of the right parietal lobe, the subcortical area of the right occipital lobe, the right temporal and parietal lobe, rather small portion of the left putamen and external capsule, and the subcortical area of left occipital lobe, respectively. Patients of cerebral hemorrhage without motor or sensory disturbances might often be taken for some psychic abnormality. We here have emphasized the importance of CT in such a group of patients. But for this technique, most of them would not be given adequate treatment and might be exposed to lifethreatening situations. (author)

  15. Motorized transport in the city area of Besancon and its impact on energy consumption; Les deplacements motorises dans l`agglomeration bisontine et leurs consequences energetiques

    Energy Technology Data Exchange (ETDEWEB)

    Abram, G.

    1995-12-31

    Energy consumption, pollutant emissions and environmental burdens due to motor traffic in the city area of Besancon has been determined by statistics, counting and sample surveys. A computer model has been developed to simulate the impact of different elements and policy measures as the development of public transport systems, traffic regulation, limiting the accessibility of certain areas and car pooling. (C.B.) 101 refs.

  16. Action Verbs and the Primary Motor Cortex: A Comparative TMS Study of Silent Reading, Frequency Judgments, and Motor Imagery

    Science.gov (United States)

    Tomasino, Barbara; Fink, Gereon R.; Sparing, Roland; Dafotakis, Manuel; Weiss, Peter H.

    2008-01-01

    Single pulse transcranial magnetic stimulation (TMS) was applied to the hand area of the left primary motor cortex or, as a control, to the vertex (STIMULATION: TMS[subscript M1] vs. TMS[subscript vertex]) while right-handed volunteers silently read verbs related to hand actions. We examined three different tasks and time points for stimulation…

  17. The application of preoperative functional MRI in neurosurgical treatment of intraoperative electrical stimulation for gliomas involving motor areas at 3 T

    International Nuclear Information System (INIS)

    Li Zixiao; Dai Jianping; Li Shaowu; Li Changhong; Gao Peiyi; Jiang Tao; Sun Yilin

    2006-01-01

    Objective: To assess the value of preoperative blood oxygen level dependent (BOLD) 3 T functional magnetic resonance imaging (fMRI) to identify motor cortical areas in neurosurgical treatment of intraoperative electrical stimulation for gliomas involving motor areas. Methods: The study included 26 consecutive preoperative BOLD-fMRI sessions in patients with brain gliomas in or near senorimotor cortices. The bilateral hand movement fMRI paradigm was preformed in all patients. The BOLD data were analyzed by the workstation (Leonardo Syngo 2003A, Siemens)to obtain the BOLD-fMRI images, which were used to guide the preoperative neurosurgical planning. With guidance of preoperative mapping, all patients received microsurgery under anaesthesia retaining consciousness using intraoperative motor functional brain mapping with the method of direct electrical stimulations. The brain lesions were removed as far as possible in the case of eloquent areas preservation. The preoperative and postoperative KPS of all patients were operated to evaluate the state of patients. Results: The preoperative mappings of the hand area on primary sensorimotor cortex using BOLD-fMRI were obtained successfully in twenty-three of twenty-six patients. Under anaesthesia retaining consciousness, the primary motor area was monitored by the method of direct electrical stimulations with the guidance of preoperative BOLD-fMRI. There was good correlation between preoperative fMRI findings and intraoperative cortical stimulation. Furthermore, the preoperative mappings could make up for the un-monitored areas during operative cortical stimulation. For the 21 patients of the pre-KPS from 80.0 to 90.0, the pre-KPS and post-KPS are 85.7 and 95.2 respectively, and for the 5 patients of the pre-KPS from 40. 0 to 70.0, the pre-KPS and post-KPS are 68.0 and 90.0 respectively. Conclusion: The preoperative mapping of the hand area on primary sensorimotor cortex using BOLD-fMRI could non-invasively localize the

  18. Electroencephalographic connectivity measures predict learning of a motor sequencing task.

    Science.gov (United States)

    Wu, Jennifer; Knapp, Franziska; Cramer, Steven C; Srinivasan, Ramesh

    2018-02-01

    Individuals vary significantly with respect to rate and degree of improvement with motor practice. While the regions that underlie motor learning have been well described, neurophysiological factors underlying differences in response to motor practice are less well understood. The present study examined both resting-state and event-related EEG coherence measures of connectivity as predictors of response to motor practice on a motor sequencing task using the dominant hand. Thirty-two healthy young right-handed participants underwent resting EEG before motor practice. Response to practice was evaluated both across the single session of motor practice and 24 h later at a retention test of short-term motor learning. Behaviorally, the group demonstrated statistically significant gains both in single-session "motor improvement" and across-session "motor learning." A resting-state measure of whole brain coherence with primary motor cortex (M1) at baseline robustly predicted subsequent motor improvement (validated R 2 = 0.55) and motor learning (validated R 2 = 0.68) in separate partial least-squares regression models. Specifically, greater M1 coherence with left frontal-premotor cortex (PMC) at baseline was characteristic of individuals likely to demonstrate greater gains in both motor improvement and motor learning. Analysis of event-related coherence with respect to movement found the largest changes occurring in areas implicated in planning and preparation of movement, including PMC and frontal cortices. While event-related coherence provided a stronger prediction of practice-induced motor improvement (validated R 2 = 0.73), it did not predict the degree of motor learning (validated R 2 = 0.16). These results indicate that connectivity in the resting state is a better predictor of consolidated learning of motor skills. NEW & NOTEWORTHY Differences in response to motor training have significant societal implications across a lifetime of motor skill practice. By

  19. THE INFLUENCE OF SOCIOECONOMIC STATUS ON THE LEVEL OF EARLY-SCHOOL-AGED CHILDREN’S MOTOR ABILITIES – BLURRING OF DIFFERENCES IN THE ECONOMICALLY UNDERDEVELOPED AREAS

    Directory of Open Access Journals (Sweden)

    Robert Podstawski

    2014-03-01

    Full Text Available Aim: The aim of the study was to determine differences in the level of motor abilities of 7-9-year-old girls and boys in relation to the socioeconomic status of their families . Material and Methods: The research was conducted in 12 primary schools in two regions of Poland namely of Warmia & Mazury and Pomorskie voivodeship, on the total of 1205 pupils (584 boys and 621 girls aged 7-9. Selected economic factors such as the type of school (public or private, monthly income per household member, and the number of children in a given family were accepted as the independent variables. The factors behind social status included the place of residence and parents’ educational background. In order to determine the level of motor abilities, 13 motor tests were applied. Results: The research revealed that motor tests such as 1 and 3 min. Burpee test and medicine ball throws (forward and backward appeared to show the biggest differences in the level of motor abilities of the children whose social and economic status varied. The results of these tests as well as those of the shuttle run were significantly higher for the girls from the families of high social status than for the boys of low social status. Social status to a greater extent than economic one differentiated the tested motor abilities, especially in the case of the girls from families marked by high social status, who scored better than boys. The exception is the skipping with clapping of hands – 8 s trial, which differentiated only the tested categories of economic status, especially when referred to the girls. Conclusions: Owing to the small number of significant differences between high and low social and economic status in both sex groups in the motor tests applied, it can be assumed that in the less developed, agriculture and tourism-oriented areas there has occurred blurring of the differences in the level of children’s motor abilities depending on their social and economic status.

  20. Comparison of left ventricular outflow geometry and aortic valve area in patients with aortic stenosis by 2-dimensional versus 3-dimensional echocardiography.

    Science.gov (United States)

    Saitoh, Takeji; Shiota, Maiko; Izumo, Masaki; Gurudevan, Swaminatha V; Tolstrup, Kirsten; Siegel, Robert J; Shiota, Takahiro

    2012-06-01

    The present study sought to elucidate the geometry of the left ventricular outflow tract (LVOT) in patients with aortic stenosis and its effect on the accuracy of the continuity equation-based aortic valve area (AVA) estimation. Real-time 3-dimensional transesophageal echocardiography (RT3D-TEE) provides high-resolution images of LVOT in patients with aortic stenosis. Thus, AVA is derived reliably with the continuity equation. Forty patients with aortic stenosis who underwent 2-dimensional transthoracic echocardiography (2D-TTE), 2-dimensional transesophageal echocardiography (2D-TEE), and RT3D-TEE were studied. In 2D-TTE and 2D-TEE, the LVOT areas were calculated as π × (LVOT dimension/2)(2). In RT3D-TEE, the LVOT areas and ellipticity ([diameter of the anteroposterior axis]/[diameter of the medial-lateral axis]) were evaluated by planimetry. The AVA is then determined using planimetry and the continuity equation method. LVOT shape was found to be elliptical (ellipticity of 0.80 ± 0.08). Accordingly, the LVOT areas measured by 2D-TTE (median 3.7 cm(2), interquartile range 3.1 to 4.1) and 2D-TEE (median 3.7 cm(2), interquartile range 3.1 to 4.0) were smaller than those by 3D-TEE (median 4.6 cm(2), interquartile range 3.9 to 5.3; p interquartile range 0.79 to 1.3, p interquartile range 0.64 to 0.94) and 2D-TEE (median 0.76 cm(2), interquartile range 0.62 to 0.95). Additionally, the continuity equation-based AVA by RT3D-TEE was consistent with the planimetry method. In conclusion, RT3D-TEE might allow more accurate evaluation of the elliptical LVOT geometry and continuity equation-based AVA in patients with aortic stenosis than 2D-TTE and 2D-TEE. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Study on the Status of Health Service Utilization among Caregivers of Left-Behind Children in Poor Rural Areas of Hunan Province: A Baseline Survey.

    Science.gov (United States)

    Ji, Meimei; Zhang, Yefu; Zou, Jiaojiao; Yuan, Tong; Tang, Amber; Deng, Jing; Yang, Lina; Li, Mingzhi; Chen, Jihua; Qin, Hong; Lin, Qian

    2017-08-12

    The caregivers of left-behind children (CLBC) in China's poor, rural areas are mostly elderly and women. Their health status and access to health services have not been previously characterized. This study aims to explore the status of CLBC in terms of their health service utilization and to provide a scientific basis for guiding effective implementation of health policy in rural Hunan. Random cluster sampling was used to survey CLBC in two rural counties. Face-to-face interviews and questionnaires were used to collect data, including socioeconomic status and health service utilization. The two-week prevalence rate was used to reflect health service needs, while the two-week visiting rate, annual hospitalization rate and participation in basic public health services were used to evaluate health service utilization. Of the 518 respondents in the study, 95.9% were farmers and 88.4% were over 40 years old. The two-week prevalence rate was 36.1%. Furthermore, 40.1% of ill caregivers' activities were partly restricted by illness and 3.7% needed to be on bed rest. The two-week visiting rate was 21.0%. The main reasons for not seeing a doctor were "self-medication" (39.1%) or "financial difficulties" (32.6%). The annual hospitalization rate of the CLBC was 22.6% and the non-hospitalization rate of those who needed hospitalization was 41.5%. "Lack of time" (22.3%) and "financial difficulties" (50.5%) were the major factors affecting the utilization of hospitalization services. In terms of participation in basic public health services, only 35.1% CLBC clearly knew that township hospitals have established health records for them. Only 50.6% of caregivers received free health examinations in village clinics or township hospitals and 81.3% of the caregivers did not participate in health education or lectures organized by local health institutions in 2014. The utilization rate of health services was extremely low, which may affect the quality of care for left-behind children

  2. The effects of bromazepam over the central and frontal areas during a motor task: an EEG study

    Directory of Open Access Journals (Sweden)

    Suzete Fortunato

    2015-04-01

    Full Text Available The present study investigates the influence of bromazepam while executing a motor task. Specifically, we intend to analyze the changes in alpha absolute power under two experimental conditions, bromazepam and placebo. We also included analyses of theta and beta frequencies. We collected electroencephalographic data before, during, and after motor task execution. We used a Two Way ANOVA to investigate the condition (PL × Br6 mg and moment (pre and post variables for the following electrodes: Fp1, Fp2, F7, F3, Fz, F4, F8, C3, CZ and C4. We found a main effect for condition on the electrodes FP1, F7, F3, Fz, F4, C3 and CZ, for alpha and beta bands. For beta band we also found a main effect for condition on the electrodes Fp2, F8 and C4; for theta band we identified a main effect for condition on C3, Cz and C4 electrodes. This finding suggests that the motor task did not have any influence on the electrocortical activity in alpha, and that the existing modifications were a consequence due merely to the drug use. Despite its anxiolytic and sedative action, bromazepam did not show any significant changes when the individuals executed a finger extension motor task.

  3. Botanical collecting activity in the area of the Flora of Ethiopia and Eritrea during the "motor period"

    DEFF Research Database (Denmark)

    Friis, Ib

    2011-01-01

    The account summarizes the botanical field work in Eritrea and Ethiopia since the 1930s, in the period when motor cars have been used for transport of equipment and collections, as opposed to the "heroic" period, when pack animals were used. The use of cars for botanical collecting in Eritrea and...

  4. Body-specific representations of action verbs: neural evidence from right- and left-handers.

    Science.gov (United States)

    Willems, Roel M; Hagoort, Peter; Casasanto, Daniel

    2010-01-01

    According to theories of embodied cognition, understanding a verb like throw involves unconsciously simulating the action of throwing, using areas of the brain that support motor planning. If understanding action words involves mentally simulating one's own actions, then the neurocognitive representation of word meanings should differ for people with different kinds of bodies, who perform actions in systematically different ways. In a test of the body-specificity hypothesis, we used functional magnetic resonance imaging to compare premotor activity correlated with action verb understanding in right- and left-handers. Right-handers preferentially activated the left premotor cortex during lexical decisions on manual-action verbs (compared with nonmanual-action verbs), whereas left-handers preferentially activated right premotor areas. This finding helps refine theories of embodied semantics, suggesting that implicit mental simulation during language processing is body specific: Right- and left-handers, who perform actions differently, use correspondingly different areas of the brain for representing action verb meanings.

  5. Acute cardiovascular exercise promotes functional changes in cortico-motor networks during the early stages of motor memory consolidation.

    Science.gov (United States)

    Dal Maso, Fabien; Desormeau, Bennet; Boudrias, Marie-Hélène; Roig, Marc

    2018-03-16

    A single bout of cardiovascular exercise performed immediately after practicing a visuo-motor tracking task has been shown to improve the long-term retention of this motor skill through an optimization of the memory consolidation process. The mechanisms underlying the time-dependent effects of acute cardiovascular exercise on motor memory consolidation, however, remain poorly understood. In this study, we sought to determine the impact of a single bout of cardiovascular exercise performed immediately after motor skill practice on those mechanisms using electroencephalography (EEG) and electromyography (EMG). Specifically, we assessed exercise-induced changes in the activity and connectivity of cortico-motor networks during early consolidation and the impact of these changes on skill retention. Participants practiced a visuo-motor tracking task followed by either a short bout of intense exercise or a rest period. EEG along with EMG data of hand muscles were collected during the production of low-force isometric contractions. Event-related desynchronization, functional connectivity and corticomuscular coherence were measured at baseline, 30, 60 and 90 min after the bout of exercise or the rest period. Improvements in motor memory were inferred via retention tests of the motor skill performed 8 and 24 h after motor practice. We found that participants who performed the single bout of exercise showed better motor skill retention 24 h after motor practice. This improvement in skill retention in the exercise group was associated with significant decreases in beta-band event-related desynchronization in EEG electrodes located over the left sensorimotor areas. We also found that after exercise, alpha-, and even more significantly, beta-band functional connectivity, increased between EEG electrodes located over left and right sensorimotor areas. The exercise group also showed greater beta-band corticomuscular coherence but only in a small number of electrodes. Neither

  6. Selective impairment of verb processing associated with pathological changes in Brodmann areas 44 and 45 in the motor neurone disease-dementia-aphasia syndrome.

    Science.gov (United States)

    Bak, T H; O'Donovan, D G; Xuereb, J H; Boniface, S; Hodges, J R

    2001-01-01

    We report six patients with clinically diagnosed and electrophysiologically confirmed motor neurone disease (MND), in whom communication problems were an early and dominant feature. All patients developed a progressive non-fluent aphasia culminating in some cases in complete mutism. In five cases, formal testing revealed deficits in syntactic comprehension. Comprehension and production of verbs were consistently more affected those that of nouns and this effect remained stable upon subsequent testing, despite overall deterioration. The classical signs of MND, including wasting, fasciculations and severe bulbar symptoms, occurred over the following 6-12 months. The behavioural symptoms ranged from mild anosognosia to personality change implicating frontal-lobe dementia. In three cases, post-mortem examination has confirmed the clinical diagnosis of MND-dementia. In addition to the typical involvement of motor and premotor cortex, particularly pronounced pathological changes were observed in the Brodmann areas 44 (Broca's area) and 45. The finding of a selective impairment of verb/action processing in association with the dementia/aphasia syndrome of MND suggests that the neural substrate underlying verb representation is strongly connected to anterior cortical motor systems.

  7. Left ventricular mass regression is independent of gradient drop and effective orifice area after aortic valve replacement with a porcine bioprosthesis.

    Science.gov (United States)

    Sádaba, Justo Rafael; Herregods, Marie-Christine; Bogaert, Jan; Harringer, Wolfgang; Gerosa, Gino

    2012-11-01

    The question of whether left ventricular mass (LVM) regression following aortic valve replacement (AVR) is affected by the prosthesis indexed effective orifice area (IEOA) and transprosthetic gradient has not been fully elucidated. Data from a prospective, core-laboratory-reviewed echocardiography and magnetic resonance imaging (MRI) study was used to determine if the degree of LVM regression following AVR with two types of porcine bioprosthesis in patients suffering from predominant aortic valve stenosis (AS) was related to the prosthesis IEOA and transprosthetic gradient. Over a two-year period, 149 patients enrolled at eight centers received either an Epic or an Epic Supra aortic bioprosthesis (St. Jude Medical, MN, USA). Preoperative valve dysfunction was pure AS in 54 patients (36%) and mixed valve disease (primarily stenosis) in 95 patients (64%). LVM was determined preoperatively and at six months postoperatively, using MRI. The prosthesis IEOA and transprosthetic gradient were calculated at six months by means of echocardiography. Data were available for 111 patients at both enrolment and six months postoperatively. The LVM at enrolment and at follow up was 154.96 +/- 42.50 g and 114.83 +/- 29.20 g, respectively (p regression methods, showed LVM regression to be independent of the mean systolic pressure gradient, peak systolic pressure and prosthesis IEOA at six months (p = 0.53, 0.43, and 0.15, respectively). At six months after AVR with a porcine bioprosthesis to treat AS, there was a significant LVM regression that was independent of the prosthesis IEOA and the mean systolic pressure gradient and peak systolic pressure.

  8. Connectivity between Right Inferior Frontal Gyrus and Supplementary Motor Area Predicts After-Effects of Right Frontal Cathodal tDCS on Picture Naming Speed

    DEFF Research Database (Denmark)

    Rosso, Charlotte; Valabregue, R.; Arbizy, C.

    2014-01-01

    correlated with larger volumes of the tract connecting the right Broca’s area and the supplementary motor area (SMA) and greater functional coupling from the right SMA to the right Broca’s area. Conclusions: The results support the notion that the after-effects of tDCS on brain function are at least in part......Background: Cathodal transcranial direct current stimulation (tDCS) of the right frontal cortex improves language abilities in post-stroke aphasic patients. Yet little is known about the effects of right frontal cathodal tDCS on normal language function. Objective/hypothesis: To explore...... the cathodal tDCS effects of the right-hemispheric homologue of Broca’s area on picture naming in healthy individuals. We hypothesized that cathodal tDCS improves Picture naming and that this effect is determined by the anatomical and functional connectivity of the targeted region. Methods: Cathodal and sham tDCS...

  9. Monitoring Local Regional Hemodynamic Signal Changes during Motor Execution and Motor Imagery Using Near-Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Naoki eIso

    2016-01-01

    Full Text Available The aim of this study was to clarify the topographical localization of motor-related regional hemodynamic signal changes during motor execution (ME and motor imagery (MI by using near-infrared spectroscopy (NIRS, as this technique is more clinically expedient than established methods (e.g. fMRI. Twenty right-handed healthy subjects participated in this study. The experimental protocol was a blocked design consisting of 3 cycles of 20 s of task performance and 30 s of rest. The tapping sequence task was performed with their fingers under 4 conditions: ME and MI with the right or left hand. Hemodynamic brain activity was measured with NIRS to monitor changes in oxygenated hemoglobin (oxy-Hb concentration. Oxy-Hb in the somatosensory motor cortex (SMC increased significantly only during contralateral ME and showed a significant interaction between task and hand. There was a main effect of hand in the left SMC. Although there were no significant main effects or interactions in the supplemental motor area (SMA and premotor area (PMA, oxy-Hb increased substantially under all conditions. These results clarified the topographical localization by motor-related regional hemodynamic signal changes during ME and MI by using NIRS.

  10. The role of human parietal area 7A as a link between sequencing in hand actions and in overt speech production

    Directory of Open Access Journals (Sweden)

    Stefan eHeim

    2012-12-01

    Full Text Available Research on the evolutionary basis of the human language faculty has proposed the mirror neuron system as a link between motor processing and speech development. Consequently, most work has focussed on the left inferior frontal cortex, in particular Broca's region, and the left inferior parietal cortex. However, the direct link between planning of hand motor and speech actions remains to be elucidated. Thus, the present study investigated whether sequencing of hand motor actions vs. speech motor actions has a common neural denominator. For the hand motor task, 25 subjects performed single, repeated, or sequenced button presses with either the left or right hand. The speech task was in analogy; the same subjects produced the syllable "po" once or repeatedly, or a sequence of different syllables (po-pi-po. Speech motor vs. hand motor effectors resulted in increased perisylvian activation including Broca's region (left area 44 and areas medially adjacent to left area 45. In contrast, common activation for sequenced vs. repeated production of button presses and syllables revealed the effector-independent involvement of left area 7A in the superior parietal lobule (SPL in sequencing. These data demonstrate that sequencing of vocal gestures, an important precondition for ordered utterances and ultimately human speech, shares area 7A, rather than inferior parietal regions, as a common cortical module with hand motor sequencing. Interestingly, area 7A has previously also been shown to be involved in the observation of hand and non-hand actions. In combination with the literature, the present data thus suggest a distinction between area 44, which is specifically recruited for (cognitive aspects of speech, and SPL area 7A for general aspects of motor sequencing. In sum, the study demonstrates a yet little considered role of the superior parietal lobule in the origins of speech, and may be discussed in the light of embodiment of speech and language in the

  11. Colorado SIP: 5 CCR 1001-13, Reg 11, Motor Vehicle Emissions Inspection Program—Part A, General Provisions, Area of Applicability, Schedules for Obtaining Certification of Emissions Control, Definitions, Exemptions, and Clean Screening/Remote Sensing

    Science.gov (United States)

    Colorado SIP: 5 CCR 1001-13, Reg 11, Motor Vehicle Emissions Inspection Program—Part A, General Provisions, Area of Applicability, Schedules for Obtaining Certification of Emissions Control, Definitions, Exemptions, and Clean Screening/Remote Sensing

  12. EEG dipole analysis of motor-priming foreperiod activity reveals separate sources for motor and spatial attention components.

    Science.gov (United States)

    Mathews, Simon; Ainsley Dean, Phil John; Sterr, Annette

    2006-12-01

    This study employed EEG source localisation procedures to study the contribution of motor preparatory and attentional processing to foreperiod activity in an S1-S2 motor priming task. Behavioural and high-density event-related potential (ERP) data were recorded in an S1-S2 priming task where participants responded to S2 with a left or right-hand button press. S1 either provided information about response hand (informative) or ambiguous information (uninformative). Responses were significantly faster in informative trials compared with uninformative trials. Dipole source analysis of foreperiod lateralized ERPs revealed sources of motor preparatory activity in the dorsolateral premotor cortex (PMd) in line with previous work. In addition, two spatial attention components (ADAN, LDAP) were identified with generators in the PMd and occipitotemporal visual areas in the middle temporal (MT) region, respectively. Separation of motor-related and attentional PMd source locations was reliable along the rostral-caudal axis. The presence of attentional components in a motor priming paradigm supports the premotor theory of attention which suggests a close link between attention and motor preparatory processes. Separation of components in the premotor cortex is in accord with a functional division of PMd into rostral (higher-order processing) and caudal (motor-related processing) areas as suggested by imaging work. A prime for response preparation is a trigger for separate, but closely linked, attention-related activity in premotor areas.

  13. Enrichment from birth accelerates the functional and cellular development of a motor control area in the mouse.

    Directory of Open Access Journals (Sweden)

    Teresa Simonetti

    Full Text Available BACKGROUND: There is strong evidence that sensory experience in early life has a profound influence on the development of sensory circuits. Very little is known, however, about the role of experience in the early development of striatal networks which regulate both motor and cognitive function. To address this, we have investigated the influence of early environmental enrichment on motor development. METHODOLOGY/PRINCIPAL FINDINGS: Mice were raised in standard or enriched housing from birth. For animals assessed as adults, half of the mice had their rearing condition reversed at weaning to enable the examination of the effects of pre- versus post-weaning enrichment. We found that exclusively pre-weaning enrichment significantly improved performance on the Morris water maze compared to non-enriched mice. The effects of early enrichment on the emergence of motor programs were assessed by performing behavioural tests at postnatal day 10. Enriched mice traversed a significantly larger region of the test arena in an open-field test and had improved swimming ability compared to non-enriched cohorts. A potential cellular correlate of these changes was investigated using Wisteria-floribunda agglutinin (WFA staining to mark chondroitin-sulfate proteoglycans (CSPGs. We found that the previously reported transition of CSPG staining from striosome-associated clouds to matrix-associated perineuronal nets (PNNs is accelerated in enriched mice. CONCLUSIONS/SIGNIFICANCE: This is the first demonstration that the early emergence of exploratory as well as coordinated movement is sensitive to experience. These behavioural changes are correlated with an acceleration of the emergence of striatal PNNs suggesting that they may consolidate the neural circuits underlying these behaviours. Finally, we confirm that pre-weaning experience can lead to life long changes in the learning ability of mice.

  14. Botanical collecting activity in the area of the Flora of Ethiopia and Eritrea during the "motor period"

    DEFF Research Database (Denmark)

    Friis, Ib

    2011-01-01

    The account summarizes the botanical field work in Eritrea and Ethiopia since the 1930s, in the period when motor cars have been used for transport of equipment and collections, as opposed to the "heroic" period, when pack animals were used. The use of cars for botanical collecting in Eritrea...... and Ethiopia has been seriously hampered by the difficult and mountainous terrain, and cars therefore came into use in connection with botanical collecting relatively late in comparison with the situation in many other African countries. The big expeditions during the Italian occupation of Ethiopia and Eritrea...

  15. tDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: a 7 T magnetic resonance spectroscopy study.

    Science.gov (United States)

    Kim, Soyoung; Stephenson, Mary C; Morris, Peter G; Jackson, Stephen R

    2014-10-01

    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that alters cortical excitability in a polarity specific manner and has been shown to influence learning and memory. tDCS may have both on-line and after-effects on learning and memory, and the latter are thought to be based upon tDCS-induced alterations in neurochemistry and synaptic function. We used ultra-high-field (7 T) magnetic resonance spectroscopy (MRS), together with a robotic force adaptation and de-adaptation task, to investigate whether tDCS-induced alterations in GABA and Glutamate within motor cortex predict motor learning and memory. Note that adaptation to a robot-induced force field has long been considered to be a form of model-based learning that is closely associated with the computation and 'supervised' learning of internal 'forward' models within the cerebellum. Importantly, previous studies have shown that on-line tDCS to the cerebellum, but not to motor cortex, enhances model-based motor learning. Here we demonstrate that anodal tDCS delivered to the hand area of the left primary motor cortex induces a significant reduction in GABA concentration. This effect was specific to GABA, localised to the left motor cortex, and was polarity specific insofar as it was not observed following either cathodal or sham stimulation. Importantly, we show that the magnitude of tDCS-induced alterations in GABA concentration within motor cortex predicts individual differences in both motor learning and motor memory on the robotic force adaptation and de-adaptation task. Copyright © 2014. Published by Elsevier Inc.

  16. Enhanced neural synchrony between left auditory and premotor cortex is associated with successful phonetic categorization.

    Science.gov (United States)

    Alho, Jussi; Lin, Fa-Hsuan; Sato, Marc; Tiitinen, Hannu; Sams, Mikko; Jääskeläinen, Iiro P

    2014-01-01

    The cortical dorsal auditory stream has been proposed to mediate mapping between auditory and articulatory-motor representations in speech processing. Whether this sensorimotor integration contributes to speech perception remains an open question. Here, magnetoencephalography was used to examine connectivity between auditory and motor areas while subjects were performing a sensorimotor task involving speech sound identification and overt repetition. Functional connectivity was estimated with inter-areal phase synchrony of electromagnetic oscillations. Structural equation modeling was applied to determine the direction of information flow. Compared to passive listening, engagement in the sensorimotor task enhanced connectivity within 200 ms after sound onset bilaterally between the temporoparietal junction (TPJ) and ventral premotor cortex (vPMC), with the left-hemisphere connection showing directionality from vPMC to TPJ. Passive listening to noisy speech elicited stronger connectivity than clear speech between left auditory cortex (AC) and vPMC at ~100 ms, and between left TPJ and dorsal premotor cortex (dPMC) at ~200 ms. Information flow was estimated from AC to vPMC and from dPMC to TPJ. Connectivity strength among the left AC, vPMC, and TPJ correlated positively with the identification of speech sounds within 150 ms after sound onset, with information flowing from AC to TPJ, from AC to vPMC, and from vPMC to TPJ. Taken together, these findings suggest that sensorimotor integration mediates the categorization of incoming speech sounds through reciprocal auditory-to-motor and motor-to-auditory projections.

  17. White matter integrity of motor connections related to training gains in healthy aging.

    Science.gov (United States)

    Schulz, Robert; Zimerman, Máximo; Timmermann, Jan E; Wessel, Maximilian J; Gerloff, Christian; Hummel, Friedhelm C

    2014-06-01

    Impaired motor skill acquisition is a feature of older age. Acquisition of new motor skills requires the interplay between different cortical motor areas. Using diffusion tensor imaging we reconstructed cortico-cortical connections between the primary motor cortex (M1) and secondary motor areas in 11 older and 11 young participants who took part in a motor skill acquisition paradigm with the nondominant left hand. Examining the extent to which tract-related integrity correlated with training gains we found that white matter integrity of fibers connecting contralateral M1 with both contralateral (r = 0.85) and ipsilateral supplementary motor areas (r = 0.92) were positively associated in old participants. Also, fibers connecting contralateral M1 with ipsilateral dorsal premotor (r = 0.82) and fibers connecting ipsilateral dorsal premotor and supplementary motor area (r = 0.88) were positively related to skill acquisition (all p control subjects suggesting a critical role of brain structural integrity for motor learning in healthy aging. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Distinctive laterality of neural networks supporting action understanding in left- and right-handed individuals: An EEG coherence study.

    Science.gov (United States)

    Kelly, Rachel; Mizelle, J C; Wheaton, Lewis A

    2015-08-01

    Prior work has demonstrated that perspective and handedness of observed actions can affect action understanding differently in right and left-handed persons, suggesting potential differences in the neural networks underlying action understanding between right and left-handed individuals. We sought to evaluate potential differences in these neural networks using electroencephalography (EEG). Right- and left-handed participants observed images of tool-use actions from egocentric and allocentric perspectives, with right- and left-handed actors performing the actions. Participants judged the outcome of the observed actions, and response accuracy and latency were recorded. Behaviorally, the highest accuracy and shortest latency was found in the egocentric perspective for right- and left-handed observers. Handedness of subject showed an effect on accuracy and latency also, where right-handed observers were faster to respond than left-handed observers, but on average were less accurate. Mu band (8-10 Hz) cortico-cortical coherence analysis indicated that right-handed observers have coherence in the motor dominant left parietal-premotor networks when looking at an egocentric right or allocentric left hands. When looking in an egocentric perspective at a left hand or allocentric right hand, coherence was lateralized to right parietal-premotor areas. In left-handed observers, bilateral parietal-premotor coherence patterns were observed regardless of actor handedness. These findings suggest that the cortical networks involved in understanding action outcomes are dependent on hand dominance, and notably right handed participants seem to utilize motor systems based on the limb seen performing the action. The decreased accuracy for right-handed participants on allocentric images could be due to asymmetrical lateralization of encoding action and motoric dominance, which may interfere with translating allocentric limb action outcomes. Further neurophysiological studies will

  19. Similarities between explicit and implicit motor imagery in mental rotation of hands: an EEG study.

    Science.gov (United States)

    Osuagwu, Bethel A; Vuckovic, Aleksandra

    2014-12-01

    Chronometric and imaging studies have shown that motor imagery is used implicitly during mental rotation tasks in which subjects for example judge the laterality of human hand pictures at various orientations. Since explicit motor imagery is known to activate the sensorimotor areas of the cortex, mental rotation is expected to do similar if it involves a form of motor imagery. So far, functional magnetic resonance imaging and positron emission tomography have been used to study mental rotation and less attention has been paid to electroencephalogram (EEG) which offers a high time-frequency resolution. The time-frequency analysis is an established method for studying explicit motor imagery. Although hand mental rotation is claimed to involve motor imagery, the time-frequency characteristics of mental rotation have never been compared with those of explicit motor imagery. In this study, time-frequency responses of EEG recorded during explicit motor imagery and during a mental rotation task, inducing implicit motor imagery, were compared. Fifteen right-handed healthy volunteers performed motor imagery of hands in one condition and hand laterality judgement tasks in another while EEG of the whole head was recorded. The hand laterality judgement was the mental rotation task used to induce implicit motor imagery. The time-frequency analysis and sLORETA localisation of the EEG showed that the activities in the sensorimotor areas had similar spatial and time-frequency characteristics in explicit motor imagery and implicit motor imagery conditions. Furthermore this sensorimotor activity was different for the left and for the right hand in both explicit and implicit motor imagery. This result supports that motor imagery is used during mental rotation and that it can be detected and studied with EEG technology. This result should encourage the use of mental rotation of body parts in rehabilitation programmes in a similar manner as motor imagery. Copyright © 2014. Published

  20. Specialization of the left supramarginal gyrus for hand-independent praxis representation is not related to hand dominance

    Science.gov (United States)

    Króliczak, Gregory; Piper, Brian J.; Frey, Scott H.

    2016-01-01

    Data from focal brain injury and functional neuroimaging studies implicate a distributed network of parieto-fronto-temporal areas in the human left cerebral hemisphere as playing distinct roles in the representation of meaningful actions (praxis). Because these data come primarily from right-handed individuals, the relationship between left cerebral specialization for praxis representation and hand dominance remains unclear. We used functional magnetic resonance imaging (fMRI) to evaluate the hypothesis that strongly left-handed (right hemisphere motor dominant) adults also exhibit this left cerebral specialization. Participants planned familiar actions for subsequent performance with the left or right hand in response to transitive (e.g., “pounding”) or intransitive (e.g. “waving”) action words. In linguistic control trials, cues denoted non-physical actions (e.g., “believing”). Action planning was associated with significant, exclusively left-lateralized and extensive increases of activity in the supramarginal gyrus (SMg), and more focal modulations in the left caudal middle temporal gyrus (cMTg). This activity was hand- and gesture-independent, i.e., unaffected by the hand involved in subsequent action performance, and the type of gesture (i.e., transitive or intransitive). Compared directly with right-handers, left-handers exhibited greater involvement of the right angular gyrus (ANg) and dorsal premotor cortex (dPMC), which is indicative of a less asymmetric functional architecture for praxis representation. We therefore conclude that the organization of mechanisms involved in planning familiar actions is influenced by one’s motor dominance. However, independent of hand dominance, the left SMg and cMTg are specialized for ideomotor transformations—the integration of conceptual knowledge and motor representations into meaningful actions. These findings support the view that higher-order praxis representation and lower-level motor dominance rely

  1. Alpha, beta and gamma electrocorticographic rhythms in somatosensory, motor, premotor and prefrontal cortical areas differ in movement execution and observation in humans.

    Science.gov (United States)

    Babiloni, Claudio; Del Percio, Claudio; Vecchio, Fabrizio; Sebastiano, Fabio; Di Gennaro, Giancarlo; Quarato, Pier P; Morace, Roberta; Pavone, Luigi; Soricelli, Andrea; Noce, Giuseppe; Esposito, Vincenzo; Rossini, Paolo Maria; Gallese, Vittorio; Mirabella, Giovanni

    2016-01-01

    In the present study, we tested the hypothesis that both movement execution and observation induce parallel modulations of alpha, beta, and gamma electrocorticographic (ECoG) rhythms in primary somatosensory (Brodmann area 1-2, BA1-2), primary motor (BA4), ventral premotor (BA6), and prefrontal (BA44 and BA45, part of putative human mirror neuron system underlying the understanding of actions of other people) areas. ECoG activity was recorded in drug-resistant epileptic patients during the execution of actions to reach and grasp common objects according to their affordances, as well as during the observation of the same actions performed by an experimenter. Both action execution and observation induced a desynchronization of alpha and beta rhythms in BA1-2, BA4, BA6, BA44 and BA45, which was generally higher in amplitude during the former than the latter condition. Action execution also induced a major synchronization of gamma rhythms in BA4 and BA6, again more during the execution of an action than during its observation. Human primary sensorimotor, premotor, and prefrontal areas do generate alpha, beta, and gamma rhythms and differently modulate them during action execution and observation. Gamma rhythms of motor areas are especially involved in action execution. Oscillatory activity of neural populations in sensorimotor, premotor and prefrontal (part of human mirror neuron system) areas represents and distinguishes own actions from those of other people. This methodological approach might be used for a neurophysiological diagnostic imaging of social cognition in epileptic patients. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Cortical Motor Circuits after Piano Training in Adulthood: Neurophysiologic Evidence.

    Science.gov (United States)

    Houdayer, Elise; Cursi, Marco; Nuara, Arturo; Zanini, Sonia; Gatti, Roberto; Comi, Giancarlo; Leocani, Letizia

    2016-01-01

    The neuronal mechanisms involved in brain plasticity after skilled motor learning are not completely understood. We aimed to study the short-term effects of keyboard training in music-naive subjects on the motor/premotor cortex activity and interhemispheric interactions, using electroencephalography and transcranial magnetic stimulation (TMS). Twelve subjects (experimental group) underwent, before and after a two week-piano training: (1) hand-motor function tests: Jamar, grip and nine-hole peg tests; (2) electroencephalography, evaluating the mu rhythm task-related desynchronization (TRD) during keyboard performance; and (3) TMS, targeting bilateral abductor pollicis brevis (APB) and abductor digiti minimi (ADM), to obtain duration and area of ipsilateral silent period (ISP) during simultaneous tonic contraction of APB and ADM. Data were compared with 13 controls who underwent twice these measurements, in a two-week interval, without undergoing piano training. Every subject in the experimental group improved keyboard performance and left-hand nine-hole peg test scores. Pre-training, ISP durations were asymmetrical, left being longer than right. Post-training, right ISPAPB increased, leading to symmetrical ISPAPB. Mu TRD during motor performance became more focal and had a lesser amplitude than in pre-training, due to decreased activity over ventral premotor cortices. No such changes were evidenced in controls. We demonstrated that a 10-day piano-training was associated with balanced interhemispheric interactions both at rest and during motor activation. Piano training, in a short timeframe, may reshape local and inter-hemispheric motor cortical circuits.

  3. Motor and extra-motor gray matter integrity may underlie neurophysiologic parameters of motor function in amyotrophic lateral sclerosis: a combined voxel-based morphometry and transcranial stimulation study.

    Science.gov (United States)

    Christidi, Foteini; Karavasilis, Efstratios; Velonakis, Georgios; Rentzos, Michail; Zambelis, Thomas; Zouvelou, Vasiliki; Xirou, Sophia; Ferentinos, Panagiotis; Efstathopoulos, Efstathios; Kelekis, Nikolaos; Evdokimidis, Ioannis; Karandreas, Nikolaos

    2018-02-07

    The association between gray matter (GM) density and neurophysiologic changes is still unclear in amyotrophic lateral sclerosis (ALS). We evaluated the relationship between GM density and motor system integrity combining voxel-based morphometry (VBM) and transcranial magnetic stimulation (TMS) in ALS. We included 17 ALS patients and 22 healthy controls (HC) who underwent 3D-T1-weighted imaging. Among the ALS group, we applied left motor cortex single-pulse TMS. We used whole-brain VBM comparing ALS and HC in GM density. We also conducted regression analysis to examine correlations between GM density and the following TMS parameters: motor evoked potential (MEP)/M ratio and central motor conduction time (CMCT). We found significantly decreased GM density in ALS patients in several frontal, temporal, parietal/occipital and cerebellar regions (p motor area (negative association). CMCT was associated with GM density in (a) inferior frontal gyrus and middle cingulated gyrus (positive association) and (b) superior parietal lobule; cuneus and cerebellum (negative association). Our findings support a significant interaction between motor and extra-motor structural and functional changes and highlight that motor and extra-motor GM integrity may underlie TMS parameters of motor function in ALS patients.

  4. Awake Surgery for a Violin Player: Monitoring Motor and Music Performance, A Case Report.

    Science.gov (United States)

    Piai, Vitória; Vos, Sandra H; Idelberger, Reinhard; Gans, Pauline; Doorduin, Jonne; Ter Laan, Mark

    2018-02-27

    We report the case of a professional violin player who underwent an awake craniotomy to resect a tumor in the left supplementary motor area, an area involved in motor planning. A careful pre- and intraoperative monitoring plan for music performance and complex motor function was established that could be used in combination with cortical stimulation. The patient suffered an epileptic seizure during cortical stimulation. The monitoring of complex motor and musical functions was implemented with the patient playing the violin while the resection was performed. Almost complete resection was achieved with no notable postoperative deficits contributing to functional impairment. The multidisciplinary approach, involving neurosurgery, neuropsychology, anesthesiology, and clinical neurophysiology, allowed us to successfully cope with the theoretical and practical challenges associated with tailored care for a professional musician. The music and motor monitoring plan is reported in detail to enable other sites to reproduce and adapt it accordingly.

  5. Lateralization of Motor Cortex Excitability in Stroke Patients during Action Observation: A TMS Study

    Directory of Open Access Journals (Sweden)

    Mattia Marangon

    2014-01-01

    Full Text Available Action observation activates the same motor areas as those involved in the performance of the observed actions and promotes functional recovery following stroke. Movement observation is now considered a promising tool for motor rehabilitation, by allowing patients to train their motor functions when voluntary movement is partially impaired. We asked chronic-stroke patients, affected by either left (LHD or right hemisphere (RHD lesions, to observe either a left or right hand, while grasping a small target (eliciting a precision grip or a large target (eliciting a whole hand grasp directed towards a target object. To better understand the effects of action observation on damaged motor circuits, we used transcranial magnetic stimulation (TMS to induce motor evoked potentials (MEP from two muscles of the unaffected hand in 10 completely hemiplegic participants. Results revealed that LHD patients showed MEP facilitation on the right (contralesional M1 during action observation of hand-object interactions. In contrast, results showed no facilitation of the left (contralesional M1 in RHD patients. Our results confirm that action observation might have a positive influence on the recovery of motor functions after stroke. Activating the motor system by means of action observation might provide a mechanism for improving function, at least in LHD patients.

  6. The neural correlates of speech motor sequence learning.

    Science.gov (United States)

    Segawa, Jennifer A; Tourville, Jason A; Beal, Deryk S; Guenther, Frank H

    2015-04-01

    Speech is perhaps the most sophisticated example of a species-wide movement capability in the animal kingdom, requiring split-second sequencing of approximately 100 muscles in the respiratory, laryngeal, and oral movement systems. Despite the unique role speech plays in human interaction and the debilitating impact of its disruption, little is known about the neural mechanisms underlying speech motor learning. Here, we studied the behavioral and neural correlates of learning new speech motor sequences. Participants repeatedly produced novel, meaningless syllables comprising illegal consonant clusters (e.g., GVAZF) over 2 days of practice. Following practice, participants produced the sequences with fewer errors and shorter durations, indicative of motor learning. Using fMRI, we compared brain activity during production of the learned illegal sequences and novel illegal sequences. Greater activity was noted during production of novel sequences in brain regions linked to non-speech motor sequence learning, including the BG and pre-SMA. Activity during novel sequence production was also greater in brain regions associated with learning and maintaining speech motor programs, including lateral premotor cortex, frontal operculum, and posterior superior temporal cortex. Measures of learning success correlated positively with activity in left frontal operculum and white matter integrity under left posterior superior temporal sulcus. These findings indicate speech motor sequence learning relies not only on brain areas involved generally in motor sequencing learning but also those associated with feedback-based speech motor learning. Furthermore, learning success is modulated by the integrity of structural connectivity between these motor and sensory brain regions.

  7. ARE LEFT HANDED SURGEONS LEFT OUT?

    OpenAIRE

    SriKamkshi Kothandaraman; Balasubramanian Thiagarajan

    2012-01-01

    Being a left-handed surgeon, more specifically a left-handed ENT surgeon, presents a unique pattern of difficulties.This article is an overview of left-handedness and a personal account of the specific difficulties a left-handed ENT surgeon faces.

  8. Role of the motor system in language knowledge

    Science.gov (United States)

    Berent, Iris; Brem, Anna-Katharine; Zhao, Xu; Seligson, Erica; Pan, Hong; Epstein, Jane; Stern, Emily; Galaburda, Albert M.; Pascual-Leone, Alvaro

    2015-01-01

    All spoken languages express words by sound patterns, and certain patterns (e.g., blog) are systematically preferred to others (e.g., lbog). What principles account for such preferences: does the language system encode abstract rules banning syllables like lbog, or does their dislike reflect the increased motor demands associated with speech production? More generally, we ask whether linguistic knowledge is fully embodied or whether some linguistic principles could potentially be abstract. To address this question, here we gauge the sensitivity of English speakers to the putative universal syllable hierarchy (e.g., blif≻bnif≻bdif≻lbif) while undergoing transcranial magnetic stimulation (TMS) over the cortical motor representation of the left orbicularis oris muscle. If syllable preferences reflect motor simulation, then worse-formed syllables (e.g., lbif) should (i) elicit more errors; (ii) engage more strongly motor brain areas; and (iii) elicit stronger effects of TMS on these motor regions. In line with the motor account, we found that repetitive TMS pulses impaired participants’ global sensitivity to the number of syllables, and functional MRI confirmed that the cortical stimulation site was sensitive to the syllable hierarchy. Contrary to the motor account, however, ill-formed syllables were least likely to engage the lip sensorimotor area and they were least impaired by TMS. Results suggest that speech perception automatically triggers motor action, but this effect is not causally linked to the computation of linguistic structure. We conclude that the language and motor systems are intimately linked, yet distinct. Language is designed to optimize motor action, but its knowledge includes principles that are disembodied and potentially abstract. PMID:25646465

  9. Role of the motor system in language knowledge.

    Science.gov (United States)

    Berent, Iris; Brem, Anna-Katharine; Zhao, Xu; Seligson, Erica; Pan, Hong; Epstein, Jane; Stern, Emily; Galaburda, Albert M; Pascual-Leone, Alvaro

    2015-02-17

    All spoken languages express words by sound patterns, and certain patterns (e.g., blog) are systematically preferred to others (e.g., lbog). What principles account for such preferences: does the language system encode abstract rules banning syllables like lbog, or does their dislike reflect the increased motor demands associated with speech production? More generally, we ask whether linguistic knowledge is fully embodied or whether some linguistic principles could potentially be abstract. To address this question, here we gauge the sensitivity of English speakers to the putative universal syllable hierarchy (e.g., blif ≻ bnif ≻ bdif ≻ lbif) while undergoing transcranial magnetic stimulation (TMS) over the cortical motor representation of the left orbicularis oris muscle. If syllable preferences reflect motor simulation, then worse-formed syllables (e.g., lbif) should (i) elicit more errors; (ii) engage more strongly motor brain areas; and (iii) elicit stronger effects of TMS on these motor regions. In line with the motor account, we found that repetitive TMS pulses impaired participants' global sensitivity to the number of syllables, and functional MRI confirmed that the cortical stimulation site was sensitive to the syllable hierarchy. Contrary to the motor account, however, ill-formed syllables were least likely to engage the lip sensorimotor area and they were least impaired by TMS. Results suggest that speech perception automatically triggers motor action, but this effect is not causally linked to the computation of linguistic structure. We conclude that the language and motor systems are intimately linked, yet distinct. Language is designed to optimize motor action, but its knowledge includes principles that are disembodied and potentially abstract.

  10. Motor and premotor cortices in subcortical stroke: proton magnetic resonance spectroscopy measures and arm motor impairment.

    Science.gov (United States)

    Craciunas, Sorin C; Brooks, William M; Nudo, Randolph J; Popescu, Elena A; Choi, In-Young; Lee, Phil; Yeh, Hung-Wen; Savage, Cary R; Cirstea, Carmen M

    2013-06-01

    Although functional imaging and neurophysiological approaches reveal alterations in motor and premotor areas after stroke, insights into neurobiological events underlying these alterations are limited in human studies. We tested whether cerebral metabolites related to neuronal and glial compartments are altered in the hand representation in bilateral motor and premotor areas and correlated with distal and proximal arm motor impairment in hemiparetic persons. In 20 participants at >6 months postonset of a subcortical ischemic stroke and 16 age- and sex-matched healthy controls, the concentrations of N-acetylaspartate and myo-inositol were quantified by proton magnetic resonance spectroscopy. Regions of interest identified by functional magnetic resonance imaging included primary (M1), dorsal premotor (PMd), and supplementary (SMA) motor areas. Relationships between metabolite concentrations and distal (hand) and proximal (shoulder/elbow) motor impairment using Fugl-Meyer Upper Extremity (FMUE) subscores were explored. N-Acetylaspartate was lower in M1 (P = .04) and SMA (P = .004) and myo-inositol was higher in M1 (P = .003) and PMd (P = .03) in the injured (ipsilesional) hemisphere after stroke compared with the left hemisphere in controls. N-Acetylaspartate in ipsilesional M1 was positively correlated with hand FMUE subscores (P = .04). Significant positive correlations were also found between N-acetylaspartate in ipsilesional M1, PMd, and SMA and in contralesional M1 and shoulder/elbow FMUE subscores (P = .02, .01, .02, and .02, respectively). Our preliminary results demonstrated that proton magnetic resonance spectroscopy is a sensitive method to quantify relevant neuronal changes in spared motor cortex after stroke and consequently increase our knowledge of the factors leading from these changes to arm motor impairment.

  11. Left atrial appendage occlusion

    Directory of Open Access Journals (Sweden)

    Ahmad Mirdamadi

    2013-01-01

    Full Text Available Left atrial appendage (LAA occlusion is a treatment strategy to prevent blood clot formation in atrial appendage. Although, LAA occlusion usually was done by catheter-based techniques, especially percutaneous trans-luminal mitral commissurotomy (PTMC, it can be done during closed and open mitral valve commissurotomy (CMVC, OMVC and mitral valve replacement (MVR too. Nowadays, PTMC is performed as an optimal management of severe mitral stenosis (MS and many patients currently are treated by PTMC instead of previous surgical methods. One of the most important contraindications of PTMC is presence of clot in LAA. So, each patient who suffers of severe MS is evaluated by Trans-Esophageal Echocardiogram to rule out thrombus in LAA before PTMC. At open heart surgery, replacement of the mitral valve was performed for 49-year-old woman. Also, left atrial appendage occlusion was done during surgery. Immediately after surgery, echocardiography demonstrates an echo imitated the presence of a thrombus in left atrial appendage area, although there was not any evidence of thrombus in pre-pump TEE. We can conclude from this case report that when we suspect of thrombus of left atrial, we should obtain exact history of previous surgery of mitral valve to avoid misdiagnosis clotted LAA, instead of obliterated LAA. Consequently, it can prevent additional evaluations and treatments such as oral anticoagulation and exclusion or postponing surgeries including PTMC.

  12. Changes in corticomotor excitability and intracortical inhibition of the primary motor cortex forearm area induced by anodal tDCS.

    Directory of Open Access Journals (Sweden)

    Xue Zhang

    Full Text Available OBJECTIVE: Previous studies have investigated how tDCS over the primary motor cortex modulates excitability in the intrinsic hand muscles. Here, we tested if tDCS changes corticomotor excitability and/or cortical inhibition when measured in the extensor carpi radialis (ECR and if these aftereffects can be successfully assessed during controlled muscle contraction. METHODS: We implemented a double blind cross-over design in which participants (n = 16 completed two sessions where the aftereffects of 20 min of 1 mA (0.04 mA/cm2 anodal vs sham tDCS were tested in a resting muscle, and two more sessions where the aftereffects of anodal vs sham tDCS were tested in an active muscle. RESULTS: Anodal tDCS increased corticomotor excitability in ECR when aftereffects were measured with a low-level controlled muscle contraction. Furthermore, anodal tDCS decreased short interval intracortical inhibition but only when measured at rest and after non-responders (n = 2 were removed. We found no changes in the cortical silent period. CONCLUSION: These findings suggest that targeting more proximal muscles in the upper limb with anodal tDCS is achievable and corticomotor excitability can be assessed in the presence of a low-level controlled contraction of the target muscle.

  13. Analisa Pengaruh Modifikasi Mesin Press Body Area 5a Line Terhadap Peningkatan Kapasitas Produksi Di PT. Astra Daihatsu Motor

    Directory of Open Access Journals (Sweden)

    Januar Nasution

    2011-06-01

    Full Text Available Analysis or the analysis is defined as a study conducted on a discussion of the problems studied in depth to find out the real situation. In this study, analysis of the modifications carried out to assess the influence of such modifications in an increase in production capacity of PT. Astra Daihatsu Motor. Taking into account the physical and technical aspects of data in the field, didapatlah data supporting this research, for subsequent use as a reference from the financial aspect to determine the magnitude of the cost involved in this modification. The purpose of this study was to find the value of the initial investment required in the modification, finding the investment payback period, benefit gained as well as determining whether modification is appropriate or not to apply. Data collection conducted broadly divided into two data technical and financial aspects, and then after that the data is processed through the method of calculation of production, Stoke per Hour (SPH, Gross Stroke per Hour (GSPH. This study also provides recommendations to companies to assess whether the modification is feasible or not to do, from the point of view of project feasibility studies. 

  14. Functional mapping of left parietal areas involved in simple addition and multiplication. A single-case study of qualitative analysis of errors.

    Science.gov (United States)

    Della Puppa, Alessandro; De Pellegrin, Serena; Salillas, Elena; Grego, Alberto; Lazzarini, Anna; Vallesi, Antonino; Saladini, Marina; Semenza, Carlo

    2015-09-01

    All electrostimulation studies on arithmetic have so far solely reported general errors. Nonetheless, a classification of the errors during stimulation can inform us about underlying arithmetic processes. The present electrostimulation study was performed in a case of left parietal glioma. The patient's erroneous responses suggested that calculation was mainly applied for addition and a combination of retrieval and calculation was mainly applied for multiplication. The findings of the present single-case study encourage follow up with further data collection with the same paradigm. © 2014 The British Psychological Society.

  15. Effects of transcranial direct current stimulation over the supplementary motor area body weight-supported treadmill gait training in hemiparetic patients after stroke.

    Science.gov (United States)

    Manji, Atsushi; Amimoto, Kazu; Matsuda, Tadamitsu; Wada, Yoshiaki; Inaba, Akira; Ko, Sangkyun

    2018-01-01

    Transcranial direct current stimulation (tDCS) is used in a variety of disorders after stroke including upper limb motor dysfunctions, hemispatial neglect, aphasia, and apraxia, and its effectiveness has been demonstrated. Although gait ability is important for daily living, there were few reports of the use of tDCS to improve balance and gait ability. The supplementary motor area (SMA) was reported to play a potentially important role in balance recovery after stroke. We aimed to investigate the effect of combined therapy body weight-supported treadmill training (BWSTT) and tDCS on gait function recovery of stroke patients. Thirty stroke inpatients participated in this study. The two BWSTT periods of 1weeks each, with real tDCS (anode: front of Cz, cathode: inion, 1mA, 20min) on SMA and sham stimulation, were randomized in a double-blind crossover design. We measured the time required for the 10m Walk Test (10MWT) and Timed Up and Go (TUG) test before and after each period. We found that the real tDCS with BWSTT significantly improved gait speed (10MWT) and applicative walking ability (TUG), compared with BWSTT+sham stimulation periods (ptraining after stroke. The facilitative effects of tDCS on SMA possibly improved postural control during BWSTT. The results indicated the implications for the use of tDCS in balance and gait training rehabilitation after stroke. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. South-east frontier of the Russian Empire and the processes on the division of the Ural River left bank area between Kirghiz-Kaysaks and Ural Cossacks in the second half of the XIX century

    Directory of Open Access Journals (Sweden)

    Alexey I. Kortunov

    2015-03-01

    Full Text Available The article highlights the issue related to the peculiarities of formation of the south-east frontier of the Russian Empire and with the process on separation of the border areas of the Orenburg line (in particular of the Ural River left bank area between Kirghiz-Kaysaks and Ural Cossacks in the second half of XIX century. The author pays particular attention to the problem of the resolution of disputes between the Ural Cossacks and Kirghiz-Kaysaks by local and central authorities.

  17. Sensory-motor networks involved in speech production and motor control: an fMRI study.

    Science.gov (United States)

    Behroozmand, Roozbeh; Shebek, Rachel; Hansen, Daniel R; Oya, Hiroyuki; Robin, Donald A; Howard, Matthew A; Greenlee, Jeremy D W

    2015-04-01

    Speaking is one of the most complex motor behaviors developed to facilitate human communication. The underlying neural mechanisms of speech involve sensory-motor interactions that incorporate feedback information for online monitoring and control of produced speech sounds. In the present study, we adopted an auditory feedback pitch perturbation paradigm and combined it with functional magnetic resonance imaging (fMRI) recordings in order to identify brain areas involved in speech production and motor control. Subjects underwent fMRI scanning while they produced a steady vowel sound /a/ (speaking) or listened to the playback of their own vowel production (playback). During each condition, the auditory feedback from vowel production was either normal (no perturbation) or perturbed by an upward (+600 cents) pitch-shift stimulus randomly. Analysis of BOLD responses during speaking (with and without shift) vs. rest revealed activation of a complex network including bilateral superior temporal gyrus (STG), Heschl's gyrus, precentral gyrus, supplementary motor area (SMA), Rolandic operculum, postcentral gyrus and right inferior frontal gyrus (IFG). Performance correlation analysis showed that the subjects produced compensatory vocal responses that significantly correlated with BOLD response increases in bilateral STG and left precentral gyrus. However, during playback, the activation network was limited to cortical auditory areas including bilateral STG and Heschl's gyrus. Moreover, the contrast between speaking vs. playback highlighted a distinct functional network that included bilateral precentral gyrus, SMA, IFG, postcentral gyrus and insula. These findings suggest that speech motor control involves feedback error detection in sensory (e.g. auditory) cortices that subsequently activate motor-related areas for the adjustment of speech parameters during speaking. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. 5 Hz repetitive TMS increases anticipatory motor activity in the human cortex.

    Science.gov (United States)

    Holler, Iris; Siebner, Hartwig R; Cunnington, Ross; Gerschlager, Willibald

    2006-01-16

    In the present study, we analyzed how high-frequency repetitive transcranial magnetic stimulation (rTMS) of the primary motor hand area (M1-Hand) shapes anticipatory motor activity in frontal areas as indexed by the contingent negative variation (CNV). Eight right-handed volunteers received real or sham 5Hz rTMS at an intensity of 90% resting motor threshold (1,500 stimuli per session). Real but not sham rTMS to left M1-Hand induced a site-specific increase in amplitude of the late component of the CNV at the electrode C3 overlaying the site of stimulation. The increase in pre-movement activity in the stimulated cortex may reflect an increase in facilitatory drive from connected motor areas, enhanced responsiveness of the stimulated cortex to these inputs or both.

  19. Observing, performing, and understanding actions: revisiting the role of cortical motor areas in processing of action words

    NARCIS (Netherlands)

    Rüschemeyer, S.A.; Ekman, M.; Ackeren, M.J. van; Kilner, J.

    2014-01-01

    Language content and action/perception have been shown to activate common brain areas in previous neuroimaging studies. However, it is unclear whether overlapping cortical activation reflects a common neural source or adjacent, but distinct, sources. We address this issue by using multivoxel pattern

  20. The emotional motor system.

    Science.gov (United States)

    Holstege, G

    1992-01-01

    A large number of new descending motor pathways to caudal brainstem and spinal cord have been recognized recently. Nevertheless all the new pathways seem to belong to one of three motor systems in the central nervous system (CNS). This survey gives an overview of the pathways belonging to the so-called emotional motor system or the third motor system as defined by Holstege. The similarities and differences with the core, median and lateral paracore areas of the CNS as defined by Nieuwenhuys are discussed.

  1. Aphasia following left thalamic hemorrhage

    International Nuclear Information System (INIS)

    Makishita, Hideo; Miyasaka, Motomaro; Tanizaki, Yoshio; Yanagisawa, Nobuo; Sugishita, Morihiro.

    1984-01-01

    We reported 7 patients with left thalamic hemorrhage in the chronic stage (from 1.5 months to 4.5 months), and described language disorders examined by Western Aphasia Battery (WAB) and measured cerebral blood flow by single photon emission CT. Examination of language by WAB revealed 4 aphasics out of 7 cases, and 3 patients had no language deficit. The patient with Wernicke's aphasia showed low density area only in the left posterior thalamus in X-ray CT, and revealed severe low blood flow area extending to left temporal lobe in emission CT. In the case with transcortical sensory aphasia, although X-ray CT showed no obvious low density area, emission CT revealed moderate low flow area in watershed area that involved the territory between posterior cerebral and middle cerebral arteries in the left temporooccipital region in addition to low blood flow at the left thalamus. In one of the two patients classified as anomic aphasia, whose score of repetition (8.4) was higher than that of comprehension (7.4), emission CT showed slight low flow area at the temporo-occipital region similarly as the case with transcortical sensory aphasia. In another case with anomic aphasia, scored 9 on both fluensy and comprehension subtests and 10 on repetition, there was wide low density area all over the left thalamus and midline shift to the right in X-ray CT, and emission CT showed severe low blood flow in the same region spreading widely toward the cerebral surface. On the other hand, in all of the 3 patients without aphasia, emission CT showed low flow region restricted to the left thalamus. (J.P.N.)

  2. Characterization of a cerebral palsy-like model in rats: Analysis of gait pattern and of brain and spinal cord motor areas.

    Science.gov (United States)

    Dos Santos, Adriana Souza; de Almeida, Wellington; Popik, Bruno; Sbardelotto, Bruno Marques; Torrejais, Márcia Miranda; de Souza, Marcelo Alves; Centenaro, Lígia Aline

    2017-08-01

    In an attempt to propose an animal model that reproduces in rats the phenotype of cerebral palsy, this study evaluated the effects of maternal exposure to bacterial endotoxin associated with perinatal asphyxia and sensorimotor restriction on gait pattern, brain and spinal cord morphology. Two experimental groups were used: Control Group (CTG) - offspring of rats injected with saline during pregnancy and Cerebral Palsy Group (CPG) - offspring of rats injected with lipopolysaccharide during pregnancy, submitted to perinatal asphyxia and sensorimotor restriction for 30days. At 29days of age, the CPG exhibited coordination between limbs, weight-supported dorsal steps or weight-supported plantar steps with paw rotation. At 45days of age, CPG exhibited plantar stepping with the paw rotated in the balance phase. An increase in the number of glial cells in the primary somatosensory cortex and dorsal striatum were observed in the CPG, but the corpus callosum thickness and cross-sectional area of lateral ventricle were similar between studied groups. No changes were found in the number of motoneurons, glial cells and soma area of the motoneurons in the ventral horn of spinal cord. The combination of insults in the pre, peri and postnatal periods produced changes in hindlimbs gait pattern of animals similar to those observed in diplegic patients, but motor impairments were attenuated over time. Besides, the greater number of glial cells observed seems to be related to the formation of a glial scar in important sensorimotor brain areas. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  3. Beta oscillations reflect memory and motor aspects of spoken word production.

    Science.gov (United States)

    Piai, Vitória; Roelofs, Ardi; Rommers, Joost; Maris, Eric

    2015-07-01

    Two major components form the basis of spoken word production: the access of conceptual and lexical/phonological information in long-term memory, and motor preparation and execution of an articulatory program. Whereas the motor aspects of word production have been well characterized as reflected in alpha-beta desynchronization, the memory aspects have remained poorly understood. Using magnetoencephalography, we investigated the neurophysiological signature of not only motor but also memory aspects of spoken-word production. Participants named or judged pictures after reading sentences. To probe the involvement of the memory component, we manipulated sentence context. Sentence contexts were either constraining or nonconstraining toward the final word, presented as a picture. In the judgment task, participants indicated with a left-hand button press whether the picture was expected given the sentence. In the naming task, they named the picture. Naming and judgment were faster with constraining than nonconstraining contexts. Alpha-beta desynchronization was found for constraining relative to nonconstraining contexts pre-picture presentation. For the judgment task, beta desynchronization was observed in left posterior brain areas associated with conceptual processing and in right motor cortex. For the naming task, in addition to the same left posterior brain areas, beta desynchronization was found in left anterior and posterior temporal cortex (associated with memory aspects), left inferior frontal cortex, and bilateral ventral premotor cortex (associated with motor aspects). These results suggest that memory and motor components of spoken word production are reflected in overlapping brain oscillations in the beta band. © 2015 Wiley Periodicals, Inc.

  4. Brain aerobic glycolysis and motor adaptation learning

    Science.gov (United States)

    Shannon, Benjamin J.; Vaishnavi, Sanjeev Neil; Vlassenko, Andrei G.; Shimony, Joshua S.; Rutlin, Jerrel; Raichle, Marcus E.

    2016-01-01

    Ten percent to 15% of glucose used by the brain is metabolized nonoxidatively despite adequate tissue oxygenation, a process termed aerobic glycolysis (AG). Because of the known role of glycolysis in biosynthesis, we tested whether learning-induced synaptic plasticity would lead to regionally appropriate, learning-dependent changes in AG. Functional MRI (fMRI) before, during, and after performance of a visual–motor adaptation task demonstrated that left Brodmann area 44 (BA44) played a key role in adaptation, with learning-related changes to activity during the task and altered resting-state, functional connectivity after the task. PET scans before and after task performance indicated a sustained increase in AG in left BA 44 accompanied by decreased oxygen consumption. Intersubject variability in behavioral adaptation rate correlated strongly with changes in AG in this region, as well as functional connectivity, which is consistent with a role for AG in synaptic plasticity. PMID:27217563

  5. Localization of cortical primary motor area of the hand using navigated transcranial magnetic stimulation, BOLD and arterial spin labeling fMRI.

    Science.gov (United States)

    Kallioniemi, Elisa; Pitkänen, Minna; Könönen, Mervi; Vanninen, Ritva; Julkunen, Petro

    2016-11-01

    Although the relationship between neuronavigated transcranial magnetic stimulation (nTMS) and functional magnetic resonance imaging (fMRI) has been widely studied in motor mapping, it is unknown how the motor response type or the choice of motor task affect this relationship. Centers of gravity (CoGs) and response maxima were measured with blood-oxygen-level dependent (BOLD) and arterial spin labeling (ASL) fMRI during motor tasks against nTMS CoGs and response maxima, which were mapped with motor evoked potentials (MEPs) and silent periods (SPs). No differences in motor representations (CoGs and response maxima) were observed in lateral-medial direction (p=0.265). fMRI methods localized the motor representation more posterior than nTMS (pmotor task (p>0.999) nor nTMS response type (p>0.999). ASL fMRI maxima did not differ from the nTMS nor BOLD fMRI CoGs (p≥0.070), but the ASL CoG was deeper in comparison to other methods (p≤0.042). The BOLD fMRI motor task did not influence the depth of the motor representation (p≥0.745). The median Euclidean distances between the nTMS and fMRI motor representations varied between 7.7mm and 14.5mm and did not differ between the methods (F≤1.23, p≥0.318). The relationship between fMRI and nTMS mapped excitatory (MEP) and inhibitory (SP) responses, and whether the choice of motor task affects this relationship, have not been studied before. The congruence between fMRI and nTMS is good. The choice of nTMS motor response type nor BOLD fMRI motor task had no effect on this relationship. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Role of association cortices and cerebellum during motor consolidation process

    International Nuclear Information System (INIS)

    Nagata, Ken; Wright, David K.; Box, Georgia A.

    2008-01-01

    Positron emission tomography (PET) studies of cerebral circulation activated during the first (naive) and second (learned) visual-motor tasks were performed to confirm the hypothesis that activated brain regions are different before and after the motor work. Subjects were 30 normal healthy right-handed volunteers (av. age 21 y), who had the first 10 tasks of cursor tracing (regular tracing, rt), as rapidly and accurately as possible, along the given star features and then second 15 tasks of tracing with the cursor with inverse polarity (mirror tracing, mt). During the tasks, PET images were obtained at 7th and 9th rt, and 10 times (1st-15th) during mt, with the high-resolution positron camera (HEADTOME V) to measure the cerebral blood flow after intravenous 15 O-water and were processed into 3D for statistics. At the 1st mt (under the most unfamiliar condition), stimulated were the right frontal and supplementary motor areas and temporal lobe, bilateral centriciput lobe, anterior cingulated gyrus, and left cerebellum hemisphere. Under the learned condition (at 15th mt), the primary motor area, lingual gyrus, cuneus, anterior cuneus, occipital lobe involving posterior cingulated gyrus and left cerebellum hemisphere were activated. Thus the hypothesis above was confirmed: reconfirmation of the brain plasticity. (R.T.)

  7. An impact of tectonic structures on the groundwater circulation and losses from surface accumulation in the area of the left bank of Lazići dam on the Tara MTS

    Directory of Open Access Journals (Sweden)

    Jemcov Igor R.

    2017-01-01

    Full Text Available The process of water leakage determination in the area of water accumulation and left bank of the Lazići dam requires extensive application of different methods: very detailed monitoring data, tracing, structural and tectonic investigations, etc. Obtained results of water losses from the reservoir indicate a tendency for further increases. According to the applied analyses, two zones at the narrow zone of the grout curtain, characterized by different hydraulic mechanisms were detected. Additionally, the general direction of water leakage from the reservoir was detected. An important conclusion is that in such hydraulically intense conditions leakage is unstoppable, but can be partially controlled or slowed down.

  8. Symptom-specific amygdala hyperactivity modulates motor control network in conversion disorder

    Directory of Open Access Journals (Sweden)

    Thomas Hassa

    2017-01-01

    Full Text Available Initial historical accounts as well as recent data suggest that emotion processing is dysfunctional in conversion disorder patients and that this alteration may be the pathomechanistic neurocognitive basis for symptoms in conversion disorder. However, to date evidence of direct interaction of altered negative emotion processing with motor control networks in conversion disorder is still lacking. To specifically study the neural correlates of emotion processing interacting with motor networks we used a task combining emotional and sensorimotor stimuli both separately as well as simultaneously during functional magnetic resonance imaging in a well characterized group of 13 conversion disorder patients with functional hemiparesis and 19 demographically matched healthy controls. We performed voxelwise statistical parametrical mapping for a priori regions of interest within emotion processing and motor control networks. Psychophysiological interaction (PPI was used to test altered functional connectivity of emotion and motor control networks. Only during simultaneous emotional stimulation and passive movement of the affected hand patients displayed left amygdala hyperactivity. PPI revealed increased functional connectivity in patients between the left amygdala and the (pre-supplemental motor area and the subthalamic nucleus, key regions within the motor control network. These findings suggest a novel mechanistic direct link between dysregulated emotion processing and motor control circuitry in conversion disorder.

  9. Symptom-specific amygdala hyperactivity modulates motor control network in conversion disorder.

    Science.gov (United States)

    Hassa, Thomas; Sebastian, Alexandra; Liepert, Joachim; Weiller, Cornelius; Schmidt, Roger; Tüscher, Oliver

    2017-01-01

    Initial historical accounts as well as recent data suggest that emotion processing is dysfunctional in conversion disorder patients and that this alteration may be the pathomechanistic neurocognitive basis for symptoms in conversion disorder. However, to date evidence of direct interaction of altered negative emotion processing with motor control networks in conversion disorder is still lacking. To specifically study the neural correlates of emotion processing interacting with motor networks we used a task combining emotional and sensorimotor stimuli both separately as well as simultaneously during functional magnetic resonance imaging in a well characterized group of 13 conversion disorder patients with functional hemiparesis and 19 demographically matched healthy controls. We performed voxelwise statistical parametrical mapping for a priori regions of interest within emotion processing and motor control networks. Psychophysiological interaction (PPI) was used to test altered functional connectivity of emotion and motor control networks. Only during simultaneous emotional stimulation and passive movement of the affected hand patients displayed left amygdala hyperactivity. PPI revealed increased functional connectivity in patients between the left amygdala and the (pre-)supplemental motor area and the subthalamic nucleus, key regions within the motor control network. These findings suggest a novel mechanistic direct link between dysregulated emotion processing and motor control circuitry in conversion disorder.

  10. Libert-E Motor

    Science.gov (United States)

    Sieloff, Susan F.; Kinnunen, Raymond; Chevarley, Joseph

    2011-01-01

    Kei Yun Wong has big dreams. She has been entrusted with the United States launch of Libert-E Motor, a new line of Chinese-manufactured electric scooters. With only $750,000 of her original budget of $3 million left, she needs to make sure that the launch succeeds, as it represents the initial step in her desire to create the first Chinese global…

  11. Cerebral blood flow and metabolism in a patient with motor aphasia by positron emission tomography using 15O2 and C15O2

    International Nuclear Information System (INIS)

    Kitamura, Shin; Terashi, Akiro; Kato, Toshiaki; Soeda, Toshiyuki; Iio, Masaaki.

    1986-01-01

    Cerebral blood flow and metabolism, in a patient with motor aphasia due to cerebral infarction of the left basal ganglionic region, were studied by positron emission tomography (PET) using 15 O 2 and C 15 O 2 . A 62-year-old woman, right handed, was admitted with a complaint of right hemiparesis. Motor aphasia developed on the following day of hospitalization. CT scan showed low density area in the left caduate nucleus, putamen, internal capsule, and centrum semiovale, but the cortex was intact on the images of CT scan. PET studies were performed 22 days and 92 days after onset of stroke. The first PET study revealed marked reduction of CBF (cerebral blood flow) in the left cortex and subcortex, but CMRO 2 (cerebral oxygen consumption) was relatively preserved and OEF (oxygen extraction fraction) increased. The second PET study showed recovery of CBF in the left cortex and increase of OEF vanished. CMRO 2 decreased in the left posterior frontal region and subcortex. Motor aphasia still continued at the time of the second PET study. Therefore, the left posterior frontal cortex lesion as well as the left subcortex lesion might be related to the occurrence of motor aphasia in this case. The thresholds of CBF and CMRO 2 for developing clinical symptoms are higher than those for developing low density on the images of CT scan. These results suggest the importance of the study of cerebral blood flow and metabolism in the study of the responsible lesion for aphasia. (author)

  12. Repetitive transcranial magnetic stimulation of the supplementary motor area in treatment-resistant obsessive-compulsive disorder: An open-label pilot study.

    Science.gov (United States)

    Lee, Young-Ji; Koo, Bon-Hoon; Seo, Wan-Seok; Kim, Hye-Geum; Kim, Ji-Yean; Cheon, Eun-Jin

    2017-10-01

    Obsessive-compulsive disorder (OCD) is a severely distressing disorder represented by obsessions and compulsions. A significant proportion of OCD patients fail to improve with conventional treatment methods. Repetitive transcranial magnetic stimulation (rTMS) has been proposed as an alternative for OCD treatment. Functional neuroimaging studies indicate that OCD is associated with increased activity in the supplementary motor area (SMA), a region that plays an important role in the pathophysiology of this disorder. In this study, we assessed the efficacy of augmentation with 1Hz rTMS over the SMA in treatment-resistant OCD patients. The participants received 1Hz rTMS over the SMA in 20 daily sessions for 4weeks. We observed significant reduction in Yale-Brown Obsessive Compulsive Scale (Y-BOCS) score at the 4th week of the treatment. Reduction in compulsion contributed to the reduction of global Y-BOCS whereas there was no significant reduction in obsession. Clinical global impression-global improvement also showed significant change at the 2nd and 4th week of the treatment. No additional significant changes or significant adverse effects were seen. These findings suggest that 1Hz rTMS over the SMA can be an efficient and safe add-on therapeutic method in treatment-resistant patients with OCD. Further controlled studies in larger samples are required to confirm the effect of 1Hz rTMS over the SMA in OCD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Motor Neurons

    DEFF Research Database (Denmark)

    Hounsgaard, Jorn

    2017-01-01

    Motor neurons translate synaptic input from widely distributed premotor networks into patterns of action potentials that orchestrate motor unit force and motor behavior. Intercalated between the CNS and muscles, motor neurons add to and adjust the final motor command. The identity and functional...... properties of this facility in the path from synaptic sites to the motor axon is reviewed with emphasis on voltage sensitive ion channels and regulatory metabotropic transmitter pathways. The catalog of the intrinsic response properties, their underlying mechanisms, and regulation obtained from motoneurons...... in in vitro preparations is far from complete. Nevertheless, a foundation has been provided for pursuing functional significance of intrinsic response properties in motoneurons in vivo during motor behavior at levels from molecules to systems....

  14. Auditory stimulation by exposure to melodic music increases dopamine and serotonin activities in rat forebrain areas linked to reward and motor control.

    Science.gov (United States)

    Moraes, Michele M; Rabelo, Patrícia C R; Pinto, Valéria A; Pires, Washington; Wanner, Samuel P; Szawka, Raphael E; Soares, Danusa D

    2018-04-23

    Listening to melodic music is regarded as a non-pharmacological intervention that ameliorates various disease symptoms, likely by changing the activity of brain monoaminergic systems. Here, we investigated the effects of exposure to melodic music on the concentrations of dopamine (DA), serotonin (5-HT) and their respective metabolites in the caudate-putamen (CPu) and nucleus accumbens (NAcc), areas linked to reward and motor control. Male adult Wistar rats were randomly assigned to a control group or a group exposed to music. The music group was submitted to 8 music sessions [Mozart's sonata for two pianos (K. 488) at an average sound pressure of 65 dB]. The control rats were handled in the same way but were not exposed to music. Immediately after the last exposure or control session, the rats were euthanized, and their brains were quickly removed to analyze the concentrations of 5-HT, DA, 5-hydroxyindoleacetic acid (5-HIAA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in the CPu and NAcc. Auditory stimuli affected the monoaminergic system in these two brain structures. In the CPu, auditory stimuli increased the concentrations of DA and 5-HIAA but did not change the DOPAC or 5-HT levels. In the NAcc, music markedly increased the DOPAC/DA ratio, suggesting an increase in DA turnover. Our data indicate that auditory stimuli, such as exposure to melodic music, increase DA levels and the release of 5-HT in the CPu as well as DA turnover in the NAcc, suggesting that the music had a direct impact on monoamine activity in these brain areas. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Hemispheric prevalence during chewing in normal right-handed and left-handed subjects: a functional magnetic resonance imaging preliminary study.

    Science.gov (United States)

    Bracco, Pietro; Anastasi, Giuseppe; Piancino, Maria Grazia; Frongia, Gianluigi; Milardi, Demetrio; Favaloro, Angelo; Bramanti, Placido

    2010-04-01

    This study evaluated the activation of different cortical areas during nondeliberate chewing of soft and hard boluses in five right-handed and five left-handed subjects with normal occlusion, to determine different hemispheric prevalences. The study was conducted with a functional Magnetic Resonance Imaging (1.5 T Magnetom Vision - Siemens Medical, Germany) using a head coil. The results showed that the most frequently activated areas were Brodmann's areas four and six in the primary motor and premotor cortex, the insula and Broca's area and, overall, showed greater activity of the cortical mastication area (CMA) in the right hemisphere for right-handed and in the left hemisphere for left-handed subjects.

  16. Motor teams :

    Indian Academy of Sciences (India)

    Stochastic transitions between two species of motor yields Bidirectional motion. • Tuning of single-motor parameters. • No need to invoke a third “coordination complex”. Page 8. PNAS, 2009. 5.5 pN. 1.1 x 5 = 5.5 pN. Page 9. Kinesin motors have a problem working together. D istance (x) or. Force = Distance * K. TRAP ...

  17. Motor Starters

    Science.gov (United States)

    1986-01-01

    The power factor controller (PFC) was invented by a NASA engineer. It matches voltage with a motor's actual need by sensing shifts in the relationship between voltage and current flow. With the device, power can be trimmed as much as 65%. Intellinet adopted this technology and designed "soft start" and "load-responsive" control modes to start engines gradually and recycle voltage without reducing motor speed. Other features are lower motor heat and faster fault identification.

  18. The Specificity of Action Knowledge in Sensory and Motor Systems

    Directory of Open Access Journals (Sweden)

    Christine E Watson

    2014-05-01

    Full Text Available Neuroimaging studies have found that sensorimotor systems are engaged when participants observe actions or comprehend action language. However, most of these studies have asked the binary question of whether action concepts are embodied or not, rather than whether sensory and motor areas of the brain contain graded amounts of information during putative action simulations. To address this question, we used repetition suppression (RS functional magnetic resonance imaging to determine if functionally-localized motor movement and visual motion regions-of-interest (ROI and two anatomical ROIs (inferior frontal gyrus, IFG; left posterior middle temporal gyrus were sensitive to changes in the exemplar (e.g., two different people kicking or representational format (e.g., photograph or schematic drawing of someone kicking within pairs of action images. We also investigated whether concrete versus more symbolic depictions of actions (i.e., photographs versus schematic drawings yielded different patterns of activation throughout the brain. We found that during a conceptual task, sensory and motor systems represent actions at different levels of specificity. While the visual motion ROI did not exhibit RS to different exemplars of the same action or to the same action depicted by different formats, the motor movement ROI did. These effects are consistent with person-specific action simulations: if the motor system is recruited for action understanding, it does so by activating one’s own motor program for an action. We also observed significant repetition enhancement within the IFG ROI to different exemplars or formats of the same action, a result that may indicate additional cognitive processing on these trials. Finally, we found that the recruitment of posterior brain regions by action concepts depends on the format of the input: left lateral occipital cortex and right supramarginal gyrus responded more strongly to symbolic depictions of actions than

  19. [Research on child neglect situation and influential factors of left-behind children and living-with-parents children aged 6-17 year-old in rural areas of two provinces, western China].

    Science.gov (United States)

    Zhong, Yin; Zhong, Zhaohui; Pan, Jianping; Li, Qunying; Zhong, Yun; Sun, Haoling

    2015-10-01

    To investigate the situation and the influential factors of child neglect between left-behind children and living-with-parents children aged 6-17 years in the rural areas in western China. Students were randomly selected according to the principle of multi-stage stratified cluster sampling and they were from three cities in Shanxi and four districts in Chongqing. Among the 4,131 children, there were 1,874 students in the 6-11 years group and the left-behind children accounted for 50.21% (941/1,874) in this group. There were 2,257 students in the 12-17 years old group and the left-behind children accounted for 53.35% (1,204/2,257) in this group. The questionnaire named "Evaluation on Neglect for Elementary and Secondary School Students Aged 6-17 Years in Rural Areas in China" was used in the field investigation. The students' neglect frequency was described by neglect rate and the factors affecting students' neglect were analyzed by means of binary logistic regression. In the 6-11 years old group, the neglect rates of left-behind children and living-with-parents children were 63.03% (474/752) and 43.87% (347/791), respectively (χ2=58.86, Pchildren and living-with-parents children were 60.64% (627/1 034) and 53.57% (495/924), respectively (χ2=9.96, Pchildren, compared to the factors about boys, younger mother (≤40 years old), presence of parents' income reduction within the last year and nuclear family, the factors about girls, elder mother (41-49 years), absence of parents' income reduction within the last year and three-generation family or single-parent family were associated with lower neglect risk, and OR values were 0.67, 0.68, 0.70, 0.73, and 0.43 (Pchildren, the factors about other nationalities, non-only child, no separate room at home, and non-resident children were associated with high neglect risk, and OR values were 1.85, 1.34, 1.46, and 1.32 (Pchildren and parents as well as good relationship between parents, fair or poor relationship was associated

  20. Structural and resting state functional connectivity of the subthalamic nucleus: identification of motor STN parts and the hyperdirect pathway.

    Directory of Open Access Journals (Sweden)

    Ellen J L Brunenberg

    Full Text Available Deep brain stimulation (DBS for Parkinson's disease often alleviates the motor symptoms, but causes cognitive and emotional side effects in a substantial number of cases. Identification of the motor part of the subthalamic nucleus (STN as part of the presurgical workup could minimize these adverse effects. In this study, we assessed the STN's connectivity to motor, associative, and limbic brain areas, based on structural and functional connectivity analysis of volunteer data. For the structural connectivity, we used streamline counts derived from HARDI fiber tracking. The resulting tracks supported the existence of the so-called "hyperdirect" pathway in humans. Furthermore, we determined the connectivity of each STN voxel with the motor cortical areas. Functional connectivity was calculated based on functional MRI, as the correlation of the signal within a given brain voxel with the signal in the STN. Also, the signal per STN voxel was explained in terms of the correlation with motor or limbic brain seed ROI areas. Both right and left STN ROIs appeared to be structurally and functionally connected to brain areas that are part of the motor, associative, and limbic circuit. Furthermore, this study enabled us to assess the level of segregation of the STN motor part, which is relevant for the planning of STN DBS procedures.

  1. Teaching about operation of brushless DC motors

    OpenAIRE

    Čufar, Aleksandra

    2013-01-01

    Brush DC motor is being replaced by brushless DC motors on every area of application. My diploma thesis is a presentation of brushless DC motor, how it works and its application. Within first part we describe various electric motors and their application. There are several types of electric motors division. Last to be added is a brushless motor. Within second part of thesis we look into a brushless DC motor, how it works, its application and control. In the third part of thesis we construct a...

  2. Abnormal Gray Matter Shape, Thickness, and Volume in the Motor Cortico-Subcortical Loop in Idiopathic Rapid Eye Movement Sleep Behavior Disorder: Association with Clinical and Motor Features.

    Science.gov (United States)

    Rahayel, Shady; Postuma, Ronald B; Montplaisir, Jacques; Bedetti, Christophe; Brambati, Simona; Carrier, Julie; Monchi, Oury; Bourgouin, Pierre-Alexandre; Gaubert, Malo; Gagnon, Jean-François

    2018-02-01

    Idiopathic rapid eye movement sleep behavior disorder (iRBD) is a major risk factor for Parkinson's disease and dementia with Lewy bodies. Anatomical gray matter abnormalities in the motor cortico-subcortical loop areas remain under studied in iRBD patients. We acquired T1-weighted images and administrated quantitative motor tasks in 41 patients with polysomnography-confirmed iRBD and 41 healthy subjects. Cortical thickness and voxel-based morphometry (VBM) analyses were performed to investigate local cortical thickness and gray matter volume changes, vertex-based shape analysis to investigate shape of subcortical structures, and structure-based volumetric analyses to investigate volumes of subcortical and brainstem structures. Cortical thickness analysis revealed thinning in iRBD patients in bilateral medial superior frontal, orbitofrontal, anterior cingulate cortices, and the right dorsolateral primary motor cortex. VBM results showed lower gray matter volume in iRBD patients in the frontal lobes, anterior cingulate gyri, and caudate nucleus. Shape analysis revealed extensive surface contraction in the external and internal segments of the left pallidum. Clinical and motor impaired features in iRBD were associated with anomalies of the motor cortico-subcortical loop. In summary, iRBD patients showed numerous gray matter structural abnormalities in the motor cortico-subcortical loop, which are associated with lower motor performance and clinical manifestations of iRBD. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Motor teams :

    Indian Academy of Sciences (India)

    . Switch. Welte et al, 1998, Gross et al, 2002. Motion of Lipid droplets in Drosophila embryos. Page 7. • Stochastic transitions between two species of motor yields Bidirectional motion. • Tuning of single-motor parameters. • No need to invoke a ...

  4. Hand grips strength effect on motor function in human brain using fMRI: a pilot study

    International Nuclear Information System (INIS)

    Ismail, S S; Mohamad, M; Syazarina, S O; Nafisah, W Y

    2014-01-01

    Several methods of motor tasks for fMRI scanning have been evolving from simple to more complex tasks. Motor tasks on upper extremity were applied in order to excite the increscent of motor activation on contralesional and ipsilateral hemispheres in brain. The main objective of this study is to study the different conditions for motor tasks on upper extremity that affected the brain activation. Ten healthy right handed with normal vision (3 male and 7 female, age range=20-30 years, mean=24.6 years, SD=2.21) participated in this study. Prior to the scanning, participants were trained on hand grip tasks using rubber ball and pressure gauge tool outside the scanner. During fMRI session, a block design with 30-s task blocks and alternating 30-s rest periods was employed while participants viewed a computer screen via a back projection-mirror system and instructed to follow the instruction by gripping their hand with normal and strong grips using a rubber ball. Statistical Parametric mapping (SPM8) software was used to determine the brain activation. Both tasks activated the primary motor (M1), supplementary motor area (SMA), dorsal and ventral of premotor cortex area (PMA) in left hemisphere while in right hemisphere the area of primary motor (M1) somatosensory was activated. However, the comparison between both tasks revealed that the strong hand grip showed the higher activation at M1, PMA and SMA on left hemisphere and also the area of SMA on right hemisphere. Both conditions of motor tasks could provide insights the functional organization on human brain

  5. Hand grips strength effect on motor function in human brain using fMRI: a pilot study

    Science.gov (United States)

    Ismail, S. S.; Mohamad, M.; Syazarina, S. O.; Nafisah, W. Y.

    2014-11-01

    Several methods of motor tasks for fMRI scanning have been evolving from simple to more complex tasks. Motor tasks on upper extremity were applied in order to excite the increscent of motor activation on contralesional and ipsilateral hemispheres in brain. The main objective of this study is to study the different conditions for motor tasks on upper extremity that affected the brain activation. Ten healthy right handed with normal vision (3 male and 7 female, age range=20-30 years, mean=24.6 years, SD=2.21) participated in this study. Prior to the scanning, participants were trained on hand grip tasks using rubber ball and pressure gauge tool outside the scanner. During fMRI session, a block design with 30-s task blocks and alternating 30-s rest periods was employed while participants viewed a computer screen via a back projection-mirror system and instructed to follow the instruction by gripping their hand with normal and strong grips using a rubber ball. Statistical Parametric mapping (SPM8) software was used to determine the brain activation. Both tasks activated the primary motor (M1), supplementary motor area (SMA), dorsal and ventral of premotor cortex area (PMA) in left hemisphere while in right hemisphere the area of primary motor (M1) somatosensory was activated. However, the comparison between both tasks revealed that the strong hand grip showed the higher activation at M1, PMA and SMA on left hemisphere and also the area of SMA on right hemisphere. Both conditions of motor tasks could provide insights the functional organization on human brain.

  6. Health allowance for improving the nutritional status and development of 3-5-year-old left-behind children in poor rural areas of China: study protocol for a cluster randomised trial.

    Science.gov (United States)

    Lin, Qian; Adab, Peymané; Hemming, Karla; Yang, Lina; Qin, Hong; Li, Mingzhi; Deng, Jing; Shi, Jingcheng; Chen, Jihua

    2015-08-18

    Left-behind children (LBC) are recognised as a new social group in China. LBC are young children who are abandoned in rural villages whilst their parents travel to distant urban centres for employment (a new generation of migrant workers). Following the rapid growth in the number of migrant workers, the LBC population is also rapidly increasing. These children are usually left to be raised by elderly grandparents, a single parent, or sometimes distant relatives or neighbours who have limited resources, tend to have a poor education and sometimes are in frail health. Over 40 % of the 61 million LBC in China who are under 5 years old are undernourished, which affects their long-term health and abilities. An intervention that combines a conditional cash transfer (CCT) with nutrition education offers a potential solution. A cluster randomised controlled trial design will be used to allocate 40 villages to the intervention arm (20 villages) or control arm (20 villages). The caregivers and all of the 3-5-year-old LBC will be the target population. Caregivers in the intervention arm will receive a cash allowance conditional on attending nutrition education sessions, ensuring that the LBC will use basic public health services over a 12-month period. At the baseline, midterm (month 6) and end (month 12) of the intervention period, evaluations will be conducted in all 40 villages. Multilevel generalised linear models will be used to analyse the impact of the intervention on nutrition status and other outcomes, adjusting for baseline levels using an analysis of covariance approach. The cost of the intervention will also be estimated. If found to be cost-effective, the findings will inform the development of a sustainable model to improve nutrition status among LBC in rural areas of China. Chinese Trial Register (ChiCTR) identifier: CTXY-140003-2 . Registered on 19 Aug 2014.

  7. Areas of Active Tectonic Uplift Are Sensitive to Small Changes in Fold Orientations within a Broad Zone of Left-lateral Transpression and Shearing, Dominican Republic and Haiti (Hispaniola)

    Science.gov (United States)

    Ambrosius, I.; Mann, P.

    2014-12-01

    Previous GPS studies have shown that the island of Hispaniola is a 250 km-wide zone of active, east-west, left-lateral shearing along two major strike-slip zones: the Septentrional-Oriente fault zone through the northern part of the island and the Enriquillo-Plantain Garden fault zone (EPGFZ) through the southern part of the island. The total interplate rate distributed on both faults is 21 mm/yr. Using a high-resolution DEM, we constructed fluvial channel profiles across transpression-related folds of late Miocene to recent age in the area of central and southern Dominican Republic and Haiti to determine controls of areas of relatively high, moderate, and slow uplift inferred from fluvial channel profiles. Fold axes in this area extend for 50-150 km and exhibit two different trends: 1) folds that occupy the area of the Sierra de Neiba-Chaine des Matheux north of the Enriquillo-Cul-de-Sac Valley and EPGFZ and folds that occupy the area of the Sierra de Bahoruco-Massif de la Selle all exhibit more east-west fold axes trending 110; 2) folds that occupy the area northwest of the EPGFZ in the western Chaine des Matheux and Sierra de Neiba all exhibit fold axes with more northwest trends of 125. River channel profiles show that the second group of more northwesterly-trending fold axes show relatively higher rates of tectonic uplift based on their convex-upward river profiles. Our interpretation for regional variations in river profiles and inferred uplift is that uplift is more pronounced on fold axes trending 15 degrees more to the northwest because their axes are more oblique to the interplate direction of east-west shearing. Longterm uplift rates previously measured from a stairstep of late Quaternary coral terraces at the plunging nose of the westernmost Chaine des Matheux have been previously shown to be occurring at a rate of 0.19 mm/yr. Onland exposures of Holocene corals are found only on one locality within the southern area of folds 30 km west of the epicenter

  8. Examining the neural correlates of depressive and motor symptoms in Parkinson's disease using Frequency Component Analysis (FCA)

    Science.gov (United States)

    Song, Xiaopeng; Hu, Xiao; Zhou, Shuqin; Liu, Weiguo; Liu, Yijun; Zhu, Huaiqiu; Gao, Jia-Hong

    2016-03-01

    Depression is prevalent among patients with Parkinson's disease (PD); however the pathophysiology of depression in PD is not well understood. In order to investigate how depression and motor impairments differentially and interactively affect specific brain regions in Parkinson's disease, we introduced a new data driven approach, namely Frequency Component Analysis (FCA), to decompose the resting-state functional magnetic resonance imaging data of 59 subjects with Parkinson's disease into different frequency bands. We then evaluated the main effects of motor severity and depression, and their interactive effects on the BOLD-fMRI signal oscillation energy in these specific frequency components. Our results show that the severity of motor symptoms is more negatively correlated with energy in the frequency band of 0.10-0.25Hz in the bilateral thalamus (THA), but more positively correlated with energy in the frequency band of 0.01-0.027Hz in the bilateral postcentral gyrus (PoCG). In contrast, the severity of depressive symptoms is more associated with the higher energy of the high frequency oscillations (>0.1Hz) but lower energy of 0.01-0.027Hz in the bilateral subgenual gyrus (SGC). Importantly, the interaction between motor and depressive symptoms is negatively correlated with the energy of high frequency oscillations (>0.1Hz) in the substantia nigra/ventral tegmental area (SN/VTA), left hippocampus (HIPP), left inferior orbital frontal cortex (OFC), and left temporoparietal junction (TPJ), but positively correlated with the energy of 0.02-0.05Hz in the left inferior OFC, left TPJ, left inferior temporal gyrus (ITG), and bilateral cerebellum. These results demonstrated that FCA was a promising method in interrogating the neurophysiological implications of different brain rhythms. Our findings further revealed the neural bases underlying the interactions as well the dissociations between motor and depressive symptoms in Parkinson's disease.

  9. Causal Role of Motor Simulation in Turn-Taking Behavior.

    Science.gov (United States)

    Hadley, Lauren V; Novembre, Giacomo; Keller, Peter E; Pickering, Martin J

    2015-12-16

    Overlap between sensory and motor representations has been documented for a range of human actions, from grasping (Rizzolatti et al., 1996b) to playing a musical instrument (Novembre and Keller, 2014). Such overlap suggests that individuals use motor simulation to predict the outcome of observed actions (Wolpert, 1997). Here we investigate motor simulation as a basis of human communication. Using a musical turn-taking task, we show that pianists call on motor representations of their partner's part to predict when to come in for their own turn. Pianists played alternating solos with a videoed partner, and double-pulse transcranial magnetic stimulation was applied around the turn-switch to temporarily disrupt processing in two cortical regions implicated previously in different forms of motor simulation: (1) the dorsal premotor cortex (dPMC), associated with automatic motor resonance during passive observation of hand actions, especially when the actions are familiar (Lahav et al., 2007); and (2) the supplementary motor area (SMA), involved in active motor imagery, especially when the actions are familiar (Baumann et al., 2007). Stimulation of the right dPMC decreased the temporal accuracy of pianists' (right-hand) entries relative to sham when the partner's (left-hand) part had been rehearsed previously. This effect did not occur for dPMC stimulation without rehearsal or for SMA stimulation. These findings support the role of the dPMC in predicting the time course of observed actions via resonance-based motor simulation during turn-taking. Because turn-taking spans multiple modes of human interaction, we suggest that simulation is a foundational mechanism underlying the temporal dynamics of joint action. Even during passive observation, seeing or hearing somebody execute an action from within our repertoire activates motor cortices of our brain. But what is the functional relevance of such "motor simulation"? By combining a musical duet task with a real

  10. Application of stepping motor

    International Nuclear Information System (INIS)

    1980-10-01

    This book is divided into three parts, which is about practical using of stepping motor. The first part has six chapters. The contents of the first part are about stepping motor, classification of stepping motor, basic theory og stepping motor, characteristic and basic words, types and characteristic of stepping motor in hybrid type and basic control of stepping motor. The second part deals with application of stepping motor with hardware of stepping motor control, stepping motor control by microcomputer and software of stepping motor control. The last part mentions choice of stepping motor system, examples of stepping motor, measurement of stepping motor and practical cases of application of stepping motor.

  11. Inducing homeostatic-like plasticity in human motor cortex through converging corticocortical inputs

    DEFF Research Database (Denmark)

    Pötter-Nerger, Monika; Fischer, Sarah; Mastroeni, Claudia

    2009-01-01

    Transcranial stimulation techniques have revealed homeostatic-like metaplasticity in the hand area of the human primary motor cortex (M1(HAND)) that controls stimulation-induced changes in corticospinal excitability. Here we combined two interventional protocols that induce long-term depression......TMS) of the left dorsal premotor cortex (PMD) was first applied to produce an LTP-like increase (5 Hz rTMS) or LTD-like decrease (1 Hz rTMS) in corticospinal excitability in left M1(HAND) via premotor-to-motor inputs. Following PMD rTMS, paired-associative stimulation (PAS) was applied to the right median nerve...... and left M1(HAND) to induce spike-time-dependent plasticity in sensory-to-motor inputs to left M1(HAND). We adjusted the interstimulus interval to the N20 latency of the median nerve somatosensory-evoked cortical potential to produce an LTP-like increase (PAS(N20+2ms)) or an LTD-like decrease (PAS(N20-5ms...

  12. Changes in Cerebral Hemodynamics during Complex Motor Learning by Character Entry into Touch-Screen Terminals.

    Directory of Open Access Journals (Sweden)

    Akira Sagari

    Full Text Available Studies of cerebral hemodynamics during motor learning have mostly focused on neurorehabilitation interventions and their effectiveness. However, only a few imaging studies of motor learning and the underlying complex cognitive processes have been performed.We measured cerebral hemodynamics using near-infrared spectroscopy (NIRS in relation to acquisition patterns of motor skills in healthy subjects using character entry into a touch-screen terminal. Twenty healthy, right-handed subjects who had no previous experience with character entry using a touch-screen terminal participated in this study. They were asked to enter the characters of a randomly formed Japanese syllabary into the touch-screen terminal. All subjects performed the task with their right thumb for 15 s alternating with 25 s of rest for 30 repetitions. Performance was calculated by subtracting the number of incorrect answers from the number of correct answers, and gains in motor skills were evaluated according to the changes in performance across cycles. Behavioral and oxygenated hemoglobin concentration changes across task cycles were analyzed using Spearman's rank correlations.Performance correlated positively with task cycle, thus confirming motor learning. Hemodynamic activation over the left sensorimotor cortex (SMC showed a positive correlation with task cycle, whereas activations over the right prefrontal cortex (PFC and supplementary motor area (SMA showed negative correlations.We suggest that increases in finger momentum with motor learning are reflected in the activity of the left SMC. We further speculate that the right PFC and SMA were activated during the early phases of motor learning, and that this activity was attenuated with learning progress.

  13. Left atrial volume index

    DEFF Research Database (Denmark)

    Poulsen, Mikael K; Dahl, Jordi S; Henriksen, Jan Erik

    2013-01-01

    To determine the prognostic importance of left atrial (LA) dilatation in patients with type 2 diabetes (T2DM) and no history of cardiovascular disease.......To determine the prognostic importance of left atrial (LA) dilatation in patients with type 2 diabetes (T2DM) and no history of cardiovascular disease....

  14. What is left behind when the lights go off? Comparing the abundance and composition of litter in urban areas with different intensity of nightlife use in Mar del Plata, Argentina.

    Science.gov (United States)

    Becherucci, Maria Eugenia; Seco Pon, Juan Pablo

    2014-08-01

    Nightlife activities represents an important source of urban litter; the latter often being left behind or abandoned in public places and streets. Mar del Plata is a very important city on the Atlantic coast of Argentina and is the main tourism destination in the South Atlantic region of South America. However, few studies on urban litter related to nightlife activities have been conducted in the area. Here we assessed (i) the abundance and composition of litter, and (ii) the spatial and temporal variations of its abundance, diversity, richness and evenness in urbanized areas with different intensity of nightlife activities from April 2008 to March 2009. An overall of 13,503 items were counted. Around 92% of the total litter was comprised by cigarette butts, papers and plastics. We found significant spatial differences in the abundance of litter between sampling sites, with the greatest amounts of litter at the Alem site followed by the Hipólito site (both with an intensive nightlife activity) compared with the Chauvin site (a quiet high-income neighborhood). The composition of litter of the Alem and the Hipólito sites was relatively similar and both sites differ with respect to the Chauvin site. Cigarette butts, papers, and plastics were the items that contributed most to the dissimilarity between sampling sites. The diversity of litter was the single community parameter that significantly differed from the other seasons. We discussed the potential effect of nightlife activities on the amounts and quality of urban litter in the city of Mar del Plata. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. fMRI assessment of neuroplasticity in youths with neurodevelopmental-associated motor disorders after piano training.

    Science.gov (United States)

    Alves-Pinto, Ana; Turova, Varvara; Blumenstein, Tobias; Thienel, Anna; Wohlschläger, Afra; Lampe, Renée

    2015-01-01

    Damage to the developing brain may lead to lifelong motor impairments namely of the hand function. Playing an instrument combines the execution of gross and fine motor movements with direct auditory feedback of performance and with emotional value. This motor-associated sensory information may work as a self-control of motor performance in therapeutic settings. The current study examined the occurrence of neuronal changes associated to piano training in youths with neurodevelopmental-associated hand motor deficits. Functional magnetic resonance imaging responses evoked during a finger tapping task in a group of ten youths with neuromotor impairments that received individualized piano lessons for eighteen months were analyzed. Functional imaging data obtained before and after the piano training was compared to that obtained from a similar group of six youths who received no training during the same period of time. Dynamic causal modeling of functional data indicated an increase in positive connectivity from the left primary motor cortical area to the right cerebellum from before to after the piano training. A wide variability across patients was observed and further studies remain necessary to clarify the neurophysiological basis of the effects of piano training in hand motor function of patients with neurodevelopmental motor disorders. Copyright © 2014 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  16. MOTORIZATION IN ASIA

    Directory of Open Access Journals (Sweden)

    Metin SENBIL

    2007-01-01

    Full Text Available Motorization in terms of passenger cars in 14 Asian countries and passenger cars and motorcycles in three metropolitan areas are analyzed in this study. Using country-based data which cover 20 years (1980–2000, a linear regression is conducted by panel estimation with random and fixed effects. As a result from the model, fixed income elasticity for the region was found to be 1.75. Fixed effect estimated separately for each country characterizes the motorization pace in the countries. Two groups of countries were detected with a significant difference in motorization paces—Sri Lanka, India, Nepal, Philippines, Pakistan, Indonesia and Thailand have motorization paces higher than the rest of the countries. Additionally, using a cross-sectional data household car and motorcycle ownerships were analyzed for three metropolitan areas characterizing South-East Asia that are Jabotabek (Indonesia, Kuala Lumpur (Malaysia and Manila (Philippines metropolitan areas. Results indicate that ownership of cars and motorcycles are independent of each other in Jabotabek and Manila, but negatively correlated in Kuala Lumpur; and generally, income is more influential on car ownership than motorcycle ownership.

  17. Why the Left Hemisphere Is Dominant for Speech Production: Connecting the Dots

    Directory of Open Access Journals (Sweden)

    Harvey Martin Sussman

    2015-12-01

    Full Text Available Evidence from seemingly disparate areas of speech/language research is reviewed to form a unified theoretical account for why the left hemisphere is specialized for speech production. Research findings from studies investigating hemispheric lateralization of infant babbling, the primacy of the syllable in phonological structure, rhyming performance in split-brain patients, rhyming ability and phonetic categorization in children diagnosed with developmental apraxia of speech, rules governing exchange errors in spoonerisms, organizational principles of neocortical control of learned motor behaviors, and multi-electrode recordings of human neuronal responses to speech sounds are described and common threads highlighted. It is suggested that the emergence, in developmental neurogenesis, of a hard-wired, syllabically-organized, neural substrate representing the phonemic sound elements of one’s language, particularly the vocalic nucleus, is the crucial factor underlying the left hemisphere’s dominance for speech production.

  18. Motor Recovery of the Affected Hand in Subacute Stroke Correlates with Changes of Contralesional Cortical Hand Motor Representation

    Directory of Open Access Journals (Sweden)

    Jitka Veldema

    2017-01-01

    Full Text Available Objective. To investigate the relationship between changes of cortical hand motor representation and motor recovery of the affected hand in subacute stroke. Methods. 17 patients with motor impairment of the affected hand were enrolled in an in-patient neurological rehabilitation program. Hand motor function tests (Wolf Motor Function Test, Action Research Arm Test and neurophysiological evaluations (resting motor threshold, motor evoked potentials, motor map area size, motor map area volume, and motor map area location were obtained from both hands and hemispheres at baseline and two, four, and six weeks of in-patient rehabilitation. Results. There was a wide spectrum of hand motor impairment at baseline and hand motor recovery over time. Hand motor function and recovery correlated significantly with (i reduction of cortical excitability, (ii reduction in size and volume of cortical hand motor representation, and (iii a medial and anterior shift of the center of gravity of cortical hand motor representation within the contralesional hemisphere. Conclusion. Recovery of motor function of the affected hand after stroke is accompanied by definite changes in excitability, size, volume, and location of hand motor representation over the contralesional primary motor cortex. These measures may serve as surrogate markers for the outcome of hand motor rehabilitation after stroke.

  19. Induction of motor associative plasticity in the posterior parietal cortex-primary motor network

    DEFF Research Database (Denmark)

    Chao, Chi-Chao; Karabanov, Anke Ninija; Paine, Rainer

    2015-01-01

    There is anatomical and functional connectivity between the primary motor cortex (M1) and posterior parietal cortex (PPC) that plays a role in sensorimotor integration. In this study, we applied corticocortical paired-associative stimuli to ipsilateral PPC and M1 (parietal ccPAS) in healthy right...... the excitability of conditioned left M1 assessed by motor evoked potentials (MEPs) and the input–output curve. Motor behavior assessed by the Purdue pegboard task was unchanged compared with controls. At baseline, conditioning stimuli over the left PPC potentiated MEPs from left M1 when ISI was 8 ms...... excitability and PPC–M1 connectivity and is a new approach to modify motor excitability and sensorimotor interaction....

  20. Left heart catheterization

    Science.gov (United States)

    Catheterization - left heart ... to help guide the catheters up into your heart and arteries. Dye (sometimes called "contrast") will be ... in the blood vessels that lead to your heart. The catheter is then moved through the aortic ...

  1. Contribution of the primary motor cortex to motor imagery: a subthreshold TMS study.

    Science.gov (United States)

    Pelgrims, Barbara; Michaux, Nicolas; Olivier, Etienne; Andres, Michael

    2011-09-01

    Motor imagery (MI) mostly activates the same brain regions as movement execution (ME) including the primary motor cortex (Brodmann area 4, BA4). However, whether BA4 is functionally relevant for MI remains controversial. The finding that MI tasks are impaired by BA4 virtual lesions induced by transcranial magnetic stimulation (TMS) supports this view, though previous studies do not permit to exclude that BA4 is also involved in other processes such as hand recognition. Additionally, previous works largely underestimated the possible negative consequences of TMS-induced muscle twitches on MI task performance. Here we investigated the role of BA4 in MI by interfering with the function of the left or right BA4 in healthy subjects performing a MI task in which they had to make laterality judgements on rotated hand drawings. We used a subthreshold repetitive TMS protocol and monitored electromyographic activity to exclude undesirable effects of hand muscle twitches. We found that BA4 virtual lesions selectively increased reaction times in laterality judgments on hand drawings, leaving unaffected a task of equal difficulty, involving judgments on letters. Interestingly, the effects of virtual lesions of left and right BA4 on MI task performance were the same irrespective of the laterality (left/right) of hand drawings. A second experiment allowed us to rule out the possibility that BA4 lesions affect visual or semantic processing of hand drawings. Altogether, these results indicate that BA4 contribution to MI tasks is specifically related to the mental simulation process and further emphasize the functional coupling between ME and MI. Copyright © 2010 Wiley-Liss, Inc.

  2. Assessment of left and right ventricular parameters in healthy Korean volunteers using cardiac magnetic resonance imaging: change in ventricular volume and function based on age, gender and body surface area.

    Science.gov (United States)

    Chang, Sung-A; Choe, Yeon Hyeon; Jang, Shin Yi; Kim, Sung Mok; Lee, Sang-Chol; Oh, Jae K

    2012-12-01

    The clinical utility of cardiac magnetic resonance imaging (CMR) is growing and is being used predominantly as a means of measuring ventricular function. The normal reference range of ventricular function may vary based on age, sex and ethnicity. At present, most CMR reference values for healthy individuals have been reported from Western countries. The intent of this study was to investigate the normal CMR reference range for left ventricular (LV) and right ventricular (RV) parameters in healthy Koreans. Healthy volunteers between the ages of 20-70 years without any history of cardiovascular disease or associated risk factors were prospectively recruited to be a part of this study. A total of 124 patients were recruited for this study. Steady-state free precession pulse sequences were used to obtain the cine images for LV and RV volume analysis. All parameters were analyzed based on age and gender, and normalized to body surface area (BSA). LV volume, mass and cardiac output were significantly greater in males than in females. However, all of these parameters which are associated with BSA and gender differences disappeared when corrected for BSA. RV volume was less in females even after the data was normalized for BSA. LV and RV volumes normalized for BSA gradually decreased with greater age, whereas the ejection fraction increased with age, thus maintaining the stroke volume index and cardiac index. LV and RV volumes, mass and function values for a healthy population largely depend on BSA and should be evaluated after normalization by BSA. LV parameters show no difference based on gender, but RV volume is less in the female. Greater age is associated with less ventricular volume, suggesting the possibility of volume sensitivity in the elderly.

  3. Right to Left Ventricular Diameter Ratio ≥0.42 is the Warning Flag for Suspecting Atrial Septal Defect in Preschool Children: Age- and Body Surface Area-Related Reference Values Determined by M-Mode Echocardiography.

    Science.gov (United States)

    Hashimoto, Ikuo; Watanabe, Kazuhiro; Ichida, Fukiko

    2016-04-01

    It is not always easy to observe and screen atrial septal defects (ASD) using echocardiography. In addition, there are no established echocardiographic reference indices for screening patients with ASDs. We retrospectively reviewed our database and recruited 151 isolated ASD patients and 2769 healthy subjects. In total, 307 echocardiographic studies were performed for ASD patients. Surgical repairs were done in 75 of the ASD patients. The ratio of right to left ventricular end-diastolic dimensions (RVD/LVD), which was determined by M-mode echocardiography, was used as an index of RV dilatation. After obtaining age- and body surface area (BSA)-related RVD/LVD nomograms in healthy subjects, we calculated the z-scores of RVD/LVD for all subjects and obtained the optimal cut-off values to differentiate patients with ASD from healthy subjects. The optimal cut-off values were high in neonates and gradually decreased with an increase in the age and BSA, but were almost constant in children aged >4 years or whose BSA was >0.65 m(2). The cut-off values of RVD/LVD for suspected ASD were ≥0.42 in children aged >4 years or those whose BSA was >0.65 m(2). Those for an ASD operation were ≥0.46 in those whose BSA > 0.65 m(2). The RVD/LVD determined by M-mode echocardiography is a useful index to evaluate RV dilatation in patients with ASDs. The RVD/LVD ≥ 0.42 is the warning flag for suspecting ASD in preschool children and that ≥0.46 may be a clinical important sign to determine ASD operation.

  4. THE MOTOR

    DEFF Research Database (Denmark)

    Gammelgaard Nielsen, Anders

    2011-01-01

    MOTOR is the first assignment that students at Unit 1a of the School of Architecture are introduced to. The purpose of the assignment is to shake up the students and their preconceptions of what architec- ture is. This is done by introducing them to a working method that al- lows them to develop ...

  5. THE MOTOR

    DEFF Research Database (Denmark)

    Gammelgaard Nielsen, Anders

    2011-01-01

    MOTOR is the first assignment that students at Unit 1a of the School of Architecture are introduced to. The purpose of the assignment is to shake up the students and their preconceptions of what architec- ture is. This is done by introducing them to a working method that al- lows them to develop...

  6. Motor learning.

    Science.gov (United States)

    Wolpert, Daniel M; Flanagan, J Randall

    2010-06-08

    Although learning a motor skill, such as a tennis stroke, feels like a unitary experience, researchers who study motor control and learning break the processes involved into a number of interacting components. These components can be organized into four main groups. First, skilled performance requires the effective and efficient gathering of sensory information, such as deciding where and when to direct one's gaze around the court, and thus an important component of skill acquisition involves learning how best to extract task-relevant information. Second, the performer must learn key features of the task such as the geometry and mechanics of the tennis racket and ball, the properties of the court surface, and how the wind affects the ball's flight. Third, the player needs to set up different classes of control that include predictive and reactive control mechanisms that generate appropriate motor commands to achieve the task goals, as well as compliance control that specifies, for example, the stiffness with which the arm holds the racket. Finally, the successful performer can learn higher-level skills such as anticipating and countering the opponent's strategy and making effective decisions about shot selection. In this Primer we shall consider these components of motor learning using as an example how we learn to play tennis. 2010 Elsevier Ltd. All rights reserved.

  7. Energy, Pollutant Emissions and Other Negative Externality Savings from Curbing Individual Motorized Transportation (IMT: A Low Cost, Low Technology Scenario Analysis in Brazilian Urban Areas

    Directory of Open Access Journals (Sweden)

    Ursula Maruyama

    2012-03-01

    Full Text Available This article examines the inefficient use of resources in the Brazilian transportation system. The energy use growth and external cost generation in this essential economic sector are considerable, and the trend is towards an increasing problem in the coming years. The continued expansion of Brazilian cities and the increase in demand for mobility is a result of a substantial growth in the number of road transport users, as increased earnings enable lower income groups to acquire and use individual motorized means of transport. The aim of this paper is to estimate the potential gains from reducing individual motorized transport by the year 2020. This investigation concludes that in a conservationist scenario, by prioritizing low cost, low technology public policies—which include operation of Bus Rapid Transit systems, walking and cycling facilities and congestion charges, among others—it should be possible to save over USD 30 billion and USD 26 billion in external transportation and infrastructure costs, respectively, up to 2020. In addition, these public policies can save more than 35 million Tons of Oil Equivalents in energy consumption and avoid almost 4,000 thousand tons of local pollution emissions and 37,500 thousand tons of GHG emissions in the same period.

  8. Left Hand Dominance Affects Supra-Second Time Processing

    Science.gov (United States)

    Vicario, Carmelo Mario; Bonní, Sonia; Koch, Giacomo

    2011-01-01

    Previous studies exploring specific brain functions of left- and right-handed subjects have shown variances in spatial and motor abilities that might be explained according to consistent structural and functional differences. Given the role of both spatial and motor information in the processing of temporal intervals, we designed a study aimed at investigating timing abilities in left-handed subjects. To this purpose both left- and right-handed subjects were asked to perform a time reproduction of sub-second vs. supra-second time intervals with their left and right hand. Our results show that during processing of the supra-second intervals left-handed participants sub-estimated the duration of the intervals, independently of the hand used to perform the task, while no differences were reported for the sub-second intervals. These results are discussed on the basis of recent findings on supra-second motor timing, as well as emerging evidence that suggests a linear representation of time with a left-to-right displacement. PMID:22028685

  9. Enhanced activation of motor execution networks using action observation combined with imagination of lower limb movements.

    Science.gov (United States)

    Villiger, Michael; Estévez, Natalia; Hepp-Reymond, Marie-Claude; Kiper, Daniel; Kollias, Spyros S; Eng, Kynan; Hotz-Boendermaker, Sabina

    2013-01-01

    The combination of first-person observation and motor imagery, i.e. first-person observation of limbs with online motor imagination, is commonly used in interactive 3D computer gaming and in some movie scenes. These scenarios are designed to induce a cognitive process in which a subject imagines himself/herself acting as the agent in the displayed movement situation. Despite the ubiquity of this type of interaction and its therapeutic potential, its relationship to passive observation and imitation during observation has not been directly studied using an interactive paradigm. In the present study we show activation resulting from observation, coupled with online imagination and with online imitation of a goal-directed lower limb movement using functional MRI (fMRI) in a mixed block/event-related design. Healthy volunteers viewed a video (first-person perspective) of a foot kicking a ball. They were instructed to observe-only the action (O), observe and simultaneously imagine performing the action (O-MI), or imitate the action (O-IMIT). We found that when O-MI was compared to O, activation was enhanced in the ventralpremotor cortex bilaterally, left inferior parietal lobule and left insula. The O-MI and O-IMIT conditions shared many activation foci in motor relevant areas as confirmed by conjunction analysis. These results show that (i) combining observation with motor imagery (O-MI) enhances activation compared to observation-only (O) in the relevant foot motor network and in regions responsible for attention, for control of goal-directed movements and for the awareness of causing an action, and (ii) it is possible to extensively activate the motor execution network using O-MI, even in the absence of overt movement. Our results may have implications for the development of novel virtual reality interactions for neurorehabilitation interventions and other applications involving training of motor tasks.

  10. The Resting Motor Threshold - Restless or Resting?

    DEFF Research Database (Denmark)

    Karabanov, Anke Ninija; Raffin, Estelle Emeline; Siebner, Hartwig Roman

    2015-01-01

    Background The resting motor threshold (RMT) is used to individually adjust the intensity of transcranial magnetic stimulation (TMS) intensity and is assumed to be stable. Here we challenge this notion by showing that RMT expresses acute context-dependent fluctuations. Method In twelve participants......, the RMT of the right first dorsal interosseus muscle was repeatedly determined using a threshold-hunting procedure while participants performed motor imagery and visual attention tasks with the right or left hand. Data were analyzed using repeated-measure ANOVA. Results RMT differed depending on which...... hand performed the task (P = 0.003). RMT of right FDI was lower during motor imagery than during visual attention of the right hand (P = 0.002), but did not differ between left-hand tasks (P = 0.988). Conclusions State-dependent changes of RMT occur in absence of overt motor activity and can...

  11. Left-Handed Children--Are They Losing Out?

    Science.gov (United States)

    Milsom, Lauren

    1995-01-01

    Discusses difficulties faced by left-handed children in everyday schoolwork. Highlights include right-handed bias of toys, clothing, and tools; the need for guidance in handwriting; problem areas including domestic science, arts and crafts, and metal and woodwork; left-hand advantages in sports and creative arts; and the European Left-Handers Club…

  12. Study on cerebral activation areas during repetition with functional MRI in normal adults

    International Nuclear Information System (INIS)

    Koseki, Yohju

    2009-01-01

    For cerebral activation of speech areas in functional MRI (f-MRI) study, the usefulness of an optical microphone, which made it possible to perform task repetition at real time during scanning, was examined. Subjects were 25 healthy adults (mean age, 27.1±5.6 years), who consisted of 15 right-handed and 10 left-handed or ambidextrous persons. Tasks comprised repetition of monosyllables, non-words, words and sentences. The repetition tasks were covertly performed during scanning of f-MRI by using an optical microphone. In both the right-handed and non-right-handed groups, activations in the left superior temporal gyrus (sensory speech area) were most frequently observed during all of the tasks. In the right-handed group, activations in the left inferior frontal (motor speech area) and superior temporal gyri were significantly more often observed than those in the right inferior frontal and superior temporal gyri. From an assessment of the laterality index (LI), left-side dominant activation was frequently seen in most of the cerebral regions including sensory and motor speech areas, although right-side and bilateral dominant activations were observed in a few cases. In both groups, activations in regions associated with sensory speech were significantly more often seen than those in regions associated with motor speech. The present predominant activations in regions involved in sensory speech indicate that the optical microphone is useful in f-MRI studies using task repetition. (author)

  13. Left frontal meningioangiomatosis associated with type IIIc focal cortical dysplasia causing refractory epilepsy and literature review.

    Science.gov (United States)

    Roux, Alexandre; Mellerio, Charles; Lechapt-Zalcman, Emmanuelle; Still, Megan; Zerah, Michel; Bourgeois, Marie; Pallud, Johan

    2018-03-29

    We report the surgical management of a lesional drug-resistant epilepsy caused by a meningioangiomatosis associated with a type IIIc focal cortical dysplasia located in the left supplementary motor area in a young male patient. A first anatomical-based partial surgical resection was performed at 11 years old under general anaesthesia without intraoperative mapping, which allowed for postoperative seizure control (Engel IA) for six years. The patient then presented with intractable right sensatory and aphasic focal onset seizures despite two appropriate antiepileptic drugs. A second functional-based surgical resection was performed using intraoperative cortico-subcortical functional mapping with direct electrical stimulation under awake conditions. A complete surgical resection was performed and a left partial supplementary motor area syndrome was observed. At six postoperative months, the patient is seizure free (Engel IA) with an ongoing decrease in antiepileptic drug therapy. Intraoperative functional brain mapping can be applied to preserve the brain function and networks around a meningioangiomatosis to facilitate the resection of potentially epileptogenic perilesional dysplastic cortex and to tailor the extent of resection to functional boundaries. Copyright © 2018. Published by Elsevier Inc.

  14. Somatosensory-motor adaptation of orofacial actions in posterior parietal and ventral premotor cortices.

    Directory of Open Access Journals (Sweden)

    Krystyna Grabski

    Full Text Available Recent studies have provided evidence for sensory-motor adaptive changes and action goal coding of visually guided manual action in premotor and posterior parietal cortices. To extend these results to orofacial actions, devoid of auditory and visual feedback, we used a repetition suppression paradigm while measuring neural activity with functional magnetic resonance imaging during repeated intransitive and silent lip, jaw and tongue movements. In the motor domain, this paradigm refers to decreased activity in specific neural populations due to repeated motor acts and has been proposed to reflect sensory-motor adaptation. Orofacial movements activated a set of largely overlapping, common brain areas forming a core neural network classically involved in orofacial motor control. Crucially, suppressed neural responses during repeated orofacial actions were specifically observed in the left ventral premotor cortex, the intraparietal sulcus, the inferior parietal lobule and the superior parietal lobule. Since no visual and auditory feedback were provided during orofacial actions, these results suggest somatosensory-motor adaptive control of intransitive and silent orofacial actions in these premotor and parietal regions.

  15. On how the motor cortices resolve an inter-hemispheric response conflict: an event-related EEG potential-guided TMS study of the flankers task

    DEFF Research Database (Denmark)

    Verleger, Rolf; Kuniecki, Michal; Möller, Friderike

    2009-01-01

    An important aspect of human motor control is the ability to resolve conflicting response tendencies. Here we used single-pulse transcranial magnetic stimulation (TMS) to track the time course of excitability changes in the primary motor hand areas (M1(HAND)) while the motor system resolved...... response conflicts. Healthy volunteers had to respond fast with their right and left index fingers to right- and left-pointing arrows. These central target stimuli were preceded by flanking arrows, inducing premature response tendencies which competed with correct response activation. The time point...... in the contralateral first dorsal interosseus muscle was taken as an index of corticospinal excitability. Guided by the previous LRP measurement, magnetic stimuli were applied 0-90 ms after the individual LRP peak, to cover the epoch of conflict resolution. When flankers were incompatible with the target, excitability...

  16. [Recurrent left atrial myxoma].

    Science.gov (United States)

    Moreno Martínez, Francisco L; Lagomasino Hidalgo, Alvaro; Mirabal Rodríguez, Roger; López Bermúdez, Félix H; López Bernal, Omaida J

    2003-01-01

    Primary cardiac tumors are rare. Mixomas are the most common among them; 75% are located in the left atrium, 20% in the right atrium, and the rest in the ventricles. The seldom appear in atrio-ventricular valves. Recidivant mixoma are also rare, appearing in 1-5% of all patients that have undergone surgical treatment of a mixoma. In this paper we present our experience with a female patient, who 8 years after having been operated of a left atrial mixoma, began with symptoms of mild heart failure. Transthoracic echocardiography revealed recurrence of the tumor, and was therefore subjected to a second open-heart surgery from which she recovered without complications.

  17. Central Pain and Complex Motoric Symptoms after Gosarelin Therapy of Prostate Cancer

    Directory of Open Access Journals (Sweden)

    G. Ernst

    2004-01-01

    Full Text Available A 76-year-old man with prostate cancer T3N0M0 and increasing PSA was treated with goserelin three times in a half year. As soon as the first treatment, he described subjective muscle weakness. After the third treatment, he developed complex motoric symptoms and atypical central pain with a likely association to goserelin. His left arm had signs of spastic movement; pain deteriorated after relaxation. The right hand showed muscle cramps under passive movements of the left arm that were not typical for rigor. He felt aching and partial burning pain in his whole body. There were few allodynic areas, mainly in the left arm. Several treatment approaches failed and the patient died some weeks after the first contact with our pain clinic due to pneumonia.

  18. Jidosha's Motors

    OpenAIRE

    Shirakawa Okuma, Rosely; Calderón Orejuela, Javier

    2016-01-01

    La tesis narra la situación de una empresa concesionaria de vehículos nuevos, Jidosha's Motors, perteneciente a una corporación japonesa que cuenta con una cultura muy arraigada de ética y de cumplimiento. Se plantean respuestas, se identifican problemas y sus alternativas de solución para una toma adecuada de decisiones por parte de los directivos, siguiendo una estructura de análisis de situaciones de negocios (ASN). Tesis

  19. Is the motor system necessary for processing action and abstract emotion words? Evidence from focal brain lesions

    Directory of Open Access Journals (Sweden)

    Felix R. Dreyer

    2015-11-01

    Full Text Available Neuroimaging and neuropsychological experiments suggest that modality-preferential cortices, including motor- and somatosensory areas contribute to the semantic processing of action related concrete words. In contrast, a possible role of modality-preferential – including sensorimotor – areas in processing abstract meaning remains under debate. However, recent fMRI studies indicate an involvement of the left sensorimotor cortex in the processing of abstract-emotional words (e.g. love. But are these areas indeed necessary for processing action-related and abstract words? The current study now investigates word processing in two patients suffering from focal brain lesion in the left frontocentral motor system. A speeded lexical decision task (LDT on meticulously matched word groups showed that the recognition of nouns from different semantic categories – related to food, animals, tools and abstract-emotional concepts – was differentially affected. Whereas patient HS with a lesion in dorsolateral central sensorimotor cortex next to the hand area showed a category-specific deficit in recognizing tool words, patient CA suffering from lesion centered in the left SMA was primarily impaired in abstract-emotional word processing. These results point to a causal role of the motor cortex in the semantic processing of both action-related object concepts and abstract-emotional concepts and therefore suggest that the motor areas previously found active in action-related and abstract word processing can serve a meaning-specific necessary role in word recognition. The category-specific nature of the observed dissociations is difficult to reconcile with the idea that sensorimotor systems are somehow peripheral or ‘epiphenomenal’ to meaning and concept processing. Rather, our results are consistent with the claim that cognition is grounded in action and perception and based on distributed action perception circuits reaching into sensorimotor areas.

  20. Functional connectivity of primary motor cortex is dependent on genetic burden in prodromal Huntington disease.

    Science.gov (United States)

    Koenig, Katherine A; Lowe, Mark J; Harrington, Deborah L; Lin, Jian; Durgerian, Sally; Mourany, Lyla; Paulsen, Jane S; Rao, Stephen M

    2014-09-01

    Subtle changes in motor function have been observed in individuals with prodromal Huntington disease (prHD), but the underlying neural mechanisms are not well understood nor is the cumulative effect of the disease (disease burden) on functional connectivity. The present study examined the resting-state functional magnetic resonance imaging (rs-fMRI) connectivity of the primary motor cortex (M1) in 16 gene-negative (NEG) controls and 48 gene-positive prHD participants with various levels of disease burden. The results showed that the strength of the left M1 connectivity with the ipsilateral M1 and somatosensory areas decreased as disease burden increased and correlated with motor symptoms. Weakened M1 connectivity within the motor areas was also associated with abnormalities in long-range connections that evolved with disease burden. In this study, M1 connectivity was decreased with visual centers (bilateral cuneus), but increased with a hub of the default mode network (DMN; posterior cingulate cortex). Changes in connectivity measures were associated with worse performance on measures of cognitive-motor functioning. Short- and long-range functional connectivity disturbances were also associated with volume loss in the basal ganglia, suggesting that weakened M1 connectivity is partly a manifestation of striatal atrophy. Altogether, the results indicate that the prodromal phase of HD is associated with abnormal interhemispheric interactions among motor areas and disturbances in the connectivity of M1 with visual centers and the DMN. These changes may, respectively, contribute to increased motor symptoms, visuomotor integration problems, and deficits in the executive control of movement as individuals approach a manifest diagnosis.

  1. Cortico-cortical white matter motor pathway microstructure is related to psychomotor retardation in major depressive disorder.

    Directory of Open Access Journals (Sweden)

    Tobias Bracht

    Full Text Available Alterations of brain structure and function have been associated with psychomotor retardation in major depressive disorder (MDD. However, the association of motor behaviour and white matter integrity of motor pathways in MDD is unclear. The aim of the present study was to first investigate structural connectivity of white matter motor pathways in MDD. Second, we explore the relation of objectively measured motor activity and white matter integrity of motor pathways in MDD. Therefore, 21 patients with MDD and 21 healthy controls matched for age, gender, education and body mass index underwent diffusion tensor imaging and 24 hour actigraphy (measure of the activity level the same day. Applying a probabilistic fibre tracking approach we extracted connection pathways between the dorsolateral prefrontal cortex (dlPFC, the rostral anterior cingulate cortex (rACC, the pre-supplementary motor area (pre-SMA, the SMA-proper, the primary motor cortex (M1, the caudate nucleus, the putamen, the pallidum and the thalamus. Patients had lower activity levels and demonstrated increased mean diffusivity (MD in pathways linking left pre-SMA and SMA-proper, and right SMA-proper and M1. Exploratory analyses point to a positive association of activity level and mean-fractional anisotropy in the right rACC-pre-SMA connection in MDD. Only MDD patients with low activity levels had a negative linear association of activity level and mean-MD in the left dlPFC-pre-SMA connection. Our results point to structural alterations of cortico-cortical white matter motor pathways in MDD. Altered white matter organisation of rACC-pre-SMA and dlPFC-pre-SMA pathways may contribute to movement initiation in MDD.

  2. The neural basis of age-related changes in motor imagery of gait: an fMRI study.

    Science.gov (United States)

    Allali, Gilles; van der Meulen, Marian; Beauchet, Olivier; Rieger, Sebastian W; Vuilleumier, Patrik; Assal, Frédéric

    2014-11-01

    Aging is often associated with modifications of gait. Recent studies have revealed a strong relationship between gait and executive functions in healthy and pathological aging. We hypothesized that modification of gait due to aging may be related to changes in frontal lobe function. Fourteen younger (27.0±3.6 years) and 14 older healthy adults (66.0±3.5 years) performed a motor imagery task of gait as well as a matched visual imagery task. Task difficulty was modulated to investigate differential activation for precise control of gait. Task performance was assessed by recording motor imagery latencies, eye movements, and electromyography during functional magnetic resonance imaging scanning. Our results showed that both healthy older and young adults recruited a network of brain regions comprising the bilateral supplementary motor cortex and primary motor cortex, right prefrontal cortex, and cerebellum, during motor imagery of gait. We observed an age-related increase in brain activity in the right supplementary motor area (BA6), the right orbitofrontal cortex (BA11), and the left dorsolateral frontal cortex (BA10). Activity in the left hippocampus was significantly modulated by task difficulty in the elderly participants. Executive functioning correlated with magnitude of increases in right primary motor cortex (BA4) during the motor imagery task. Besides demonstrating a general overlap in brain regions recruited in young and older participants, this study shows age-related changes in cerebral activation during mental imagery of gait. Our results underscore the importance of executive function (dorsolateral frontal cortex) and spatial navigation or memory function (hippocampus) in gait control in elderly individuals. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Primary Motor Cortex Excitability Is Modulated During the Mental Simulation of Hand Movement.

    Science.gov (United States)

    Hyde, Christian; Fuelscher, Ian; Lum, Jarrad A G; Williams, Jacqueline; He, Jason; Enticott, Peter G

    2017-02-01

    It is unclear whether the primary motor cortex (PMC) is involved in the mental simulation of movement [i.e., motor imagery (MI)]. The present study aimed to clarify PMC involvement using a highly novel adaptation of the hand laterality task (HLT). Participants were administered single-pulse transcranial magnetic stimulation (TMS) to the hand area of the left PMC (hPMC) at either 50 ms, 400 ms, or 650 ms post stimulus presentation. Motor-evoked potentials (MEPs) were recorded from the right first dorsal interosseous via electromyography. To avoid the confound of gross motor response, participant response (indicating left or right hand) was recorded via eye tracking. Participants were 22 healthy adults (18 to 36 years), 16 whose behavioral profile on the HLT was consistent with the use of a MI strategy (MI users). hPMC excitability increased significantly during HLT performance for MI users, evidenced by significantly larger right hand MEPs following single-pulse TMS 50 ms, 400 ms, and 650 ms post stimulus presentation relative to baseline. Subsequent analysis showed that hPMC excitability was greater for more complex simulated hand movements, where hand MEPs at 50 ms were larger for biomechanically awkward movements (i.e., hands requiring lateral rotation) compared to simpler movements (i.e., hands requiring medial rotation). These findings provide support for the modulation of PMC excitability during the HLT attributable to MI, and may indicate a role for the PMC during MI. (JINS, 2017, 23, 185-193).

  4. Hypoplastic left heart syndrome

    Directory of Open Access Journals (Sweden)

    Thiagarajan Ravi

    2007-05-01

    Full Text Available Abstract Hypoplastic left heart syndrome(HLHS refers to the abnormal development of the left-sided cardiac structures, resulting in obstruction to blood flow from the left ventricular outflow tract. In addition, the syndrome includes underdevelopment of the left ventricle, aorta, and aortic arch, as well as mitral atresia or stenosis. HLHS has been reported to occur in approximately 0.016 to 0.036% of all live births. Newborn infants with the condition generally are born at full term and initially appear healthy. As the arterial duct closes, the systemic perfusion becomes decreased, resulting in hypoxemia, acidosis, and shock. Usually, no heart murmur, or a non-specific heart murmur, may be detected. The second heart sound is loud and single because of aortic atresia. Often the liver is enlarged secondary to congestive heart failure. The embryologic cause of the disease, as in the case of most congenital cardiac defects, is not fully known. The most useful diagnostic modality is the echocardiogram. The syndrome can be diagnosed by fetal echocardiography between 18 and 22 weeks of gestation. Differential diagnosis includes other left-sided obstructive lesions where the systemic circulation is dependent on ductal flow (critical aortic stenosis, coarctation of the aorta, interrupted aortic arch. Children with the syndrome require surgery as neonates, as they have duct-dependent systemic circulation. Currently, there are two major modalities, primary cardiac transplantation or a series of staged functionally univentricular palliations. The treatment chosen is dependent on the preference of the institution, its experience, and also preference. Although survival following initial surgical intervention has improved significantly over the last 20 years, significant mortality and morbidity are present for both surgical strategies. As a result pediatric cardiologists continue to be challenged by discussions with families regarding initial decision

  5. Effects of TMS on different stages of motor and non-motor verb processing in the primary motor cortex.

    Directory of Open Access Journals (Sweden)

    Liuba Papeo

    Full Text Available The embodied cognition hypothesis suggests that motor and premotor areas are automatically and necessarily involved in understanding action language, as word conceptual representations are embodied. This transcranial magnetic stimulation (TMS study explores the role of the left primary motor cortex in action-verb processing. TMS-induced motor-evoked potentials from right-hand muscles were recorded as a measure of M1 activity, while participants were asked either to judge explicitly whether a verb was action-related (semantic task or to decide on the number of syllables in a verb (syllabic task. TMS was applied in three different experiments at 170, 350 and 500 ms post-stimulus during both tasks to identify when the enhancement of M1 activity occurred during word processing. The delays between stimulus onset and magnetic stimulation were consistent with electrophysiological studies, suggesting that word recognition can be differentiated into early (within 200 ms and late (within 400 ms lexical-semantic stages, and post-conceptual stages. Reaction times and accuracy were recorded to measure the extent to which the participants' linguistic performance was affected by the interference of TMS with M1 activity. No enhancement of M1 activity specific for action verbs was found at 170 and 350 ms post-stimulus, when lexical-semantic processes are presumed to occur (Experiments 1-2. When TMS was applied at 500 ms post-stimulus (Experiment 3, processing action verbs, compared with non-action verbs, increased the M1-activity in the semantic task and decreased it in the syllabic task. This effect was specific for hand-action verbs and was not observed for action-verbs related to other body parts. Neither accuracy nor RTs were affected by TMS. These findings suggest that the lexical-semantic processing of action verbs does not automatically activate the M1. This area seems to be rather involved in post-conceptual processing that follows the retrieval of motor

  6. Noise differentially impacts phoneme representations in the auditory and speech motor systems.

    Science.gov (United States)

    Du, Yi; Buchsbaum, Bradley R; Grady, Cheryl L; Alain, Claude

    2014-05-13

    Although it is well accepted that the speech motor system (SMS) is activated during speech perception, the functional role of this activation remains unclear. Here we test the hypothesis that the redundant motor activation contributes to categorical speech perception under adverse listening conditions. In this functional magnetic resonance imaging study, participants identified one of four phoneme tokens (/ba/, /ma/, /da/, or /ta/) under one of six signal-to-noise ratio (SNR) levels (-12, -9, -6, -2, 8 dB, and no noise). Univariate and multivariate pattern analyses were used to determine the role of the SMS during perception of noise-impoverished phonemes. Results revealed a negative correlation between neural activity and perceptual accuracy in the left ventral premotor cortex and Broca's area. More importantly, multivoxel patterns of activity in the left ventral premotor cortex and Broca's area exhibited effective phoneme categorization when SNR ≥ -6 dB. This is in sharp contrast with phoneme discriminability in bilateral auditory cortices and sensorimotor interface areas (e.g., left posterior superior temporal gyrus), which was reliable only when the noise was extremely weak (SNR > 8 dB). Our findings provide strong neuroimaging evidence for a greater robustness of the SMS than auditory regions for categorical speech perception in noise. Under adverse listening conditions, better discriminative activity in the SMS may compensate for loss of specificity in the auditory system via sensorimotor integration.

  7. Cortical thickness in de novo patients with Parkinson disease and mild cognitive impairment with consideration of clinical phenotype and motor laterality.

    Science.gov (United States)

    Danti, S; Toschi, N; Diciotti, S; Tessa, C; Poletti, M; Del Dotto, P; Lucetti, C

    2015-12-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder with motor and non-motor symptoms, including cognitive deficits. Several magnetic resonance imaging approaches have been applied to investigate brain atrophy in PD. The aim of this study was to detect early structural cortical and subcortical changes in de novo PD whilst distinguishing cognitive status, clinical phenotype and motor laterality. Eighteen de novo PD with mild cognitive impairment (PD-MCI), 18 de novo PD without MCI (PD-NC) and 18 healthy control subjects were evaluated. In the PD-MCI group, nine were tremor dominant and nine were postural instability gait disorder (PIGD) phenotype; 11 had right-sided symptom dominance and seven had left-sided symptom dominance. FreeSurfer was used to measure cortical thickness/folding, subcortical structures and to study group differences as well as the association with clinical and neuropsychological data. Parkinson's disease with MCI showed regional thinning in the right frontal, right middle temporal areas and left insula compared to PD-NC. A reduction of the volume of the left and right thalamus and left hippocampus was found in PD-MCI compared to PD-NC. PD-MCI PIGD showed regional thinning in the right inferior parietal area compared to healthy controls. A decreased volume of the left thalamus was reported in PD-MCI with right-sided symptom dominance compared to PD-NC and PD-MCI with left-sided symptom dominance. When MCI was present, PD patients showed a fronto-temporo-parietal pattern of cortical thinning. This cortical pattern does not appear to be influenced by motor laterality, although one-sided symptom dominance may contribute to volumetric reduction of specific subcortical structures. © 2015 EAN.

  8. The trajectory of gray matter development in Broca’s area is abnormal in people who stutter.

    Directory of Open Access Journals (Sweden)

    Deryk Scott Beal

    2015-03-01

    Full Text Available The acquisition and mastery of speech-motor control requires years of practice spanning the course of development. People who stutter often perform poorly on speech-motor tasks thereby calling into question their ability to establish the stable neural motor programs required for masterful speech-motor control. There is evidence to support the assertion that these neural motor programs are represented in the posterior part of Broca’s area, specifically the left pars opercularis. Consequently, various theories of stuttering causation posit that the disorder is related to a breakdown in the formation of the neural motor programs for speech early in development and that this breakdown is maintained throughout life. To date, no study has examined the potential neurodevelopmental signatures of the disorder across pediatric and adult populations. The current study aimed to fill this gap in our knowledge. We hypothesized that the developmental trajectory of cortical thickness in people who stutter would differ across the lifespan in the left pars opercularis relative to a group of control participants. We collected structural magnetic resonance images from 116 males (55 people who stutter ranging in age from 6 to 48 years old. Differences in cortical thickness across ages and between patients and controls were investigated in 30 brain regions previously implicated in speech-motor control. An interaction between age and group was found for the left pars opercularis only. In people who stutter, the pars opercularis did not demonstrate the typical maturational pattern of gradual gray matter thinning with age across the lifespan that we observed in control participants. In contrast, the developmental trajectory of gray matter thickness in other regions of interest within the neural network for speech-motor control was similar for both groups. Our findings indicate that the developmental trajectory of gray matter in left pars opercularis is abnormal in

  9. Left neglect dyslexia: Perseveration and reading error types.

    Science.gov (United States)

    Ronchi, Roberta; Algeri, Lorella; Chiapella, Laura; Gallucci, Marcello; Spada, Maria Simonetta; Vallar, Giuseppe

    2016-08-01

    Right-brain-damaged patients may show a reading disorder termed neglect dyslexia. Patients with left neglect dyslexia omit letters on the left-hand-side (the beginning, when reading left-to-right) part of the letter string, substitute them with other letters, and add letters to the left of the string. The aim of this study was to investigate the pattern of association, if any, between error types in patients with left neglect dyslexia and recurrent perseveration (a productive visuo-motor deficit characterized by addition of marks) in target cancellation. Specifically, we aimed at assessing whether different productive symptoms (relative to the reading and the visuo-motor domains) could be associated in patients with left spatial neglect. Fifty-four right-brain-damaged patients took part in the study: 50 out of the 54 patients showed left spatial neglect, with 27 of them also exhibiting left neglect dyslexia. Neglect dyslexic patients who showed perseveration produced mainly substitution neglect errors in reading. Conversely, omissions were the prevailing reading error pattern in neglect dyslexic patients without perseveration. Addition reading errors were much infrequent. Different functional pathological mechanisms may underlie omission and substitution reading errors committed by right-brain-damaged patients with left neglect dyslexia. One such mechanism, involving the defective stopping of inappropriate responses, may contribute to both recurrent perseveration in target cancellation, and substitution errors in reading. Productive pathological phenomena, together with deficits of spatial attention to events taking place on the left-hand-side of space, shape the manifestations of neglect dyslexia, and, more generally, of spatial neglect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Cortical representation of different motor rhythms during bimanual movements.

    Science.gov (United States)

    Muthuraman, M; Arning, K; Govindan, R B; Heute, U; Deuschl, G; Raethjen, J

    2012-12-01

    The cortical control of bimanual and unimanual movements involves complex facilitatory and inhibitory interhemispheric interactions. We analysed the part of the cortical network directly related to the motor output by corticomuscular (64 channel EEG-EMG) and cortico-cortical (EEG-EEG) coherence and delays at the frequency of a voluntarily maintained unimanual and bimanual rhythm and in the 15-30-Hz band during isometric contractions. Voluntary rhythms of each hand showed coherence with lateral cortical areas in both hemispheres and occasionally in the frontal midline region (60-80 % of the recordings and 10-30 %, respectively). They were always coherent between both hands, and this coherence was positively correlated with the interhemispheric coherence (p < 0.01). Unilateral movements were represented mainly in the contralateral cortex (60-80 vs. 10-30 % ipsilateral, p < 0.01). Ipsilateral coherence was more common in left-hand movements, paralleled by more left-right muscle coherence. Partial corticomuscular coherence most often disappeared (p < 0.05) when the contralateral cortex was the predictor, indicating a mainly indirect connection of ipsilateral/frontomesial representations with the muscle via contralateral cortex. Interhemispheric delays had a bimodal distribution (1-10 and 15-30 ms) indicating direct and subcortical routes. Corticomuscular delays (mainly 12-25 ms) indicated fast corticospinal projections and musculocortical feedback. The 15-30-Hz corticomuscular coherence during isometric contractions (60-70 % of recordings) was strictly contralaterally represented without any peripheral left-right coherence. Thus, bilateral cortical areas generate voluntary unimanual and bimanual rhythmic movements. Interhemispheric interactions as detected by EEG-EEG coherence contribute to bimanual synchronization. This is distinct from the unilateral cortical representation of the 15-30-Hz motor rhythm during isometric movements.

  11. associated neuron disease carCInoma Motor with

    African Journals Online (AJOL)

    1983-02-19

    Feb 19, 1983 ... re\\'ealed wasting of the temporalis muscle, upper motor neuron weakness of the ... left, there was bilateral wasting ofthe small muscles of the hands, .... disease with associated rectal adenocarcinoma and benign pros- tatic hypertrophy. Discussion. Motor neuron disease occurs in all parts of the world, with a.

  12. Left Ventricular Assist Devices

    Directory of Open Access Journals (Sweden)

    Khuansiri Narajeenron

    2017-04-01

    Full Text Available Audience: The audience for this classic team-based learning (cTBL session is emergency medicine residents, faculty, and students; although this topic is applicable to internal medicine and family medicine residents. Introduction: A left ventricular assist device (LVAD is a mechanical circulatory support device that can be placed in critically-ill patients who have poor left ventricular function. After LVAD implantation, patients have improved quality of life.1 The number of LVAD patients worldwide continues to rise. Left-ventricular assist device patients may present to the emergency department (ED with severe, life-threatening conditions. It is essential that emergency physicians have a good understanding of LVADs and their complications. Objectives: Upon completion of this cTBL module, the learner will be able to: 1 Properly assess LVAD patients’ circulatory status; 2 appropriately resuscitate LVAD patients; 3 identify common LVAD complications; 4 evaluate and appropriately manage patients with LVAD malfunctions. Method: The method for this didactic session is cTBL.

  13. A study of low-density areas, clinical findings, and angiographic findings in patients with cerebral infarction

    International Nuclear Information System (INIS)

    Saiki, Iwao; Sakai, Yoshiaki; Oikawa, Tadato; Koide, Kohji; Kanaya, Haruyuki.

    1978-01-01

    55 out of 62 patients with cerebral infarction were investigated in terms of CT scan findings, angiographic findings, and clinical symptoms. The results obtained were as follows: 1) The low-density areas of the CT scan findings were classified into the following four types: large hemispheric or lobular --Type I; wedge-shaped --Type II; small --Type III; and lacunar low-density area. --Type IV. 2) Almost all patients with angiographically occlusive findings showed low-density areas of Type I; however, one patient with ICA occlusion revealed only a lacunar low-density area. 3) The patients with lacunar low-density areas showed an angiographically delayed filling of the angular artery and posterior parietal artery of the middle cerebral artery. 4) The relationship between the types of low-density areas and the clinical conscious disorders was not clear. On the other hand, the patients with Type I low-density areas almost all had motor disturbances, while patients with other types of low-density areas showed only 60 - 70% motor disturbances. 5) In patients with speech disorders, total aphasia cases were found in patients with large hemispheric low-density areas on the left side. Although, motor aphasia cases were seen in patients with various low-density areas on the left inferior frontal and precentral gyri, dysarthria cases were found in the patients with several low-density areas on both sides. 6) The localization of lacunar low-density areas seemed to be near the caudate nucleus on the right side and in the putaminal regions on the left side. The mean and the standard deviation of CT numbers in the lacunar low-density areas showed higher values on the right side than on the left side. (author)

  14. Left Ventricular Pseudoaneurysm Perceived as a Left Lung Mass

    Directory of Open Access Journals (Sweden)

    Ugur Gocen

    2013-02-01

    Full Text Available Left ventricular pseudo-aneurysm is a rare complication of aneurysmectomy. We present a case of surgically-treated left ventricular pseudo-aneurysm which was diagnosed three years after coronary artery bypass grafting and left ventricular aneurysmectomy. The presenting symptoms, diagnostic evaluation and surgical repair are described. [Cukurova Med J 2013; 38(1.000: 123-125

  15. Efficient foot motor control by Neymar's brain.

    Science.gov (United States)

    Naito, Eiichi; Hirose, Satoshi

    2014-01-01

    How very long-term (over many years) motor skill training shapes internal motor representation remains poorly understood. We provide valuable evidence that the football brain of Neymar da Silva Santos Júnior (the Brasilian footballer) recruits very limited neural resources in the motor-cortical foot regions during foot movements. We scanned his brain activity with a 3-tesla functional magnetic resonance imaging (fMRI) while he rotated his right ankle at 1 Hz. We also scanned brain activity when three other age-controlled professional footballers, two top-athlete swimmers and one amateur footballer performed the identical task. A comparison was made between Neymar's brain activity with that obtained from the others. We found activations in the left medial-wall foot motor regions during the foot movements consistently across all participants. However, the size and intensity of medial-wall activity was smaller in the four professional footballers than in the three other participants, despite no difference in amount of foot movement. Surprisingly, the reduced recruitment of medial-wall foot motor regions became apparent in Neymar. His medial-wall activity was smallest among all participants with absolutely no difference in amount of foot movement. Neymar may efficiently control given foot movements probably by largely conserving motor-cortical neural resources. We discuss this possibility in terms of over-years motor skill training effect, use-dependent plasticity, and efficient motor control.

  16. Gross motor control

    Science.gov (United States)

    Gross motor control is the ability to make large, general movements (such as waving an arm or lifting a ... Gross motor control is a milestone in the development of an infant. Infants develop gross motor control before they ...

  17. Isolated tear in left atrial appendage due to blunt trauma chest: A rare case report

    OpenAIRE

    Salooja, Manpreet S.; Singla, Manender; Srivastava, Anupam; Mukherjee, Kishore C.

    2013-01-01

    Blunt traumatic cardiac rupture is associated with a high mortality rate. Motor vehicle accidents account for most cardiac ruptures, but crush injury is relatively rare. We describe a case of a 72-year-old man who had the left atrial appendage ruptured through blunt trauma due to a fall from scooter. Simple suture repair of the atrial appendage was achieved after clamping the base of the left atrium to control the bleeding. He recovered without complication. Traumatic injury to left atrial ap...

  18. Why Are the Right and Left Hemisphere Conceptual Representations Different?

    Directory of Open Access Journals (Sweden)

    Guido Gainotti

    2014-01-01

    Full Text Available The present survey develops a previous position paper, in which I suggested that the multimodal semantic impairment observed in advanced stages of semantic dementia is due to the joint disruption of pictorial and verbal representations, subtended by the right and left anterior temporal lobes, rather than to the loss of a unitary, amodal semantic system. The main goals of the present review are (a to survey a larger set of data, in order to confirm the differences in conceptual representations at the level of the right and left hemispheres, (b to examine if language-mediated information plays a greater role in left hemisphere semantic knowledge than sensory-motor information in right hemisphere conceptual knowledge, and (c to discuss the models that could explain both the differences in conceptual representations at the hemispheric level and the prevalence of the left hemisphere language-mediated semantic knowledge over the right hemisphere perceptually based conceptual representations.

  19. Motor control for a brushless DC motor

    Science.gov (United States)

    Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)

    1985-01-01

    This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.

  20. Motor cortex compensates for lack of sensory and motor experience during auditory speech perception.

    Science.gov (United States)

    Schmitz, Judith; Bartoli, Eleonora; Maffongelli, Laura; Fadiga, Luciano; Sebastian-Galles, Nuria; D'Ausilio, Alessandro

    2018-01-06

    Listening to speech has been shown to activate motor regions, as measured by corticobulbar excitability. In this experiment, we explored if motor regions are also recruited during listening to non-native speech, for which we lack both sensory and motor experience. By administering Transcranial Magnetic Stimulation (TMS) over the left motor cortex we recorded corticobulbar excitability of the lip muscles when Italian participants listened to native-like and non-native German vowels. Results showed that lip corticobulbar excitability increased for a combination of lip use during articulation and non-nativeness of the vowels. Lip corticobulbar excitability was further related to measures obtained in perception and production tasks showing a negative relationship with nativeness ratings and a positive relationship with the uncertainty of lip movement during production of the vowels. These results suggest an active and compensatory role of the motor system during listening to perceptually/articulatory unfamiliar phonemes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Lesion characteristics driving right-hemispheric language reorganization in congenital left-hemispheric brain damage.

    Science.gov (United States)

    Lidzba, Karen; de Haan, Bianca; Wilke, Marko; Krägeloh-Mann, Ingeborg; Staudt, Martin

    2017-10-01

    Pre- or perinatally acquired ("congenital") left-hemispheric brain lesions can be compensated for by reorganizing language into homotopic brain regions in the right hemisphere. Language comprehension may be hemispherically dissociated from language production. We investigated the lesion characteristics driving inter-hemispheric reorganization of language comprehension and language production in 19 patients (7-32years; eight females) with congenital left-hemispheric brain lesions (periventricular lesions [n=11] and middle cerebral artery infarctions [n=8]) by fMRI. 16/17 patients demonstrated reorganized language production, while 7/19 patients had reorganized language comprehension. Lesions to the insular cortex and the temporo-parietal junction (predominantly supramarginal gyrus) were significantly more common in patients in whom both, language production and comprehension were reorganized. These areas belong to the dorsal stream of the language network, participating in the auditory-motor integration of language. Our data suggest that the integrity of this stream might be crucial for a normal left-lateralized language development. Copyright © 2017. Published by Elsevier Inc.

  2. PS main supply: motor-generator set.

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    In picture 04 the motor is on the right in the background and the main view is of the generator. The peak power in each PS cycle drawn from the generator, up to 96 MW, is taken from the rotational kinetic energy of the rotor (a heavy-weight of 80 tons), which makes the rotational speed drop by only a few percent. The motor replenishes the average power of 2 to 4 MW. Photo 05: The motor-generator set is serviced every year and, in particular, bearings and slip-rings are carefully checked. To the left is the motor with its slip-rings visible. It has been detached from the axle and moved to the side, so that the rotor can be removed from the huge generator, looming at the right.

  3. Why Dora Left

    DEFF Research Database (Denmark)

    Gammelgård, Judy

    2017-01-01

    The question of why Dora left her treatment before it was brought to a satisfactory end and the equally important question of why Freud chose to publish this problematic and fragmentary story have both been dealt with at great length by Freud’s successors. Dora has been read by analysts, literary...... critics, and not least by feminists. The aim of this paper is to point out the position Freud took toward his patient. Dora stands out as the one case among Freud’s 5 great case stories that has a female protagonist, and reading the case it becomes clear that Freud stumbled because of an unresolved...... problem toward femininity, both Dora’s and his own. In Dora, it is argued, Freud took a new stance toward the object of his investigation, speaking from the position of the master. Freud presents himself as the one who knows, in great contrast to the position he takes when unraveling the dream. Here he...

  4. Evaluation and comparison of effective connectivity during simple and compound limb motor imagery.

    Science.gov (United States)

    Yi, Weibo; Zhang, Lixin; Wang, Kun; Xiao, Xiaolin; He, Feng; Zhao, Xin; Qi, Hongzhi; Zhou, Peng; Wan, Baikun; Ming, Dong

    2014-01-01

    Motor imagery (MI) has been demonstrated beneficial in motor rehabilitation in patients with movement disorders. In contrast with simple limb motor imagery, less work was reported about the effective connectivity networks of compound limb motor imagery which involves several parts of limbs. This work aimed to investigate the differences of information flow patterns between simple limb motor imagery and compound limb motor imagery. Ten subjects participated in the experiment involving three tasks of simple limb motor imagery (left hand, right hand, feet) and three tasks of compound limb motor imagery (both hands, left hand combined with right foot, right hand combined with left foot). The causal interactions among different neural regions were evaluated by Short-time Directed Transfer Function (SDTF). Quite different from the networks of simple limb motor imagery, more effective interactions overlying larger brain regions were observed during compound limb motor imagery. These results imply that there exist significant differences in the patterns of EEG activity flow between simple limb motor imagery and compound limb motor imagery, which present more complex networks and could be utilized in motor rehabilitation for more benefit in patients with movement disorders.

  5. Motor Cortical Plasticity to Training Started in Childhood: The Example of Piano Players.

    Directory of Open Access Journals (Sweden)

    Raffaella Chieffo

    Full Text Available Converging evidence suggest that motor training is associated with early and late changes of the cortical motor system. Transcranial magnetic stimulation (TMS offers the possibility to study plastic rearrangements of the motor system in physiological and pathological conditions. We used TMS to characterize long-term changes in upper limb motor cortical representation and interhemispheric inhibition associated with bimanual skill training in pianists who started playing in an early age. Ipsilateral silent period (iSP and cortical TMS mapping of hand muscles were obtained from 30 strictly right-handed subjects (16 pianists, 14 naïve controls, together with electromyographic recording of mirror movements (MMs to voluntary hand movements. In controls, motor cortical representation of hand muscles was larger on the dominant (DH than on the non-dominant hemisphere (NDH. On the contrary, pianists showed symmetric cortical output maps, being their DH less represented than in controls. In naïve subjects, the iSP was smaller on the right vs left abductor pollicis brevis (APB indicating a weaker inhibition from the NDH to the DH. In pianists, interhemispheric inhibition was more symmetric as their DH was better inhibited than in controls. Electromyographic MMs were observed only in naïve subjects (7/14 and only to voluntary movement of the non-dominant hand. Subjects with MM had a lower iSP area on the right APB compared with all the others. Our findings suggest a more symmetrical motor cortex organization in pianists, both in terms of muscle cortical representation and interhemispheric inhibition. Although we cannot disentangle training-related from preexisting conditions, it is possible that long-term bimanual practice may reshape motor cortical representation and rebalance interhemispheric interactions, which in naïve right-handed subjects would both tend to favour the dominant hemisphere.

  6. Aberrant connectivity of areas for decoding degraded speech in patients with auditory verbal hallucinations.

    Science.gov (United States)

    Clos, Mareike; Diederen, Kelly M J; Meijering, Anne Lotte; Sommer, Iris E; Eickhoff, Simon B

    2014-03-01

    Auditory verbal hallucinations (AVH) are a hallmark of psychotic experience. Various mechanisms including misattribution of inner speech and imbalance between bottom-up and top-down factors in auditory perception potentially due to aberrant connectivity between frontal and temporo-parietal areas have been suggested to underlie AVH. Experimental evidence for disturbed connectivity of networks sustaining auditory-verbal processing is, however, sparse. We compared functional resting-state connectivity in 49 psychotic patients with frequent AVH and 49 matched controls. The analysis was seeded from the left middle temporal gyrus (MTG), thalamus, angular gyrus (AG) and inferior frontal gyrus (IFG) as these regions are implicated in extracting meaning from impoverished speech-like sounds. Aberrant connectivity was found for all seeds. Decreased connectivity was observed between the left MTG and its right homotope, between the left AG and the surrounding inferior parietal cortex (IPC) and the left inferior temporal gyrus, between the left thalamus and the right cerebellum, as well as between the left IFG and left IPC, and dorsolateral and ventrolateral prefrontal cortex (DLPFC/VLPFC). Increased connectivity was observed between the left IFG and the supplementary motor area (SMA) and the left insula and between the left thalamus and the left fusiform gyrus/hippocampus. The predisposition to experience AVH might result from decoupling between the speech production system (IFG, insula and SMA) and the self-monitoring system (DLPFC, VLPFC, IPC) leading to misattribution of inner speech. Furthermore, decreased connectivity between nodes involved in speech processing (AG, MTG) and other regions implicated in auditory processing might reflect aberrant top-down influences in AVH.

  7. Motor activity improves temporal expectancy.

    Directory of Open Access Journals (Sweden)

    Lilian Fautrelle

    Full Text Available Certain brain areas involved in interval timing are also important in motor activity. This raises the possibility that motor activity might influence interval timing. To test this hypothesis, we assessed interval timing in healthy adults following different types of training. The pre- and post-training tasks consisted of a button press in response to the presentation of a rhythmic visual stimulus. Alterations in temporal expectancy were evaluated by measuring response times. Training consisted of responding to the visual presentation of regularly appearing stimuli by either: (1 pointing with a whole-body movement, (2 pointing only with the arm, (3 imagining pointing with a whole-body movement, (4 simply watching the stimulus presentation, (5 pointing with a whole-body movement in response to a target that appeared at irregular intervals (6 reading a newspaper. Participants performing a motor activity in response to the regular target showed significant improvements in judgment times compared to individuals with no associated motor activity. Individuals who only imagined pointing with a whole-body movement also showed significant improvements. No improvements were observed in the group that trained with a motor response to an irregular stimulus, hence eliminating the explanation that the improved temporal expectations of the other motor training groups was purely due to an improved motor capacity to press the response button. All groups performed a secondary task equally well, hence indicating that our results could not simply be attributed to differences in attention between the groups. Our results show that motor activity, even when it does not play a causal or corrective role, can lead to improved interval timing judgments.

  8. High efficiency motors; Motores de alta eficiencia

    Energy Technology Data Exchange (ETDEWEB)

    Uranga Favela, Ivan Jaime [Energia Controlada de Mexico, S. A. de C. V., Mexico, D. F. (Mexico)

    1992-12-31

    This paper is a technical-financial study of the high efficiency and super-premium motors. As it is widely known, more than 60% of the electrical energy generated in the country is used for the operation of motors, in industry as well as in commerce. Therefore the importance that the motors have in the efficient energy use. [Espanol] El presente trabajo es un estudio tecnico-financiero de los motores de alta eficiencia y los motores super premium. Como es ampliamente conocido, mas del 60% de la energia electrica generada en el pais, es utilizada para accionar motores, dentro de la industria y el comercio. De alli la importancia que los motores tienen en el uso eficiente de la energia.

  9. Blunt traumatic left atrial appendage rupture and cardiac herniation.

    Science.gov (United States)

    Nhan, Nguyen Huu; Anh, Pham Tho Tuan; Trung, Tran Minh; Pezzella, A Thomas

    2014-06-01

    A 42-year-old man sustained blunt thoracic trauma after a motor vehicle accident. He underwent an urgent operation. Operative findings included a large hematoma, a 4-cm tear in the left atrial appendage, and a long pleuropericardial rupture along the right phrenic nerve. We repaired the left atrial appendage without cardiopulmonary bypass, and closed the pericardial defect primarily. The patient recovered fully and was discharged on the 6th postoperative day. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  10. Sleep-related modifications of EEG connectivity in the sensory-motor networks in Huntington Disease: An eLORETA study and review of the literature.

    Science.gov (United States)

    Piano, Carla; Imperatori, Claudio; Losurdo, Anna; Bentivoglio, Anna Rita; Cortelli, Pietro; Della Marca, Giacomo

    2017-07-01

    To evaluate EEG functional connectivity in the sensory-motor network, during wake and sleep, in patients with Huntington Disease (HD). 23 patients with HD and 23 age- and sex-matched healthy controls were enrolled. EEG connectivity analysis was performed by means of exact Low Resolution Electric Tomography (eLORETA). In wake, HD patients showed an increase of delta lagged phase synchronization (T=3.60; p<0.05) among Broadman's Areas (BA) 6-8 bilaterally; right BA 6-8 and right BA 1-2-3; left BA 1-2-3 and left BA 4. In NREM, HD patients showed an increase of delta lagged phase synchronization (T=3.56; p<0.05) among left BA 1-2-3 and right BA 6-8. In REM, HD patients showed an increase of lagged phase synchronization (T=3.60; p<0.05) among the BA 6-8 bilaterally (delta band); left BA 1-2-3 and right BA 1-2-3 (theta); left BA 1-2-3 and right BA 4 (theta); left BA 1-2-3 and right BA 1-2-3 (alpha). Our results may reflect an abnormal function of the motor areas or an effort to counterbalance the pathological motor output. Our results may help to understand the pathophysiology of sleep-related movement disorders in Huntington's Disease, and to define therapeutically strategies. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  11. Motor cortical activity during motor tasks is normal in patients with complex regional pain syndrome.

    Science.gov (United States)

    van Velzen, Gijsbrecht A J; Marinus, Johan; van Dijk, J Gert; van Zwet, Erik W; Schipper, Inger B; van Hilten, Jacobus J

    2015-01-01

    Motor dysfunction in complex regional pain syndrome (CRPS) is often considered a functional movement disorder. Earlier studies in patients with functional movement disorders found evidence of cortical inhibition during explicit but not implicit motor tasks, suggesting active inhibition from other brain areas. In this study, we explored whether active inhibition occurs in CRPS patients. We compared patients with CRPS with 2 control groups: healthy controls matched for age and sex, and patients whose hand was immobilized to treat a scaphoid fracture. We used transcranial magnetic stimulation to measure corticospinal excitability at rest and during motor imagery (explicit motor task) and motor observation (implicit motor task). Motor corticospinal excitation measured at rest and during implicit and explicit motor tasks was similar for CRPS patients and healthy controls. Patients with an immobilized hand showed an absence of motor cortical excitation of the corresponding hemisphere during motor imagery of tasks involving the immobilized hand, but not during motor observation. The normal motor cortical processing during motor imagery and motor observation found in the corresponding hemisphere of CPRS patients suggests that the nature of motor dysfunction in this condition differs from that described in literature for patients with functional paresis or under circumstances of limb immobilization. This study shows that the nature of motor dysfunction in CRPS patients differs from that encountered in patients with functional paresis or under circumstances of limb immobilization. This information is important for patients and pain clinicians and could help prevent implementation of therapeutic strategies based on incorrect assumptions. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.

  12. Functional MR imaging of the motor cortex in healthy volunteers and patients with brain tumours: qualitative and quantitative results

    International Nuclear Information System (INIS)

    Fellner, C.; Friedrich-Alexander-Univ., Erlangen-Nuernberg; Schlaier, J.; Schwerdtner, J.; Brawanski, A.; Fellner, F.; Oberoesterreichische Landesnervenklinik, Linz; Held, P.; Blank, M.; Kalender, W.A.

    1999-01-01

    The purpose of this study was to compare functional magnetic resonance (MR) imaging of the motor cortex in healthy volunteers and patients with brain tumours. Functional MR imaging was performed in 14 healthy volunteers and 14 patients with tumours in or near the primary motor cortex with groups being matched for age, sex, and handedness. Functional images were acquired during motion of the right and left hand. Time courses of signal intensity within the contralateral, ipsilateral, and supplementary motor cortex as well as z-maps were calculated, their quality being assessed visually. Mean signal increase between activation and rest were evaluated within the contralateral, ipsilateral, and supplementary motor cortex, the activated area in those regions of interest was measured using z-maps. The quality of functional MR experiments was generally lower in patients than in volunteers. The quantitative results showed a trend towards increased ipsilateral activation in volunteers during left hand compared to right hand motion and in patients during motion of the affected compared to the non-affected hand. Considering quantitative and qualitative results, significantly increased ipsilateral activation was found in patients compared to healthy volunteers. In conclusion, functional MR imaging quality was significantly reduced in patient studies compared to healthy volunteers, even if influences of age, sex, and handedness were excluded. Increased ipsilateral activation was found in patients with brain tumours which can be interpreted by an improved connectivity between both hemispheres. (orig.) [de

  13. Non-compact left ventricle/hypertrabeculated left ventricle

    International Nuclear Information System (INIS)

    Restrepo, Gustavo; Castano, Rafael; Marmol, Alejandro

    2005-01-01

    Non-compact left ventricle/hypertrabeculated left ventricle is a myocardiopatie produced by an arrest of the normal left ventricular compaction process during the early embryogenesis. It is associated to cardiac anomalies (congenital cardiopaties) as well as to extracardial conditions (neurological, facial, hematologic, cutaneous, skeletal and endocrinological anomalies). This entity is frequently unnoticed, being diagnosed only in centers with great experience in the diagnosis and treatment of myocardiopathies. Many cases of non-compact left ventricle have been initially misdiagnosed as hypertrophic myocardiopatie, endocardial fibroelastosis, dilated cardiomyopatie, restrictive cardiomyopathy and endocardial fibrosis. It is reported the case of a 74 years old man with a history of chronic arterial hypertension and diabetes mellitus, prechordial chest pain and mild dyspnoea. An echocardiogram showed signs of non-compact left ventricle with prominent trabeculations and deep inter-trabecular recesses involving left ventricular apical segment and extending to the lateral and inferior walls. Literature on this topic is reviewed

  14. System programs design of motors; Sistema de programas de diseno de motores

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Gonzalez Palomas, Oscar; Ciprian Avila, Fernando [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1988-12-31

    This paper describes the objective of creating the program system for induction motors design SIPRODIMO, its scope, its general characteristics, its structure and the results obtained with its application, as well as the service capacity developed by the Motors Area of the Instituto de Investigaciones Elctricas. [Espanol] En este articulo se describe el objetivo de crear el sistema de programas de diseno de motores de induccion, Siprodimo, su alcance, sus caracteristicas generales, su estructura y los resultados obtenidos con su aplicacion, asi como la capacidad de servicio desarrollada por el area de motores, del Instituto de Investigaciones Electricas.

  15. Cognitive aging affects motor performance and learning.

    Science.gov (United States)

    Ren, Jie; Wu, Yan D; Chan, John S Y; Yan, Jin H

    2013-01-01

    Substantial evidence indicates that declines in cognitive and motor functioning are often observed when we age. The interdependence of cognition and behavior has been reported in a wide range of studies. However, research on the cognitive-motor associations in aging has been lacking. We review behavioral and neural characteristics of cognitive aging in relation to motor aging and aim to elucidate their interrelationships in an aging context. From a developmental view, we propose an integrative concept focusing on the dynamics of cognitive functioning, motor performance and skill acquisition. In the framework, representations and motor learning potential are closely related. and supported by distributed neural systems, which are less susceptible to functional declines in the aging process. Mostly supported by high-level areas, control processes, motor learning efficiency and motor performance are closely related. As high-level areas are more vulnerable during aging, control processes, motor learning efficiency and motor performance are substantially affected when one approaches late adulthood. Practical implications and future research directions are discussed. © 2012 Japan Geriatrics Society.

  16. Effect of perceptual learning on motor skills of hands: a functional magnetic resonance imaging study.

    Science.gov (United States)

    Yamada, Minoru; Kawachi, Takashi; Kawamitsu, Hideki; Yamada, Tatsuya; Konishi, Junya; Fujii, Masahiko; Sugimura, Kazuro; Maeda, Kiyoshi; Kawamata, Toshio

    2010-08-23

    Our aim was to clarify the mechanism by which perceptual learning improves motor skills of hands. We included 18 healthy volunteers (age 21.3 ± 0.3 years, mean ± standard deviation) in the study with a crossover design. The subjects were randomly classified into 3 groups, and they performed a 2-ball quick rotation task with a hand. The role of perceptual learning in improving the ability to discern the length of a wooden stick held between the left thumb and index finger was studied between the first and second sessions of the task in group A, and between the second and third sessions in groups B and C with a period of rest interval between the first and second sessions. Functional magnetic resonance imaging (fMRI) was performed for each group during the perceptual learning session. The effect of intervention, in the form of perceptual learning, on the task performance was significantly greater than that of non-intervention in all subjects (p = 0.022). Among all the activated brain areas, the bilateral prefrontal cortices, right premotor area, right supplementary motor area, right primary sensory area, right primary motor area, right inferior parietal lobe, right thalamus, and left cerebellar posterior lobe showed positive correlations between the respective contrasts from the single-subject analysis and the behavioral data before and after the interventions (p < 0.001). This result indicates a pivotal role of the frontoparietal or frontocerebellar circuits in sensorimotor integration; a specific approach that activates these circuits should be developed for clinical rehabilitation of patients.

  17. Mechanical discordance between left atrium and left atrial appendage

    Directory of Open Access Journals (Sweden)

    Arash Khamooshian

    2018-01-01

    Full Text Available During standard transesophageal echocardiographic examinations in sinus rhythm (SR patients, the left atrial appendage (LAA is not routinely assessed with Doppler. Despite having a SR, it is still possible to have irregular activity in the LAA. This situation is even more important for SR patients where assessment of the left atrium is often foregone. We describe a case where we encountered this situation and briefly review how to assess the left atrium and its appendage in such a case scenario.

  18. Non-concomitant cortical structural and functional alterations in sensorimotor areas following incomplete spinal cord injury

    Directory of Open Access Journals (Sweden)

    Yu Pan

    2017-01-01

    Full Text Available Brain plasticity, including anatomical changes and functional reorganization, is the physiological basis of functional recovery after spinal cord injury (SCI. The correlation between brain anatomical changes and functional reorganization after SCI is unclear. This study aimed to explore whether alterations of cortical structure and network function are concomitant in sensorimotor areas after incomplete SCI. Eighteen patients with incomplete SCI (mean age 40.94 ± 14.10 years old; male:female, 7:11 and 18 healthy subjects (37.33 ± 11.79 years old; male:female, 7:11 were studied by resting state functional magnetic resonance imaging. Gray matter volume (GMV and functional connectivity were used to evaluate cortical structure and network function, respectively. There was no significant alteration of GMV in sensorimotor areas in patients with incomplete SCI compared with healthy subjects. Intra-hemispheric functional connectivity between left primary somatosensory cortex (BA1 and left primary motor cortex (BA4, and left BA1 and left somatosensory association cortex (BA5 was decreased, as well as inter-hemispheric functional connectivity between left BA1 and right BA4, left BA1 and right BA5, and left BA4 and right BA5 in patients with SCI. Functional connectivity between both BA4 areas was also decreased. The decreased functional connectivity between the left BA1 and the right BA4 positively correlated with American Spinal Injury Association sensory score in SCI patients. The results indicate that alterations of cortical anatomical structure and network functional connectivity in sensorimotor areas were non-concomitant in patients with incomplete SCI, indicating the network functional changes in sensorimotor areas may not be dependent on anatomic structure. The strength of functional connectivity within sensorimotor areas could serve as a potential imaging biomarker for assessment and prediction of sensory function in patients with incomplete SCI

  19. [Left-handedness and health].

    Science.gov (United States)

    Milenković, Sanja; Belojević, Goran; Kocijancić, Radojka

    2010-01-01

    Hand dominance is defined as a proneness to use one hand rather than another in performing the majority of activities and this is the most obvious example of cerebral lateralization and an exclusive human characteristic. Left-handed people comprise 6-14% of the total population, while in Serbia, this percentage is 5-10%, moving from undeveloped to developed environments, where a socio-cultural pressure is less present. There is no agreement between investigators who in fact may be considered a left-handed person, about the percentage of left-handers in the population and about the etiology of left-handedness. In the scientific literature left-handedness has been related to health disorders (spine deformities, immunological disorders, migraine, neurosis, depressive psychosis, schizophrenia, insomnia, homosexuality, diabetes mellitus, arterial hypertension, sleep apnea, enuresis nocturna and Down Syndrome), developmental disorders (autism, dislexia and sttutering) and traumatism. The most reliable scientific evidences have been published about the relationship between left-handedness and spinal deformities in school children in puberty and with traumatism in general population. The controversy of other results in up-to-now investigations of health aspects of left-handedness may partly be explained by a scientific disagreement whether writing with the left hand is a sufficient criterium for left-handedness, or is it necessary to investigate other parameters for laterality assessment. Explanation of health aspects of left-handedness is dominantly based on Geschwind-Galaburda model about "anomalous" cerebral domination, as a consequence of hormonal disbalance.

  20. Motor Priming in Neurorehabilitation

    OpenAIRE

    Stoykov, Mary Ellen; Madhavan, Sangeetha

    2015-01-01

    Priming is a type of implicit learning wherein a stimulus prompts a change in behavior. Priming has been long studied in the field of psychology. More recently, rehabilitation researchers have studied motor priming as a possible way to facilitate motor learning. For example, priming of the motor cortex is associated with changes in neuroplasticity that are associated with improvements in motor performance. Of the numerous motor priming paradigms under investigation, only a few ...

  1. Psychotic Symptoms Associated with Left Caudate Infarction

    Directory of Open Access Journals (Sweden)

    Ying-Chih Cheng

    2015-09-01

    Full Text Available Psychotic symptoms following acquired brain lesion are relatively rare, and thus, the specific association linking such symptoms to the distinct brain structure remains unclear. The frontal–subcortical circuits are thought to modulate motor activity and human behavior, and have been reported to be associated with many neuropsychiatric symptoms. We herein report the case of a 77-year-old man without previous psychiatric disorder who developed a new onset of psychotic symptoms following left caudate infarction. The presented case supports the fact that psychosis might arise from alteration of the distinct brain structure. The functional impairment of the frontal–subcortical circuits may be a critical factor linking the pathogenesis of psychosis associated with acquired brain lesion.

  2. Preservation of motor maps with increased motor evoked potential amplitude threshold in RMT determination.

    Science.gov (United States)

    Lucente, Giuseppe; Lam, Steven; Schneider, Heike; Picht, Thomas

    2018-02-01

    Non-invasive pre-surgical mapping of eloquent brain areas with navigated transcranial magnetic stimulation (nTMS) is a useful technique linked to the improvement of surgical planning and patient outcomes. The stimulator output intensity and subsequent resting motor threshold determination (rMT) are based on the motor-evoked potential (MEP) elicited in the target muscle with an amplitude above a predetermined threshold of 50 μV. However, a subset of patients is unable to achieve complete relaxation in the target muscles, resulting in false positives that jeopardize mapping validity with conventional MEP determination protocols. Our aim is to explore the feasibility and reproducibility of a novel mapping approach that investigates how an increase of the MEP amplitude threshold to 300 and 500 μV affects subsequent motor maps. Seven healthy subjects underwent motor mapping with nTMS. RMT was calculated with the conventional methodology in conjunction with experimental 300- and 500-μV MEP amplitude thresholds. Motor mapping was performed with 105% of rMT stimulator intensity using the FDI as the target muscle. Motor mapping was possible in all patients with both the conventional and experimental setups. Motor area maps with a conventional 50-μV threshold showed poor correlation with 300-μV (α = 0.446, p motor area maps (α = 0.974, p motor area mapping with nTMS without losing precision.

  3. Differential adaptation of descending motor tracts in musicians.

    Science.gov (United States)

    Rüber, Theodor; Lindenberg, Robert; Schlaug, Gottfried

    2015-06-01

    Between-group comparisons of musicians and nonmusicians have revealed structural brain differences and also functional differences in motor performance. In this study, we aimed to examine the relation between white matter microstructure and high-level motor skills by contrasting 2 groups of musicians with different instrument-specific motor requirements. We used diffusion tensor imaging to compare diffusivity measures of different corticospinal motor tracts of 10 keyboard players, 10 string players, and 10 nonmusicians. Additionally, the maximal tapping rates of their left and right index fingers were determined. When compared with nonmusicians, fractional anisotropy (FA) values of right-hemispheric motor tracts were significantly higher in both musician groups, whereas left-hemispheric motor tracts showed significantly higher FA values only in the keyboard players. Voxel-wise FA analysis found a group effect in white matter underlying the right motor cortex. Diffusivity measures of fibers originating in the primary motor cortex correlated with the maximal tapping rate of the contralateral index finger across all groups. The observed between-group diffusivity differences might represent an adaptation to the specific motor demands of the respective musical instrument. This is supported further by finding correlations between diffusivity measures and maximal tapping rates. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. How Thoughts Give Rise to Action - Conscious Motor Intention Increases the Excitability of Target-Specific Motor Circuits

    Science.gov (United States)

    Zschorlich, Volker R.; Köhling, Rüdiger

    2013-01-01

    The present study shows evidence for conscious motor intention in motor preparation prior to movement execution. We demonstrate that conscious motor intention of directed movement, combined with minimally supra-threshold transcranial magnetic stimulation (TMS) of the motor cortex, determines the direction and the force of resulting movements, whilst a lack of intention results in weak and omni-directed muscle activation. We investigated changes of consciously intended goal directed movements by analyzing amplitudes of motor-evoked potentials of the forearm muscle, flexor carpi radialis (FCR), and extensor carpi radialis (ECR), induced by transcranial magnetic stimulation over the right motor cortex and their motor outcome. Right-handed subjects were asked to develop a strong intention to move their left wrist (flexion or extension), without any overt motor output at the wrist, prior to brain stimulation. Our analyses of hand acceleration and electromyography showed that during the strong motor intention of wrist flexion movement, it evoked motor potential responses that were significantly larger in the FCR muscle than in the ECR, whilst the opposite was true for an extension movement. The acceleration data on flexion/extension corresponded to this finding. Under no-intention conditions again, which served as a reference for motor evoked potentials, brain stimulation resulted in undirected and minimally simultaneous extension/flexion innervation and virtually no movement. These results indicate that conscious intentions govern motor function, which in turn shows that a neuronal activation representing an “intention network” in the human brain pre-exists, and that it functionally represents target specific motor circuits. Until today, it was unclear whether conscious motor intention exists prior to movement, or whether the brain constructs such an intention after movement initiation. Our study gives evidence that motor intentions become aware before any motor

  5. How thoughts give rise to action - conscious motor intention increases the excitability of target-specific motor circuits.

    Directory of Open Access Journals (Sweden)

    Volker R Zschorlich

    Full Text Available The present study shows evidence for conscious motor intention in motor preparation prior to movement execution. We demonstrate that conscious motor intention of directed movement, combined with minimally supra-threshold transcranial magnetic stimulation (TMS of the motor cortex, determines the direction and the force of resulting movements, whilst a lack of intention results in weak and omni-directed muscle activation. We investigated changes of consciously intended goal directed movements by analyzing amplitudes of motor-evoked potentials of the forearm muscle, flexor carpi radialis (FCR, and extensor carpi radialis (ECR, induced by transcranial magnetic stimulation over the right motor cortex and their motor outcome. Right-handed subjects were asked to develop a strong intention to move their left wrist (flexion or extension, without any overt motor output at the wrist, prior to brain stimulation. Our analyses of hand acceleration and electromyography showed that during the strong motor intention of wrist flexion movement, it evoked motor potential responses that were significantly larger in the FCR muscle than in the ECR, whilst the opposite was true for an extension movement. The acceleration data on flexion/extension corresponded to this finding. Under no-intention conditions again, which served as a reference for motor evoked potentials, brain stimulation resulted in undirected and minimally simultaneous extension/flexion innervation and virtually no movement. These results indicate that conscious intentions govern motor function, which in turn shows that a neuronal activation representing an "intention network" in the human brain pre-exists, and that it functionally represents target specific motor circuits. Until today, it was unclear whether conscious motor intention exists prior to movement, or whether the brain constructs such an intention after movement initiation. Our study gives evidence that motor intentions become aware before

  6. Intramuscular hematoma with motor weakness after trigger point injection: A case report.

    Science.gov (United States)

    Kim, Sang Gyun; Shim, Kwang Seok; Lee, Dong Won; Kim, Eun Ju; Lee, Sang-Gon; Lee, Ji-Hyang; An, Ji Hyun

    2017-09-01

    Although trigger point injection is known as an easy and low-risk procedure, it is contraindicated to patients with hemorrhagic disorders or who regularly take anticoagulants/antiplatelets. However, taking clopidogrel is not a defined contraindication to this low-risk procedure. The chief complaint of a 76-year old woman regularly taking clopidogrel was low back and left buttock pain which prolonged for several years. The patient was diagnosed with L4-5 and L5-S1 spinal stenosis at the orthopedics department and was referred for lumbar spinal epidural steroid injection. She was treated with trigger point injection. Three hours after the injection, she complained motor weakness and pain in the injection area. A hematoma on left gluteus medium muscle was detected with ultrasonography and ultrasound-guided needle aspiration was accomplished to relieve the symptom. Trigger point injection for patients taking clopidogrel should be done with a caution to prevent such complication.

  7. 40 CFR 52.2424 - Motor vehicle emissions budgets.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Motor vehicle emissions budgets. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Virginia § 52.2424 Motor vehicle emissions budgets. (a) Motor vehicle emissions budget for the Hampton Roads maintenance area adjusting the...

  8. 76 FR 24402 - Federal Motor Vehicle Theft Prevention Standard

    Science.gov (United States)

    2011-05-02

    ... [Docket No. NHTSA-2009-0069] RIN 2127-AK81 Federal Motor Vehicle Theft Prevention Standard AGENCY... of motor vehicles. E-mail is now included as a means to submit the target area designations. Under the Theft Prevention Standard, manufacturers of high theft passenger motor vehicle lines subject to...

  9. Association Between Motor Symptoms and Brain Metabolism in Early Huntington Disease.

    Science.gov (United States)

    Gaura, Véronique; Lavisse, Sonia; Payoux, Pierre; Goldman, Serge; Verny, Christophe; Krystkowiak, Pierre; Damier, Philippe; Supiot, Frédéric; Bachoud-Levi, Anne-Catherine; Remy, Philippe

    2017-09-01

    Brain hypometabolism is associated with the clinical consequences of the degenerative process, but little is known about regional hypermetabolism, sometimes observed in the brain of patients with clinically manifest Huntington disease (HD). Studying the role of regional hypermetabolism is needed to better understand its interaction with the motor symptoms of the disease. To investigate the association between brain hypometabolism and hypermetabolism with motor scores of patients with early HD. This study started in 2001, and analysis was completed in 2016. Sixty symptomatic patients with HD and 15 healthy age-matched control individuals underwent positron emission tomography to measure cerebral metabolism in this cross-sectional study. They also underwent the Unified Huntington's Disease Rating Scale motor test, and 2 subscores were extracted: (1) a hyperkinetic score, combining dystonia and chorea, and (2) a hypokinetic score, combining bradykinesia and rigidity. Statistical parametric mapping software (SPM5) was used to identify all hypo- and hypermetabolic regions in patients with HD relative to control individuals. Correlation analyses (P < .001, uncorrected) between motor subscores and brain metabolic values were performed for regions with significant hypometabolism and hypermetabolism. Among 60 patients with HD, 22 were women (36.7%), and the mean (SD) age was 44.6 (7.6) years. Of the 15 control individuals, 7 were women (46.7%), and the mean (SD) age was 42.2 (7.3) years. In statistical parametric mapping, striatal hypometabolism was significantly correlated with the severity of all motor scores. Hypermetabolism was negatively correlated only with hypokinetic scores in the cuneus (z score = 3.95, P < .001), the lingual gyrus (z score = 4.31, P < .001), and the crus I/II of the cerebellum (z score = 3.77, P < .001), a region connected to associative cortical areas. More severe motor scores were associated with higher metabolic

  10. Task-dependent activation of distinct fast and slow(er) motor pathways during motor imagery.

    Science.gov (United States)

    Keller, Martin; Taube, Wolfgang; Lauber, Benedikt

    2018-02-22

    Motor imagery and actual movements share overlapping activation of brain areas but little is known about task-specific activation of distinct motor pathways during mental simulation of movements. For real contractions, it was demonstrated that the slow(er) motor pathways are activated differently in ballistic compared to tonic contractions but it is unknown if this also holds true for imagined contractions. The aim of the present study was to assess the activity of fast and slow(er) motor pathways during mentally simulated movements of ballistic and tonic contractions. H-reflexes were conditioned with transcranial magnetic stimulation at different interstimulus intervals to assess the excitability of fast and slow(er) motor pathways during a) the execution of tonic and ballistic contractions, b) motor imagery of these contraction types, and c) at rest. In contrast to the fast motor pathways, the slow(er) pathways displayed a task-specific activation: for imagined ballistic as well as real ballistic contractions, the activation was reduced compared to rest whereas enhanced activation was found for imagined tonic and real tonic contractions. This study provides evidence that the excitability of fast and slow(er) motor pathways during motor imagery resembles the activation pattern observed during real contractions. The findings indicate that motor imagery results in task- and pathway-specific subliminal activation of distinct subsets of neurons in the primary motor cortex. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Directed flux motor

    Science.gov (United States)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2011-01-01

    A directed flux motor described utilizes the directed magnetic flux of at least one magnet through ferrous material to drive different planetary gear sets to achieve capabilities in six actuated shafts that are grouped three to a side of the motor. The flux motor also utilizes an interwoven magnet configuration which reduces the overall size of the motor. The motor allows for simple changes to modify the torque to speed ratio of the gearing contained within the motor as well as simple configurations for any number of output shafts up to six. The changes allow for improved manufacturability and reliability within the design.

  12. Neuroplasticity & Motor Learning

    DEFF Research Database (Denmark)

    Jensen, Jesper Lundbye

    is a measure of our ability to form and store a motor memory of the task. However, the initial memory of the task is labile and may be subject to interference. During and following motor learning plastic changes occur within the central nervous system. On one hand these changes are driven by motor practice......, on the other hand the changes underlie the formation of motor memory and the retention of improved motor performance. During motor learning changes may occur at many different levels within the central nervous system dependent on the type of task and training. Here, we demonstrate different studies from our...

  13. Electric motor handbook

    CERN Document Server

    Chalmers, B J

    2013-01-01

    Electric Motor Handbook aims to give practical knowledge in a wide range of capacities such as plant design, equipment specification, commissioning, operation and maintenance. The book covers topics such as the modeling of steady-state motor performance; polyphase induction, synchronous, and a.c. commutator motors; ambient conditions, enclosures, cooling and loss dissipation; and electrical supply systems and motor drives. Also covered are topics such as variable-speed drives and motor control; materials and motor components; insulation types, systems, and techniques; and the installation, sit

  14. Implicit Learning of a Finger Motor Sequence by Patients with Cerebral Palsy After Neurofeedback.

    Science.gov (United States)

    Alves-Pinto, Ana; Turova, Varvara; Blumenstein, Tobias; Hantuschke, Conny; Lampe, Renée

    2017-03-01

    Facilitation of implicit learning of a hand motor sequence after a single session of neurofeedback training of alpha power recorded from the motor cortex has been shown in healthy individuals (Ros et al., Biological Psychology 95:54-58, 2014). This facilitation effect could be potentially applied to improve the outcome of rehabilitation in patients with impaired hand motor function. In the current study a group of ten patients diagnosed with cerebral palsy trained reduction of alpha power derived from brain activity recorded from right and left motor areas. Training was distributed in three periods of 8 min each. In between, participants performed a serial reaction time task with their non-dominant hand, to a total of five runs. A similar procedure was repeated a week or more later but this time training was based on simulated brain activity. Reaction times pooled across participants decreased on each successive run faster after neurofeedback training than after the simulation training. Also recorded were two 3-min baseline conditions, once with the eyes open, another with the eyes closed, at the beginning and end of the experimental session. No significant changes in alpha power with neurofeedback or with simulation training were obtained and no correlation with the reductions in reaction time could be established. Contributions for this are discussed.

  15. Myxoma of the Left Ventricle

    Science.gov (United States)

    Novoa, José; Delgado, Antonio; Alonso, Ana

    2014-01-01

    This report concerns a 69-year-old woman who presented with an asymptomatic myxoma in the left ventricle. The tumor was successfully excised. We provide a very brief review of 72 other published cases of surgically treated left ventricular myxoma. PMID:25120392

  16. Left ventricular hypertrophy in athletes.

    Science.gov (United States)

    Douglas, P S; O'Toole, M L; Katz, S E; Ginsburg, G S; Hiller, W D; Laird, R H

    1997-11-15

    Left ventricular wall thickness >1.3 cm, septal-to-posterior wall ratios > 1.5, diastolic left ventricular size >6.0 cm, and eccentric or concentric remodeling are rare in athletes. Values outside of these cutoffs in an athlete of any age probably represent a pathologic state.

  17. The Left-Handed Writer.

    Science.gov (United States)

    Bloodsworth, James Gaston

    Contrary to the beliefs of many, right-handedness is not a single factor existing in almost all people, with a few exceptions termed left-handed: neither extreme exists independently of the other. During the first 4 years of life there is a period of fluctuation between right and left-handed dominance. Statistics and findings vary in determining…

  18. Two Lefts in Latin America?

    DEFF Research Database (Denmark)

    Christensen, Steen Fryba

    In this working paper I list five researchers' categorizations of the Latin American left in power (april 2006) in a schematic form. The most important criteria for the categorizations are given.......In this working paper I list five researchers' categorizations of the Latin American left in power (april 2006) in a schematic form. The most important criteria for the categorizations are given....

  19. A Giant Left Atrial Myxoma

    Directory of Open Access Journals (Sweden)

    Medhat F. Zaher

    2014-01-01

    Full Text Available Atrial myxomas are the most common primary cardiac tumors. Patients with left atrial myxomas generally present with mechanical obstruction of blood flow, systemic embolization, and constitutional symptoms. We present a case of an unusually large left atrial myxoma discovered incidentally in a patient with longstanding dyspnea being managed as bronchial asthma.

  20. Brain oscillatory signatures of motor tasks.

    Science.gov (United States)

    Ramos-Murguialday, Ander; Birbaumer, Niels

    2015-06-01

    Noninvasive brain-computer-interfaces (BCI) coupled with prosthetic devices were recently introduced in the rehabilitation of chronic stroke and other disorders of the motor system. These BCI systems and motor rehabilitation in general involve several motor tasks for training. This study investigates the neurophysiological bases of an EEG-oscillation-driven BCI combined with a neuroprosthetic device to define the specific oscillatory signature of the BCI task. Controlling movements of a hand robotic orthosis with motor imagery of the same movement generates sensorimotor rhythm oscillation changes and involves three elements of tasks also used in stroke motor rehabilitation: passive and active movement, motor imagery, and motor intention. We recorded EEG while nine healthy participants performed five different motor tasks consisting of closing and opening of the hand as follows: 1) motor imagery without any external feedback and without overt hand movement, 2) motor imagery that moves the orthosis proportional to the produced brain oscillation change with online proprioceptive and visual feedback of the hand moving through a neuroprosthetic device (BCI condition), 3) passive and 4) active movement of the hand with feedback (seeing and feeling the hand moving), and 5) rest. During the BCI condition, participants received contingent online feedback of the decrease of power of the sensorimotor rhythm, which induced orthosis movement and therefore proprioceptive and visual information from the moving hand. We analyzed brain activity during the five conditions using time-frequency domain bootstrap-based statistical comparisons and Morlet transforms. Activity during rest was used as a reference. Significant contralateral and ipsilateral event-related desynchronization of sensorimotor rhythm was present during all motor tasks, largest in contralateral-postcentral, medio-central, and ipsilateral-precentral areas identifying the ipsilateral precentral cortex as an integral

  1. Brain oscillatory signatures of motor tasks

    Science.gov (United States)

    Birbaumer, Niels

    2015-01-01

    Noninvasive brain-computer-interfaces (BCI) coupled with prosthetic devices were recently introduced in the rehabilitation of chronic stroke and other disorders of the motor system. These BCI systems and motor rehabilitation in general involve several motor tasks for training. This study investigates the neurophysiological bases of an EEG-oscillation-driven BCI combined with a neuroprosthetic device to define the specific oscillatory signature of the BCI task. Controlling movements of a hand robotic orthosis with motor imagery of the same movement generates sensorimotor rhythm oscillation changes and involves three elements of tasks also used in stroke motor rehabilitation: passive and active movement, motor imagery, and motor intention. We recorded EEG while nine healthy participants performed five different motor tasks consisting of closing and opening of the hand as follows: 1) motor imagery without any external feedback and without overt hand movement, 2) motor imagery that moves the orthosis proportional to the produced brain oscillation change with online proprioceptive and visual feedback of the hand moving through a neuroprosthetic device (BCI condition), 3) passive and 4) active movement of the hand with feedback (seeing and feeling the hand moving), and 5) rest. During the BCI condition, participants received contingent online feedback of the decrease of power of the sensorimotor rhythm, which induced orthosis movement and therefore proprioceptive and visual information from the moving hand. We analyzed brain activity during the five conditions using time-frequency domain bootstrap-based statistical comparisons and Morlet transforms. Activity during rest was used as a reference. Significant contralateral and ipsilateral event-related desynchronization of sensorimotor rhythm was present during all motor tasks, largest in contralateral-postcentral, medio-central, and ipsilateral-precentral areas identifying the ipsilateral precentral cortex as an integral

  2. Aberrant Hyperconnectivity in the Motor System at Rest Is Linked to Motor Abnormalities in Schizophrenia Spectrum Disorders.

    Science.gov (United States)

    Walther, Sebastian; Stegmayer, Katharina; Federspiel, Andrea; Bohlhalter, Stephan; Wiest, Roland; Viher, Petra V

    2017-09-01

    Motor abnormalities are frequently observed in schizophrenia and structural alterations of the motor system have been reported. The association of aberrant motor network function, however, has not been tested. We hypothesized that abnormal functional connectivity would be related to the degree of motor abnormalities in schizophrenia. In 90 subjects (46 patients) we obtained resting stated functional magnetic resonance imaging (fMRI) for 8 minutes 40 seconds at 3T. Participants further completed a motor battery on the scanning day. Regions of interest (ROI) were cortical motor areas, basal ganglia, thalamus and motor cerebellum. We computed ROI-to-ROI functional connectivity. Principal component analyses of motor behavioral data produced 4 factors (primary motor, catatonia and dyskinesia, coordination, and spontaneous motor activity). Motor factors were correlated with connectivity values. Schizophrenia was characterized by hyperconnectivity in 3 main areas: motor cortices to thalamus, motor cortices to cerebellum, and prefrontal cortex to the subthalamic nucleus. In patients, thalamocortical hyperconnectivity was linked to catatonia and dyskinesia, whereas aberrant connectivity between rostral anterior cingulate and caudate was linked to the primary motor factor. Likewise, connectivity between motor cortex and cerebellum correlated with spontaneous motor activity. Therefore, altered functional connectivity suggests a specific intrinsic and tonic neural abnormality in the motor system in schizophrenia. Furthermore, altered neural activity at rest was linked to motor abnormalities on the behavioral level. Thus, aberrant resting state connectivity may indicate a system out of balance, which produces characteristic behavioral alterations. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Handbook on linear motor application

    International Nuclear Information System (INIS)

    1988-10-01

    This book guides the application for Linear motor. It lists classification and speciality of Linear Motor, terms of linear-induction motor, principle of the Motor, types on one-side linear-induction motor, bilateral linear-induction motor, linear-DC Motor on basic of the motor, linear-DC Motor for moving-coil type, linear-DC motor for permanent-magnet moving type, linear-DC motor for electricity non-utility type, linear-pulse motor for variable motor, linear-pulse motor for permanent magneto type, linear-vibration actuator, linear-vibration actuator for moving-coil type, linear synchronous motor, linear electromagnetic motor, linear electromagnetic solenoid, technical organization and magnetic levitation and linear motor and sensor.

  4. Left-handedness and health

    Directory of Open Access Journals (Sweden)

    Milenković Sanja

    2010-01-01

    Full Text Available Hand dominance is defined as a proneness to use one hand rather than another in performing the majority of activities and this is the most obvious example of cerebral lateralization and an exclusive human characteristic. Left-handed people comprise 6-14% of the total population, while in Serbia, this percentage is 5-10%, moving from undeveloped to developed environments, where a socio-cultural pressure is less present. There is no agreement between investigators who in fact may be considered a left-handed person, about the percentage of left-handers in the population and about the etiology of left-handedness. In the scientific literature left-handedness has been related to health disorders (spine deformities, immunological disorders, migraine, neurosis, depressive psychosis, schizophrenia, insomnia, homosexuality, diabetes mellitus, arterial hypertension, sleep apnea, enuresis nocturna and Down Syndrome, developmental disorders (autism, dislexia and sttutering and traumatism. The most reliable scientific evidences have been published about the relationship between left-handedness and spinal deformities in school children in puberty and with traumatism in general population. The controversy of other results in up-to-now investigations of health aspects of left-handedness may partly be explained by a scientific disagreement whether writing with the left hand is a sufficient criterium for left-handedness, or is it necessary to investigate other parameters for laterality assessment. Explanation of health aspects of left-handedness is dominantly based on Geschwind-Galaburda model about 'anomalous' cerebral domination, as a consequence of hormonal disbalance. .

  5. Left ventricular wall stress compendium.

    Science.gov (United States)

    Zhong, L; Ghista, D N; Tan, R S

    2012-01-01

    Left ventricular (LV) wall stress has intrigued scientists and cardiologists since the time of Lame and Laplace in 1800s. The left ventricle is an intriguing organ structure, whose intrinsic design enables it to fill and contract. The development of wall stress is intriguing to cardiologists and biomedical engineers. The role of left ventricle wall stress in cardiac perfusion and pumping as well as in cardiac pathophysiology is a relatively unexplored phenomenon. But even for us to assess this role, we first need accurate determination of in vivo wall stress. However, at this point, 150 years after Lame estimated left ventricle wall stress using the elasticity theory, we are still in the exploratory stage of (i) developing left ventricle models that properly represent left ventricle anatomy and physiology and (ii) obtaining data on left ventricle dynamics. In this paper, we are responding to the need for a comprehensive survey of left ventricle wall stress models, their mechanics, stress computation and results. We have provided herein a compendium of major type of wall stress models: thin-wall models based on the Laplace law, thick-wall shell models, elasticity theory model, thick-wall large deformation models and finite element models. We have compared the mean stress values of these models as well as the variation of stress across the wall. All of the thin-wall and thick-wall shell models are based on idealised ellipsoidal and spherical geometries. However, the elasticity model's shape can vary through the cycle, to simulate the more ellipsoidal shape of the left ventricle in the systolic phase. The finite element models have more representative geometries, but are generally based on animal data, which limits their medical relevance. This paper can enable readers to obtain a comprehensive perspective of left ventricle wall stress models, of how to employ them to determine wall stresses, and be cognizant of the assumptions involved in the use of specific models.

  6. The Left Atrio-Vertebral Ratio: a new simple means for assessing left atrial enlargement on Computed Tomography.

    Science.gov (United States)

    Montillet, Marie; Baqué-Juston, Marie; Tasu, Jean-Pierre; Bertrand, Sandra; Berthier, Frédéric; Zarqane, Naïma; Brunner, Philippe

    2018-03-01

    The purpose of this study is to describe a new method to quickly estimate left atrial enlargement (LAE) on Computed Tomography. Left atrial (LA) volume was assessed with a 3D-threshold Hounsfield unit detection technique, including left atrial appendage and excluding pulmonary venous confluence, in 201 patients with ECG-gated 128-slice dual-source CT and indexed to body surface area. LA and vertebral axial diameter and area were measured at the bottom level of the right inferior pulmonary vein ostium. Ratio of LA diameter and surface on vertebra (LAVD and LAVA) were compared to LA volume. In accordance with the literature, a cutoff value of 78 ml/m 2 was chosen for maximal normal LA volume. 18% of LA was enlarged. The best cutoff values for LAE assessment were 2.5 for LAVD (AUC: 0.65; 95% CI: 0.58-0.73; sensitivity: 57%; specificity: 71%), and 3 for LAVA (AUC: 0.78; 95% CI: 0.72-0.84; sensitivity: 67%; specificity: 79%), with higher accuracy for LAVA (P=0.015). Inter-observer and intra-observer variability were either good or excellent for LAVD and LAVA (respective intraclass coefficients: 0.792 and 0.910; 0.912 and 0.937). A left atrium area superior to three times the vertebral area indicates LAE with high specificity. • Left atrial enlargement is a frequent condition associated with poor cardiac outcome. • Left atrial enlargement is highly time-consuming to diagnose on CT. • The left atrio-vertebral ratio quickly assesses left atrial enlargement. • A left atrial area > three times vertebral area is highly specific.

  7. Chronic motor tic disorder

    Science.gov (United States)

    Chronic vocal tic disorder; Tic - chronic motor tic disorder ... Chronic motor tic disorder is more common than Tourette syndrome . Chronic tics may be forms of Tourette syndrome. Tics usually start at ...

  8. Teamwork in microtubule motors.

    Science.gov (United States)

    Mallik, Roop; Rai, Arpan K; Barak, Pradeep; Rai, Ashim; Kunwar, Ambarish

    2013-11-01

    Diverse cellular processes are driven by the collective force from multiple motor proteins. Disease-causing mutations cause aberrant function of motors, but the impact is observed at a cellular level and beyond, therefore necessitating an understanding of cell mechanics at the level of motor molecules. One way to do this is by measuring the force generated by ensembles of motors in vivo at single-motor resolution. This has been possible for microtubule motor teams that transport intracellular organelles, revealing unexpected differences between collective and single-molecule function. Here we review how the biophysical properties of single motors, and differences therein, may translate into collective motor function during organelle transport and perhaps in other processes outside transport. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Speech repetition as a window on the neurobiology of auditory-motor integration for speech: A voxel-based lesion symptom mapping study.

    Science.gov (United States)

    Rogalsky, Corianne; Poppa, Tasha; Chen, Kuan-Hua; Anderson, Steven W; Damasio, Hanna; Love, Tracy; Hickok, Gregory

    2015-05-01

    For more than a century, speech repetition has been used as an assay for gauging the integrity of the auditory-motor pathway in aphasia, thought classically to involve a linkage between Wernicke's area and Broca's area via the arcuate fasciculus. During the last decade, evidence primarily from functional imaging in healthy individuals has refined this picture both computationally and anatomically, suggesting the existence of a cortical hub located at the parietal-temporal boundary (area Spt) that functions to integrate auditory and motor speech networks for both repetition and spontaneous speech production. While functional imaging research can pinpoint the regions activated in repetition/auditory-motor integration, lesion-based studies are needed to infer causal involvement. Previous lesion studies of repetition have yielded mixed results with respect to Spt's critical involvement in speech repetition. The present study used voxel-based lesion symptom mapping (VLSM) to investigate the neuroanatomy of repetition of both real words and non-words in a sample of 47 patients with focal left hemisphere brain damage. VLSMs identified a large voxel cluster spanning gray and white matter in the left temporal-parietal junction, including area Spt, where damage was significantly related to poor non-word repetition. Repetition of real words implicated a very similar dorsal network including area Spt. Cortical regions including Spt were implicated in repetition performance even when white matter damage was factored out. In addition, removing variance associated with speech perception abilities did not alter the overall lesion pattern for either task. Together with past functional imaging work, our results suggest that area Spt is integral in both word and non-word repetition, that its contribution is above and beyond that made by white matter pathways, and is not driven by perceptual processes alone. These findings are highly consistent with the claim that Spt is an area of

  10. Muscle and motor neuron ciliary neurotrophic factor receptor α together maintain adult motor neuron axons in vivo.

    Science.gov (United States)

    Lee, Nancy; Serbinski, Carolyn R; Braunlin, Makayla R; Rasch, Matthew S; Rydyznski, Carolyn E; MacLennan, A John

    2016-12-01

    The molecular mechanisms maintaining adult motor innervation are comparatively unexplored relative to those involved during development. In addition to the fundamental neuroscience question, this area has important clinical ramifications given that loss of neuromuscular contact is thought to underlie several adult onset human neuromuscular diseases including amyotrophic lateral sclerosis. Indirect evidence suggests that ciliary neurotrophic factor (CNTF) receptors may contribute to adult motor neuron axon maintenance. To directly address this in vivo, we used adult onset mouse genetic disruption techniques to deplete motor neuron and muscle CNTF receptor α (CNTFRα), the essential ligand binding subunit of the receptor, and incorporated reporters labelling affected motor neuron axons and terminals. The combined depletion of motor neuron and muscle CNTFRα produced a large loss of motor neuron terminals and retrograde labelling of motor neurons with FluoroGold indicated axon die-back well beyond muscle, together revealing an essential role for CNTFRα in adult motor axon maintenance. In contrast, selective depletion of motor neuron CNTFRα did not affect motor innervation. These data, along with our previous work indicating no effect of muscle specific CNTFRα depletion on motor innervation, suggest that motor neuron and muscle CNTFRα function in concert to maintain motor neuron axons. The data also raise the possibility of motor neuron and/or muscle CNTFRα as therapeutic targets for adult neuromuscular denervating diseases. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Motor recovery by improvement of limb-kinetic apraxia in a chronic stroke patient.

    Science.gov (United States)

    Jang, Sung Ho

    2013-01-01

    We report on a chronic stroke patient who showed motor recovery by improvement of limb-kinetic apraxia (LKA) after undergoing intensive rehabilitation for a period of one month, which was demonstrated by diffusion tensor tractography (DTT) and transcranial magnetic stimulation (TMS). A 50-year-old male patient presented with severe paralysis of the left extremities at the onset of thalamic hemorrhage. At thirty months after onset, the patient exhibited moderate weakness of his left upper and lower extremities. In addition, he exhibited a slow, clumsy, and mutilated movement pattern during grasp-release movements of his left hand. During a one-month period of intensive rehabilitation, which was started at thrity months after onset, the patient showed 22% motor recovery of the left extremities. The slow, clumsy, and mutilated movement pattern of the left hand almost disappeared. DTTs of the corticospinal tract (CST) in both hemispheres originated from the cerebral cortex, including the primary motor cortex, and passed along the known CST pathway. The DTT of the right CST was located anterior to the old hemorrhagic lesion. TMS study performed at thirty and thirty-one months after onset showed normal and similar findings for motor evoked potential in terms of latency and amplitude of the left hand muscle. We think that the motor weakness of the left extremities in this patient was mainly ascribed to LKA and that most of the motor recovery during a one-month period of rehabilitation was attributed to improvement of LKA.

  12. The left IPL represents stored hand-postures for object use and action prediction

    Directory of Open Access Journals (Sweden)

    Michiel evan Elk

    2014-04-01

    Full Text Available Action semantics enables us to plan actions with objects and to predict others’ object-directed actions as well. Previous studies have suggested that action semantics are represented in a fronto-parietal action network that has also been implicated to play a role in action observation. In the present fMRI study it was investigated how activity within this network changes as a function of the predictability of an action involving multiple objects and requiring the use of action semantics. Participants performed an action prediction task in which they were required to anticipate the use of a centrally presented object that could be moved to an associated target object (e.g. hammer - nail. The availability of actor information (i.e. presenting a hand grasping the central object and the number of possible target objects (i.e. 0, 1 or 2 target objects were independently manipulated, resulting in different levels of predictability. It was found that making an action prediction based on actor information resulted in an increased activation in the extrastriate body area (EBA and the fronto-parietal action observation network (AON. Predicting actions involving a target object resulted in increased activation in the bilateral IPL and frontal motor areas. Within the AON, activity in the left inferior parietal lobe (IPL and the left premotor cortex (PMC increased as a function of the level of action predictability. Together these findings suggest that the left IPL represents stored hand-postures that can be used for planning object-directed actions and for predicting other’s actions as well.

  13. Programmable dc motor controller

    Science.gov (United States)

    Hopwood, J. E.

    1982-11-01

    A portable programmable dc motor controller, with features not available on commercial instruments was developed for controlling fixtures during welding processes. The controller can be used to drive any dc motor having tachometer feedback and motor requirements not exceeding 30 volts, 3 amperes. Among the controller's features are delayed start time, upslope time, speed, and downslope time.

  14. Electric Motor Thermal Management

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, Kevin S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-01

    Thermal management enables more efficient and cost-effective motors. This Annual Merit Review presentation describes the technical accomplishments and progress in electric motor thermal management R&D over the last year. This project supports a broad industry demand for data, analysis methods, and experimental techniques to improve and better understand motor thermal management.

  15. Efficiency of Brownian Motors

    OpenAIRE

    Parrondo, J. M. R.; Blanco, J. M.; Cao, F. J.; Brito, R.

    1998-01-01

    The efficiency of different types of Brownian motors is calculated analytically and numerically. We find that motors based on flashing ratchets present a,low efficiency and an unavoidable entropy production. On the other hand, a certain class of motors based on adiabatically changing potentials, named reversible ratchets, exhibit a higher efficiency and the entropy production can be arbitrarily reduced.

  16. Long-latency TMS-evoked potentials during motor execution and inhibition

    Directory of Open Access Journals (Sweden)

    Kentaro eYamanaka

    2013-11-01

    Full Text Available Transcranial magnetic stimulation (TMS has often been used in conjunction with electroencephalography (EEG, which is effective for the direct demonstration of cortical reactivity and corticocortical connectivity during cognitive tasks through the spatio-temporal pattern of long-latency TMS-evoked potentials (TEPs. However, it remains unclear what pattern is associated with the inhibition of a planned motor response. Therefore, we performed TMS-EEG recording during a go/stop task, in which participants were instructed to click a computer mouse with a right index finger when an indicator that was moving with a constant velocity reached a target (go trial or to avoid the click when the indicator randomly stopped just before it reached the target (stop trial. Single-pulse TMS to the left (contralateral or right (ipsilateral motor cortex was applied 500 ms before or just at the target time. TEPs related to motor execution and inhibition were obtained by subtractions between averaged EEG waveforms with and without TMS. As a result, in TEPs induced by both contralateral and ipsilateral TMS, small oscillations were followed by a prominent negative deflection around the TMS site peaking at approximately 100 ms post-TMS (N100, and a less pronounced later positive component (LPC over the broad areas that was centered at the midline-central site in both go and stop trials. However, compared to the pattern in go and stop trials with TMS at 500 ms before the target time, N100 and LPC were differently modulated in the go and stop trials with TMS just at the target time. The amplitudes of both N100 and LPC decreased in go trials, while the amplitude of LPC decreased and the latency of LPC was delayed in both go and stop trials. These results suggested that TMS-induced neuronal reactions in the motor cortex and subsequent their propagation to surrounding cortical areas might change functionally according to task demand when executing and inhibiting a motor

  17. Application and Perspectives of Multiphase Induction Motors

    Directory of Open Access Journals (Sweden)

    Benas Kundrotas

    2012-04-01

    Full Text Available The article considers the areas of applying multiphase induction motors. Their advantages against three phase motors have become the main reason for employing them in multiphase drives. The paper deals with the six-phase induction motor having two similar three phase windings in the stator shifted by 30 degrees in space and three phase windings in the rotor. Differential equations for this motor are presented and transformed to dq synchronous reference frame. The transformed equations are expressed in a matrix form and solved by MATLAB software using the Dormand-Prince (ode45 method. The transient characteristics of the torque, speed and current of the six-phase induction motor are calculated and discussed.Article in Lithuanian

  18. Differential effects of continuous theta burst stimulation over left premotor cortex and right prefrontal cortex on modulating upper limb somatosensory input.

    Science.gov (United States)

    Brown, Matt J N; Staines, W Richard

    2016-02-15

    Somatosensory evoked potentials (SEPs) represent somatosensory processing in non-primary motor areas (i.e. frontal N30 and N60) and somatosensory cortices (i.e. parietal P50). It is well-known that the premotor cortex (PMC) and prefrontal cortex (PFC) are involved in the preparation and planning of upper limb movements but it is currently unclear how they modulate somatosensory processing for upper limb motor control. In the current study, two experiments examined SEP modulations after continuous theta burst stimulation (cTBS) was used to transiently disrupt the left PMC (Experiment 1) and right PFC (Experiment 2). Both Experiment 1 (n=15) and Experiment 2 (n=16) used pre-post experimental designs. In both experiments participants performed a task requiring detection of varying amplitudes of attended vibrotactile (VibT) stimuli to the left index finger (D2) and execution of a pre-matched finger sequence with the right (contralateral) hand to specific VibT targets. During the task, SEPs were measured to median nerve (MN) stimulations time-locked during pre-stimulus (250 ms before VibT), early response selection (250 ms after VibT), late preparatory (750 ms after VibT) and execution (1250 ms VibT) phases. The key findings of Experiment 1 revealed significant decreases in N30 and N60 peak amplitudes after cTBS to PMC. In contrast, the results of Experiment 2, also found significant decreased N60 peak amplitudes as well as trends for increased N30 and P50 peak amplitudes. A direct comparison of Experiment 1 and Experiment 2 confirmed differential modulation of N30 peak amplitudes after PMC (gated) compared to PFC (enhanced) cTBS. Collectively, these results support that both the left PMC and right PFC have modulatory roles on early somatosensory input into non-primary motor areas, such as PMC and supplementary motor area (SMA), represented by frontal N30 and N60 SEPs. These results confirm that PMC and PFC are both part of a network that regulates somatosensory input

  19. Disrupted white matter in language and motor tracts in developmental stuttering.

    Science.gov (United States)

    Connally, Emily L; Ward, David; Howell, Peter; Watkins, Kate E

    2014-04-01

    White matter tracts connecting areas involved in speech and motor control were examined using diffusion-tensor imaging in a sample of people who stutter (n=29) who were heterogeneous with respect to age, sex, handedness and stuttering severity. The goals were to replicate previous findings in developmental stuttering and to extend our knowledge by evaluating the relationship between white matter differences in people who stutter and factors such as age, sex, handedness and stuttering severity. We replicated previous findings that showed reduced integrity in white matter underlying ventral premotor cortex, cerebral peduncles and posterior corpus callosum in people who stutter relative to controls. Tractography analysis additionally revealed significantly reduced white matter integrity in the arcuate fasciculus bilaterally and the left corticospinal tract and significantly reduced connectivity within the left corticobulbar tract in people who stutter. Region-of-interest analyses revealed reduced white matter integrity in people who stutter in the three pairs of cerebellar peduncles that carry the afferent and efferent fibers of the cerebellum. Within the group of people who stutter, the higher the stuttering severity index, the lower the white matter integrity in the left angular gyrus, but the greater the white matter connectivity in the left corticobulbar tract. Also, in people who stutter, handedness and age predicted the integrity of the corticospinal tract and peduncles, respectively. Further studies are needed to determine which of these white matter differences relate to the neural basis of stuttering and which reflect experience-dependent plasticity. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. The changes of regional cerebral blood flow: successful pain relief of intractable CRPS type II patients by motor cortex stimulation

    International Nuclear Information System (INIS)

    Jung, J. A.; Son, H. S.; Kim, S. H.; Jung, S. G

    2004-01-01

    Authors report the effectiveness of MCS in extraordinarily extended pain due to intractable CRPS type II and rCBF study result for mechanism of pain control by MCS. A 43-year-old male presented severe spontaneous burning pain in his left hand and forearm and allodynia over the left arm and left hemibody. Authors planned MCS as a neuromodulation therapy for this intractable peripheral neuropathic pain patient because further neurodestructive procedure did not work anymore and have a potential risk of further aggrevation of neuopathic pain. We performed baseline and stimulation brain perfusion SPECT using 20 mCi of Tc-99m ECD. The baseline CBD studies were done with stimulator 'off' state and stimulation studies were done after stimulator 'on' with satisfactory pain relief. For the stimulation study, the radioisotope was injected immediately after pain-relief and the images were taken about 50 minutes after injection of radioisotope. In resting rCBF in the patient was compared with normal control datas, we found significant increase in rCBF in the bilateral prefrontal cortex, right dorsolateral prefrontal cortex, right superior temporal gyrus, left temporooccipital area. When rCBF datas obtained after alleviation of pain with stimulator 'on' . there were significant increase in rCBF in bilateral prefrontal cortex and left temporoocipital area. After subtraction of ECD SPECT, we found significant increase in rCBF in the right premotor and supplementary motor cortex left sensorimotor cortex, right cingulated cortex, right posterior insular cortex, right anterior limb of internal capsule. left orbitofrontal cortex and right pyramidal tract in cerebral peduncle. Authors report exellent pain control by MCS in a case of severe CRPS type II with hemibody involvement and regional cerebral blood flow changes according to successful pain control

  1. Finding of widespread viral and bacterial revolution dsDNA translocation motors distinct from rotation motors by channel chirality and size.

    Science.gov (United States)

    De-Donatis, Gian Marco; Zhao, Zhengyi; Wang, Shaoying; Huang, Lisa P; Schwartz, Chad; Tsodikov, Oleg V; Zhang, Hui; Haque, Farzin; Guo, Peixuan

    2014-01-01

    Double-stranded DNA translocation is ubiquitous in living systems. Cell mitosis, bacterial binary fission, DNA replication or repair, homologous recombination, Holliday junction resolution, viral genome packaging and cell entry all involve biomotor-driven dsDNA translocation. Previously, biomotors have been primarily classified into linear and rotational motors. We recently discovered a third class of dsDNA translocation motors in Phi29 utilizing revolution mechanism without rotation. Analogically, the Earth rotates around its own axis every 24 hours, but revolves around the Sun every 365 days. Single-channel DNA translocation conductance assay combined with structure inspections of motor channels on bacteriophages P22, SPP1, HK97, T7, T4, Phi29, and other dsDNA translocation motors such as bacterial FtsK and eukaryotic mimiviruses or vaccinia viruses showed that revolution motor is widespread. The force generation mechanism for revolution motors is elucidated. Revolution motors can be differentiated from rotation motors by their channel size and chirality. Crystal structure inspection revealed that revolution motors commonly exhibit channel diameters larger than 3 nm, while rotation motors that rotate around one of the two separated DNA strands feature a diameter smaller than 2 nm. Phi29 revolution motor translocated double- and tetra-stranded DNA that occupied 32% and 64% of the narrowest channel cross-section, respectively, evidencing that revolution motors exhibit channel diameters significantly wider than the dsDNA. Left-handed oriented channels found in revolution motors drive the right-handed dsDNA via anti-chiral interaction, while right-handed channels observed in rotation motors drive the right-handed dsDNA via parallel threads. Tethering both the motor and the dsDNA distal-end of the revolution motor does not block DNA packaging, indicating that no rotation is required for motors of dsDNA phages, while a small-angle left-handed twist of dsDNA that is

  2. The association between brain activity and motor imagery during motor illusion induction by vibratory stimulation.

    Science.gov (United States)

    Kodama, Takayuki; Nakano, Hideki; Katayama, Osamu; Murata, Shin

    2017-01-01

    The association between motor imagery ability and brain neural activity that leads to the manifestation of a motor illusion remains unclear. In this study, we examined the association between the ability to generate motor imagery and brain neural activity leading to the induction of a motor illusion by vibratory stimulation. The sample consisted of 20 healthy individuals who did not have movement or sensory disorders. We measured the time between the starting and ending points of a motor illusion (the time to illusion induction, TII) and performed electroencephalography (EEG). We conducted a temporo-spatial analysis on brain activity leading to the induction of motor illusions using the EEG microstate segmentation method. Additionally, we assessed the ability to generate motor imagery using the Japanese version of the Movement Imagery Questionnaire-Revised (JMIQ-R) prior to performing the task and examined the associations among brain neural activity levels as identified by microstate segmentation method, TII, and the JMIQ-R scores. The results showed four typical microstates during TII and significantly higher neural activity in the ventrolateral prefrontal cortex, primary sensorimotor area, supplementary motor area (SMA), and inferior parietal lobule (IPL). Moreover, there were significant negative correlations between the neural activity of the primary motor cortex (MI), SMA, IPL, and TII, and a significant positive correlation between the neural activity of the SMA and the JMIQ-R scores. These findings suggest the possibility that a neural network primarily comprised of the neural activity of SMA and M1, which are involved in generating motor imagery, may be the neural basis for inducing motor illusions. This may aid in creating a new approach to neurorehabilitation that enables a more robust reorganization of the neural base for patients with brain dysfunction with a motor function disorder.

  3. Intramuscular hematoma with motor weakness after trigger point injection

    Science.gov (United States)

    Kim, Sang Gyun; Shim, Kwang Seok; Lee, Dong Won; Kim, Eun ju; Lee, Sang-Gon; Lee, Ji-Hyang; An, Ji hyun

    2017-01-01

    Abstract Rationale: Although trigger point injection is known as an easy and low-risk procedure, it is contraindicated to patients with hemorrhagic disorders or who regularly take anticoagulants/antiplatelets. However, taking clopidogrel is not a defined contraindication to this low-risk procedure. Patient concerns: The chief complaint of a 76-year old woman regularly taking clopidogrel was low back and left buttock pain which prolonged for several years. Diagnoses: The patient was diagnosed with L4-5 and L5-S1 spinal stenosis at the orthopedics department and was referred for lumbar spinal epidural steroid injection. Intervention: She was treated with trigger point injection. Outcomes: Three hours after the injection, she complained motor weakness and pain in the injection area. A hematoma on left gluteus medium muscle was detected with ultrasonography and ultrasound-guided needle aspiration was accomplished to relieve the symptom. Lessons: Trigger point injection for patients taking clopidogrel should be done with a caution to prevent such complication. PMID:28953648

  4. Motor/generator

    Science.gov (United States)

    Hickam, Christopher Dale [Glasford, IL

    2008-05-13

    A motor/generator is provided for connecting between a transmission input shaft and an output shaft of a prime mover. The motor/generator may include a motor/generator housing, a stator mounted to the motor/generator housing, a rotor mounted at least partially within the motor/generator housing and rotatable about a rotor rotation axis, and a transmission-shaft coupler drivingly coupled to the rotor. The transmission-shaft coupler may include a clamp, which may include a base attached to the rotor and a plurality of adjustable jaws.

  5. Sensorimotor Integration During Motor Learning: Transcranial Magnetic Stimulation Studies.

    Science.gov (United States)

    Matur, Zeliha; Öge, A Emre

    2017-12-01

    The effect of sensory signals coming from skin and muscle afferents on the sensorimotor cortical networks is entitled as sensory-motor integration (SMI). SMI can be studied electrophysiologically by the motor cortex excitability changes in response to peripheral sensory stimulation. These changes include the periods of short afferent inhibition (SAI), afferent facilitation (AF), and late afferent inhibition (LAI). During the early period of motor skill acquisition, motor cortex excitability increases and changes occur in the area covered by the relevant zone of the motor cortex. In the late period, these give place to the morphological changes, such as synaptogenesis. SAI decreases during learning the motor skills, while LAI increases during motor activity. In this review, the role of SMI in the process of motor learning and transcranial magnetic stimulation techniques performed for studying SMI is summarized.

  6. Left main percutaneous coronary intervention.

    Science.gov (United States)

    Teirstein, Paul S; Price, Matthew J

    2012-10-23

    The introduction of drug-eluting stents and advances in catheter techniques have led to increasing acceptance of percutaneous coronary intervention (PCI) as a viable alternative to coronary artery bypass graft (CABG) for unprotected left main disease. Current guidelines state that it is reasonable to consider unprotected left main PCI in patients with low to intermediate anatomic complexity who are at increased surgical risk. Data from randomized trials involving patients who are candidates for either treatment strategy provide novel insight into the relative safety and efficacy of PCI for this lesion subset. Herein, we review the current data comparing PCI with CABG for left main disease, summarize recent guideline recommendations, and provide an update on technical considerations that may optimize clinical outcomes in left main PCI. Copyright © 2012 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  7. Left bundle-branch block

    DEFF Research Database (Denmark)

    Risum, Niels; Strauss, David; Sogaard, Peter

    2013-01-01

    The relationship between myocardial electrical activation by electrocardiogram (ECG) and mechanical contraction by echocardiography in left bundle-branch block (LBBB) has never been clearly demonstrated. New strict criteria for LBBB based on a fundamental understanding of physiology have recently...

  8. Dabigatran for left ventricular thrombus

    Directory of Open Access Journals (Sweden)

    Satishkumar Kolekar

    2015-09-01

    Dabigatran is a reversible direct thrombin inhibitor and currently approved for the prevention of thromboembolic episodes in non-valvar atrial fibrillation. This case demonstrates possible thrombolytic properties of dabigatran in resolution of left ventricular thrombus.

  9. Neural activation in cognitive motor processes: comparing motor imagery and observation of gymnastic movements.

    Science.gov (United States)

    Munzert, Jörn; Zentgraf, Karen; Stark, Rudolf; Vaitl, Dieter

    2008-07-01

    The simulation concept suggested by Jeannerod (Neuroimage 14:S103-S109, 2001) defines the S-states of action observation and mental simulation of action as action-related mental states lacking overt execution. Within this framework, similarities and neural overlap between S-states and overt execution are interpreted as providing the common basis for the motor representations implemented within the motor system. The present brain imaging study compared activation overlap and differential activation during mental simulation (motor imagery) with that while observing gymnastic movements. The fMRI conjunction analysis revealed overlapping activation for both S-states in primary motor cortex, premotor cortex, and the supplementary motor area as well as in the intraparietal sulcus, cerebellar hemispheres, and parts of the basal ganglia. A direct contrast between the motor imagery and observation conditions revealed stronger activation for imagery in the posterior insula and the anterior cingulate gyrus. The hippocampus, the superior parietal lobe, and the cerebellar areas were differentially activated in the observation condition. In general, these data corroborate the concept of action-related S-states because of the high overlap in core motor as well as in motor-related areas. We argue that differential activity between S-states relates to task-specific and modal information processing.

  10. Increased motor cortex excitability during motor imagery in brain-computer interface trained subjects

    Science.gov (United States)

    Mokienko, Olesya A.; Chervyakov, Alexander V.; Kulikova, Sofia N.; Bobrov, Pavel D.; Chernikova, Liudmila A.; Frolov, Alexander A.; Piradov, Mikhail A.

    2013-01-01

    Background: Motor imagery (MI) is the mental performance of movement without muscle activity. It is generally accepted that MI and motor performance have similar physiological mechanisms. Purpose: To investigate the activity and excitability of cortical motor areas during MI in subjects who were previously trained with an MI-based brain-computer interface (BCI). Subjects and Methods: Eleven healthy volunteers without neurological impairments (mean age, 36 years; range: 24–68 years) were either trained with an MI-based BCI (BCI-trained, n = 5) or received no BCI training (n = 6, controls). Subjects imagined grasping in a blocked paradigm task with alternating rest and task periods. For evaluating the activity and excitability of cortical motor areas we used functional MRI and navigated transcranial magnetic stimulation (nTMS). Results: fMRI revealed activation in Brodmann areas 3 and 6, the cerebellum, and the thalamus during MI in all subjects. The primary motor cortex was activated only in BCI-trained subjects. The associative zones of activation were larger in non-trained subjects. During MI, motor evoked potentials recorded from two of the three targeted muscles were significantly higher only in BCI-trained subjects. The motor threshold decreased (median = 17%) during MI, which was also observed only in BCI-trained subjects. Conclusion: Previous BCI training increased motor cortex excitability during MI. These data may help to improve BCI applications, including rehabilitation of patients with cerebral palsy. PMID:24319425

  11. Increased motor cortex excitability during motor imagery in brain-computer interface trained subjects

    Directory of Open Access Journals (Sweden)

    Olesya eMokienko

    2013-11-01

    Full Text Available Background: Motor imagery (MI is the mental performance of movement without muscle activity. It is generally accepted that MI and motor performance have similar physiological mechanisms.Purpose: To investigate the activity and excitability of cortical motor areas during MI in subjects who were previously trained with an MI-based brain-computer interface (BCI.Subjects and methods: Eleven healthy volunteers without neurological impairments (mean age, 36 years; range: 24–68 years were either trained with an MI-based BCI (BCI-trained, n = 5 or received no BCI training (n = 6, controls. Subjects imagined grasping in a blocked paradigm task with alternating rest and task periods. For evaluating the activity and excitability of cortical motor areas we used functional MRI and navigated transcranial magnetic stimulation (nTMS.Results: fMRI revealed activation in Brodmann areas 3 and 6, the cerebellum, and the thalamus during MI in all subjects. The primary motor cortex was activated only in BCI-trained subjects. The associative zones of activation were larger in non-trained subjects. During MI, motor evoked potentials recorded from two of the three targeted muscles were significantly higher only in BCI-trained subjects. The motor threshold decreased (median = 17% during MI, which was also observed only in BCI-trained subjects.Conclusion: Previous BCI training increased motor cortex excitability during MI. These data may help to improve BCI applications, including rehabilitation of patients with cerebral palsy.

  12. Motor Readiness Increases Brain Connectivity Between Default-Mode Network and Motor Cortex: Impact on Sampling Resting Periods from fMRI Event-Related Studies.

    Science.gov (United States)

    Bazán, Paulo Rodrigo; Biazoli, Claudinei Eduardo; Sato, João Ricardo; Amaro, Edson

    2015-12-01

    The default-mode network (DMN) has been implicated in many conditions. One particular function relates to its role in motor preparation. However, the possibly complex relationship between DMN activity and motor preparation has not been fully explored. Dynamic interactions between default mode and motor networks may compromise the ability to evaluate intrinsic connectivity using resting period data extracted from task-based experiments. In this study, we investigated alterations in connectivity between the DMN and the motor network that are associated with motor readiness during the intervals between motor task trials. fMRI data from 20 normal subjects were acquired under three conditions: pure resting state; resting state interleaved with brief, cued right-hand movements at constant intervals (lower readiness); and resting state interleaved with the same movements at unpredictable intervals (higher readiness). The functional connectivity between regions of motor and DMNs was assessed separately for movement periods and intertask intervals. We found a negative relationship between the DMN and the left sensorimotor cortex during the task periods for both motor conditions. Furthermore, during the intertask intervals of the unpredictable condition, the DMN showed a positive relationship with right sensorimotor cortex and a negative relation with the left sensorimotor cortex. These findings indicate a specific modulation on motor processing according to the state of motor readiness. Therefore, connectivity studies using task-based fMRI to probe DMN should consider the influence of motor system modulation when interpreting the results.

  13. Estimation of temporary change of activation areas by moving an analysis time window in fMRI measurement

    Science.gov (United States)

    Fukami, Tadanori; Shimada, Takamasa; Akatsuka, Takao; Ishikawa, Fumito; Saito, Yoichi

    2004-12-01

    In this paper, we propose a method to acquire temporal changes of activations by moving an analysis time window. An advantage of this method is that it can acquire rough changes of activated areas even with the data having low time resolution. We ascertained that activations from our method do not contradict previous reports on the oddball paradigm, thus showing its effectiveness. Eight normal subjects participated in the study, which consisted of a random series of 30 target and 70 nontarget stimuli. We investigated the activated area in three kinds of analysis time sections, from stimulus onset to 5 s after the stimulus (time section A), from 2 to 7 s after (B) and from 4 to 9 s after (C). In time section A, representative activated areas were regions including the left and supplementary motor areas (SMA), and cerebellum. In B, regions including the left motor area and SMA, right parahippocampal gyrus (Broadmann Area (BA) 30), right limbic lobe and cerebellum were activated. In C, bilaterally postcentral gyrus (BA 3,40), right anterior cingulate (ACC, BA 32), left middle frontal gyrus (BA 9) and right parahippocampal gyrus were activated. Most activations were consistent with previous studies.

  14. Left ventricular noncompaction in a patient presenting with a left ventricular failure

    Directory of Open Access Journals (Sweden)

    Ristić-Anđelkov Anđelka

    2018-01-01

    Full Text Available Introduction. Left ventricular noncompaction (LVNC is a congenital disorder characterised by prominent trabeculations in the left ventricular myocardium. This heart condition very often goes completely undetected, or is mistaken for hypertrophic cardiomyopathy or coronary disease. Case report. A middle-aged female with a positive family history of coronary disease was admitted with chest pain, electrocardiography (ECG changes in the area of the inferolateral wall and elevation in cardiac specific enzymes. Initially, she was suspected of having acute coronary syndrome. However, in the left ventricular apex, especially alongside the lateral and inferior walls, cardiac ultrasound visualised hypertrabeculation with multiple trabeculae projecting inside the left ventricular cavity. A short-axis view of the heart above the papillary muscles revealed the presence of two layers of the myocardium: a compacted homogeneous layer adjacent to the epicardium and a spongy layer with trabeculae and sinusoids under the endocardium. The thickness ratio between the two layers was 2.2:1. The same abnormalities were corroborated by multislice computed tomography (MSCT of the heart. Conclusion. Left ventricular noncompaction is a rare, usually hereditary cardiomyopathy, which should be considered as a possibility in patients with myocardial hypertrophy. It is very often mistaken for coronary disease owing to ECG changes and elevated cardiac specific enzymes associated with myocardial hypertrophy and heart failure.

  15. Apraxia in left-handers.

    Science.gov (United States)

    Goldenberg, Georg

    2013-08-01

    In typical right-handed patients both apraxia and aphasia are caused by damage to the left hemisphere, which also controls the dominant right hand. In left-handed subjects the lateralities of language and of control of the dominant hand can dissociate. This permits disentangling the association of apraxia with aphasia from that with handedness. Pantomime of tool use, actual tool use and imitation of meaningless hand and finger postures were examined in 50 consecutive left-handed subjects with unilateral hemisphere lesions. There were three aphasic patients with pervasive apraxia caused by left-sided lesions. As the dominant hand is controlled by the right hemisphere, they constitute dissociations of apraxia from handedness. Conversely there were also three patients with pervasive apraxia caused by right brain lesions without aphasia. They constitute dissociations of apraxia from aphasia. Across the whole group of patients dissociations from handedness and from aphasia were observed for all manifestations of apraxia, but their frequency depended on the type of apraxia. Defective pantomime and defective tool use occurred rarely without aphasia, whereas defective imitation of hand, but not finger, postures was more frequent after right than left brain damage. The higher incidence of defective imitation of hand postures in right brain damage was mainly due to patients who had also hemi-neglect. This interaction alerts to the possibility that the association of right hemisphere damage with apraxia has to do with spatial aptitudes of the right hemisphere rather than with its control of the dominant left hand. Comparison with data from right-handed patients showed no differences between the severity of apraxia for imitation of hand or finger postures, but impairment on pantomime of tool use was milder in apraxic left-handers than in apraxic right-handers. This alleviation of the severity of apraxia corresponded with a similar alleviation of the severity of aphasia as

  16. Left ventricular apical ballooning syndrome

    International Nuclear Information System (INIS)

    Rahman, N.; Tai, J.; Soofi, A.

    2007-01-01

    The transient left ventricular apical ballooning syndrome, also known as Takotsubo cardiomyopathy, is characterized by transient left ventricular dysfunction in the absence of obstructive epicardial coronary disease. Although the syndrome has been reported in Japan since 1990, it is rare in other regions. Rapid recognition of the syndrome can modify the diagnostic and therapeutic attitude i.e. avoiding thrombolysis and performing catheterization in the acute phase. (author)

  17. Piezoelectric Motors, an Overview

    Directory of Open Access Journals (Sweden)

    Karl Spanner

    2016-02-01

    Full Text Available Piezoelectric motors are used in many industrial and commercial applications. Various piezoelectric motors are available in the market. All of the piezoelectric motors use the inverse piezoelectric effect, where microscopically small oscillatory motions are converted into continuous or stepping rotary or linear motions. Methods of obtaining long moving distance have various drive and functional principles that make these motors categorized into three groups: resonance-drive (piezoelectric ultrasonic motors, inertia-drive, and piezo-walk-drive. In this review, a comprehensive summary of piezoelectric motors, with their classification from initial idea to recent progress, is presented. This review also includes some of the industrial and commercial applications of piezoelectric motors that are presently available in the market as actuators.

  18. Motor degradation prediction methods

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.

    1996-12-01

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor`s duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures.

  19. Left Main Coronary Artery Aneurysm

    Directory of Open Access Journals (Sweden)

    Hossein Doustkami

    2016-07-01

    Full Text Available Aneurysms of the left main coronary artery are exceedingly rare clinical entities, encountered incidentally in approximately 0.1% of patients who undergo routine angiography. The most common cause of coronary artery aneurysms is atherosclerosis. Angiography is the gold standard for diagnosis and treatment. Depending on the severity of the coexisting coronary stenosis, patients with left main coronary artery aneurysms can be effectively managed either surgically or pharmacologically. We herein report a case of left main coronary artery aneurysm in a 72-year-old man with a prior history of hypertension presenting to our hospital because of unstable angina. The electrocardiogram showed ST-segment depression and T-wave inversion in the precordial leads. All the data of blood chemistry were normal. Echocardiography showed akinetic anterior wall, septum, and apex, mild mitral regurgitation and ejection fraction of 45%. Coronary angiography revealed a saccular aneurysm of the left main coronary artery with significant stenosis in the left anterior descending, left circumflex, and right coronary artery. The patient immediately underwent coronary artery bypass grafting and ligation of the aneurysm. At six months’ follow-up, he remained asymptomatic.

  20. Right colon cancer: Left behind.

    Science.gov (United States)

    Gervaz, P; Usel, M; Rapiti, E; Chappuis, P; Neyroud-Kaspar, I; Bouchardy, C

    2016-09-01

    Prognosis of colon cancer (CC) has steadily improved during the past three decades. This trend, however, may vary according to proximal (right) or distal (left) tumor location. We studied if improvement in survival was greater for left than for right CC. We included all CC recorded at the Geneva population-based registry between 1980 and 2006. We compared patients, tumor and treatment characteristics between left and right CC by logistic regression and compared CC specific survival by Cox models taking into account putative confounders. We also compared changes in survival between CC location in early and late years of observation. Among the 3396 CC patients, 1334 (39%) had right-sided and 2062 (61%) left-sided tumors. In the early 1980s, 5-year specific survival was identical for right and left CCs (49% vs. 48%). During the study period, a dramatic improvement in survival was observed for patients with left-sided cancers (Hazard ratio [HR]: 0.42, 95% confidence interval [CI]: 0.29-0.62, p colon cancer patients, those with right-sided lesions have by far the worse prognosis. Change of strategic management in this subgroup is warranted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Early-latency categorical speech sound representations in the left inferior frontal gyrus.

    Science.gov (United States)

    Alho, Jussi; Green, Brannon M; May, Patrick J C; Sams, Mikko; Tiitinen, Hannu; Rauschecker, Josef P; Jääskeläinen, Iiro P

    2016-04-01

    Efficient speech perception requires the mapping of highly variable acoustic signals to distinct phonetic categories. How the brain overcomes this many-to-one mapping problem has remained unresolved. To infer the cortical location, latency, and dependency on attention of categorical speech sound representations in the human brain, we measured stimulus-specific adaptation of neuromagnetic responses to sounds from a phonetic continuum. The participants attended to the sounds while performing a non-phonetic listening task and, in a separate recording condition, ignored the sounds while watching a silent film. Neural adaptation indicative of phoneme category selectivity was found only during the attentive condition in the pars opercularis (POp) of the left inferior frontal gyrus, where the degree of selectivity correlated with the ability of the participants to categorize the phonetic stimuli. Importantly, these category-specific representations were activated at an early latency of 115-140 ms, which is compatible with the speed of perceptual phonetic categorization. Further, concurrent functional connectivity was observed between POp and posterior auditory cortical areas. These novel findings suggest that when humans attend to speech, the left POp mediates phonetic categorization through integration of auditory and motor information via the dorsal auditory stream. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Motor skills training promotes motor functional recovery and induces synaptogenesis in the motor cortex and striatum after intracerebral hemorrhage in rats.

    Science.gov (United States)

    Tamakoshi, Keigo; Ishida, Akimasa; Takamatsu, Yasuyuki; Hamakawa, Michiru; Nakashima, Hiroki; Shimada, Haruka; Ishida, Kazuto

    2014-03-01

    We investigated the effects of motor skills training on several types of motor function and synaptic plasticity following intracerebral hemorrhage (ICH) in rats. Male Wistar rats were injected with collagenase into the left striatum to induce ICH, and they were randomly assigned to the ICH or sham groups. Each group was divided into the motor skills training (acrobatic training) and control (no exercise) groups. The acrobatic group performed acrobatic training from 4 to 28 days after surgery. Motor functions were assessed by motor deficit score, the horizontal ladder test and the wide or narrow beam walking test at several time points after ICH. The number of ΔFosB-positive cells was counted using immunohistochemistry to examine neuronal activation, and the PSD95 protein levels were analyzed by Western blotting to examine synaptic plasticity in the bilateral sensorimotor cortices and striata at 14 and 29 days after ICH. Motor skills training following ICH significantly improved gross motor function in the early phase after ICH and skilled motor coordinated function in the late phase. The number of ΔFosB-positive cells in the contralateral sensorimotor cortex in the acrobatic group significantly increased compared to the control group. PSD95 protein expression in the motor cortex significantly increased in the late phase, and in the striatum, the protein level significantly increased in the early phase by motor skills training after ICH compared to no training after ICH. We demonstrated that motor skills training improved motor function after ICH in rats and enhanced the neural activity and synaptic plasticity in the striatum and sensorimotor cortex. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Etiological aspect of left-handedness in adolescents

    Directory of Open Access Journals (Sweden)

    Dragović Milan

    2013-01-01

    Full Text Available Introduction. Lateralization of brain functions such as language and manual dominance (hand preferences and fine motor control are most likely under genetic control. However, this does not preclude the effect of various environmental factors on functional brain lateralization. A strong association of non-right-handedness (left- and mixed-handedness with various neurodevelopmental conditions (e.g. schizophrenia, autism, Rett syndrome implies that in some cases, non-right-handedness may be acquired rather than inherited (i.e., pathologically determined. Objective. The aim of the study was: (a re-investigation of several known risk factors for left-handedness (age of mother and/or father, twin pregnancies, and birth order, and (b examination of hitherto uninvestigated factors (type of birth, Apgar score, maternal smoking during pregnancy. Methods. Putative, causative environmental agents for this shift in manual distributions are explored in a sample of 1031 high school students (404 males and 627 females from Belgrade. Both pre-existing (age of parents, twin pregnancy, and birth order and new (Apgar score, maternal smoking, type of birth putative agents are examined. Results. We found that maternal smoking and low Apgar score (2-6 can significantly increase risk for left-handedness (p=0.046 and p=0.042, respectively. The remaining factors showed no significant association with left-handedness in adolescents. Conclusion. Our study clearly demonstrates that left-handedness may be related to maternal smoking during pregnancy and a low Apgar score on birth.

  4. Body-specific representations of action word meanings in right and left handers

    OpenAIRE

    Daniel Casasanto

    2007-01-01

    If understanding action words involves mentally simulating our own actions, then the neurocognitive representation of word meanings must differ for people with different kinds of bodies, who perform actions in systematically different ways. In a test of the _Body-Specificity Hypothesis_, right- and left-handers were compared on two motor-meaning congruity tasks. Double dissociations in both action execution and recognition memory results showed that right and left handers form body-specific r...

  5. Learned movements in a left-handed pianist: an f-MRI evaluation.

    Science.gov (United States)

    Moretti, R; Torre, P; Antonello, R M; Ukmar, M; Longo, R; Bava, A

    2002-11-01

    The spatial arrangement of neuronal sources for digit movement is non somatotopic, and is structured as extensively arranged through different regional cortex. We have functionally examined the cerebro-cortical activation during simple and complex motor sequences, before and after learning sessions, in healthy volunteers, both considering left- and right-dominant hand use, and left non dominant hand use, skillfulness and educational level. We discuss the results with a review on the topic. Copyright 2002 Elsevier Science Ltd.

  6. The perception of peripersonal space in right and left brain damage hemiplegic patients

    Directory of Open Access Journals (Sweden)

    Angela eBartolo

    2014-01-01

    Full Text Available Peripersonal space, as opposed to extrapersonal space, is the space that contains reachable objects and in which multisensory and sensorimotor integration is enhanced. Thus, the perception of peripersonal space requires combining information on the spatial properties of the environment with information on the current capacity to act. In support of this, recent studies have provided converging evidences that perceiving objects in peripersonal space activates a neural network overlapping with that subtending voluntary motor action and motor imagery. Other studies have also underlined the dominant role of the right hemisphere in motor planning and of the left hemisphere in on-line motor guiding, respectively. In the present study, we investigated the effect of a right or left hemiplegia in the perception of peripersonal space. 16 hemiplegic patients with brain damage to the left (LH or right (RH hemisphere and 8 matched healthy controls (HC performed a colour discrimination, a motor imagery and a reachability judgment task. Analyses of response times and accuracy revealed no variation among the three groups in the colour discrimination task, suggesting the absence of any specific perceptual or decisional deficits in the patient groups. In contrast, the patient groups revealed longer response times in the motor imagery task when performed in reference to the hemiplegic arm (RH and LH or to the healthy arm (RH. Moreover, RH group showed longer response times in the reachability judgement task, but only for stimuli located at the boundary of peripersonal space, which was furthermore significantly reduced in size. Considered together, these results confirm the crucial role of the motor system in motor imagery task and the perception of peripersonal space. They also revealed that right hemisphere damage has a more detrimental effect on reachability estimates, suggesting that motor planning processes contribute specifically to the perception of

  7. Scaling of motor cortical excitability during unimanual force generation.

    Science.gov (United States)

    Perez, Monica A; Cohen, Leonardo G

    2009-10-01

    During performance of a unimanual force generation task primary motor cortices (M1s) experience clear functional changes. Here, we evaluated the way in which M1s interact during parametric increases in right wrist flexion force in healthy volunteers. We measured the amplitude and the slope of motor evoked potentials (MEP) recruitment curves to transcranial magnetic stimulation (TMS) in the left and right flexor carpi radialis (FCR) muscles at rest and during 10%, 30% and 70% of maximal wrist flexion force. At rest, no differences were observed in the amplitude and slope of MEP recruitment curves in the left and right FCR muscles. With increasing right wrist flexion force, MEP amplitudes increased in both FCR muscles, with larger amplitudes in the right FCR. We found a significant correlation between the left and right MEP amplitudes across conditions. The slope of right and left FCR MEP recruitment curve was significantly steeper at 70% of force compared to rest and 10% of force. A significant correlation between the slope of left and right FCR MEP amplitudes was found at 70% of force only. Our results indicate a differential scaling of excitability in the corticospinal system controlling right and left FCR muscles at increasing levels of unimanual force generation. Specifically, these data highlights that at strong levels of unimanual force the increases in motor cortical excitability with increasing TMS stimulus intensities follow a similar pattern in both M1s, while at low levels of force they do not.

  8. How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain?

    Science.gov (United States)

    Lang, Nicolas; Siebner, Hartwig R; Ward, Nick S; Lee, Lucy; Nitsche, Michael A; Paulus, Walter; Rothwell, John C; Lemon, Roger N; Frackowiak, Richard S

    2005-07-01

    Transcranial direct current stimulation (tDCS) of the primary motor hand area (M1) can produce lasting polarity-specific effects on corticospinal excitability and motor learning in humans. In 16 healthy volunteers, O positron emission tomography (PET) of regional cerebral blood flow (rCBF) at rest and during finger movements was used to map lasting changes in regional synaptic activity following 10 min of tDCS (+/-1 mA). Bipolar tDCS was given through electrodes placed over the left M1 and right frontopolar cortex. Eight subjects received anodal or cathodal tDCS of the left M1, respectively. When compared to sham tDCS, anodal and cathodal tDCS induced widespread increases and decreases in rCBF in cortical and subcortical areas. These changes in rCBF were of the same magnitude as task-related rCBF changes during finger movements and remained stable throughout the 50-min period of PET scanning. Relative increases in rCBF after real tDCS compared to sham tDCS were found in the left M1, right frontal pole, right primary sensorimotor cortex and posterior brain regions irrespective of polarity. With the exception of some posterior and ventral areas, anodal tDCS increased rCBF in many cortical and subcortical regions compared to cathodal tDCS. Only the left dorsal premotor cortex demonstrated an increase in movement related activity after cathodal tDCS, however, modest compared with the relatively strong movement-independent effects of tDCS. Otherwise, movement related activity was unaffected by tDCS. Our results indicate that tDCS is an effective means of provoking sustained and widespread changes in regional neuronal activity. The extensive spatial and temporal effects of tDCS need to be taken into account when tDCS is used to modify brain function.

  9. Charting the excitability of premotor to motor connections while withholding or initiating a selected movement

    DEFF Research Database (Denmark)

    Kroeger, Johan; Bäumer, Tobias; Jonas, Melanie

    2010-01-01

    subjects performed a delayed response [symbol 1 (S1) - symbol 2 (S2)] Go-NoGo reaction time task with visual cues. Conditioning TMS pulses were applied to the left premotor or left motor cortex 8 ms before a test pulse was given to the right motor cortex at 300 or 1800 ms after S1 or 150 ms after S2. S1...

  10. A Comparative Study Of Nerve Conduction Velocity Between Left And Right Handed Subjects.

    Science.gov (United States)

    Patel, Anup; Mehta, Anju

    2012-01-01

    Nerve conduction velocity is being used as a widespread measure of diagnosis of nerve function abnormalities. Dependence of nerve conduction parameters on intrinsic factors like age and sex, as well as extrinsic factors like temperature is well known. Lateralization of various cerebral functions like speech, language, visuospatial relations, analysis of face, recognition of musical themes and use of hand for fine motor movements have also been studied. Some differences have been noted between left and right hander for nerve conduction. The aim of this study is to compare the nerve conduction velocity between left handed and right handed subjects using median nerve and find out whether there is any difference in nerve conduction velocity (motor or sensory) with handedness. The study was carried out in students of B J Medical College by the use of standard 2 channel physiograph. Comparison of motor and sensory nerve conduction velocity between left and right handed subjects was done under paired-t test. Hemispheric specialization is primarily responsible for difference of dexterity. Some skills like music, sports activities are also due to hemispheric difference. On comparison of nerve conduction velocity between left and right handed persons the study shows that there is significant difference in sensory nerve conduction velocity between left and right handed subjects. From the results we can conclude that there should be different set of standards for sensory nerve conduction velocity of left and right handed subjects.

  11. Functional magnetic resonance imaging of the primary motor cortex

    Indian Academy of Sciences (India)

    Functional magnetic resonance imaging (fMRI) studies have been performed on 20 right handed volunteers at 1.5 Tesla using echo planar imaging (EPI) protocol. Index finger tapping invoked localized activation in the primary motor area. Consistent and highly reproducible activation in the primary motor area was observed ...

  12. Permanent-Magnet Motors and Generators for Aircraft

    Science.gov (United States)

    Echolds, E. F.

    1983-01-01

    Electric motors and generators that use permarotating machinery, but aspects of control and power conditioning are also considered. The discussion is structured around three basic areas: rotating machine design considerations presents various configuration and material options, generator applications provides insight into utilization areas and shows actual hardware and test results, and motor applications provides the same type of information for drive systems.

  13. Motor Simulation during Action Word Processing in Neurosurgical Patients

    Science.gov (United States)

    Tomasino, Barbara; Ceschia, Martina; Fabbro, Franco; Skrap, Miran

    2012-01-01

    The role that human motor areas play in linguistic processing is the subject of a stimulating debate. Data from nine neurosurgical patients with selective lesions of the precentral and postcentral sulcus could provide a direct answer as to whether motor area activation is necessary for action word processing. Action-related verbs (face-, hand-,…

  14. Aversive stimuli exacerbate defensive motor behaviour in motor conversion disorder.

    Science.gov (United States)

    Blakemore, Rebekah L; Sinanaj, Indrit; Galli, Silvio; Aybek, Selma; Vuilleumier, Patrik

    2016-12-01

    Conversion disorder or functional neurological symptom disorder (FND) can affect the voluntary motor system, without an organic cause. Functional symptoms are thought to be generated unconsciously, arising from underlying psychological stressors. However, attempts to demonstrate a direct relationship between the limbic system and disrupted motor function in FND are lacking. We tested whether negative affect would exacerbate alterations of motor control and corresponding brain activations in individuals with FND. Ten patients and ten healthy controls produced an isometric precision-grip contraction at 10% of maximum force while either viewing visual feedback of their force output, or unpleasant or pleasant emotional images (without feedback). Force magnitude was continuously recorded together with change in brain activity using fMRI. For controls, force output decayed from the target level while viewing pleasant and unpleasant images. Patients however, maintained force at the target level without decay while viewing unpleasant images, indicating a pronounced effect of negative affect on force output in FND. This emotional modulation of force control was associated with different brain activation patterns between groups. Contrasting the unpleasant with the pleasant condition, controls showed increased activity in the inferior frontal cortex and pre-supplementary motor area, whereas patients had greater activity in the cerebellum (vermis), posterior cingulate cortex, and hippocampus. Engagement of a cerebellar-limbic network in patients is consistent with heightened processing of emotional salience, and supports the role of the cerebellum in freezing responses in the presence of aversive events. These data highlight a possible neural circuit through which psychological stressors elicit defensive behaviour and modulate motor function in FND. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Non-invasive quick diagnosis of cardiovascular problems from visible and invisible abnormal changes with increased cardiac troponin I appearing on cardiovascular representation areas of the eyebrows, left upper lip, etc. of the face & hands: beneficial manual stimulation of hands for acute anginal chest pain, and important factors in safe, effective treatment.

    Science.gov (United States)

    Omura, Yoshiaki; Jones, Marilyn K; Duvvi, Harsha; Shimotsuura, Yasuhiro; Ohki, Motomu; Rodriques, Aaron

    2014-01-01

    Our previous study indicated that there are at least 7 cardiovascular representation areas on the face, including the "Eyebrows", both sides of the "Nose", "Lelt Upper Lip" and the "Outside of the corner of both sides of the mouth," in addition to 2 areas in each hand. When there are cardiovascular problems, some of the heart representation areas of these areas often show the following changes: 1) Most distinctive visible changes such as the initial whitening with or without long white hair, then hair loss and complete disappearance of the hairs of the heart representation area of "Eyebrows" 2) Invisible biochemical changes that happen in heart representation areas at the "Left Upper Lips", 3) "Nose" below eye level as well as 4) "3rd segment of Middle Finger of Hands." Most distinctive visible & invisible changes are found in heart representation areas on the "Eyebrow", located nearest to the midline of face, where the color of the hairs becomes white compared with the rest of the Eyebrow. Then the cardiovascular problem advances, and hair starts disappearing. When there are no hairs at the heart representation areas of the Eyebrow, usually Cardiac Troponin I is increased to a very serious, abnormal high value. Most of the cardiovascular representation areas of the face show, regardless of presence or absence of visible change. When there is a cardiovascular problem, not only simple Bi-Digital O-Ring Test can detect without using any instrument in several minutes but also, corresponding biochemical changes of abnormally increased Cardiac Troponin I level can often be detected non-invasively from these Organ Representation Areas of Face & Hands, although changes in Eyebrows, L-Upper Lip & 3rd segment of middle fingers are clinically the most reliable changes & easy to identify the locations. Manual Stimulation of Hand's heart representation areas often eliminated acute anginal chest pain before medical help became available. Important factors for safe, effective

  16. Primary left ventricular hydatid cyst in a child: case report

    Energy Technology Data Exchange (ETDEWEB)

    Turkvatan, A. [Turkiye Yuksek Ihtisas Hospital, Dept. of Radiology, Ankara (Turkey); Yelgec, N.S. [Turkiye Yuksek Ihtisas Hospital, Dept. of Cardiology, Ankara (Turkey); Calikoglu, U.; Olcer, T. [Turkiye Yuksek Ihtisas Hospital, Dept. of Radiology, Ankara (Turkey)

    2000-12-01

    The most common cause of echinococcosis in humans is Echinococcus granulosus. Although hydatid cyst is most frequently localized in liver (more than 65% of cases) and lung (25%) by means of portal and systemic circulation, it may involve other tissues and organs. Cardiac hydatid cysts account for only 0.5%-2% of all hydatid cysts, even in endemic areas. Of all cardiac hydatid cysts, the left ventricle accounts for 60%, right ventricle 10%, pericardium 7%, pulmonary artery 6%, left atrial appendage 6%, and interventricular septum 4%. We report the case of a myocardial hydatid cyst of the left ventricle in a 9-year-old boy. (author)

  17. Brain response to a humanoid robot in areas implicated in the perception of human emotional gestures.

    Science.gov (United States)

    Chaminade, Thierry; Zecca, Massimiliano; Blakemore, Sarah-Jayne; Takanishi, Atsuo; Frith, Chris D; Micera, Silvestro; Dario, Paolo; Rizzolatti, Giacomo; Gallese, Vittorio; Umiltà, Maria Alessandra

    2010-07-21

    The humanoid robot WE4-RII was designed to express human emotions in order to improve human-robot interaction. We can read the emotions depicted in its gestures, yet might utilize different neural processes than those used for reading the emotions in human agents. Here, fMRI was used to assess how brain areas activated by the perception of human basic emotions (facial expression of Anger, Joy, Disgust) and silent speech respond to a humanoid robot impersonating the same emotions, while participants were instructed to attend either to the emotion or to the motion depicted. Increased responses to robot compared to human stimuli in the occipital and posterior temporal cortices suggest additional visual processing when perceiving a mechanical anthropomorphic agent. In contrast, activity in cortical areas endowed with mirror properties, like left Broca's area for the perception of speech, and in the processing of emotions like the left anterior insula for the perception of disgust and the orbitofrontal cortex for the perception of anger, is reduced for robot stimuli, suggesting lesser resonance with the mechanical agent. Finally, instructions to explicitly attend to the emotion significantly increased response to robot, but not human facial expressions in the anterior part of the left inferior frontal gyrus, a neural marker of motor resonance. Motor resonance towards a humanoid robot, but not a human, display of facial emotion is increased when attention is directed towards judging emotions. Artificial agents can be used to assess how factors like anthropomorphism affect neural response to the perception of human actions.

  18. Motor degradation prediction methods

    International Nuclear Information System (INIS)

    Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.

    1996-01-01

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor's duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures

  19. When action turns into words. Activation of motor-based knowledge during categorization of manipulable objects

    DEFF Research Database (Denmark)

    Gerlach, Christian; Law, Ian; Paulson, Olaf B

    2002-01-01

    Functional imaging studies have demonstrated that processing of man-made objects activate the left ventral premotor cortex, which is known to be concerned with motor function. This has led to the suggestion that the comprehension of man-made objects may rely on motor-based knowledge of object uti...

  20. The Effect of Kinesthetic Stimulation on Acquisition and Retention of a Gross Motor Skill.

    Science.gov (United States)

    Jarus, Tal; Loiter, Yael

    1995-01-01

    Forty adult females were required to learn a gross motor task involving kicking a ball. Results indicated that kinesthetic stimulation during practice and retention phases seemed to enhance task acquisition. Stimulation affected the motor memory processes and left a more stable representation of the movement pattern. (Author/JOW)

  1. Atypical within- and between-hemisphere motor network functional connections in children with developmental coordination disorder and attention-deficit/hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Kevin R. McLeod

    2016-01-01

    Full Text Available Developmental coordination disorder (DCD and attention-deficit hyperactivity disorder (ADHD are highly comorbid neurodevelopmental disorders; however, the neural mechanisms of this comorbidity are poorly understood. Previous research has demonstrated that children with DCD and ADHD have altered brain region communication, particularly within the motor network. The structure and function of the motor network in a typically developing brain exhibits hemispheric dominance. It is plausible that functional deficits observed in children with DCD and ADHD are associated with neurodevelopmental alterations in within- and between-hemisphere motor network functional connection strength that disrupt this hemispheric dominance. We used resting-state functional magnetic resonance imaging to examine functional connections of the left and right primary and sensory motor (SM1 cortices in children with DCD, ADHD and DCD + ADHD, relative to typically developing children. Our findings revealed that children with DCD, ADHD and DCD + ADHD exhibit atypical within- and between-hemisphere functional connection strength between SM1 and regions of the basal ganglia, as well as the cerebellum. Our findings further support the assertion that development of atypical motor network connections represents common and distinct neural mechanisms underlying DCD and ADHD. In children with DCD and DCD + ADHD (but not ADHD, a significant correlation was observed between clinical assessment of motor function and the strength of functional connections between right SM1 and anterior cingulate cortex, supplementary motor area, and regions involved in visuospatial processing. This latter finding suggests that behavioral phenotypes associated with atypical motor network development differ between individuals with DCD and those with ADHD.

  2. Atypical within- and between-hemisphere motor network functional connections in children with developmental coordination disorder and attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    McLeod, Kevin R; Langevin, Lisa Marie; Dewey, Deborah; Goodyear, Bradley G

    2016-01-01

    Developmental coordination disorder (DCD) and attention-deficit hyperactivity disorder (ADHD) are highly comorbid neurodevelopmental disorders; however, the neural mechanisms of this comorbidity are poorly understood. Previous research has demonstrated that children with DCD and ADHD have altered brain region communication, particularly within the motor network. The structure and function of the motor network in a typically developing brain exhibits hemispheric dominance. It is plausible that functional deficits observed in children with DCD and ADHD are associated with neurodevelopmental alterations in within- and between-hemisphere motor network functional connection strength that disrupt this hemispheric dominance. We used resting-state functional magnetic resonance imaging to examine functional connections of the left and right primary and sensory motor (SM1) cortices in children with DCD, ADHD and DCD + ADHD, relative to typically developing children. Our findings revealed that children with DCD, ADHD and DCD + ADHD exhibit atypical within- and between-hemisphere functional connection strength between SM1 and regions of the basal ganglia, as well as the cerebellum. Our findings further support the assertion that development of atypical motor network connections represents common and distinct neural mechanisms underlying DCD and ADHD. In children with DCD and DCD + ADHD (but not ADHD), a significant correlation was observed between clinical assessment of motor function and the strength of functional connections between right SM1 and anterior cingulate cortex, supplementary motor area, and regions involved in visuospatial processing. This latter finding suggests that behavioral phenotypes associated with atypical motor network development differ between individuals with DCD and those with ADHD.

  3. Clinical and electrophysiological impact of repetitive low-frequency transcranial magnetic stimulation on the sensory-motor network in patients with restless legs syndrome.

    Science.gov (United States)

    Lanza, Giuseppe; Cantone, Mariagiovanna; Aricò, Debora; Lanuzza, Bartolo; Cosentino, Filomena Irene Ilaria; Paci, Domenico; Papotto, Maurizio; Pennisi, Manuela; Bella, Rita; Pennisi, Giovanni; Paulus, Walter; Ferri, Raffaele

    2018-01-01

    Based on the hyperexcitability and disinhibition observed in patients with restless legs syndrome (RLS) following transcranial magnetic stimulation (TMS), we conducted a study with low-frequency repetitive TMS (rTMS) over the primary motor (M1) and somatosensory cortical areas (S1) in patients with RLS. A total of 13 right-handed patients and 10 age-matched controls were studied using clinical scales and TMS. Measurements included resting motor threshold (rMT), motor-evoked potentials (MEPs), cortical silent period (CSP), and central motor conduction time (CMCT). A single evening session of rTMS (1 Hz, 20 trains, 50 stimuli each) was administered over the left M1, left S1, and sham stimulation over M1 in a random order. Clinical and TMS measures were repeated after each stimulation modality. Baseline CSP was shorter in patients than in controls and remained shorter in patients for both motor and somatosensory stimulation. The patients reported a subjective improvement of both initiating and maintaining sleep the night after the rTMS over S1. Patients exhibited a decrease in rMT after rTMS of S1 only, although the effect was smaller than in controls. MEP latency and CMCT changed only in controls after stimulation. Sham stimulation was without effect on the observed variables. rTMS on S1-M1 connectivity alleviated the sensory-motor complaints of RLS patients. The TMS indexes of excitation and inhibition indicate an intracortical and corticospinal imbalance, mainly involving gamma-aminobutyric acid (GABA)ergic and glutamatergic circuitries, as well as an impairment of the short-term mechanisms of cortical plasticity. The rTMS-induced activation of the dorsal striatum with the consequent increase of dopamine release may have contributed to the clinical and neurophysiological outcome.

  4. Control motor brushless sensorless

    OpenAIRE

    Solchaga Pérez de Lazárraga, Gonzalo

    2015-01-01

    El proyecto consiste en la creación de un circuito capaz de controlar la velocidad de un motor brushless sensorless. Este tipo de motores eléctricos tienen como característica que no tienen escobillas para cambiar la polaridad del bobinado de su interior y tampoco precisan de un sensor que indique que ha realizado una vuelta. Los motores brushless que son controlados por este tipo de circuitos son específicos para aeronaves no tripuladas y requieren un diseño diferente a un motor brushless pe...

  5. Spatially dynamic recurrent information flow across long-range dorsal motor network encodes selective motor goals.

    Science.gov (United States)

    Yoo, Peter E; Hagan, Maureen A; John, Sam E; Opie, Nicholas L; Ordidge, Roger J; O'Brien, Terence J; Oxley, Thomas J; Moffat, Bradford A; Wong, Yan T

    2018-03-08

    Performing voluntary movements involves many regions of the brain, but it is unknown how they work together to plan and execute specific movements. We recorded high-resolution ultra-high-field blood-oxygen-level-dependent signal during a cued ankle-dorsiflexion task. The spatiotemporal dynamics and the patterns of task-relevant information flow across the dorsal motor network were investigated. We show that task-relevant information appears and decays earlier in the higher order areas of the dorsal motor network then in the primary motor cortex. Furthermore, the results show that task-relevant information is encoded in general initially, and then selective goals are subsequently encoded in specifics subregions across the network. Importantly, the patterns of recurrent information flow across the network vary across different subregions depending on the goal. Recurrent information flow was observed across all higher order areas of the dorsal motor network in the subregions encoding for the current goal. In contrast, only the top-down information flow from the supplementary motor cortex to the frontoparietal regions, with weakened recurrent information flow between the frontoparietal regions and bottom-up information flow from the frontoparietal regions to the supplementary cortex were observed in the subregions encoding for the opposing goal. We conclude that selective motor goal encoding and execution rely on goal-dependent differences in subregional recurrent information flow patterns across the long-range dorsal motor network areas that exhibit graded functional specialization. © 2018 Wiley Periodicals, Inc.

  6. Differences between left- and right-sided neglect revisited: A large cohort study across multiple domains.

    Science.gov (United States)

    Ten Brink, Antonia F; Verwer, Jurre H; Biesbroek, J Matthijs; Visser-Meily, Johanna M A; Nijboer, Tanja C W

    2017-09-01

    Unilateral spatial neglect (USN) is a syndrome that can occur after right- and left-hemisphere damage. It is generally accepted that left-sided USN is more severe than right-sided USN. Evidence for such a difference in other domains is lacking. Primary aims were to compare frequency, severity, region specificity, cognition, physical functioning, and physical independence between left and right USN. Secondary aims were to compare lesion characteristics. A total of 335 stroke patients admitted for inpatient rehabilitation were included. The severity of the lateralized attentional deficit was measured with a shape cancellation and line bisection test (in peripersonal and extrapersonal space) and the Catherine Bergego scale. The Mini-Mental State Examination, Stichting Afasie Nederland score, search organization (i.e., best R and intersections rate), Motricity Index, balance, mobility, and self-care were assessed. Measures were statistically compared between left, right, and no USN patients. Lesion overlay plots were compared with lesion subtraction analyses. Left USN (15.82%) was more frequent than right USN (9.25%). Demographic and stroke characteristics were comparable between groups. The lateralized attentional deficit was most severe in left USN. USN in both peripersonal and extrapersonal space was more frequently left-sided in nature. Search efficiency was lower in left USN. Balance was poorer in right USN. No differences between left and right USN were found for cognitive ability, communication, motor strength, mobility, and self-care. Most patients with left USN had right-hemispheric lesions, whereas patients with right USN could have lesions in either the left or the right hemisphere. To conclude, left and right USN are both common after stroke. Although the lateralized attention deficit is worse in left than in right USN, consequences at the level of physical functioning and physical independence are largely comparable. From a clinical perspective, it is

  7. Longitudinal strain predicts left ventricular mass regression after aortic valve replacement for severe aortic stenosis and preserved left ventricular function.

    Science.gov (United States)

    Gelsomino, Sandro; Lucà, Fabiana; Parise, Orlando; Lorusso, Roberto; Rao, Carmelo Massimiliano; Vizzardi, Enrico; Gensini, Gian Franco; Maessen, Jos G

    2013-11-01

    We explored the influence of global longitudinal strain (GLS) measured with two-dimensional speckle-tracking echocardiography on left ventricular mass regression (LVMR) in patients with pure aortic stenosis (AS) and normal left ventricular function undergoing aortic valve replacement (AVR). The study population included 83 patients with severe AS (aortic valve area regression (all P regression in patients with pure AS undergoing AVR. Our findings must be confirmed by further larger studies.

  8. Short-Term Limb Immobilization Affects Cognitive Motor Processes

    Science.gov (United States)

    Toussaint, Lucette; Meugnot, Aurore

    2013-01-01

    We examined the effects of a brief period of limb immobilization on the cognitive level of action control. A splint placed on the participants' left hand was used as a means of immobilization. We used a hand mental rotation task to investigate the immobilization-induced effects on motor imagery performance (Experiments 1 and 2) and a number mental…

  9. Music reduces pain and increases resting state fMRI BOLD signal amplitude in the left angular gyrus in fibromyalgia patients

    Directory of Open Access Journals (Sweden)

    Eduardo A. Garza-Villarreal

    2015-07-01

    Full Text Available Music reduces pain in fibromyalgia (FM, a chronic pain disease, but the functional neural correlates of music-induced analgesia are still largely unknown. We recruited FM patients (n = 22 who listened to their preferred relaxing music and an auditory control (pink noise for 5 minutes without external noise from fMRI image acquisition. Resting state fMRI was then acquired before and after the music and control conditions. A significant increase in the amplitude of low frequency fluctuations of the BOLD signal was evident in the left angular gyrus after listening to music, which in turn, correlated to the analgesia reports. The post-hoc seed-based functional connectivity analysis of the left angular gyrus showed found higher connectivity after listening to music with right dorsolateral prefrontal cortex, the left caudate, and decreased connectivity with right anterior cingulate cortex, right supplementary motor area, precuneus and right precentral gyrus. Pain intensity analgesia was correlated (r = .61 to the connectivity of the left angular gyrus with the right precentral gyrus. Our results show that music-induced analgesia in FM is related to top-down regulation of the pain modulatory network by the default-mode network.

  10. Motor stimulation with interferential currents.

    Science.gov (United States)

    DE Domenico, G G; Strauss, G R

    1985-01-01

    The stimulation of motor nerves to produce muscle contraction in normally innervated muscles is a long established part of orthodox physiotherapy. Recently however, a revival of interest in the area has occurred, particularly in the U.S.A. Recent research has indicated that such stimulation can improve muscle strength, reduce muscle spasm and modulate spasticity, in addition to the more usual re-educative role of electrical stimulation. The concept of functional electrical stimulation (F.E.S.) seems destined to become an integral part of many programmes for the neurologically handicapped patient. This paper describes the technique of motor stimulation using interferential currents. The stimulating parameters and electrode placement are considered, along with a detailed explanation of the pre-modulated system of electrode arrangement. Copyright © 1985 Australian Physiotherapy Association. Published by . All rights reserved.

  11. Hand Preference and Cognitive, Motor, and Behavioral Functioning in 10-Year-Old Extremely Preterm Children.

    Science.gov (United States)

    Burnett, Alice C; Anderson, Peter J; Joseph, Robert M; Allred, Elizabeth N; O'Shea, T Michael; Kuban, Karl C K; Leviton, Alan

    2018-04-01

    The association of hand preference (left, mixed, and right) with cognitive, academic, motor, and behavioral function was evaluated in 864 extremely preterm children at 10 years of age. Left-handed and right-handed children performed similarly but mixed-handed children had greater odds of functional deficits across domains than right-handed children. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Left Activism, Succour and Selfhood

    DEFF Research Database (Denmark)

    Hughes, Celia Penelope

    2014-01-01

    an interchange of motherhood, domesticity, far-left politics, and close female friendship. The article will show how the women's epistolary friendship offers intimate insight into female self-fashioning at a breakthrough social and political moment in 1970s Britain. As they reflected on some of the key political...

  13. Brain activity during motor imagery of an action with an object: a functional magnetic resonance imaging study.

    Science.gov (United States)

    Mizuguchi, Nobuaki; Nakata, Hiroki; Hayashi, Takuji; Sakamoto, Masanori; Muraoka, Tetsuro; Uchida, Yusuke; Kanosue, Kazuyuki

    2013-07-01

    We utilized functional magnetic resonance imaging to investigate the brain regions activated during motor imagery of an action with an object both with and without passively holding the object. Participants performed the following tasks: (1) 'Imagery with Ball' condition: subjects imagined squeezing a foam ball (7cm diameter) while holding the ball, (2) 'Imagery' condition: subjects imagined squeezing a ball without holding the ball, and (3) 'Ball' condition: subjects held the ball without motor imagery. Regions activated by the 'Imagery with Ball' condition were located in the left dorsolateral prefrontal cortex (DLPFC), supplemental motor areas (SMA), inferior parietal lobule (IPL), superior parietal lobule (SPL), insula, cerebellum and basal ganglia. A direct comparison revealed that the right DLPFC and the right IPL showed a higher level of activation during the 'Imagery with Ball' than during the 'Imagery'+'Ball' conditions. Our studies suggested that the right front-parietal networks were involved in the motor imagery of an action with an object. Copyright © 2013 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  14. Motor imagery of voluntary muscle relaxation of the foot induces a temporal reduction of corticospinal excitability in the hand.

    Science.gov (United States)

    Kato, Kouki; Kanosue, Kazuyuki

    2018-03-06

    The object of this study was to clarify how the motor imagery of foot muscle relaxation influences corticospinal excitability for the ipsilateral hand. Twelve participants volitionally relaxed their right foot from a dorsiflexed position (actual relaxation), or imaged the same movement (imagery relaxation) in response to an auditory cue. Transcranial magnetic stimulation (TMS) was delivered to the hand area of the left primary motor cortex at different time intervals after an auditory cue. Motor evoked potentials (MEPs) were recorded from the right extensor carpi radialis (ECR) and flexor carpi radialis (FCR). MEP amplitudes of ECR and FCR caused by single-pulse TMS temporarily decreased during both actual relaxation and imagery relaxation as compared with those of the resting control. A correlation of MEP amplitude between actual relaxation and imagery relaxation was observed. Our findings indicate that motor imagery of muscle relaxation of the foot induced a reduction of corticospinal excitability in the ipsilateral hand muscles. This effect is likely produced via the same mechanism that functions during actual muscle relaxation. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Frontal Motor Cortex Activity During Reactive Control Is Associated With Past Suicidal Behavior in Recent-Onset Schizophrenia.

    Science.gov (United States)

    Minzenberg, Michael J; Lesh, Tyler; Niendam, Tara; Yoon, Jong H; Cheng, Yaoan; Rhoades, Remy N; Carter, Cameron S

    2015-01-01

    Suicide is prevalent in schizophrenia (SZ), yet the neural system functions that confer suicide risk remain obscure. Circuits operated by the prefrontal cortex (PFC) are altered in SZ, including those that support reactive control, and PFC changes are observed in postmortem studies of heterogeneous suicide victims. We tested whether history of suicide attempt is associated with altered frontal motor cortex activity during reactive control processes. We evaluated 17 patients with recent onset of DSM-IV-TR-defined SZ using the Columbia Suicide Severity Rating Scale and functional magnetic resonance imaging during Stroop task performance. Group-level regression models relating past suicidal behavior to frontal activation controlled for depression, psychosis, and impulsivity. Past suicidal behavior was associated with relatively higher activation in the left-hemisphere supplementary motor area (SMA), pre-SMA, premotor cortex, and dorsolateral PFC, all ipsilateral to the active primary motor cortex. This study provides unique evidence that suicidal behavior in patients with recent-onset SZ directly relates to frontal motor cortex activity during reactive control, in a pattern reciprocal to the relationship with proactive control found previously. Further work should address how frontal-based control functions change with risk over time, and their potential utility as a biomarker for interventions to mitigate suicide risk in SZ.

  16. MOTORIC SPEED AND MANUAL DEXTERITY OF CHILDERN WITH IMPAIRED VISION

    Directory of Open Access Journals (Sweden)

    Dženana Radžo Alibegović

    2017-04-01

    Full Text Available The aim of this study was to estimate the motoric speed and manual dexterity of children with visual impairments. The research is covered by a sample size of 35 participants with visual impairment, with ages between 7 and 15 years, of which 19 participants with visual impairment were male and 16 participants with impaired vision were female. The study was conducted in 17 primary schools in the municipality of Tuzla, Bosnia and Herzegovina. The results showed that the motoric speed and manual dexterity of children with visual impairment is evenly developed on the right and left hand, and also on both hands together and that there is a relationship between the motoric speed and manual dexterity of the right and left hand and both hands together.

  17. Cortical surface area reduction in identification of subjects at high risk for post-traumatic stress disorder: A pilot study.

    Science.gov (United States)

    Hu, Hao; Sun, Yawen; Su, Shanshan; Wang, Yao; Qiu, Yongming; Yang, Xi; Zhou, Yan; Xiao, Zeping; Wang, Zhen

    2018-01-01

    Victims of motor vehicle accidents often develop post-traumatic stress disorder, which causes significant social function loss. For the difficulty in treating post-traumatic stress disorder, identification of subjects at high risk for post-traumatic stress disorder is essential for providing possible intervention. This paper aims to examine the cortical structural traits related to susceptibility to post-traumatic stress disorder. To address this issue, we performed structural magnetic resonance imaging study in motor vehicle accident victims within 48 hours from the accidents. A total of 70 victims, available for both clinical and magnetic resonance imaging data, enrolled in our study. Upon completion of 6-month follow-up, 29 of them developed post-traumatic stress disorder, while 41 of them didn't. At baseline, voxelwise comparisons of cortical thickness, cortical area and cortical volume were conducted between post-traumatic stress disorder group and trauma control group. As expected, several reduced cortical volume within frontal-temporal loop were observed in post-traumatic stress disorder. For cortical thickness, no between-group differences were observed. There were three clusters in left hemisphere and one cluster in right hemisphere showing decreased cortical area in post-traumatic stress disorder patients, compared with trauma controls. Peak voxels of the three clusters in left hemisphere were separately located in superior parietal cortex, insula and rostral anterior cingulate cortex. The finding of reduced surface area of left insula and left rostral anterior cingulate cortex suggests that shrinked surface area in motor vehicle accident victims could act as potential biomarker of subjects at high risk for post-traumatic stress disorder.

  18. Motor cortex neuroplasticity following brachial plexus transfer

    Directory of Open Access Journals (Sweden)

    Stefan eDimou

    2013-08-01

    Full Text Available In the past decade, research has demonstrated that cortical plasticity, once thought only to exist in the early stages of life, does indeed continue on into adulthood. Brain plasticity is now acknowledged as a core principle of brain function and describes the ability of the central nervous system to adapt and modify its structural organization and function as an adaptive response to functional demand. In this clinical case study we describe how we used neuroimaging techniques to observe the functional topographical expansion of a patch of cortex along the sensorimotor cortex of a 27 year-old woman following brachial plexus transfer surgery to re-innervate her left arm. We found bilateral activations present in the thalamus, caudate, insula as well as across the sensorimotor cortex during an elbow flex motor task. In contrast we found less activity in the sensorimotor cortex for a finger tap motor task in addition to activations lateralised to the left inferior frontal gyrus and thalamus and bilaterally for the insula. From a pain perspective the patient who had experienced extensive phantom limb pain before surgery found these sensations were markedly reduced following transfer of the right brachial plexus to the intact left arm. Within the context of this clinical case the results suggest that functional improvements in limb mobility are associated with increased activation in the sensorimotor cortex as well as reduced phantom limb pain.

  19. Combining motor imagery with selective sensation toward a hybrid-modality BCI.

    Science.gov (United States)

    Yao, Lin; Meng, Jianjun; Zhang, Dingguo; Sheng, Xinjun; Zhu, Xiangyang

    2014-08-01

    A hybrid modality brain-computer interface (BCI) is proposed in this paper, which combines motor imagery with selective sensation to enhance the discrimination between left and right mental tasks, e.g., the classification between left/ right stimulation sensation and right/ left motor imagery. In this paradigm, wearable vibrotactile rings are used to stimulate both the skin on both wrists. Subjects are required to perform the mental tasks according to the randomly presented cues (i.e., left hand motor imagery, right hand motor imagery, left stimulation sensation or right stimulation sensation). Two-way ANOVA statistical analysis showed a significant group effect (F (2,20) = 7.17, p = 0.0045), and the Benferroni-corrected multiple comparison test (with α = 0.05) showed that the hybrid modality group is 11.13% higher on average than the motor imagery group, and 10.45% higher than the selective sensation group. The hybrid modality experiment exhibits potentially wider spread usage within ten subjects crossed 70% accuracy, followed by four subjects in motor imagery and five subjects in selective sensation. Six subjects showed statistically significant improvement ( Benferroni-corrected) in hybrid modality in comparison with both motor imagery and selective sensation. Furthermore, among subjects having difficulties in both motor imagery and selective sensation, the hybrid modality improves their performance to 90% accuracy. The proposed hybrid modality BCI has demonstrated clear benefits for those poorly performing BCI users. Not only does the requirement of motor and sensory anticipation in this hybrid modality provide basic function of BCI for communication and control, it also has the potential for enhancing the rehabilitation during motor recovery.

  20. Corticobulbar motor evoked potentials from tongue muscles used as a control in cervical spinal surgery

    Directory of Open Access Journals (Sweden)

    Dong-Gun Kim

    Full Text Available Objective: Motor evoked potentials (MEPs changes might be caused to the non-surgically induced factors during cervical spinal surgery. Therefore, control MEPs recorded cranially to the exit of the C5 root are highly recommendable in cervical spinal surgery. We studied whether corticobulbar MEPs (C-MEPs from tongue muscle could be used as a control MEPs in cervical spinal surgery. Methods: Twenty-five consecutive cervical spinal surgeries were analyzed. Stimulation of motor area for tongue was done by subcutaneous electrodes placed at C3/C4 (10–20 EEG System, and recording was done from both sides of tongue. Results: C-MEPs were recorded successfully 24 out of the 25 (96% tested patients. Forty-six out of fifty MEPs (92% from tongue muscles were monitorable from the baseline. In two patients, we could obtain only unilateral C-MEPs. Mean MEPs latencies obtained from the left and right side of the tongue were 11.5 ± 1 ms and 11.5 ± 0.8 ms, respectively. Conclusions: Monitoring C-MEPs from tongue muscles might be useful control in cervical spinal surgery. They were easily elicited and relatively free from phenomenon of peripheral stimulation of the hypoglossal nerves. Significance: This is first study to identify the usefulness of C-MEPs as a control of cervical spinal surgery. Keywords: Intraoperative neurophysiological monitoring, Motor-evoked potential, Corticospinal tract, Corticobulbar MEPs, Hypoglossal nerve

  1. Bimanual non-congruent actions in motor neglect: a combined behavioral/fMRI study

    Directory of Open Access Journals (Sweden)

    Francesca eGarbarini

    2015-10-01

    Full Text Available In Motor Neglect (MN syndrome, a specific impairment in non-congruent bimanual movements has been described. In the present case-control study, we investigated the neuro-functional correlates of this behavioral deficit. Two right-brain-damaged patients, one with (MN+ and one without (MN- MN, were evaluated by means of functional Magnetic Resonance Imaging (fMRI in a bimanual Circles-Lines paradigm. Patients were requested to perform right-hand movements (lines-drawing and, simultaneously, congruent (lines-drawing or non-congruent (circles-drawing left-hand movements. In the behavioral task, MN- patient showed a bimanual-coupling-effect, while MN+ patient did not. The fMRI study showed that in MN-, a fronto-parietal network, mainly involving the pre-supplementary motor area (pre-SMA and the posterior parietal cortex (PPC, was significantly more active in non-congruent than in congruent conditions, as previously shown in healthy subjects. On the contrary, MN+ patient showed an opposite pattern of activation both in pre-SMA and in PPC. Within this fronto-parietal network, the pre-SMA is supposed to exert an inhibitory influence on the default coupling of homologous muscles, thus allowing the execution of non-congruent movements. In MN syndrome, the described abnormal pre-SMA activity supports the hypothesis that a failure to inhibit ipsilesional motor programs might determine a specific impairment of non-congruent movements.

  2. Retrospectively Assessed Early Motor and Current Pragmatic Language Skills in Autistic and Neurotypical Children.

    Science.gov (United States)

    Stevenson, Jennifer L; Lindley, Caitlin E; Murlo, Nicole

    2017-08-01

    Autistic individuals often struggle developmentally, even in areas that are not explicit diagnostic criteria, such as motor skills. This study explored the relation between early motor skills, assessed retrospectively, and current pragmatic language skills. Caregivers of neurotypical and autistic children, matched on gender and age, completed assessments of their child's early motor development and current language abilities. Early motor skills were correlated with later pragmatic language skills, and autistic children exhibited fewer motor skills than neurotypical children. In fact, motor skills were a better predictor of an autism spectrum diagnosis than were scores on a measure of current pragmatic language. These results highlight the important role of motor skills in autism spectrum disorders.

  3. Apraxia and spatial inattention dissociate in left hemisphere stroke.

    Science.gov (United States)

    Timpert, David C; Weiss, Peter H; Vossel, Simone; Dovern, Anna; Fink, Gereon R

    2015-10-01

    Theories of lateralized cognitive functions propose a dominance of the left hemisphere for motor control and of the right hemisphere for spatial attention. Accordingly, spatial attention deficits (e.g., neglect) are more frequently observed after right-hemispheric stroke, whereas apraxia is a common consequence of left-hemispheric stroke. Clinical reports of spatial attentional deficits after left hemisphere (LH) stroke also exist, but are often neglected. By applying parallel analysis (PA) and voxel-based lesion-symptom mapping (VLSM) to data from a comprehensive neuropsychological assessment of 74 LH stroke patients, we here systematically investigate the relationship between spatial inattention and apraxia and their neural bases. PA revealed that apraxic (and language comprehension) deficits loaded on one common component, while deficits in attention tests were explained by another independent component. Statistical lesion analyses with the individual component scores showed that apraxic (and language comprehension) deficits were significantly associated with lesions of the left superior longitudinal fascicle (SLF). Data suggest that in LH stroke spatial attention deficits dissociate from apraxic (and language comprehension) deficits. These findings contribute to models of lateralised cognitive functions in the human brain. Moreover, our findings strongly suggest that LH stroke patients should be assessed systematically for spatial attention deficits so that these can be included in their rehabilitation regime. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. The Emotional Motor System

    NARCIS (Netherlands)

    Holstege, G.

    1992-01-01

    A large number of new descending motor pathways to caudal brainstem and spinal cord have been recognized recently. Nevertheless all the new pathways seem to belong to one of three motor systems in the central nervous system (CNS). This survey gives an overvieuw of the pathways belonging to the

  5. THE EMOTIONAL MOTOR SYSTEM

    NARCIS (Netherlands)

    HOLSTEGE, G

    1992-01-01

    A large number of new descending motor pathways to caudal brainstem and spinal cord have been recognized recently. Nevertheless all the new pathways seem to belong to one of three motor systems in the central nervous system (CNS). This survey gives an overvieuw of the pathways belonging to the

  6. Modeling Induction Motor Imbalances

    DEFF Research Database (Denmark)

    Armah, Kabenla; Jouffroy, Jerome; Duggen, Lars

    2016-01-01

    This paper gives a study into the development of a generalized model for a three-phase induction motor that offers flexibility of simulating balanced and unbalanced parameter scenarios. By analyzing the interaction of forces within the motor, we achieve our main objective of deriving the system...

  7. Stepping motor controller

    Science.gov (United States)

    Bourret, Steven C.; Swansen, James E.

    1984-01-01

    A stepping motor is microprocessingly controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

  8. Dopamine Promotes Motor Cortex Plasticity and Motor Skill Learning via PLC Activation.

    Science.gov (United States)

    Rioult-Pedotti, Mengia-Seraina; Pekanovic, Ana; Atiemo, Clement Osei; Marshall, John; Luft, Andreas Rüdiger

    2015-01-01

    Dopaminergic neurons in the ventral tegmental area, the major midbrain nucleus projecting to the motor cortex, play a key role in motor skill learning and motor cortex synaptic plasticity. Dopamine D1 and D2 receptor antagonists exert parallel effects in the motor system: they impair motor skill learning and reduce long-term potentiation. Traditionally, D1 and D2 receptor modulate adenylyl cyclase activity and cyclic adenosine monophosphate accumulation in opposite directions via different G-proteins and bidirectionally modulate protein kinase A (PKA), leading to distinct physiological and behavioral effects. Here we show that D1 and D2 receptor activity influences motor skill acquisition and long term synaptic potentiation via phospholipase C (PLC) activation in rat primary motor cortex. Learning a new forelimb reaching task is severely impaired in the presence of PLC, but not PKA-inhibitor. Similarly, long term potentiation in motor cortex, a mechanism involved in motor skill learning, is reduced when PLC is inhibited but remains unaffected by the PKA inhibitor. Skill learning deficits and reduced synaptic plasticity caused by dopamine antagonists are prevented by co-administration of a PLC agonist. These results provide evidence for a role of intracellular PLC signaling in motor skill learning and associated cortical synaptic plasticity, challenging the traditional view of bidirectional modulation of PKA by D1 and D2 receptors. These findings reveal a novel and important action of dopamine in motor cortex that might be a future target for selective therapeutic interventions to support learning and recovery of movement resulting from injury and disease.

  9. Dopamine Promotes Motor Cortex Plasticity and Motor Skill Learning via PLC Activation.

    Directory of Open Access Journals (Sweden)

    Mengia-Seraina Rioult-Pedotti

    Full Text Available Dopaminergic neurons in the ventral tegmental area, the major midbrain nucleus projecting to the motor cortex, play a key role in motor skill learning and motor cortex synaptic plasticity. Dopamine D1 and D2 receptor antagonists exert parallel effects in the motor system: they impair motor skill learning and reduce long-term potentiation. Traditionally, D1 and D2 receptor modulate adenylyl cyclase activity and cyclic adenosine monophosphate accumulation in opposite directions via different G-proteins and bidirectionally modulate protein kinase A (PKA, leading to distinct physiological and behavioral effects. Here we show that D1 and D2 receptor activity influences motor skill acquisition and long term synaptic potentiation via phospholipase C (PLC activation in rat primary motor cortex. Learning a new forelimb reaching task is severely impaired in the presence of PLC, but not PKA-inhibitor. Similarly, long term potentiation in motor cortex, a mechanism involved in motor skill learning, is reduced when PLC is inhibited but remains unaffected by the PKA inhibitor. Skill learning deficits and reduced synaptic plasticity caused by dopamine antagonists are prevented by co-administration of a PLC agonist. These results provide evidence for a role of intracellular PLC signaling in motor skill learning and associated cortical synaptic plasticity, challenging the traditional view of bidirectional modulation of PKA by D1 and D2 receptors. These findings reveal a novel and important action of dopamine in motor cortex that might be a future target for selective therapeutic interventions to support learning and recovery of movement resulting from injury and disease.

  10. IE Information No. 87-08: Degraded motor leads in Limitorque dc motor operators

    International Nuclear Information System (INIS)

    Jordan, E.L.

    1992-01-01

    On May 6, 1986 the NRC received from Portland General Electric Company a 10 CFR 21 report concerning a motor failure which occurred at its Trojan Nuclear Power Plant. The failure involved shorting of the motor leads inside a Limitorque motor operator connected to an auxiliary feedwater flow control valve. Upon inspection it was determined that the failure was the result of insulation degradation of the motor leads that had allowed two leads to short together. Recently, the NRC has also learned of a failure at the Turkey Point Nuclear Power Plant in which the steam supply valve for the auxiliary feedwater turbine failed to operate after a Limitorque motor operator experienced a similar motor lead short circuit. The Trojan and the Turkey Point Limitorque operators were found to contain motors manufactured with Nomex-Kapton insulated leads. On January 12--14, 1987, the NRC conducted an inspection at Peerless-Winsmith, Inc., manufacturer of dc motors for Limitorque Co. During this inspection it was determined that the failed Nomex-Kapton leads were different than the leads which were fitted to the motors, tested, and documented in Limitorque Qualification Report B-0009 for dc motor operators. The leads attached to the tested motors were insulated with Nomex plus an epoxy impregnated braided fiberglass sleeve. The NRC knows of no analysis or testing that has been performed to show the Nomex-Kapton leads are acceptable for use in an application requiring environmental qualification. Further, it should be noted that the failures cited above occurred under normal operating conditions, not under the harsh conditions which could occur in areas where environmental qualification is required

  11. Higher Efficiency HVAC Motors

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Charles Joseph [QM Power, Inc., Kansas City, MO (United States)

    2018-02-13

    The objective of this project was to design and build a cost competitive, more efficient heating, ventilation, and air conditioning (HVAC) motor than what is currently available on the market. Though different potential motor architectures among QMP’s primary technology platforms were investigated and evaluated, including through the building of numerous prototypes, the project ultimately focused on scaling up QM Power, Inc.’s (QMP) Q-Sync permanent magnet synchronous motors from available sub-fractional horsepower (HP) sizes for commercial refrigeration fan applications to larger fractional horsepower sizes appropriate for HVAC applications, and to add multi-speed functionality. The more specific goal became the research, design, development, and testing of a prototype 1/2 HP Q-Sync motor that has at least two operating speeds and 87% peak efficiency compared to incumbent electronically commutated motors (EC or ECM, also known as brushless direct current (DC) motors), the heretofore highest efficiency HVACR fan motor solution, at approximately 82% peak efficiency. The resulting motor prototype built achieved these goals, hitting 90% efficiency and .95 power factor at full load and speed, and 80% efficiency and .7 power factor at half speed. Q-Sync, developed in part through a DOE SBIR grant (Award # DE-SC0006311), is a novel, patented motor technology that improves on electronically commutated permanent magnet motors through an advanced electronic circuit technology. It allows a motor to “sync” with the alternating current (AC) power flow. It does so by eliminating the constant, wasteful power conversions from AC to DC and back to AC through the synthetic creation of a new AC wave on the primary circuit board (PCB) by a process called pulse width modulation (PWM; aka electronic commutation) that is incessantly required to sustain motor operation in an EC permanent magnet motor. The Q-Sync circuit improves the power factor of the motor by removing all

  12. Left ventricular diastolic performance of left ventricular hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Ikezono, Tohru; Ozaki, Masaharu; Yamagishi, Takashi; Shimizu, Tatsuro; Furutani, Yuji; Kusukawa, Reizo

    1987-02-01

    To study left ventricular diastolic performance in different forms of left ventricular hypertrophy, ECG gated cardiac blood pool scan was performed in 11 patients with hypertrophic nonobstructive cardiomyopathy (HCM) and in 19 patients with hypertension (HT), and left ventricular volume curve (LVVC) was analyzed and compared with those of 13 normal subjects (N). Ejection fraction (EF) and early filling volume ratio (the ratio of volume increment of 100 msec later than the zero point in the first derivative of LVVC to the end diastolic volume) (%EFV) were computed from LVVC. Peak ejection rate (PER) and peak filling rate (PFR) were obtained from the first derivative of LVVC. Peak ejection acceleration (PEA) and peak filling acceleration (PFA) were calculated from the second derivative of LVVC. EF, PER and PEA did not show any difference between these 3 groups. PFR was lower in HT (2.6 +- 0.5) compared with those in HCM (3.0 +- 0.5) (p < 0.05) and in N (3.4 +- 0.5) (p < 0.001), but the %EFV in HCM (4.9 +- 1.8) was lower than those in HT (6.9 +- 1.9) (p < 0.01) and in N (11.4 +- 1.4) (p < 0.001). Moreover, PFA in HCM (27.9 +- 7.2) was increased than those in HT (20.2 +- 5.4) (p < 0.01) with no differences between HCM and N (29.4 +- 8.1). Significant correlation was observed between PFR and PFA (Y = 0.06X + 1.4. r = 0.856. p < 0.001). These result indicate that, in HCM, reduced increase in early left ventricular volume is compensated by a greater filling acceleration. In contrast, there is no compensation by filling acceleration in HT.

  13. To What Extent Can Motor Imagery Replace Motor Execution While Learning a Fine Motor Skill?

    NARCIS (Netherlands)

    Sobierajewicz, Jagna; Szarkiewicz, Sylwia; Prekoracka-Krawczyk, Anna; Jaskowski, Wojciech; van der Lubbe, Robert Henricus Johannes

    2016-01-01

    Motor imagery is generally thought to share common mechanisms with motor execution. In the present study, we examined to what extent learning a fine motor skill by motor imagery may substitute physical practice. Learning effects were assessed by manipulating the proportion of motor execution and

  14. Induction motor control

    Science.gov (United States)

    Hansen, Irving G.

    1990-01-01

    Electromechanical actuators developed to date have commonly ultilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilized induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high-frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high-frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  15. Induction motor control

    Science.gov (United States)

    Hansen, Irving G.

    1990-01-01

    Electromechanical actuators developed to date have commonly utilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilizes induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  16. Efficient foot motor control by Neymar’s brain

    Directory of Open Access Journals (Sweden)

    Eiichi eNaito

    2014-08-01

    Full Text Available How very long-term (over many years motor skill training shapes internal motor representation remains poorly understood. We provide valuable evidence that the football brain of Neymar da Silva Santos Júnior (the Brasilian footballer recruits very limited neural resources in the motor-cortical foot regions during foot movements. We scanned his brain activity with a 3-tesla functional magnetic resonance imaging (fMRI while he rotated his right ankle at 1Hz. We also scanned brain activity when three other age-controlled professional footballers, two top-athlete swimmers and one amateur footballer performed the identical task. A comparison was made between Neymar’s brain activity with that obtained from the others. We found activations in the left medial-wall foot motor regions during the foot movements consistently across all participants. However, the size and intensity of medial-wall activity was smaller in the four professional footballers than in the three other participants, despite no difference in amount of foot movement. Surprisingly, the reduced recruitment of medial-wall foot motor regions became apparent in Neymar. His medial-wall activity was smallest among all participants with absolutely no difference in amount of foot movement. Neymar may efficiently control given foot movements probably by largely conserving motor-cortical neural resources. We discuss this possibility in terms of over-years motor skill training effect, use-dependent plasticity, and efficient motor control.

  17. Efficient foot motor control by Neymar’s brain

    Science.gov (United States)

    Naito, Eiichi; Hirose, Satoshi

    2014-01-01

    How very long-term (over many years) motor skill training shapes internal motor representation remains poorly understood. We provide valuable evidence that the football brain of Neymar da Silva Santos Júnior (the Brasilian footballer) recruits very limited neural resources in the motor-cortical foot regions during foot movements. We scanned his brain activity with a 3-tesla functional magnetic resonance imaging (fMRI) while he rotated his right ankle at 1 Hz. We also scanned brain activity when three other age-controlled professional footballers, two top-athlete swimmers and one amateur footballer performed the identical task. A comparison was made between Neymar’s brain activity with that obtained from the others. We found activations in the left medial-wall foot motor regions during the foot movements consistently across all participants. However, the size and intensity of medial-wall activity was smaller in the four professional footballers than in the three other participants, despite no difference in amount of foot movement. Surprisingly, the reduced recruitment of medial-wall foot motor regions became apparent in Neymar. His medial-wall activity was smallest among all participants with absolutely no difference in amount of foot movement. Neymar may efficiently control given foot movements probably by largely conserving motor-cortical neural resources. We discuss this possibility in terms of over-years motor skill training effect, use-dependent plasticity, and efficient motor control. PMID:25136312

  18. The effect of motor overflow on bimanual asymmetric force coordination.

    Science.gov (United States)

    Cunningham, David A; Roelle, Sarah M; Allexandre, Didier; Potter-Baker, Kelsey A; Sankarasubramanian, Vishwanath; Knutson, Jayme S; Yue, Guang H; Machado, Andre G; Plow, Ela B

    2017-04-01

    Motor overflow, typically described in the context of unimanual movements, refers to the natural tendency for a 'resting' limb to move during movement of the opposite limb and is thought to be influenced by inter-hemispheric interactions and intra-cortical networks within the 'resting' hemisphere. It is currently unknown, however, how motor overflow contributes to asymmetric force coordination task accuracy, referred to as bimanual interference, as there is need to generate unequal forces and corticospinal output for each limb. Here, we assessed motor overflow via motor evoked potentials (MEPs) and the regulation of motor overflow via inter-hemispheric inhibition (IHI) and short-intra-cortical inhibition (SICI) using transcranial magnetic stimulation in the presence of unimanual and bimanual isometric force production. All outcomes were measured in the left first dorsal interosseous (test hand) muscle, which maintained 30% maximal voluntary contraction (MVC), while the right hand (conditioning hand) was maintained at rest, 10, 30, or 70% of its MVC. We have found that as higher forces are generated with the conditioning hand, MEP amplitudes at the active test hand decreased and inter-hemispheric inhibition increased, suggesting reduced motor overflow in the presence of bimanual asymmetric forces. Furthermore, we found that subjects with less motor overflow (i.e., reduced MEP amplitudes in the test hemisphere) demonstrated poorer accuracy in maintaining 30% MVC across all conditions. These findings suggest that motor overflow may serve as an adaptive substrate to support bimanual asymmetric force coordination.

  19. Implicit chord processing and motor representation in pianists.

    Science.gov (United States)

    Trimarchi, Pietro Davide; Luzzatti, Claudio

    2011-03-01

    The aim of this paper is to assess the relevance of pitch dimension in auditory-motor interaction. Several behavioural and brain imaging studies have shown that auditory processing of sounds can activate motor representations, an effect which is however elicited only by action-related sounds, i.e., sounds linked to a specific motor repertoire. Music provides an appropriate framework for further exploration of this issue. Three groups of participants (pianists, non-pianist musicians and non-musicians) were tested with a shape decision task where left-hand and right-hand responses were required; each visual stimulus was paired with an auditory task-irrelevant stimulus (high-pitched or low-pitched piano-timbre chords). Of the three groups, only pianists had longer reaction times for left-hand/high-pitched chords and right-hand/low-pitched chords associations. These findings are consistent with an auditory-motor effect elicited by pitch dimension, as only pianists show an interaction between motor responses and implicit pitch processing. This interaction is consistent with the canonical mapping of hand gestures and pitch dimension on the piano keyboard. The results are discussed within the ideo-motor theoretical framework offered by the Theory of Event Coding (Hommel et al. in Behav Brain Sci 24:849-937, 2001).

  20. Improving ideomotor limb apraxia by electrical stimulation of the left posterior parietal cortex.

    Science.gov (United States)

    Bolognini, Nadia; Convento, Silvia; Banco, Elisabetta; Mattioli, Flavia; Tesio, Luigi; Vallar, Giuseppe

    2015-02-01

    Limb apraxia, a deficit of planning voluntary gestures, is most frequently caused by damage to the left hemisphere, where, according to an influential neurofunctional model, gestures are planned, before being executed through the motor cortex of the hemisphere contralateral to the acting hand. We used anodal transcranial direct current stimulation delivered to the left posterior parietal cortex (PPC), the right motor cortex (M1), and a sham stimulation condition, to modulate the ability of six left-brain-damaged patients with ideomotor apraxia, and six healthy control subjects, to imitate hand gestures, and to perform skilled hand movements using the left hand. Transcranial direct current stimulation delivered to the left PPC reduced the time required to perform skilled movements, and planning, but not execution, times in imitating gestures, in both patients and controls. In patients, the amount of decrease of planning times brought about by left PPC transcranial direct current stimulation was influenced by the size of the parietal lobe damage, with a larger parietal damage being associated with a smaller improvement. Of interest from a clinical perspective, left PPC stimulation also ameliorated accuracy in imitating hand gestures in patients. Instead, transcranial direct current stimulation to the right M1 diminished execution, but not planning, times in both patients and healthy controls. In conclusion, by using a transcranial stimulation approach, we temporarily improved ideomotor apraxia in the left hand of left-brain-damaged patients, showing a role of the left PPC in planning gestures. This evidence opens up novel perspectives for the use of transcranial direct current stimulation in the rehabilitation of limb apraxia. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. STEPPING MOTOR - HYDRAULIC MOTOR SERVO DRIVES FOR ...

    African Journals Online (AJOL)

    Dr Obe

    machine tool systems wherever the existing production batch sizes and frequency of manufacture justifies it in a developing country. This is so mainly because numerically controlled (NC) ... Because the NC machine is an expensive item of equipment it is ... electric stepping motor is a very precise unit with. 10k ohms.

  2. Mapeamento da área motora durante a cirurgia de tumor intracraniano: fatores que podem modificar a intensidade da estimulação Intraoperative mapping of motor areas during brain tumor surgery: electrical stimulation patterns

    Directory of Open Access Journals (Sweden)

    Paulo Thadeu Brainer-Lima

    2005-03-01

    Full Text Available O mapeamento com estimulação direta do córtex cerebral foi utilizado quando o tumor estava próximo ou infiltrava o lobo central. OBJETIVO: Avaliar interferências na técnica de estimulação eletrica direta do córtex e substância branca, sob anestesia geral, durante cirurgia para tumor cerebral relacionado ao lobo central. MÉTODO: Foram estudados 42 pacientes operados de junho de 2000 a junho de 2003. Os fatores que modificaram a intensidade da estimulação necessaria para localizar a área motora durante a cirurgia foram estudados. RESULTADOS: A intensidade necessária do estimulo foi maior entre os pacientes com déficit motor antes da cirurgia (p=0,425, edema na ressonância magnetica (p=0,468 e anestesia com proporfol contínuo (p=0,001. CONCLUSÃO: O mapeamento funcional do lobo central durante a cirurgia foi prejudicado pelo deficit motor acentuado, edema cerebral e anestesia com propofol contínuo.Brain mapping with direct electrical stimulation is usefull when the tumor is located near or has infiltrated the central lobe. OBJETIVE: To analize the surgical findings with direct electrical stimulation of the cortex and white matter under general anesthesia during surgery for brain tumors related to the central lobe. METHOD: We studied 42 patients operated on from June 2000 to June 2003. We analyzed surgical findings and details of brain mapping. RESULTS: The mean value of the intensity of the stimulus was greater among those who presented motor deficit prior to surgery (p = 0.0425 and edema on MRI (p= 0.0468 or during anesthesia with continuous propofol (p=0.001. CONCLUSION: The functional mapping of the central lobe may be influenced by severe motor deficit, edema on MRI and propofol's anesthesia.

  3. Time-course of motor inhibition during hypnotic paralysis: EEG topographical and source analysis.

    Science.gov (United States)

    Cojan, Yann; Archimi, Aurélie; Cheseaux, Nicole; Waber, Lakshmi; Vuilleumier, Patrik

    2013-02-01

    Cognitive hypotheses of hypnotic phenomena have proposed that executive attentional systems may be either inhibited or overactivated to produce a selective alteration or disconnection of some mental operations. Recent brain imaging studies have reported changes in activity in both medial (anterior cingulate) and lateral (inferior) prefrontal areas during hypnotically induced paralysis, overlapping with areas associated with attentional control as well as inhibitory processes. To compare motor inhibition mechanisms responsible for paralysis during hypnosis and those recruited by voluntary inhibition, we used electroencephalography (EEG) to record brain activity during a modified bimanual Go-Nogo task, which was performed either in a normal baseline condition or during unilateral paralysis caused by hypnotic suggestion or by simulation (in two groups of participants, each tested once with both hands valid and once with unilateral paralysis). This paradigm allowed us to identify patterns of neural activity specifically associated with hypnotically induced paralysis, relative to voluntary inhibition during simulation or Nogo trials. We used a topographical EEG analysis technique to investigate both the spatial organization and the temporal sequence of neural processes activated in these different conditions, and to localize the underlying anatomical generators through minimum-norm methods. We found that preparatory activations were similar in all conditions, despite left hypnotic paralysis, indicating preserved motor intentions. A large P3-like activity was generated by voluntary inhibition during voluntary inhibition (Nogo), with neural sources in medial prefrontal areas, while hypnotic paralysis was associated with a distinctive topography activity during the same time-range and specific sources in right inferior frontal cortex. These results add support to the view that hypnosis might act by enhancing executive control systems mediated by right prefrontal areas, but

  4. Dual-mode operation of neuronal networks involved in left-right alternation

    DEFF Research Database (Denmark)

    Talpalar, Adolfo E.; Bouvier, Julien; Borgius, Lotta

    2013-01-01

    between these different groups of commissural neurons and left-right alternation, are lacking. Here we show, using intersectional mouse genetics, that ablation of a group of transcriptionally defined commissural neurons - the V0 population - leads to a quadrupedal hopping at all frequencies of locomotion......All forms of locomotion are repetitive motor activities that require coordinated bilateral activation of muscles. The executive elements of locomotor control are networks of spinal neurons that determine gait pattern through the sequential activation of motor-neuron pools on either side of the body...... axis. However, little is known about the constraints that link left-right coordination to locomotor speed. Recent advances have indicated that both excitatory and inhibitory commissural neurons may be involved in left-right coordination. But the neural underpinnings of this, and a possible causal link...

  5. Functionally-Specific Changes in Sensorimotor Networks following Motor Learning

    OpenAIRE

    David J Ostry

    2011-01-01

    The perceptual changes induced by motor learning are important in understanding the adaptive mechanisms and global functions of the human brain. In the present study, we document the neural substrates of this sensory plasticity by combining work on motor learning using a robotic manipulandum with resting-state fMRI measures of learning and psychophysical measures of perceptual function. We show that motor learning results in long-lasting changes to somatosensory areas of the brain. We have de...

  6. Detailed anatomy of a left accessory aberrant colic artery.

    Science.gov (United States)

    Rusu, M C; Vlad, M; Voinea, L M; Curcă, G C; Sişu, A M

    2008-10-01

    In an aged human female cadaver a left accessory aberrant colic artery (LAACA) was observed and studied. It originated from the superior mesenteric artery at 3 cm proximal to the middle colic artery, at the inferior border of pancreas, passing over Treitz's muscle and continued covered by the superior duodenal fold where it crossed the inferior mesenteric vein. Further, it continued with a satellite vein anterior to the left renal vein and the anterior branch of the renal artery. The LAACA divided into an ascending branch and a descending one, anastomosed with the middle colic and proper left colic arteries; between its two primary branches and the splenic flexure of colon, a hypovascular area was observed. The surgical relevance of the LAACA detailed anatomy mainly relates to specific procedures performed in left colectomies and nephrectomies.

  7. Motor function domains in alternating hemiplegia of childhood.

    Science.gov (United States)

    Masoud, Melanie; Gordon, Kelly; Hall, Amanda; Jasien, Joan; Lardinois, Kara; Uchitel, Julie; Mclean, Melissa; Prange, Lyndsey; Wuchich, Jeffrey; Mikati, Mohamad A

    2017-08-01

    To characterize motor function profiles in alternating hemiplegia of childhood, and to investigate interrelationships between these domains and with age. We studied a cohort of 23 patients (9 males, 14 females; mean age 9y 4mo, range 4mo-43y) who underwent standardized tests to assess gross motor, upper extremity motor control, motor speech, and dysphagia functions. Gross Motor Function Classification System (GMFCS), Gross Motor Function Measure-88 (GMFM-88), Manual Ability Classification System (MACS), and Revised Melbourne Assessment (MA2) scales manifested predominantly mild impairments; motor speech, moderate to severe; Modified Dysphagia Outcome and Severity Scale (M-DOSS), mild-to moderate deficits. GMFCS correlated with GMFM-88 scores (Pearson's correlation, p=0.002), MACS (p=0.038), and MA2 fluency (p=0.005) and accuracy (p=0.038) scores. GMFCS did not correlate with motor speech (p=0.399), MA2 dexterity (p=0.247), range of motion (p=0.063), or M-DOSS (p=0.856). Motor speech was more severely impaired than the GMFCS (pprofile of motor function in alternating hemiplegia of childhood, argue against the presence of worse motor function in older patients, identify tools helpful in evaluating this population, and identify oropharyngeal function as the more severely affected domain, suggesting that brain areas controlling this function are more affected than others. © 2017 Mac Keith Press.

  8. Thermodynamics and kinetics of molecular motors.

    Science.gov (United States)

    Astumian, R Dean

    2010-06-02

    Molecular motors are first and foremost molecules, governed by the laws of chemistry rather than of mechanics. The dynamical behavior of motors based on chemical principles can be described as a random walk on a network of states. A key insight is that any molecular motor in solution explores all possible motions and configurations at thermodynamic equilibrium. By using input energy and chemical design to prevent motion that is not wanted, what is left behind is the motion that is desired. This review is focused on two-headed motors such as kinesin and Myosin V that move on a polymeric track. By use of microscopic reversibility, it is shown that the ratio between the number of forward steps and the number of backward steps in any sufficiently long time period does not directly depend on the mechanical properties of the linker between the two heads. Instead, this ratio is governed by the relative chemical specificity of the heads in the front-versus-rear position for the fuel, adenosine triphosphate and its products, adenosine diphosphate and inorganic phosphate. These insights have been key factors in the design of biologically inspired synthetic molecular walkers constructed out of DNA or out of small organic molecules. Copyright (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. USED MOTOR OIL – A HAZARDOUS WASTE?

    Directory of Open Access Journals (Sweden)

    D. Kiš

    2007-12-01

    Full Text Available Today we all are eyewitnesses of increasing pollution, which disappears in the atmosphere, soil, and underground water. The pollution is a result of men's actions and their reckless attitute toward the nature. Natural resources should be preserved at the level which can provide substantial quality to men, animals, and plants. Any hazardous intervention upon the biological diversity should be avoided and both the genetic balance and the harmony of biological systems, live ogranisms, and dead matter should be preserved. Motor oil is a specific substance needed to facilitate the adequate operation of a machine (e.g. a tractor, but after some time it becomes hazardous, i.e. a hazardous waste. The deposit of the motor oil has to be done in the proper way since it is a potential source of contamination. Used motor oil is a potential environmental bomb in cases of its improper and illegal deposit, especially in the cases when it is carelessly left around the facilities of factories, companies and privately owned farms. A research was conducted on family farms in Osijek-Baranya County and Vukovar-Srijem County in order to determine the way of treatment of used motor oil generated from the engine, transmission, and the accompanying packaging materials.

  10. Motor Unit Characteristics after Targeted Muscle Reinnervation.

    Directory of Open Access Journals (Sweden)

    Tamás Kapelner

    Full Text Available Targeted muscle reinnervation (TMR is a surgical procedure used to redirect nerves originally controlling muscles of the amputated limb into remaining muscles above the amputation, to treat phantom limb pain and facilitate prosthetic control. While this procedure effectively establishes robust prosthetic control, there is little knowledge on the behavior and characteristics of the reinnervated motor units. In this study we compared the m. pectoralis of five TMR patients to nine able-bodied controls with respect to motor unit action potential (MUAP characteristics. We recorded and decomposed high-density surface EMG signals into individual spike trains of motor unit action potentials. In the TMR patients the MUAP surface area normalized to the electrode grid surface (0.25 ± 0.17 and 0.81 ± 0.46, p < 0.001 and the MUAP duration (10.92 ± 3.89 ms and 14.03 ± 3.91 ms, p < 0.01 were smaller for the TMR group than for the controls. The mean MUAP amplitude (0.19 ± 0.11 mV and 0.14 ± 0.06 mV, p = 0.07 was not significantly different between the two groups. Finally, we observed that MUAP surface representation in TMR generally overlapped, and the surface occupied by motor units corresponding to only one motor task was on average smaller than 12% of the electrode surface. These results suggest that smaller MUAP surface areas in TMR patients do not necessarily facilitate prosthetic control due to a high degree of overlap between these areas, and a neural information-based control could lead to improved performance. Based on the results we also infer that the size of the motor units after reinnervation is influenced by the size of the innervating motor neuron.

  11. Distinct Laterality in Forelimb-Movement Representations of Rat Primary and Secondary Motor Cortical Neurons with Intratelencephalic and Pyramidal Tract Projections.

    Science.gov (United States)

    Soma, Shogo; Saiki, Akiko; Yoshida, Junichi; Ríos, Alain; Kawabata, Masanori; Sakai, Yutaka; Isomura, Yoshikazu

    2017-11-08

    Two distinct motor areas, the primary and secondary motor cortices (M1 and M2), play crucial roles in voluntary movement in rodents. The aim of this study was to characterize the laterality in motor cortical representations of right and left forelimb movements. To achieve this goal, we developed a novel behavioral task, the Right-Left Pedal task, in which a head-restrained male rat manipulates a right or left pedal with the corresponding forelimb. This task enabled us to monitor independent movements of both forelimbs with high spatiotemporal resolution. We observed phasic movement-related neuronal activity (Go-type) and tonic hold-related activity (Hold-type) in isolated unilateral movements. In both M1 and M2, Go-type neurons exhibited bias toward contralateral preference, whereas Hold-type neurons exhibited no bias. The contralateral bias was weaker in M2 than M1. Moreover, we differentiated between intratelencephalic (IT) and pyramidal tract (PT) neurons using optogenetically evoked spike collision in rats expressing channelrhodopsin-2. Even in identified PT and IT neurons, Hold-type neurons exhibited no lateral bias. Go-type PT neurons exhibited bias toward contralateral preference, whereas IT neurons exhibited no bias. Our findings suggest a different laterality of movement representations of M1 and M2, in each of which IT neurons are involved in cooperation of bilateral movements, whereas PT neurons control contralateral movements. SIGNIFICANCE STATEMENT In rodents, the primary and secondary motor cortices (M1 and M2) are involved in voluntary movements via distinct projection neurons: intratelencephalic (IT) neurons and pyramidal tract (PT) neurons. However, it remains unclear whether the two motor cortices (M1 vs M2) and the two classes of projection neurons (IT vs PT) have different laterality of movement representations. We optogenetically identified these neurons and analyzed their functional activity using a novel behavioral task to monitor movements

  12. Producing The New Regressive Left

    DEFF Research Database (Denmark)

    Crone, Christine

    This thesis is the first comprehensive research work conducted on the Beirut based TV station, an important representative of the post-2011 generation of Arab satellite news media. The launch of al-Mayadeen in June 2012 was closely linked to the political developments across the Arab world...... members, this thesis investigates a growing political trend and ideological discourse in the Arab world that I have called The New Regressive Left. On the premise that a media outlet can function as a forum for ideology production, the thesis argues that an analysis of this material can help to trace...... the contexture of The New Regressive Left. If the first part of the thesis lays out the theoretical approach and draws the contextual framework, through an exploration of the surrounding Arab media-and ideoscapes, the second part is an analytical investigation of the discourse that permeates the programmes aired...

  13. Left Ventricular Hypertrophy Evaluation in Obese Hypertensive Patients: Effect of Left Ventricular Mass Index Criteria

    Directory of Open Access Journals (Sweden)

    Eduardo Cantoni Rosa

    2002-04-01

    Full Text Available PURPOSE: To evaluate left ventricular mass (LVM index in hypertensive and normotensive obese individuals. METHODS: Using M mode echocardiography, 544 essential hypertensive and 106 normotensive patients were evaluated, and LVM was indexed for body surface area (LVM/BSA and for height² (LVM/h². The 2 indexes were then compared in both populations, in subgroups stratified according to body mass index (BMI: or = 30kg/m². RESULTS: The BSA index does not allow identification of significant differences between BMI subgroups. Indexing by height² provides significantly increased values for high BMI subgroups in normotensive and hypertensive populations. CONCLUSION: Left ventricular hypertrophy (LVH has been underestimated in the obese with the use of LVM/BSA because this index considers obesity as a physiological variable. Indexing by height² allows differences between BMI subgroups to become apparent and seems to be more appropriate for detecting LVH in obese populations.

  14. Left dorsal speech stream components and their contribution to phonological processing.

    Science.gov (United States)

    Murakami, Takenobu; Kell, Christian A; Restle, Julia; Ugawa, Yoshikazu; Ziemann, Ulf

    2015-01-28

    Models propose an auditory-motor mapping via a left-hemispheric dorsal speech-processing stream, yet its detailed contributions to speech perception and production are unclear. Using fMRI-navigated repetitive transcranial magnetic stimulation (rTMS), we virtually lesioned left dorsal stream components in healthy human subjects and probed the consequences on speech-related facilitation of articulatory motor cortex (M1) excitability, as indexed by increases in motor-evoked potential (MEP) amplitude of a lip muscle, and on speech processing performance in phonological tests. Speech-related MEP facilitation was disrupted by rTMS of the posterior superior temporal sulcus (pSTS), the sylvian parieto-temporal region (SPT), and by double-knock-out but not individual lesioning of pars opercularis of the inferior frontal gyrus (pIFG) and the dorsal premotor cortex (dPMC), and not by rTMS of the ventral speech-processing stream or an occipital control site. RTMS of the dorsal stream but not of the ventral stream or the occipital control site caused deficits specifically in the processing of fast transients of the acoustic speech signal. Performance of syllable and pseudoword repetition correlated with speech-related MEP facilitation, and this relation was abolished with rTMS of pSTS, SPT, and pIFG. Findings provide direct evidence that auditory-motor mapping in the left dorsal stream causes reliable and specific speech-related MEP facilitation in left articulatory M1. The left dorsal stream targets the articulatory M1 through pSTS and SPT constituting essential posterior input regions and parallel via frontal pathways through pIFG and dPMC. Finally, engagement of the left dorsal stream is necessary for processing of fast transients in the auditory signal. Copyright © 2015 the authors 0270-6474/15/351411-12$15.00/0.

  15. Assessment of sensorimotor cortical representation asymmetries and motor skills in violin players.

    Science.gov (United States)

    Schwenkreis, Peter; El Tom, Susan; Ragert, Patrick; Pleger, Burkhard; Tegenthoff, Martin; Dinse, Hubert R

    2007-12-01

    As a model for use-dependent plasticity, the brains of professional musicians have been extensively studied to examine structural and functional adaptation to unique requirements of skilled performance. Here we provide a combination of data on motor performance and hand representation in the primary motor and somatosensory cortex of professional violin players, with the aim of assessing possible behavioural consequences of sensorimotor cortical asymmetries. We studied 15 healthy right-handed professional violin players and 35 healthy nonmusician controls. Motor and somatosensory cortex asymmetry was assessed by recording the motor output map after transcranial magnetic stimulation from a small hand muscle, and by dipole source localization of somatosensory evoked potentials after electrical stimulation of the median and ulnar nerves. Motor performance was examined using a series of standardized motor tasks covering different aspects of hand function. Violin players showed a significant right-larger-than-left asymmetry of the motor and somatosensory cortex, whereas nonmusician controls showed no significant interhemispheric difference. The amount of asymmetry in the motor and somatosensory cortices of musicians was significantly correlated. At the behavioural level, motor performance did not significantly differ between musicians and nonmusicians. The results support a use-dependent enlargement of the left hand representation in the sensorimotor cortex of violin players. However, these cortical asymmetries were not paralleled by accompanying altered asymmetries at a behavioural level, suggesting that the reorganisation might be task-specific and does not lead to improved motor abilities in general.

  16. From the Left to the Right: How the Brain Compensates Progressive Loss of Language Function

    Science.gov (United States)

    Thiel, Alexander; Habedank, Birgit; Herholz, Karl; Kessler, Josef; Winhuisen, Lutz; Haupt, Walter F.; Heiss, Wolf-Dieter

    2006-01-01

    In normal right-handed subjects language production usually is a function of the left brain hemisphere. Patients with aphasia following brain damage to the left hemisphere have a considerable potential to compensate for the loss of this function. Sometimes, but not always, areas of the right hemisphere which are homologous to language areas of the…

  17. Cross-Modal Recruitment of Auditory and Orofacial Areas During Sign Language in a Deaf Subject.

    Science.gov (United States)

    Martino, Juan; Velasquez, Carlos; Vázquez-Bourgon, Javier; de Lucas, Enrique Marco; Gomez, Elsa

    2017-09-01

    Modern sign languages used by deaf people are fully expressive, natural human languages that are perceived visually and produced manually. The literature contains little data concerning human brain organization in conditions of deficient sensory information such as deafness. A deaf-mute patient underwent surgery of a left temporoinsular low-grade glioma. The patient underwent awake surgery with intraoperative electrical stimulation mapping, allowing direct study of the cortical and subcortical organization of sign language. We found a similar distribution of language sites to what has been reported in mapping studies of patients with oral language, including 1) speech perception areas inducing anomias and alexias close to the auditory cortex (at the posterior portion of the superior temporal gyrus and supramarginal gyrus); 2) speech production areas inducing speech arrest (anarthria) at the ventral premotor cortex, close to the lip motor area and away from the hand motor area; and 3) subcortical stimulation-induced semantic paraphasias at the inferior fronto-occipital fasciculus at the temporal isthmus. The intraoperative setup for sign language mapping with intraoperative electrical stimulation in deaf-mute patients is similar to the setup described in patients with oral language. To elucidate the type of language errors, a sign language interpreter in close interaction with the neuropsychologist is necessary. Sign language is perceived visually and produced manually; however, this case revealed a cross-modal recruitment of auditory and orofacial motor areas. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Human spinal motor control

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo

    2016-01-01

    interneurons and exert a direct (willful) muscle control with the aid of a context-dependent integration of somatosensory and visual information at cortical level. However, spinal networks also play an important role. Sensory feedback through spinal circuitries is integrated with central motor commands...... the central motor command by opening or closing sensory feedback pathways. In the future, human studies of spinal motor control, in close collaboration with animal studies on the molecular biology of the spinal cord, will continue to document the neural basis for human behavior. Expected final online...

  19. Motor activation in SPG4-linked hereditary spastic paraplegia

    DEFF Research Database (Denmark)

    Scheuer, KH; Nielsen, JE; Krabbe, Katja

    2006-01-01

    OBJECTIVE: The aim of this study was to investigate the extent of motor cortical functional reorganisation in patients with SPG4-linked hereditary spastic paraplegia by exploring cortical motor activation related to movements of clinically affected (lower) an