WorldWideScience

Sample records for left fronto-temporal brain

  1. PROGRANULIN MUTATIONS AFFECTS BRAIN OSCILLATORY ACTIVITY IN FRONTO-TEMPORAL DEMENTIA

    Directory of Open Access Journals (Sweden)

    Davide Vito Moretti

    2016-02-01

    Full Text Available Background: mild cognitive impairment (MCI is a clinical stage indicating a prodromal phase of dementia. This practical concept could be used also for fronto-temporal dementia (FTD. Progranulin (PGRN has been recently recognized as a useful diagnostic biomarker for fronto-temporal lobe degeneration (FTLD due to GRN null mutations. Electroencephalography (EEG is a reliable tool in detecting brain networks changes. The working hypothesis of the present study is that EEG oscillations could detect different modifications among FTLD stages (FTD-MCI versus overt FTD as well as differences between GRN mutation carriers versus non carriers in patients with overt FTD. Methods: EEG in all patients and PGRN dosage in patients with a clear FTD were detected. The cognitive state has been investigated through mini mental state examination (MMSE. Results: MCI-FTD showed a significant lower spectral power in both alpha and theta oscillations as compared to overt FTD. GRN mutations carriers affected by FTLD show an increase in high alpha and decrease in theta oscillations as compared to non-carriers.Conclusion: EEG frequency rhythms are sensible to different stage of FTD and could detect changes in brain oscillatory activity affected by GRN mutations

  2. The Functional Organisation of the Fronto-Temporal Language System: Evidence from Syntactic and Semantic Ambiguity

    Science.gov (United States)

    Rodd, Jennifer M.; Longe, Olivia A.; Randall, Billi; Tyler, Lorraine K.

    2010-01-01

    Spoken language comprehension is known to involve a large left-dominant network of fronto-temporal brain regions, but there is still little consensus about how the syntactic and semantic aspects of language are processed within this network. In an fMRI study, volunteers heard spoken sentences that contained either syntactic or semantic ambiguities…

  3. Fronto-parietal and fronto-temporal theta phase synchronization for visual and auditory-verbal working memory.

    Science.gov (United States)

    Kawasaki, Masahiro; Kitajo, Keiichi; Yamaguchi, Yoko

    2014-01-01

    In humans, theta phase (4-8 Hz) synchronization observed on electroencephalography (EEG) plays an important role in the manipulation of mental representations during working memory (WM) tasks; fronto-temporal synchronization is involved in auditory-verbal WM tasks and fronto-parietal synchronization is involved in visual WM tasks. However, whether or not theta phase synchronization is able to select the to-be-manipulated modalities is uncertain. To address the issue, we recorded EEG data from subjects who were performing auditory-verbal and visual WM tasks; we compared the theta synchronizations when subjects performed either auditory-verbal or visual manipulations in separate WM tasks, or performed both two manipulations in the same WM task. The auditory-verbal WM task required subjects to calculate numbers presented by an auditory-verbal stimulus, whereas the visual WM task required subjects to move a spatial location in a mental representation in response to a visual stimulus. The dual WM task required subjects to manipulate auditory-verbal, visual, or both auditory-verbal and visual representations while maintaining auditory-verbal and visual representations. Our time-frequency EEG analyses revealed significant fronto-temporal theta phase synchronization during auditory-verbal manipulation in both auditory-verbal and auditory-verbal/visual WM tasks, but not during visual manipulation tasks. Similarly, we observed significant fronto-parietal theta phase synchronization during visual manipulation tasks, but not during auditory-verbal manipulation tasks. Moreover, we observed significant synchronization in both the fronto-temporal and fronto-parietal theta signals during simultaneous auditory-verbal/visual manipulations. These findings suggest that theta synchronization seems to flexibly connect the brain areas that manipulate WM.

  4. Fronto-parietal and fronto-temporal theta phase synchronization for visual and auditory-verbal working memory

    Directory of Open Access Journals (Sweden)

    Masahiro eKawasaki

    2014-03-01

    Full Text Available In humans, theta phase (4–8 Hz synchronization observed on electroencephalography (EEG plays an important role in the manipulation of mental representations during working memory (WM tasks; fronto-temporal synchronization is involved in auditory-verbal WM tasks and fronto-parietal synchronization is involved in visual WM tasks. However, whether or not theta phase synchronization is able to select the to-be-manipulated modalities is uncertain. To address the issue, we recorded EEG data from subjects who were performing auditory-verbal and visual WM tasks; we compared the theta synchronizations when subjects performed either auditory-verbal or visual manipulations in separate WM tasks, or performed both two manipulations in the same WM task. The auditory-verbal WM task required subjects to calculate numbers presented by an auditory-verbal stimulus, whereas the visual WM task required subjects to move a spatial location in a mental representation in response to a visual stimulus. The dual WM task required subjects to manipulate auditory-verbal, visual, or both auditory-verbal and visual representations while maintaining auditory-verbal and visual representations. Our time-frequency EEG analyses revealed significant fronto-temporal theta phase synchronization during auditory-verbal manipulation in both auditory-verbal and auditory-verbal/visual WM tasks, but not during visual manipulation tasks. Similarly, we observed significant fronto-parietal theta phase synchronization during visual manipulation tasks, but not during auditory-verbal manipulation tasks. Moreover, we observed significant synchronization in both the fronto-temporal and fronto-parietal theta signals during simultaneous auditory-verbal/visual manipulations. These findings suggest that theta synchronization seems to flexibly connect the brain areas that manipulate WM.

  5. Right fronto-limbic atrophy is associated with reduced empathy in refractory unilateral mesial temporal lobe epilepsy.

    Science.gov (United States)

    Toller, Gianina; Adhimoolam, Babu; Rankin, Katherine P; Huppertz, Hans-Jürgen; Kurthen, Martin; Jokeit, Hennric

    2015-11-01

    Refractory mesial temporal lobe epilepsy (MTLE) is the most frequent focal epilepsy and is often accompanied by deficits in social cognition including emotion recognition, theory of mind, and empathy. Consistent with the neuronal networks that are crucial for normal social-cognitive processing, these impairments have been associated with functional changes in fronto-temporal regions. However, although atrophy in unilateral MTLE also affects regions of the temporal and frontal lobes that underlie social cognition, little is known about the structural correlates of social-cognitive deficits in refractory MTLE. In the present study, a psychometrically validated empathy questionnaire was combined with whole-brain voxel-based morphometry (VBM) to investigate the relationship between self-reported affective and cognitive empathy and gray matter volume in 55 subjects (13 patients with right MTLE, 9 patients with left MTLE, and 33 healthy controls). Consistent with the brain regions underlying social cognition, our results show that lower affective and cognitive empathy was associated with smaller volume in predominantly right fronto-limbic regions, including the right hippocampus, parahippocampal gyrus, thalamus, fusiform gyrus, inferior temporal gyrus, dorsomedial and dorsolateral prefrontal cortices, and in the bilateral midbrain. The only region that was associated with both affective and cognitive empathy was the right mesial temporal lobe. These findings indicate that patients with right MTLE are at increased risk for reduced empathy towards others' internal states and they shed new light on the structural correlates of impaired social cognition frequently accompanying refractory MTLE. In line with previous evidence from patients with neurodegenerative disease and stroke, the present study suggests that empathy depends upon the integrity of right fronto-limbic and brainstem regions and highlights the importance of the right mesial temporal lobe and midbrain

  6. Left fronto-temporal dynamics during agreement processing: evidence for feature-specific computations.

    Science.gov (United States)

    Molinaro, Nicola; Barber, Horacio A; Pérez, Alejandro; Parkkonen, Lauri; Carreiras, Manuel

    2013-09-01

    Grammatical agreement is a widespread language phenomenon that indicates formal syntactic relations between words; however, it also conveys basic lexical (e.g. grammatical gender) or semantic (e.g. numerosity) information about a discourse referent. In this study, we focus on the reading of Spanish noun phrases, violating either number or gender determiner-noun agreement compared to grammatical controls. Magnetoencephalographic activity time-locked to the onset of the noun in both types of violation revealed a left-lateralized brain network involving anterior temporal regions (~220 ms) and, later in time, ventro-lateral prefrontal regions (>300 ms). These activations coexist with dependency-specific effects: in an initial step (~170 ms), occipito-temporal regions are employed for fine-grained analysis of the number marking (in Spanish, presence or absence of the suffix '-s'), while anterior temporal regions show increased activation for gender mismatches compared to grammatical controls. The semantic relevance of number agreement dependencies was mainly reflected by left superior temporal increased activity around 340 ms. These findings offer a detailed perspective on the multi-level analyses involved in the initial computation of agreement dependencies, and theoretically support a derivational approach to agreement computation. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Fronto-temporal connectivity predicts cognitive empathy deficits and experiential negative symptoms in schizophrenia.

    Science.gov (United States)

    Abram, Samantha V; Wisner, Krista M; Fox, Jaclyn M; Barch, Deanna M; Wang, Lei; Csernansky, John G; MacDonald, Angus W; Smith, Matthew J

    2017-03-01

    Impaired cognitive empathy is a core social cognitive deficit in schizophrenia associated with negative symptoms and social functioning. Cognitive empathy and negative symptoms have also been linked to medial prefrontal and temporal brain networks. While shared behavioral and neural underpinnings are suspected for cognitive empathy and negative symptoms, research is needed to test these hypotheses. In two studies, we evaluated whether resting-state functional connectivity between data-driven networks, or components (referred to as, inter-component connectivity), predicted cognitive empathy and experiential and expressive negative symptoms in schizophrenia subjects. Study 1: We examined associations between cognitive empathy and medial prefrontal and temporal inter-component connectivity at rest using a group-matched schizophrenia and control sample. We then assessed whether inter-component connectivity metrics associated with cognitive empathy were also related to negative symptoms. Study 2: We sought to replicate the connectivity-symptom associations observed in Study 1 using an independent schizophrenia sample. Study 1 results revealed that while the groups did not differ in average inter-component connectivity, a medial-fronto-temporal metric and an orbito-fronto-temporal metric were related to cognitive empathy. Moreover, the medial-fronto-temporal metric was associated with experiential negative symptoms in both schizophrenia samples. These findings support recent models that link social cognition and negative symptoms in schizophrenia. Hum Brain Mapp 38:1111-1124, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Functional development of fronto-striato-parietal networks associated with time perception

    Directory of Open Access Journals (Sweden)

    Anna eSmith

    2011-11-01

    Full Text Available Compared to our understanding of the functional maturation of executive functions, little is known about the neurofunctional development of perceptive functions. Time perception develops during late adolescence, underpinning many functions including motor and verbal processing, as well as late maturing higher order cognitive skills such as forward planning and future-related decision-making. Nothing, however, is known about the neurofunctional changes associated with time perception from childhood to adulthood. Using functional magnetic resonance imaging we explored the effects of age on the brain activation and functional connectivity of 32 male participants from 10 to 53 years of age during a time discrimination task that required the discrimination of temporal intervals of seconds differing by several hundred milliseconds. Increasing development was associated with progressive activation increases within left lateralised dorsolateral and inferior fronto-parieto-striato-thalamic brain regions. Furthermore, despite comparable task performance, adults showed increased functional connectivity between inferior/dorsolateral interhemispheric fronto-frontal activation as well as between inferior fronto-parietal regions compared with adolescents. Activation in caudate, specifically, was associated with both increasing age and better temporal discrimination. Progressive decreases in activation with age were observed in ventromedial prefrontal cortex, limbic regions and cerebellum. The findings demonstrate age-dependent developmentally dissociated neural networks for time discrimination. With increasing age there is progressive recruitment of later maturing left hemispheric and lateralised fronto-parieto-striato-thalamic networks, known to mediate time discrimination in adults, while earlier developing brain regions such as ventromedial prefrontal cortex, limbic and paralimbic areas and cerebellum subserve fine-temporal processing functions in children

  9. Sortilin-Mediated Endocytosis Determines Levels of the Fronto-Temporal Dementia Protein, Progranulin

    DEFF Research Database (Denmark)

    Hu, Fenghua; Padukkavidana, Thihan; Vægter, Christian Bjerggaard

    2010-01-01

    The most common inherited form of Fronto-Temporal Lobar Degeneration (FTLD) known stems from Progranulin (GRN) mutation, and exhibits TDP-43 plus ubiquitin protein aggregates in brain. Despite the causative role of GRN haploinsufficiency in FTLD-TDP, the neurobiology of this secreted glycoprotein...

  10. Fronto-Temporal Connectivity Predicts ECT Outcome in Major Depression

    Directory of Open Access Journals (Sweden)

    Amber M. Leaver

    2018-03-01

    Full Text Available BackgroundElectroconvulsive therapy (ECT is arguably the most effective available treatment for severe depression. Recent studies have used MRI data to predict clinical outcome to ECT and other antidepressant therapies. One challenge facing such studies is selecting from among the many available metrics, which characterize complementary and sometimes non-overlapping aspects of brain function and connectomics. Here, we assessed the ability of aggregated, functional MRI metrics of basal brain activity and connectivity to predict antidepressant response to ECT using machine learning.MethodsA radial support vector machine was trained using arterial spin labeling (ASL and blood-oxygen-level-dependent (BOLD functional magnetic resonance imaging (fMRI metrics from n = 46 (26 female, mean age 42 depressed patients prior to ECT (majority right-unilateral stimulation. Image preprocessing was applied using standard procedures, and metrics included cerebral blood flow in ASL, and regional homogeneity, fractional amplitude of low-frequency modulations, and graph theory metrics (strength, local efficiency, and clustering in BOLD data. A 5-repeated 5-fold cross-validation procedure with nested feature-selection validated model performance. Linear regressions were applied post hoc to aid interpretation of discriminative features.ResultsThe range of balanced accuracy in models performing statistically above chance was 58–68%. Here, prediction of non-responders was slightly higher than for responders (maximum performance 74 and 64%, respectively. Several features were consistently selected across cross-validation folds, mostly within frontal and temporal regions. Among these were connectivity strength among: a fronto-parietal network [including left dorsolateral prefrontal cortex (DLPFC], motor and temporal networks (near ECT electrodes, and/or subgenual anterior cingulate cortex (sgACC.ConclusionOur data indicate that pattern classification of multimodal f

  11. Value-based modulation of memory encoding involves strategic engagement of fronto-temporal semantic processing regions.

    Science.gov (United States)

    Cohen, Michael S; Rissman, Jesse; Suthana, Nanthia A; Castel, Alan D; Knowlton, Barbara J

    2014-06-01

    A number of prior fMRI studies have focused on the ways in which the midbrain dopaminergic reward system coactivates with hippocampus to potentiate memory for valuable items. However, another means by which people could selectively remember more valuable to-be-remembered items is to be selective in their use of effective but effortful encoding strategies. To broadly examine the neural mechanisms of value on subsequent memory, we used fMRI to assess how differences in brain activity at encoding as a function of value relate to subsequent free recall for words. Each word was preceded by an arbitrarily assigned point value, and participants went through multiple study-test cycles with feedback on their point total at the end of each list, allowing for sculpting of cognitive strategies. We examined the correlation between value-related modulation of brain activity and participants' selectivity index, which measures how close participants were to their optimal point total, given the number of items recalled. Greater selectivity scores were associated with greater differences in the activation of semantic processing regions, including left inferior frontal gyrus and left posterior lateral temporal cortex, during the encoding of high-value words relative to low-value words. Although we also observed value-related modulation within midbrain and ventral striatal reward regions, our fronto-temporal findings suggest that strategic engagement of deep semantic processing may be an important mechanism for selectively encoding valuable items.

  12. Value-based modulation of memory encoding involves strategic engagement of fronto-temporal semantic processing regions

    Science.gov (United States)

    Cohen, Michael S.; Rissman, Jesse; Suthana, Nanthia A.; Castel, Alan D.; Knowlton, Barbara J.

    2014-01-01

    A number of prior fMRI studies have focused on the ways in which the midbrain dopaminergic reward system co-activates with hippocampus to potentiate memory for valuable items. However, another means by which people could selectively remember more valuable to-be-remembered items is to be selective in their use of effective but effortful encoding strategies. To broadly examine the neural mechanisms of value on subsequent memory, we used fMRI to examine how differences in brain activity at encoding as a function of value relate to subsequent free recall for words. Each word was preceded by an arbitrarily assigned point value, and participants went through multiple study-test cycles with feedback on their point total at the end of each list, allowing for sculpting of cognitive strategies. We examined the correlation between value-related modulation of brain activity and participants’ selectivity index, a measure of how close participants were to their optimal point total given the number of items recalled. Greater selectivity scores were associated with greater differences in activation of semantic processing regions, including left inferior frontal gyrus and left posterior lateral temporal cortex, during encoding of high-value words relative to low-value words. Although we also observed value-related modulation within midbrain and ventral striatal reward regions, our fronto-temporal findings suggest that strategic engagement of deep semantic processing may be an important mechanism for selectively encoding valuable items. PMID:24683066

  13. Fronto-parietal and fronto-temporal theta phase synchronization for visual and auditory-verbal working memory

    OpenAIRE

    Masahiro eKawasaki; Masahiro eKawasaki; Masahiro eKawasaki; Keiichi eKitajo; Keiichi eKitajo; Yoko eYamaguchi

    2014-01-01

    In humans, theta phase (4–8 Hz) synchronization observed on electroencephalography (EEG) plays an important role in the manipulation of mental representations during working memory (WM) tasks; fronto-temporal synchronization is involved in auditory-verbal WM tasks and fronto-parietal synchronization is involved in visual WM tasks. However, whether or not theta phase synchronization is able to select the to-be-manipulated modalities is uncertain. To address the issue, we recorded EEG data from...

  14. Segregation of Brain Structural Networks Supports Spatio-Temporal Predictive Processing

    Directory of Open Access Journals (Sweden)

    Valentina Ciullo

    2018-05-01

    Full Text Available The ability to generate probabilistic expectancies regarding when and where sensory stimuli will occur, is critical to derive timely and accurate inferences about updating contexts. However, the existence of specialized neural networks for inferring predictive relationships between events is still debated. Using graph theoretical analysis applied to structural connectivity data, we tested the extent of brain connectivity properties associated with spatio-temporal predictive performance across 29 healthy subjects. Participants detected visual targets appearing at one out of three locations after one out of three intervals; expectations about stimulus location (spatial condition or onset (temporal condition were induced by valid or invalid symbolic cues. Connectivity matrices and centrality/segregation measures, expressing the relative importance of, and the local interactions among specific cerebral areas respect to the behavior under investigation, were calculated from whole-brain tractography and cortico-subcortical parcellation.Results: Response preparedness to cued stimuli relied on different structural connectivity networks for the temporal and spatial domains. Significant covariance was observed between centrality measures of regions within a subcortical-fronto-parietal-occipital network -comprising the left putamen, the right caudate nucleus, the left frontal operculum, the right inferior parietal cortex, the right paracentral lobule and the right superior occipital cortex-, and the ability to respond after a short cue-target delay suggesting that the local connectedness of such nodes plays a central role when the source of temporal expectation is explicit. When the potential for functional segregation was tested, we found highly clustered structural connectivity across the right superior, the left middle inferior frontal gyrus and the left caudate nucleus as related to explicit temporal orienting. Conversely, when the interaction between

  15. Segregation of Brain Structural Networks Supports Spatio-Temporal Predictive Processing.

    Science.gov (United States)

    Ciullo, Valentina; Vecchio, Daniela; Gili, Tommaso; Spalletta, Gianfranco; Piras, Federica

    2018-01-01

    The ability to generate probabilistic expectancies regarding when and where sensory stimuli will occur, is critical to derive timely and accurate inferences about updating contexts. However, the existence of specialized neural networks for inferring predictive relationships between events is still debated. Using graph theoretical analysis applied to structural connectivity data, we tested the extent of brain connectivity properties associated with spatio-temporal predictive performance across 29 healthy subjects. Participants detected visual targets appearing at one out of three locations after one out of three intervals; expectations about stimulus location (spatial condition) or onset (temporal condition) were induced by valid or invalid symbolic cues. Connectivity matrices and centrality/segregation measures, expressing the relative importance of, and the local interactions among specific cerebral areas respect to the behavior under investigation, were calculated from whole-brain tractography and cortico-subcortical parcellation. Results: Response preparedness to cued stimuli relied on different structural connectivity networks for the temporal and spatial domains. Significant covariance was observed between centrality measures of regions within a subcortical-fronto-parietal-occipital network -comprising the left putamen, the right caudate nucleus, the left frontal operculum, the right inferior parietal cortex, the right paracentral lobule and the right superior occipital cortex-, and the ability to respond after a short cue-target delay suggesting that the local connectedness of such nodes plays a central role when the source of temporal expectation is explicit. When the potential for functional segregation was tested, we found highly clustered structural connectivity across the right superior, the left middle inferior frontal gyrus and the left caudate nucleus as related to explicit temporal orienting. Conversely, when the interaction between explicit and

  16. Face shape and face identity processing in behavioral variant fronto-temporal dementia: A specific deficit for familiarity and name recognition of famous faces.

    Science.gov (United States)

    De Winter, François-Laurent; Timmers, Dorien; de Gelder, Beatrice; Van Orshoven, Marc; Vieren, Marleen; Bouckaert, Miriam; Cypers, Gert; Caekebeke, Jo; Van de Vliet, Laura; Goffin, Karolien; Van Laere, Koen; Sunaert, Stefan; Vandenberghe, Rik; Vandenbulcke, Mathieu; Van den Stock, Jan

    2016-01-01

    Deficits in face processing have been described in the behavioral variant of fronto-temporal dementia (bvFTD), primarily regarding the recognition of facial expressions. Less is known about face shape and face identity processing. Here we used a hierarchical strategy targeting face shape and face identity recognition in bvFTD and matched healthy controls. Participants performed 3 psychophysical experiments targeting face shape detection (Experiment 1), unfamiliar face identity matching (Experiment 2), familiarity categorization and famous face-name matching (Experiment 3). The results revealed group differences only in Experiment 3, with a deficit in the bvFTD group for both familiarity categorization and famous face-name matching. Voxel-based morphometry regression analyses in the bvFTD group revealed an association between grey matter volume of the left ventral anterior temporal lobe and familiarity recognition, while face-name matching correlated with grey matter volume of the bilateral ventral anterior temporal lobes. Subsequently, we quantified familiarity-specific and name-specific recognition deficits as the sum of the celebrities of which respectively only the name or only the familiarity was accurately recognized. Both indices were associated with grey matter volume of the bilateral anterior temporal cortices. These findings extent previous results by documenting the involvement of the left anterior temporal lobe (ATL) in familiarity detection and the right ATL in name recognition deficits in fronto-temporal lobar degeneration.

  17. Large-scale brain networks are distinctly affected in right and left mesial temporal lobe epilepsy.

    Science.gov (United States)

    de Campos, Brunno Machado; Coan, Ana Carolina; Lin Yasuda, Clarissa; Casseb, Raphael Fernandes; Cendes, Fernando

    2016-09-01

    Mesial temporal lobe epilepsy (MTLE) with hippocampus sclerosis (HS) is associated with functional and structural alterations extending beyond the temporal regions and abnormal pattern of brain resting state networks (RSNs) connectivity. We hypothesized that the interaction of large-scale RSNs is differently affected in patients with right- and left-MTLE with HS compared to controls. We aimed to determine and characterize these alterations through the analysis of 12 RSNs, functionally parceled in 70 regions of interest (ROIs), from resting-state functional-MRIs of 99 subjects (52 controls, 26 right- and 21 left-MTLE patients with HS). Image preprocessing and statistical analysis were performed using UF(2) C-toolbox, which provided ROI-wise results for intranetwork and internetwork connectivity. Intranetwork abnormalities were observed in the dorsal default mode network (DMN) in both groups of patients and in the posterior salience network in right-MTLE. Both groups showed abnormal correlation between the dorsal-DMN and the posterior salience, as well as between the dorsal-DMN and the executive-control network. Patients with left-MTLE also showed reduced correlation between the dorsal-DMN and visuospatial network and increased correlation between bilateral thalamus and the posterior salience network. The ipsilateral hippocampus stood out as a central area of abnormalities. Alterations on left-MTLE expressed a low cluster coefficient, whereas the altered connections on right-MTLE showed low cluster coefficient in the DMN but high in the posterior salience regions. Both right- and left-MTLE patients with HS have widespread abnormal interactions of large-scale brain networks; however, all parameters evaluated indicate that left-MTLE has a more intricate bihemispheric dysfunction compared to right-MTLE. Hum Brain Mapp 37:3137-3152, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by

  18. The clinical differentiation of fronto-temporal dementia from psychiatric disease

    OpenAIRE

    Panegyres, Peter K; Graves, Angela; Frencham, Kate AR

    2007-01-01

    Objective Frontal and/or temporal lobar atrophy (F/TA) is sometimes detected on neuroimaging in patients with psychiatric disease. This observation leads to difficulty in distinguishing whether patients have fronto-temporal dementia (FTD) or psychiatric illness. This paper sets out to develop clinical profiles that might be useful at first presentation to distinguish these two populations. Methods 29 patients were selected from a database of 250 current patients attending young onset dementia...

  19. Disrupted topological properties of brain white matter networks in left temporal lobe epilepsy: a diffusion tensor imaging study.

    Science.gov (United States)

    Xu, Y; Qiu, S; Wang, J; Liu, Z; Zhang, R; Li, S; Cheng, L; Liu, Z; Wang, W; Huang, R

    2014-10-24

    Mesial temporal lobe epilepsy (mTLE) is the most common drug-refractory focal epilepsy in adults. Although previous functional and morphological studies have revealed abnormalities in the brain networks of mTLE, the topological organization of the brain white matter (WM) networks in mTLE patients is still ambiguous. In this study, we constructed brain WM networks for 14 left mTLE patients and 22 age- and gender-matched normal controls using diffusion tensor tractography and estimated the alterations of network properties in the mTLE brain networks using graph theoretical analysis. We found that networks for both the mTLE patients and the controls exhibited prominent small-world properties, suggesting a balanced topology of integration and segregation. However, the brain WM networks of mTLE patients showed a significant increased characteristic path length but significant decreased global efficiency, which indicate a disruption in the organization of the brain WM networks in mTLE patients. Moreover, we found significant between-group differences in the nodal properties in several brain regions, such as the left superior temporal gyrus, left hippocampus, the right occipital and right temporal cortices. The robustness analysis showed that the results were likely to be consistent for the networks constructed with different definitions of node and edge weight. Taken together, our findings may suggest an adverse effect of epileptic seizures on the organization of large-scale brain WM networks in mTLE patients. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Left temporal and temporoparietal brain activity depends on depth of word encoding: a magnetoencephalographic study in healthy young subjects.

    Science.gov (United States)

    Walla, P; Hufnagl, B; Lindinger, G; Imhof, H; Deecke, L; Lang, W

    2001-03-01

    Using a 143-channel whole-head magnetoencephalograph (MEG) we recorded the temporal changes of brain activity from 26 healthy young subjects (14 females) related to shallow perceptual and deep semantic word encoding. During subsequent recognition tests, the subjects had to recognize the previously encoded words which were interspersed with new words. The resulting mean memory performances across all subjects clearly mirrored the different levels of encoding. The grand averaged event-related fields (ERFs) associated with perceptual and semantic word encoding differed significantly between 200 and 550 ms after stimulus onset mainly over left superior temporal and left superior parietal sensors. Semantic encoding elicited higher brain activity than perceptual encoding. Source localization procedures revealed that neural populations of the left temporal and temporoparietal brain areas showed different activity strengths across the whole group of subjects depending on depth of word encoding. We suggest that the higher brain activity associated with deep encoding as compared to shallow encoding was due to the involvement of more neural systems during the processing of visually presented words. Deep encoding required more energy than shallow encoding but for all that led to a better memory performance. Copyright 2001 Academic Press.

  1. A global network of RNA and protein interactions in Fronto Temporal Dementia

    Directory of Open Access Journals (Sweden)

    Francesca eFontana

    2015-03-01

    Full Text Available Fronto Temporal Dementia (FTD is a neurodegenerative disorder characterized by degeneration of the fronto temporal lobes and abnormal protein inclusions. It exhibits a broad clinicopathological spectrum and has been linked to mutations in seven different genes. We will provide a picture, which connects the products of these genes, albeit diverse in nature and function, in a network. Despite the paucity of information available for some of these genes, we believe that RNA processing and post-transcriptional regulation of gene expression might constitute a common theme in the network. Recent studies have unraveled the role of mutations affecting the functions of RNA binding proteins and regulation of microRNAs. This review will combine all the recent findings on genes involved in the pathogenesis of FTD, highlighting the importance of a common network of interactions in order to study and decipher the heterogeneous clinical manifestations associated with FTD. This approach could be helpful for the research of potential therapeutic strategies.

  2. Neuroticism is linked to microstructural left-right asymmetry of fronto-limbic fibre tracts in adolescents with opposite effects in boys and girls

    DEFF Research Database (Denmark)

    Madsen, Kathrine Skak; Jernigan, Terry L; Vestergaard, Martin

    2018-01-01

    and limbic brain regions are the cingulum bundle and uncinate fasciculus. We previously found that healthy adults with higher neuroticism scores had decreased left relative to right fractional anisotropy (FA) of the cingulum. Both cingulum and uncinate fasciculus FA increases throughout childhood...... and into early adulthood. Since adolescence is associated with an increased incidence of anxiety and mood disorders, for which neuroticism is a known risk factor, the question arises whether the association between neuroticism and fronto-limbic white matter microstructure asymmetry is already present in children...

  3. Correlation of vocals and lyrics with left temporal musicogenic epilepsy.

    Science.gov (United States)

    Tseng, Wei-En J; Lim, Siew-Na; Chen, Lu-An; Jou, Shuo-Bin; Hsieh, Hsiang-Yao; Cheng, Mei-Yun; Chang, Chun-Wei; Li, Han-Tao; Chiang, Hsing-I; Wu, Tony

    2018-03-15

    Whether the cognitive processing of music and speech relies on shared or distinct neuronal mechanisms remains unclear. Music and language processing in the brain are right and left temporal functions, respectively. We studied patients with musicogenic epilepsy (ME) that was specifically triggered by popular songs to analyze brain hyperexcitability triggered by specific stimuli. The study included two men and one woman (all right-handed, aged 35-55 years). The patients had sound-triggered left temporal ME in response to popular songs with vocals, but not to instrumental, classical, or nonvocal piano solo versions of the same song. Sentimental lyrics, high-pitched singing, specificity/familiarity, and singing in the native language were the most significant triggering factors. We found that recognition of the human voice and analysis of lyrics are important causal factors in left temporal ME and provide observational evidence that sounds with speech structure are predominantly processed in the left temporal lobe. A literature review indicated that language-associated stimuli triggered ME in the left temporal epileptogenic zone at a nearly twofold higher rate compared with the right temporal region. Further research on ME may enhance understanding of the cognitive neuroscience of music. © 2018 New York Academy of Sciences.

  4. Developmental trajectories of the fronto-temporal lobes from infancy to early adulthood in healthy individuals.

    Science.gov (United States)

    Tanaka, Chiaki; Matsui, Mie; Uematsu, Akiko; Noguchi, Kyo; Miyawaki, Toshio

    2012-01-01

    changes in males became greater), with male GM volume increasing for a longer time than that of females. WM volume growth changes were similar across regions, all increasing rapidly until early childhood but slowing down thereafter. All regions displayed significant rightward volumetric asymmetry regardless of sex. Furthermore, the right temporal and frontal lobes showed a greater volumetric increase than the left for the first several years, with this tendency reversing at around 6 years of age. In addition, the left frontal and temporal lobes increased in volume for a longer period of time. Taken together, these findings indicated that brain developmental trajectories differ depending on brain region, sex and brain hemisphere. Gender-related factors such as sex hormones and functional laterality may affect brain development. Copyright © 2012 S. Karger AG, Basel.

  5. Unilateral proptosis revealing a fronto-ethmoidal mucocele.

    Science.gov (United States)

    Lajmi, Houda; Hmaied, Wassim; Ben Jalel, Wady; Ben Romdhane, Khaoula; Chelly, Zied; El Fekih, Lamia

    2017-06-01

    Backgroud: The fronto-ethmoidal mucocele is a benign condition leading commonly to limited eye movement or ocular pain but it could also induce visual acuity impairment by compressing the optic nerve Aim: To discuss, through a case report, different ophthalmologic manifestations of the fronto-ethmoidalmucocele. Reported case: A 46-years-old man with no general history consulted for a bilateral ocular redness and itching. He reported, however, a mild protrusion of his left globe evolving for oneyear. The clinical examination revealed a unilateral proptosis in the left eye with a discrete limitation of theadduction. A brain and orbital computer tomography (CT)and a magnetic resonance imaging(MRI)revealed a grade I exophthalmos caused by an oval formation of fluid density in the left anterior and posterior ethmoidal cells in addition to the frontal sinus,driving theeyeball and internal oculomotor muscles back and out.The patient was referred to otorhinolaryngology department for a precocious surgical management. The ophtalmologic manifestations of the disease depend on the location, the size of the formation and involvement of adjacent structures. The loss of vision and the apex syndrome due to the compressionof the ocular globe are the most serious complications.

  6. [False recognition of faces associated with fronto-temporal dementia with prosopagnosia].

    Science.gov (United States)

    Verstichel, P

    2005-09-01

    The association of prosopagnosia and false recognition of faces is unusual and contributes to our understanding of the generation of facial familiarity. A 67-year-old man with a left prefrontal traumatic lesion, developed a temporal variety of fronto-temporal dementia (semantic dementia) with amyotrophic lateral sclerosis. Cerebral imagery demonstrated a bilateral, temporal anterior atrophy predominating in the right hemisphere. The main cognitive signs consisted in severe difficulties to recognize faces of familiar people (prosopagnosia), associated with systematic false recognition of unfamiliar people. Neuropsychological testing indicated that the prosopagnosia probably resulted from the association of an associative/mnemonic mechanism (inability to activate the Face Recognition Units (FRU) from the visual input) and a semantic mechanism (degradation of semantic/biographical information or deconnexion between FRU and this information). At the early stage of the disease, the patient could activate residual semantic information about individuals from their names, but after a 4-year course, he failed to do so. This worsening could be attributed to the extension of the degenerative lesions to the left temporal lobe. Familiar and unfamiliar faces triggered a marked feeling of knowing. False recognition concerned all the unfamiliar faces, and the patient claimed spontaneously that they corresponded to actors, but he could not provide any additional information about their specific identities. The coexistence of prosopagnosia and false recognition suggests the existence of different interconnected systems processing face recognition, one intended to identification of individuals, and the other producing the sense of familiarity. Dysfunctions at different stages of one or the other of these two processes could result in distortions in the feeling of knowing. From this case and others reported in literature, we propose to complete the classical model of face processing

  7. Time course of the involvement of the right anterior superior temporal gyrus and the right fronto-parietal operculum in emotional prosody perception.

    Directory of Open Access Journals (Sweden)

    Marjolijn Hoekert

    Full Text Available In verbal communication, not only the meaning of the words convey information, but also the tone of voice (prosody conveys crucial information about the emotional state and intentions of others. In various studies right frontal and right temporal regions have been found to play a role in emotional prosody perception. Here, we used triple-pulse repetitive transcranial magnetic stimulation (rTMS to shed light on the precise time course of involvement of the right anterior superior temporal gyrus and the right fronto-parietal operculum. We hypothesized that information would be processed in the right anterior superior temporal gyrus before being processed in the right fronto-parietal operculum. Right-handed healthy subjects performed an emotional prosody task. During listening to each sentence a triplet of TMS pulses was applied to one of the regions at one of six time points (400-1900 ms. Results showed a significant main effect of Time for right anterior superior temporal gyrus and right fronto-parietal operculum. The largest interference was observed half-way through the sentence. This effect was stronger for withdrawal emotions than for the approach emotion. A further experiment with the inclusion of an active control condition, TMS over the EEG site POz (midline parietal-occipital junction, revealed stronger effects at the fronto-parietal operculum and anterior superior temporal gyrus relative to the active control condition. No evidence was found for sequential processing of emotional prosodic information from right anterior superior temporal gyrus to the right fronto-parietal operculum, but the results revealed more parallel processing. Our results suggest that both right fronto-parietal operculum and right anterior superior temporal gyrus are critical for emotional prosody perception at a relatively late time period after sentence onset. This may reflect that emotional cues can still be ambiguous at the beginning of sentences, but become

  8. Time course of the involvement of the right anterior superior temporal gyrus and the right fronto-parietal operculum in emotional prosody perception.

    Science.gov (United States)

    Hoekert, Marjolijn; Bais, Leonie; Kahn, René S; Aleman, André

    2008-05-21

    In verbal communication, not only the meaning of the words convey information, but also the tone of voice (prosody) conveys crucial information about the emotional state and intentions of others. In various studies right frontal and right temporal regions have been found to play a role in emotional prosody perception. Here, we used triple-pulse repetitive transcranial magnetic stimulation (rTMS) to shed light on the precise time course of involvement of the right anterior superior temporal gyrus and the right fronto-parietal operculum. We hypothesized that information would be processed in the right anterior superior temporal gyrus before being processed in the right fronto-parietal operculum. Right-handed healthy subjects performed an emotional prosody task. During listening to each sentence a triplet of TMS pulses was applied to one of the regions at one of six time points (400-1900 ms). Results showed a significant main effect of Time for right anterior superior temporal gyrus and right fronto-parietal operculum. The largest interference was observed half-way through the sentence. This effect was stronger for withdrawal emotions than for the approach emotion. A further experiment with the inclusion of an active control condition, TMS over the EEG site POz (midline parietal-occipital junction), revealed stronger effects at the fronto-parietal operculum and anterior superior temporal gyrus relative to the active control condition. No evidence was found for sequential processing of emotional prosodic information from right anterior superior temporal gyrus to the right fronto-parietal operculum, but the results revealed more parallel processing. Our results suggest that both right fronto-parietal operculum and right anterior superior temporal gyrus are critical for emotional prosody perception at a relatively late time period after sentence onset. This may reflect that emotional cues can still be ambiguous at the beginning of sentences, but become more apparent half

  9. A eletromiografia como auxílio na conduta terapêutica após cirurgia de craniotomia fronto-temporal: relato de caso Electromyography as an aid in therapeutic behavior after fronto-temporal craniotomy surgery: case report

    Directory of Open Access Journals (Sweden)

    Maristella Cecco Oncins

    2009-01-01

    Full Text Available TEMA: eletromiografia e conduta terapêutica. PROCEDIMENTOS: este estudo foi realizado com uma paciente de 45 anos de idade, após 4 meses ser submetida a craniotomia fronto-temporal proveniente de um aneurisma. O músculo temporal anterior direito foi retirado da sua origem móvel e após a cirurgia, a paciente apresentou disfunção do músculo temporal e da articulação temporomandibular, com redução da abertura de boca, dor ao falar e comer. Utilizou-se a eletromiografia para registrar quantitativamente a atividade elétrica dos músculos temporais e masseteres na avaliação e durante o processo terapêutico. Registraram-se, na posição de repouso, oclusão máxima e mastigação habitual provocada. Fez-se terapia miofuncional durante todo o processo. RESULTADOS: dados dos exames mostraram um aumento significativo da atividade elétrica do músculo temporal anterior direito e uma redução da atividade do músculo temporal anterior esquerdo, o que no primeiro registro mostrava uma atividade elétrica rebaixada do lado direito em comparação com o lado esquerdo. Com a seleção dos exercícios miofuncionais houve uma participação mais efetiva do músculo temporal anterior direito, abertura de boca maior, sem dor, facilitando a função da mastigação e da fala, harmonizando o sistema estomatognático. CONCLUSÃO: registros comparativos dos exames de eletromiografia em diferentes etapas do processo terapêutico auxiliaram e direcionaram a melhor conduta terapêutica fonoaudiológica. Conseguiu-se atingir um equilíbrio das funções de respiração, sucção, mastigação, deglutição e fala relacionadas ao sistema estomatognático, considerando as limitações do caso.BACKGROUND: electromyography and therapeutic behavior. PROCEDURES: this study was carried out with a woman, 45year old, after 4 months from being submitted to fronto-temporal craniotomy originated an aneurysm. The right anterior temporal muscle was removed from its

  10. Neuroticism is linked to microstructural left-right asymmetry of fronto-limbic fibre tracts in adolescents with opposite effects in boys and girls.

    Science.gov (United States)

    Madsen, Kathrine Skak; Jernigan, Terry L; Vestergaard, Martin; Mortensen, Erik Lykke; Baaré, William F C

    2018-06-01

    Neuroticism is a fundamental personality trait that reflects a tendency to experience heightened negative affect and susceptibility to stress. Negative emotionality has been associated with fronto-limbic brain structures and connecting fibre tracts. The major fibre tracts connecting the frontal and limbic brain regions are the cingulum bundle and uncinate fasciculus. We previously found that healthy adults with higher neuroticism scores had decreased left relative to right fractional anisotropy (FA) of the cingulum. Both cingulum and uncinate fasciculus FA increases throughout childhood and into early adulthood. Since adolescence is associated with an increased incidence of anxiety and mood disorders, for which neuroticism is a known risk factor, the question arises whether the association between neuroticism and fronto-limbic white matter microstructure asymmetry is already present in children and adolescents or whether such relationship emerges during this age period. To address this question, we assessed 72 typically-developing 10-to-15 year-olds with diffusion-weighted imaging on a 3 T magnetic resonance scanner. Neuroticism was assessed with the Junior Eysenck Personality Questionnaire. FA and parallel and perpendicular diffusivity measures were extracted for cingulum, uncinate fasciculus as well as the white matter underlying the ventromedial prefrontal cortex. Higher neuroticism scores were associated with decreased left relative to right cingulum FA in boys, while in girls, higher neuroticism scores were associated with increased left relative to right cingulum and ventromedial prefrontal white matter FA, indicating that there are sex differences in the neural correlates of neuroticism. Our findings suggest that the link between neuroticism and frontal-limbic white matter microstructure asymmetry likely predates early adolescence. Future studies need to elucidate the significance of the observed sex differences in the neural correlates of neuroticism

  11. Brain abscess mimicking brain metastasis in breast cancer

    International Nuclear Information System (INIS)

    Khullar, P.; Datta, N.R.; Wahi, I.K.; Kataria, S.

    2016-01-01

    61 year old female presented with chief complaints of headache for 30 days, fever for 10 days, altered behavior for 10 days and convulsion for 2 days. She was diagnosed and treated as a case of carcinoma of left breast 5 years ago. MRI brain showed a lobulated lesion in the left frontal lobe. She came to our hospital for whole brain radiation as a diagnosed case of carcinoma of breast with brain metastasis. Review of MRI brain scan, revealed metastasis or query infective pathology. MR spectroscopy of the lesion revealed choline: creatinine and choline: NAA (N-Acety- laspartate) ratios of 1.6 and 1.5 respectively with the presence of lactate within the lesion suggestive of infective pathology. She underwent left fronto temporal craniotomy and evacuation of abscess and subdural empyema. Gram stain showed gram positive cocci. After 1 month of evacuation and treatment she was fine. This case suggested a note of caution in every case of a rapidly evolving space-occupying lesion independent of the patient’s previous history

  12. Q-Ball of Inferior Fronto-Occipital Fasciculus and Beyond

    Science.gov (United States)

    Amirbekian, Bagrat; Berger, Mitchel S.; Henry, Roland G.

    2014-01-01

    The inferior fronto-occipital fasciculus (IFOF) is historically described as the longest associative bundle in the human brain and it connects various parts of the occipital cortex, temporo-basal area and the superior parietal lobule to the frontal lobe through the external/extreme capsule complex. The exact functional role and the detailed anatomical definition of the IFOF are still under debate within the scientific community. In this study we present a fiber tracking dissection of the right and left IFOF by using a q-ball residual-bootstrap reconstruction of High-Angular Resolution Diffusion Imaging (HARDI) data sets in 20 healthy subjects. By defining a single seed region of interest on the coronal fractional anisotropy (FA) color map of each subject, we investigated all the pathways connecting the parietal, occipital and posterior temporal cortices to the frontal lobe through the external/extreme capsule. In line with recent post-mortem dissection studies we found more extended anterior-posterior association connections than the “classical” fronto-occipital representation of the IFOF. In particular the pathways we evidenced showed: a) diffuse projections in the frontal lobe, b) fronto-parietal lobes connections trough the external capsule in almost all the subjects and c) widespread connections in the posterior regions. Our study represents the first consistent in vivo demonstration across a large group of individuals of these novel anterior and posterior terminations of the IFOF detailed described only by post-mortem anatomical dissection. Furthermore our work establishes the feasibility of consistent in vivo mapping of this architecture with independent in vivo methodologies. In conclusion q-ball tractography dissection supports a more complex definition of IFOF, which includes several subcomponents likely underlying specific function. PMID:24945305

  13. Q-ball of inferior fronto-occipital fasciculus and beyond.

    Directory of Open Access Journals (Sweden)

    Eduardo Caverzasi

    Full Text Available The inferior fronto-occipital fasciculus (IFOF is historically described as the longest associative bundle in the human brain and it connects various parts of the occipital cortex, temporo-basal area and the superior parietal lobule to the frontal lobe through the external/extreme capsule complex. The exact functional role and the detailed anatomical definition of the IFOF are still under debate within the scientific community. In this study we present a fiber tracking dissection of the right and left IFOF by using a q-ball residual-bootstrap reconstruction of High-Angular Resolution Diffusion Imaging (HARDI data sets in 20 healthy subjects. By defining a single seed region of interest on the coronal fractional anisotropy (FA color map of each subject, we investigated all the pathways connecting the parietal, occipital and posterior temporal cortices to the frontal lobe through the external/extreme capsule. In line with recent post-mortem dissection studies we found more extended anterior-posterior association connections than the "classical" fronto-occipital representation of the IFOF. In particular the pathways we evidenced showed: a diffuse projections in the frontal lobe, b fronto-parietal lobes connections trough the external capsule in almost all the subjects and c widespread connections in the posterior regions. Our study represents the first consistent in vivo demonstration across a large group of individuals of these novel anterior and posterior terminations of the IFOF detailed described only by post-mortem anatomical dissection. Furthermore our work establishes the feasibility of consistent in vivo mapping of this architecture with independent in vivo methodologies. In conclusion q-ball tractography dissection supports a more complex definition of IFOF, which includes several subcomponents likely underlying specific function.

  14. Fronto-Parietal Brain Responses to Visuotactile Congruence in an Anatomical Reference Frame

    Directory of Open Access Journals (Sweden)

    Jakub Limanowski

    2018-03-01

    Full Text Available Spatially and temporally congruent visuotactile stimulation of a fake hand together with one’s real hand may result in an illusory self-attribution of the fake hand. Although this illusion relies on a representation of the two touched body parts in external space, there is tentative evidence that, for the illusion to occur, the seen and felt touches also need to be congruent in an anatomical reference frame. We used functional magnetic resonance imaging and a somatotopical, virtual reality-based setup to isolate the neuronal basis of such a comparison. Participants’ index or little finger was synchronously touched with the index or little finger of a virtual hand, under congruent or incongruent orientations of the real and virtual hands. The left ventral premotor cortex responded significantly more strongly to visuotactile co-stimulation of the same versus different fingers of the virtual and real hand. Conversely, the left anterior intraparietal sulcus responded significantly more strongly to co-stimulation of different versus same fingers. Both responses were independent of hand orientation congruence and of spatial congruence of the visuotactile stimuli. Our results suggest that fronto-parietal areas previously associated with multisensory processing within peripersonal space and with tactile remapping evaluate the congruence of visuotactile stimulation on the body according to an anatomical reference frame.

  15. Fronto-Parietal Brain Responses to Visuotactile Congruence in an Anatomical Reference Frame.

    Science.gov (United States)

    Limanowski, Jakub; Blankenburg, Felix

    2018-01-01

    Spatially and temporally congruent visuotactile stimulation of a fake hand together with one's real hand may result in an illusory self-attribution of the fake hand. Although this illusion relies on a representation of the two touched body parts in external space, there is tentative evidence that, for the illusion to occur, the seen and felt touches also need to be congruent in an anatomical reference frame. We used functional magnetic resonance imaging and a somatotopical, virtual reality-based setup to isolate the neuronal basis of such a comparison. Participants' index or little finger was synchronously touched with the index or little finger of a virtual hand, under congruent or incongruent orientations of the real and virtual hands. The left ventral premotor cortex responded significantly more strongly to visuotactile co-stimulation of the same versus different fingers of the virtual and real hand. Conversely, the left anterior intraparietal sulcus responded significantly more strongly to co-stimulation of different versus same fingers. Both responses were independent of hand orientation congruence and of spatial congruence of the visuotactile stimuli. Our results suggest that fronto-parietal areas previously associated with multisensory processing within peripersonal space and with tactile remapping evaluate the congruence of visuotactile stimulation on the body according to an anatomical reference frame.

  16. Atypical temporal activation pattern and central-right brain compensation during semantic judgment task in children with early left brain damage.

    Science.gov (United States)

    Chang, Yi-Tzu; Lin, Shih-Che; Meng, Ling-Fu; Fan, Yang-Teng

    In this study we investigated the event-related potentials (ERPs) during the semantic judgment task (deciding if the two Chinese characters were semantically related or unrelated) to identify the timing of neural activation in children with early left brain damage (ELBD). The results demonstrated that compared with the controls, children with ELBD had (1) competitive accuracy and reaction time in the semantic judgment task, (2) weak operation of the N400, (3) stronger, earlier and later compensational positivities (referred to the enhanced P200, P250, and P600 amplitudes) in the central and right region of the brain to successfully engage in semantic judgment. Our preliminary findings indicate that temporally postlesional reorganization is in accordance with the proposed right-hemispheric organization of speech after early left-sided brain lesion. During semantic processing, the orthography has a greater effect on the children with ELBD, and a later semantic reanalysis (P600) is required due to the less efficient N400 at the former stage for semantic integration. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Alteration of Interictal Brain Activity in Patients with Temporal Lobe Epilepsy in the Left Dominant Hemisphere: A Resting-State MEG Study

    Directory of Open Access Journals (Sweden)

    Haitao Zhu

    2014-01-01

    Full Text Available Resting MEG activities were compared between patients with left temporal lobe epilepsy (LTLE and normal controls. Using SAMg2, the activities of MEG data were reconstructed and normalized. Significantly elevated SAMg2 signals were found in LTLE patients in the left temporal lobe and medial structures. Marked decreases of SAMg2 signals were found in the wide extratemporal lobe regions, such as the bilateral visual cortex. The study also demonstrated a positive correlation between the seizure frequency and brain activities of the abnormal regions after the multiple linear regression analysis. These results suggested that the aberrant brain activities not only were related to the epileptogenic zones, but also existed in other extratemporal regions in patients with LTLE. The activities of the aberrant regions could be further damaged with the increase of the seizure frequency. Our findings indicated that LTLE could be a multifocal disease, including complex epileptic networks and brain dysfunction networks.

  18. Brain abscess mimicking brain metastasis in breast cancer.

    Science.gov (United States)

    Khullar, Pooja; Datta, Niloy R; Wahi, Inderjeet Kaur; Kataria, Sabeena

    2016-03-01

    61 year old female presented with chief complaints of headache for 30 days, fever for 10 days, altered behavior for 10 days and convulsion for 2 days. She was diagnosed and treated as a case of carcinoma of left breast 5 years ago. MRI brain showed a lobulated lesion in the left frontal lobe. She came to our hospital for whole brain radiation as a diagnosed case of carcinoma of breast with brain metastasis. Review of MRI brain scan, revealed metastasis or query infective pathology. MR spectroscopy of the lesion revealed choline: creatinine and choline: NAA (N-Acetylaspartate) ratios of ∼1.6 and 1.5 respectively with the presence of lactate within the lesion suggestive of infective pathology. She underwent left fronto temporal craniotomy and evacuation of abscess and subdural empyema. Gram stain showed gram positive cocci. After 1 month of evacuation and treatment she was fine. This case suggested a note of caution in every case of a rapidly evolving space-occupying lesion independent of the patient's previous history. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  19. Right Fronto-Temporal EEG can Differentiate the Affective Responses to Award-Winning Advertisements.

    Science.gov (United States)

    Wang, Regina W Y; Huarng, Shy-Peih; Chuang, Shang-Wen

    2018-04-01

    Affective engineering aims to improve service/product design by translating the customer's psychological feelings. Award-winning advertisements (AAs) were selected on the basis of the professional standards that consider creativity as a prerequisite. However, it is unknown if AA is related to satisfactory advertising performance among customers or only to the experts' viewpoints towards the advertisements. This issue in the field of affective engineering and design merits in-depth evaluation. We recruited 30 subjects and performed an electroencephalography (EEG) experiment while watching AAs and non-AAs (NAAs). The event-related potential (ERP) data showed that AAs evoked larger positive potentials 250-1400 [Formula: see text]ms after stimulus onset, particularly in the right fronto-temporal regions. The behavioral results were consistent with the professional recognition given to AAs by experts. The perceived levels of creativity and "product-like" quality were higher for the AAs than for the NAAs. Event-related spectral perturbation (ERSP) analysis further revealed statistically significant differences in the theta, alpha, beta, and gamma band activity in the right fronto-temporal regions between the AAs and NAAs. Our results confirm that EEG features from the time/frequency domains can differentiate affective responses to AAs at a neural circuit level, and provide scientific evidence to support the identification of AAs.

  20. Optimized gamma synchronization enhances functional binding of fronto-parietal cortices in mathematically gifted adolescents during deductive reasoning

    Directory of Open Access Journals (Sweden)

    Li eZhang

    2014-06-01

    Full Text Available As enhanced fronto-parietal network has been suggested to support reasoning ability of math-gifted adolescents, the main goal of this EEG source analysis is to investigate the temporal binding of the gamma-band (30-60Hz synchronization between frontal and parietal cortices in adolescents with exceptional mathematical ability, including the functional connectivity of gamma neurocognitive network, the temporal dynamics of fronto-parietal network (phase-locking durations and network lability in time domain, and the self-organized criticality of synchronizing oscillation. Compared with the average-ability subjects, the math-gifted adolescents show a highly integrated fronto-parietal network due to distant gamma phase-locking oscillations, which is indicated by lower modularity of the global network topology, more connector bridges between the frontal and parietal cortices and less connector hubs in the sensorimotor cortex. The time-domain analysis finds that, while maintaining more stable phase dynamics of the fronto-parietal coupling, the math-gifted adolescents are characterized by more extensive fronto-parietal connection reconfiguration. The results from sample fitting in the power-law model further find that the phase-locking durations in the math-gifted brain abides by a wider interval of the power-law distribution. This phase-lock distribution mechanism could represent a relatively optimized pattern for the functional binding of frontal-parietal network, which underlies stable fronto-parietal connectivity and increases flexibility of timely network reconfiguration.

  1. Hits to the left, flops to the right: different emotions during listening to music are reflected in cortical lateralisation patterns.

    Science.gov (United States)

    Altenmüller, Eckart; Schürmann, Kristian; Lim, Vanessa K; Parlitz, Dietrich

    2002-01-01

    In order to investigate the neurobiological mechanisms accompanying emotional valence judgements during listening to complex auditory stimuli, cortical direct current (dc)-electroencephalography (EEG) activation patterns were recorded from 16 right-handed students. Students listened to 160 short sequences taken from the repertoires of jazz, rock-pop, classical music and environmental sounds (each n=40). Emotional valence of the perceived stimuli were rated on a 5-step scale after each sequence. Brain activation patterns during listening revealed widespread bilateral fronto-temporal activation, but a highly significant lateralisation effect: positive emotional attributions were accompanied by an increase in left temporal activation, negative by a more bilateral pattern with preponderance of the right fronto-temporal cortex. Female participants demonstrated greater valence-related differences than males. No differences related to the four stimulus categories could be detected, suggesting that the actual auditory brain activation patterns were more determined by their affective emotional valence than by differences in acoustical "fine" structure. The results are consistent with a model of hemispheric specialisation concerning perceived positive or negative emotions proposed by Heilman [Journal of Neuropsychiatry and Clinical Neuroscience 9 (1997) 439].

  2. Temporal order processing of syllables in the left parietal lobe.

    Science.gov (United States)

    Moser, Dana; Baker, Julie M; Sanchez, Carmen E; Rorden, Chris; Fridriksson, Julius

    2009-10-07

    Speech processing requires the temporal parsing of syllable order. Individuals suffering from posterior left hemisphere brain injury often exhibit temporal processing deficits as well as language deficits. Although the right posterior inferior parietal lobe has been implicated in temporal order judgments (TOJs) of visual information, there is limited evidence to support the role of the left inferior parietal lobe (IPL) in processing syllable order. The purpose of this study was to examine whether the left inferior parietal lobe is recruited during temporal order judgments of speech stimuli. Functional magnetic resonance imaging data were collected on 14 normal participants while they completed the following forced-choice tasks: (1) syllable order of multisyllabic pseudowords, (2) syllable identification of single syllables, and (3) gender identification of both multisyllabic and monosyllabic speech stimuli. Results revealed increased neural recruitment in the left inferior parietal lobe when participants made judgments about syllable order compared with both syllable identification and gender identification. These findings suggest that the left inferior parietal lobe plays an important role in processing syllable order and support the hypothesized role of this region as an interface between auditory speech and the articulatory code. Furthermore, a breakdown in this interface may explain some components of the speech deficits observed after posterior damage to the left hemisphere.

  3. Insights into Intrinsic Brain Networks based on Graph Theory and PET in right- compared to left-sided Temporal Lobe Epilepsy

    OpenAIRE

    Thomas Vanicek; Andreas Hahn; Tatjana Traub-Weidinger; Eva Hilger; Marie Spies; Wolfgang Wadsak; Rupert Lanzenberger; Ekaterina Pataraia; Susanne Asenbaum-Nan

    2016-01-01

    The human brain exhibits marked hemispheric differences, though it is not fully understood to what extent lateralization of the epileptic focus is relevant. Preoperative [18F]FDG-PET depicts lateralization of seizure focus in patients with temporal lobe epilepsy and reveals dysfunctional metabolic brain connectivity. The aim of the present study was to compare metabolic connectivity, inferred from inter-regional [18F]FDG PET uptake correlations, in right-sided (RTLE; n?=?30) and left-sided TL...

  4. Enhancing the Temporal Complexity of Distributed Brain Networks with Patterned Cerebellar Stimulation

    Science.gov (United States)

    Farzan, Faranak; Pascual-Leone, Alvaro; Schmahmann, Jeremy D.; Halko, Mark

    2016-01-01

    Growing evidence suggests that sensory, motor, cognitive and affective processes map onto specific, distributed neural networks. Cerebellar subregions are part of these networks, but how the cerebellum is involved in this wide range of brain functions remains poorly understood. It is postulated that the cerebellum contributes a basic role in brain functions, helping to shape the complexity of brain temporal dynamics. We therefore hypothesized that stimulating cerebellar nodes integrated in different networks should have the same impact on the temporal complexity of cortical signals. In healthy humans, we applied intermittent theta burst stimulation (iTBS) to the vermis lobule VII or right lateral cerebellar Crus I/II, subregions that prominently couple to the dorsal-attention/fronto-parietal and default-mode networks, respectively. Cerebellar iTBS increased the complexity of brain signals across multiple time scales in a network-specific manner identified through electroencephalography (EEG). We also demonstrated a region-specific shift in power of cortical oscillations towards higher frequencies consistent with the natural frequencies of targeted cortical areas. Our findings provide a novel mechanism and evidence by which the cerebellum contributes to multiple brain functions: specific cerebellar subregions control the temporal dynamics of the networks they are engaged in. PMID:27009405

  5. Professional training in creative writing is associated with enhanced fronto-striatal activity in a literary text continuation task.

    Science.gov (United States)

    Erhard, K; Kessler, F; Neumann, N; Ortheil, H-J; Lotze, M

    2014-10-15

    The aim of the present study was to explore brain activities associated with creativity and expertise in literary writing. Using functional magnetic resonance imaging (fMRI), we applied a real-life neuroscientific setting that consisted of different writing phases (brainstorming and creative writing; reading and copying as control conditions) to well-selected expert writers and to an inexperienced control group. During creative writing, experts showed cerebral activation in a predominantly left-hemispheric fronto-parieto-temporal network. When compared to inexperienced writers, experts showed increased left caudate nucleus and left dorsolateral and superior medial prefrontal cortex activation. In contrast, less experienced participants recruited increasingly bilateral visual areas. During creative writing activation in the right cuneus showed positive association with the creativity index in expert writers. High experience in creative writing seems to be associated with a network of prefrontal (mPFC and DLPFC) and basal ganglia (caudate) activation. In addition, our findings suggest that high verbal creativity specific to literary writing increases activation in the right cuneus associated with increased resources obtained for reading processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Recovery of injured Broca's portion of arcuate fasciculus in the dominant hemisphere in a patient with traumatic brain injury.

    Science.gov (United States)

    Jang, Sung Ho; Ha, Ji Wan; Kim, Hyun Young; Seo, You Sung

    2017-12-01

    Recovery of injured AF in patients with traumatic brain injury (TBI) has not been reported. In this study, we report on a patient with TBI who recovered from an injury to Broca's portion of AF in the dominant hemisphere, diagnosed by diffusion tensor tractography (DTT). A 28-year-old right-handed male patient suffered head trauma resulting from sliding while riding a motorcycle. He was diagnosed with a traumatic contusional hemorrhage in the left frontal lobe, subarachnoid hemorrhage, and subdural hemorrhage in the left fronto-temporal lobe. He underwent craniectomy on the left fronto-temporal area, and hematoma removal for the subdural hemorrhage in the neurosurgery department of a university hospital. Two weeks after the injury, he was transferred to the rehabilitation department of another university hospital. He showed severe aphasia and brain MRI showed leukomalactic lesion in the left frontal lobe. The result WAB for the patient showed severe aphasia, with an aphasia quotient of 45.3 percentile. However, his aphasia improved rapidly by 9 months with an aphasia quotient at the 100.0 percentile. 2-week DTT detected discontinuity in the subcortical white matter at the branch to Broca's area of left AF. By contrast, on 9-month DTT, the discontinued portion of left AF was elongated to the left Broca's area. Recovery of injured Broca's portion of AF in the dominant hemisphere along with excellent improvement of aphasia was demonstrated in a patient with TBI. This study has important implications in brain rehabilitation because the mechanism of recovery from aphasia following TBI has not been elucidated. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  7. Language development at 2 years is correlated to brain microstructure in the left superior temporal gyrus at term equivalent age: a diffusion tensor imaging study.

    Science.gov (United States)

    Aeby, Alec; De Tiège, Xavier; Creuzil, Marylise; David, Philippe; Balériaux, Danielle; Van Overmeire, Bart; Metens, Thierry; Van Bogaert, Patrick

    2013-09-01

    This study aims at testing the hypothesis that neurodevelopmental abilities at age 2 years are related with local brain microstructure of preterm infants at term equivalent age. Forty-one preterm infants underwent brain MRI with diffusion tensor imaging sequences to measure mean diffusivity (MD), fractional anisotropy (FA), longitudinal and transverse diffusivity (λ// and λ[perpendicular]) at term equivalent age. Neurodevelopment was assessed at 2 years corrected age using the Bayley III scale. A voxel-based analysis approach, statistical parametric mapping (SPM8), was used to correlate changes of the Bayley III scores with the regional distribution of MD, FA, λ// and λ[perpendicular]. We found that language abilities are negatively correlated to MD, λ// and λ[perpendicular] in the left superior temporal gyrus in preterm infants. These findings suggest that higher MD, λ// and λ[perpendicular] values at term-equivalent age in the left superior temporal gyrus are associated with poorer language scores in later childhood. Consequently, it highlights the key role of the left superior temporal gyrus for the development of language abilities in children. Further studies are needed to assess on an individual basis and on the long term the prognostic value of brain DTI at term equivalent age for the development of language. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Insights into Intrinsic Brain Networks based on Graph Theory and PET in right- compared to left-sided Temporal Lobe Epilepsy.

    Science.gov (United States)

    Vanicek, Thomas; Hahn, Andreas; Traub-Weidinger, Tatjana; Hilger, Eva; Spies, Marie; Wadsak, Wolfgang; Lanzenberger, Rupert; Pataraia, Ekaterina; Asenbaum-Nan, Susanne

    2016-06-28

    The human brain exhibits marked hemispheric differences, though it is not fully understood to what extent lateralization of the epileptic focus is relevant. Preoperative [(18)F]FDG-PET depicts lateralization of seizure focus in patients with temporal lobe epilepsy and reveals dysfunctional metabolic brain connectivity. The aim of the present study was to compare metabolic connectivity, inferred from inter-regional [(18)F]FDG PET uptake correlations, in right-sided (RTLE; n = 30) and left-sided TLE (LTLE; n = 32) with healthy controls (HC; n = 31) using graph theory based network analysis. Comparing LTLE and RTLE and patient groups separately to HC, we observed higher lobar connectivity weights in RTLE compared to LTLE for connections of the temporal and the parietal lobe of the contralateral hemisphere (CH). Moreover, especially in RTLE compared to LTLE higher local efficiency were found in the temporal cortices and other brain regions of the CH. The results of this investigation implicate altered metabolic networks in patients with TLE specific to the lateralization of seizure focus, and describe compensatory mechanisms especially in the CH of patients with RTLE. We propose that graph theoretical analysis of metabolic connectivity using [(18)F]FDG-PET offers an important additional modality to explore brain networks.

  9. Altered brain network topology in left-behind children: A resting-state functional magnetic resonance imaging study.

    Science.gov (United States)

    Zhao, Youjin; Du, Meimei; Gao, Xin; Xiao, Yuan; Shah, Chandan; Sun, Huaiqiang; Chen, Fuqin; Yang, Lili; Yan, Zhihan; Fu, Yuchuan; Lui, Su

    2016-12-01

    Whether a lack of direct parental care affects brain function in children is an important question, particularly in developing countries where hundreds of millions of children are left behind when their parents migrate for economic or political reasons. In this study, we investigated changes in the topological architectures of brain functional networks in left-behind children (LBC). Resting-state functional magnetic resonance imaging data were obtained from 26 LBC and 21 children living within their nuclear family (non-LBC). LBC showed a significant increase in the normalized characteristic path length (λ), suggesting a decrease in efficiency in information access, and altered nodal centralities in the fronto-limbic regions and motor and sensory systems. Moreover, a decreased nodal degree and the nodal betweenness of the right rectus gyrus were positively correlated with annual family income. The present study provides the first empirical evidence that suggests that a lack of direct parental care could affect brain functional development in children, particularly involving emotional networks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Bilateral 5 Hz transcranial alternating current stimulation on fronto-temporal areas modulates resting-state EEG.

    Science.gov (United States)

    D'Atri, Aurora; Romano, Claudia; Gorgoni, Maurizio; Scarpelli, Serena; Alfonsi, Valentina; Ferrara, Michele; Ferlazzo, Fabio; Rossini, Paolo Maria; De Gennaro, Luigi

    2017-11-15

    Rhythmic non-invasive brain stimulations are promising tools to modulate brain activity by entraining neural oscillations in specific cortical networks. The aim of the study was to assess the possibility to influence the neural circuits of the wake-sleep transition in awake subjects via a bilateral transcranial alternating current stimulation at 5 Hz (θ-tACS) on fronto-temporal areas. 25 healthy volunteers participated in two within-subject sessions (θ-tACS and sham), one week apart and in counterbalanced order. We assessed the stimulation effects on cortical EEG activity (28 derivations) and self-reported sleepiness (Karolinska Sleepiness Scale). θ-tACS induced significant increases of the theta activity in temporo-parieto-occipital areas and centro-frontal increases in the alpha activity compared to sham but failed to induce any online effect on sleepiness. Since the total energy delivered in the sham condition was much less than in the active θ-tACS, the current data are unable to isolate the specific effect of entrained theta oscillatory activity per se on sleepiness scores. On this basis, we concluded that θ-tACS modulated theta and alpha EEG activity with a topography consistent with high sleep pressure conditions. However, no causal relation can be traced on the basis of the current results between these rhythms and changes on sleepiness.

  11. Observing complex action sequences: The role of the fronto-parietal mirror neuron system.

    Science.gov (United States)

    Molnar-Szakacs, Istvan; Kaplan, Jonas; Greenfield, Patricia M; Iacoboni, Marco

    2006-11-15

    A fronto-parietal mirror neuron network in the human brain supports the ability to represent and understand observed actions allowing us to successfully interact with others and our environment. Using functional magnetic resonance imaging (fMRI), we wanted to investigate the response of this network in adults during observation of hierarchically organized action sequences of varying complexity that emerge at different developmental stages. We hypothesized that fronto-parietal systems may play a role in coding the hierarchical structure of object-directed actions. The observation of all action sequences recruited a common bilateral network including the fronto-parietal mirror neuron system and occipito-temporal visual motion areas. Activity in mirror neuron areas varied according to the motoric complexity of the observed actions, but not according to the developmental sequence of action structures, possibly due to the fact that our subjects were all adults. These results suggest that the mirror neuron system provides a fairly accurate simulation process of observed actions, mimicking internally the level of motoric complexity. We also discuss the results in terms of the links between mirror neurons, language development and evolution.

  12. A Right Brain/Left Brain Model of Acting.

    Science.gov (United States)

    Bowlen, Clark

    Using current right brain/left brain research, this paper develops a model that explains acting's underlying quality--the actor is both himself and the character. Part 1 presents (1) the background of the right brain/left brain theory, (2) studies showing that propositional communication is a left hemisphere function while affective communication…

  13. Comparative aspects of computerized axial tomography, angiography and scintiangioencephalography in a patient with brain metastasis. Case report

    International Nuclear Information System (INIS)

    Planchon, C.A.; Fendler, J.P.; Nouailhat, F.; Perez, R.

    1981-01-01

    A 65 year old man, former tuberculotic, was hospitalized for recent episode of neurological trouble associating Wernicke aphasia with a right homonymous lateral hemianopia. The admission exams reveal the existence of a left para-hilar pulmonary opacity of undetermined nature. The TCT-scan shows two localizations of the left hemisphere, one parieto-occipital, the other fronto-parietal. The left carotid arteriography shows two hemispheric localizations, anterior-temporal and parietal, and reveals also a stenosis of the carotid sinus. The scinti-angio-encephalography shows the left carotidian stenosis and objectivates three left hemispheric localizations, frontal, temporal and parietal. The initial diagnosis of multi-tuberculoma was not confirmed by the pathology examination which shows the carcinomatous nature of the pulmonary tumor with multiple metastasis, three of which in the brain. The authors want to insist this particular case, on the complementarity of the different methods, TCT-scan, angiography and scinti-angiography [fr

  14. Comparative aspects of computerized axial tomography, angiography and scintiangioencephalography in a patient with brain metastasis. Case report

    Energy Technology Data Exchange (ETDEWEB)

    Planchon, C.A.; Fendler, J.P.; Nouailhat, F.; Perez, R. (American Hospital of Paris, 92 - Neuilly (France))

    1981-11-01

    A 65 year old man, former tuberculotic, was hospitalized for recent episode of neurological trouble associating Wernicke aphasia with a right homonymous lateral hemianopia. The admission exams reveal the existence of a left para-hilar pulmonary opacity of undetermined nature. The TCT-scan shows two localizations of the left hemisphere, one parieto-occipital, the other fronto-parietal. The left carotid arteriography shows two hemispheric localizations, anterior-temporal and parietal, and reveals also a stenosis of the carotid sinus. The scinti-angio-encephalography shows the left carotidian stenosis and objectivates three left hemispheric localizations, frontal, temporal and parietal. The initial diagnosis of multi-tuberculoma was not confirmed by the pathology examination which shows the carcinomatous nature of the pulmonary tumor with multiple metastasis, three of which in the brain. The authors want to insist this particular case, on the complementarity of the different methods, TCT-scan, angiography and scinti-angiography.

  15. Functional brain imaging across development.

    Science.gov (United States)

    Rubia, Katya

    2013-12-01

    The developmental cognitive neuroscience literature has grown exponentially over the last decade. This paper reviews the functional magnetic resonance imaging (fMRI) literature on brain function development of typically late developing functions of cognitive and motivation control, timing and attention as well as of resting state neural networks. Evidence shows that between childhood and adulthood, concomitant with cognitive maturation, there is progressively increased functional activation in task-relevant lateral and medial frontal, striatal and parieto-temporal brain regions that mediate these higher level control functions. This is accompanied by progressively stronger functional inter-regional connectivity within task-relevant fronto-striatal and fronto-parieto-temporal networks. Negative age associations are observed in earlier developing posterior and limbic regions, suggesting a shift with age from the recruitment of "bottom-up" processing regions towards "top-down" fronto-cortical and fronto-subcortical connections, leading to a more mature, supervised cognition. The resting state fMRI literature further complements this evidence by showing progressively stronger deactivation with age in anti-correlated task-negative resting state networks, which is associated with better task performance. Furthermore, connectivity analyses during the resting state show that with development increasingly stronger long-range connections are being formed, for example, between fronto-parietal and fronto-cerebellar connections, in both task-positive networks and in task-negative default mode networks, together with progressively lesser short-range connections, suggesting progressive functional integration and segregation with age. Overall, evidence suggests that throughout development between childhood and adulthood, there is progressive refinement and integration of both task-positive fronto-cortical and fronto-subcortical activation and task-negative deactivation, leading to

  16. Language and Brain Volumes in Children with Epilepsy

    Science.gov (United States)

    Caplan, Rochelle; Levitt, Jennifer; Siddarth, Prabha; Wu, Keng Nei; Gurbani, Suresh; Shields, W. Donald; Sankar, Raman

    2010-01-01

    This study compared the relationship of language skill with fronto-temporal volumes in 69 medically treated epilepsy subjects and 34 healthy children, aged 6.1-16.6 years. It also determined if the patients with linguistic deficits had abnormal volumes and atypical associations between volumes and language skills in these brain regions. The children underwent language testing and magnetic resonance imaging scans at 1.5 Tesla. Brain tissue was segmented and fronto-temporal volumes were computed. Higher mean language scores were significantly associated with larger inferior frontal gyrus, temporal lobe, and posterior superior temporal gyrus gray matter volumes in the epilepsy group and in the children with epilepsy with average language scores. Increased total brain and dorsolateral prefrontal gray and white matter volumes, however, were associated with higher language scores in the healthy controls. Within the epilepsy group, linguistic deficits were related to smaller anterior superior temporal gyrus gray matter volumes and a negative association between language scores and dorsolateral prefrontal gray matter volumes. These findings demonstrate abnormal development of language related brain regions, and imply differential reorganization of brain regions subserving language in children with epilepsy with normal linguistic skills and in those with impaired language. PMID:20149755

  17. Observational learning of new movement sequences is reflected in fronto-parietal coherence.

    Directory of Open Access Journals (Sweden)

    Jurjen van der Helden

    Full Text Available Mankind is unique in her ability for observational learning, i.e. the transmission of acquired knowledge and behavioral repertoire through observation of others' actions. In the present study we used electrophysiological measures to investigate brain mechanisms of observational learning. Analysis investigated the possible functional coupling between occipital (alpha and motor (mu rhythms operating in the 10 Hz frequency range for translating "seeing" into "doing". Subjects observed movement sequences consisting of six consecutive left or right hand button presses directed at one of two target-buttons for subsequent imitation. Each movement sequence was presented four times, intervened by short pause intervals for sequence rehearsal. During a control task subjects observed the same movement sequences without a requirement for subsequent reproduction. Although both alpha and mu rhythms desynchronized during the imitation task relative to the control task, modulations in alpha and mu power were found to be largely independent from each other over time, arguing against a functional coupling of alpha and mu generators during observational learning. This independence was furthermore reflected in the absence of coherence between occipital and motor electrodes overlaying alpha and mu generators. Instead, coherence analysis revealed a pair of symmetric fronto-parietal networks, one over the left and one over the right hemisphere, reflecting stronger coherence during observation of movements than during pauses. Individual differences in fronto-parietal coherence were furthermore found to predict imitation accuracy. The properties of these networks, i.e. their fronto-parietal distribution, their ipsilateral organization and their sensitivity to the observation of movements, match closely with the known properties of the mirror neuron system (MNS as studied in the macaque brain. These results indicate a functional dissociation between higher order areas for

  18. Altered Intrinsic Functional Connectivity in Language-Related Brain Regions in Association with Verbal Memory Performance in Euthymic Bipolar Patients

    Directory of Open Access Journals (Sweden)

    David E. J. Linden

    2013-09-01

    Full Text Available Potential abnormalities in the structure and function of the temporal lobes have been studied much less in bipolar disorder than in schizophrenia. This may not be justified because language-related symptoms, such as pressured speech and flight of ideas, and cognitive deficits in the domain of verbal memory are amongst the hallmark of bipolar disorder (BD, and contribution of temporal lobe dysfunction is therefore likely. In the current study, we examined resting-state functional connectivity (FC between the auditory cortex (Heschl’s gyrus [HG], planum temporale [PT] and whole brain using seed correlation analysis in n = 21 BD euthymic patients and n = 20 matched healthy controls and associated it with verbal memory performance. In comparison to controls BD patients showed decreased functional connectivity between Heschl’s gyrus and planum temporale and the left superior and middle temporal gyrus. Additionally, fronto-temporal functional connectivity with the right inferior frontal/precentral gyrus and the insula was increased in patients. Verbal episodic memory deficits in the investigated sample of BD patients and language-related symptoms might therefore be associated with a diminished FC within the auditory/temporal gyrus and a compensatory fronto-temporal pathway.

  19. Right-Brained Kids in Left-Brained Schools

    Science.gov (United States)

    Hunter, Madeline

    1976-01-01

    Students who learn well through left hemisphere brain input (oral and written) have minimal practice in using the right hemisphere, while those who are more proficient in right hemisphere (visual) input processing are handicapped by having to use primarily their left brains. (MB)

  20. Self-face recognition shares brain regions active during proprioceptive illusion in the right inferior fronto-parietal superior longitudinal fasciculus III network.

    Science.gov (United States)

    Morita, Tomoyo; Saito, Daisuke N; Ban, Midori; Shimada, Koji; Okamoto, Yuko; Kosaka, Hirotaka; Okazawa, Hidehiko; Asada, Minoru; Naito, Eiichi

    2017-04-21

    Proprioception is somatic sensation that allows us to sense and recognize position, posture, and their changes in our body parts. It pertains directly to oneself and may contribute to bodily awareness. Likewise, one's face is a symbol of oneself, so that visual self-face recognition directly contributes to the awareness of self as distinct from others. Recently, we showed that right-hemispheric dominant activity in the inferior fronto-parietal cortices, which are connected by the inferior branch of the superior longitudinal fasciculus (SLF III), is associated with proprioceptive illusion (awareness), in concert with sensorimotor activity. Herein, we tested the hypothesis that visual self-face recognition shares brain regions active during proprioceptive illusion in the right inferior fronto-parietal SLF III network. We scanned brain activity using functional magnetic resonance imaging while twenty-two right-handed healthy adults performed two tasks. One was a proprioceptive illusion task, where blindfolded participants experienced a proprioceptive illusion of right hand movement. The other was a visual self-face recognition task, where the participants judged whether an observed face was their own. We examined whether the self-face recognition and the proprioceptive illusion commonly activated the inferior fronto-parietal cortices connected by the SLF III in a right-hemispheric dominant manner. Despite the difference in sensory modality and in the body parts involved in the two tasks, both tasks activated the right inferior fronto-parietal cortices, which are likely connected by the SLF III, in a right-side dominant manner. Here we discuss possible roles for right inferior fronto-parietal activity in bodily awareness and self-awareness. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  1. Reorganization of syntactic processing following left-hemisphere brain damage: does right-hemisphere activity preserve function?

    Science.gov (United States)

    Tyler, Lorraine K; Wright, Paul; Randall, Billi; Marslen-Wilson, William D; Stamatakis, Emmanuel A

    2010-11-01

    The extent to which the human brain shows evidence of functional plasticity across the lifespan has been addressed in the context of pathological brain changes and, more recently, of the changes that take place during healthy ageing. Here we examine the potential for plasticity by asking whether a strongly left-lateralized system can successfully reorganize to the right-hemisphere following left-hemisphere brain damage. To do this, we focus on syntax, a key linguistic function considered to be strongly left-lateralized, combining measures of tissue integrity, neural activation and behavioural performance. In a functional neuroimaging study participants heard spoken sentences that differentially loaded on syntactic and semantic information. While healthy controls activated a left-hemisphere network of correlated activity including Brodmann areas 45/47 and posterior middle temporal gyrus during syntactic processing, patients activated Brodmann areas 45/47 bilaterally and right middle temporal gyrus. However, voxel-based morphometry analyses showed that only tissue integrity in left Brodmann areas 45/47 was correlated with activity and performance; poor tissue integrity in left Brodmann area 45 was associated with reduced functional activity and increased syntactic deficits. Activity in the right-hemisphere was not correlated with damage in the left-hemisphere or with performance. Reduced neural integrity in the left-hemisphere through brain damage or healthy ageing results in increased right-hemisphere activation in homologous regions to those left-hemisphere regions typically involved in the young. However, these regions do not support the same linguistic functions as those in the left-hemisphere and only indirectly contribute to preserved syntactic capacity. This establishes the unique role of the left hemisphere in syntax, a core component in human language.

  2. Effects of age and sex on developmental neural networks of visual-spatial attention allocation.

    Science.gov (United States)

    Rubia, Katya; Hyde, Zoe; Halari, Rozmin; Giampietro, Vincent; Smith, Anna

    2010-06-01

    Compared to our understanding of the functional maturation of brain networks underlying complex cognitive abilities, hardly anything is known of the neurofunctional development of simpler cognitive abilities such as visuo-spatial attention allocation. Furthermore, nothing is known on the effect of gender on the functional development of attention allocation. This study employed event related functional magnetic resonance imaging to investigate effects of age, sex, and sex by age interactions on the brain activation of 63 males and females, between 13 to 38years, during a visual-spatial oddball task. Behaviourally, with increasing age, speed was traded for accuracy, indicative of a less impulsive performance style in older subjects. Increasing age was associated with progressively increased activation in typical areas of selective attention of lateral fronto-striatal and temporo-parietal brain regions. Sex difference analysis showed enhanced activation in right-hemispheric inferior frontal and superior temporal regions in females, and in left-hemispheric inferior temporo-parietal regions in males. Importantly, the age by sex interaction findings showed that these sex-dimorphic patterns of brain activation may be the result of underlying sex differences in the functional maturation of these brain regions, as females had sex-specific progressive age-correlations in the same right inferior fronto-striato-temporal areas, while male-specific age-correlations were in left medial temporal and parietal areas. The findings demonstrate progressive functional maturation of fronto-striato-parieto-temporal networks of the relatively simple function of attention allocation between early adolescence and mid-adulthood. They furthermore show that sex-dimorphic patterns of enhanced reliance on right inferior frontal, striatal and superior temporal regions in females and of left temporo-parietal regions in males during attention allocation may be the result of underlying sex

  3. Left brain, right brain: facts and fantasies.

    Directory of Open Access Journals (Sweden)

    Michael C Corballis

    2014-01-01

    Full Text Available Handedness and brain asymmetry are widely regarded as unique to humans, and associated with complementary functions such as a left-brain specialization for language and logic and a right-brain specialization for creativity and intuition. In fact, asymmetries are widespread among animals, and support the gradual evolution of asymmetrical functions such as language and tool use. Handedness and brain asymmetry are inborn and under partial genetic control, although the gene or genes responsible are not well established. Cognitive and emotional difficulties are sometimes associated with departures from the "norm" of right-handedness and left-brain language dominance, more often with the absence of these asymmetries than their reversal.

  4. Left brain, right brain: facts and fantasies.

    Science.gov (United States)

    Corballis, Michael C

    2014-01-01

    Handedness and brain asymmetry are widely regarded as unique to humans, and associated with complementary functions such as a left-brain specialization for language and logic and a right-brain specialization for creativity and intuition. In fact, asymmetries are widespread among animals, and support the gradual evolution of asymmetrical functions such as language and tool use. Handedness and brain asymmetry are inborn and under partial genetic control, although the gene or genes responsible are not well established. Cognitive and emotional difficulties are sometimes associated with departures from the "norm" of right-handedness and left-brain language dominance, more often with the absence of these asymmetries than their reversal.

  5. Assessing signal-driven mechanism in neonates: brain responses to temporally and spectrally different sounds

    Directory of Open Access Journals (Sweden)

    Yasuyo eMinagawa-Kawai

    2011-06-01

    Full Text Available Past studies have found that in adults that acoustic properties of sound signals (such as fast vs. slow temporal features differentially activate the left and right hemispheres, and some have hypothesized that left-lateralization for speech processing may follow from left-lateralization to rapidly changing signals. Here, we tested whether newborns’ brains show some evidence of signal-specific lateralization responses using near-infrared spectroscopy (NIRS and auditory stimuli that elicits lateralized responses in adults, composed of segments that vary in duration and spectral diversity. We found significantly greater bilateral responses of oxygenated hemoglobin (oxy-Hb in the temporal areas for stimuli with a minimum segment duration of 21 ms, than stimuli with a minimum segment duration of 667 ms. However, we found no evidence for hemispheric asymmetries dependent on the stimulus characteristics. We hypothesize that acoustic-based functional brain asymmetries may develop throughout early infancy, and discuss their possible relationship with brain asymmetries for language.

  6. Development of brain tumor at six years after the onset of acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Kumazaki, Hisami; Hanada, Ryoji; Kikuti, Akira; Ichikawa, Masataka; Yamamoto, Keiko; Aihara, Toshinori; Ogawa, Yoshihiro

    1996-01-01

    In October 1994, a 16-year-old boy was diagnosed as having a brain tumor in the left fronto-temporal region 5 years after completing treatment for acute lymphoblastic leukemia (ALL). The patient had been treated for ALL starting in 1988 when he was 10-year-old. He had received systemic chemotherapy and central nervous system prophylaxis, consisting of cranial irradiation (24 Gy) and intrathecal methotrexate. When the brain tumor was detected he was still in complete remission. The patient received only supportive therapy mainly for relief of increased intracranial pressure because the tumor was too large to resect in addition to being inappropriate for surgical treatment. He died in December 1994. On autopsy, pathological diagnosis of the brain tumor was anaplastic astrocytoma, which is a rare secondary malignancy though glioma is common. (author)

  7. Insular epilepsy: similarities to temporal lobe epilepsy case report Epilepsia insular: similaridades à epilepsia do lobo temporal - relato de caso

    Directory of Open Access Journals (Sweden)

    ARTHUR CUKIERT

    1998-03-01

    Full Text Available Insular epilepsy has been rarely reported and its clinical and electrographic features are poorly understood. The electrographic study of the insula is difficult since it is hidden from the brain surface by the frontal and temporal lobe. A 48 years-old woman started having simple partial autonomic and complex partial seizures with automatisms and ictal left arm paresis 8 years prior to admission. Seizure's frequency was 1 per week. Pre-operative EEG showed a right temporal lobe focus. Neuropsychological testing disclosed right fronto-temporal dysfunction. MRI showed a right anterior insular cavernous angioma. Intraoperative ECoG obtained after spliting of the sylvian fissure showed independent spiking from the insula and temporal lobe and insular spikes that spread to the temporal lobe. The cavernous angioma and the surrounding gliotic tissue were removed and the temporal lobe was left in place. Post-resection ECoG still disclosed independent temporal and insular spiking with a lower frequency. The patient has been seizure-free since surgery. Insular epilepsy may share many clinical and electroencephalographic features with temporal lobe epilepsy.A epilepsia insular tem sido raramente relatada e suas características clínicas e eletrencefalográficas são pobremente conhecidas. O estudo eletrográfico da ínsula é difícil já que ela se encontra recoberta pelos lobos frontal e temporal. Uma paciente, de 48 anos, começou a ter crises parciais simples autonômicas e crises parciais complexas com automatismos e paresia crítica de membro superior esquerdo 8 anos antes desta internação. A frequência de crises era de 1/semana . O EEG pré-operatório mostrou foco temporal direito. Testagem neuropsicológica demonstrou disfunção fronto-temporal direita. RMN demonstrou cavernoma insular anterior direito. A eletrocorticografia intraoperatória obtida após a abertura da fissura sylviana demonstrou a presença de espículas independentes na

  8. Severe traumatic brain injury managed with decompressive ...

    African Journals Online (AJOL)

    2012-05-29

    May 29, 2012 ... Patients with severe taumatic brain injury may develop intractable raised ICP resulting in high mortality ... Glasgow coma score was 8/15 (E1V3M4) and he had left ... An emergency right fronto-temporo-parietal decompressive.

  9. Increased cortical thickness and altered functional connectivity of the right superior temporal gyrus in left-handers.

    Science.gov (United States)

    Li, Meiling; Chen, Heng; Wang, Junping; Liu, Feng; Wang, Yifeng; Lu, Fengmei; Yu, Chunshui; Chen, Huafu

    2015-01-01

    Altered structure in the temporal cortex has been implicated in the variable language laterality of left-handers (LH). The neuroanatomy of language lateralization and the corresponding synchronous functional connectivity (FC) in handedness cohorts are not, however, fully understood. We used structural and resting-state functional magnetic resonance imaging (fMRI) data to investigate the effect of altered cortical thickness on FC in LH and right-handers (RH). Whole-brain cortical thickness was calculated and compared between the LH and RH. We observed increased cortical thickness in the right superior temporal gyrus (STG) in the LH. A further FC analysis was conducted between the right STG and the remaining voxels in the brain. Compared with RH, the LH showed significantly higher FC in the left STG, right occipital cortex, and lower FC in the left inferior frontal gyrus and supramarginal gyrus. Our findings suggest that LH have atypical connectivity in the language network, with an enhanced role of the STG, findings which provide novel insights into the structural and functional substrates underlying the atypical language development of left-handed individuals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Multisensory speech perception without the left superior temporal sulcus.

    Science.gov (United States)

    Baum, Sarah H; Martin, Randi C; Hamilton, A Cris; Beauchamp, Michael S

    2012-09-01

    Converging evidence suggests that the left superior temporal sulcus (STS) is a critical site for multisensory integration of auditory and visual information during speech perception. We report a patient, SJ, who suffered a stroke that damaged the left tempo-parietal area, resulting in mild anomic aphasia. Structural MRI showed complete destruction of the left middle and posterior STS, as well as damage to adjacent areas in the temporal and parietal lobes. Surprisingly, SJ demonstrated preserved multisensory integration measured with two independent tests. First, she perceived the McGurk effect, an illusion that requires integration of auditory and visual speech. Second, her perception of morphed audiovisual speech with ambiguous auditory or visual information was significantly influenced by the opposing modality. To understand the neural basis for this preserved multisensory integration, blood-oxygen level dependent functional magnetic resonance imaging (BOLD fMRI) was used to examine brain responses to audiovisual speech in SJ and 23 healthy age-matched controls. In controls, bilateral STS activity was observed. In SJ, no activity was observed in the damaged left STS but in the right STS, more cortex was active in SJ than in any of the normal controls. Further, the amplitude of the BOLD response in right STS response to McGurk stimuli was significantly greater in SJ than in controls. The simplest explanation of these results is a reorganization of SJ's cortical language networks such that the right STS now subserves multisensory integration of speech. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Differences in Brain Adaptive Functional Reorganization in Right and Left Total Brachial Plexus Injury Patients.

    Science.gov (United States)

    Feng, Jun-Tao; Liu, Han-Qiu; Xu, Jian-Guang; Gu, Yu-Dong; Shen, Yun-Dong

    2015-09-01

    Total brachial plexus avulsion injury (BPAI) results in the total functional loss of the affected limb and induces extensive brain functional reorganization. However, because the dominant hand is responsible for more cognitive-related tasks, injuries on this side induce more adaptive changes in brain function. In this article, we explored the differences in brain functional reorganization after injuries in unilateral BPAI patients. We applied resting-state functional magnetic resonance imaging scanning to 10 left and 10 right BPAI patients and 20 healthy control subjects. The amplitude of low-frequency fluctuation (ALFF), which is a resting-state index, was calculated for all patients as an indication of the functional activity level of the brain. Two-sample t-tests were performed between left BPAI patients and controls, right BPAI patients and controls, and between left and right BPAI patients. Two-sample t-tests of the ALFF values revealed that right BPAIs induced larger scale brain reorganization than did left BPAIs. Both left and right BPAIs elicited a decreased ALFF value in the right precuneus (P right BPAI patients exhibited increased ALFF values in a greater number of brain regions than left BPAI patients, including the inferior temporal gyrus, lingual gyrus, calcarine sulcus, and fusiform gyrus. Our results revealed that right BPAIs induced greater extents of brain functional reorganization than left BPAIs, which reflected the relatively more extensive adaptive process that followed injuries of the dominant hand. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Spontaneous neural activity in the right superior temporal gyrus and left middle temporal gyrus is associated with insight level in obsessive-compulsive disorder.

    Science.gov (United States)

    Fan, Jie; Zhong, Mingtian; Gan, Jun; Liu, Wanting; Niu, Chaoyang; Liao, Haiyan; Zhang, Hongchun; Tan, Changlian; Yi, Jinyao; Zhu, Xiongzhao

    2017-01-01

    Insight into illness is an important issue for psychiatry disorder. Although the existence of a poor insight subtype of obsessive-compulsive disorder (OCD) was recognized in the DSM-IV, and the insight level in OCD was specified further in DSM-V, the neural underpinnings of insight in OCD have been rarely explored. The present study was designed to bridge this research gap by using resting-state functional magnetic resonance imaging (fMRI). Spontaneous neural activity were examined in 19 OCD patients with good insight (OCD-GI), 18 OCD patients with poor insight (OCD-PI), and 25 healthy controls (HC) by analyzing the amplitude of low-frequency fluctuation (ALFF) in the resting state. Pearson correlation analysis was performed between regional ALFFs and insight levels among OCD patients. OCD-GI and OCD-PI demonstrated overlapping and distinct brain alterations. Notably, compared with OCD-GI, tOCD-PI had reduced ALFF in left middle temporal gyrus (MTG) and right superior temporal gyrus (STG), as well as increased ALFF in right middle occipital gyrus. Further analysis revealed that ALFF values for the left MTG and right STG were correlated negatively with insight level in patients with OCD. Relatively small sample size and not all patients were un-medicated are our major limitations. Spontaneous brain activity in left MTG and right STG may be neural underpinnings of insight in OCD. Our results suggest the great role of human temporal brain regions in understanding insight, and further underscore the importance of considering insight presentation in understanding the clinical heterogeneity of OCD. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. BOLD Response to Motion Verbs in Left Posterior Middle Temporal Gyrus during Story Comprehension

    Science.gov (United States)

    Wallentin, Mikkel; Nielsen, Andreas Hojlund; Vuust, Peter; Dohn, Anders; Roepstorff, Andreas; Lund, Torben Ellegaard

    2011-01-01

    A primary focus within neuroimaging research on language comprehension is on the distribution of semantic knowledge in the brain. Studies have shown that the left posterior middle temporal gyrus (LPMT), a region just anterior to area MT/V5, is important for the processing of complex action knowledge. It has also been found that motion verbs cause…

  14. Strength of Temporal White Matter Pathways Predicts Semantic Learning.

    Science.gov (United States)

    Ripollés, Pablo; Biel, Davina; Peñaloza, Claudia; Kaufmann, Jörn; Marco-Pallarés, Josep; Noesselt, Toemme; Rodríguez-Fornells, Antoni

    2017-11-15

    Learning the associations between words and meanings is a fundamental human ability. Although the language network is cortically well defined, the role of the white matter pathways supporting novel word-to-meaning mappings remains unclear. Here, by using contextual and cross-situational word learning, we tested whether learning the meaning of a new word is related to the integrity of the language-related white matter pathways in 40 adults (18 women). The arcuate, uncinate, inferior-fronto-occipital and inferior-longitudinal fasciculi were virtually dissected using manual and automatic deterministic fiber tracking. Critically, the automatic method allowed assessing the white matter microstructure along the tract. Results demonstrate that the microstructural properties of the left inferior-longitudinal fasciculus predict contextual learning, whereas the left uncinate was associated with cross-situational learning. In addition, we identified regions of special importance within these pathways: the posterior middle temporal gyrus, thought to serve as a lexical interface and specifically related to contextual learning; the anterior temporal lobe, known to be an amodal hub for semantic processing and related to cross-situational learning; and the white matter near the hippocampus, a structure fundamental for the initial stages of new-word learning and, remarkably, related to both types of word learning. No significant associations were found for the inferior-fronto-occipital fasciculus or the arcuate. While previous results suggest that learning new phonological word forms is mediated by the arcuate fasciculus, these findings show that the temporal pathways are the crucial neural substrate supporting one of the most striking human abilities: our capacity to identify correct associations between words and meanings under referential indeterminacy. SIGNIFICANCE STATEMENT The language-processing network is cortically (i.e., gray matter) well defined. However, the role of the

  15. A functional MRI study of language networks in left medial temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Yu Aihong, E-mail: yuaihong163@tom.com [Department of Radiology, the 4th Medical College of Peking University, Beijing Jishuitan Hospital, Beijing 100035 (China); Wang Xiaoyi; Xu Guoqing [Beijing Normal University, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing 100875 (China); Li Yongjie [Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital University of Medical Sciences, Beijing 100053 (China); Qin Wen; Li Kuncheng [Department of Radiology, Xuanwu Hospital, Capital University of Medical Sciences (China); Wang, Yuping [Department of Neurology, Xuanwu Hospital, Capital University of Medical Sciences (China)

    2011-11-15

    Purpose: The purpose of this study was to investigate the abnormality of language networks in left medial temporal lobe epilepsy (MTLE) using fMRI. Materials and methods: Eight patients with left MTLE and 15 healthy subjects were evaluated. An auditory semantic judgment (AJ) paradigm was used. The fMRI data were collected on a 3T MR system and analyzed by AFNI (analysis of functional neuroimages) to generate the activation map. Results: Behavioral data showed that the reaction time of the left MTLE patients was significantly longer than that of controls on the AJ task (t = -3.396, P < 0.05). The left MTLE patients also exhibited diffusively decreased activation in the AJ task. Right hemisphere dominance of Broca's and Wernicke's areas was demonstrated in left MTLE patients. Conclusions: Long-term activation of spikes in left MTLE patients results in language impairment, which is associated with an abnormality of the brain neural network.

  16. A functional MRI study of language networks in left medial temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Yu Aihong; Wang Xiaoyi; Xu Guoqing; Li Yongjie; Qin Wen; Li Kuncheng; Wang, Yuping

    2011-01-01

    Purpose: The purpose of this study was to investigate the abnormality of language networks in left medial temporal lobe epilepsy (MTLE) using fMRI. Materials and methods: Eight patients with left MTLE and 15 healthy subjects were evaluated. An auditory semantic judgment (AJ) paradigm was used. The fMRI data were collected on a 3T MR system and analyzed by AFNI (analysis of functional neuroimages) to generate the activation map. Results: Behavioral data showed that the reaction time of the left MTLE patients was significantly longer than that of controls on the AJ task (t = -3.396, P < 0.05). The left MTLE patients also exhibited diffusively decreased activation in the AJ task. Right hemisphere dominance of Broca's and Wernicke's areas was demonstrated in left MTLE patients. Conclusions: Long-term activation of spikes in left MTLE patients results in language impairment, which is associated with an abnormality of the brain neural network.

  17. Neglect severity after left and right brain damage.

    Science.gov (United States)

    Suchan, Julia; Rorden, Chris; Karnath, Hans-Otto

    2012-05-01

    While unilateral spatial neglect after left brain damage is undoubtedly less common than spatial neglect after a right hemisphere lesion, it is also assumed to be less severe. Here we directly test this latter hypothesis using a continuous measure of neglect severity: the so-called Center of Cancellation (CoC). Rorden and Karnath (2010) recently validated this index for right brain damaged neglect patients. A first aim of the present study was to evaluate this new measure for spatial neglect after left brain damage. In a group of 48 left-sided stroke patients with and without neglect, a score greater than -0.086 on the Bells Test and greater than -0.024 on the Letter Cancellation Task turned out to indicate neglect behavior for acute left brain damaged patients. A second aim was to directly compare the severity of spatial neglect after left versus right brain injury by using the new CoC measure. While neglect is less frequent following left than right hemisphere injury, we found that when this symptom occurs it is of similar severity in acute left brain injury as in patients after acute right brain injury. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Subliminal semantic priming changes the dynamic causal influence between the left frontal and temporal cortex.

    Science.gov (United States)

    Matsumoto, Atsushi; Kakigi, Ryusuke

    2014-01-01

    Recent neuroimaging experiments have revealed that subliminal priming of a target stimulus leads to the reduction of neural activity in specific regions concerned with processing the target. Such findings lead to questions about the degree to which the subliminal priming effect is based only on decreased activity in specific local brain regions, as opposed to the influence of neural mechanisms that regulate communication between brain regions. To address this question, this study recorded EEG during performance of a subliminal semantic priming task. We adopted an information-based approach that used independent component analysis and multivariate autoregressive modeling. Results indicated that subliminal semantic priming caused significant modulation of alpha band activity in the left inferior frontal cortex and modulation of gamma band activity in the left inferior temporal regions. The multivariate autoregressive approach confirmed significant increases in information flow from the inferior frontal cortex to inferior temporal regions in the early time window that was induced by subliminal priming. In the later time window, significant enhancement of bidirectional causal flow between these two regions underlying subliminal priming was observed. Results suggest that unconscious processing of words influences not only local activity of individual brain regions but also the dynamics of neural communication between those regions.

  19. Controversies over the mechanisms underlying the crucial role of the left fronto-parietal areas in the representation of tools

    Directory of Open Access Journals (Sweden)

    Guido eGainotti

    2013-10-01

    Full Text Available Anatomo-clinical and neuroimaging data show that the left fronto-parietal areas play an important role in representing tools. As manipulation is an important source of knowledge about tools, it has been assumed that motor activity explains the link between tool knowledge and the left fronto-parietal areas. However, controversies exist over the exact mechanisms underlying this relationship. According to a strong version of the ‘embodied cognition theory’, activation of a tool concept necessarily involves re-enactment of the corresponding kind of action. Impairment of the ability to use tools should, therefore, lead to impairment of tool knowledge. Both the ‘domains of knowledge hypothesis’ and the ‘sensory-motor model of conceptual knowledge’ refute the strong version of the ‘embodied cognition hypothesis’ but acknowledge that manipulation and other action schemata play an important role in our knowledge of tools. The basic difference between these two models is that the former is based on an innatist model and the latter holds that the brain’s organization of categories is experience dependent. Data supporting and arguing against each of these models are briefly reviewed. In particular, the following lines of research, which argue against the innate nature of the brain’s categorical organization, are discussed: (1 the observation that in patients with category-specific disorders the semantic impairment does not respect the boundaries between biological entities and artefact items; (2 data showing that experience-driven neuroplasticity in musicians is not confined to alterations of perceptual and motor maps but also leads to the establishment of higher-level semantic representations for musical instruments; (3 results of experiments using previously unfamiliar materials showing that the history of our sensory-motor experience with an object significantly affects its neural representation.

  20. Treatment effect of methylphenidate on intrinsic functional brain network in medication-naïve ADHD children: A multivariate analysis.

    Science.gov (United States)

    Yoo, Jae Hyun; Kim, Dohyun; Choi, Jeewook; Jeong, Bumseok

    2018-04-01

    Methylphenidate is a first-line therapeutic option for treating attention-deficit/hyperactivity disorder (ADHD); however, elicited changes on resting-state functional networks (RSFNs) are not well understood. This study investigated the treatment effect of methylphenidate using a variety of RSFN analyses and explored the collaborative influences of treatment-relevant RSFN changes in children with ADHD. Resting-state functional magnetic resonance imaging was acquired from 20 medication-naïve ADHD children before methylphenidate treatment and twelve weeks later. Changes in large-scale functional connectivity were defined using independent component analysis with dual regression and graph theoretical analysis. The amplitude of low frequency fluctuation (ALFF) was measured to investigate local spontaneous activity alteration. Finally, significant findings were recruited to random forest regression to identify the feature subset that best explains symptom improvement. After twelve weeks of methylphenidate administration, large-scale connectivity was increased between the left fronto-parietal RSFN and the left insula cortex and the right fronto-parietal and the brainstem, while the clustering coefficient (CC) of the global network and nodes, the left fronto-parietal, cerebellum, and occipital pole-visual network, were decreased. ALFF was increased in the bilateral superior parietal cortex and decreased in the right inferior fronto-temporal area. The subset of the local and large-scale RSFN changes, including widespread ALFF changes, the CC of the global network and the cerebellum, could explain the 27.1% variance of the ADHD Rating Scale and 13.72% of the Conner's Parent Rating Scale. Our multivariate approach suggests that the neural mechanism of methylphenidate treatment could be associated with alteration of spontaneous activity in the superior parietal cortex or widespread brain regions as well as functional segregation of the large-scale intrinsic functional

  1. Whole-brain voxel-based morphometry of white matter in medial temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Yu Aihong [Department of Radiology, Xuanwu Hospital, Capital University of Medical Sciences, Beijing 100053 (China); Li Kuncheng [Department of Radiology, Xuanwu Hospital, Capital University of Medical Sciences, Beijing 100053 (China)], E-mail: Likuncheng@vip.sina.com; Li Lin; Shan Baoci [Institute of High Energy Physics, Chinese Academy of Sciences (China); Wang Yuping; Xue Sufang [Department of Neurology, Xuanwu Hospital, Capital University of Medical Sciences (China)

    2008-01-15

    Purpose: The purpose of this study was to analyze whole-brain white matter changes in medial temporal lobe epilepsy (MTLE). Materials and methods: We studied 23 patients with MTLE and 13 age- and sex-matched healthy control subjects using voxel-based morphometry (VBM) on T1-weighted 3D datasets. The seizure focus was right sided in 11 patients and left sided in 12. The data were collected on a 1.5 T MR system and analyzed by SPM 99 to generate white matter density maps. Results: Voxel-based morphometry revealed diffusively reduced white matter in MTLE prominently including bilateral frontal lobes, bilateral temporal lobes and corpus callosum. White matter reduction was also found in the bilateral cerebellar hemispheres in the left MTLE group. Conclusion: VBM is a simple and automated approach that is able to identify diffuse whole-brain white matter reduction in MTLE.

  2. Whole-brain voxel-based morphometry of white matter in medial temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Yu Aihong; Li Kuncheng; Li Lin; Shan Baoci; Wang Yuping; Xue Sufang

    2008-01-01

    Purpose: The purpose of this study was to analyze whole-brain white matter changes in medial temporal lobe epilepsy (MTLE). Materials and methods: We studied 23 patients with MTLE and 13 age- and sex-matched healthy control subjects using voxel-based morphometry (VBM) on T1-weighted 3D datasets. The seizure focus was right sided in 11 patients and left sided in 12. The data were collected on a 1.5 T MR system and analyzed by SPM 99 to generate white matter density maps. Results: Voxel-based morphometry revealed diffusively reduced white matter in MTLE prominently including bilateral frontal lobes, bilateral temporal lobes and corpus callosum. White matter reduction was also found in the bilateral cerebellar hemispheres in the left MTLE group. Conclusion: VBM is a simple and automated approach that is able to identify diffuse whole-brain white matter reduction in MTLE

  3. Left Brain/Right Brain Learning for Adult Education.

    Science.gov (United States)

    Garvin, Barbara

    1986-01-01

    Contrasts and compares the theory and practice of adult education as it relates to the issue of right brain/left brain learning. The author stresses the need for a whole-brain approach to teaching and suggests that adult educators, given their philosophical directions, are the perfect potential users of this integrated system. (Editor/CT)

  4. Multimodal FMRI resting-state functional connectivity in granulin mutations: the case of fronto-parietal dementia.

    Directory of Open Access Journals (Sweden)

    Enrico Premi

    Full Text Available BACKGROUND: Monogenic dementias represent a great opportunity to trace disease progression from preclinical to symptomatic stages. Frontotemporal Dementia related to Granulin (GRN mutations presents a specific framework of brain damage, involving fronto-temporal regions and long inter-hemispheric white matter bundles. Multimodal resting-state functional MRI (rs-fMRI is a promising tool to carefully describe disease signature from the earliest disease phase. OBJECTIVE: To define local connectivity alterations in GRN related pathology moving from the presymptomatic (asymptomatic GRN mutation carriers to the clinical phase of the disease (GRN- related Frontotemporal Dementia. METHODS: Thirty-one GRN Thr272fs mutation carriers (14 patients with Frontotemporal Dementia and 17 asymptomatic carriers and 38 healthy controls were recruited. Local connectivity measures (Regional Homogeneity (ReHo, Fractional Amplitude of Low Frequency Fluctuation (fALFF and Degree Centrality (DC were computed, considering age and gender as nuisance variables as well as the influence of voxel-level gray matter atrophy. RESULTS: Asymptomatic GRN carriers had selective reduced ReHo in the left parietal region and increased ReHo in frontal regions compared to healthy controls. Considering Frontotemporal Dementia patients, all measures (ReHo, fALFF and DC were reduced in inferior parietal, frontal lobes and posterior cingulate cortex. Considering GRN mutation carriers, an inverse correlation with age in the posterior cingulate cortex, inferior parietal lobule and orbitofrontal cortex was found. CONCLUSIONS: GRN pathology is characterized by functional brain network alterations even decades before the clinical onset; they involve the parietal region primarily and then spread to the anterior regions of the brain, supporting the concept of molecular nexopathies.

  5. Effects of low frequency rTMS treatment on brain networks for inner speech in patients with schizophrenia and auditory verbal hallucinations.

    Science.gov (United States)

    Bais, Leonie; Liemburg, Edith; Vercammen, Ans; Bruggeman, Richard; Knegtering, Henderikus; Aleman, André

    2017-08-01

    Efficacy of repetitive Transcranial Magnetic Stimulation (rTMS) targeting the temporo-parietal junction (TPJ) for the treatment of auditory verbal hallucinations (AVH) remains under debate. We assessed the influence of a 1Hz rTMS treatment on neural networks involved in a cognitive mechanism proposed to subserve AVH. Patients with schizophrenia (N=24) experiencing medication-resistant AVH completed a 10-day 1Hz rTMS treatment. Participants were randomized to active stimulation of the left or bilateral TPJ, or sham stimulation. The effects of rTMS on neural networks were investigated with an inner speech task during fMRI. Changes within and between neural networks were analyzed using Independent Component Analysis. rTMS of the left and bilateral TPJ areas resulted in a weaker network contribution of the left supramarginal gyrus to the bilateral fronto-temporal network. Left-sided rTMS resulted in stronger network contributions of the right superior temporal gyrus to the auditory-sensorimotor network, right inferior gyrus to the left fronto-parietal network, and left middle frontal gyrus to the default mode network. Bilateral rTMS was associated with a predominant inhibitory effect on network contribution. Sham stimulation showed different patterns of change compared to active rTMS. rTMS of the left temporo-parietal region decreased the contribution of the left supramarginal gyrus to the bilateral fronto-temporal network, which may reduce the likelihood of speech intrusions. On the other hand, left rTMS appeared to increase the contribution of functionally connected regions involved in perception, cognitive control and self-referential processing. These findings hint to potential neural mechanisms underlying rTMS for hallucinations but need corroboration in larger samples. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Functional segregation and integration within fronto-parietal networks.

    Science.gov (United States)

    Parlatini, Valeria; Radua, Joaquim; Dell'Acqua, Flavio; Leslie, Anoushka; Simmons, Andy; Murphy, Declan G; Catani, Marco; Thiebaut de Schotten, Michel

    2017-02-01

    Experimental data on monkeys and functional studies in humans support the existence of a complex fronto-parietal system activating for cognitive and motor tasks, which may be anatomically supported by the superior longitudinal fasciculus (SLF). Advanced tractography methods have recently allowed the separation of the three branches of the SLF but are not suitable for their functional investigation. In order to gather comprehensive information about the functional organisation of these fronto-parietal connections, we used an innovative method, which combined tractography of the SLF in the largest dataset so far (129 participants) with 14 meta-analyses of functional magnetic resonance imaging (fMRI) studies. We found that frontal and parietal functions can be clustered into a dorsal spatial/motor network associated with the SLF I, and a ventral non-spatial/motor network associated with the SLF III. Further, all the investigated functions activated a middle network mostly associated with the SLF II. Our findings suggest that dorsal and ventral fronto-parietal networks are segregated but also share regions of activation, which may support flexible response properties or conscious processing. In sum, our novel combined approach provided novel findings on the functional organisation of fronto-parietal networks, and may be successfully applied to other brain connections. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. fMRI brain response during sentence reading comprehension in children with benign epilepsy with centro-temporal spikes.

    Science.gov (United States)

    Malfait, D; Tucholka, A; Mendizabal, S; Tremblay, J; Poulin, C; Oskoui, M; Srour, M; Carmant, L; Major, P; Lippé, S

    2015-11-01

    Children with benign epilepsy with centro-temporal spikes (BECTS) often have language problems. Abnormal epileptic activity is found in central and temporal brain regions, which are involved in reading and semantic and syntactic comprehension. Using functional magnetic resonance imaging (fMRI), we examined reading networks in BECTS children with a new sentence reading comprehension task involving semantic and syntactic processing. Fifteen children with BECTS (age=11y 1m ± 16 m; 12 boys) and 18 healthy controls (age=11 y 8m ± 20 m; 11 boys) performed an fMRI reading comprehension task in which they read a pair of syntactically complex sentences and decided whether the target sentence (the second sentence in the pair) was true or false with respect to the first sentence. All children also underwent an exhaustive neuropsychological assessment. We demonstrated weaknesses in several cognitive domains in BECTS children. During the sentence reading fMRI task, left inferior frontal regions and bilateral temporal areas were activated in BECTS children and healthy controls. However, additional brain regions such as the left hippocampus and precuneus were activated in BECTS children. Moreover, specific activation was found in the left caudate and putamen in BECTS children but not in healthy controls. Cognitive results and accuracy during the fMRI task were associated with specific brain activation patterns. BECTS children recruited a wider network to perform the fMRI sentence reading comprehension task, with specific activation in the left dorsal striatum. BECTS cognitive performance differently predicted functional activation in frontal and temporal regions compared to controls, suggesting differences in brain network organisation that contribute to reading comprehension. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  8. Modulation of electric brain responses evoked by pitch deviants through transcranial direct current stimulation.

    Science.gov (United States)

    Royal, Isabelle; Zendel, Benjamin Rich; Desjardins, Marie-Ève; Robitaille, Nicolas; Peretz, Isabelle

    2018-01-31

    Congenital amusia is a neurodevelopmental disorder, characterized by a difficulty detecting pitch deviation that is related to abnormal electrical brain responses. Abnormalities found along the right fronto-temporal pathway between the inferior frontal gyrus (IFG) and the auditory cortex (AC) are the likely neural mechanism responsible for amusia. To investigate the causal role of these regions during the detection of pitch deviants, we applied cathodal (inhibitory) transcranial direct current stimulation (tDCS) over right frontal and right temporal regions during separate testing sessions. We recorded participants' electrical brain activity (EEG) before and after tDCS stimulation while they performed a pitch change detection task. Relative to a sham condition, there was a decrease in P3 amplitude after cathodal stimulation over both frontal and temporal regions compared to pre-stimulation baseline. This decrease was associated with small pitch deviations (6.25 cents), but not large pitch deviations (200 cents). Overall, this demonstrates that using tDCS to disrupt regions around the IFG and AC can induce temporary changes in evoked brain activity when processing pitch deviants. These electrophysiological changes are similar to those observed in amusia and provide causal support for the connection between P3 and fronto-temporal brain regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Right hemisphere dominance during spatial selective attention and target detection occurs outside the dorsal fronto-parietal network

    Science.gov (United States)

    Shulman, Gordon L.; Pope, Daniel L. W.; Astafiev, Serguei V.; McAvoy, Mark P.; Snyder, Abraham Z.; Corbetta, Maurizio

    2010-01-01

    Spatial selective attention is widely considered to be right hemisphere dominant. Previous functional magnetic resonance imaging (fMRI) studies, however, have reported bilateral blood-oxygenation-level-dependent (BOLD) responses in dorsal fronto-parietal regions during anticipatory shifts of attention to a location (Kastner et al., 1999; Corbetta et al., 2000; Hopfinger et al., 2000). Right-lateralized activity has mainly been reported in ventral fronto-parietal regions for shifts of attention to an unattended target stimulus (Arrington et al., 2000; Corbetta et al., 2000). However, clear conclusions cannot be drawn from these studies because hemispheric asymmetries were not assessed using direct voxel-wise comparisons of activity in left and right hemispheres. Here, we used this technique to measure hemispheric asymmetries during shifts of spatial attention evoked by a peripheral cue stimulus and during target detection at the cued location. Stimulus-driven shifts of spatial attention in both visual fields evoked right-hemisphere dominant activity in temporo-parietal junction (TPJ). Target detection at the attended location produced a more widespread right hemisphere dominance in frontal, parietal, and temporal cortex, including the TPJ region asymmetrically activated during shifts of spatial attention. However, hemispheric asymmetries were not observed during either shifts of attention or target detection in the dorsal fronto-parietal regions (anterior precuneus, medial intraparietal sulcus, frontal eye fields) that showed the most robust activations for shifts of attention. Therefore, right hemisphere dominance during stimulus-driven shifts of spatial attention and target detection reflects asymmetries in cortical regions that are largely distinct from the dorsal fronto-parietal network involved in the control of selective attention. PMID:20219998

  10. On the same wavelength: predictable language enhances speaker-listener brain-to-brain synchrony in posterior superior temporal gyrus.

    Science.gov (United States)

    Dikker, Suzanne; Silbert, Lauren J; Hasson, Uri; Zevin, Jason D

    2014-04-30

    Recent research has shown that the degree to which speakers and listeners exhibit similar brain activity patterns during human linguistic interaction is correlated with communicative success. Here, we used an intersubject correlation approach in fMRI to test the hypothesis that a listener's ability to predict a speaker's utterance increases such neural coupling between speakers and listeners. Nine subjects listened to recordings of a speaker describing visual scenes that varied in the degree to which they permitted specific linguistic predictions. In line with our hypothesis, the temporal profile of listeners' brain activity was significantly more synchronous with the speaker's brain activity for highly predictive contexts in left posterior superior temporal gyrus (pSTG), an area previously associated with predictive auditory language processing. In this region, predictability differentially affected the temporal profiles of brain responses in the speaker and listeners respectively, in turn affecting correlated activity between the two: whereas pSTG activation increased with predictability in the speaker, listeners' pSTG activity instead decreased for more predictable sentences. Listeners additionally showed stronger BOLD responses for predictive images before sentence onset, suggesting that highly predictable contexts lead comprehenders to preactivate predicted words.

  11. Evaluation of seizure propagation on ictal brain SPECT using statistical parametric mapping in temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Jeon, Tae Joo; Lee, Jong Doo; Kim, Hee Joung; Lee, Byung In; Kim, Ok Joon; Kim, Min Jung; Jeon, Jeong Dong

    1999-01-01

    Ictal brain SPECT has a high diagnostic sensitivity exceeding 90 % in the localization of seizure focus, however, it often shows increased uptake within the extratemporal areas due to early propagation of seizure discharge. This study aimed to evaluate seizure propagation on ictal brian SPECT in patients with temporal lobe epilepsy (TLE) by statistical parametric mapping (SPM). Twenty-one patients (age 27.14 5.79 y) with temporal lobe epilepsy (right in 8, left in 13) who had successful seizure outcome after surgery and nine normal control were included. The data of ictal and interictal brain SPECT of the patients and baseline SPECT of normal control group were analyzed using automatic image registration and SPM96 softwares. The statistical analysis was performed to compare the mean SPECT image of normal group with individual ictal SPECT, and each mean image of the interictal groups of the right or left TLE with individual ictal scans. The t statistic SPM [t] was transformed to SPM [Z] with a threshold of 1.64. The statistical results were displayed and rendered on the reference 3 dimensional MRI images with P value of 0.05 and uncorrected extent threshold p value of 0.5 for SPM [Z]. SPM data demonstrated increased uptake within the epileptic lesion in 19 patients (90.4 %), among them, localized increased uptake confined to the epileptogenic lesion was seen in only 4 (19%) but 15 patients (71.4%) showed hyperperfusion within propagation sites. Bi-temporal hyperperfusion was observed in 11 out of 19 patients (57.9%, 5 in the right and 6 in the left); higher uptake within the lesion than contralateral side in 9, similar activity in 1 and higher uptake within contralateral lobe in one. Extra-temporal hyperperfusion was observed in 8 (2 in the right, 3 in the left, 3 in bilateral); unilateral hyperperfusion within the epileptogenic temporal lobe and extra-temporal area in 4, bi-temporal with extra-temporal hyperperfusion in remaining 4. Ictal brain SPECT is highly

  12. The spiritual brain: selective cortical lesions modulate human self-transcendence.

    Science.gov (United States)

    Urgesi, Cosimo; Aglioti, Salvatore M; Skrap, Miran; Fabbro, Franco

    2010-02-11

    The predisposition of human beings toward spiritual feeling, thinking, and behaviors is measured by a supposedly stable personality trait called self-transcendence. Although a few neuroimaging studies suggest that neural activation of a large fronto-parieto-temporal network may underpin a variety of spiritual experiences, information on the causative link between such a network and spirituality is lacking. Combining pre- and post-neurosurgery personality assessment with advanced brain-lesion mapping techniques, we found that selective damage to left and right inferior posterior parietal regions induced a specific increase of self-transcendence. Therefore, modifications of neural activity in temporoparietal areas may induce unusually fast modulations of a stable personality trait related to transcendental self-referential awareness. These results hint at the active, crucial role of left and right parietal systems in determining self-transcendence and cast new light on the neurobiological bases of altered spiritual and religious attitudes and behaviors in neurological and mental disorders. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Teaching Creativity for Right Brain and Left Brain Thinkers.

    Science.gov (United States)

    Geske, Joel

    Right brain and left brain dominant people process information differently and need different techniques to learn how to become more creative. Various exercises can help students take advantage of both sides of their brains. Students must feel comfortable and unthreatened to reach maximal creativity, and a positive personal relationship with…

  14. Short-term effects of escitalopram on regional brain function in first-episode drug-naive patients with major depressive disorder assessed by resting-state functional magnetic resonance imaging.

    Science.gov (United States)

    Wang, L; Li, K; Zhang, Q; Zeng, Y; Dai, W; Su, Y; Wang, G; Tan, Y; Jin, Z; Yu, X; Si, T

    2014-05-01

    Most knowledge regarding the effects of antidepressant drugs is at the receptor level, distal from the nervous system effects that mediate their clinical efficacy. Using functional magnetic resonance imaging (fMRI), this study investigated the effects of escitalopram, a selective serotonin reuptake inhibitor (SSRI), on resting-state brain function in patients with major depressive disorder (MDD). Fourteen first-episode drug-naive MDD patients completed two fMRI scans before and after 8 weeks of escitalopram therapy. Scans were also acquired in 14 matched healthy subjects. Data were analyzed using the regional homogeneity (ReHo) approach. Compared to controls, MDD patients before treatment demonstrated decreased ReHo in the frontal (right superior frontal gyrus), temporal (left middle and right inferior temporal gyri), parietal (right precuneus) and occipital (left superior occipital gyrus and right cuneus) cortices, and increased ReHo in the left dorsal medial prefrontal gyrus and left anterior lobe of the cerebellum. Compared to the unmedicated state, ReHo in the patients after treatment was decreased in the left dorsal medial prefrontal gyrus, the right insula and the bilateral thalamus, and increased in the right superior frontal gyrus. Compared to controls, patients after treatment displayed a ReHo decrease in the right precuneus and a ReHo increase in the left anterior lobe of the cerebellum. Successful treatment with escitalopram may be associated with modulation of resting-state brain activity in regions within the fronto-limbic circuit. This study provides new insight into the effects of antidepressants on functional brain systems in MDD.

  15. Ictal spitting in left temporal lobe epilepsy: report of three cases.

    Science.gov (United States)

    Caboclo, Luís Otávio Sales Ferreira; Miyashira, Flavia Saori; Hamad, Ana Paula Andrade; Lin, Katia; Carrete, Henrique; Sakamoto, Américo Ceiki; Yacubian, Elza Márcia Targas

    2006-09-01

    Ictal spitting is rarely reported in patients with epilepsy. More often it is observed in patients with temporal lobe epilepsy (TLE) and is presumed to be a lateralizing sign to language nondominant hemisphere. We report three patients with left TLE who had ictal spitting registered during prolonged video-EEG monitoring. Medical charts of all patients with medically refractory partial epilepsy submitted to prolonged video-EEG monitoring in the Epilepsy Unit at UNIFESP during a 3-year period were reviewed, in search of reports of ictal spitting. The clinical, neurophysiological and neuroimaging data of the identified patients were reviewed. Among 136 patients evaluated with prolonged video-EEG monitoring, three (2.2%) presented spitting automatisms during complex partial seizures. All of them were right-handed, and had clear signs of left hippocampal sclerosis on MRI. In two patients, in all seizures in which ictal spitting was observed, EEG seizure onset was seen in the left temporal lobe. In the third patient, ictal onset with scalp electrodes was observed in the right temporal lobe, but semi-invasive monitoring with foramen ovale electrodes revealed ictal onset in the left temporal lobe, confirming false lateralization in surface records. The three patients became seizure-free following left anterior temporal lobectomy. Ictal spitting is a rare finding in patients with epilepsy, and may be considered a localizing sign of seizure onset in the temporal lobe. It may be observed in seizures originating from the left temporal lobe, and thus should not be considered a lateralizing sign of nondominant TLE.

  16. Neural dynamics of morphological processing in spoken word comprehension: Laterality and automaticity

    Directory of Open Access Journals (Sweden)

    Caroline M. Whiting

    2013-11-01

    Full Text Available Rapid and automatic processing of grammatical complexity is argued to take place during speech comprehension, engaging a left-lateralised fronto-temporal language network. Here we address how neural activity in these regions is modulated by the grammatical properties of spoken words. We used combined magneto- and electroencephalography (MEG, EEG to delineate the spatiotemporal patterns of activity that support the recognition of morphologically complex words in English with inflectional (-s and derivational (-er affixes (e.g. bakes, baker. The mismatch negativity (MMN, an index of linguistic memory traces elicited in a passive listening paradigm, was used to examine the neural dynamics elicited by morphologically complex words. Results revealed an initial peak 130-180 ms after the deviation point with a major source in left superior temporal cortex. The localisation of this early activation showed a sensitivity to two grammatical properties of the stimuli: 1 the presence of morphological complexity, with affixed words showing increased left-laterality compared to non-affixed words; and 2 the grammatical category, with affixed verbs showing greater left-lateralisation in inferior frontal gyrus compared to affixed nouns (bakes vs. beaks. This automatic brain response was additionally sensitive to semantic coherence (the meaning of the stem vs. the meaning of the whole form in fronto-temporal regions. These results demonstrate that the spatiotemporal pattern of neural activity in spoken word processing is modulated by the presence of morphological structure, predominantly engaging the left-hemisphere’s fronto-temporal language network, and does not require focused attention on the linguistic input.

  17. Morphometry of Left Frontal and Temporal Poles Predicts Analogical Reasoning Abilities.

    Science.gov (United States)

    Aichelburg, Clarisse; Urbanski, Marika; Thiebaut de Schotten, Michel; Humbert, Frederic; Levy, Richard; Volle, Emmanuelle

    2016-03-01

    Analogical reasoning is critical for making inferences and adapting to novelty. It can be studied experimentally using tasks that require creating similarities between situations or concepts, i.e., when their constituent elements share a similar organization or structure. Brain correlates of analogical reasoning have mostly been explored using functional imaging that has highlighted the involvement of the left rostrolateral prefrontal cortex (rlPFC) in healthy subjects. However, whether inter-individual variability in analogical reasoning ability in a healthy adult population is related to differences in brain architecture is unknown. We investigated this question by employing linear regression models of performance in analogy tasks and voxel-based morphometry in 54 healthy subjects. Our results revealed that the ability to reason by analogy was associated with structural variability in the left rlPFC and the anterior part of the inferolateral temporal cortex. Tractography of diffusion-weighted images suggested that these 2 regions have a different set of connections but may exchange information via the arcuate fasciculus. These results suggest that enhanced integrative and semantic abilities supported by structural variation in these areas (or their connectivity) may lead to more efficient analogical reasoning. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Specialization of the left supramarginal gyrus for hand-independent praxis representation is not related to hand dominance

    Science.gov (United States)

    Króliczak, Gregory; Piper, Brian J.; Frey, Scott H.

    2016-01-01

    Data from focal brain injury and functional neuroimaging studies implicate a distributed network of parieto-fronto-temporal areas in the human left cerebral hemisphere as playing distinct roles in the representation of meaningful actions (praxis). Because these data come primarily from right-handed individuals, the relationship between left cerebral specialization for praxis representation and hand dominance remains unclear. We used functional magnetic resonance imaging (fMRI) to evaluate the hypothesis that strongly left-handed (right hemisphere motor dominant) adults also exhibit this left cerebral specialization. Participants planned familiar actions for subsequent performance with the left or right hand in response to transitive (e.g., “pounding”) or intransitive (e.g. “waving”) action words. In linguistic control trials, cues denoted non-physical actions (e.g., “believing”). Action planning was associated with significant, exclusively left-lateralized and extensive increases of activity in the supramarginal gyrus (SMg), and more focal modulations in the left caudal middle temporal gyrus (cMTg). This activity was hand- and gesture-independent, i.e., unaffected by the hand involved in subsequent action performance, and the type of gesture (i.e., transitive or intransitive). Compared directly with right-handers, left-handers exhibited greater involvement of the right angular gyrus (ANg) and dorsal premotor cortex (dPMC), which is indicative of a less asymmetric functional architecture for praxis representation. We therefore conclude that the organization of mechanisms involved in planning familiar actions is influenced by one’s motor dominance. However, independent of hand dominance, the left SMg and cMTg are specialized for ideomotor transformations—the integration of conceptual knowledge and motor representations into meaningful actions. These findings support the view that higher-order praxis representation and lower-level motor dominance rely

  19. Volumetric lipoinjection of the fronto-orbital and temporal complex with adipose stem cells for the aesthetic restoration of sequelae of craniosynostosis

    Directory of Open Access Journals (Sweden)

    Yanko Castro-Govea

    2018-03-01

    Full Text Available Background Non-syndromic craniosynostosis causes craniofacial asymmetry and may persist after cranioplasty. These postoperative asymmetries are primarily depressions. In some cases, patients may be subjected to pranks and harassment by their peers, affecting their psychosocial development. We propose lipoinjection enriched with adipose stem cells (ASCs to treat the sequelae of craniosynostosis in the fronto-orbital and temporal complex in cranioplasty patients, with the goal of improving the appearance of the upper third of the face. Methods Twelve children (four boys and eight girls between 4 and 8 years of age (mean age, 6 years in the postoperative period after treatment for plagiocephaly, brachycephaly, and trigonocephaly were included, with a follow-up period of 1 to 18 months. Fat tissue was obtained from the lower abdomen, and ASCs were isolated using the Yoshimura technique. Lipoinjection was performed using several mini-approaches to ensure adequate distribution. Results Two different scales were used to evaluate the aesthetic outcomes. At 6 months, three plastic surgeons independent of the study classified the results using a Likert scale. The patients’ parents categorized the results using a visual analog scale at 6, 9, and 18 months. R esults were favorable on both scales, as the patients’ facial appearance improved and they reported increased happiness and self-esteem due to their remodeled facial appearance. Conclusions We suggest that lipoinjection enriched with ASCs is a good alternative for correcting asymmetry of the fronto-orbital and temporal contour in patients with sequelae of craniosynostosis. This treatment will help boost patients’ self-esteem starting at an early age.

  20. Brain abscesses associated with right-to-left shunts in adults.

    Science.gov (United States)

    Memon, Kashif A; Cleveland, Kerry O; Gelfand, Michael S

    2012-04-01

    Although brain abscesses are frequently cryptogenic in origin, bacteria must reach the brain either by direct or hematogenous spread. Right-to-left shunts, caused either by intrapulmonary vascular malformations or congenital heart defects, may allow microorganisms to evade the normal host defenses in the lungs and lead to development of brain abscesses. Two patients recently presented with brain abscesses and were found to have conditions associated with right-to-left shunts. The diagnosis of brain abscess should prompt the clinician to consider right-to-left shunts as a possible predisposing condition for brain abscess.

  1. The anatomy of fronto-occipital connections from early blunt dissections to contemporary tractography.

    Science.gov (United States)

    Forkel, Stephanie J; Thiebaut de Schotten, Michel; Kawadler, Jamie M; Dell'Acqua, Flavio; Danek, Adrian; Catani, Marco

    2014-07-01

    The occipital and frontal lobes are anatomically distant yet functionally highly integrated to generate some of the most complex behaviour. A series of long associative fibres, such as the fronto-occipital networks, mediate this integration via rapid feed-forward propagation of visual input to anterior frontal regions and direct top-down modulation of early visual processing. Despite the vast number of anatomical investigations a general consensus on the anatomy of fronto-occipital connections is not forthcoming. For example, in the monkey the existence of a human equivalent of the 'inferior fronto-occipital fasciculus' (iFOF) has not been demonstrated. Conversely, a 'superior fronto-occipital fasciculus' (sFOF), also referred to as 'subcallosal bundle' by some authors, is reported in monkey axonal tracing studies but not in human dissections. In this study our aim is twofold. First, we use diffusion tractography to delineate the in vivo anatomy of the sFOF and the iFOF in 30 healthy subjects and three acallosal brains. Second, we provide a comprehensive review of the post-mortem and neuroimaging studies of the fronto-occipital connections published over the last two centuries, together with the first integral translation of Onufrowicz's original description of a human fronto-occipital fasciculus (1887) and Muratoff's report of the 'subcallosal bundle' in animals (1893). Our tractography dissections suggest that in the human brain (i) the iFOF is a bilateral association pathway connecting ventro-medial occipital cortex to orbital and polar frontal cortex, (ii) the sFOF overlaps with branches of the superior longitudinal fasciculus (SLF) and probably represents an 'occipital extension' of the SLF, (iii) the subcallosal bundle of Muratoff is probably a complex tract encompassing ascending thalamo-frontal and descending fronto-caudate connections and is therefore a projection rather than an associative tract. In conclusion, our experimental findings and review of the

  2. Graph theoretical analysis reveals disrupted topological properties of whole brain functional networks in temporal lobe epilepsy.

    Science.gov (United States)

    Wang, Junjing; Qiu, Shijun; Xu, Yong; Liu, Zhenyin; Wen, Xue; Hu, Xiangshu; Zhang, Ruibin; Li, Meng; Wang, Wensheng; Huang, Ruiwang

    2014-09-01

    Temporal lobe epilepsy (TLE) is one of the most common forms of drug-resistant epilepsy. Previous studies have indicated that the TLE-related impairments existed in extensive local functional networks. However, little is known about the alterations in the topological properties of whole brain functional networks. In this study, we acquired resting-state BOLD-fMRI (rsfMRI) data from 26 TLE patients and 25 healthy controls, constructed their whole brain functional networks, compared the differences in topological parameters between the TLE patients and the controls, and analyzed the correlation between the altered topological properties and the epilepsy duration. The TLE patients showed significant increases in clustering coefficient and characteristic path length, but significant decrease in global efficiency compared to the controls. We also found altered nodal parameters in several regions in the TLE patients, such as the bilateral angular gyri, left middle temporal gyrus, right hippocampus, triangular part of left inferior frontal gyrus, left inferior parietal but supramarginal and angular gyri, and left parahippocampus gyrus. Further correlation analysis showed that the local efficiency of the TLE patients correlated positively with the epilepsy duration. Our results indicated the disrupted topological properties of whole brain functional networks in TLE patients. Our findings indicated the TLE-related impairments in the whole brain functional networks, which may help us to understand the clinical symptoms of TLE patients and offer a clue for the diagnosis and treatment of the TLE patients. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Multivariate pattern analysis reveals anatomical connectivity differences between the left and right mesial temporal lobe epilepsy.

    Science.gov (United States)

    Fang, Peng; An, Jie; Zeng, Ling-Li; Shen, Hui; Chen, Fanglin; Wang, Wensheng; Qiu, Shijun; Hu, Dewen

    2015-01-01

    Previous studies have demonstrated differences of clinical signs and functional brain network organizations between the left and right mesial temporal lobe epilepsy (mTLE), but the anatomical connectivity differences underlying functional variance between the left and right mTLE remain uncharacterized. We examined 43 (22 left, 21 right) mTLE patients with hippocampal sclerosis and 39 healthy controls using diffusion tensor imaging. After the whole-brain anatomical networks were constructed for each subject, multivariate pattern analysis was applied to classify the left mTLE from the right mTLE and extract the anatomical connectivity differences between the left and right mTLE patients. The classification results reveal 93.0% accuracy for the left mTLE versus the right mTLE, 93.4% accuracy for the left mTLE versus controls and 90.0% accuracy for the right mTLE versus controls. Compared with the right mTLE, the left mTLE exhibited a different connectivity pattern in the cortical-limbic network and cerebellum. The majority of the most discriminating anatomical connections were located within or across the cortical-limbic network and cerebellum, thereby indicating that these disease-related anatomical network alterations may give rise to a portion of the complex of emotional and memory deficit between the left and right mTLE. Moreover, the orbitofrontal gyrus, cingulate cortex, hippocampus and parahippocampal gyrus, which exhibit high discriminative power in classification, may play critical roles in the pathophysiology of mTLE. The current study demonstrated that anatomical connectivity differences between the left mTLE and the right mTLE may have the potential to serve as a neuroimaging biomarker to guide personalized diagnosis of the left and right mTLE.

  4. Tinnitus alters resting state functional connectivity (RSFC) in human auditory and non-auditory brain regions as measured by functional near-infrared spectroscopy (fNIRS).

    Science.gov (United States)

    San Juan, Juan; Hu, Xiao-Su; Issa, Mohamad; Bisconti, Silvia; Kovelman, Ioulia; Kileny, Paul; Basura, Gregory

    2017-01-01

    Tinnitus, or phantom sound perception, leads to increased spontaneous neural firing rates and enhanced synchrony in central auditory circuits in animal models. These putative physiologic correlates of tinnitus to date have not been well translated in the brain of the human tinnitus sufferer. Using functional near-infrared spectroscopy (fNIRS) we recently showed that tinnitus in humans leads to maintained hemodynamic activity in auditory and adjacent, non-auditory cortices. Here we used fNIRS technology to investigate changes in resting state functional connectivity between human auditory and non-auditory brain regions in normal-hearing, bilateral subjective tinnitus and controls before and after auditory stimulation. Hemodynamic activity was monitored over the region of interest (primary auditory cortex) and non-region of interest (adjacent non-auditory cortices) and functional brain connectivity was measured during a 60-second baseline/period of silence before and after a passive auditory challenge consisting of alternating pure tones (750 and 8000Hz), broadband noise and silence. Functional connectivity was measured between all channel-pairs. Prior to stimulation, connectivity of the region of interest to the temporal and fronto-temporal region was decreased in tinnitus participants compared to controls. Overall, connectivity in tinnitus was differentially altered as compared to controls following sound stimulation. Enhanced connectivity was seen in both auditory and non-auditory regions in the tinnitus brain, while controls showed a decrease in connectivity following sound stimulation. In tinnitus, the strength of connectivity was increased between auditory cortex and fronto-temporal, fronto-parietal, temporal, occipito-temporal and occipital cortices. Together these data suggest that central auditory and non-auditory brain regions are modified in tinnitus and that resting functional connectivity measured by fNIRS technology may contribute to conscious phantom

  5. Tinnitus alters resting state functional connectivity (RSFC in human auditory and non-auditory brain regions as measured by functional near-infrared spectroscopy (fNIRS.

    Directory of Open Access Journals (Sweden)

    Juan San Juan

    Full Text Available Tinnitus, or phantom sound perception, leads to increased spontaneous neural firing rates and enhanced synchrony in central auditory circuits in animal models. These putative physiologic correlates of tinnitus to date have not been well translated in the brain of the human tinnitus sufferer. Using functional near-infrared spectroscopy (fNIRS we recently showed that tinnitus in humans leads to maintained hemodynamic activity in auditory and adjacent, non-auditory cortices. Here we used fNIRS technology to investigate changes in resting state functional connectivity between human auditory and non-auditory brain regions in normal-hearing, bilateral subjective tinnitus and controls before and after auditory stimulation. Hemodynamic activity was monitored over the region of interest (primary auditory cortex and non-region of interest (adjacent non-auditory cortices and functional brain connectivity was measured during a 60-second baseline/period of silence before and after a passive auditory challenge consisting of alternating pure tones (750 and 8000Hz, broadband noise and silence. Functional connectivity was measured between all channel-pairs. Prior to stimulation, connectivity of the region of interest to the temporal and fronto-temporal region was decreased in tinnitus participants compared to controls. Overall, connectivity in tinnitus was differentially altered as compared to controls following sound stimulation. Enhanced connectivity was seen in both auditory and non-auditory regions in the tinnitus brain, while controls showed a decrease in connectivity following sound stimulation. In tinnitus, the strength of connectivity was increased between auditory cortex and fronto-temporal, fronto-parietal, temporal, occipito-temporal and occipital cortices. Together these data suggest that central auditory and non-auditory brain regions are modified in tinnitus and that resting functional connectivity measured by fNIRS technology may contribute to

  6. [fMRI study of the dominant hemisphere for language in patients with brain tumor].

    Science.gov (United States)

    Buklina, S B; Podoprigora, A E; Pronin, I N; Shishkina, L V; Boldyreva, G N; Bondarenko, A A; Fadeeva, L M; Kornienko, V N; Zhukov, V Iu

    2013-01-01

    Paper describes a study of language lateralization of patients with brain tumors, measured by preoperative functional magnetic resonance imaging (fMRI) and comparison results with tumor histology and profile of functional asymmetry. During the study 21 patient underwent fMRI scan. 15 patients had a tumor in the left and 6 in the right hemisphere. Tumors were localized mainly in the frontal, temporal and fronto-temporal regions. Histological diagnosis in 8 cases was malignant Grade IV, in 13 cases--Grade I-III. fMRI study was perfomed on scanner "Signa Exite" with a field strength of 1.5 As speech test reciting the months of the year in reverse order was used. fMRI scan results were compared with the profile of functional asymmetry, which was received with the results of questionnaire Annette and dichotic listening test. Broca's area was found in 7 cases in the left hemisphere, 6 had a tumor Grade I-III. And one patient with glioblastoma had a tumor of the right hemisphere. Broca's area in the right hemisphere was found in 3 patients (2 patients with left sided tumor, and one with right-sided tumor). One patient with left-sided tumor had mild motor aphasia. Bilateral activation in both hemispheres of the brain was observed in 6 patients. All of them had tumor Grade II-III of the left hemisphere. Signs of left-handedness were revealed only in half of these patients. Broca's area was not found in 4 cases. All of them had large malignant tumors Grade IV. One patient couldn't handle program of the research. Results of fMRI scans, questionnaire Annette and dichotic listening test frequently were not the same, which is significant. Bilateral activation in speech-loads may be a reflection of brain plasticity in cases of long-growing tumors. Thus it's important to consider the full range of clinical data in studying the problem of the dominant hemisphere for language.

  7. Emotion Regulation and Complex Brain Networks: Association Between Expressive Suppression and Efficiency in the Fronto-Parietal Network and Default-Mode Network

    Directory of Open Access Journals (Sweden)

    Junhao Pan

    2018-03-01

    Full Text Available Emotion regulation (ER refers to the “implementation of a conscious or non-conscious goal to start, stop or otherwise modulate the trajectory of an emotion” (Etkin et al., 2015. Whereas multiple brain areas have been found to be involved in ER, relatively little is known about whether and how ER is associated with the global functioning of brain networks. Recent advances in brain connectivity research using graph-theory based analysis have shown that the brain can be organized into complex networks composed of functionally or structurally connected brain areas. Global efficiency is one graphic metric indicating the efficiency of information exchange among brain areas and is utilized to measure global functioning of brain networks. The present study examined the relationship between trait measures of ER (expressive suppression (ES and cognitive reappraisal (CR and global efficiency in resting-state functional brain networks (the whole brain network and ten predefined networks using structural equation modeling (SEM. The results showed that ES was reliably associated with efficiency in the fronto-parietal network and default-mode network. The finding advances the understanding of neural substrates of ER, revealing the relationship between ES and efficient organization of brain networks.

  8. Anterior Temporal Lobe Morphometry Predicts Categorization Ability.

    Science.gov (United States)

    Garcin, Béatrice; Urbanski, Marika; Thiebaut de Schotten, Michel; Levy, Richard; Volle, Emmanuelle

    2018-01-01

    Categorization is the mental operation by which the brain classifies objects and events. It is classically assessed using semantic and non-semantic matching or sorting tasks. These tasks show a high variability in performance across healthy controls and the cerebral bases supporting this variability remain unknown. In this study we performed a voxel-based morphometry study to explore the relationships between semantic and shape categorization tasks and brain morphometric differences in 50 controls. We found significant correlation between categorization performance and the volume of the gray matter in the right anterior middle and inferior temporal gyri. Semantic categorization tasks were associated with more rostral temporal regions than shape categorization tasks. A significant relationship was also shown between white matter volume in the right temporal lobe and performance in the semantic tasks. Tractography revealed that this white matter region involved several projection and association fibers, including the arcuate fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, and inferior longitudinal fasciculus. These results suggest that categorization abilities are supported by the anterior portion of the right temporal lobe and its interaction with other areas.

  9. Gray- and White-Matter Anatomy of Absolute Pitch Possessors

    DEFF Research Database (Denmark)

    Dohn, Anders; Garza-Villarreal, Eduardo A.; Chakravarty, Mallar

    2015-01-01

    structural differences in brains of musicians with and without AP, by means of whole brain vertex- wise cortical thickness analysis and tract-based spatial statistics (TBSS) analysis. AP possessors (APs) displayed increased cortical thickness in a number of areas including the left superior temporal gyrus......, the left inferior frontal gyrus, and the right supramarginal gyrus. Furthermore, we found increased fractional anisotropy in APs within the path of the inferior fronto-occipital fasciculus, the uncinate fasciculus and the inferior longitudinal fasciculus. The findings in gray matter support previous...... studies indicating an increased left lateralized posterior superior temporal gyrus in APs, yet they differ from previous findings of thinner cortex for a number of areas in APs. Finally, we found a correlation between the white matter cluster and the right parahippocampal gyrus. This is a novel finding...

  10. Fronto-parietal contributions to phonological processes in successful artificial grammar learning

    Directory of Open Access Journals (Sweden)

    Dariya Goranskaya

    2016-11-01

    Full Text Available Sensitivity to regularities plays a crucial role in the acquisition of various linguistic features from spoken language input. Artificial grammar (AG learning paradigms explore pattern recognition abilities in a set of structured sequences (i.e. of syllables or letters. In the present study, we investigated the functional underpinnings of learning phonological regularities in auditorily presented syllable sequences. While previous neuroimaging studies either focused on functional differences between the processing of correct vs. incorrect sequences or between different levels of sequence complexity, here the focus is on the neural foundation of the actual learning success. During functional magnetic resonance imaging (fMRI, participants were exposed to a set of syllable sequences with an underlying phonological rule system, known to ensure performance differences between participants. We expected that successful learning and rule application would require phonological segmentation and phoneme comparison. As an outcome of four alternating learning and test fMRI sessions, participants split into successful learners and non-learners. Relative to non-learners, successful learners showed increased task-related activity in a fronto-parietal network of brain areas encompassing the left lateral premotor cortex as well as bilateral superior and inferior parietal cortices during both learning and rule application. These areas were previously associated with phonological segmentation, phoneme comparison and verbal working memory. Based on these activity patterns and the phonological strategies for rule acquisition and application, we argue that successful learning and processing of complex phonological rules in our paradigm is mediated via a fronto-parietal network for phonological processes.

  11. Cognitive Functioning in Temporal Lobe Epilepsy: A BOLD-fMRI Study.

    Science.gov (United States)

    Guo, Lili; Bai, Genji; Zhang, Hui; Lu, Daoyan; Zheng, Jiyong; Xu, Gang

    2017-12-01

    We aimed to analyze the association between resting-state functional magnetic resonance imaging (re-fMRI) and cognitive function (including language, executive, and memory functions) in temporal lobe epilepsy (TLE) patients, which will help to explore the mechanism of brain function in patients. 15 TLE patients and 15 non-TLE patients were recruited. All subjects underwent neuropsychological testing and memory functional evaluation. Changes in verbal intelligence quotient (VIQ), performance intelligence quotient (PIQ), full intelligence quotient (FIQ), and memory quotient (MQ) were compared between two groups. Re-fMRI data were also collected from two groups to evaluate these changes. Each individual score of neuropsychological testing and memory functional evaluation were higher in control group, which was statistically different (all P temporal gyrus back, right superior temporal gyrus, left cerebellum, left angular gyrus, left wedge anterior lobe, and left central back; while the negatively activated brain regions were left prefrontal, right cerebellum, right corner back, and right anterior cingulate gyrus. During the language task, the activated brain regions of the TLE patients were right prefrontal lobe, the lateral temporal gyri, the left cerebellum, left cornu laterale gyrus, left precuneus, and the left postcentral gyrus, whereas the negatively activated brain areas were the left prefrontal cortex, the right cerebellum, right cornu laterale gyrus, and the right anterior cingulate gyrus. During the executive task, epilepsy patients showed activation difference in right prefrontal and right frontal lobe and right brain, left superior temporal gyrus, and right cerebellum anterior lobe compared with the control group; no negatively activated differences in brain areas. During the memory task, the difference lay in bilateral anterior cingulate gyrus and bilateral wedge anterior lobe while the negatively activated brain areas were the left inferior frontal

  12. Left Brain to Right Brain: Notes from the Human Laboratory.

    Science.gov (United States)

    Baumli, Francis

    1982-01-01

    Examines the implications of the left brain-right brain theory on communications styles in male-female relationships. The author contends that women tend to use the vagueness of their emotional responses manipulatively. Men need to apply rational approaches to increase clarity in communication. (AM)

  13. Fronto-Limbic Brain Dysfunction during the Regulation of Emotion in Schizophrenia.

    Directory of Open Access Journals (Sweden)

    Shaun M Eack

    Full Text Available Schizophrenia is characterized by significant and widespread impairments in the regulation of emotion. Evidence is only recently emerging regarding the neural basis of these emotion regulation impairments, and few studies have focused on the regulation of emotion during effortful cognitive processing. To examine the neural correlates of deficits in effortful emotion regulation, schizophrenia outpatients (N = 20 and age- and gender-matched healthy volunteers (N = 20 completed an emotional faces n-back task to assess the voluntary attentional control subprocess of emotion regulation during functional magnetic resonance imaging. Behavioral measures of emotional intelligence and emotion perception were administered to examine brain-behavior relationships with emotion processing outcomes. Results indicated that patients with schizophrenia demonstrated significantly greater activation in the bilateral striatum, ventromedial prefrontal, and right orbitofrontal cortices during the effortful regulation of positive emotional stimuli, and reduced activity in these same regions when regulating negative emotional information. The opposite pattern of results was observed in healthy individuals. Greater fronto-striatal response to positive emotional distractors was significantly associated with deficits in facial emotion recognition. These findings indicate that abnormalities in striatal and prefrontal cortical systems may be related to deficits in the effortful emotion regulatory process of attentional control in schizophrenia, and may significantly contribute to emotion processing deficits in the disorder.

  14. Brain structural network topological alterations of the left prefrontal and limbic cortex in psychogenic erectile dysfunction.

    Science.gov (United States)

    Chen, Jianhuai; Chen, Yun; Gao, Qingqiang; Chen, Guotao; Dai, Yutian; Yao, Zhijian; Lu, Qing

    2018-05-01

    Despite increasing understanding of the cerebral functional changes and structural abnormalities in erectile dysfunction, alterations in the topological organization of brain networks underlying psychogenic erectile dysfunction remain unclear. Here, based on the diffusion tensor image data of 25 patients and 26 healthy controls, we investigated the topological organization of brain structural networks and its correlations with the clinical variables using the graph theoretical analysis. Patients displayed a preserved overall small-world organization and exhibited a less connectivity strength in the left inferior frontal gyrus, amygdale and the right inferior temporal gyrus. Moreover, an abnormal hub pattern was observed in patients, which might disturb the information interactions of the remaining brain network. Additionally, the clustering coefficient of the left hippocampus was positively correlated with the duration of patients and the normalized betweenness centrality of the right anterior cingulate gyrus and the left calcarine fissure were negatively correlated with the sum scores of the 17-item Hamilton Depression Rating Scale. These findings suggested that the damaged white matter and the abnormal hub distribution of the left prefrontal and limbic cortex might contribute to the pathogenesis of psychogenic erectile dysfunction and provided new insights into the understanding of the pathophysiological mechanisms of psychogenic erectile dysfunction.

  15. Multivariate pattern analysis reveals anatomical connectivity differences between the left and right mesial temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Peng Fang

    2015-01-01

    Full Text Available Previous studies have demonstrated differences of clinical signs and functional brain network organizations between the left and right mesial temporal lobe epilepsy (mTLE, but the anatomical connectivity differences underlying functional variance between the left and right mTLE remain uncharacterized. We examined 43 (22 left, 21 right mTLE patients with hippocampal sclerosis and 39 healthy controls using diffusion tensor imaging. After the whole-brain anatomical networks were constructed for each subject, multivariate pattern analysis was applied to classify the left mTLE from the right mTLE and extract the anatomical connectivity differences between the left and right mTLE patients. The classification results reveal 93.0% accuracy for the left mTLE versus the right mTLE, 93.4% accuracy for the left mTLE versus controls and 90.0% accuracy for the right mTLE versus controls. Compared with the right mTLE, the left mTLE exhibited a different connectivity pattern in the cortical-limbic network and cerebellum. The majority of the most discriminating anatomical connections were located within or across the cortical-limbic network and cerebellum, thereby indicating that these disease-related anatomical network alterations may give rise to a portion of the complex of emotional and memory deficit between the left and right mTLE. Moreover, the orbitofrontal gyrus, cingulate cortex, hippocampus and parahippocampal gyrus, which exhibit high discriminative power in classification, may play critical roles in the pathophysiology of mTLE. The current study demonstrated that anatomical connectivity differences between the left mTLE and the right mTLE may have the potential to serve as a neuroimaging biomarker to guide personalized diagnosis of the left and right mTLE.

  16. Distinctive Structural and Effective Connectivity Changes of Semantic Cognition Network across Left and Right Mesial Temporal Lobe Epilepsy Patients

    Directory of Open Access Journals (Sweden)

    Xiaotong Fan

    2016-01-01

    Full Text Available Occurrence of language impairment in mesial temporal lobe epilepsy (mTLE patients is common and left mTLE patients always exhibit a primary problem with access to names. To explore different neuropsychological profiles between left and right mTLE patients, the study investigated both structural and effective functional connectivity changes within the semantic cognition network between these two groups and those from normal controls. We found that gray matter atrophy of left mTLE patients was more severe than that of right mTLE patients in the whole brain and especially within the semantic cognition network in their contralateral hemisphere. It suggested that seizure attacks were rather targeted than random for patients with hippocampal sclerosis (HS in the dominant hemisphere. Functional connectivity analysis during resting state fMRI revealed that subregions of the anterior temporal lobe (ATL in the left HS patients were no longer effectively connected. Further, we found that, unlike in right HS patients, increased causal linking between ipsilateral regions in the left HS epilepsy patients cannot make up for their decreased contralateral interaction. It suggested that weakened contralateral connection and disrupted effective interaction between subregions of the unitary, transmodal hub of the ATL may be the primary cause of anomia in the left HS patients.

  17. Distinctive Structural and Effective Connectivity Changes of Semantic Cognition Network across Left and Right Mesial Temporal Lobe Epilepsy Patients

    Science.gov (United States)

    Fan, Xiaotong; Shang, Kun; Wang, Xiaocui; Wang, Peipei; Shan, Yongzhi; Lu, Jie

    2016-01-01

    Occurrence of language impairment in mesial temporal lobe epilepsy (mTLE) patients is common and left mTLE patients always exhibit a primary problem with access to names. To explore different neuropsychological profiles between left and right mTLE patients, the study investigated both structural and effective functional connectivity changes within the semantic cognition network between these two groups and those from normal controls. We found that gray matter atrophy of left mTLE patients was more severe than that of right mTLE patients in the whole brain and especially within the semantic cognition network in their contralateral hemisphere. It suggested that seizure attacks were rather targeted than random for patients with hippocampal sclerosis (HS) in the dominant hemisphere. Functional connectivity analysis during resting state fMRI revealed that subregions of the anterior temporal lobe (ATL) in the left HS patients were no longer effectively connected. Further, we found that, unlike in right HS patients, increased causal linking between ipsilateral regions in the left HS epilepsy patients cannot make up for their decreased contralateral interaction. It suggested that weakened contralateral connection and disrupted effective interaction between subregions of the unitary, transmodal hub of the ATL may be the primary cause of anomia in the left HS patients. PMID:28018680

  18. BOLD response to motion verbs in left posterior middle temporal gyrus during story comprehension

    DEFF Research Database (Denmark)

    Wallentin, Mikkel; Nielsen, Andreas Højlund; Vuust, Peter

    2011-01-01

    A primary focus within neuroimaging research on language comprehension is on the distribution of semantic knowledge in the brain. Studies have shown that the left posterior middle temporal gyrus (LPMT), a region just anterior to area MT/V5, is important for the processing of complex action...... knowledge. It has also been found that motion verbs cause activation in LPMT. In this experiment we investigated whether this effect could be replicated in a setting resembling real life language comprehension, i.e. without any overt behavioral task during passive listening to a story. During f......, clauses containing motion verbs were accompanied by a robust activation of LPMT with no other significant effects, consistent with the hypothesis that this brain region is important for processing motion knowledge, even during naturalistic language comprehension conditions....

  19. Involuntary switching into the native language induced by electrocortical stimulation of the superior temporal gyrus: a multimodal mapping study.

    Science.gov (United States)

    Tomasino, Barbara; Marin, Dario; Canderan, Cinzia; Maieron, Marta; Budai, Riccardo; Fabbro, Franco; Skrap, Miran

    2014-09-01

    We describe involuntary language switching from L2 to L1 evoked by electro-stimulation in the superior temporal gyrus in a 30-year-old right-handed Serbian (L1) speaker who was also a late Italian learner (L2). The patient underwent awake brain surgery. Stimulation of other portions of the exposed cortex did not cause language switching as did not stimulation of the left inferior frontal gyrus, where we evoked a speech arrest. Stimulation effects on language switching were selective, namely, interfered with counting behaviour but not with object naming. The coordinates of the positive site were combined with functional and fibre tracking (DTI) data. Results showed that the language switching site belonged to a significant fMRI cluster in the left superior temporal gyrus/supramarginal gyrus found activated for both L1 and L2, and for both the patient and controls, and did not overlap with the inferior fronto-occipital fasciculus (IFOF), the inferior longitudinal fasciculus (ILF) and the superior longitudinal fasciculus (SLF). This area, also known as Stp, has a role in phonological processing. Language switching phenomenon we observed can be partly explained by transient dysfunction of the feed-forward control mechanism hypothesized by the DIVA (Directions Into Velocities of Articulators) model (Golfinopoulos, E., Tourville, J. A., & Guenther, F. H. (2010). The integration of large-scale neural network modeling and functional brain imaging in speech motor control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Evidence of a middle longitudinal fasciculus in the human brain from fiber dissection

    Science.gov (United States)

    Maldonado, Igor Lima; de Champfleur, Nicolas Menjot; Velut, Stéphane; Destrieux, Christophe; Zemmoura, Ilyess; Duffau, Hugues

    2013-01-01

    A rostrocaudal pathway connecting the temporal and parietal lobes was described in monkeys using autoradiography and was named the middle longitudinal fasciculus (MdLF). Recently, the use of diffusion tensor tractography has allowed it to be depicted in human volunteers. In the present study, a technique of fiber dissection was used in 18 cadaveric human brains to investigate the presence of this fasciculus and to detail its anatomical relationships. On the basis of our findings, fiber dissection provides evidence for a long horizontal bundle medial to the arcuate fasciculus and extending to the superior temporal gyrus. Its fibers occupy the lateral-most layer of the upper portion of the stratum sagittale and partially cover the inferior fronto-occipital fasciculus, which is situated deeper and slightly inferiorly. Whereas MdLF fibers continue on a relatively superficial level to reach the superior temporal gyrus, the inferior fronto-occipital fasciculus penetrates the deep temporal white matter and crosses the insular lobe. Although diffusion tensor imaging suggests that the MdLF terminates in the angular gyrus, this was not confirmed by the present study. These long association fibers continue onward posteriorly into upper portions of the occipital lobe. Further studies are needed to understand the role of the MdLF in brain function. PMID:23621438

  1. Right Brain/Left Brain President Barack Obama's Uncommon Leadership Ability and How We Can Each Develop It

    CERN Document Server

    Decosterd, Mary Lou

    2010-01-01

    Right Brain/Left Brain President: Barack Obama's Uncommon Leadership Ability and How We Can Each Develop It is an inspirational guide to leadership as it should be practiced, conveyed through an up-close look at the man who sets the new leadership bar. Author Mary Lou D'costerd uses her Right Brain/Left Brain Leadership Model to frame Barack Obama's leadership skill sets. Her book shows that Obama's unique brand of leadership is the result of his extraordinary ability to leverage full-brain potential in the ways he thinks, decides, and acts. ||Right Brain/Left Brain President examines Obama's

  2. Brain SPECT imaging in temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Krausz, Y.; Yaffe, S.; Atlan, H.; Cohen, D.; Konstantini, S.; Meiner, Z.

    1991-01-01

    Temporal lobe epilepsy is diagnosed by clinical symptoms and signs and by localization of an epileptogenic focus. A brain SPECT study of two patients with temporal lobe epilepsy, using 99m Tc-HMPAO, was used to demonstrate a perfusion abnormality in the temporal lobe, while brain CT and MRI were non-contributory. The electroencephalogram, though abnormal, did not localize the diseased area. The potential role of the SPECT study in diagnosis and localization of temporal lobe epilepsy is discussed. (orig.)

  3. Left Brain/Right Brain: Research and Learning. Focused Access to Selected Topics (FAST) Bibliography No. 12.

    Science.gov (United States)

    Eppele, Ruth

    This 27-item bibliography represents the variety of articles added to the ERIC database from 1983 through 1988 on left-brain/right-brain research, theory, and application as it relates to classroom incorporation. Included are conflicting opinions as to the usefulness of left-brain/right-brain studies and their application in the learning…

  4. Exogenous vs. endogenous attention: Shifting the balance of fronto-parietal activity.

    Science.gov (United States)

    Meyer, Kristin N; Du, Feng; Parks, Emily; Hopfinger, Joseph B

    2018-03-01

    Despite behavioral and electrophysiological evidence for dissociations between endogenous (voluntary) and exogenous (reflexive) attention, fMRI results have yet to consistently and clearly differentiate neural activation patterns between these two types of attention. This study specifically aimed to determine whether activity in the dorsal fronto-parietal network differed between endogenous and exogenous conditions. Participants performed a visual discrimination task in endogenous and exogenous attention conditions while undergoing fMRI scanning. Analyses revealed robust and bilateral activation throughout the dorsal fronto-parietal network for each condition, in line with many previous results. In order to investigate possible differences in the balance of neural activity within this network with greater sensitivity, a priori regions of interest (ROIs) were selected for analysis, centered on the frontal eye fields (FEF) and intraparietal sulcus (IPS) regions identified in previous studies. The results revealed a significant interaction between region, condition, and hemisphere. Specifically, in the left hemisphere, frontal areas were more active than parietal areas, but only during endogenous attention. Activity in the right hemisphere, in contrast, remained relatively consistent for these regions across conditions. Analysis of this activity over time indicates that this left-hemispheric regional imbalance is present within the FEF early, at 3-6.5 s post-stimulus presentation, whereas a regional imbalance in the exogenous condition is not evident until 6.5-8 s post-stimulus presentation. Overall, our results provide new evidence that although the dorsal fronto-parietal network is indeed associated with both types of attentional orienting, regions of the network are differentially engaged over time and across hemispheres depending on the type of attention. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Decreased left temporal lobe volume of panic patients measured by magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, R.R.; Del-Ben, C.M.; Araujo, D.; Crippa, J.A.; Graeff, F.G. [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Dept. de Neurologia e Psicologia Medica]. E-mail: fgraeff@keynet.com.br; Santos, A.C. [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Dept. de Clinica Medica; Guimaraes, F.S. [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Dept. de Farmacologia

    2003-07-01

    Reported neuroimaging studies have shown functional and morphological changes of temporal lobe structures in panic patients, but only one used a volumetric method. The aim of the present study was to determine the volume of temporal lobe structures in patients with panic disorder, measured by magnetic resonance imaging. Eleven panic patients and eleven controls matched for age, sex, handedness, socioeconomic status and years of education participated in the study. The mean volume of the left temporal lobe of panic patients was 9% smaller than that of controls (t{sub 21} = 2.37, P = 0.028). In addition, there was a trend (P values between 0.05 and 0.10) to smaller volumes of the right temporal lobe (7%, t{sub 21} = 1.99, P = 0.06), right amygdala (8%, t{sub 21} = 1.83, P = 0.08), left amygdala (5%, t{sub 21} = 1.78, P 0.09) and left hippocampus (9%, t{sub 21} = 1.93, P = 0.07) in panic patients compared to controls. There was a positive correlation between left hippocampal volume and duration of panic disorder (r = 0.67, P = 0.025), with recent cases showing more reduction than older cases. The present results show that panic patients have a decreased volume of the left temporal lobe and indicate the presence of volumetric abnormalities of temporal lobe structures. (author)

  6. Decreased left temporal lobe volume of panic patients measured by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Uchida, R.R.; Del-Ben, C.M.; Araujo, D.; Crippa, J.A.; Graeff, F.G.; Santos, A.C.; Guimaraes, F.S.

    2003-01-01

    Reported neuroimaging studies have shown functional and morphological changes of temporal lobe structures in panic patients, but only one used a volumetric method. The aim of the present study was to determine the volume of temporal lobe structures in patients with panic disorder, measured by magnetic resonance imaging. Eleven panic patients and eleven controls matched for age, sex, handedness, socioeconomic status and years of education participated in the study. The mean volume of the left temporal lobe of panic patients was 9% smaller than that of controls (t 21 = 2.37, P = 0.028). In addition, there was a trend (P values between 0.05 and 0.10) to smaller volumes of the right temporal lobe (7%, t 21 = 1.99, P = 0.06), right amygdala (8%, t 21 = 1.83, P = 0.08), left amygdala (5%, t 21 = 1.78, P 0.09) and left hippocampus (9%, t 21 = 1.93, P = 0.07) in panic patients compared to controls. There was a positive correlation between left hippocampal volume and duration of panic disorder (r = 0.67, P = 0.025), with recent cases showing more reduction than older cases. The present results show that panic patients have a decreased volume of the left temporal lobe and indicate the presence of volumetric abnormalities of temporal lobe structures. (author)

  7. Disruption of structural covariance networks for language in autism is modulated by verbal ability.

    Science.gov (United States)

    Sharda, Megha; Khundrakpam, Budhachandra S; Evans, Alan C; Singh, Nandini C

    2016-03-01

    The presence of widespread speech and language deficits is a core feature of autism spectrum disorders (ASD). These impairments have often been attributed to altered connections between brain regions. Recent developments in anatomical correlation-based approaches to map structural covariance offer an effective way of studying such connections in vivo. In this study, we employed such a structural covariance network (SCN)-based approach to investigate the integrity of anatomical networks in fronto-temporal brain regions of twenty children with ASD compared to an age and gender-matched control group of twenty-two children. Our findings reflected large-scale disruption of inter and intrahemispheric covariance in left frontal SCNs in the ASD group compared to controls, but no differences in right fronto-temporal SCNs. Interhemispheric covariance in left-seeded networks was further found to be modulated by verbal ability of the participants irrespective of autism diagnosis, suggesting that language function might be related to the strength of interhemispheric structural covariance between frontal regions. Additionally, regional cortical thickening was observed in right frontal and left posterior regions, which was predicted by decreasing symptom severity and increasing verbal ability in ASD. These findings unify reports of regional differences in cortical morphology in ASD. They also suggest that reduced left hemisphere asymmetry and increased frontal growth may not only reflect neurodevelopmental aberrations but also compensatory mechanisms.

  8. Contrasting effects of vocabulary knowledge on temporal and parietal brain structure across lifespan.

    Science.gov (United States)

    Richardson, Fiona M; Thomas, Michael S C; Filippi, Roberto; Harth, Helen; Price, Cathy J

    2010-05-01

    Using behavioral, structural, and functional imaging techniques, we demonstrate contrasting effects of vocabulary knowledge on temporal and parietal brain structure in 47 healthy volunteers who ranged in age from 7 to 73 years. In the left posterior supramarginal gyrus, vocabulary knowledge was positively correlated with gray matter density in teenagers but not adults. This region was not activated during auditory or visual sentence processing, and activation was unrelated to vocabulary skills. Its gray matter density may reflect the use of an explicit learning strategy that links new words to lexical or conceptual equivalents, as used in formal education and second language acquisition. By contrast, in left posterior temporal regions, gray matter as well as auditory and visual sentence activation correlated with vocabulary knowledge throughout lifespan. We propose that these effects reflect the acquisition of vocabulary through context, when new words are learnt within the context of semantically and syntactically related words.

  9. Semantic brain areas are involved in gesture comprehension: An electrical neuroimaging study.

    Science.gov (United States)

    Proverbio, Alice Mado; Gabaro, Veronica; Orlandi, Andrea; Zani, Alberto

    2015-08-01

    While the mechanism of sign language comprehension in deaf people has been widely investigated, little is known about the neural underpinnings of spontaneous gesture comprehension in healthy speakers. Bioelectrical responses to 800 pictures of actors showing common Italian gestures (e.g., emblems, deictic or iconic gestures) were recorded in 14 persons. Stimuli were selected from a wider corpus of 1122 gestures. Half of the pictures were preceded by an incongruent description. ERPs were recorded from 128 sites while participants decided whether the stimulus was congruent. Congruent pictures elicited a posterior P300 followed by late positivity, while incongruent gestures elicited an anterior N400 response. N400 generators were investigated with swLORETA reconstruction. Processing of congruent gestures activated face- and body-related visual areas (e.g., BA19, BA37, BA22), the left angular gyrus, mirror fronto/parietal areas. The incongruent-congruent contrast particularly stimulated linguistic and semantic brain areas, such as the left medial and the superior temporal lobe. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Human left ventral premotor cortex mediates matching of hand posture to object use.

    Directory of Open Access Journals (Sweden)

    Guy Vingerhoets

    Full Text Available Visuomotor transformations for grasping have been associated with a fronto-parietal network in the monkey brain. The human homologue of the parietal monkey region (AIP has been identified as the anterior part of the intraparietal sulcus (aIPS, whereas the putative human equivalent of the monkey frontal region (F5 is located in the ventral part of the premotor cortex (vPMC. Results from animal studies suggest that monkey F5 is involved in the selection of appropriate hand postures relative to the constraints of the task. In humans, the functional roles of aIPS and vPMC appear to be more complex and the relative contribution of each region to grasp selection remains uncertain. The present study aimed to identify modulation in brain areas sensitive to the difficulty level of tool object - hand posture matching. Seventeen healthy right handed participants underwent fMRI while observing pictures of familiar tool objects followed by pictures of hand postures. The task was to decide whether the hand posture matched the functional use of the previously shown object. Conditions were manipulated for level of difficulty. Compared to a picture matching control task, the tool object - hand posture matching conditions conjointly showed increased modulation in several left hemispheric regions of the superior and inferior parietal lobules (including aIPS, the middle occipital gyrus, and the inferior temporal gyrus. Comparison of hard versus easy conditions selectively modulated the left inferior frontal gyrus with peak activity located in its opercular part (Brodmann area (BA 44. We suggest that in the human brain, vPMC/BA44 is involved in the matching of hand posture configurations in accordance with visual and functional demands.

  11. Examining Brain-Cognition Effects of Ginkgo Biloba Extract: Brain Activation in the Left Temporal and Left Prefrontal Cortex in an Object Working Memory Task

    Directory of Open Access Journals (Sweden)

    R. B. Silberstein

    2011-01-01

    Full Text Available Ginkgo Biloba extract (GBE is increasingly used to alleviate symptoms of age related cognitive impairment, with preclinical evidence pointing to a pro-cholinergic effect. While a number of behavioral studies have reported improvements to working memory (WM associated with GBE, electrophysiological studies of GBE have typically been limited to recordings during a resting state. The current study investigated the chronic effects of GBE on steady state visually evoked potential (SSVEP topography in nineteen healthy middle-aged (50-61 year old male participants whilst completing an object WM task. A randomized double-blind crossover design was employed in which participants were allocated to receive 14 days GBE and 14 days placebo in random order. For both groups, SSVEP was recorded from 64 scalp electrode sites during the completion of an object WM task both pre- and 14 days post-treatment. GBE was found to improve behavioural performance on the WM task. GBE was also found to increase the SSVEP amplitude at occipital and frontal sites and increase SSVEP latency at left temporal and left frontal sites during the hold component of the WM task. These SSVEP changes associated with GBE may represent more efficient processing during WM task completion.

  12. Correlation of neuropsychological and metabolic changes after epilepsy surgery in patients with left mesial temporal lobe epilepsy with hippocampal sclerosis.

    Science.gov (United States)

    Güvenç, Canan; Dupont, Patrick; Van den Stock, Jan; Seynaeve, Laura; Porke, Kathleen; Dries, Eva; Van Bouwel, Karen; van Loon, Johannes; Theys, Tom; Goffin, Karolien E; Van Paesschen, Wim

    2018-04-12

    Epilepsy surgery often causes changes in cognition and cerebral glucose metabolism. Our aim was to explore relationships between pre- and postoperative cerebral metabolism as measured with 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET) and neuropsychological test scores in patients with left mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS), who were rendered seizure-free after epilepsy surgery. Thirteen patients were included. All had neuropsychological testing and an interictal FDG-PET scan of the brain pre- and postoperative. Correlations between changes in neuropsychological test scores and metabolism were examined using statistical parametric mapping (SPM). There were no significant changes in the neuropsychological test scores pre- and postoperatively at the group level. Decreased metabolism was observed in the left mesial temporal regions and occipital lobe. Increased metabolism was observed in the bi-frontal and right parietal lobes, temporal lobes, occipital lobes, thalamus, cerebellum, and vermis. In these regions, we did not find a correlation between changes in metabolism and neuropsychological test scores. A significant negative correlation, however, was found between metabolic changes in the precuneus and Boston Naming Test (BNT) scores. There are significant metabolic decreases in the left mesial temporal regions and increases in the bi-frontal lobes; right parietal, temporal, and occipital lobes; right thalamus; cerebellum; and vermis in patients with left MTLE-HS who were rendered seizure-free after epilepsy surgery. We could not confirm that these changes translate into significant cognitive changes. A significant negative correlation was found between changes in confrontation naming and changes in metabolism in the precuneus. We speculate that the precuneus may play a compensatory role in patients with postoperative naming difficulties after left TLE surgery. Understanding of these neural mechanisms may aid in

  13. Aberrant topological patterns of brain structural network in temporal lobe epilepsy.

    Science.gov (United States)

    Yasuda, Clarissa Lin; Chen, Zhang; Beltramini, Guilherme Coco; Coan, Ana Carolina; Morita, Marcia Elisabete; Kubota, Bruno; Bergo, Felipe; Beaulieu, Christian; Cendes, Fernando; Gross, Donald William

    2015-12-01

    Although altered large-scale brain network organization in patients with temporal lobe epilepsy (TLE) has been shown using morphologic measurements such as cortical thickness, these studies, have not included critical subcortical structures (such as hippocampus and amygdala) and have had relatively small sample sizes. Here, we investigated differences in topological organization of the brain volumetric networks between patients with right TLE (RTLE) and left TLE (LTLE) with unilateral hippocampal atrophy. We performed a cross-sectional analysis of 86 LTLE patients, 70 RTLE patients, and 116 controls. RTLE and LTLE groups were balanced for gender (p = 0.64), seizure frequency (Mann-Whitney U test, p = 0.94), age (p = 0.39), age of seizure onset (p = 0.21), and duration of disease (p = 0.69). Brain networks were constructed by thresholding correlation matrices of volumes from 80 cortical/subcortical regions (parcellated with Freesurfer v5.3 https://surfer.nmr.mgh.harvard.edu/) that were then analyzed using graph theoretical approaches. We identified reduced cortical/subcortical connectivity including bilateral hippocampus in both TLE groups, with the most significant interregional correlation increases occurring within the limbic system in LTLE and contralateral hemisphere in RTLE. Both TLE groups demonstrated less optimal topological organization, with decreased global efficiency and increased local efficiency and clustering coefficient. LTLE also displayed a more pronounced network disruption. Contrary to controls, hub nodes in both TLE groups were not distributed across whole brain, but rather found primarily in the paralimbic/limbic and temporal association cortices. Regions with increased centrality were concentrated in occipital lobes for LTLE and contralateral limbic/temporal areas for RTLE. These findings provide first evidence of altered topological organization of the whole brain volumetric network in TLE, with disruption of the coordinated patterns of

  14. Left Superior Temporal Gyrus Is Coupled to Attended Speech in a Cocktail-Party Auditory Scene.

    Science.gov (United States)

    Vander Ghinst, Marc; Bourguignon, Mathieu; Op de Beeck, Marc; Wens, Vincent; Marty, Brice; Hassid, Sergio; Choufani, Georges; Jousmäki, Veikko; Hari, Riitta; Van Bogaert, Patrick; Goldman, Serge; De Tiège, Xavier

    2016-02-03

    Using a continuous listening task, we evaluated the coupling between the listener's cortical activity and the temporal envelopes of different sounds in a multitalker auditory scene using magnetoencephalography and corticovocal coherence analysis. Neuromagnetic signals were recorded from 20 right-handed healthy adult humans who listened to five different recorded stories (attended speech streams), one without any multitalker background (No noise) and four mixed with a "cocktail party" multitalker background noise at four signal-to-noise ratios (5, 0, -5, and -10 dB) to produce speech-in-noise mixtures, here referred to as Global scene. Coherence analysis revealed that the modulations of the attended speech stream, presented without multitalker background, were coupled at ∼0.5 Hz to the activity of both superior temporal gyri, whereas the modulations at 4-8 Hz were coupled to the activity of the right supratemporal auditory cortex. In cocktail party conditions, with the multitalker background noise, the coupling was at both frequencies stronger for the attended speech stream than for the unattended Multitalker background. The coupling strengths decreased as the Multitalker background increased. During the cocktail party conditions, the ∼0.5 Hz coupling became left-hemisphere dominant, compared with bilateral coupling without the multitalker background, whereas the 4-8 Hz coupling remained right-hemisphere lateralized in both conditions. The brain activity was not coupled to the multitalker background or to its individual talkers. The results highlight the key role of listener's left superior temporal gyri in extracting the slow ∼0.5 Hz modulations, likely reflecting the attended speech stream within a multitalker auditory scene. When people listen to one person in a "cocktail party," their auditory cortex mainly follows the attended speech stream rather than the entire auditory scene. However, how the brain extracts the attended speech stream from the whole

  15. Differential neuropsychological test sensitivity to left temporal lobe epilepsy.

    Science.gov (United States)

    Loring, David W; Strauss, Esther; Hermann, Bruce P; Barr, William B; Perrine, Kenneth; Trenerry, Max R; Chelune, Gordon; Westerveld, Michael; Lee, Gregory P; Meador, Kimford J; Bowden, Stephen C

    2008-05-01

    We examined the sensitivity of the Rey Auditory Verbal Learning Test (AVLT), California Verbal Learning Test (CVLT), Boston Naming Test (BNT), and Multilingual Aphasia Examination Visual Naming subtest (MAE VN) to lateralized temporal lobe epilepsy (TLE) in patients who subsequently underwent anterior temporal lobectomy. For the AVLT (n = 189), left TLE patients performed more poorly than their right TLE counterparts [left TLE = 42.9 (10.6), right TLE = 47.7 (9.9); p LTE = 40.7 (11.1), right TLE = 43.8 (9.9); (p measures of confrontation naming ability [BNT: left LTE = 43.1 (8.9), right TLE = 48.1 (8.9); p < .001 (Cohen's d = .56); MAE VN: left TLE = 42.2, right TLE = 45.6, p = .02 (Cohen's d = .36)]. When these data were modeled in independent logistic regression analyses, the AVLT and BNT both significantly predicted side of seizure focus, although the positive likelihood ratios were modest. In the subset of 108 patients receiving both BNT and AVLT, the AVLT was the only significant predictor of seizure laterality, suggesting individual patient variability regarding whether naming or memory testing may be more sensitive to lateralized TLE.

  16. Anterior Temporal Lobe Morphometry Predicts Categorization Ability

    Directory of Open Access Journals (Sweden)

    Béatrice Garcin

    2018-02-01

    Full Text Available Categorization is the mental operation by which the brain classifies objects and events. It is classically assessed using semantic and non-semantic matching or sorting tasks. These tasks show a high variability in performance across healthy controls and the cerebral bases supporting this variability remain unknown. In this study we performed a voxel-based morphometry study to explore the relationships between semantic and shape categorization tasks and brain morphometric differences in 50 controls. We found significant correlation between categorization performance and the volume of the gray matter in the right anterior middle and inferior temporal gyri. Semantic categorization tasks were associated with more rostral temporal regions than shape categorization tasks. A significant relationship was also shown between white matter volume in the right temporal lobe and performance in the semantic tasks. Tractography revealed that this white matter region involved several projection and association fibers, including the arcuate fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, and inferior longitudinal fasciculus. These results suggest that categorization abilities are supported by the anterior portion of the right temporal lobe and its interaction with other areas.

  17. Auditory verbal hallucinations are related to cortical thinning in the left middle temporal gyrus of patients with schizophrenia.

    Science.gov (United States)

    Cui, Y; Liu, B; Song, M; Lipnicki, D M; Li, J; Xie, S; Chen, Y; Li, P; Lu, L; Lv, L; Wang, H; Yan, H; Yan, J; Zhang, H; Zhang, D; Jiang, T

    2018-01-01

    Auditory verbal hallucinations (AVHs) are one of the most common and severe symptoms of schizophrenia, but the neuroanatomical abnormalities underlying AVHs are not well understood. The present study aims to investigate whether AVHs are associated with cortical thinning. Participants were schizophrenia patients from four centers across China, 115 with AVHs and 93 without AVHs, as well as 261 healthy controls. All received 3 T T1-weighted brain scans, and whole brain vertex-wise cortical thickness was compared across groups. Correlations between AVH severity and cortical thickness were also determined. The left middle part of the middle temporal gyrus (MTG) was significantly thinner in schizophrenia patients with AVHs than in patients without AVHs and healthy controls. Inferences were made using a false discovery rate approach with a threshold at p < 0.05. Left MTG thickness did not differ between patients without AVHs and controls. These results were replicated by a meta-analysis showing them to be consistent across the four centers. Cortical thickness of the left MTG was also found to be inversely correlated with hallucination severity across all schizophrenia patients. The results of this multi-center study suggest that an abnormally thin left MTG could be involved in the pathogenesis of AVHs in schizophrenia.

  18. Perceived Conventionality in Co-speech Gestures Involves the Fronto-Temporal Language Network

    Directory of Open Access Journals (Sweden)

    Dhana Wolf

    2017-11-01

    Full Text Available Face-to-face communication is multimodal; it encompasses spoken words, facial expressions, gaze, and co-speech gestures. In contrast to linguistic symbols (e.g., spoken words or signs in sign language relying on mostly explicit conventions, gestures vary in their degree of conventionality. Bodily signs may have a general accepted or conventionalized meaning (e.g., a head shake or less so (e.g., self-grooming. We hypothesized that subjective perception of conventionality in co-speech gestures relies on the classical language network, i.e., the left hemispheric inferior frontal gyrus (IFG, Broca's area and the posterior superior temporal gyrus (pSTG, Wernicke's area and studied 36 subjects watching video-recorded story retellings during a behavioral and an functional magnetic resonance imaging (fMRI experiment. It is well documented that neural correlates of such naturalistic videos emerge as intersubject covariance (ISC in fMRI even without involving a stimulus (model-free analysis. The subjects attended either to perceived conventionality or to a control condition (any hand movements or gesture-speech relations. Such tasks modulate ISC in contributing neural structures and thus we studied ISC changes to task demands in language networks. Indeed, the conventionality task significantly increased covariance of the button press time series and neuronal synchronization in the left IFG over the comparison with other tasks. In the left IFG, synchronous activity was observed during the conventionality task only. In contrast, the left pSTG exhibited correlated activation patterns during all conditions with an increase in the conventionality task at the trend level only. Conceivably, the left IFG can be considered a core region for the processing of perceived conventionality in co-speech gestures similar to spoken language. In general, the interpretation of conventionalized signs may rely on neural mechanisms that engage during language comprehension.

  19. Schizophrenia as failure of left hemispheric dominance for the phonological component of language.

    Science.gov (United States)

    Angrilli, Alessandro; Spironelli, Chiara; Elbert, Thomas; Crow, Timothy J; Marano, Gianfranco; Stegagno, Luciano

    2009-01-01

    T. J. Crow suggested that the genetic variance associated with the evolution in Homo sapiens of hemispheric dominance for language carries with it the hazard of the symptoms of schizophrenia. Individuals lacking the typical left hemisphere advantage for language, in particular for phonological components, would be at increased risk of the typical symptoms such as auditory hallucinations and delusions. Twelve schizophrenic patients treated with low levels of neuroleptics and twelve matched healthy controls participated in an event-related potential experiment. Subjects matched word-pairs in three tasks: rhyming/phonological, semantic judgment and word recognition. Slow evoked potentials were recorded from 26 scalp electrodes, and a laterality index was computed for anterior and posterior regions during the inter stimulus interval. During phonological processing individuals with schizophrenia failed to achieve the left hemispheric dominance consistently observed in healthy controls. The effect involved anterior (fronto-temporal) brain regions and was specific for the Phonological task; group differences were small or absent when subjects processed the same stimulus material in a Semantic task or during Word Recognition, i.e. during tasks that typically activate more widespread areas in both hemispheres. We show for the first time how the deficit of lateralization in the schizophrenic brain is specific for the phonological component of language. This loss of hemispheric dominance would explain typical symptoms, e.g. when an individual's own thoughts are perceived as an external intruding voice. The change can be interpreted as a consequence of "hemispheric indecision", a failure to segregate phonological engrams in one hemisphere.

  20. Schizophrenia as failure of left hemispheric dominance for the phonological component of language.

    Directory of Open Access Journals (Sweden)

    Alessandro Angrilli

    Full Text Available BACKGROUND: T. J. Crow suggested that the genetic variance associated with the evolution in Homo sapiens of hemispheric dominance for language carries with it the hazard of the symptoms of schizophrenia. Individuals lacking the typical left hemisphere advantage for language, in particular for phonological components, would be at increased risk of the typical symptoms such as auditory hallucinations and delusions. METHODOLOGY/PRINCIPAL FINDINGS: Twelve schizophrenic patients treated with low levels of neuroleptics and twelve matched healthy controls participated in an event-related potential experiment. Subjects matched word-pairs in three tasks: rhyming/phonological, semantic judgment and word recognition. Slow evoked potentials were recorded from 26 scalp electrodes, and a laterality index was computed for anterior and posterior regions during the inter stimulus interval. During phonological processing individuals with schizophrenia failed to achieve the left hemispheric dominance consistently observed in healthy controls. The effect involved anterior (fronto-temporal brain regions and was specific for the Phonological task; group differences were small or absent when subjects processed the same stimulus material in a Semantic task or during Word Recognition, i.e. during tasks that typically activate more widespread areas in both hemispheres. CONCLUSIONS/SIGNIFICANCE: We show for the first time how the deficit of lateralization in the schizophrenic brain is specific for the phonological component of language. This loss of hemispheric dominance would explain typical symptoms, e.g. when an individual's own thoughts are perceived as an external intruding voice. The change can be interpreted as a consequence of "hemispheric indecision", a failure to segregate phonological engrams in one hemisphere.

  1. Functional alterations of fronto-limbic circuit and default mode network systems in first-episode, drug-naïve patients with major depressive disorder: A meta-analysis of resting-state fMRI data.

    Science.gov (United States)

    Zhong, Xue; Pu, Weidan; Yao, Shuqiao

    2016-12-01

    The neurobiological mechanisms of depression are increasingly being explored through resting-state brain imaging studies. However, resting-state fMRI findings have varied, perhaps because of differences between study populations, which included the disorder course and medication use. The aim of our study was to integrate studies of resting-state fMRI and explore the alterations of abnormal brain activity in first-episode, drug-naïve patients with major depressive disorder. Relevant imaging reports in English were searched, retrieved, selected and subjected to analysis by activation likelihood estimation, a coordinate-based meta-analysis technique (final sample, 31 studies). Coordinates extracted from the original reports were assigned to two categories based on effect directionality. Compared with healthy controls, the first-episode, medication-naïve major depressive disorder patients showed decreased brain activity in the dorsolateral prefrontal cortex, superior temporal gyrus, posterior precuneus, and posterior cingulate, as well as in visual areas within the occipital lobe, lingual gyrus, and fusiform gyrus, and increased activity in the putamen and anterior precuneus. Not every study that has reported relevant data met the inclusion criteria. Resting-state functional alterations were located mainly in the fronto-limbic system, including the dorsolateral prefrontal cortex and putamen, and in the default mode network, namely the precuneus and superior/middle temporal gyrus. Abnormal functional alterations of the fronto-limbic circuit and default mode network may be characteristic of first-episode, drug-naïve major depressive disorder patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Maturation of Cortico-Subcortical Structural Networks-Segregation and Overlap of Medial Temporal and Fronto-Striatal Systems in Development.

    Science.gov (United States)

    Walhovd, Kristine B; Tamnes, Christian K; Bjørnerud, Atle; Due-Tønnessen, Paulina; Holland, Dominic; Dale, Anders M; Fjell, Anders M

    2015-07-01

    The brain consists of partly segregated neural circuits within which structural convergence and functional integration occurs during development. The relationship of structural cortical and subcortical maturation is largely unknown. We aimed to study volumetric development of the hippocampus and basal ganglia (caudate, putamen, pallidum, accumbens) in relation to volume changes throughout the cortex. Longitudinal MRI data were obtained across a mean interval of 2.6 years in 85 participants with an age range of 8-19 years at study start. Left and right subcortical changes were related to cortical change vertex-wise in the ipsilateral hemisphere with general linear models with age, sex, interval between scans, and mean cortical volume change as covariates. Hippocampal-cortical change relationships centered on parts of the Papez circuit, including entorhinal, parahippocampal, and isthmus cingulate areas, and lateral temporal, insular, and orbitofrontal cortices in the left hemisphere. Basal ganglia-cortical change relationships were observed in mostly nonoverlapping and more anterior cortical areas, all including the anterior cingulate. Other patterns were unique to specific basal ganglia structures, including pre-, post-, and paracentral patterns relating to putamen change. In conclusion, patterns of cortico-subcortical development as assessed by morphometric analyses in part map out segregated neural circuits at the macrostructural level. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Functional asymmetry between the left and right human fusiform gyrus explored through electrical brain stimulation.

    Science.gov (United States)

    Rangarajan, Vinitha; Parvizi, Josef

    2016-03-01

    The ventral temporal cortex (VTC) contains several areas with selective responses to words, numbers, faces, and objects as demonstrated by numerous human and primate imaging and electrophysiological studies. Our recent work using electrocorticography (ECoG) confirmed the presence of face-selective neuronal populations in the human fusiform gyrus (FG) in patients implanted with intracranial electrodes in either the left or right hemisphere. Electrical brain stimulation (EBS) disrupted the conscious perception of faces only when it was delivered in the right, but not left, FG. In contrast to our previous findings, here we report both negative and positive EBS effects in right and left FG, respectively. The presence of right hemisphere language dominance in the first, and strong left-handedness and poor language processing performance in the second case, provide indirect clues about the functional architecture of the human VTC in relation to hemispheric asymmetries in language processing and handedness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Left-right subtraction of brain CT

    International Nuclear Information System (INIS)

    Ishiguchi, Tsuneo; Sakuma, Sadayuki

    1986-01-01

    A new image-processing method to obtain a left-right subtraction image of CT was designed for the automated detection of abnormalities in brain CT. An original CT image was divided in two by a centerline. Then the right half of the image was subtracted from the left half by calculating the absorption value of the pixels on the symmetrical positions against the centerline. The mean and the standard deviation of the absorption value of the pixels in the subtraction image were used as parameters for analysis, and the detectability of abnormal CT findings was evaluated in 100 cases - 50 cases each with normal and abnormal CT. The presence of abnormalities could be diagnosed with a sensitivity of 86 %, a specificity of 90 %, and an overall accuracy of 88 % when the borderline of these parameters between normal and abnormal CT was set at the mean + 2SD in the normal group. As a further analysis, the CT image was subdivided into several areas from a functional or anatomical viewpoint, such as cerebral vascular territories, and the left-right subtraction image of each area was obtained. The possibilities of diagnosing the location of an abnormality and of detecting smaller lesions with this method were shown. Left-right subtraction was considered to be a useful method for the detection of asymmetric abnormalities in the automated diagnosis of brain CT. (author)

  5. Intracerebral stimulation of left and right ventral temporal cortex during object naming.

    Science.gov (United States)

    Bédos Ulvin, Line; Jonas, Jacques; Brissart, Hélène; Colnat-Coulbois, Sophie; Thiriaux, Anne; Vignal, Jean-Pierre; Maillard, Louis

    2017-12-01

    While object naming is traditionally considered asa left hemisphere function, neuroimaging studies have reported activations related to naming in the ventral temporal cortex (VTC) bilaterally. Our aim was to use intracerebral electrical stimulation to specifically compare left and right VTC in naming. In twenty-three epileptic patients tested for visual object naming during stimulation, the proportion of naming impairments was significantly higher in the left than in the right VTC (31.3% vs 13.6%). The highest proportions of positive naming sites were found in the left fusiform gyrus and occipito-temporal sulcus (47.5% and 31.8%). For 17 positive left naming sites, an additional semantic picture matching was carried out, always successfully performed. Our results showed the enhanced role of the left compared to the right VTC in naming and suggest that it may be involved in lexical retrieval rather than in semantic processing. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Abnormal fronto-striatal activation as a marker of threshold and subthreshold Bulimia Nervosa.

    Science.gov (United States)

    Cyr, Marilyn; Yang, Xiao; Horga, Guillermo; Marsh, Rachel

    2018-04-01

    This study aimed to determine whether functional disturbances in fronto-striatal control circuits characterize adolescents with Bulimia Nervosa (BN) spectrum eating disorders regardless of clinical severity. FMRI was used to assess conflict-related brain activations during performance of a Simon task in two samples of adolescents with BN symptoms compared with healthy adolescents. The BN samples differed in the severity of their clinical presentation, illness duration and age. Multi-voxel pattern analyses (MVPAs) based on machine learning were used to determine whether patterns of fronto-striatal activation characterized adolescents with BN spectrum disorders regardless of clinical severity, and whether accurate classification of less symptomatic adolescents (subthreshold BN; SBN) could be achieved based on patterns of activation in adolescents who met DSM5 criteria for BN. MVPA classification analyses revealed that both BN and SBN adolescents could be accurately discriminated from healthy adolescents based on fronto-striatal activation. Notably, the patterns detected in more severely ill BN compared with healthy adolescents accurately discriminated less symptomatic SBN from healthy adolescents. Deficient activation of fronto-striatal circuits can characterize BN early in its course, when clinical presentations are less severe, perhaps pointing to circuit-based disturbances as useful biomarker or risk factor for the disorder, and a tool for understanding its developmental trajectory, as well as the development of early interventions. © 2018 Wiley Periodicals, Inc.

  7. Is the Brain Stuff Still the Right (or Left) Stuff?

    Science.gov (United States)

    Lynch, Dudley

    1986-01-01

    The author presents evidence that supports the argument for the validity of right brain-left brain theories. Discusses the brain's "sense of the future," what the brain does with new information, and altering the brain's ability to process change. A bibliography of further readings is included. (CT)

  8. Activation and Functional Connectivity of the Left Inferior Temporal Gyrus during Visual Speech Priming in Healthy Listeners and Listeners with Schizophrenia.

    Science.gov (United States)

    Wu, Chao; Zheng, Yingjun; Li, Juanhua; Zhang, Bei; Li, Ruikeng; Wu, Haibo; She, Shenglin; Liu, Sha; Peng, Hongjun; Ning, Yuping; Li, Liang

    2017-01-01

    Under a "cocktail-party" listening condition with multiple-people talking, compared to healthy people, people with schizophrenia benefit less from the use of visual-speech (lipreading) priming (VSP) cues to improve speech recognition. The neural mechanisms underlying the unmasking effect of VSP remain unknown. This study investigated the brain substrates underlying the unmasking effect of VSP in healthy listeners and the schizophrenia-induced changes in the brain substrates. Using functional magnetic resonance imaging, brain activation and functional connectivity for the contrasts of the VSP listening condition vs. the visual non-speech priming (VNSP) condition were examined in 16 healthy listeners (27.4 ± 8.6 years old, 9 females and 7 males) and 22 listeners with schizophrenia (29.0 ± 8.1 years old, 8 females and 14 males). The results showed that in healthy listeners, but not listeners with schizophrenia, the VSP-induced activation (against the VNSP condition) of the left posterior inferior temporal gyrus (pITG) was significantly correlated with the VSP-induced improvement in target-speech recognition against speech masking. Compared to healthy listeners, listeners with schizophrenia showed significantly lower VSP-induced activation of the left pITG and reduced functional connectivity of the left pITG with the bilateral Rolandic operculum, bilateral STG, and left insular. Thus, the left pITG and its functional connectivity may be the brain substrates related to the unmasking effect of VSP, assumedly through enhancing both the processing of target visual-speech signals and the inhibition of masking-speech signals. In people with schizophrenia, the reduced unmasking effect of VSP on speech recognition may be associated with a schizophrenia-related reduction of VSP-induced activation and functional connectivity of the left pITG.

  9. Differences in visual vs. verbal memory impairments as a result of focal temporal lobe damage in patients with traumatic brain injury.

    Science.gov (United States)

    Ariza, Mar; Pueyo, Roser; Junqué, Carme; Mataró, María; Poca, María Antonia; Mena, Maria Pau; Sahuquillo, Juan

    2006-09-01

    The aim of the present study was to determine whether the type of lesion in a sample of moderate and severe traumatic brain injury (TBI) was related to material-specific memory impairment. Fifty-nine patients with TBI were classified into three groups according to whether the site of the lesion was right temporal, left temporal or diffuse. Six-months post-injury, visual (Warrington's Facial Recognition Memory Test and Rey's Complex Figure Test) and verbal (Rey's Auditory Verbal Learning Test) memories were assessed. Visual memory deficits assessed by facial memory were associated with right temporal lobe lesion, whereas verbal memory performance assessed with a list of words was related to left temporal lobe lesion. The group with diffuse injury showed both verbal and visual memory impairment. These results suggest a material-specific memory impairment in moderate and severe TBI after focal temporal lesions and a non-specific memory impairment after diffuse damage.

  10. Delayed radiation necrosis of the brain simulating a brain tumor

    International Nuclear Information System (INIS)

    Ikeda, Hiroya; Kanai, Nobuhiro; Kamikawa, Kiyoo

    1976-01-01

    Two cases of delayed radiation necrosis of the brain are reported. Case 1 was a 50-year-old man who had right hemiparesis and disorientation 26 months after Linac irradiation (5,000 rad), preceded by an operation for right maxillar carcinoma. A left carotid angiogram demonstrated a left temporal mass lesion, extending to the frontal lobe. Case 2 was a 41-year-old man who had previously had an operation for right intraorbital plasmocytoma, followed by two Co irradiations (6,400 rad, and 5,000 rad). He had the signs and symptoms of intracranial hypertension 36 months after his last irradiation. A left carotid angiogram demonstrated a left temporal mass lesion. Both cases were treated by administration of steroid hormone (which alleviated the signs and symptoms) and by temporal lobectomy. Microscopic examinations showed necrosis of the brain tissues associated with hyaline degeneration of blood vessel walls and perivascular cell infiltration. The signs and symptoms of intracranial hypertension subsided postoperatively. Thirteen other cases the same as ours were collected from literature. They showed the signs and symptoms simulating a brain tumor (like a metastatic brain tumor) after irradiation to extracranial malignant tumors. Diagnosis of radiation necrosis was made by operation or autopsy. A follow-up for a long time is necessary, because the pathological changes in the brain may be progressive and extending in some cases, although decompressive operations for mass lesions give excellent results. (auth.)

  11. An evaluation of the left-brain vs. right-brain hypothesis with resting state functional connectivity magnetic resonance imaging.

    Science.gov (United States)

    Nielsen, Jared A; Zielinski, Brandon A; Ferguson, Michael A; Lainhart, Janet E; Anderson, Jeffrey S

    2013-01-01

    Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from publicly available resting state scans for 1011 individuals between the ages of 7 and 29. For each subject, functional lateralization was measured for each pair of 7266 regions covering the gray matter at 5-mm resolution as a difference in correlation before and after inverting images across the midsagittal plane. The difference in gray matter density between homotopic coordinates was used as a regressor to reduce the effect of structural asymmetries on functional lateralization. Nine left- and 11 right-lateralized hubs were identified as peaks in the degree map from the graph of significantly lateralized connections. The left-lateralized hubs included regions from the default mode network (medial prefrontal cortex, posterior cingulate cortex, and temporoparietal junction) and language regions (e.g., Broca Area and Wernicke Area), whereas the right-lateralized hubs included regions from the attention control network (e.g., lateral intraparietal sulcus, anterior insula, area MT, and frontal eye fields). Left- and right-lateralized hubs formed two separable networks of mutually lateralized regions. Connections involving only left- or only right-lateralized hubs showed positive correlation across subjects, but only for connections sharing a node. Lateralization of brain connections appears to be a local rather than global property of brain networks, and our data are not consistent with a whole-brain phenotype of greater "left-brained" or greater "right-brained" network strength

  12. Semiautomated volumetry of the cerebrum, cerebellum-brain stem, and temporal lobe on brain magnetic resonance images

    International Nuclear Information System (INIS)

    Hayashi, Norio; Matsuura, Yukihiro; Kawahara, Kazuhiro; Tsujii, Hideo; Yamamoto, Tomoyuki; Sanada, Shigeru; Suzuki, Masayuki; Matsui, Osamu

    2008-01-01

    The aim of this study was to develop an automated method of segmenting the cerebrum, cerebellum-brain stem, and temporal lobe simultaneously on magnetic resonance (MR) images. We obtained T1-weighted MR images from 10 normal subjects and 19 patients with brain atrophy. To perform automated volumetry from MR images, we performed the following three steps: segmentation of the brain region; separation between the cerebrum and the cerebellum-brain stem; and segmentation of the temporal lobe. Evaluation was based on the correctly recognized region (CRR) (i.e., the region recognized by both the automated and manual methods). The mean CRRs of the normal and atrophic brains were 98.2% and 97.9% for the cerebrum, 87.9% and 88.5% for the cerebellum-brain stem, and 76.9% and 85.8% for the temporal lobe, respectively. We introduce an automated volumetric method for the cerebrum, cerebellum-brain stem, and temporal lobe on brain MR images. Our method can be applied to not only the normal brain but also the atrophic brain. (author)

  13. Sex differences in effective fronto-limbic connectivity during negative emotion processing.

    Science.gov (United States)

    Lungu, Ovidiu; Potvin, Stéphane; Tikàsz, Andràs; Mendrek, Adrianna

    2015-12-01

    In view of the greater prevalence of depression and anxiety disorders in women than in men, functional magnetic resonance imaging (fMRI) studies have examined sex-differences in brain activations during emotion processing. Comparatively, sex-differences in brain connectivity received little attention, despite evidence for important fronto-limbic connections during emotion processing across sexes. Here, we investigated sex-differences in fronto-limbic connectivity during negative emotion processing. Forty-six healthy individuals (25 women, 21 men) viewed negative, positive and neutral images during an fMRI session. Effective connectivity between significantly activated regions was examined using Granger causality and psychophysical interaction analyses. Sex steroid hormones and feminine-masculine traits were also measured. Subjective ratings of negative emotional images were higher in women than in men. Across sexes, significant activations were observed in the dorso-medial prefrontal cortex (dmPFC) and the right amygdala. Granger connectivity from right amygdala was significantly greater than that from dmPFC during the 'high negative' condition, an effect driven by men. Magnitude of this effect correlated negatively with highly negative image ratings and feminine traits and positively with testosterone levels. These results highlight critical sex differences in brain connectivity during negative emotion processing and point to the fact that both biological (sex steroid hormones) and psychosocial (gender role and identity) variables contribute to them. As the dmPFC is involved in social cognition and action planning, and the amygdala-in threat detection, the connectivity results suggest that compared to women, men have a more evaluative, rather than purely affective, brain response during negative emotion processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The regional neuronal activity in left posterior middle temporal gyrus is correlated with the severity of chronic aphasia.

    Science.gov (United States)

    Li, Jianlin; Du, Dunren; Gao, Wei; Sun, Xichun; Xie, Haizhu; Zhang, Gang; Li, Jian; Li, Honglun; Li, Kefeng

    2017-01-01

    Aphasia is one of the most disabling cognitive deficits affecting >2 million people in the USA. The neuroimaging characteristics of chronic aphasic patients (>6 months post onset) remain largely unknown. The objective of this study was to investigate the regional signal changes of spontaneous neuronal activity of brain and the inter-regional connectivity in chronic aphasia. Resting-state blood oxygenation level-dependent functional magnetic resonance imaging (fMRI) was used to obtain fMRI data from 17 chronic aphasic patients and 20 healthy control subjects in a Siemens Verio 3.0T MR Scanner. The amplitude of low-frequency fluctuation (ALFF) was determined, which directly reflects the regional neuronal activity. The functional connectivity (FC) of fMRI was assessed using a seed voxel linear correlation approach. The severity of aphasia was evaluated by aphasia quotient (AQ) scores obtained from Western Aphasia Battery test. Compared with normal subjects, aphasic patients showed decreased ALFF values in the regions of left posterior middle temporal gyrus (PMTG), left medial prefrontal gyrus, and right cerebellum. The ALFF values in left PMTG showed strong positive correlation with the AQ score (coefficient r =0.79, P temporal gyrus (BA20), fusiform gyrus (BA37), and inferior frontal gyrus (BA47\\45\\44). Left PMTG might play an important role in language dysfunction of chronic aphasia, and ALFF value might be a promising indicator to evaluate the severity of aphasia.

  15. Hypometabolism in Posterior and Temporal Areas of the Brain is Associated with Cognitive Decline in Parkinson's Disease.

    Science.gov (United States)

    Tard, Céline; Demailly, Franck; Delval, Arnaud; Semah, Franck; Defebvre, Luc; Dujardin, Kathy; Moreau, Caroline

    2015-01-01

    Brain metabolic profiles of patients with Parkinson's disease (PD) and cognitive impairment or dementia are now available. It would be useful if data on brain metabolism were also predictive of the risk of a pejorative cognitive evolution - especially in the multidisciplinary management of advanced PD patients. The primary objective was to determine whether a specific brain metabolic pattern is associated with cognitive decline in PD. Sixteen advanced PD patients were screened for the absence of cognitive impairment (according to the Mattis dementia rating scale, MDRS) and underwent [18F]-fluorodeoxyglucose positron emission tomography brain imaging in the "off drug" state. The MDRS was scored again about two years later, categorizing patients as having significant cognitive decline (decliners) or not (stables). The two groups were then compared in terms of their brain metabolism at inclusion. There were six decliners and ten stables. Significant hypometabolism in the two precunei (Brodmann area (BA) 31), the left middle temporal gyrus (BA21) and the left fusiform gyrus (BA37) was found in the decliner group compared withthe stables. In advanced PD, a particular metabolic pattern may be associated with the onset of significant cognitive decline.

  16. No inherent left and right side in human 'mental number line': evidence from right brain damage.

    Science.gov (United States)

    Aiello, Marilena; Jacquin-Courtois, Sophie; Merola, Sheila; Ottaviani, Teresa; Tomaiuolo, Francesco; Bueti, Domenica; Rossetti, Yves; Doricchi, Fabrizio

    2012-08-01

    Spatial reasoning has a relevant role in mathematics and helps daily computational activities. It is widely assumed that in cultures with left-to-right reading, numbers are organized along the mental equivalent of a ruler, the mental number line, with small magnitudes located to the left of larger ones. Patients with right brain damage can disregard smaller numbers while mentally setting the midpoint of number intervals. This has been interpreted as a sign of spatial neglect for numbers on the left side of the mental number line and taken as a strong argument for the intrinsic left-to-right organization of the mental number line. Here, we put forward the understanding of this cognitive disability by discovering that patients with right brain damage disregard smaller numbers both when these are mapped on the left side of the mental number line and on the right side of an imagined clock face. This shows that the right hemisphere supports the representation of small numerical magnitudes independently from their mapping on the left or the right side of a spatial-mental layout. In addition, the study of the anatomical correlates through voxel-based lesion-symptom mapping and the mapping of lesion peaks on the diffusion tensor imaging-based reconstruction of white matter pathways showed that the rightward bias in the imagined clock-face was correlated with lesions of high-level middle temporal visual areas that code stimuli in object-centred spatial coordinates, i.e. stimuli that, like a clock face, have an inherent left and right side. In contrast, bias towards higher numbers on the mental number line was linked to white matter damage in the frontal component of the parietal-frontal number network. These anatomical findings show that the human brain does not represent the mental number line as an object with an inherent left and right side. We conclude that the bias towards higher numbers in the mental bisection of number intervals does not depend on left side spatial

  17. Task-dependent modulation of regions in the left temporal cortex during auditory sentence comprehension.

    Science.gov (United States)

    Zhang, Linjun; Yue, Qiuhai; Zhang, Yang; Shu, Hua; Li, Ping

    2015-01-01

    Numerous studies have revealed the essential role of the left lateral temporal cortex in auditory sentence comprehension along with evidence of the functional specialization of the anterior and posterior temporal sub-areas. However, it is unclear whether task demands (e.g., active vs. passive listening) modulate the functional specificity of these sub-areas. In the present functional magnetic resonance imaging (fMRI) study, we addressed this issue by applying both independent component analysis (ICA) and general linear model (GLM) methods. Consistent with previous studies, intelligible sentences elicited greater activity in the left lateral temporal cortex relative to unintelligible sentences. Moreover, responses to intelligibility in the sub-regions were differentially modulated by task demands. While the overall activation patterns of the anterior and posterior superior temporal sulcus and middle temporal gyrus (STS/MTG) were equivalent during both passive and active tasks, a middle portion of the STS/MTG was found to be selectively activated only during the active task under a refined analysis of sub-regional contributions. Our results not only confirm the critical role of the left lateral temporal cortex in auditory sentence comprehension but further demonstrate that task demands modulate functional specialization of the anterior-middle-posterior temporal sub-areas. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Left insular cortex and left SFG underlie prismatic adaptation effects on time perception: evidence from fMRI.

    Science.gov (United States)

    Magnani, Barbara; Frassinetti, Francesca; Ditye, Thomas; Oliveri, Massimiliano; Costantini, Marcello; Walsh, Vincent

    2014-05-15

    Prismatic adaptation (PA) has been shown to affect left-to-right spatial representations of temporal durations. A leftward aftereffect usually distorts time representation toward an underestimation, while rightward aftereffect usually results in an overestimation of temporal durations. Here, we used functional magnetic resonance imaging (fMRI) to study the neural mechanisms that underlie PA effects on time perception. Additionally, we investigated whether the effect of PA on time is transient or stable and, in the case of stability, which cortical areas are responsible of its maintenance. Functional brain images were acquired while participants (n=17) performed a time reproduction task and a control-task before, immediately after and 30 min after PA inducing a leftward aftereffect, administered outside the scanner. The leftward aftereffect induced an underestimation of time intervals that lasted for at least 30 min. The left anterior insula and the left superior frontal gyrus showed increased functional activation immediately after versus before PA in the time versus the control-task, suggesting these brain areas to be involved in the executive spatial manipulation of the representation of time. The left middle frontal gyrus showed an increase of activation after 30 min with respect to before PA. This suggests that this brain region may play a key role in the maintenance of the PA effect over time. Copyright © 2014. Published by Elsevier Inc.

  19. Can FDG PET predict verbal specific memory decline after surgery for left temporal lobe epilepsy when MRI is normal?

    International Nuclear Information System (INIS)

    Sagona, J.A.; Rowe, C.C.; Thomas, D.; Dickinson-Rowe, K.L.

    2002-01-01

    Full text: Temporal lobectomy gives excellent control of seizures in over 80% of patients with temporal lobe epilepsy. The left temporal lobe, particularly the left hippocampus, is primarily responsible for verbal memory. In most patients, the hippocampus which lies in the medial temporal lobe is abnormal and can be removed without loss of memory function. However, removal of the left hippocampus when it appears normal on MRI, often causes a significant decline in verbal specific memory (VSM) function. This paper explores the significance of pre-operative FDG-PET asymmetry in temporal lobe metabolism in predicting the VSM outcome after left temporal lobectomy when MRI demonstrates a normal hippocampus. Fifteen patients between 1993 and 2000, underwent left temporal lobectomy including left hippocampal resection, Pre-operatively all patients underwent 1.5T MRI, FDG PET and neuropsychological assessment. Neuropsychological assessment was repeated post-operatively. The left hippocampus was normal on MRI in nine and demonstrated mild T2 signal change without atrophy in six. FDG PET demonstrated temporal lobe hypometabolism in 12 patients. Post-operatively, neuropsychological evaluation documented a decline in verbal specific memory function in six patients, three with normal MRI and three with mild T2 change. We found that all patients with normal FDG PET studies (n=3) demonstrated significant verbal memory deterioration post-operatively. Nine of twelve patients (75%) with left temporal lobe hypometabolism did not show new verbal memory deficits. FDG PET improves the risk stratification for verbal specific memory decline with left temporal lobectomy in patients with normal hippocampi on MRI. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  20. Building Creativity Training: Drawing with Left Hand to Stimulate Left Brain in Children Age 5-7 Years Old

    Science.gov (United States)

    Saputra, Yanty Hardi; Sabana, Setiawan

    2016-01-01

    Researcher and professionals that started researching about brains since 1930 believe that left brain is a rational brain, which is tightly related with the IO, rational thinking, arithmetic thinking, verbal, segmental, focus, serial (linear), finding the differences, and time management, Meanwhile right brain is the part of brain that controlled…

  1. An evaluation of the left-brain vs. right-brain hypothesis with resting state functional connectivity magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Jared A Nielsen

    Full Text Available Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from publicly available resting state scans for 1011 individuals between the ages of 7 and 29. For each subject, functional lateralization was measured for each pair of 7266 regions covering the gray matter at 5-mm resolution as a difference in correlation before and after inverting images across the midsagittal plane. The difference in gray matter density between homotopic coordinates was used as a regressor to reduce the effect of structural asymmetries on functional lateralization. Nine left- and 11 right-lateralized hubs were identified as peaks in the degree map from the graph of significantly lateralized connections. The left-lateralized hubs included regions from the default mode network (medial prefrontal cortex, posterior cingulate cortex, and temporoparietal junction and language regions (e.g., Broca Area and Wernicke Area, whereas the right-lateralized hubs included regions from the attention control network (e.g., lateral intraparietal sulcus, anterior insula, area MT, and frontal eye fields. Left- and right-lateralized hubs formed two separable networks of mutually lateralized regions. Connections involving only left- or only right-lateralized hubs showed positive correlation across subjects, but only for connections sharing a node. Lateralization of brain connections appears to be a local rather than global property of brain networks, and our data are not consistent with a whole-brain phenotype of greater "left-brained" or greater "right-brained

  2. Acute Biphasic Effects of Ayahuasca.

    Science.gov (United States)

    Schenberg, Eduardo Ekman; Alexandre, João Felipe Morel; Filev, Renato; Cravo, Andre Mascioli; Sato, João Ricardo; Muthukumaraswamy, Suresh D; Yonamine, Maurício; Waguespack, Marian; Lomnicka, Izabela; Barker, Steven A; da Silveira, Dartiu Xavier

    2015-01-01

    Ritual use of ayahuasca, an amazonian Amerindian medicine turned sacrament in syncretic religions in Brazil, is rapidly growing around the world. Because of this internationalization, a comprehensive understanding of the pharmacological mechanisms of action of the brew and the neural correlates of the modified states of consciousness it induces is important. Employing a combination of electroencephalogram (EEG) recordings and quantification of ayahuasca's compounds and their metabolites in the systemic circulation we found ayahuasca to induce a biphasic effect in the brain. This effect was composed of reduced power in the alpha band (8-13 Hz) after 50 minutes from ingestion of the brew and increased slow- and fast-gamma power (30-50 and 50-100 Hz, respectively) between 75 and 125 minutes. Alpha power reductions were mostly located at left parieto-occipital cortex, slow-gamma power increase was observed at left centro-parieto-occipital, left fronto-temporal and right frontal cortices while fast-gamma increases were significant at left centro-parieto-occipital, left fronto-temporal, right frontal and right parieto-occipital cortices. These effects were significantly associated with circulating levels of ayahuasca's chemical compounds, mostly N,N-dimethyltryptamine (DMT), harmine, harmaline and tetrahydroharmine and some of their metabolites. An interpretation based on a cognitive and emotional framework relevant to the ritual use of ayahuasca, as well as it's potential therapeutic effects is offered.

  3. Acute Biphasic Effects of Ayahuasca.

    Directory of Open Access Journals (Sweden)

    Eduardo Ekman Schenberg

    Full Text Available Ritual use of ayahuasca, an amazonian Amerindian medicine turned sacrament in syncretic religions in Brazil, is rapidly growing around the world. Because of this internationalization, a comprehensive understanding of the pharmacological mechanisms of action of the brew and the neural correlates of the modified states of consciousness it induces is important. Employing a combination of electroencephalogram (EEG recordings and quantification of ayahuasca's compounds and their metabolites in the systemic circulation we found ayahuasca to induce a biphasic effect in the brain. This effect was composed of reduced power in the alpha band (8-13 Hz after 50 minutes from ingestion of the brew and increased slow- and fast-gamma power (30-50 and 50-100 Hz, respectively between 75 and 125 minutes. Alpha power reductions were mostly located at left parieto-occipital cortex, slow-gamma power increase was observed at left centro-parieto-occipital, left fronto-temporal and right frontal cortices while fast-gamma increases were significant at left centro-parieto-occipital, left fronto-temporal, right frontal and right parieto-occipital cortices. These effects were significantly associated with circulating levels of ayahuasca's chemical compounds, mostly N,N-dimethyltryptamine (DMT, harmine, harmaline and tetrahydroharmine and some of their metabolites. An interpretation based on a cognitive and emotional framework relevant to the ritual use of ayahuasca, as well as it's potential therapeutic effects is offered.

  4. Individual structural differences in left inferior parietal area are associated with schoolchildrens’ arithmetic scores

    Directory of Open Access Journals (Sweden)

    Yongxin eLi

    2013-12-01

    Full Text Available Arithmetic skill is of critical importance for academic achievement, professional success and everyday life, and childhood is the key period to acquire this skill. Neuroimaging studies have identified that left parietal regions are a key neural substrate for representing arithmetic skill. Although the relationship between functional brain activity in left parietal regions and arithmetic skill has been studied in detail, it remains unclear about the relationship between arithmetic achievement and structural properties in left inferior parietal area in schoolchildren. The current study employed a combination of voxel-based morphometry (VBM for high-resolution T1-weighted images and fiber tracking on diffusion tensor imaging (DTI to examine the relationship between structural properties in the inferior parietal area and arithmetic achievement in 10-year-old schoolchildren. VBM of the T1-weighted images revealed that individual differences in arithmetic scores were significantly and positively correlated with the grey matter (GM volume in the left intraparietal sulcus (IPS. Fiber tracking analysis revealed that the forceps major, left superior longitudinal fasciculus (SLF, bilateral inferior longitudinal fasciculus (ILF and inferior fronto-occipital fasciculus (IFOF were the primary pathways connecting the left IPS with other brain areas. Furthermore, the regression analysis of the probabilistic pathways revealed a significant and positive correlation between the fractional anisotropy (FA values in the left SLF, ILF and bilateral IFOF and arithmetic scores. The brain structure-behavior correlation analyses indicated that the GM volumes in the left IPS and the FA values in the tract pathways connecting left IPS were both related to children’s arithmetic achievement. The present findings provide evidence that individual structural differences in the left IPS are associated with arithmetic scores in schoolchildren.

  5. Synchronized brain activity during rehearsal and short-term memory disruption by irrelevant speech is affected by recall mode.

    Science.gov (United States)

    Kopp, Franziska; Schröger, Erich; Lipka, Sigrid

    2006-08-01

    EEG coherence as a measure of synchronization of brain activity was used to investigate effects of irrelevant speech. In a delayed serial recall paradigm 21 healthy participants retained verbal items over a 10-s delay with and without interfering irrelevant speech. Recall after the delay was varied in two modes (spoken vs. written). Behavioral data showed the classic irrelevant speech effect and a superiority of written over spoken recall mode. Coherence, however, was more sensitive to processing characteristics and showed interactions between the irrelevant speech effect and recall mode during the rehearsal delay in theta (4-7.5 Hz), alpha (8-12 Hz), beta (13-20 Hz), and gamma (35-47 Hz) frequency bands. For gamma, a rehearsal-related decrease of the duration of high coherence due to presentation of irrelevant speech was found in a left-lateralized fronto-central and centro-temporal network only in spoken but not in written recall. In theta, coherence at predominantly fronto-parietal electrode combinations was indicative for memory demands and varied with individual working memory capacity assessed by digit span. Alpha coherence revealed similar results and patterns as theta coherence. In beta, a left-hemispheric network showed longer high synchronizations due to irrelevant speech only in written recall mode. EEG results suggest that mode of recall is critical for processing already during the retention period of a delayed serial recall task. Moreover, the finding that different networks are engaged with different recall modes shows that the disrupting effect of irrelevant speech is not a unitary mechanism.

  6. Spontaneous brain network activity: Analysis of its temporal complexity

    Directory of Open Access Journals (Sweden)

    Mangor Pedersen

    2017-06-01

    Full Text Available The brain operates in a complex way. The temporal complexity underlying macroscopic and spontaneous brain network activity is still to be understood. In this study, we explored the brain’s complexity by combining functional connectivity, graph theory, and entropy analyses in 25 healthy people using task-free functional magnetic resonance imaging. We calculated the pairwise instantaneous phase synchrony between 8,192 brain nodes for a total of 200 time points. This resulted in graphs for which time series of clustering coefficients (the “cliquiness” of a node and participation coefficients (the between-module connectivity of a node were estimated. For these two network metrics, sample entropy was calculated. The procedure produced a number of results: (1 Entropy is higher for the participation coefficient than for the clustering coefficient. (2 The average clustering coefficient is negatively related to its associated entropy, whereas the average participation coefficient is positively related to its associated entropy. (3 The level of entropy is network-specific to the participation coefficient, but not to the clustering coefficient. High entropy for the participation coefficient was observed in the default-mode, visual, and motor networks. These results were further validated using an independent replication dataset. Our work confirms that brain networks are temporally complex. Entropy is a good candidate metric to explore temporal network alterations in diseases with paroxysmal brain disruptions, including schizophrenia and epilepsy. In recent years, connectomics has provided significant insights into the topological complexity of brain networks. However, the temporal complexity of brain networks still remains somewhat poorly understood. In this study we used entropy analysis to demonstrate that the properties of network segregation (the clustering coefficient and integration (the participation coefficient are temporally complex

  7. An Evaluation of the Left-Brain vs. Right-Brain Hypothesis with Resting State Functional Connectivity Magnetic Resonance Imaging

    OpenAIRE

    Nielsen, Jared A.; Zielinski, Brandon A.; Ferguson, Michael A.; Lainhart, Janet E.; Anderson, Jeffrey S.

    2013-01-01

    Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from...

  8. Detection of whole-brain abnormalities in temporal lobe epilepsy using tensor-based morphometry with DARTEL

    Science.gov (United States)

    Li, Wenjing; He, Huiguang; Lu, Jingjing; Lv, Bin; Li, Meng; Jin, Zhengyu

    2009-10-01

    Tensor-based morphometry (TBM) is an automated technique for detecting the anatomical differences between populations by examining the gradients of the deformation fields used to nonlinearly warp MR images. The purpose of this study was to investigate the whole-brain volume changes between the patients with unilateral temporal lobe epilepsy (TLE) and the controls using TBM with DARTEL, which could achieve more accurate inter-subject registration of brain images. T1-weighted images were acquired from 21 left-TLE patients, 21 right-TLE patients and 21 healthy controls, which were matched in age and gender. The determinants of the gradient of deformation fields at voxel level were obtained to quantify the expansion or contraction for individual images relative to the template, and then logarithmical transformation was applied on it. A whole brain analysis was performed using general lineal model (GLM), and the multiple comparison was corrected by false discovery rate (FDR) with pleft-TLE patients, significant volume reductions were found in hippocampus, cingulate gyrus, precentral gyrus, right temporal lobe and cerebellum. These results potentially support the utility of TBM with DARTEL to study the structural changes between groups.

  9. Left and right brain-oriented hemisity subjects show opposite behavioral preferences.

    Science.gov (United States)

    Morton, Bruce E

    2012-01-01

    Recently, three independent, intercorrelated biophysical measures have provided the first quantitative measures of a binary form of behavioral laterality called "Hemisity," a term referring to inherent opposite right or left brain-oriented differences in thinking and behavioral styles. Crucially, the right or left brain-orientation of individuals assessed by these methods was later found to be essentially congruent with the thicker side of their ventral gyrus of the anterior cingulate cortex (vgACC) as revealed by a 3 min MRI procedure. Laterality of this putative executive structural element has thus become the primary standard defining individual hemisity. Here, the behavior of 150 subjects, whose hemisity had been calibrated by MRI, was assessed using five MRI-calibrated preference questionnaires, two of which were new. Right and left brain-oriented subjects selected opposite answers (p > 0.05) for 47 of the 107 "either-or," forced choice type preference questionnaire items. The resulting 30 hemisity subtype preference differences were present in several areas. These were: (1) in logical orientation, (2) in type of consciousness, (3) in fear level and sensitivity, (4) in social-professional orientation, and (5) in pair bonding-spousal dominance style. The right and left brain-oriented hemisity subtype subjects, sorted on the anatomical basis of upon which brain side their vgACC was thickest, showed 30 significant differences in their "either-or" type of behavioral preferences.

  10. Left and right brain-oriented hemisity subjects show opposite behavioral preferences

    Directory of Open Access Journals (Sweden)

    Bruce Eldine Morton

    2012-11-01

    Full Text Available Introduction: Recently, three independent, intercorrelated biophysical measures have provided the first quantitative measures of a binary form of behavioral laterality called Hemisity, a term referring to inherent opposite right or left brain-oriented differences in thinking and behavioral styles. Crucially, the right or left brain-orientation of individuals assessed by these methods was later found to be essentially congruent with the thicker side of their ventral gyrus of the anterior cingulate cortex (vgACC as revealed by a 3 minute MRI procedure. Laterality of this putative executive structural element has thus become the primary standard defining individual hemisity. Methods: Here, the behavior of 150 subjects, whose hemisity had been calibrated by MRI, was assessed using five MRI-calibrated preference questionnaires, two of which were new.Results: Right and left brain-oriented subjects selected opposite answers (p > 0.05 for 47 of the 107 either-or, forced choice type preference questionnaire items. Hemisity subtype preference differences were present in several areas. They were in: a. logical orientation, b. type of consciousness, c. fear level and sensitivity, d. social-professional orientation, and e. pair bonding-spousal dominance style.Conclusions: The right and left brain-oriented hemisity subtype subjects, sorted on the anatomical basis of upon which brain side their vgACC was thickest, showed numerous significant differences in their either-or type of behavioral preferences.

  11. Functional connectivity between right and left mesial temporal structures.

    Science.gov (United States)

    Lacuey, Nuria; Zonjy, Bilal; Kahriman, Emine S; Kaffashi, Farhad; Miller, Jonathan; Lüders, Hans O

    2015-09-01

    The aim of this study is to investigate functional connectivity between right and left mesial temporal structures using cerebrocerebral evoked potentials. We studied seven patients with drug-resistant focal epilepsy who were explored with stereotactically implanted depth electrodes in bilateral hippocampi. In all patients cerebrocerebral evoked potentials evoked by stimulation of the fornix were evaluated as part of a research project assessing fornix stimulation for control of hippocampal seizures. Stimulation of the fornix elicited responses in the ipsilateral hippocampus in all patients with a mean latency of 4.6 ms (range 2-7 ms). Two patients (29 %) also had contralateral hippocampus responses with a mean latency of 7.5 ms (range 5-12 ms) and without involvement of the contralateral temporal neocortex or amygdala. This study confirms the existence of connections between bilateral mesial temporal structures in some patients and explains seizure discharge spreading between homotopic mesial temporal structures without neocortical involvement.

  12. Art and the brain: a view from dementia.

    Science.gov (United States)

    Gretton, Cosima; ffytche, Dominic H

    2014-02-01

    Art making encompasses a range of perceptual and cognitive functions involving widely distributed brain systems. The dementias impact on these systems in different ways, raising the possibility that each dementia has a unique artistic signature. Here we use a review of the visual art of 14 artists with dementia (five Alzheimer's disease, seven fronto-temporal dementia and two dementia with Lewy bodies) to further our understanding of the neurobiological constituents of art production and higher artistic function. Artists with Alzheimer's disease had prominent changes in spatial aspects of their art and attributes of colour and contrast. These qualities were preserved in the art of fronto-temporal dementia, which was characterised by perseverative themes and a shift towards realistic representation. The art of dementia with Lewy Bodies was characterised by simple, bizarre content. The limitations of using visual aspects of individual artworks to infer the impact of dementia on art production are discussed with the need for a wider perspective encompassing changes in cognition, emotion, creativity and artistic personality. A novel classificatory scheme is presented to help characterise neural mechanisms of higher artistic functions in future studies. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Demência fronto-temporal: aspectos clínicos e terapêuticos Demencia frontotemporal: aspectos clínicos y terapéuticos Frontotemporal dementia: clinical and therapeutic features

    Directory of Open Access Journals (Sweden)

    Antônio Lúcio Teixeira-Jr

    2006-04-01

    Full Text Available A demência fronto-temporal é uma importante causa de demência no período pré-senil. Caracteriza-se por significativas modificações do comportamento e da personalidade, enquanto o funcionamento cognitivo avaliado por testes psicométricos tradicionais encontra-se relativamente preservado. Muitos pacientes buscam o psiquiatra em virtude dos sintomas comportamentais proeminentes, como apatia, desinibição e comportamentos perseverativos ou estereotipados. O tratamento racional da demência fronto-temporal é atualmente limitado. Os sintomas comportamentais são controlados principalmente por inibidores seletivos da recaptação de serotonina.La demencia frontotemporal es una importante causa de demencia en el período presenil de la vida. Se caracteriza por alteraciones significativas en el comportamiento y en la personalidad, mientras la función cognitiva evaluada por pruebas psicométricas convencionales resulta relativamente preservada. Muchos pacientes recurren al psiquiatra en función de síntomas comportamentales sobresalientes como apatía, desinhibición y comportamientos perseverantes o estereotipados. El tratamiento racional de la demencia frontotemporal aún se encuentra bastante limitado. Los síntomas comportamentales se controlan principalmente con inhibidores selectivos de la recaptación de serotonina.Frontotemporal dementia is a major cause of dementia in the presenium. It is characterized by significant changes in behavior and personality, while cognitive functioning as assessed by traditional psychometric tests is relatively preserved. Thus, many patients present to the psychiatrist because of the prominence of behavioral symptoms, such as apathy, disinhibition, perseverative or stereotyped behaviors. Rational treatment for frontotemporal dementia is currently limited. The behavioral symptoms are controlled mainly with selective serotonin reuptake inhibitors.

  14. Game Utilization as a Media to Train the Balance of Left and Right Brain

    Directory of Open Access Journals (Sweden)

    Evan Wijaya

    2017-10-01

    Full Text Available Human have two brain hemispheres, left hemisphere and right hemisphere. Left hemisphere is used for processing language, words, numbers, equations, etc. Right hemisphere is used for processing creativity, imagination, music, color, etc. Every human should have balance between left and right hemisphere. One method that could be used for balancing brain hemispheres is to use left and right hands for using tools, writing, or typing. “Typing Rhythm” is a game for PC platform, the purpose of this game is for brain balancing exercise by typing lyric of a song while the song is played.

  15. Osteoradionecrosis of the temporal bone

    International Nuclear Information System (INIS)

    Fujimori, Masato; Koyama, Yukiko; Enomoto, Fuyuki; Ichikawa, Ginichiro

    2002-01-01

    We report a case of temporal bone necrosis that emerged after radiotherapy for epipharyngeal carcinoma performed 13 years ago. The patient was a 51-year-old male. His major complaint was left facial swelling. The patient underwent chemotherapy and radiotherapy (Co 60, 6120 rad), as the treatment of that period, for epipharyngeal carcinoma from September 30, 1986 to January 31, 1987. He also underwent lobectomy of the left temporal lobe in brain surgery for left temporal lobe necrosis in August, 1989. After that operation, we saw constriction in his left external acoustic meatus and continued the follow-up. On October 22, 1999 he felt a left facial swelling. We found skin defects and ulcer formation in the front part of his left ear. Although we administered an antiseptic and antibiotic to the diseased area, his condition did not improve. He was hospitalized for the purpose of undergoing medical treatment on January 6, 2000. We found extensive skin necrosis and defects in his left auricular area. The corrupted temporal bone reached the zygomatic, the bone department external acoustic meatus and the mastoid process was exposing. We performed debridement of the diseased area on January 19, 2000. On February 23, we performed reconstruction by left trapezius muscle flap after debridement once again. One year after the operation, the flap was completely incorporated. (author)

  16. Osteoradionecrosis of the temporal bone

    Energy Technology Data Exchange (ETDEWEB)

    Fujimori, Masato; Koyama, Yukiko; Enomoto, Fuyuki; Ichikawa, Ginichiro [Juntendo Univ., Tokyo (Japan). School of Medicine

    2002-08-01

    We report a case of temporal bone necrosis that emerged after radiotherapy for epipharyngeal carcinoma performed 13 years ago. The patient was a 51-year-old male. His major complaint was left facial swelling. The patient underwent chemotherapy and radiotherapy (Co 60, 6120 rad), as the treatment of that period, for epipharyngeal carcinoma from September 30, 1986 to January 31, 1987. He also underwent lobectomy of the left temporal lobe in brain surgery for left temporal lobe necrosis in August, 1989. After that operation, we saw constriction in his left external acoustic meatus and continued the follow-up. On October 22, 1999 he felt a left facial swelling. We found skin defects and ulcer formation in the front part of his left ear. Although we administered an antiseptic and antibiotic to the diseased area, his condition did not improve. He was hospitalized for the purpose of undergoing medical treatment on January 6, 2000. We found extensive skin necrosis and defects in his left auricular area. The corrupted temporal bone reached the zygomatic, the bone department external acoustic meatus and the mastoid process was exposing. We performed debridement of the diseased area on January 19, 2000. On February 23, we performed reconstruction by left trapezius muscle flap after debridement once again. One year after the operation, the flap was completely incorporated. (author)

  17. Association between right-to-left shunts and brain lesions in sport divers.

    Science.gov (United States)

    Gerriets, Tibo; Tetzlaff, Kay; Hutzelmann, Alfred; Liceni, Thomas; Kopiske, Gerrit; Struck, Niklas; Reuter, Michael; Kaps, Manfred

    2003-10-01

    Recent studies suggest that healthy sport divers may develop clinically silent brain damage, based on the association between a finding of multiple brain lesions on MRI and the presence of right-to-left shunt, a pathway for venous gas bubbles to enter the arterial system. We performed echocontrast transcranial Doppler sonography in 42 sport divers to determine the presence of a right-to-left shunt. Cranial MRI was carried out using a 1.5 T magnet. A lesion was counted if it was hyperintense on both T2-weighted and T2-weighted fluid attenuated inversion recovery sequences. To test the hypothesis that the occurrence of postdive arterial gas emboli is related to brain lesions on MRI, we measured postdive intravascular bubbles in a subset of 15 divers 30 min after open water scuba dives. Echocontrast transcranial Doppler sonography revealed a right-to-left shunt in 16 of the divers (38%). Only one hyperintensive lesion of the central white matter was found and that was in a diver with no evidence of a right-to-left shunt. Postdive arterial gas emboli were detected in 3 out of 15 divers; they had a right-to-left shunt, but no pathologic findings on cranial magnetic resonance imaging. Our data support the theory that right-to-left shunts can serve as a pathway for venous gas bubbles into the arterial circulation. However, we could not confirm an association between brain lesions and the presence of a right-to-left shunt in sport divers.

  18. On the Relationship between Right- brain and Left- brain Dominance and Reading Comprehension Test Performance of Iranian EFL Learners

    Directory of Open Access Journals (Sweden)

    Hassan Soleimani

    2012-05-01

    Full Text Available A tremendous amount of works have been conducted by psycholinguistics to identify hemisphere processing during second/ foreign language learning, or in other words to investigate the role of the brain hemisphere dominance in language performance of learners. Most of these researches have focused on single words and word pairs (e.g., Anaki et al., 1998; Arzouan et. al., 2007; Faust & Mahal, 2007 or simple sentences (Rapp et al., 2007; Kacinik & Chiarello, 2007, and it has been discovered that there is an advantage of right hemisphere for metaphors and an
    advantage of left hemisphere for literal text. But the present research was designed to study Iranian EFL learners' performance in different reading tasks, so there could be differences between the consequences of the former research and the results of the present study due to the context. Here left-brain and right-brain dominance was investigated in 60 individuals (20 right-handed and 10 left-handed male, 20 right-handed and 10 left-handed female via the Edinburg Handedness Questionnaire (EHQ. The research results suggested that the right-handed learners who are supposed to be left-brain outperformed the left-handed ones; and regarding participant's gender, male learners outperformed female learners on reading comprehension test tasks.

  19. [Resting-state functional magnetic resonance study of brain function changes after TIPS operation in patients with liver cirrhosis].

    Science.gov (United States)

    Liu, C; Wang, H B; Yu, Y Q; Wang, M Q; Zhang, G B; Xu, L Y; Wu, J M

    2016-12-20

    Objective: To investigate the brain function changes in cirrhosis patients after transjugular intrahepatic portosystemic shunt (TIPS), resting-state functional MRI (rs-fMRI) performed and fractional amplitude of low frequency fluctuation (fALFF) was analyzed. Methods: From January 2014 to February 2016, a total of 96 cirrhotic patients from invasive technology department and infection department in the First Affiliated Hospital of Anhui Medical University were selected , the blood ammonia data of 96 cirrhotic patients with TIPS operation in four groups were collected after 1, 3, 6 and 12 month, and all subjects performed rs-fMRI scans. The rs-fMRI data processed with DPARSF and SPM12 softwares, whole-brain fALFF values were calculated, and One-Way analysis of variance , multiple comparison analysis and correlation analysis were performed. Results: There were brain regions with significant function changes in four groups patients with TIPS operation after 1, 3, 6 and 12 month, including bilateral superior temporal gyrus, right middle temportal gyrus , right hippocampus, right island of inferior frontal gyrus, left fusiform gyrus, left olfactory cortex, left orbital superior frontal gyrus (all P brain function areas increased in left olfactory cortex, left inferior temporal gyrus, left fusiform gyrus, left orbital middle frontal gyrus, left putamen, left cerebelum, and decreased in left lingual gyrus; patients in the 6-month follow-up showed that brain function areas increased in left middle temportal gyrus, right supramarginal gyrus, right temporal pole, right central operculum, and decreased in left top edge of angular gyrus, left postcentral gyrus; patients in the 12-month follow-up showed that brain function areas increased in right hippocampus, right middle cingulate gyrus, and decreased in right middle temportal gyrus.Compared with patients in the 3-month follow-up, patients in the 6-month follow-up showed that brain function areas increased in left superior

  20. Bilateral fronto-parietal integrity in young chronic cigarette smokers: a diffusion tensor imaging study.

    Directory of Open Access Journals (Sweden)

    Yanhui Liao

    Full Text Available Cigarette smoking continues to be the leading cause of preventable morbidity and mortality in China and other countries. Previous studies have demonstrated gray matter loss in chronic smokers. However, only a few studies assessed the changes of white matter integrity in this group. Based on those previous reports of alterations in white matter integrity in smokers, the aim of this study was to examine the alteration of white matter integrity in a large, well-matched sample of chronic smokers and non-smokers.Using in vivo diffusion tensor imaging (DTI to measure the differences of whole-brain white matter integrity between 44 chronic smoking subjects (mean age, 28.0±5.6 years and 44 healthy age- and sex-matched comparison non-smoking volunteers (mean age, 26.3±5.8 years. DTI was performed on a 3-Tesla Siemens scanner (Allegra; Siemens Medical System. The data revealed that smokers had higher fractional anisotropy (FA than healthy non-smokers in almost symmetrically bilateral fronto-parietal tracts consisting of a major white matter pathway, the superior longitudinal fasciculus (SLF.We found the almost symmetrically bilateral fronto-parietal whiter matter changes in a relatively large sample of chronic smokers. These findings support the hypothesis that chronic cigarette smoking involves alterations of bilateral fronto-parietal connectivity.

  1. Activity in the fronto-parietal network indicates numerical inductive reasoning beyond calculation: An fMRI study combined with a cognitive model.

    Science.gov (United States)

    Liang, Peipeng; Jia, Xiuqin; Taatgen, Niels A; Borst, Jelmer P; Li, Kuncheng

    2016-05-19

    Numerical inductive reasoning refers to the process of identifying and extrapolating the rule involved in numeric materials. It is associated with calculation, and shares the common activation of the fronto-parietal regions with calculation, which suggests that numerical inductive reasoning may correspond to a general calculation process. However, compared with calculation, rule identification is critical and unique to reasoning. Previous studies have established the central role of the fronto-parietal network for relational integration during rule identification in numerical inductive reasoning. The current question of interest is whether numerical inductive reasoning exclusively corresponds to calculation or operates beyond calculation, and whether it is possible to distinguish between them based on the activity pattern in the fronto-parietal network. To directly address this issue, three types of problems were created: numerical inductive reasoning, calculation, and perceptual judgment. Our results showed that the fronto-parietal network was more active in numerical inductive reasoning which requires more exchanges between intermediate representations and long-term declarative knowledge during rule identification. These results survived even after controlling for the covariates of response time and error rate. A computational cognitive model was developed using the cognitive architecture ACT-R to account for the behavioral results and brain activity in the fronto-parietal network.

  2. The processing of semantic relatedness in the brain: Evidence from associative and categorical false recognition effects following transcranial direct current stimulation of the left anterior temporal lobe.

    Science.gov (United States)

    Díez, Emiliano; Gómez-Ariza, Carlos J; Díez-Álamo, Antonio M; Alonso, María A; Fernandez, Angel

    2017-08-01

    A dominant view of the role of the anterior temporal lobe (ATL) in semantic memory is that it serves as an integration hub, specialized in the processing of semantic relatedness by way of mechanisms that bind together information from different brain areas to form coherent amodal representations of concepts. Two recent experiments, using brain stimulation techniques along with the Deese-Roediger-McDermott (DRM) paradigm, have found a consistent false memory reduction effect following stimulation of the ATL, pointing to the importance of the ATL in semantic/conceptual processing. To more precisely identify the specific process being involved, we conducted a DRM experiment in which transcranial direct current stimulation (anode/cathode/sham) was applied over the participants' left ATL during the study of lists of words that were associatively related to their non-presented critical words (e.g., rotten, worm, red, tree, liqueur, unripe, cake, food, eden, peel, for the critical item apple) or categorically related (e.g., pear, banana, peach, orange, cantaloupe, watermelon, strawberry, cherry, kiwi, plum, for the same critical item apple). The results showed that correct recognition was not affected by stimulation. However, an interaction between stimulation condition and type of relation for false memories was found, explained by a significant false recognition reduction effect in the anodal condition for associative lists that was not observed for categorical lists. Results are congruent with previous findings and, more importantly, they help to clarify the nature and locus of false memory reduction effects, suggesting a differential role of the left ATL, and providing critical evidence for understanding the creation of semantic relatedness-based memory illusions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. AN INVESTIGATION OF IMPLICIT MEMORY THROUGH LEFT TEMPORAL LOBECTOMY FOR EPILEPSY

    Science.gov (United States)

    Tracy, Joseph I.; Osipowicz, Karol; Godofsky, Samuel; Shah, Atif; Khan, Waseem; Sharan, Ashwini; Sperling, Michael R.

    2012-01-01

    Temporal lobe epilepsy patients have demonstrated a relative preservation in the integrity of implicit memory procedures. We examined performance in a verbal implicit and explicit memory task in left anterior temporal lobectomy patients (LATL) and healthy normal controls (NC) while undergoing fMRI. We hypothesized that despite the relative integrity of implicit memory in both the LATL patients and normal controls, the two groups would show distinct functional neuroanatomic profiles during implicit memory. LATLs and NCs performed Jacoby’s Process Dissociation Process (PDP) procedure during fMRI, requiring completion of word stems based on the previously studied words or new/unseen words. Measures of automaticity and recollection provided uncontaminated indices of implicit and explicit memory, respectively. The behavioral data showed that in the face of temporal lobe pathology implicit memory can be carried out, suggesting implicit verbal memory retrieval is non-mesial temporal in nature. Compared to NCs, the LATL patients showed reliable activation, not deactivation, during implicit (automatic) responding. The regions mediating this response were cortical (left medial frontal and precuneus) and striatal. The active regions in LATL patients have the capacity to implement associative, conditioned responses that might otherwise be carried out by a healthy temporal lobe, suggesting this represented a compensatory activity. Because the precuneus has also been implicated in explicit memory, the data suggests this structure may have a highly flexible functionality, capable of supporting implementation of either explicit memory, or automatic processes such as implicit memory retrieval. Our data suggest that a healthy mesial/anterior temporal lobe may be needed for generating the posterior deactivation perceptual priming response seen in normals. PMID:22981890

  4. Fronto-parietal coding of goal-directed actions performed by artificial agents.

    Science.gov (United States)

    Kupferberg, Aleksandra; Iacoboni, Marco; Flanagin, Virginia; Huber, Markus; Kasparbauer, Anna; Baumgartner, Thomas; Hasler, Gregor; Schmidt, Florian; Borst, Christoph; Glasauer, Stefan

    2018-03-01

    With advances in technology, artificial agents such as humanoid robots will soon become a part of our daily lives. For safe and intuitive collaboration, it is important to understand the goals behind their motor actions. In humans, this process is mediated by changes in activity in fronto-parietal brain areas. The extent to which these areas are activated when observing artificial agents indicates the naturalness and easiness of interaction. Previous studies indicated that fronto-parietal activity does not depend on whether the agent is human or artificial. However, it is unknown whether this activity is modulated by observing grasping (self-related action) and pointing actions (other-related action) performed by an artificial agent depending on the action goal. Therefore, we designed an experiment in which subjects observed human and artificial agents perform pointing and grasping actions aimed at two different object categories suggesting different goals. We found a signal increase in the bilateral inferior parietal lobule and the premotor cortex when tool versus food items were pointed to or grasped by both agents, probably reflecting the association of hand actions with the functional use of tools. Our results show that goal attribution engages the fronto-parietal network not only for observing a human but also a robotic agent for both self-related and social actions. The debriefing after the experiment has shown that actions of human-like artificial agents can be perceived as being goal-directed. Therefore, humans will be able to interact with service robots intuitively in various domains such as education, healthcare, public service, and entertainment. © 2017 Wiley Periodicals, Inc.

  5. Success of Anomia Treatment in Aphasia Is Associated With Preserved Architecture of Global and Left Temporal Lobe Structural Networks.

    Science.gov (United States)

    Bonilha, Leonardo; Gleichgerrcht, Ezequiel; Nesland, Travis; Rorden, Chris; Fridriksson, Julius

    2016-03-01

    Targeted speech therapy can lead to substantial naming improvement in some subjects with anomia following dominant-hemisphere stroke. We investigated whether treatment-induced improvement in naming is associated with poststroke preservation of structural neural network architecture. Twenty-four patients with poststroke chronic aphasia underwent 30 hours of speech therapy over a 2-week period and were assessed at baseline and after therapy. Whole brain maps of neural architecture were constructed from pretreatment diffusion tensor magnetic resonance imaging to derive measures of global brain network architecture (network small-worldness) and regional network influence (nodal betweenness centrality). Their relationship with naming recovery was evaluated with multiple linear regressions. Treatment-induced improvement in correct naming was associated with poststroke preservation of global network small worldness and of betweenness centrality in temporal lobe cortical regions. Together with baseline aphasia severity, these measures explained 78% of the variability in treatment response. Preservation of global and left temporal structural connectivity broadly explains the variability in treatment-related naming improvement in aphasia. These findings corroborate and expand on previous classical lesion-symptom mapping studies by elucidating some of the mechanisms by which brain damage may relate to treated aphasia recovery. Favorable naming outcomes may result from the intact connections between spared cortical areas that are functionally responsive to treatment. © The Author(s) 2015.

  6. Assessment of the ring enhancement of the brain abscess by computerized tomography

    International Nuclear Information System (INIS)

    Tanaka, Keisei; Yasunaga, Akio; Kawano, Teruaki; Miyazaki, Hisaya; Mori, Kazuo

    1982-01-01

    The underlying mechanism concerning the ring enhancement of the CT scan was considered in three cases of brain abscess. The first case, a 55-year-old male, was admitted 1 week after the onset of symptoms. A CT scan showed a contrast ring enhancement with perifocal severe edema in the right temporal lobe. A subsequent CT scan, after the administration of antibiotics and steroid treatment, showed no contrast ring enhancement. However, it reappeared after discontinuation of treatment and the disappeared again following the readministration of antibiotics. In the acute stage, functional changes in the local vessels (failure of BBB) caused by inflammation might have been responsible for the ring enhancement. The second case, an 8-year-old girl, was abmitted 1 month after the onset of symptoms. An initial CT scan showed large lobulated abscesses in the right fronto-temporal lobe, with ring enhancement. The follow-up CT scans, one and two years after onset, still showed a small disc enhancement in the temporallobe. The third case, a 10-year-old boy with tetoralogy of Fallot, developed multiple cerebral abscesses in the left frontal lobe. In spite of medical treatment, his clinical status and CT findings did not show any remarkable inprovement, and so an extracapsular excision of the abscesses was performed. Serial CT scans. however, revealed the persistence of the ring sign even after a complete excision of the brain abscesses. Microscopic findings of the excised abscess wall showed a marked, vascular-rich granulation, the outer part of which remained in situ and must have been responsible for the ring enhancement even after the extracapsular excision of the brain abscesses. (author)

  7. Ongoing activity in temporally coherent networks predicts intra-subject fluctuation of response time to sporadic executive control demands.

    Science.gov (United States)

    Nozawa, Takayuki; Sugiura, Motoaki; Yokoyama, Ryoichi; Ihara, Mizuki; Kotozaki, Yuka; Miyauchi, Carlos Makoto; Kanno, Akitake; Kawashima, Ryuta

    2014-01-01

    Can ongoing fMRI BOLD signals predict fluctuations in swiftness of a person's response to sporadic cognitive demands? This is an important issue because it clarifies whether intrinsic brain dynamics, for which spatio-temporal patterns are expressed as temporally coherent networks (TCNs), have effects not only on sensory or motor processes, but also on cognitive processes. Predictivity has been affirmed, although to a limited extent. Expecting a predictive effect on executive performance for a wider range of TCNs constituting the cingulo-opercular, fronto-parietal, and default mode networks, we conducted an fMRI study using a version of the color-word Stroop task that was specifically designed to put a higher load on executive control, with the aim of making its fluctuations more detectable. We explored the relationships between the fluctuations in ongoing pre-trial activity in TCNs and the task response time (RT). The results revealed the existence of TCNs in which fluctuations in activity several seconds before the onset of the trial predicted RT fluctuations for the subsequent trial. These TCNs were distributed in the cingulo-opercular and fronto-parietal networks, as well as in perceptual and motor networks. Our results suggest that intrinsic brain dynamics in these networks constitute "cognitive readiness," which plays an active role especially in situations where information for anticipatory attention control is unavailable. Fluctuations in these networks lead to fluctuations in executive control performance.

  8. A correlation of clinical, MRI and brain SPECT in dementia

    International Nuclear Information System (INIS)

    Shelley, S.; Indirani, M.; Gokhale, S.; Anirudhan, N.; Sivakumar, M.R.; Jaganathan, K.

    2004-01-01

    Background: Dementia is a clinical syndrome characterised by acquired impairment in multiple neuropsycologic and behavior domains including memory, language, speech, visuospatial ability, cognition and mood/personality. Dementia produces deficits in perfusion reflecting decreased metabolic needs. Neuroimaging techniques help in determining whether the cognitive symptoms are organic and in which pattern of cognitive loss the patient may evolve. AIM: To differentiate various types of Dementia, based on the regional perfusion abnormalities seen in Brain SPECT and correlate this with Clinical and MRI findings. Material and methods: Patients suffering from memory impairment and memory loss were referred to our department for Brain SPECT as a part of work up for Dementia. They had undergone a detailed clinical examination, psychometry, mini mental status examination (MMSE), memory/cognitive testing and an MRI. Brain SPECT was done after injecting Tc 99m ECD (Ethylene Cysteinate Dimer ) and imaging after 45 minutes. The images obtained were reconstructed in a conventional way. The various patterns of perfusion abnormalities seen in the SPECT images was studied and correlated with MRI and clinical findings. The patients were thus classified as having Multi Infarct Dementia, Alzheimer's disease, Fronto-Temporal Dementia and Mixed variety. Results: Twenty One Patients were included in our study from February 2003 to February 2004. The mean age of the patients was 73 years ( 37 to 81). 15 were males and 6 were females. Out of 21 patients, 12 had Multi Infarct Dementia, 4 had Alzheimer's disease, 1 had Fronto- Temporal Dementia and 4 had Mixed variety. Conclusion: Brain SPECT aids in substantiating the clinical findings and in correlation with MRI helps in distinguishing various types of Dementia and thus has prognostic implications and helps in instituting early appropriate treatment to the patient. In our study, the majority of the patients have Multi Infarct Dementia

  9. fMRI resting state networks and their association with cognitive fluctuations in dementia with Lewy bodies

    Directory of Open Access Journals (Sweden)

    Luis R. Peraza

    2014-01-01

    Full Text Available Cognitive fluctuations are a core symptom in dementia with Lewy bodies (DLB and may relate to pathological alterations in distributed brain networks. To test this we analysed resting state fMRI changes in a cohort of fluctuating DLB patients (n = 16 compared with age matched controls (n = 17 with the aim of finding functional connectivity (FC differences between these two groups and whether these associate with cognitive fluctuations in DLB. Resting state networks (RSNs were estimated using independent component analysis and FC between the RSN maps and the entirety of the brain was assessed using dual regression. The default mode network (DMN appeared unaffected in DLB compared to controls but significant cluster differences between DLB and controls were found for the left fronto-parietal, temporal, and sensory–motor networks. Desynchronization of a number of cortical and subcortical areas related to the left fronto-parietal network was associated with the severity and frequency of cognitive fluctuations. Our findings provide empirical evidence for the potential role of attention–executive networks in the aetiology of this core symptom in DLB.

  10. Relative power and coherence of EEG series are related to amnestic mild cognitive impairment in diabetes

    Directory of Open Access Journals (Sweden)

    Zhijie eBian

    2014-02-01

    Full Text Available Objective: Diabetes is a risk factor for dementia and mild cognitive impairment. The aim of this study was to investigate whether some features of resting-state EEG (rsEEG could be applied as a biomarker to distinguish the subjects with amnestic mild cognitive impairment (aMCI from normal cognitive function in type 2 diabetes. Materials and Methods: In this study, 28 patients with type 2 diabetes (16 aMCI patients and 12 controls were investigated. Recording of the rsEEG series and neuropsychological assessments were performed. The rsEEG signal was first decomposed into delta, theta, alpha, beta, gamma frequency bands. The relative power of each given band/sum of power and the coherence of waves from different brain areas were calculated. The extracted features from rsEEG and neuropsychological assessments were analyzed as well. Results: The main findings of this study were that: 1 compared with the control group, the ratios of power in theta band (P(theta versus power in alpha band (P(alpha (P(theta/P(alpha in the frontal region and left temporal region were significantly higher for aMCI, and 2 for aMCI, the alpha coherences in posterior, fronto-right temporal, fronto-posterior, right temporo-posterior were decreased; the theta coherences in left central-right central (LC-RC and left posterior-right posterior (LP-RP regions were also decreased; but the delta coherences in left temporal-right temporal (LT-RT region were increased. Conclusion: The proposed indexes from rsEEG recordings could be employed to track cognitive function of diabetic patients and also to help in the diagnosis of those who develop aMCI.

  11. Multimodal imaging of temporal processing in typical and atypical language development.

    Science.gov (United States)

    Kovelman, Ioulia; Wagley, Neelima; Hay, Jessica S F; Ugolini, Margaret; Bowyer, Susan M; Lajiness-O'Neill, Renee; Brennan, Jonathan

    2015-03-01

    New approaches to understanding language and reading acquisition propose that the human brain's ability to synchronize its neural firing rate to syllable-length linguistic units may be important to children's ability to acquire human language. Yet, little evidence from brain imaging studies has been available to support this proposal. Here, we summarize three recent brain imaging (functional near-infrared spectroscopy (fNIRS), functional magnetic resonance imaging (fMRI), and magnetoencephalography (MEG)) studies from our laboratories with young English-speaking children (aged 6-12 years). In the first study (fNIRS), we used an auditory beat perception task to show that, in children, the left superior temporal gyrus (STG) responds preferentially to rhythmic beats at 1.5 Hz. In the second study (fMRI), we found correlations between children's amplitude rise-time sensitivity, phonological awareness, and brain activation in the left STG. In the third study (MEG), typically developing children outperformed children with autism spectrum disorder in extracting words from rhythmically rich foreign speech and displayed different brain activation during the learning phase. The overall findings suggest that the efficiency with which left temporal regions process slow temporal (rhythmic) information may be important for gains in language and reading proficiency. These findings carry implications for better understanding of the brain's mechanisms that support language and reading acquisition during both typical and atypical development. © 2014 New York Academy of Sciences.

  12. Brain network segregation and integration during an epoch-related working memory fMRI experiment.

    Science.gov (United States)

    Fransson, Peter; Schiffler, Björn C; Thompson, William Hedley

    2018-05-17

    The characterization of brain subnetwork segregation and integration has previously focused on changes that are detectable at the level of entire sessions or epochs of imaging data. In this study, we applied time-varying functional connectivity analysis together with temporal network theory to calculate point-by-point estimates in subnetwork segregation and integration during an epoch-based (2-back, 0-back, baseline) working memory fMRI experiment as well as during resting-state. This approach allowed us to follow task-related changes in subnetwork segregation and integration at a high temporal resolution. At a global level, the cognitively more taxing 2-back epochs elicited an overall stronger response of integration between subnetworks compared to the 0-back epochs. Moreover, the visual, sensorimotor and fronto-parietal subnetworks displayed characteristic and distinct temporal profiles of segregation and integration during the 0- and 2-back epochs. During the interspersed epochs of baseline, several subnetworks, including the visual, fronto-parietal, cingulo-opercular and dorsal attention subnetworks showed pronounced increases in segregation. Using a drift diffusion model we show that the response time for the 2-back trials are correlated with integration for the fronto-parietal subnetwork and correlated with segregation for the visual subnetwork. Our results elucidate the fast-evolving events with regard to subnetwork integration and segregation that occur in an epoch-related task fMRI experiment. Our findings suggest that minute changes in subnetwork integration are of importance for task performance. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Comparative analysis of brain EEG signals generated from the right and left hand while writing

    Science.gov (United States)

    Sardesai, Neha; Jamali Mahabadi, S. E.; Meng, Qinglei; Choa, Fow-Sen

    2016-05-01

    This paper provides a comparative analysis of right handed people and left handed people when they write with both their hands. Two left handed and one right handed subject were asked to write their respective names on a paper using both, their left and right handed, and their brain signals were measured using EEG. Similarly, they were asked to perform simple mathematical calculations using both their hand. The data collected from the EEG from writing with both hands is compared. It is observed that though it is expected that the right brain only would contribute to left handed writing and vice versa, it is not so. When a right handed person writes with his/her left hand, the initial instinct is to go for writing with the right hand. Hence, both parts of the brain are active when a subject writes with the other hand. However, when the activity is repeated, the brain learns to expect to write with the other hand as the activity is repeated and then only the expected part of the brain is active.

  14. Dissociating Effects of Scrambling and Topicalization within the Left Frontal and Temporal Language Areas: An fMRI Study in Kaqchikel Maya.

    Science.gov (United States)

    Ohta, Shinri; Koizumi, Masatoshi; Sakai, Kuniyoshi L

    2017-01-01

    Some natural languages grammatically allow different types of changing word orders, such as object scrambling and topicalization. Scrambling and topicalization are more related to syntax and semantics/phonology, respectively. Here we hypothesized that scrambling should activate the left frontal regions, while topicalization would affect the bilateral temporal regions. To examine such distinct effects in our functional magnetic resonance imaging study, we targeted the Kaqchikel Maya language, a Mayan language spoken in Guatemala. In Kaqchikel, the syntactically canonical word order is verb-object-subject (VOS), but at least three non-canonical word orders (i.e., SVO, VSO, and OVS) are also grammatically allowed. We used a sentence-picture matching task, in which the participants listened to a short Kaqchikel sentence and judged whether a picture matched the meaning of the sentence. The advantage of applying this experimental paradigm to an understudied language such as Kaqchikel is that it will allow us to validate the universality of linguistic computation in the brain. We found that the conditions with scrambled sentences [+scrambling] elicited significant activation in the left inferior frontal gyrus and lateral premotor cortex, both of which have been proposed as grammar centers, indicating the effects of syntactic loads. In contrast, the conditions without topicalization [-topicalization] resulted in significant activation in bilateral Heschl's gyrus and superior temporal gyrus, demonstrating that the syntactic and phonological processes were clearly dissociated within the language areas. Moreover, the pre-supplementary motor area and left superior/middle temporal gyri were activated under relatively demanding conditions, suggesting their supportive roles in syntactic or semantic processing. To exclude any semantic/phonological effects of the object-subject word orders, we performed direct comparisons while making the factor of topicalization constant, and

  15. Evaluation of ictal brain SPET using statistical parametric mapping in temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.D.; Kim, H.-J.; Jeon, T.J.; Kim, M.J. [Div. of Nuclear Medicine, Yonsei University Medical College, Seoul (Korea); Lee, B.I.; Kim, O.J. [Dept. of Neurology, Yonsei University Medical College, Seoul (Korea)

    2000-11-01

    An automated voxel-based analysis of brain images using statistical parametric mapping (SPM) is accepted as a standard approach in the analysis of activation studies in positron emission tomography and functional magnetic resonance imaging. This study aimed to investigate whether or not SPM would increase the diagnostic yield of ictal brain single-photon emission tomography (SPET) in temporal lobe epilepsy (TLE). Twenty-one patients (age 27.14{+-}5.79 years) with temporal lobe epilepsy (right in 8, left in 13) who had a successful seizure outcome after surgery and nine normal subjects were included in the study. The data of ictal and interictal brain SPET of the patients and baseline SPET of the normal control group were analysed using SPM96 software. The t statistic SPM(t) was transformed to SPM(Z) with various thresholds of P<0.05, 0.005 and 0.001, and corrected extent threshold P value of 0.05. The SPM data were compared with the conventional ictal and interictal subtraction method. On group comparison, ictal SPET showed increased uptake within the epileptogenic mesial temporal lobe. On single case analysis, ictal SPET images correctly lateralized the epileptogenic temporal lobe in 18 cases, falsely lateralized it in one and failed to lateralize it in two as compared with the mean image of the normal group at a significance level of P<0.05. Comparing the individual ictal images with the corresponding interictal group, 15 patients were correctly lateralized, one was falsely lateralized and four were not lateralized. At significance levels of P<0.005 and P<0.001, correct lateralization of the epileptogenic temporal lobe was achieved in 15 and 13 patients, respectively, as compared with the normal group. On the other hand, when comparison was made with the corresponding interictal group, only 7 out of 21 patients were correctly lateralized at the threshold of P<0.005 and five at P<0.001. The result of the subtraction method was close to the single case analysis on

  16. Evaluation of ictal brain SPET using statistical parametric mapping in temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Lee, J.D.; Kim, H.-J.; Jeon, T.J.; Kim, M.J.; Lee, B.I.; Kim, O.J.

    2000-01-01

    An automated voxel-based analysis of brain images using statistical parametric mapping (SPM) is accepted as a standard approach in the analysis of activation studies in positron emission tomography and functional magnetic resonance imaging. This study aimed to investigate whether or not SPM would increase the diagnostic yield of ictal brain single-photon emission tomography (SPET) in temporal lobe epilepsy (TLE). Twenty-one patients (age 27.14±5.79 years) with temporal lobe epilepsy (right in 8, left in 13) who had a successful seizure outcome after surgery and nine normal subjects were included in the study. The data of ictal and interictal brain SPET of the patients and baseline SPET of the normal control group were analysed using SPM96 software. The t statistic SPM(t) was transformed to SPM(Z) with various thresholds of P<0.05, 0.005 and 0.001, and corrected extent threshold P value of 0.05. The SPM data were compared with the conventional ictal and interictal subtraction method. On group comparison, ictal SPET showed increased uptake within the epileptogenic mesial temporal lobe. On single case analysis, ictal SPET images correctly lateralized the epileptogenic temporal lobe in 18 cases, falsely lateralized it in one and failed to lateralize it in two as compared with the mean image of the normal group at a significance level of P<0.05. Comparing the individual ictal images with the corresponding interictal group, 15 patients were correctly lateralized, one was falsely lateralized and four were not lateralized. At significance levels of P<0.005 and P<0.001, correct lateralization of the epileptogenic temporal lobe was achieved in 15 and 13 patients, respectively, as compared with the normal group. On the other hand, when comparison was made with the corresponding interictal group, only 7 out of 21 patients were correctly lateralized at the threshold of P<0.005 and five at P<0.001. The result of the subtraction method was close to the single case analysis on

  17. Brain volume reductions in adolescent heavy drinkers.

    Science.gov (United States)

    Squeglia, Lindsay M; Rinker, Daniel A; Bartsch, Hauke; Castro, Norma; Chung, Yoonho; Dale, Anders M; Jernigan, Terry L; Tapert, Susan F

    2014-07-01

    Brain abnormalities in adolescent heavy drinkers may result from alcohol exposure, or stem from pre-existing neural features. This longitudinal morphometric study investigated 40 healthy adolescents, ages 12-17 at study entry, half of whom (n=20) initiated heavy drinking over the 3-year follow-up. Both assessments included high-resolution magnetic resonance imaging. FreeSurfer was used to segment brain volumes, which were measured longitudinally using the newly developed quantitative anatomic regional change analysis (QUARC) tool. At baseline, participants who later transitioned into heavy drinking showed smaller left cingulate, pars triangularis, and rostral anterior cingulate volume, and less right cerebellar white matter volumes (pteens. Over time, participants who initiated heavy drinking showed significantly greater volume reduction in the left ventral diencephalon, left inferior and middle temporal gyrus, and left caudate and brain stem, compared to substance-naïve youth (pbrain regions in future drinkers and greater brain volume reduction in subcortical and temporal regions after alcohol use was initiated. This is consistent with literature showing pre-existing cognitive deficits on tasks recruited by frontal regions, as well as post-drinking consequences on brain regions involved in language and spatial tasks. Published by Elsevier Ltd.

  18. Interhemispheric coupling between the posterior sylvian regions impacts successful auditory temporal order judgment.

    Science.gov (United States)

    Bernasconi, Fosco; Grivel, Jeremy; Murray, Micah M; Spierer, Lucas

    2010-07-01

    Accurate perception of the temporal order of sensory events is a prerequisite in numerous functions ranging from language comprehension to motor coordination. We investigated the spatio-temporal brain dynamics of auditory temporal order judgment (aTOJ) using electrical neuroimaging analyses of auditory evoked potentials (AEPs) recorded while participants completed a near-threshold task requiring spatial discrimination of left-right and right-left sound sequences. AEPs to sound pairs modulated topographically as a function of aTOJ accuracy over the 39-77ms post-stimulus period, indicating the engagement of distinct configurations of brain networks during early auditory processing stages. Source estimations revealed that accurate and inaccurate performance were linked to bilateral posterior sylvian regions activity (PSR). However, activity within left, but not right, PSR predicted behavioral performance suggesting that left PSR activity during early encoding phases of pairs of auditory spatial stimuli appears critical for the perception of their order of occurrence. Correlation analyses of source estimations further revealed that activity between left and right PSR was significantly correlated in the inaccurate but not accurate condition, indicating that aTOJ accuracy depends on the functional decoupling between homotopic PSR areas. These results support a model of temporal order processing wherein behaviorally relevant temporal information--i.e. a temporal 'stamp'--is extracted within the early stages of cortical processes within left PSR but critically modulated by inputs from right PSR. We discuss our results with regard to current models of temporal of temporal order processing, namely gating and latency mechanisms. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  19. Abnormal left superior temporal gyrus volumes in children and adolescents with bipolar disorder: a magnetic resonance imaging study.

    Science.gov (United States)

    Chen, Hua Hsua; Nicoletti, Mark A; Hatch, John P; Sassi, Roberto B; Axelson, David; Brambilla, Paolo; Monkul, E Serap; Keshavan, Matcheri S; Ryan, Neal D; Birmaher, Boris; Soares, Jair C

    2004-06-03

    Abnormalities in left superior temporal gyrus (STG) have been reported in adult bipolar patients. However, it is not known whether such abnormalities are already present early in the course of this illness. Magnetic resonance imaging (MRI) morphometric analysis of STG was performed in 16 DSM-IV children and adolescents with bipolar disorder (mean age+/-SD 15.5+/-3.4 years) and 21 healthy controls (mean age+/-SD 16.9+/-3.8 years). Subjects underwent a 3D spoiled gradient recalled acquisition MRI examination. Using analysis of covariance with age, gender and intra-cranial brain volume as covariates, we found significantly smaller left total STG volumes in bipolar patients (12.5+/-1.5 cm(3)) compared with healthy controls (13.6+/-2.5 cm(3)) (F=4.45, d.f.=1, 32, P=0.04). This difference was accounted for by significantly smaller left and right STG white matter volumes in bipolar patients. Decreased white matter connections may be the core of abnormalities in STG, which is an important region for speech, language and communication, and could possibly underlie neurocognitive deficits present in bipolar patients.

  20. Intelligent Automatic Right-Left Sign Lamp Based on Brain Signal Recognition System

    Science.gov (United States)

    Winda, A.; Sofyan; Sthevany; Vincent, R. S.

    2017-12-01

    Comfort as a part of the human factor, plays important roles in nowadays advanced automotive technology. Many of the current technologies go in the direction of automotive driver assistance features. However, many of the driver assistance features still require physical movement by human to enable the features. In this work, the proposed method is used in order to make certain feature to be functioning without any physical movement, instead human just need to think about it in their mind. In this work, brain signal is recorded and processed in order to be used as input to the recognition system. Right-Left sign lamp based on the brain signal recognition system can potentially replace the button or switch of the specific device in order to make the lamp work. The system then will decide whether the signal is ‘Right’ or ‘Left’. The decision of the Right-Left side of brain signal recognition will be sent to a processing board in order to activate the automotive relay, which will be used to activate the sign lamp. Furthermore, the intelligent system approach is used to develop authorized model based on the brain signal. Particularly Support Vector Machines (SVMs)-based classification system is used in the proposed system to recognize the Left-Right of the brain signal. Experimental results confirm the effectiveness of the proposed intelligent Automatic brain signal-based Right-Left sign lamp access control system. The signal is processed by Linear Prediction Coefficient (LPC) and Support Vector Machines (SVMs), and the resulting experiment shows the training and testing accuracy of 100% and 80%, respectively.

  1. Brain dynamics underlying the nonlinear threshold for access to consciousness.

    Science.gov (United States)

    Del Cul, Antoine; Baillet, Sylvain; Dehaene, Stanislas

    2007-10-01

    When a flashed stimulus is followed by a backward mask, subjects fail to perceive it unless the target-mask interval exceeds a threshold duration of about 50 ms. Models of conscious access postulate that this threshold is associated with the time needed to establish sustained activity in recurrent cortical loops, but the brain areas involved and their timing remain debated. We used high-density recordings of event-related potentials (ERPs) and cortical source reconstruction to assess the time course of human brain activity evoked by masked stimuli and to determine neural events during which brain activity correlates with conscious reports. Target-mask stimulus onset asynchrony (SOA) was varied in small steps, allowing us to ask which ERP events show the characteristic nonlinear dependence with SOA seen in subjective and objective reports. The results separate distinct stages in mask-target interactions, indicating that a considerable amount of subliminal processing can occur early on in the occipito-temporal pathway (270 ms) and highly distributed fronto-parieto-temporal activation as a correlate of conscious reportability.

  2. Non-invasive brain stimulation enhances the effects of Melodic Intonation Therapy

    Directory of Open Access Journals (Sweden)

    Bradley W. Vines

    2011-09-01

    Full Text Available Research has suggested that a fronto-temporal network in the right hemisphere may be responsible for mediating Melodic Intonation Therapy’s positive effects on speech recovery. We investigated the potential for a non-invasive brain stimulation technique, transcranial direct current stimulation (tDCS, to augment the benefits of MIT in patients with non-fluent aphasia by modulating neural activity in the brain during treatment with MIT. The polarity of the current applied to the scalp determines the effects of tDCS on the underlying tissue: anodal tDCS increases excitability, whereas cathodal tDCS decreases excitability. We applied anodal tDCS to the posterior inferior frontal gyrus (IFG of the right hemisphere, an area that has been shown to both contribute to singing through the mapping of sounds to ariculatory actions and serve as a key region in the process of recovery from aphasia, particularly in patients with large left hemispheric lesions. The stimulation was applied while patients were treated with MIT by a trained therapist. Six patients with moderate to severe non-fluent aphasia underwent three consecutive days of anodal-tDCS+MIT, and an equivalent series of sham-tDCS+MIT. The two treatment series were separated by one week, and the order in which the treatments were administered was randomized. Compared to the effects of sham-tDCS+MIT, anodal-tDCS+MIT led to significant improvements in fluency of speech. These results support the hypothesis that, as the brain seeks to reorganize and compensate for damage to left-hemisphere language centers, combining anodal-tDCS with MIT may further recovery from post-stroke aphasia by enhancing activity in a right-hemisphere sensorimotor network for articulation.

  3. Hemispheric Asymmetries in Repetition Enhancement and Suppression Effects in the Newborn Brain.

    Science.gov (United States)

    Bouchon, Camillia; Nazzi, Thierry; Gervain, Judit

    2015-01-01

    The repeated presentation of stimuli typically attenuates neural responses (repetition suppression) or, less commonly, increases them (repetition enhancement) when stimuli are highly complex, degraded or presented under noisy conditions. In adult functional neuroimaging research, these repetition effects are considered as neural correlates of habituation. The development and respective functional significance of these effects in infancy remain largely unknown. This study investigates repetition effects in newborns using functional near-infrared spectroscopy, and specifically the role of stimulus complexity in evoking a repetition enhancement vs. a repetition suppression response, following up on Gervain et al. (2008). In that study, abstract rule-learning was found at birth in cortical areas specific to speech processing, as evidenced by a left-lateralized repetition enhancement of the hemodynamic response to highly variable speech sequences conforming to a repetition-based ABB artificial grammar, but not to a random ABC grammar. Here, the same paradigm was used to investigate how simpler stimuli (12 different sequences per condition as opposed to 140), and simpler presentation conditions (blocked rather than interleaved) would influence repetition effects at birth. Results revealed that the two grammars elicited different dynamics in the two hemispheres. In left fronto-temporal areas, we reproduce the early perceptual discrimination of the two grammars, with ABB giving rise to a greater response at the beginning of the experiment than ABC. In addition, the ABC grammar evoked a repetition enhancement effect over time, whereas a stable response was found for the ABB grammar. Right fronto-temporal areas showed neither initial discrimination, nor change over time to either pattern. Taken together with Gervain et al. (2008), this is the first evidence that manipulating methodological factors influences the presence or absence of neural repetition enhancement effects in

  4. Hemispheric Asymmetries in Repetition Enhancement and Suppression Effects in the Newborn Brain.

    Directory of Open Access Journals (Sweden)

    Camillia Bouchon

    Full Text Available The repeated presentation of stimuli typically attenuates neural responses (repetition suppression or, less commonly, increases them (repetition enhancement when stimuli are highly complex, degraded or presented under noisy conditions. In adult functional neuroimaging research, these repetition effects are considered as neural correlates of habituation. The development and respective functional significance of these effects in infancy remain largely unknown.This study investigates repetition effects in newborns using functional near-infrared spectroscopy, and specifically the role of stimulus complexity in evoking a repetition enhancement vs. a repetition suppression response, following up on Gervain et al. (2008. In that study, abstract rule-learning was found at birth in cortical areas specific to speech processing, as evidenced by a left-lateralized repetition enhancement of the hemodynamic response to highly variable speech sequences conforming to a repetition-based ABB artificial grammar, but not to a random ABC grammar.Here, the same paradigm was used to investigate how simpler stimuli (12 different sequences per condition as opposed to 140, and simpler presentation conditions (blocked rather than interleaved would influence repetition effects at birth.Results revealed that the two grammars elicited different dynamics in the two hemispheres. In left fronto-temporal areas, we reproduce the early perceptual discrimination of the two grammars, with ABB giving rise to a greater response at the beginning of the experiment than ABC. In addition, the ABC grammar evoked a repetition enhancement effect over time, whereas a stable response was found for the ABB grammar. Right fronto-temporal areas showed neither initial discrimination, nor change over time to either pattern.Taken together with Gervain et al. (2008, this is the first evidence that manipulating methodological factors influences the presence or absence of neural repetition enhancement

  5. Left hemisphere regions are critical for language in the face of early left focal brain injury

    OpenAIRE

    Raja Beharelle, Anjali; Dick, Anthony Steven; Josse, Goulven; Solodkin, Ana; Huttenlocher, Peter R.; Levine, Susan C.; Small, Steven L.

    2010-01-01

    A predominant theory regarding early stroke and its effect on language development, is that early left hemisphere lesions trigger compensatory processes that allow the right hemisphere to assume dominant language functions, and this is thought to underlie the near normal language development observed after early stroke. To test this theory, we used functional magnetic resonance imaging to examine brain activity during category fluency in participants who had sustained pre- or perinatal left h...

  6. Magnetic resonance imaging of functional connectivity in Parkinson disease in the resting brain

    International Nuclear Information System (INIS)

    Liu Xian; Liu Bo; Luo Xiaodong; Li Ningna; Chen Zhiguang; Chen Jun

    2009-01-01

    Objective: To investigate functional connectivity changes in Parkinson disease in the resting brain using functional magnetic resonance imaging. Methods: Nine patients with Parkinson disease and eight age-matched healthy volunteers were entered into the study. The bilateral globus pallidus were chosen as seed points, the functional MR data acquired in the resting state were processed to investigate functional connectivity in PD patients and the results were compared with those of the controls. Results: In age-matched healthy controls, there are regions which had functional connectivity with bilateral globus pallidus, including bilateral temporal poles, bilateral hippocampus, bilateral thalami, posterior cingulate cortex, right middle occipital gyms and right superior parietal gyms. In PD patients, brain regions including bilateral cerebellum, left hippocampus, bilateral superior temporal gyri, left inferior frontal gyrus, left middle frontal gyrus, left precentral gyrus, left inferior parietal gyrus and left superior parietal gyrus, had functional connectivity with bilateral globus pallidus. Compared to healthy controls, increased functional connectivity in bilateral cerebellum, bilateral temporal lobes, left frontal lobe and left parietal lobe, and decreased functional connectivity in bilateral thalami were observed in PD patients. Conclusion: Abnormal changes of brain functional connectivity exists in Parkinson's disease in the resting state. (authors)

  7. Processing of Words and Faces by Patients with Left and Right Temporal Lobe Epilepsy

    Directory of Open Access Journals (Sweden)

    Andrew W. Ellis

    1991-01-01

    Full Text Available Tests of word and face processing were given to patients with complex partial epilepsy focussed on the left or right temporal lobe, and to non-epileptic control subjects. The left TLE group showed the greatest impairment on object naming and on reading tests, but the right TLE group also showed a lesser impairment relative to the normal control subjects on both tests. The right TLE group was selectively impaired on distinguishing famous from non-famous faces while the left TLE group was impaired at naming famous faces they had successfully recognized as familiar. There was no significant difference between the three groups on recognition memory for words. The implications of the results for theories of the role of the temporal lobes in word and face processing, and the possible neural mechanisms responsible for the deficits in TLE patients, are discussed.

  8. Accelerated long-term forgetting in temporal lobe epilepsy: evidence of improvement after left temporal pole lobectomy.

    Science.gov (United States)

    Gallassi, Roberto; Sambati, Luisa; Poda, Roberto; Stanzani Maserati, Michelangelo; Oppi, Federico; Giulioni, Marco; Tinuper, Paolo

    2011-12-01

    Accelerated long term forgetting (ALF) is a characteristic cognitive aspect in patients affected by temporal lobe epilepsy that is probably due to an impairment of memory consolidation and retrieval caused by epileptic activity in hippocampal and parahippocampal regions. We describe a case of a patient with TLE who showed improvement in ALF and in remote memory impairment after an anterior left temporal pole lobectomy including the uncus and amygdala. Our findings confirm that impairment of hippocampal functioning leads to pathological ALF, whereas restoration of hippocampal functioning brings ALF to a level comparable to that of controls. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. A voxel-based asymmetry study of the relationship between hemispheric asymmetry and language dominance in Wada tested patients.

    Science.gov (United States)

    Keller, Simon S; Roberts, Neil; Baker, Gus; Sluming, Vanessa; Cezayirli, Enis; Mayes, Andrew; Eldridge, Paul; Marson, Anthony G; Wieshmann, Udo C

    2018-03-23

    Determining the anatomical basis of hemispheric language dominance (HLD) remains an important scientific endeavor. The Wada test remains the gold standard test for HLD and provides a unique opportunity to determine the relationship between HLD and hemispheric structural asymmetries on MRI. In this study, we applied a whole-brain voxel-based asymmetry (VBA) approach to determine the relationship between interhemispheric structural asymmetries and HLD in a large consecutive sample of Wada tested patients. Of 135 patients, 114 (84.4%) had left HLD, 10 (7.4%) right HLD, and 11 (8.2%) bilateral language representation. Fifty-four controls were also studied. Right-handed controls and right-handed patients with left HLD had comparable structural brain asymmetries in cortical, subcortical, and cerebellar regions that have previously been documented in healthy people. However, these patients and controls differed in structural asymmetry of the mesial temporal lobe and a circumscribed region in the superior temporal gyrus, suggesting that only asymmetries of these regions were due to brain alterations caused by epilepsy. Additional comparisons between patients with left and right HLD, matched for type and location of epilepsy, revealed that structural asymmetries of insula, pars triangularis, inferior temporal gyrus, orbitofrontal cortex, ventral temporo-occipital cortex, mesial somatosensory cortex, and mesial cerebellum were significantly associated with the side of HLD. Patients with right HLD and bilateral language representation were significantly less right-handed. These results suggest that structural asymmetries of an insular-fronto-temporal network may be related to HLD. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  10. Task-modulated activation and functional connectivity of the temporal and frontal areas during speech comprehension.

    Science.gov (United States)

    Yue, Q; Zhang, L; Xu, G; Shu, H; Li, P

    2013-05-01

    There is general consensus in the literature that a distributed network of temporal and frontal brain areas is involved in speech comprehension. However, how active versus passive tasks modulate the activation and the functional connectivity of the critical brain areas is not clearly understood. In this study, we used functional magnetic resonance imaging (fMRI) to identify intelligibility and task-related effects in speech comprehension. Participants performed a semantic judgment task on normal and time-reversed sentences, or passively listened to the sentences without making an overt response. The subtraction analysis demonstrated that passive sentence comprehension mainly engaged brain areas in the left anterior and posterior superior temporal sulcus and middle temporal gyrus (aSTS/MTG and pSTS/MTG), whereas active sentence comprehension recruited bilateral frontal regions in addition to the aSTS/MTG and pSTS/MTG regions. Functional connectivity analysis revealed that during passive sentence comprehension, the left aSTS/MTG was functionally connected with the left Heschl's gyrus (HG) and bilateral superior temporal gyrus (STG) but no area was functionally connected with the left pSTS/MTG; during active sentence comprehension, however, both the left aSTS/MTG and pSTS/MTG were functionally connected with bilateral superior temporal and inferior frontal areas. While these results are consistent with the view that the ventral stream of the temporo-frontal network subserves semantic processing, our findings further indicate that both the activation and the functional connectivity of the temporal and frontal areas are modulated by task demands. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. A critical evaluation of long-term aesthetic outcomes of fronto-orbital advancement and cranial vault remodeling in nonsyndromic unicoronal craniosynostosis.

    Science.gov (United States)

    Taylor, Jesse A; Paliga, J Thomas; Wes, Ari M; Tahiri, Youssef; Goldstein, Jesse A; Whitaker, Linton A; Bartlett, Scott P

    2015-01-01

    This study reports long-term aesthetic outcomes with fronto-orbital advancement and cranial vault remodeling in treating unicoronal synostosis over a 35-year period. Retrospective review was performed on patients with isolated unicoronal synostosis from 1977 to 2012. Demographic, preoperative phenotypic, and long-term aesthetic outcomes data were analyzed with chi-squared and Fisher's exact test for categorical data and Wilcoxon rank-sum and Kruskal-Wallis rank for continuous data. A total of 238 patients were treated; 207 met inclusion criteria. None underwent secondary intervention for intracranial pressure. At definitive intervention, there 96 (55 percent) Whitaker class I patients, 11 (6 percent) class II, 62 (35 percent) class III, and six (3 percent) class IV. Nasal root deviation and occipital bossing each conferred an increased risk of Whitaker class III/IV [OR, 4.4 (1.4 to 13.9), p = 0.011; OR, 2.6 (1.0 to 6.8), p = 0.049]. Patients who underwent bilateral cranial vault remodeling with extended unilateral bandeau were less likely Whitaker class III/IV at latest follow-up compared with those undergoing strictly unilateral procedures [OR, 0.2 (0.1 to 0.7), p = 0.011]. Overcorrection resulted in decreased risk of temporal hollowing [OR, 0.3 (0.1 to 1.0), p = 0.05]. Patients with 5 years or more of follow-up were more likely to develop supraorbital retrusion [OR, 7.2 (2.2 to 23.4), p = 0.001] and temporal hollowing [OR, 3.7 (1.5 to 9.6), p = 0.006] and have Whitaker class III/IV outcomes [OR, 4.9 (1.8 to 12.8), p = 0.001]. Traditional fronto-orbital advancement and cranial vault remodeling appears to mitigate risk of intracranial pressure but may lead to aesthetic shortcomings as patients mature, namely fronto-orbital retrusion and temporal hollowing. Therapeutic, IV.

  12. Object-action dissociation: A voxel-based lesion-symptom mapping study on 102 patients after glioma removal

    Directory of Open Access Journals (Sweden)

    Alberto Pisoni

    Full Text Available Data concerning the neural basis of noun and verb processing are inconsistent. Some authors assume that action-verb processing is based on frontal areas while nouns processing relies on temporal regions; others argue that the circuits processing verbs and nouns are closely interconnected in a predominantly left-lateralized fronto-temporal-parietal network; yet, other researchers consider that the primary motor cortex plays a crucial role in processing action verbs. In the present study, one hundred and two patients with a tumour either in the right or left hemisphere were submitted to picture naming of objects and actions before and after surgery. To test the effect of specific brain regions in object and action naming, patients' lesions were mapped and voxel-lesion-symptom mapping (VLSM was computed. Behavioural results showed that left-brain damaged patients were significantly more impaired than right brain-damaged patients. The VLSM showed that these two grammatical classes are segregated in the left hemisphere. In particular, scores in naming of objects correlated with damage to the anterior temporal region, while scores in naming of actions correlated with lesions in the parietal areas and in the posterior temporal cortex. In addition, VLSM analyses carried out on non-linguistic tasks were not significant, confirming that the regions associated with deficits in object and action naming were not generally engaged in all cognitive tasks. Finally, the involvement of subcortical pathways was investigated and the inferior longitudinal fasciculus proved to play a role in object naming, while no specific bundle was identified for actions. Keywords: Object action dissociation, Temporal lesion, Frontal lesion, Voxel-based lesion symptom mapping

  13. Fracture of the temporal bone in patients with traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Secchi, Myrian Marajó Dal

    2012-01-01

    Full Text Available Introduction: The fractures in the temporal bone are lesions that are observed in patients with traumatic brain injury (TBI. The computed tomography of high-resolution (CT allows evaluating the fracture and the complications. Objective: Evaluate patients with TBI and temporal bone fracture. Way of study: Retrospective study. Method: Were evaluated 28 patients interned by TBI with clinical evidence and/or radiologic from temporal bone fractures. Results: The age ranged from 3 to 75 years. The most affected side was the right side 50% (n=14, left side 36% (n=10 and both sides 14% (n=4. The etiology of the trauma was the falling 25% (n=7, accidents with motorcycles and bicycles 21% (n=6, physical aggression 14% (n=4, running over 11% (n=3, fall of object 4% (n=1 and other causes 25% (n=7. The clinical signs were: Otorrhagia 78%, otalgia 11% (n=3, otorrhea 7% (n=2, facial paralysis 7% (n=2 and hearing loss 7% (n=2. The otoscopic findings: otorrhagia 57% (n=16, laceration of external auditory canal 36% (n=10, hemotympanum 11% (n=3, normal 7% (n=2 and Battle signal 7% (n=2. The findings for CT of skull were: with no alterations 54% (n=15 and temporal fracture 7% (n=2 and the CT of temporal bones were: line of fracture 71% (n=20, opacification of the mastoid 25% (n=7, glenoid cavity air 14% (n=1, dislocation of the ossicular chain 7% (n=2 and veiling of the middle ear 4% (n=1. Conclusion: Patients with TBI must be submitted to the otorhinolaryngological evaluation and imaging, for the early diagnosis of the complications and treatment.

  14. Effective connectivity reveals important roles for both the hyperdirect (fronto-subthalamic) and indirect (fronto-striatal-pallidal) fronto-basal ganglia pathways during response inhibition

    NARCIS (Netherlands)

    Jahfari, S.; Waldorp, L.; van den Wildenberg, W.P.M.; Scholte, H.S.; Ridderinkhof, K.R.; Forstmann, B.U.

    2011-01-01

    Fronto-basal ganglia pathways play a crucial role in voluntary action control, including the ability to inhibit motor responses. Response inhibition might be mediated via a fast hyperdirect pathway connecting the right inferior frontal gyrus (rIFG) and the presupplementary motor area (preSMA) with

  15. Fronto-limbic dysfunction in response to facial emotion in borderline personality disorder: an event-related fMRI study.

    Science.gov (United States)

    Minzenberg, Michael J; Fan, Jin; New, Antonia S; Tang, Cheuk Y; Siever, Larry J

    2007-08-15

    Clinical hallmarks of borderline personality disorder (BPD) include social and emotional dysregulation. We tested a model of fronto-limbic dysfunction in facial emotion processing in BPD. Groups of 12 unmedicated adults with BPD by DSM-IV and 12 demographically-matched healthy controls (HC) viewed facial expressions (Conditions) of neutral emotion, fear and anger, and made gender discriminations during rapid event-related functional magnetic resonance imaging (fMRI). Analysis of variance of Region of Interest signal change revealed a statistically significant effect of the Group-by-Region-by-Condition interaction. This was due to the BPD group exhibiting a significantly larger magnitude of deactivation (relative to HC) in the bilateral rostral/subgenual anterior cingulate cortex (ACC) to fear and in the left ACC to fear minus neutral; and significantly greater activation in the right amygdala to fear minus neutral. There were no significant between-group differences in ROI signal change in response to anger. In voxel-wise analyses constrained within these ROIs, the BPD group exhibited significant changes in the fear minus neutral contrast, with relatively less activation in the bilateral rostral/subgenual ACC, and greater activation in the right amygdala. In the anger minus neutral contrast this pattern was reversed, with the BPD group showing greater activation in the bilateral rostral/subgenual ACC and less activation in the bilateral amygdala. We conclude that adults with BPD exhibit changes in fronto-limbic activity in the processing of fear stimuli, with exaggerated amygdala response and impaired emotion-modulation of ACC activity. The neural substrates underlying processing of anger may also be altered. These changes may represent an expression of the volumetric and serotonergic deficits observed in these brain areas in BPD.

  16. Clinical value of scatter correction for interictal brain 99m Tc-HMPAO SPECT in mesial temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Sanchez Catasus, C.; Morales, L.; Aguila, A.

    2002-01-01

    Aim: It is well known that some patients with temporal lobe epilepsy (TLE) show normal perfusion during interictal SPECT study. The aim of this research was to evaluate if the scatter radiation has some influence on this kind of result. Materials and Methods: We studied 15 patients with TLE by clinical diagnosis and by video-EEG monitoring with surface electrodes (11 left TLE, 4 right TLE), which showed normal perfusion during interictal brain 99m Tc-HMPAO SPECT. The SPECT data were reconstructed by filtered backprojection without scatter correction (A). The same SPECT data were reconstructed after the projections were corrected by dual energy window method of scatter correction (B). Attenuation was corrected in all cases using first order Chang Method. For A and B images groups, cerebellum perfusion ratios were calculated on irregular regions of interest (ROI) drawn on anterior (ATL), lateral (LTL), mesial (MTL) and whole temporal lobe (WTL). To evaluate the influence of scatter radiation, the cerebellum perfusion ratios of each subject were compared with a normal database of 10 normal subjects, with and without scatter correction, using z-score analysis. Results: In group A, the z-score was less than 2 in all cases. In group B, the z-score was more than 2 in 6 cases, 4 in MTL (3 left, 1 right) and 2 in left LTL, which were coincident with the EEG localization. All images of group B showed better contrast than images of group A. Conclusions: These results suggest that scatter correction could improve the sensitivity of interictal brain SPECT to identify epileptic focus in patients with TLE

  17. The Superior Fronto-Occipital Fasciculus in the Human Brain Revealed by Diffusion Spectrum Imaging Tractography: An Anatomical Reality or a Methodological Artifact?

    Science.gov (United States)

    Bao, Yue; Wang, Yong; Wang, Wei; Wang, Yibao

    2017-01-01

    The existence of the superior fronto-occipital fasciculus (SFOF) in the human brain remains controversial. The aim of the present study was to clarify the existence, course, and terminations of the SFOF. High angular diffusion spectrum imaging (DSI) analysis was performed on six healthy adults and on a template of 842 subjects from the Human Connectome Project. To verify tractography results, we performed fiber microdissections of four post-mortem human brains. Based on DSI tractography, we reconstructed the SFOF in the subjects and the template from the Human Connectome Project that originated from the rostral and medial parts of the superior and middle frontal gyri. By tractography, we found that the fibers formed a compact fascicle at the level of the anterior horn of the lateral ventricle coursing above the head of caudate nucleus, medial to the corona radiate and under the corpus callosum (CC), and terminated at the parietal region via the lower part of the caudate nucleus. We consider that this fiber bundle observed by tractography is the SFOF, although it terminates mainly at the parietal region, rather than occipital lobe. By contrast, we were unable to identify a fiber bundle corresponding to the SFOF in our fiber dissection study. Although we did not provide definite evidence of the SFOF in the human brain, these findings may be useful for future studies in this field. PMID:29321729

  18. The Superior Fronto-Occipital Fasciculus in the Human Brain Revealed by Diffusion Spectrum Imaging Tractography: An Anatomical Reality or a Methodological Artifact?

    Directory of Open Access Journals (Sweden)

    Yue Bao

    2017-12-01

    Full Text Available The existence of the superior fronto-occipital fasciculus (SFOF in the human brain remains controversial. The aim of the present study was to clarify the existence, course, and terminations of the SFOF. High angular diffusion spectrum imaging (DSI analysis was performed on six healthy adults and on a template of 842 subjects from the Human Connectome Project. To verify tractography results, we performed fiber microdissections of four post-mortem human brains. Based on DSI tractography, we reconstructed the SFOF in the subjects and the template from the Human Connectome Project that originated from the rostral and medial parts of the superior and middle frontal gyri. By tractography, we found that the fibers formed a compact fascicle at the level of the anterior horn of the lateral ventricle coursing above the head of caudate nucleus, medial to the corona radiate and under the corpus callosum (CC, and terminated at the parietal region via the lower part of the caudate nucleus. We consider that this fiber bundle observed by tractography is the SFOF, although it terminates mainly at the parietal region, rather than occipital lobe. By contrast, we were unable to identify a fiber bundle corresponding to the SFOF in our fiber dissection study. Although we did not provide definite evidence of the SFOF in the human brain, these findings may be useful for future studies in this field.

  19. Differences in Information Mapping Strategies in Left and Right Brain Learners.

    Science.gov (United States)

    Hauck, LaVerne S., Jr.

    The Information Mapping technique was used to present a learning packet, and its usefulness in helping right-brain cerebrally dominant students to achieve the same level of subject mastery as their left-brain counterparts was examined. Reading level, grade point average, and gender were also analyzed. Torrance's "Your Style of Learning and…

  20. Volumetric analysis of medial temporal lobe structures in brain development from childhood to adolescence.

    Science.gov (United States)

    Hu, Shiyan; Pruessner, Jens C; Coupé, Pierrick; Collins, D Louis

    2013-07-01

    Puberty is an important stage of development as a child's sexual and physical characteristics mature because of hormonal changes. To better understand puberty-related effects on brain development, we investigated the magnetic resonance imaging (MRI) data of 306 subjects from 4 to 18 years of age. Subjects were grouped into before and during puberty groups according to their sexual maturity levels measured by the puberty scores. An appearance model-based automatic segmentation method with patch-based local refinement was employed to segment the MRI data and extract the volumes of medial temporal lobe (MTL) structures including the amygdala (AG), the hippocampus (HC), the entorhinal/perirhinal cortex (EPC), and the parahippocampal cortex (PHC). Our analysis showed age-related volumetric changes for the AG, HC, right EPC, and left PHC but only before puberty. After onset of puberty, these volumetric changes then correlate more with sexual maturity level, as measured by the puberty score. When normalized for brain volume, the volumes of the right HC decrease for boys; the volumes of the left HC increase for girls; and the volumes of the left and right PHC decrease for boys. These findings suggest that the rising levels of testosterone in boys and estrogen in girls might have opposite effects, especially for the HC and the PHC. Our findings on sex-specific and sexual maturity-related volumes may be useful in better understanding the MTL developmental differences and related learning, memory, and emotion differences between boys and girls during puberty. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Changes in low-frequency fluctuations in patients with antisocial personality disorder revealed by resting-state functional MRI.

    Directory of Open Access Journals (Sweden)

    Huasheng Liu

    Full Text Available Antisocial Personality Disorder (APD is a personality disorder that is most commonly associated with the legal and criminal justice systems. The study of the brain in APD has important implications in legal contexts and in helping ensure social stability. However, the neural contribution to the high prevalence of APD is still unclear. In this study, we used resting-state functional magnetic resonance imaging (fMRI to investigate the underlying neural mechanisms of APD. Thirty-two healthy individuals and thirty-five patients with APD were recruited. The amplitude of low-frequency fluctuations (ALFF was analyzed for the whole brain of all subjects. Our results showed that APD patients had a significant reduction in the ALFF in the right orbitofrontal cortex, the left temporal pole, the right inferior temporal gyrus, and the left cerebellum posterior lobe compared to normal controls. We observed that the right orbitofrontal cortex had a negative correlation between ALFF values and MMPI psychopathic deviate scores. Alterations in ALFF in these specific brain regions suggest that APD patients may be associated with abnormal activities in the fronto-temporal network. We propose that our results may contribute in a clinical and forensic context to a better understanding of APD.

  2. Repeated measurements of cerebral blood flow in the left superior temporal gyrus reveal tonic hyperactivity in patients with auditory verbal hallucinations: A possible trait marker

    Directory of Open Access Journals (Sweden)

    Philipp eHoman

    2013-06-01

    Full Text Available Background: The left superior temporal gyrus (STG has been suggested to play a key role in auditory verbal hallucinations in patients with schizophrenia. Methods: Eleven medicated subjects with schizophrenia and medication-resistant auditory verbal hallucinations and 19 healthy controls underwent perfusion magnetic resonance imaging with arterial spin labeling. Three additional repeated measurements were conducted in the patients. Patients underwent a treatment with transcranial magnetic stimulation (TMS between the first 2 measurements. The main outcome measure was the pooled cerebral blood flow (CBF, which consisted of the regional CBF measurement in the left superior temporal gyrus (STG and the global CBF measurement in the whole brain.Results: Regional CBF in the left STG in patients was significantly higher compared to controls (p < 0.0001 and to the global CBF in patients (p < 0.004 at baseline. Regional CBF in the left STG remained significantly increased compared to the global CBF in patients across time (p < 0.0007, and it remained increased in patients after TMS compared to the baseline CBF in controls (p < 0.0001. After TMS, PANSS (p = 0.003 and PSYRATS (p = 0.01 scores decreased significantly in patients.Conclusions: This study demonstrated tonically increased regional CBF in the left STG in patients with schizophrenia and auditory hallucinations despite a decrease in symptoms after TMS. These findings were consistent with what has previously been termed a trait marker of auditory verbal hallucinations in schizophrenia.

  3. Altered resting brain function and structure in professional badminton players.

    Science.gov (United States)

    Di, Xin; Zhu, Senhua; Jin, Hua; Wang, Pin; Ye, Zhuoer; Zhou, Ke; Zhuo, Yan; Rao, Hengyi

    2012-01-01

    Neuroimaging studies of professional athletic or musical training have demonstrated considerable practice-dependent plasticity in various brain structures, which may reflect distinct training demands. In the present study, structural and functional brain alterations were examined in professional badminton players and compared with healthy controls using magnetic resonance imaging (MRI) and resting-state functional MRI. Gray matter concentration (GMC) was assessed using voxel-based morphometry (VBM), and resting-brain functions were measured by amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity. Results showed that the athlete group had greater GMC and ALFF in the right and medial cerebellar regions, respectively. The athlete group also demonstrated smaller ALFF in the left superior parietal lobule and altered functional connectivity between the left superior parietal and frontal regions. These findings indicate that badminton expertise is associated with not only plastic structural changes in terms of enlarged gray matter density in the cerebellum, but also functional alterations in fronto-parietal connectivity. Such structural and functional alterations may reflect specific experiences of badminton training and practice, including high-capacity visuo-spatial processing and hand-eye coordination in addition to refined motor skills.

  4. High Frequency rTMS over the Left Parietal Lobule Increases Non-Word Reading Accuracy

    Science.gov (United States)

    Costanzo, Floriana; Menghini, Deny; Caltagirone, Carlo; Oliveri, Massimiliano; Vicari, Stefano

    2012-01-01

    Increasing evidence in the literature supports the usefulness of Transcranial Magnetic Stimulation (TMS) in studying reading processes. Two brain regions are primarily involved in phonological decoding: the left superior temporal gyrus (STG), which is associated with the auditory representation of spoken words, and the left inferior parietal lobe…

  5. Changes in the modulation of brain activity during context encoding vs. context retrieval across the adult lifespan.

    Science.gov (United States)

    Ankudowich, E; Pasvanis, S; Rajah, M N

    2016-10-01

    Age-related deficits in context memory may arise from neural changes underlying both encoding and retrieval of context information. Although age-related functional changes in the brain regions supporting context memory begin at midlife, little is known about the functional changes with age that support context memory encoding and retrieval across the adult lifespan. We investigated how age-related functional changes support context memory across the adult lifespan by assessing linear changes with age during successful context encoding and retrieval. Using functional magnetic resonance imaging (fMRI), we compared young, middle-aged and older adults during both encoding and retrieval of spatial and temporal details of faces. Multivariate behavioral partial least squares (B-PLS) analysis of fMRI data identified a pattern of whole-brain activity that correlated with a linear age term and a pattern of whole-brain activity that was associated with an age-by-memory phase (encoding vs. retrieval) interaction. Further investigation of this latter effect identified three main findings: 1) reduced phase-related modulation in bilateral fusiform gyrus, left superior/anterior frontal gyrus and right inferior frontal gyrus that started at midlife and continued to older age, 2) reduced phase-related modulation in bilateral inferior parietal lobule that occurred only in older age, and 3) changes in phase-related modulation in older but not younger adults in left middle frontal gyrus and bilateral parahippocampal gyrus that was indicative of age-related over-recruitment. We conclude that age-related reductions in context memory arise in midlife and are related to changes in perceptual recollection and changes in fronto-parietal retrieval monitoring. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  6. Developmental dyslexia: dysfunction of a left hemisphere reading network

    Directory of Open Access Journals (Sweden)

    Fabio eRichlan

    2012-05-01

    Full Text Available This mini-review summarizes and integrates findings from recent meta-analyses and original neuroimaging studies on functional brain abnormalities in dyslexic readers. Surprisingly, there is little empirical support for the standard neuroanatomical model of developmental dyslexia, which localizes the primary phonological decoding deficit in left temporo-parietal regions. Rather, recent evidence points to a dysfunction of a left hemisphere reading network, which includes occipito-temporal, inferior frontal, and inferior parietal regions.

  7. Reduced sensitivity of the N400 and late positive component to semantic congruity and word repetition in left temporal lobe epilepsy.

    Science.gov (United States)

    Olichney, John M; Riggins, Brock R; Hillert, Dieter G; Nowacki, Ralph; Tecoma, Evelyn; Kutas, Marta; Iragui, Vicente J

    2002-07-01

    We studied 14 patients with well-characterized refractory temporal lobe epilepsy (TLE), 7 with right temporal lobe epilepsy (RTE) and 7 with left temporal lobe epilepsy (LTE), on a word repetition ERP experiment. Much prior literature supports the view that patients with left TLE are more likely to develop verbal memory deficits, often attributable to left hippocampal sclerosis. Our main objectives were to test if abnormalities of the N400 or Late Positive Component (LPC, P600) were associated with a left temporal seizure focus, or left temporal lobe dysfunction. A minimum of 19 channels of EEG/EOG data were collected while subjects performed a semantic categorization task. Auditory category statements were followed by a visual target word, which were 50% "congruous" (category exemplars) and 50% "incongruous" (non-category exemplars) with the preceding semantic context. These auditory-visual pairings were repeated pseudo-randomly at time intervals ranging from approximately 10-140 seconds later. The ERP data were submitted to repeated-measures ANOVAs, which showed the RTE group had generally normal effects of word repetition on the LPC and the N400. Also, the N400 component was larger to incongruous than congruous new words, as is normally the case. In contrast, the LTE group did not have statistically significant effects of either word repetition or congruity on their ERPs (N400 or LPC), suggesting that this ERP semantic categorization paradigm is sensitive to left temporal lobe dysfunction. Further studies are ongoing to determine if these ERP abnormalities predict hippocampal sclerosis on histopathology, or outcome after anterior temporal lobectomy.

  8. Reorganization of syntactic processing following left-hemisphere brain damage: does right-hemisphere activity preserve function?

    OpenAIRE

    Tyler, Lorraine K.; Wright, Paul; Randall, Billi; Marslen-Wilson, William D.; Stamatakis, Emmanuel A.

    2010-01-01

    The extent to which the human brain shows evidence of functional plasticity across the lifespan has been addressed in the context of pathological brain changes and, more recently, of the changes that take place during healthy ageing. Here we examine the potential for plasticity by asking whether a strongly left-lateralized system can successfully reorganize to the right-hemisphere following left-hemisphere brain damage. To do this, we focus on syntax, a key linguistic function considered to b...

  9. Characteristics of Brain Perfusion in Patients of Parkinson's Disease

    International Nuclear Information System (INIS)

    Jeong, Young Jin; Park, Min Jung; Kim, Jae Woo; Kang, Young Kang

    2008-01-01

    It was well known that cerebral blood perfusion is normal or diffusely decreased in the majority of patients with Parkinson's disease (PD). Actually we interpreted brain perfusion SPECT images of PD patients in the clinical situation, we observed various cerebral perfusion patterns in patients with PD. So we performed brain perfusion SPECT to know the brain perfusion patterns of PD patients and the difference of perfusion patterns according to the sex and the age. Also we classified PD patients into small groups based on the brain perfusion pattern. Two hundred nineteen patients (M: 70, F: 149, mean age: 62.9±6.9 y/o) who were diagnosed as PD without dementia clinically and 55 patients (M: 15, F: 40, mean age: 61.4±9.2 y/o) as normal controls who had no past illness history were performed 99m Tc-HMPAO brain perfusion SPECT and neuropsychological test. At first, we compared all patients with PD and normal controls. Brain perfusion in left inferior frontal gyrus, left insula, left transverse temporal gyrus, left inferior parietal lobule, left superior parietal lobule, right precuneus, right caudate tail were lower in patients with PD than normal controls. Secondly, we compared male and female patients with PD and normal controls, respectively. Brain perfusion SPECT showed more decreased cerebral perfusion in left hemisphere than right side in both male and female patients compared to normal controls. And there was larger hypoperfusion area in female patients compared with male. Thirdly, we classified patients with PD and normal controls into 4 groups according to the age and compared brain perfusion respectively. In patient below fifties, brain perfusion in both occipitoparietal and left temporal lobe were lower in PD group. As the patients with PD grew older, hypoperfusion area were shown in both frontal, temporal and limbic lobes. Fourthly, We were able to divide patients into small groups based on cerebral perfusion pattern. There was normal cerebral blood

  10. From the Left to the Right: How the Brain Compensates Progressive Loss of Language Function

    Science.gov (United States)

    Thiel, Alexander; Habedank, Birgit; Herholz, Karl; Kessler, Josef; Winhuisen, Lutz; Haupt, Walter F.; Heiss, Wolf-Dieter

    2006-01-01

    In normal right-handed subjects language production usually is a function of the left brain hemisphere. Patients with aphasia following brain damage to the left hemisphere have a considerable potential to compensate for the loss of this function. Sometimes, but not always, areas of the right hemisphere which are homologous to language areas of the…

  11. Multiple brain networks underpinning word learning from fluent speech revealed by independent component analysis.

    Science.gov (United States)

    López-Barroso, Diana; Ripollés, Pablo; Marco-Pallarés, Josep; Mohammadi, Bahram; Münte, Thomas F; Bachoud-Lévi, Anne-Catherine; Rodriguez-Fornells, Antoni; de Diego-Balaguer, Ruth

    2015-04-15

    Although neuroimaging studies using standard subtraction-based analysis from functional magnetic resonance imaging (fMRI) have suggested that frontal and temporal regions are involved in word learning from fluent speech, the possible contribution of different brain networks during this type of learning is still largely unknown. Indeed, univariate fMRI analyses cannot identify the full extent of distributed networks that are engaged by a complex task such as word learning. Here we used Independent Component Analysis (ICA) to characterize the different brain networks subserving word learning from an artificial language speech stream. Results were replicated in a second cohort of participants with a different linguistic background. Four spatially independent networks were associated with the task in both cohorts: (i) a dorsal Auditory-Premotor network; (ii) a dorsal Sensory-Motor network; (iii) a dorsal Fronto-Parietal network; and (iv) a ventral Fronto-Temporal network. The level of engagement of these networks varied through the learning period with only the dorsal Auditory-Premotor network being engaged across all blocks. In addition, the connectivity strength of this network in the second block of the learning phase correlated with the individual variability in word learning performance. These findings suggest that: (i) word learning relies on segregated connectivity patterns involving dorsal and ventral networks; and (ii) specifically, the dorsal auditory-premotor network connectivity strength is directly correlated with word learning performance. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Lesion characteristics driving right-hemispheric language reorganization in congenital left-hemispheric brain damage.

    Science.gov (United States)

    Lidzba, Karen; de Haan, Bianca; Wilke, Marko; Krägeloh-Mann, Ingeborg; Staudt, Martin

    2017-10-01

    Pre- or perinatally acquired ("congenital") left-hemispheric brain lesions can be compensated for by reorganizing language into homotopic brain regions in the right hemisphere. Language comprehension may be hemispherically dissociated from language production. We investigated the lesion characteristics driving inter-hemispheric reorganization of language comprehension and language production in 19 patients (7-32years; eight females) with congenital left-hemispheric brain lesions (periventricular lesions [n=11] and middle cerebral artery infarctions [n=8]) by fMRI. 16/17 patients demonstrated reorganized language production, while 7/19 patients had reorganized language comprehension. Lesions to the insular cortex and the temporo-parietal junction (predominantly supramarginal gyrus) were significantly more common in patients in whom both, language production and comprehension were reorganized. These areas belong to the dorsal stream of the language network, participating in the auditory-motor integration of language. Our data suggest that the integrity of this stream might be crucial for a normal left-lateralized language development. Copyright © 2017. Published by Elsevier Inc.

  13. Comparing CAT12 and VBM8 for Detecting Brain Morphological Abnormalities in Temporal Lobe Epilepsy

    Directory of Open Access Journals (Sweden)

    Farnaz Farokhian

    2017-08-01

    Full Text Available The identification of the brain morphological alterations that play important roles in neurodegenerative/neurological diseases will contribute to our understanding of the causes of these diseases. Various automated software programs are designed to provide an automatic framework to detect brain morphological changes in structural magnetic resonance imaging (MRI data. A voxel-based morphometry (VBM analysis can also be used for the detection of brain volumetric abnormalities. Here, we compared gray matter (GM and white matter (WM abnormality results obtained by a VBM analysis using the Computational Anatomy Toolbox (CAT12 via the current version of Statistical Parametric Mapping software (SPM12 with the results obtained by a VBM analysis using the VBM8 toolbox implemented in the older software SPM8, in adult temporal lobe epilepsy (TLE patients with (n = 51 and without (n = 57 hippocampus sclerosis (HS, compared to healthy adult controls (n = 28. The VBM analysis using CAT12 showed that compared to the healthy controls, significant GM and WM reductions were located in ipsilateral mesial temporal lobes in the TLE-HS patients, and slight GM amygdala swelling was present in the right TLE-no patients (n = 27. In contrast, the VBM analysis via the VBM8 toolbox showed significant GM and WM reductions only in the left TLE-HS patients (n = 25 compared to the healthy controls. Our findings thus demonstrate that compared to VBM8, a VBM analysis using CAT12 provides a more accurate volumetric analysis of the brain regions in TLE. Our results further indicate that a VBM analysis using CAT12 is more robust and accurate against volumetric alterations than the VBM8 toolbox.

  14. The Neural Correlates of Abstract and Concrete Words: Evidence from Brain-Damaged Patients

    Directory of Open Access Journals (Sweden)

    Giorgia Martello

    2013-08-01

    Full Text Available Neuropsychological and activation studies on the neural correlates of abstract and concrete words have produced contrasting results. The present study explores the anatomical substrates of abstract/concrete words in 22 brain-damaged patients with a single vascular lesion either in the right or left hemisphere. One hundred and twenty (60 concrete and 60 abstract noun triplets were used for a semantic similarity judgment task. We found a significant interaction in word type × group since left temporal brain-damaged patients performed significantly better with concrete than abstract words. Lesion mapping of patients with predominant temporal damage showed that the left superior and middle temporal gyri and the insula were the areas of major overlapping, while the anterior portion of the left temporal lobe was generally spared. Errors on abstract words mainly concerned (although at a non-significant level semantically associate targets, while in the case of concrete words, coordinate targets were significantly more impaired than associate ones. Our results suggest that the left superior and middle temporal gyri and the insula are crucial regions in processing abstract words. They also confirm the hypothesis of a semantic similarity vs. associative organization of concrete and abstract concepts.

  15. MRI volume measurement of the brain in schizophrenia

    International Nuclear Information System (INIS)

    Someya, Yasuhiro; Abe, Tetsuo; Asai, Kunihiko; Okubo, Yoshirou; Toru, Michio.

    1996-01-01

    The T1-weighted images of whole-brain three-dimensional MRI (thickness, 3 mm; interval, 3 mm) were obtained from schizophrenic patients and 20 healthy volunteers. Detailed volumetric measurement of each part in the brain was carried out. As the result, the volume of both ventricles and third ventriculus cerebri in the schizophrenic group was significantly larger than that of the control group. No significant difference was observed in terms of the volume of the bilateral frontal lobe, bilateral body of caudate nucleus division and right temporal lobe. The volume of bilateral hippocampus and left temporal lobe of the schizophrenic group was significantly smaller than that of the control group. Negative correlation was observed between symptoms and the right temporal lobe volume (r=-0.41) in the schizophrenic group. In the schizophrenic group, morphological abnormality was admitted in the hippocampus, ventriculus cerebri and left temporal lobe. The morphological abnormality of the right temporal lobe seemed to involve the expression of negative symptoms. (S.Y.)

  16. Decrease in early right alpha band phase synchronization and late gamma band oscillations in processing syntax in music.

    Science.gov (United States)

    Ruiz, María Herrojo; Koelsch, Stefan; Bhattacharya, Joydeep

    2009-04-01

    The present study investigated the neural correlates associated with the processing of music-syntactical irregularities as compared with regular syntactic structures in music. Previous studies reported an early ( approximately 200 ms) right anterior negative component (ERAN) by traditional event-related-potential analysis during music-syntactical irregularities, yet little is known about the underlying oscillatory and synchronization properties of brain responses which are supposed to play a crucial role in general cognition including music perception. First we showed that the ERAN was primarily represented by low frequency (music-syntactical irregularities as compared with music-syntactical regularities, were associated with (i) an early decrease in the alpha band (9-10 Hz) phase synchronization between right fronto-central and left temporal brain regions, and (ii) a late ( approximately 500 ms) decrease in gamma band (38-50 Hz) oscillations over fronto-central brain regions. These results indicate a weaker degree of long-range integration when the musical expectancy is violated. In summary, our results reveal neural mechanisms of music-syntactic processing that operate at different levels of cortical integration, ranging from early decrease in long-range alpha phase synchronization to late local gamma oscillations. 2008 Wiley-Liss, Inc.

  17. Brain Activation Associated with Practiced Left Hand Mirror Writing

    Science.gov (United States)

    Kushnir, T.; Arzouan, Y.; Karni, A.; Manor, D.

    2013-01-01

    Mirror writing occurs in healthy children, in various pathologies and occasionally in healthy adults. There are only scant experimental data on the underlying brain processes. Eight, right-handed, healthy young adults were scanned (BOLD-fMRI) before and after practicing left-hand mirror-writing (lh-MW) over seven sessions. They wrote dictated…

  18. Right brain, left brain in depressive disorders: Clinical and theoretical implications of behavioral, electrophysiological and neuroimaging findings.

    Science.gov (United States)

    Bruder, Gerard E; Stewart, Jonathan W; McGrath, Patrick J

    2017-07-01

    The right and left side of the brain are asymmetric in anatomy and function. We review electrophysiological (EEG and event-related potential), behavioral (dichotic and visual perceptual asymmetry), and neuroimaging (PET, MRI, NIRS) evidence of right-left asymmetry in depressive disorders. Recent electrophysiological and fMRI studies of emotional processing have provided new evidence of altered laterality in depressive disorders. EEG alpha asymmetry and neuroimaging findings at rest and during cognitive or emotional tasks are consistent with reduced left prefrontal activity in depressed patients, which may impair downregulation of amygdala response to negative emotional information. Dichotic listening and visual hemifield findings for non-verbal or emotional processing have revealed abnormal perceptual asymmetry in depressive disorders, and electrophysiological findings have shown reduced right-lateralized responsivity to emotional stimuli in occipitotemporal or parietotemporal cortex. We discuss models of neural networks underlying these alterations. Of clinical relevance, individual differences among depressed patients on measures of right-left brain function are related to diagnostic subtype of depression, comorbidity with anxiety disorders, and clinical response to antidepressants or cognitive behavioral therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effect of pharmacological interventions on the fronto-cingulo-parietal cognitive control network in psychiatric disorders: a transdiagnostic systematic review of fMRI studies

    Directory of Open Access Journals (Sweden)

    Therese eVan Amelsvoort

    2016-05-01

    Full Text Available Executive function deficits such as working memory, decision-making, and attention problems are a common feature of several psychiatric disorders for which no satisfactory treatment exists. Here, we transdiagnostically investigate the effects of pharmacological interventions (other than methylphenidate on the fronto-cingulo-parietal cognitive control network, in order to identify functional brain markers for future pro-cognitive pharmacological interventions. 29 manuscripts investigated the effect of pharmacological treatment on executive function-related brain correlates in psychotic disorders (n=11, depression (n=4, bipolar disorder (n=4, ADHD (n=4, OCD (n=2, smoking dependence (n=2, alcohol dependence (n=1 and pathological gambling (n=1. In terms of impact on the fronto-cingulo-parietal networks, the preliminary evidence for catechol-o-methyl-transferase inhibitors, nicotinic receptor agonists and atomoxetine suggested was relatively consistent, the data for atypical antipsychotics and anticonvulsants moderate, and interpretation of the data for antidepressants was hampered by the employed study designs. Increased activity in task-relevant areas and decreased activity in task-irrelevant areas were the most common transdiagnostic effects of pharmacological treatment. These markers showed good positive and moderate negative predictive value. It is concluded that fronto-cingulo-parietal activity changes can serve as a marker for future pro-cognitive interventions. Future recommendations include the use of randomized double-blind designs and selective cholinergic and glutamatergic compounds.

  20. Brain structural changes associated with chronicity and antipsychotic treatment in schizophrenia.

    Science.gov (United States)

    Tomelleri, Luisa; Jogia, Jigar; Perlini, Cinzia; Bellani, Marcella; Ferro, Adele; Rambaldelli, Gianluca; Tansella, Michele; Frangou, Sophia; Brambilla, Paolo

    2009-12-01

    Accumulating evidence suggest a life-long impact of disease related mechanisms on brain structure in schizophrenia which may be modified by antipsychotic treatment. The aim of the present study was to investigate in a large sample of patients with schizophrenia the effect of illness duration and antipsychotic treatment on brain structure. Seventy-one schizophrenic patients and 79 age and gender matched healthy participants underwent brain magnetic resonance imaging (MRI). All images were processed with voxel based morphometry, using SPM5. Compared to healthy participants, patients showed decrements in gray matter volume in the left medial and left inferior frontal gyrus. In addition, duration of illness was negatively associated with gray matter volume in prefrontal regions bilaterally, in the temporal pole on the left and the caudal superior temporal gyrus on the right. Cumulative exposure to antipsychotics correlated positively with gray matter volumes in the cingulate gyrus for typical agents and in the thalamus for atypical drugs. These findings (a) indicate that structural abnormalities in prefrontal and temporal cortices in schizophrenia are progressive and, (b) suggest that antipsychotic medication has a significant impact on brain morphology.

  1. From static to temporal network theory: Applications to functional brain connectivity

    Directory of Open Access Journals (Sweden)

    William Hedley Thompson

    2017-06-01

    Full Text Available Network neuroscience has become an established paradigm to tackle questions related to the functional and structural connectome of the brain. Recently, interest has been growing in examining the temporal dynamics of the brain’s network activity. Although different approaches to capturing fluctuations in brain connectivity have been proposed, there have been few attempts to quantify these fluctuations using temporal network theory. This theory is an extension of network theory that has been successfully applied to the modeling of dynamic processes in economics, social sciences, and engineering article but it has not been adopted to a great extent within network neuroscience. The objective of this article is twofold: (i to present a detailed description of the central tenets of temporal network theory and describe its measures, and; (ii to apply these measures to a resting-state fMRI dataset to illustrate their utility. Furthermore, we discuss the interpretation of temporal network theory in the context of the dynamic functional brain connectome. All the temporal network measures and plotting functions described in this article are freely available as the Python package Teneto. Temporal network theory is a subfield of network theory that has had limited application to date within network neuroscience. The aims of this work are to introduce temporal network theory, define the metrics relevant to the context of network neuroscience, and illustrate their potential by analyzing a resting-state fMRI dataset. We found both between-subjects and between-task differences that illustrate the potential for these tools to be applied in a wider context. Our tools for analyzing temporal networks have been released in a Python package called Teneto.

  2. Optimized temporal pattern of brain stimulation designed by computational evolution.

    Science.gov (United States)

    Brocker, David T; Swan, Brandon D; So, Rosa Q; Turner, Dennis A; Gross, Robert E; Grill, Warren M

    2017-01-04

    Brain stimulation is a promising therapy for several neurological disorders, including Parkinson's disease. Stimulation parameters are selected empirically and are limited to the frequency and intensity of stimulation. We varied the temporal pattern of deep brain stimulation to ameliorate symptoms in a parkinsonian animal model and in humans with Parkinson's disease. We used model-based computational evolution to optimize the stimulation pattern. The optimized pattern produced symptom relief comparable to that from standard high-frequency stimulation (a constant rate of 130 or 185 Hz) and outperformed frequency-matched standard stimulation in a parkinsonian rat model and in patients. Both optimized and standard high-frequency stimulation suppressed abnormal oscillatory activity in the basal ganglia of rats and humans. The results illustrate the utility of model-based computational evolution of temporal patterns to increase the efficiency of brain stimulation in treating Parkinson's disease and thereby reduce the energy required for successful treatment below that of current brain stimulation paradigms. Copyright © 2017, American Association for the Advancement of Science.

  3. Parametric fMRI analysis of visual encoding in the human medial temporal lobe.

    Science.gov (United States)

    Rombouts, S A; Scheltens, P; Machielson, W C; Barkhof, F; Hoogenraad, F G; Veltman, D J; Valk, J; Witter, M P

    1999-01-01

    A number of functional brain imaging studies indicate that the medial temporal lobe system is crucially involved in encoding new information into memory. However, most studies were based on differences in brain activity between encoding of familiar vs. novel stimuli. To further study the underlying cognitive processes, we applied a parametric design of encoding. Seven healthy subjects were instructed to encode complex color pictures into memory. Stimuli were presented in a parametric fashion at different rates, thus representing different loads of encoding. Functional magnetic resonance imaging (fMRI) was used to assess changes in brain activation. To determine the number of pictures successfully stored into memory, recognition scores were determined afterwards. During encoding, brain activation occurred in the medial temporal lobe, comparable to the results obtained by others. Increasing the encoding load resulted in an increase in the number of successfully stored items. This was reflected in a significant increase in brain activation in the left lingual gyrus, in the left and right parahippocampal gyrus, and in the right inferior frontal gyrus. This study shows that fMRI can detect changes in brain activation during variation of one aspect of higher cognitive tasks. Further, it strongly supports the notion that the human medial temporal lobe is involved in encoding novel visual information into memory.

  4. A cortical source localization analysis of resting EEG data after remifentanil infusion

    DEFF Research Database (Denmark)

    Khodayari-Rostamabad, Ahmad; Graversen, Carina; Malver, Lasse P

    2015-01-01

    in several brain areas including inferior frontal gyrus and insula at frontal lobe oscillated more strongly after remifentanil infusion compared to placebo. Furthermore, the source activity at delta band was correlated with continuous reaction time index. CONCLUSIONS: These results indicate that alterations...... in brain oscillations during remifentanil are mostly localized to frontal, fronto-temporal and fronto-central lobes and related to cognitive function. SIGNIFICANCE: The approach offers the potential to be used for understanding the underlying mechanism of action of remifentanil on brain activity....

  5. Cumulative trauma, adversity and grief symptoms associated with fronto-temporal regions in life-course persistent delinquent boys.

    Science.gov (United States)

    Lansing, Amy E; Virk, Agam; Notestine, Randy; Plante, Wendy Y; Fennema-Notestine, Christine

    2016-08-30

    Delinquent youth have substantial trauma exposure, with life-course persistent delinquents [LCPD] demonstrating notably elevated cross-diagnostic psychopathology and cognitive deficits. Because adolescents remain in the midst of brain and neurocognitive development, tailored interventions are key to improving functional outcomes. This structural magnetic resonance imaging study compared neuroanatomical profiles of 23 LCPD and 20 matched control adolescent boys. LCPD youth had smaller overall gray matter, and left hippocampal, volumes alongside less cortical surface area and folding within the left pars opercularis and supramarginal cortex. LCPD youth had more adversity-related exposures, and their higher Cumulative Trauma, Adversity and Grief [C-TAG] symptoms were associated with less surface area and folding in the pars opercularis and lingual gyrus. Neuroanatomical differences between LCPD and control youth overlap with data from both maltreatment and antisocial literatures. The affected left frontal regions also share connections to language- and executive-related functions, aligning well with LCPD youths' cognitive and behavioral difficulties. These data also dovetail with research suggesting the possibility of neurodevelopmental delays or disruptions related to cumulative adversity burden. Thus, concurrent treatment of LCPD youths' C-TAG symptoms and, cognitive deficits with overlapping neuroanatomical bases, may be most effective in improving outcomes and optimizing neurodevelopmental trajectories. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Potential role of a cognitive rehabilitation program following left temporal lobe epilepsy surgery

    Directory of Open Access Journals (Sweden)

    Camila de Vasconcelos Geraldi

    Full Text Available ABSTRACT Research into memory and epilepsy has focused on measuring problems and exploring causes with limited attention directed at the role of neuropsychological rehabilitation in alleviating post-operative memory difficulties. Objectives To assess the effects of a memory rehabilitation program in patients with left temporal lobe epilepsy following surgery. Methods Twenty-four patients agreed to participate and 18 completed the study; nine received memory rehabilitation while nine had no input and were designated as controls. Verbal learning efficiency, naming abilities, memory subjective ratings, ecological activity measures and a language fMRI paradigm were used as outcome measures. Results Improved verbal learning and naming test performance, increase in memory strategy use and improved self-perception were observed following the rehabilitation. Changes in fMRI activation patterns were seen in the rehabilitation group over the long term. Conclusion The findings support the potential role of a cognitive rehabilitation program following left temporal lobe surgery.

  7. Temporal lobe surgery in childhood and neuroanatomical predictors of long-term declarative memory outcome

    Science.gov (United States)

    Skirrow, Caroline; Cross, J. Helen; Harrison, Sue; Cormack, Francesca; Harkness, William; Coleman, Rosie; Meierotto, Ellen; Gaiottino, Johanna; Vargha-Khadem, Faraneh

    2015-01-01

    The temporal lobes play a prominent role in declarative memory function, including episodic memory (memory for events) and semantic memory (memory for facts and concepts). Surgical resection for medication-resistant and well-localized temporal lobe epilepsy has good prognosis for seizure freedom, but is linked to memory difficulties in adults, especially when the removal is on the left side. Children may benefit most from surgery, because brain plasticity may facilitate post-surgical reorganization, and seizure cessation may promote cognitive development. However, the long-term impact of this intervention in children is not known. We examined memory function in 53 children (25 males, 28 females) who were evaluated for epilepsy surgery: 42 underwent unilateral temporal lobe resections (25 left, 17 right, mean age at surgery 13.8 years), 11 were treated only pharmacologically. Average follow-up was 9 years (range 5–15). Post-surgical change in visual and verbal episodic memory, and semantic memory at follow-up were examined. Pre- and post-surgical T1-weighted MRI brain scans were analysed to extract hippocampal and resection volumes, and evaluate post-surgical temporal lobe integrity. Language lateralization indices were derived from functional magnetic resonance imaging. There were no significant pre- to postoperative decrements in memory associated with surgery. In contrast, gains in verbal episodic memory were seen after right temporal lobe surgery, and visual episodic memory improved after left temporal lobe surgery, indicating a functional release in the unoperated temporal lobe after seizure reduction or cessation. Pre- to post-surgical change in memory function was not associated with any indices of brain structure derived from MRI. However, better verbal memory at follow-up was linked to greater post-surgical residual hippocampal volumes, most robustly in left surgical participants. Better semantic memory at follow-up was associated with smaller resection

  8. Spatio-temporal distribution of brain activity associated with audio-visually congruent and incongruent speech and the McGurk Effect.

    Science.gov (United States)

    Pratt, Hillel; Bleich, Naomi; Mittelman, Nomi

    2015-11-01

    Spatio-temporal distributions of cortical activity to audio-visual presentations of meaningless vowel-consonant-vowels and the effects of audio-visual congruence/incongruence, with emphasis on the McGurk effect, were studied. The McGurk effect occurs when a clearly audible syllable with one consonant, is presented simultaneously with a visual presentation of a face articulating a syllable with a different consonant and the resulting percept is a syllable with a consonant other than the auditorily presented one. Twenty subjects listened to pairs of audio-visually congruent or incongruent utterances and indicated whether pair members were the same or not. Source current densities of event-related potentials to the first utterance in the pair were estimated and effects of stimulus-response combinations, brain area, hemisphere, and clarity of visual articulation were assessed. Auditory cortex, superior parietal cortex, and middle temporal cortex were the most consistently involved areas across experimental conditions. Early (visual cortex. Clarity of visual articulation impacted activity in secondary visual cortex and Wernicke's area. McGurk perception was associated with decreased activity in primary and secondary auditory cortices and Wernicke's area before 100 msec, increased activity around 100 msec which decreased again around 180 msec. Activity in Broca's area was unaffected by McGurk perception and was only increased to congruent audio-visual stimuli 30-70 msec following consonant onset. The results suggest left hemisphere prominence in the effects of stimulus and response conditions on eight brain areas involved in dynamically distributed parallel processing of audio-visual integration. Initially (30-70 msec) subcortical contributions to auditory cortex, superior parietal cortex, and middle temporal cortex occur. During 100-140 msec, peristriate visual influences and Wernicke's area join in the processing. Resolution of incongruent audio-visual inputs is then

  9. [Dextrals and sinistrals (right-handers and left-handers): specificity of interhemispheric brain asymmetry and EEG coherence parameters].

    Science.gov (United States)

    Zhavoronkova, L A

    2007-01-01

    Data of literature about morphological, functional and biochemical specificity of the brain interhemispheric asymmetry of healthy right-handers and left-handers and about peculiarity of dynamics of cerebral pathology in patients with different individual asymmetry profiles are presented at the present article. Results of our investigation by using coherence parameters of electroencephalogram (EEG) in healthy right-handers and left-handers in state of rest, during functional tests and sleeping and in patients with different forms of the brain organic damage were analyzed too. EEG coherence analysis revealed the reciprocal changing of alpha-beta and theta-delta spectral bands in right-handers whilein left-handers synchronous changing of all EEG spectral bands were observed. Data about regional-frequent specificity of EEG coherence, peculiarity of EEG asymmetry in right-handers and left-handers, aslo about specificity of EEG spectral band genesis and point of view about a role of the brain regulator systems in forming of interhemispheric asymmetry in different functional states allowed to propose the conception about principle of interhermispheric brain asymmetry formation in left-handers and left-handers. Following this conception in dextrals elements of concurrent (summary-reciprocal) cooperation are predominant at the character of interhemispheric and cortical-subcortical interaction while in sinistrals a principle of concordance (supplementary) is preferable. These peculiarities the brain organization determine, from the first side, the quicker revovery of functions damaged after cranio-cerebral trauma in left-handers in comparison right-handers and from the other side - they determine the forming of the more expressed pathology in the remote terms after exposure the low dose of radiation.

  10. Characteristics of Brain Perfusion in Patients of Parkinson's Disease

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Young Jin; Park, Min Jung; Kim, Jae Woo; Kang, Young Kang [Dong-A University College of Medicine, Busan (Korea, Republic of)

    2008-02-15

    It was well known that cerebral blood perfusion is normal or diffusely decreased in the majority of patients with Parkinson's disease (PD). Actually we interpreted brain perfusion SPECT images of PD patients in the clinical situation, we observed various cerebral perfusion patterns in patients with PD. So we performed brain perfusion SPECT to know the brain perfusion patterns of PD patients and the difference of perfusion patterns according to the sex and the age. Also we classified PD patients into small groups based on the brain perfusion pattern. Two hundred nineteen patients (M: 70, F: 149, mean age: 62.9{+-}6.9 y/o) who were diagnosed as PD without dementia clinically and 55 patients (M: 15, F: 40, mean age: 61.4{+-}9.2 y/o) as normal controls who had no past illness history were performed {sup 99m}Tc-HMPAO brain perfusion SPECT and neuropsychological test. At first, we compared all patients with PD and normal controls. Brain perfusion in left inferior frontal gyrus, left insula, left transverse temporal gyrus, left inferior parietal lobule, left superior parietal lobule, right precuneus, right caudate tail were lower in patients with PD than normal controls. Secondly, we compared male and female patients with PD and normal controls, respectively. Brain perfusion SPECT showed more decreased cerebral perfusion in left hemisphere than right side in both male and female patients compared to normal controls. And there was larger hypoperfusion area in female patients compared with male. Thirdly, we classified patients with PD and normal controls into 4 groups according to the age and compared brain perfusion respectively. In patient below fifties, brain perfusion in both occipitoparietal and left temporal lobe were lower in PD group. As the patients with PD grew older, hypoperfusion area were shown in both frontal, temporal and limbic lobes. Fourthly, We were able to divide patients into small groups based on cerebral perfusion pattern. There was normal

  11. Effects of dual pathology on cognitive outcome following left anterior temporal lobectomy for treatment of epilepsy.

    Science.gov (United States)

    Prayson, B E; Prayson, R A; Kubu, C S; Bingaman, W; Najm, I M; Busch, R M

    2013-09-01

    The objective of this retrospective study was to determine if dual pathology [DUAL - focal cortical dysplasia (FCD) and mesial temporal sclerosis (MTS)] in patients with left temporal lobe epilepsy is associated with greater risk for cognitive decline following temporal lobectomy than single pathology (MTS only). Sixty-three adults (Mage=36.5years, female: 52.4%) who underwent left anterior temporal lobectomy for treatment of epilepsy (MTS=28; DUAL=35) completed preoperative and postoperative neuropsychological evaluations. The base rate of dual pathology was 55.5%. Repeated measures ANOVAs yielded significant 2-way interactions (group×time) on most measures of language and memory with generally moderate effect sizes. Specifically, patients with MTS only demonstrated postoperative declines, while those with dual pathology remained unchanged or improved. Results suggest that dual pathology may be associated with better cognitive outcome following epilepsy surgery than MTS alone, possibly reflecting limited functionality of the resected tissue or intrahemispheric reorganization of function in the context of a developmental lesion. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Abnormalities of functional brain networks in pathological gambling: a graph-theoretical approach

    Science.gov (United States)

    Tschernegg, Melanie; Crone, Julia S.; Eigenberger, Tina; Schwartenbeck, Philipp; Fauth-Bühler, Mira; Lemènager, Tagrid; Mann, Karl; Thon, Natasha; Wurst, Friedrich M.; Kronbichler, Martin

    2013-01-01

    Functional neuroimaging studies of pathological gambling (PG) demonstrate alterations in frontal and subcortical regions of the mesolimbic reward system. However, most investigations were performed using tasks involving reward processing or executive functions. Little is known about brain network abnormalities during task-free resting state in PG. In the present study, graph-theoretical methods were used to investigate network properties of resting state functional magnetic resonance imaging data in PG. We compared 19 patients with PG to 19 healthy controls (HCs) using the Graph Analysis Toolbox (GAT). None of the examined global metrics differed between groups. At the nodal level, pathological gambler showed a reduced clustering coefficient in the left paracingulate cortex and the left juxtapositional lobe (supplementary motor area, SMA), reduced local efficiency in the left SMA, as well as an increased node betweenness for the left and right paracingulate cortex and the left SMA. At an uncorrected threshold level, the node betweenness in the left inferior frontal gyrus was decreased and increased in the caudate. Additionally, increased functional connectivity between fronto-striatal regions and within frontal regions has also been found for the gambling patients. These findings suggest that regions associated with the reward system demonstrate reduced segregation but enhanced integration while regions associated with executive functions demonstrate reduced integration. The present study makes evident that PG is also associated with abnormalities in the topological network structure of the brain during rest. Since alterations in PG cannot be explained by direct effects of abused substances on the brain, these findings will be of relevance for understanding functional connectivity in other addictive disorders. PMID:24098282

  13. Abnormalities of Functional Brain Networks in Pathological Gambling: A Graph-Theoretical Approach

    Directory of Open Access Journals (Sweden)

    Melanie eTschernegg

    2013-09-01

    Full Text Available Functional neuroimaging studies of pathological gambling demonstrate alterations in frontal and subcortical regions of the mesolimbic reward system. However, most investigations were performed using tasks involving reward processing or executive functions. Little is known about brain network abnormalities during task-free resting state in pathological gambling. In the present study, graph-theoretical methods were used to investigate network properties of resting state functional MRI data in pathological gambling. We compared 19 patients with pathological gambling to 19 healthy controls using the Graph Analysis Toolbox (GAT. None of the examined global metrics differed between groups. At the nodal level, pathological gambler showed a reduced clustering coefficient in the left paracingulate cortex and the left juxtapositional lobe (SMA, reduced local efficiency in the left SMA, as well as an increased node betweenness for the left and right paracingulate cortex and the left SMA. At an uncorrected threshold level, the node betweenness in the left inferior frontal gyrus was decreased and increased in the caudate. Additionally, increased functional connectivity between fronto-striatal regions and within frontal regions has also been found for the gambling patients.These findings suggest that regions associated with the reward system demonstrate reduced segregation but enhanced integration while regions associated with executive functions demonstrate reduced integration. The present study makes evident that pathological gambling is also associated with abnormalities in the topological network structure of the brain during rest. Since alterations in pathological gambling cannot be explained by direct effects of abused substances on the brain, these findings will be of relevance for understanding functional connectivity in other addictive disorders.

  14. Weighing the value of memory loss in the surgical evaluation of left temporal lobe epilepsy: a decision analysis.

    Science.gov (United States)

    Akama-Garren, Elliot H; Bianchi, Matt T; Leveroni, Catherine; Cole, Andrew J; Cash, Sydney S; Westover, M Brandon

    2014-11-01

    Anterior temporal lobectomy is curative for many patients with disabling medically refractory temporal lobe epilepsy, but carries an inherent risk of disabling verbal memory loss. Although accurate prediction of iatrogenic memory loss is becoming increasingly possible, it remains unclear how much weight such predictions should have in surgical decision making. Here we aim to create a framework that facilitates a systematic and integrated assessment of the relative risks and benefits of surgery versus medical management for patients with left temporal lobe epilepsy. We constructed a Markov decision model to evaluate the probabilistic outcomes and associated health utilities associated with choosing to undergo a left anterior temporal lobectomy versus continuing with medical management for patients with medically refractory left temporal lobe epilepsy. Three base-cases were considered, representing a spectrum of surgical candidates encountered in practice, with varying degrees of epilepsy-related disability and potential for decreased quality of life in response to post-surgical verbal memory deficits. For patients with moderately severe seizures and moderate risk of verbal memory loss, medical management was the preferred decision, with increased quality-adjusted life expectancy. However, the preferred choice was sensitive to clinically meaningful changes in several parameters, including quality of life impact of verbal memory decline, quality of life with seizures, mortality rate with medical management, probability of remission following surgery, and probability of remission with medical management. Our decision model suggests that for patients with left temporal lobe epilepsy, quantitative assessment of risk and benefit should guide recommendation of therapy. In particular, risk for and potential impact of verbal memory decline should be carefully weighed against the degree of disability conferred by continued seizures on a patient-by-patient basis. Wiley

  15. Differences in graph theory functional connectivity in left and right temporal lobe epilepsy.

    Science.gov (United States)

    Chiang, Sharon; Stern, John M; Engel, Jerome; Levin, Harvey S; Haneef, Zulfi

    2014-12-01

    To investigate lateralized differences in limbic system functional connectivity between left and right temporal lobe epilepsy (TLE) using graph theory. Interictal resting state fMRI was performed in 14 left TLE patients, 11 right TLE patients, and 12 controls. Graph theory analysis of 10 bilateral limbic regions of interest was conducted. Changes in edgewise functional connectivity, network topology, and regional topology were quantified, and then left and right TLE were compared. Limbic edgewise functional connectivity was predominantly reduced in both left and right TLE. More regional connections were reduced in right TLE, most prominently involving reduced interhemispheric connectivity between the bilateral insula and bilateral hippocampi. A smaller number of limbic connections were increased in TLE, more so in left than in right TLE. Topologically, the most pronounced change was a reduction in average network betweenness centrality and concurrent increase in left hippocampal betweenness centrality in right TLE. In contrast, left TLE exhibited a weak trend toward increased right hippocampal betweenness centrality, with no change in average network betweenness centrality. Limbic functional connectivity is predominantly reduced in both left and right TLE, with more pronounced reductions in right TLE. In contrast, left TLE exhibits both edgewise and topological changes that suggest a tendency toward reorganization. Network changes in TLE and lateralized differences thereof may have important diagnostic and prognostic implications. Published by Elsevier B.V.

  16. Levels of word processing and incidental memory: dissociable mechanisms in the temporal lobe.

    Science.gov (United States)

    Castillo, E M; Simos, P G; Davis, R N; Breier, J; Fitzgerald, M E; Papanicolaou, A C

    2001-11-16

    Word recall is facilitated when deep (e.g. semantic) processing is applied during encoding. This fact raises the question of the existence of specific brain mechanisms supporting different levels of information processing that can modulate incidental memory performance. In this study we obtained spatiotemporal brain activation profiles, using magnetic source imaging, from 10 adult volunteers as they performed a shallow (phonological) processing task and a deep (semantic) processing task. When phonological analysis of the word stimuli into their constituent phonemes was required, activation was largely restricted to the posterior portion of the left superior temporal gyrus (area 22). Conversely, when access to lexical/semantic representations was required, activation was found predominantly in the left middle temporal gyrus and medial temporal cortex. The differential engagement of each mechanism during word encoding was associated with dramatic changes in subsequent incidental memory performance.

  17. From Brain-Environment Connections to Temporal Dynamics and Social Interaction: Principles of Human Brain Function.

    Science.gov (United States)

    Hari, Riitta

    2017-06-07

    Experimental data about brain function accumulate faster than does our understanding of how the brain works. To tackle some general principles at the grain level of behavior, I start from the omnipresent brain-environment connection that forces regularities of the physical world to shape the brain. Based on top-down processing, added by sparse sensory information, people are able to form individual "caricature worlds," which are similar enough to be shared among other people and which allow quick and purposeful reactions to abrupt changes. Temporal dynamics and social interaction in natural environments serve as further essential organizing principles of human brain function. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Different brain activation under left and right ventricular stimulation: an fMRI study in anesthetized rats.

    Science.gov (United States)

    Suzuki, Hideaki; Sumiyoshi, Akira; Kawashima, Ryuta; Shimokawa, Hiroaki

    2013-01-01

    Myocardial ischemia in the anterior wall of the left ventricule (LV) and in the inferior wall and/or right ventricle (RV) shows different manifestations that can be explained by the different innervations of cardiac afferent nerves. However, it remains unclear whether information from different areas of the heart, such as the LV and RV, are differently processed in the brain. In this study, we investigated the brain regions that process information from the LV or RV using cardiac electrical stimulation and functional magnetic resonance imaging (fMRI) in anesthetized rats because the combination of these two approaches cannot be used in humans. An electrical stimulation catheter was inserted into the LV or RV (n = 12 each). Brain fMRI scans were recorded during LV or RV stimulation (9 Hz and 0.3 ms width) over 10 blocks consisting of alternating periods of 2 mA for 30 sec followed by 0.2 mA for 60 sec. The validity of fMRI signals was confirmed by first and second-level analyses and temporal profiles. Increases in fMRI signals were observed in the anterior cingulate cortex and the right somatosensory cortex under LV stimulation. In contrast, RV stimulation activated the right somatosensory cortex, which was identified more anteriorly compared with LV stimulation but did not activate the anterior cingulate cortex. This study provides the first evidence for differences in brain activation under LV and RV stimulation. These different brain processes may be associated with different clinical manifestations between anterior wall and inferoposterior wall and/or RV myocardial ischemia.

  19. The cognitive profile of occipital lobe epilepsy and the selective association of left temporal lobe hypometabolism with verbal memory impairment.

    Science.gov (United States)

    Knopman, Alex A; Wong, Chong H; Stevenson, Richard J; Homewood, Judi; Mohamed, Armin; Somerville, Ernest; Eberl, Stefan; Wen, Lingfeng; Fulham, Michael; Bleasel, Andrew F

    2014-08-01

    We investigated the cognitive profile of structural occipital lobe epilepsy (OLE) and whether verbal memory impairment is selectively associated with left temporal lobe hypometabolism on [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET). Nine patients with OLE, ages 8-29 years, completed presurgical neuropsychological assessment. Composite measures were calculated for intelligence quotient (IQ), speed, attention, verbal memory, nonverbal memory, and executive functioning. In addition, the Wisconsin Card Sorting Test (WCST) was used as a specific measure of frontal lobe functioning. Presurgical FDG-PET was analyzed with statistical parametric mapping in 8 patients relative to 16 healthy volunteers. Mild impairments were evident for IQ, speed, attention, and executive functioning. Four patients demonstrated moderate or severe verbal memory impairment. Temporal lobe hypometabolism was found in seven of eight patients. Poorer verbal memory was associated with left temporal lobe hypometabolism (p = 0.002), which was stronger (p = 0.03 and p = 0.005, respectively) than the association of left temporal lobe hypometabolism with executive functioning or with performance on the WCST. OLE is associated with widespread cognitive comorbidity, suggesting cortical dysfunction beyond the occipital lobe. Verbal memory impairment is selectively associated with left temporal lobe hypometabolism in OLE, supporting a link between neuropsychological dysfunction and remote hypometabolism in focal epilepsy. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.

  20. FGF signaling is required for brain left-right asymmetry and brain midline formation.

    Science.gov (United States)

    Neugebauer, Judith M; Yost, H Joseph

    2014-02-01

    Early disruption of FGF signaling alters left-right (LR) asymmetry throughout the embryo. Here we uncover a role for FGF signaling that specifically disrupts brain asymmetry, independent of normal lateral plate mesoderm (LPM) asymmetry. When FGF signaling is inhibited during mid-somitogenesis, asymmetrically expressed LPM markers southpaw and lefty2 are not affected. However, asymmetrically expressed brain markers lefty1 and cyclops become bilateral. We show that FGF signaling controls expression of six3b and six7, two transcription factors required for repression of asymmetric lefty1 in the brain. We found that Z0-1, atypical PKC (aPKC) and β-catenin protein distribution revealed a midline structure in the forebrain that is dependent on a balance of FGF signaling. Ectopic activation of FGF signaling leads to overexpression of six3b, loss of organized midline adherins junctions and bilateral loss of lefty1 expression. Reducing FGF signaling leads to a reduction in six3b and six7 expression, an increase in cell boundary formation in the brain midline, and bilateral expression of lefty1. Together, these results suggest a novel role for FGF signaling in the brain to control LR asymmetry, six transcription factor expressions, and a midline barrier structure. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. How Auditory Experience Differentially Influences the Function of Left and Right Superior Temporal Cortices.

    Science.gov (United States)

    Twomey, Tae; Waters, Dafydd; Price, Cathy J; Evans, Samuel; MacSweeney, Mairéad

    2017-09-27

    To investigate how hearing status, sign language experience, and task demands influence functional responses in the human superior temporal cortices (STC) we collected fMRI data from deaf and hearing participants (male and female), who either acquired sign language early or late in life. Our stimuli in all tasks were pictures of objects. We varied the linguistic and visuospatial processing demands in three different tasks that involved decisions about (1) the sublexical (phonological) structure of the British Sign Language (BSL) signs for the objects, (2) the semantic category of the objects, and (3) the physical features of the objects.Neuroimaging data revealed that in participants who were deaf from birth, STC showed increased activation during visual processing tasks. Importantly, this differed across hemispheres. Right STC was consistently activated regardless of the task whereas left STC was sensitive to task demands. Significant activation was detected in the left STC only for the BSL phonological task. This task, we argue, placed greater demands on visuospatial processing than the other two tasks. In hearing signers, enhanced activation was absent in both left and right STC during all three tasks. Lateralization analyses demonstrated that the effect of deafness was more task-dependent in the left than the right STC whereas it was more task-independent in the right than the left STC. These findings indicate how the absence of auditory input from birth leads to dissociable and altered functions of left and right STC in deaf participants. SIGNIFICANCE STATEMENT Those born deaf can offer unique insights into neuroplasticity, in particular in regions of superior temporal cortex (STC) that primarily respond to auditory input in hearing people. Here we demonstrate that in those deaf from birth the left and the right STC have altered and dissociable functions. The right STC was activated regardless of demands on visual processing. In contrast, the left STC was

  2. Voxel-based morphometry (VBM) based assessment of gray matter loss in medial temporal lobe epilepsy; comparison with FDG PET

    International Nuclear Information System (INIS)

    Kang, Hye Jin; Lee, Ho Young; Lee, Jae Sung; Kang, Eun Joo; Lee, Sang Gun; Chang, Kee Hyun; Lee, Dong Soo

    2004-01-01

    The aims of this study were to find brain regions in which gray matter volume was reduced and to show the capability of voxel-based morphometry (VBM) analysis for lateralizing epileptogenic zones in medial temporal lobe epilepsy (mTLE). The findings were compared with fluorodeoxyglucose positron emission tomography (FDG PET). MR T1-weighted images of 12 left mTLE and 11 right mTLE patients were compared with those of 37 normal controls. Images were transformed to standard MNI space and averaged in order to create study-specific brain template. Each image was normalized to this local template and brain tissues were segmented. Modulation VBM analysis was performed in order to observe gray matter volume change. Gray matter was smoothed with a Gaussian kernel. After these preprocessing, statistical analysis was performed using statistical parametric mapping software (SPM99). FDG PET images were compared with those of 22 normal controls using SPM. Gray matter volume was significantly reduced in the left amygdala and hippocampus in left mTLE. In addition, volume of cerebellum, anterior cingulate, and fusiform gyrus in both sides and left insula was reduced. In right mTLE, volume was reduced significantly in right hippocampus. In contrast, FDG uptake was decreased in broad areas of left or right temporal lobes in left TLE and right TLE, respectively. Gray matter loss was found in the ipsilateral hippocampus by modulation VBM analysis in medial temporal lobe epilepsy. This VBM analysis might be useful in lateralizing the epileptogenic zones in medial temporal lobe epilepsy, while SPM analysis of FDG PET disclosed hypometabolic epileptogenic zones

  3. Voxel-based morphometry (VBM) based assessment of gray matter loss in medial temporal lobe epilepsy; comparison with FDG PET

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hye Jin; Lee, Ho Young; Lee, Jae Sung; Kang, Eun Joo; Lee, Sang Gun; Chang, Kee Hyun; Lee, Dong Soo [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    2004-02-01

    The aims of this study were to find brain regions in which gray matter volume was reduced and to show the capability of voxel-based morphometry (VBM) analysis for lateralizing epileptogenic zones in medial temporal lobe epilepsy (mTLE). The findings were compared with fluorodeoxyglucose positron emission tomography (FDG PET). MR T1-weighted images of 12 left mTLE and 11 right mTLE patients were compared with those of 37 normal controls. Images were transformed to standard MNI space and averaged in order to create study-specific brain template. Each image was normalized to this local template and brain tissues were segmented. Modulation VBM analysis was performed in order to observe gray matter volume change. Gray matter was smoothed with a Gaussian kernel. After these preprocessing, statistical analysis was performed using statistical parametric mapping software (SPM99). FDG PET images were compared with those of 22 normal controls using SPM. Gray matter volume was significantly reduced in the left amygdala and hippocampus in left mTLE. In addition, volume of cerebellum, anterior cingulate, and fusiform gyrus in both sides and left insula was reduced. In right mTLE, volume was reduced significantly in right hippocampus. In contrast, FDG uptake was decreased in broad areas of left or right temporal lobes in left TLE and right TLE, respectively. Gray matter loss was found in the ipsilateral hippocampus by modulation VBM analysis in medial temporal lobe epilepsy. This VBM analysis might be useful in lateralizing the epileptogenic zones in medial temporal lobe epilepsy, while SPM analysis of FDG PET disclosed hypometabolic epileptogenic zones.

  4. Abstract Linguistic Structure Correlates with Temporal Activity during Naturalistic Comprehension

    Science.gov (United States)

    Brennan, Jonathan R.; Stabler, Edward P.; Van Wagenen, Sarah E.; Luh, Wen-Ming; Hale, John T.

    2016-01-01

    Neurolinguistic accounts of sentence comprehension identify a network of relevant brain regions, but do not detail the information flowing through them. We investigate syntactic information. Does brain activity implicate a computation over hierarchical grammars or does it simply reflect linear order, as in a Markov chain? To address this question, we quantify the cognitive states implied by alternative parsing models. We compare processing-complexity predictions from these states against fMRI timecourses from regions that have been implicated in sentence comprehension. We find that hierarchical grammars independently predict timecourses from left anterior and posterior temporal lobe. Markov models are predictive in these regions and across a broader network that includes the inferior frontal gyrus. These results suggest that while linear effects are wide-spread across the language network, certain areas in the left temporal lobe deal with abstract, hierarchical syntactic representations. PMID:27208858

  5. Composing lexical versus functional adjectives: Evidence for uniformity in the left temporal lobe.

    Science.gov (United States)

    Zhang, Linmin; Pylkkänen, Liina

    2018-04-24

    Featural information (e.g., color or shape) allows interlocutors to focus their attention on the specific items under discussion from the vast set of possibilities in the environment. Intriguingly, when they are used to modify and restrict nouns, adjectives can either carry featural information themselves (e.g., green car) or retrieve featural information from the context (e.g., somebody points at a car and claims that she has the same car or a different car). Do the processing of same/different car and green car share neural correlates? For the composition of nouns with feature-carrying adjectives, prior work revealed early compositional effects (roughly 200 ms after noun onset) in the left anterior temporal lobe. However, although we know that such effects do not extend to cases of numeral quantification, which add no conceptual features to the noun (e.g., two boats), we do not know whether they extend to functional adjectives that themselves introduce no features, but instead reference features in the context. To address this question, we measured magnetoencephalography (MEG) during the processing of five types of noun phrases (NPs): same NPs (e.g., same star), different NPs (e.g., different star), color NPs (e.g., green star), comparative NPs (e.g., larger star), and another NPs (e.g., another star). Our main finding was that between 185 to 240 ms after noun onset, same and different NPs patterned with the color NPs in their elicited left temporal lobe activity, and same NPs even trended toward higher amplitudes than the color NPs. This shows that the mechanism driving combinatory effects in the left temporal cortex does not require the input words to directly name conceptual features, as long as the words reference featural information in the context, and that overlapping neural correlates underlie the composition of featural information from both linguistic and nonlinguistic sources.

  6. A Genetic-Based Feature Selection Approach in the Identification of Left/Right Hand Motor Imagery for a Brain-Computer Interface

    Directory of Open Access Journals (Sweden)

    Charles Yaacoub

    2017-01-01

    Full Text Available Electroencephalography is a non-invasive measure of the brain electrical activity generated by millions of neurons. Feature extraction in electroencephalography analysis is a core issue that may lead to accurate brain mental state classification. This paper presents a new feature selection method that improves left/right hand movement identification of a motor imagery brain-computer interface, based on genetic algorithms and artificial neural networks used as classifiers. Raw electroencephalography signals are first preprocessed using appropriate filtering. Feature extraction is carried out afterwards, based on spectral and temporal signal components, and thus a feature vector is constructed. As various features might be inaccurate and mislead the classifier, thus degrading the overall system performance, the proposed approach identifies a subset of features from a large feature space, such that the classifier error rate is reduced. Experimental results show that the proposed method is able to reduce the number of features to as low as 0.5% (i.e., the number of ignored features can reach 99.5% while improving the accuracy, sensitivity, specificity, and precision of the classifier.

  7. A Genetic-Based Feature Selection Approach in the Identification of Left/Right Hand Motor Imagery for a Brain-Computer Interface.

    Science.gov (United States)

    Yaacoub, Charles; Mhanna, Georges; Rihana, Sandy

    2017-01-23

    Electroencephalography is a non-invasive measure of the brain electrical activity generated by millions of neurons. Feature extraction in electroencephalography analysis is a core issue that may lead to accurate brain mental state classification. This paper presents a new feature selection method that improves left/right hand movement identification of a motor imagery brain-computer interface, based on genetic algorithms and artificial neural networks used as classifiers. Raw electroencephalography signals are first preprocessed using appropriate filtering. Feature extraction is carried out afterwards, based on spectral and temporal signal components, and thus a feature vector is constructed. As various features might be inaccurate and mislead the classifier, thus degrading the overall system performance, the proposed approach identifies a subset of features from a large feature space, such that the classifier error rate is reduced. Experimental results show that the proposed method is able to reduce the number of features to as low as 0.5% (i.e., the number of ignored features can reach 99.5%) while improving the accuracy, sensitivity, specificity, and precision of the classifier.

  8. Disentangling the cognitive components supporting Austin Maze performance in left versus right temporal lobe epilepsy.

    Science.gov (United States)

    Hocking, Julia; Thomas, Hannah J; Dzafic, Ilvana; Williams, Rebecca J; Reutens, David C; Spooner, Donna M

    2013-12-01

    Neuropsychological tests requiring patients to find a path through a maze can be used to assess visuospatial memory performance in temporal lobe pathology, particularly in the hippocampus. Alternatively, they have been used as a task sensitive to executive function in patients with frontal lobe damage. We measured performance on the Austin Maze in patients with unilateral left and right temporal lobe epilepsy (TLE), with and without hippocampal sclerosis, compared to healthy controls. Performance was correlated with a number of other neuropsychological tests to identify the cognitive components that may be associated with poor Austin Maze performance. Patients with right TLE were significantly impaired on the Austin Maze task relative to patients with left TLE and controls, and error scores correlated with their performance on the Block Design task. The performance of patients with left TLE was also impaired relative to controls; however, errors correlated with performance on tests of executive function and delayed recall. The presence of hippocampal sclerosis did not have an impact on maze performance. A discriminant function analysis indicated that the Austin Maze alone correctly classified 73.5% of patients as having right TLE. In summary, impaired performance on the Austin Maze task is more suggestive of right than left TLE; however, impaired performance on this visuospatial task does not necessarily involve the hippocampus. The relationship of the Austin Maze task with other neuropsychological tests suggests that differential cognitive components may underlie performance decrements in right versus left TLE. © 2013.

  9. In vivo axonal transport deficits in a mouse model of fronto-temporal dementia.

    Science.gov (United States)

    Majid, Tabassum; Ali, Yousuf O; Venkitaramani, Deepa V; Jang, Ming-Kuei; Lu, Hui-Chen; Pautler, Robia G

    2014-01-01

    Axonal transport is vital for neurons and deficits in this process have been previously reported in a few mouse models of Alzheimer's disease prior to the appearance of plaques and tangles. However, it remains to be determined whether axonal transport is defective prior to the onset of neurodegeneration. The rTg4510 mouse, a fronto-temporal dementia and parkinsonism-17 (FTDP-17) tauopathy model, over-express tau-P301L mutation found in familial forms of FTDP-17, in the forebrain driven by the calcium-calmodulin kinase II promoter. This mouse model exhibits tau pathology, neurodegeneration in the forebrain, and associated behavioral deficits beginning at 4-5 months of age. rTg4510 transgenic mice were used in these studies. Mice were given 2 μL of MnCl2 in each nostril 1 h prior to Magnetic Resonance Imaging (MRI). Following MnCl2 nasal lavage, mice were imaged using Manganese enhanced Magnetic Resonance Imaging (MEMRI) Protocol with TE = 8.5 ms, TR = 504 ms, FOV = 3.0 cm, matrix size = 128 × 128 × 128, number of cycles = 15 with each cycle taking approximately 2 min, 9 s, and 24 ms using Paravision software (BrukerBioSpin, Billerica, MA). During imaging, body temperature was maintained at 37.0 °C using an animal heating system (SA Instruments, Stony Brook, NY). Resulting images were analyzed using Paravision software. Regions of interest (ROI) within the olfactory neuronal layer (ONL) and the water phantom consisting of one pixel (ONL) and 9 pixels (water) were selected and copied across each of the 15 cycles. Signal intensities (SI) of ONL and water phantom ROIs were measured. SI values obtained for ONL were then normalized the water phantom SI values. The correlation between normalized signal intensity in the ONL and time were assessed using Prism (GraphPad Software, San Diego, CA). Using the MEMRI technique on 1.5, 3, 5, and 10-month old rTg4510 mice and littermate controls, we found significant axonal transport deficits present in

  10. 18F-FDG uptake changes in the brain functional loop in patients with refractory obsessive compulsive disorder

    International Nuclear Information System (INIS)

    Qiu Chun; Guan Yihui; Chen Limin; Sun Bomin; Li Dianyou; Huang Zhemin; Zhao Jun; Zuo Chuantao

    2011-01-01

    Objective: To investigate the glucose metabolic pattern of brain functional loop in patients with refractory obsessive compulsive disorder (OCD) using 18 F-FDG PET. Methods: Eight patients with refractory OCD and 8 age- and gender-matched healthy volunteers underwent 18 F-FDG PET brain imaging. SPM software was used for image post-processing and quantitative analysis. Correlation analysis between 18 F-FDG uptake and Yale-Brown obsessive compulsive scale(Y-BOCS) score was performed. Results: Compared with the controls, the glucose metabolism of bilateral frontal cortices (including the rectal gyrus,orbital gyrus and cingulate gyrus), left thalamus,right temporal lobe and bilateral cerebellum in refractory OCD patients increased significantly (Z max =3.45-5.80, all P<0.001). Bilateral motor cortices and bilateral parietal lobes (BA7), however, showed decreased glucose metabolism (Z max =3.44-4.46, all P<0.001). Y-BOCS score was positively correlated with the glucose metabolism of the bilateral anterior cingulate cortex (Z max =3.77, 3.48 and 2.97, all P<0.01). Conclusions: There is a characteristic metabolic pattern of increased glucose utilization in the fronto-striato-thalamic loop and decreased glucose utilization in bilateral motor cortices and parietal lobes in patients with OCD. The glucose metabolism in the anterior cingulate cortex might serve as a quantitative parameter for the assessment of the severity of OCD. (authors)

  11. Frontal and temporal volumes in Childhood Absence Epilepsy.

    Science.gov (United States)

    Caplan, Rochelle; Levitt, Jennifer; Siddarth, Prabha; Wu, Keng Nei; Gurbani, Suresh; Sankar, Raman; Shields, W Donald

    2009-11-01

    This study compared frontotemporal brain volumes in children with childhood absence epilepsy (CAE) to age- and gender-matched children without epilepsy. It also examined the association of these volumes with seizure, demographic, perinatal, intelligence quotient (IQ), and psychopathology variables. Twenty-six children with CAE, aged 7.5-11.8 years, and 37 children without epilepsy underwent brain magnetic resonance imaging (MRI) scans at 1.5 Tesla. Tissue was segmented, and total brain, frontal lobe, frontal parcellations, and temporal lobe volumes were computed. All children had IQ testing and structured psychiatric interviews. Parents provided seizure, perinatal, and behavioral information on each child. The CAE group had significantly smaller gray matter volumes of the left orbital frontal gyrus as well as both left and right temporal lobes compared to the age- and gender-matched children without epilepsy. In the CAE group these volumes were related to age, gender, ethnicity, and pregnancy complications but not to seizure, IQ, and psychopathology variables. In the group of children without epilepsy, however, the volumes were related to IQ. These findings suggest that CAE impacts brain development in regions implicated in behavior, cognition, and language. In addition to supporting the cortical focus theory of CAE, these findings also imply that CAE is not a benign disorder.

  12. Brain SPECT perfusion in children and adolescents poly drug abusers

    International Nuclear Information System (INIS)

    Ramos, R.R.N.; Etchebehere, E.C.S.C.; Santos, A.O.; Lima, M.C.L.; Ramos, C.D.; Camargo, E.E.; Silva, C.A.M.; Serrat, S.M.

    2002-01-01

    Polydrug abuse in children and adolescents is a major social problem. Aim: The aim of this study was to evaluate brain perfusion in polydrug abuser adolescents with brain SPECT imaging (BSI) using 99m Tc-HMPAO. Materials and Methods: Sixteen male polydrug abuser patients (11 to 18 years) were submitted to BSI. Forty-eight normal individuals (26 males, 22 females; 18 to 31 years) were used as a control group. Images were performed after an intravenous injection of 99m Tc-HMPAO in a dark, quiet room. Images were acquired in a camera-computer system equipped with a fan beam collimator. The images were reconstructed in the transaxial, coronal and sagittal views and submitted to semi-quantitative analysis using the thalami as reference, by placing regions of interest (ROIs) in the cerebral and cerebellar cortices. Patients were also submitted to neuropsychology tests and neurologic examination. Results: Significant hypoperfusion was found in the inferior portion of the frontal lobes (left and right: p<0.0001), temporal lobes (left lateral: p=0.0392; right lateral: p=0.0044; left and right mesial: p<0.0005), right parietal lobe (p=0.025), visual cortex (p=0.0013), pons (p = 0.0002), cerebellar hemispheres (left: p=0.0216; right: p=0.0005) and vermis (p=0.0015). An inverse relationship was observed between the degree of perfusion and the duration of drug abuse in the inferior left frontal lobe (? = -0.55; p=0.0255), superior right frontal lobe (? = -0.51; p=0.043), lateral right temporal lobe (? = -0.58; p=0.0172), mesial left temporal lobe (? -0.52; p=0.0384), left parietal lobe (? = -0.51; p=0.0416), basal ganglia (left: ? = -0.70; p=0.0022; right: ? = -0.65; p=0.0056) and cingulate gyrus (? = -0.66; p=0.0054). A significant correlation was observed between the perfusion of the temporal lobes with the Bender-Koppits test (left and right lateral: p=0.0559). Significant correlation was also noted between the perfusion of the lateral left temporal lobe (p=0.0559), parietal

  13. Multimodal imaging of language reorganization in patients with left temporal lobe epilepsy.

    Science.gov (United States)

    Chang, Yu-Hsuan A; Kemmotsu, Nobuko; Leyden, Kelly M; Kucukboyaci, N Erkut; Iragui, Vicente J; Tecoma, Evelyn S; Kansal, Leena; Norman, Marc A; Compton, Rachelle; Ehrlich, Tobin J; Uttarwar, Vedang S; Reyes, Anny; Paul, Brianna M; McDonald, Carrie R

    2017-07-01

    This study explored the relationships among multimodal imaging, clinical features, and language impairment in patients with left temporal lobe epilepsy (LTLE). Fourteen patients with LTLE and 26 controls underwent structural MRI, functional MRI, diffusion tensor imaging, and neuropsychological language tasks. Laterality indices were calculated for each imaging modality and a principal component (PC) was derived from language measures. Correlations were performed among imaging measures, as well as to the language PC. In controls, better language performance was associated with stronger left-lateralized temporo-parietal and temporo-occipital activations. In LTLE, better language performance was associated with stronger right-lateralized inferior frontal, temporo-parietal, and temporo-occipital activations. These right-lateralized activations in LTLE were associated with right-lateralized arcuate fasciculus fractional anisotropy. These data suggest that interhemispheric language reorganization in LTLE is associated with alterations to perisylvian white matter. These concurrent structural and functional shifts from left to right may help to mitigate language impairment in LTLE. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Marchiafava-Bignami disease: a case studied with brain magnetic resonance and SPECT

    International Nuclear Information System (INIS)

    Cardozo Oliver, J.; Casas Parera, Ignacio; Libere, G.; Malagold, S.

    2006-01-01

    Objective: To show the correlation between brain magnetic resonance images (MRI) and single-photon-emission computed tomography (SPECT) in a patient with Marchiafava-Bignami (MB) disease. Background: MB disease is a rare disorder associated with chronic alcoholism. It is characterized by symmetric demyelination of corpus callosum (CC) and adjacent white matter. These lesions can be demonstrated both by computed tomography or/and MRI. Scarce information is available about MRI and SPECT according to the research done. Design/methods: A 79-year-old white man with a history of excessive alcohol consumption (predominantly wine) was admitted to our Institute. A decrease in his physical activity was evidenced in the two years prior to admission and in the last twelve months progressive dementia with hallucinations and severe apathy developed. On admission neurologic examination showed papillae pale in both eyes, left hearing loss, action tremor of upper limbs and proximal hyporeflexia with distal arreflexia of all four limbs was observed. Affectation of higher cortical functions was evident. Cerebrospinal fluid was normal and serology for syphilis and HIV were negative. Both renal and hepatic functions were normal. Brain MRI and SPECT were performed. The patient died 70 days after diagnosis of MB disease. Results: MRI scans of the brain showed multiple hyperintense T2-weighted lesions in white matter and basal ganglia. Cortical atrophy, especially in the fronto-temporal areas, and a CC thickness reduction were also observed. Sagittal view showed an irregular cavitation in the genu of the CC, hypointense and hyperintense on T1 and T2-weighted images respectively. The SPECT showed an abnormal low perfusion on both frontal lobes, left temporo-parietal lobes and right basal ganglia. Conclusion: The clinical features and MRI were consistent with the diagnosis of MB disease. MRI and SPECT studies showed the connection between the lesion in the CC and bilateral cortical

  15. Faciobrachial dystonic seizures result from fronto-temporo-basalganglial network involvement.

    Science.gov (United States)

    Iyer, Rajesh Shankar; Ramakrishnan, T C R; Karunakaran; Shinto, Ajit; Kamaleshwaran, Koramadai Karuppuswamy

    2017-01-01

    •Faciobrachial dystonic seizures (FBDS) are caused by autoantibodies to leucine-rich glioma-inactivated1 proteins, a component of the voltage-gated potassium channel complex (VGKC-complex) and precede the clinical presentation of limbic encephalitis.•The exact pathophysiology of FBDS is not known and whether they are seizures or movement disorder is still debated.•We suggest the fronto-temporo-basal ganglia network involving the medial frontal and temporal regions along with the corpus striatum and substantia nigra being responsible for the clinical phenomenon of FBDS.•The varied clinical, electrical and imaging features of FBDS in our cases and in the literature are best explained by involvement of this network.•Entrainment from any part of this network will result in similar clinical expression of FBDS, whereas other electro-clinical associations and duration depends on the extent of involvement of the network.

  16. Inter-subject synchronization of brain responses during natural music listening

    Science.gov (United States)

    Abrams, Daniel A.; Ryali, Srikanth; Chen, Tianwen; Chordia, Parag; Khouzam, Amirah; Levitin, Daniel J.; Menon, Vinod

    2015-01-01

    Music is a cultural universal and a rich part of the human experience. However, little is known about common brain systems that support the processing and integration of extended, naturalistic ‘real-world’ music stimuli. We examined this question by presenting extended excerpts of symphonic music, and two pseudomusical stimuli in which the temporal and spectral structure of the Natural Music condition were disrupted, to non-musician participants undergoing functional brain imaging and analysing synchronized spatiotemporal activity patterns between listeners. We found that music synchronizes brain responses across listeners in bilateral auditory midbrain and thalamus, primary auditory and auditory association cortex, right-lateralized structures in frontal and parietal cortex, and motor planning regions of the brain. These effects were greater for natural music compared to the pseudo-musical control conditions. Remarkably, inter-subject synchronization in the inferior colliculus and medial geniculate nucleus was also greater for the natural music condition, indicating that synchronization at these early stages of auditory processing is not simply driven by spectro-temporal features of the stimulus. Increased synchronization during music listening was also evident in a right-hemisphere fronto-parietal attention network and bilateral cortical regions involved in motor planning. While these brain structures have previously been implicated in various aspects of musical processing, our results are the first to show that these regions track structural elements of a musical stimulus over extended time periods lasting minutes. Our results show that a hierarchical distributed network is synchronized between individuals during the processing of extended musical sequences, and provide new insight into the temporal integration of complex and biologically salient auditory sequences. PMID:23578016

  17. Transcranial Magnetic Stimulation over Left Inferior Frontal and Posterior Temporal Cortex Disrupts Gesture-Speech Integration.

    Science.gov (United States)

    Zhao, Wanying; Riggs, Kevin; Schindler, Igor; Holle, Henning

    2018-02-21

    Language and action naturally occur together in the form of cospeech gestures, and there is now convincing evidence that listeners display a strong tendency to integrate semantic information from both domains during comprehension. A contentious question, however, has been which brain areas are causally involved in this integration process. In previous neuroimaging studies, left inferior frontal gyrus (IFG) and posterior middle temporal gyrus (pMTG) have emerged as candidate areas; however, it is currently not clear whether these areas are causally or merely epiphenomenally involved in gesture-speech integration. In the present series of experiments, we directly tested for a potential critical role of IFG and pMTG by observing the effect of disrupting activity in these areas using transcranial magnetic stimulation in a mixed gender sample of healthy human volunteers. The outcome measure was performance on a Stroop-like gesture task (Kelly et al., 2010a), which provides a behavioral index of gesture-speech integration. Our results provide clear evidence that disrupting activity in IFG and pMTG selectively impairs gesture-speech integration, suggesting that both areas are causally involved in the process. These findings are consistent with the idea that these areas play a joint role in gesture-speech integration, with IFG regulating strategic semantic access via top-down signals acting upon temporal storage areas. SIGNIFICANCE STATEMENT Previous neuroimaging studies suggest an involvement of inferior frontal gyrus and posterior middle temporal gyrus in gesture-speech integration, but findings have been mixed and due to methodological constraints did not allow inferences of causality. By adopting a virtual lesion approach involving transcranial magnetic stimulation, the present study provides clear evidence that both areas are causally involved in combining semantic information arising from gesture and speech. These findings support the view that, rather than being

  18. Neural Correlates of Temporal Complexity and Synchrony during Audiovisual Correspondence Detection.

    Science.gov (United States)

    Baumann, Oliver; Vromen, Joyce M G; Cheung, Allen; McFadyen, Jessica; Ren, Yudan; Guo, Christine C

    2018-01-01

    We often perceive real-life objects as multisensory cues through space and time. A key challenge for audiovisual integration is to match neural signals that not only originate from different sensory modalities but also that typically reach the observer at slightly different times. In humans, complex, unpredictable audiovisual streams lead to higher levels of perceptual coherence than predictable, rhythmic streams. In addition, perceptual coherence for complex signals seems less affected by increased asynchrony between visual and auditory modalities than for simple signals. Here, we used functional magnetic resonance imaging to determine the human neural correlates of audiovisual signals with different levels of temporal complexity and synchrony. Our study demonstrated that greater perceptual asynchrony and lower signal complexity impaired performance in an audiovisual coherence-matching task. Differences in asynchrony and complexity were also underpinned by a partially different set of brain regions. In particular, our results suggest that, while regions in the dorsolateral prefrontal cortex (DLPFC) were modulated by differences in memory load due to stimulus asynchrony, areas traditionally thought to be involved in speech production and recognition, such as the inferior frontal and superior temporal cortex, were modulated by the temporal complexity of the audiovisual signals. Our results, therefore, indicate specific processing roles for different subregions of the fronto-temporal cortex during audiovisual coherence detection.

  19. Left hemisphere fractional anisotropy increase in noise-induced tinnitus: a diffusion tensor imaging (DTI) study of white matter tracts in the brain.

    Science.gov (United States)

    Benson, Randall R; Gattu, Ramtilak; Cacace, Anthony T

    2014-03-01

    Diffusion tensor imaging (DTI) is a contemporary neuroimaging modality used to study connectivity patterns and microstructure of white matter tracts in the brain. The use of DTI in the study of tinnitus is a relatively unexplored methodology with no studies focusing specifically on tinnitus induced by noise exposure. In this investigation, participants were two groups of adults matched for etiology, age, and degree of peripheral hearing loss, but differed by the presence or absence (+/-) of tinnitus. It is assumed that matching individuals on the basis of peripheral hearing loss, allows for differentiating changes in white matter microstructure due to hearing loss from changes due to the effects of chronic tinnitus. Alterations in white matter tracts, using the fractional anisotropy (FA) metric, which measures directional diffusion of water, were quantified using tract-based spatial statistics (TBSS) with additional details provided by in vivo probabilistic tractography. Our results indicate that 10 voxel clusters differentiated the two groups, including 9 with higher FA in the group with tinnitus. A decrease in FA was found for a single cluster in the group with tinnitus. However, seven of the 9 clusters with higher FA were in left hemisphere thalamic, frontal, and parietal white matter. These foci were localized to the anterior thalamic radiations and the inferior and superior longitudinal fasciculi. The two right-sided clusters with increased FA were located in the inferior fronto-occipital fasciculus and superior longitudinal fasciculus. The only decrease in FA for the tinnitus-positive group was found in the superior longitudinal fasciculus of the left parietal lobe. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Right-to-left-shunt detected by c-TCD using the orbital window in comparison with temporal bone windows.

    Science.gov (United States)

    Kobayashi, Kazuto; Kimura, Kazumi; Iguchi, Yasuyuki; Sakai, Kenichirou; Aoki, Junya; Iwanaga, Takeshi; Shibazaki, Kensaku

    2012-01-01

    There have been some reports on right-to-left shunt as a cause of cryptogenic stroke. Although contrast transcranial Doppler (c-TCD) can detect RLS, an insufficient temporal window has occasionally restricted its applicability. Thus, we compared the rates of detecting RLS among temporal windows for the middle cerebral arteries (MCAs) and the orbital window for the internal carotid artery (ICA) on c-TCD. We used c-TCD to detect RLS in patients with suspected ischemic stroke. We enrolled patients who had both sufficient bilateral temporal windows for MCAs and a right orbital window for ICA and performed c-TCD using all three windows simultaneously. We enrolled 106 consecutive patients and identified microembolic signals (MES) in 30 (28%) of them. Among these 30 patients, 15 had MES from all 3 windows. When these 30 patients were defined as being positive for RLS, the rates of detection were 67%, 73%, and 80% from the right temporal, left temporal, and right orbital windows, respectively (P= .795). The right orbital window as well as the temporal window for c-TCD could detect RLS. Insonation from the orbital window should be useful for patients who lack temporal windows. Copyright © 2010 by the American Society of Neuroimaging.

  1. Specific marker of feigned memory impairment: The activation of left superior frontal gyrus.

    Science.gov (United States)

    Chen, Zi-Xiang; Xue, Li; Liang, Chun-Yu; Wang, Li-Li; Mei, Wei; Zhang, Qiang; Zhao, Hu

    2015-11-01

    Faking memory impairment means normal people complain lots of memory problems without organic damage in forensic assessments. Using alternative forced-choice paradigm, containing digital or autobiographical information, previous neuroimaging studies have indicated that faking memory impairment could cause the activation in the prefrontal and parietal regions, and might involve a fronto-parietal-subcortical circuit. However, it is still unclear whether different memory types have influence on faking or not. Since different memory types, such as long-term memory (LTM) and short-term memory (STM), were found supported by different brain areas, we hypothesized that feigned STM or LTM impairment had distinct neural activation mapping. Besides that, some common neural correlates may act as the general characteristic of feigned memory impairment. To verify this hypothesis, the functional magnetic resonance imaging (fMRI) combined with an alternative word forced-choice paradigm were used in this study. A total of 10 right-handed participants, in this study, had to perform both STW and LTM tasks respectively under answering correctly, answering randomly and feigned memory impairment conditions. Our results indicated that the activation of the left superior frontal gyrus and the left medial frontal gyrus was associated with feigned LTM impairment, whereas the left superior frontal gyrus, the left precuneus and the right anterior cingulate cortex (ACC) were highly activated while feigning STM impairment. Furthermore, an overlapping was found in the left superior frontal gyrus, and it suggested that the activity of the left superior frontal gyrus might be acting as a specific marker of feigned memory impairment. Copyright © 2015. Published by Elsevier Ltd.

  2. Repairing the brain with physical exercise: Cortical thickness and brain volume increases in long-term pediatric brain tumor survivors in response to a structured exercise intervention

    Directory of Open Access Journals (Sweden)

    Kamila U. Szulc-Lerch

    Full Text Available There is growing evidence that exercise induced experience dependent plasticity may foster structural and functional recovery following brain injury. We examined the efficacy of exercise training for neural and cognitive recovery in long-term pediatric brain tumor survivors treated with radiation.We conducted a controlled clinical trial with crossover of exercise training (vs. no training in a volunteer sample of 28 children treated with cranial radiation for brain tumors (mean age = 11.5 yrs.; mean time since diagnosis = 5.7 yrs. The endpoints were anatomical T1 MRI data and multiple behavioral outcomes presenting a broader analysis of structural MRI data across the entire brain. This included an analysis of changes in cortical thickness and brain volume using automated, user unbiased approaches. A series of general linear mixed effects models evaluating the effects of exercise training on cortical thickness were performed in a voxel and vertex-wise manner, as well as for specific regions of interest. In exploratory analyses, we evaluated the relationship between changes in cortical thickness after exercise with multiple behavioral outcomes, as well as the relation of these measures at baseline.Exercise was associated with increases in cortical thickness within the right pre and postcentral gyri. Other notable areas of increased thickness related to training were present in the left pre and postcentral gyri, left temporal pole, left superior temporal gyrus, and left parahippocampal gyrus. Further, we observed that compared to a separate cohort of healthy children, participants displayed multiple areas with a significantly thinner cortex prior to training and fewer differences following training, indicating amelioration of anatomical deficits. Partial least squares analysis (PLS revealed specific patterns of relations between cortical thickness and various behavioral outcomes both after training and at baseline.Overall, our results

  3. A comparison of brain activity associated with language production in brain tumor patients with left and right sided language laterality.

    Science.gov (United States)

    Jansma, J M; Ramsey, N; Rutten, G J

    2015-12-01

    Language dominance is an important factor for clinical decision making in brain tumor surgery. Functional MRI can provide detailed information about the organization of language in the brain. One often used measure derived from fMRI data is the laterality index (LI). The LI is typically based on the ratio between left and right brain activity in a specific region associated with language. Nearly all fMRI language studies show language-related activity in both hemispheres, and as a result the LI shows a large range of values. The clinical significance of the variation in language laterality as measured with the LI is still under debate. In this study, we tested two hypotheses in relation to the LI, measured in Broca's region, and it's right hemisphere homologue: 1: the level of activity in Broca's and it's right hemisphere homologue is mirrored for subjects with an equal but opposite LI; 2: the whole brain language activation pattern differs between subjects with an equal but opposite LI. One hundred sixty-three glioma and meningioma patients performed a verb generation task as part of a standard clinical protocol. We calculated the LI in the pars orbitalis, pars triangularis and pars opercularis of the left inferior frontal gyrus, referred to as Broca's region from here on. In our database, 21 patients showed right lateralized activity, with a moderate average level (-0.32). A second group of 21 patients was selected from the remaining group, for equal but opposite LI (0.32). We compared the level and distribution of activity associated with language production in the left and right hemisphere in these two groups. Patients with left sided laterality showed a significantly higher level of activity in Broca's region than the patients with right sided laterality. However, both groups showed no difference in level of activity in Broca's homologue region in the right hemisphere. Also, we did not see any difference in the pattern of activity between patients with left

  4. The findings of Tc-99m ECD brain perfusion SPECT in the patients with left anterior thalamic infarction

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y. A.; Kim, S. H.; Sohn, H. S.; Jeong, S. G. [The Catholic University of Korea, Seoul (Korea, Republic of)

    2005-07-01

    The thalamus has multiple connections with areas of the cerebral cortex involved in arousal and cognition. Thalamic damage has been reported to be associated with variable neuropsychological dysfunctions and dementia. This study evaluates the changes of regional cerebral blood flow (rCBF) by using SPM analysis of brain perfusion SPECT and examining the neuropsychological abnormalities of 4 patients with anterior thalamic infarctions. Four patients with left anterior thalamic infarctions and eleven normal controls were evaluated. K-MMSE and the Seoul Neuropsychological Screening Battery were performed within 2 days after stroke. The normalized SPECT data of 4 patients were compared to those of 11 controls for the detection of areas with decreased rCBF by SPM analysis. All 4 patients showed anterograde amnesia in their verbal memory, which was not improved by recognition. Dysexecutive features were occasionally present, such as decreased word fluency and impaired Stroop test results. SPM analysis revealed decreased rCBF in the left supra marginal gyrus, the superior temporal gyrus, the middle and inferior frontal gyrus, the medial dorsal and anterior nucleus of the left thalamus. The changes of rCBF in patients with left anterior thalamic infarctions may be due to the remote suppression on metabolism by the interruption of the cortico-subcortical circuit, which connects the anterior thalamic nucleus and various cortical areas. The executive dysfunction and dysnomia may be caused by the left dorsolateral frontal dysfunction of the thalamo-cortical circuit. Anterograde amnesia with storage deficit may be caused by the disruption of mamillothalamic tract.

  5. The findings of Tc-99m ECD brain perfusion SPECT in the patients with left anterior thalamic infarction

    International Nuclear Information System (INIS)

    Jeong, Y. A.; Kim, S. H.; Sohn, H. S.; Jeong, S. G.

    2005-01-01

    The thalamus has multiple connections with areas of the cerebral cortex involved in arousal and cognition. Thalamic damage has been reported to be associated with variable neuropsychological dysfunctions and dementia. This study evaluates the changes of regional cerebral blood flow (rCBF) by using SPM analysis of brain perfusion SPECT and examining the neuropsychological abnormalities of 4 patients with anterior thalamic infarctions. Four patients with left anterior thalamic infarctions and eleven normal controls were evaluated. K-MMSE and the Seoul Neuropsychological Screening Battery were performed within 2 days after stroke. The normalized SPECT data of 4 patients were compared to those of 11 controls for the detection of areas with decreased rCBF by SPM analysis. All 4 patients showed anterograde amnesia in their verbal memory, which was not improved by recognition. Dysexecutive features were occasionally present, such as decreased word fluency and impaired Stroop test results. SPM analysis revealed decreased rCBF in the left supra marginal gyrus, the superior temporal gyrus, the middle and inferior frontal gyrus, the medial dorsal and anterior nucleus of the left thalamus. The changes of rCBF in patients with left anterior thalamic infarctions may be due to the remote suppression on metabolism by the interruption of the cortico-subcortical circuit, which connects the anterior thalamic nucleus and various cortical areas. The executive dysfunction and dysnomia may be caused by the left dorsolateral frontal dysfunction of the thalamo-cortical circuit. Anterograde amnesia with storage deficit may be caused by the disruption of mamillothalamic tract

  6. Functional substrate for memory function differences between patients with left and right mesial temporal lobe epilepsy associated with hippocampal sclerosis.

    Science.gov (United States)

    Jin, Seung-Hyun; Chung, Chun Kee

    2015-10-01

    Little is known about the functional substrate for memory function differences in patients with left or right mesial temporal lobe epilepsy (mTLE) associated with hippocampal sclerosis (HS) from an electrophysiological perspective. To characterize these differences, we hypothesized that hippocampal theta connectivity in the resting-state might be different between patients with left and right mTLE with HS and be correlated with memory performance. Resting-state hippocampal theta connectivity, identified via whole-brain magnetoencephalography, was evaluated. Connectivity and memory function in 41 patients with mTLE with HS (left mTLE=22; right mTLE=19) were compared with those in 46 age-matched healthy controls and 28 patients with focal cortical dysplasia (FCD) but without HS. Connectivity between the right hippocampus and the left middle frontal gyrus was significantly stronger in patients with right mTLE than in patients with left mTLE. Moreover, this connectivity was positively correlated with delayed verbal recall and recognition scores in patients with mTLE. Patients with left mTLE had greater delayed recall impairment than patients with right mTLE and FCD. Similarly, delayed recognition performance was worse in patients with left mTLE than in patients with right mTLE and FCD. No significant differences in memory function between patients with right mTLE and FCD were detected. Patients with right mTLE showed significantly stronger hippocampal theta connectivity between the right hippocampus and left middle frontal gyrus than patients with FCD and left mTLE. Our results suggest that right hippocampal-left middle frontal theta connectivity could be a functional substrate that can account for differences in memory function between patients with left and right mTLE. This functional substrate might be related to different compensatory mechanisms against the structural hippocampal lesions in left and right mTLE groups. Given the positive correlation between

  7. Temporal Fourier transform of digital angiograms for left ventricular regional wall motion analysis

    International Nuclear Information System (INIS)

    Katayama, Kazuhiro; Guth, B.D.; Widmann, T.F.; Lee, Jong-Dae; Seitelberger, R.; Peterson, K.L.

    1988-01-01

    To determine whether or not the first harmonic of a temporal Fourier transform, applied pixel-by-pixel on time-intensity curves, can detect the subtle wall motion abnormalities due to ischemia, 6 dogs were instrumented with a micromanometer in the left ventricles, a hydraulic cuff occluder around the circumflex coronary artery, and sonomicrometers on the inferior (ischemic) and anterior (non-ischemic) walls. Left ventricular images, obtained after contrast injection via the pulmonary artery, were compared with dimension signals in control and 3 progressive levels of coronary stenosis (Stenosis I, II and III). Normalized, digital functional images (512 x 512 matrix, 256 shades of gray/pixel) were divided into anterior, apical, and inferior areas to acquire regional mean phase (degrees) and amplitude (intensity units) values. After inducing stenosis, phase in ischemic region significantly increased at all 3 levels of stenosis, whereas amplitude significantly decreased at Stenosis II and III. However, amplitude images showed clearly the topographic site of ischemia. There was a progressive increase in phase and decrease in amplitude in ischemic areas as the percent wall thickening (%WTh) fell (phase vs. %WTh: r = -0.55, p < 0.005; amplitude vs. %WTh: r = 0.71, p < 0.001). Heart rate and peak systolic pressure showed no significant changes during stenoses. We conclude that quantitative functional images, generated from a temporal Fourier transform, are sensitive to the detection of left ventricular regional wall motion abnormalities during mild, moderate, and severe degrees of ischemia. (author)

  8. Gender effects on age-related changes in brain structure.

    Science.gov (United States)

    Xu, J; Kobayashi, S; Yamaguchi, S; Iijima, K; Okada, K; Yamashita, K

    2000-01-01

    Previous reports have suggested that brain atrophy is associated with aging and that there are gender differences in brain atrophy with aging. These reports, however, neither exclude silent brain lesions in "healthy subjects" nor divide the brain into subregions. The aim of this study is to clarify the effect of gender on age-related changes in brain subregions by MR imaging. A computer-assisted system was used to calculate the brain matter area index (BMAI) of various regions of the brain from MR imaging of 331 subjects without brain lesions. There was significantly more brain atrophy with aging in the posterior parts of the right frontal lobe in male subjects than there was in female subjects. Age-related atrophy in the middle part of the right temporal lobe, the left basal ganglia, the parietal lobe, and the cerebellum also was found in male subjects, but not in female subjects. In the temporal lobe, thalamus, parieto-occipital lobe, and cerebellum, brain volume in the left hemisphere is significantly smaller than in the right hemisphere; sex and age did not affect the hemisphere differences of brain volume in these regions. The effect of gender on brain atrophy with aging varied in different subregions of the brain. There was more brain atrophy with aging in male subjects than in female subjects.

  9. Brain activation associated with deep brain stimulation causing dissociation in a patient with Tourette's syndrome.

    Science.gov (United States)

    Goethals, Ingeborg; Jacobs, Filip; Van der Linden, Chris; Caemaert, Jacques; Audenaert, Kurt

    2008-01-01

    Dissociation involves a disruption in the integrated functions of consciousness, memory, identity, or perception of the environment. Attempts at localizing dissociative responses have yielded contradictory results regarding brain activation, laterality, and regional involvement. Here, we used a single-day split-dose activation paradigm with single photon emission computed tomography and 99m-Tc ethylcysteinatedimer as a brain perfusion tracer in a patient with Tourette's syndrome undergoing bilateral high-frequency thalamic stimulation for the treatment of tics who developed an alternate personality state during right thalamic stimulation. We documented increased regional cerebral blood flow in bilateral prefrontal and left temporal brain areas during the alternate identity state. We conclude that our findings support the temporal lobe as well as the frontolimbic disconnection hypotheses of dissociation.

  10. Voxel-based morphometry and diffusion tensor imaging of the optic pathway in primary open-angle glaucoma: a preliminary study.

    Science.gov (United States)

    Zikou, A K; Kitsos, G; Tzarouchi, L C; Astrakas, L; Alexiou, G A; Argyropoulou, M I

    2012-01-01

    Neuropathologic studies in experimental and human glaucoma have demonstrated degenerative changes in the optic pathway. The purpose of this study was to assess the optic pathway in POAG by using VBM and DTI. Eighteen patients 57.05 ± 11.38 years of age with POAG of 8.30 ± 5.14 years' duration and 18 control subjects underwent a complete ophthalmologic examination, including quantification of the RNFLT by using Stratus OCT 3, and brain imaging. The imaging protocol consisted of a T1-weighted high-resolution 3D spoiled gradient-echo sequence and a multisection spin-echo- planar diffusion-weighted sequence. Data preprocessing and analysis were performed by using Matlab 7.0 and SPM 5. Left temporal and right nasal RNFLTs were significantly thinner than right temporal and left nasal RNFLTs. In patients, VBM revealed a significant reduction in the left visual cortex volume, the left lateral geniculate nucleus, and the intracranial part of the ONs and the chiasma. In addition, a significant decrease of FA was observed in the inferior fronto-occipital fasciculus, the longitudinal and inferior frontal fasciculi, the putamen, the caudate nucleus, the anterior and posterior thalamic radiations, and the anterior and posterior limbs of the internal capsule of the left hemisphere (P < .05). Neurodegenerative changes of the optic pathway and several brain areas associated with the visual system can be observed by using VBM and DTI in patients with POAG, suggesting that glaucoma is a complex neurologic disease.

  11. Fronto-striatal atrophy in behavioural variant frontotemporal dementia & Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Maxime eBertoux

    2015-07-01

    Full Text Available Behavioural variant frontotemporal dementia (bvFTD has only recently been associated with significant striatal atrophy, whereas the striatum appears to be relatively preserved in Alzheimer’s disease (AD. Considering the critical role the striatum has in cognition and behaviour, striatal degeneration, together with frontal atrophy, could be responsible of some characteristic symptoms in bvFTD and emerges therefore as promising novel diagnostic biomarker to distinguish bvFTD and AD. Previous studies have, however, only taken either cortical or striatal atrophy into account when comparing the two diseases. In this study, we establish for the first time a profile of fronto-striatal atrophy in 23 bvFTD and 29 AD patients at presentation, based on the structural connectivity of striatal and cortical regions. Patients are compared to 50 healthy controls by using a novel probabilistic connectivity atlas, which defines striatal regions by their cortical white matter connectivity, allowing us to explore the degeneration of the frontal and striatal regions that are functionally linked. Comparisons with controls revealed that bvFTD showed substantial fronto-striatal atrophy affecting the ventral as well as anterior and posterior dorso-lateral prefrontal cortices and the related striatal subregions. By contrast, AD showed few fronto-striatal atrophy, despite having significant posterior dorso-lateral prefrontal degeneration. Direct comparison between bvFTD and AD revealed significantly more atrophy in the ventral striatal-ventromedial prefrontal cortex regions in bvFTD. Consequently, deficits in ventral fronto-striatal regions emerge as promising novel and efficient diagnosis biomarker for bvFTD. Future investigations into the contributions of these fronto-striatal loops on bvFTD symptomology are needed to develop simple diagnostic and disease tracking algorithms.

  12. A rare case in which necrotic brain lesions were calcified after radiation therapy

    International Nuclear Information System (INIS)

    Kowada, Masayoshi; Goto, Katsuya; Hirayama, Akihiko; Gito, Yoji; Watanabe, Kazuo

    1976-01-01

    This is a 20-year-old female who had diabetes insipidus and disturbance of visual acuity at the age of 10. Because she had been diagnosed as having craniopharyngioma, she received 1000 R by 60 Co in August 1965 (at the age of 16), 4000 R from November to August 1966, and 2600 R in June 1967, a total of 7600 R for one year and ten months. At that time, the left facial palsy was noticed. Incomplete palsy was seen in the left lower extremity in October 1967 (at the age of 18). Disturbances of hearing and speaking appeared in March 1968 (at the age of 19). She complained of high fever (38 0 C) and migraine on the left in December 1974. The skull plain x-ray revealed calcification in the left temporal region of the skull, corresponding to the skin scar caused by 60 Co irradiation. Left carotid arteriography revealed lesions in the left temporal lobe, but no tumor stains. Right carotid arteriography revealed marked stricture in the right middle cerebral artery, and obstruction of the cortical branches. Brain scintigram (sup(99m)Tc) revealed the moduratoly increased activity on both temporal regions. The pneumo-encephalography revealed calcification in the left temporal horn of lateral ventricle. The pathological findings after the operation showed necrosis and calcification of brain tissues caused by intimitis and obstruction of the cerebral vessels. (Kanao, N.)

  13. Language comprehension and brain function in individuals with an optimal outcome from autism.

    Science.gov (United States)

    Eigsti, Inge-Marie; Stevens, Michael C; Schultz, Robert T; Barton, Marianne; Kelley, Elizabeth; Naigles, Letitia; Orinstein, Alyssa; Troyb, Eva; Fein, Deborah A

    2016-01-01

    Although Autism Spectrum Disorder (ASD) is generally a lifelong disability, a minority of individuals with ASD overcome their symptoms to such a degree that they are generally indistinguishable from their typically-developing peers. That is, they have achieved an Optimal Outcome (OO). The question addressed by the current study is whether this normalized behavior reflects normalized brain functioning, or alternatively, the action of compensatory systems. Either possibility is plausible, as most participants with OO received years of intensive therapy that could alter brain networks to align with typical function or work around ASD-related neural dysfunction. Individuals ages 8 to 21 years with high-functioning ASD (n = 23), OO (n = 16), or typical development (TD; n = 20) completed a functional MRI scan while performing a sentence comprehension task. Results indicated similar activations in frontal and temporal regions (left middle frontal, left supramarginal, and right superior temporal gyri) and posterior cingulate in OO and ASD groups, where both differed from the TD group. Furthermore, the OO group showed heightened "compensatory" activation in numerous left- and right-lateralized regions (left precentral/postcentral gyri, right precentral gyrus, left inferior parietal lobule, right supramarginal gyrus, left superior temporal/parahippocampal gyrus, left middle occipital gyrus) and cerebellum, relative to both ASD and TD groups. Behaviorally normalized language abilities in OO individuals appear to utilize atypical brain networks, with increased recruitment of language-specific as well as right homologue and other systems. Early intensive learning and experience may normalize behavioral language performance in OO, but some brain regions involved in language processing may continue to display characteristics that are more similar to ASD than typical development, while others show characteristics not like ASD or typical development.

  14. Language comprehension and brain function in individuals with an optimal outcome from autism

    Directory of Open Access Journals (Sweden)

    Inge-Marie Eigsti

    2016-01-01

    Full Text Available Although Autism Spectrum Disorder (ASD is generally a lifelong disability, a minority of individuals with ASD overcome their symptoms to such a degree that they are generally indistinguishable from their typically-developing peers. That is, they have achieved an Optimal Outcome (OO. The question addressed by the current study is whether this normalized behavior reflects normalized brain functioning, or alternatively, the action of compensatory systems. Either possibility is plausible, as most participants with OO received years of intensive therapy that could alter brain networks to align with typical function or work around ASD-related neural dysfunction. Individuals ages 8 to 21 years with high-functioning ASD (n = 23, OO (n = 16, or typical development (TD; n = 20 completed a functional MRI scan while performing a sentence comprehension task. Results indicated similar activations in frontal and temporal regions (left middle frontal, left supramarginal, and right superior temporal gyri and posterior cingulate in OO and ASD groups, where both differed from the TD group. Furthermore, the OO group showed heightened “compensatory” activation in numerous left- and right-lateralized regions (left precentral/postcentral gyri, right precentral gyrus, left inferior parietal lobule, right supramarginal gyrus, left superior temporal/parahippocampal gyrus, left middle occipital gyrus and cerebellum, relative to both ASD and TD groups. Behaviorally normalized language abilities in OO individuals appear to utilize atypical brain networks, with increased recruitment of language-specific as well as right homologue and other systems. Early intensive learning and experience may normalize behavioral language performance in OO, but some brain regions involved in language processing may continue to display characteristics that are more similar to ASD than typical development, while others show characteristics not like ASD or typical development.

  15. Selective activation around the left occipito-temporal sulcus for words relative to pictures: Individual variability or false positives?

    NARCIS (Netherlands)

    Wright, Nicholas D.; Mechelli, Andrea; Noppeney, Uta; Veltman, Dick J.; Rombouts, Serge A. R. B.; Glensman, Janice; Haynes, John-Dylan; Price, Cathy J.

    2008-01-01

    We used high-resolution fMRI to investigate claims that learning to read r !sults in greater left occipito-temporal (OT) activation for written words relative to pictures of objects. In tl e first experiment, 9/16 subjects performing a one-back task showed activation in >= 1 left OT voxel for word:

  16. Fronto-Parietal Network Reconfiguration Supports the Development of Reasoning Ability.

    Science.gov (United States)

    Wendelken, Carter; Ferrer, Emilio; Whitaker, Kirstie J; Bunge, Silvia A

    2016-05-01

    The goal of this fMRI study was to examine how well developmental improvements in reasoning ability can be explained by changes in functional connectivity between specific nodes in prefrontal and parietal cortices. To this end, we examined connectivity within the lateral fronto-parietal network (LFPN) and its relation to reasoning ability in 132 children and adolescents aged 6-18 years, 56 of whom were scanned twice over the course of 1.5 years. Developmental changes in strength of connections within the LFPN were most prominent in late childhood and early adolescence. Reasoning ability was related to functional connectivity between left rostrolateral prefrontal cortex (RLPFC) and inferior parietal lobule (IPL), but only among 12-18-year olds. For 9-11-year olds, reasoning ability was most strongly related to connectivity between left and right RLPFC; this relationship was mediated by working memory. For 6-8-year olds, significant relationships between connectivity and performance were not observed; in this group, processing speed was the primary mediator of improvement in reasoning ability. We conclude that different connections best support reasoning at different points in development and that RLPFC-IPL connectivity becomes an important predictor of reasoning during adolescence. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Regional brain structural abnormality in ischemic stroke patients: a voxel-based morphometry study

    Directory of Open Access Journals (Sweden)

    Ping Wu

    2016-01-01

    Full Text Available Our previous study used regional homogeneity analysis and found that activity in some brain areas of patients with ischemic stroke changed significantly. In the current study, we examined structural changes in these brain regions by taking structural magnetic resonance imaging scans of 11 ischemic stroke patients and 15 healthy participants, and analyzing the data using voxel-based morphometry. Compared with healthy participants, patients exhibited higher gray matter density in the left inferior occipital gyrus and right anterior white matter tract. In contrast, gray matter density in the right cerebellum, left precentral gyrus, right middle frontal gyrus, and left middle temporal gyrus was less in ischemic stroke patients. The changes of gray matter density in the middle frontal gyrus were negatively associated with the clinical rating scales of the Fugl-Meyer Motor Assessment (r = -0.609, P = 0.047 and the left middle temporal gyrus was negatively correlated with the clinical rating scales of the nervous functional deficiency scale (r = -0.737, P = 0.010. Our findings can objectively identify the functional abnormality in some brain regions of ischemic stroke patients.

  18. Left Brain. Right Brain. Whole Brain

    Science.gov (United States)

    Farmer, Lesley S. J.

    2004-01-01

    As the United States student population is becoming more diverse, library media specialists need to find ways to address these distinctive needs. However, some of these differences transcend culture, touching on variations in the brain itself. Most people have a dominant side of the brain, which can affect their personality and learning style.…

  19. Dynamic changes during evacuation of a left temporal abscess in open MRI: technical case report

    International Nuclear Information System (INIS)

    Bernays, R.L.; Yonekawa, Y.; Kollias, S.S.

    2002-01-01

    We demonstrate the usefulness of ''near real-time'' neuro-navigation by open MRI systems for guidance of stereotactic evacuation of intracranial abscesses. A 70-year-old patient was referred to our institution with an intracranial left temporal abscess. He presented with headache, senso-motor aphasia and mild right hemiparesis. The abscess (35 x 25 mm) was stereotactically evacuated under MRI guidance, and a recurrence of a daughter abscess was again evacuated on the 9th postoperative day. ''Near real-time'' imaging showed an indentation of the abscess wall of 11 mm along the trajectory. A thermosensitive MRI protocol demonstrated a higher temperature around the abscess capsule than in the brain tissue more distant to the capsule, demonstrating the inflammatory process. The patient had 6 weeks of antibiotic therapy for gram-negative bacteria and was discharged with improved clinical symptoms 5 weeks after admission. Follow-up CT 2 months postoperatively showed a complete resolution of the abscess. Open MRI-guided interventions with ''near real-time'' imaging demonstrate the anatomical changes during an ongoing procedure and can be accommodated for enhancing the overall precision of stereotactic procedures. Thermosensitive MRI protocols are capable of revealing temperature gradients around inflammatory processes. (orig.)

  20. Brain metastasis from male breast cancer treated 12 years ago ...

    African Journals Online (AJOL)

    A month ago, the patient had headache and vomiting complicated by the sudden onset of left hemiplegia. The brain MRI showed a huge right temporal process with a shift of the ... The development of brain metastases has been associated with young age, ... and immunohistochemistry different profiles regardless of gender.

  1. Fronto-orbital feminization technique. A surgical strategy using fronto-orbital burring with or without eggshell technique to optimize the risk/benefit ratio.

    Science.gov (United States)

    Villepelet, A; Jafari, A; Baujat, B

    2018-05-04

    The demand for facial feminization is increasing in transsexual patients. Masculine foreheads present extensive supraorbital bossing with a more acute glabellar angle, whereas female foreheads show softer features. The aim of this article is to describe our surgical technique for fronto-orbital feminization. The mask-lift technique is an upper face-lift. It provides rejuvenation by correcting collapsed features, and fronto-orbital feminization through burring of orbital rims and lateral canthopexies. Depending on the size of the frontal sinus and the thickness of its anterior wall, frontal remodeling is achieved using simple burring or by means of the eggshell technique. Orbital remodeling comprises a superolateral orbital opening, a reduction of ridges and a trough at the lateral orbital rim to support the lateral canthopexy. Frontal, corrugator and procerus myectomies, plus minimal scalp excision, complete the surgery. Our technique results in significant, natural-looking feminization. No complications were observed in our series of patients. The eggshell technique is an alternative to bone flap on over-pneumatized sinus. Fronto-orbital feminization fits into a wider surgical strategy. It can be associated to rhinoplasty, genioplasty, mandibular angle remodeling, face lift and laryngoplasty. Achieving facial feminization in 2 or 3 stages improves psychological and physiological tolerance. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Integration of temporal and spatial properties of dynamic connectivity networks for automatic diagnosis of brain disease.

    Science.gov (United States)

    Jie, Biao; Liu, Mingxia; Shen, Dinggang

    2018-07-01

    Functional connectivity networks (FCNs) using resting-state functional magnetic resonance imaging (rs-fMRI) have been applied to the analysis and diagnosis of brain disease, such as Alzheimer's disease (AD) and its prodrome, i.e., mild cognitive impairment (MCI). Different from conventional studies focusing on static descriptions on functional connectivity (FC) between brain regions in rs-fMRI, recent studies have resorted to dynamic connectivity networks (DCNs) to characterize the dynamic changes of FC, since dynamic changes of FC may indicate changes in macroscopic neural activity patterns in cognitive and behavioral aspects. However, most of the existing studies only investigate the temporal properties of DCNs (e.g., temporal variability of FC between specific brain regions), ignoring the important spatial properties of the network (e.g., spatial variability of FC associated with a specific brain region). Also, emerging evidence on FCNs has suggested that, besides temporal variability, there is significant spatial variability of activity foci over time. Hence, integrating both temporal and spatial properties of DCNs can intuitively promote the performance of connectivity-network-based learning methods. In this paper, we first define a new measure to characterize the spatial variability of DCNs, and then propose a novel learning framework to integrate both temporal and spatial variabilities of DCNs for automatic brain disease diagnosis. Specifically, we first construct DCNs from the rs-fMRI time series at successive non-overlapping time windows. Then, we characterize the spatial variability of a specific brain region by computing the correlation of functional sequences (i.e., the changing profile of FC between a pair of brain regions within all time windows) associated with this region. Furthermore, we extract both temporal variabilities and spatial variabilities from DCNs as features, and integrate them for classification by using manifold regularized multi

  3. QEEG and LORETA in Teenagers With Conduct Disorder and Psychopathic Traits.

    Science.gov (United States)

    Calzada-Reyes, Ana; Alvarez-Amador, Alfredo; Galán-García, Lídice; Valdés-Sosa, Mitchell

    2017-05-01

    Few studies have investigated the impact of the psychopathic traits on the EEG of teenagers with conduct disorder (CD). To date, there is no other research studying low-resolution brain electromagnetic tomography (LORETA) technique using quantitative EEG (QEEG) analysis in adolescents with CD and psychopathic traits. To find electrophysiological differences specifically related to the psychopathic traits. The current investigation compares the QEEG and the current source density measures between adolescents with CD and psychopathic traits and adolescents with CD without psychopathic traits. The resting EEG activity and LORETA for the EEG fast spectral bands were evaluated in 42 teenagers with CD, 25 with and 17 without psychopathic traits according to the Antisocial Process Screening Device. All adolescents were assessed using the DSM-IV-TR criteria. The EEG visual inspection characteristics and the use of frequency domain quantitative analysis techniques (narrow band spectral parameters) are described. QEEG analysis showed a pattern of beta activity excess on the bilateral frontal-temporal regions and decreases of alpha band power on the left central-temporal and right frontal-central-temporal regions in the psychopathic traits group. Current source density calculated at 17.18 Hz showed an increase within fronto-temporo-striatal regions in the psychopathic relative to the nonpsychopathic traits group. These findings indicate that QEEG analysis and techniques of source localization may reveal differences in brain electrical activity among teenagers with CD and psychopathic traits, which was not obvious to visual inspection. Taken together, these results suggest that abnormalities in a fronto-temporo-striatal network play a relevant role in the neurobiological basis of psychopathic behavior.

  4. Repairing the brain with physical exercise: Cortical thickness and brain volume increases in long-term pediatric brain tumor survivors in response to a structured exercise intervention.

    Science.gov (United States)

    Szulc-Lerch, Kamila U; Timmons, Brian W; Bouffet, Eric; Laughlin, Suzanne; de Medeiros, Cynthia B; Skocic, Jovanka; Lerch, Jason P; Mabbott, Donald J

    2018-01-01

    There is growing evidence that exercise induced experience dependent plasticity may foster structural and functional recovery following brain injury. We examined the efficacy of exercise training for neural and cognitive recovery in long-term pediatric brain tumor survivors treated with radiation. We conducted a controlled clinical trial with crossover of exercise training (vs. no training) in a volunteer sample of 28 children treated with cranial radiation for brain tumors (mean age = 11.5 yrs.; mean time since diagnosis = 5.7 yrs). The endpoints were anatomical T1 MRI data and multiple behavioral outcomes presenting a broader analysis of structural MRI data across the entire brain. This included an analysis of changes in cortical thickness and brain volume using automated, user unbiased approaches. A series of general linear mixed effects models evaluating the effects of exercise training on cortical thickness were performed in a voxel and vertex-wise manner, as well as for specific regions of interest. In exploratory analyses, we evaluated the relationship between changes in cortical thickness after exercise with multiple behavioral outcomes, as well as the relation of these measures at baseline. Exercise was associated with increases in cortical thickness within the right pre and postcentral gyri. Other notable areas of increased thickness related to training were present in the left pre and postcentral gyri, left temporal pole, left superior temporal gyrus, and left parahippocampal gyrus. Further, we observed that compared to a separate cohort of healthy children, participants displayed multiple areas with a significantly thinner cortex prior to training and fewer differences following training, indicating amelioration of anatomical deficits. Partial least squares analysis (PLS) revealed specific patterns of relations between cortical thickness and various behavioral outcomes both after training and at baseline. Overall, our results indicate that

  5. Line and word bisection in right-brain-damaged patients with left spatial neglect.

    Science.gov (United States)

    Veronelli, Laura; Vallar, Giuseppe; Marinelli, Chiara V; Primativo, Silvia; Arduino, Lisa S

    2014-01-01

    Right-brain-damaged patients with left unilateral spatial neglect typically set the mid-point of horizontal lines to the right of the objective center. By contrast, healthy participants exhibit a reversed bias (pseudoneglect). The same effect has been described also when bisecting orthographic strings. In particular, for this latter kind of stimulus, some recent studies have shown that visuo-perceptual characteristics, like stimulus length, may contribute to both the magnitude and the direction bias of the bisection performance (Arduino et al. in Neuropsychologia 48:2140-2146, 2010). Furthermore, word stress was shown to modulate reading performances in both healthy participants, and patients with left spatial neglect and neglect dyslexia (Cubelli and Beschin in Brain Lang 95:319-326, 2005; Rusconi et al. in Neuropsychology 18:135-140, 2004). In Experiment I, 22 right-brain-damaged patients (11 with left visuo-spatial neglect) and 11 matched neurologically unimpaired control participants were asked to set the subjective mid-point of word letter strings, and of lines of comparable length. Most patients exhibited an overall disproportionate rightward bias, sensitive to stimulus length, and similar for words and lines. Importantly, in individual patients, biases differed according to stimulus type (words vs. lines), indicating that at least partly different mechanisms may be involved. In Experiment II, the putative effects on the bisection bias of ortho-phonological information (i.e., word stress endings), arising from the non-neglected right hand side of the stimulus were investigated. The orthographic cue induced a rightward shift of the perceived mid-point in both patients and controls, with short words stressed on the antepenultimate final sequence inducing a smaller rightward deviation with respect to short words stressed on the penultimate final sequence. In conclusion, partly different mechanisms, including both visuo-spatial and lexical factors, may support

  6. Memory outcome following left anterior temporal lobectomy in patients with a failed Wada test.

    Science.gov (United States)

    Rathore, Chaturbhuj; Alexander, Aley; Sarma, P Sankara; Radhakrishnan, Kurupath

    2015-03-01

    This study aimed to compare the memory outcome following left anterior temporal lobectomy (ATL) between patients with a failed Wada test and patients who passed the Wada test. From 1996 to 2002, we performed the Wada test on all patients with unilateral left mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) and concordant electroclinical data before ATL. We used a 12-item recognition paradigm for memory testing and awarded a score of +1 for each correct response and -0.5 for each incorrect response. No patient was denied surgery on the basis of Wada scores. We assessed cognitive and memory functions using the Wechsler Adult Intelligence Scale and the Wechsler Memory Scale preoperatively and at one year after ATL. We compared the number of patients who showed decline in memory scores, as per the published reliable change indices, between the patients with a failed Wada test and the patients who passed the Wada test. Out of the 116 eligible patients with left MTLE-HS, 88 underwent bilateral Wada test, while 28 underwent ipsilateral Wada test. None of them developed postoperative amnesia. Approximately, one-third of patients with a failed Wada memory test when the failure was defined as a contralateral score of 8, and as an asymmetry score of failed Wada memory test and the group who passed the Wada memory test. The results remained the same when analyses were repeated at various other cutoff points. The patients with left MTLE-HS with concordant electroclinical, MRI, and neuropsychological data should not be denied ATL solely on the basis of Wada memory test results. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Enlarged right superior temporal gyrus in children and adolescents with autism.

    Science.gov (United States)

    Jou, Roger J; Minshew, Nancy J; Keshavan, Matcheri S; Vitale, Matthew P; Hardan, Antonio Y

    2010-11-11

    The superior temporal gyrus has been implicated in language processing and social perception. Therefore, anatomical abnormalities of this structure may underlie some of the deficits observed in autism, a severe neurodevelopmental disorder characterized by impairments in social interaction and communication. In this study, volumes of the left and right superior temporal gyri were measured using magnetic resonance imaging obtained from 18 boys with high-functioning autism (mean age=13.5±3.4years; full-scale IQ=103.6±13.4) and 19 healthy controls (mean age=13.7±3.0years; full-scale IQ=103.9±10.5), group-matched on age, gender, and handedness. When compared to the control group, right superior temporal gyral volumes was significantly increased in the autism group after controlling for age and total brain volume. There was no significant difference in the volume of the left superior temporal gyrus. Post-hoc analysis revealed a significant increase of the right posterior superior temporal gyral volume in the autism group, before and after controlling for age and total brain volume. Examination of the symmetry index for the superior temporal gyral volumes did not yield statistically significant between-group differences. Findings from this preliminary investigation suggest the existence of volumetric alterations in the right superior temporal gyrus in children and adolescents with autism, providing support for a neuroanatomical basis of the social perceptual deficits characterizing this severe neurodevelopmental disorder. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Herpes simplex encephalitis: increased retention of Tc-99m HMPAO on acetazolamide enhanced brain perfusion SPECT

    International Nuclear Information System (INIS)

    Choi, Yun Young; Kim, Kwon Hyung; Kim, Seung Hyun; Cho, Suk Shin

    1998-01-01

    We present an interesting case of herpes simplex encephalitis, which showed increased upta unilateral temporal cortex on brain perfusion SPECT using Tc-99m HMPAO, but in bilateral tem cortex after acetazolamide administration. A 42-year-old man was admitted via emergency room, due to rapidly progressing hea disorientation and mental changes. On neurologic examination, neck stiffness and Kernig sign noted. CSF examination showed pleocytosis with lymphcyte predominance. MRI showed swelling bilateral temporal lobe with left predominance, suggestive of herpes simplex encephalitis. Baseline/ Acetazolamide brain perfusion SPECT were acquired consecutively at the same position IV administration of 740MBq and additional 1480 MBq of Tc-99m HMPAO respectively. The temporal and inferior frontal cortex showed markedly increased perfusion on the baseline acetazolamide-enhanced SPECT images. The right temporal cortex showed normal uptake on the b SPECT images, and markedly increased uptake after acetazolamide administration, which seemed to the abundant vascularity at the acute inflammation site without marked brain damage. The fo brain perfusion SPECT after 6 months showed perfusion defect in left temporal cortex but norm perfusion in right temporal cortex. Therefore, we can conclude that baseline SPECT is helpful for the prediction of the prognosis acetazolamide SPECT for the evaluation of the extent of herpes simples encephalitis

  9. Sex-dependent age modulation of frontostriatal and temporo-parietal activation during cognitive control.

    Science.gov (United States)

    Christakou, Anastasia; Halari, Rozmin; Smith, Anna B; Ifkovits, Eve; Brammer, Mick; Rubia, Katya

    2009-10-15

    Developmental functional imaging studies of cognitive control show progressive age-related increase in task-relevant fronto-striatal activation in male development from childhood to adulthood. Little is known, however, about how gender affects this functional development. In this study, we used event related functional magnetic resonance imaging to examine effects of sex, age, and their interaction on brain activation during attentional switching and interference inhibition, in 63 male and female adolescents and adults, aged 13 to 38. Linear age correlations were observed across all subjects in task-specific frontal, striatal and temporo-parietal activation. Gender analysis revealed increased activation in females relative to males in fronto-striatal areas during the Switch task, and laterality effects in the Simon task, with females showing increased left inferior prefrontal and temporal activation, and males showing increased right inferior prefrontal and parietal activation. Increased prefrontal activation clusters in females and increased parietal activation clusters in males furthermore overlapped with clusters that were age-correlated across the whole group, potentially reflecting more mature prefrontal brain activation patterns for females, and more mature parietal activation patterns for males. Gender by age interactions further supported this dissociation, revealing exclusive female-specific age correlations in inferior and medial prefrontal brain regions during both tasks, and exclusive male-specific age correlations in superior parietal (Switch task) and temporal regions (Simon task). These findings show increased recruitment of age-correlated prefrontal activation in females, and of age-correlated parietal activation in males, during tasks of cognitive control. Gender differences in frontal and parietal recruitment may thus be related to gender differences in the neurofunctional maturation of these brain regions.

  10. Cerebro-fronto-facial syndrome type 3 with polymicrogyria: a clinical presentation of Baraitser-Winter syndrome.

    Science.gov (United States)

    Eker, Hatice Koçak; Derinkuyu, Betül Emine; Ünal, Sevim; Masliah-Planchon, Julien; Drunat, Séverine; Verloes, Alain

    2014-01-01

    Baraitser-Winter syndrome (BRWS) is a rare condition affecting the development of the brain and the face. The most common characteristics are unusual facial appearance including hypertelorism and ptosis, ocular colobomas, hearing loss, impaired neuronal migration and intellectual disability. BRWS is caused by mutations in the ACTB and ACTG1 genes. Cerebro-fronto-facial syndrome (CFFS) is a clinically heterogeneous condition with distinct facial dysmorphism, and brain abnormalities. Three subtypes are identified. We report a female infant with striking facial features and brain anomalies (included polymicrogyria) that fit into the spectrum of the CFFS type 3 (CFFS3). She also had minor anomalies on her hands and feet, heart and kidney malformations, and recurrent infections. DNA investigations revealed c.586C>T mutation (p.Arg196Cys) in ACTB. This mutation places this patient in the spectrum of BRWS. The same mutation has been detected in a polymicrogyric patient reported previously in literature. We expand the malformation spectrum of BRWS/CFFS3, and present preliminary findings for phenotype-genotype correlation in this spectrum. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  11. Memory of music: roles of right hippocampus and left inferior frontal gyrus.

    Science.gov (United States)

    Watanabe, Takamitsu; Yagishita, Sho; Kikyo, Hideyuki

    2008-01-01

    We investigated neural correlates of retrieval success for music memory using event-related functional magnetic resonance imaging. To minimize the interference from MRI scan noise, we used sparse temporal sampling technique. Newly composed music materials were employed as stimuli, which enabled us to detect regions in absence of effects of experience with the music stimuli in this study. Whole brain analyses demonstrated significant retrieval success activities in the right hippocampus, bilateral lateral temporal regions, left inferior frontal gyrus and left precuneus. Anatomically defined region-of-interests analyses showed that the activity of the right hippocampus was stronger than that of the left, while the activities of the inferior frontal gyri showed the reverse pattern. Furthermore, performance-based analyses demonstrated that the retrieval success activity of the right hippocampus was positively correlated with the corrected recognition rate, suggesting that the right hippocampus contributes to the accuracy of music retrieval outcome.

  12. Characterizing Motif Dynamics of Electric Brain Activity Using Symbolic Analysis

    Directory of Open Access Journals (Sweden)

    Massimiliano Zanin

    2014-10-01

    Full Text Available Motifs are small recurring circuits of interactions which constitute the backbone of networked systems. Characterizing motif dynamics is therefore key to understanding the functioning of such systems. Here we propose a method to define and quantify the temporal variability and time scales of electroencephalogram (EEG motifs of resting brain activity. Given a triplet of EEG sensors, links between them are calculated by means of linear correlation; each pattern of links (i.e., each motif is then associated to a symbol, and its appearance frequency is analyzed by means of Shannon entropy. Our results show that each motif becomes observable with different coupling thresholds and evolves at its own time scale, with fronto-temporal sensors emerging at high thresholds and changing at fast time scales, and parietal ones at low thresholds and changing at slower rates. Finally, while motif dynamics differed across individuals, for each subject, it showed robustness across experimental conditions, indicating that it could represent an individual dynamical signature.

  13. Differences in trace element concentrations between the right and left hemispheres of human brain using INAA

    International Nuclear Information System (INIS)

    Panayi, A.E.; Surrey Univ.; Spyrou, N.M.; Akanle, O.A.; Ubertalli, L.C.; Part, P.

    2000-01-01

    Very few publications have quoted differences between the same regions in both the right and left hemispheres of the human brain. It may be possible that the two hemispheres have different trace elemental concentrations, since it is known that they both have different functions. In this study, three brain regions from both the right and left hemispheres of the cortex have been sampled from five elderly individuals (three 'normal' and two Alzheimer's disease) and their elemental concentrations have been determined by instrumental neutron activation analysis (INAA). (author)

  14. Spatio-temporal dynamics of the mirror neuron system during social intentions.

    Science.gov (United States)

    Cacioppo, Stephanie; Bolmont, Mylene; Monteleone, George

    2017-10-27

    Previous research has shown that specific goals and intentions influence a person's allocation of social attention. From a neural viewpoint, a growing body of evidence suggests that the inferior fronto-parietal network, including the mirror neuron system, plays a role in the planning and the understanding of motor intentions. However, it is unclear whether and when the mirror neuron system plays a role in social intentions. Combining a behavioral task with electrical neuroimaging in 22 healthy male participants, the current study investigates whether the temporal brain dynamic of the mirror neuron system differs during two types of social intentions i.e., lust vs. romantic intentions. Our results showed that 62% of the stimuli evoking lustful intentions also evoked romantic intentions, and both intentions were sustained by similar activations of the inferior frontal gyrus and the inferior parietal lobule/angular gyrus for the first 432 ms after stimulus onset. Intentions to not love or not lust, on the other hand, were characterized by earlier differential activations of the inferior fronto-parietal network i.e., as early as 244 ms after stimulus onset. These results suggest that the mirror neuron system may not only code for the motor correlates of intentions, but also for the social meaning of intentions and its valence at both early/automatic and later/more elaborative stages of information processing.

  15. Selective Activation Around the Left Occipito-Temporal Sulcus for Words Relative to Pictures: Individual Variability or False Positives?

    OpenAIRE

    Wright, Nicholas D; Mechelli, Andrea; Noppeney, Uta; Veltman, Dick J; Rombouts, Serge ARB; Glensman, Janice; Haynes, John-Dylan; Price, Cathy J

    2007-01-01

    We used high-resolution fMRI to investigate claims that learning to read results in greater left occipito-temporal (OT) activation for written words relative to pictures of objects. In the first experiment, 9/16 subjects performing a one-back task showed activation in ?1 left OT voxel for words relative to pictures (P < 0.05 uncorrected). In a second experiment, another 9/15 subjects performing a semantic decision task activated ?1 left OT voxel for words relative to pictures. However, at thi...

  16. Brain Abscess Associated with Isolated Left Superior Vena Cava Draining into the Left Atrium in the Absence of Coronary Sinus and Atrial Septal Defect

    International Nuclear Information System (INIS)

    Erol, Ilknur; Cetin, I. Ilker; Alehan, Fuesun; Varan, Birguel; Ozkan, Sueleyman; Agildere, A. Muhtesem; Tokel, Kursad

    2006-01-01

    A previously healthy 12-year-old girl presented with severe headache for 2 weeks. On physical examination, there was finger clubbing without apparent cyanosis. Neurological examination revealed only papiledema without focal neurologic signs. Cerebral magnetic resonance imaging showed the characteristic features of brain abscess in the left frontal lobe. Cardiologic workup to exclude a right-to-left shunt showed an abnormality of the systemic venous drainage: presence of isolated left superior vena cava draining into the left atrium in the absence of coronary sinus and atrial septal defect. This anomaly is rare, because only a few other cases have been reported

  17. How verbal and spatial manipulation networks contribute to calculation: An fMRI study

    International Nuclear Information System (INIS)

    Zago, L.; Petit, L.; Turbelin, M.R.; Anderson, F.; Vigneau, M.; Tzourio-Mazoyer, N.

    2008-01-01

    The manipulation of numbers required during calculation is known to rely on working memory (WM) resources. Here, we investigated the respective contributions of verbal and/or spatial WM manipulation brain networks during the addition of four numbers performed by adults, using functional magnetic resonance imaging (fMRI). Both manipulation and maintenance tasks were proposed with syllables, locations, or two-digit numbers. As compared to their maintenance, numbers manipulation (addition) elicited increased activation within a widespread cortical network including inferior temporal, parietal, and prefrontal regions. Our results demonstrate that mastery of arithmetic calculation requires the cooperation of three WM manipulation systems: an executive manipulation system conjointly recruited by the three manipulation tasks, including the anterior cingulate cortex (ACC), the orbital part of the inferior frontal gyrus, and the caudate nuclei; a left-lateralized, language-related, inferior fronto-temporal system elicited by numbers and syllables manipulation tasks required for retrieval, selection, and association of symbolic information; and a right superior and posterior fronto-parietal system elicited by numbers and locations manipulation tasks for spatial WM and attentional processes. Our results provide new information that the anterior intra-parietal sulcus (IPS) is involved in tasks requiring a magnitude processing with symbolic (numbers) and non-symbolic (locations) stimuli. Furthermore, the specificity of arithmetic processing is mediated by a left-hemispheric specialization of the anterior and posterior parts of the IPS as compared to a spatial task involving magnitude processing with non-symbolic material. (authors)

  18. How verbal and spatial manipulation networks contribute to calculation: An fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Zago, L.; Petit, L.; Turbelin, M.R.; Anderson, F.; Vigneau, M.; Tzourio-Mazoyer, N. [Univ Paris 05, Univ Caen Basse Normandie, CEA, DSV, CNRS, CI NAPSUMR 6232, Paris (France)

    2008-07-01

    The manipulation of numbers required during calculation is known to rely on working memory (WM) resources. Here, we investigated the respective contributions of verbal and/or spatial WM manipulation brain networks during the addition of four numbers performed by adults, using functional magnetic resonance imaging (fMRI). Both manipulation and maintenance tasks were proposed with syllables, locations, or two-digit numbers. As compared to their maintenance, numbers manipulation (addition) elicited increased activation within a widespread cortical network including inferior temporal, parietal, and prefrontal regions. Our results demonstrate that mastery of arithmetic calculation requires the cooperation of three WM manipulation systems: an executive manipulation system conjointly recruited by the three manipulation tasks, including the anterior cingulate cortex (ACC), the orbital part of the inferior frontal gyrus, and the caudate nuclei; a left-lateralized, language-related, inferior fronto-temporal system elicited by numbers and syllables manipulation tasks required for retrieval, selection, and association of symbolic information; and a right superior and posterior fronto-parietal system elicited by numbers and locations manipulation tasks for spatial WM and attentional processes. Our results provide new information that the anterior intra-parietal sulcus (IPS) is involved in tasks requiring a magnitude processing with symbolic (numbers) and non-symbolic (locations) stimuli. Furthermore, the specificity of arithmetic processing is mediated by a left-hemispheric specialization of the anterior and posterior parts of the IPS as compared to a spatial task involving magnitude processing with non-symbolic material. (authors)

  19. Brain responses to language-relevant musical features in adolescent cochlear implant users before and after an intensive music training program

    DEFF Research Database (Denmark)

    Petersen, Bjørn; Weed, Ethan; Hansen, Mads

    Brain responses to language-relevant musical features in adolescent cochlear implant users before and after an intensive music training program Petersen B.1,2, Weed E.1,3, Hansen M.1,4, Sørensen S.D.3 , Sandmann P.5 , Vuust P.1,2 1Center of Functionally Integrative Neuroscience, Aarhus University......, rhythm and intensity). Difference waves for the rhythm deviant were analyzed in the time window between 300 and 320 ms. Separate mixed-model ANOVAs were performed for left and right fronto-central electrodes. Paired t-tests were used to analyze the behavioral data. Here we present preliminary analyses...... of ERP responses to the rhythm deviant stimuli and results from a behavioral rhythm discrimination test. For both left and right electrode sites we found a main effect of group, driven by higher mean amplitude in the NH group. There was no main effect of training. Left hemisphere sites showed...

  20. [Local brain activity in different motor subtypes of Parkinson's disease with fMRI].

    Science.gov (United States)

    Hou, Ya'nan; Zhang, Jiarong; Chen, Biao; Wu, Tao

    2015-02-17

    To explore the changes of local brain activity in motor subtypes of Parkinson's disease (PD) with functional magnetic resonance imaging (fMRI). A total of 60 idiopathic PD and 30 age- and gender-matched normal controls were examined with resting-state fMRI from January 2013 to March 2014. All subjects gave their written informed consent for the study. The amplitude of low-frequency fluctuation (ALFF) was calculated to measure local brain activity. The PD patients were divided into two groups of tremor dominant (TD) and postural instability/gait difficulty (PIGD) (n = 30 each). All subjects gave their written in formed consent for the study.One-way ANOVA and post-hoc t-test were performed to detect the differences of local brain activity between PD and normal subjects. And the correlations were examined between ALFF, scores and levodopa dose. Compared with normal subjects, the TD group showed increased activity in bilateral cerebellums (-37, -47, -38), thalamus (-18, -17,0), pons (-3, -23, -37) and left precentral gyrus (-41, -30, 46) versus decreased activity in bilateral frontal lobes (-13, 69, 6), temporal lobes (-42, 18, -21), left insula (-32, 22, 2) and left anterior cingulated (-7, 32, -5). The PIGD group showed increased activity in right postcentral gyrus (63, -18, 39) and decreased activity in bilateral putamens (-24, 12, 3), pre-supplementary motor area (10, 10, 58), frontal lobes (15, -15, 57), temporal lobes (-39, 18, -3) and left insula (-29, 20, 11). Compared with PIGD, the TD group showed increased activity in temporal lobes, but decreased activity in frontal lobes. Additionally, ALFF in bilateral cerebellums and frontal lobes was positively correlated with TD scores while ALFF in left precentral gyrus, bilateral putamens and temporal lobes negatively correlated with TD scores. ALFF in bilateral frontal lobes and left temporal lobe was positively correlated with PIGD scores.However, in right postcentral gyrus and bilateral putamens, ALFF was

  1. Moral judgement by the disconnected left and right cerebral hemispheres: a split-brain investigation.

    Science.gov (United States)

    Steckler, Conor M; Hamlin, J Kiley; Miller, Michael B; King, Danielle; Kingstone, Alan

    2017-07-01

    Owing to the hemispheric isolation resulting from a severed corpus callosum, research on split-brain patients can help elucidate the brain regions necessary and sufficient for moral judgement. Notably, typically developing adults heavily weight the intentions underlying others' moral actions, placing greater importance on valenced intentions versus outcomes when assigning praise and blame. Prioritization of intent in moral judgements may depend on neural activity in the right hemisphere's temporoparietal junction, an area implicated in reasoning about mental states. To date, split-brain research has found that the right hemisphere is necessary for intent-based moral judgement. When testing the left hemisphere using linguistically based moral vignettes, split-brain patients evaluate actions based on outcomes, not intentions. Because the right hemisphere has limited language ability relative to the left, and morality paradigms to date have involved significant linguistic demands, it is currently unknown whether the right hemisphere alone generates intent-based judgements. Here we use nonlinguistic morality plays with split-brain patient J.W. to examine the moral judgements of the disconnected right hemisphere, demonstrating a clear focus on intent. This finding indicates that the right hemisphere is not only necessary but also sufficient for intent-based moral judgement, advancing research into the neural systems supporting the moral sense.

  2. Left hemisphere lateralization for lexical and acoustic pitch processing in Cantonese speakers as revealed by mismatch negativity.

    Science.gov (United States)

    Gu, Feng; Zhang, Caicai; Hu, Axu; Zhao, Guoping

    2013-12-01

    For nontonal language speakers, speech processing is lateralized to the left hemisphere and musical processing is lateralized to the right hemisphere (i.e., function-dependent brain asymmetry). On the other hand, acoustic temporal processing is lateralized to the left hemisphere and spectral/pitch processing is lateralized to the right hemisphere (i.e., acoustic-dependent brain asymmetry). In this study, we examine whether the hemispheric lateralization of lexical pitch and acoustic pitch processing in tonal language speakers is consistent with the patterns of function- and acoustic-dependent brain asymmetry in nontonal language speakers. Pitch contrast in both speech stimuli (syllable /ji/ in Experiment 1) and nonspeech stimuli (harmonic tone in Experiment 1; pure tone in Experiment 2) was presented to native Cantonese speakers in passive oddball paradigms. We found that the mismatch negativity (MMN) elicited by lexical pitch contrast was lateralized to the left hemisphere, which is consistent with the pattern of function-dependent brain asymmetry (i.e., left hemisphere lateralization for speech processing) in nontonal language speakers. However, the MMN elicited by acoustic pitch contrast was also left hemisphere lateralized (harmonic tone in Experiment 1) or showed a tendency for left hemisphere lateralization (pure tone in Experiment 2), which is inconsistent with the pattern of acoustic-dependent brain asymmetry (i.e., right hemisphere lateralization for acoustic pitch processing) in nontonal language speakers. The consistent pattern of function-dependent brain asymmetry and the inconsistent pattern of acoustic-dependent brain asymmetry between tonal and nontonal language speakers can be explained by the hypothesis that the acoustic-dependent brain asymmetry is the consequence of a carryover effect from function-dependent brain asymmetry. Potential evolutionary implication of this hypothesis is discussed. © 2013.

  3. Brain and Behavioral Assessment of Executive Functions for Self-Regulating Levels of Language in Reading Brain.

    Science.gov (United States)

    Berninger, Virginia W; Richards, Todd L; Abbott, Robert D

    2017-11-01

    This brief research report examines brain-behavioral relationships specific to levels of language in the complex reading brain. The first specific aim was to examine prior findings for significant fMRI connectivity from four seeds (left precuneus, left occipital temporal, left supramarginal, left inferior frontal) for each of four levels of language-subword, word (word-specific spelling or affixed words), syntax (with and without homonym foils or affix foils), and multi-sentence text to identify significant fMRI connectivity (a) unique to the lower level of language when compared to the immediately higher adjacent level of language across subword-word, word-syntax, and syntax-text comparisons; and (b) involving a brain region associated with executive functions. The second specific aim was to correlate the magnitude of that connectivity with standard scores on tests of Focused Attention (D-K EFS Color Word Form Inhibition) and Switching Attention (Wolf & Denckla Rapid Automatic Switching). Seven correlations were significant. Focused Attention was significantly correlated with the word level (word-specific spellings of real words) fMRI task in left cingulum from left inferior frontal seed. Switching Attention was significantly correlated with the (a) subword level (grapheme-phoneme correspondence) fMRI task in left and right Cerebellum V from left supramarginal seed; (b) the word level (word-specific spelling) fMRI task in right Cerebellum V from left precuneus seed; (c) the syntax level (with and without homonym foils) fMRI task in right Cerebellum V from left precuneus seed and from left supramarginal seed; and (d) syntax level (with and without affix foils) fMRI task in right Cerebellum V from left precuneus seed. Results are discussed in reference to neuropsychological assessment of supervisory attention (focused and switching) for specific levels of language related to reading acquisition in students with and without language-related specific learning

  4. Impaired pitch perception and memory in congenital amusia: the deficit starts in the auditory cortex.

    Science.gov (United States)

    Albouy, Philippe; Mattout, Jérémie; Bouet, Romain; Maby, Emmanuel; Sanchez, Gaëtan; Aguera, Pierre-Emmanuel; Daligault, Sébastien; Delpuech, Claude; Bertrand, Olivier; Caclin, Anne; Tillmann, Barbara

    2013-05-01

    Congenital amusia is a lifelong disorder of music perception and production. The present study investigated the cerebral bases of impaired pitch perception and memory in congenital amusia using behavioural measures, magnetoencephalography and voxel-based morphometry. Congenital amusics and matched control subjects performed two melodic tasks (a melodic contour task and an easier transposition task); they had to indicate whether sequences of six tones (presented in pairs) were the same or different. Behavioural data indicated that in comparison with control participants, amusics' short-term memory was impaired for the melodic contour task, but not for the transposition task. The major finding was that pitch processing and short-term memory deficits can be traced down to amusics' early brain responses during encoding of the melodic information. Temporal and frontal generators of the N100m evoked by each note of the melody were abnormally recruited in the amusic brain. Dynamic causal modelling of the N100m further revealed decreased intrinsic connectivity in both auditory cortices, increased lateral connectivity between auditory cortices as well as a decreased right fronto-temporal backward connectivity in amusics relative to control subjects. Abnormal functioning of this fronto-temporal network was also shown during the retention interval and the retrieval of melodic information. In particular, induced gamma oscillations in right frontal areas were decreased in amusics during the retention interval. Using voxel-based morphometry, we confirmed morphological brain anomalies in terms of white and grey matter concentration in the right inferior frontal gyrus and the right superior temporal gyrus in the amusic brain. The convergence between functional and structural brain differences strengthens the hypothesis of abnormalities in the fronto-temporal pathway of the amusic brain. Our data provide first evidence of altered functioning of the auditory cortices during pitch

  5. Structural and functional cerebral correlates of hypnotic suggestibility.

    Directory of Open Access Journals (Sweden)

    Alexa Huber

    Full Text Available Little is known about the neural bases of hypnotic suggestibility, a cognitive trait referring to the tendency to respond to hypnotic suggestions. In the present magnetic resonance imaging study, we performed regression analyses to assess hypnotic suggestibility-related differences in local gray matter volume, using voxel-based morphometry, and in waking resting state functional connectivity of 10 resting state networks, in 37 healthy women. Hypnotic suggestibility was positively correlated with gray matter volume in portions of the left superior and medial frontal gyri, roughly overlapping with the supplementary and pre-supplementary motor area, and negatively correlated with gray matter volume in the left superior temporal gyrus and insula. In the functional connectivity analysis, hypnotic suggestibility was positively correlated with functional connectivity between medial posterior areas, including bilateral posterior cingulate cortex and precuneus, and both the lateral visual network and the left fronto-parietal network; a positive correlation was also found with functional connectivity between the executive-control network and a right postcentral/parietal area. In contrast, hypnotic suggestibility was negatively correlated with functional connectivity between the right fronto-parietal network and the right lateral thalamus. These findings demonstrate for the first time a correlation between hypnotic suggestibility, the structural features of specific cortical regions, and the functional connectivity during the normal resting state of brain structures involved in imagery and self-monitoring activity.

  6. Structural and functional cerebral correlates of hypnotic suggestibility.

    Science.gov (United States)

    Huber, Alexa; Lui, Fausta; Duzzi, Davide; Pagnoni, Giuseppe; Porro, Carlo Adolfo

    2014-01-01

    Little is known about the neural bases of hypnotic suggestibility, a cognitive trait referring to the tendency to respond to hypnotic suggestions. In the present magnetic resonance imaging study, we performed regression analyses to assess hypnotic suggestibility-related differences in local gray matter volume, using voxel-based morphometry, and in waking resting state functional connectivity of 10 resting state networks, in 37 healthy women. Hypnotic suggestibility was positively correlated with gray matter volume in portions of the left superior and medial frontal gyri, roughly overlapping with the supplementary and pre-supplementary motor area, and negatively correlated with gray matter volume in the left superior temporal gyrus and insula. In the functional connectivity analysis, hypnotic suggestibility was positively correlated with functional connectivity between medial posterior areas, including bilateral posterior cingulate cortex and precuneus, and both the lateral visual network and the left fronto-parietal network; a positive correlation was also found with functional connectivity between the executive-control network and a right postcentral/parietal area. In contrast, hypnotic suggestibility was negatively correlated with functional connectivity between the right fronto-parietal network and the right lateral thalamus. These findings demonstrate for the first time a correlation between hypnotic suggestibility, the structural features of specific cortical regions, and the functional connectivity during the normal resting state of brain structures involved in imagery and self-monitoring activity.

  7. Watching TV news as a memory task -- brain activation and age effects

    Directory of Open Access Journals (Sweden)

    Frings Lars

    2010-08-01

    Full Text Available Abstract Background Neuroimaging studies which investigate brain activity underlying declarative memory processes typically use artificial, unimodal laboratory stimuli. In contrast, we developed a paradigm which much more closely approximates real-life situations of information encoding. Methods In this study, we tested whether ecologically valid stimuli - clips of a TV news show - are apt to assess memory-related fMRI activation in healthy participants across a wide age range (22-70 years. We contrasted brain responses during natural stimulation (TV news video clips with a control condition (scrambled versions of the same clips with reversed audio tracks. After scanning, free recall performance was assessed. Results The memory task evoked robust activation of a left-lateralized network, including primarily lateral temporal cortex, frontal cortex, as well as the left hippocampus. Further analyses revealed that - when controlling for performance effects - older age was associated with greater activation of left temporal and right frontal cortex. Conclusion We demonstrate the feasibility of assessing brain activity underlying declarative memory using a natural stimulation paradigm with high ecological validity. The preliminary result of greater brain activation with increasing age might reflect an attempt to compensate for decreasing episodic memory capacity associated with aging.

  8. Declarative long-term memory and the mesial temporal lobe: Insights from a 5-year postsurgery follow-up study on refractory temporal lobe epilepsy.

    Science.gov (United States)

    Salvato, Gerardo; Scarpa, Pina; Francione, Stefano; Mai, Roberto; Tassi, Laura; Scarano, Elisa; Lo Russo, Giorgio; Bottini, Gabriella

    2016-11-01

    It is largely recognized that the mesial temporal lobe and its substructure support declarative long-term memory (LTM). So far, different theories have been suggested, and the organization of declarative verbal LTM in the brain is still a matter of debate. In the current study, we retrospectively selected 151 right-handed patients with temporal lobe epilepsy with and without hippocampal sclerosis, with a homogeneous (seizure-free) clinical outcome. We analyzed verbal memory performance within a normalized scores context, by means of prose recall and word paired-associate learning tasks. Patients were tested at presurgical baseline, 6months, 2 and 5years after anteromesial temporal lobe surgery, using parallel versions of the neuropsychological tests. Our main finding revealed a key involvement of the left temporal lobe and, in particular, of the left hippocampus in prose recall rather than word paired-associate task. We also confirmed that shorter duration of epilepsy, younger age, and withdrawal of antiepileptic drugs would predict a better memory outcome. When individual memory performance was taken into account, data showed that females affected by left temporal lobe epilepsy for longer duration were more at risk of presenting a clinically pathologic LTM at 5years after surgery. Taken together, these findings shed new light on verbal declarative memory in the mesial temporal lobe and on the behavioral signature of the functional reorganization after the surgical treatment of temporal lobe epilepsy. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Brain signal complexity rises with repetition suppression in visual learning.

    Science.gov (United States)

    Lafontaine, Marc Philippe; Lacourse, Karine; Lina, Jean-Marc; McIntosh, Anthony R; Gosselin, Frédéric; Théoret, Hugo; Lippé, Sarah

    2016-06-21

    Neuronal activity associated with visual processing of an unfamiliar face gradually diminishes when it is viewed repeatedly. This process, known as repetition suppression (RS), is involved in the acquisition of familiarity. Current models suggest that RS results from interactions between visual information processing areas located in the occipito-temporal cortex and higher order areas, such as the dorsolateral prefrontal cortex (DLPFC). Brain signal complexity, which reflects information dynamics of cortical networks, has been shown to increase as unfamiliar faces become familiar. However, the complementarity of RS and increases in brain signal complexity have yet to be demonstrated within the same measurements. We hypothesized that RS and brain signal complexity increase occur simultaneously during learning of unfamiliar faces. Further, we expected alteration of DLPFC function by transcranial direct current stimulation (tDCS) to modulate RS and brain signal complexity over the occipito-temporal cortex. Participants underwent three tDCS conditions in random order: right anodal/left cathodal, right cathodal/left anodal and sham. Following tDCS, participants learned unfamiliar faces, while an electroencephalogram (EEG) was recorded. Results revealed RS over occipito-temporal electrode sites during learning, reflected by a decrease in signal energy, a measure of amplitude. Simultaneously, as signal energy decreased, brain signal complexity, as estimated with multiscale entropy (MSE), increased. In addition, prefrontal tDCS modulated brain signal complexity over the right occipito-temporal cortex during the first presentation of faces. These results suggest that although RS may reflect a brain mechanism essential to learning, complementary processes reflected by increases in brain signal complexity, may be instrumental in the acquisition of novel visual information. Such processes likely involve long-range coordinated activity between prefrontal and lower order visual

  10. Bilingualism protects anterior temporal lobe integrity in aging.

    Science.gov (United States)

    Abutalebi, Jubin; Canini, Matteo; Della Rosa, Pasquale A; Sheung, Lo Ping; Green, David W; Weekes, Brendan S

    2014-09-01

    Cerebral gray-matter volume (GMV) decreases in normal aging but the extent of the decrease may be experience-dependent. Bilingualism may be one protective factor and in this article we examine its potential protective effect on GMV in a region that shows strong age-related decreases-the left anterior temporal pole. This region is held to function as a conceptual hub and might be expected to be a target of plastic changes in bilingual speakers because of the requirement for these speakers to store and differentiate lexical concepts in 2 languages to guide speech production and comprehension processes. In a whole brain comparison of bilingual speakers (n = 23) and monolingual speakers (n = 23), regressing out confounding factors, we find more extensive age-related decreases in GMV in the monolingual brain and significantly increased GMV in left temporal pole for bilingual speakers. Consistent with a specific neuroprotective effect of bilingualism, region of interest analyses showed a significant positive correlation between naming performance in the second language and GMV in this region. The effect appears to be bilateral though because there was a nonsignificantly different effect of naming performance on GMV in the right temporal pole. Our data emphasize the vulnerability of the temporal pole to normal aging and the value of bilingualism as both a general and specific protective factor to GMV decreases in healthy aging. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Differential contribution of right and left temporo-occipital and anterior temporal lesions to face recognition disorders

    Directory of Open Access Journals (Sweden)

    Guido eGainotti

    2011-06-01

    Full Text Available In the study of prosopagnosia, several issues (such as the specific or non-specific manifestations of prosopagnosia, the unitary or non-unitary nature of this syndrome and the mechanisms underlying face recognition disorders are still controversial. Two main sources of variance partially accounting for these controversies could be the qualitative differences between the face recognition disorders observed in patients with prevalent lesions of the right or left hemisphere and in those with lesions encroaching upon the temporo-occipital or the (right anterior temporal cortex.Results of our review seem to confirm these suggestions. Indeed, they show that (a the most specific forms of prosopagnosia are due to lesions of a right posterior network including the OFA and the FFA, whereas (b the face identification defects observed in patients with left temporo-occipital lesions seem due to a semantic defect impeding access to person-specific semantic information from the visual modality. Furthermore, face recognition defects resulting from right anterior temporal lesions can usually be considered as part of a multimodal people recognition disorder.The implications of our review are, therefore, the following: (1 to consider the components of visual agnosia often observed in prosopagnosic patients with bilateral temporo-occipital lesions as part of a semantic defect, resulting from left-sided lesions (and not from prosopagnosia proper; (2 to systematically investigate voice recognition disorders in patients with right anterior temporal lesions to determine whether the face recognition defect should be considered a form of ‘associative prosopagnosia’ or a form of the ‘multimodal people recognition disorder’.

  12. Modulating transcallosal and intra-hemispheric brain connectivity with tDCS: Implications for interventions in Aphasia.

    Science.gov (United States)

    Zheng, Xin; Dai, Weiying; Alsop, David C; Schlaug, Gottfried

    2016-07-25

    Transcranial direct current stimulation (tDCS) can enhance or diminish cortical excitability levels depending on the polarity of the stimulation. One application of non-invasive brain-stimulation has been to modulate a possible inter-hemispheric disinhibition after a stroke. This disinhibition model has been developed mainly for the upper extremity motor system, but it is not known whether the language/speech-motor system shows a similar inter-hemispheric interaction. We aimed to examine physiological evidence of inter- and intra-hemispheric connectivity changes induced by tDCS of the right inferior frontal gyrus (IFG) using arterial-spin labeling (ASL) MRI. Using an MR-compatible DC-Stimulator, we applied anodal stimulation to the right IFG region of nine healthy adults while undergoing non-invasive cerebral blood flow imaging with arterial-spin labeling (ASL) before, during, and after the stimulation. All ASL images were then normalized and timecourses were extracted in regions of interest (ROIs), which were the left and right IFG regions, and the right supramarginal gyrus (SMG) in the inferior parietal lobule. Two additional ROIs (the right occipital lobe and the left fronto-orbital region) were taken as control regions. Using regional correlation coefficients as a surrogate marker of connectivity, we could show that inter-hemispheric connectivity (right IFG with left IFG) decreased significantly (p < 0.05; r-scores from 0.67 to 0.53) between baseline and post-stimulation, while the intra-hemispheric connectivity (right IFG with right SMG) increased significantly (p < 0.05;r-scores from 0.74 to 0.81). A 2 × 2 ANOVA found a significant main effect of HEMISPHERE (F(8) = 6.83, p < 0.01) and a significant HEMISPHERE-by-TIME interaction (F(8) = 4.24, p < 0.05) in connectivity changes. The correlation scores did not change significantly in the control region pairs (right IFG with right occipital and right IFG with left fronto-orbital) over

  13. Spatio-temporal reconstruction of brain dynamics from EEG with a Markov prior

    DEFF Research Database (Denmark)

    Hansen, Sofie Therese; Hansen, Lars Kai

    2016-01-01

    the functional dynamics of the brain. Solving the inverse problem of EEG is however highly ill-posed as there are many more potential locations of the EEG generators than EEG measurement points. Several well-known properties of brain dynamics can be exploited to alleviate this problem. More short ranging......Electroencephalography (EEG) can capture brain dynamics in high temporal resolution. By projecting the scalp EEG signal back to its origin in the brain also high spatial resolution can be achieved. Source localized EEG therefore has potential to be a very powerful tool for understanding...

  14. Widespread extrahippocampal NAA/(Cr+Cho) abnormalities in TLE with and without mesial temporal sclerosis.

    Science.gov (United States)

    Mueller, Susanne G; Ebel, Andreas; Barakos, Jerome; Scanlon, Cathy; Cheong, Ian; Finlay, Daniel; Garcia, Paul; Weiner, Michael W; Laxer, Kenneth D

    2011-04-01

    MR spectroscopy has demonstrated extrahippocampal NAA/(Cr+Cho) reductions in medial temporal lobe epilepsy with (TLE-MTS) and without (TLE-no) mesial temporal sclerosis. Because of the limited brain coverage of those previous studies, it was, however, not possible to assess differences in the distribution and extent of these abnormalities between TLE-MTS and TLE-no. This study used a 3D whole brain echoplanar spectroscopic imaging (EPSI) sequence to address the following questions: (1) Do TLE-MTS and TLE-no differ regarding severity and distribution of extrahippocampal NAA/(Cr+Cho) reductions? (2) Do extrahippocampal NAA/(Cr+Cho) reductions provide additional information for focus lateralization? Forty-three subjects (12 TLE-MTS, 13 TLE-no, 18 controls) were studied with 3D EPSI. Statistical parametric mapping (SPM2) was used to identify regions of significantly decreased NAA/(Cr+Cho) in TLE groups and in individual patients. TLE-MTS and TLE-no had widespread extrahippocampal NAA/(Cr+Cho) reductions. NAA/(Cr+Cho) reductions had a bilateral fronto-temporal distribution in TLE-MTS and a more diffuse, less well defined distribution in TLE-no. Extrahippocampal NAA/(Cr+Cho) decreases in the single subject analysis showed a large inter-individual variability and did not provide additional focus lateralizing information. Extrahippocampal NAA/(Cr+Cho) reductions in TLE-MTS and TLE-no are neither focal nor homogeneous. This reduces their value for focus lateralization and suggests a heterogeneous etiology of extrahippocampal spectroscopic metabolic abnormalities in TLE.

  15. Electroencephalographic abnormalities in antisocial personality disorder.

    Science.gov (United States)

    Calzada-Reyes, Ana; Alvarez-Amador, Alfredo; Galán-García, Lídice; Valdés-Sosa, Mitchell

    2012-01-01

    The presence of brain dysfunction in violent offenders has been frequently examined with inconsistent results. The aim of the study was to assess the EEG of 84 violent offenders by visual inspection and frequency-domain quantitative analysis in 84 violent prisoners. Low-resolution electromagnetic tomography (LORETA) was also employed for theta band of the EEG spectra. Antisocial personality disorder (ASPD) was present in 50 of the offenders and it was absent in the remaining 34. The prevalence of EEG abnormalities, by visual inspection, was similar for both the ASPD group (82%) and non-ASPD group (79%). The brain topography of these anomalies also did not differ between groups, in contrast to results of the EEG quantitative analysis (QEEG) and LORETA that showed remarkable regional differences between both groups. QEEG analysis showed a pattern of excess of theta-delta activities and decrease of alpha band on the right fronto-temporal and left temporo-parietal regions in the ASPD group. LORETA signified an increase of theta activity (5.08 Hz) in ASPD group relative to non-ASPD group within left temporal and parietal regions. Findings indicate that QEEG analysis and techniques of source localization may reveal differences in brain electrical activity among offenders with ASPD, which was not obvious to visual inspection. Copyright © 2011 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  16. Independent effects of both right and left ventricular function on plasma brain natriuretic peptide

    DEFF Research Database (Denmark)

    Vogelsang, Thomas Wiis; Jensen, Ruben J; Monrad, Astrid L

    2007-01-01

    BACKGROUND: Brain natriuretic peptide (BNP) is increased in heart failure; however, the relative contribution of the right and left ventricles is largely unknown. AIM: To investigate if right ventricular function has an independent influence on plasma BNP concentration. METHODS: Right (RVEF), left......, which is a strong prognostic marker in heart failure, independently depends on both left and right ventricular systolic function. This might, at least in part, explain why BNP holds stronger prognostic value than LVEF alone....... ventricular ejection fraction (LVEF), and left ventricular end-diastolic volume index (LVEDVI) were determined in 105 consecutive patients by first-pass radionuclide ventriculography (FP-RNV) and multiple ECG-gated equilibrium radionuclide ventriculography (ERNV), respectively. BNP was analyzed by immunoassay...

  17. Independent effects of both right and left ventricular function on plasma brain natriuretic peptide.

    Science.gov (United States)

    Vogelsang, Thomas Wiis; Jensen, Ruben J; Monrad, Astrid L; Russ, Kaspar; Olesen, Uffe H; Hesse, Birger; Kjaer, Andreas

    2007-09-01

    Brain natriuretic peptide (BNP) is increased in heart failure; however, the relative contribution of the right and left ventricles is largely unknown. To investigate if right ventricular function has an independent influence on plasma BNP concentration. Right (RVEF), left ventricular ejection fraction (LVEF), and left ventricular end-diastolic volume index (LVEDVI) were determined in 105 consecutive patients by first-pass radionuclide ventriculography (FP-RNV) and multiple ECG-gated equilibrium radionuclide ventriculography (ERNV), respectively. BNP was analyzed by immunoassay. Mean LVEF was 0.51 (range 0.10-0.83) with 36% having a reduced LVEF (left and right ventricular systolic function. This might, at least in part, explain why BNP holds stronger prognostic value than LVEF alone.

  18. Differences in Brain Function and Changes with Intervention in Children with Poor Spelling and Reading Abilities

    Science.gov (United States)

    Gebauer, Daniela; Fink, Andreas; Kargl, Reinhard; Reishofer, Gernot; Koschutnig, Karl; Purgstaller, Christian; Fazekas, Franz; Enzinger, Christian

    2012-01-01

    Previous fMRI studies in English-speaking samples suggested that specific interventions may alter brain function in language-relevant networks in children with reading and spelling difficulties, but this research strongly focused on reading impaired individuals. Only few studies so far investigated characteristics of brain activation associated with poor spelling ability and whether a specific spelling intervention may also be associated with distinct changes in brain activity patterns. We here investigated such effects of a morpheme-based spelling intervention on brain function in 20 children with comparatively poor spelling and reading abilities using repeated fMRI. Relative to 10 matched controls, children with comparatively poor spelling and reading abilities showed increased activation in frontal medial and right hemispheric regions and decreased activation in left occipito-temporal regions prior to the intervention, during processing of a lexical decision task. After five weeks of intervention, spelling and reading comprehension significantly improved in the training group, along with increased activation in the left temporal, parahippocampal and hippocampal regions. Conversely, the waiting group showed increases in right posterior regions. Our findings could indicate an increased left temporal activation associated with the recollection of the new learnt morpheme-based strategy related to successful training. PMID:22693600

  19. Differences in brain function and changes with intervention in children with poor spelling and reading abilities.

    Directory of Open Access Journals (Sweden)

    Daniela Gebauer

    Full Text Available Previous fMRI studies in English-speaking samples suggested that specific interventions may alter brain function in language-relevant networks in children with reading and spelling difficulties, but this research strongly focused on reading impaired individuals. Only few studies so far investigated characteristics of brain activation associated with poor spelling ability and whether a specific spelling intervention may also be associated with distinct changes in brain activity patterns. We here investigated such effects of a morpheme-based spelling intervention on brain function in 20 children with comparatively poor spelling and reading abilities using repeated fMRI. Relative to 10 matched controls, children with comparatively poor spelling and reading abilities showed increased activation in frontal medial and right hemispheric regions and decreased activation in left occipito-temporal regions prior to the intervention, during processing of a lexical decision task. After five weeks of intervention, spelling and reading comprehension significantly improved in the training group, along with increased activation in the left temporal, parahippocampal and hippocampal regions. Conversely, the waiting group showed increases in right posterior regions. Our findings could indicate an increased left temporal activation associated with the recollection of the new learnt morpheme-based strategy related to successful training.

  20. Left and Right Hemisphere Brain Functions and Symbolic vs. Spontaneous Communication Processes.

    Science.gov (United States)

    Buck, Ross

    Recent findings on the communicative functions of the left versus the right hemisphere of the brain may suggest that there is a distinction between the intentional use of symbols for the sending of specific messages or propositions (language, signing, pantomime) and spontaneous expressive behaviors that signal their meaning through a natural…

  1. Dyslexic children lack word selectivity gradients in occipito-temporal and inferior frontal cortex

    Directory of Open Access Journals (Sweden)

    O.A. Olulade

    2015-01-01

    Full Text Available fMRI studies using a region-of-interest approach have revealed that the ventral portion of the left occipito-temporal cortex, which is specialized for orthographic processing of visually presented words (and includes the so-called “visual word form area”, VWFA, is characterized by a posterior-to-anterior gradient of increasing selectivity for words in typically reading adults, adolescents, and children (e.g. Brem et al., 2006, 2009. Similarly, the left inferior frontal cortex (IFC has been shown to exhibit a medial-to-lateral gradient of print selectivity in typically reading adults (Vinckier et al., 2007. Functional brain imaging studies of dyslexia have reported relative underactivity in left hemisphere occipito-temporal and inferior frontal regions using whole-brain analyses during word processing tasks. Hence, the question arises whether gradient sensitivities in these regions are altered in dyslexia. Indeed, a region-of-interest analysis revealed the gradient-specific functional specialization in the occipito-temporal cortex to be disrupted in dyslexic children (van der Mark et al., 2009. Building on these studies, we here (1 investigate if a word-selective gradient exists in the inferior frontal cortex in addition to the occipito-temporal cortex in normally reading children, (2 compare typically reading with dyslexic children, and (3 examine functional connections between these regions in both groups. We replicated the previously reported anterior-to-posterior gradient of increasing selectivity for words in the left occipito-temporal cortex in typically reading children, and its absence in the dyslexic children. Our novel finding is the detection of a pattern of increasing selectivity for words along the medial-to-lateral axis of the left inferior frontal cortex in typically reading children and evidence of functional connectivity between the most lateral aspect of this area and the anterior aspects of the occipito-temporal cortex. We

  2. Distinct brain mechanisms support spatial vs temporal filtering of nociceptive information.

    Science.gov (United States)

    Nahman-Averbuch, Hadas; Martucci, Katherine T; Granovsky, Yelena; Weissman-Fogel, Irit; Yarnitsky, David; Coghill, Robert C

    2014-12-01

    The role of endogenous analgesic mechanisms has largely been viewed in the context of gain modulation during nociceptive processing. However, these analgesic mechanisms may play critical roles in the extraction and subsequent utilization of information related to spatial and temporal features of nociceptive input. To date, it remains unknown if spatial and temporal filtering of nociceptive information is supported by similar analgesic mechanisms. To address this question, human volunteers were recruited to assess brain activation with functional magnetic resonance imaging during conditioned pain modulation (CPM) and offset analgesia (OA). CPM provides one paradigm for assessing spatial filtering of nociceptive information while OA provides a paradigm for assessing temporal filtering of nociceptive information. CPM and OA both produced statistically significant reductions in pain intensity. However, the magnitude of pain reduction elicited by CPM was not correlated with that elicited by OA across different individuals. Different patterns of brain activation were consistent with the psychophysical findings. CPM elicited widespread reductions in regions engaged in nociceptive processing such as the thalamus, insula, and secondary somatosensory cortex. OA produced reduced activity in the primary somatosensory cortex but was associated with greater activation in the anterior insula, dorsolateral prefrontal cortex, intraparietal sulcus, and inferior parietal lobule relative to CPM. In the brain stem, CPM consistently produced reductions in activity, while OA produced increases in activity. Conjunction analysis confirmed that CPM-related activity did not overlap with that of OA. Thus, dissociable mechanisms support inhibitory processes engaged during spatial vs temporal filtering of nociceptive information. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  3. Fronto-Orbital Advancement and Total Calvarial Remodelling for Craniosynostosis

    International Nuclear Information System (INIS)

    Haq, E. U.; Aman, S.; Tammimy, M. S.; Ahmad, R. S.

    2014-01-01

    Objective: To describe the results of fronto-orbital advancement and remodelling for craniosynostosis in children. Study Design: Case series. Place and Duration of Study: Department of Plastic Surgery, Combined Military Hospital, Rawalpindi, from June 2009 to June 2012. Methodology: All the patients with cranial suture synostosis operated were included in the study. Those patients who were lost to follow-up were excluded. Variables considered were age, gender, type of synostosis, intracranial pressure, and history of previous surgeries for the same problem. Outcome measures were studied in terms of improvement of skull measurements (anteroposterior and bicoronal), duration of surgery, hospital stay, blood transfusions, complications and parents satisfaction. Results: A total of 36 patients were included in the study. Male to female ratio was 3:1. The age ranged from 5 to 54 months. Thirty two patients presented with non-syndromic and four with syndromic craniosynostosis. Fronto orbital advancement and total calvarial remodelling was done in 26 and 10 patients respectively. There was improvement in the skull measurements and the parents were satisfied in all cases with the skull shape. Complications occurred in 11.1% including chest and wound infection and one death. Conclusion: Fronto-orbital advancement and remodelling is an effective procedure for the correction of craniosynostosis, however, individual cases may require other procedures like total calvarial remodelling. (author)

  4. The savant syndrome and its possible relationship to epilepsy.

    Science.gov (United States)

    Hughes, John R

    2012-01-01

    The goal of this chapter is to review the Savant syndrome (SS), characterized by outstanding islands of mental ability in otherwise handicapped individuals. Two forms exist: The congenital and acquired form. Among the many examples of the congenital form are the calendar calculators, who can quickly provide the day of the week for any date in the past. Other examples are the musical savants with perfect pitch and the hyperlexics, who (in one case) can read a page in 8 seconds and recall the text later at a 99% level. Other types of talents and artistic skills can be found, involving 3-D drawing, map memory, poetry, painting, sculpturing, including one savant who could recite without error the value of Pi to 22,514 places. The acquired form refers to the development of outstanding skills after some brain injury or disease, usually involving the left fronto-temporal area. This type of injury seems to inhibit the 'tyranny of the left hemisphere', allowing the right hemisphere to develop the savant skills. One other way to inhibit the left fronto-temporal area is to use transcranial magnetic stimulation in normal subjects and nearly one-half of these subjects can then perform new skills during the stimulation that they could not perform before. This type of finding indicates the potentiality in all of us for the development of savant skills under special circumstances. Explanations of the congenital SS include enhanced local connectivity as a compensation for underconnectivity of long-range fibers, but also weak central coherence, replaced by great attention to details, enhanced perceptual functioning and obsessive pre-occupation with specific interests. Neurodegenerative Diseases, edited by Shamim I. Ahmad.

  5. Automatic interpretation of F-18-FDG brain PET using artificial neural network: discrimination of medial and lateral temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Lee, Dong Soo; Kim, Seok Ki; Park, Kwang Suk; Lee, Sang Kun; Chung, June Key; Lee, Myung Chul [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    2004-06-01

    We developed a computer-aided classifier using artificial neural network (ANN) to discriminate the cerebral metabolic pattern of medial and lateral temporal lobe epilepsy (TLE). We studied brain F-18-FDG PET images of 113 epilepsy patients surgically and pathologically proven as medial TLE (left 41, right 42) or lateral TLE (left 14, right 16). PET images were spatially transformed onto a standard template and normalized to the mean counts of cortical regions. Asymmetry indices for predefined 17 mirrored regions to hemispheric midline and those for medial and lateral temporal lobes were used as input features for ANN. ANN classifier was composed of 3 independent multi-layered perceptions (1 for left/right lateralization and 2 for medial/lateral discrimination) and trained to interpret metabolic patterns and produce one of 4 diagnoses (L/R medial TLE or L/R lateral TLE). Randomly selected 8 images from each group were used to train the ANN classifier and remaining 81 images were used as test sets. The accuracy of the diagnosis with ANN was estimated by averaging the agreement rates of independent 50 trials and compared to that of nuclear medicine experts. The accuracy in lateralization was 89% by the human experts and 90% by the ANN classifier. Overall accuracy in localization of epileptogenic zones by the ANN classifier was 69%, which was comparable to that by the human experts (72%). We conclude that ANN classifier performed as well as human experts and could be potentially useful supporting tool for the differential diagnosis of TLE.

  6. Automatic interpretation of F-18-FDG brain PET using artificial neural network: discrimination of medial and lateral temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Lee, Jae Sung; Lee, Dong Soo; Kim, Seok Ki; Park, Kwang Suk; Lee, Sang Kun; Chung, June Key; Lee, Myung Chul

    2004-01-01

    We developed a computer-aided classifier using artificial neural network (ANN) to discriminate the cerebral metabolic pattern of medial and lateral temporal lobe epilepsy (TLE). We studied brain F-18-FDG PET images of 113 epilepsy patients surgically and pathologically proven as medial TLE (left 41, right 42) or lateral TLE (left 14, right 16). PET images were spatially transformed onto a standard template and normalized to the mean counts of cortical regions. Asymmetry indices for predefined 17 mirrored regions to hemispheric midline and those for medial and lateral temporal lobes were used as input features for ANN. ANN classifier was composed of 3 independent multi-layered perceptions (1 for left/right lateralization and 2 for medial/lateral discrimination) and trained to interpret metabolic patterns and produce one of 4 diagnoses (L/R medial TLE or L/R lateral TLE). Randomly selected 8 images from each group were used to train the ANN classifier and remaining 81 images were used as test sets. The accuracy of the diagnosis with ANN was estimated by averaging the agreement rates of independent 50 trials and compared to that of nuclear medicine experts. The accuracy in lateralization was 89% by the human experts and 90% by the ANN classifier. Overall accuracy in localization of epileptogenic zones by the ANN classifier was 69%, which was comparable to that by the human experts (72%). We conclude that ANN classifier performed as well as human experts and could be potentially useful supporting tool for the differential diagnosis of TLE

  7. Whole-brain structural connectivity in dyskinetic cerebral palsy and its association with motor and cognitive function.

    Science.gov (United States)

    Ballester-Plané, Júlia; Schmidt, Ruben; Laporta-Hoyos, Olga; Junqué, Carme; Vázquez, Élida; Delgado, Ignacio; Zubiaurre-Elorza, Leire; Macaya, Alfons; Póo, Pilar; Toro, Esther; de Reus, Marcel A; van den Heuvel, Martijn P; Pueyo, Roser

    2017-09-01

    Dyskinetic cerebral palsy (CP) has long been associated with basal ganglia and thalamus lesions. Recent evidence further points at white matter (WM) damage. This study aims to identify altered WM pathways in dyskinetic CP from a standardized, connectome-based approach, and to assess structure-function relationship in WM pathways for clinical outcomes. Individual connectome maps of 25 subjects with dyskinetic CP and 24 healthy controls were obtained combining a structural parcellation scheme with whole-brain deterministic tractography. Graph theoretical metrics and the network-based statistic were applied to compare groups and to correlate WM state with motor and cognitive performance. Results showed a widespread reduction of WM volume in CP subjects compared to controls and a more localized decrease in degree (number of links per node) and fractional anisotropy (FA), comprising parieto-occipital regions and the hippocampus. However, supramarginal gyrus showed a significantly higher degree. At the network level, CP subjects showed a bilateral pathway with reduced FA, comprising sensorimotor, intraparietal and fronto-parietal connections. Gross and fine motor functions correlated with FA in a pathway comprising the sensorimotor system, but gross motor also correlated with prefrontal, temporal and occipital connections. Intelligence correlated with FA in a network with fronto-striatal and parieto-frontal connections, and visuoperception was related to right occipital connections. These findings demonstrate a disruption in structural brain connectivity in dyskinetic CP, revealing general involvement of posterior brain regions with relative preservation of prefrontal areas. We identified pathways in which WM integrity is related to clinical features, including but not limited to the sensorimotor system. Hum Brain Mapp 38:4594-4612, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Dynamic changes during evacuation of a left temporal abscess in open MRI: technical case report

    Energy Technology Data Exchange (ETDEWEB)

    Bernays, R.L.; Yonekawa, Y. [Department of Neurosurgery, University Hospital, Zurich (Switzerland); Kollias, S.S. [Institute of Neuroradiology, University Hospital of Zurich (Switzerland)

    2002-05-01

    We demonstrate the usefulness of ''near real-time'' neuro-navigation by open MRI systems for guidance of stereotactic evacuation of intracranial abscesses. A 70-year-old patient was referred to our institution with an intracranial left temporal abscess. He presented with headache, senso-motor aphasia and mild right hemiparesis. The abscess (35 x 25 mm) was stereotactically evacuated under MRI guidance, and a recurrence of a daughter abscess was again evacuated on the 9th postoperative day. ''Near real-time'' imaging showed an indentation of the abscess wall of 11 mm along the trajectory. A thermosensitive MRI protocol demonstrated a higher temperature around the abscess capsule than in the brain tissue more distant to the capsule, demonstrating the inflammatory process. The patient had 6 weeks of antibiotic therapy for gram-negative bacteria and was discharged with improved clinical symptoms 5 weeks after admission. Follow-up CT 2 months postoperatively showed a complete resolution of the abscess. Open MRI-guided interventions with ''near real-time'' imaging demonstrate the anatomical changes during an ongoing procedure and can be accommodated for enhancing the overall precision of stereotactic procedures. Thermosensitive MRI protocols are capable of revealing temperature gradients around inflammatory processes. (orig.)

  9. The differential effects of acute right- vs. left-sided vestibular failure on brain metabolism.

    Science.gov (United States)

    Becker-Bense, Sandra; Dieterich, Marianne; Buchholz, Hans-Georg; Bartenstein, Peter; Schreckenberger, Mathias; Brandt, Thomas

    2014-07-01

    The human vestibular system is represented in the brain bilaterally, but it has functional asymmetries, i.e., a dominance of ipsilateral pathways and of the right hemisphere in right-handers. To determine if acute right- or left-sided unilateral vestibular neuritis (VN) is associated with differential patterns of brain metabolism in areas representing the vestibular network and the visual-vestibular interaction, patients with acute VN (right n = 9; left n = 13) underwent resting state (18)F-FDG PET once in the acute phase and once 3 months later after central vestibular compensation. The contrast acute vs. chronic phase showed signal differences in contralateral vestibular areas and the inverse contrast in visual cortex areas, both more pronounced in VN right. In VN left additional regions were found in the cerebellar hemispheres and vermis bilaterally, accentuated in severe cases. In general, signal changes appeared more pronounced in patients with more severe vestibular deficits. Acute phase PET data of patients compared to that of age-matched healthy controls disclosed similarities to these patterns, thus permitting the interpretation that the signal changes in vestibular temporo-parietal areas reflect signal increases, and in visual areas, signal decreases. These data imply that brain activity in the acute phase of right- and left-sided VN exhibits different compensatory patterns, i.e., the dominant ascending input is shifted from the ipsilateral to the contralateral pathways, presumably due to the missing ipsilateral vestibular input. The visual-vestibular interaction patterns were preserved, but were of different prominence in each hemisphere and more pronounced in patients with right-sided failure and more severe vestibular deficits.

  10. Focal epileptic seizures with secondary generalization in cortical atrophy and gliosis dysplasia in the left temporal lobe and hemimegalencephaly in the left occipital lobe

    International Nuclear Information System (INIS)

    Manchev, I.; Mancheva-Ganeva, V.; Manolova, T.; Manchev, L.

    2016-01-01

    It is a case of an eight-year-old patient with cortical dysplasia and gliosis in the left temporal lobe clinically manifested with focal epileptic seizures with secondary generalization. Signs of mental retardation and a number of somatic complications - diabetes, etc., were found. The complex therapy with anticonvulsant medications, immunovenin, plasmaphoresis and anti-diabetic drugs was partially effective

  11. Altered functional connectivity differs in stroke survivors with impaired touch sensation following left and right hemisphere lesions

    Directory of Open Access Journals (Sweden)

    Peter Goodin

    Full Text Available One in two survivors experience impairment in touch sensation after stroke. The nature of this impairment is likely associated with changes associated with the functional somatosensory network of the brain; however few studies have examined this. In particular, the impact of lesioned hemisphere has not been investigated. We examined resting state functional connectivity in 28 stroke survivors, 14 with left hemisphere and 14 with right hemisphere lesion, and 14 healthy controls. Contra-lesional hands showed significantly decreased touch discrimination. Whole brain functional connectivity (FC data was extracted from four seed regions, i.e. primary (S1 and secondary (S2 somatosensory cortices in both hemispheres. Whole brain FC maps and Laterality Indices (LI were calculated for subgroups. Inter-hemispheric FC was greater in healthy controls compared to the combined stroke cohort from the left S1 seed and bilateral S2 seeds. The left lesion subgroup showed decreased FC, relative to controls, from left ipsi-lesional S1 to contra-lesional S1 and to distributed temporal, occipital and parietal regions. In comparison, the right lesion group showed decreased connectivity from contra-lesional left S1 and bilateral S2 to ipsi-lesional parietal operculum (S2, and to occipital and temporal regions. The right lesion group also showed increased intra-hemispheric FC from ipsi-lesional right S1 to inferior parietal regions compared to controls. In comparison to the left lesion group, those with right lesion showed greater intra-hemispheric connectivity from left S1 to left parietal and occipital regions and from right S1 to right angular and parietal regions. Laterality Indices were significantly greater for stroke subgroups relative to matched controls for contra-lesional S1 (left lesion group and contra-lesional S2 (both groups. We provide evidence of altered functional connectivity within the somatosensory network, across both hemispheres, and to other

  12. Handedness- and brain size-related efficiency differences in small-world brain networks: a resting-state functional magnetic resonance imaging study.

    Science.gov (United States)

    Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong; Yu, Chunshui; Chen, Huafu

    2015-05-01

    The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical regions. Graph theory-based methods were employed to further analyze their topological properties. As expected, all participants demonstrated small-world topology, suggesting a highly efficient topological structure. Furthermore, we found that smaller brains showed higher local efficiency, whereas larger brains showed higher global efficiency, reflecting a suitable efficiency balance between local specialization and global integration of brain functional activity. Compared with right-handers, significant alterations in nodal efficiency were revealed in left-handers, involving the anterior and median cingulate gyrus, middle temporal gyrus, angular gyrus, and amygdala. Our findings indicated that the functional network organization in the human brain was associated with handedness and brain size.

  13. Different brain circuits underlie motor and perceptual representations of temporal intervals

    DEFF Research Database (Denmark)

    Bueti, Doemnica; Walsh, Vincent; Frith, Christopher

    2008-01-01

    V5/MT. Our findings point to a role for the parietal cortex as an interface between sensory and motor processes and suggest that it may be a key node in translation of temporal information into action. Furthermore, we discuss the potential importance of the extrastriate cortex in processing visual......In everyday life, temporal information is used for both perception and action, but whether these two functions reflect the operation of similar or different neural circuits is unclear. We used functional magnetic resonance imaging to investigate the neural correlates of processing temporal...... information when either a motor or a perceptual representation is used. Participants viewed two identical sequences of visual stimuli and used the information differently to perform either a temporal reproduction or a temporal estimation task. By comparing brain activity evoked by these tasks and control...

  14. Genetic underpinnings of left superior temporal gyrus thickness in patients with schizophrenia.

    Science.gov (United States)

    Wolthusen, Rick P F; Hass, Johanna; Walton, Esther; Turner, Jessica A; Rössner, Veit; Sponheim, Scott R; Ho, Beng-Choon; Holt, Daphne J; Gollub, Randy L; Calhoun, Vince; Ehrlich, Stefan

    2015-08-07

    Schizophrenia is a highly disabling psychiatric disorder with a heterogeneous phenotypic appearance. We aimed to further the understanding of some of the underlying genetics of schizophrenia, using left superior temporal gyrus (STG) grey matter thickness reduction as an endophenoptype in a genome-wide association (GWA) study. Structural magnetic resonance imaging (MRI) and genetic data of the Mind Clinical Imaging Consortium (MCIC) study of schizophrenia were used to analyse the interaction effects between 1,067,955 single nucleotide polymorphisms (SNPs) and disease status on left STG thickness in 126 healthy controls and 113 patients with schizophrenia. We next used a pathway approach to detect underlying pathophysiological pathways that may be related to schizophrenia. No SNP by diagnosis interaction effect reached genome-wide significance (5 × 10 -8 ) in our GWA study, but 10 SNPs reached P-values less than 10 -6 . The most prominent pathways included those involved in insulin, calcium, PI3K-Akt and MAPK signalling. Our strongest findings in the GWA study and pathway analysis point towards an involvement of glucose metabolism in left STG thickness reduction in patients with schizophrenia only. These results are in line with recently published studies, which showed an increased prevalence of psychosis among patients with metabolic syndrome-related illnesses including diabetes.

  15. Determinants of brain metabolism changes in mesial temporal lobe epilepsy.

    Science.gov (United States)

    Chassoux, Francine; Artiges, Eric; Semah, Franck; Desarnaud, Serge; Laurent, Agathe; Landre, Elisabeth; Gervais, Philippe; Devaux, Bertrand; Helal, Ourkia Badia

    2016-06-01

    To determine the main factors influencing metabolic changes in mesial temporal lobe epilepsy (MTLE) due to hippocampal sclerosis (HS). We prospectively studied 114 patients with MTLE (62 female; 60 left HS; 15- to 56-year-olds) with (18) F-fluorodeoxyglucose-positron emission tomography and correlated the results with the side of HS, structural atrophy, electroclinical features, gender, age at onset, epilepsy duration, and seizure frequency. Imaging processing was performed using statistical parametric mapping. Ipsilateral hypometabolism involved temporal (mesial structures, pole, and lateral cortex) and extratemporal areas including the insula, frontal lobe, perisylvian regions, and thalamus, more extensively in right HS (RHS). A relative increase of metabolism (hypermetabolism) was found in the nonepileptic temporal lobe and in posterior areas bilaterally. Voxel-based morphometry detected unilateral hippocampus atrophy and gray matter concentration decrease in both frontal lobes, more extensively in left HS (LHS). Regardless of the structural alterations, the topography of hypometabolism correlated strongly with the extent of epileptic networks (mesial, anterior-mesiolateral, widespread mesiolateral, and bitemporal according to the ictal spread), which were larger in RHS. Notably, widespread perisylvian and bitemporal hypometabolism was found only in RHS. Mirror hypermetabolism was grossly proportional to the hypometabolic areas, coinciding partly with the default mode network. Gender-related effect was significant mainly in the contralateral frontal lobe, in which metabolism was higher in female patients. Epilepsy duration correlated with the contralateral temporal metabolism, positively in LHS and negatively in RHS. Opposite results were found with age at onset. High seizure frequency correlated negatively with the contralateral metabolism in LHS. Epileptic networks, as assessed by electroclinical correlations, appear to be the main determinant of

  16. Brain Regions Underlying Word Finding Difficulties in Temporal Lobe Epilepsy

    Science.gov (United States)

    Trebuchon-Da Fonseca, Agnes; Guedj, Eric; Alario, F-Xavier; Laguitton, Virginie; Mundler, Olivier; Chauvel, Patrick; Liegeois-Chauvel, Catherine

    2009-01-01

    Word finding difficulties are often reported by epileptic patients with seizures originating from the language dominant cerebral hemisphere, for example, in temporal lobe epilepsy. Evidence regarding the brain regions underlying this deficit comes from studies of peri-operative electro-cortical stimulation, as well as post-surgical performance.…

  17. Superficial Temporal Artery Pseudoaneurysm: A Conservative Approach in a Critically Ill Patient

    International Nuclear Information System (INIS)

    Grasso, Rosario Francesco; Quattrocchi, Carlo Cosimo; Crucitti, Pierfilippo; Carboni, Giampiero; Coppola, Roberto; Zobel, Bruno Beomonte

    2007-01-01

    A 71-year-old man affected by cardio- and cerebrovascular disease experienced an accidental fall and trauma to the fronto-temporal area of the head. A few weeks later a growing mass appeared on his scalp. A diagnosis of superficial temporal artery pseudoaneurysm was made following CT and color Doppler ultrasound. His clinical condition favoured a conservative approach by ultrasound-guided compression and subsequent surgical resection. A conservative approach should be considered the treatment of choice in critically ill patients affected by superficial temporal artery pseudoaneurysm

  18. Magnetic resonance imaging and angiography of the brain in embolic left atrial myxoma

    International Nuclear Information System (INIS)

    Marazuela, M.; Yebra, M.; Diego, J.; Durantez, A.; Garcia-Merino, A.; Brasa, J.M.

    1989-01-01

    A case of left atrial myxoma presenting exclusively with neurological symptoms, studies with magnetic resonance imaging (MRI) combined with cerebral angiography and computed tomography (CT) is reported. Typical angiographic findings suggested the diagnosis of myxoma. MRI showed multiple ischemic lesions disseminated throughout the entire brain, some of which had been clinically asymptomatic. Because of its sensitivity in identifying small cerebral infarcts, MRI should prove in the future to be a first-choice technique in the evaluation of the presence of an extent of cerebral involvement in embolic left atrial myxoma. (orig.)

  19. Brain abnormalities in murderers indicated by positron emission tomography.

    Science.gov (United States)

    Raine, A; Buchsbaum, M; LaCasse, L

    1997-09-15

    Murderers pleading not guilty by reason of insanity (NGRI) are thought to have brain dysfunction, but there have been no previous studies reporting direct measures of both cortical and subcortical brain functioning in this specific group. Positron emission tomography brain imaging using a continuous performance challenge task was conducted on 41 murderers pleading not guilty by reason of insanity and 41 age- and sex-matched controls. Murderers were characterized by reduced glucose metabolism in the prefrontal cortex, superior parietal gyrus, left angular gyrus, and the corpus callosum, while abnormal asymmetries of activity (left hemisphere lower than right) were also found in the amygdala, thalamus, and medial temporal lobe. These preliminary findings provide initial indications of a network of abnormal cortical and subcortical brain processes that may predispose to violence in murderers pleading NGRI.

  20. Meta-analysis of diffusion tensor imaging studies shows altered fractional anisotropy occurring in distinct brain areas in association with depression.

    LENUS (Irish Health Repository)

    Murphy, Melissa L

    2011-09-01

    Fractional anisotropy anomalies occurring in the white matter tracts in the brains of depressed patients may reflect microstructural changes underlying the pathophysiology of this disorder. We conducted a meta-analysis of fractional anisotropy abnormalities occurring in major depressive disorder using voxel-based diffusion tensor imaging studies. Using the Embase, PubMed and Google Scholar databases, 89 relevant data sets were identified, of which 7 (including 188 patients with major depressive disorder and 221 healthy controls) met our inclusion criteria. Authors were contacted to retrieve any additional data required. Coordinates were extracted from clusters of significant white matter fractional anisotropy differences between patients and controls. Relevant demographic, clinical and methodological variables were extracted from each study or obtained directly from authors. The meta-analysis was carried out using Signed Differential Mapping. Patients with depression showed decreased white matter fractional anisotropy values in the superior longitudinal fasciculus and increased fractional anisotropy values in the fronto-occipital fasciculus compared to controls. Using quartile and jackknife sensitivity analysis, we found that reduced fractional anisotropy in the left superior longitudinal fasciculus was very stable, with increases in the right fronto-occipital fasciculus driven by just one study. In conclusion, our meta-analysis revealed a significant reduction in fractional anisotropy values in the left superior longitudinal fasciculus, which may ultimately play an important role in the pathology of depression.

  1. Breakdown of long-range temporal correlations in brain oscillations during general anesthesia.

    Science.gov (United States)

    Krzemiński, Dominik; Kamiński, Maciej; Marchewka, Artur; Bola, Michał

    2017-10-01

    Consciousness has been hypothesized to emerge from complex neuronal dynamics, which prevails when brain operates in a critical state. Evidence supporting this hypothesis comes mainly from studies investigating neuronal activity on a short time-scale of seconds. However, a key aspect of criticality is presence of scale-free temporal dependencies occurring across a wide range of time-scales. Indeed, robust long-range temporal correlations (LRTCs) are found in neuronal oscillations during conscious states, but it is not known how LRTCs are affected by loss of consciousness. To further test a relation between critical dynamics and consciousness, we investigated LRTCs in electrocorticography signals recorded from four macaque monkeys during resting wakefulness and general anesthesia induced by various anesthetics (ketamine, medetomidine, or propofol). Detrended Fluctuation Analysis was used to estimate LRTCs in amplitude fluctuations (envelopes) of band-pass filtered signals. We demonstrate two main findings. First, during conscious states all lateral cortical regions are characterized by significant LRTCs of alpha-band activity (7-14 Hz). LRTCs are stronger in the eyes-open than eyes-closed state, but in both states they form a spatial gradient, with anterior brain regions exhibiting stronger LRTCs than posterior regions. Second, we observed a substantial decrease of LRTCs during loss of consciousness, the magnitude of which was associated with the baseline (i.e. pre-anesthesia) state of the brain. Specifically, brain regions characterized by strongest LRTCs during a wakeful baseline exhibited greatest decreases during anesthesia (i.e. "the rich got poorer"), which consequently disturbed the posterior-anterior gradient. Therefore, our results suggest that general anesthesia affects mainly brain areas characterized by strongest LRTCs during wakefulness, which might account for lack of capacities for extensive temporal integration during loss of consciousness. Copyright

  2. Preliminary application of brain perfusion SPECT imaging in schizophrenia

    International Nuclear Information System (INIS)

    Wu Zhixing; Guo Chanliu; Li Xingbao; Liang Rongxiang; Zhao Jun; Yan Tingxiu

    1996-01-01

    The clinical value of 99m Tc-ECD brain perfusion SPECT imaging was evaluated in patients with schizophrenia. 32 patients with schizophrenia and 21 normal controls were analyzed with 99m Tc-ECD SPECT. 93.8% (30/32) of the patients showed decreased regional cerebral blood flow (rCBF). There was normal rCBF in controls. In the patient group rCBF decreased significantly in bilateral frontal lobes, left temporal lobe and right basal ganglion. The rCBF of left temporal lobe was significantly lower than that of right temporal lobe. The decreasing rCBF was not significantly related to previous treatment and duration of illness. 99m Tc-ECD SPECT is useful for the study and diagnosis of patients with schizophrenia

  3. Auditory middle latency responses differ in right- and left-handed subjects: an evaluation through topographic brain mapping.

    Science.gov (United States)

    Mohebbi, Mehrnaz; Mahmoudian, Saeid; Alborzi, Marzieh Sharifian; Najafi-Koopaie, Mojtaba; Farahani, Ehsan Darestani; Farhadi, Mohammad

    2014-09-01

    To investigate the association of handedness with auditory middle latency responses (AMLRs) using topographic brain mapping by comparing amplitudes and latencies in frontocentral and hemispheric regions of interest (ROIs). The study included 44 healthy subjects with normal hearing (22 left handed and 22 right handed). AMLRs were recorded from 29 scalp electrodes in response to binaural 4-kHz tone bursts. Frontocentral ROI comparisons revealed that Pa and Pb amplitudes were significantly larger in the left-handed than the right-handed group. Topographic brain maps showed different distributions in AMLR components between the two groups. In hemispheric comparisons, Pa amplitude differed significantly across groups. A left-hemisphere emphasis of Pa was found in the right-handed group but not in the left-handed group. This study provides evidence that handedness is associated with AMLR components in frontocentral and hemispheric ROI. Handedness should be considered an essential factor in the clinical or experimental use of AMLRs.

  4. Temporal-lobe morphology differs between healthy adolescents and those with early-onset of depression

    Directory of Open Access Journals (Sweden)

    Mahdi Ramezani

    2014-01-01

    Full Text Available Major depressive disorder (MDD has previously been linked to structural changes in several brain regions, particularly in the medial temporal lobes (Bellani, Baiano, Brambilla, 2010; Bellani, Baiano, Brambilla, 2011. This has been determined using voxel-based morphometry, segmentation algorithms, and analysis of shape deformations (Bell-McGinty et al., 2002; Bergouignan et al., 2009; Posener et al., 2003; Vasic et al., 2008; Zhao et al., 2008: these are methods in which information related to the shape and the pose (the size, and anatomical position and orientation of structures is lost. Here, we incorporate information about shape and pose to measure structural deformation in adolescents and young adults with and without depression (as measured using the Beck Depression Inventory and Diagnostic and Statistical Manual of Mental Disorders criteria. As a hypothesis-generating study, a significance level of p < 0.05, uncorrected for multiple comparisons, was used, so that subtle morphological differences in brain structures between adolescent depressed individuals and control participants could be identified. We focus on changes in cortical and subcortical temporal structures, and use a multi-object statistical pose and shape model to analyze imaging data from 16 females (aged 16–21 and 3 males (aged 18 with early-onset MDD, and 25 female and 1 male normal control participants, drawn from the same age range. The hippocampus, parahippocampal gyrus, putamen, and superior, inferior and middle temporal gyri in both hemispheres of the brain were automatically segmented using the LONI Probabilistic Brain Atlas (Shattuck et al., 2008 in MNI space. Points on the surface of each structure in the atlas were extracted and warped to each participant's structural MRI. These surface points were analyzed to extract the pose and shape features. Pose differences were detected between the two groups, particularly in the left and right putamina, right hippocampus

  5. PreSMA stimulation changes task-free functional connectivity in the fronto-basal-ganglia that correlates with response inhibition efficiency.

    Science.gov (United States)

    Xu, Benjamin; Sandrini, Marco; Wang, Wen-Tung; Smith, Jason F; Sarlls, Joelle E; Awosika, Oluwole; Butman, John A; Horwitz, Barry; Cohen, Leonardo G

    2016-09-01

    Previous work using transcranial magnetic stimulation (TMS) demonstrated that the right presupplementary motor area (preSMA), a node in the fronto-basal-ganglia network, is critical for response inhibition. However, TMS influences interconnected regions, raising the possibility of a link between the preSMA activity and the functional connectivity within the network. To understand this relationship, we applied single-pulse TMS to the right preSMA during functional magnetic resonance imaging when the subjects were at rest to examine changes in neural activity and functional connectivity within the network in relation to the efficiency of response inhibition evaluated with a stop-signal task. The results showed that preSMA-TMS increased activation in the right inferior-frontal cortex (rIFC) and basal ganglia and modulated their task-free functional connectivity. Both the TMS-induced changes in the basal-ganglia activation and the functional connectivity between rIFC and left striatum, and of the overall network correlated with the efficiency of response inhibition and with the white-matter microstructure along the preSMA-rIFC pathway. These results suggest that the task-free functional and structural connectivity between the rIFCop and basal ganglia are critical to the efficiency of response inhibition. Hum Brain Mapp 37:3236-3249, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Altered Functional Connectivity of Fronto-Cingulo-Striatal Circuits during Error Monitoring in Adolescents with a History of Childhood Abuse

    Directory of Open Access Journals (Sweden)

    Heledd Hart

    2018-01-01

    Full Text Available Childhood maltreatment is associated with error hypersensitivity. We examined the effect of childhood abuse and abuse-by-gene (5-HTTLPR, MAOA interaction on functional brain connectivity during error processing in medication/drug-free adolescents. Functional connectivity was compared, using generalized psychophysiological interaction (gPPI analysis of functional magnetic resonance imaging (fMRI data, between 22 age- and gender-matched medication-naïve and substance abuse-free adolescents exposed to severe childhood abuse and 27 healthy controls, while they performed an individually adjusted tracking stop-signal task, designed to elicit 50% inhibition failures. During inhibition failures, abused participants relative to healthy controls exhibited reduced connectivity between right and left putamen, bilateral caudate and anterior cingulate cortex (ACC, and between right supplementary motor area (SMA and right inferior and dorsolateral prefrontal cortex. Abuse-related connectivity abnormalities were associated with longer abuse duration. No group differences in connectivity were observed for successful inhibition. The findings suggest that childhood abuse is associated with decreased functional connectivity in fronto-cingulo-striatal networks during error processing. Furthermore that the severity of connectivity abnormalities increases with abuse duration. Reduced connectivity of error detection networks in maltreated individuals may be linked to constant monitoring of errors in order to avoid mistakes which, in abusive contexts, are often associated with harsh punishment.

  7. [Amplitude Changes of Low Frequency Fluctuation in Brain Spontaneous Nervous Activities Induced by Needling at Hand Taiyin Lung Channel].

    Science.gov (United States)

    Zhou, You-long; Su, Cheng-guo; Liu, Shou-fang; Jin, Xiang-yu; Duan, Yan-li; Chen, Xiao-yan; Zhao, Shu-hua; Wang, Quan-liang; Dang, Chang-lin

    2016-05-01

    To observe amplitude changes of low frequency fluctuation in brain spontaneous nervous activities induced by needling at Hand Taiyin Lung Channel, and to preliminarily explore the possible brain function network of Hand Taiyin Lung Channel. By using functional magnetic resonance imaging (fMRI), 16 healthy volunteers underwent resting-state scanning (R1) and scanning with retained acupuncture at Hand Taiyin Lung Channel (acupuncture, AP). Data of fMRI collected were statistically calculated using amplitude of low frequency fluctuations (ALFF). Under R1 significantly enhanced ALFF occurred in right precuneus, left inferior parietal lobule, bilateral superior temporal gyrus, bilateral middle frontal gyrus, left superior frontal gyrus, left inferior frontal gyrus, left medial frontal gyrus. Under AP significantly enhanced ALFF occurred in right precuneus, bilateral superior frontal gyrus, cerebellum, bilateral middle frontal gyrus, right medial frontal gyrus, and so on. Compared with R1, needing at Hand Taiyin Lung Channel could significantly enhance ALFF in right gyrus subcallosum and right inferior frontal gyrus. Significant decreased ALFF appeared in right postcentral gyrus, left precuneus, left superior temporal gyrus, left middle temporal gyrus, and so on. Needing at Hand Taiyin Lung Channel could significantly change fixed activities of cerebral cortex, especially in right subcallosal gyrus, right inferior frontal gyrus, and so on.

  8. 18F-FDG PET Reveals Fronto-temporal Dysfunction in Children with Fever-Induced Refractory Epileptic Encephalopathy

    International Nuclear Information System (INIS)

    Mazzuca, M.; Dulac, O.; Chiron, C.; Jambaque, I.; Hertz-Pannier, L.; Bouilleret, V.; Archambaud, F.; Rodrigo, S.; Dulac, O.; Chiron, C.; Jambaque, I.; Hertz-Pannier, L.; Bouilleret, V.; Archambaud, F.; Rodrigo, S.; Chiron, C.; Hertz-Pannier, L.; Rodrigo, S.; Dulac, O.; Chiron, C.; Caviness, V.

    2011-01-01

    Fever-induced refractory epileptic encephalopathy in school-age children (FIRES) is a recently described epileptic entity whose etiology remains unknown. Brain abnormalities shown by MRI are usually limited to mesial-temporal structures and do not account for the catastrophic neuro-psychologic findings. Methods: We conducted FIRES studies in 8 patients, aged 6-13 y, using 18 F-FDG PET to disclose eventual neo-cortical dysfunction. Voxel-based analyses of cerebral glucose metabolism were performed using statistical parametric mapping and an age-matched control group. Results: Group analysis revealed a widespread inter-ictal hypo-metabolic network including the temporo-parietal and orbito-frontal cortices bilaterally. The individual analyses in patients identified hypo-metabolic areas corresponding to the predominant electroencephalograph foci and neuro-psychologic deficits involving language, behavior, and memory. Conclusion: Despite clinical heterogeneity, 18 F-FDG PET reveals a common network dysfunction in patients with sequelae due to fever-induced refractory epileptic encephalopathy. (authors)

  9. Dopamine, fronto-striato-thalamic circuits and risk for psychosis.

    Science.gov (United States)

    Dandash, Orwa; Pantelis, Christos; Fornito, Alex

    2017-02-01

    A series of parallel, integrated circuits link distinct regions of prefrontal cortex with specific nuclei of the striatum and thalamus. Dysfunction of these fronto-striato-thalamic systems is thought to play a major role in the pathogenesis of psychosis. In this review, we examine evidence from human and animal investigations that dysfunction of a specific dorsal fronto-striato-thalamic circuit, linking the dorsolateral prefrontal cortex, dorsal (associative) striatum, and mediodorsal nucleus of the thalamus, is apparent across different stages of psychosis, including prior to the onset of a first episode, suggesting that it represents a candidate risk biomarker. We consider how abnormalities at distinct points in the circuit may give rise to the pattern of findings seen in patient populations, and how these changes relate to disruptions in dopamine, glutamate and GABA signaling. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Abnormal brain function in neuromyelitis optica: A fMRI investigation of mPASAT.

    Science.gov (United States)

    Wang, Fei; Liu, Yaou; Li, Jianjun; Sondag, Matthew; Law, Meng; Zee, Chi-Shing; Dong, Huiqing; Li, Kuncheng

    2017-10-01

    Cognitive impairment with the Neuromyelitis Optica (NMO) patients is debated. The present study is to study patterns of brain activation in NMO patients during a pair of task-related fMRI. We studied 20 patients with NMO and 20 control subjects matched for age, gender, education and handedness. All patients with NMO met the 2006 Wingerchuk diagnostic criteria. The fMRI paradigm included an auditory attention monitoring task and a modified version of the Paced Auditory Serial Addition Task (mPASAT). Both tasks were temporally and spatially balanced, with the exception of task difficulty. In mPASAT, Activation regions in control subjects included bilateral superior temporal gyri (BA22), left inferior frontal gyrus (BA45), bilateral inferior parietal lobule (BA7), left cingulate gyrus (BA32), left insula (BA13), and cerebellum. Activation regions in NMO patients included bilateral superior temporal gyri (BA22), left inferior frontal gyrus (BA9), right cingulate gyrus (BA32), right inferior parietal gyrus (BA40), left insula (BA13) and cerebellum. Some dispersed cognition related regions are greater in the patients. The present study showed altered cerebral activation during mPASAT in patients with NMO relative to healthy controls. These results are speculated to provide further evidence for brain plasticity in patients with NMO. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Intrinsic brain subsystem associated with dietary restraint, disinhibition and hunger: an fMRI study.

    Science.gov (United States)

    Zhao, Jizheng; Li, Mintong; Zhang, Yi; Song, Huaibo; von Deneen, Karen M; Shi, Yinggang; Liu, Yijun; He, Dongjian

    2017-02-01

    Eating behaviors are closely related to body weight, and eating traits are depicted in three dimensions: dietary restraint, disinhibition, and hunger. The current study aims to explore whether these aspects of eating behaviors are related to intrinsic brain activation, and to further investigate the relationship between the brain activation relating to these eating traits and body weight, as well as the link between function connectivity (FC) of the correlative brain regions and body weight. Our results demonstrated positive associations between dietary restraint and baseline activation of the frontal and the temporal regions (i.e., food reward encoding) and the limbic regions (i.e., homeostatic control, including the hypothalamus). Disinhibition was positively associated with the activation of the frontal motivational system (i.e., OFC) and the premotor cortex. Hunger was positively related to extensive activations in the prefrontal, temporal, and limbic, as well as in the cerebellum. Within the brain regions relating to dietary restraint, weight status was negatively correlated with FC of the left middle temporal gyrus and left inferior temporal gyrus, and was positively associated with the FC of regions in the anterior temporal gyrus and fusiform visual cortex. Weight status was positively associated with the FC within regions in the prefrontal motor cortex and the right ACC serving inhibition, and was negatively related with the FC of regions in the frontal cortical-basal ganglia-thalamic circuits responding to hunger control. Our data depicted an association between intrinsic brain activation and dietary restraint, disinhibition, and hunger, and presented the links of their activations and FCs with weight status.

  12. Left auditory cortex gamma synchronization and auditory hallucination symptoms in schizophrenia

    Directory of Open Access Journals (Sweden)

    Shenton Martha E

    2009-07-01

    Full Text Available Abstract Background Oscillatory electroencephalogram (EEG abnormalities may reflect neural circuit dysfunction in neuropsychiatric disorders. Previously we have found positive correlations between the phase synchronization of beta and gamma oscillations and hallucination symptoms in schizophrenia patients. These findings suggest that the propensity for hallucinations is associated with an increased tendency for neural circuits in sensory cortex to enter states of oscillatory synchrony. Here we tested this hypothesis by examining whether the 40 Hz auditory steady-state response (ASSR generated in the left primary auditory cortex is positively correlated with auditory hallucination symptoms in schizophrenia. We also examined whether the 40 Hz ASSR deficit in schizophrenia was associated with cross-frequency interactions. Sixteen healthy control subjects (HC and 18 chronic schizophrenia patients (SZ listened to 40 Hz binaural click trains. The EEG was recorded from 60 electrodes and average-referenced offline. A 5-dipole model was fit from the HC grand average ASSR, with 2 pairs of superior temporal dipoles and a deep midline dipole. Time-frequency decomposition was performed on the scalp EEG and source data. Results Phase locking factor (PLF and evoked power were reduced in SZ at fronto-central electrodes, replicating prior findings. PLF was reduced in SZ for non-homologous right and left hemisphere sources. Left hemisphere source PLF in SZ was positively correlated with auditory hallucination symptoms, and was modulated by delta phase. Furthermore, the correlations between source evoked power and PLF found in HC was reduced in SZ for the LH sources. Conclusion These findings suggest that differential neural circuit abnormalities may be present in the left and right auditory cortices in schizophrenia. In addition, they provide further support for the hypothesis that hallucinations are related to cortical hyperexcitability, which is manifested by

  13. Play it again, Sam: brain correlates of emotional music recognition.

    Science.gov (United States)

    Altenmüller, Eckart; Siggel, Susann; Mohammadi, Bahram; Samii, Amir; Münte, Thomas F

    2014-01-01

    Music can elicit strong emotions and can be remembered in connection with these emotions even decades later. Yet, the brain correlates of episodic memory for highly emotional music compared with less emotional music have not been examined. We therefore used fMRI to investigate brain structures activated by emotional processing of short excerpts of film music successfully retrieved from episodic long-term memory. Eighteen non-musicians volunteers were exposed to 60 structurally similar pieces of film music of 10 s length with high arousal ratings and either less positive or very positive valence ratings. Two similar sets of 30 pieces were created. Each of these was presented to half of the participants during the encoding session outside of the scanner, while all stimuli were used during the second recognition session inside the MRI-scanner. During fMRI each stimulation period (10 s) was followed by a 20 s resting period during which participants pressed either the "old" or the "new" button to indicate whether they had heard the piece before. Musical stimuli vs. silence activated the bilateral superior temporal gyrus, right insula, right middle frontal gyrus, bilateral medial frontal gyrus and the left anterior cerebellum. Old pieces led to activation in the left medial dorsal thalamus and left midbrain compared to new pieces. For recognized vs. not recognized old pieces a focused activation in the right inferior frontal gyrus and the left cerebellum was found. Positive pieces activated the left medial frontal gyrus, the left precuneus, the right superior frontal gyrus, the left posterior cingulate, the bilateral middle temporal gyrus, and the left thalamus compared to less positive pieces. Specific brain networks related to memory retrieval and emotional processing of symphonic film music were identified. The results imply that the valence of a music piece is important for memory performance and is recognized very fast.

  14. Play it again Sam: Brain Correlates of Emotional Music Recognition

    Directory of Open Access Journals (Sweden)

    Eckart eAltenmüller

    2014-02-01

    Full Text Available AbstractBackground: Music can elicit strong emotions and can be remembered in connection with these emotions even decades later. Yet, the brain correlates of episodic memory for highly emotional music compared with less emotional music have not been examined. We therefore used fMRI to investigate brain structures activated by emotional processing of short excerpts of film music successfully retrieved from episodic long-term memory.Methods: 18 non-musicians volunteers were exposed to 60 structurally similar pieces of film music of 10 second length with high arousal ratings and either less positive or very positive valence ratings. Two similar sets of 30 pieces were created. Each of these was presented to half of the participants during the encoding session outside of the scanner, while all stimuli were used during the second recognition session inside the MRI-scanner. During fMRI each stimulation period (10 sec was followed by a 20 sec resting period during which participants pressed either the old or the new to indicate whether they had heard the piece before. Results: Musical stimuli vs. silence activated the bilateral superior temporal gyrus, right insula, right middle frontal gyrus, bilateral medial frontal gyrus and the left anterior cerebellum. Old pieces led to activation in the left medial dorsal thalamus and left midbrain compared to new pieces. For recognized vs. not recognized old pieces a focused activation in the right inferior frontal gyrus and the left cerebellum was found. Positive pieces activated the left medial frontal gyrus, the left precuneus, the right superior frontal gyrus, the left posterior cingulate, the bilateral middle temporal gyrus, and the left thalamus compared to less positive pieces. Conclusion: Specific brain networks related to memory retrieval and emotional processing of symphonic film music were identified. The results imply that the valence of a music piece is important for memory performance.

  15. Meta-analysis of diffusion tensor imaging (DTI) studies shows altered fractional anisotropy occurring in distinct brain areas in association with depression

    LENUS (Irish Health Repository)

    Murphy, Melissa L

    2011-09-27

    Abstract Fractional anisotropy anomalies occurring in the white matter tracts in the brains of depressed patients may reflect microstructural changes underlying the pathophysiology of this disorder. We conducted a meta-analysis of fractional anisotropy abnormalities occurring in major depressive disorder using voxel-based diffusion tensor imaging studies. Using the Embase, PubMed and Google Scholar databases, 89 relevant data sets were identified, of which 7 (including 188 patients with major depressive disorder and 221 healthy controls) met our inclusion criteria. Authors were contacted to retrieve any additional data required. Coordinates were extracted from clusters of significant white matter fractional anisotropy differences between patients and controls. Relevant demographic, clinical and methodological variables were extracted from each study or obtained directly from authors. The meta-analysis was carried out using Signed Differential Mapping. Patients with depression showed decreased white matter fractional anisotropy values in the superior longitudinal fasciculus and increased fractional anisotropy values in the fronto-occipital fasciculus compared to controls. Using quartile and jackknife sensitivity analysis, we found that reduced fractional anisotropy in the left superior longitudinal fasciculus was very stable, with increases in the right fronto-occipital fasciculus driven by just one study. In conclusion, our meta-analysis revealed a significant reduction in fractional anisotropy values in the left superior longitudinal fasciculus, which may ultimately play an important role in the pathology of depression.

  16. Genetic contributions to human brain morphology and intelligence

    DEFF Research Database (Denmark)

    Hulshoff Pol, HE; Schnack, HG; Posthuma, D

    2006-01-01

    the focal GM and WM densities of each twin are correlated with the psychometric intelligence quotient of his/her cotwin. Genes influenced individual differences in left and right superior occipitofrontal fascicle (heritability up to 0.79 and 0.77), corpus callosum (0.82, 0.80), optic radiation (0.69, 0.......79), corticospinal tract (0.78, 0.79), medial frontal cortex (0.78, 0.83), superior frontal cortex (0.76, 0.80), superior temporal cortex (0.80, 0.77), left occipital cortex (0.85), left postcentral cortex (0.83), left posterior cingulate cortex (0.83), right parahippocampal cortex (0.69), and amygdala (0.80, 0......Variation in gray matter (GM) and white matter (WM) volume of the adult human brain is primarily genetically determined. Moreover, total brain volume is positively correlated with general intelligence, and both share a common genetic origin. However, although genetic effects on morphology...

  17. Mind-Reading ability and structural connectivity changes in aging

    Directory of Open Access Journals (Sweden)

    Monia eCabinio

    2015-11-01

    Full Text Available The Mind-Reading ability through the eyes is an important component of the affective Theory of Mind (ToM, which allows people to infer the other’s mental state from the eye gaze. The aim of the present study was to investigate to which extent age-associated structural brain changes impact this ability and to determine if this association is related to executive functions in elderly subjects. For this purpose, Magnetic Resonance Imaging was used to determine both gray matter and white matter areas associated with aging. The resulting areas have been included in a subsequent correlation analysis to detect the brain regions whose structure was associated with the Mind-Reading ability through the eyes, assessed with the Italian version of the Reading the Mind in the Eyes (RME test, in a sample of 36 healthy subjects ranging from 24 to 79 years of age. The analysis resulted in three important findings: 1 the performance to the RME test is relatively stable across the decades 20-70 (despite a slight decrease of this ability with aging and independent from executive functions; 2 structural brain imaging demonstrated the involvement of a great number of cortical ToM areas for the execution of the RME test: the bilateral precentral gyrus, the bilateral posterior insula, the left superior temporal gyrus and the left inferior frontal gyrus, which also showed a significant volume decrease with age; 3 an age and task-related decline in white matter connectivity on left fronto-temporal portion of the brain. Our results confirm the age-related structural modifications of the brain and show that these changes have an influence on the Mind-Reading ability through the eyes.

  18. African Journal of Neurological Sciences - 2009 Vol. 28 No 1

    African Journals Online (AJOL)

    On neurological examination higher mental function was intact. ... Magnetic resonance imaging brain revealed a T1W isointense and T2W ... The lesion was attached on the left side of the tentorium with evidence of dural tail. .... Right fronto-.

  19. Maturation of the auditory t-complex brain response across adolescence.

    Science.gov (United States)

    Mahajan, Yatin; McArthur, Genevieve

    2013-02-01

    Adolescence is a time of great change in the brain in terms of structure and function. It is possible to track the development of neural function across adolescence using auditory event-related potentials (ERPs). This study tested if the brain's functional processing of sound changed across adolescence. We measured passive auditory t-complex peaks to pure tones and consonant-vowel (CV) syllables in 90 children and adolescents aged 10-18 years, as well as 10 adults. Across adolescence, Na amplitude increased to tones and speech at the right, but not left, temporal site. Ta amplitude decreased at the right temporal site for tones, and at both sites for speech. The Tb remained constant at both sites. The Na and Ta appeared to mature later in the right than left hemisphere. The t-complex peaks Na and Tb exhibited left lateralization and Ta showed right lateralization. Thus, the functional processing of sound continued to develop across adolescence and into adulthood. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  20. IMAGING OF BRAIN FUNCTION BASED ON THE ANALYSIS OF FUNCTIONAL CONNECTIVITY - IMAGING ANALYSIS OF BRAIN FUNCTION BY FMRI AFTER ACUPUNCTURE AT LR3 IN HEALTHY INDIVIDUALS.

    Science.gov (United States)

    Zheng, Yu; Wang, Yuying; Lan, Yujun; Qu, Xiaodong; Lin, Kelin; Zhang, Jiping; Qu, Shanshan; Wang, Yanjie; Tang, Chunzhi; Huang, Yong

    2016-01-01

    This Study observed the relevant brain areas activated by acupuncture at the Taichong acupoint (LR3) and analyzed the functional connectivity among brain areas using resting state functional magnetic resonance imaging (fMRI) to explore the acupoint specificity of the Taichong acupoint. A total of 45 healthy subjects were randomly divided into the Taichong (LR3) group, sham acupuncture group and sham acupoint group. Subjects received resting state fMRI before acupuncture, after true (sham) acupuncture in each group. Analysis of changes in connectivity among the brain areas was performed using the brain functional connectivity method. The right cerebrum temporal lobe was selected as the seed point to analyze the functional connectivity. It had a functional connectivity with right cerebrum superior frontal gyrus, limbic lobe cingulate gyrus and left cerebrum inferior temporal gyrus (BA 37), inferior parietal lobule compared by before vs. after acupuncture at LR3, and right cerebrum sub-lobar insula and left cerebrum middle frontal gyrus, medial frontal gyrus compared by true vs. sham acupuncture at LR3, and right cerebrum occipital lobe cuneus, occipital lobe sub-gyral, parietal lobe precuneus and left cerebellum anterior lobe culmen by acupuncture at LR3 vs. sham acupoint. Acupuncture at LR3 mainly specifically activated the brain functional network that participates in visual function, associative function, and emotion cognition, which are similar to the features on LR3 in tradition Chinese medicine. These brain areas constituted a neural network structure with specific functions that had specific reference values for the interpretation of the acupoint specificity of the Taichong acupoint.

  1. Voxel-Based Morphometry and fMRI Revealed Differences in Brain Gray Matter in Breastfed and Milk Formula-Fed Children.

    Science.gov (United States)

    Ou, X; Andres, A; Pivik, R T; Cleves, M A; Snow, J H; Ding, Z; Badger, T M

    2016-04-01

    Infant diets may have significant impact on brain development in children. The aim of this study was to evaluate brain gray matter structure and function in 8-year-old children who were predominantly breastfed or fed cow's milk formula as infants. Forty-two healthy children (breastfed: n = 22, 10 boys and 12 girls; cow's milk formula: n = 20, 10 boys and 10 girls) were studied by using structural MR imaging (3D T1-weighted imaging) and blood oxygen level-dependent fMRI (while performing tasks involving visual perception and language functions). They were also administered standardized tests evaluating intelligence (Reynolds Intellectual Assessment Scales) and language skills (Clinical Evaluation of Language Fundamentals). Total brain gray matter volume did not differ between the breastfed and cow's milk formula groups. However, breastfed children had significantly higher (P left inferior temporal lobe and left superior parietal lobe compared with cow's milk formula-fed children. Breastfed children showed significantly more brain activation in the right frontal and left/right temporal lobes on fMRI when processing the perception task and in the left temporal/occipital lobe when processing the visual language task than cow's milk formula-fed children. The imaging findings were associated with significantly better performance for breastfed than cow's milk formula-fed children on both tasks. Our findings indicated greater regional gray matter development and better regional gray matter function in breastfed than cow's milk formula-fed children at 8 years of age and suggested that infant diets may have long-term influences on brain development in children. © 2016 by American Journal of Neuroradiology.

  2. Disruption of structure–function coupling in the schizophrenia connectome

    Directory of Open Access Journals (Sweden)

    Luca Cocchi

    2014-01-01

    Full Text Available Neuroimaging studies have demonstrated that the phenomenology of schizophrenia maps onto diffuse alterations in large-scale functional and structural brain networks. However, the relationship between structural and functional deficits remains unclear. To answer this question, patients with established schizophrenia and matched healthy controls underwent resting-state functional and diffusion weighted imaging. The network-based statistic was used to characterize between-group differences in whole-brain functional connectivity. Indices of white matter integrity were then estimated to assess the structural correlates of the functional alterations observed in patients. Finally, group differences in the relationship between indices of functional and structural brain connectivity were determined. Compared to controls, patients with schizophrenia showed decreased functional connectivity and impaired white matter integrity in a distributed network encompassing frontal, temporal, thalamic, and striatal regions. In controls, strong interregional coupling in neural activity was associated with well-myelinated white matter pathways in this network. This correspondence between structure and function appeared to be absent in patients with schizophrenia. In two additional disrupted functional networks, encompassing parietal, occipital, and temporal cortices, the relationship between function and structure was not affected. Overall, results from this study highlight the importance of considering not only the separable impact of functional and structural connectivity deficits on the pathoaetiology of schizophrenia, but also the implications of the complex nature of their interaction. More specifically, our findings support the core nature of fronto-striatal, fronto-thalamic, and fronto-temporal abnormalities in the schizophrenia connectome.

  3. Effects of active music therapy on the normal brain: fMRI based evidence.

    Science.gov (United States)

    Raglio, Alfredo; Galandra, Caterina; Sibilla, Luisella; Esposito, Fabrizio; Gaeta, Francesca; Di Salle, Francesco; Moro, Luca; Carne, Irene; Bastianello, Stefano; Baldi, Maurizia; Imbriani, Marcello

    2016-03-01

    The aim of this study was to investigate the neurophysiological bases of Active Music Therapy (AMT) and its effects on the normal brain. Twelve right-handed, healthy, non-musician volunteers were recruited. The subjects underwent 2 AMT sessions based on the free sonorous-music improvisation using rhythmic and melodic instruments. After these sessions, each subject underwent 2 fMRI scan acquisitions while listening to a Syntonic (SP) and an A-Syntonic (AP) Production from the AMT sessions. A 3 T Discovery MR750 scanner with a 16-channel phased array head coil was used, and the image analysis was performed with Brain Voyager QX 2.8. The listening to SP vs AP excerpts mainly activated: (1) the right middle temporal gyrus and right superior temporal sulcus, (2) the right middle frontal gyrus and in particular the right precentral gyrus, (3) the bilateral precuneus, (4) the left superior temporal sulcus and (5) the left middle temporal gyrus. These results are consistent with the psychological bases of the AMT approach and with the activation of brain areas involved in memory and autobiographical processes, and also in personal or interpersonal significant experiences. Further studies are required to confirm these findings and to explain possible effects of AMT in clinical settings.

  4. Beyond Hemispheric Dominance: Brain Regions Underlying the Joint Lateralization of Language and Arithmetic to the Left Hemisphere

    Science.gov (United States)

    Pinel, Philippe; Dehaene, Stanislas

    2010-01-01

    Language and arithmetic are both lateralized to the left hemisphere in the majority of right-handed adults. Yet, does this similar lateralization reflect a single overall constraint of brain organization, such an overall "dominance" of the left hemisphere for all linguistic and symbolic operations? Is it related to the lateralization of specific…

  5. White-matter microstructure and language lateralization in left-handers: a whole-brain MRI analysis.

    Science.gov (United States)

    Perlaki, Gabor; Horvath, Reka; Orsi, Gergely; Aradi, Mihaly; Auer, Tibor; Varga, Eszter; Kantor, Gyongyi; Altbäcker, Anna; John, Flora; Doczi, Tamas; Komoly, Samuel; Kovacs, Norbert; Schwarcz, Attila; Janszky, Jozsef

    2013-08-01

    Most people are left-hemisphere dominant for language. However the neuroanatomy of language lateralization is not fully understood. By combining functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI), we studied whether language lateralization is associated with cerebral white-matter (WM) microstructure. Sixteen healthy, left-handed women aged 20-25 were included in the study. Left-handers were targeted in order to increase the chances of involving subjects with atypical language lateralization. Language lateralization was determined by fMRI using a verbal fluency paradigm. Tract-based spatial statistics analysis of DTI data was applied to test for WM microstructural correlates of language lateralization across the whole brain. Fractional anisotropy and mean diffusivity were used as indicators of WM microstructural organization. Right-hemispheric language dominance was associated with reduced microstructural integrity of the left superior longitudinal fasciculus and left-sided parietal lobe WM. In left-handed women, reduced integrity of the left-sided language related tracts may be closely linked to the development of right hemispheric language dominance. Our results may offer new insights into language lateralization and structure-function relationships in human language system. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Personality modulates amygdala and insula connectivity during humor appreciation: An event-related fMRI study.

    Science.gov (United States)

    Berger, Philipp; Bitsch, Florian; Nagels, Arne; Straube, Benjamin; Falkenberg, Irina

    2017-11-12

    Previous research and theory implicate that personality traits, such as extraversion and neuroticism, influence the processing of humor, as indicated by alterations in the activation of fronto-temporal and mesocorticolimbic brain regions during humor processing. In the current study, we sought to complement these findings by testing whether inter-individual differences in functional connectivity of humor-related brain regions are modulated by stable personality characteristics during humor processing. Using fMRI techniques, we studied 19 healthy subjects during the processing of standardized humorous and neutral cartoons. In order to isolate the specific effects of humor appreciation, subjective funniness ratings, collected during the scanning procedure, were implemented in the analysis as parametric modulation. Two distinct clusters in the right amygdala and the left insula were identified. Seed-to-voxel connectivity analysis investigating the effects of personality on inter-individual differences in functional connectivity revealed that amygdala and insula connectivity with brain areas previously related to humor comprehension (e.g. middle temporal gyrus) and appreciation (e.g. caudate nucleus) were significantly modulated by personality dimensions. These results underscore the sensitivity of humor processing to moderating influences, such as personality, and call attention to the importance of brain connectivity measures for the investigation of inter-individual differences in the processing of humor.

  7. Brain network of semantic integration in sentence reading: insights from independent component analysis and graph theoretical analysis.

    Science.gov (United States)

    Ye, Zheng; Doñamayor, Nuria; Münte, Thomas F

    2014-02-01

    A set of cortical and sub-cortical brain structures has been linked with sentence-level semantic processes. However, it remains unclear how these brain regions are organized to support the semantic integration of a word into sentential context. To look into this issue, we conducted a functional magnetic resonance imaging (fMRI) study that required participants to silently read sentences with semantically congruent or incongruent endings and analyzed the network properties of the brain with two approaches, independent component analysis (ICA) and graph theoretical analysis (GTA). The GTA suggested that the whole-brain network is topologically stable across conditions. The ICA revealed a network comprising the supplementary motor area (SMA), left inferior frontal gyrus, left middle temporal gyrus, left caudate nucleus, and left angular gyrus, which was modulated by the incongruity of sentence ending. Furthermore, the GTA specified that the connections between the left SMA and left caudate nucleus as well as that between the left caudate nucleus and right thalamus were stronger in response to incongruent vs. congruent endings. Copyright © 2012 Wiley Periodicals, Inc.

  8. Increasing Left and Right Brain Communication to Improve Learning for Tenth Grade Students in a Public School

    Science.gov (United States)

    Richardson, Jennifer J.

    2011-01-01

    The purpose of this exploratory correlation research study was to determine if students who engaged in exercises designed to increase left and right brain hemisphere connections would score higher on identical tests than those who did not perform the exercises. Because the 2001 No Child Left Behind Act requires students to reach benchmarks of…

  9. Neuromolecular Imaging Shows Temporal Synchrony Patterns between Serotonin and Movement within Neuronal Motor Circuits in the Brain

    Directory of Open Access Journals (Sweden)

    Patricia A. Broderick

    2013-06-01

    Full Text Available The present discourse links the electrical and chemical properties of the brain with neurotransmitters and movement behaviors to further elucidate strategies to diagnose and treat brain disease. Neuromolecular imaging (NMI, based on electrochemical principles, is used to detect serotonin in nerve terminals (dorsal and ventral striata and somatodendrites (ventral tegmentum of reward/motor mesocorticolimbic and nigrostriatal brain circuits. Neuronal release of serotonin is detected at the same time and in the same animal, freely moving and unrestrained, while open-field behaviors are monitored via infrared photobeams. The purpose is to emphasize the unique ability of NMI and the BRODERICK PROBE® biosensors to empirically image a pattern of temporal synchrony, previously reported, for example, in Aplysia using central pattern generators (CPGs, serotonin and cerebral peptide-2. Temporal synchrony is reviewed within the context of the literature on central pattern generators, neurotransmitters and movement disorders. Specifically, temporal synchrony data are derived from studies on psychostimulant behavior with and without cocaine while at the same time and continuously, serotonin release in motor neurons within basal ganglia, is detected. The results show that temporal synchrony between the neurotransmitter, serotonin and natural movement occurs when the brain is NOT injured via, e.g., trauma, addictive drugs or psychiatric illness. In striking contrast, in the case of serotonin and cocaine-induced psychostimulant behavior, a different form of synchrony and also asynchrony can occur. Thus, the known dysfunctional movement behavior produced by cocaine may well be related to the loss of temporal synchrony, the loss of the ability to match serotonin in brain with motor activity. The empirical study of temporal synchrony patterns in humans and animals may be more relevant to the dynamics of motor circuits and movement behaviors than are studies of

  10. Neuromolecular Imaging Shows Temporal Synchrony Patterns between Serotonin and Movement within Neuronal Motor Circuits in the Brain.

    Science.gov (United States)

    Broderick, Patricia A

    2013-06-21

    The present discourse links the electrical and chemical properties of the brain with neurotransmitters and movement behaviors to further elucidate strategies to diagnose and treat brain disease. Neuromolecular imaging (NMI), based on electrochemical principles, is used to detect serotonin in nerve terminals (dorsal and ventral striata) and somatodendrites (ventral tegmentum) of reward/motor mesocorticolimbic and nigrostriatal brain circuits. Neuronal release of serotonin is detected at the same time and in the same animal, freely moving and unrestrained, while open-field behaviors are monitored via infrared photobeams. The purpose is to emphasize the unique ability of NMI and the BRODERICK PROBE® biosensors to empirically image a pattern of temporal synchrony, previously reported, for example, in Aplysia using central pattern generators (CPGs), serotonin and cerebral peptide-2. Temporal synchrony is reviewed within the context of the literature on central pattern generators, neurotransmitters and movement disorders. Specifically, temporal synchrony data are derived from studies on psychostimulant behavior with and without cocaine while at the same time and continuously, serotonin release in motor neurons within basal ganglia, is detected. The results show that temporal synchrony between the neurotransmitter, serotonin and natural movement occurs when the brain is NOT injured via, e.g., trauma, addictive drugs or psychiatric illness. In striking contrast, in the case of serotonin and cocaine-induced psychostimulant behavior, a different form of synchrony and also asynchrony can occur. Thus, the known dysfunctional movement behavior produced by cocaine may well be related to the loss of temporal synchrony, the loss of the ability to match serotonin in brain with motor activity. The empirical study of temporal synchrony patterns in humans and animals may be more relevant to the dynamics of motor circuits and movement behaviors than are studies of static parameters

  11. Brain-responsive neurostimulation in patients with medically intractable mesial temporal lobe epilepsy.

    Science.gov (United States)

    Geller, Eric B; Skarpaas, Tara L; Gross, Robert E; Goodman, Robert R; Barkley, Gregory L; Bazil, Carl W; Berg, Michael J; Bergey, Gregory K; Cash, Sydney S; Cole, Andrew J; Duckrow, Robert B; Edwards, Jonathan C; Eisenschenk, Stephan; Fessler, James; Fountain, Nathan B; Goldman, Alicia M; Gwinn, Ryder P; Heck, Christianne; Herekar, Aamar; Hirsch, Lawrence J; Jobst, Barbara C; King-Stephens, David; Labar, Douglas R; Leiphart, James W; Marsh, W Richard; Meador, Kimford J; Mizrahi, Eli M; Murro, Anthony M; Nair, Dileep R; Noe, Katherine H; Park, Yong D; Rutecki, Paul A; Salanova, Vicenta; Sheth, Raj D; Shields, Donald C; Skidmore, Christopher; Smith, Michael C; Spencer, David C; Srinivasan, Shraddha; Tatum, William; Van Ness, Paul C; Vossler, David G; Wharen, Robert E; Worrell, Gregory A; Yoshor, Daniel; Zimmerman, Richard S; Cicora, Kathy; Sun, Felice T; Morrell, Martha J

    2017-06-01

    Evaluate the seizure-reduction response and safety of mesial temporal lobe (MTL) brain-responsive stimulation in adults with medically intractable partial-onset seizures of mesial temporal lobe origin. Subjects with mesial temporal lobe epilepsy (MTLE) were identified from prospective clinical trials of a brain-responsive neurostimulator (RNS System, NeuroPace). The seizure reduction over years 2-6 postimplantation was calculated by assessing the seizure frequency compared to a preimplantation baseline. Safety was assessed based on reported adverse events. There were 111 subjects with MTLE; 72% of subjects had bilateral MTL onsets and 28% had unilateral onsets. Subjects had one to four leads placed; only two leads could be connected to the device. Seventy-six subjects had depth leads only, 29 had both depth and strip leads, and 6 had only strip leads. The mean follow-up was 6.1 ± (standard deviation) 2.2 years. The median percent seizure reduction was 70% (last observation carried forward). Twenty-nine percent of subjects experienced at least one seizure-free period of 6 months or longer, and 15% experienced at least one seizure-free period of 1 year or longer. There was no difference in seizure reduction in subjects with and without mesial temporal sclerosis (MTS), bilateral MTL onsets, prior resection, prior intracranial monitoring, and prior vagus nerve stimulation. In addition, seizure reduction was not dependent on the location of depth leads relative to the hippocampus. The most frequent serious device-related adverse event was soft tissue implant-site infection (overall rate, including events categorized as device-related, uncertain, or not device-related: 0.03 per implant year, which is not greater than with other neurostimulation devices). Brain-responsive stimulation represents a safe and effective treatment option for patients with medically intractable epilepsy, including patients with unilateral or bilateral MTLE who are not candidates for

  12. Gray matter deficits and altered resting-state connectivity in the superior temporal gyrus among individuals with problematic hypersexual behavior.

    Science.gov (United States)

    Seok, Ji-Woo; Sohn, Jin-Hun

    2018-04-01

    Neuroimaging studies on the characteristics of hypersexual disorder have been accumulating, yet alternations in brain structures and functional connectivity in individuals with problematic hypersexual behavior (PHB) has only recently been studied. This study aimed to investigate gray matter deficits and resting-state abnormalities in individuals with PHB using voxel-based morphometry and resting-state connectivity analysis. Seventeen individuals with PHB and 19 age-matched healthy controls participated in this study. Gray matter volume of the brain and resting-state connectivity were measured using 3T magnetic resonance imaging. Compared to healthy subjects, individuals with PHB had significant reductions in gray matter volume in the left superior temporal gyrus (STG) and right middle temporal gyrus. Individuals with PHB also exhibited a decrease in resting-state functional connectivity between the left STG and left precuneus and between the left STG and right caudate. The gray matter volume of the left STG and its resting-state functional connectivity with the right caudate both showed significant negative correlations with the severity of PHB. The findings suggest that structural deficits and resting-state functional impairments in the left STG might be linked to PHB and provide new insights into the underlying neural mechanisms of PHB. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Quantitative analysis of diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) for brain disorders

    Science.gov (United States)

    Lee, Jae-Seung; Im, In-Chul; Kang, Su-Man; Goo, Eun-Hoe; Kwak, Byung-Joon

    2013-07-01

    This study aimed to quantitatively analyze data from diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) in patients with brain disorders and to assess its potential utility for analyzing brain function. DTI was obtained by performing 3.0-T magnetic resonance imaging for patients with Alzheimer's disease (AD) and vascular dementia (VD), and the data were analyzed using Matlab-based SPM software. The two-sample t-test was used for error analysis of the location of the activated pixels. We compared regions of white matter where the fractional anisotropy (FA) values were low and the apparent diffusion coefficients (ADCs) were increased. In the AD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right sub-lobar insula, and right occipital lingual gyrus whereas the ADCs were significantly increased in the right inferior frontal gyrus and right middle frontal gyrus. In the VD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right limbic cingulate gyrus, and right sub-lobar caudate tail whereas the ADCs were significantly increased in the left lateral globus pallidus and left medial globus pallidus. In conclusion by using DTI and SPM analysis, we were able to not only determine the structural state of the regions affected by brain disorders but also quantitatively analyze and assess brain function.

  14. Brain function differences in language processing in children and adults with autism.

    Science.gov (United States)

    Williams, Diane L; Cherkassky, Vladimir L; Mason, Robert A; Keller, Timothy A; Minshew, Nancy J; Just, Marcel Adam

    2013-08-01

    Comparison of brain function between children and adults with autism provides an understanding of the effects of the disorder and associated maturational differences on language processing. Functional imaging (functional magnetic resonance imaging) was used to examine brain activation and cortical synchronization during the processing of literal and ironic texts in 15 children with autism, 14 children with typical development, 13 adults with autism, and 12 adult controls. Both the children and adults with autism had lower functional connectivity (synchronization of brain activity among activated areas) than their age and ability comparison group in the left hemisphere language network during irony processing, and neither autism group had an increase in functional connectivity in response to increased task demands. Activation differences for the literal and irony conditions occurred in key language-processing regions (left middle temporal, left pars triangularis, left pars opercularis, left medial frontal, and right middle temporal). The children and adults with autism differed from each other in the use of some brain regions during the irony task, with the adults with autism having activation levels similar to those of the control groups. Overall, the children and adults with autism differed from the adult and child controls in (a) the degree of network coordination, (b) the distribution of the workload among member nodes, and (3) the dynamic recruitment of regions in response to text content. Moreover, the differences between the two autism age groups may be indicative of positive changes in the neural function related to language processing associated with maturation and/or educational experience. © 2013 International Society for Autism Research, Wiley Periodicals, Inc.

  15. Brain plasticity in Parkinson's disease with freezing of gait induced by action observation training.

    Science.gov (United States)

    Agosta, Federica; Gatti, Roberto; Sarasso, Elisabetta; Volonté, Maria Antonietta; Canu, Elisa; Meani, Alessandro; Sarro, Lidia; Copetti, Massimiliano; Cattrysse, Erik; Kerckhofs, Eric; Comi, Giancarlo; Falini, Andrea; Filippi, Massimo

    2017-01-01

    Gait disorders represent a therapeutic challenge in Parkinson's disease (PD). This study investigated the efficacy of 4-week action observation training (AOT) on disease severity, freezing of gait and motor abilities in PD, and evaluated treatment-related brain functional changes. 25 PD patients with freezing of gait were randomized into two groups: AOT (action observation combined with practicing the observed actions) and "Landscape" (same physical training combined with landscape-videos observation). At baseline and 4-week, patients underwent clinical evaluation and fMRI. Clinical assessment was repeated at 8-week. At 4-week, both groups showed reduced freezing of gait severity, improved walking speed and quality of life. Moreover, AOT was associated with reduced motor disability and improved balance. AOT group showed a sustained positive effect on motor disability, walking speed, balance and quality of life at 8-week, with a trend toward a persisting reduced freezing of gait severity. At 4-week vs. baseline, AOT group showed increased recruitment of fronto-parietal areas during fMRI tasks, while the Landscape group showed a reduced fMRI activity of the left postcentral and inferior parietal gyri and right rolandic operculum and supramarginal gyrus. In AOT group, functional brain changes were associated with clinical improvements at 4-week and predicted clinical evolution at 8-week. AOT has a more lasting effect in improving motor function, gait and quality of life in PD patients relative to physical therapy alone. AOT-related performance gains are associated with an increased recruitment of motor regions and fronto-parietal mirror neuron and attentional control areas.

  16. Spectral properties of the temporal evolution of brain network structure.

    Science.gov (United States)

    Wang, Rong; Zhang, Zhen-Zhen; Ma, Jun; Yang, Yong; Lin, Pan; Wu, Ying

    2015-12-01

    The temporal evolution properties of the brain network are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brain network during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brain network is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalue analysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brain network but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brain network is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brain network, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems.

  17. [MRI for brain structure and function in patients with first-episode panic disorder].

    Science.gov (United States)

    Zhang, Yan; Duan, Lian; Liao, Mei; Yang, Fan; Liu, Jun; Shan, Baoci; Li, Lingjiang

    2011-12-01

    To determine the brain function and structure in patinets with first-episode panic disorder (PD). All subjects (24 PD patients and 24 healthy subjects) received MRI scan and emotional counting Stroop task during the functional magnetic resonance imaging. Blood oxygenation level dependent functional magnetic resonance imaging and voxel-based morphometric technology were used to detect the gray matter volume. Compared with the healthy controls, left thalamus, left medial frontal gyrus, left anterior cingulate gyrus, left inferior frontal gyrus, left insula (panic-related words vs. neutral words) lacked activation in PD patients, but the over-activation were found in right brain stem, right occipital lobe/lingual gyrus in PD patients. Compared with the healthy controls, the gray matter volume in the PD patients significantly decreased in the left superior temporal gyrus, right medial frontal gyrus, left medial occipital gyrus, dorsomedial nucleus of left thalamus and right anterior cingulate gyrus. There was no significantly increased gray matter volume in any brain area in PD patients. PD patients have selective attentional bias in processing threatening information due to the depression and weakening of the frontal cingulated gyrus.

  18. Abnormalities of hippocampal-cortical connectivity in temporal lobe epilepsy patients with hippocampal sclerosis

    Science.gov (United States)

    Li, Wenjing; He, Huiguang; Lu, Jingjing; Wang, Chunheng; Li, Meng; Lv, Bin; Jin, Zhengyu

    2011-03-01

    Hippocampal sclerosis (HS) is the most common damage seen in the patients with temporal lobe epilepsy (TLE). In the present study, the hippocampal-cortical connectivity was defined as the correlation between the hippocampal volume and cortical thickness at each vertex throughout the whole brain. We aimed to investigate the differences of ipsilateral hippocampal-cortical connectivity between the unilateral TLE-HS patients and the normal controls. In our study, the bilateral hippocampal volumes were first measured in each subject, and we found that the ipsilateral hippocampal volume significantly decreased in the left TLE-HS patients. Then, group analysis showed significant thinner average cortical thickness of the whole brain in the left TLE-HS patients compared with the normal controls. We found significantly increased ipsilateral hippocampal-cortical connectivity in the bilateral superior temporal gyrus, the right cingulate gyrus and the left parahippocampal gyrus of the left TLE-HS patients, which indicated structural vulnerability related to the hippocampus atrophy in the patient group. However, for the right TLE-HS patients, no significant differences were found between the patients and the normal controls, regardless of the ipsilateral hippocampal volume, the average cortical thickness or the patterns of hippocampal-cortical connectivity, which might be related to less atrophies observed in the MRI scans. Our study provided more evidence for the structural abnormalities in the unilateral TLE-HS patients.

  19. Imaging structural and functional brain networks in temporal lobe epilepsy

    Science.gov (United States)

    Bernhardt, Boris C.; Hong, SeokJun; Bernasconi, Andrea; Bernasconi, Neda

    2013-01-01

    Early imaging studies in temporal lobe epilepsy (TLE) focused on the search for mesial temporal sclerosis, as its surgical removal results in clinically meaningful improvement in about 70% of patients. Nevertheless, a considerable subgroup of patients continues to suffer from post-operative seizures. Although the reasons for surgical failure are not fully understood, electrophysiological and imaging data suggest that anomalies extending beyond the temporal lobe may have negative impact on outcome. This hypothesis has revived the concept of human epilepsy as a disorder of distributed brain networks. Recent methodological advances in non-invasive neuroimaging have led to quantify structural and functional networks in vivo. While structural networks can be inferred from diffusion MRI tractography and inter-regional covariance patterns of structural measures such as cortical thickness, functional connectivity is generally computed based on statistical dependencies of neurophysiological time-series, measured through functional MRI or electroencephalographic techniques. This review considers the application of advanced analytical methods in structural and functional connectivity analyses in TLE. We will specifically highlight findings from graph-theoretical analysis that allow assessing the topological organization of brain networks. These studies have provided compelling evidence that TLE is a system disorder with profound alterations in local and distributed networks. In addition, there is emerging evidence for the utility of network properties as clinical diagnostic markers. Nowadays, a network perspective is considered to be essential to the understanding of the development, progression, and management of epilepsy. PMID:24098281

  20. Imaging structural and functional brain networks in temporal lobe epilepsy.

    Science.gov (United States)

    Bernhardt, Boris C; Hong, Seokjun; Bernasconi, Andrea; Bernasconi, Neda

    2013-10-01

    Early imaging studies in temporal lobe epilepsy (TLE) focused on the search for mesial temporal sclerosis, as its surgical removal results in clinically meaningful improvement in about 70% of patients. Nevertheless, a considerable subgroup of patients continues to suffer from post-operative seizures. Although the reasons for surgical failure are not fully understood, electrophysiological and imaging data suggest that anomalies extending beyond the temporal lobe may have negative impact on outcome. This hypothesis has revived the concept of human epilepsy as a disorder of distributed brain networks. Recent methodological advances in non-invasive neuroimaging have led to quantify structural and functional networks in vivo. While structural networks can be inferred from diffusion MRI tractography and inter-regional covariance patterns of structural measures such as cortical thickness, functional connectivity is generally computed based on statistical dependencies of neurophysiological time-series, measured through functional MRI or electroencephalographic techniques. This review considers the application of advanced analytical methods in structural and functional connectivity analyses in TLE. We will specifically highlight findings from graph-theoretical analysis that allow assessing the topological organization of brain networks. These studies have provided compelling evidence that TLE is a system disorder with profound alterations in local and distributed networks. In addition, there is emerging evidence for the utility of network properties as clinical diagnostic markers. Nowadays, a network perspective is considered to be essential to the understanding of the development, progression, and management of epilepsy.

  1. Imaging structural and functional brain networks in temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Boris eBernhardt

    2013-10-01

    Full Text Available Early imaging studies in temporal lobe epilepsy (TLE focused on the search for mesial temporal sclerosis, as its surgical removal results in clinically meaningful improvement in about 70% of patients. Nevertheless, a considerable subgroup of patients continues to suffer from post-operative seizures. Although the reasons for surgical failure are not fully understood, electrophysiological and imaging data suggest that anomalies extending beyond the temporal lobe may have negative impact on outcome. This hypothesis has revived the concept of human epilepsy as a disorder of distributed brain networks. Recent methodological advances in non-invasive neuroimaging have led to quantify structural and functional networks in vivo. While structural networks can be inferred from diffusion MRI tractography and inter-regional covariance patterns of structural measures such as cortical thickness, functional connectivity is generally computed based on statistical dependencies of neurophysiological time-series, measured through functional MRI or electroencephalographic techniques. This review considers the application of advanced analytical methods in structural and functional connectivity analyses in TLE. We will specifically highlight findings from graph-theoretical analysis that allow assessing topological organization of brain networks. These studies have provided compelling evidence that TLE is a system disorder with profound alterations in local and distributed networks. In addition, there is emerging evidence for the utility of network properties as clinical diagnostic markers. Nowadays, a network perspective is considered to be essential to the understanding of the development, progression, and management of epilepsy.

  2. Brain damage and addictive behavior: a neuropsychological and electroencephalogram investigation with pathologic gamblers.

    Science.gov (United States)

    Regard, Marianne; Knoch, Daria; Gütling, Eva; Landis, Theodor

    2003-03-01

    Gambling is a form of nonsubstance addiction classified as an impulse control disorder. Pathologic gamblers are considered healthy with respect to their cognitive status. Lesions of the frontolimbic systems, mostly of the right hemisphere, are associated with addictive behavior. Because gamblers are not regarded as "brain-lesioned" and gambling is nontoxic, gambling is a model to test whether addicted "healthy" people are relatively impaired in frontolimbic neuropsychological functions. Twenty-one nonsubstance dependent gamblers and nineteen healthy subjects underwent a behavioral neurologic interview centered on incidence, origin, and symptoms of possible brain damage, a neuropsychological examination, and an electroencephalogram. Seventeen gamblers (81%) had a positive medical history for brain damage (mainly traumatic head injury, pre- or perinatal complications). The gamblers, compared with the controls, were significantly more impaired in concentration, memory, and executive functions, and evidenced a higher prevalence of non-right-handedness (43%) and, non-left-hemisphere language dominance (52%). Electroencephalogram (EEG) revealed dysfunctional activity in 65% of the gamblers, compared with 26% of controls. This study shows that the "healthy" gamblers are indeed brain-damaged. Compared with a matched control population, pathologic gamblers evidenced more brain injuries, more fronto-temporo-limbic neuropsychological dysfunctions and more EEG abnormalities. The authors thus conjecture that addictive gambling may be a consequence of brain damage, especially of the frontolimbic systems, a finding that may well have medicolegal consequences.

  3. Morphological brain plasticity induced by musical expertise is accompanied by modulation of functional connectivity at rest.

    Science.gov (United States)

    Fauvel, Baptiste; Groussard, Mathilde; Chételat, Gaël; Fouquet, Marine; Landeau, Brigitte; Eustache, Francis; Desgranges, Béatrice; Platel, Hervé

    2014-04-15

    The aim of this study was to explore whether musical practice-related gray matter increases in brain regions are accompanied by modifications in their resting-state functional connectivity. 16 young musically experienced adults and 17 matched nonmusicians underwent an anatomical magnetic resonance imaging (MRI) and a resting-state functional MRI (rsfMRI). A whole-brain two-sample t test run on the T1-weighted structural images revealed four clusters exhibiting significant increases in gray matter (GM) volume in the musician group, located within the right posterior and middle cingulate gyrus, left superior temporal gyrus and right inferior orbitofrontal gyrus. Each cluster was used as a seed region to generate and compare whole-brain resting-state functional connectivity maps. The two clusters within the cingulate gyrus exhibited greater connectivity for musicians with the right prefrontal cortex and left temporal pole, which play a role in autobiographical and semantic memory, respectively. The cluster in the left superior temporal gyrus displayed enhanced connectivity with several language-related areas (e.g., left premotor cortex, bilateral supramarginal gyri). Finally, the cluster in the right inferior frontal gyrus displayed more synchronous activity at rest with claustrum, areas thought to play a role in binding sensory and motor information. We interpreted these findings as the consequence of repeated collaborative use in general networks supporting some of the memory, perceptual-motor and emotional features of musical practice. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Diagnostic of cognitive epileptiform disintegration with autism spectrum disorders in children of early ages

    Directory of Open Access Journals (Sweden)

    Kirilova L.G.

    2016-06-01

    Full Text Available The article, based on the analysis of contemporary scientific literature, presented data on the etiology, pathogenesis, clinical features of cognitive epileptiform disintegration — a special version of autism spectrum disorders. The authors proposed a diagnostic algorithm of this condition in children on the basis of comprehensive clinical examination using brain MRI, EEG monitoring during activity and sleep. MRI identified specific changes in brain structure (macrocephaly, cerebellar hyperplasia, hypoplasia of the corpus callosum, hypoplasia of the thalamus, and others. and specific epileptiform activity on EEG during activity and sleep (changes the focal character in the fronto-central and left temporal areas in the absence or infrequent epileptic seizures, reduction of inhibitory neurotransmitter GABA in the blood 2–3 times. The developed methods enable timely diagnosis to diagnose cognitive epileptiform disintegration with autistic spectrum disorders and appoint pathogenetic treatment with drugs neurometabolic and neuroprotective action, and anticonvulsants.

  5. The relationship between frontal and temporal lobe lesions in traumatic brain injury and procedural memory

    International Nuclear Information System (INIS)

    Kato, Noriaki; Okazaki, Tetsuya; Hachisuka, Kenji

    2008-01-01

    We examined the correlation between the location of chronic phase brain damage identified by a head MRI and the procedural memory test results in patients who have sustained a traumatic brain injury (TBI). Subjects were 27 patients with TBI, who completed all of three procedural memory tasks (mirror-reading, mirror-drawing, and Tower of Toronto). Using a head MRI, the presence or absence of lesions in the frontal lobe and the temporal lobe were determined. To evaluate declarative memory, we implemented the Wechsler Memory Scale-Rivesed (WMS-R), Rivermead Behavioral Memory Test (RBMT), and Rey-Osterrieth Complex Figure Test (3-minute delayed recall). All three of procedural memory tasks were repeated 3 times a day for 3 consecutive days. The rate of improvement (%) of the procedural memory task was determined as {average of the results on the first day- average of the results on the third day)/average of the results on the first day} x 100. We obtained the rate of improvement for each of the three tasks. The patients were divided according to the existence of frontal and temporal lobe lesions in brain MRI, and then rates of improvement were compared by the existence of frontal or temporal lesion using the Mann-Whitney test. In result, the average value of the declarative memory test results was within the range of disorders for all items. On the procedural memory tasks, the rate of improvement did not significantly decrease by the presence of frontal or temporal lobe lesion. It is believed that the basal ganglia and the cerebellum are significantly involved in procedural memory. Also in TBI patients, the procedural memory tends to be retained. Our results suggest that frontal and temporal lobe lesions, which are frequently found in traumatic brain injury, are not likely to be related to procedural memory. (author)

  6. Alterations of Brain Functional Architecture Associated with Psychopathic Traits in Male Adolescents with Conduct Disorder.

    Science.gov (United States)

    Pu, Weidan; Luo, Qiang; Jiang, Yali; Gao, Yidian; Ming, Qingsen; Yao, Shuqiao

    2017-09-12

    Psychopathic traits of conduct disorder (CD) have a core callous-unemotional (CU) component and an impulsive-antisocial component. Previous task-driven fMRI studies have suggested that psychopathic traits are associated with dysfunction of several brain areas involved in different cognitive functions (e.g., empathy, reward, and response inhibition etc.), but the relationship between psychopathic traits and intrinsic brain functional architecture has not yet been explored in CD. Using a holistic brain-wide functional connectivity analysis, this study delineated the alterations in brain functional networks in patients with conduct disorder. Compared with matched healthy controls, we found decreased anti-synchronization between the fronto-parietal network (FPN) and default mode network (DMN), and increased intra-network synchronization within the frontothalamic-basal ganglia, right frontoparietal, and temporal/limbic/visual networks in CD patients. Correlation analysis showed that the weakened FPN-DMN interaction was associated with CU traits, while the heightened intra-network functional connectivity was related to impulsivity traits in CD patients. Our findings suggest that decoupling of cognitive control (FPN) with social understanding of others (DMN) is associated with the CU traits, and hyper-functions of the reward and motor inhibition systems elevate impulsiveness in CD.

  7. Limbic encephalitis associated with anti-voltage-gated potassium channel complex antibodies as a cause of adult-onset mesial temporal lobe epilepsy.

    Science.gov (United States)

    Toyota, Tomoko; Akamatsu, Naoki; Tsuji, Sadatoshi; Nishizawa, Shigeru

    2014-06-01

    Recently, some reports have indicated that limbic encephalitis associated with anti-voltage-gated potassium channel complex antibodies (VGKC-Ab) is a cause of adult-onset mesial temporal lobe epilepsy (MTLE). We report a 53-year-old woman who had her first epileptic seizure at the age of 50 years old. Examination by 3-Tesla brain MRI revealed left hippocampal high signal intensity and swelling on fluid-attenuated inversion recovery (FLAIR) and T2-weighted imaging at 2 months after her first seizure. The patient received intravenous methylprednisolone and carbamazepine 300 mg/day. One month later, MRI revealed improvement of her left hippocampal abnormalities. Thereafter, she had no seizures, however, three years after her first seizure, EEG revealed a seizure pattern in the left temporal region. Brain MRI revealed left hippocampal high signal intensity and brain fluorodeoxyglucose positron emission tomography revealed hypermetabolism. Her serum VGKC-Ab levels were 118 pM(normal VGKC-Ab levels decreased to 4.4 pM. Remission of the epileptic seizures was also observed. This MTLE in the middle age was considered as limbic encephalitis associated with anti- VGKC-Ab. In cases of unexplained adult-onset MTLE, limbic encephalitis associated with anti-VGKC-Ab, which responds well to immunotherapy, should be considered in the differential diagnosis.

  8. Association of the interleukin 1 beta gene and brain spontaneous activity in amnestic mild cognitive impairment

    Directory of Open Access Journals (Sweden)

    Zhuang Liying

    2012-12-01

    Full Text Available Abstract Purpose The inflammatory response has been associated with the pathogenesis of Alzheimer’s disease (AD. The purpose of this study is to determine whether the rs1143627 polymorphism of the interleukin-1 beta (IL-1β gene moderates functional magnetic resonance imaging (fMRI-measured brain regional activity in amnestic mild cognitive impairment (aMCI. Methods Eighty older participants (47 with aMCI and 33 healthy controls were recruited for this study. All of the participants were genotyped for variant rs1143627 in the IL1B gene and were scanned using resting-state fMRI. Brain activity was assessed by amplitude of low-frequency fluctuation (ALFF. Results aMCI patients had abnormal ALFF in many brain regions, including decreases in the inferior frontal gyrus, the superior temporal lobe and the middle temporal lobe, and increases in the occipital cortex (calcarine, parietal cortex (Pcu and cerebellar cortex. The regions associated with an interaction of group X genotypes of rs1143627 C/T were the parietal cortex (left Pcu, frontal cortex (left superior, middle, and medial gyrus, right anterior cingulum, occipital cortex (left middle lobe, left cuneus and the bilateral posterior lobes of the cerebellum. Regarding the behavioral significance, there were significant correlations between ALFF in different regions of the brain and with the cognitive scores of each genotype group. Conclusions The present study provided evidence that aMCI patients had abnormal ALFF in many brain regions. Specifically, the rs1143627 C/T polymorphism of the IL1B gene may modulate regional spontaneous brain activity in aMCI patients.

  9. High-resolution temporal and regional mapping of MAPT expression and splicing in human brain development.

    Science.gov (United States)

    Hefti, Marco M; Farrell, Kurt; Kim, SoongHo; Bowles, Kathryn R; Fowkes, Mary E; Raj, Towfique; Crary, John F

    2018-01-01

    The microtubule associated protein tau plays a critical role in the pathogenesis of neurodegenerative disease. Recent studies suggest that tau also plays a role in disorders of neuronal connectivity, including epilepsy and post-traumatic stress disorder. Animal studies have shown that the MAPT gene, which codes for the tau protein, undergoes complex pre-mRNA alternative splicing to produce multiple isoforms during brain development. Human data, particularly on temporal and regional variation in tau splicing during development are however lacking. In this study, we present the first detailed examination of the temporal and regional sequence of MAPT alternative splicing in the developing human brain. We used a novel computational analysis of large transcriptomic datasets (total n = 502 patients), quantitative polymerase chain reaction (qPCR) and western blotting to examine tau expression and splicing in post-mortem human fetal, pediatric and adult brains. We found that MAPT exons 2 and 10 undergo abrupt shifts in expression during the perinatal period that are unique in the canonical human microtubule-associated protein family, while exon 3 showed small but significant temporal variation. Tau isoform expression may be a marker of neuronal maturation, temporally correlated with the onset of axonal growth. Immature brain regions such as the ganglionic eminence and rhombic lip had very low tau expression, but within more mature regions, there was little variation in tau expression or splicing. We thus demonstrate an abrupt, evolutionarily conserved shift in tau isoform expression during the human perinatal period that may be due to tau expression in maturing neurons. Alternative splicing of the MAPT pre-mRNA may play a vital role in normal brain development across multiple species and provides a basis for future investigations into the developmental and pathological functions of the tau protein.

  10. In vivo brain anatomy of adult males with Fragile X syndrome: an MRI study.

    Science.gov (United States)

    Hallahan, Brian P; Craig, Michael C; Toal, Fiona; Daly, Eileen M; Moore, Caroline J; Ambikapathy, Anita; Robertson, Dene; Murphy, Kieran C; Murphy, Declan G M

    2011-01-01

    Fragile X Syndrome (FraX) is caused by the expansion of a single trinucleotide gene sequence (CGG) on the X chromosome, and is a leading cause of learning disability (mental retardation) worldwide. Relatively few studies, however, have examined the neuroanatomical abnormalities associated with FraX. Of those that are available many included mixed gender populations, combined FraX children and adults into one sample, and employed manual tracing techniques which measures bulk volume of particular regions. Hence, there is relatively little information on differences in grey and white matter content across whole brain. We employed magnetic resonance imaging to investigate brain anatomy in 17 adult males with FraX and 18 healthy controls that did not differ significantly in age. Data were analysed using stereology and VBM to compare (respectively) regional brain bulk volume, and localised grey/white matter content. Using stereology we found that FraX males had a significant increase in bulk volume bilaterally of the caudate nucleus and parietal lobes and of the right brainstem, but a significant decrease in volume of the left frontal lobe. Our complimentary VBM analysis revealed an increased volume of grey matter in fronto-striatal regions (including bilaterally in the caudate nucleus), and increased white matter in regions extending from the brainstem to the parahippocampal gyrus, and from the left cingulate cortex extending into the corpus callosum. People with FraX have regionally specific differences in brain anatomy from healthy controls with enlargement of the caudate nuclei that persists into adulthood. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. In vivo brain anatomy of adult males with Fragile X syndrome: an MRI study.

    LENUS (Irish Health Repository)

    Hallahan, Brian P

    2011-01-01

    Fragile X Syndrome (FraX) is caused by the expansion of a single trinucleotide gene sequence (CGG) on the X chromosome, and is a leading cause of learning disability (mental retardation) worldwide. Relatively few studies, however, have examined the neuroanatomical abnormalities associated with FraX. Of those that are available many included mixed gender populations, combined FraX children and adults into one sample, and employed manual tracing techniques which measures bulk volume of particular regions. Hence, there is relatively little information on differences in grey and white matter content across whole brain. We employed magnetic resonance imaging to investigate brain anatomy in 17 adult males with FraX and 18 healthy controls that did not differ significantly in age. Data were analysed using stereology and VBM to compare (respectively) regional brain bulk volume, and localised grey\\/white matter content. Using stereology we found that FraX males had a significant increase in bulk volume bilaterally of the caudate nucleus and parietal lobes and of the right brainstem, but a significant decrease in volume of the left frontal lobe. Our complimentary VBM analysis revealed an increased volume of grey matter in fronto-striatal regions (including bilaterally in the caudate nucleus), and increased white matter in regions extending from the brainstem to the parahippocampal gyrus, and from the left cingulate cortex extending into the corpus callosum. People with FraX have regionally specific differences in brain anatomy from healthy controls with enlargement of the caudate nuclei that persists into adulthood.

  12. Noninvasive brain stimulation for treatment of right- and left-handed poststroke aphasics.

    Science.gov (United States)

    Heiss, Wolf-Dieter; Hartmann, Alexander; Rubi-Fessen, Ilona; Anglade, Carole; Kracht, Lutz; Kessler, Josef; Weiduschat, Nora; Rommel, Thomas; Thiel, Alexander

    2013-01-01

    Accumulating evidence from single case studies, small case series and randomized controlled trials seems to suggest that inhibitory noninvasive brain stimulation (NIBS) over the contralesional inferior frontal gyrus (IFG) of right-handers in conjunction with speech and language therapy (SLT) improves recovery from poststroke aphasia. Application of inhibitory NIBS to improve recovery in left-handed patients has not yet been reported. A total of 29 right-handed subacute poststroke aphasics were randomized to receive either 10 sessions of SLT following 20 min of inhibitory repetitive transcranial magnetic stimulation (rTMS) over the contralesional IFG or 10 sessions of SLT following sham stimulation; 2 left-handers were treated according to the same protocol with real rTMS. Language activation patterns were assessed with positron emission tomography prior to and after the treatment; 95% confidence intervals for changes in language performance scores and the activated brain volumes in both hemispheres were derived from TMS- and sham-treated right-handed patients and compared to the same parameters in left-handers. Right-handed patients treated with rTMS showed better recovery of language function in global aphasia test scores (t test, p right-handers. In treated right-handers, a shift of activation to the ipsilesional hemisphere was observed, while sham-treated patients consolidated network activity in the contralesional hemisphere (repeated-measures ANOVA, p = 0.009). Both left-handed patients also improved, with 1 patient within the confidence limits of TMS-treated right-handers (23 points, 15.9-28.9) and the other patient within the limits of sham-treated subjects (8 points, 2.8-14.5). Both patients exhibited only a very small interhemispheric shift, much less than expected in TMS-treated right-handers, and more or less consolidated initially active networks in both hemispheres. Inhibitory rTMS over the nondominant IFG appears to be a safe and effective treatment

  13. Gray Matter Concentration Abnormality in Brains of Narcolepsy Patients

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Eun Yeon; Tae, Woo Suk; Kim, Sung Tae; Hong, Seung Bong [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2009-12-15

    To investigate gray matter concentration changes in the brains of narcoleptic patients. Twenty-nine narcoleptic patient with cataplexy and 29 age and sex-matched normal subjects (mean age, 31 years old) underwent volumetric MRIs. The MRIs were spatially normalized to a standard T1 template and subdivided into gray matter, white matter, and cerebrospinal fluid (CSF). These segmented images were then smoothed using a 12-mm full width at half maximum (FWHM) isotropic Gaussian kernel. An optimized voxel-based morphometry protocol was used to analyze brain tissue concentrations using SPM2 (statistical parametric mapping). A one-way analysis of variance was applied to the concentration analysis of gray matter images. Narcoleptics with cataplexy showed reduced gray matter concentration in bilateral thalami, left gyrus rectus, bilateral frontopolar gyri, bilateral short insular gyri, bilateral superior frontal gyri, and right superior temporal and left inferior temporal gyri compared to normal subjects (uncorrected p < 0.001). Furthermore, small volume correction revealed gray matter concentration reduction in bilateral nuclei accumbens, hypothalami, and thalami (false discovery rate corrected p < 0.05). Gray matter concentration reductions were observed in brain regions related to excessive daytime sleepiness, cognition, attention, and memory in narcoleptics with cataplexy

  14. Gray Matter Concentration Abnormality in Brains of Narcolepsy Patients

    International Nuclear Information System (INIS)

    Joo, Eun Yeon; Tae, Woo Suk; Kim, Sung Tae; Hong, Seung Bong

    2009-01-01

    To investigate gray matter concentration changes in the brains of narcoleptic patients. Twenty-nine narcoleptic patient with cataplexy and 29 age and sex-matched normal subjects (mean age, 31 years old) underwent volumetric MRIs. The MRIs were spatially normalized to a standard T1 template and subdivided into gray matter, white matter, and cerebrospinal fluid (CSF). These segmented images were then smoothed using a 12-mm full width at half maximum (FWHM) isotropic Gaussian kernel. An optimized voxel-based morphometry protocol was used to analyze brain tissue concentrations using SPM2 (statistical parametric mapping). A one-way analysis of variance was applied to the concentration analysis of gray matter images. Narcoleptics with cataplexy showed reduced gray matter concentration in bilateral thalami, left gyrus rectus, bilateral frontopolar gyri, bilateral short insular gyri, bilateral superior frontal gyri, and right superior temporal and left inferior temporal gyri compared to normal subjects (uncorrected p < 0.001). Furthermore, small volume correction revealed gray matter concentration reduction in bilateral nuclei accumbens, hypothalami, and thalami (false discovery rate corrected p < 0.05). Gray matter concentration reductions were observed in brain regions related to excessive daytime sleepiness, cognition, attention, and memory in narcoleptics with cataplexy

  15. Altered functional connectivity differs in stroke survivors with impaired touch sensation following left and right hemisphere lesions.

    Science.gov (United States)

    Goodin, Peter; Lamp, Gemma; Vidyasagar, Rishma; McArdle, David; Seitz, Rüdiger J; Carey, Leeanne M

    2018-01-01

    One in two survivors experience impairment in touch sensation after stroke. The nature of this impairment is likely associated with changes associated with the functional somatosensory network of the brain; however few studies have examined this. In particular, the impact of lesioned hemisphere has not been investigated. We examined resting state functional connectivity in 28 stroke survivors, 14 with left hemisphere and 14 with right hemisphere lesion, and 14 healthy controls. Contra-lesional hands showed significantly decreased touch discrimination. Whole brain functional connectivity (FC) data was extracted from four seed regions, i.e. primary (S1) and secondary (S2) somatosensory cortices in both hemispheres. Whole brain FC maps and Laterality Indices (LI) were calculated for subgroups. Inter-hemispheric FC was greater in healthy controls compared to the combined stroke cohort from the left S1 seed and bilateral S2 seeds. The left lesion subgroup showed decreased FC, relative to controls, from left ipsi-lesional S1 to contra-lesional S1 and to distributed temporal, occipital and parietal regions. In comparison, the right lesion group showed decreased connectivity from contra-lesional left S1 and bilateral S2 to ipsi-lesional parietal operculum (S2), and to occipital and temporal regions. The right lesion group also showed increased intra-hemispheric FC from ipsi-lesional right S1 to inferior parietal regions compared to controls. In comparison to the left lesion group, those with right lesion showed greater intra-hemispheric connectivity from left S1 to left parietal and occipital regions and from right S1 to right angular and parietal regions. Laterality Indices were significantly greater for stroke subgroups relative to matched controls for contra-lesional S1 (left lesion group) and contra-lesional S2 (both groups). We provide evidence of altered functional connectivity within the somatosensory network, across both hemispheres, and to other networks in stroke

  16. Can Taichi reshape the brain? A brain morphometry study.

    Directory of Open Access Journals (Sweden)

    Gao-Xia Wei

    Full Text Available Although research has provided abundant evidence for Taichi-induced improvements in psychological and physiological well-being, little is known about possible links to brain structure of Taichi practice. Using high-resolution MRI of 22 Tai Chi Chuan (TCC practitioners and 18 controls matched for age, sex and education, we set out to examine the underlying anatomical correlates of long-term Taichi practice at two different levels of regional specificity. For this purpose, parcel-wise and vertex-wise analyses were employed to quantify the difference between TCC practitioners and the controls based on cortical surface reconstruction. We also adopted the Attention Network Test (ANT to explore the effect of TCC on executive control. TCC practitioners, compared with controls, showed significantly thicker cortex in precentral gyrus, insula sulcus and middle frontal sulcus in the right hemisphere and superior temporal gyrus and medial occipito-temporal sulcus and lingual sulcus in the left hemisphere. Moreover, we found that thicker cortex in left medial occipito-temporal sulcus and lingual sulcus was associated with greater intensity of TCC practice. These findings indicate that long-term TCC practice could induce regional structural change and also suggest TCC might share similar patterns of neural correlates with meditation and aerobic exercise.

  17. What Picture Descriptions Can Reveal about Disordered Communication and the Brain

    Directory of Open Access Journals (Sweden)

    Daniel Agis

    2015-04-01

    Full Text Available Analysis of descriptions of the “Cookie Theft” picture from the Boston Diagnostic Aphasia Examination have been shown to (1 distinguish between controls, and chronic mild, moderate, and severe aphasia(Craig et al., 1993; Yorkston & Beukelman, 1980; and (2 distinguish distinct profiles of deficits in chronic right hemisphere (RH stroke (Myers, 1978; Trupe & Hillis, 1985. We hypothesized that analysis of the “Cookie Theft” picture descriptions in acute stroke would also: (1 provide quantitative measures of severity of communication impairment that correlate with volume of infarct or volume of lesion in key regions of interest; and (2 provide quantitative measures of hemispatial attention that distinguish RH from left hemisphere (LH stroke and from controls. Methods: We analyzed picture descriptions of patients with acute ischemic LH (n=28, RH (n=25 stroke, and healthy controls (n=25 for total content units (CU produced by previously studied healthy controls during picture descriptions (Yorkston & Beukelman, 1980, syllables/CU, and ratio of left page:right page CU (LCU:RCU. CUs defined as nouns, adjective, and verbs relevant to the picture. Diffusion-weighted images were registered to a common atlas, to measure volume of infarct and percent damage to regions of interest without knowledge of behavioral analysis. We evaluated differences across groups with ANOVA and across pairs of groups with t-tests. We evaluated correlations between each measure and volume of infarct and percent damage to 6 cortical and 3 white matter regions of interest in each hemisphere (inferior frontal gyrus, superior temporal gyrus, middle temporal gyrus, fusiform gyrus, angular gyrus, and supramarginal gyrus; superior fronto-occipital fasciculus, superior longitudinal fasciculus, and sagittal stratum with Pearson correlations. Results: There were no differences between groups in age, education, or sex distribution. LH and RH patients produced fewer CU (p<0.0001 and

  18. Atypical handedness in mesial temporal lobe epilepsy.

    Science.gov (United States)

    Doležalová, Irena; Schachter, Steven; Chrastina, Jan; Hemza, Jan; Hermanová, Markéta; Rektor, Ivan; Pažourková, Marta; Brázdil, Milan

    2017-07-01

    The main aim of our study was to investigate the handedness of patients with mesial temporal lobe epilepsy (MTLE). We also sought to identify clinical variables that correlated with left-handedness in this population. Handedness (laterality quotient) was assessed in 73 consecutive patients with MTLE associated with unilateral hippocampal sclerosis (HS) using the Edinburgh Handedness Inventory. Associations between right- and left-handedness and clinical variables were investigated. We found that 54 (74.0%) patients were right-handed, and 19 (26%) patients were left-handed. There were 15 (36.6%) left-handed patients with left-sided seizure onset compared to 4 (12.5%) left-handed patients with right-sided seizure onset (p=0.030). Among patients with left-sided MTLE, age at epilepsy onset was significantly correlated with handedness (8years of age [median; min-max 0.5-17] in left-handers versus 15years of age [median; min-max 3-30] in right-handers (p<0.001). Left-sided MTLE is associated with atypical handedness, especially when seizure onset occurs during an active period of brain development, suggesting a bi-hemispheric neuroplastic process for establishing motor dominance in patients with early-onset left-sided MTLE. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. A cross-sectional MRI study of brain regional atrophy and clinical characteristics of temporal lobe epilepsy with hippocampal sclerosis.

    LENUS (Irish Health Repository)

    2012-02-01

    PURPOSE: Applying a cross-sectional design, we set out to further characterize the significance of extrahippocampal brain atrophy in a large sample of \\'sporadic\\' mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE+HS). By evaluating the influence of epilepsy chronicity on structural atrophy, this work represents an important step towards the characterization of MRI-based volumetric measurements as genetic endophenotypes for this condition. METHODS: Using an automated brain segmentation technique, MRI-based volume measurements of several brain regions were compared between 75 patients with \\'sporadic\\' MTLE+HS and 50 healthy controls. Applying linear regression models, we examined the relationship between structural atrophy and important clinical features of MTLE+HS, including disease duration, lifetime number of partial and generalized seizures, and history of initial precipitating insults (IPIs). RESULTS: Significant volume loss was detected in ipsilateral hippocampus, amygdala, thalamus, and cerebral white matter (WM). In addition, contralateral hippocampal and bilateral cerebellar grey matter (GM) volume loss was observed in left MTLE+HS patients. Hippocampal, amygdalar, and cerebral WM volume loss correlated with duration of epilepsy. This correlation was stronger in patients with prior IPIs history. Further, cerebral WM, cerebellar GM, and contralateral hippocampal volume loss correlated with lifetime number of generalized seizures. CONCLUSION: Our findings confirm that multiple brain regions beyond the hippocampus are involved in the pathogenesis of MTLE+HS. IPIs are an important factor influencing the rate of regional atrophy but our results also support a role for processes related to epilepsy chronicity. The consequence of epilepsy chronicity on candidate brain regions has important implications on their application as genetic endophenotypes.

  20. Graded representations of emotional expressions in the left superior temporal sulcus

    Directory of Open Access Journals (Sweden)

    Christopher P Said

    2010-03-01

    Full Text Available Perceptual categorization is a fundamental cognitive process that gives meaning to an often graded sensory environment. Previous research has subdivided the visual pathway into posterior regions that processes the physical properties of a stimulus, and frontal regions that process more abstract properties such as category information. The superior temporal sulcus (STS is known to be involved in face and emotion perception, but the nature of its processing remains unknown. Here, we used targeted fMRI measurements of the STS to investigate whether its representations of facial expressions are categorical or noncategorical. Multivoxel pattern analysis showed that even though subjects were performing a categorization task, the left STS contained graded, noncategorical representations. In the right STS, representations showed evidence for both stimulus-related gradations and a categorical boundary.

  1. Human-like brain hemispheric dominance in birdsong learning.

    Science.gov (United States)

    Moorman, Sanne; Gobes, Sharon M H; Kuijpers, Maaike; Kerkhofs, Amber; Zandbergen, Matthijs A; Bolhuis, Johan J

    2012-07-31

    Unlike nonhuman primates, songbirds learn to vocalize very much like human infants acquire spoken language. In humans, Broca's area in the frontal lobe and Wernicke's area in the temporal lobe are crucially involved in speech production and perception, respectively. Songbirds have analogous brain regions that show a similar neural dissociation between vocal production and auditory perception and memory. In both humans and songbirds, there is evidence for lateralization of neural responsiveness in these brain regions. Human infants already show left-sided dominance in their brain activation when exposed to speech. Moreover, a memory-specific left-sided dominance in Wernicke's area for speech perception has been demonstrated in 2.5-mo-old babies. It is possible that auditory-vocal learning is associated with hemispheric dominance and that this association arose in songbirds and humans through convergent evolution. Therefore, we investigated whether there is similar song memory-related lateralization in the songbird brain. We exposed male zebra finches to tutor or unfamiliar song. We found left-sided dominance of neuronal activation in a Broca-like brain region (HVC, a letter-based name) of juvenile and adult zebra finch males, independent of the song stimulus presented. In addition, juvenile males showed left-sided dominance for tutor song but not for unfamiliar song in a Wernicke-like brain region (the caudomedial nidopallium). Thus, left-sided dominance in the caudomedial nidopallium was specific for the song-learning phase and was memory-related. These findings demonstrate a remarkable neural parallel between birdsong and human spoken language, and they have important consequences for our understanding of the evolution of auditory-vocal learning and its neural mechanisms.

  2. Patterns of brain activity in normals and schizophrenics with positron emission tomography

    International Nuclear Information System (INIS)

    Volkow, N.D.; Wolf, A.P.; Gomez-Mont, F.; Brodie, J.D.; Canero, R.; Van Gelder, P.; Russell, J.A.G.

    1985-01-01

    The authors investigated the functional interaction among brain areas under baseline and upon activation by a visual task to compare the response of normal subjects from the ones of chronic schizophrenics. Cerebral metabolic images were obtained on twelve healthy volunteers an eighteen schizophrenics with positron emission tomography and 11-C-Deoxyglucose. Correlation coefficients among the relative metabolic values (region of interest divided by the average of whole brain gray matter) of 11 brain regions; frontal, parietal, temporal and occipital left and right lobes, left and right basal ganglia and thalamus were computed for the baseline and for the task. Under baseline, normals showed more functional correlations than schizophrenics. Both groups showed a thalamo-occipital (positive) and thalamo-frontal (negative) interaction. The highest correlations among homologous brain areas were the frontal, occipital and basal ganglia

  3. Baseline and cognition activated brain SPECT imaging in depression

    International Nuclear Information System (INIS)

    Zhao Jinhua; Lin Xiangtong; Jiang Kaida; Liu Yongchang; Xu Lianqin

    1998-01-01

    Purpose: To evaluate the regional cerebral blood flow (rCBF) abnormalities through the semiquantitative analysis of the baseline and cognition activated rCBF imaging in unmedicated depressed patients. Methods: 27 depressed patients unmedicated by anti-depressants were enrolled. The diagnosis (depression of moderate degree with somatization) was confirmed by the ICD-10 criteria. 15 age matched normal controls were studied under identical conditions. Baseline and cognition activated 99m Tc-ECD SPECT were performed on 21 of the 27 patients with depression and 13 of the 15 normal controls. Baseline 99m Tc-ECD SPECT alone were performed on the rest 6 patients with depression and 2 normal controls. The cognitive activation is achieved by Wisconsin Card Sorting Test (WCST). 1110 MBq of 99m Tc-ECD was administered by intravenous bolus injection 5 minutes after the onset of the WCST. Semi-quantitative analysis was conducted with the 7th, 8th, 9th, 10th, 11th slices of the transaxial imaging. rCBF ratios of every ROI were calculated using the average tissue activity in the region divided by the maximum activity in the cerebellum. Results: 1) The baseline rCBF of left frontal (0.720) and left temporal lobe (0.720) were decreased significantly in depressed patients comparing with those of the control subjects. 2) The activated rCBF of left frontal lobe (0.719) and left temporal lobe (0.690), left parietal lobe (0.701) were decreased evidently than those of the controls. Conclusions: 1) Hypoperfusions of left frontal and left temporal cortexes were identified in patients with depression. 2) The hypoperfusion of left frontal and left temporal cortexes may be the cause of cognition disorder and depressed mood in patients with depression. 3) Cognition activated brain perfusion imaging is helpful for making a more accurate diagnosis of depression

  4. Alteration of functional connectivity within visuospatial working memory-related brain network in patients with right temporal lobe epilepsy: a resting-state fMRI study.

    Science.gov (United States)

    Lv, Zong-xia; Huang, Dong-Hong; Ye, Wei; Chen, Zi-rong; Huang, Wen-li; Zheng, Jin-ou

    2014-06-01

    This study aimed to investigate the resting-state brain network related to visuospatial working memory (VSWM) in patients with right temporal lobe epilepsy (rTLE). The functional mechanism underlying the cognitive impairment in VSWM was also determined. Fifteen patients with rTLE and 16 healthy controls matched for age, gender, and handedness underwent a 6-min resting-state functional MRI session and a neuropsychological test using VSWM_Nback. The VSWM-related brain network at rest was extracted using multiple independent component analysis; the spatial distribution and the functional connectivity (FC) parameters of the cerebral network were compared between groups. Behavioral data were subsequently correlated with the mean Z-value in voxels showing significant FC difference during intergroup comparison. The distribution of the VSWM-related resting-state network (RSN) in the group with rTLE was virtually consistent with that in the healthy controls. The distribution involved the dorsolateral prefrontal lobe and parietal lobe in the right hemisphere and the partial inferior parietal lobe and posterior lobe of the cerebellum in the left hemisphere (pright superior frontal lobe (BA8), right middle frontal lobe, and right ventromedial prefrontal lobe compared with the controls (pright superior frontal lobe (BA11), right superior parietal lobe, and left posterior lobe of the cerebellum (prights reserved.

  5. Measuring the volume of temporal lobe in healthy Chinese adults of the Han nationality on the high-resolution MRI

    International Nuclear Information System (INIS)

    Jia Kefeng; Wu Li; Duan Hui; Han Dan; Chen Nan; Li Kuncheng

    2010-01-01

    Objective: To explore the morphological features of temporal lobe of healthy Chinese Han adults on the high-resolution MRI and provide morphological data of temporal lobe for the construction of database for Chinese Standard Brain. Methods: This is a clinical multi-center study. Three hundred healthy Chinese volunteers (male 150, and female 150) recruited from 15 hospitals were divided equally into five groups according to their age, i.e., 18-30 (Group A), 31-40 (Group B), 41-50 (Group C), 51- 60(Group D), 61-70(Group E). All subjects were scanned using T 1 WI 3D MPRAGE sequence and volumes of standardized temporal lobe were collected. The bilateral volumes of standardized temporal lobe were compared by variance analysis between male and female subjects and among five age groups. Results: The mean volumes of left and right temporal lobe were (97 126±15 703) mm 3 and (97 015 ± 15 545) mm 3 respectively for men, and (95 123 ± 14 564) mm 3 and (96 423 ± 13 407) mm 3 for women. The difference temporal lobe volume between male and female wasn't significant on the same side (F=1.336, 0.127, P= 0.249, 0.722). The left temporal lobe volumes of Group A-E were (93 873±13 351), (95 566± 11 964), (10 1890 ± 14 511), (93 972 ± 14 050) and (95 636 ± 19 864) mm 3 respectively, and those on the right side were (93 409 ± 10 984), (98 158 ± 16 392), (102 079 ± 15 112), (95 448 ± 11 123) and (94 658 ± 16 928) mm 3 . There were significant differences among 5 groups between left and right temporal lobe volume(F=2.940, 3.514, P=0.021, 0.008). Further pairwise comparison revealed that left and right temporal lobe volume in Group C is higher than those of Group A and D (P 0.05). Conclusion: High-resolution MRI could offer detailed images and precise morphological data of temporal lobe, which provides morphological data of temporal lobe for the construction of database for Chinese Standard Brain. (authors)

  6. "Happy Days Are Here Again": A Left and Right Brain 4MAT Approach to Teaching Depression-Era Presidential Elections.

    Science.gov (United States)

    Cantu, D. Antonio

    2001-01-01

    Provides a lesson plan that focuses on the 1932, 1936, and 1940 presidential election campaigns. Illustrates the use of the left and right brain 4MAT teaching model that considers individual learning styles associated with right and left hemisphere dominance. Includes a bibliography and eight handouts. (CMK)

  7. Prereader to beginning reader: changes induced by reading acquisition in print and speech brain networks.

    Science.gov (United States)

    Chyl, Katarzyna; Kossowski, Bartosz; Dębska, Agnieszka; Łuniewska, Magdalena; Banaszkiewicz, Anna; Żelechowska, Agata; Frost, Stephen J; Mencl, William Einar; Wypych, Marek; Marchewka, Artur; Pugh, Kenneth R; Jednoróg, Katarzyna

    2018-01-01

    Literacy acquisition is a demanding process that induces significant changes in the brain, especially in the spoken and written language networks. Nevertheless, large-scale paediatric fMRI studies are still limited. We analyzed fMRI data to show how individual differences in reading performance correlate with brain activation for speech and print in 111 children attending kindergarten or first grade and examined group differences between a matched subset of emergent-readers and prereaders. Across the entire cohort, individual differences analysis revealed that reading skill was positively correlated with the magnitude of activation difference between words and symbol strings in left superior temporal, inferior frontal and fusiform gyri. Group comparisons of the matched subset of pre- and emergent-readers showed higher activity for emergent-readers in left inferior frontal, precentral, and postcentral gyri. Individual differences in activation for natural versus vocoded speech were also positively correlated with reading skill, primarily in the left temporal cortex. However, in contrast to studies on adult illiterates, group comparisons revealed higher activity in prereaders compared to readers in the frontal lobes. Print-speech coactivation was observed only in readers and individual differences analyses revealed a positive correlation between convergence and reading skill in the left superior temporal sulcus. These results emphasise that a child's brain undergoes several modifications to both visual and oral language systems in the process of learning to read. They also suggest that print-speech convergence is a hallmark of acquiring literacy. © 2017 Association for Child and Adolescent Mental Health.

  8. Combining Functional Neuroimaging with Off-Line Brain Stimulation: Modulation of Task-Related Activity in Language Areas

    Science.gov (United States)

    Andoh, Jamila; Paus, Tomas

    2011-01-01

    Repetitive TMS (rTMS) provides a noninvasive tool for modulating neural activity in the human brain. In healthy participants, rTMS applied over the language-related areas in the left hemisphere, including the left posterior temporal area of Wernicke (LTMP) and inferior frontal area of Broca, have been shown to affect performance on word…

  9. Evaluation of factors influencing 18F-FET uptake in the brain

    Directory of Open Access Journals (Sweden)

    Antoine Verger

    2018-01-01

    Full Text Available PET using the amino-acid O-(2-18F-fluoroethyl-l-tyrosine (18F-FET is gaining increasing interest for brain tumour management. Semi-quantitative analysis of tracer uptake in brain tumours is based on the standardized uptake value (SUV and the tumour-to-brain ratio (TBR. The aim of this study was to explore physiological factors that might influence the relationship of SUV of 18F-FET uptake in various brain areas, and thus affect quantification of 18F-FET uptake in brain tumours. Negative 18F-FET PET scans of 107 subjects, showing an inconspicuous brain distribution of 18F-FET, were evaluated retrospectively. Whole-brain quantitative analysis with Statistical Parametric Mapping (SPM using parametric SUV PET images, and volumes of interest (VOIs analysis with fronto-parietal, temporal, occipital, and cerebellar SUV background areas were performed to study the effect of age, gender, height, weight, injected activity, body mass index (BMI, and body surface area (BSA. After multivariate analysis, female gender and high BMI were found to be two independent factors associated with increased SUV of 18F-FET uptake in the brain. In women, SUVmean of 18F-FET uptake in the brain was 23% higher than in men (p < 0.01. SUVmean of 18F-FET uptake in the brain was positively correlated with BMI (r = 0.29; p < 0.01. The influence of these factors on SUV of 18F-FET was similar in all brain areas. In conclusion, SUV of 18F-FET in the normal brain is influenced by gender and weakly by BMI, but changes are similar in all brain areas.

  10. Our Faces in the Dog's Brain: Functional Imaging Reveals Temporal Cortex Activation during Perception of Human Faces.

    Directory of Open Access Journals (Sweden)

    Laura V Cuaya

    Full Text Available Dogs have a rich social relationship with humans. One fundamental aspect of it is how dogs pay close attention to human faces in order to guide their behavior, for example, by recognizing their owner and his/her emotional state using visual cues. It is well known that humans have specific brain regions for the processing of other human faces, yet it is unclear how dogs' brains process human faces. For this reason, our study focuses on describing the brain correlates of perception of human faces in dogs using functional magnetic resonance imaging (fMRI. We trained seven domestic dogs to remain awake, still and unrestrained inside an MRI scanner. We used a visual stimulation paradigm with block design to compare activity elicited by human faces against everyday objects. Brain activity related to the perception of faces changed significantly in several brain regions, but mainly in the bilateral temporal cortex. The opposite contrast (i.e., everyday objects against human faces showed no significant brain activity change. The temporal cortex is part of the ventral visual pathway, and our results are consistent with reports in other species like primates and sheep, that suggest a high degree of evolutionary conservation of this pathway for face processing. This study introduces the temporal cortex as candidate to process human faces, a pillar of social cognition in dogs.

  11. Incipient preoperative reorganization processes of verbal memory functions in patients with left temporal lobe epilepsy.

    Science.gov (United States)

    Milian, Monika; Zeltner, Lena; Erb, Michael; Klose, Uwe; Wagner, Kathrin; Frings, Lars; Veil, Cornelia; Rona, Sabine; Lerche, Holger; Klamer, Silke

    2015-01-01

    We previously reported nonlinear correlations between verbal episodic memory performance and BOLD signal in memory fMRI in healthy subjects. The purpose of the present study was to examine this observation in patients with left mesial temporal lobe epilepsy (mTLE) who often experience memory decline and need reliable prediction tools before epilepsy surgery with hippocampectomy. Fifteen patients with left mTLE (18-57years, nine females) underwent a verbal memory fMRI paradigm. Correlations between BOLD activity and neuropsychological data were calculated for the i) hippocampus (HC) as well as ii) extrahippocampal mTL structures. Memory performance was systematically associated with activations within the right HC as well as with activations within the left extrahippocampal mTL regions (amygdala and parahippocampal gyrus). As hypothesized, the analyses revealed cubic relationships, with one peak in patients with marginal memory performance and another peak in patients with very good performance. The nonlinear correlations between memory performance and activations might reflect the compensatory recruitment of neural resources to maintain memory performance in patients with ongoing memory deterioration. The present data suggest an already incipient preoperative reorganization process of verbal memory in non-amnesic patients with left mTLE by simultaneously tapping the resources of the right HC and left extrahippocampal mTL regions. Thus, in the preoperative assessment, both neuropsychological performance and memory fMRI should be considered together. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Reducing proactive aggression through non-invasive brain stimulation

    Science.gov (United States)

    Schuhmann, Teresa; Lobbestael, Jill; Arntz, Arnoud; Brugman, Suzanne; Sack, Alexander T.

    2015-01-01

    Aggressive behavior poses a threat to human collaboration and social safety. It is of utmost importance to identify the functional mechanisms underlying aggression and to develop potential interventions capable of reducing dysfunctional aggressive behavior already at a brain level. We here experimentally shifted fronto-cortical asymmetry to manipulate the underlying motivational emotional states in both male and female participants while assessing the behavioral effects on proactive and reactive aggression. Thirty-two healthy volunteers received either anodal transcranial direct current stimulation to increase neural activity within right dorsolateral prefrontal cortex, or sham stimulation. Aggressive behavior was measured with the Taylor Aggression Paradigm. We revealed a general gender effect, showing that men displayed more behavioral aggression than women. After the induction of right fronto-hemispheric dominance, proactive aggression was reduced in men. This study demonstrates that non-invasive brain stimulation can reduce aggression in men. This is a relevant and promising step to better understand how cortical brain states connect to impulsive actions and to examine the causal role of the prefrontal cortex in aggression. Ultimately, such findings could help to examine whether the brain can be a direct target for potential supportive interventions in clinical settings dealing with overly aggressive patients and/or violent offenders. PMID:25680991

  13. A preliminary report of 99Tcm-ECD brain SPECT imaging in patients with acquired immunodeficiency syndrome

    International Nuclear Information System (INIS)

    Xu Hao; Tong Yuwei; Luo Jinxiang; Chen Jian; Wu Qiulian

    2001-01-01

    Objective: To investigate the changes of regional cerebral blood flow (rCBF) in patients with acquired immunodeficiency syndrome (AIDS). Methods: 99 Tc m -ECD brain SPECT imaging was performed on 5 patients with AIDS and 16 sex- and age-matched normal controls. The rCBF percentages compared to the cerebellum were calculated using a semi-quantitative processing software. Results: Hypo-perfusions in the right and left frontal, temporal, parietal lobe, basal ganglia and left thalamus were seen in 1 patient with dementia. Hypo-perfusions in the right and left frontal and temporal lobe were seen in 4 patients without dementia. The rCBF in the right and left frontal, temporal, parietal lobe, basal ganglia and thalamus, straight gyri and pons decreased significantly in patients with AIDS than those of the control subjects (P < 0.01). Conclusion: There is reduced cortico-subcortical rCBF in patients with AIDS

  14. A MARKOV RANDOM FIELD-BASED APPROACH TO CHARACTERIZING HUMAN BRAIN DEVELOPMENT USING SPATIAL-TEMPORAL TRANSCRIPTOME DATA.

    Science.gov (United States)

    Lin, Zhixiang; Sanders, Stephan J; Li, Mingfeng; Sestan, Nenad; State, Matthew W; Zhao, Hongyu

    2015-03-01

    Human neurodevelopment is a highly regulated biological process. In this article, we study the dynamic changes of neurodevelopment through the analysis of human brain microarray data, sampled from 16 brain regions in 15 time periods of neurodevelopment. We develop a two-step inferential procedure to identify expressed and unexpressed genes and to detect differentially expressed genes between adjacent time periods. Markov Random Field (MRF) models are used to efficiently utilize the information embedded in brain region similarity and temporal dependency in our approach. We develop and implement a Monte Carlo expectation-maximization (MCEM) algorithm to estimate the model parameters. Simulation studies suggest that our approach achieves lower misclassification error and potential gain in power compared with models not incorporating spatial similarity and temporal dependency.

  15. Regional gray matter growth, sexual dimorphism, and cerebral asymmetry in the neonatal brain.

    Science.gov (United States)

    Gilmore, John H; Lin, Weili; Prastawa, Marcel W; Looney, Christopher B; Vetsa, Y Sampath K; Knickmeyer, Rebecca C; Evans, Dianne D; Smith, J Keith; Hamer, Robert M; Lieberman, Jeffrey A; Gerig, Guido

    2007-02-07

    Although there has been recent interest in the study of childhood and adolescent brain development, very little is known about normal brain development in the first few months of life. In older children, there are regional differences in cortical gray matter development, whereas cortical gray and white matter growth after birth has not been studied to a great extent. The adult human brain is also characterized by cerebral asymmetries and sexual dimorphisms, although very little is known about how these asymmetries and dimorphisms develop. We used magnetic resonance imaging and an automatic segmentation methodology to study brain structure in 74 neonates in the first few weeks after birth. We found robust cortical gray matter growth compared with white matter growth, with occipital regions growing much faster than prefrontal regions. Sexual dimorphism is present at birth, with males having larger total brain cortical gray and white matter volumes than females. In contrast to adults and older children, the left hemisphere is larger than the right hemisphere, and the normal pattern of fronto-occipital asymmetry described in older children and adults is not present. Regional differences in cortical gray matter growth are likely related to differential maturation of sensory and motor systems compared with prefrontal executive function after birth. These findings also indicate that whereas some adult patterns of sexual dimorphism and cerebral asymmetries are present at birth, others develop after birth.

  16. Task vs. rest-different network configurations between the coactivation and the resting-state brain networks.

    Science.gov (United States)

    Di, Xin; Gohel, Suril; Kim, Eun H; Biswal, Bharat B

    2013-01-01

    There is a growing interest in studies of human brain networks using resting-state functional magnetic resonance imaging (fMRI). However, it is unclear whether and how brain networks measured during the resting-state exhibit comparable properties to brain networks during task performance. In the present study, we investigated meta-analytic coactivation patterns among brain regions based upon published neuroimaging studies, and compared the coactivation network configurations with those in the resting-state network. The strength of resting-state functional connectivity between two regions were strongly correlated with the coactivation strength. However, the coactivation network showed greater global efficiency, smaller mean clustering coefficient, and lower modularity compared with the resting-state network, which suggest a more efficient global information transmission and between system integrations during task performing. Hub shifts were also observed within the thalamus and the left inferior temporal cortex. The thalamus and the left inferior temporal cortex exhibited higher and lower degrees, respectively in the coactivation network compared with the resting-state network. These results shed light regarding the reconfiguration of the brain networks between task and resting-state conditions, and highlight the role of the thalamus in change of network configurations in task vs. rest.

  17. The Impact of Sex and Language Dominance on Material-Specific Memory Before and After Left Temporal Lobe Surgery

    Science.gov (United States)

    Helmstaedter, C.; Brosch, T.; Kurthen, M.; Elger, C. E.

    2004-01-01

    Recent findings raised evidence that in early-onset left temporal lobe epilepsy, women show greater functional plasticity for verbal memory than men. In particular, women with lesion- or epilepsy-driven atypical language dominance show an advantage over men. The question asked in this study was whether there is evidence of sex- and language…

  18. In 17q21.31 microdeletion syndrome, hypersocial behaviour may be part of the neuropsychological phenotype

    NARCIS (Netherlands)

    Egger, J.I.M.; Wingbermühle, P.A.M.; Dijkman, M.W.; Verhoeven, W.M.A.

    2013-01-01

    Objective: The 17q21.31 microdeletion encompasses among others the microtubule associated protein tau (MAPT) gene that is highly expressed in the brain and is involved in several neurodegenerative disorders such as fronto-temporal dementias and progressive supranuclear palsy. It can be postulated

  19. Psychological consideration in patients with cerebral gliomas candidates for intra-operative radiation therapy based on tumor location.

    Science.gov (United States)

    Seddighi, Afsoun; Akbari, Mohammad Esmaeil; Seddighi, Amir Saied; Nikouei, Amir

    2017-01-01

    Intra-operative Radiation Therapy (IORT) is gaining popularity as an adjuvant option to surgical resection, in treatment of glioblastoma multiforme (GBM) for increasing survival rate, which a highly aggressive cerebral tumor with poor prognosis. Τhe authors plan to investigate the effects of IORT combined with surgical resection on the psychological status of these patients based on tumor location. From December 2013 to February 2017, we have enrolled 109 patients with high grade cerebral gliomas, documented by Magnetic Resonance Spectroscopy (MRS). Patients with previous history of brain surgery or radiation, altered mental status and psychological content and patients diagnosed with metastases were excluded. Demographic data, tumor volume based on pre-operative Magnetic Resonance Imaging (MRI) and psychological status were recorded based on Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria. The remaining 56 patients, were equally randomized into conventional (surgical resection-group A), and trial (surgical resection with IORT-group B) who underwent IORT using the 50kV INTRABEAM® system (Carl Zeiss Meditec AG, Germany). Psychological profiles of both groups were re-evaluated in the 3 rd post-operative month. Group A consisted of 18 males and 10 females with mean age of 54.4 years, while group B consisted of 16 males and 12 females with mean age of 57.8 years. Tumor volumetry revealed mean 81.52cc and 82.8cc for group A and B respectively. (P value 0.14) Patients were classified based on glioma location on pre-operative MRI: a) left parietal lobe (6 in group A, 5 in group B); b) left temporal lobe (7 in group A, 5 in group B); c) right parietal lobe (5 in group A, 6 in group B); d) left fronto-temporal lobe (4 in group A, 6 in group B); e) left parieto-temporal lobe (4 in group A, 5 in group B); and, f) right frontal lobe (2 in group A, 1 in group B). Group B received mean 8.05 Gy radiation for mean 11.2 minutes. Post

  20. Culture modulates brain activity during empathy with anger.

    Science.gov (United States)

    de Greck, Moritz; Shi, Zhenhao; Wang, Gang; Zuo, Xiangyu; Yang, Xuedong; Wang, Xiaoying; Northoff, Georg; Han, Shihui

    2012-02-01

    Interdependent cultures (such as the Chinese) and independent cultures (such as the German) differ in their attitude towards harmony that is more valued in interdependent cultures. Interdependent and independent cultures also differ in their appreciation of anger--an emotion that implies the disruption of harmony. The present study investigated if interdependent and independent cultures foster distinct brain activity associated with empathic processing of familiar angry, familiar neutral, and unfamiliar neutral faces. Using functional MRI, we scanned Chinese and German healthy subjects during an intentional empathy task, a control task (the evaluation of skin color), and a baseline condition. The subject groups were matched with regard to age, gender, and education. Behaviorally, Chinese subjects described themselves as significantly more interdependent compared to German subjects. The contrast 'intentional empathy for familiar angry'>'baseline' revealed several regions, including the left inferior frontal cortex, the left supplementary motor area, and the left insula, that showed comparable hemodynamic responses in both groups. However, the left dorsolateral prefrontal cortex had stronger hemodynamic responses in Chinese subjects in the contrast 'intentional empathy for familiar angry'>'baseline'. Germans, in contrast, showed stronger hemodynamic responses in the right temporo-parietal junction, right inferior and superior temporal gyrus, and left middle insula for the same contrast. Hemodynamic responses in the latter three brain regions correlated with interdependences scores over all subjects. Our results suggest that enhanced emotion regulation during empathy with anger in the interdependent lifestyle is mediated by the left dorsolateral prefrontal cortex. Increased tolerance towards the expression of anger in the independent lifestyle, in contrast, is associated with increased activity of the right inferior and superior temporal gyrus and the left middle

  1. Temporal lobe dual pathology in malignant migrating partial seizures in infancy.

    Science.gov (United States)

    Coppola, Giangennaro; Operto, Francesca Felicia; Auricchio, Gianfranca; D'Amico, Alessandra; Fortunato, Delia; Pascotto, Antonio

    2007-06-01

    A child had the characteristic clinical and EEG pattern of migrating partial seizures in infancy with left temporal lobe atrophy, hippocampal sclerosis and cortical-subcortical blurring. Seizures were drug-resistant, with recurring episodes of status epilepticus. The child developed microcephaly with arrest of psychomotor development. Focal brain lesions, in the context of migrating partial seizures, have not been previously reported.[Published with video sequences].

  2. Cerebro-cerebellar interactions underlying temporal information processing.

    Science.gov (United States)

    Aso, Kenji; Hanakawa, Takashi; Aso, Toshihiko; Fukuyama, Hidenao

    2010-12-01

    The neural basis of temporal information processing remains unclear, but it is proposed that the cerebellum plays an important role through its internal clock or feed-forward computation functions. In this study, fMRI was used to investigate the brain networks engaged in perceptual and motor aspects of subsecond temporal processing without accompanying coprocessing of spatial information. Direct comparison between perceptual and motor aspects of time processing was made with a categorical-design analysis. The right lateral cerebellum (lobule VI) was active during a time discrimination task, whereas the left cerebellar lobule VI was activated during a timed movement generation task. These findings were consistent with the idea that the cerebellum contributed to subsecond time processing in both perceptual and motor aspects. The feed-forward computational theory of the cerebellum predicted increased cerebro-cerebellar interactions during time information processing. In fact, a psychophysiological interaction analysis identified the supplementary motor and dorsal premotor areas, which had a significant functional connectivity with the right cerebellar region during a time discrimination task and with the left lateral cerebellum during a timed movement generation task. The involvement of cerebro-cerebellar interactions may provide supportive evidence that temporal information processing relies on the simulation of timing information through feed-forward computation in the cerebellum.

  3. Mapping the brain in type II diabetes: Voxel-based morphometry using DARTEL

    International Nuclear Information System (INIS)

    Chen, Zhiye; Li, Lin; Sun, Jie; Ma, Lin

    2012-01-01

    Purpose: To investigate the pattern of brain volume changes of the brain in patients with type II diabetes mellitus using voxel-based morphometry. Material and methods: Institutional ethics approval and informed consent were obtained. VBM based on the high resolution three-dimensional T1-weighted fast spoiled gradient recalled echo MRI images was obtained from 16 type II diabetes patients (mean age 61.2 years) and 16 normal controls (mean age 59.6 years). All images were spatially preprocessed using Diffeomorphic Anatomical Registration using Exponentiated Lie algebra (DARTEL) algorithm, and the DARTEL templates were made from 100 normal subjects. Statistical parametric mapping was generated using analysis of covariance (ANCOVA). Results: An atrophy pattern of gray matter was seen in type II diabetes patients compared with controls that involved the right superior, middle, and inferior temporal gyri, right precentral gyrus, and left rolandic operculum region. The loss of white matter volume in type II diabetes mellitus was observed in right temporal lobe and left inferior frontal triangle region. ROI analysis revealed that the gray and white matter volume of right temporal lobe were significant lower in type II diabetes mellitus than that in controls (P < 0.05). Conclusion: This work demonstrated that type II diabetes mellitus patients mainly exhibited gray and white matter atrophy in right temporal lobe, and this finding supported that type II diabetes mellitus could lead to subtle diabetic brain structural changes in patients without dementia or macrovascular complications.

  4. Mapping the brain in type II diabetes: Voxel-based morphometry using DARTEL

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhiye [Department of Radiology, PLA General Hospital, 28 Fuxing Road, Beijing 100853 (China); Li, Lin [Department of Geriatric Endocrinology, PLA General Hospital, Beijing 100853 (China); Sun, Jie [Department of Endocrinology, PLA General Hospital, Beijing 100853 (China); Ma, Lin, E-mail: cjr.malin@vip.163.com [Department of Radiology, PLA General Hospital, 28 Fuxing Road, Beijing 100853 (China)

    2012-08-15

    Purpose: To investigate the pattern of brain volume changes of the brain in patients with type II diabetes mellitus using voxel-based morphometry. Material and methods: Institutional ethics approval and informed consent were obtained. VBM based on the high resolution three-dimensional T1-weighted fast spoiled gradient recalled echo MRI images was obtained from 16 type II diabetes patients (mean age 61.2 years) and 16 normal controls (mean age 59.6 years). All images were spatially preprocessed using Diffeomorphic Anatomical Registration using Exponentiated Lie algebra (DARTEL) algorithm, and the DARTEL templates were made from 100 normal subjects. Statistical parametric mapping was generated using analysis of covariance (ANCOVA). Results: An atrophy pattern of gray matter was seen in type II diabetes patients compared with controls that involved the right superior, middle, and inferior temporal gyri, right precentral gyrus, and left rolandic operculum region. The loss of white matter volume in type II diabetes mellitus was observed in right temporal lobe and left inferior frontal triangle region. ROI analysis revealed that the gray and white matter volume of right temporal lobe were significant lower in type II diabetes mellitus than that in controls (P < 0.05). Conclusion: This work demonstrated that type II diabetes mellitus patients mainly exhibited gray and white matter atrophy in right temporal lobe, and this finding supported that type II diabetes mellitus could lead to subtle diabetic brain structural changes in patients without dementia or macrovascular complications.

  5. Study on memories of temporal lobes and the principles of lateralization using near infrared spectroscopy

    Science.gov (United States)

    Kamakura, Katsutoshi

    2007-01-01

    In this study we measured the variation of brain blood quantity (Oxy-Hb, Deoxy-Hb and Total-Hb) in the temporal lobes using near infrared spectroscopy (NIRS) when the tasks of the memories were presented to the subjects. The memories are classified into the short-term memory (STM) and the long-term memory (LTM) including the episodic and semantic memories. The subjects joined in this study are 11 persons who are university students including graduate students. We used the language task of letter-number sequencing, also reverse sequencing to measure STM and the task of the episodic memory to measure LTM. As a result of analysis, concerning the episodic memory, the variation of Oxy-Hb in the left temporal lobe was larger than that of Oxy-Hb in the right temporal lobe. The result might suggest that the episodic memory has a relationship with cerebral dominance concerning language area in the left temporal lobe. It seems that the episodic memory meditated with the function of language used in this study is much stored in the left temporal lobe than in the right temporal lobe. This result coincides with the principles of lateralization. The variation of Oxy-Hb in the language task of letter-number sequencing was smaller than that of Oxy-Hb in the language task of the episodic memory.

  6. Hearing and seeing meaning in speech and gesture: insights from brain and behaviour.

    Science.gov (United States)

    Özyürek, Aslı

    2014-09-19

    As we speak, we use not only the arbitrary form-meaning mappings of the speech channel but also motivated form-meaning correspondences, i.e. iconic gestures that accompany speech (e.g. inverted V-shaped hand wiggling across gesture space to demonstrate walking). This article reviews what we know about processing of semantic information from speech and iconic gestures in spoken languages during comprehension of such composite utterances. Several studies have shown that comprehension of iconic gestures involves brain activations known to be involved in semantic processing of speech: i.e. modulation of the electrophysiological recording component N400, which is sensitive to the ease of semantic integration of a word to previous context, and recruitment of the left-lateralized frontal-posterior temporal network (left inferior frontal gyrus (IFG), medial temporal gyrus (MTG) and superior temporal gyrus/sulcus (STG/S)). Furthermore, we integrate the information coming from both channels recruiting brain areas such as left IFG, posterior superior temporal sulcus (STS)/MTG and even motor cortex. Finally, this integration is flexible: the temporal synchrony between the iconic gesture and the speech segment, as well as the perceived communicative intent of the speaker, modulate the integration process. Whether these findings are special to gestures or are shared with actions or other visual accompaniments to speech (e.g. lips) or other visual symbols such as pictures are discussed, as well as the implications for a multimodal view of language. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  7. Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development

    DEFF Research Database (Denmark)

    Venø, Morten T; Hansen, Thomas B; Venø, Susanne T

    2015-01-01

    BACKGROUND: Recently, thousands of circular RNAs (circRNAs) have been discovered in various tissues and cell types from human, mouse, fruit fly and nematodes. However, expression of circRNAs across mammalian brain development has never been examined. RESULTS: Here we profile the expression of circ......RNA in five brain tissues at up to six time-points during fetal porcine development, constituting the first report of circRNA in the brain development of a large animal. An unbiased analysis reveals a highly complex regulation pattern of thousands of circular RNAs, with a distinct spatio-temporal expression...... are functionally conserved between mouse and human. Furthermore, we observe that "hot-spot" genes produce multiple circRNA isoforms, which are often differentially expressed across porcine brain development. A global comparison of porcine circRNAs reveals that introns flanking circularized exons are longer than...

  8. A Case with Probable Herpes Simplex Encephalitis Characterized by Specific Emotional and Behavioral Disorders and Gogi (Word-Meaning Aphasia-Like Syndrome with Neologism and Neologistic Kanji Processing

    Directory of Open Access Journals (Sweden)

    I. Jibiki

    1992-01-01

    Full Text Available A right-handed male patient with probable herpes simplex encephalitis is presented because of the rarity of the clinicial picture. Brain X-ray CT scans showed lesions located in the bilateral fronto-temporal regions primarily involving the left lower temporal lobe. The clinical picture following the acute phase of the disease was characterized by specific emotional and behavioral disorders, i.e. oral tendency, hyperactivity, thoughtless talkativeness, random speech and exhilaration, which were partly compatible with the Klüver-Bucy syndrome. Furthermore, this case was characterized by Gogi (word-meaning aphasia-like transcortical sensory aphasia and neologism produced saliently when naming objects and peculiar neologistic kanji processing in writing to dictation and oral reading. Both the neologism and neologistic kanji processing varied in quantity in parallel with the specific emotional and behavioral disorders. The relationships of these clinical features to lesional sites demonstrated by X-ray CT are discussed.

  9. Gray matter abnormalities in patients with narcissistic personality disorder.

    Science.gov (United States)

    Schulze, Lars; Dziobek, Isabel; Vater, Aline; Heekeren, Hauke R; Bajbouj, Malek; Renneberg, Babette; Heuser, Isabella; Roepke, Stefan

    2013-10-01

    Despite the relevance of narcissistic personality disorder (NPD) in clinical settings, there is currently no empirical data available regarding the neurobiological correlates of NPD. In the present study, we performed a voxel-based morphometric analysis to provide initial insight into local abnormalities of gray matter (GM) volume. Structural brain images were obtained from patients with NPD (n = 17) and a sample of healthy controls (n = 17) matched regarding age, gender, handedness, and intelligence. Groups were compared with regard to global brain tissue volumes and local abnormalities of GM volume. Regions-of-interest analyses were calculated for the anterior insula. Relative to the control group, NPD patients had smaller GM volume in the left anterior insula. Independent of group, GM volume in the left anterior insula was positively related to self-reported emotional empathy. Complementary whole-brain analyses yielded smaller GM volume in fronto-paralimbic brain regions comprising the rostral and median cingulate cortex as well as dorsolateral and medial parts of the prefrontal cortex. Here we provide the first empirical evidence for structural abnormalities in fronto-paralimbic brain regions of patients with NPD. The results are discussed in the context of NPD patients' restricted ability for emotional empathy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The Medial Temporal Lobe and the Left Inferior Prefrontal Cortex Jointly Support Interference Resolution in Verbal Working Memory

    Science.gov (United States)

    Oztekin, Ilke; Curtis, Clayton E.; McElree, Brian

    2009-01-01

    During working memory retrieval, proactive interference (PI) can be induced by semantic similarity and episodic familiarity. Here, we used fMRI to test hypotheses about the role of the left inferior frontal gyrus (LIFG) and the medial temporal lobe (MTL) regions in successful resolution of PI. Participants studied six-word lists and responded to a…

  11. Long-term music training tunes how the brain temporally binds signals from multiple senses

    OpenAIRE

    Lee, HweeLing; Noppeney, Uta

    2011-01-01

    Practicing a musical instrument is a rich multisensory experience involving the integration of visual, auditory, and tactile inputs with motor responses. This combined psychophysics–fMRI study used the musician's brain to investigate how sensory-motor experience molds temporal binding of auditory and visual signals. Behaviorally, musicians exhibited a narrower temporal integration window than nonmusicians for music but not for speech. At the neural level, musicians showed increased audiovisua...

  12. Voluntary breath holding affects spontaneous brain activity measured by magnetoencephalography

    NARCIS (Netherlands)

    Schellart, N. A.; Reits, D.

    1999-01-01

    Spontaneous brain activity was measured by multichannel magnetoencephalography (MEG) during voluntary breath holds. Significant changes in the activity are limited to the alpha rhythm: 0.25 Hz frequency increase and narrowing of the peak. The area of alpha activity shifts slightly toward (fronto-)

  13. Improvement in the performance of CAD for the Alzheimer-type dementia based on automatic extraction of temporal lobe from coronal MR images

    International Nuclear Information System (INIS)

    Kaeriyama, Tomoharu; Kodama, Naoki; Kaneko, Tomoyuki; Shimada, Tetsuo; Tanaka, Hiroyuki; Takeda, Ai; Fukumoto, Ichiro

    2004-01-01

    In this study, we extracted whole brain and temporal lobe images from MR images (26 healthy elderly controls and 34 Alzheimer-type dementia patients) by means of binarize, mask processing, template matching, Hough transformation, and boundary tracing etc. We assessed the extraction accuracy by comparing the extracted images to images extracts by a radiological technologist. The results of assessment by consistent rate; brain images 91.3±4.3%, right temporal lobe 83.3±6.9%, left temporal lobe 83.7±7.6%. Furthermore discriminant analysis using 6 textural features demonstrated sensitivity and specificity of 100% when the healthy elderly controls were compared to the Alzheimer-type dementia patients. Our research showed the possibility of automatic objective diagnosis of temporal lobe abnormalities by automatic extracted images of the temporal lobes. (author)

  14. Regional cerebral blood flow and brain atrophy in senile dementia of Alzheimer type (SDAT)

    International Nuclear Information System (INIS)

    Okada, Kazunori; Kobayashi, Shoutai; Yamaguchi, Shuhei; Kitani, Mituhiro; Tsunematsu, Tokugoro

    1987-01-01

    To investigate the relationship between the reduction of cerebal blood flow and brain atrophy in SDAT, these were measured in 13 cases of senile dementia of Alzheimer type, and compared to 15 cases of multi-infarct Dementia, 39 cases of lacunar infarction without dementia (non-demented CVD group) and 69 cases of aged normal control. Brain atrophy was evaluated by two-dimensional method on CT film by digitizer and regional cerebral blood flow (rCBF) was measured by 133 Xe inhalation method. The degree of brain atrophy in SDAT was almost similar of that of MID. But it was more severe than that of non-demented group. MID showed the lowest rCBF among these groups. SDAT showed significantly lower rCBF than that of aged control, but rCBF in SDAT was equal to that of lacunar stroke without dementia. Focal reduction of cerebral blood flow in bilateral fronto-parietal and left occipital regions were observed in SDAT. Verbal intelligence score (Hasegawa's score) correlated with rCBF and brain atrophy index in MID, and a tendency of correlation between rCBF and brain atrophy in MID was also observed. However, there was no correlation among those indices in SDAT. These findings suggest that the loss of brain substance dose not correspond to the reduction of rCBF in SDAT and simultaneous measurement of rCBF and brain atrophy was useful to differ SDAT from MID. (author)

  15. The left IPL represents stored hand-postures for object use and action prediction

    Directory of Open Access Journals (Sweden)

    Michiel evan Elk

    2014-04-01

    Full Text Available Action semantics enables us to plan actions with objects and to predict others’ object-directed actions as well. Previous studies have suggested that action semantics are represented in a fronto-parietal action network that has also been implicated to play a role in action observation. In the present fMRI study it was investigated how activity within this network changes as a function of the predictability of an action involving multiple objects and requiring the use of action semantics. Participants performed an action prediction task in which they were required to anticipate the use of a centrally presented object that could be moved to an associated target object (e.g. hammer - nail. The availability of actor information (i.e. presenting a hand grasping the central object and the number of possible target objects (i.e. 0, 1 or 2 target objects were independently manipulated, resulting in different levels of predictability. It was found that making an action prediction based on actor information resulted in an increased activation in the extrastriate body area (EBA and the fronto-parietal action observation network (AON. Predicting actions involving a target object resulted in increased activation in the bilateral IPL and frontal motor areas. Within the AON, activity in the left inferior parietal lobe (IPL and the left premotor cortex (PMC increased as a function of the level of action predictability. Together these findings suggest that the left IPL represents stored hand-postures that can be used for planning object-directed actions and for predicting other’s actions as well.

  16. Multimodal Neuroimaging of Fronto-limbic Structure and Function Associated with Suicide Attempts in Adolescents and Young Adults with Bipolar Disorder

    Science.gov (United States)

    Johnston, Jennifer A. Y.; Wang, Fei; Liu, Jie; Blond, Benjamin N.; Wallace, Amanda; Liu, Jiacheng; Spencer, Linda; Cox Lippard, Elizabeth T.; Purves, Kirstin L.; Landeros-Weisenberger, Angeli; Hermes, Eric; Pittman, Brian; Zhang, Sheng; King, Robert; Martin, Andrés; Oquendo, Maria A.; Blumberg, Hilary P.

    2018-01-01

    Objective Bipolar disorder is associated with high risk for suicide behavior that often develops in adolescence/young adulthood. Elucidation of involved neural systems is critical for prevention. This study of adolescents/young adults with bipolar disorder with and without history of suicide attempts combines structural, diffusion tensor and functional magnetic resonance imaging methods to investigate implicated abnormalities in structural and functional connectivity within fronto-limbic systems. Method Participants with bipolar disorder included 26 with a prior suicide attempt and 42 without attempts. Regional gray matter volume, white matter integrity and functional connectivity during processing of emotional stimuli were compared between groups and differences were explored for relationships between imaging modalities and associations with suicide-related symptoms and behaviors. Results Compared to the non-attempter group, the attempter group showed reductions in gray matter volume in orbitofrontal cortex, hippocampus and cerebellum; white matter integrity in uncinate fasciculus, ventral frontal and right cerebellum regions; and amygdala functional connectivity to left ventral and right rostral prefrontal cortex (pAdolescent/young adult suicide attempters with bipolar disorder demonstrate less gray matter volume and decreased structural and functional connectivity in a ventral fronto-limbic neural system subserving emotion regulation. Among suicide attempters, reductions in amygdala-prefrontal functional connectivity may be associated with severity of suicide ideation and attempt lethality. PMID:28135845

  17. Cognitive enhancement therapy improves fronto-limbic regulation of emotion in alcohol and/or cannabis misusing schizophrenia: a preliminary study

    Directory of Open Access Journals (Sweden)

    Jessica Ann Wojtalik

    2016-01-01

    Full Text Available Individuals with schizophrenia who misuse substances are burdened with impairments in emotion regulation. Cognitive Enhancement Therapy (CET may address these problems by enhancing prefrontal brain function. A small sample of outpatients with schizophrenia and alcohol and/or cannabis substance use problems participating in an 18-month randomized trial of CET (n = 10 or usual care (n = 4 completed post-treatment functional neuroimaging using an emotion regulation task. General linear models explored CET effects on brain activity in emotional neurocircuitry. Individuals treated with CET had significantly greater activation in broad regions of the prefrontal cortex, limbic and striatal systems implicated in emotion regulation compared to usual care. Differential activation favoring CET in prefrontal regions and the insula mediated behavioral improvements in emotional processing. Our data lend preliminary support of CET effects on neuroplasticity in fronto-limbic and striatal circuitries which mediate emotion regulation in people with schizophrenia and comorbid substance misuse problems.

  18. Reorganization of brain function after a short-term behavioral intervention for stuttering.

    Science.gov (United States)

    Lu, Chunming; Zheng, Lifen; Long, Yuhang; Yan, Qian; Ding, Guosheng; Liu, Li; Peng, Danling; Howell, Peter

    2017-05-01

    This study investigated changes in brain function that occurred over a 7-day behavioral intervention for adults who stutter (AWS). Thirteen AWS received the intervention (AWS+), and 13 AWS did not receive the intervention (AWS-). There were 13 fluent controls (FC-). All participants were scanned before and after the intervention. Whole-brain analysis pre-intervention showed significant differences in task-related brain activation between AWS and FC- in the right inferior frontal cortex (IFC) and left middle temporal cortex, but there were no differences between the two AWS groups. Across the 7-day period of the intervention, AWS+ alone showed a significant increase of brain activation in the left ventral IFC/insula. There were no changes in brain function for the other two groups. Further analysis revealed that the change did not correlate with resting-state functional connectivity (RSFC) that AWS showed in the cerebellum (Lu et al., 2012). However, both changes in task-related brain function and RSFC correlated with changes in speech fluency level. Together, these findings suggest that functional reorganization in a brain region close to the left IFC that shows anomalous function in AWS, occurs after a short-term behavioral intervention for stuttering. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Altered retrieval of melodic information in congenital amusia: insights from dynamic causal modeling of MEG data.

    Science.gov (United States)

    Albouy, Philippe; Mattout, Jérémie; Sanchez, Gaëtan; Tillmann, Barbara; Caclin, Anne

    2015-01-01

    Congenital amusia is a neuro-developmental disorder that primarily manifests as a difficulty in the perception and memory of pitch-based materials, including music. Recent findings have shown that the amusic brain exhibits altered functioning of a fronto-temporal network during pitch perception and short-term memory. Within this network, during the encoding of melodies, a decreased right backward frontal-to-temporal connectivity was reported in amusia, along with an abnormal connectivity within and between auditory cortices. The present study investigated whether connectivity patterns between these regions were affected during the short-term memory retrieval of melodies. Amusics and controls had to indicate whether sequences of six tones that were presented in pairs were the same or different. When melodies were different only one tone changed in the second melody. Brain responses to the changed tone in "Different" trials and to its equivalent (original) tone in "Same" trials were compared between groups using Dynamic Causal Modeling (DCM). DCM results confirmed that congenital amusia is characterized by an altered effective connectivity within and between the two auditory cortices during sound processing. Furthermore, right temporal-to-frontal message passing was altered in comparison to controls, with notably an increase in "Same" trials. An additional analysis in control participants emphasized that the detection of an unexpected event in the typically functioning brain is supported by right fronto-temporal connections. The results can be interpreted in a predictive coding framework as reflecting an abnormal prediction error sent by temporal auditory regions towards frontal areas in the amusic brain.

  20. Altered retrieval of melodic information in congenital amusia: Insights from Dynamic Causal Modeling of MEG data

    Directory of Open Access Journals (Sweden)

    Philippe eAlbouy

    2015-02-01

    Full Text Available Congenital amusia is a neuro-developmental disorder that primarily manifests as a difficulty in the perception and memory of pitch-based materials, including music. Recent findings have shown that the amusic brain exhibits altered functioning of a fronto-temporal network during pitch perception and memory. Within this network, during the encoding of melodies, a decreased right backward frontal-to-temporal connectivity was reported in amusia, along with an abnormal connectivity within and between auditory cortices. The present study investigated whether connectivity patterns between these regions were affected during the retrieval of melodies. Amusics and controls had to indicate whether sequences of six tones that were presented in pairs were the same or different. When melodies were different only one tone changed in the second melody. Brain responses to the changed tone in Different trials and to its equivalent (original tone in Same trials were compared between groups using Dynamic Causal Modeling (DCM. DCM results confirmed that congenital amusia is characterized by an altered effective connectivity within and between the two auditory cortices during sound processing. Furthermore, right temporal-to-frontal message passing was altered in comparison to controls, with an increase in Same trials and a decrease in Different trials. An additional analysis in control participants emphasized that the detection of an unexpected event in the typically functioning brain is supported by right fronto-temporal connections. The results can be interpreted in a predictive coding framework as reflecting an abnormal prediction error sent by temporal auditory regions towards frontal areas in the amusic brain.

  1. Noninvasive Deep Brain Stimulation via Temporally Interfering Electric Fields.

    Science.gov (United States)

    Grossman, Nir; Bono, David; Dedic, Nina; Kodandaramaiah, Suhasa B; Rudenko, Andrii; Suk, Ho-Jun; Cassara, Antonino M; Neufeld, Esra; Kuster, Niels; Tsai, Li-Huei; Pascual-Leone, Alvaro; Boyden, Edward S

    2017-06-01

    We report a noninvasive strategy for electrically stimulating neurons at depth. By delivering to the brain multiple electric fields at frequencies too high to recruit neural firing, but which differ by a frequency within the dynamic range of neural firing, we can electrically stimulate neurons throughout a region where interference between the multiple fields results in a prominent electric field envelope modulated at the difference frequency. We validated this temporal interference (TI) concept via modeling and physics experiments, and verified that neurons in the living mouse brain could follow the electric field envelope. We demonstrate the utility of TI stimulation by stimulating neurons in the hippocampus of living mice without recruiting neurons of the overlying cortex. Finally, we show that by altering the currents delivered to a set of immobile electrodes, we can steerably evoke different motor patterns in living mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Temporal-spatial characteristics of phase-amplitude coupling in electrocorticogram for human temporal lobe epilepsy.

    Science.gov (United States)

    Zhang, Ruihua; Ren, Ye; Liu, Chunyan; Xu, Na; Li, Xiaoli; Cong, Fengyu; Ristaniemi, Tapani; Wang, YuPing

    2017-09-01

    Neural activity of the epileptic human brain contains low- and high-frequency oscillations in different frequency bands, some of which have been used as reliable biomarkers of the epileptogenic brain areas. However, the relationship between the low- and high-frequency oscillations in different cortical areas during the period from pre-seizure to post-seizure has not been completely clarified. We recorded electrocorticogram data from the temporal lobe and hippocampus of seven patients with temporal lobe epilepsy. The modulation index based on the Kullback-Leibler distance and the phase-amplitude coupling co-modulogram were adopted to quantify the coupling strength between the phase of low-frequency oscillations (0.2-10Hz) and the amplitude of high-frequency oscillations (11-400Hz) in different seizure epochs. The time-varying phase-amplitude modulogram was used to analyze the phase-amplitude coupling pattern during the entire period from pre-seizure to post-seizure in both the left and right temporal lobe and hippocampus. Channels with strong modulation index were compared with the seizure onset channels identified by the neurosurgeons and the resection channels in the clinical surgery. The phase-amplitude coupling strength (modulation index) increased significantly in the mid-seizure epoch and decrease significantly in seizure termination and post-seizure epochs (ptemporal cortex and hippocampus. The "fall-max" phase-amplitude modulation pattern, i.e., high-frequency amplitudes were largest in the low-frequency phase range [-π, 0], which corresponded to the falling edges of low-frequency oscillations, appeared in the middle period of the seizures at epileptic focus channels. Channels with strong modulation index appeared on the corresponding left or right temporal cortex of surgical resection and overlapped with the clinical resection zones in all patients. The "fall-max" pattern between the phase of low-frequency oscillation and amplitude of high

  3. Unilateral thalamic hypometabolism on FDG brain PET in patient with temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Sager, Sait; Asa, Sertac; Uslu, Lebriz; Halac, Metin

    2011-01-01

    Interictal Brain 18 F fluorodeoxyglucose (FDG) Positron Emission Tomography (PET) imaging has been widely used for localizing the focus of a seizure. Hypometabolism in the extratemporal cortex on FDG-PET study is an important finding to localize seizure focus, which might be seen as ipsilateral, contralateral or bilateral thalamus hypometabolism in epileptic patients. In this case report, it is aimed to show ipsilateral thalamus hypometabolism on FDG PET brain study of a 24-year-old male patient with temporal lobe epilepsy. (author)

  4. Topographical gradients of semantics and phonology revealed by temporal lobe stimulation.

    Science.gov (United States)

    Miozzo, Michele; Williams, Alicia C; McKhann, Guy M; Hamberger, Marla J

    2017-02-01

    Word retrieval is a fundamental component of oral communication, and it is well established that this function is supported by left temporal cortex. Nevertheless, the specific temporal areas mediating word retrieval and the particular linguistic processes these regions support have not been well delineated. Toward this end, we analyzed over 1000 naming errors induced by left temporal cortical stimulation in epilepsy surgery patients. Errors were primarily semantic (lemon → "pear"), phonological (horn → "corn"), non-responses, and delayed responses (correct responses after a delay), and each error type appeared predominantly in a specific region: semantic errors in mid-middle temporal gyrus (TG), phonological errors and delayed responses in middle and posterior superior TG, and non-responses in anterior inferior TG. To the extent that semantic errors, phonological errors and delayed responses reflect disruptions in different processes, our results imply topographical specialization of semantic and phonological processing. Specifically, results revealed an inferior-to-superior gradient, with more superior regions associated with phonological processing. Further, errors were increasingly semantically related to targets toward posterior temporal cortex. We speculate that detailed semantic input is needed to support phonological retrieval, and thus, the specificity of semantic input increases progressively toward posterior temporal regions implicated in phonological processing. Hum Brain Mapp 38:688-703, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Altered regional homogeneity of spontaneous brain activity in idiopathic trigeminal neuralgia.

    Science.gov (United States)

    Wang, Yanping; Zhang, Xiaoling; Guan, Qiaobing; Wan, Lihong; Yi, Yahui; Liu, Chun-Feng

    2015-01-01

    The pathophysiology of idiopathic trigeminal neuralgia (ITN) has conventionally been thought to be induced by neurovascular compression theory. Recent structural brain imaging evidence has suggested an additional central component for ITN pathophysiology. However, far less attention has been given to investigations of the basis of abnormal resting-state brain activity in these patients. The objective of this study was to investigate local brain activity in patients with ITN and its correlation with clinical variables of pain. Resting-state functional magnetic resonance imaging data from 17 patients with ITN and 19 age- and sex-matched healthy controls were analyzed using regional homogeneity (ReHo) analysis, which is a data-driven approach used to measure the regional synchronization of spontaneous brain activity. Patients with ITN had decreased ReHo in the left amygdala, right parahippocampal gyrus, and left cerebellum and increased ReHo in the right inferior temporal gyrus, right thalamus, right inferior parietal lobule, and left postcentral gyrus (corrected). Furthermore, the increase in ReHo in the left precentral gyrus was positively correlated with visual analog scale (r=0.54; P=0.002). Our study found abnormal functional homogeneity of intrinsic brain activity in several regions in ITN, suggesting the maladaptivity of the process of daily pain attacks and a central role for the pathophysiology of ITN.

  6. Functional connectivity evidence of cortico-cortico inhibition in temporal lobe epilepsy.

    Science.gov (United States)

    Tracy, Joseph I; Osipowicz, Karol; Spechler, Philip; Sharan, Ashwini; Skidmore, Christopher; Doucet, Gaelle; Sperling, Michael R

    2014-01-01

    Epileptic seizures can initiate a neural circuit and lead to aberrant neural communication with brain areas outside the epileptogenic region. We focus on interictal activity in focal temporal lobe epilepsy and evaluate functional connectivity (FC) differences that emerge as function of bilateral versus strictly unilateral epileptiform activity. We assess the strength of FC at rest between the ictal and non-ictal temporal lobes, in addition to whole brain connectivity with the ictal temporal lobe. Results revealed strong connectivity between the temporal lobes for both patient groups, but this did not vary as a function of unilateral versus bilateral interictal status. Both the left and right unilateral temporal lobe groups showed significant anti-correlated activity in regions outside the epileptogenic temporal lobe, primarily involving the contralateral (non-ictal/non-pathologic) hemisphere, with precuneus involvement prominent. The bilateral groups did not show this contralateral anti-correlated activity. This anti-correlated connectivity may represent a form of protective and adaptive inhibition, helping to constrain epileptiform activity to the pathologic temporal lobe. The absence of this activity in the bilateral groups may be indicative of flawed inhibitory mechanisms, helping to explain their more widespread epileptiform activity. Our data suggest that the location and build up of epilepsy networks in the brain are not truly random, and are not limited to the formation of strictly epileptogenic networks. Functional networks may develop to take advantage of the regulatory function of structures such as the precuneus to instantiate an anti-correlated network, generating protective cortico-cortico inhibition for the purpose of limiting seizure spread or epileptogenesis. Copyright © 2012 Wiley Periodicals, Inc.

  7. Gender and hemispheric differences in temporal lobe epilepsy: a VBM study.

    Science.gov (United States)

    Santana, Maria Teresa Castilho Garcia; Jackowski, Andrea Parolin; Britto, Fernanda Dos Santos; Sandim, Gabriel Barbosa; Caboclo, Luís Otávio Sales Ferreira; Centeno, Ricardo Silva; Carrete, Henrique; Yacubian, Elza Márcia Targas

    2014-04-01

    Gender differences are recognized in the functional and anatomical organization of the human brain. Differences between genders are probably expressed early in life, when differential rates of cerebral maturation occur. Sexual dimorphism has been described in temporal lobe epilepsy with mesial temporal sclerosis (TLE-MTS). Several voxel-based morphometry (VBM) studies have shown that TLE-MTS extends beyond mesial temporal structures, and that there are differences in the extent of anatomical damage between hemispheres, although none have approached gender differences. Our aim was to investigate gender differences and anatomical abnormalities in TLE-MTS. VBM5 was employed to analyze gender and hemispheric differences in 120 patients with TLE-MTS and 50 controls. VBM abnormalities were more widespread in left-TLE; while in women changes were mostly seen in temporal areas, frontal regions were more affected in men. Our study confirmed that gender and laterality are important factors determining the nature and severity of brain damage in TLE-MTS. Differential rates of maturation between gender and hemispheres may explain the distinct areas of anatomical damage in men and women. Copyright © 2013 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  8. Effect of acupuncture on regional cerebral blood flow at acupoints GV 20, GV. 26, LI, 4. ST. 36, SP. 6 evaluated by Tc-99m ECD brain SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ho Chun; Bom, Hee Seung; Kang, Hwa Jeong; Kim, Seong Min; Jeong, Hwan Jeong; Kim, Ji Yeul [College of Medicine, Dongshin Univ., Naju (Korea, Republic of); Ahn, Soo Gi [College of Medicine, Wonkwang Univ., Iksan (Korea, Republic of)

    2000-12-01

    To evaluate the effect of acupuncture on regional cerebral blood flow (rCBF) at acupoints suggested by oriental medicine to be related to the treatment of cerebrovascular diseases. Rest/acupuncture-stimulation Tc-99m ECD brain SPECT using a same-dose subtraction method was performed on 54 normal volunteers (34 males, 20 females, age range from 18 to 62 years) using six paradigms: acupuncture at acupoints GV. 20, GV. 26, LI. 4, ST. 36 and SP. 6. In the control study, needle location was chosen on a non-meridian focus 1 cm posterior to the right fibular head. All images were spatially normalized, and the differences between rest and acupuncture stimulation were statistically analyzed using SPM for Windows. Acupuncture applied at acupoint GV. 20 increased rCBF in both the anterior frontal lobes, the right frontotemporal lobes, and the left anterior temporal lobe and the left cerebellar hemisphere. Acupuncture at GV. 26 increased rCBF in the left prefrontal cortex. Acupuncture at LI. 4 increased rCBF in the left prefrontal and both the inferior frontal lobes, and the left anterior temporal lobe and the left cerebellar hemisphere. Acupuncture at ST. 36 increased rCBF in the left anterior temporal lobe, the right inferior frontal lobes, and the left cerebellum. Acupuncture at SP 6 increased rCBF in the left inferior frontal and anterior temporal lobes. In the control stimulation, no significant rCBF increase was observed. The results demonstrated a correlation between stimuation at each acupoint with increase in rCBF to the corresponding brain areas.

  9. Effect of acupuncture on regional cerebral blood flow at acupoints GV 20, GV. 26, LI, 4. ST. 36, SP. 6 evaluated by Tc-99m ECD brain SPECT

    International Nuclear Information System (INIS)

    Song, Ho Chun; Bom, Hee Seung; Kang, Hwa Jeong; Kim, Seong Min; Jeong, Hwan Jeong; Kim, Ji Yeul; Ahn, Soo Gi

    2000-01-01

    To evaluate the effect of acupuncture on regional cerebral blood flow (rCBF) at acupoints suggested by oriental medicine to be related to the treatment of cerebrovascular diseases. Rest/acupuncture-stimulation Tc-99m ECD brain SPECT using a same-dose subtraction method was performed on 54 normal volunteers (34 males, 20 females, age range from 18 to 62 years) using six paradigms: acupuncture at acupoints GV. 20, GV. 26, LI. 4, ST. 36 and SP. 6. In the control study, needle location was chosen on a non-meridian focus 1 cm posterior to the right fibular head. All images were spatially normalized, and the differences between rest and acupuncture stimulation were statistically analyzed using SPM for Windows. Acupuncture applied at acupoint GV. 20 increased rCBF in both the anterior frontal lobes, the right frontotemporal lobes, and the left anterior temporal lobe and the left cerebellar hemisphere. Acupuncture at GV. 26 increased rCBF in the left prefrontal cortex. Acupuncture at LI. 4 increased rCBF in the left prefrontal and both the inferior frontal lobes, and the left anterior temporal lobe and the left cerebellar hemisphere. Acupuncture at ST. 36 increased rCBF in the left anterior temporal lobe, the right inferior frontal lobes, and the left cerebellum. Acupuncture at SP 6 increased rCBF in the left inferior frontal and anterior temporal lobes. In the control stimulation, no significant rCBF increase was observed. The results demonstrated a correlation between stimuation at each acupoint with increase in rCBF to the corresponding brain areas

  10. Gray, White Matter Concentration Changes and Their Correlation with Heterotopic Neurons in Temporal Lobe Epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Tae, Woo Suk; Joo, Eun Yun; Kim, Sung Tae; Hong, Seung Bong [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2010-02-15

    To identify changes in gray and white matter concentrations (GMC, WMC), and their relation to heterotopic neuron numbers in mesial temporal lobe epilepsy (mTLE). The gray matter or white matter concentrations of 16 left and 15 right mTLE patients who achieved an excellent surgical outcome were compared with those of 24 healthy volunteers for the left group and with 23 healthy volunteers for the right group, by optimized voxel-based morphometry using unmodulated and modulated images. A histologic count of heterotopic neurons was obtained in the white matter of the anterior temporal lobe originating from the patients' surgical specimens. In addition, the number of heterotopic neurons were tested to determine if there was a correlation with the GMC or WMC. The GMCs of the left and right mTLE groups were reduced in the ipsilateral hippocampi, bilateral thalami, precentral gyri, and in the cerebellum. The WMCs were reduced in the ipsilateral white matter of the anterior temporal lobe, bilateral parahippocampal gyri, and internal capsules, but increased in the pons and bilateral precentral gyri. The heterotopic neuron counts in the left mTLE group showed a positive correlation (r = 0.819, p < 0.0001) with GMCs and a negative correlation (r = - 0.839, p < 0.0001) with WMCs in the white matter of the anterior temporal lobe. The present study shows the abnormalities of the cortico-thalamo- hippocampal network including a gray matter volume reduction in the anterior frontal lobes and an abnormality of brain tissue concentration in the pontine area. Furthermore, heterotopic neuron numbers were significantly correlated with GMC or WMC in the left white matter of anterior temporal lobe.

  11. Cerebral and cerebellar language organization in a right-handed subject with a left temporal porencephalic cyst : An fMRI study

    NARCIS (Netherlands)

    De Coninck, Mattias; Van Hecke, Wim; Crols, Roe; van Dun, Kim; Van Dam, Debby; De Deyn, Peter P.; Brysbaert, Marc; Marien, Peter

    To test the hypothesis of crossed cerebro-cerebellar language dominance (Marien, Engelborghs, Fabbro, & De Deyn, 2001) in atypical populations, the pattern of cerebral and cerebellar language organization in a right-handed woman with a large porencephalic cyst in the left temporal lobe with no

  12. Topological Alterations and Symptom-Relevant Modules in the Whole-Brain Structural Network in Semantic Dementia.

    Science.gov (United States)

    Ding, Junhua; Chen, Keliang; Zhang, Weibin; Li, Ming; Chen, Yan; Yang, Qing; Lv, Yingru; Guo, Qihao; Han, Zaizhu

    2017-01-01

    Semantic dementia (SD) is characterized by a selective decline in semantic processing. Although the neuropsychological pattern of this disease has been identified, its topological global alterations and symptom-relevant modules in the whole-brain anatomical network have not been fully elucidated. This study aims to explore the topological alteration of anatomical network in SD and reveal the modules associated with semantic deficits in this disease. We first constructed the whole-brain white-matter networks of 20 healthy controls and 19 patients with SD. Then, the network metrics of graph theory were compared between these two groups. Finally, we separated the network of SD patients into different modules and correlated the structural integrity of each module with the severity of the semantic deficits across patients. The network of the SD patients presented a significantly reduced global efficiency, indicating that the long-distance connections were damaged. The network was divided into the following four distinctive modules: the left temporal/occipital/parietal, frontal, right temporal/occipital, and frontal/parietal modules. The first two modules were associated with the semantic deficits of SD. These findings illustrate the skeleton of the neuroanatomical network of SD patients and highlight the key role of the left temporal/occipital/parietal module and the left frontal module in semantic processing.

  13. Interictal brain SPECT in patients with medically refractory temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Andraus, Maria Emilia Cosenza

    2000-06-01

    The brain single photon emission computed tomography (SPECT) is s functional neuroimaging method that can detect localized changes in cerebral blood flow. The temporal lobe epilepsy (TLE) is the most common epileptic syndrome in adults, and more than 50% are medically refractory. The SPECT can contribute to investigation of epileptogenic focus and is one of the methods of pre-surgical evaluation of these patients. (author)

  14. MRI-based brain structure volumes in temporal lobe epilepsy patients and their unaffected siblings: a preliminary study.

    LENUS (Irish Health Repository)

    Scanlon, Cathy

    2013-01-01

    Investigating the heritability of brain structure may be useful in simplifying complicated genetic studies in temporal lobe epilepsy (TLE). A preliminary study is presented to determine if volume deficits of candidate brain structures present at a higher rate in unaffected siblings than controls subjects.

  15. Equivalent brain SPECT perfusion changes underlying therapeutic efficiency in pharmacoresistant depression using either high-frequency left or low-frequency right prefrontal rTMS.

    Science.gov (United States)

    Richieri, Raphaëlle; Boyer, Laurent; Padovani, Romain; Adida, Marc; Colavolpe, Cécile; Mundler, Olivier; Lançon, Christophe; Guedj, Eric

    2012-12-03

    Functional neuroimaging studies have suggested similar mechanisms underlying antidepressant effects of distinct therapeutics. This study aimed to determine and compare functional brain patterns underlying the antidepressant response of 2 distinct protocols of repetitive transcranial magnetic stimulation (rTMS). 99mTc-ECD SPECT was performed before and after rTMS of dorsolateral prefrontal cortex in 61 drug-resistant right-handed patients with major depression, using high frequency (10Hz) left-side stimulation in 33 patients, and low frequency (1Hz) right-side stimulation in 28 patients. Efficiency of rTMS response was defined as at least 50% reduction of the baseline Beck Depression Inventory score. We compared the whole-brain voxel-based brain SPECT changes in perfusion after rTMS, between responders and non-responders in the whole sample (pleft- and right-stimulation. Before rTMS, the left- and right-prefrontal stimulation groups did not differ from clinical data and brain SPECT perfusion. rTMS efficiency (evaluated on % of responders) was statistically equivalent in the two groups of patients. In the whole-group of responder patients, a perfusion decrease was found after rTMS, in comparison to non-responders, within the left perirhinal cortex (BA35, BA36). This result was secondarily confirmed separately in the two subgroups, i.e. after either left stimulation (p=0.017) or right stimulation (pbrain functional changes associated to antidepressive efficiency, consisting to a remote brain limbic activity decrease within the left perirhinal cortex. However, these results will have to be confirmed in a double-blind randomized trial using a sham control group. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Does brain injury impair speech and gesture differently?

    Directory of Open Access Journals (Sweden)

    Tilbe Göksun

    2016-09-01

    Full Text Available People often use spontaneous gestures when talking about space, such as when giving directions. In a recent study from our lab, we examined whether focal brain-injured individuals’ naming motion event components of manner and path (represented in English by verbs and prepositions, respectively are impaired selectively, and whether gestures compensate for impairment in speech. Left or right hemisphere damaged patients and elderly control participants were asked to describe motion events (e.g., walking around depicted in brief videos. Results suggest that producing verbs and prepositions can be separately impaired in the left hemisphere and gesture production compensates for naming impairments when damage involves specific areas in the left temporal cortex.

  17. Mucocele fronto-ethmoïdale geante avec extension intracranienne ...

    African Journals Online (AJOL)

    Mucocele fronto-ethmoïdale geante avec extension intracranienne: a propos d'un cas et revue de la litterature. A Kabre, DS Zabsonre, Y Haro. Abstract. Les mucocèles sont des pseudotumeurs kystiques développées aux dépens des sinus paranasaux. D'évolution lente et silencieuse elles se révèlent le plus souvent par ...

  18. Multimodal magnetic resonance imaging study of treatment-naïve adults with attention-deficit/hyperactivity disorder.

    Directory of Open Access Journals (Sweden)

    Tiffany M Chaim

    Full Text Available BACKGROUND: Attention-Deficit/Hiperactivity Disorder (ADHD is a prevalent disorder, but its neuroanatomical circuitry is still relatively understudied, especially in the adult population. The few morphometric magnetic resonance imaging (MRI and diffusion tensor imaging (DTI studies available to date have found heterogeneous results. This may be at least partly attributable to some well-known technical limitations of the conventional voxel-based methods usually employed to analyze such neuroimaging data. Moreover, there is a great paucity of imaging studies of adult ADHD to date that have excluded patients with history of use of stimulant medication. METHODS: A newly validated method named optimally-discriminative voxel-based analysis (ODVBA was applied to multimodal (structural and DTI MRI data acquired from 22 treatment-naïve ADHD adults and 19 age- and gender-matched healthy controls (HC. RESULTS: Regarding DTI data, we found higher fractional anisotropy in ADHD relative to HC encompassing the white matter (WM of the bilateral superior frontal gyrus, right middle frontal left gyrus, left postcentral gyrus, bilateral cingulate gyrus, bilateral middle temporal gyrus and right superior temporal gyrus; reductions in trace (a measure of diffusivity in ADHD relative to HC were also found in fronto-striatal-parieto-occipital circuits, including the right superior frontal gyrus and bilateral middle frontal gyrus, right precentral gyrus, left middle occipital gyrus and bilateral cingulate gyrus, as well as the left body and right splenium of the corpus callosum, right superior corona radiata, and right superior longitudinal and fronto-occipital fasciculi. Volumetric abnormalities in ADHD subjects were found only at a trend level of significance, including reduced gray matter (GM in the right angular gyrus, and increased GM in the right supplementary motor area and superior frontal gyrus. CONCLUSIONS: Our results suggest that adult ADHD is associated

  19. Multimodal Magnetic Resonance Imaging Study of Treatment-Naïve Adults with Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Chaim, Tiffany M.; Zhang, Tianhao; Zanetti, Marcus V.; da Silva, Maria Aparecida; Louzã, Mário R.; Doshi, Jimit; Serpa, Mauricio H.; Duran, Fabio L. S.; Caetano, Sheila C.; Davatzikos, Christos; Busatto, Geraldo F.

    2014-01-01

    Background Attention-Deficit/Hiperactivity Disorder (ADHD) is a prevalent disorder, but its neuroanatomical circuitry is still relatively understudied, especially in the adult population. The few morphometric magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) studies available to date have found heterogeneous results. This may be at least partly attributable to some well-known technical limitations of the conventional voxel-based methods usually employed to analyze such neuroimaging data. Moreover, there is a great paucity of imaging studies of adult ADHD to date that have excluded patients with history of use of stimulant medication. Methods A newly validated method named optimally-discriminative voxel-based analysis (ODVBA) was applied to multimodal (structural and DTI) MRI data acquired from 22 treatment-naïve ADHD adults and 19 age- and gender-matched healthy controls (HC). Results Regarding DTI data, we found higher fractional anisotropy in ADHD relative to HC encompassing the white matter (WM) of the bilateral superior frontal gyrus, right middle frontal left gyrus, left postcentral gyrus, bilateral cingulate gyrus, bilateral middle temporal gyrus and right superior temporal gyrus; reductions in trace (a measure of diffusivity) in ADHD relative to HC were also found in fronto-striatal-parieto-occipital circuits, including the right superior frontal gyrus and bilateral middle frontal gyrus, right precentral gyrus, left middle occipital gyrus and bilateral cingulate gyrus, as well as the left body and right splenium of the corpus callosum, right superior corona radiata, and right superior longitudinal and fronto-occipital fasciculi. Volumetric abnormalities in ADHD subjects were found only at a trend level of significance, including reduced gray matter (GM) in the right angular gyrus, and increased GM in the right supplementary motor area and superior frontal gyrus. Conclusions Our results suggest that adult ADHD is associated with

  20. Task vs. rest—different network configurations between the coactivation and the resting-state brain networks

    Science.gov (United States)

    Di, Xin; Gohel, Suril; Kim, Eun H.; Biswal, Bharat B.

    2013-01-01

    There is a growing interest in studies of human brain networks using resting-state functional magnetic resonance imaging (fMRI). However, it is unclear whether and how brain networks measured during the resting-state exhibit comparable properties to brain networks during task performance. In the present study, we investigated meta-analytic coactivation patterns among brain regions based upon published neuroimaging studies, and compared the coactivation network configurations with those in the resting-state network. The strength of resting-state functional connectivity between two regions were strongly correlated with the coactivation strength. However, the coactivation network showed greater global efficiency, smaller mean clustering coefficient, and lower modularity compared with the resting-state network, which suggest a more efficient global information transmission and between system integrations during task performing. Hub shifts were also observed within the thalamus and the left inferior temporal cortex. The thalamus and the left inferior temporal cortex exhibited higher and lower degrees, respectively in the coactivation network compared with the resting-state network. These results shed light regarding the reconfiguration of the brain networks between task and resting-state conditions, and highlight the role of the thalamus in change of network configurations in task vs. rest. PMID:24062654

  1. Contribution of fronto-striatal regions to emotional valence and repetition under cognitive conflict.

    Science.gov (United States)

    Chun, Ji-Won; Park, Hae-Jeong; Kim, Dai Jin; Kim, Eosu; Kim, Jae-Jin

    2017-07-01

    Conflict processing mediated by fronto-striatal regions may be influenced by emotional properties of stimuli. This study aimed to examine the effects of emotion repetition on cognitive control in a conflict-provoking situation. Twenty-one healthy subjects were scanned using functional magnetic resonance imaging while performing a sequential cognitive conflict task composed of emotional stimuli. The regional effects were analyzed according to the repetition or non-repetition of cognitive congruency and emotional valence between the preceding and current trials. Post-incongruence interference in error rate and reaction time was significantly smaller than post-congruence interference, particularly under repeated positive and non-repeated positive, respectively, and post-incongruence interference, compared to post-congruence interference, increased activity in the ACC, DLPFC, and striatum. ACC and DLPFC activities were significantly correlated with error rate or reaction time in some conditions, and fronto-striatal connections were related to the conflict processing heightened by negative emotion. These findings suggest that the repetition of emotional stimuli adaptively regulates cognitive control and the fronto-striatal circuit may engage in the conflict adaptation process induced by emotion repetition. Both repetition enhancement and repetition suppression of prefrontal activity may underlie the relationship between emotion and conflict adaptation. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Mechanisms mediating parallel action monitoring in fronto-striatal circuits.

    Science.gov (United States)

    Beste, Christian; Ness, Vanessa; Lukas, Carsten; Hoffmann, Rainer; Stüwe, Sven; Falkenstein, Michael; Saft, Carsten

    2012-08-01

    Flexible response adaptation and the control of conflicting information play a pivotal role in daily life. Yet, little is known about the neuronal mechanisms mediating parallel control of these processes. We examined these mechanisms using a multi-methodological approach that integrated data from event-related potentials (ERPs) with structural MRI data and source localisation using sLORETA. Moreover, we calculated evoked wavelet oscillations. We applied this multi-methodological approach in healthy subjects and patients in a prodromal phase of a major basal ganglia disorder (i.e., Huntington's disease), to directly focus on fronto-striatal networks. Behavioural data indicated, especially the parallel execution of conflict monitoring and flexible response adaptation was modulated across the examined cohorts. When both processes do not co-incide a high integrity of fronto-striatal loops seems to be dispensable. The neurophysiological data suggests that conflict monitoring (reflected by the N2 ERP) and working memory processes (reflected by the P3 ERP) differentially contribute to this pattern of results. Flexible response adaptation under the constraint of high conflict processing affected the N2 and P3 ERP, as well as their delta frequency band oscillations. Yet, modulatory effects were strongest for the N2 ERP and evoked wavelet oscillations in this time range. The N2 ERPs were localized in the anterior cingulate cortex (BA32, BA24). Modulations of the P3 ERP were localized in parietal areas (BA7). In addition, MRI-determined caudate head volume predicted modulations in conflict monitoring, but not working memory processes. The results show how parallel conflict monitoring and flexible adaptation of action is mediated via fronto-striatal networks. While both, response monitoring and working memory processes seem to play a role, especially response selection processes and ACC-basal ganglia networks seem to be the driving force in mediating parallel conflict

  3. MRI and brain spect findings in patients with unilateral temporal lobe epilepsy and normal CT scan

    Directory of Open Access Journals (Sweden)

    P.G. Carrilho

    1994-06-01

    Full Text Available 26 patients with temporal lobe epilepsy clinically documented by several abnormal interictal surface EEGs with typical unitemporal epileptiform activity and a normal CT scan were studied. Interictal99mTC HMPAO brain SPECT and MRI were performed in all subjects. Abnormalities were shown in 61.5% of MRI (n=16 and 65.4% of SPECT (n=17. Hippocampal atrophy associated to a high signal on T2-weighted MRI slices suggesting mesial temporal sclerosis was the main finding (n=12; 75% of abnormal MRI. MRI correlated well to surface EEG in 50% (n=13. There was also a good correlation between MRI and SPECT in 30.7% (n=8. SPECT and EEG were in agreement in 57.7% (n=l5. MRI, SPECT and EEG were congruent in 26.9% (n=7. These results support the usefulness of interictal brain SPECT and MRI in detecting lateralized abnormalities in temporal lobe epilepsy. On the other hand, in two cases, interictal SPECT correlated poorly with surface EEG. This functional method should not be used isolately in the detection of temporal lobe foci. MRI is more useful than CT as a neuroimaging technique in temporal lobe epilepsy. It may detect small structural lesions and mesial temporal lobe sclerosis which are not easily seen with traditional CT scanning.

  4. Specific Regional and Age-Related Small Noncoding RNA Expression Patterns Within Superior Temporal Gyrus of Typical Human Brains Are Less Distinct in Autism Brains.

    Science.gov (United States)

    Stamova, Boryana; Ander, Bradley P; Barger, Nicole; Sharp, Frank R; Schumann, Cynthia M

    2015-12-01

    Small noncoding RNAs play a critical role in regulating messenger RNA throughout brain development and when altered could have profound effects leading to disorders such as autism spectrum disorders (ASD). We assessed small noncoding RNAs, including microRNA and small nucleolar RNA, in superior temporal sulcus association cortex and primary auditory cortex in typical and ASD brains from early childhood to adulthood. Typical small noncoding RNA expression profiles were less distinct in ASD, both between regions and changes with age. Typical micro-RNA coexpression associations were absent in ASD brains. miR-132, miR-103, and miR-320 micro-RNAs were dysregulated in ASD and have previously been associated with autism spectrum disorders. These diminished region- and age-related micro-RNA expression profiles are in line with previously reported findings of attenuated messenger RNA and long noncoding RNA in ASD brain. This study demonstrates alterations in superior temporal sulcus in ASD, a region implicated in social impairment, and is the first to demonstrate molecular alterations in the primary auditory cortex. © The Author(s) 2015.

  5. Treatment for Alexia with Agraphia Following Left Ventral Occipito-Temporal Damage: Strengthening Orthographic Representations Common to Reading and Spelling

    Science.gov (United States)

    Kim, Esther S.; Rising, Kindle; Rapcsak, Steven Z.; Beeson, Pélagie M.

    2015-01-01

    Purpose: Damage to left ventral occipito-temporal cortex can give rise to written language impairment characterized by pure alexia/letter-by-letter (LBL) reading, as well as surface alexia and agraphia. The purpose of this study was to examine the therapeutic effects of a combined treatment approach to address concurrent LBL reading with surface…

  6. White matter and reading deficits after pediatric traumatic brain injury: A diffusion tensor imaging study

    Directory of Open Access Journals (Sweden)

    Chad Parker Johnson

    2015-01-01

    Full Text Available Pediatric traumatic brain injury often results in significant long-term deficits in mastery of reading ability. This study aimed to identify white matter pathways that, when damaged, predicted reading deficits in children. Based on the dual-route model of word reading, we predicted that integrity of the inferior fronto-occipital fasciculus would be related to performance in sight word identification while integrity of the superior longitudinal fasciculus would be related to performance in phonemic decoding. Reading fluency and comprehension were hypothesized to relate to the superior longitudinal fasciculus, inferior fronto-occipital fasciculus, and cingulum bundle. The connectivity of white matter pathways was used to predict reading deficits in children aged 6 to 16 years with traumatic brain injury (n = 29 and those with orthopedic injury (n = 27 using tract-based spatial statistics. Results showed that children with traumatic brain injury and reduced microstructural integrity of the superior longitudinal fasciculus demonstrated reduced word-reading ability on sight word and phonemic decoding tasks. Additionally, children with traumatic brain injury and microstructural changes involving the cingulum bundle demonstrated reduced reading fluency. Results support the association of a dorsal pathway via the superior longitudinal fasciculus with both sight word reading and phonemic decoding. No association was identified between the inferior fronto-occipital fasciculus and sight word reading or phonemic decoding. Reading fluency was associated with the integrity of the cingulum bundle. These findings support dissociable pathways predicting word reading and fluency using Diffusion Tensor Imaging and provide additional information for developing models of acquired reading deficits by specifying areas of brain damage which may predict reading deficits following recovery from the acute phase of TBI.

  7. Development of model plans in three dimensional conformal radiotherapy for brain tumors

    International Nuclear Information System (INIS)

    Pyo, Hongryull; Kim, Gwieon; Keum, Kichang; Chang, Sekyung; Suh, Changok; Lee, Sanghoon

    2002-01-01

    Three dimensional conformal radiotherapy planning is being used widely for the treatment of patients with brain tumor. However, it takes much time to develop an optimal treatment plan, therefore, it is difficult to apply this technique to all patients. To increase the efficiency of this technique, we need to develop standard radiotherapy plans for each site of the brain. Therefore we developed several 3 dimensional conformal radiotherapy plans (3D plans) for tumors at each site of brain, compared them with each other, and with 2 dimensional radiotherapy plans. Finally model plans for each site of the brain were decided. Imaginary tumors, with sizes commonly observed in the clinic, were designed for each site of the brain and drawn on CT images. The planning target volumes (PTVs) were as follows; temporal tumor-5.7 x 8.2 x 7.6 cm, suprasellar tumor-3 x 4 x 4.1 cm, thalamic tumor-3.1 x 5.9 x 3.7 cm, frontoparietal tumor-5.5 x 7 x 5.5 cm, and occipitoparietal tumor-5 x 5.5 x 5 cm. Plans using parallel opposed 2-portals and/or 3 portals including fronto-vertex and 2 lateral fields were developed manually as the conventional 2D plans, and 3D noncoplanar conformal plans were developed using beam's eye view and the automatic block drawing tool. Total tumor dose was 54 Gy for a suprasellar tumor, 59.4 Gy and 72 Gy for the other tumors. All dose plans (including 2D plans) were calculated using 3D plan software. Developed plans were compared with each other using dose-volume histograms (DVH), normal tissue complication probabilities (NTCP) and variable dose statistic values (minimum, maximum and mean dose, D5, V83, V85 and V95). Finally a best radiotherapy plan for each site of brain was selected. 1) Temporal tumor; NTCPs and DVHs of the normal tissue of all 3D plans were superior to 2D plans and this trend was more definite when total dose was escalated to 72 Gy (NTCPs of normal brain 2D plans: 27%, 8% → 3D plans: 1%, 1%). Various dose statistic values did not show any

  8. Comparison of IMP-SPECT findings to subtest scores of Wechsler intelligence adult Scale-Revised in temporal lobe epilepsy patients

    Energy Technology Data Exchange (ETDEWEB)

    Kan, Rumiko; Uejima, Masahiko; Kaneko, Yuko; Miyamoto, Yuriko; Watabe, Manabu; Takahashi, Ruriko; Niwa, Shin-ichi; Shishido, Fumio [Fukushima Medical Coll. (Japan)

    1998-02-01

    In this study, 40 temporal lobe epilepsy patients were assessed, using the Laterality Index (LI) of ROI values in IMP-SPECT findings, Wechsler adult intelligence Scale-Revised (WAIS-R) and subtest scores. LIs of the frontal, temporal and occipital lobes were calculated as follows: the ROI values on the right side were subtracted from those on the left, and the results was divided by the sum of the ROI values on the right and left sides. The individual subtest scores on WAIS-R were standardized by all evaluation scores in order to exclude the influence of differences in intelligence level as much as possible. The results were as follows: there was a positive correlation (r=0.74, p<0.001) between LI values and the performance in Arithmetic in the left temporal lobe hypoperfusion group. And there was a positive correlation (r=0.50, p<0.02) between LI values and the performance in Vocabulary in the left temporal lobe hypoperfusion group. In the right occipital lobe hypoperfusion group, there was a negative correlation (r=-O.44, pbrain function. (author)

  9. Comparison of IMP-SPECT findings to subtest scores of Wechsler intelligence adult Scale-Revised in temporal lobe epilepsy patients

    International Nuclear Information System (INIS)

    Kan, Rumiko; Uejima, Masahiko; Kaneko, Yuko; Miyamoto, Yuriko; Watabe, Manabu; Takahashi, Ruriko; Niwa, Shin-ichi; Shishido, Fumio

    1998-01-01

    In this study, 40 temporal lobe epilepsy patients were assessed, using the Laterality Index (LI) of ROI values in IMP-SPECT findings, Wechsler adult intelligence Scale-Revised (WAIS-R) and subtest scores. LIs of the frontal, temporal and occipital lobes were calculated as follows: the ROI values on the right side were subtracted from those on the left, and the results was divided by the sum of the ROI values on the right and left sides. The individual subtest scores on WAIS-R were standardized by all evaluation scores in order to exclude the influence of differences in intelligence level as much as possible. The results were as follows: there was a positive correlation (r=0.74, p<0.001) between LI values and the performance in Arithmetic in the left temporal lobe hypoperfusion group. And there was a positive correlation (r=0.50, p<0.02) between LI values and the performance in Vocabulary in the left temporal lobe hypoperfusion group. In the right occipital lobe hypoperfusion group, there was a negative correlation (r=-O.44, p< O.05) between LI values and the performance in Coding. It is suggested that decreased blood flow areas detected by SPECT might influence brain function. (author)

  10. The Creative Brain.

    Science.gov (United States)

    Herrmann, Ned

    1982-01-01

    Outlines the differences between left-brain and right-brain functioning and between left-brain and right-brain dominant individuals, and concludes that creativity uses both halves of the brain. Discusses how both students and curriculum can become more "whole-brained." (Author/JM)

  11. Thalamo-Cortical Disruption Contributes to Short-Term Memory Deficits in Patients with Medial Temporal Lobe Damage.

    Science.gov (United States)

    Voets, Natalie L; Menke, Ricarda A L; Jbabdi, Saad; Husain, Masud; Stacey, Richard; Carpenter, Katherine; Adcock, Jane E

    2015-11-01

    Short-term (STM) and long-term memory (LTM) have largely been considered as separate brain systems reflecting fronto-parietal and medial temporal lobe (MTL) functions, respectively. This functional dichotomy has been called into question by evidence of deficits on aspects of working memory in patients with MTL damage, suggesting a potentially direct hippocampal contribution to STM. As the hippocampus has direct anatomical connections with the thalamus, we tested the hypothesis that damage to thalamic nuclei regulating cortico-cortical interactions may contribute to STM deficits in patients with hippocampal dysfunction. We used diffusion-weighted magnetic resonance imaging-based tractography to identify anatomical subdivisions in patients with MTL epilepsy. From these, we measured resting-state functional connectivity with detailed cortical divisions of the frontal, temporal, and parietal lobes. Whereas thalamo-temporal functional connectivity reflected LTM performance, thalamo-prefrontal functional connectivity specifically predicted STM performance. Notably, patients with hippocampal volume loss showed thalamic volume loss, most prominent in the pulvinar region, not detected in patients with normal hippocampal volumes. Aberrant thalamo-cortical connectivity in the epileptic hemisphere was mirrored in a loss of behavioral association with STM performance specifically in patients with hippocampal atrophy. These findings identify thalamo-cortical disruption as a potential mechanism contributing to STM deficits in the context of MTL damage. © The Author 2015. Published by Oxford University Press.

  12. ERP measures of partial semantic knowledge: left temporal indices of skill differences and lexical quality.

    Science.gov (United States)

    Frishkoff, Gwen A; Perfetti, Charles A; Westbury, Chris

    2009-01-01

    This study examines the sensitivity of early event-related potentials (ERPs) to degrees of word semantic knowledge. Participants with strong, average, or weak vocabulary skills made speeded lexical decisions to letter strings. To represent the full spectrum of word knowledge among adult native-English speakers, we used rare words that were orthographically matched with more familiar words and with pseudowords. Since the lexical decision could not reliably be made on the basis of word form, subjects were obliged to use semantic knowledge to perform the task. A d' analysis suggested that high-skilled subjects adopted a more conservative strategy in response to rare versus more familiar words. Moreover, the high-skilled participants showed a trend towards an enhanced "N2c" to rare words, and a similar posterior temporal effect reached significance approximately 650 ms. Generators for these effects were localized to left temporal cortex. We discuss implications of these results for word learning and for theories of lexical semantic access.

  13. Advantages of stereotaxic needle biopsy of brain tumor using interventional magnetic resonance imaging. Report of 12 cases

    International Nuclear Information System (INIS)

    Terao, Tohru; Hashimoto, Takuo; Koyama, Tsutomu; Takahashi, Koichi; Harada, Junta; Abe, Toshiaki

    1998-01-01

    Interventional MRI, an advanced neuroimaging system, was used to perform stereotaxic needle biopsy of brain tissue (AIRIS, 0.3 Tesla, Hitachi) in 12 patients (9 males, 3 females) with intraparenchymal abnormal lesions. This system permits accurate and safe biopsy of brain tissue in real time. Patient ages ranged from 31 to 79 years (mean 61.5 years). We evaluated the abnormal lesion and dominant hemisphere of these patients preoperatively by using CT, MRI and cerebral angiography. Lesions were located in the left frontal lobe in 3 cases, the right frontal lobe in 1 case, the left temporal lobe in 1 case, the right temporal lobe in 1 case, the left parietal lobe in 2 cases, the right parietal lobe in 1 case, the left occipital lobe in 1 case, the bilateral basal ganglia in 1 case and the corpus callosum in 1 case. The sampling points were in the dominant hemisphere in 7 cases and in the non-dominant hemisphere in 5 cases. The diagnosis based on stereotaxic needle biopsy using this system were 4 gliomas, 1 brain abscess, 1 metastatic brain tumor, 1 granuloma, 2 cerebral infarctions, 2 malignant lymphomas and 1 normal brain tissue. Success rate of biopsy for our 12 cases using this system was 91.7%. Brain hemorrhage was a complication in 1 case but there was no case of meningitis or convulsion. This method is useful in patients with inoperable lesions, including deep lesion or lesions in the brainstem diencephalon or dominant hemisphere, in patients with serious complications, and in geriatric patients. In the future, this MRI system may be applied to minimally invasive therapies such as tumor ablation, cryosurgery, chemoablation, and ventrolateral thalamotomy for parkinsonism. (author)

  14. Preoperative mapping of cortical language areas in adult brain tumour patients using PET and individual non-normalised SPM analyses

    International Nuclear Information System (INIS)

    Meyer, Philipp T.; Sturz, Laszlo; Schreckenberger, Mathias; Setani, Keyvan S.; Buell, Udalrich; Spetzger, Uwe; Meyer, Georg F.; Sabri, Osama

    2003-01-01

    In patients scheduled for the resection of perisylvian brain tumours, knowledge of the cortical topography of language functions is crucial in order to avoid neurological deficits. We investigated the applicability of statistical parametric mapping (SPM) without stereotactic normalisation for individual preoperative language function brain mapping using positron emission tomography (PET). Seven right-handed adult patients with left-sided brain tumours (six frontal and one temporal) underwent 12 oxygen-15 labelled water PET scans during overt verb generation and rest. Individual activation maps were calculated for P<0.005 and P<0.001 without anatomical normalisation and overlaid onto the individuals' magnetic resonance images for preoperative planning. Activations corresponding to Broca's and Wernicke's areas were found in five and six cases, respectively, for P<0.005 and in three and six cases, respectively, for P<0.001. One patient with a glioma located in the classical Broca's area without aphasic symptoms presented an activation of the adjacent inferior frontal cortex and of a right-sided area homologous to Broca's area. Four additional patients with left frontal tumours also presented activations of the right-sided Broca's homologue; two of these showed aphasic symptoms and two only a weak or no activation of Broca's area. Other frequently observed activations included bilaterally the superior temporal gyri, prefrontal cortices, anterior insulae, motor areas and the cerebellum. The middle and inferior temporal gyri were activated predominantly on the left. An SPM group analysis (P<0.05, corrected) in patients with left frontal tumours confirmed the activation pattern shown by the individual analyses. We conclude that SPM analyses without stereotactic normalisation offer a promising alternative for analysing individual preoperative language function brain mapping studies. The observed right frontal activations agree with proposed reorganisation processes, but

  15. Brain functional changes in facial expression recognition in patients with major depressive disorder before and after antidepressant treatment

    OpenAIRE

    Jiang, Wenyan; Yin, Zhongmin; Pang, Yixin; Wu, Feng; Kong, Lingtao; Xu, Ke

    2012-01-01

    Functional magnetic resonance imaging was used during emotion recognition to identify changes in functional brain activation in 21 first-episode, treatment-naive major depressive disorder patients before and after antidepressant treatment. Following escitalopram oxalate treatment, patients exhibited decreased activation in bilateral precentral gyrus, bilateral middle frontal gyrus, left middle temporal gyrus, bilateral postcentral gyrus, left cingulate and right parahippocampal gyrus, and inc...

  16. Low message sensation health promotion videos are better remembered and activate areas of the brain associated with memory encoding.

    Directory of Open Access Journals (Sweden)

    David Seelig

    Full Text Available Greater sensory stimulation in advertising has been postulated to facilitate attention and persuasion. For this reason, video ads promoting health behaviors are often designed to be high in "message sensation value" (MSV, a standardized measure of sensory intensity of the audiovisual and content features of an ad. However, our previous functional Magnetic Resonance Imaging (fMRI study showed that low MSV ads were better remembered and produced more prefrontal and temporal and less occipital cortex activation, suggesting that high MSV may divert cognitive resources from processing ad content. The present study aimed to determine whether these findings from anti-smoking ads generalize to other public health topics, such as safe sex. Thirty-nine healthy adults viewed high- and low MSV ads promoting safer sex through condom use, during an fMRI session. Recognition memory of the ads was tested immediately and 3 weeks after the session. We found that low MSV condom ads were better remembered than the high MSV ads at both time points and replicated the fMRI patterns previously reported for the anti-smoking ads. Occipital and superior temporal activation was negatively related to the attitudes favoring condom use (see Condom Attitudes Scale, Methods and Materials section. Psychophysiological interaction (PPI analysis of the relation between occipital and fronto-temporal (middle temporal and inferior frontal gyri cortices revealed weaker negative interactions between occipital and fronto-temporal cortices during viewing of the low MSV that high MSV ads. These findings confirm that the low MSV video health messages are better remembered than the high MSV messages and that this effect generalizes across public health domains. The greater engagement of the prefrontal and fronto-temporal cortices by low MSV ads and the greater occipital activation by high MSV ads suggest that that the "attention-grabbing" high MSV format could impede the learning and

  17. Low message sensation health promotion videos are better remembered and activate areas of the brain associated with memory encoding.

    Science.gov (United States)

    Seelig, David; Wang, An-Li; Jagannathan, Kanchana; Jaganathan, Kanchana; Loughead, James W; Blady, Shira J; Childress, Anna Rose; Romer, Daniel; Langleben, Daniel D

    2014-01-01

    Greater sensory stimulation in advertising has been postulated to facilitate attention and persuasion. For this reason, video ads promoting health behaviors are often designed to be high in "message sensation value" (MSV), a standardized measure of sensory intensity of the audiovisual and content features of an ad. However, our previous functional Magnetic Resonance Imaging (fMRI) study showed that low MSV ads were better remembered and produced more prefrontal and temporal and less occipital cortex activation, suggesting that high MSV may divert cognitive resources from processing ad content. The present study aimed to determine whether these findings from anti-smoking ads generalize to other public health topics, such as safe sex. Thirty-nine healthy adults viewed high- and low MSV ads promoting safer sex through condom use, during an fMRI session. Recognition memory of the ads was tested immediately and 3 weeks after the session. We found that low MSV condom ads were better remembered than the high MSV ads at both time points and replicated the fMRI patterns previously reported for the anti-smoking ads. Occipital and superior temporal activation was negatively related to the attitudes favoring condom use (see Condom Attitudes Scale, Methods and Materials section). Psychophysiological interaction (PPI) analysis of the relation between occipital and fronto-temporal (middle temporal and inferior frontal gyri) cortices revealed weaker negative interactions between occipital and fronto-temporal cortices during viewing of the low MSV that high MSV ads. These findings confirm that the low MSV video health messages are better remembered than the high MSV messages and that this effect generalizes across public health domains. The greater engagement of the prefrontal and fronto-temporal cortices by low MSV ads and the greater occipital activation by high MSV ads suggest that that the "attention-grabbing" high MSV format could impede the learning and retention of public

  18. Quantitative Evaluation of Medial Temporal Lobe Morphology in Children with Febrile Status Epilepticus: Results of the FEBSTAT Study.

    Science.gov (United States)

    McClelland, A C; Gomes, W A; Shinnar, S; Hesdorffer, D C; Bagiella, E; Lewis, D V; Bello, J A; Chan, S; MacFall, J; Chen, M; Pellock, J M; Nordli, D R; Frank, L M; Moshé, S L; Shinnar, R C; Sun, S

    2016-12-01

    The pathogenesis of febrile status epilepticus is poorly understood, but prior studies have suggested an association with temporal lobe abnormalities, including hippocampal malrotation. We used a quantitative morphometric method to assess the association between temporal lobe morphology and febrile status epilepticus. Brain MR imaging was performed in children presenting with febrile status epilepticus and control subjects as part of the Consequences of Prolonged Febrile Seizures in Childhood study. Medial temporal lobe morphologic parameters were measured manually, including the distance of the hippocampus from the midline, hippocampal height:width ratio, hippocampal angle, collateral sulcus angle, and width of the temporal horn. Temporal lobe morphologic parameters were correlated with the presence of visual hippocampal malrotation; the strongest association was with left temporal horn width (P status epilepticus, encompassing both the right and left sides. This association was statistically strongest in the right temporal lobe, whereas hippocampal malrotation was almost exclusively left-sided in this cohort. The association between temporal lobe measurements and febrile status epilepticus persisted when the analysis was restricted to cases with visually normal imaging findings without hippocampal malrotation or other visually apparent abnormalities. Several component morphologic features of hippocampal malrotation are independently associated with febrile status epilepticus, even when complete hippocampal malrotation is absent. Unexpectedly, this association predominantly involves the right temporal lobe. These findings suggest that a spectrum of bilateral temporal lobe anomalies are associated with febrile status epilepticus in children. Hippocampal malrotation may represent a visually apparent subset of this spectrum. © 2016 by American Journal of Neuroradiology.

  19. Lateralization of spatial rather than temporal attention underlies the left hemifield advantage in rapid serial visual presentation.

    Science.gov (United States)

    Asanowicz, Dariusz; Kruse, Lena; Śmigasiewicz, Kamila; Verleger, Rolf

    2017-11-01

    In bilateral rapid serial visual presentation (RSVP), the second of two targets, T1 and T2, is better identified in the left visual field (LVF) than in the right visual field (RVF). This LVF advantage may reflect hemispheric asymmetry in temporal attention or/and in spatial orienting of attention. Participants performed two tasks: the "standard" bilateral RSVP task (Exp.1) and its unilateral variant (Exp.1 & 2). In the bilateral task, spatial location was uncertain, thus target identification involved stimulus-driven spatial orienting. In the unilateral task, the targets were presented block-wise in the LVF or RVF only, such that no spatial orienting was needed for target identification. Temporal attention was manipulated in both tasks by varying the T1-T2 lag. The results showed that the LVF advantage disappeared when involvement of stimulus-driven spatial orienting was eliminated, whereas the manipulation of temporal attention had no effect on the asymmetry. In conclusion, the results do not support the hypothesis of hemispheric asymmetry in temporal attention, and provide further evidence that the LVF advantage reflects right hemisphere predominance in stimulus-driven orienting of spatial attention. These conclusions fit evidence that temporal attention is implemented by bilateral parietal areas and spatial attention by the right-lateralized ventral frontoparietal network. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Changes in spontaneous brain activity in early Parkinson's disease.

    Science.gov (United States)

    Yang, Hong; Zhou, Xiaohong Joe; Zhang, Min-Ming; Zheng, Xu-Ning; Zhao, Yi-Lei; Wang, Jue

    2013-08-09

    Resting state brain activity can provide valuable insights into the pathophysiology of Parkinson's disease (PD). The purpose of the present study was (a) to investigate abnormal spontaneous neuronal activity in early PD patients using resting-state functional MRI (fMRI) with a regional homogeneity (ReHo) method and (b) to demonstrate the potential of using changes in abnormal spontaneous neuronal activity for monitoring the progression of PD during its early stages. Seventeen early PD patients were assessed with the Unified Parkinson's Disease Rating Scale (UPDRS), the Hoehn and Yahr disability scale and the Mini-mental State Examination (MMSE) were compared with seventeen gender- and age-matched healthy controls. All subjects underwent MRI scans using a 1.5T General Electric Signa Excite II scanner. The MRI scan protocol included whole-brain volumetric imaging using a 3D inversion recovery prepared (IR-Prep) fast spoiled gradient-echo pulse sequence and 2D multi-slice (22 axial slices covering the whole brain) resting-state fMRI using an echo planar imaging (EPI) sequence. Images were analyzed in SPM5 together with a ReHo algorithm using the in-house software program REST. A corrected threshold of pbrain regions, including the left cerebellum, left parietal lobe, right middle temporal lobe, right sub-thalamic nucleus areas, right superior frontal gyrus, middle frontal gyrus (MFG), right inferior parietal lobe (IPL), right precuneus lobe, left MFG and left IPL. Additionally, significantly reduced ReHo was also observed in the early PD patients in the following brain regions: the left putamen, left inferior frontal gyrus, right hippocampus, right anterior cingulum, and bilateral lingual gyrus. Moreover, in PD patients, ReHo in the left putamen was negatively correlated with the UPDRS scores (r=-0.69). These results indicate that the abnormal resting state spontaneous brain activity associated with patients with early PD can be revealed by Reho analysis. Copyright