WorldWideScience

Sample records for leech muscle regeneration

  1. Multiple changes in peptide and lipid expression associated with regeneration in the nervous system of the medicinal leech.

    Directory of Open Access Journals (Sweden)

    Céline Meriaux

    2011-04-01

    Full Text Available The adult medicinal leech central nervous system (CNS is capable of regenerating specific synaptic circuitry after a mechanical lesion, displaying evidence of anatomical repair within a few days and functional recovery within a few weeks. In the present work, spatiotemporal changes in molecular distributions during this phenomenon are explored. Moreover, the hypothesis that neural regeneration involves some molecular factors initially employed during embryonic neural development is tested.Imaging mass spectrometry coupled to peptidomic and lipidomic methodologies allowed the selection of molecules whose spatiotemporal pattern of expression was of potential interest. The identification of peptides was aided by comparing MS/MS spectra obtained for the peptidome extracted from embryonic and adult tissues to leech transcriptome and genome databases. Through the parallel use of a classical lipidomic approach and secondary ion mass spectrometry, specific lipids, including cannabinoids, gangliosides and several other types, were detected in adult ganglia following mechanical damage to connected nerves. These observations motivated a search for possible effects of cannabinoids on neurite outgrowth. Exposing nervous tissues to Transient Receptor Potential Vanilloid (TRPV receptor agonists resulted in enhanced neurite outgrowth from a cut nerve, while exposure to antagonists blocked such outgrowth.The experiments on the regenerating adult leech CNS reported here provide direct evidence of increased titers of proteins that are thought to play important roles in early stages of neural development. Our data further suggest that endocannabinoids also play key roles in CNS regeneration, mediated through the activation of leech TRPVs, as a thorough search of leech genome databases failed to reveal any leech orthologs of the mammalian cannabinoid receptors but revealed putative TRPVs. In sum, our observations identify a number of lipids and proteins that may

  2. Skeletal muscle regeneration is modulated by inflammation

    Directory of Open Access Journals (Sweden)

    Wenjun Yang

    2018-04-01

    Full Text Available Skeletal muscle regeneration is a complex process orchestrated by multiple steps. Recent findings indicate that inflammatory responses could play central roles in bridging initial muscle injury responses and timely muscle injury reparation. The various types of immune cells and cytokines have crucial roles in muscle regeneration process. In this review, we briefly summarise the functions of acute inflammation in muscle regeneration. The translational potential of this article: Immune system is closely relevant to the muscle regeneration. Understanding the mechanisms of inflammation in muscle regeneration is therefore critical for the development of effective regenerative, and therapeutic strategies in muscular disorders. This review provides information for muscle regeneration research regarding the effects of inflammation on muscle regeneration. Keywords: Chronic muscle disorders, Cytokines, Immune cells, Inflammation, Muscle regeneration, Muscle stem cells

  3. Muscle regeneration in mitochondrial myopathies

    DEFF Research Database (Denmark)

    Krag, T O; Hauerslev, S; Jeppesen, T D

    2013-01-01

    Mitochondrial myopathies cover a diverse group of disorders in which ragged red and COX-negative fibers are common findings on muscle morphology. In contrast, muscle degeneration and regeneration, typically found in muscular dystrophies, are not considered characteristic features of mitochondrial...... myopathies. We investigated regeneration in muscle biopsies from 61 genetically well-defined patients affected by mitochondrial myopathy. Our results show that the perturbed energy metabolism in mitochondrial myopathies causes ongoing muscle regeneration in a majority of patients, and some were even affected...

  4. Redox Control of Skeletal Muscle Regeneration.

    Science.gov (United States)

    Le Moal, Emmeran; Pialoux, Vincent; Juban, Gaëtan; Groussard, Carole; Zouhal, Hassane; Chazaud, Bénédicte; Mounier, Rémi

    2017-08-10

    Skeletal muscle shows high plasticity in response to external demand. Moreover, adult skeletal muscle is capable of complete regeneration after injury, due to the properties of muscle stem cells (MuSCs), the satellite cells, which follow a tightly regulated myogenic program to generate both new myofibers and new MuSCs for further needs. Although reactive oxygen species (ROS) and reactive nitrogen species (RNS) have long been associated with skeletal muscle physiology, their implication in the cell and molecular processes at work during muscle regeneration is more recent. This review focuses on redox regulation during skeletal muscle regeneration. An overview of the basics of ROS/RNS and antioxidant chemistry and biology occurring in skeletal muscle is first provided. Then, the comprehensive knowledge on redox regulation of MuSCs and their surrounding cell partners (macrophages, endothelial cells) during skeletal muscle regeneration is presented in normal muscle and in specific physiological (exercise-induced muscle damage, aging) and pathological (muscular dystrophies) contexts. Recent advances in the comprehension of these processes has led to the development of therapeutic assays using antioxidant supplementation, which result in inconsistent efficiency, underlying the need for new tools that are aimed at precisely deciphering and targeting ROS networks. This review should provide an overall insight of the redox regulation of skeletal muscle regeneration while highlighting the limits of the use of nonspecific antioxidants to improve muscle function. Antioxid. Redox Signal. 27, 276-310.

  5. Use of the mechanical leech for successful zone I replantation.

    Science.gov (United States)

    Kim, Sang Wha; Han, Hyun Ho; Jung, Sung-No

    2014-01-01

    Replantation of zone I finger injuries remains a challenge, particularly if the fingertip was previously scarred or atrophied, which makes it difficult to secure a suitable vein at the amputation site. In cases of artery-only anastomosis, we propose using a mechanical leech technique to maintain sufficient venous outflow until the internal circulation regenerates. We applied this procedure to eight patients who had zone 1 amputations without veins that were suitable for anastomosis. Emergent surgery was performed and an artery-only anastomosis was created. As there were no veins available, we cut a branch of the central artery and anastomosed it with a 24-gauge angioneedle, which served as a conduit for venous drainage. The overall survival rate for zone I replantation using mechanical leech was 87.5% and the average time to maintain the mechanical leech was 5 days. The mechanical leech technique may serve as an alternative option for the management of venous congestion when no viable veins are available.

  6. Use of the Mechanical Leech for Successful Zone I Replantation

    Directory of Open Access Journals (Sweden)

    Sang Wha Kim

    2014-01-01

    Full Text Available Replantation of zone I finger injuries remains a challenge, particularly if the fingertip was previously scarred or atrophied, which makes it difficult to secure a suitable vein at the amputation site. In cases of artery-only anastomosis, we propose using a mechanical leech technique to maintain sufficient venous outflow until the internal circulation regenerates. We applied this procedure to eight patients who had zone 1 amputations without veins that were suitable for anastomosis. Emergent surgery was performed and an artery-only anastomosis was created. As there were no veins available, we cut a branch of the central artery and anastomosed it with a 24-gauge angioneedle, which served as a conduit for venous drainage. The overall survival rate for zone I replantation using mechanical leech was 87.5% and the average time to maintain the mechanical leech was 5 days. The mechanical leech technique may serve as an alternative option for the management of venous congestion when no viable veins are available.

  7. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration

    DEFF Research Database (Denmark)

    Mackey, Abigail L; Magnan, Mélanie; Chazaud, Bénédicte

    2017-01-01

    immediately surrounding regenerating muscle fibres. These novel findings indicate an important role for fibroblasts in supporting the regeneration of muscle fibres, potentially through direct stimulation of satellite cell differentiation and fusion, and contribute to understanding of cell-cell cross......-talk during physiological and pathological muscle remodelling. ABSTRACT: Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration......, there is emerging evidence in rodents for a regulatory influence on fibroblast activity. However, the influence of fibroblasts on satellite cells and muscle regeneration in humans is unknown. The purpose of this study was to investigate this in vitro and during in vivo regeneration in humans. Following a muscle...

  8. Tropomyosin 4 defines novel filaments in skeletal muscle associated with muscle remodelling/regeneration in normal and diseased muscle.

    Science.gov (United States)

    Vlahovich, Nicole; Schevzov, Galina; Nair-Shaliker, Visalini; Ilkovski, Biljana; Artap, Stanley T; Joya, Josephine E; Kee, Anthony J; North, Kathryn N; Gunning, Peter W; Hardeman, Edna C

    2008-01-01

    The organisation of structural proteins in muscle into highly ordered sarcomeres occurs during development, regeneration and focal repair of skeletal muscle fibers. The involvement of cytoskeletal proteins in this process has been documented, with nonmuscle gamma-actin found to play a role in sarcomere assembly during muscle differentiation and also shown to be up-regulated in dystrophic muscles which undergo regeneration and repair [Lloyd et al.,2004; Hanft et al.,2006]. Here, we show that a cytoskeletal tropomyosin (Tm), Tm4, defines actin filaments in two novel compartments in muscle fibers: a Z-line associated cytoskeleton (Z-LAC), similar to a structure we have reported previously [Kee et al.,2004], and longitudinal filaments that are orientated parallel to the sarcomeric apparatus, present during myofiber growth and repair/regeneration. Tm4 is upregulated in paradigms of muscle repair including induced regeneration and focal repair and in muscle diseases with repair/regeneration features, muscular dystrophy and nemaline myopathy. Longitudinal Tm4-defined filaments also are present in diseased muscle. Transition of the Tm4-defined filaments from a longitudinal to a Z-LAC orientation is observed during the course of muscle regeneration. This Tm4-defined cytoskeleton is a marker of growth and repair/regeneration in response to injury, disease state and stress in skeletal muscle.

  9. Muscle Satellite Cell Protein Teneurin‐4 Regulates Differentiation During Muscle Regeneration

    Science.gov (United States)

    Ishii, Kana; Suzuki, Nobuharu; Mabuchi, Yo; Ito, Naoki; Kikura, Naomi; Fukada, So‐ichiro; Okano, Hideyuki; Takeda, Shin'ichi

    2015-01-01

    Abstract Satellite cells are maintained in an undifferentiated quiescent state, but during muscle regeneration they acquire an activated stage, and initiate to proliferate and differentiate as myoblasts. The transmembrane protein teneurin‐4 (Ten‐4) is specifically expressed in the quiescent satellite cells; however, its cellular and molecular functions remain unknown. We therefore aimed to elucidate the function of Ten‐4 in muscle satellite cells. In the tibialis anterior (TA) muscle of Ten‐4‐deficient mice, the number and the size of myofibers, as well as the population of satellite cells, were reduced with/without induction of muscle regeneration. Furthermore, we found an accelerated activation of satellite cells in the regenerated Ten‐4‐deficient TA muscle. The cell culture analysis using primary satellite cells showed that Ten‐4 suppressed the progression of myogenic differentiation. Together, our findings revealed that Ten‐4 functions as a crucial player in maintaining the quiescence of muscle satellite cells. Stem Cells 2015;33:3017–3027 PMID:26013034

  10. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration.

    Science.gov (United States)

    Mackey, Abigail L; Magnan, Mélanie; Chazaud, Bénédicte; Kjaer, Michael

    2017-08-01

    Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. The extent of cross-talk between fibroblasts, as the source of matrix protein, and satellite cells in humans is unknown. We studied this in human muscle biopsies and cell-culture studies. We observed a strong stimulation of myogenesis by human fibroblasts in cell culture. In biopsies collected 30 days after a muscle injury protocol, fibroblast number increased to four times control levels, where fibroblasts were found to be preferentially located immediately surrounding regenerating muscle fibres. These novel findings indicate an important role for fibroblasts in supporting the regeneration of muscle fibres, potentially through direct stimulation of satellite cell differentiation and fusion, and contribute to understanding of cell-cell cross-talk during physiological and pathological muscle remodelling. Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration, there is emerging evidence in rodents for a regulatory influence on fibroblast activity. However, the influence of fibroblasts on satellite cells and muscle regeneration in humans is unknown. The purpose of this study was to investigate this in vitro and during in vivo regeneration in humans. Following a muscle injury protocol in young healthy men (n = 7), the number of fibroblasts (TCF7L2+), satellite cells (Pax7+), differentiating myogenic cells (myogenin+) and regenerating fibres (neonatal/embryonic myosin+) was determined from biopsy cross-sections. Fibroblasts and myogenic precursor cells (MPCs) were also isolated from human skeletal muscle (n = 4) and co-cultured using different cell ratios, with the two cell populations either in direct contact with each other or separated by a permeable

  11. Impaired Muscle Regeneration in Ob/ob and Db/db Mice

    Directory of Open Access Journals (Sweden)

    Mai-Huong Nguyen

    2011-01-01

    Full Text Available In obesity and type 2 diabetes, efficient skeletal muscle repair following injury may be required, not only for restoring muscle structure and function, but also for maintaining exercise capacity and insulin sensitivity. The hypothesis of this study was that muscle regeneration would be impaired in ob/ob and db/db mice, which are common mouse models of obesity and type 2 diabetes. Muscle injury was produced by cardiotoxin injection, and regeneration was assessed by morphological and immunostaining techniques. Muscle regeneration was delayed in ob/ob and db/db mice, but not in a less severe model of insulin resistance – feeding a high-fat diet to wild-type mice. Angiogenesis, cell proliferation, and myoblast accumulation were also impaired in ob/ob and db/db mice, but not the high-fat diet mice. The impairments in muscle regeneration were associated with impaired macrophage accumulation; macrophages have been shown previously to be required for efficient muscle regeneration. Impaired regeneration in ob/ob and db/db mice could be due partly to the lack of leptin signaling, since leptin is expressed both in damaged muscle and in cultured muscle cells. In summary, impaired muscle regeneration in ob/ob and db/db mice was associated with reduced macrophage accumulation, angiogenesis, and myoblast activity, and could have implications for insulin sensitivity in the skeletal muscle of obese and type 2 diabetic patients.

  12. Muscle Satellite Cell Protein Teneurin-4 Regulates Differentiation During Muscle Regeneration.

    Science.gov (United States)

    Ishii, Kana; Suzuki, Nobuharu; Mabuchi, Yo; Ito, Naoki; Kikura, Naomi; Fukada, So-Ichiro; Okano, Hideyuki; Takeda, Shin'ichi; Akazawa, Chihiro

    2015-10-01

    Satellite cells are maintained in an undifferentiated quiescent state, but during muscle regeneration they acquire an activated stage, and initiate to proliferate and differentiate as myoblasts. The transmembrane protein teneurin-4 (Ten-4) is specifically expressed in the quiescent satellite cells; however, its cellular and molecular functions remain unknown. We therefore aimed to elucidate the function of Ten-4 in muscle satellite cells. In the tibialis anterior (TA) muscle of Ten-4-deficient mice, the number and the size of myofibers, as well as the population of satellite cells, were reduced with/without induction of muscle regeneration. Furthermore, we found an accelerated activation of satellite cells in the regenerated Ten-4-deficient TA muscle. The cell culture analysis using primary satellite cells showed that Ten-4 suppressed the progression of myogenic differentiation. Together, our findings revealed that Ten-4 functions as a crucial player in maintaining the quiescence of muscle satellite cells. © 2015 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  13. Orthogonal muscle fibres have different instructive roles in planarian regeneration.

    Science.gov (United States)

    Scimone, M Lucila; Cote, Lauren E; Reddien, Peter W

    2017-11-30

    The ability to regenerate missing body parts exists throughout the animal kingdom. Positional information is crucial for regeneration, but how it is harboured and used by differentiated tissues is poorly understood. In planarians, positional information has been identified from study of phenotypes caused by RNA interference in which the wrong tissues are regenerated. For example, inhibition of the Wnt signalling pathway leads to regeneration of heads in place of tails. Characterization of these phenotypes has led to the identification of position control genes (PCGs)-genes that are expressed in a constitutive and regional manner and are associated with patterning. Most PCGs are expressed within planarian muscle; however, how muscle is specified and how different muscle subsets affect regeneration is unknown. Here we show that different muscle fibres have distinct regulatory roles during regeneration in the planarian Schmidtea mediterranea. myoD is required for formation of a specific muscle cell subset: the longitudinal fibres, oriented along the anterior-posterior axis. Loss of longitudinal fibres led to complete regeneration failure because of defects in regeneration initiation. A different transcription factor-encoding gene, nkx1-1, is required for the formation of circular fibres, oriented along the medial-lateral axis. Loss of circular fibres led to a bifurcated anterior-posterior axis with fused heads forming in single anterior blastemas. Whereas muscle is often viewed as a strictly contractile tissue, these findings reveal that different muscle types have distinct and specific regulatory roles in wound signalling and patterning to enable regeneration.

  14. Medical leech therapy (Hirudotherapy

    Directory of Open Access Journals (Sweden)

    Uwe Wollina

    2016-01-01

    Full Text Available Leeches have been used in medicine long time before BC. In recent years medical leech therapy has gained increasing interest in reconstructive surgery and pain management and other medical fields. The possible indications and success rates of this treatment are discussed. There is a special interest in salvage of flaps and grafts by the use of medical leeches. Retrospective analysis indicates a success rate of >80%. Randomized controlled trials have been performed in osteoarthritis. Case reports and smaller series are available for the treatment of chronic wounds, post-phlebitic syndrome and inflammatory skin diseases. The most common adverse effects are prolonged bleeding and infection by saprophytic intestinal bacteria of leeches. Medical leech therapy is a useful adjunct to other measures wound management.

  15. Brain and muscle Arnt-like 1 promotes skeletal muscle regeneration through satellite cell expansion

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Somik [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Yin, Hongshan [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Department of Cardiovascular Medicine, Third Affiliated Hospital, Hebei Medical University, Shijiazhuang 050051, Hebei (China); Nam, Deokhwa [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Li, Yong [Department of Pediatric Surgery, Center for Stem Cell Research and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030 (United States); Ma, Ke, E-mail: kma@houstonmethodist.org [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States)

    2015-02-01

    Circadian clock is an evolutionarily conserved timing mechanism governing diverse biological processes and the skeletal muscle possesses intrinsic functional clocks. Interestingly, although the essential clock transcription activator, Brain and muscle Arnt-like 1 (Bmal1), participates in maintenance of muscle mass, little is known regarding its role in muscle growth and repair. In this report, we investigate the in vivo function of Bmal1 in skeletal muscle regeneration using two muscle injury models. Bmal1 is highly up-regulated by cardiotoxin injury, and its genetic ablation significantly impairs regeneration with markedly suppressed new myofiber formation and attenuated myogenic induction. A similarly defective regenerative response is observed in Bmal1-null mice as compared to wild-type controls upon freeze injury. Lack of satellite cell expansion accounts for the regeneration defect, as Bmal1{sup −/−} mice display significantly lower satellite cell number with nearly abolished induction of the satellite cell marker, Pax7. Furthermore, satellite cell-derived primary myoblasts devoid of Bmal1 display reduced growth and proliferation ex vivo. Collectively, our results demonstrate, for the first time, that Bmal1 is an integral component of the pro-myogenic response that is required for muscle repair. This mechanism may underlie its role in preserving adult muscle mass and could be targeted therapeutically to prevent muscle-wasting diseases. - Highlights: • Bmal1 is highly inducible by muscle injury and myogenic stimuli. • Genetic ablation of Bmal1 significantly impairs muscle regeneration. • Bmal1 promotes satellite cell expansion during muscle regeneration. • Bmal1-deficient primary myoblasts display attenuated growth and proliferation.

  16. Brain and muscle Arnt-like 1 promotes skeletal muscle regeneration through satellite cell expansion

    International Nuclear Information System (INIS)

    Chatterjee, Somik; Yin, Hongshan; Nam, Deokhwa; Li, Yong; Ma, Ke

    2015-01-01

    Circadian clock is an evolutionarily conserved timing mechanism governing diverse biological processes and the skeletal muscle possesses intrinsic functional clocks. Interestingly, although the essential clock transcription activator, Brain and muscle Arnt-like 1 (Bmal1), participates in maintenance of muscle mass, little is known regarding its role in muscle growth and repair. In this report, we investigate the in vivo function of Bmal1 in skeletal muscle regeneration using two muscle injury models. Bmal1 is highly up-regulated by cardiotoxin injury, and its genetic ablation significantly impairs regeneration with markedly suppressed new myofiber formation and attenuated myogenic induction. A similarly defective regenerative response is observed in Bmal1-null mice as compared to wild-type controls upon freeze injury. Lack of satellite cell expansion accounts for the regeneration defect, as Bmal1 −/− mice display significantly lower satellite cell number with nearly abolished induction of the satellite cell marker, Pax7. Furthermore, satellite cell-derived primary myoblasts devoid of Bmal1 display reduced growth and proliferation ex vivo. Collectively, our results demonstrate, for the first time, that Bmal1 is an integral component of the pro-myogenic response that is required for muscle repair. This mechanism may underlie its role in preserving adult muscle mass and could be targeted therapeutically to prevent muscle-wasting diseases. - Highlights: • Bmal1 is highly inducible by muscle injury and myogenic stimuli. • Genetic ablation of Bmal1 significantly impairs muscle regeneration. • Bmal1 promotes satellite cell expansion during muscle regeneration. • Bmal1-deficient primary myoblasts display attenuated growth and proliferation

  17. PEDF-derived peptide promotes skeletal muscle regeneration through its mitogenic effect on muscle progenitor cells.

    Science.gov (United States)

    Ho, Tsung-Chuan; Chiang, Yi-Pin; Chuang, Chih-Kuang; Chen, Show-Li; Hsieh, Jui-Wen; Lan, Yu-Wen; Tsao, Yeou-Ping

    2015-08-01

    In response injury, intrinsic repair mechanisms are activated in skeletal muscle to replace the damaged muscle fibers with new muscle fibers. The regeneration process starts with the proliferation of satellite cells to give rise to myoblasts, which subsequently differentiate terminally into myofibers. Here, we investigated the promotion effect of pigment epithelial-derived factor (PEDF) on muscle regeneration. We report that PEDF and a synthetic PEDF-derived short peptide (PSP; residues Ser(93)-Leu(112)) induce satellite cell proliferation in vitro and promote muscle regeneration in vivo. Extensively, soleus muscle necrosis was induced in rats by bupivacaine, and an injectable alginate gel was used to release the PSP in the injured muscle. PSP delivery was found to stimulate satellite cell proliferation in damaged muscle and enhance the growth of regenerating myofibers, with complete regeneration of normal muscle mass by 2 wk. In cell culture, PEDF/PSP stimulated C2C12 myoblast proliferation, together with a rise in cyclin D1 expression. PEDF induced the phosphorylation of ERK1/2, Akt, and STAT3 in C2C12 myoblasts. Blocking the activity of ERK, Akt, or STAT3 with pharmacological inhibitors attenuated the effects of PEDF/PSP on the induction of C2C12 cell proliferation and cyclin D1 expression. Moreover, 5-bromo-2'-deoxyuridine pulse-labeling demonstrated that PEDF/PSP stimulated primary rat satellite cell proliferation in myofibers in vitro. In summary, we report for the first time that PSP is capable of promoting the regeneration of skeletal muscle. The signaling mechanism involves the ERK, AKT, and STAT3 pathways. These results show the potential utility of this PEDF peptide for muscle regeneration. Copyright © 2015 the American Physiological Society.

  18. Muscle satellite cells are functionally impaired in myasthenia gravis: consequences on muscle regeneration.

    Science.gov (United States)

    Attia, Mohamed; Maurer, Marie; Robinet, Marieke; Le Grand, Fabien; Fadel, Elie; Le Panse, Rozen; Butler-Browne, Gillian; Berrih-Aknin, Sonia

    2017-12-01

    Myasthenia gravis (MG) is a neuromuscular disease caused in most cases by anti-acetyl-choline receptor (AChR) autoantibodies that impair neuromuscular signal transmission and affect skeletal muscle homeostasis. Myogenesis is carried out by muscle stem cells called satellite cells (SCs). However, myogenesis in MG had never been explored. The aim of this study was to characterise the functional properties of myasthenic SCs as well as their abilities in muscle regeneration. SCs were isolated from muscle biopsies of MG patients and age-matched controls. We first showed that the number of Pax7+ SCs was increased in muscle sections from MG and its experimental autoimmune myasthenia gravis (EAMG) mouse model. Myoblasts isolated from MG muscles proliferate and differentiate more actively than myoblasts from control muscles. MyoD and MyoG were expressed at a higher level in MG myoblasts as well as in MG muscle biopsies compared to controls. We found that treatment of control myoblasts with MG sera or monoclonal anti-AChR antibodies increased the differentiation and MyoG mRNA expression compared to control sera. To investigate the functional ability of SCs from MG muscle to regenerate, we induced muscle regeneration using acute cardiotoxin injury in the EAMG mouse model. We observed a delay in maturation evidenced by a decrease in fibre size and MyoG mRNA expression as well as an increase in fibre number and embryonic myosin heavy-chain mRNA expression. These findings demonstrate for the first time the altered function of SCs from MG compared to control muscles. These alterations could be due to the anti-AChR antibodies via the modulation of myogenic markers resulting in muscle regeneration impairment. In conclusion, the autoimmune attack in MG appears to have unsuspected pathogenic effects on SCs and muscle regeneration, with potential consequences on myogenic signalling pathways, and subsequently on clinical outcome, especially in the case of muscle stress.

  19. Catechins activate muscle stem cells by Myf5 induction and stimulate muscle regeneration.

    Science.gov (United States)

    Kim, A Rum; Kim, Kyung Min; Byun, Mi Ran; Hwang, Jun-Ha; Park, Jung Il; Oh, Ho Taek; Kim, Hyo Kyeong; Jeong, Mi Gyeong; Hwang, Eun Sook; Hong, Jeong-Ho

    2017-07-22

    Muscle weakness is one of the most common symptoms in aged individuals and increases risk of mortality. Thus, maintenance of muscle mass is important for inhibiting aging. In this study, we investigated the effect of catechins, polyphenol compounds in green tea, on muscle regeneration. We found that (-)-epicatechin gallate (ECG) and (-)-epigallocatechin-3-gallate (EGCG) activate satellite cells by induction of Myf5 transcription factors. For satellite cell activation, Akt kinase was significantly induced after ECG treatment and ECG-induced satellite cell activation was blocked in the presence of Akt inhibitor. ECG also promotes myogenic differentiation through the induction of myogenic markers, including Myogenin and Muscle creatine kinase (MCK), in satellite and C2C12 myoblast cells. Finally, EGCG administration to mice significantly increased muscle fiber size for regeneration. Taken together, the results suggest that catechins stimulate muscle stem cell activation and differentiation for muscle regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Platelet-Derived Growth Factor BB Influences Muscle Regeneration in Duchenne Muscle Dystrophy.

    Science.gov (United States)

    Piñol-Jurado, Patricia; Gallardo, Eduard; de Luna, Noemi; Suárez-Calvet, Xavier; Sánchez-Riera, Carles; Fernández-Simón, Esther; Gomis, Clara; Illa, Isabel; Díaz-Manera, Jordi

    2017-08-01

    Duchenne muscular dystrophy (DMD) is characterized by a progressive loss of muscle fibers, and their substitution by fibrotic and adipose tissue. Many factors contribute to this process, but the molecular pathways related to regeneration and degeneration of muscle are not completely known. Platelet-derived growth factor (PDGF)-BB belongs to a family of growth factors that regulate proliferation, migration, and differentiation of mesenchymal cells. The role of PDGF-BB in muscle regeneration in humans has not been studied. We analyzed the expression of PDGF-BB in muscle biopsy samples from controls and patients with DMD. We performed in vitro experiments to understand the effects of PDGF-BB on myoblasts involved in the pathophysiology of muscular dystrophies and confirmed our results in vivo by treating the mdx murine model of DMD with repeated i.m. injections of PDGF-BB. We observed that regenerating and necrotic muscle fibers in muscle biopsy samples from DMD patients expressed PDGF-BB. In vitro, PDGF-BB attracted myoblasts and activated their proliferation. Analysis of muscles from the animals treated with PDGF-BB showed an increased population of satellite cells and an increase in the number of regenerative fibers, with a reduction in inflammatory infiltrates, compared with those in vehicle-treated mice. Based on our results, PDGF-BB may play a protective role in muscular dystrophies by enhancing muscle regeneration through activation of satellite cell proliferation and migration. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  1. Regulatory T cells and skeletal muscle regeneration.

    Science.gov (United States)

    Schiaffino, Stefano; Pereira, Marcelo G; Ciciliot, Stefano; Rovere-Querini, Patrizia

    2017-02-01

    Skeletal muscle regeneration results from the activation and differentiation of myogenic stem cells, called satellite cells, located beneath the basal lamina of the muscle fibers. Inflammatory and immune cells have a crucial role in the regeneration process. Acute muscle injury causes an immediate transient wave of neutrophils followed by a more persistent infiltration of M1 (proinflammatory) and M2 (anti-inflammatory/proregenerative) macrophages. New studies show that injured muscle is also infiltrated by a specialized population of regulatory T (Treg) cells, which control both the inflammatory response, by promoting the M1-to-M2 switch, and the activation of satellite cells. Treg cells accumulate in injured muscle in response to specific cytokines, such as IL-33, and promote muscle growth by releasing growth factors, such as amphiregulin. Muscle repair during aging is impaired due to reduced number of Treg cells and can be enhanced by IL-33 supplementation. Migration of Treg cells could also contribute to explain the effect of heterochronic parabiosis, whereby muscle regeneration of aged mice can be improved by a parabiotically linked young partners. In mdx dystrophin-deficient mice, a model of human Duchenne muscular dystrophy, muscle injury, and inflammation is mitigated by expansion of the Treg-cell population but exacerbated by Treg-cell depletion. These findings support the notion that immunological mechanisms are not only essential in the response to pathogenic microbes and tumor cells but also have a wider homeostatic role in tissue repair, and open new perspectives for boosting muscle growth in chronic muscle disease and during aging. © 2016 Federation of European Biochemical Societies.

  2. Experimental Investigation on the Morphology and Adhesion Mechanism of Leech Posterior Suckers.

    Directory of Open Access Journals (Sweden)

    Huashan Feng

    Full Text Available The posterior sucker of a leech represents a fascinating natural system that allows the leech to adhere to different terrains and substrates. However, the mechanism of adhesion and desorption has not yet to be elucidated. In order to better understand how the adhesion is performed, we analyzed the surface structure, adsorption movements, the muscles' distribution, physical characteristics, and the adsorption force of the leech posterior suckers by experimental investigation. Three conclusions can be drawn based on the obtained experimental results. First, the adhesion by the posterior sucker is wet adhesion, because the surface of the posterior sucker is smooth and the sealing can only be achieved on wet surfaces. Second, the deformation texture, consisting of soft collagen tissues and highly ductile epidermal tissues, plays a key role in adhering to rough surfaces. Finally, the adhesion and desorption is achieved by the synergetic operation of six muscle fibers working in different directions. Concrete saying, directional deformation of the collagen/epithermal interface driven by spatially-distributed muscle fibers facilitates the excretion of fluids in the sucker venter, thus allowing liquid sealing. Furthermore, we found that the adhesion strength is directly related to the size of the contact surface which is generated and affected by the sucker deformation. Such an underlying physical mechanism offers potential cues for developing innovative bio-inspired artificial adhesion systems.

  3. Bex1 knock out mice show altered skeletal muscle regeneration

    International Nuclear Information System (INIS)

    Koo, Jae Hyung; Smiley, Mark A.; Lovering, Richard M.; Margolis, Frank L.

    2007-01-01

    Bex1 and Calmodulin (CaM) are upregulated during skeletal muscle regeneration. We confirm this finding and demonstrate the novel finding that they interact in a calcium-dependent manner. To study the role of Bex1 and its interaction with CaM in skeletal muscle regeneration, we generated Bex1 knock out (Bex1-KO) mice. These mice appeared to develop normally and are fertile, but displayed a functional deficit in exercise performance compared to wild type (WT) mice. After intramuscular injection of cardiotoxin, which causes extensive and reproducible myotrauma followed by recovery, regenerating muscles of Bex1-KO mice exhibited elevated and prolonged cell proliferation, as well as delayed cell differentiation, compared to WT mice. Thus, our results provide the first evidence that Bex1-KO mice show altered muscle regeneration, and allow us to propose that the interaction of Bex1 with Ca 2+ /CaM may be involved in skeletal muscle regeneration

  4. Cyclosporin A preferentially attenuates skeletal slow-twitch muscle regeneration

    Directory of Open Access Journals (Sweden)

    Miyabara E.H.

    2005-01-01

    Full Text Available Calcineurin, a Ca2+/calmodulin-dependent phosphatase, is associated with muscle regeneration via NFATc1/GATA2-dependent pathways. However, it is not clear whether calcineurin preferentially affects the regeneration of slow- or fast-twitch muscles. We investigated the effect of a calcineurin inhibitor, cyclosporin A (CsA, on the morphology and fiber diameter of regenerating slow- and fast-twitch muscles. Adult Wistar rats (259.5 ± 9 g maintained under standard conditions were treated with CsA (20 mg/kg body weight, ip for 5 days, submitted to cryolesion of soleus and tibialis anterior (TA muscles on the 6th day, and then treated with CsA for an additional 21 days. The muscles were removed, weighed, frozen, and stored in liquid nitrogen. Cryolesion did not alter the body weight gain of the animals after 21 days of regeneration (P = 0.001 and CsA significantly reduced the body weight gain (15.5%; P = 0.01 during the same period. All treated TA and soleus muscles showed decreased weights (17 and 29%, respectively, P < 0.05. CsA treatment decreased the cross-sectional area of both soleus and TA muscles of cryoinjured animals (TA: 2108 ± 930 vs 792 ± 640 µm²; soleus: 2209 ± 322 vs 764 ± 439 m²; P < 0.001. Histological sections of both muscles stained with Toluidine blue revealed similar regenerative responses after cryolesion. In addition, CsA was able to minimize these responses, i.e., centralized nuclei and split fibers, more efficiently so in TA muscle. These results indicate that calcineurin preferentially plays a role in regeneration of slow-twitch muscle.

  5. Dual role of delta-like 1 homolog (DLK1) in skeletal muscle development and adult muscle regeneration

    DEFF Research Database (Denmark)

    Andersen, Ditte Caroline; Laborda, Jorge; Baladron, Victoriano

    2013-01-01

    skeletal muscle regeneration by substantial enhancement of the myogenic program and muscle function, possibly by means of an increased number of available myogenic precursor cells. By contrast, Dlk1 fails to alter the adipogenic commitment of muscle-derived progenitors in vitro, as well as intramuscular......Muscle development and regeneration is tightly orchestrated by a specific set of myogenic transcription factors. However, factors that regulate these essential myogenic inducers remain poorly described. Here, we show that delta-like 1 homolog (Dlk1), an imprinted gene best known for its ability...... fat deposition during in vivo regeneration. Collectively, our results suggest a novel and surprising dual biological function of DLK1 as an enhancer of muscle development, but as an inhibitor of adult muscle regeneration....

  6. Diffusion tensor tractography reveals muscle reconnection during axolotl limb regeneration.

    Directory of Open Access Journals (Sweden)

    Cheng-Han Wu

    Full Text Available Axolotls have amazing ability to regenerate their lost limbs. Our previous works showed that after amputation the remnant muscle ends remained at their original location whilst sending satellite cells into the regenerating parts to develop into early muscle fibers in the late differentiation stage. The parental and the newly formed muscle fibers were not connected until very late stage. The present study used non-invasive diffusion tensor imaging (DTI to monitor weekly axolotl upper arm muscles after amputation of their upper arms. DTI tractography showed that the regenerating muscle fibers became visible at 9-wpa (weeks post amputation, but a gap was observed between the regenerating and parental muscles. The gap was filled at 10-wpa, indicating reconnection of the fibers of both muscles. This was confirmed by histology. The DTI results indicate that 23% of the muscle fibers were reconnected at 10-wpa. In conclusion, DTI can be used to visualize axolotls' skeletal muscles and the results of muscle reconnection were in accordance with our previous findings. This non-invasive technique will allow researchers to identify the timeframe in which muscle fiber reconnection takes place and thus enable the study of the mechanisms underlying this reconnection.

  7. Autoradiographic analysis of protein regeneration in striated skeleton muscle

    International Nuclear Information System (INIS)

    Dadoune, J.P.

    1977-01-01

    An autoradiographic study was conducted of protein regeneration in striated muscles aimed at clarifying the contradictions in the literature: while some authors hold that the regeneration rate is identical for all types of myofibril proteins and the myofibril is thus regenerated as a whole, others claim that the regeneration rate differs depending on the type of the myofibril protein. Tritium-labelled leucine incorporation experiments showed the existence of at least 2 pools of newly formed proteins in striated muscles in both adult and young animals. One pool is regenerated in 1 to 2 weeks, the other roughly in a month. The regeneration of proteins is initially more significant in red fibres; thus the rate of myofibril protein regeneration is not uniform. In adult animals regeneration seems to be slower in filaments than in the sarcoplasm and in the mitochondria. (A.K.)

  8. MASTR directs MyoD-dependent satellite cell differentiation during skeletal muscle regeneration

    OpenAIRE

    Mokalled, Mayssa H.; Johnson, Aaron N.; Creemers, Esther E.; Olson, Eric N.

    2012-01-01

    Muscle repair is regulated by satellite cells, adult skeletal muscle stem cells that control muscle regeneration by proliferating and fusing with injured myofibers. MyoD is required for muscle regeneration; however, the mechanisms regulating MyoD expression in satellite cells are unclear. In this study, Olson and colleagues have demonstrated that deletion of MASTR and MRTF-A, two members of the Myocardin family of transcription factors, leads to skeletal muscle regeneration defects and down-r...

  9. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration

    DEFF Research Database (Denmark)

    Mackey, Abigail L.; Magnan, Mélanie; Chazaud, Bénédicte

    2017-01-01

    Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration, there is emerging evidence in rodents for a regulatory influence...

  10. HEXIM1 controls satellite cell expansion after injury to regulate skeletal muscle regeneration

    Science.gov (United States)

    Hong, Peng; Chen, Kang; Huang, Bihui; Liu, Min; Cui, Miao; Rozenberg, Inna; Chaqour, Brahim; Pan, Xiaoyue; Barton, Elisabeth R.; Jiang, Xian-Cheng; Siddiqui, M.A.Q.

    2012-01-01

    The native capacity of adult skeletal muscles to regenerate is vital to the recovery from physical injuries and dystrophic diseases. Currently, the development of therapeutic interventions has been hindered by the complex regulatory network underlying the process of muscle regeneration. Using a mouse model of skeletal muscle regeneration after injury, we identified hexamethylene bisacetamide inducible 1 (HEXIM1, also referred to as CLP-1), the inhibitory component of the positive transcription elongation factor b (P-TEFb) complex, as a pivotal regulator of skeletal muscle regeneration. Hexim1-haplodeficient muscles exhibited greater mass and preserved function compared with those of WT muscles after injury, as a result of enhanced expansion of satellite cells. Transplanted Hexim1-haplodeficient satellite cells expanded and improved muscle regeneration more effectively than WT satellite cells. Conversely, HEXIM1 overexpression restrained satellite cell proliferation and impeded muscle regeneration. Mechanistically, dissociation of HEXIM1 from P-TEFb and subsequent activation of P-TEFb are required for satellite cell proliferation and the prevention of early myogenic differentiation. These findings suggest a crucial role for the HEXIM1/P-TEFb pathway in the regulation of satellite cell–mediated muscle regeneration and identify HEXIM1 as a potential therapeutic target for degenerative muscular diseases. PMID:23023707

  11. Field evidence for leech-borne transmission of amphibian Ichthyophonus sp.

    Science.gov (United States)

    Raffel, Thomas R; Dillard, James R; Hudson, Peter J

    2006-12-01

    Parasites have been implicated in mass mortality events and population declines of amphibians around the world. One pathogen associated with mortality events in North America is an Ichthyophonus sp.-like organism that affects red-spotted newts (Notophthalmus viridescens) and several frog species, yet little is known about the distribution of this pathogen in wild populations or the mechanism of transmission. In an effort to identify factors influencing the distribution and abundance of this pathogen, we measured Ichthyophonus sp. prevalence and a series of factors that could contribute to transmission in 16 newt populations during spring 2004. In contrast to our initial hypotheses of trophic transmission, several lines of evidence suggested a role for the amphibian leech (Placobdella picta) in Ichthyophonus sp. transmission. We propose the mechanistic hypothesis that a leech acquires Ichthyophonus sp. infection when inserting its proboscis into the muscles beneath the skin of infected newts and transmits the infection to other newts in subsequent feeding bouts. We also found effects of host sex, body mass, and breeding condition on Ichthyophonus sp. prevalence and the number of attached leeches. The number of leeches attached to newts was strongly related to the proportion of newt habitat containing emergent vegetation, suggesting that anthropogenic eutrophication might lead to more frequent or severe outbreaks of Ichthyophonus sp. infection in amphibians.

  12. Activation of the skeletal alpha-actin promoter during muscle regeneration.

    Science.gov (United States)

    Marsh, D R; Carson, J A; Stewart, L N; Booth, F W

    1998-11-01

    Little is known concerning promoter regulation of genes in regenerating skeletal muscles. In young rats, recovery of muscle mass and protein content is complete within 21 days. During the initial 5-10 days of regeneration, mRNA abundance for IGF-I, myogenin and MyoD have been shown to be dramatically increased. The skeletal alpha-actin promoter contains E box and serum response element (SRE) regulatory regions which are directly or indirectly activated by myogenin (or MyoD) and IGF-I proteins, respectively. We hypothesized that the skeletal alpha-actin promoter activity would increase during muscle regeneration, and that this induction would occur before muscle protein content returned to normal. Total protein content and the percentage content of skeletal alpha-actin protein was diminished at 4 and 8 days and re-accumulation had largely occurred by 16 days post-bupivacaine injection. Skeletal alpha-actin mRNA per whole muscle was decreased at day 8, and thereafter returned to control values. During regeneration at day 8, luciferase activity (a reporter of promoter activity) directed by -424 skeletal alpha-actin and -99 skeletal alpha-actin promoter constructs was increased by 700% and 250% respectively; however, at day 16, skeletal alpha-actin promoter activities were similar to control values. Thus, initial activation of the skeletal alpha-actin promoter is associated with regeneration of skeletal muscle, despite not being sustained during the later stages of regrowth. The proximal SRE of the skeletal alpha-actin promoter was not sufficient to confer a regeneration-induced promoter activation, despite increased serum response factor protein binding to this regulatory element in electrophoretic mobility shift assays. Skeletal alpha-actin promoter induction during regeneration is due to a combination of regulatory elements, at least including the SRE and E box.

  13. Lsd1 regulates skeletal muscle regeneration and directs the fate of satellite cells.

    Science.gov (United States)

    Tosic, Milica; Allen, Anita; Willmann, Dominica; Lepper, Christoph; Kim, Johnny; Duteil, Delphine; Schüle, Roland

    2018-01-25

    Satellite cells are muscle stem cells required for muscle regeneration upon damage. Of note, satellite cells are bipotent and have the capacity to differentiate not only into skeletal myocytes, but also into brown adipocytes. Epigenetic mechanisms regulating fate decision and differentiation of satellite cells during muscle regeneration are not yet fully understood. Here, we show that elevated levels of lysine-specific demethylase 1 (Kdm1a, also known as Lsd1) have a beneficial effect on muscle regeneration and recovery after injury, since Lsd1 directly regulates key myogenic transcription factor genes. Importantly, selective Lsd1 ablation or inhibition in Pax7-positive satellite cells, not only delays muscle regeneration, but changes cell fate towards brown adipocytes. Lsd1 prevents brown adipocyte differentiation of satellite cells by repressing expression of the novel pro-adipogenic transcription factor Glis1. Together, downregulation of Glis1 and upregulation of the muscle-specific transcription program ensure physiological muscle regeneration.

  14. Calpain 3 is important for muscle regeneration

    DEFF Research Database (Denmark)

    Hauerslev, Simon; Sveen, Marie-Louise; Duno, Morten

    2012-01-01

    Limb girdle muscular dystrophy (LGMD) type 2A is caused by mutations in the CAPN3 gene and complete lack of functional calpain 3 leads to the most severe muscle wasting. Calpain 3 is suggested to be involved in maturation of contractile elements after muscle degeneration. The aim of this study...... was to investigate how mutations in the four functional domains of calpain 3 affect muscle regeneration....

  15. Internal contamination with leech in a turkey

    Directory of Open Access Journals (Sweden)

    Mahmoud Bahmani

    2015-02-01

    Full Text Available Leech enters to mouth and nose through water. Nose and nasopharynx mucosa are the most preferred places for leech attachment with epistaxis and respiratory distress symptoms. But the leeches may rarely stick deeper to trachea or esophagus which could cause hematemesis, hemoptysis and severe respiratory distress. Leech infestation can cause gastrointestinal, respiratory and genital bleeding in rare cases. Various animals such as ruminants, single-toed and carnivores, are easily infected with leeches. In May 2014, a 2-year-old turkey infected with leeches through the contaminated drinking water was referred to a veterinarian with respiratory distress symptoms, anxiety, bleeding from the mouth in Maze-Abdali Village located at 17 km from Dehloran City of Ilam Province in the west of Iran. After physical observations, a moving dark green particle was seen. Limnatis nilotica were detected after separation from the oral cavity of turkey. Respiratory distress and oral cavity bleeding should be regarded in the areas where spring and flooded water were infested with leeches. Untreated and contaminated waters consumption should be prohibited.

  16. Muscle regeneration and inflammation in patients with facioscapulohumeral muscular dystrophy

    DEFF Research Database (Denmark)

    Hauerslev, S; Ørngreen, M C; Hertz, J M

    2013-01-01

    The aim of this study was to investigate whether inflammation and regeneration are prominent in mildly affected muscles of patients with facioscapulohumeral muscular dystrophy type 1A (FSHD1A). Inflammation in muscle has been suggested by MRI studies in patients with FSHD1A.......The aim of this study was to investigate whether inflammation and regeneration are prominent in mildly affected muscles of patients with facioscapulohumeral muscular dystrophy type 1A (FSHD1A). Inflammation in muscle has been suggested by MRI studies in patients with FSHD1A....

  17. Extraocular muscle regeneration in zebrafish requires late signals from Insulin-like growth factors.

    Science.gov (United States)

    Saera-Vila, Alfonso; Louie, Ke'ale W; Sha, Cuilee; Kelly, Ryan M; Kish, Phillip E; Kahana, Alon

    2018-01-01

    Insulin-like growth factors (Igfs) are key regulators of key biological processes such as embryonic development, growth, and tissue repair and regeneration. The role of Igf in myogenesis is well documented and, in zebrafish, promotes fin and heart regeneration. However, the mechanism of action of Igf in muscle repair and regeneration is not well understood. Using adult zebrafish extraocular muscle (EOM) regeneration as an experimental model, we show that Igf1 receptor blockage using either chemical inhibitors (BMS754807 and NVP-AEW541) or translation-blocking morpholino oligonucleotides (MOs) reduced EOM regeneration. Zebrafish EOMs regeneration depends on myocyte dedifferentiation, which is driven by early epigenetic reprogramming and requires autophagy activation and cell cycle reentry. Inhibition of Igf signaling had no effect on either autophagy activation or cell proliferation, indicating that Igf signaling was not involved in the early reprogramming steps of regeneration. Instead, blocking Igf signaling produced hypercellularity of regenerating EOMs and diminished myosin expression, resulting in lack of mature differentiated muscle fibers even many days after injury, indicating that Igf was involved in late re-differentiation steps. Although it is considered the main mediator of myogenic Igf actions, Akt activation decreased in regenerating EOMs, suggesting that alternative signaling pathways mediate Igf activity in muscle regeneration. In conclusion, Igf signaling is critical for re-differentiation of reprogrammed myoblasts during late steps of zebrafish EOM regeneration, suggesting a regulatory mechanism for determining regenerated muscle size and timing of differentiation, and a potential target for regenerative therapy.

  18. A Rat Model for Muscle Regeneration in the Soft Palate

    Science.gov (United States)

    Carvajal Monroy, Paola L.; Grefte, Sander; Kuijpers-Jagtman, Anne M.; Helmich, Maria P. A. C.; Ulrich, Dietmar J. O.; Von den Hoff, Johannes W.; Wagener, Frank A. D. T. G.

    2013-01-01

    Background Children with a cleft in the soft palate have difficulties with speech, swallowing, and sucking. Despite successful surgical repositioning of the muscles, optimal function is often not achieved. Scar formation and defective regeneration may hamper the functional recovery of the muscles after cleft palate repair. Therefore, the aim of this study is to investigate the anatomy and histology of the soft palate in rats, and to establish an in vivo model for muscle regeneration after surgical injury. Methods Fourteen adult male Sprague Dawley rats were divided into four groups. Groups 1 (n = 4) and 2 (n = 2) were used to investigate the anatomy and histology of the soft palate, respectively. Group 3 (n = 6) was used for surgical wounding of the soft palate, and group 4 (n = 2) was used as unwounded control group. The wounds (1 mm) were evaluated by (immuno)histochemistry (AZAN staining, Pax7, MyoD, MyoG, MyHC, and ASMA) after 7 days. Results The present study shows that the anatomy and histology of the soft palate muscles of the rat is largely comparable with that in humans. All wounds showed clinical evidence of healing after 7 days. AZAN staining demonstrated extensive collagen deposition in the wound area, and initial regeneration of muscle fibers and salivary glands. Proliferating and differentiating satellite cells were identified in the wound area by antibody staining. Conclusions This model is the first, suitable for studying muscle regeneration in the rat soft palate, and allows the development of novel adjuvant strategies to promote muscle regeneration after cleft palate surgery. PMID:23554995

  19. Osteopontin deficiency delays inflammatory infiltration and the onset of muscle regeneration in a mouse model of muscle injury

    Directory of Open Access Journals (Sweden)

    Kitipong Uaesoontrachoon

    2013-01-01

    Osteopontin is secreted by skeletal muscle myoblasts and stimulates their proliferation. Expression of osteopontin in skeletal muscle is upregulated in pathological conditions including Duchenne muscular dystrophy, and recent evidence suggests that osteopontin might influence the course of this disease. The current study was undertaken to determine whether osteopontin regulates skeletal muscle regeneration. A whole muscle autografting model of regeneration in osteopontin-null and wild-type mice was used. Osteopontin expression was found to be strongly upregulated in wild-type grafts during the initial degeneration and subsequent early regeneration phases that are observed in this model. Grafted muscle from osteopontin-null mice degenerated more slowly than that of wild-type mice, as determined by histological assessment, fibre diameter and fibre number. The delayed degeneration in osteopontin-null grafts was associated with a delay in neutrophil and macrophage infiltration. Centrally nucleated (regenerating muscle fibres also appeared more slowly in osteopontin-null grafts than in wild-type grafts. These results demonstrate that osteopontin plays a non-redundant role in muscle remodelling following injury.

  20. Increased sphingosine-1-phosphate improves muscle regeneration in acutely injured mdx mice

    Science.gov (United States)

    2013-01-01

    Background Presently, there is no effective treatment for the lethal muscle wasting disease Duchenne muscular dystrophy (DMD). Here we show that increased sphingosine-1-phoshate (S1P) through direct injection or via the administration of the small molecule 2-acetyl-4(5)-tetrahydroxybutyl imidazole (THI), an S1P lyase inhibitor, has beneficial effects in acutely injured dystrophic muscles of mdx mice. Methods We treated mdx mice with and without acute injury and characterized the histopathological and functional effects of increasing S1P levels. We also tested exogenous and direct administration of S1P on mdx muscles to examine the molecular pathways under which S1P promotes regeneration in dystrophic muscles. Results Short-term treatment with THI significantly increased muscle fiber size and extensor digitorum longus (EDL) muscle specific force in acutely injured mdx limb muscles. In addition, the accumulation of fibrosis and fat deposition, hallmarks of DMD pathology and impaired muscle regeneration, were lower in the injured muscles of THI-treated mdx mice. Furthermore, increased muscle force was observed in uninjured EDL muscles with a longer-term treatment of THI. Such regenerative effects were linked to the response of myogenic cells, since intramuscular injection of S1P increased the number of Myf5nlacz/+ positive myogenic cells and newly regenerated myofibers in injured mdx muscles. Intramuscular injection of biotinylated-S1P localized to muscle fibers, including newly regenerated fibers, which also stained positive for S1P receptor 1 (S1PR1). Importantly, plasma membrane and perinuclear localization of phosphorylated S1PR1 was observed in regenerating muscle fibers of mdx muscles. Intramuscular increases of S1P levels, S1PR1 and phosphorylated ribosomal protein S6 (P-rpS6), and elevated EDL muscle specific force, suggest S1P promoted the upregulation of anabolic pathways that mediate skeletal muscle mass and function. Conclusions These data show that S1P is

  1. Identification of telocytes in skeletal muscle interstitium: implication for muscle regeneration.

    Science.gov (United States)

    Popescu, L M; Manole, Emilia; Serboiu, Crenguţa S; Manole, C G; Suciu, Laura C; Gherghiceanu, Mihaela; Popescu, B O

    2011-06-01

    Skeletal muscle interstitium is crucial for regulation of blood flow, passage of substances from capillaries to myocytes and muscle regeneration. We show here, probably, for the first time, the presence of telocytes (TCs), a peculiar type of interstitial (stromal) cells, in rat, mouse and human skeletal muscle. TC features include (as already described in other tissues) a small cell body and very long and thin cell prolongations-telopodes (Tps) with moniliform appearance, dichotomous branching and 3D-network distribution. Transmission electron microscopy (TEM) revealed close vicinity of Tps with nerve endings, capillaries, satellite cells and myocytes, suggesting a TC role in intercellular signalling (via shed vesicles or exosomes). In situ immunolabelling showed that skeletal muscle TCs express c-kit, caveolin-1 and secrete VEGF. The same phenotypic profile was demonstrated in cell cultures. These markers and TEM data differentiate TCs from both satellite cells (e.g. TCs are Pax7 negative) and fibroblasts (which are c-kit negative). We also described non-satellite (resident) progenitor cell niche. In culture, TCs (but not satellite cells) emerge from muscle explants and form networks suggesting a key role in muscle regeneration and repair, at least after trauma. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  2. Ciprofloxacin-Resistant Aeromonas hydrophila Cellulitis following Leech Therapy

    Science.gov (United States)

    Giltner, Carmen L.; Bobenchik, April M.; Uslan, Daniel Z.; Deville, Jaime G.

    2013-01-01

    We report a case of surgical site infection with ciprofloxacin-resistant Aeromonas hydrophila following leech therapy. Antimicrobial and genetic analyses of leech and patient isolates demonstrated that the resistant isolates originated from the leech gut microbiota. These data suggest that ciprofloxacin monotherapy as a prophylaxis regimen prior to leech therapy may not be effective in preventing infection. PMID:23363826

  3. Correlation of Utrophin Levels with the Dystrophin Protein Complex and Muscle Fibre Regeneration in Duchenne and Becker Muscular Dystrophy Muscle Biopsies.

    Science.gov (United States)

    Janghra, Narinder; Morgan, Jennifer E; Sewry, Caroline A; Wilson, Francis X; Davies, Kay E; Muntoni, Francesco; Tinsley, Jonathon

    2016-01-01

    Duchenne muscular dystrophy is a severe and currently incurable progressive neuromuscular condition, caused by mutations in the DMD gene that result in the inability to produce dystrophin. Lack of dystrophin leads to loss of muscle fibres and a reduction in muscle mass and function. There is evidence from dystrophin-deficient mouse models that increasing levels of utrophin at the muscle fibre sarcolemma by genetic or pharmacological means significantly reduces the muscular dystrophy pathology. In order to determine the efficacy of utrophin modulators in clinical trials, it is necessary to accurately measure utrophin levels and other biomarkers on a fibre by fibre basis within a biopsy section. Our aim was to develop robust and reproducible staining and imaging protocols to quantify sarcolemmal utrophin levels, sarcolemmal dystrophin complex members and numbers of regenerating fibres within a biopsy section. We quantified sarcolemmal utrophin in mature and regenerating fibres and the percentage of regenerating muscle fibres, in muscle biopsies from Duchenne, the milder Becker muscular dystrophy and controls. Fluorescent immunostaining followed by image analysis was performed to quantify utrophin intensity and β-dystrogylcan and ɣ -sarcoglycan intensity at the sarcolemma. Antibodies to fetal and developmental myosins were used to identify regenerating muscle fibres allowing the accurate calculation of percentage regeneration fibres in the biopsy. Our results indicate that muscle biopsies from Becker muscular dystrophy patients have fewer numbers of regenerating fibres and reduced utrophin intensity compared to muscle biopsies from Duchenne muscular dystrophy patients. Of particular interest, we show for the first time that the percentage of regenerating muscle fibres within the muscle biopsy correlate with the clinical severity of Becker and Duchenne muscular dystrophy patients from whom the biopsy was taken. The ongoing development of these tools to quantify

  4. Correlation of Utrophin Levels with the Dystrophin Protein Complex and Muscle Fibre Regeneration in Duchenne and Becker Muscular Dystrophy Muscle Biopsies.

    Directory of Open Access Journals (Sweden)

    Narinder Janghra

    Full Text Available Duchenne muscular dystrophy is a severe and currently incurable progressive neuromuscular condition, caused by mutations in the DMD gene that result in the inability to produce dystrophin. Lack of dystrophin leads to loss of muscle fibres and a reduction in muscle mass and function. There is evidence from dystrophin-deficient mouse models that increasing levels of utrophin at the muscle fibre sarcolemma by genetic or pharmacological means significantly reduces the muscular dystrophy pathology. In order to determine the efficacy of utrophin modulators in clinical trials, it is necessary to accurately measure utrophin levels and other biomarkers on a fibre by fibre basis within a biopsy section. Our aim was to develop robust and reproducible staining and imaging protocols to quantify sarcolemmal utrophin levels, sarcolemmal dystrophin complex members and numbers of regenerating fibres within a biopsy section. We quantified sarcolemmal utrophin in mature and regenerating fibres and the percentage of regenerating muscle fibres, in muscle biopsies from Duchenne, the milder Becker muscular dystrophy and controls. Fluorescent immunostaining followed by image analysis was performed to quantify utrophin intensity and β-dystrogylcan and ɣ -sarcoglycan intensity at the sarcolemma. Antibodies to fetal and developmental myosins were used to identify regenerating muscle fibres allowing the accurate calculation of percentage regeneration fibres in the biopsy. Our results indicate that muscle biopsies from Becker muscular dystrophy patients have fewer numbers of regenerating fibres and reduced utrophin intensity compared to muscle biopsies from Duchenne muscular dystrophy patients. Of particular interest, we show for the first time that the percentage of regenerating muscle fibres within the muscle biopsy correlate with the clinical severity of Becker and Duchenne muscular dystrophy patients from whom the biopsy was taken. The ongoing development of these

  5. The muscle stem cell niche : regulation of satellite cells during regeneration

    NARCIS (Netherlands)

    Boonen, K.J.M.; Post, M.J.

    2008-01-01

    Satellite cells are considered to be adult skeletal muscle stem cells. Their ability to regenerate large muscle defects is highly dependent on their specific niche. When these cells are cultured in vitro, the loss of this niche leads to a loss of proliferative capacity and defective regeneration

  6. An overview of leech and its therapeutic applications

    Directory of Open Access Journals (Sweden)

    Parimannan Sivachandran

    2015-05-01

    Full Text Available Hirudotherapy has a broad spectrum of therapeutic application in the medical field ranging from cardiology, gynaecology, ophthalmology, plastic and reconstructive surgeries. In medieval and early modern medicine, leeches were used to remove blood from patients in an attempt to balance the biological humours. Leeches are widely used to treat venous congestion in microvascular replantation, free and conventional flap surgery and traumatology. Recently, Food and Drug Administration has approved the usage of live leeches as medical device for therapeutic applications. Presently, some of the leech species have declined dramatically in its population due to the over utilization of leech for medicinal purposes and also due to pollution in several parts of the world particularly in European and Asian countries. This review presents an overview of leech including the history, biology, classification, and its application as medical device. Further, it also covers the controversies and misconception related to leech species identification and complications of post hirudotherapy.

  7. Leeches as a source of mammalian viral DNA and RNA - a study in medicinal leeches

    DEFF Research Database (Denmark)

    Kampmann, Marie-Louise; Schnell, Ida Bærholm; Jensen, Randi Holm

    2017-01-01

    V]) from nucleic acids extracted from medicinal leeches fed with blood spiked with each virus. All viruses except BHV showed a gradual decline in concentration from day 1 to 50, and all except BHV were detectable in at least half of the samples even after 50 days. BHV exhibited a rapid decline at day 27...... and was undetectable at day 50. Our findings in medicinal leeches indicate that leeches collected in the wild might be an untapped resource for detecting vertebrate viruses and could provide new opportunities to study wildlife viral diseases of rare species in challenging environments, where capturing and handling...

  8. Changes in contractile activation characteristics of rat fast and slow skeletal muscle fibres during regeneration.

    Science.gov (United States)

    Gregorevic, Paul; Plant, David R; Stupka, Nicole; Lynch, Gordon S

    2004-07-15

    Damaged skeletal muscle fibres are replaced with new contractile units via muscle regeneration. Regenerating muscle fibres synthesize functionally distinct isoforms of contractile and regulatory proteins but little is known of their functional properties during the regeneration process. An advantage of utilizing single muscle fibre preparations is that assessment of their function is based on the overall characteristics of the contractile apparatus and regulatory system and as such, these preparations are sensitive in revealing not only coarse, but also subtle functional differences between muscle fibres. We examined the Ca(2+)- and Sr(2+)-activated contractile characteristics of permeabilized fibres from rat fast-twitch (extensor digitorum longus) and slow-twitch (soleus) muscles at 7, 14 and 21 days following myotoxic injury, to test the hypothesis that fibres from regenerating fast and slow muscles have different functional characteristics to fibres from uninjured muscles. Regenerating muscle fibres had approximately 10% of the maximal force producing capacity (P(o)) of control (uninjured) fibres, and an altered sensitivity to Ca(2+) and Sr(2+) at 7 days post-injury. Increased force production and a shift in Ca(2+) sensitivity consistent with fibre maturation were observed during regeneration such that P(o) was restored to 36-45% of that in control fibres by 21 days, and sensitivity to Ca(2+) and Sr(2+) was similar to that of control (uninjured) fibres. The findings support the hypothesis that regenerating muscle fibres have different contractile activation characteristics compared with mature fibres, and that they adopt properties of mature fast- or slow-twitch muscle fibres in a progressive manner as the regeneration process is completed.

  9. Immunology Guides Skeletal Muscle Regeneration

    Directory of Open Access Journals (Sweden)

    F. Andrea Sass

    2018-03-01

    Full Text Available Soft tissue trauma of skeletal muscle is one of the most common side effects in surgery. Muscle injuries are not only caused by accident-related injuries but can also be of an iatrogenic nature as they occur during surgical interventions when the anatomical region of interest is exposed. If the extent of trauma surpasses the intrinsic regenerative capacities, signs of fatty degeneration and formation of fibrotic scar tissue can occur, and, consequentially, muscle function deteriorates or is diminished. Despite research efforts to investigate the physiological healing cascade following trauma, our understanding of the early onset of healing and how it potentially determines success or failure is still only fragmentary. This review focuses on the initial physiological pathways following skeletal muscle trauma in comparison to bone and tendon trauma and what conclusions can be drawn from new scientific insights for the development of novel therapeutic strategies. Strategies to support regeneration of muscle tissue after injury are scarce, even though muscle trauma has a high incidence. Based on tissue specific differences, possible clinical treatment options such as local immune-modulatory and cell therapeutic approaches are suggested that aim to support the endogenous regenerative potential of injured muscle tissues.

  10. Potential of laryngeal muscle regeneration using induced pluripotent stem cell-derived skeletal muscle cells.

    Science.gov (United States)

    Dirja, Bayu Tirta; Yoshie, Susumu; Ikeda, Masakazu; Imaizumi, Mitsuyoshi; Nakamura, Ryosuke; Otsuki, Koshi; Nomoto, Yukio; Wada, Ikuo; Hazama, Akihiro; Omori, Koichi

    2016-01-01

    Conclusion Induced pluripotent stem (iPS) cells may be a new potential cell source for laryngeal muscle regeneration in the treatment of vocal fold atrophy after recurrent laryngeal nerve paralysis. Objectives Unilateral vocal fold paralysis can lead to degeneration, atrophy, and loss of force of the thyroarytenoid muscle. At present, there are some treatments such as thyroplasty, arytenoid adduction, and vocal fold injection. However, such treatments cannot restore reduced mass of the thyroarytenoid muscle. iPS cells have been recognized as supplying a potential resource for cell transplantation. The aim of this study was to assess the effectiveness of the use of iPS cells for the regeneration of laryngeal muscle through the evaluation of both in vitro and in vivo experiments. Methods Skeletal muscle cells were generated from tdTomato-labeled iPS cells using embryoid body formation. Differentiation into skeletal muscle cells was analyzed by gene expression and immunocytochemistry. The tdTomato-labeled iPS cell-derived skeletal muscle cells were transplanted into the left atrophied thyroarytenoid muscle. To evaluate the engraftment of these cells after transplantation, immunohistochemistry was performed. Results The tdTomato-labeled iPS cells were successfully differentiated into skeletal muscle cells through an in vitro experiment. These cells survived in the atrophied thyroarytenoid muscle after transplantation.

  11. Skeletal Muscle Regeneration, Repair and Remodelling in Aging: The Importance of Muscle Stem Cells and Vascularization.

    Science.gov (United States)

    Joanisse, Sophie; Nederveen, Joshua P; Snijders, Tim; McKay, Bryon R; Parise, Gianni

    2017-01-01

    Sarcopenia is the age-related loss of skeletal muscle mass and strength. Ultimately, sarcopenia results in the loss of independence, which imposes a large financial burden on healthcare systems worldwide. A critical facet of sarcopenia is the diminished ability for aged muscle to regenerate, repair and remodel. Over the years, research has focused on elucidating underlying mechanisms of sarcopenia and the impaired ability of muscle to respond to stimuli with aging. Muscle-specific stem cells, termed satellite cells (SC), play an important role in maintaining muscle health throughout the lifespan. It is well established that SC are essential in skeletal muscle regeneration, and it has been hypothesized that a reduction and/or dysregulation of the SC pool, may contribute to accelerated loss of skeletal muscle mass that is observed with advancing age. The preservation of skeletal muscle tissue and its ability to respond to stimuli may be impacted by reduced SC content and impaired function observed with aging. Aging is also associated with a reduction in capillarization of skeletal muscle. We have recently demonstrated that the distance between type II fibre-associated SC and capillaries is greater in older compared to younger adults. The greater distance between SC and capillaries in older adults may contribute to the dysregulation in SC activation ultimately impairing muscle's ability to remodel and, in extreme circumstances, regenerate. This viewpoint will highlight the importance of optimal SC activation in addition to skeletal muscle capillarization to maximize the regenerative potential of skeletal muscle in older adults. © 2016 S. Karger AG, Basel.

  12. Helium-neon laser used to stimulate regeneration of the skeletal muscle damaged by ionizing radiation

    International Nuclear Information System (INIS)

    Popova, M.F.; Bulyakova, N.V.; Azarova, V.S.

    1983-01-01

    A comparative study was made of the therapeutic effects of transplantation of the regenerating muscular tissue and helium-neon lazer rays on the skeletal muscle received 20 Gy x radiation. The results of four series of experiments showed that the effect of lazer rays on the irradiated transversely cut musculus gastrocnemius is simular to that of transplantation of the minced muscular tissue to the defect of the muscle. Regeneration of the muscle in both cases is normalized so that the regenerating muscular organ slightly differs from the control regenerate of unirradiated muscle

  13. Ocular leech infestation

    Directory of Open Access Journals (Sweden)

    Lee YC

    2015-02-01

    Full Text Available Yueh-Chang Lee, Cheng-Jen Chiu Department of Ophthalmology, Buddhist Tzu-Chi General Hospital, Hualien, Taiwan, ROC Abstract: This case report describes a female toddler with manifestations of ocular leech infestation. A 2-year-old girl was brought to our outpatient clinic with a complaint of irritable crying after being taken to a stream in Hualien 1 day previous, where she played in the water. The parents noticed that she rubbed her right eye a lot. Upon examination, the girl had good fix and follow in either eye. Slit-lamp examination showed conjunctival injection with a moving dark black–brown foreign body partly attached in the lower conjunctiva. After applying topical anesthetics, the leech, measuring 1 cm in length, was extracted under a microscope. The patient began using topical antibiotic and corticosteroid agents. By 1 week after extraction, the patient had no obvious symptoms or signs, except for a limited subconjunctival hemorrhage, and no corneal/scleral involvement was observed. Keywords: leech, ocular foreign body, conjunctival reaction, pediatric ophthalmology

  14. Loss of niche-satellite cell interactions in syndecan-3 null mice alters muscle progenitor cell homeostasis improving muscle regeneration.

    Science.gov (United States)

    Pisconti, Addolorata; Banks, Glen B; Babaeijandaghi, Farshad; Betta, Nicole Dalla; Rossi, Fabio M V; Chamberlain, Jeffrey S; Olwin, Bradley B

    2016-01-01

    The skeletal muscle stem cell niche provides an environment that maintains quiescent satellite cells, required for skeletal muscle homeostasis and regeneration. Syndecan-3, a transmembrane proteoglycan expressed in satellite cells, supports communication with the niche, providing cell interactions and signals to maintain quiescent satellite cells. Syndecan-3 ablation unexpectedly improves regeneration in repeatedly injured muscle and in dystrophic mice, accompanied by the persistence of sublaminar and interstitial, proliferating myoblasts. Additionally, muscle aging is improved in syndecan-3 null mice. Since syndecan-3 null myofiber-associated satellite cells downregulate Pax7 and migrate away from the niche more readily than wild type cells, syxndecan-3 appears to regulate satellite cell homeostasis and satellite cell homing to the niche. Manipulating syndecan-3 provides a promising target for development of therapies to enhance muscle regeneration in muscular dystrophies and in aged muscle.

  15. Akirin1 (Mighty), a novel promyogenic factor regulates muscle regeneration and cell chemotaxis

    Energy Technology Data Exchange (ETDEWEB)

    Salerno, Monica Senna; Dyer, Kelly; Bracegirdle, Jeremy; Platt, Leanne; Thomas, Mark; Siriett, Victoria [Functional Muscle Genomics, AgResearch, Hamilton (New Zealand); Kambadur, Ravi [Functional Muscle Genomics, AgResearch, Hamilton (New Zealand); School of Biological Sciences, Nanyang Technological University, Singapore (Singapore); Sharma, Mridula, E-mail: bchmridu@nus.edu.sg [Functional Muscle Genomics, AgResearch, Hamilton (New Zealand)

    2009-07-15

    Akirin1 (Mighty) is a downstream target gene of myostatin and has been shown to be a promyogenic factor. Although expressed in many tissues, akirin1 is negatively regulated by myostatin specifically in skeletal muscle tissue. In this manuscript we have characterized the possible function of akirin1 in postnatal muscle growth. Molecular and immunohistological analyses indicated that while low levels of akirin1 are associated with quiescent satellite cells (SC), higher levels of akirin1 are detected in activated proliferating SC indicating that akirin1 could be associated with satellite cell activation. In addition to SC, macrophages also express akirin1, and increased expression of akirin1 resulted in more efficient chemotaxis of both macrophages and myoblasts. Akirin1 appears to regulate chemotaxis of both macrophages and myoblasts by reorganising actin cytoskeleton, leading to more efficient lamellipodia formation via a PI3 kinase dependent pathway. Expression analysis during muscle regeneration also indicated that akirin1 expression is detected very early (day 2) in regenerating muscle, and expression gradually peaks to coincide the nascent myotube formation stage of muscle regeneration. Based on these results we propose that akirin1 could be acting as a transducer of early signals of muscle regeneration. Thus, we speculate that myostatin regulates key steps of muscle regeneration including chemotaxis of inflammatory cells, SC activation and migration through akirin1.

  16. Akirin1 (Mighty), a novel promyogenic factor regulates muscle regeneration and cell chemotaxis

    International Nuclear Information System (INIS)

    Salerno, Monica Senna; Dyer, Kelly; Bracegirdle, Jeremy; Platt, Leanne; Thomas, Mark; Siriett, Victoria; Kambadur, Ravi; Sharma, Mridula

    2009-01-01

    Akirin1 (Mighty) is a downstream target gene of myostatin and has been shown to be a promyogenic factor. Although expressed in many tissues, akirin1 is negatively regulated by myostatin specifically in skeletal muscle tissue. In this manuscript we have characterized the possible function of akirin1 in postnatal muscle growth. Molecular and immunohistological analyses indicated that while low levels of akirin1 are associated with quiescent satellite cells (SC), higher levels of akirin1 are detected in activated proliferating SC indicating that akirin1 could be associated with satellite cell activation. In addition to SC, macrophages also express akirin1, and increased expression of akirin1 resulted in more efficient chemotaxis of both macrophages and myoblasts. Akirin1 appears to regulate chemotaxis of both macrophages and myoblasts by reorganising actin cytoskeleton, leading to more efficient lamellipodia formation via a PI3 kinase dependent pathway. Expression analysis during muscle regeneration also indicated that akirin1 expression is detected very early (day 2) in regenerating muscle, and expression gradually peaks to coincide the nascent myotube formation stage of muscle regeneration. Based on these results we propose that akirin1 could be acting as a transducer of early signals of muscle regeneration. Thus, we speculate that myostatin regulates key steps of muscle regeneration including chemotaxis of inflammatory cells, SC activation and migration through akirin1.

  17. Attenuated muscle regeneration is a key factor in dysferlin-deficient muscular dystrophy

    DEFF Research Database (Denmark)

    Chiu, Yen-Hui; Hornsey, Mark A; Klinge, Lars

    2009-01-01

    in a mouse model of dysferlinopathy, with delayed removal of necrotic fibres, an extended inflammatory phase and delayed functional recovery. Satellite cell activation and myoblast fusion appear normal, but there is a reduction in early neutrophil recruitment in regenerating and also needle wounded muscle...... kinase levels and a prominent inflammatory infiltrate. We have observed that dysferlinopathy patient biopsies show an excess of immature fibres and therefore investigated the role of dysferlin in muscle regeneration. Using notexin-induced muscle damage, we have shown that regeneration is attenuated...... with the sarcolemma dysferlin is also involved in the release of chemotactic agents. Reduced neutrophil recruitment results in incomplete cycles of regeneration in dysferlinopathy which combines with the membrane repair deficit to ultimately trigger dystrophic pathology. This study reveals a novel pathomechanism...

  18. Local myogenic pulp-derived cell injection enhances craniofacial muscle regeneration in vivo.

    Science.gov (United States)

    Jung, J E; Song, M J; Shin, S; Choi, Y J; Kim, K H; Chung, C J

    2017-02-01

    To enhance myogenic differentiation in pulp cells isolated from extracted premolars by epigenetic modification using a DNA demethylation agent, 5-aza-2'-deoxycytidine (5-Aza), and to evaluate the potent stimulatory effect of 5-Aza-treated pulp cell injection for craniofacial muscle regeneration in vivo. Pulp cells were isolated from premolars extracted for orthodontic purposes from four adults (age range, 18-22.1 years). Levels of myogenic differentiation and functional contraction response in vitro were compared between pulp cells with or without pre-treatment of 5-Aza. Changes in muscle regeneration in response to green fluorescent protein (GFP)-labelled myogenic pulp cell injection in vivo were evaluated using a cardiotoxin (CTX)-induced muscle injury model of the gastrocnemius as well as the masseter muscle in mice. Pre-treatment of 5-Aza in pulp cells stimulated myotube formation, myogenic differentiation in terms of desmin and myogenin expression, and the level of collagen gel contraction. The local injection of 5-Aza pre-treated myogenic pulp cells was engrafted into the host tissue and indicated signs of enhanced muscle regeneration in both the gastrocnemius and the masseter muscles. The epigenetic modification of pulp cells from extracted premolars and the local injection of myogenic pulp cells may stimulate craniofacial muscles regeneration in vivo. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. PHRED-1 is a divergent neurexin-1 homolog that organizes muscle fibers and patterns organs during regeneration.

    Science.gov (United States)

    Adler, Carolyn E; Sánchez Alvarado, Alejandro

    2017-07-01

    Regeneration of body parts requires the replacement of multiple cell types. To dissect this complex process, we utilized planarian flatworms that are capable of regenerating any tissue after amputation. An RNAi screen for genes involved in regeneration of the pharynx identified a novel gene, Pharynx regeneration defective-1 (PHRED-1) as essential for normal pharynx regeneration. PHRED-1 is a predicted transmembrane protein containing EGF, Laminin G, and WD40 domains, is expressed in muscle, and has predicted homologs restricted to other lophotrochozoan species. Knockdown of PHRED-1 causes abnormal regeneration of muscle fibers in both the pharynx and body wall muscle. In addition to defects in muscle regeneration, knockdown of PHRED-1 or the bHLH transcription factor MyoD also causes defects in muscle and intestinal regeneration. Together, our data demonstrate that muscle plays a key role in restoring the structural integrity of closely associated organs, and in planarians it may form a scaffold that facilitates normal intestinal branching. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Regulation of myogenesis and skeletal muscle regeneration: effects of oxygen levels on satellite cell activity.

    Science.gov (United States)

    Chaillou, Thomas; Lanner, Johanna T

    2016-12-01

    Reduced oxygen (O 2 ) levels (hypoxia) are present during embryogenesis and exposure to altitude and in pathologic conditions. During embryogenesis, myogenic progenitor cells reside in a hypoxic microenvironment, which may regulate their activity. Satellite cells are myogenic progenitor cells localized in a local environment, suggesting that the O 2 level could affect their activity during muscle regeneration. In this review, we present the idea that O 2 levels regulate myogenesis and muscle regeneration, we elucidate the molecular mechanisms underlying myogenesis and muscle regeneration in hypoxia and depict therapeutic strategies using changes in O 2 levels to promote muscle regeneration. Severe hypoxia (≤1% O 2 ) appears detrimental for myogenic differentiation in vitro, whereas a 3-6% O 2 level could promote myogenesis. Hypoxia impairs the regenerative capacity of injured muscles. Although it remains to be explored, hypoxia may contribute to the muscle damage observed in patients with pathologies associated with hypoxia (chronic obstructive pulmonary disease, and peripheral arterial disease). Hypoxia affects satellite cell activity and myogenesis through mechanisms dependent and independent of hypoxia-inducible factor-1α. Finally, hyperbaric oxygen therapy and transplantation of hypoxia-conditioned myoblasts are beneficial procedures to enhance muscle regeneration in animals. These therapies may be clinically relevant to treatment of patients with severe muscle damage.-Chaillou, T. Lanner, J. T. Regulation of myogenesis and skeletal muscle regeneration: effects of oxygen levels on satellite cell activity. © FASEB.

  1. Differential response of early and late phases of skeletal muscle regeneration to exogenous supply of testosterone and insulin

    International Nuclear Information System (INIS)

    Qazi, I.; Riaz, S.

    2005-01-01

    Effect of insulin and testosterone, separately and in combination on the regeneration of skeletal fibres within intact extensor digitorum longus (EDL) muscle grafts was studied in mice. It was found that intraperitoneal supply of 2 mg/100 g body weight/day of testosterone accelerated skeletal muscle regeneration within ten days of grafting. The regenerated muscle fibres in such grafts attained significantly higher % recovery of average cross-sectional area (ACSA) than in the controls grafts. Later on, provision of the hormone did not further promote growth of the regenerated muscle fibres. In the insulin-supplemented animals (2 units/100 g body weight/day) the grafts showed hyperplasia and atrophy of the regenerating muscle fibres during the first and the last study periods, respectively. Histological and morphometric analysis of 20-day old EDL muscle regenerates that were supplied with either insulin or testosterone during the first 10-days of transplantation followed by hormone administration in reverse sequence revealed valuable differences. Supply of testosterone and then insulin escalated the process of regeneration and growth so that the ACSA of the regenerated muscle fibres in such grafts turned out to be significantly higher that in the corresponding stages of control, or when only insulin and only testosterone were administered. Reverse sequence of the administration of the hormones exerted negative effects and the regenerated muscle fibres showed various levels of atrophy. These results indicate the importance of identification of particular phases of the process of skeletal muscle regeneration that may be more responsive to anabolic agents. Proper sequence of administration of the hormones to promote the regeneration of skeletal muscle fibres in whole EDL muscle autotransplants is also explained. (author)

  2. Partial fast-to-slow conversion of regenerating rat fast-twitch muscle by chronic low-frequency stimulation.

    Science.gov (United States)

    Pette, Dirk; Sketelj, Janez; Skorjanc, Dejan; Leisner, Elmi; Traub, Irmtrud; Bajrović, Fajko

    2002-01-01

    Chronic low-frequency stimulation (CLFS) of rat fast-twitch muscles induces sequential transitions in myosin heavy chain (MHC) expression from MHCIIb --> MHCIId/x --> MHCIIa. However, the 'final' step of the fast-to-slow transition, i.e., the upregulation of MHCI, has been observed only after extremely long stimulation periods. Assuming that fibre degeneration/regeneration might be involved in the upregulation of slow myosin, we investigated the effects of CLFS on extensor digitorum longus (EDL) muscles regenerating after bupivacaine-induced fibre necrosis. Normal, non-regenerating muscles responded to both 30- and 60-day CLFS with fast MHC isoform transitions (MHCIIb --> MHCIId --> MHCIIa) and only slight increases in MHCI. CLFS of regenerating EDL muscles caused similar transitions among the fast isoforms but, in addition, caused significant increases in MHCI (to approximately 30% relative concentration). Stimulation periods of 30 and 60 days induced similar changes in the regenerating bupivacaine-treated muscles, indicating that the upregulation of slow myosin was restricted to regenerating fibres, but only during an early stage of regeneration. These results suggest that satellite cells and/or regenerating fast rat muscle fibres are capable of switching directly to a slow program under the influence of CLFS and, therefore, appear to be more malleable than adult fibres.

  3. cAMP signaling in skeletal muscle adaptation: hypertrophy, metabolism, and regeneration

    Science.gov (United States)

    Stewart, Randi

    2012-01-01

    Among organ systems, skeletal muscle is perhaps the most structurally specialized. The remarkable subcellular architecture of this tissue allows it to empower movement with instructions from motor neurons. Despite this high degree of specialization, skeletal muscle also has intrinsic signaling mechanisms that allow adaptation to long-term changes in demand and regeneration after acute damage. The second messenger adenosine 3′,5′-monophosphate (cAMP) not only elicits acute changes within myofibers during exercise but also contributes to myofiber size and metabolic phenotype in the long term. Strikingly, sustained activation of cAMP signaling leads to pronounced hypertrophic responses in skeletal myofibers through largely elusive molecular mechanisms. These pathways can promote hypertrophy and combat atrophy in animal models of disorders including muscular dystrophy, age-related atrophy, denervation injury, disuse atrophy, cancer cachexia, and sepsis. cAMP also participates in muscle development and regeneration mediated by muscle precursor cells; thus, downstream signaling pathways may potentially be harnessed to promote muscle regeneration in patients with acute damage or muscular dystrophy. In this review, we summarize studies implicating cAMP signaling in skeletal muscle adaptation. We also highlight ligands that induce cAMP signaling and downstream effectors that are promising pharmacological targets. PMID:22354781

  4. Cryotherapy Reduces Inflammatory Response Without Altering Muscle Regeneration Process and Extracellular Matrix Remodeling of Rat Muscle.

    Science.gov (United States)

    Vieira Ramos, Gracielle; Pinheiro, Clara Maria; Messa, Sabrina Peviani; Delfino, Gabriel Borges; Marqueti, Rita de Cássia; Salvini, Tania de Fátima; Durigan, Joao Luiz Quagliotti

    2016-01-04

    The application of cryotherapy is widely used in sports medicine today. Cooling could minimize secondary hypoxic injury through the reduction of cellular metabolism and injury area. Conflicting results have also suggested cryotherapy could delay and impair the regeneration process. There are no definitive findings about the effects of cryotherapy on the process of muscle regeneration. The aim of the present study was to evaluate the effects of a clinical-like cryotherapy on inflammation, regeneration and extracellular matrix (ECM) remodeling on the Tibialis anterior (TA) muscle of rats 3, 7 and 14 days post-injury. It was observed that the intermittent application of cryotherapy (three 30-minute sessions, every 2 h) in the first 48 h post-injury decreased inflammatory processes (mRNA levels of TNF-α, NF-κB, TGF-β and MMP-9 and macrophage percentage). Cryotherapy did not alter regeneration markers such as injury area, desmin and Myod expression. Despite regulating Collagen I and III and their growth factors, cryotherapy did not alter collagen deposition. In summary, clinical-like cryotherapy reduces the inflammatory process through the decrease of macrophage infiltration and the accumulation of the inflammatory key markers without influencing muscle injury area and ECM remodeling.

  5. The literature review of Leech therapy

    Directory of Open Access Journals (Sweden)

    Jang Hyo-kil

    2010-03-01

    Full Text Available Objective : To review the trend of the study related to Leech therapy and to establish the hereafter direction for the study on Leech therapy. Methods : I reviewed and analyzed all the theses published in Domestic and Foreign research institution from 1990 to 2009. Results : The following results were obtained in this study. 1. Analyzed number of theses published, there was no significance per year. 2. Classified by theme of journal, journals related to surgery were most(41 journals, 75.92% among 54 kinds. 3. Classified by theses by research method and thesis types, case report accounted for nearly twothirds (52 pieces, 68.42% of all theses and consideration of document was next(9 pieces, 11.84%. 4. With the most case of venous congestion after plastic and reconstructive surgery(33 pieces, 63.46%, leech therapy was effective on illnesses such as haematoma, macroglossia, purpura, varicous vein, avulsion injury, neurovascular compression, diabetic neuropathy, penoscrotal oedema, buerger's disease, rheumatoid arthritis. 5. Two most appeared adverse effects were anemia and infection. Immediate blood transfusion was done for recovering anemia and prophylactic 3rd generation antibiotics to infection were emphasized in more than half of case reports. 6. All of consideration of documents was retrospective study of cases related leech therapy and 3 pieces of them emphasized prophyratic antibiotic treatment for preventing infection. 7. The study of clinical trail type started first in 2002 and osteoarthritis of knee and carpometacarpal joint were main target. As see above result, Leech therapy was effective cure and could be used in disease induced by venous congestion. And I think that it is necessary to perform additional study related to solution of problems about leech therapy and protocol for using in clinical practice.

  6. MASTR directs MyoD-dependent satellite cell differentiation during skeletal muscle regeneration

    Science.gov (United States)

    Mokalled, Mayssa H.; Johnson, Aaron N.; Creemers, Esther E.; Olson, Eric N.

    2012-01-01

    In response to skeletal muscle injury, satellite cells, which function as a myogenic stem cell population, become activated, expand through proliferation, and ultimately fuse with each other and with damaged myofibers to promote muscle regeneration. Here, we show that members of the Myocardin family of transcriptional coactivators, MASTR and MRTF-A, are up-regulated in satellite cells in response to skeletal muscle injury and muscular dystrophy. Global and satellite cell-specific deletion of MASTR in mice impairs skeletal muscle regeneration. This impairment is substantially greater when MRTF-A is also deleted and is due to aberrant differentiation and excessive proliferation of satellite cells. These abnormalities mimic those associated with genetic deletion of MyoD, a master regulator of myogenesis, which is down-regulated in the absence of MASTR and MRTF-A. Consistent with an essential role of MASTR in transcriptional regulation of MyoD expression, MASTR activates a muscle-specific postnatal MyoD enhancer through associations with MEF2 and members of the Myocardin family. Our results provide new insights into the genetic circuitry of muscle regeneration and identify MASTR as a central regulator of this process. PMID:22279050

  7. Fetal stem cells and skeletal muscle regeneration: a therapeutic approach

    Directory of Open Access Journals (Sweden)

    Michela ePozzobon

    2014-08-01

    Full Text Available More than 40% of the body mass is represented by muscle tissue, which possesses the innate ability to regenerate after damage through the activation of muscle specific stem cell, namely satellite cells. Muscle diseases, in particular chronic degenerative state of skeletal muscle such as dystrophies, lead to a perturbation of the regenerative process, which causes the premature exhaustion of satellite cell reservoir due to continue cycles of degeneration/regeneration. Nowadays, the research is focused on different therapeutic approaches, ranging from gene and cell to pharmacological therapy, but still there is not a definitive cure in particular for genetic muscle disease. Taking this in mind, in this article we will give special consideration to muscle diseases and the use of fetal derived stem cells as new approach for therapy. Cells of fetal origin, from cord blood to placenta and amniotic fluid, can be easily obtained without ethical concern, expanded and differentiated in culture, and possess immunemodulatory properties. The in vivo approach in animal models can be helpful to study the mechanism underneath the operating principle of the stem cell reservoir, namely the niche, which holds great potential to understand the onset of muscle pathologies.

  8. Local Overexpression of V1a-Vasopressin Receptor Enhances Regeneration in Tumor Necrosis Factor-Induced Muscle Atrophy

    Directory of Open Access Journals (Sweden)

    Alessandra Costa

    2014-01-01

    Full Text Available Skeletal muscle atrophy occurs during disuse and aging, or as a consequence of chronic diseases such as cancer and diabetes. It is characterized by progressive loss of muscle tissue due to hypotrophic changes, degeneration, and an inability of the regeneration machinery to replace damaged myofibers. Tumor necrosis factor (TNF is a proinflammatory cytokine known to mediate muscle atrophy in many chronic diseases and to inhibit skeletal muscle regeneration. In this study, we investigated the role of Arg-vasopressin-(AVP-dependent pathways in muscles in which atrophy was induced by local overexpression of TNF. AVP is a potent myogenesis-promoting factor and is able to enhance skeletal muscle regeneration by stimulating Ca2+/calmodulin-dependent kinase and calcineurin signaling. We performed morphological and molecular analyses and demonstrated that local over-expression of the AVP receptor V1a enhances regeneration of atrophic muscle. By upregulating the regeneration/differentiation markers, modulating the inflammatory response, and attenuating fibrogenesis, the stimulation of AVP-dependent pathways creates a favourable environment for efficient and sustained muscle regeneration and repair even in the presence of elevated levels of TNF. This study highlights a novel in vivo role for AVP-dependent pathways, which may represent an interesting strategy to counteract muscle decline in aging or in muscular pathologies.

  9. Transient HIF2A inhibition promotes satellite cell proliferation and muscle regeneration.

    Science.gov (United States)

    Xie, Liwei; Yin, Amelia; Nichenko, Anna S; Beedle, Aaron M; Call, Jarrod A; Yin, Hang

    2018-03-13

    The remarkable regeneration capability of skeletal muscle depends on coordinated proliferation and differentiation of satellite cells. The self-renewal of satellite cells is critical for long-term maintenance of muscle regeneration potential. Hypoxia profoundly affects the proliferation, differentiation, and self-renewal of cultured myoblasts. However, the physiological relevance of hypoxia and hypoxia signaling in satellite cells in vivo remains largely unknown. Here, we report that satellite cells are in an intrinsic hypoxic state in vivo and express hypoxia-inducible factor 2A (HIF2A). HIF2A promotes the stemness and long-term homeostatic maintenance of satellite cells by maintaining the quiescence, increasing the self-renewal and blocking the myogenic differentiation of satellite cells. HIF2A stabilization in satellite cells cultured under normoxia augmented their engraftment potential in regenerative muscle. Reversely, HIF2A ablation led to the depletion of satellite cells and the consequent regenerative failure in the long-term. In contrast, transient pharmacological inhibition of HIF2A accelerated muscle regeneration by increasing satellite cell proliferation and differentiation. Mechanistically, HIF2A induces the quiescence/self-renewal of satellite cells by binding the promoter of Spry1 gene and activating Spry1 expression. These findings suggest that HIF2A is a pivotal mediator of hypoxia signaling in satellite cells and may be therapeutically targeted to improve muscle regeneration.

  10. Anti-leech activity of Scutellaria baicalensis and Morinda citrifolia extracts against Piscicola geometra

    Science.gov (United States)

    Rizky, P. N.; Cheng, T. C.; Nursyam, H.

    2018-04-01

    Piscicola geometra leeches are naturally infecting cobia juvenile. The leeches attach to cobia by sucking and biting its surface and provide the gate of second infection. Water extracts of Scutellaria baicalensis root and Morinda citrifolia leaves were used to be tested through In Vitro method to look for the anti-leeches activity against Piscicola geometra. In this study, a total number of 800 leeches from infected cobia were prepared. The anti-leech activity from water extract of S. baicalensis root and M. citrifolia leaves were compared in different dilutions of plant extracts for 96 hours. Significant anti-leech activity was observed with M. citrifolia leaves with 80% mortality of leeches. S. baicalensis root showed higher anti-leech activity with 100% mortality of leeches. The average time was needed for S.baicalensis root to paralyzing and kill the leeches were 8h, 40h, 48h, 72h, and 96h in various dilutions of S. baicalensis root. This study indicated that S. baicalensis water extract had a potent for new anti-leeches agent.

  11. Expression of Pannexin 1 and Pannexin 3 during skeletal muscle development, regeneration, and Duchenne muscular dystrophy.

    Science.gov (United States)

    Pham, Tammy L; St-Pierre, Marie-Eve; Ravel-Chapuis, Aymeric; Parks, Tara E C; Langlois, Stéphanie; Penuela, Silvia; Jasmin, Bernard J; Cowan, Kyle N

    2018-05-10

    Pannexin 1 (Panx1) and Pannexin 3 (Panx3) are single membrane channels recently implicated in myogenic commitment, as well as myoblast proliferation and differentiation in vitro. However, their expression patterns during skeletal muscle development and regeneration had yet to be investigated. Here, we show that Panx1 levels increase during skeletal muscle development becoming highly expressed together with Panx3 in adult skeletal muscle. In adult mice, Panx1 and Panx3 were differentially expressed in fast- and slow-twitch muscles. We also report that Panx1/PANX1 and Panx3/PANX3 are co-expressed in mouse and human satellite cells, which play crucial roles in skeletal muscle regeneration. Interestingly, Panx1 and Panx3 levels were modulated in muscle degeneration/regeneration, similar to the pattern seen during skeletal muscle development. As Duchenne muscular dystrophy is characterized by skeletal muscle degeneration and impaired regeneration, we next used mild and severe mouse models of this disease and found a significant dysregulation of Panx1 and Panx3 levels in dystrophic skeletal muscles. Together, our results are the first demonstration that Panx1 and Panx3 are differentially expressed amongst skeletal muscle types with their levels being highly modulated during skeletal muscle development, regeneration, and dystrophy. These findings suggest that Panx1 and Panx3 channels may play important and distinct roles in healthy and diseased skeletal muscles. © 2018 Wiley Periodicals, Inc.

  12. Overexpression of IGF-1 attenuates skeletal muscle damage and accelerates muscle regeneration and functional recovery after disuse

    Science.gov (United States)

    Ye, Fan; Mathur, Sunita; Liu, Min; Borst, Stephen E.; Walter, Glenn A.; Sweeney, H. Lee; Vandenborne, Krista

    2014-01-01

    Skeletal muscle is a highly dynamic tissue that responds to endogenous and external stimuli, including alterations in mechanical loading and growth factors. In particular, the antigravity soleus muscle experiences significant muscle atrophy during disuse and extensive muscle damage upon reloading. Since insulin-like growth factor-1 (IGF-1) has been implicated as a central regulator of muscle repair and modulation of muscle size, we examined the effect of viral mediated overexpression of IGF-1 on the soleus muscle following hindlimb cast immobilization and upon reloading. Recombinant IGF-1 cDNA virus was injected into one of the posterior hindlimbs of the mice, while the contralateral limb was injected with saline (control). At 20 weeks of age, both hindlimbs were immobilized for two weeks to induce muscle atrophy in the soleus and ankle plantar flexor muscle group. Subsequently, the mice were allowed to reambulate and muscle damage and recovery was monitored over a period of 2 to 21 days. The primary finding of this study was that IGF-1 overexpression attenuated reloading-induced muscle damage in the soleus muscle, and accelerated muscle regeneration and force recovery. Muscle T2 assessed by MRI, a nonspecific marker of muscle damage, was significantly lower in IGF-1 injected, compared to contralateral soleus muscles at 2 and 5 days reambulation (P<0.05). The reduced prevalence of muscle damage in IGF-1 injected soleus muscles was confirmed on histology, with a lower fraction area of abnormal muscle tissue in IGF-I injected muscles at 2 days reambulation (33.2±3.3%vs 54.1±3.6%, P<0.05). Evidence of the effect of IGF-1 on muscle regeneration included timely increases in the number of central nuclei (21% at 5 days reambulation), paired-box transcription factor 7 (36% at 5 days), embryonic myosin (37% at 10 days), and elevated MyoD mRNA (7-fold at 2 days) in IGF-1 injected limbs (P<0.05). These findings demonstrate a potential role of IGF-1 in protecting unloaded

  13. Mac-1low early myeloid cells in the bone marrow-derived SP fraction migrate into injured skeletal muscle and participate in muscle regeneration

    International Nuclear Information System (INIS)

    Ojima, Koichi; Uezumi, Akiyoshi; Miyoshi, Hiroyuki; Masuda, Satoru; Morita, Yohei; Fukase, Akiko; Hattori, Akihito; Nakauchi, Hiromitsu; Miyagoe-Suzuki, Yuko; Takeda, Shin'ichi

    2004-01-01

    Recent studies have shown that bone marrow (BM) cells, including the BM side population (BM-SP) cells that enrich hematopoietic stem cells (HSCs), are incorporated into skeletal muscle during regeneration, but it is not clear how and what kinds of BM cells contribute to muscle fiber regeneration. We found that a large number of SP cells migrated from BM to muscles following injury in BM-transplanted mice. These BM-derived SP cells in regenerating muscles expressed different surface markers from those of HSCs and could not reconstitute the mouse blood system. BM-derived SP/Mac-1 low cells increased in number in regenerating muscles following injury. Importantly, our co-culture studies with activated satellite cells revealed that this fraction carried significant potential for myogenic differentiation. By contrast, mature inflammatory (Mac-1 high ) cells showed negligible myogenic activities. Further, these BM-derived SP/Mac-1 low cells gave rise to mononucleate myocytes, indicating that their myogenesis was not caused by stochastic fusion with host myogenic cells, although they required cell-to-cell contact with myogenic cells for muscle differentiation. Taken together, our data suggest that neither HSCs nor mature inflammatory cells, but Mac-1 low early myeloid cells in the BM-derived SP fraction, play an important role in regenerating skeletal muscles

  14. SPARC is up-regulated during skeletal muscle regeneration and inhibits myoblast differentiation

    DEFF Research Database (Denmark)

    Petersson, Stine Juhl; Jørgensen, Louise Helskov; Andersen, Ditte C.

    2013-01-01

    Skeletal muscle repair is mediated primarily by the muscle stem cell, the satellite cell. Several factors, including extracellular matrix, are known to regulate satellite cell function and regeneration. One factor, the matricellular Secreted Protein Acidic and Rich in Cysteine (SPARC) is highly up......-regulated during skeletal muscle disease, but its function remains elusive. In the present study, we demonstrate a prominent yet transient increase in SPARC mRNA and protein content during skeletal muscle regeneration that correlates with the expression profile of specific muscle factors like MyoD, Myf5, Myf6......, Myogenin, NCAM, CD34, and M-Cadherin, all known to be implicated in satellite cell activation/proliferation following muscle damage. This up regulation was detected in more cell types. Ectopic expression of SPARC in the muscle progenitor cell line C2C12 was performed to mimic the high levels of SPARC seen...

  15. The role of plastic regeneration state of transplanted skeletal muscle in its response to the effect of ionizing radiation

    International Nuclear Information System (INIS)

    Il'yasova, Sh.G.

    1978-01-01

    Irradiation of an intact muscle at 1000 R before its autotransplantation greatly affected the regeneration process, as if it is shown by histological examinations. This was also confirmed by studying the ratio between muscle and connective tissue in the grafts and the rate of resorption of necrotizing tissue. When the muscle was irradiated in the state of plastic regeneration, the rate of granular tissue formation and of the muscle tissue regeneration approached that in control animals, whose muscle was autografted without irradiation. In experiments with preirradiation of muscle to be autografted, the transplantational activity of muscle tissue was almost completely suppressed. At the same time, the muscle in the plastic state following transplantation continued to regenerate inspite of irradiation at 1000 R, and 2 months later a half of the organ formed consisted of muscle tissue. It is concluded that the muscle in the state of plastic regeneration is more resistant to ionizing radiation than normal muscle

  16. New function of the myostatin/activin type I receptor (ALK4) as a mediator of muscle atrophy and muscle regeneration.

    NARCIS (Netherlands)

    Pasteuning-Vuhman, S.; Boertje-van der Meulen, J.; van Putten, M.; Overzier, M.; ten Dijke, P; Kiełbasa, S.M.; Arindrarto, W.; Wolterbeek, R.; Lezhnina, K.V.; Ozerov, I.V.; Aliper, A.M.; Hoogaars, W.; Aartsma-Rus, A; Loomans, C.J.

    Skeletal muscle fibrosis and impaired muscle regeneration are major contributors to muscle wasting in Duchenne muscular dystrophy (DMD). Muscle growth is negatively regulated by myostatin (MSTN) and activins. Blockage of these pathways may improve muscle quality and function in DMD. Antisense

  17. Regenerating human muscle fibres express GLUT3 protein

    DEFF Research Database (Denmark)

    Gaster, M; Beck-Nielsen, H; Schrøder, H D

    2002-01-01

    The presence of the GLUT3 glucose transporter protein in human muscle cells is a matter of debate. The present study was designed to establish whether GLUT3 is expressed in mature human skeletal muscle fibres and, if so, whether its expression changes under different conditions, such as metabolic...... muscle fibres, nor did metabolic stress, training or de- and re-innervation induce GLUT3 expression, while a few GLUT3 expressing fibres were seen in some cases of polymyositis. In contrast, GLUT4 was expressed in all investigated muscle fibres. GLUT3 immunoreactivity was found in perineural...... and endoneural cells, indicating that GLUT3 is important for glucose transport into nerves through the perineurium. Taken together, these data suggest that GLUT3 expression is restricted to regenerating muscle fibres and nerves in adult human muscle. Although the significance of GLUT3 in adult human muscle...

  18. Alternative leech vectors for frog and turtle trypanosomes.

    Science.gov (United States)

    Siddall, M E; Desser, S S

    1992-06-01

    Trypanosoma pipientis infections were achieved by exposing laboratory-raised bullfrog tadpoles (Rana catesbeiana) to the leech Desserobdella picta that had fed on infected frogs. Likewise, a laboratory-raised snapping turtle (Chelydra serpentina) was infected with Trypanosoma chrysemydis following exposure to infected Placobdella ornata. Transmission of the trypanosomes by these leeches constitutes new vector records for the parasites. The biology of D. picta and P. ornata suggests that they are more important in transmitting these flagellates than the species of leech previously reported as vectors.

  19. The Effects of Long-Term Experimental Diabetes Mellitus Type I on Skeletal Muscle Regeneration Capacity

    OpenAIRE

    Jerković, Romana; Bosnar, Alan; Jurišić-Eržen, Dubravka; Ažman, Josip; Starčević-Klasan, Gordana; Peharec, Stanislav; Čoklo, Miran

    2009-01-01

    Muscle fibers are dynamic structures capable of altering their phenotype under various pathological conditions. The aim of the present study was to investigate the influence of long-lasting diabetes mellitus on the process of muscle regeneration in the skeletal muscle. Wistar rats were made diabetic by a single intraperitoneal injection of streptozotocin (STZ). The regeneration process in the skeletal muscle was induced in slow (m. soleus, SOL) and fast (m. extensor digitorum longus, EDL) mus...

  20. Matrix metalloproteinase-2 ablation in dystrophin-deficient mdx muscles reduces angiogenesis resulting in impaired growth of regenerated muscle fibers.

    Science.gov (United States)

    Miyazaki, Daigo; Nakamura, Akinori; Fukushima, Kazuhiro; Yoshida, Kunihiro; Takeda, Shin'ichi; Ikeda, Shu-ichi

    2011-05-01

    Matrix metalloproteases (MMPs) are a family of endopeptidases classified into subgroups based on substrate preference in normal physiological processes such as embryonic development and tissue remodeling, as well as in various disease processes via degradation of extracellular matrix components. Among the MMPs, MMP-9 and MMP-2 have been reported to be up-regulated in skeletal muscles in the lethal X-linked muscle disorder Duchenne muscular dystrophy (DMD), which is caused by loss of dystrophin. A recent study showed that deletion of the MMP9 gene in mdx, a mouse model for DMD, improved skeletal muscle pathology and function; however, the role of MMP-2 in the dystrophin-deficient muscle is not well known. In this study, we aimed at verifying the role of MMP-2 in the dystrophin-deficient muscle by using mdx mice with genetic ablation of MMP-2 (mdx/MMP-2(-/-)). We found impairment of regenerated muscle fiber growth with reduction of angiogenesis in mdx/MMP-2(-/-) mice at 3 months of age. Expression of vascular endothelial growth factor-A (VEGF-A), an important angiogenesis-related factor, decreased in mdx/MMP-2(-/-) mice at 3 months of age. MMP-2 had not a critical role in the degradation of dystrophin-glycoprotein complex (DGC) components such as β-dystroglycan and β-sarcoglycan in the regeneration process of the dystrophic muscle. Accordingly, MMP-2 may be essential for growth of regenerated muscle fibers through VEGF-associated angiogenesis in the dystrophin-deficient skeletal muscle.

  1. Comparative Study of Injury Models for Studying Muscle Regeneration in Mice.

    Directory of Open Access Journals (Sweden)

    David Hardy

    Full Text Available A longstanding goal in regenerative medicine is to reconstitute functional tissues or organs after injury or disease. Attention has focused on the identification and relative contribution of tissue specific stem cells to the regeneration process. Relatively little is known about how the physiological process is regulated by other tissue constituents. Numerous injury models are used to investigate tissue regeneration, however, these models are often poorly understood. Specifically, for skeletal muscle regeneration several models are reported in the literature, yet the relative impact on muscle physiology and the distinct cells types have not been extensively characterised.We have used transgenic Tg:Pax7nGFP and Flk1GFP/+ mouse models to respectively count the number of muscle stem (satellite cells (SC and number/shape of vessels by confocal microscopy. We performed histological and immunostainings to assess the differences in the key regeneration steps. Infiltration of immune cells, chemokines and cytokines production was assessed in vivo by Luminex®.We compared the 4 most commonly used injury models i.e. freeze injury (FI, barium chloride (BaCl2, notexin (NTX and cardiotoxin (CTX. The FI was the most damaging. In this model, up to 96% of the SCs are destroyed with their surrounding environment (basal lamina and vasculature leaving a "dead zone" devoid of viable cells. The regeneration process itself is fulfilled in all 4 models with virtually no fibrosis 28 days post-injury, except in the FI model. Inflammatory cells return to basal levels in the CTX, BaCl2 but still significantly high 1-month post-injury in the FI and NTX models. Interestingly the number of SC returned to normal only in the FI, 1-month post-injury, with SCs that are still cycling up to 3-months after the induction of the injury in the other models.Our studies show that the nature of the injury model should be chosen carefully depending on the experimental design and desired

  2. Response of mitochondrial function to hypothyroidism in normal and regenerated rat skeletal muscle.

    Science.gov (United States)

    Zoll, J; Ventura-Clapier, R; Serrurier, B; Bigard, A X

    2001-01-01

    Although thyroid hormones induce a well known decrease in muscle oxidative capacity, nothing is known concerning their effects on mitochondrial function and regulation in situ. Similarly, the influence of regeneration process is not completely understood. We investigated the effects of hypothyroidism on mitochondrial function in fast gastrocnemius (GS) and slow soleus (SOL) muscles either intact or having undergone a cycle of degeneration/regeneration (Rg SOL) following a local injection of myotoxin. Thyroid hormone deficiency was induced by thyroidectomy and propylthiouracyl via drinking water. Respiration was measured in muscle fibres permeabilised by saponin in order to assess the oxidative capacity of the muscles and the regulation of mitochondria in situ. Oxidative capacities were 8.9 in SOL, 8.5 in Rg SOL and 5.9 micromol O2/min/g dry weight in GS and decreased by 52, 42 and 39% respectively (P hypothyroid rats. Moreover, the Km of mitochondrial respiration for the phosphate acceptor ADP exhibited a two-fold decrease in Rg SOL and intact SOL by hypothyroidism (P hypothyroidism markedly altered the sensitivity of mitochondrial respiration to ADP but not to creatine in SOL muscles, suggesting that mitochondrial regulation could be partially controlled by thyroid hormones. On the other hand, mitochondrial function completely recovered following regeneration/degeneration, suggesting that thyroid hormones are not involved in the regeneration process per se.

  3. Leech in urinary bladder causing hematuria.

    Science.gov (United States)

    Alam, Shadrul; Das Choudhary, Mrigen Kumar; Islam, Kabirul

    2008-02-01

    To estimate efficacy of normal saline in the management of hematuria caused by accidental entry of a leech per urethra into the urinary bladder. An intervention study was carried out in the Department of Pediatric Surgery of Sylhet MAG Osmani Medical College between January 1998 and December 2003. A total of 43 boys (mean age 8 years, SD+/-2.6) were enrolled. In all cases, a leech had entered the urinary bladder through the urethra causing hematuria. All patients were equipped with a self-retaining Foley catheter. They were managed by infusing 50ml of normal saline into the urinary bladder through the catheter that was then clamped for 3h. After removing the catheter, in all cases the whole leech was spontaneously expelled intact, dead or alive, within 2-24h during the subsequent act of micturition. Hematuria gradually diminished to a clear flow within the next 6h in 27 cases, 12h in 14 cases and 24h in two cases. All patients were followed up for 2 weeks, and none developed recurrent hematuria. Catheterization and irrigation of the urinary bladder with normal saline is a relatively simple, safe and inexpensive method of removing the leech and controlling hematuria.

  4. The Functional Role of Calcineurin in Hypertrophy, Regeneration, and Disorders of Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Kunihiro Sakuma

    2010-01-01

    Full Text Available Skeletal muscle uses calcium as a second messenger to respond and adapt to environmental stimuli. Elevations in intracellular calcium levels activate calcineurin, a serine/threonine phosphatase, resulting in the expression of a set of genes involved in the maintenance, growth, and remodeling of skeletal muscle. In this review, we discuss the effects of calcineurin activity on hypertrophy, regeneration, and disorders of skeletal muscle. Calcineurin is a potent regulator of muscle remodeling, enhancing the differentiation through upregulation of myogenin or MEF2A and downregulation of the Id1 family and myostatin. Foxo may also be a downstream candidate for a calcineurin signaling molecule during muscle regeneration. The strategy of controlling the amount of calcineurin may be effective for the treatment of muscular disorders such as DMD, UCMD, and LGMD. Activation of calcineurin produces muscular hypertrophy of the slow-twitch soleus muscle but not fast-twitch muscles.

  5. Prostaglandin E2 is essential for efficacious skeletal muscle stem-cell function, augmenting regeneration and strength.

    Science.gov (United States)

    Ho, Andrew T V; Palla, Adelaida R; Blake, Matthew R; Yucel, Nora D; Wang, Yu Xin; Magnusson, Klas E G; Holbrook, Colin A; Kraft, Peggy E; Delp, Scott L; Blau, Helen M

    2017-06-27

    Skeletal muscles harbor quiescent muscle-specific stem cells (MuSCs) capable of tissue regeneration throughout life. Muscle injury precipitates a complex inflammatory response in which a multiplicity of cell types, cytokines, and growth factors participate. Here we show that Prostaglandin E2 (PGE2) is an inflammatory cytokine that directly targets MuSCs via the EP4 receptor, leading to MuSC expansion. An acute treatment with PGE2 suffices to robustly augment muscle regeneration by either endogenous or transplanted MuSCs. Loss of PGE2 signaling by specific genetic ablation of the EP4 receptor in MuSCs impairs regeneration, leading to decreased muscle force. Inhibition of PGE2 production through nonsteroidal anti-inflammatory drug (NSAID) administration just after injury similarly hinders regeneration and compromises muscle strength. Mechanistically, the PGE2 EP4 interaction causes MuSC expansion by triggering a cAMP/phosphoCREB pathway that activates the proliferation-inducing transcription factor, Nurr1 Our findings reveal that loss of PGE2 signaling to MuSCs during recovery from injury impedes muscle repair and strength. Through such gain- or loss-of-function experiments, we found that PGE2 signaling acts as a rheostat for muscle stem-cell function. Decreased PGE2 signaling due to NSAIDs or increased PGE2 due to exogenous delivery dictates MuSC function, which determines the outcome of regeneration. The markedly enhanced and accelerated repair of damaged muscles following intramuscular delivery of PGE2 suggests a previously unrecognized indication for this therapeutic agent.

  6. mTOR is necessary for proper satellite cell activity and skeletal muscle regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengpeng [Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 (United States); Liang, Xinrong; Shan, Tizhong [Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 (United States); Jiang, Qinyang [Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 (United States); College of Animal Science and Technology, Guangxi University, Nanning 530004 (China); Deng, Changyan [Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Zheng, Rong, E-mail: zhengrong@mail.hzau.edu.cn [Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Kuang, Shihuan, E-mail: skuang@purdue.edu [Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 (United States)

    2015-07-17

    The serine/threonine kinase mammalian target of rapamycin (mTOR) is a key regulator of protein synthesis, cell proliferation and energy metabolism. As constitutive deletion of Mtor gene results in embryonic lethality, the function of mTOR in muscle stem cells (satellite cells) and skeletal muscle regeneration remains to be determined. In this study, we established a satellite cell specific Mtor conditional knockout (cKO) mouse model by crossing Pax7{sup CreER} and Mtor{sup flox/flox} mice. Skeletal muscle regeneration after injury was severely compromised in the absence of Mtor, indicated by increased number of necrotic myofibers infiltrated by Evans blue dye, and reduced number and size of regenerated myofibers in the Mtor cKO mice compared to wild type (WT) littermates. To dissect the cellular mechanism, we analyzed satellite cell-derived primary myoblasts grown on single myofibers or adhered to culture plates. The Mtor cKO myoblasts exhibited defective proliferation and differentiation kinetics when compared to myoblasts derived from WT littermates. At the mRNA and protein levels, the Mtor cKO myoblasts expressed lower levels of key myogenic determinant genes Pax7, Myf5, Myod, Myog than did the WT myoblasts. These results suggest that mTOR is essential for satellite cell function and skeletal muscle regeneration through controlling the expression of myogenic genes. - Highlights: • Pax7{sup CreER} was used to delete Mtor gene in satellite cells. • Satellite cell specific deletion of Mtor impairs muscle regeneration. • mTOR is necessary for satellite cell proliferation and differentiation. • Deletion of Mtor leads to reduced expression of key myogenic genes.

  7. mTOR is necessary for proper satellite cell activity and skeletal muscle regeneration

    International Nuclear Information System (INIS)

    Zhang, Pengpeng; Liang, Xinrong; Shan, Tizhong; Jiang, Qinyang; Deng, Changyan; Zheng, Rong; Kuang, Shihuan

    2015-01-01

    The serine/threonine kinase mammalian target of rapamycin (mTOR) is a key regulator of protein synthesis, cell proliferation and energy metabolism. As constitutive deletion of Mtor gene results in embryonic lethality, the function of mTOR in muscle stem cells (satellite cells) and skeletal muscle regeneration remains to be determined. In this study, we established a satellite cell specific Mtor conditional knockout (cKO) mouse model by crossing Pax7 CreER and Mtor flox/flox mice. Skeletal muscle regeneration after injury was severely compromised in the absence of Mtor, indicated by increased number of necrotic myofibers infiltrated by Evans blue dye, and reduced number and size of regenerated myofibers in the Mtor cKO mice compared to wild type (WT) littermates. To dissect the cellular mechanism, we analyzed satellite cell-derived primary myoblasts grown on single myofibers or adhered to culture plates. The Mtor cKO myoblasts exhibited defective proliferation and differentiation kinetics when compared to myoblasts derived from WT littermates. At the mRNA and protein levels, the Mtor cKO myoblasts expressed lower levels of key myogenic determinant genes Pax7, Myf5, Myod, Myog than did the WT myoblasts. These results suggest that mTOR is essential for satellite cell function and skeletal muscle regeneration through controlling the expression of myogenic genes. - Highlights: • Pax7 CreER was used to delete Mtor gene in satellite cells. • Satellite cell specific deletion of Mtor impairs muscle regeneration. • mTOR is necessary for satellite cell proliferation and differentiation. • Deletion of Mtor leads to reduced expression of key myogenic genes

  8. Multiple regeneration from axolotl limb stumps bearing cross-transplanted minced muscle regenerates : brief note

    NARCIS (Netherlands)

    Carlson, Bruce M.

    Flexor and extensor muscles in the upper arms of axolotls were minced and cross-transplanted. The limbs were amputated 5 and 30 days after mincing. In each experiment a high percentage of the regenerates consisted of multiple limbs. This demonstrates that the morphogenetic information which produces

  9. Loss of the inducible Hsp70 delays the inflammatory response to skeletal muscle injury and severely impairs muscle regeneration.

    Directory of Open Access Journals (Sweden)

    Sarah M Senf

    Full Text Available Skeletal muscle regeneration following injury is a highly coordinated process that involves transient muscle inflammation, removal of necrotic cellular debris and subsequent replacement of damaged myofibers through secondary myogenesis. However, the molecular mechanisms which coordinate these events are only beginning to be defined. In the current study we demonstrate that Heat shock protein 70 (Hsp70 is increased following muscle injury, and is necessary for the normal sequence of events following severe injury induced by cardiotoxin, and physiological injury induced by modified muscle use. Indeed, Hsp70 ablated mice showed a significantly delayed inflammatory response to muscle injury induced by cardiotoxin, with nearly undetected levels of both neutrophil and macrophage markers 24 hours post-injury. At later time points, Hsp70 ablated mice showed sustained muscle inflammation and necrosis, calcium deposition and impaired fiber regeneration that persisted several weeks post-injury. Through rescue experiments reintroducing Hsp70 intracellular expression plasmids into muscles of Hsp70 ablated mice either prior to injury or post-injury, we confirm that Hsp70 optimally promotes muscle regeneration when expressed during both the inflammatory phase that predominates in the first four days following severe injury and the regenerative phase that predominates thereafter. Additional rescue experiments reintroducing Hsp70 protein into the extracellular microenvironment of injured muscles at the onset of injury provides further evidence that Hsp70 released from damaged muscle may drive the early inflammatory response to injury. Importantly, following induction of physiological injury through muscle reloading following a period of muscle disuse, reduced inflammation in 3-day reloaded muscles of Hsp70 ablated mice was associated with preservation of myofibers, and increased muscle force production at later time points compared to WT. Collectively our

  10. Ulk1-mediated autophagy plays an essential role in mitochondrial remodeling and functional regeneration of skeletal muscle.

    Science.gov (United States)

    Call, Jarrod A; Wilson, Rebecca J; Laker, Rhianna C; Zhang, Mei; Kundu, Mondira; Yan, Zhen

    2017-06-01

    Autophagy is a conserved cellular process for degrading aggregate proteins and dysfunctional organelle. It is still debatable if autophagy and mitophagy (a specific process of autophagy of mitochondria) play important roles in myogenic differentiation and functional regeneration of skeletal muscle. We tested the hypothesis that autophagy is critical for functional regeneration of skeletal muscle. We first observed time-dependent increases (3- to 6-fold) of autophagy-related proteins (Atgs), including Ulk1, Beclin1, and LC3, along with reduced p62 expression during C2C12 differentiation, suggesting increased autophagy capacity and flux during myogenic differentiation. We then used cardiotoxin (Ctx) or ischemia-reperfusion (I/R) to induce muscle injury and regeneration and observed increases in Atgs between days 2 and 7 in adult skeletal muscle followed by increased autophagy flux after day 7 Since Ulk1 has been shown to be essential for mitophagy, we asked if Ulk1 is critical for functional regeneration in skeletal muscle. We subjected skeletal muscle-specific Ulk1 knockout mice (MKO) to Ctx or I/R. MKO mice had significantly impaired recovery of muscle strength and mitochondrial protein content post-Ctx or I/R. Imaging analysis showed that MKO mice have significantly attenuated recovery of mitochondrial network at 7 and 14 days post-Ctx. These findings suggest that increased autophagy protein and flux occur during muscle regeneration and Ulk1-mediated mitophagy is critical for recovery for the mitochondrial network and hence functional regeneration. Copyright © 2017 the American Physiological Society.

  11. Hunting leeches in the dense forests of Madagascar

    DEFF Research Database (Denmark)

    Bohmann, Kristine

    2013-01-01

    Identifying DNA from prey blood stored inside leeches reveals which animals the leeches have preyed on. This can be used to monitor wildlife. To find out whether this new wildlife screening method might be able to aid conservation efforts in Madagascar, the Centre for GeoGenetics has undertaken...

  12. An acellular biologic scaffold does not regenerate appreciable de novo muscle tissue in rat models of volumetric muscle loss injury.

    Science.gov (United States)

    Aurora, Amit; Roe, Janet L; Corona, Benjamin T; Walters, Thomas J

    2015-10-01

    Extracellular matrix (ECM) derived scaffolds continue to be investigated for the treatment of volumetric muscle loss (VML) injuries. Clinically, ECM scaffolds have been used for lower extremity VML repair; in particular, MatriStem™, a porcine urinary bladder matrix (UBM), has shown improved functional outcomes and vascularization, but limited myogenesis. However, efficacy of the scaffold for the repair of traumatic muscle injuries has not been examined systematically. In this study, we demonstrate that the porcine UBM scaffold when used to repair a rodent gastrocnemius musculotendinous junction (MTJ) and tibialis anterior (TA) VML injury does not support muscle tissue regeneration. In the MTJ model, the scaffold was completely resorbed without tissue remodeling, suggesting that the scaffold may not be suitable for the clinical repair of muscle-tendon injuries. In the TA VML injury, the scaffold remodeled into a fibrotic tissue and showed functional improvement, but not due to muscle fiber regeneration. The inclusion of physical rehabilitation also did not improve functional response or tissue remodeling. We conclude that the porcine UBM scaffold when used to treat VML injuries may hasten the functional recovery through the mechanism of scaffold mediated functional fibrosis. Thus for appreciable muscle regeneration, repair strategies that incorporate myogenic cells, vasculogenic accelerant and a myoconductive scaffold need to be developed. Published by Elsevier Ltd.

  13. miR-378 attenuates muscle regeneration by delaying satellite cell activation and differentiation in mice.

    Science.gov (United States)

    Zeng, Ping; Han, Wanhong; Li, Changyin; Li, Hu; Zhu, Dahai; Zhang, Yong; Liu, Xiaohong

    2016-09-01

    Skeletal muscle mass and homeostasis during postnatal muscle development and regeneration largely depend on adult muscle stem cells (satellite cells). We recently showed that global overexpression of miR-378 significantly reduced skeletal muscle mass in mice. In the current study, we used miR-378 transgenic (Tg) mice to assess the in vivo functional effects of miR-378 on skeletal muscle growth and regeneration. Cross-sectional analysis of skeletal muscle tissues showed that the number and size of myofibers were significantly lower in miR-378 Tg mice than in wild-type mice. Attenuated cardiotoxin-induced muscle regeneration in miR-378 Tg mice was found to be associated with delayed satellite cell activation and differentiation. Mechanistically, miR-378 was found to directly target Igf1r in muscle cells both in vitro and in vivo These miR-378 Tg mice may provide a model for investigating the physiological and pathological roles of skeletal muscle in muscle-associated diseases in humans, particularly in sarcopenia. © The Author 2016. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. β2-Adrenoceptor is involved in connective tissue remodeling in regenerating muscles by decreasing the activity of MMP-9.

    Science.gov (United States)

    Silva, Meiricris T; Nascimento, Tábata L; Pereira, Marcelo G; Siqueira, Adriane S; Brum, Patrícia C; Jaeger, Ruy G; Miyabara, Elen H

    2016-07-01

    We investigated the role of β2-adrenoceptors in the connective tissue remodeling of regenerating muscles from β2-adrenoceptor knockout (β2KO) mice. Tibialis anterior muscles from β2KO mice were cryolesioned and analyzed after 3, 10, and 21 days. Regenerating muscles from β2KO mice showed a significant increase in the area density of the connective tissue and in the amount of collagen at 10 days compared with wild-type (WT) mice. A greater increase occurred in the expression levels of collagen I, III, and IV in regenerating muscles from β2KO mice evaluated at 10 days compared with WT mice; this increase continued at 21 days, except for collagen III. Matrix metalloproteinase (MMP-2) activity increased to a similar extent in regenerating muscles from both β2KO and WT mice at 3 and 10 days. This was also the case for MMP-9 activity in regenerating muscles from both β2KO and WT mice at 3 days; however, at 10 days post-cryolesion, this activity returned to baseline levels only in WT mice. MMP-3 activity was unaltered in regenerating muscles at 10 days. mRNA levels of tumor necrosis factor-α increased in regenerating muscles from WT and β2KO mice at 3 days and, at 10 days post-cryolesion, returned to baseline only in WT mice. mRNA levels of interleukin-6 increased in muscles from WT mice at 3 days post-cryolesion and returned to baseline at 10 days post-cryolesion but were unchanged in β2KO mice. Our results suggest that the β2-adrenoceptor contributes to collagen remodeling during muscle regeneration by decreasing MMP-9 activity.

  15. Strategies to Improve Regeneration of the Soft Palate Muscles After Cleft Palate Repair

    Science.gov (United States)

    Carvajal Monroy, Paola L.; Grefte, Sander; Kuijpers-Jagtman, Anne Marie; Wagener, Frank A.D.T.G.

    2012-01-01

    Children with a cleft in the soft palate have difficulties with speech, swallowing, and sucking. These patients are unable to separate the nasal from the oral cavity leading to air loss during speech. Although surgical repair ameliorates soft palate function by joining the clefted muscles of the soft palate, optimal function is often not achieved. The regeneration of muscles in the soft palate after surgery is hampered because of (1) their low intrinsic regenerative capacity, (2) the muscle properties related to clefting, and (3) the development of fibrosis. Adjuvant strategies based on tissue engineering may improve the outcome after surgery by approaching these specific issues. Therefore, this review will discuss myogenesis in the noncleft and cleft palate, the characteristics of soft palate muscles, and the process of muscle regeneration. Finally, novel therapeutic strategies based on tissue engineering to improve soft palate function after surgical repair are presented. PMID:22697475

  16. MASTR directs MyoD-dependent satellite cell differentiation during skeletal muscle regeneration

    NARCIS (Netherlands)

    Mokalled, Mayssa H.; Johnson, Aaron N.; Creemers, Esther E.; Olson, Eric N.

    2012-01-01

    In response to skeletal muscle injury, satellite cells, which function as a myogenic stem cell population, become activated, expand through proliferation, and ultimately fuse with each other and with damaged myofibers to promote muscle regeneration. Here, we show that members of the Myocardin family

  17. Prolonged bleeding on the neck in leech therapy: Case report

    Directory of Open Access Journals (Sweden)

    Atakan Savrun

    2015-12-01

    Full Text Available Superficial skin bleeding can usually be stopped by applying short-time compression, unless the patient suffers from coagulation disorders or uses anticoagulant. Because of the anticoagulant component of leech saliva, a leech bite may cause long-time bleeding, which cannot be stopped via compression. In this study, the case of a patient who applied leech therapy on her neck for the treatment of migraine has been presented. [Arch Clin Exp Surg 2015; 4(4.000: 234-237

  18. Persistent muscle fiber regeneration in long term denervation. Past, present, future

    Directory of Open Access Journals (Sweden)

    Ugo Carraro

    2015-03-01

    Full Text Available Despite the ravages of long term denervation there is structural and ultrastructural evidence for survival of muscle fibers in mammals, with some fibers surviving at least ten months in rodents and 3-6 years in humans. Further, in rodents there is evidence that muscle fibers may regenerate even after repeated damage in the absence of the nerve, and that this potential is maintained for several months after denervation. While in animal models permanently denervated muscle sooner or later loses the ability to contract, the muscles may maintain their size and ability to function if electrically stimulated soon after denervation. Whether in mammals, humans included, this is a result of persistent de novo formation of muscle fibers is an open issue we would like to explore in this review. During the past decade, we have studied muscle biopsies from the quadriceps muscle of Spinal Cord Injury (SCI patients suffering with Conus and Cauda Equina syndrome, a condition that fully and irreversibly disconnects skeletal muscle fibers from their damaged innervating motor neurons. We have demonstrated that human denervated muscle fibers survive years of denervation and can be rescued from severe atrophy by home-based Functional Electrical Stimulation (h-bFES. Using immunohistochemistry with both non-stimulated and the h-bFES stimulated human muscle biopsies, we have observed the persistent presence of muscle fibers which are positive to labeling by an antibody which specifically recognizes the embryonic myosin heavy chain (MHCemb. Relative to the total number of fibers present, only a small percentage of these MHCemb positive fibers are detected, suggesting that they are regenerating muscle fibers and not pre-existing myofibers re-expressing embryonic isoforms. Although embryonic isoforms of acetylcholine receptors are known to be re-expressed and to spread from the end-plate to the sarcolemma of muscle fibers in early phases of muscle denervation, we suggest

  19. Clinical efficacy of Jalaukawacharana (leech application) in Thrombosed piles.

    Science.gov (United States)

    Bhagat, Pradnya J; Raut, Subhash Y; Lakhapati, Arun M

    2012-04-01

    'Arsha' (hemorrhoids) is an ailment that affects all economical groups of population. Though the disease is within the limits of management, it has its own complications like severe hemorrhage, inflammation, and thrombosis, by which a patient gets severe pain and is unable to continue his routine work. Prior to surgical treatment of hemorrhoids, associated conditions like inflammation, strangulation, thrombosis, etc. need to be managed. Thrombosed piles possibly occur due to high venous pressure associated with severe anal pain. Leech (Hirudina medicanalis) application is found to be effective in reducing pain. In thrombosed piles, leech application has shown thrombolytic action, which contributes in re-establishment of circulation. It is observed in the study that, pus and mucous discharge have been reduced after leech application; which may be due to antimicrobial and mucolytic properties of leech. This method of treatment is found to be effective and increase the quality of life in patients suffering with thrombosed piles.

  20. Regenerated rat skeletal muscle after periodic contusions

    Directory of Open Access Journals (Sweden)

    V.B. Minamoto

    2001-11-01

    Full Text Available In the present study we evaluated the morphological aspect and changes in the area and incidence of muscle fiber types of long-term regenerated rat tibialis anterior (TA muscle previously submitted to periodic contusions. Animals received eight consecutive traumas: one trauma per week, for eight weeks, and were evaluated one (N = 8 and four (N = 9 months after the last contusion. Serial cross-sections were evaluated by toluidine blue staining, acid phosphatase and myosin ATPase reactions. The weight of injured muscles was decreased compared to the contralateral intact one (one month: 0.77 ± 0.15 vs 0.91 ± 0.09 g, P = 0.03; four months: 0.79 ± 0.14 vs 1.02 ± 0.07 g, P = 0.0007, respectively and showed abundant presence of split fibers and fibers with centralized nuclei, mainly in the deep portion. Damaged muscles presented a higher incidence of undifferentiated fibers when compared to the intact one (one month: 3.4 ± 2.1 vs 0.5 ± 0.3%, P = 0.006; four months: 2.3 ± 1.6 vs 0.3 ± 0.3%, P = 0.007, respectively. Injured TA evaluated one month later showed a decreased area of muscle fibers when compared to the intact one (P = 0.003. Thus, we conclude that: a muscle fibers were damaged mainly in the deep portion, probably because they were compressed against the tibia; b periodic contusions in the TA muscle did not change the percentage of type I and II muscle fibers; c periodically injured TA muscles took four months to reach a muscle fiber area similar to that of the intact muscle.

  1. Gene expression program of regeneration in Eisenia fetida: a transcriptomics study

    Directory of Open Access Journals (Sweden)

    Aksheev Bhambri

    2017-10-01

    Full Text Available Annelids form a connecting link between segmented and non-segmented organisms.  In other words, phylogenetically, the segmented body pattern starts from Annelida, a phylum that consists of thousands of species, including marine worms, freshwater leeches and earthworms that inhabit deep layers of soil to environmental niches in forests and cultivated land. We are using Eisenia fetida (Indian isolate a top dwelling, vermicomposting worm due to its ability to regenerate its posterior after damage, injury or complete removal. On average, Eisenia fetida has 100-110 segments. We separated the anterior (upto 55-60th segment and posterior of the worm, and allowed it to regenerate.  In this model, only the posterior could be regenerated after injury.  We isolated RNA from the regenerated tissue and the immediate adjacent old tissue at 15 days, 20 days and 30 days during regeneration. We carried out transcriptome sequencing and analysis. With the aim of identifying specific factors which promote nerve regeneration, we have annotated the differentially expressed genes. In all organisms which possess a segmented body, the expression pattern of the Hox cluster is conserved. Hox gene expression, a conserved developmental phenomenon in establishment of body plan has been studied by comparative genomics of other annelids like the marine worm Capitella telleta, the leech Helobdella robusta.  We have used a combination of high-throughput sequencing based techniques and validation through cell and molecular biology to identify key aspects of the gene expression program of regeneration in this worm. Besides the transcriptome, we have also done whole genome sequencing, miRnome and metagenome sequencing of this terrestrial annelid.

  2. Calpain 3 is important for muscle regeneration: Evidence from patients with limb girdle muscular dystrophies

    Directory of Open Access Journals (Sweden)

    Hauerslev Simon

    2012-03-01

    Full Text Available Abstract Background Limb girdle muscular dystrophy (LGMD type 2A is caused by mutations in the CAPN3 gene and complete lack of functional calpain 3 leads to the most severe muscle wasting. Calpain 3 is suggested to be involved in maturation of contractile elements after muscle degeneration. The aim of this study was to investigate how mutations in the four functional domains of calpain 3 affect muscle regeneration. Methods We studied muscle regeneration in 22 patients with LGMD2A with calpain 3 deficiency, in five patients with LGMD2I, with a secondary reduction in calpain 3, and in five patients with Becker muscular dystrophy (BMD with normal calpain 3 levels. Regeneration was assessed by using the developmental markers neonatal myosin heavy chain (nMHC, vimentin, MyoD and myogenin and counting internally nucleated fibers. Results We found that the recent regeneration as determined by the number of nMHC/vimentin-positive fibers was greatly diminished in severely affected LGMD2A patients compared to similarly affected patients with LGMD2I and BMD. Whorled fibers, a sign of aberrant regeneration, was highly elevated in patients with a complete lack of calpain 3 compared to patients with residual calpain 3. Regeneration is not affected by location of the mutation in the CAPN3 gene. Conclusions Our findings suggest that calpain 3 is needed for the regenerative process probably during sarcomere remodeling as the complete lack of functional calpain 3 leads to the most severe phenotypes.

  3. Emerging new tools to study and treat muscle pathologies: genetics and molecular mechanisms underlying skeletal muscle development, regeneration, and disease.

    Science.gov (United States)

    Crist, Colin

    2017-01-01

    Skeletal muscle is the most abundant tissue in our body, is responsible for generating the force required for movement, and is also an important thermogenic organ. Skeletal muscle is an enigmatic tissue because while on the one hand, skeletal muscle regeneration after injury is arguably one of the best-studied stem cell-dependent regenerative processes, on the other hand, skeletal muscle is still subject to many degenerative disorders with few therapeutic options in the clinic. It is important to develop new regenerative medicine-based therapies for skeletal muscle. Future therapeutic strategies should take advantage of rapidly developing technologies enabling the differentiation of skeletal muscle from human pluripotent stem cells, along with precise genome editing, which will go hand in hand with a steady and focused approach to understanding underlying mechanisms of skeletal muscle development, regeneration, and disease. In this review, I focus on highlighting the recent advances that particularly have relied on developmental and molecular biology approaches to understanding muscle development and stem cell function. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  4. Thyroid hormones regulate skeletal muscle regeneration after acute injury.

    Science.gov (United States)

    Leal, Anna Lúcia R C; Albuquerque, João Paulo C; Matos, Marina S; Fortunato, Rodrigo S; Carvalho, Denise P; Rosenthal, Doris; da Costa, Vânia Maria Corrêa

    2015-02-01

    We evaluated the effects of hypo- and hyperthyroid statuses during the initial phase of skeletal muscle regeneration in rats. To induce hypo- or hyperthyroidism, adult male Wistar rats were treated with methimazole (0.03%) or T4 (10 μg/100 g), respectively, for 10 days. Three days before sacrifice, a crush injury was produced in the solear muscles of one half of the animals, while the other half remained intact. T3, T4, TSH, and leptin serum levels were not affected by the injury. Serum T3 and T4 levels were significantly increased in hyperthyroid and hyper-injury animals. Hypothyroidism was confirmed by the significant increase in serum TSH levels in hypothyroid and hypo-injury animals. Injury increased cell infiltration and macrophage accumulation especially in hyperthyroid animals. Both type 2 and type 3 deiodinases were induced by lesion, and the opposite occurred with the type 1 isoform, at least in the control and hyperthyroid groups. Injury increased both MyoD and myogenin expression in all the studied groups, but only MyoD expression was increased by thyroidal status only at the protein level. We conclude that thyroid hormones modulate skeletal muscle regeneration possibly by regulating the inflammatory process, as well as MyoD and myogenin expression in the injured tissue.

  5. Differentially activated macrophages orchestrate myogenic precursor cell fate during human skeletal muscle regeneration

    DEFF Research Database (Denmark)

    Saclier, Marielle; Yacoub-Youssef, Houda; Mackey, Abigail

    2013-01-01

    , we explored both in vitro and in vivo, in human, the interactions of differentially activated MPs with myogenic precursor cells (MPCs) during adult myogenesis and skeletal muscle regeneration. We showed in vitro that through the differential secretion of cytokines and growth factors, proinflammatory...... anti-inflammatory markers. These data demonstrate for the first time in human that MPs sequentially orchestrate adult myogenesis during regeneration of damaged skeletal muscle. These results support the emerging concept that inflammation, through MP activation, controls stem cell fate and coordinates......Macrophages (MPs) exert either beneficial or deleterious effects on tissue repair, depending on their activation/polarization state. They are crucial for adult skeletal muscle repair, notably by acting on myogenic precursor cells. However, these interactions have not been fully characterized. Here...

  6. Activation of satellite cells and the regeneration of human skeletal muscle are expedited by ingestion of nonsteroidal anti-inflammatory medication

    DEFF Research Database (Denmark)

    Mackey, Abigail L; Rasmussen, Lotte Klejs; Kadi, Fawzi

    2016-01-01

    muscles of one leg. Muscle biopsies were collected from the vastus lateralis muscles before and after stimulation (2.5 h and 2, 7, and 30 d) and were assessed for satellite cells and regeneration by immunohistochemistry and real-time RT-PCR, and we also measured telomere length. After injury, and compared...... activation of satellite cells and muscle remodeling during large-scale regeneration of injured human skeletal muscle.-Mackey, A. L., Rasmussen, L. K., Kadi, F., Schjerling, P., Helmark, I. C., Ponsot, E., Aagaard, P., Durigan, J. L. Q., Kjaer, M. Activation of satellite cells and the regeneration of human......With this study we investigated the role of nonsteroidal anti-inflammatory drugs (NSAIDs) in human skeletal muscle regeneration. Young men ingested NSAID [1200 mg/d ibuprofen (IBU)] or placebo (PLA) daily for 2 wk before and 4 wk after an electrical stimulation-induced injury to the leg extensor...

  7. Nfix Regulates Temporal Progression of Muscle Regeneration through Modulation of Myostatin Expression

    Directory of Open Access Journals (Sweden)

    Giuliana Rossi

    2016-03-01

    Full Text Available Nfix belongs to a family of four highly conserved proteins that act as transcriptional activators and/or repressors of cellular and viral genes. We previously showed a pivotal role for Nfix in regulating the transcriptional switch from embryonic to fetal myogenesis. Here, we show that Nfix directly represses the Myostatin promoter, thus controlling the proper timing of satellite cell differentiation and muscle regeneration. Nfix-null mice display delayed regeneration after injury, and this deficit is reversed upon in vivo Myostatin silencing. Conditional deletion of Nfix in satellite cells results in a similar delay in regeneration, confirming the functional requirement for Nfix in satellite cells. Moreover, mice lacking Nfix show reduced myofiber cross sectional area and a predominant slow twitching phenotype. These data define a role for Nfix in postnatal skeletal muscle and unveil a mechanism for Myostatin regulation, thus providing insights into the modulation of its complex signaling pathway.

  8. Nfix Regulates Temporal Progression of Muscle Regeneration through Modulation of Myostatin Expression.

    Science.gov (United States)

    Rossi, Giuliana; Antonini, Stefania; Bonfanti, Chiara; Monteverde, Stefania; Vezzali, Chiara; Tajbakhsh, Shahragim; Cossu, Giulio; Messina, Graziella

    2016-03-08

    Nfix belongs to a family of four highly conserved proteins that act as transcriptional activators and/or repressors of cellular and viral genes. We previously showed a pivotal role for Nfix in regulating the transcriptional switch from embryonic to fetal myogenesis. Here, we show that Nfix directly represses the Myostatin promoter, thus controlling the proper timing of satellite cell differentiation and muscle regeneration. Nfix-null mice display delayed regeneration after injury, and this deficit is reversed upon in vivo Myostatin silencing. Conditional deletion of Nfix in satellite cells results in a similar delay in regeneration, confirming the functional requirement for Nfix in satellite cells. Moreover, mice lacking Nfix show reduced myofiber cross sectional area and a predominant slow twitching phenotype. These data define a role for Nfix in postnatal skeletal muscle and unveil a mechanism for Myostatin regulation, thus providing insights into the modulation of its complex signaling pathway. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. When Leeches reveal Biodiversity

    DEFF Research Database (Denmark)

    Schnell, Ida Bærholm

    to provide information about vertebrate biodiversity. This thesis covers the development of a monitoring method based on iDNA extracted from terrestrial haematophagous leeches, a continuation of the work presented in Schnell et al., 2012. The chapters investigate and/or discuss different subjects regarding...

  10. Serum Osteopontin as a Novel Biomarker for Muscle Regeneration in Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Kuraoka, Mutsuki; Kimura, En; Nagata, Tetsuya; Okada, Takashi; Aoki, Yoshitsugu; Tachimori, Hisateru; Yonemoto, Naohiro; Imamura, Michihiro; Takeda, Shin'ichi

    2016-05-01

    Duchenne muscular dystrophy is a lethal X-linked muscle disorder. We have already reported that osteopontin (OPN), an inflammatory cytokine and myogenic factor, is expressed in the early dystrophic phase in canine X-linked muscular dystrophy in Japan, a dystrophic dog model. To further explore the possibility of OPN as a new biomarker for disease activity in Duchenne muscular dystrophy, we monitored serum OPN levels in dystrophic and wild-type dogs at different ages and compared the levels to other serum markers, such as serum creatine kinase, matrix metalloproteinase-9, and tissue inhibitor of metalloproteinase-1. Serum OPN levels in the dystrophic dogs were significantly elevated compared with those in wild-type dogs before and 1 hour after a cesarean section birth and at the age of 3 months. The serum OPN level was significantly correlated with the phenotypic severity of dystrophic dogs at the period corresponding to the onset of muscle weakness, whereas other serum markers including creatine kinase were not. Immunohistologically, OPN was up-regulated in infiltrating macrophages and developmental myosin heavy chain-positive regenerating muscle fibers in the dystrophic dogs, whereas serum OPN was highly elevated. OPN expression was also observed during the synergic muscle regeneration process induced by cardiotoxin injection. In conclusion, OPN is a promising biomarker for muscle regeneration in dystrophic dogs and can be applicable to boys with Duchenne muscular dystrophy. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. Myogenin regulates exercise capacity but is dispensable for skeletal muscle regeneration in adult mdx mice.

    Directory of Open Access Journals (Sweden)

    Eric Meadows

    Full Text Available Duchenne muscular dystrophy (DMD is the most prevalent inherited childhood muscle disorder in humans. mdx mice exhibit a similar pathophysiology to the human disorder allowing for an in-depth investigation of DMD. Myogenin, a myogenic regulatory factor, is best known for its role in embryonic myogenesis, but its role in adult muscle maintenance and regeneration is still poorly understood. Here, we generated an mdx:Myog(flox/flox mouse harboring a tamoxifen-inducible Cre recombinase transgene, which was used to conditionally delete Myog during adult life. After tamoxifen treatment, three groups of mice were created to study the effects of Myog deletion: mdx:Myog(flox/flox mice (mdx, Myog(flox/flox mice (wild-type, and mdx:Myog(floxΔ/floxΔ:Cre-ER mice (mdx:Myog-deleted. mdx:Myog-deleted mice exhibited no adverse phenotype and behaved normally. When run to exhaustion, mdx:Myog-deleted mice demonstrated an enhanced capacity for exercise compared to mdx mice, running nearly as far as wild-type mice. Moreover, these mice showed the same signature characteristics of muscle regeneration as mdx mice. Unexpectedly, we found that myogenin was dispensable for muscle regeneration. Factors associated with muscle fatigue, metabolism, and proteolysis were significantly altered in mdx:Myog-deleted mice, and this might contribute to their increased exercise capacity. Our results reveal novel functions for myogenin in adult muscle and suggest that reducing Myog expression in other muscle disease models may partially restore muscle function.

  12. Clinical uses of the medicinal leech: A practical review

    Directory of Open Access Journals (Sweden)

    B S Porshinsky

    2011-01-01

    Full Text Available The medicinal leech, Hirudo medicinalis, is an excellent example of the use of invertebrates in the treatment of human disease. Utilized for various medical indications since the ancient times, the medicinal leech is currently being used in a narrow range of well-defined and scientifically-grounded clinical applications. Hirudotherapy is most commonly used in the setting of venous congestion associated with soft tissue replantations and free flap-based reconstructive surgery. This is a comprehensive review of current clinical applications of hirudotherapy, featuring a comprehensive search of all major medical search engines (i.e. PubMed, Google Scholar, ScientificCommons and other cross-referenced sources. The authors focus on indications, contraindications, practical application/handling of the leech, and therapy-related complications.

  13. Leech therapy- a holistic approach of treatment in unani (greeko-arab) medicine.

    Science.gov (United States)

    Lone, Azad Hussain; Ahmad, Tanzeel; Anwar, Mohd; Habib, Shahida; Sofi, Gh; Imam, Hashmat

    2011-07-01

    The Unani System of Medicine also known as Greeko-Arab medicine, founded by Hippocrates is based on the concept of equilibrium and balance of natural body humours (blood, bile, black bile and phlegm). The imbalance in the quality and quantity of these humours leads to diseases whereas restoration of this balance maintains health of a person. The treatment methodology of diseases is based on four therapeutic modalities viz. Regimental therapy, Dieto-therapy, Pharmacotherapy and surgery. Irsale Alaq (Leech or Hirudo therapy) is one of the most important and widely practised methods of regimental therapy used for local evacuation of morbid humours. It is a procedure of treatment with the use of medicinal leeches. It has been suggested and successfully practised by Greeko-Arab physicians in the management of musculoskeletal diseases, gynaecological disorders, chronic skin diseases, thromboembolic diseases, varicose veins, ENT disorders etc since long. According to Unani doctrine, the efficacy of leech therapy is attributed to the analgesic and resolvent activities of leeches. However, from modern perspective, the saliva of leech contains about 100 pharmacologically active biological substances like Hirudin, hyaluronidase, vasodilators, anesthetics, antibacterial, fibrinases, collagenase etc. These substances are injected into human body while sucking of the blood and are responsible for the analgesic, anti inflammatory and anesthetic effects of leech therapy.

  14. A metabolic link to skeletal muscle wasting and regeneration

    Directory of Open Access Journals (Sweden)

    René eKoopman

    2014-02-01

    Full Text Available Due to its essential role in movement, insulating the internal organs, generating heat to maintain core body temperature, and acting as a major energy storage depot, any impairment to skeletal muscle structure and function may lead to an increase in both morbidity and mortality. In the context of skeletal muscle, altered metabolism is directly associated with numerous pathologies and disorders, including diabetes, and obesity, while many skeletal muscle pathologies have secondary changes in metabolism, including cancer cachexia, sarcopenia and the muscular dystrophies. Furthermore, the importance of cellular metabolism in the regulation of skeletal muscle stem cells is beginning to receive significant attention. Thus, it is clear that skeletal muscle metabolism is intricately linked to the regulation of skeletal muscle mass and regeneration. The aim of this review is to discuss some of the recent findings linking a change in metabolism to changes in skeletal muscle mass, as well as describing some of the recent studies in developmental, cancer and stem-cell biology that have identified a role for cellular metabolism in the regulation of stem cell function, a process termed ‘metabolic reprogramming’.

  15. Some Biological Activities of Malaysian Leech Saliva Extract

    OpenAIRE

    Abdualrahman M. Abdualkader; Ahmed Merzouk; Abbas Mohammed Ghawi; and Mohammed Alaama

    2011-01-01

    Leeches were fed on the phagostimulatory solution through parafilm membrane. The satiated leeches were forced to regurgitate the solution by soaking them in an ice-container. The anticoagulant activity was ascertained using thrombin time assay (TT). The result revealed that the saliva concentration which increases TT by 100% (IC100) is 43.205µg/ml plasma. The antimicrobial activity of the saliva was tested against several bacterial spp. (E.coli, P.aeruginosa, B.cereus, Sal.typhi and S...

  16. The Dilator Naris Muscle as a Reporter of Facial Nerve Regeneration in a Rat Model

    NARCIS (Netherlands)

    Weinberg, J.S.; Kleiss, I.J.; Knox, C.J.; Heaton, J.T.; Hadlock, T.A.

    2016-01-01

    OBJECTIVE: Many investigators study facial nerve regeneration using the rat whisker pad model, although widely standardized outcomes measures of facial nerve regeneration in the rodent have not yet been developed. The intrinsic whisker pad "sling" muscles producing whisker protraction, situated at

  17. Leech management before application on patient: a nationwide survey of practices in French university hospitals

    Directory of Open Access Journals (Sweden)

    Delphine Grau

    2018-02-01

    Full Text Available Abstract Background Leech therapy in plastic/reconstructive microsurgery significantly improves a successful outcome of flap salvage but the drawback is a risk of severe infection that results in a drop of the salvage rates from 70-80% to below 30%. We report the results of a national survey conducted in all the French university hospitals to assess the current extent of use of leech for medical practices in the hospital and to investigate maintenance, delivery practices and prevention of the risk of infection. Methods Data concerning conditions of storage, leech external decontamination, microbiological controls, mode of delivery and antibiotic prophylaxis were collected from all the French university hospitals in practicing leech therapy, on the basis of a standardized questionnaire. Results Twenty-eight of the 32 centers contacted filled the questionnaire, among which 23 practiced leech therapy, mostly with a centralized storage in the pharmacy; 39.1% of the centers declared to perform leech external decontamination and only 2 centers recurrent microbiological controls of the water storage. Leech delivery was mostly nominally performed (56.5%, but traceability of the leech batch number was achieved in only 39.1% of the cases. Only 5 centers declared that a protocol of antibiotic prophylaxis was systematically administered during leech therapy: either quinolone (2, sulfamethoxazole/trimethoprim (2 or amoxicillin/clavulanic acid (1. Conclusions Measures to prevent infectious complications before application to patient have to be better applied and guidelines of good practices are necessary.

  18. External auditory canal leech: a rare case report of paediatric ...

    African Journals Online (AJOL)

    Leeches are blood sucking organism feed on human blood. While human bites are common, they rarely cause human internal infestation. We describe a rare case of a parasitic leech infestation of the External Auditory Canal (EAC). A two month old child presented to the Emergency department with a seven day history of ...

  19. Medicinal leech therapy-an overall perspective.

    Science.gov (United States)

    Sig, Ali K; Guney, Mustafa; Uskudar Guclu, Aylin; Ozmen, Erkan

    2017-12-01

    Complementary medicine methods have a long history, but modern medicine has just recently focused on their possible modes of action. Medicinal leech therapy (MLT) or hirudotherapy, an old technique, has been studied by many researchers for possible effects on various diseases such as inflammatory diseases, osteoarthritis, and after different surgeries. Hirudo medicinalis has widest therapeutic usage among the leeches, but worldwide, many different species were tested and studied. Leeches secrete more than 20 identified bioactive substances such as antistasin, eglins, guamerin, hirudin, saratin, bdellins, complement, and carboxypeptidase inhibitors. They have analgesic, anti-inflammatory, platelet inhibitory, anticoagulant, and thrombin regulatory functions, as well as extracellular matrix degradative and antimicrobial effects, but with further studies, the spectrum of effects may widen. The technique is cheap, effective, easy to apply, and its modes of action have been elucidated for certain diseases. In conclusion, for treatment of some diseases, MLT is not an alternative, but is a complementary and/or integrative choice. MLT is a part of multidisciplinary treatments, and secretes various bioactive substances. These substances vary among species and different species should be evaluated for both treatment capability and their particular secreted molecules. There is huge potential for novel substances and these could be future therapeutics.

  20. Impaired regeneration: A role for the muscle microenvironment in cancer cachexia.

    Science.gov (United States)

    Talbert, Erin E; Guttridge, Denis C

    2016-06-01

    While changes in muscle protein synthesis and degradation have long been known to contribute to muscle wasting, a body of literature has arisen which suggests that regulation of the satellite cell and its ensuing regenerative program are impaired in atrophied muscle. Lessons learned from cancer cachexia suggest that this regulation is simply not a consequence, but a contributing factor to the wasting process. In addition to satellite cells, evidence from mouse models of cancer cachexia also suggests that non-satellite progenitor cells from the muscle microenvironment are also involved. This chapter in the series reviews the evidence of dysfunctional muscle repair in multiple wasting conditions. Potential mechanisms for this dysfunctional regeneration are discussed, particularly in the context of cancer cachexia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Comparison of effect of nicotine and levamisole and ivermectin on mortality of leech

    Directory of Open Access Journals (Sweden)

    Mahmoud Bahmani

    2014-02-01

    Full Text Available Objective: To study the effect of different doses of nicotine on Limnatis in comparison with levamisole and ivermectin. Methods: In this interventional experimental study in July 2012, the amount of 61 mature leeches of Limnatis nilotica species were collected and anti-parasitic effects of drug treatments using anti-leech method were assessed. So that, a leech was placed in the dishes with 600 mL spring water and leech's paralysis and death time were recorded accurately for 720 min. A total of 9 replicates were considered for each treatment. Six drug treatments were considered. Pharmacological treatments include nicotine (5, 1 0 and 20 mg doses, levamisole (1 0 mg, ivermectin (10 mg and distilled water. Data were analyzed using the Sigma ASA 2 software and pair t-test method with less than 0.05 confidence levels. Results: The results of present study show that doses of 5, 10 and 20 mg of nicotine, with time average of 2.44依0.52, 1.88依0.78 and 1.55依0.72 min cause to death of leeches. Ivermectin and levamisole cause to death of leeches, averaging 7.44依1.12 and 14.66依5.09 min, respectively. Distilled water treatment has been reported as an ineffective group. Data analysis showed that the group receiving 5 mg nicotine, had minimum time of death and there are statistical differences among all groups (P>0.05, but there are not significant differences between treatments receiving 10 mg nicotine, with 5 and 20 mg nicotine treatments. Conclusions: It appears that nicotine compound as the effective substance of tobacco plant has the strong anti-leech effect on Limnatis nilotica species and can be used as leech purposes in the future.

  2. Molecular Determinants of Cephalopod Muscles and Their Implication in Muscle Regeneration

    Directory of Open Access Journals (Sweden)

    Letizia Zullo

    2017-05-01

    Full Text Available The ability to regenerate whole-body structures has been studied for many decades and is of particular interest for stem cell research due to its therapeutic potential. Several vertebrate and invertebrate species have been used as model systems to study pathways involved in regeneration in the past. Among invertebrates, cephalopods are considered as highly evolved organisms, which exhibit elaborate behavioral characteristics when compared to other mollusks including active predation, extraordinary manipulation, and learning abilities. These are enabled by a complex nervous system and a number of adaptations of their body plan, which were acquired over evolutionary time. Some of these novel features show similarities to structures present in vertebrates and seem to have evolved through a convergent evolutionary process. Octopus vulgaris (the common octopus is a representative of modern cephalopods and is characterized by a sophisticated motor and sensory system as well as highly developed cognitive capabilities. Due to its phylogenetic position and its high regenerative power the octopus has become of increasing interest for studies on regenerative processes. In this paper we provide an overview over the current knowledge of cephalopod muscle types and structures and present a possible link between these characteristics and their high regenerative potential. This may help identify conserved molecular pathways underlying regeneration in invertebrate and vertebrate animal species as well as discover new leads for targeted tissue treatments in humans.

  3. Tyrannobdella rex n. gen. n. sp. and the evolutionary origins of mucosal leech infestations.

    Directory of Open Access Journals (Sweden)

    Anna J Phillips

    Full Text Available BACKGROUND: Leeches have gained a fearsome reputation by feeding externally on blood, often from human hosts. Orificial hirudiniasis is a condition in which a leech enters a body orifice, most often the nasopharyngeal region, but there are many cases of leeches infesting the eyes, urethra, vagina, or rectum. Several leech species particularly in Africa and Asia are well-known for their propensity to afflict humans. Because there has not previously been any data suggesting a close relationship for such geographically disparate species, this unnerving tendency to be invasive has been regarded only as a loathsome oddity and not a unifying character for a group of related organisms. PRINCIPAL FINDINGS: A new genus and species of leech from Perú was found feeding from the nasopharynx of humans. Unlike any other leech previously described, this new taxon has but a single jaw with very large teeth. Phylogenetic analyses of nuclear and mitochondrial genes using parsimony and Bayesian inference demonstrate that the new species belongs among a larger, global clade of leeches, all of which feed from the mucosal surfaces of mammals. CONCLUSIONS: This new species, found feeding from the upper respiratory tract of humans in Perú, clarifies an expansion of the family Praobdellidae to include the new species Tyrannobdella rex n. gen. n. sp., along with others in the genera Dinobdella, Myxobdella, Praobdella and Pintobdella. Moreover, the results clarify a single evolutionary origin of a group of leeches that specializes on mucous membranes, thus, posing a distinct threat to human health.

  4. Behavioral choice across leech species: chacun à son goût.

    Science.gov (United States)

    Gaudry, Q; Ruiz, N; Huang, T; Kristan, W B; Kristan, W B

    2010-04-01

    At any one time, animals are simultaneously bombarded with many sensory stimuli, but they typically choose to respond to only a few of them. We used multidimensional analysis to determine the behavioral responses of six species of leeches to stimulation, as the responses are affected by species identity, diet, behavioral state and stimulus location. Our results show that each of the species tested while not feeding displayed remarkably similar behaviors in response to tactile stimulation of the surface of the body. When not feeding, stimulus location was the most reliable factor in determining behavioral response. While feeding, the three sanguivorous (bloodsucking) species tested ignored stimulation, whereas the three carnivorous leeches abandoned feeding in favor of locomotory responses, regardless of phylogenetic relationships. In the sanguivorous leeches, feeding abolished all mechanically elicited responses and mechanical stimulation in turn had no effect on feeding. We also show that the behavioral hierarchy of leeches was fixed and unchanging even in species that can consume both a carnivorous and a sanguivorous diet.

  5. Connective tissue regeneration in skeletal muscle after eccentric contraction-induced injury

    DEFF Research Database (Denmark)

    Mackey, Abigail Louise; Kjaer, Michael

    2017-01-01

    Human skeletal muscle has the potential to regenerate completely after injury induced under controlled experimental conditions. The events inside the myofibres as they undergo necrosis, followed closely by satellite cell mediated myogenesis, have been mapped in detail. Much less is known about...... the adaptation throughout this process of both the connective tissue structures surrounding the myofibres, and the fibroblasts, the cells responsible for synthesising this connective tissue. However, the few studies investigating muscle connective tissue remodelling demonstrate a strong response that appears...

  6. The Leech method for diagnosing constipation: intra- and interobserver variability and accuracy

    International Nuclear Information System (INIS)

    Lorijn, Fleur de; Voskuijl, Wieger P.; Taminiau, Jan A.; Benninga, Marc A.; Rijn, Rick R. van; Henneman, Onno D.F.; Heijmans, Jarom; Reitsma, Johannes B.

    2006-01-01

    The data concerning the value of a plain abdominal radiograph in childhood constipation are inconsistent. Recently, positive results have been reported of a new radiographic scoring system, ''the Leech method'', for assessing faecal loading. To assess intra- and interobserver variability and determine diagnostic accuracy of the Leech method in identifying children with functional constipation (FC). A total of 89 children (median age 9.8 years) with functional gastrointestinal disorders were included in the study. Based on clinical parameters, 52 fulfilled the criteria for FC, six fulfilled the criteria for functional abdominal pain (FAP), and 31 for functional non-retentive faecal incontinence (FNRFI); the latter two groups provided the controls. To assess intra- and interobserver variability of the Leech method three scorers scored the same abdominal radiograph twice. A Leech score of 9 or more was considered as suggestive of constipation. ROC analysis was used to determine the diagnostic accuracy of the Leech method in separating patients with FC from control patients. Significant intraobserver variability was found between two scorers (P=0.005 and P<0.0001), whereas there was no systematic difference between the two scores of the other scorer (P=0.89). The scores between scorers differed systematically and displayed large variability. The area under the ROC curve was 0.68 (95% CI 0.58-0.80), indicating poor diagnostic accuracy. The Leech scoring method for assessing faecal loading on a plain abdominal radiograph is of limited value in the diagnosis of FC in children. (orig.)

  7. Pathologic bladder microenvironment attenuates smooth muscle differentiation of skin derived precursor cells: implications for tissue regeneration.

    Directory of Open Access Journals (Sweden)

    Cornelia Tolg

    Full Text Available Smooth muscle cell containing organs (bladder, heart, blood vessels are damaged by a variety of pathological conditions necessitating surgery or organ replacement. Currently, regeneration of contractile tissues is hampered by lack of functional smooth muscle cells. Multipotent skin derived progenitor cells (SKPs can easily be isolated from adult skin and can be differentiated in vitro into contractile smooth muscle cells by exposure to FBS. Here we demonstrate an inhibitory effect of a pathologic contractile organ microenvironment on smooth muscle cell differentiation of SKPs. In vivo, urinary bladder strain induces microenvironmental changes leading to de-differentiation of fully differentiated bladder smooth muscle cells. Co-culture of SKPs with organoids isolated from ex vivo stretched bladders or exposure of SKPs to diffusible factors released by stretched bladders (e.g. bFGF suppresses expression of smooth muscle markers (alpha SMactin, calponin, myocardin, myosin heavy chain as demonstrated by qPCR and immunofluorescent staining. Rapamycin, an inhibitor of mTOR signalling, previously observed to prevent bladder strain induced de-differentiation of fully differentiated smooth muscle cells in vitro, inhibits FBS-induced smooth muscle cell differentiation of undifferentiated SKPs. These results suggest that intended precursor cell differentiation may be paradoxically suppressed by the disease context for which regeneration may be required. Organ-specific microenvironment contexts, particularly prevailing disease, may play a significant role in modulating or attenuating an intended stem cell phenotypic fate, possibly explaining the variable and inefficient differentiation of stem cell constructs in in vivo settings. These observations must be considered in drafting any regeneration strategies.

  8. Transgenic overexpression of ADAM12 suppresses muscle regeneration and aggravates dystrophy in aged mdx mice

    DEFF Research Database (Denmark)

    Jørgensen, Louise Helskov; Jensen, Charlotte Harken; Wewer, Ulla M

    2007-01-01

    mice (ADAM12(+)) after a knife cut lesion and observed that the regeneration process was significantly impaired. ADAM12 seemed to inhibit the satellite cell response and delay myoblast differentiation. These results discourage long-term therapeutic use of ADAM12. They also point to impaired...... effect of ADAM12 was suggested to be mediated via a membrane-stabilizing up-regulation of utrophin, alpha7B integrin, and dystroglycans. Ectopic ADAM12 expression in normal mouse skeletal muscle also improved regeneration after freeze injury, presumably by the same mechanism. Hence, it was suggested...... overexpressing ADAM12 (ADAM12(+)/mdx mice), even though their utrophin levels were mildly elevated compared with age-matched controls. Thus, membrane stabilization was not sufficient to provide protection during prolonged disease. Consequently, we reinvestigated skeletal muscle regeneration in ADAM12 transgenic...

  9.  Age-related changes of skeletal muscles: physiology, pathology and regeneration

    Directory of Open Access Journals (Sweden)

    Aleksandra Ławniczak

    2012-06-01

    Full Text Available  This review provides a short presentation of the aging-related changes of human skeletal muscles. The aging process is associated with the loss of skeletal muscle mass (sarcopenia and strength. This results from fibre atrophy and apoptosis, decreased regeneration capacity, mitochondrial dysfunction, gradual reduction of the number of spinal cord motor neurons, and local and systemic metabolic and hormonal alterations. The latter involve age-related decrease of the expression and activity of some mitochondrial and cytoplasmic enzymes, triacylglycerols and lipofuscin accumulation inside muscle fibres, increased proteolytic activity, insulin resistance and decreased serum growth hormone and IGF-1 concentrations. Aging of the skeletal muscles is also associated with a decreased number of satellite cells and their proliferative activity. The age-related reduction of skeletal muscle mass and function may be partially prevented by dietary restriction and systematic physical exercises.

  10. Intranasal leech (hirudiniasis) common mode of presentation and sites of lodgment

    International Nuclear Information System (INIS)

    Khan, K.A.; Rafique, A.; Rafique, A.; Babur, S.

    2013-01-01

    Objective: To assess the common mode of presentation and sites of lodgment in cases of nasal leech infestation. Design: Descriptive study. Place and Duration of Study: This study was conducted in the ENT Department of Shaikh Khalifa Bin Zayed Al Nahyan Hospital (CMH) Muzaffarabad from 10th Jan 2010 to 15th Feb 2012. Patients and Methods: After getting informed consent, total of 70 cases that fulfilled the inclusion criteria i.e patients irrespective of age and gender with a positive history of epistaxis and use of spring water for daily utilities and especially after exclusion of other known causes for epistaxis were included in this study. A thorough history followed by ENT examination including nasal endoscopy was carried out in each case and site of lodgment of leech documented. This was followed by removal of leech from nose. Results: The commonest mode of presentation of nasal leech was epistaxis (54.28%) and the commonest site of lodgment of leech was under the inferior turbinate (inferior meatus) (82.86%). Conclusion: This rare cause of epistaxis should be kept in mind once all other common causes are excluded especially if the patient belongs to low socioeconomic group and using fresh spring water for their consumption. A thorough search in the region of inferior meatus should be under taken aided by nasal endoscope if available. (author)

  11. Isolation and Analytical Characterization of Local Malaysian Leech Saliva

    Directory of Open Access Journals (Sweden)

    Mohamed Alaama

    2011-12-01

    Full Text Available Leech saliva contains biologically active compounds that are mainly proteins and peptides. In this study a modified and smooth extraction method of saliva was used without leeches' scarification. UV and Bradford Assay protein methods showed that the saliva extract contains high concentrations of proteins. RP-HPLC chromatogram revealed that more than 30 different peaks were observed in leech saliva extract. Gel electrophoresis revealed the existence of proteins and peptides with different molecular weights. The gel showed up to 25 different bands. Comparison of gel electrophoresis data with protein database revealed the closeness of four molecular weights to known proteins from Hirudinaria leech family. Other proteins detected by gel electrophoresis may be related to completely new biologically active proteins and peptides in the saliva extract or to a modification (isoforms of the existing ones or finally to a mixture of both.ABSTRAK: Air liur pacat secara biologinya mengandungi sebahagian besar campuran aktif protein dan peptida. Dalam kajian ini, kaedah pengestrakan air liur pacat yang telah diubah suai digunakan tanpa perlu membunuh pacat. Kaedah protein Cerakin UV dan Bradford menunjukkan air liur pacat yang diekstrak mengandungi konsentrasi protein yang tinggi. Kromatogram RP-HPLC memperlihatkan lebih daripada 30 puncak berbeza diperolehi semasa air liur pacat diekstrak. Gel elektroforesis memperlihatkan kewujudan protein dan peptida dengan berat molekul yang berbeza. Gel menunjukkan hingga 25 jalur yang berbeza. Perbandingan data menggunakan gel elektroforesis seiring dengan pangkalan data protein memperlihatkan persamaan empat berat molekul, dengan protein yang yang dikenali daripada keluarga pacat Hirudinaria. Jenis protein lain yang dikesan dengan menggunakan gel elektrofosis mungkin juga berkait secara biologinya dengan protein dan peptida aktif yang baru, dalam ekstrak air liur atau pengubahsuaian (beberapa jenis yang berbeza daripada

  12. The Leech method for diagnosing constipation: intra- and interobserver variability and accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Lorijn, Fleur de; Voskuijl, Wieger P.; Taminiau, Jan A.; Benninga, Marc A. [Emma Children' s Hospital, Department of Paediatric Gastroenterology and Nutrition, Amsterdam (Netherlands); Rijn, Rick R. van; Henneman, Onno D.F. [Academic Medical Centre, Department of Radiology, Amsterdam (Netherlands); Heijmans, Jarom [Emma Children' s Hospital, Department of Paediatric Gastroenterology and Nutrition, Amsterdam (Netherlands); Academic Medical Centre, Department of Radiology, Amsterdam (Netherlands); Reitsma, Johannes B. [Academic Medical Centre, Department of Clinical Epidemiology and Biostatistics, Amsterdam (Netherlands)

    2006-01-01

    The data concerning the value of a plain abdominal radiograph in childhood constipation are inconsistent. Recently, positive results have been reported of a new radiographic scoring system, ''the Leech method'', for assessing faecal loading. To assess intra- and interobserver variability and determine diagnostic accuracy of the Leech method in identifying children with functional constipation (FC). A total of 89 children (median age 9.8 years) with functional gastrointestinal disorders were included in the study. Based on clinical parameters, 52 fulfilled the criteria for FC, six fulfilled the criteria for functional abdominal pain (FAP), and 31 for functional non-retentive faecal incontinence (FNRFI); the latter two groups provided the controls. To assess intra- and interobserver variability of the Leech method three scorers scored the same abdominal radiograph twice. A Leech score of 9 or more was considered as suggestive of constipation. ROC analysis was used to determine the diagnostic accuracy of the Leech method in separating patients with FC from control patients. Significant intraobserver variability was found between two scorers (P=0.005 and P<0.0001), whereas there was no systematic difference between the two scores of the other scorer (P=0.89). The scores between scorers differed systematically and displayed large variability. The area under the ROC curve was 0.68 (95% CI 0.58-0.80), indicating poor diagnostic accuracy. The Leech scoring method for assessing faecal loading on a plain abdominal radiograph is of limited value in the diagnosis of FC in children. (orig.)

  13. Local (Malaysian Leech as Alternative Healing Treatment and an Islamic Perspective

    Directory of Open Access Journals (Sweden)

    ZULHISYAM, A. K.

    2016-12-01

    Full Text Available The therapy is known from the time of extreme antiquity, dating back more than 2,500 years ago and still being practiced nowadays. This fact testifies to its efficiency in various health problems. In some cases, traditional medical practitioners use leeches for therapeutic healing treatment which is known as ‘cupping’. Such remedial method is quickly gaining acceptance amongst the local folks which is now becoming a thriving business. Some have made this treatment as their main business even though the therapy is quite recent for people in this country. This article discusses the process of cupping by using leech in the Islamic perspective and also the uniqueness of the hirudin protein in leeches respectively.

  14. Interaction of HmC1q with leech microglial cells: involvement of C1qBP-related molecule in the induction of cell chemotaxis

    Directory of Open Access Journals (Sweden)

    Tahtouh Muriel

    2012-02-01

    Full Text Available Abstract Background In invertebrates, the medicinal leech is considered to be an interesting and appropriate model to study neuroimmune mechanisms. Indeed, this non-vertebrate animal can restore normal function of its central nervous system (CNS after injury. Microglia accumulation at the damage site has been shown to be required for axon sprouting and for efficient regeneration. We characterized HmC1q as a novel chemotactic factor for leech microglial cell recruitment. In mammals, a C1q-binding protein (C1qBP alias gC1qR, which interacts with the globular head of C1q, has been reported to participate in C1q-mediated chemotaxis of blood immune cells. In this study, we evaluated the chemotactic activities of a recombinant form of HmC1q and its interaction with a newly characterized leech C1qBP that acts as its potential ligand. Methods Recombinant HmC1q (rHmC1q was produced in the yeast Pichia pastoris. Chemotaxis assays were performed to investigate rHmC1q-dependent microglia migration. The involvement of a C1qBP-related molecule in this chemotaxis mechanism was assessed by flow cytometry and with affinity purification experiments. The cellular localization of C1qBP mRNA and protein in leech was investigated using immunohistochemistry and in situ hybridization techniques. Results rHmC1q-stimulated microglia migrate in a dose-dependent manner. This rHmC1q-induced chemotaxis was reduced when cells were preincubated with either anti-HmC1q or anti-human C1qBP antibodies. A C1qBP-related molecule was characterized in leech microglia. Conclusions A previous study showed that recruitment of microglia is observed after HmC1q release at the cut end of axons. Here, we demonstrate that rHmC1q-dependent chemotaxis might be driven via a HmC1q-binding protein located on the microglial cell surface. Taken together, these results highlight the importance of the interaction between C1q and C1qBP in microglial activation leading to nerve repair in the medicinal

  15. Interaction of HmC1q with leech microglial cells: involvement of C1qBP-related molecule in the induction of cell chemotaxis.

    Science.gov (United States)

    Tahtouh, Muriel; Garçon-Bocquet, Annelise; Croq, Françoise; Vizioli, Jacopo; Sautière, Pierre-Eric; Van Camp, Christelle; Salzet, Michel; Nagnan-le Meillour, Patricia; Pestel, Joël; Lefebvre, Christophe

    2012-02-22

    In invertebrates, the medicinal leech is considered to be an interesting and appropriate model to study neuroimmune mechanisms. Indeed, this non-vertebrate animal can restore normal function of its central nervous system (CNS) after injury. Microglia accumulation at the damage site has been shown to be required for axon sprouting and for efficient regeneration. We characterized HmC1q as a novel chemotactic factor for leech microglial cell recruitment. In mammals, a C1q-binding protein (C1qBP alias gC1qR), which interacts with the globular head of C1q, has been reported to participate in C1q-mediated chemotaxis of blood immune cells. In this study, we evaluated the chemotactic activities of a recombinant form of HmC1q and its interaction with a newly characterized leech C1qBP that acts as its potential ligand. Recombinant HmC1q (rHmC1q) was produced in the yeast Pichia pastoris. Chemotaxis assays were performed to investigate rHmC1q-dependent microglia migration. The involvement of a C1qBP-related molecule in this chemotaxis mechanism was assessed by flow cytometry and with affinity purification experiments. The cellular localization of C1qBP mRNA and protein in leech was investigated using immunohistochemistry and in situ hybridization techniques. rHmC1q-stimulated microglia migrate in a dose-dependent manner. This rHmC1q-induced chemotaxis was reduced when cells were preincubated with either anti-HmC1q or anti-human C1qBP antibodies. A C1qBP-related molecule was characterized in leech microglia. A previous study showed that recruitment of microglia is observed after HmC1q release at the cut end of axons. Here, we demonstrate that rHmC1q-dependent chemotaxis might be driven via a HmC1q-binding protein located on the microglial cell surface. Taken together, these results highlight the importance of the interaction between C1q and C1qBP in microglial activation leading to nerve repair in the medicinal leech.

  16. Determining the appropriate number and duration of leech therapy in congested tissues using tissue spectrophotometry and laser Doppler flowmetry.

    Science.gov (United States)

    Rothenberger, Jens; Petersen, Wiebke; Schaller, Hans-Eberhard; Held, Manuel

    2016-11-01

    A universal protocol determining the number of leeches and their application time does not exist. The aim of this study, therefore, is to quantify perfusion dynamics in venous congested tissues after leech application to get more detailed information about changes due to leech-induced skin microcirculation and to evaluate the usability of the Oxygen to See (O2C) device in terms of determining the appropriate number of leeches and the duration of therapy. Twelve patients with the need for leech therapy participated in the study. Perfusion dynamics of the congested tissue was assessed using the O2C device, which determines blood flow (BF), the relative amount of hemoglobin (rHB), and the oxygen saturation (SO2). Measurements were carried out before leech application and on various intervals like 10 minutes, one hour, and three hours after leech application. The leech application effectuated after 10 minutes a nonsignificant perfusion improvement, which further increased after one hour with a significant reduction of the relative amount of hemoglobin and a significant increase of blood flow and oxygen saturation (BF= +56.7%; rHB= -25.5%; SO2= +53.7%). After three hours, the values returned to the levels before leech administration. In two cases, in which further administration of leeches within the measurement period was necessary, no substantial perfusion changes were obtained. The results of this study forms a more precise pattern of microcirculatory changes of leech therapy in congested tissues. According to our measurements a venous drainage improvement can be expected in congested tissue one hour after leech administration. The O2C seems to be a useful method to determine the appropriate number and duration of leech therapy. © 2016 by the Wound Healing Society.

  17. Satellite Cells CD44 Positive Drive Muscle Regeneration in Osteoarthritis Patients

    Science.gov (United States)

    Scimeca, Manuel; Bonanno, Elena; Piccirilli, Eleonora; Baldi, Jacopo; Mauriello, Alessandro; Orlandi, Augusto; Tancredi, Virginia; Gasbarra, Elena; Tarantino, Umberto

    2015-01-01

    Age-related bone diseases, such as osteoarthritis and osteoporosis, are strongly associated with sarcopenia and muscle fiber atrophy. In this study, we analyzed muscle biopsies in order to demonstrate that, in osteoarthritis patients, both osteophytes formation and regenerative properties of muscle stem cells are related to the same factors. In particular, thanks to immunohistochemistry, transmission electron microscopy, and immunogold labeling we investigated the role of BMP-2 in muscle stem cells activity. In patients with osteoarthritis both immunohistochemistry and transmission electron microscopy allowed us to note a higher number of CD44 positive satellite muscle cells forming syncytium. Moreover, the perinuclear and cytoplasmic expression of BMP-2 assessed by in situ molecular characterization of satellite cells syncytia suggest a very strict correlation between BMP-2 expression and muscle regeneration capability. Summing up, the higher BMP-2 expression in osteoarthritic patients could explain the increased bone mineral density as well as decreased muscle atrophy in osteoarthrosic patients. In conclusion, our results suggest that the control of physiological BMP-2 balance between bone and muscle tissues may be considered as a potential pharmacological target in bone-muscle related pathology. PMID:26101529

  18. Satellite Cells CD44 Positive Drive Muscle Regeneration in Osteoarthritis Patients

    Directory of Open Access Journals (Sweden)

    Manuel Scimeca

    2015-01-01

    Full Text Available Age-related bone diseases, such as osteoarthritis and osteoporosis, are strongly associated with sarcopenia and muscle fiber atrophy. In this study, we analyzed muscle biopsies in order to demonstrate that, in osteoarthritis patients, both osteophytes formation and regenerative properties of muscle stem cells are related to the same factors. In particular, thanks to immunohistochemistry, transmission electron microscopy, and immunogold labeling we investigated the role of BMP-2 in muscle stem cells activity. In patients with osteoarthritis both immunohistochemistry and transmission electron microscopy allowed us to note a higher number of CD44 positive satellite muscle cells forming syncytium. Moreover, the perinuclear and cytoplasmic expression of BMP-2 assessed by in situ molecular characterization of satellite cells syncytia suggest a very strict correlation between BMP-2 expression and muscle regeneration capability. Summing up, the higher BMP-2 expression in osteoarthritic patients could explain the increased bone mineral density as well as decreased muscle atrophy in osteoarthrosic patients. In conclusion, our results suggest that the control of physiological BMP-2 balance between bone and muscle tissues may be considered as a potential pharmacological target in bone-muscle related pathology.

  19. An unusual cause of severe dyspnea: A laryngeal live leech: Case report.

    Science.gov (United States)

    Anajar, Said; Ansari, Rachid; Hassnaoui, Jawad; Abada, Reda; Roubal, Mohammed; Mahtar, Mohammed

    2017-01-01

    Foreign bodies in the upper airways are one of the most challenging otolaryngology emergencies, leeches present a very rare cause of airway foreign bodies around the world. A 6-year-old girl was referred to our otolaryngology department at a tertiary university hospital with a severe dyspnea and hemoptysis. Nasofibroscopy revealed a dark living leech in the supraglottic area which extends to the glottis. The patient was urgently admitted to the operating room, the leech was grasped and removed with a foreign body forceps with a full length of more than 6cm. All symptoms were relieved post operatively and she was discharged one day later. Leeches should be suspected as an airway foreign body in patients with a recent history of drinking from stream water. Prevention remains the best treatment for such cases based simply on hygiene measures like not drinking stream water directly and filtering drinking water before it is used. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. The Akt/mTOR pathway: Data comparing young and aged mice with leucine supplementation at the onset of skeletal muscle regeneration

    Directory of Open Access Journals (Sweden)

    Richard A. Perry, Jr.

    2016-09-01

    Full Text Available The data described herein is related to the article “Differential Effects of Leucine Supplementation in Young and Aged Mice at the Onset of Skeletal Muscle Regeneration” [1]. Aging is associated with a decreased ability of skeletal muscle to regenerate following injury. Leucine supplementation has been extensively shown, in young subjects, to promote protein synthesis during regeneration; however, the effects of leucine supplementation on the Akt/mTOR pathway in aged mice at the onset of muscle regeneration are not fully elucidated. In this article, we present data on the Akt/mTOR protein synthesis pathway at the onset of muscle regeneration in young and aged C57BL/6J mice that are and are not receiving leucine supplementation. More specifically, protein content of total Akt, mTOR, p70S6K and 4EBP-1 are presented. Additionally, we provide relative (phosphorylated:total protein content comparisons of these targets as they present themselves in young and aged mice who have neither been injured nor received leucine supplementation. Lastly, markers of atrophy (FoxO1/O3, MuRF-1, Atrogin-1 are also reported in these young and aged control groups. Keywords: MTOR, Skeletal muscle, Regeneration, Leucine supplementation, Aging

  1. First report of freshwater leech Helobdella stagnalis (Rhyncobdellida: Glossiphoniidae as a parasite of an anuran amphibian

    Directory of Open Access Journals (Sweden)

    Rocco Tiberti

    2010-12-01

    Full Text Available The authors describe the first case of parasitism on anuran amphibian, Rana temporaria, by the freshwater leech Helobdella stagnalis, in a mountainous area of northwestern Italy. The presence of skin abrasions and haemorrhages attributable to leech attack discards the hypothesis of a simple phoretic relationship between leech and frog.

  2. Acupuncture plus Low-Frequency Electrical Stimulation (Acu-LFES Attenuates Diabetic Myopathy by Enhancing Muscle Regeneration.

    Directory of Open Access Journals (Sweden)

    Zhen Su

    Full Text Available Mortality and morbidity are increased in patients with muscle atrophy resulting from catabolic diseases such as diabetes. At present there is no pharmacological treatment that successfully reverses muscle wasting from catabolic conditions. We hypothesized that acupuncture plus low frequency electric stimulation (Acu-LFES would mimic the impact of exercise and prevent diabetes-induced muscle loss. Streptozotocin (STZ was used to induce diabetes in mice. The mice were then treated with Acu-LFES for 15 minutes daily for 14 days. Acupuncture points were selected according to the WHO Standard Acupuncture Nomenclature guide. The needles were connected to an SDZ-II electronic acupuncture device delivering pulses at 20Hz and 1mA. Acu-LFES prevented soleus and EDL muscle weight loss and increased hind-limb muscle grip function in diabetic mice. Muscle regeneration capacity was significantly increased by Acu-LFES. The expression of Pax7, MyoD, myogenin and embryo myosin heavy chain (eMyHC was significantly decreased in diabetic muscle vs. control muscle. The suppressed levels in diabetic muscle were reversed by Acu-LFES. The IGF-1 signaling pathway was also upregulated by Acu-LFES. Phosphorylation of Akt, mTOR and p70S6K were downregulated by diabetes leading to a decline in muscle mass, however, Acu-LFES countered the diabetes-induced decline. In addition, microRNA-1 and -206 were increased by Acu-LFES after 24 days of treatment. We conclude that Acu-LFES is effective in counteracting diabetes-induced skeletal muscle atrophy by increasing IGF-1 and its stimulation of muscle regeneration.

  3. Occurrence of three leech species (Annelida: Hirudinida) on fishes in the Kentucky River

    Science.gov (United States)

    Leeches were collected from six fish species distributed among four of ten sites sampled. The leech species observed were Myzobdella reducta (Meyer, 1940) and Myzobdella lugubris Leidy, 1851 of the family Piscicolidae and Placobdella pediculata Hemingway, 1908 of the family Gloss...

  4. FOXP3+ T Cells Recruited to Sites of Sterile Skeletal Muscle Injury Regulate the Fate of Satellite Cells and Guide Effective Tissue Regeneration

    Science.gov (United States)

    Castiglioni, Alessandra; Basso, Veronica; Vezzoli, Michela; Monno, Antonella; Almada, Albert E.; Mondino, Anna; Wagers, Amy J.; Manfredi, Angelo A.; Rovere-Querini, Patrizia

    2015-01-01

    Muscle injury induces a classical inflammatory response in which cells of the innate immune system rapidly invade the tissue. Macrophages are prominently involved in this response and required for proper healing, as they are known to be important for clearing cellular debris and supporting satellite cell differentiation. Here, we sought to assess the role of the adaptive immune system in muscle regeneration after acute damage. We show that T lymphocytes are transiently recruited into the muscle after damage and appear to exert a pro-myogenic effect on muscle repair. We observed a decrease in the cross-sectional area of regenerating myofibers after injury in Rag2-/- γ-chain-/- mice, as compared to WT controls, suggesting that T cell recruitment promotes muscle regeneration. Skeletal muscle infiltrating T lymphocytes were enriched in CD4+CD25+FOXP3+ cells. Direct exposure of muscle satellite cells to in vitro induced Treg cells effectively enhanced their expansion, and concurrently inhibited their myogenic differentiation. In vivo, the recruitment of Tregs to acutely injured muscle was limited to the time period of satellite expansion, with possibly important implications for situations in which inflammatory conditions persist, such as muscular dystrophies and inflammatory myopathies. We conclude that the adaptive immune system, in particular T regulatory cells, is critically involved in effective skeletal muscle regeneration. Thus, in addition to their well-established role as regulators of the immune/inflammatory response, T regulatory cells also regulate the activity of skeletal muscle precursor cells, and are instrumental for the proper regeneration of this tissue. PMID:26039259

  5. Calpain 3 Expression Pattern during Gastrocnemius Muscle Atrophy and Regeneration Following Sciatic Nerve Injury in Rats

    Directory of Open Access Journals (Sweden)

    Ronghua Wu

    2015-11-01

    Full Text Available Calpain 3 (CAPN3, also known as p94, is a skeletal muscle-specific member of the calpain family that is involved in muscular dystrophy; however, the roles of CAPN3 in muscular atrophy and regeneration are yet to be understood. In the present study, we attempted to explain the effect of CAPN3 in muscle atrophy by evaluating CAPN3 expression in rat gastrocnemius muscle following reversible sciatic nerve injury. After nerve injury, the wet weight ratio and cross sectional area (CSA of gastrocnemius muscle were decreased gradually from 1–14 days and then recovery from 14–28 days. The active form of CAPN3 (~62 kDa protein decreased slightly on day 3 and then increased from day 7 to 14 before a decrease from day 14 to 28. The result of linear correlation analysis showed that expression of the active CAPN3 protein level was negatively correlated with muscle wet weight ratio. CAPN3 knockdown by short interfering RNA (siRNA injection improved muscle recovery on days 7 and 14 after injury as compared to that observed with control siRNA treatment. Depletion of CAPN3 gene expression could promote myoblast differentiation in L6 cells. Based on these findings, we conclude that the expression pattern of the active CAPN3 protein is linked to muscle atrophy and regeneration following denervation: its upregulation during early stages may promote satellite cell renewal by inhibiting differentiation, whereas in later stages, CAPN3 expression may be downregulated to stimulate myogenic differentiation and enhance recovery. These results provide a novel mechanistic insight into the role of CAPN3 protein in muscle regeneration after peripheral nerve injury.

  6. Skeletal muscle hypertrophy and regeneration: interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways.

    Science.gov (United States)

    Zanou, Nadège; Gailly, Philippe

    2013-11-01

    Adult skeletal muscle can regenerate in response to muscle damage. This ability is conferred by the presence of myogenic stem cells called satellite cells. In response to stimuli such as injury or exercise, these cells become activated and express myogenic regulatory factors (MRFs), i.e., transcription factors of the myogenic lineage including Myf5, MyoD, myogenin, and Mrf4 to proliferate and differentiate into myofibers. The MRF family of proteins controls the transcription of important muscle-specific proteins such as myosin heavy chain and muscle creatine kinase. Different growth factors are secreted during muscle repair among which insulin-like growth factors (IGFs) are the only ones that promote both muscle cell proliferation and differentiation and that play a key role in muscle regeneration and hypertrophy. Different isoforms of IGFs are expressed during muscle repair: IGF-IEa, IGF-IEb, or IGF-IEc (also known as mechano growth factor, MGF) and IGF-II. MGF is expressed first and is observed in satellite cells and in proliferating myoblasts whereas IGF-Ia and IGF-II expression occurs at the state of muscle fiber formation. Interestingly, several studies report the induction of MRFs in response to IGFs stimulation. Inversely, IGFs expression may also be regulated by MRFs. Various mechanisms are proposed to support these interactions. In this review, we describe the general process of muscle hypertrophy and regeneration and decipher the interactions between the two groups of factors involved in the process.

  7. Nestin Expression Reflects Formation, Revascularization and Reinnervation of New Myofibers in Regenerating Rat Hind Limb Skeletal Muscles

    Czech Academy of Sciences Publication Activity Database

    Čížková, D.; Soukup, Tomáš; Mokrý, J.

    2009-01-01

    Roč. 189, č. 5 (2009), s. 338-347 ISSN 1422-6405 Institutional research plan: CEZ:AV0Z50110509 Keywords : intermediate filaments * muscle transplantation * muscle regeneration Subject RIV: ED - Physiology Impact factor: 3.322, year: 2009

  8. MARINE LEECH ANTICOAGULANT DIVERSITY AND EVOLUTION.

    Science.gov (United States)

    Tessler, Michael; Marancik, David; Champagne, Donald; Dove, Alistair; Camus, Alvin; Siddall, Mark E; Kvist, Sebastian

    2018-03-16

    Leeches (Annelida: Hirudinea) possess powerful salivary anticoagulants and, accordingly, are frequently employed in modern, authoritative medicine. Members of the almost exclusively marine family Piscicolidae account for 20% of leech species diversity, and feed on host groups (e.g., sharks) not encountered by their freshwater and terrestrial counterparts. Moreover, some species of Ozobranchidae feed on endangered marine turtles and have been implicated as potential vectors for the tumor-associated turtle herpesvirus. In spite of their ecological importance and unique host associations, there is a distinct paucity of data regarding the salivary transcriptomes of either of these families. Using next generation sequencing, we profiled transcribed, putative anticoagulants and other salivary bioactive compounds that have previously been linked to bloodfeeding from 7 piscicolid species (3 elasmobranch-feeders; 4 non-cartilaginous fish-feeders) and 1 ozobranchid species (2 samples). In total, 149 putative anticoagulants and bioactive loci were discovered in varying constellations throughout the different samples. The putative anticoagulants showed a broad spectrum of described antagonistic pathways, such as inhibition of factor Xa and platelet aggregation, that likely have similar bioactive roles in marine fish and turtles. A transcript with homology to ohanin, originally isolated from king cobras, was found in Cystobranchus vividus but is otherwise unknown from leeches. Estimation of selection pressures for the putative anticoagulants recovered evidence for both positive and purifying selection along several isolated branches in the gene trees and positive selection was also estimated for a few select codons in a variety of marine species. Similarly, phylogenetic analyses of the amino acid sequences for several anticoagulants indicated divergent evolution.

  9. Allium sativum L.: the anti-immature leech (Limnatis nilotica) activity compared to Niclosomide.

    Science.gov (United States)

    Bahmani, Mahmoud; Abbasi, Javad; Mohsenzadegan, Ava; Sadeghian, Sirous; Ahangaran, Majid Gholami

    2013-03-01

    This study was carried out to determine the effects of methanolic extracts of Allium sativum L. on Limnatis nilotica compared with Niclosomide. In this experimental study in September 2010, a number of leeches (70 in total) from the southern area of Ilam province were prepared, and the effects of methanolic extract of A. sativum L. with Niclosomide as the control drug were compared and distilled water was evaluated as the placebo group which investigated L. nilotica using anti-leech assay. The average time of paralysis and death of L. nilotica for Niclosomide (1,250 mg/kg) and the methanol extract of A. sativum L. (600 μg/ml) were 6.22 ± 2.94 and 68.44 ± 28.39 min, respectively. Distilled water and garlic tablets at a dose of 400 mg were determined as the inert group. In this research, the attraction time of the leeches' death among different treatments is significant. In this study, it was determined that Niclosomide, with an intensity of 4+, and methanolic extracts of A. sativum L., with an intensity of 3+, have a good anti-leech effect and can be shown to be effective in cases of leech biting, while distilled water was negative.

  10. Reduced Dnmt3a increases Gdf5 expression with suppressed satellite cell differentiation and impaired skeletal muscle regeneration.

    Science.gov (United States)

    Hatazawa, Yukino; Ono, Yusuke; Hirose, Yuma; Kanai, Sayaka; Fujii, Nobuharu L; Machida, Shuichi; Nishino, Ichizo; Shimizu, Takahiko; Okano, Masaki; Kamei, Yasutomi; Ogawa, Yoshihiro

    2018-03-01

    DNA methylation is an epigenetic mechanism regulating gene expression. In this study, we observed that DNA methyltransferase 3a (Dnmt3a) expression is decreased after muscle atrophy. We made skeletal muscle-specific Dnmt3a-knockout (Dnmt3a-KO) mice. The regeneration capacity after muscle injury was markedly decreased in Dnmt3a-KO mice. Diminished mRNA and protein expression of Dnmt3a were observed in skeletal muscles as well as in satellite cells, which are important for muscle regeneration, in Dnmt3a-KO mice. Dnmt3a-KO satellite cell showed smaller in size (length/area), suggesting suppressed myotube differentiation. Microarray analysis of satellite cells showed that expression of growth differentiation factor 5 (Gdf5) mRNA was markedly increased in Dnmt3a-KO mice. The DNA methylation level of the Gdf5 promoter was markedly decreased in Dnmt3a-KO satellite cells. In addition, DNA methylation inhibitor azacytidine treatment increased Gdf5 expression in wild-type satellite cells, suggesting Gdf5 expression is regulated by DNA methylation. Also, we observed increased inhibitor of differentiation (a target of Gdf5) mRNA expression in Dnmt3a-KO satellite cells. Thus, Dnmt3a appears to regulate satellite cell differentiation via DNA methylation. This mechanism may play a role in the decreased regeneration capacity during atrophy such as in aged sarcopenia.-Hatazawa, Y., Ono, Y., Hirose, Y., Kanai, S., Fujii, N. L., Machida, S., Nishino, I., Shimizu, T., Okano, M., Kamei, Y., Ogawa, Y. Reduced Dnmt3a increases Gdf5 expression with suppressed satellite cell differentiation and impaired skeletal muscle regeneration.

  11. Loss of MyoD and Myf5 in Skeletal Muscle Stem Cells Results in Altered Myogenic Programming and Failed Regeneration

    Directory of Open Access Journals (Sweden)

    Masakazu Yamamoto

    2018-03-01

    Full Text Available Summary: MyoD and Myf5 are fundamental regulators of skeletal muscle lineage determination in the embryo, and their expression is induced in satellite cells following muscle injury. MyoD and Myf5 are also expressed by satellite cell precursors developmentally, although the relative contribution of historical and injury-induced expression to satellite cell function is unknown. We show that satellite cells lacking both MyoD and Myf5 (double knockout [dKO] are maintained with aging in uninjured muscle. However, injured muscle fails to regenerate and dKO satellite cell progeny accumulate in damaged muscle but do not undergo muscle differentiation. dKO satellite cell progeny continue to express markers of myoblast identity, although their myogenic programming is labile, as demonstrated by dramatic morphological changes and increased propensity for non-myogenic differentiation. These data demonstrate an absolute requirement for either MyoD or Myf5 in muscle regeneration and indicate that their expression after injury stabilizes myogenic identity and confers the capacity for muscle differentiation. : In this article, Goldhamer and colleagues show that loss of both MyoD and Myf5 in skeletal muscle satellite cells results in regenerative failure following injury. Satellite cell progeny accumulate in injured muscle and continue to express markers of myoblast identity, but do not undergo muscle differentiation, and exhibit a propensity for non-myogenic differentiation. Keywords: skeletal muscle regeneration, muscle stem cell programming, muscle differentiation, satellite cell, MyoD, Myf5, adipogenesis, fibrosis, conditional knockout, Cre/loxP

  12. Matrilin-2, an extracellular adaptor protein, is needed for the regeneration of muscle, nerve and other tissues

    Directory of Open Access Journals (Sweden)

    Éva Korpos

    2015-01-01

    Full Text Available The extracellular matrix (ECM performs essential functions in the differentiation, maintenance and remodeling of tissues during development and regeneration, and it undergoes dynamic changes during remodeling concomitant to alterations in the cell-ECM interactions. Here we discuss recent data addressing the critical role of the widely expressed ECM protein, matrilin-2 (Matn2 in the timely onset of differentiation and regeneration processes in myogenic, neural and other tissues and in tumorigenesis. As a multiadhesion adaptor protein, it interacts with other ECM proteins and integrins. Matn2 promotes neurite outgrowth, Schwann cell migration, neuromuscular junction formation, skeletal muscle and liver regeneration and skin wound healing. Matn2 deposition by myoblasts is crucial for the timely induction of the global switch toward terminal myogenic differentiation during muscle regeneration by affecting transforming growth factor beta/bone morphogenetic protein 7/Smad and other signal transduction pathways. Depending on the type of tissue and the pathomechanism, Matn2 can also promote or suppress tumor growth.

  13. Integrative Genomic Analysis of In Vivo Muscle Regeneration After Severe Trauma

    Science.gov (United States)

    2015-11-30

    muscular dystrophy and aging. The cis-regulatory networks that orchestrate in-vivo muscle repair and regeneration after traumatic injury have only been...modulates dystrophin expression: new implications for Duchenne muscular dystrophy therapy. EMBO Rep. 12, 136-141 (2011). 46. Cachiarelli, D., Martone...I. MicroRNAs involved in molecular circuitries relevant for the Duchenne muscular dystrophy pathogenesis are controlled by the dystrophin/nNOS

  14. Transiently Active Wnt/β-Catenin Signaling Is Not Required but Must Be Silenced for Stem Cell Function during Muscle Regeneration

    Directory of Open Access Journals (Sweden)

    Malea M. Murphy

    2014-09-01

    Full Text Available Adult muscle’s exceptional capacity for regeneration is mediated by muscle stem cells, termed satellite cells. As with many stem cells, Wnt/β-catenin signaling has been proposed to be critical in satellite cells during regeneration. Using new genetic reagents, we explicitly test in vivo whether Wnt/β-catenin signaling is necessary and sufficient within satellite cells and their derivatives for regeneration. We find that signaling is transiently active in transit-amplifying myoblasts, but is not required for regeneration or satellite cell self-renewal. Instead, downregulation of transiently activated β-catenin is important to limit the regenerative response, as continuous regeneration is deleterious. Wnt/β-catenin activation in adult satellite cells may simply be a vestige of their developmental lineage, in which β-catenin signaling is critical for fetal myogenesis. In the adult, surprisingly, we show that it is not activation but rather silencing of Wnt/β-catenin signaling that is important for muscle regeneration.

  15. A clinical trial for evaluation of leech application in the management of Vicarcikā (Eczema

    Directory of Open Access Journals (Sweden)

    K M Pratap Shankar

    2014-01-01

    Conclusion : Leech application gives significant relief for the symptoms of eczema. The life quality of the patient also improved significantly after leech therapy. No adverse reactions were reported during the entire course of study.

  16. Potential Roles of n-3 PUFAs during Skeletal Muscle Growth and Regeneration

    Directory of Open Access Journals (Sweden)

    Bill Tachtsis

    2018-03-01

    Full Text Available Omega-3 polyunsaturated fatty acids (n-3 PUFAs, which are commonly found in fish oil supplements, are known to possess anti-inflammatory properties and more recently alter skeletal muscle function. In this review, we discuss novel findings related to how n-3 PUFAs modulate molecular signaling responsible for growth and hypertrophy as well as the activity of muscle stem cells. Muscle stem cells commonly known as satellite cells, are primarily responsible for driving the skeletal muscle repair process to potentially damaging stimuli, such as mechanical stress elicited by exercise contraction. To date, there is a paucity of human investigations related to the effects of n-3 PUFAs on satellite cell content and activity. Based on current in vitro investigations, this review focuses on novel mechanisms linking n-3 PUFA’s to satellite cell activity and how they may improve muscle repair. Understanding the role of n-3 PUFAs during muscle growth and regeneration in association with exercise could lead to the development of novel supplementation strategies that increase muscle mass and strength, therefore possibly reducing the burden of muscle wasting with age.

  17. Heterogeneity among muscle precursor cells in adult skeletal muscles with differing regenerative capacities.

    Science.gov (United States)

    Pavlath, G K; Thaloor, D; Rando, T A; Cheong, M; English, A W; Zheng, B

    1998-08-01

    Skeletal muscle has a remarkable capacity to regenerate after injury, although studies of muscle regeneration have heretofore been limited almost exclusively to limb musculature. Muscle precursor cells in skeletal muscle are responsible for the repair of damaged muscle. Heterogeneity exists in the growth and differentiation properties of muscle precursor cell (myoblast) populations throughout limb development but whether the muscle precursor cells differ among adult skeletal muscles is unknown. Such heterogeneity among myoblasts in the adult may give rise to skeletal muscles with different regenerative capacities. Here we compare the regenerative response of a masticatory muscle, the masseter, to that of limb muscles. After exogenous trauma (freeze or crush injuries), masseter muscle regenerated much less effectively than limb muscle. In limb muscle, normal architecture was restored 12 days after injury, whereas in masseter muscle, minimal regeneration occurred during the same time period. Indeed, at late time points, masseter muscles exhibited increased fibrous connective tissue in the region of damage, evidence of ineffective muscle regeneration. Similarly, in response to endogenous muscle injury due to a muscular dystrophy, widespread evidence of impaired regeneration was present in masseter muscle but not in limb muscle. To explore the cellular basis of these different regenerative capacities, we analyzed the myoblast populations of limb and masseter muscles both in vivo and in vitro. From in vivo analyses, the number of myoblasts in regenerating muscle was less in masseter compared with limb muscle. Assessment of population growth in vitro indicated that masseter myoblasts grow more slowly than limb myoblasts under identical conditions. We conclude that the impaired regeneration in masseter muscles is due to differences in the intrinsic myoblast populations compared to limb muscles.

  18. FIRST SOUND EVIDENCE OF MUSCLE REGENERATION IN RECOVERY OF FUNCTION OF HUMAN PERMANENT DENERVATED MUSCLES BY A LONG-LASTING FUNCTIONAL ELECTRICAL STIMULATION (FES TRAINING: BIOPSY FINDINGS

    Directory of Open Access Journals (Sweden)

    Helmut Kern

    2004-12-01

    Full Text Available Contrary to general believe, in one case of 18month cauda equina lesion four-month electrical stimulation of thigh muscles (impulse energy 1.92 Joule increased stimulation frequency from 2 to 20 Hz, i. e., up to tetanic contractions. After 2 years of treatment, CT-cross sectional area of quadriceps improved 58.3% (right and 44.4% (left with increased muscle density. Mean myofiber size was 37.2 ± 24.8 µm (right and 40.5 ±  24.9 µm (left. Improvement of stimulated knee torque, from zero to 12.0 Nm and 10.5 Nm, respectively, enabled to stand up trials. Surviving myofibers undergo re-growth (they show the chess board appearance of normal muscle, and dying myofibers continuously regenerate (up to 3% are embryonic myosin positive 3-year post-FES. Regeneration events are essential components of the FES rehabilitation protocol due to superior excitability of regenerated myofibers in comparison to long-term denervated, degenerated myofibers, which were almost not excitable before FES training.

  19. Leeches as Sensor-bioindicators of River Contamination by PCBs

    Directory of Open Access Journals (Sweden)

    Gorzyslaw Poleszczuk

    2009-03-01

    Full Text Available The aim of the study was to evaluate the use of leeches of the genus Erpobdella as a means of assessing polychlorinated biphenyl contamination of watercourses. The River Skalice, heavily contaminated with PCBs, was selected as a model. The source of contamination was a road gravel processing factory in Rožmitál pod Třemšínem from which an estimated 1 metric ton of PCBs leaked in 1986. Levels of PCB were measured in leeches collected between 1992 to 2003 from 11 sites covering about 50 km of the river (the first sampling site upstream to the source of contamination and 10 sites downstream. The PCB indicator congeners IUPA no. 28, 52, 101, 118, 138, 153, and 180 were measured. Levels were highest at the four sampling sites nearest the source of pollution. The highest values of PCB congeners were found in 1992. PCB content decreased from 1992 to 2003 and with distance from the source. The study indicated that leeches of the genus Erpobdella are a suitable bioindicator of contamination in the surface layer of river sediments.

  20. An Array of Opportunities: Building a Sustainable Future at Leech Lake Tribal College

    Science.gov (United States)

    Buckland, Hannah

    2018-01-01

    With support from Leech Lake Tribal College (LLTC) in Cass Lake, Minnesota, solar energy infrastructure--as well as specialized training and well-paying jobs--are coming to the Leech Lake Nation. Rather than power LLTC's facilities, a 40- kilowatt solar garden installed on the college's campus during the 2017 fall semester, along with four similar…

  1. Novel Therapeutic Effects of Non-thermal atmospheric pressure plasma for Muscle Regeneration and Differentiation

    Science.gov (United States)

    Choi, Jae Won; Kang, Sung Un; Kim, Yang Eun; Park, Ju Kyeong; Yang, Sang Sik; Kim, Yeon Soo; Lee, Yun Sang; Lee, Yuijina; Kim, Chul-Ho

    2016-01-01

    Skeletal muscle can repair muscle tissue damage, but significant loss of muscle tissue or its long-lasting chronic degeneration makes injured skeletal muscle tissue difficult to restore. It has been demonstrated that non-thermal atmospheric pressure plasma (NTP) can be used in many biological areas including regenerative medicine. Therefore, we determined whether NTP, as a non-contact biological external stimulator that generates biological catalyzers, can induce regeneration of injured muscle without biomaterials. Treatment with NTP in the defected muscle of a Sprague Dawley (SD) rat increased the number of proliferating muscle cells 7 days after plasma treatment (dapt) and rapidly induced formation of muscle tissue and muscle cell differentiation at 14 dapt. In addition, in vitro experiments also showed that NTP could induce muscle cell proliferation and differentiation of human muscle cells. Taken together, our results demonstrated that NTP promotes restoration of muscle defects through control of cell proliferation and differentiation without biological or structural supporters, suggesting that NTP has the potential for use in muscle tissue engineering and regenerative therapies. PMID:27349181

  2. Bronchial Leech Infestation in a 15-Year-Old Female.

    Science.gov (United States)

    Moslehi, Mohammad Ashkan; Imanieh, Mohammad Hadi; Adib, Ali

    2016-01-01

    Foreign body aspiration (FBA) is a common incidence in young children. Leeches are rarely reported as FBA at any age. This study describes a 15-year-old female who presented with hemoptysis, hematemesis, coughs, melena, and anemia seven months prior to admission. Chest X-ray showed a round hyperdensity in the right lower lobe. A chest computed tomography (CT) demonstrated an area of consolidation and surrounding ground glass opacities in the right lower lobe. Hematological investigations revealed anemia. Finally, bronchoscopy was performed and a 5 cm leech was found within the right B 7-8 bronchus and removed by forceps and a Dormia basket.

  3. Evaluation of several techniques to modify denatured muscle tissue to obtain a scaffold for peripheral nerve regeneration

    NARCIS (Netherlands)

    Meek, MF; den Dunnen, WFA; Schakenraad, JM; Robinson, PH

    The aim of this study was to (1) evaluate the effect of several preparation techniques of denatured muscle tissue to obtain an open three-dimensional structure, and (2) test if this scaffold is suitable for peripheral nerve regeneration. Four samples (A-D) of muscle tissue specimens were evaluated

  4. Low-level laser therapy (LLLT) accelerates the sternomastoid muscle regeneration process after myonecrosis due to bupivacaine.

    Science.gov (United States)

    Alessi Pissulin, Cristiane Neves; Henrique Fernandes, Ana Angélica; Sanchez Orellana, Alejandro Manuel; Rossi E Silva, Renata Calciolari; Michelin Matheus, Selma Maria

    2017-03-01

    Because of its long-lasting analgesic action, bupivacaine is an anesthetic used for peripheral nerve block and relief of postoperative pain. Muscle degeneration and neurotoxicity are its main limitations. There is strong evidence that low-level laser therapy (LLLT) assists in muscle and nerve repair. The authors evaluated the effects of a Gallium Arsenide laser (GaAs), on the regeneration of muscle fibers of the sternomastoid muscle and accessory nerve after injection of bupivacaine. In total, 30 Wistar adult rats were divided into 2 groups: control group (C: n=15) and laser group (L: n=15). The groups were subdivided by antimere, with 0.5% bupivacaine injected on the right and 0.9% sodium chloride on the left. LLLT (GaAs 904nm, 0,05W, 2.8J per point) was administered for 5 consecutive days, starting 24h after injection of the solutions. Seven days after the trial period, blood samples were collected for determination of creatine kinase (CK). The sternomastoid nerve was removed for morphological and morphometric analyses; the surface portion of the sternomastoid muscle was used for histopathological and ultrastructural analyses. Muscle CK and TNFα protein levels were measured. The anesthetic promoted myonecrosis and increased muscle CK without neurotoxic effects. The LLLT reduced myonecrosis, characterized by a decrease in muscle CK levels, inflammation, necrosis, and atrophy, as well as the number of central nuclei in the muscle fibers and the percentage of collagen. TNFα values remained constant. LLLT, at the dose used, reduced fibrosis and myonecrosis in the sternomastoid muscle triggered by bupivacaine, accelerating the muscle regeneration process. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. [A rare case report of laryngeal leech infestation in a 70-year-old man].

    Science.gov (United States)

    Anajar, Said; Tatari, Mohammed; Hassnaoui, Jawad; Abada, Reda; Rouadi, Sami; Roubal, Mohammed; Mahtar, Mohammed

    2017-01-01

    Foreign bodies in the upper respiratory tract are one of the most difficult otolaryngological emergencies; leeches are a very rare foreign bodies in the world. We report the case of a 70-year-old man with no past medical history presenting with laryngeal dyspnea associated with low abundant paroxysmal hemoptysis. The patient underwent nasofibroscopy showing the presence of a living and mobile organism at the subglottic level evoking a leech. Extraction was carried out under local anesthesia using laryngoscope and Magill forceps. The presence of a leech as a foreign body in the upper respiratory tract should be suspected in patients with a recent history of consumption of non-potable water.

  6. Asynchronous Inflammation and Myogenic Cell Migration Limit Muscle Tissue Regeneration Mediated by a Cellular Scaffolds

    Science.gov (United States)

    2015-02-11

    such as duchenne muscular dystrophy ) results in impaired regeneration, increased atrophy and fibrosis of skeletal muscle [24-27]. It has also been...2005; 122:289-301. 24. Cohn RDCampbell KP. Molecular basis of muscular dystrophies . Muscle Nerve 2000; 23:1456-1471. 25. Morgan JEZammit PS. Direct...et al. Early onset of inflammation and later involvement of TGFbeta in Duchenne muscular dystrophy . Neurology 2005; 65:826-834. 28. Lepper C

  7. Genetic assessment of leech species from yak (Bos grunniens) in the tract of Northeast India.

    Science.gov (United States)

    Chatterjee, Nilkantha; Dhar, Bishal; Bhattarcharya, Debasis; Deori, Sourabh; Doley, Juwar; Bam, Joken; Das, Pranab J; Bera, Asit K; Deb, Sitangshu M; Devi, Ningthoujam Neelima; Paul, Rajesh; Malvika, Sorokhaibam; Ghosh, Sankar Kumar

    2018-01-01

    Yak is an iconic symbol of Tibet and high altitudes of Northeast India. It is highly cherished for milk, meat, and skin. However, yaks suffer drastic change in milk production, weight loss, etc, when infested by parasites. Among them, infestation by leeches is a serious problem in the Himalayan belt of Northeast India. The parasite feeds on blood externally or from body orifices, like nasopharynx, oral, rectum, etc. But there has been limited data about the leech species infesting the yak in that region because of the difficulties in morphological identification due to plasticity of the body, changes in shape, and surface structure and thus, warrants for the molecular characterization of leech. In anticipation, this study would be influential in proper identification of leech species infesting yak track and also helpful in inventorying of leech species in Northeast India. Here, we investigated, through combined approach of molecular markers and morphological parameters for the identification of leech species infesting yak. The DNA sequences of COI barcode fragment, 18S and 28S rDNA, were analyzed for species identification. The generated sequences were subjected to similarity match in global database and analyzed further through Neighbour-Joining, K2P distance based as well as ML approach. Among the three markers, only COI was successful in delineating species whereas the 18S and 28S failed to delineate the species. Our study confirmed the presence of the species from genus Hirudinaria, Haemadipsa, Whitmania, and one species Myxobdella annandalae, which has not been previously reported from this region.

  8. Injury and subsequent regeneration of muscles for activation of local innate immunity to facilitate the development and relapse of autoimmune myositis in C57BL/6 mice.

    Science.gov (United States)

    Kimura, Naoki; Hirata, Shinya; Miyasaka, Nobuyuki; Kawahata, Kimito; Kohsaka, Hitoshi

    2015-04-01

    To determine whether injury and regeneration of the skeletal muscles induce an inflammatory milieu that facilitates the development and relapse of autoimmune myositis. The quadriceps of C57BL/6 mice were injured with bupivacaine hydrochloride (BPVC) and evaluated histologically. Macrophages and regenerating myofibers in the treated muscles and differentiating C2C12 myotubes were examined for cytokine expression. Mice were immunized with C protein fragments at the base of the tail and in the right hind footpads (day 0) to evoke systemic anti-C protein immunity and to induce local myositis in the right hind limbs. The contralateral quadriceps muscles were injured with BPVC or phosphate buffered saline (PBS) on day 7 or after spontaneous regression of myositis (day 42). The quadriceps muscle in nonimmunized mice was injured with BPVC on day 7. The muscles were examined histologically 14 days after treatment. The BPVC-injured muscles had macrophage infiltration most abundantly at 3 days after the injection, with emergence of regenerating fibers from day 5. The macrophages expressed inflammatory cytokines, including tumor necrosis factor α, interleukin-1β, and CCL2. Regenerating myofibers and C2C12 myotubes also expressed the cytokines. The BPVC-injected muscles from nonimmunized mice had regenerating myofibers with resolved cell infiltration 14 days after treatment. In mice preimmunized with C protein fragments, the muscles injected with BPVC on day 7 as well as on day 42, but not those injected with PBS, had myositis accompanied by CD8+ T cell infiltration. Injury and regeneration could set up an inflammatory milieu in the muscles and facilitate the development and relapse of autoimmune myositis. Copyright © 2015 by the American College of Rheumatology.

  9. Intracellular recording, sensory field mapping, and culturing identified neurons in the leech, Hirudo medicinalis.

    Science.gov (United States)

    Titlow, Josh; Majeed, Zana R; Nicholls, John G; Cooper, Robin L

    2013-11-04

    The freshwater leech, Hirudo medicinalis, is a versatile model organism that has been used to address scientific questions in the fields of neurophysiology, neuroethology, and developmental biology. The goal of this report is to consolidate experimental techniques from the leech system into a single article that will be of use to physiologists with expertise in other nervous system preparations, or to biology students with little or no electrophysiology experience. We demonstrate how to dissect the leech for recording intracellularly from identified neural circuits in the ganglion. Next we show how individual cells of known function can be removed from the ganglion to be cultured in a Petri dish, and how to record from those neurons in culture. Then we demonstrate how to prepare a patch of innervated skin to be used for mapping sensory or motor fields. These leech preparations are still widely used to address basic electrical properties of neural networks, behavior, synaptogenesis, and development. They are also an appropriate training module for neuroscience or physiology teaching laboratories.

  10. Evidence for a novel chemotactic C1q domain-containing factor in the leech nerve cord.

    Science.gov (United States)

    Tahtouh, Muriel; Croq, Françoise; Vizioli, Jacopo; Sautiere, Pierre-Eric; Van Camp, Christelle; Salzet, Michel; Daha, Mohamed R; Pestel, Joël; Lefebvre, Christophe

    2009-02-01

    In vertebrates, central nervous system (CNS) protection is dependent on many immune cells including microglial cells. Indeed, activated microglial cells are involved in neuroinflammation mechanisms by interacting with numerous immune factors. Unlike vertebrates, some lophotrochozoan invertebrates can fully repair their CNS following injury. In the medicinal leech Hirudo medicinalis, the recruitment of microglial cells at the lesion site is essential for sprouting of injured axons. Interestingly, a new molecule homologous to vertebrate C1q was characterized in leech, named HmC1q (for H. medicinalis) and detected in neurons and glial cells. In chemotaxis assays, leech microglial cells were demonstrated to respond to human C1q. The chemotactic activity was reduced when microglia was preincubated with signaling pathway inhibitors (Pertussis Toxin or wortmannin) or anti-human gC1qR antibody suggesting the involvement of gC1qR in C1q-mediated migration in leech. Assays using cells preincubated with NO chelator (cPTIO) showed that C1q-mediated migration was associated to NO production. Of interest, by using anti-HmC1q antibodies, HmC1q released in the culture medium was shown to exhibit a similar chemotactic effect on microglial cells as human C1q. In summary, we have identified, for the first time, a molecule homologous to mammalian C1q in leech CNS. Its chemoattractant activity on microglia highlights a new investigation field leading to better understand leech CNS repair mechanisms.

  11. Skeletal myogenic differentiation of human urine-derived cells as a potential source for skeletal muscle regeneration.

    Science.gov (United States)

    Chen, Wei; Xie, Minkai; Yang, Bin; Bharadwaj, Shantaram; Song, Lujie; Liu, Guihua; Yi, Shanhong; Ye, Gang; Atala, Anthony; Zhang, Yuanyuan

    2017-02-01

    Stem cells are regarded as possible cell therapy candidates for skeletal muscle regeneration. However, invasive harvesting of those cells can cause potential harvest-site morbidity. The goal of this study was to assess whether human urine-derived stem cells (USCs), obtained through non-invasive procedures, can differentiate into skeletal muscle linage cells (Sk-MCs) and potentially be used for skeletal muscle regeneration. In this study, USCs were harvested from six healthy individuals aged 25-55. Expression profiles of cell-surface markers were assessed by flow cytometry. To optimize the myogenic differentiation medium, we selected two from four different types of myogenic differentiation media to induce the USCs. Differentiated USCs were identified with myogenic markers by gene and protein expression. USCs were implanted into the tibialis anterior muscles of nude mice for 1 month. The results showed that USCs displayed surface markers with positive staining for CD24, CD29, CD44, CD73, CD90, CD105, CD117, CD133, CD146, SSEA-4 and STRO-1, and negative staining for CD14, CD31, CD34 and CD45. After myogenic differentiation, a change in morphology was observed from 'rice-grain'-like cells to spindle-shaped cells. The USCs expressed specific Sk-MC transcripts and protein markers (myf5, myoD, myosin, and desmin) after being induced with different myogenic culture media. Implanted cells expressed Sk-MC markers stably in vivo. Our findings suggest that USCs are able to differentiate into the Sk-MC lineage in vitro and after being implanted in vivo. Thus, they might be a potential source for cell injection therapy in the use of skeletal muscle regeneration. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Hydrogeology and ground-water quality of glacial-drift aquifers, Leech Lake Indian Reservation, north-central Minnesota

    Science.gov (United States)

    Lindgren, R.J.

    1996-01-01

    Among the duties of the water managers of the Leech Lake Indian Reservation in north-central Minnesota are the development and protection of the water resources of the Reservation. The U.S. Geological Survey, in cooperation with the Leech Lake Indian Reservation Business Committee, conducted a three and one half-year study (1988-91) of the ground-water resources of the Leech Lake Indian Reservation. The objectives of this study were to describe the availability and quality of ground water contained in glacial-drift aquifers underlying the Reservation.

  13. Connective tissue regeneration in skeletal muscle after eccentric contraction-induced injury.

    Science.gov (United States)

    Mackey, Abigail L; Kjaer, Michael

    2017-03-01

    Human skeletal muscle has the potential to regenerate completely after injury induced under controlled experimental conditions. The events inside the myofibers as they undergo necrosis, followed closely by satellite cell-mediated myogenesis, have been mapped in detail. Much less is known about the adaptation throughout this process of both the connective tissue structures surrounding the myofibers and the fibroblasts, the cells responsible for synthesizing this connective tissue. However, the few studies investigating muscle connective tissue remodeling demonstrate a strong response that appears to be sustained for a long time after the major myofiber responses have subsided. While the use of electrical stimulation to induce eccentric contractions vs. voluntary eccentric contractions appears to lead to a greater extent of myofiber necrosis and regenerative response, this difference is not apparent when the muscle connective tissue responses are compared, although further work is required to confirm this. Pharmacological agents (growth hormone and angiotensin II type I receptor blockers) are considered in the context of accelerating the muscle connective tissue adaptation to loading. Cautioning against this, however, is the association between muscle matrix protein remodeling and protection against reinjury, which suggests that a (so far undefined) period of vulnerability to reinjury may exist during the remodeling phases. The role of individual muscle matrix components and their spatial interaction during adaptation to eccentric contractions is an unexplored field in human skeletal muscle and may provide insight into the optimal timing of rest vs. return to activity after muscle injury. Copyright © 2017 the American Physiological Society.

  14. A systems-based investigation into vitamin D and skeletal muscle repair, regeneration, and hypertrophy.

    Science.gov (United States)

    Owens, Daniel J; Sharples, Adam P; Polydorou, Ioanna; Alwan, Nura; Donovan, Timothy; Tang, Jonathan; Fraser, William D; Cooper, Robert G; Morton, James P; Stewart, Claire; Close, Graeme L

    2015-12-15

    Skeletal muscle is a direct target for vitamin D. Observational studies suggest that low 25[OH]D correlates with functional recovery of skeletal muscle following eccentric contractions in humans and crush injury in rats. However, a definitive association is yet to be established. To address this gap in knowledge in relation to damage repair, a randomised, placebo-controlled trial was performed in 20 males with insufficient concentrations of serum 25(OH)D (45 ± 25 nmol/l). Prior to and following 6 wk of supplemental vitamin D3 (4,000 IU/day) or placebo (50 mg of cellulose), participants performed 20 × 10 damaging eccentric contractions of the knee extensors, with peak torque measured over the following 7 days of recovery. Parallel experimentation using isolated human skeletal muscle-derived myoblast cells from biopsies of 14 males with low serum 25(OH)D (37 ± 11 nmol/l) were subjected to mechanical wound injury, which enabled corresponding in vitro studies of muscle repair, regeneration, and hypertrophy in the presence and absence of 10 or 100 nmol 1α,25(OH)2D3. Supplemental vitamin D3 increased serum 25(OH)D and improved recovery of peak torque at 48 h and 7 days postexercise. In vitro, 10 nmol 1α,25(OH)2D3 improved muscle cell migration dynamics and resulted in improved myotube fusion/differentiation at the biochemical, morphological, and molecular level together with increased myotube hypertrophy at 7 and 10 days postdamage. Together, these preliminary data are the first to characterize a role for vitamin D in human skeletal muscle regeneration and suggest that maintaining serum 25(OH)D may be beneficial for enhancing reparative processes and potentially for facilitating subsequent hypertrophy. Copyright © 2015 the American Physiological Society.

  15. A comparison study on the anti-leech effects of onion (Allium cepa L and ginger (Zingiber officinale with levamisole and triclabendazole

    Directory of Open Access Journals (Sweden)

    Bahmani Mahmoud

    2013-01-01

    Full Text Available Introduction: Leech may indwell in mucosa of the pharynx, tonsil, esophagus, nose, nasopharyngeal and rarely in larynx of hosts, however, the effective drugs against this parasite is scarce. This study was aimed to evaluate and compare the anti-leech effect of methanolic extract of onion (Allium cepa L and ginger (Zingiber officinale with levamisole and triclabendazole. Materials and Methods: In this study, 60 leeches (Limnatis nilotica were collected from south of Ilam. The anti-leech effect of methanolic extract of onion and ginger in comparison with levamisole and triclabendazole drugs (positive controls were evaluated. Distilled water was used as negative control. Paralysis and death of leeches were recorded in 720 minutes. Results: Lethal effect of methanolic extract of ginger against Limnatis nilotica was equal to levamisole and more than triclabendazole and methanolic extract of onion. Conclusion: Ginger equal to levamisole has anti-leech activity and its methanolic extract might be used against Limnatis nilotica.

  16. Effects of Human Mesenchymal Stem Cells Isolated from Wharton's Jelly of the Umbilical Cord and Conditioned Media on Skeletal Muscle Regeneration Using a Myectomy Model.

    Science.gov (United States)

    Pereira, T; Armada-da Silva, P A S; Amorim, I; Rêma, A; Caseiro, A R; Gärtner, A; Rodrigues, M; Lopes, M A; Bártolo, P J; Santos, J D; Luís, A L; Maurício, A C

    2014-01-01

    Skeletal muscle has good regenerative capacity, but the extent of muscle injury and the developed fibrosis might prevent complete regeneration. The in vivo application of human mesenchymal stem cells (HMSCs) of the umbilical cord and the conditioned media (CM) where the HMSCs were cultured and expanded, associated with different vehicles to induce muscle regeneration, was evaluated in a rat myectomy model. Two commercially available vehicles and a spherical hydrogel developed by our research group were used. The treated groups obtained interesting results in terms of muscle regeneration, both in the histological and in the functional assessments. A less evident scar tissue, demonstrated by collagen type I quantification, was present in the muscles treated with HMSCs or their CM. In terms of the histological evaluation performed by ISO 10993-6 scoring, it was observed that HMSCs apparently have a long-term negative effect, since the groups treated with CM presented better scores. CM could be considered an alternative to the in vivo transplantation of these cells, as it can benefit from the local tissue response to secreted molecules with similar results in terms of muscular regeneration. Searching for an optimal vehicle might be the key point in the future of skeletal muscle tissue engineering.

  17. The Ror1 receptor tyrosine kinase plays a critical role in regulating satellite cell proliferation during regeneration of injured muscle.

    Science.gov (United States)

    Kamizaki, Koki; Doi, Ryosuke; Hayashi, Makoto; Saji, Takeshi; Kanagawa, Motoi; Toda, Tatsushi; Fukada, So-Ichiro; Ho, Hsin-Yi Henry; Greenberg, Michael Eldon; Endo, Mitsuharu; Minami, Yasuhiro

    2017-09-22

    The Ror family receptor tyrosine kinases, Ror1 and Ror2, play important roles in regulating developmental morphogenesis and tissue- and organogenesis, but their roles in tissue regeneration in adult animals remain largely unknown. In this study, we examined the expression and function of Ror1 and Ror2 during skeletal muscle regeneration. Using an in vivo skeletal muscle injury model, we show that expression of Ror1 and Ror2 in skeletal muscles is induced transiently by the inflammatory cytokines, TNF-α and IL-1β, after injury and that inhibition of TNF-α and IL-1β by neutralizing antibodies suppresses expression of Ror1 and Ror2 in injured muscles. Importantly, expression of Ror1 , but not Ror2 , was induced primarily in Pax7-positive satellite cells (SCs) after muscle injury, and administration of neutralizing antibodies decreased the proportion of Pax7-positive proliferative SCs after muscle injury. We also found that stimulation of a mouse myogenic cell line, C2C12 cells, with TNF-α or IL-1β induced expression of Ror1 via NF-κB activation and that suppressed expression of Ror1 inhibited their proliferative responses in SCs. Intriguingly, SC-specific depletion of Ror1 decreased the number of Pax7-positive SCs after muscle injury. Collectively, these findings indicate for the first time that Ror1 has a critical role in regulating SC proliferation during skeletal muscle regeneration. We conclude that Ror1 might be a suitable target in the development of diagnostic and therapeutic approaches to manage muscular disorders. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Probabilistic Seismic Hazard Analysis of Victoria, British Columbia, Canada: Considering an Active Leech River Fault

    Science.gov (United States)

    Kukovica, J.; Molnar, S.; Ghofrani, H.

    2017-12-01

    The Leech River fault is situated on Vancouver Island near the city of Victoria, British Columbia, Canada. The 60km transpressional reverse fault zone runs east to west along the southern tip of Vancouver Island, dividing the lithologic units of Jurassic-Cretaceous Leech River Complex schists to the north and Eocene Metchosin Formation basalts to the south. This fault system poses a considerable hazard due to its proximity to Victoria and 3 major hydroelectric dams. The Canadian seismic hazard model for the 2015 National Building Code of Canada (NBCC) considered the fault system to be inactive. However, recent paleoseismic evidence suggests there to be at least 2 surface-rupturing events to have exceeded a moment magnitude (M) of 6.5 within the last 15,000 years (Morell et al. 2017). We perform a Probabilistic Seismic Hazard Analysis (PSHA) for the city of Victoria with consideration of the Leech River fault as an active source. A PSHA for Victoria which replicates the 2015 NBCC estimates is accomplished to calibrate our PSHA procedure. The same seismic source zones, magnitude recurrence parameters, and Ground Motion Prediction Equations (GMPEs) are used. We replicate the uniform hazard spectrum for a probability of exceedance of 2% in 50 years for a 500 km radial area around Victoria. An active Leech River fault zone is then added; known length and dip. We are determining magnitude recurrence parameters based on a Gutenberg-Richter relationship for the Leech River fault from various catalogues of the recorded seismicity (M 2-3) within the fault's vicinity and the proposed paleoseismic events. We seek to understand whether inclusion of an active Leech River fault source will significantly increase the probabilistic seismic hazard for Victoria. Morell et al. 2017. Quaternary rupture of a crustal fault beneath Victoria, British Columbia, Canada. GSA Today, 27, doi: 10.1130/GSATG291A.1

  19. effect of physico-chemical parameters of water containing leech

    African Journals Online (AJOL)

    PROF EKWUEME

    analysis. Prior to the collection of the water, the temperature, pH conductivity were measured in situ, using the appropriate .... temperate climates were the ecological factors support ... leeches show endogenous rhythm of activity controlled.

  20. Myodegeneration with fibrosis and regeneration in the pectoralis major muscle of broilers.

    Science.gov (United States)

    Sihvo, H-K; Immonen, K; Puolanne, E

    2014-05-01

    A myopathy affecting the pectoralis major muscle of the commercial broiler has emerged creating remarkable economic losses as well as a potential welfare problem of the birds. We here describe the macroscopic and histologic lesions of this myopathy within 10 pectoralis major muscles of 5- to 6-week-old broilers in Finland. Following macroscopic evaluation and palpation of the muscles, a tissue sample of each was fixed in formalin, processed for histology, and histologically evaluated. The muscles that were macroscopically hard, outbulging, pale, and often accompanied with white striping histologically exhibited moderate to severe polyphasic myodegeneration with regeneration as well as a variable amount of interstitial connective tissue accumulation or fibrosis. All affected cases also exhibited perivenular lymphocyte accumulation. The etiology of this myodegenerative lesion remains yet open. Polyphasic myodegeneration is associated with several previously known etiologies, but palpatory hardness focusing on the pectoralis major, together with perivenular lymphocytes, has not been described in relation to them. The results of this study provide the pathological basis for further studies concerning the etiology of the currently described myopathy.

  1. Biomimetic elastomeric, conductive and biodegradable polycitrate-based nanocomposites for guiding myogenic differentiation and skeletal muscle regeneration.

    Science.gov (United States)

    Du, Yuzhang; Ge, Juan; Li, Yannan; Ma, Peter X; Lei, Bo

    2018-03-01

    Artificial muscle-like biomaterials have gained tremendous interests owing to their broad applications in regenerative medicine, wearable devices, bioelectronics and artificial intelligence. Unfortunately, key challenges are still existed for current materials, including biomimetic viscoelasticity, biocompatibility and biodegradation, multifunctionality. Herein, for the first time, we develop highly elastomeric, conductive and biodegradable poly (citric acid-octanediol-polyethylene glycol)(PCE)-graphene (PCEG) nanocomposites, and demonstrate their applications in myogenic differentiation and guiding skeletal muscle tissue regeneration. In PCEG nanocomposites, PCE provides the biomimetic elastomeric behavior, and the addition of reduced graphene oxide (RGO) endows the enhanced mechanical strength and conductivity. The highly elastomeric behavior, significantly enhanced modulus (400%-800%), strength (200%-300%) of PCEG nanocomposites with controlled biodegradability and electrochemical conductivity were achieved. The myoblasts proliferation and myogenic differentiation were significantly improved by PCEG nanocomposite. Significantly high in vivo biocompatibility of PCEG nanocomposites was observed when implanted in the subcutaneous tissue for 4 weeks in rats. PCEG nanocomposites could significantly enhance the muscle fibers and blood vessels formation in vivo in a skeletal muscle lesion model of rat. This study may provide a novel strategy to develop multifunctional elastomeric nanocomposites with high biocompatibility for potential soft tissue regeneration and stretchable bioelectronic devices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Microsurgical replantation and postoperative leech treatment of a large severed nasal segment

    DEFF Research Database (Denmark)

    Stemann Andersen, Peter; Elberg, Jens Jørgen

    2012-01-01

    The survival of a microsurgically replanted segment of nose in a 41-year-old woman was facilitated by the assistance of the medicinal leech Hirudo medicinalis. An arterial microanastomosis was made to a severed partial segment of nose with no possibility of recreating a venous anastomosis. The re....... The resulting venous congestion was treated with nine days of treatment with a medical leech until venous neovascularisation had been achieved. At follow-up six months after discharge there was a well-heeled nasal segment and a satisfying functional - as well as cosmetic - result....

  3. Comparative and evaluation of anti-leech (Limnatis Nilotica effect of Olive (Olea Europaea L. with Levamisol and Tiabendazole

    Directory of Open Access Journals (Sweden)

    Majid Gholami-Ahangaran

    2012-05-01

    Full Text Available Objective: Until now, there is no registered drug for treatment of complications with leech in the world. According to the available scientific evidence, Olive is an effective anti-parasitic plant. Hence, in the present experiment we studied the inhibitory and killing effect of Olive methanolic extract on Limnatis nilotica. Methods: In this study, 100 leeches (Limnatis nilotica were collected from some wells in western area of Iran (south region in Ilam province and evaluated the antileech effects of Olive methanolic extract (Olea europaea L. in comparison with levamisole and tinidazole. Results: The results indicated no effect of tinidasole and distilled water on killing or mortality rate of the leeches but Olea europaea L. plant and levamisole have more effect on the L. nilotica. The mean death time of leech for levamisole and Olive determined 10依0.98 and 210依 24.1 minutes, respectively. Conclusions: The results showed that treatments of Olive methanolic extract and levamisole have the most effects on leeches and could be used as natural anti-L. nilotica. However it is necessary to achieve further studies for confirm of this subject.

  4. Cleft lip surgery in Anglo-Saxon Britain: the Leech Book (circa A.D. 920).

    Science.gov (United States)

    Vrebos, J

    1986-05-01

    The Leech Book, the oldest known Anglo-Saxon herbarium, probably written in Winchester, circa A.D. 920, by Cyril Bald or at his special request, contains a short chapter on the surgical treatment of the cleft lip; this chapter apparently represents the first record in a medical manuscript of this treatment. The original Anglo-Saxon text is presented together with transcriptions into more modern English. The general value of the Leech Book is briefly studied.

  5. Infections following the application of leeches: two case reports and review of the literature

    Directory of Open Access Journals (Sweden)

    Maetz Benjamin

    2012-10-01

    Full Text Available Abstract Introduction Since the 1980s, leeches have been ingeniously used in the management of venous flap congestion. The presence of anticoagulative substances in their saliva improves the blood drainage. Their digestive tract contains several bacterial species, the main ones being Aeromonas hydrophila and Aeromonas veronii biovar sobria, which contribute to the digestion of ingested blood. These bacteria can be the cause of infections. Case presentation We report two cases of septicemia related to Aeromonas veronii biovar sobria that presented after leeches had been applied to congested transverse rectus abdominis myocutaneous flaps for delayed mammary reconstructions. Patient number 1 was a 55-year-old Caucasian woman who underwent a delayed breast reconstruction procedure. On the sixth postoperative day she showed a clinical presentation of septicemia. Aeromonas veronii biovar sobria was identified in the patient’s skin and blood bacteriological samples. Her fever ceased after 4 days of antibiotic treatment. Patient number 2 was a 56-year-old Caucasian woman who underwent a delayed breast reconstruction procedure. On the seventh postoperative day we noticed that she showed a clinical presentation of septicemia. Aeromonas veronii biovar sobria was identified in the patient’s blood cultures and local bacteriological samples. An antibiogram showed resistance to amoxicillin/clavulanic acid. Her fever ceased on the eleventh postoperative day after 4 days of antibiotic treatment. Conclusion The rate of infection after application of leeches is not negligible. The concentration of Aeromonas inside the digestive tracts of leeches largely decreases when the patient is under antibiotic therapy. These germs are sensitive to third-generation cephalosporins and fluoroquinolones and resistant to amoxicillin/clavulanic acid. We recommend preventive treatment based on classical measures of asepsis and on oral antibioprophylaxy with a fluoroquinolone

  6. Action of Obestatin in Skeletal Muscle Repair: Stem Cell Expansion, Muscle Growth, and Microenvironment Remodeling

    Science.gov (United States)

    Gurriarán-Rodríguez, Uxía; Santos-Zas, Icía; González-Sánchez, Jessica; Beiroa, Daniel; Moresi, Viviana; Mosteiro, Carlos S; Lin, Wei; Viñuela, Juan E; Señarís, José; García-Caballero, Tomás; Casanueva, Felipe F; Nogueiras, Rubén; Gallego, Rosalía; Renaud, Jean-Marc; Adamo, Sergio; Pazos, Yolanda; Camiña, Jesús P

    2015-01-01

    The development of therapeutic strategies for skeletal muscle diseases, such as physical injuries and myopathies, depends on the knowledge of regulatory signals that control the myogenic process. The obestatin/GPR39 system operates as an autocrine signal in the regulation of skeletal myogenesis. Using a mouse model of skeletal muscle regeneration after injury and several cellular strategies, we explored the potential use of obestatin as a therapeutic agent for the treatment of trauma-induced muscle injuries. Our results evidenced that the overexpression of the preproghrelin, and thus obestatin, and GPR39 in skeletal muscle increased regeneration after muscle injury. More importantly, the intramuscular injection of obestatin significantly enhanced muscle regeneration by simulating satellite stem cell expansion as well as myofiber hypertrophy through a kinase hierarchy. Added to the myogenic action, the obestatin administration resulted in an increased expression of vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor 2 (VEGFR2) and the consequent microvascularization, with no effect on collagen deposition in skeletal muscle. Furthermore, the potential inhibition of myostatin during obestatin treatment might contribute to its myogenic action improving muscle growth and regeneration. Overall, our data demonstrate successful improvement of muscle regeneration, indicating obestatin is a potential therapeutic agent for skeletal muscle injury and would benefit other myopathies related to muscle regeneration. PMID:25762009

  7. Expression and function of the SDF-1 chemokine receptors CXCR4 and CXCR7 during mouse limb muscle development and regeneration.

    Science.gov (United States)

    Hunger, Conny; Ödemis, Veysel; Engele, Jürgen

    2012-10-15

    The chemokine, SDF-1/CXCL12, and its receptor, CXCR4, have been implied to play major roles during limb myogenesis. This concept was recently challenged by the identification of CXCR7 as an alternative SDF-1 receptor, which can either act as a scavenger receptor, a modulator of CXCR4, or an active chemokine receptor. We have now re-examined this issue by determining whether SDF-1 would signal to C2C12 myoblasts and subsequently influence their differentiation via CXCR4 and/or CXCR7. In addition, we have analyzed CXCR7, CXCR4, and SDF-1 expression in developing and injured mouse limb muscles. We demonstrate that in undifferentiated C2C12 cells, SDF-1-dependent cell signaling and resulting inhibitory effects on myogenic differentiation are entirely mediated by CXCR4. We further demonstrate that CXCR7 expression increases in differentiating C2C12 cells, which in turn abrogates CXCR4 signaling. Moreover, consistent with the view that CXCR4 and CXCR7 control limb myogenesis in vivo by similar mechanisms, we found that CXCR4 expression is the highest in late embryonic hindlimb muscles and drops shortly after birth when secondary muscle growth terminates. Vice versa, CXCR7 expression increased perinatally and persisted into adult life. Finally, underscoring the role of the SDF-1 system in muscle regeneration, we observed that SDF-1 is continuously expressed by endomysial cells of postnatal and adult muscle fibers. Analysis of dystrophin-deficient mdx mice additionally revealed that muscle regeneration is associated with muscular re-expression of CXCR4. The apparent tight control of limb muscle development and regeneration by CXCR4 and CXCR7 points to these chemokine receptors as promising therapeutic targets for certain muscle disorders. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Low intensity exercise training improves skeletal muscle regeneration potential

    Directory of Open Access Journals (Sweden)

    Tiziana ePietrangelo

    2015-12-01

    Full Text Available Purpose: The aim of this study was to determine whether 12 days of low-to-moderate exercise training at low altitude (598 m a.s.l. improves skeletal muscle regeneration in sedentary adult women.Methods: Satellite cells were obtained from the vastus lateralis skeletal muscle of seven women before and after this exercise training at low altitude. They were investigated for differentiation aspects, superoxide anion production, antioxidant enzymes, mitochondrial potential variation after a depolarizing insult, intracellular Ca2+ concentrations, and micro (miRNA expression (miR-1, miR-133, miR-206.Results: In these myogenic populations of adult stem cells, those obtained after exercise training, showed increased Fusion Index and intracellular Ca2+ concentrations. This exercise training also generally reduced superoxide anion production in cells (by 12% to 67%, although not in two women, where there was an increase of ~15% along with a reduced superoxide dismutase activity. miRNA expression showed an exercise-induced epigenetic transcription profile that was specific according to the reduced or increased superoxide anion production of the cells. Conclusions: The present study shows that low-to-moderate exercise training at low altitude improves the regenerative capacity of skeletal muscle in adult women. The differentiation of cells was favored by increased intracellular calcium concentration and increased the fusion index. This low-to-moderate training at low altitude also depicted the epigenetic signature of cells.

  9. The Leech with a taste for oranges / Merje Järv-Griffiths

    Index Scriptorium Estoniae

    Järv-Griffiths, Merje

    2007-01-01

    Rockansamblist Leech (kontserdid 23. nov. klubis Rockstar's Tallinnas, 30. nov. Lutsu Teatris Tartus ja 21. dets. festivalil Green Christmas Rakveres), heliplaadist "Tram-O-Gram" (vt. www.leechband.net)

  10. The leech nervous system: a valuable model to study the microglia involvement in regenerative processes.

    Science.gov (United States)

    Le Marrec-Croq, Françoise; Drago, Francesco; Vizioli, Jacopo; Sautière, Pierre-Eric; Lefebvre, Christophe

    2013-01-01

    Microglia are intrinsic components of the central nervous system (CNS). During pathologies in mammals, inflammatory processes implicate the resident microglia and the infiltration of blood cells including macrophages. Functions of microglia appear to be complex as they exhibit both neuroprotective and neurotoxic effects during neuropathological conditions in vivo and in vitro. The medicinal leech Hirudo medicinalis is a well-known model in neurobiology due to its ability to naturally repair its CNS following injury. Considering the low infiltration of blood cells in this process, the leech CNS is studied to specify the activation mechanisms of only resident microglial cells. The microglia recruitment is known to be essential for the usual sprouting of injured axons and does not require any other glial cells. The present review will describe the questions which are addressed to understand the nerve repair. They will discuss the implication of leech factors in the microglial accumulation, the identification of nerve cells producing these molecules, and the study of different microglial subsets. Those questions aim to better understand the mechanisms of microglial cell recruitment and their crosstalk with damaged neurons. The study of this dialog is necessary to elucidate the balance of the inflammation leading to the leech CNS repair.

  11. The Leech Nervous System: A Valuable Model to Study the Microglia Involvement in Regenerative Processes

    Directory of Open Access Journals (Sweden)

    Françoise Le Marrec-Croq

    2013-01-01

    Full Text Available Microglia are intrinsic components of the central nervous system (CNS. During pathologies in mammals, inflammatory processes implicate the resident microglia and the infiltration of blood cells including macrophages. Functions of microglia appear to be complex as they exhibit both neuroprotective and neurotoxic effects during neuropathological conditions in vivo and in vitro. The medicinal leech Hirudo medicinalis is a well-known model in neurobiology due to its ability to naturally repair its CNS following injury. Considering the low infiltration of blood cells in this process, the leech CNS is studied to specify the activation mechanisms of only resident microglial cells. The microglia recruitment is known to be essential for the usual sprouting of injured axons and does not require any other glial cells. The present review will describe the questions which are addressed to understand the nerve repair. They will discuss the implication of leech factors in the microglial accumulation, the identification of nerve cells producing these molecules, and the study of different microglial subsets. Those questions aim to better understand the mechanisms of microglial cell recruitment and their crosstalk with damaged neurons. The study of this dialog is necessary to elucidate the balance of the inflammation leading to the leech CNS repair.

  12. An improved anti-leech mechanism based on session identifier

    Science.gov (United States)

    Zhang, Jianbiao; Zhu, Tong; Zhang, Han; Lin, Li

    2012-01-01

    With the rapid development of information technology and extensive requirement of network resource sharing, plenty of resource hotlinking phenomenons appear on the internet. The hotlinking problem not only harms the interests of legal websites but also leads to a great affection to fair internet environment. The anti-leech technique based on session identifier is highly secure, but the transmission of session identifier in plaintext form causes some security flaws. In this paper, a proxy hotlinking technique based on session identifier is introduced firstly to illustrate these security flaws; next, this paper proposes an improved anti-leech mechanism based on session identifier, the mechanism takes the random factor as the core and detects hotlinking request using a map table that contains random factor, user's information and time stamp; at last the paper analyzes the security of mechanism in theory. The result reveals that the improved mechanism has the merits of simple realization, high security and great flexibility.

  13. Reciprocal immune benefit based on complementary production of antibiotics by the leech Hirudo verbana and its gut symbiont Aeromonas veronii.

    Science.gov (United States)

    Tasiemski, Aurélie; Massol, François; Cuvillier-Hot, Virginie; Boidin-Wichlacz, Céline; Roger, Emmanuel; Rodet, Franck; Fournier, Isabelle; Thomas, Frédéric; Salzet, Michel

    2015-12-04

    The medicinal leech has established a long-term mutualistic association with Aeromonas veronii, a versatile bacterium which can also display free-living waterborne and fish- or human-pathogenic lifestyles. Here, we investigated the role of antibiotics in the dynamics of interaction between the leech and its gut symbiont Aeromonas. By combining biochemical and molecular approaches, we isolated and identified for the first time the antimicrobial peptides (AMPs) produced by the leech digestive tract and by its symbiont Aeromonas. Immunohistochemistry data and PCR analyses evidenced that leech AMP genes are induced in the gut epithelial cells when Aeromonas load is low (starved animals), while repressed when Aeromonas abundance is the highest (post blood feeding). The asynchronous production of AMPs by both partners suggests that these antibiotic substances (i) provide them with reciprocal protection against invasive bacteria and (ii) contribute to the unusual simplicity of the gut microflora of the leech. This immune benefit substantially reinforces the evidence of an evolutionarily stable association between H. verbana and A. veronii. Altogether these data may provide insights into the processes making the association with an Aeromonas species in the digestive tract either deleterious or beneficial.

  14. Monoclonal antibodies against muscle actin isoforms: epitope identification and analysis of isoform expression by immunoblot and immunostaining in normal and regenerating skeletal muscle [version 2; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Christine Chaponnier

    2016-06-01

    Full Text Available Higher vertebrates (mammals and birds express six different highly conserved actin isoforms that can be classified in three subgroups: 1 sarcomeric actins, α-skeletal (α-SKA and α-cardiac (α-CAA, 2 smooth muscle actins (SMAs, α-SMA and γ-SMA, and 3 cytoplasmic actins (CYAs, β-CYA and γ-CYA. The variations among isoactins, in each subgroup, are due to 3-4 amino acid differences located in their acetylated N-decapeptide sequence. The first monoclonal antibody (mAb against an actin isoform (α-SMA was produced and characterized in our laboratory in 1986 (Skalli  et al., 1986 . We have further obtained mAbs against the 5 other isoforms. In this report, we focus on the mAbs anti-α-SKA and anti-α-CAA obtained after immunization of mice with the respective acetylated N-terminal decapeptides using the Repetitive Immunizations at Multiple Sites Strategy (RIMMS. In addition to the identification of their epitope by immunoblotting, we describe the expression of the 2 sarcomeric actins in mature skeletal muscle and during muscle repair after micro-lesions. In particular, we analyze the expression of α-CAA, α-SKA and α-SMA by co-immunostaining in a time course frame during the muscle repair process. Our results indicate that a restricted myocyte population expresses α-CAA and suggest a high capacity of self-regeneration in muscle cells. These antibodies may represent a helpful tool for the follow-up of muscle regeneration and pathological changes.

  15. Type II iodothyronine deiodinase provides intracellular 3,5,3′-triiodothyronine to normal and regenerating mouse skeletal muscle

    Science.gov (United States)

    Marsili, Alessandro; Tang, Dan; Harney, John W.; Singh, Prabhat; Zavacki, Ann Marie; Dentice, Monica; Salvatore, Domenico

    2011-01-01

    The FoxO3-dependent increase in type II deiodinase (D2), which converts the prohormone thyroxine (T4) to 3,5,3′-triiodothyronine (T3), is required for normal mouse skeletal muscle differentiation and regeneration. This implies a requirement for an increase in D2-generated intracellular T3 under these conditions, which has not been directly demonstrated despite the presence of D2 activity in skeletal muscle. We directly show that D2-mediated T4-to-T3 conversion increases during differentiation in C2C12 myoblast and primary cultures of mouse neonatal skeletal muscle precursor cells, and that blockade of D2 eliminates this. In adult mice given 125I-T4 and 131I-T3, the intracellular 125I-T3/131I-T3 ratio is significantly higher than in serum in both the D2-expressing cerebral cortex and the skeletal muscle of wild-type, but not D2KO, mice. In D1-expressing liver and kidney, the 125I-T3/131I-T3 ratio does not differ from that in serum. Hypothyroidism increases D2 activity, and in agreement with this, the difference in 125I-T3/131I-T3 ratio is increased further in hypothyroid wild-type mice but not altered in the D2KO. Notably, in wild-type but not in D2KO mice, the muscle production of 125I-T3 is doubled after skeletal muscle injury. Thus, D2-mediated T4-to-T3 conversion generates significant intracellular T3 in normal mouse skeletal muscle, with the increased T3 required for muscle regeneration being provided by increased D2 synthesis, not by T3 from the circulation. PMID:21771965

  16. A new lineage of trypanosomes from Australian vertebrates and terrestrial bloodsucking leeches (Haemadipsidae).

    Science.gov (United States)

    Hamilton, P B; Stevens, J R; Gidley, J; Holz, P; Gibson, W C

    2005-04-01

    Little is known about the trypanosomes of indigenous Australian vertebrates and their vectors. We surveyed a range of vertebrates and blood-feeding invertebrates for trypanosomes by parasitological and PCR-based methods using primers specific to the small subunit ribosomal RNA (SSU rRNA) gene of genus Trypanosoma. Trypanosome isolates were obtained in culture from two common wombats, one swamp wallaby and an Australian bird (Strepera sp.). By PCR, blood samples from three wombats, one brush-tailed wallaby, three platypuses and a frog were positive for trypanosome DNA. All the blood-sucking invertebrates screened were negative for trypanosomes both by microscopy and PCR, except for specimens of terrestrial leeches (Haemadipsidae). Of the latter, two Micobdella sp. specimens from Victoria and 18 Philaemon sp. specimens from Queensland were positive by PCR. Four Haemadipsa zeylanica specimens from Sri Lanka and three Leiobdella jawarerensis specimens from Papua New Guinea were also PCR positive for trypanosome DNA. We sequenced the SSU rRNA and glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) genes in order to determine the phylogenetic positions of the new vertebrate and terrestrial leech trypanosomes. In trees based on these genes, Australian vertebrate trypanosomes fell in several distinct clades, for the most part being more closely related to trypanosomes outside Australia than to each other. Two previously undescribed wallaby trypanosomes fell in a clade with Trypanosoma theileri, the cosmopolitan bovid trypanosome, and Trypanosoma cyclops from a Malaysian primate. The terrestrial leech trypanosomes were closely related to the wallaby trypanosomes, T. cyclops and a trypanosome from an Australian frog. We suggest that haemadipsid leeches may be significant and widespread vectors of trypanosomes in Australia and Asia.

  17. Leech Therapy For The Treatment Of Venous Congestion In Flaps, Digital Re-Plants And Revascularizations - A Two-Year Review From A Regional Centre.

    Science.gov (United States)

    Butt, Ahsan Masood; Ismail, Amir; Lawson-Smith, Matthew; Shahid, Muhammad; Webb, Jill; Chester, Darren L

    2016-01-01

    Leeches are a well-recognized treatment for congested tissue. This study reviewed the efficacy of leech therapy for salvage of venous congested flaps and congested replanted or revascularized hand digits over a 2-year period. All patients treated with leeches between 1 Oct 2010 and 30 Sep 2012 (two years) at Queen Elizabeth Hospital, Birmingham, UK were included in the study. Details regarding mode of injury requiring reconstruction, surgical procedure, leech therapy duration, subsequent surgery requirement and tissue salvage rates were recorded. Twenty tissues in 18 patients required leeches for tissue congestion over 2 years: 13 men and 5 women. The mean patient age was 41 years (range 17-79). The defect requiring reconstruction was trauma in 16 cases, following tumour resection in two, and two miscellaneous causes. Thirteen cases had flap reconstruction and seven digits in six patients had hand digit replantations or revascularisation. Thirteen of 20 cases (65%) had successful tissue salvage following leech therapy for congestion (77% in 10 out of 13 flaps, and 43% in 3 of 7 digits). The rate of tissue salvage in pedicled flaps was good 6/6 (100%) and so was in digital revascularizations 2/3 (67%), but poor in digital re-plants 1/4 (25%) and free flaps 0/2 (0%). Leeches are a helpful tool for congested tissue salvage and in this study, showed a greater survival benefit for pedicled flaps than for free flaps or digital replantations.

  18. Medicinal Leech Therapy for Glans Penis Congestion After Primary Bladder Exstrophy-Epispadias Repair in an Infant: A Case Report.

    Science.gov (United States)

    Wagenheim, Gavin N; Au, Jason; Gargollo, Patricio C

    2016-01-01

    Many postoperative complications have been reported after repair of classic bladder exstrophy. We present a case of medicinal leech therapy for glans penis congestion following exstrophy repair in an infant. A 2-week-old male with classic bladder exstrophy underwent complete primary repair. On postoperative day 1, he developed rapidly worsening glans penis venous congestion. Medicinal leech therapy was instituted with antibiotics and blood transfusions to maintain a hematocrit >30%. After 24 hours, venous congestion improved and therapy was discontinued. The patient's remaining hospital course was uncomplicated. Medicinal leeches are an effective therapy to relieve glans penis venous congestion. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. A homologous form of human interleukin 16 is implicated in microglia recruitment following nervous system injury in leech Hirudo medicinalis.

    Science.gov (United States)

    Croq, Françoise; Vizioli, Jacopo; Tuzova, Marina; Tahtouh, Muriel; Sautiere, Pierre-Eric; Van Camp, Christelle; Salzet, Michel; Cruikshank, William W; Pestel, Joel; Lefebvre, Christophe

    2010-11-01

    In contrast to mammals, the medicinal leech Hirudo medicinalis can completely repair its central nervous system (CNS) after injury. This invertebrate model offers unique opportunities to study the molecular and cellular basis of the CNS repair processes. When the leech CNS is injured, microglial cells migrate and accumulate at the site of lesion, a phenomenon known to be essential for the usual sprouting of injured axons. In the present study, we demonstrate that a new molecule, designated HmIL-16, having functional homologies with human interleukin-16 (IL-16), has chemotactic activity on leech microglial cells as observed using a gradient of human IL-16. Preincubation of microglial cells either with an anti-human IL-16 antibody or with anti-HmIL-16 antibody significantly reduced microglia migration induced by leech-conditioned medium. Functional homology was demonstrated further by the ability of HmIL-16 to promote human CD4+ T cell migration which was inhibited by antibody against human IL-16, an IL-16 antagonist peptide or soluble CD4. Immunohistochemistry of leech CNS indicates that HmIL-16 protein present in the neurons is rapidly transported and stored along the axonal processes to promote the recruitment of microglial cells to the injured axons. To our knowledge, this is the first identification of a functional interleukin-16 homologue in invertebrate CNS. The ability of HmIL-16 to recruit microglial cells to sites of CNS injury suggests a role for HmIL-16 in the crosstalk between neurons and microglia in the leech CNS repair.

  20. Control of aquatic leeches (Lymnatis nilotica) us- ing Phytolacca ...

    African Journals Online (AJOL)

    also caused mortality of tadpoles, frogs and round worms found in streams while it doesn't cause any visible toxicity to .... immature age died of leech infestation. About 50 calves that were watered at .... vary depending on the type of water medium (Getachew Tilahun et al., 2002) and in cases where higher doses are ...

  1. Macrophages commit postnatal endothelium-derived progenitors to angiogenesis and restrict endothelial to mesenchymal transition during muscle regeneration.

    Science.gov (United States)

    Zordan, P; Rigamonti, E; Freudenberg, K; Conti, V; Azzoni, E; Rovere-Querini, P; Brunelli, S

    2014-01-30

    The damage of the skeletal muscle prompts a complex and coordinated response that involves the interactions of many different cell populations and promotes inflammation, vascular remodeling and finally muscle regeneration. Muscle disorders exist in which the irreversible loss of tissue integrity and function is linked to defective neo-angiogenesis with persistence of tissue necrosis and inflammation. Here we show that macrophages (MPs) are necessary for efficient vascular remodeling in the injured muscle. In particular, MPs sustain the differentiation of endothelial-derived progenitors to contribute to neo-capillary formation, by secreting pro-angiogenic growth factors. When phagocyte infiltration is compromised endothelial-derived progenitors undergo a significant endothelial to mesenchymal transition (EndoMT), possibly triggered by the activation of transforming growth factor-β/bone morphogenetic protein signaling, collagen accumulates and the muscle is replaced by fibrotic tissue. Our findings provide new insights in EndoMT in the adult skeletal muscle, and suggest that endothelial cells in the skeletal muscle may represent a new target for therapeutic intervention in fibrotic diseases.

  2. Functional heterogeneity of side population cells in skeletal muscle

    International Nuclear Information System (INIS)

    Uezumi, Akiyoshi; Ojima, Koichi; Fukada, So-ichiro; Ikemoto, Madoka; Masuda, Satoru; Miyagoe-Suzuki, Yuko; Takeda, Shin'ichi

    2006-01-01

    Skeletal muscle regeneration has been exclusively attributed to myogenic precursors, satellite cells. A stem cell-rich fraction referred to as side population (SP) cells also resides in skeletal muscle, but its roles in muscle regeneration remain unclear. We found that muscle SP cells could be subdivided into three sub-fractions using CD31 and CD45 markers. The majority of SP cells in normal non-regenerating muscle expressed CD31 and had endothelial characteristics. However, CD31 - CD45 - SP cells, which are a minor subpopulation in normal muscle, actively proliferated upon muscle injury and expressed not only several regulatory genes for muscle regeneration but also some mesenchymal lineage markers. CD31 - CD45 - SP cells showed the greatest myogenic potential among three SP sub-fractions, but indeed revealed mesenchymal potentials in vitro. These SP cells preferentially differentiated into myofibers after intramuscular transplantation in vivo. Our results revealed the heterogeneity of muscle SP cells and suggest that CD31 - CD45 - SP cells participate in muscle regeneration

  3. Conversion of recombinant hirudin to the natural form by in vitro tyrosine sulfation. Differential substrate specificities of leech and bovine tyrosylprotein sulfotransferases.

    Science.gov (United States)

    Niehrs, C; Huttner, W B; Carvallo, D; Degryse, E

    1990-06-05

    Hirudin, a tyrosine-sulfated protein secreted by the leech Hirudo medicinalis, is one of the most potent anticoagulants known. The hirudin cDNA has previously been cloned and has been expressed in yeast, but the resulting recombinant protein was found to be produced in the unsulfated form, which is known to have an at least 10 times lower affinity for thrombin than the naturally occurring tyrosine-sulfated hirudin. Here we describe the in vitro tyrosine sulfation of recombinant hirudin by leech and bovine tyrosylprotein sulfotransferase (TPST). With both enzymes, in vitro sulfation of recombinant hirudin occurred at the physiological site (Tyr-63) and rendered the protein biochemically and biologically indistinguishable from natural hirudin. However, leech TPST had an over 20-fold lower apparent Km value for recombinant hirudin than bovine TPST. Further differences in the catalytic properties of leech and bovine TPSTs were observed when synthetic peptides were tested as substrates. Moreover, a synthetic peptide corresponding to the 9 carboxyl-terminal residues of hirudin (which include Tyr-63) was sulfated by leech TPST with a similar apparent Km value as full length hirudin, indicating that structural determinants residing in the immediate vicinity of Tyr-63 are sufficient for sulfation to occur.

  4. Repeated Muscle Injury as a Presumptive Trigger for Chronic Masticatory Muscle Pain

    Directory of Open Access Journals (Sweden)

    Dean Dessem

    2011-01-01

    Full Text Available skeletal muscles sustain a significant loss of maximal contractile force after injury, but terminally damaged fibers can eventually be replaced by the growth of new muscle (regeneration, with full restoration of contractile force over time. After a second injury, limb muscles exhibit a smaller reduction in maximal force and reduced inflammation compared with that after the initial injury (i.e., repeated bout effect. In contrast, masticatory muscles exhibit diminished regeneration and persistent fibrosis, after a single injury; following a second injury, plasma extravasation is greater than after a single injury and maximal force is decreased more than after the initial injury. Thus, masticatory muscles do not exhibit a repeated bout effect and are instead increasingly damaged by repeated injury. We propose that the impaired ability of masticatory muscles to regenerate contributes to chronic muscle pain by leading to an accumulation of tissue damage, fibrosis, and a persistent elevation and prolonged membrane translocation of nociceptive channels such as P2X3 as well as enhanced expression of neuropeptides including CGRP within primary afferent neurons. These transformations prime primary afferent neurons for enhanced responsiveness upon subsequent injury thus triggering and/or exacerbating chronic muscle pain.

  5. Skeletal muscle microRNA and messenger RNA profiling in cofilin-2 deficient mice reveals cell cycle dysregulation hindering muscle regeneration.

    Directory of Open Access Journals (Sweden)

    Sarah U Morton

    Full Text Available Congenital myopathies are rare skeletal muscle diseases presenting in early age with hypotonia and weakness often linked to a genetic defect. Mutations in the gene for cofilin-2 (CFL2 have been identified in several families as a cause of congenital myopathy with nemaline bodies and cores. Here we explore the global messenger and microRNA expression patterns in quadriceps muscle samples from cofillin-2-null mice and compare them with sibling-matched wild-type mice to determine the molecular pathways and mechanisms involved. Cell cycle processes are markedly dysregulated, with altered expression of genes involved in mitotic spindle formation, and evidence of loss of cell cycle checkpoint regulation. Importantly, alterations in cell cycle, apoptosis and proliferation pathways are present in both mRNA and miRNA expression patterns. Specifically, p21 transcript levels were increased, and the expression of p21 targets, such as cyclin D and cyclin E, was decreased. We therefore hypothesize that deficiency of cofilin-2 is associated with interruption of the cell cycle at several checkpoints, hindering muscle regeneration. Identification of these pathways is an important step towards developing appropriate therapies against various congenital myopathies.

  6. Striated Muscle Function, Regeneration, and Repair

    Science.gov (United States)

    Shadrin, I.Y.; Khodabukus, A.; Bursac, N.

    2016-01-01

    As the only striated muscle tissues in the body, skeletal and cardiac muscle share numerous structural and functional characteristics, while exhibiting vastly different size and regenerative potential. Healthy skeletal muscle harbors a robust regenerative response that becomes inadequate after large muscle loss or in degenerative pathologies and aging. In contrast, the mammalian heart loses its regenerative capacity shortly after birth, leaving it susceptible to permanent damage by acute injury or chronic disease. In this review, we compare and contrast the physiology and regenerative potential of native skeletal and cardiac muscles, mechanisms underlying striated muscle dysfunction, and bioengineering strategies to treat muscle disorders. We focus on different sources for cellular therapy, biomaterials to augment the endogenous regenerative response, and progress in engineering and application of mature striated muscle tissues in vitro and in vivo. Finally, we discuss the challenges and perspectives in translating muscle bioengineering strategies to clinical practice. PMID:27271751

  7. Human recombinant RNASET2-induced inflammatory response and connective tissue remodeling in the medicinal leech.

    Science.gov (United States)

    Baranzini, Nicolò; Pedrini, Edoardo; Girardello, Rossana; Tettamanti, Gianluca; de Eguileor, Magda; Taramelli, Roberto; Acquati, Francesco; Grimaldi, Annalisa

    2017-05-01

    In recent years, several studies have demonstrated that the RNASET2 gene is involved in the control of tumorigenicity in ovarian cancer cells. Furthermore, a role in establishing a functional cross-talk between cancer cells and the surrounding tumor microenvironment has been unveiled for this gene, based on its ability to act as an inducer of the innate immune response. Although several studies have reported on the molecular features of RNASET2, the details on the mechanisms by which this evolutionarily conserved ribonuclease regulates the immune system are still poorly defined. In the effort to clarify this aspect, we report here the effect of recombinant human RNASET2 injection and its role in regulating the innate immune response after bacterial challenge in an invertebrate model, the medicinal leech. We found that recombinant RNASET2 injection induces fibroplasias, connective tissue remodeling and the recruitment of numerous infiltrating cells expressing the specific macrophage markers CD68 and HmAIF1. The RNASET2-mediated chemotactic activity for macrophages has been further confirmed by using a consolidated experimental approach based on injection of the Matrigel biomatrice (MG) supplemented with recombinant RNASET2 in the leech body wall. One week after injection, a large number of CD68 + and HmAIF-1 + macrophages massively infiltrated MG sponges. Finally, in leeches challenged with lipopolysaccharides (LPS) or with the environmental bacteria pathogen Micrococcus nishinomiyaensis, numerous macrophages migrating to the site of inoculation expressed high levels of endogenous RNASET2. Taken together, these results suggest that RNASET2 is likely involved in the initial phase of the inflammatory response in leeches.

  8. Construction of a medicinal leech transcriptome database and its application to the identification of leech homologs of neural and innate immune genes

    Directory of Open Access Journals (Sweden)

    Wincker Patrick

    2010-06-01

    Full Text Available Abstract Background The medicinal leech, Hirudo medicinalis, is an important model system for the study of nervous system structure, function, development, regeneration and repair. It is also a unique species in being presently approved for use in medical procedures, such as clearing of pooled blood following certain surgical procedures. It is a current, and potentially also future, source of medically useful molecular factors, such as anticoagulants and antibacterial peptides, which may have evolved as a result of its parasitizing large mammals, including humans. Despite the broad focus of research on this system, little has been done at the genomic or transcriptomic levels and there is a paucity of openly available sequence data. To begin to address this problem, we constructed whole embryo and adult central nervous system (CNS EST libraries and created a clustered sequence database of the Hirudo transcriptome that is available to the scientific community. Results A total of ~133,000 EST clones from two directionally-cloned cDNA libraries, one constructed from mRNA derived from whole embryos at several developmental stages and the other from adult CNS cords, were sequenced in one or both directions by three different groups: Genoscope (French National Sequencing Center, the University of Iowa Sequencing Facility and the DOE Joint Genome Institute. These were assembled using the phrap software package into 31,232 unique contigs and singletons, with an average length of 827 nt. The assembled transcripts were then translated in all six frames and compared to proteins in NCBI's non-redundant (NR and to the Gene Ontology (GO protein sequence databases, resulting in 15,565 matches to 11,236 proteins in NR and 13,935 matches to 8,073 proteins in GO. Searching the database for transcripts of genes homologous to those thought to be involved in the innate immune responses of vertebrates and other invertebrates yielded a set of nearly one hundred

  9. Construction of a medicinal leech transcriptome database and its application to the identification of leech homologs of neural and innate immune genes.

    Science.gov (United States)

    Macagno, Eduardo R; Gaasterland, Terry; Edsall, Lee; Bafna, Vineet; Soares, Marcelo B; Scheetz, Todd; Casavant, Thomas; Da Silva, Corinne; Wincker, Patrick; Tasiemski, Aurélie; Salzet, Michel

    2010-06-25

    The medicinal leech, Hirudo medicinalis, is an important model system for the study of nervous system structure, function, development, regeneration and repair. It is also a unique species in being presently approved for use in medical procedures, such as clearing of pooled blood following certain surgical procedures. It is a current, and potentially also future, source of medically useful molecular factors, such as anticoagulants and antibacterial peptides, which may have evolved as a result of its parasitizing large mammals, including humans. Despite the broad focus of research on this system, little has been done at the genomic or transcriptomic levels and there is a paucity of openly available sequence data. To begin to address this problem, we constructed whole embryo and adult central nervous system (CNS) EST libraries and created a clustered sequence database of the Hirudo transcriptome that is available to the scientific community. A total of approximately 133,000 EST clones from two directionally-cloned cDNA libraries, one constructed from mRNA derived from whole embryos at several developmental stages and the other from adult CNS cords, were sequenced in one or both directions by three different groups: Genoscope (French National Sequencing Center), the University of Iowa Sequencing Facility and the DOE Joint Genome Institute. These were assembled using the phrap software package into 31,232 unique contigs and singletons, with an average length of 827 nt. The assembled transcripts were then translated in all six frames and compared to proteins in NCBI's non-redundant (NR) and to the Gene Ontology (GO) protein sequence databases, resulting in 15,565 matches to 11,236 proteins in NR and 13,935 matches to 8,073 proteins in GO. Searching the database for transcripts of genes homologous to those thought to be involved in the innate immune responses of vertebrates and other invertebrates yielded a set of nearly one hundred evolutionarily conserved sequences

  10. New Trends in Heart Regeneration: A Review

    Directory of Open Access Journals (Sweden)

    Kochegarov A

    2016-11-01

    Full Text Available In this review, we focus on new approaches that could lead to the regeneration of heart muscle and the restoration of cardiac muscle function derived from newly-formed cardiomyocytes. Various strategies for the production of cardiomyocytes from embryonic stem cells, induced pluripotent stem cells, adult bone marrow stem cells and cardiac spheres from human heart biopsies are described. Pathological conditions which lead to atherosclerosis and coronary artery disease often are followed by myocardial infarction causing myocardial cell death. After cell death, there is very little self-regeneration of the cardiac muscle tissue, which is replaced by non-contractile connective tissue, thus weakening the ability of the heart muscle to contract fully and leading to heart failure. A number of experimental research approaches to stimulate heart muscle regeneration with the hope of regaining normal or near normal heart function in the damaged heart muscle have been attempted. Some of these very interesting studies have used a variety of stem cell types in combination with potential cardiogenic differentiation factors in an attempt to promote differentiation of new cardiac muscle for possible future use in the clinical treatment of patients who have suffered heart muscle damage from acute myocardial infarctions or related cardiovascular diseases. Although progress has been made in recent years relative to promoting the differentiation of cardiac muscle tissue from non-muscle cells, much work remains to be done for this technology to be used routinely in translational clinical medicine to treat patients with damaged heart muscle tissue and return such individuals to pre-heart-attack activity levels.

  11. The efficacy and safety of medical leech therapy for osteoarthritis of the knee: A meta-analysis of randomized controlled trials.

    Science.gov (United States)

    Wang, Haixia; Zhang, Jing; Chen, Liyan

    2018-06-01

    It is controversial on whether medical leech therapy is effective in improving pain and functional outcome in patients with knee osteoarthritis (OA). Therefore, we perform a meta-analysis from randomized controlled trials (RCTs) to evaluate the efficacy and safety of medical leech therapy in patients with knee OA. The PubMed, EMBASE, ScienceDirect, and Cochrane Library databases were systematically searched for literature up to January 2018. RCTs involving medical leech therapy in patients with knee OA were included. Two independent reviewers performed independent data abstraction. The I 2 statistic was used to assess heterogeneity. A fixed or random effects model was adopted for meta-analysis. All meta-analyses were performed by using STATA 12.0. Four RCTs with 264 patients were included in this meta-analysis. The current meta-analysis showed that there were significant differences in terms of visual analogue scale (VAS) scores and WOMAC scores at 1 week, 4weeks and 7 weeks compared with control groups. However, leech therapy was associated with a significantly higher incidence of adverse events. The overall evidence quality is moderate, which means that further research is likely to significantly change confidence in the effect estimate but may change the estimate. Medical leech therapy was associated with a significantly improved outcome in pain relief and functional recovery in patients with symptomatic knee OA. However, given the inherent limitations in the included studies, this conclusion should be interpreted cautiously. Copyright © 2018 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  12. Muscle organizers in Drosophila: the role of persistent larval fibers in adult flight muscle development

    Science.gov (United States)

    Farrell, E. R.; Fernandes, J.; Keshishian, H.

    1996-01-01

    In many organisms muscle formation depends on specialized cells that prefigure the pattern of the musculature and serve as templates for myoblast organization and fusion. These include muscle pioneers in insects and muscle organizing cells in leech. In Drosophila, muscle founder cells have been proposed to play a similar role in organizing larval muscle development during embryogenesis. During metamorphosis in Drosophila, following histolysis of most of the larval musculature, there is a second round of myogenesis that gives rise to the adult muscles. It is not known whether muscle founder cells organize the development of these muscles. However, in the thorax specific larval muscle fibers do not histolyze at the onset of metamorphosis, but instead serve as templates for the formation of a subset of adult muscles, the dorsal longitudinal flight muscles (DLMs). Because these persistent larval muscle fibers appear to be functioning in many respects like muscle founder cells, we investigated whether they were necessary for DLM development by using a microbeam laser to ablate them singly and in combination. We found that, in the absence of the larval muscle fibers, DLMs nonetheless develop. Our results show that the persistent larval muscle fibers are not required to initiate myoblast fusion, to determine DLM identity, to locate the DLMs in the thorax, or to specify the total DLM fiber volume. However, they are required to regulate the number of DLM fibers generated. Thus, while the persistent larval muscle fibers are not obligatory for DLM fiber formation and differentiation, they are necessary to ensure the development of the correct number of fibers.

  13. Engineered matrices for skeletal muscle satellite cell engraftment and function.

    Science.gov (United States)

    Han, Woojin M; Jang, Young C; García, Andrés J

    2017-07-01

    Regeneration of traumatically injured skeletal muscles is severely limited. Moreover, the regenerative capacity of skeletal muscle declines with aging, further exacerbating the problem. Recent evidence supports that delivery of muscle satellite cells to the injured muscles enhances muscle regeneration and reverses features of aging, including reduction in muscle mass and regenerative capacity. However, direct delivery of satellite cells presents a challenge at a translational level due to inflammation and donor cell death, motivating the need to develop engineered matrices for muscle satellite cell delivery. This review will highlight important aspects of satellite cell and their niche biology in the context of muscle regeneration, and examine recent progresses in the development of engineered cell delivery matrices designed for skeletal muscle regeneration. Understanding the interactions of muscle satellite cells and their niche in both native and engineered systems is crucial to developing muscle pathology-specific cell- and biomaterial-based therapies. Copyright © 2016 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  14. Treatment with the anti-IL-6 receptor antibody attenuates muscular dystrophy via promoting skeletal muscle regeneration in dystrophin-/utrophin-deficient mice.

    Science.gov (United States)

    Wada, Eiji; Tanihata, Jun; Iwamura, Akira; Takeda, Shin'ichi; Hayashi, Yukiko K; Matsuda, Ryoichi

    2017-10-27

    Chronic increases in the levels of the inflammatory cytokine interleukin-6 (IL-6) in serum and skeletal muscle are thought to contribute to the progression of muscular dystrophy. Dystrophin/utrophin double-knockout (dKO) mice develop a more severe and progressive muscular dystrophy than the mdx mice, the most common murine model of Duchenne muscular dystrophy (DMD). In particular, dKO mice have smaller body sizes and muscle diameters, and develop progressive kyphosis and fibrosis in skeletal and cardiac muscles. As mdx mice and DMD patients, we found that IL-6 levels in the skeletal muscle were significantly increased in dKO mice. Thus, in this study, we aimed to analyze the effects of IL-6 receptor (IL-6R) blockade on the muscle pathology of dKO mice. Male dKO mice were administered an initial injection (200 mg/kg intraperitoneally (i.p.)) of either the anti-IL-6R antibody MR16-1 or an isotype-matched control rat IgG at the age of 14 days, and were then given weekly injections (25 mg/kg i.p.) until 90 days of age. Treatment of dKO mice with the MR16-1 antibody successfully inhibited the IL-6 pathway in the skeletal muscle and resulted in a significant reduction in the expression levels of phosphorylated signal transducer and activator of transcription 3 in the skeletal muscle. Pathologically, a significant increase in the area of embryonic myosin heavy chain-positive myofibers and muscle diameter, and reduced fibrosis in the quadriceps muscle were observed. These results demonstrated the therapeutic effects of IL-6R blockade on promoting muscle regeneration. Consistently, serum creatine kinase levels were decreased. Despite these improvements observed in the limb muscles, degeneration of the diaphragm and cardiac muscles was not ameliorated by the treatment of mice with the MR16-1 antibody. As no adverse effects of treatment with the MR16-1 antibody were observed, our results indicate that the anti-IL-6R antibody is a potential therapy for muscular dystrophy

  15. New Advances in Molecular Therapy for Muscle Repair after Diseases and Injuries

    Science.gov (United States)

    2012-01-01

    muscle regeneration in a preclinical mouse model of muscle regeneration and Duchenne muscular dystrophy (DMD...improve the regeneration of muscles damaged by trauma or by chronic muscle diseases, such as Duchenne and Becker muscular dystrophies . In the past...selected MDX mice, a mouse model for Duchenne muscular dystrophy [DMD], to investigate if MMP1 could enhance muscle cell migration and

  16. An unusual cause of severe dyspnea: A laryngeal live leech: Case report

    Directory of Open Access Journals (Sweden)

    Said Anajar

    2017-01-01

    Conclusion: Leeches should be suspected as an airway foreign body in patients with a recent history of drinking from stream water. Prevention remains the best treatment for such cases based simply on hygiene measures like not drinking stream water directly and filtering drinking water before it is used.

  17. Impaired macrophage and satellite cell infiltration occurs in a muscle-specific fashion following injury in diabetic skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Matthew P Krause

    Full Text Available Systemic elevations in PAI-1 suppress the fibrinolytic pathway leading to poor collagen remodelling and delayed regeneration of tibialis anterior (TA muscles in type-1 diabetic Akita mice. However, how impaired collagen remodelling was specifically attenuating regeneration in Akita mice remained unknown. Furthermore, given intrinsic differences between muscle groups, it was unclear if the reparative responses between muscle groups were different.Here we reveal that diabetic Akita muscles display differential regenerative responses with the TA and gastrocnemius muscles exhibiting reduced regenerating myofiber area compared to wild-type mice, while soleus muscles displayed no difference between animal groups following injury. Collagen levels in TA and gastrocnemius, but not soleus, were significantly increased post-injury versus controls. At 5 days post-injury, when degenerating/necrotic regions were present in both animal groups, Akita TA and gastrocnemius muscles displayed reduced macrophage and satellite cell infiltration and poor myofiber formation. By 10 days post-injury, necrotic regions were absent in wild-type TA but persisted in Akita TA. In contrast, Akita soleus exhibited no impairment in any of these measures compared to wild-type soleus. In an effort to define how impaired collagen turnover was attenuating regeneration in Akita TA, a PAI-1 inhibitor (PAI-039 was orally administered to Akita mice following cardiotoxin injury. PAI-039 administration promoted macrophage and satellite cell infiltration into necrotic areas of the TA and gastrocnemius. Importantly, soleus muscles exhibit the highest inducible expression of MMP-9 following injury, providing a mechanism for normative collagen degradation and injury recovery in this muscle despite systemically elevated PAI-1.Our findings suggest the mechanism underlying how impaired collagen remodelling in type-1 diabetes results in delayed regeneration is an impairment in macrophage

  18. Serum Proteases Potentiate BMP-Induced Cell Cycle Re-entry of Dedifferentiating Muscle Cells during Newt Limb Regeneration.

    Science.gov (United States)

    Wagner, Ines; Wang, Heng; Weissert, Philipp M; Straube, Werner L; Shevchenko, Anna; Gentzel, Marc; Brito, Goncalo; Tazaki, Akira; Oliveira, Catarina; Sugiura, Takuji; Shevchenko, Andrej; Simon, András; Drechsel, David N; Tanaka, Elly M

    2017-03-27

    Limb amputation in the newt induces myofibers to dedifferentiate and re-enter the cell cycle to generate proliferative myogenic precursors in the regeneration blastema. Here we show that bone morphogenetic proteins (BMPs) and mature BMPs that have been further cleaved by serum proteases induce cell cycle entry by dedifferentiating newt muscle cells. Protease-activated BMP4/7 heterodimers that are present in serum strongly induced myotube cell cycle re-entry with protease cleavage yielding a 30-fold potency increase of BMP4/7 compared with canonical BMP4/7. Inhibition of BMP signaling via muscle-specific dominant-negative receptor expression reduced cell cycle entry in vitro and in vivo. In vivo inhibition of serine protease activity depressed cell cycle re-entry, which in turn was rescued by cleaved-mimic BMP. This work identifies a mechanism of BMP activation that generates blastema cells from differentiated muscle. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Occurrence of the Leech, Pontobdella muricata Linnaeus, on Elasmobranch Species in the Northern and Central Adriatic Sea.

    Science.gov (United States)

    Bolognini, Luca; Leoni, Simone; Polidori, Piero; Grati, Fabio; Scarcella, Giuseppe; Pellini, Giulio; Domenichetti, Filippo; Ferrà, Carmen; Fabi, Gianna

    2016-12-01

    This study provides a parasitological analysis of the elasmobranch species caught in the northern and central Adriatic Sea. Sixty-two marine leeches were recorded on 747 individuals of Raja clavata Linnaeus, 1758 (thornback ray), Myliobatis aquila Linnaeus, 1758 (common eagle ray), and Torpedo marmorata Risso, 1810 (marbled torpedo ray) caught in 56 hauls over a 5 yr period. All leeches were identified as Pontobdella muricata, which is a typical ectoparasite of benthic elasmobranchs. The prevalence of infection ranged from 7.11% on R. clavata to 12.00% on M. aquila. The intensity of infection, the preferential sites of attachment to the host, and the periodicity of infection were evaluated.

  20. Amphibian tail regeneration in space: effect on the pigmentation of the blastema

    Science.gov (United States)

    Grinfeld, S.; Foulquier, F.; Mitashov, V.; Bruchlinskaia, N.; Duprat, A. M.

    In Urodele amphibians, the tail regenerates after section. This regeneration, including tissues as different as bone (vertebrae), muscle, epidermis and central nervous system (spinal cord), was studied in adult Pleurodeles sent aboard the russian satellite Bion 10 and compared with tail regeneration in synchronous controls. Spinal cord, muscle and cartilage regeneration occurred in space animals as in synchronous controls. One of the most important differences between the two groups was the pigmentation of the blastemas: it was shown in laboratory, to be not due to a difference in light intensity.

  1. Some Biological Activities of Malaysian Leech Saliva Extract

    Directory of Open Access Journals (Sweden)

    Abdualrahman M. Abdualkader

    2011-12-01

    Full Text Available Normal 0 21 false false false MS X-NONE AR-SA Leeches were fed on the phagostimulatory solution through parafilm membrane. The satiated leeches were forced to regurgitate the solution by soaking them in an ice-container. The anticoagulant activity was ascertained using thrombin time assay (TT. The result revealed that the saliva concentration which increases TT by 100% (IC100 is 43.205µg/ml plasma. The antimicrobial activity of the saliva was tested against several bacterial spp. (E.coli, P.aeruginosa, B.cereus, Sal.typhi and S.aureus  and fungi spp. (C.albicans and C.neoformans. It was found that saliva has an inhibition activity against Sal.typhi (minimal inhibitory concentration MIC 78.253µg/ml, S.aureus (MIC 78.253µg/ml and E.coli (MIC 121.256µg/ml.ABSTRAK: Pacat-pacat diberi makan larutan phagostimulatory menerusi membran parafilem. Pacat-pacat yang kekenyangan itu dipaksa memuntahkan larutan tersebut dengan direndam di dalam bekas berisi ais. Aktiviti antigumpal ditentukan menggunakan cerakin masa trombin (TT. Keputusan menunjukkan kepekatan air liur pacat menyebabkan pertambahan TT sebanyak 100% (IC100 iaitu 43.205µg/ml plasma. Aktiviti antimikrob air liur telah diuji dengan pelbagai jenis bakteria (E.coli, P.aeruginosa, B.cereus, Sal.typhi dan S.aureus dan pelbagai jenis kulat (C.albicans and C.neoformans. Didapati air liur menghasilkan aktiviti perencatan terhadap Sal.typhi (kepekatan perencat minima (Minimal inhibitory concentration - MIC 78.253µg/ml, S.aureus (MIC 78.253µg/ml dan E.coli (MIC 121.256µg/ml.

  2. In Situ Immunofluorescent Staining of Autophagy in Muscle Stem Cells

    KAUST Repository

    Castagnetti, Francesco

    2017-06-13

    Increasing evidence points to autophagy as a crucial regulatory process to preserve tissue homeostasis. It is known that autophagy is involved in skeletal muscle development and regeneration, and the autophagic process has been described in several muscular pathologies and agerelated muscle disorders. A recently described block of the autophagic process that correlates with the functional exhaustion of satellite cells during muscle repair supports the notion that active autophagy is coupled with productive muscle regeneration. These data uncover the crucial role of autophagy in satellite cell activation during muscle regeneration in both normal and pathological conditions, such as muscular dystrophies. Here, we provide a protocol to monitor the autophagic process in the adult Muscle Stem Cell (MuSC) compartment during muscle regenerative conditions. This protocol describes the setup methodology to perform in situ immunofluorescence imaging of LC3, an autophagy marker, and MyoD, a myogenic lineage marker, in muscle tissue sections from control and injured mice. The methodology reported allows for monitoring the autophagic process in one specific cell compartment, the MuSC compartment, which plays a central role in orchestrating muscle regeneration.

  3. The Use of Platelet-Rich and Platelet-Poor Plasma to Enhance Differentiation of Skeletal Myoblasts: Implications for the Use of Autologous Blood Products for Muscle Regeneration.

    Science.gov (United States)

    Miroshnychenko, Olga; Chang, Wen-Teh; Dragoo, Jason L

    2017-03-01

    Platelet-rich plasma (PRP) has been used to augment tissue repair and regeneration after musculoskeletal injury. However, there is increasing clinical evidence that PRP does not show a consistent clinical effect. Purpose/Hypothesis: This study aimed to compare the effects of the following non-neutrophil-containing (leukocyte-poor) plasma fractions on human skeletal muscle myoblast (HSMM) differentiation: (1) PRP, (2) modified PRP (Mod-PRP), in which transforming growth factor β1 (TGF-β1) and myostatin (MSTN) were depleted, and (3) platelet-poor plasma (PPP). The hypothesis was that leukocyte-poor PRP would lead to myoblast proliferation (not differentiation), whereas certain modifications of PRP preparations would increase myoblast differentiation, which is necessary for skeletal muscle regeneration. Controlled laboratory study. Blood from 7 human donors was individually processed to simultaneously create leukocyte-poor fractions: PRP, Mod-PRP, PPP, and secondarily spun PRP and Mod-PRP (PRP ss and Mod-PRP ss , respectively). Mod-PRP was produced by removing TGF-β1 and MSTN from PRP using antibodies attached to sterile beads, while a second-stage centrifugal spin of PRP was performed to remove platelets. The biologics were individually added to cell culture groups. Analysis for induction into myoblast differentiation pathways included Western blot analysis, reverse-transcription polymerase chain reaction, and immunohistochemistry, as well as confocal microscopy to assess polynucleated myotubule formation. HSMMs cultured with PRP showed an increase in proliferation but no evidence of differentiation. Western blot analysis confirmed that MSTN and TGF-β1 could be decreased in Mod-PRP using antibody-coated beads, but this modification mildly improved myoblast differentiation. However, cell culture with PPP, PRP ss , and Mod-PRP ss led to a decreased proliferation rate but a significant induction of myoblast differentiation verified by increased multinucleated

  4. The Role of Genetically Modified Mesenchymal Stem Cells in Urinary Bladder Regeneration.

    Science.gov (United States)

    Snow-Lisy, Devon C; Diaz, Edward C; Bury, Matthew I; Fuller, Natalie J; Hannick, Jessica H; Ahmad, Nida; Sharma, Arun K

    2015-01-01

    Recent studies have demonstrated that mesenchymal stem cells (MSCs) combined with CD34+ hematopoietic/stem progenitor cells (HSPCs) can function as surrogate urinary bladder cells to synergistically promote multi-faceted bladder tissue regeneration. However, the molecular pathways governing these events are unknown. The pleiotropic effects of Wnt5a and Cyr61 are known to affect aspects of hematopoiesis, angiogenesis, and muscle and nerve regeneration. Within this study, the effects of Cyr61 and Wnt5a on bladder tissue regeneration were evaluated by grafting scaffolds containing modified human bone marrow derived MSCs. These cell lines were engineered to independently over-express Wnt5a or Cyr61, or to exhibit reduced expression of Cyr61 within the context of a nude rat bladder augmentation model. At 4 weeks post-surgery, data demonstrated increased vessel number (~250 vs ~109 vessels/mm2) and bladder smooth muscle content (~42% vs ~36%) in Cyr61OX (over-expressing) vs Cyr61KD (knock-down) groups. Muscle content decreased to ~25% at 10 weeks in Cyr61KD groups. Wnt5aOX resulted in high numbers of vessels and muscle content (~206 vessels/mm2 and ~51%, respectively) at 4 weeks. Over-expressing cell constructs resulted in peripheral nerve regeneration while Cyr61KD animals were devoid of peripheral nerve regeneration at 4 weeks. At 10 weeks post-grafting, peripheral nerve regeneration was at a minimal level for both Cyr61OX and Wnt5aOX cell lines. Blood vessel and bladder functionality were evident at both time-points in all animals. Results from this study indicate that MSC-based Cyr61OX and Wnt5aOX cell lines play pivotal roles with regards to increasing the levels of functional vasculature, influencing muscle regeneration, and the regeneration of peripheral nerves in a model of bladder augmentation. Wnt5aOX constructs closely approximated the outcomes previously observed with the co-transplantation of MSCs with CD34+ HSPCs and may be specifically targeted as an

  5. Myocardial Polyploidization Creates a Barrier to Heart Regeneration in Zebrafish.

    Science.gov (United States)

    González-Rosa, Juan Manuel; Sharpe, Michka; Field, Dorothy; Soonpaa, Mark H; Field, Loren J; Burns, Caroline E; Burns, C Geoffrey

    2018-02-26

    Correlative evidence suggests that polyploidization of heart muscle, which occurs naturally in post-natal mammals, creates a barrier to heart regeneration. Here, we move beyond a correlation by demonstrating that experimental polyploidization of zebrafish cardiomyocytes is sufficient to suppress their proliferative potential during regeneration. Initially, we determined that zebrafish myocardium becomes susceptible to polyploidization upon transient cytokinesis inhibition mediated by dominant-negative Ect2. Using a transgenic strategy, we generated adult animals containing mosaic hearts composed of differentially labeled diploid and polyploid-enriched cardiomyocyte populations. Diploid cardiomyocytes outcompeted their polyploid neighbors in producing regenerated heart muscle. Moreover, hearts composed of equivalent proportions of diploid and polyploid cardiomyocytes failed to regenerate altogether, demonstrating that a critical percentage of diploid cardiomyocytes is required to achieve heart regeneration. Our data identify cardiomyocyte polyploidization as a barrier to heart regeneration and suggest that mobilizing rare diploid cardiomyocytes in the human heart will improve its regenerative capacity. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. ADAM12 alleviates the skeletal muscle pathology in mdx dystrophic mice

    DEFF Research Database (Denmark)

    Kronqvist, Pauliina; Kawaguchi, Nobuko; Albrechtsen, Reidar

    2002-01-01

    Muscular dystrophy is characterized by muscle degeneration and insufficient regeneration and replacement of muscle fibers by connective tissue. New therapeutic strategies directed toward various forms of muscular dystrophy are needed to preserve muscle mass and promote regeneration. In this study...

  7. Muscle satellite cell heterogeneity and self-renewal

    Science.gov (United States)

    Motohashi, Norio; Asakura, Atsushi

    2014-01-01

    Adult skeletal muscle possesses extraordinary regeneration capacities. After muscle injury or exercise, large numbers of newly formed muscle fibers are generated within a week as a result of expansion and differentiation of a self-renewing pool of muscle stem cells termed muscle satellite cells. Normally, satellite cells are mitotically quiescent and reside beneath the basal lamina of muscle fibers. Upon regeneration, satellite cells are activated, and give rise to daughter myogenic precursor cells. After several rounds of proliferation, these myogenic precursor cells contribute to the formation of new muscle fibers. During cell division, a minor population of myogenic precursor cells returns to quiescent satellite cells as a self-renewal process. Currently, accumulating evidence has revealed the essential roles of satellite cells in muscle regeneration and the regulatory mechanisms, while it still remains to be elucidated how satellite cell self-renewal is molecularly regulated and how satellite cells are important in aging and diseased muscle. The number of satellite cells is decreased due to the changing niche during ageing, resulting in attenuation of muscle regeneration capacity. Additionally, in Duchenne muscular dystrophy (DMD) patients, the loss of satellite cell regenerative capacity and decreased satellite cell number due to continuous needs for satellite cells lead to progressive muscle weakness with chronic degeneration. Thus, it is necessary to replenish muscle satellite cells continuously. This review outlines recent findings regarding satellite cell heterogeneity, asymmetric division and molecular mechanisms in satellite cell self-renewal which is crucial for maintenance of satellite cells as a muscle stem cell pool throughout life. In addition, we discuss roles in the stem cell niche for satellite cell maintenance, as well as related cell therapies for approaching treatment of DMD. PMID:25364710

  8. Muscle Satellite Cell Heterogeneity and Self-Renewal

    Directory of Open Access Journals (Sweden)

    Norio eMotohashi

    2014-01-01

    Full Text Available Adult skeletal muscle possesses extraordinary regeneration capacities. After muscle injury or exercise, large numbers of newly formed muscle fibers are generated within a week as a result of expansion and differentiation of a self-renewing pool of muscle stem cells termed muscle satellite cells. Normally, satellite cells are mitotically quiescent and reside beneath the basal lamina of muscle fibers. Upon regeneration, satellite cells are activated, and give rise to daughter myogenic precursor cells. After several rounds of proliferation, these myogenic precursor cells contribute to the formation of new muscle fibers. During cell division, a minor population of myogenic precursor cells returns to quiescent satellite cells as a self-renewal process. Currently, accumulating evidence has revealed the essential roles of satellite cells in muscle regeneration and the regulatory mechanisms, while it still remains to be elucidated how satellite cell self-renewal is molecularly regulated and how satellite cells are important in aging and diseased muscle. The number of satellite cells is decreased due to the changing niche during ageing, resulting in attenuation of muscle regeneration capacity. Additionally, in Duchenne muscular dystrophy (DMD patients, the loss of satellite cell regenerative capacity and decreased satellite cell number due to continuous needs for satellite cells lead to progressive muscle weakness with chronic degeneration. Thus, it is necessary to replenish muscle satellite cells continuously. This review outlines recent findings regarding satellite cell heterogeneity, asymmetric division and molecular mechanisms in satellite cell self-renewal which is crucial for maintenance of satellite cells as a muscle stem cell pool throughout life. In addition, we discuss roles in the stem cell niche for satellite cell maintenance, as well as related cell therapies for approaching treatment of DMD.

  9. NRIP is newly identified as a Z-disc protein, activating calmodulin signaling for skeletal muscle contraction and regeneration.

    Science.gov (United States)

    Chen, Hsin-Hsiung; Chen, Wen-Pin; Yan, Wan-Lun; Huang, Yuan-Chun; Chang, Szu-Wei; Fu, Wen-Mei; Su, Ming-Jai; Yu, I-Shing; Tsai, Tzung-Chieh; Yan, Yu-Ting; Tsao, Yeou-Ping; Chen, Show-Li

    2015-11-15

    Nuclear receptor interaction protein (NRIP, also known as DCAF6 and IQWD1) is a Ca(2+)-dependent calmodulin-binding protein. In this study, we newly identify NRIP as a Z-disc protein in skeletal muscle. NRIP-knockout mice were generated and found to have reduced muscle strength, susceptibility to fatigue and impaired adaptive exercise performance. The mechanisms of NRIP-regulated muscle contraction depend on NRIP being downstream of Ca(2+) signaling, where it stimulates activation of both 'calcineurin-nuclear factor of activated T-cells, cytoplasmic 1' (CaN-NFATc1; also known as NFATC1) and calmodulin-dependent protein kinase II (CaMKII) through interaction with calmodulin (CaM), resulting in the induction of mitochondrial activity and the expression of genes encoding the slow class of myosin, and in the regulation of Ca(2+) homeostasis through the internal Ca(2+) stores of the sarcoplasmic reticulum. Moreover, NRIP-knockout mice have a delayed regenerative capacity. The amount of NRIP can be enhanced after muscle injury and is responsible for muscle regeneration, which is associated with the increased expression of myogenin, desmin and embryonic myosin heavy chain during myogenesis, as well as for myotube formation. In conclusion, NRIP is a novel Z-disc protein that is important for skeletal muscle strength and regenerative capacity. © 2015. Published by The Company of Biologists Ltd.

  10. Land Leeches of the g. Haemadipsa (Haemadipsoidea: Haemadipsidae). I. Conditions Essential to Laboratory Colonization.

    Science.gov (United States)

    1982-05-01

    minutes (44). Engorged haemadipsid leeches exhibit such obvious distension of their body that some observers have compared their appearance to...34 Jaws are muscular ridges set in the oral cavity, some armed with teeth, which incise the integument of the host to engorge on blood; one family

  11. Protein and Molecular Characterization of a Clinically Compliant Amniotic Fluid Stem Cell-Derived Extracellular Vesicle Fraction Capable of Accelerating Muscle Regeneration Through Enhancement of Angiogenesis.

    Science.gov (United States)

    Mellows, Ben; Mitchell, Robert; Antonioli, Manuela; Kretz, Oliver; Chambers, David; Zeuner, Marie-Theres; Denecke, Bernd; Musante, Luca; Ramachandra, Durrgah L; Debacq-Chainiaux, Florence; Holthofer, Harry; Joch, Barbara; Ray, Steve; Widera, Darius; David, Anna L; Huber, Tobias B; Dengjel, Joern; De Coppi, Paolo; Patel, Ketan

    2017-09-15

    The secretome of human amniotic fluid stem cells (AFSCs) has great potential as a therapeutic agent in regenerative medicine. However, it must be produced in a clinically compliant manner before it can be used in humans. In this study, we developed a means of producing a biologically active secretome from AFSCs that is free of all exogenous molecules. We demonstrate that the full secretome is capable of promoting stem cell proliferation, migration, and protection of cells against senescence. Furthermore, it has significant anti-inflammatory properties. Most importantly, we show that it promotes tissue regeneration in a model of muscle damage. We then demonstrate that the secretome contains extracellular vesicles (EVs) that harbor much, but not all, of the biological activity of the whole secretome. Proteomic characterization of the EV and free secretome fraction shows the presence of numerous molecules specific to each fraction that could be key regulators of tissue regeneration. Intriguingly, we show that the EVs only contain miRNA and not mRNA. This suggests that tissue regeneration in the host is mediated by the action of EVs modifying existing, rather than imposing new, signaling pathways. The EVs harbor significant anti-inflammatory activity as well as promote angiogenesis, the latter may be the mechanistic explanation for their ability to promote muscle regeneration after cardiotoxin injury.

  12. Muscle Atrophy Reversed by Growth Factor Activation of Satellite Cells in a Mouse Muscle Atrophy Model

    DEFF Research Database (Denmark)

    Hauerslev, Simon; Vissing, John; Krag, Thomas O

    2014-01-01

    mechanism that may contribute to the progressive muscle wasting seen in severely affected patients with muscular dystrophy and significant on-going regeneration. This treatment could potentially be applied to many conditions that feature muscle wasting to increase muscle bulk and strength.......Muscular dystrophies comprise a large group of inherited disorders that lead to progressive muscle wasting. We wanted to investigate if targeting satellite cells can enhance muscle regeneration and thus increase muscle mass. We treated mice with hepatocyte growth factor and leukemia inhibitory...... factor under three conditions: normoxia, hypoxia and during myostatin deficiency. We found that hepatocyte growth factor treatment led to activation of the Akt/mTOR/p70S6K protein synthesis pathway, up-regulation of the myognic transcription factors MyoD and myogenin, and subsequently the negative growth...

  13. Effects of hyperbaric oxygen at 1.25 atmospheres absolute with normal air on macrophage number and infiltration during rat skeletal muscle regeneration.

    Directory of Open Access Journals (Sweden)

    Naoto Fujita

    Full Text Available Use of mild hyperbaric oxygen less than 2 atmospheres absolute (2026.54 hPa with normal air is emerging as a common complementary treatment for severe muscle injury. Although hyperbaric oxygen at over 2 atmospheres absolute with 100% O2 promotes healing of skeletal muscle injury, it is not clear whether mild hyperbaric oxygen is equally effective. The purpose of the present study was to investigate the impact of hyperbaric oxygen at 1.25 atmospheres absolute (1266.59 hPa with normal air on muscle regeneration. The tibialis anterior muscle of male Wistar rats was injured by injection of bupivacaine hydrochloride, and rats were randomly assigned to a hyperbaric oxygen experimental group or to a non-hyperbaric oxygen control group. Immediately after the injection, rats were exposed to hyperbaric oxygen, and the treatment was continued for 28 days. The cross-sectional area of centrally nucleated muscle fibers was significantly larger in rats exposed to hyperbaric oxygen than in controls 5 and 7 days after injury. The number of CD68- or CD68- and CD206-positive cells was significantly higher in rats exposed to hyperbaric oxygen than in controls 24 h after injury. Additionally, tumor necrosis factor-α and interleukin-10 mRNA expression levels were significantly higher in rats exposed to hyperbaric oxygen than in controls 24 h after injury. The number of Pax7- and MyoD- or MyoD- and myogenin-positive nuclei per mm2 and the expression levels of these proteins were significantly higher in rats exposed to hyperbaric oxygen than in controls 5 days after injury. These results suggest that mild hyperbaric oxygen promotes skeletal muscle regeneration in the early phase after injury, possibly due to reduced hypoxic conditions leading to accelerated macrophage infiltration and phenotype transition. In conclusion, mild hyperbaric oxygen less than 2 atmospheres absolute with normal air is an appropriate support therapy for severe muscle injuries.

  14. In Situ Immunofluorescent Staining of Autophagy in Muscle Stem Cells

    KAUST Repository

    Castagnetti, Francesco; Fiacco, Elisabetta; Imbriano, Carol; Latella, Lucia

    2017-01-01

    with productive muscle regeneration. These data uncover the crucial role of autophagy in satellite cell activation during muscle regeneration in both normal and pathological conditions, such as muscular dystrophies. Here, we provide a protocol to monitor

  15. Satellite Cells and the Muscle Stem Cell Niche

    Science.gov (United States)

    Yin, Hang; Price, Feodor

    2013-01-01

    Adult skeletal muscle in mammals is a stable tissue under normal circumstances but has remarkable ability to repair after injury. Skeletal muscle regeneration is a highly orchestrated process involving the activation of various cellular and molecular responses. As skeletal muscle stem cells, satellite cells play an indispensible role in this process. The self-renewing proliferation of satellite cells not only maintains the stem cell population but also provides numerous myogenic cells, which proliferate, differentiate, fuse, and lead to new myofiber formation and reconstitution of a functional contractile apparatus. The complex behavior of satellite cells during skeletal muscle regeneration is tightly regulated through the dynamic interplay between intrinsic factors within satellite cells and extrinsic factors constituting the muscle stem cell niche/microenvironment. For the last half century, the advance of molecular biology, cell biology, and genetics has greatly improved our understanding of skeletal muscle biology. Here, we review some recent advances, with focuses on functions of satellite cells and their niche during the process of skeletal muscle regeneration. PMID:23303905

  16. Binding of ADAM12, a marker of skeletal muscle regeneration, to the muscle-specific actin-binding protein, alpha -actinin-2, is required for myoblast fusion

    DEFF Research Database (Denmark)

    Galliano, M F; Huet, C; Frygelius, J

    2000-01-01

    ADAM12 belongs to the transmembrane metalloprotease ADAM ("a disintegrin and metalloprotease") family. ADAM12 has been implicated in muscle cell differentiation and fusion, but its precise function remains unknown. Here, we show that ADAM12 is dramatically up-regulated in regenerated, newly formed...... of differentiation. Using the yeast two-hybrid screen, we found that the muscle-specific alpha-actinin-2 strongly binds to the cytoplasmic tail of ADAM12. In vitro binding assays with GST fusion proteins confirmed the specific interaction. The major binding site for alpha-actinin-2 was mapped to a short sequence...... in a dominant negative fashion by inhibiting fusion of C2C12 cells, whereas expression of a cytosolic ADAM12 lacking the major alpha-actinin-2 binding site had no effect on cell fusion. Our results suggest that interaction of ADAM12 with alpha-actinin-2 is important for ADAM12 function....

  17. Leech presence on Iberian Brown Frog, Rana iberica, (Amphibia: Anura: Ranidae from north-western Spain

    Directory of Open Access Journals (Sweden)

    César Ayres

    2008-12-01

    Full Text Available The authors describe a case of parasitism on Rana iberica by two species of leeches, Batracobdella sp. and Hirudo medicinalis, in a mountainous area of north-western Spain. Conservation implications of high parasite load on small and isolated populations are discussed.

  18. The Role of Genetically Modified Mesenchymal Stem Cells in Urinary Bladder Regeneration.

    Directory of Open Access Journals (Sweden)

    Devon C Snow-Lisy

    Full Text Available Recent studies have demonstrated that mesenchymal stem cells (MSCs combined with CD34+ hematopoietic/stem progenitor cells (HSPCs can function as surrogate urinary bladder cells to synergistically promote multi-faceted bladder tissue regeneration. However, the molecular pathways governing these events are unknown. The pleiotropic effects of Wnt5a and Cyr61 are known to affect aspects of hematopoiesis, angiogenesis, and muscle and nerve regeneration. Within this study, the effects of Cyr61 and Wnt5a on bladder tissue regeneration were evaluated by grafting scaffolds containing modified human bone marrow derived MSCs. These cell lines were engineered to independently over-express Wnt5a or Cyr61, or to exhibit reduced expression of Cyr61 within the context of a nude rat bladder augmentation model. At 4 weeks post-surgery, data demonstrated increased vessel number (~250 vs ~109 vessels/mm2 and bladder smooth muscle content (~42% vs ~36% in Cyr61OX (over-expressing vs Cyr61KD (knock-down groups. Muscle content decreased to ~25% at 10 weeks in Cyr61KD groups. Wnt5aOX resulted in high numbers of vessels and muscle content (~206 vessels/mm2 and ~51%, respectively at 4 weeks. Over-expressing cell constructs resulted in peripheral nerve regeneration while Cyr61KD animals were devoid of peripheral nerve regeneration at 4 weeks. At 10 weeks post-grafting, peripheral nerve regeneration was at a minimal level for both Cyr61OX and Wnt5aOX cell lines. Blood vessel and bladder functionality were evident at both time-points in all animals. Results from this study indicate that MSC-based Cyr61OX and Wnt5aOX cell lines play pivotal roles with regards to increasing the levels of functional vasculature, influencing muscle regeneration, and the regeneration of peripheral nerves in a model of bladder augmentation. Wnt5aOX constructs closely approximated the outcomes previously observed with the co-transplantation of MSCs with CD34+ HSPCs and may be specifically

  19. The Physiology and Mechanics of Undulatory Swimming: A Student Laboratory Exercise Using Medicinal Leeches

    Science.gov (United States)

    Ellerby, David J.

    2009-01-01

    The medicinal leech is a useful animal model for investigating undulatory swimming in the classroom. Unlike many swimming organisms, its swimming performance can be quantified without specialized equipment. A large blood meal alters swimming behavior in a way that can be used to generate a discussion of the hydrodynamics of swimming, muscle…

  20. Antibiotic susceptibility of body surface and gut micro flora of two aquatic leech species (Hirudinaria manillensis and Hirudinaria javanica in Malaysia

    Directory of Open Access Journals (Sweden)

    Parimannan Sivachandran

    2013-08-01

    Full Text Available Objective: To elucidate the antibiotic susceptibility of body surface and gut associated microflora of two local aquatic leech species Hirudinaria manillensis and Hirudinaria javanica. Methods: Four commercially available antibiotics (doxycycline, chloramphenicol, tetracycline and ciprofloxacin were used in this study. A total of 13 isolated gut and two surface micro flora from Hirudinaria manillensis and two gut and two surface micro flora from Hirudinaria javanica were tested for their antibiotic susceptibility. Results: Based on the susceptibility, it was observed that all the isolated bacteria were found to be susceptible to at least three of the antibiotics except Microbacterium resistens, Serratia marcescens and Morganella morganii. This study also found that the bacterial species Bacillus fusiformis has displayed resistance against tetracycline and Tsukamurella inchonensis against chloramphenicol. Conclusions: Among all the antibiotics tested, ciprofloxacin was found to be the best bactericidal agent. The immersion of leeches in ciprofloxacin before the application to the patient may be beneficial to prevent invasive infection of the patient. Further study is needed to sterilize the live leech by immersion/oral mode of administration for the tested antibiotics.

  1. LncRNA Dum interacts with Dnmts to regulate Dppa2 expression during myogenic differentiation and muscle regeneration

    Science.gov (United States)

    Wang, Lijun; Zhao, Yu; Bao, Xichen; Zhu, Xihua; Kwok, Yvonne Ka-yin; Sun, Kun; Chen, Xiaona; Huang, Yongheng; Jauch, Ralf; Esteban, Miguel A; Sun, Hao; Wang, Huating

    2015-01-01

    Emerging studies document the roles of long non-coding RNAs (LncRNAs) in regulating gene expression at chromatin level but relatively less is known how they regulate DNA methylation. Here we identify an lncRNA, Dum (developmental pluripotency-associated 2 (Dppa2) Upstream binding Muscle lncRNA) in skeletal myoblast cells. The expression of Dum is dynamically regulated during myogenesis in vitro and in vivo. It is also transcriptionally induced by MyoD binding upon myoblast differentiation. Functional analyses show that it promotes myoblast differentiation and damage-induced muscle regeneration. Mechanistically, Dum was found to silence its neighboring gene, Dppa2, in cis through recruiting Dnmt1, Dnmt3a and Dnmt3b. Furthermore, intrachromosomal looping between Dum locus and Dppa2 promoter is necessary for Dum/Dppa2 interaction. Collectively, we have identified a novel lncRNA that interacts with Dnmts to regulate myogenesis. PMID:25686699

  2. Developmental and adult-specific processes contribute to de novo neuromuscular regeneration in the lizard tail.

    Science.gov (United States)

    Tokuyama, Minami A; Xu, Cindy; Fisher, Rebecca E; Wilson-Rawls, Jeanne; Kusumi, Kenro; Newbern, Jason M

    2018-01-15

    Peripheral nerves exhibit robust regenerative capabilities in response to selective injury among amniotes, but the regeneration of entire muscle groups following volumetric muscle loss is limited in birds and mammals. In contrast, lizards possess the remarkable ability to regenerate extensive de novo muscle after tail loss. However, the mechanisms underlying reformation of the entire neuromuscular system in the regenerating lizard tail are not completely understood. We have tested whether the regeneration of the peripheral nerve and neuromuscular junctions (NMJs) recapitulate processes observed during normal neuromuscular development in the green anole, Anolis carolinensis. Our data confirm robust axonal outgrowth during early stages of tail regeneration and subsequent NMJ formation within weeks of autotomy. Interestingly, NMJs are overproduced as evidenced by a persistent increase in NMJ density 120 and 250 days post autotomy (DPA). Substantial Myelin Basic Protein (MBP) expression could also be detected along regenerating nerves indicating that the ability of Schwann cells to myelinate newly formed axons remained intact. Overall, our data suggest that the mechanism of de novo nerve and NMJ reformation parallel, in part, those observed during neuromuscular development. However, the prolonged increase in NMJ number and aberrant muscle differentiation hint at processes specific to the adult response. An examination of the coordinated exchange between peripheral nerves, Schwann cells, and newly synthesized muscle of the regenerating neuromuscular system may assist in the identification of candidate molecules that promote neuromuscular recovery in organisms incapable of a robust regenerative response. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. RELIABILITY OF BARR, LEECH, AND BLETHYN SCORE IN USING OF PLAIN RADIOGRAPHY IN DETERMINING FECAL IMPACTION IN CHILDREN WITH AND WITHOUT CONSTIPATION

    Directory of Open Access Journals (Sweden)

    Afshin REZAZADEH

    Full Text Available ABSTRACT Background - Several scoring was developed for evaluation of children with fecal retention using plain radiograph. There are controversies about specificity and sensitivity of these scoring system. Objectives - The aim of this study was to evaluate Barr, Blethyn, and Leech score in evaluation of fecal load in plain radiograph. Methods - This case control study was conducted on children aged 2-14 years old with abdominal pain who visited Abuzar children's Hospital of Ahvaz University of Medical Sciences. This study was conducted in fall season. Children with history of previous abdominal surgery, any systemic illness including sickle cell anemia were excluded. Children with constipation were placed in case group. Subjects without constipation were placed in control group. Subjects without exclusion criteria were examined by physician who is blind to aim of the study. Careful history and physical examination was done. Demographic features, history of gastrointestinal problem, duration of abdominal pain, defecation habit, stool consistency (loose, hard, and results of physical examination were recorded. Rome III criteria was used for definition of constipation. Abdominal x-ray was ordered for each patients. Abdominal radiography was reviewed by radiologist. Barr, Leach, and Blethyn scores were calculated for each case. Results - In this study 102 children with functional constipation and 102 children without constipation as a control were included. Mean ±SD for case and control group was 68.39±34.88 and 69.46±32.60 (P=0.82.Leech score (mean ±SD was 11.05±2.177 and 5.67±3.228 for case and control group respectively (P<0.0001. Barr score (mean ±SD was 14.86±3.54 and 7.16±5.59 for case and control group respectively (P=<0.0001. Blethyn (mean ±SD score was 1.97±0.667 and 1.04±0.900 for case and control group respectively (P=0.000. Sensitivity and specificity of Barr score was 83% and 79% respectively. Sensitivity and specificity of

  4. From the Worm in a Bottle of Mezcal: iDNA Confirmation of a Leech Parasitizing the Antillean Manatee.

    Science.gov (United States)

    Pérez-Flores, J; Rueda-Calderon, H; Kvist, S; Siddall, M E; Oceguera-Figueroa, A

    2016-10-01

    Invertebrate-derived ingested DNA (iDNA) is quickly proving to be a valuable, non-invasive tool for monitoring vertebrate species of conservation concern. Using the DNA barcoding locus, we successfully identified both the blood-feeding leech Haementeria acuecueyetzin and its blood meal-the latter is shown to be derived from the Caribbean manatee, Trichechus manatus . DNA amplification was successful despite the fact that the specimen was fixed in Mezcal (a beverage distilled from agave). We report the first confirmed case of a leech feeding on a manatee, the first record of H. acuecueyetzin for the State of Chiapas and, to our knowledge, the first case of successful DNA amplification of a biological sample fixed in Mezcal other than the caterpillar "worms" more commonly found in that beverage.

  5. Electronmicroscopical evaluation of short-term nerve regeneration through a thin-walled biodegradable poly(DLLA-epsilon-CL) nerve guide filled with modified denatured muscle tissue

    NARCIS (Netherlands)

    Meek, MF; Robinson, PH; Stokroos, [No Value; Blaauw, EH; Kors, G; den Dunnen, WFA

    The aim of this study was to evaluate short-term peripheral nerve regeneration across a 15-mm gap in the sciatic nerve of the rat, using a thin-walled biodegradable poly(DL-lactide-epsilon -caprolactone) nerve guide filled with modified denatured muscle tissue (MDMT). The evaluation was performed

  6. Correlated conductance parameters in leech heart motor neurons contribute to motor pattern formation.

    Science.gov (United States)

    Lamb, Damon G; Calabrese, Ronald L

    2013-01-01

    Neurons can have widely differing intrinsic membrane properties, in particular the density of specific conductances, but how these contribute to characteristic neuronal activity or pattern formation is not well understood. To explore the relationship between conductances, and in particular how they influence the activity of motor neurons in the well characterized leech heartbeat system, we developed a new multi-compartmental Hodgkin-Huxley style leech heart motor neuron model. To do so, we evolved a population of model instances, which differed in the density of specific conductances, capable of achieving specific output activity targets given an associated input pattern. We then examined the sensitivity of measures of output activity to conductances and how the model instances responded to hyperpolarizing current injections. We found that the strengths of many conductances, including those with differing dynamics, had strong partial correlations and that these relationships appeared to be linked by their influence on heart motor neuron activity. Conductances that had positive correlations opposed one another and had the opposite effects on activity metrics when perturbed whereas conductances that had negative correlations could compensate for one another and had similar effects on activity metrics.

  7. THE RENIN-ANGIOTENSIN SYSTEM AND THE BIOLOGY OF SKELETAL MUSCLE: MECHANISMS OF MUSCLE WASTING IN CHRONIC DISEASE STATES.

    Science.gov (United States)

    Delafontaine, Patrice; Yoshida, Tadashi

    2016-01-01

    Sarcopenia and cachexia are muscle-wasting syndromes associated with aging and with many chronic diseases such as congestive heart failure, diabetes, cancer, chronic obstructive pulmonary disease, and renal failure. While mechanisms are complex, these conditions are often accompanied by elevated angiotensin II (Ang II). We found that Ang II infusion in rodents leads to skeletal muscle wasting via alterations in insulin-like growth factor-1 signaling, increased apoptosis, enhanced muscle protein breakdown via the ubiquitin-proteasome system, and decreased appetite resulting from downregulation of hypothalamic orexigenic neuropeptides orexin and neuropeptide Y. Furthermore, Ang II inhibits skeletal muscle stem cell proliferation, leading to lowered muscle regenerative capacity. Distinct stem cell Ang II receptor subtypes are critical for regulation of muscle regeneration. In ischemic mouse congestive heart failure model skeletal muscle wasting and attenuated muscle regeneration are Ang II dependent. These data suggest that the renin-angiotensin system plays a critical role in mechanisms underlying cachexia in chronic disease states.

  8. Leucine Supplementation Accelerates Connective Tissue Repair of Injured Tibialis Anterior Muscle

    Directory of Open Access Journals (Sweden)

    Marcelo G. Pereira

    2014-09-01

    Full Text Available This study investigated the effect of leucine supplementation on the skeletal muscle regenerative process, focusing on the remodeling of connective tissue of the fast twitch muscle tibialis anterior (TA. Young male Wistar rats were supplemented with leucine (1.35 g/kg per day; then, TA muscles from the left hind limb were cryolesioned and examined after 10 days. Although leucine supplementation induced increased protein synthesis, it was not sufficient to promote an increase in the cross-sectional area (CSA of regenerating myofibers (p > 0.05 from TA muscles. However, leucine supplementation reduced the amount of collagen and the activation of phosphorylated transforming growth factor-β receptor type I (TβR-I and Smad2/3 in regenerating muscles (p < 0.05. Leucine also reduced neonatal myosin heavy chain (MyHC-n (p < 0.05, increased adult MyHC-II expression (p < 0.05 and prevented the decrease in maximum tetanic strength in regenerating TA muscles (p < 0.05. Our results suggest that leucine supplementation accelerates connective tissue repair and consequent function of regenerating TA through the attenuation of TβR-I and Smad2/3 activation. Therefore, future studies are warranted to investigate leucine supplementation as a nutritional strategy to prevent or attenuate muscle fibrosis in patients with several muscle diseases.

  9. The Urodele Limb Regeneration Blastema: The Cell Potential

    Directory of Open Access Journals (Sweden)

    Kenyon S. Tweedell

    2010-01-01

    Full Text Available The developmental potential of the limb regeneration blastema, a mass of mesenchymal cells of mixed origins, was once considered as being pluripotent, capable of forming all cell types. Now evidence asserts that the blastema is a heterogeneous mixture of progenitor cells derived from tissues of the amputation site, with limited developmental potential, plus various stem cells with multipotent abilities. Many specialized cells, bone, cartilage, muscle, and Schwann cells, at the injury site undergo dedifferentiation to a progenitor state and maintain their cell lineage as they redifferentiate in the regenerate. Muscle satellite reserve stem cells that are active in repair of injured muscle may also dedifferentiate and contribute new muscle cells to the limb blastema. Other cells from the dermis act as multipotent stem cells that replenish dermal fibroblasts and differentiate into cartilage. The blastema primordium is a self-organized, equipotential system, but at the cellular level can compensate for specific cell loss. It is able to induce dedifferentiation of introduced exogenous cells and such cells may be transformed into new cell types. Indigenous cells of the blastema associated with amputated tissues may also transform or possibly transdifferentiate into new cell types. The blastema is a microenvironment that enables dedifferentiation, redifferentiation, transdifferentiation, and stem cell activation, leading to progenitor cells of the limb regenerate.

  10. Normal myogenic cells from newborn mice restore normal histology to degenerating muscles of the mdx mouse

    International Nuclear Information System (INIS)

    Morgan, J.E.; Hoffman, E.P.; Partridge, T.A.

    1990-01-01

    Dystrophin deficiency in skeletal muscle of the x-linked dystrophic (mdx) mouse can be partially remedied by implantation of normal muscle precursor cells (mpc). However, it is difficult to determine whether this biochemical rescue results in any improvement in the structure or function of the treated muscle, because the vigorous regeneration of mdx muscle more than compensates for the degeneration. By using x-ray irradiation to prevent mpc proliferation, it is possible to study loss of mdx muscle fibers without the complicating effect of simultaneous fiber regeneration. Thus, improvements in fiber survival resulting from any potential therapy can be detected easily. Here, we have implanted normal mpc, obtained from newborn mice, into such preirradiated mdx muscles, finding that it is far more extensively permeated and replaced by implanted mpc than is nonirradiated mdx muscle; this is evident both from analysis of glucose-6-phosphate isomerase isoenzyme markers and from immunoblots and immunostaining of dystrophin in the treated muscles. Incorporation of normal mpc markedly reduces the loss of muscle fibers and the deterioration of muscle structure which otherwise occurs in irradiated mdx muscles. Surprisingly, the regenerated fibers are largely peripherally nucleated, whereas regenerated mouse skeletal muscle fibers are normally centrally nucleated. We attribute this regeneration of apparently normal muscle to the tendency of newborn mouse mpc to recapitulate their neonatal ontogeny, even when grafted into 3-wk-old degenerating muscle

  11. The use of medicinal leeches in fingertip replantation without venous anastomosis - case report of a 4-year-old patient.

    Science.gov (United States)

    Streit, L; Dvořák, Z; Novák, O; Stiborová, S; Veselý, J

    2014-01-01

    Replantation of amputated fingertip is a technical challenge to the microsurgeons. The success rate depends directly on the availability and the size of preserved vessels and on the degree of their damage. In distal digital amputations, veins are usually not easily recovered or even absent, and thus high number of replantation procedures fails because of the venous congestion. The use of medicinal leeches is a treatment option for venous congestion of replanted fingers. A case report of a 4-year-old patient after fingertip replantation without venous anastomosis when temporary venous drainage was provided by an application of medicinal leeches is reported together with literature review. We observed an unusually short duration of venous congestion (48 hours) and there was no need of blood transfusion.

  12. The Ozobranchus leech is a candidate mechanical vector for the fibropapilloma-associated turtle herpesvirus found latently infecting skin tumors on Hawaiian green turtles (Chelonia mydas)

    International Nuclear Information System (INIS)

    Greenblatt, Rebecca J.; Work, Thierry M.; Balazs, George H.; Sutton, Claudia A.; Casey, Rufina N.; Casey, James W.

    2004-01-01

    Fibropapillomatosis (FP) of marine turtles is a neoplastic disease of ecological concern. A fibropapilloma-associated turtle herpesvirus (FPTHV) is consistently present, usually at loads exceeding one virus copy per tumor cell. DNA from an array of parasites of green turtles (Chelonia mydas) was examined with quantitative PCR (qPCR) to determine whether any carried viral loads are sufficient to implicate them as vectors for FPTHV. Marine leeches (Ozobranchus spp.) were found to carry high viral DNA loads; some samples approached 10 million copies per leech. Isopycnic sucrose density gradient/qPCR analysis confirmed that some of these copies were associated with particles of the density of enveloped viruses. The data implicate the marine leech Ozobranchus as a mechanical vector for FPTHV. Quantitative RT-PCR analysis of FPTHV gene expression indicated that most of the FPTHV copies in a fibropapilloma have restricted DNA polymerase expression, suggestive of latent infection

  13. A new glossiphoniid leech from Catemaco Lake, Veracruz, México.

    Science.gov (United States)

    Oceguera-Figueroa, Alejandro

    2008-04-01

    Haementeria acuecueyetzin n. sp. from Catemaco Lake, Veracruz, Mexico, is described based on the examination of 6 specimens. This new hematophagous leech species resembles other members of the genus in the number and position of the eyespots, number of compact salivary glands, and in the presence of 2 pairs of spheroidal mycetomes, but it is distinguished from the other species by having 6 rows of longitudinal smooth white papillae in the dorsal surface and numerous tubercles in dorsal and ventral surfaces. This new species represents the third species of Haementeria in the Northern Hemisphere of the Americas.

  14. Biomaterials based strategies for skeletal muscle tissue engineering: existing technologies and future trends.

    Science.gov (United States)

    Qazi, Taimoor H; Mooney, David J; Pumberger, Matthias; Geissler, Sven; Duda, Georg N

    2015-01-01

    Skeletal muscles have a robust capacity to regenerate, but under compromised conditions, such as severe trauma, the loss of muscle functionality is inevitable. Research carried out in the field of skeletal muscle tissue engineering has elucidated multiple intrinsic mechanisms of skeletal muscle repair, and has thus sought to identify various types of cells and bioactive factors which play an important role during regeneration. In order to maximize the potential therapeutic effects of cells and growth factors, several biomaterial based strategies have been developed and successfully implemented in animal muscle injury models. A suitable biomaterial can be utilized as a template to guide tissue reorganization, as a matrix that provides optimum micro-environmental conditions to cells, as a delivery vehicle to carry bioactive factors which can be released in a controlled manner, and as local niches to orchestrate in situ tissue regeneration. A myriad of biomaterials, varying in geometrical structure, physical form, chemical properties, and biofunctionality have been investigated for skeletal muscle tissue engineering applications. In the current review, we present a detailed summary of studies where the use of biomaterials favorably influenced muscle repair. Biomaterials in the form of porous three-dimensional scaffolds, hydrogels, fibrous meshes, and patterned substrates with defined topographies, have each displayed unique benefits, and are discussed herein. Additionally, several biomaterial based approaches aimed specifically at stimulating vascularization, innervation, and inducing contractility in regenerating muscle tissues are also discussed. Finally, we outline promising future trends in the field of muscle regeneration involving a deeper understanding of the endogenous healing cascades and utilization of this knowledge for the development of multifunctional, hybrid, biomaterials which support and enable muscle regeneration under compromised conditions

  15. The Effect of Exercise Training on Skeletal Muscle Glucose Transorter Isoform GLUT4 Concentration in the Obese Zucker Rat

    Science.gov (United States)

    1991-05-01

    Kinesiology as part of an interdisciplinary program with the Department of Chemistry and Biochemistry . The thesis serves to fulfill the requirements for the...degree of Master of Arts in the Department of Chemistry and Biochemistry . I’d like to thank my fellow graduate students in the Exercise Metabolism...epitrochlearis muscle. Am. J. Physiol. 249:C226-C232, 1985. Newsholme, E.A. & Leech, A.R. Biochemistry for the medical sciences. John Wiley & Sons

  16. Postirradiation recovery of the skeletal muscle of rats of various age

    International Nuclear Information System (INIS)

    Popova, M.F.; Bulyakova, N.V.

    1977-01-01

    The skeletal muscle of young rats (particularly of 3-and 4-week old ones) exposed to local irradiation of 2000 R was markedly repaired in the course of one month after irradiation . This was indicated by a restored ability of the muscle for posttraumatic regeneration. A regeneration ability of the irradiated muscle of old rats was not restored. The more intensive processes of postirradiation recovery in muscles of young rats may be explained by their more active metabolism

  17. [Experimental studies for the improvement of facial nerve regeneration].

    Science.gov (United States)

    Guntinas-Lichius, O; Angelov, D N

    2008-02-01

    Using a combination of the following, it is possible to investigate procedures to improve the morphological and functional regeneration of the facial nerve in animal models: 1) retrograde fluorescence tracing to analyse collateral axonal sprouting and the selectivity of reinnervation of the mimic musculature, 2) immunohistochemistry to analyse both the terminal axonal sprouting in the muscles and the axon reaction within the nucleus of the facial nerve, the peripheral nerve, and its environment, and 3) digital motion analysis of the muscles. To obtain good functional facial nerve regeneration, a reduction of terminal sprouting in the mimic musculature seems to be more important than a reduction of collateral sprouting at the lesion site. Promising strategies include acceleration of nerve regeneration, forced induced use of the paralysed face, mechanical stimulation of the face, and transplantation of nerve-growth-promoting olfactory epithelium at the lesion site.

  18. Eccentric Contraction-Induced Muscle Injury: Reproducible, Quantitative, Physiological Models to Impair Skeletal Muscle's Capacity to Generate Force.

    Science.gov (United States)

    Call, Jarrod A; Lowe, Dawn A

    2016-01-01

    In order to investigate the molecular and cellular mechanisms of muscle regeneration an experimental injury model is required. Advantages of eccentric contraction-induced injury are that it is a controllable, reproducible, and physiologically relevant model to cause muscle injury, with injury being defined as a loss of force generating capacity. While eccentric contractions can be incorporated into conscious animal study designs such as downhill treadmill running, electrophysiological approaches to elicit eccentric contractions and examine muscle contractility, for example before and after the injurious eccentric contractions, allows researchers to circumvent common issues in determining muscle function in a conscious animal (e.g., unwillingness to participate). Herein, we describe in vitro and in vivo methods that are reliable, repeatable, and truly maximal because the muscle contractions are evoked in a controlled, quantifiable manner independent of subject motivation. Both methods can be used to initiate eccentric contraction-induced injury and are suitable for monitoring functional muscle regeneration hours to days to weeks post-injury.

  19. Bone Marrow Stromal Cells Generate Muscle Cells and Repair Muscle Degeneration

    Science.gov (United States)

    Dezawa, Mari; Ishikawa, Hiroto; Itokazu, Yutaka; Yoshihara, Tomoyuki; Hoshino, Mikio; Takeda, Shin-ichi; Ide, Chizuka; Nabeshima, Yo-ichi

    2005-07-01

    Bone marrow stromal cells (MSCs) have great potential as therapeutic agents. We report a method for inducing skeletal muscle lineage cells from human and rat general adherent MSCs with an efficiency of 89%. Induced cells differentiated into muscle fibers upon transplantation into degenerated muscles of rats and mdx-nude mice. The induced population contained Pax7-positive cells that contributed to subsequent regeneration of muscle upon repetitive damage without additional transplantation of cells. These MSCs represent a more ready supply of myogenic cells than do the rare myogenic stem cells normally found in muscle and bone marrow.

  20. Anatomical study of the nerve regeneration after selective neurectomy in the rabbit: clinical application for esthetic calf reduction

    OpenAIRE

    Shin, Kang-Jae; Yoo, Ja-Young; Lee, Ju-Young; Gil, Young-Chun; Kim, Jeong-Nam; Koh, Ki-Seok; Song, Wu-Chul

    2015-01-01

    The purposes of this study were therefore to characterize the degeneration and regeneration of nerves to the calf muscles after selective neurectomy, both macroscopically and microscopically, and to determine the incidence of such regeneration in a rabbit model. Seventy four New Zealand white rabbits were used. Selective neurectomy to the triceps surae muscles was performed, and the muscles were subsequently harvested and weighed 1-4 months postneurectomy. The gastrocnemius muscles were stain...

  1. Electrical Stimulation to Enhance Axon Regeneration After Peripheral Nerve Injuries in Animal Models and Humans.

    Science.gov (United States)

    Gordon, Tessa

    2016-04-01

    Injured peripheral nerves regenerate their lost axons but functional recovery in humans is frequently disappointing. This is so particularly when injuries require regeneration over long distances and/or over long time periods. Fat replacement of chronically denervated muscles, a commonly accepted explanation, does not account for poor functional recovery. Rather, the basis for the poor nerve regeneration is the transient expression of growth-associated genes that accounts for declining regenerative capacity of neurons and the regenerative support of Schwann cells over time. Brief low-frequency electrical stimulation accelerates motor and sensory axon outgrowth across injury sites that, even after delayed surgical repair of injured nerves in animal models and patients, enhances nerve regeneration and target reinnervation. The stimulation elevates neuronal cyclic adenosine monophosphate and, in turn, the expression of neurotrophic factors and other growth-associated genes, including cytoskeletal proteins. Electrical stimulation of denervated muscles immediately after nerve transection and surgical repair also accelerates muscle reinnervation but, at this time, how the daily requirement of long-duration electrical pulses can be delivered to muscles remains a practical issue prior to translation to patients. Finally, the technique of inserting autologous nerve grafts that bridge between a donor nerve and an adjacent recipient denervated nerve stump significantly improves nerve regeneration after delayed nerve repair, the donor nerves sustaining the capacity of the denervated Schwann cells to support nerve regeneration. These reviewed methods to promote nerve regeneration and, in turn, to enhance functional recovery after nerve injury and surgical repair are sufficiently promising for early translation to the clinic.

  2. Experiment K-6-09. Morphological and biochemical investigation of microgravity-induced nerve and muscle breakdown. Part 1: Investigation of nerve and muscle breakdown during spaceflight; Part 2: Biochemical analysis of EDL and PLT muscles

    Science.gov (United States)

    Riley, D. A.; Ellis, S.; Bain, J.; Sedlak, F.; Slocum, G.; Oganov, V.

    1990-01-01

    The present findings on rat hindlimb muscles suggest that skeletal muscle weakness induced by prolonged spaceflight can result from a combination of muscle fiber atrophy, muscle fiber segmental necrosis, degeneration of motor nerve terminals and destruction of microcirculatory vessels. Damage was confined to the red adductor longus (AL) and soleus muscles. The midbelly region of the AL muscle had more segmental necrosis and edema than the ends. Macrophages and neutrophils were the major mononucleated cells infiltrating and phagocytosing the cellular debris. Toluidine blue-positive mast cells were significantly decreased in Flight AL muscles compared to controls; this indicated that degranulation of mast cells contributed to tissue edema. Increased ubiquitination of disrupted myofibrils may have promoted myofilament degradation. Overall, mitochondria content and SDH activity were normal, except for a decrease in the subsarcolemmal region. The myofibrillar ATPase activity shifted toward the fast type in the Flight AL muscles. Some of the pathological changes may have occurred or been exacerbated during the 2 day postflight period of readaptation to terrestrial gravity. While simple atrophy should be reversible by exercise, restoration of pathological changes depends upon complex processes of regeneration by stem cells. Initial signs of muscle and nerve fiber regeneration were detected. Even though regeneration proceeds on Earth, the space environment may inhibit repair and cause progressive irreversible deterioration during long term missions. Muscles obtained from Flight rats sacrificed immediately (within a few hours) after landing are needed to distinguish inflight changes from postflight readaptation.

  3. Advancements in stem cells treatment of skeletal muscle wasting

    Directory of Open Access Journals (Sweden)

    mirella emeregalli

    2014-02-01

    Full Text Available Muscular dystrophies (MDs are a heterogeneous group of inherited disorders, in which progressive muscle wasting and weakness is often associated with exhaustion of muscle regeneration potential. Although physiological properties of skeletal muscle tissue are now well known, no treatments are effective for these diseases. Muscle regeneration was attempted by means transplantation of myogenic cells (from myoblast to embryonic stem cells and also by interfering with the malignant processes that originate in pathological tissues, such as uncontrolled fibrosis and inflammation. Taking into account the advances in the isolation of new subpopulation of stem cells and in the creation of artificial stem cell niches, we discuss how these emerging technologies offer great promises for therapeutic approaches to muscle diseases and muscle wasting associated with aging.

  4. Alterations in Notch signalling in skeletal muscles from mdx and dko dystrophic mice and patients with Duchenne muscular dystrophy.

    Science.gov (United States)

    Church, Jarrod E; Trieu, Jennifer; Chee, Annabel; Naim, Timur; Gehrig, Stefan M; Lamon, Séverine; Angelini, Corrado; Russell, Aaron P; Lynch, Gordon S

    2014-04-01

    New Findings What is the central question of this study? The Notch signalling pathway plays an important role in muscle regeneration, and activation of the pathway has been shown to enhance muscle regeneration in aged mice. It is unknown whether Notch activation will have a similarly beneficial effect on muscle regeneration in the context of Duchenne muscular dystrophy (DMD). What is the main finding and its importance? Although expression of Notch signalling components is altered in both mouse models of DMD and in human DMD patients, activation of the Notch signalling pathway does not confer any functional benefit on muscles from dystrophic mice, suggesting that other signalling pathways may be more fruitful targets for manipulation in treating DMD. Abstract In Duchenne muscular dystrophy (DMD), muscle damage and impaired regeneration lead to progressive muscle wasting, weakness and premature death. The Notch signalling pathway represents a central regulator of gene expression and is critical for cellular proliferation, differentiation and apoptotic signalling during all stages of embryonic muscle development. Notch activation improves muscle regeneration in aged mice, but its potential to restore regeneration and function in muscular dystrophy is unknown. We performed a comprehensive examination of several genes involved in Notch signalling in muscles from dystrophin-deficient mdx and dko (utrophin- and dystrophin-null) mice and DMD patients. A reduction of Notch1 and Hes1 mRNA in tibialis anterior muscles of dko mice and quadriceps muscles of DMD patients and a reduction of Hes1 mRNA in the diaphragm of the mdx mice were observed, with other targets being inconsistent across species. Activation and inhibition of Notch signalling, followed by measures of muscle regeneration and function, were performed in the mouse models of DMD. Notch activation had no effect on functional regeneration in C57BL/10, mdx or dko mice. Notch inhibition significantly depressed the

  5. Fetal skeletal muscle progenitors have regenerative capacity after intramuscular engraftment in dystrophin deficient mice.

    Directory of Open Access Journals (Sweden)

    Hiroshi Sakai

    Full Text Available Muscle satellite cells (SCs are stem cells that reside in skeletal muscles and contribute to regeneration upon muscle injury. SCs arise from skeletal muscle progenitors expressing transcription factors Pax3 and/or Pax7 during embryogenesis in mice. However, it is unclear whether these fetal progenitors possess regenerative ability when transplanted in adult muscle. Here we address this question by investigating whether fetal skeletal muscle progenitors (FMPs isolated from Pax3(GFP/+ embryos have the capacity to regenerate muscle after engraftment into Dystrophin-deficient mice, a model of Duchenne muscular dystrophy. The capacity of FMPs to engraft and enter the myogenic program in regenerating muscle was compared with that of SCs derived from adult Pax3(GFP/+ mice. Transplanted FMPs contributed to the reconstitution of damaged myofibers in Dystrophin-deficient mice. However, despite FMPs and SCs having similar myogenic ability in culture, the regenerative ability of FMPs was less than that of SCs in vivo. FMPs that had activated MyoD engrafted more efficiently to regenerate myofibers than MyoD-negative FMPs. Transcriptome and surface marker analyses of these cells suggest the importance of myogenic priming for the efficient myogenic engraftment. Our findings suggest the regenerative capability of FMPs in the context of muscle repair and cell therapy for degenerative muscle disease.

  6. Chapter 24: Electrical stimulation for improving nerve regeneration: where do we stand?

    Science.gov (United States)

    Gordon, Tessa; Sulaiman, Olewale A R; Ladak, Adil

    2009-01-01

    While injured neurons regenerate their axons in the peripheral nervous system, it is well recognized that functional recovery is frequently poor. Animal experiments in which injured motoneurons remain without peripheral targets (chronic axotomy) and Schwann cells in distal nerve stumps remain without innervation (chronic denervation) revealed that it is the duration of chronic axotomy and Schwann cell denervation that accounts for this poor functional recovery and not irreversible muscle atrophy that has been so commonly thought to be the reason. More recently, we demonstrated that axon outgrowth across lesion sites is a major contributing factor to the long delays incurred between the injury and the reinnervation of denervated targets. In the rat, a period of 1 month transpires before all motoneurons regenerate their axons across a lesion site. We have developed a technique of 1 h low-frequency electrical stimulation (ES) of the proximal nerve stump just after surgical repair of a transected peripheral nerve that greatly accelerates axon outgrowth. This technique has been applied in patients after carpal tunnel release surgery where the ES promoted the regeneration of all median nerves to reinnervate thenar muscles within 6-8 months, which contrasted with failure of any injured nerves to reinnervate muscles in the same time frame without ES. These findings are very promising such that the ES method could become a clinically viable tool for accelerating axon regeneration and muscle reinnervation.

  7. Peripheral Nerve Regeneration by Secretomes of Stem Cells from Human Exfoliated Deciduous Teeth.

    Science.gov (United States)

    Sugimura-Wakayama, Yukiko; Katagiri, Wataru; Osugi, Masashi; Kawai, Takamasa; Ogata, Kenichi; Sakaguchi, Kohei; Hibi, Hideharu

    2015-11-15

    Peripheral nerve regeneration across nerve gaps is often suboptimal, with poor functional recovery. Stem cell transplantation-based regenerative therapy is a promising approach for axon regeneration and functional recovery of peripheral nerve injury; however, the mechanisms remain controversial and unclear. Recent studies suggest that transplanted stem cells promote tissue regeneration through a paracrine mechanism. We investigated the effects of conditioned media derived from stem cells from human exfoliated deciduous teeth (SHED-CM) on peripheral nerve regeneration. In vitro, SHED-CM-treated Schwann cells exhibited significantly increased proliferation, migration, and the expression of neuron-, extracellular matrix (ECM)-, and angiogenesis-related genes. SHED-CM stimulated neuritogenesis of dorsal root ganglia and increased cell viability. Similarly, SHED-CM enhanced tube formation in an angiogenesis assay. In vivo, a 10-mm rat sciatic nerve gap model was bridged by silicon conduits containing SHED-CM or serum-free Dulbecco's modified Eagle's medium. Light and electron microscopy confirmed that the number of myelinated axons and axon-to-fiber ratio (G-ratio) were significantly higher in the SHED-CM group at 12 weeks after nerve transection surgery. The sciatic functional index (SFI) and gastrocnemius (target muscle) wet weight ratio demonstrated functional recovery. Increased compound muscle action potentials and increased SFI in the SHED-CM group suggested sciatic nerve reinnervation of the target muscle and improved functional recovery. We also observed reduced muscle atrophy in the SHED-CM group. Thus, SHEDs may secrete various trophic factors that enhance peripheral nerve regeneration through multiple mechanisms. SHED-CM may therefore provide a novel therapy that creates a more desirable extracellular microenvironment for peripheral nerve regeneration.

  8. About tendon tissue regeneration in experimental radiation disease

    Energy Technology Data Exchange (ETDEWEB)

    Popov, D; Trichkova, P

    1976-01-01

    Under the conditions of experimental acute radiation disease the authors study the tendon tissue regeneration after suture of the lateral part of the gastrocnemius muscle tendon. Tendon auto and alloplasty were applied. In four postoperative periods the histological features are described in details as well as the characteristic phenomena observed during the regeneration influenced to a considerable degree by the irradiation. Round cell infiltration, large necrotic zones, erythrocyte infiltrations as well as predominance of non-specific tendon regeneration long after the surgery characterize the recovery period of the traumatically damaged tendon, nevertheless that at the end there is real tendon regeneration even though in a longer period in comparison with the controls (non-irradiated animals).

  9. Activation of Pax7-positive cells in a non-contractile tissue contributes to regeneration of myogenic tissues in the electric fish S. macrurus.

    Directory of Open Access Journals (Sweden)

    Christopher M Weber

    Full Text Available The ability to regenerate tissues is shared across many metazoan taxa, yet the type and extent to which multiple cellular mechanisms come into play can differ across species. For example, urodele amphibians can completely regenerate all lost tissues, including skeletal muscles after limb amputation. This remarkable ability of urodeles to restore entire limbs has been largely linked to a dedifferentiation-dependent mechanism of regeneration. However, whether cell dedifferentiation is the fundamental factor that triggers a robust regeneration capacity, and whether the loss or inhibition of this process explains the limited regeneration potential in other vertebrates is not known. Here, we studied the cellular mechanisms underlying the repetitive regeneration of myogenic tissues in the electric fish S. macrurus. Our in vivo microinjection studies of high molecular weight cell lineage tracers into single identified adult myogenic cells (muscle or noncontractile muscle-derived electrocytes revealed no fragmentation or cellularization proximal to the amputation plane. In contrast, ultrastructural and immunolabeling studies verified the presence of myogenic stem cells that express the satellite cell marker Pax7 in mature muscle fibers and electrocytes of S. macrurus. These data provide the first example of Pax-7 positive muscle stem cells localized within a non-contractile electrogenic tissue. Moreover, upon amputation, Pax-7 positive cells underwent a robust replication and were detected exclusively in regions that give rise to myogenic cells and dorsal spinal cord components revealing a regeneration process in S. macrurus that is dependent on the activation of myogenic stem cells for the renewal of both skeletal muscle and the muscle-derived electric organ. These data are consistent with the emergent concept in vertebrate regeneration that different tissues provide a distinct progenitor cell population to the regeneration blastema, and these

  10. Laser therapy of muscle injuries.

    Science.gov (United States)

    Dawood, Munqith S; Al-Salihi, Anam Rasheed; Qasim, Amenah Wala'a

    2013-05-01

    Low-level lasers are used in general therapy and healing process due to their good photo-bio-stimulation effects. In this paper, the effects of diode laser and Nd:YAG laser on the healing process of practically managed skeletal muscle trauma has been successfully studied. Standard impact trauma was induced by using a specially designed mechanical device. The impacted muscle was left for 3 days for complete development of blunt trauma. After that it was irradiated by five laser sessions for 5 days. Two types of lasers were used; 785-nm diode laser and 1.064-nm Nd:YAG laser, both in continuous and pulsed modes. A special electronic circuit was designed and implemented to modulate the diode laser for this purpose. Tissue samples of crushed skeletal muscle have been dissected from the injured irradiated muscle then bio-chemically analyzed for the regeneration of contractile and collagenous proteins using Lowry assay for protein determination and Reddy and Enwemeka assay for hydroxyproline determination. The results showed that both lasers stimulate the regeneration capability of traumatized skeletal muscle. The diode laser in CW and pulsed modes showed better results than the Nd:YAG in accelerating the preservation of the normal tissue content of collagenous and contractile proteins beside controlling the regeneration of non-functional fibrous tissue. This study proved that the healing achieved by the laser treatment was faster than the control group by 15-20 days.

  11. Protein turnover and cellular stress in mildly and severely affected muscles from patients with limb girdle muscular dystrophy type 2I.

    Directory of Open Access Journals (Sweden)

    Simon Hauerslev

    Full Text Available Patients with Limb girdle muscular dystrophy type 2I (LGMD2I are characterized by progressive muscle weakness and wasting primarily in the proximal muscles, while distal muscles often are spared. Our aim was to investigate if wasting could be caused by impaired regeneration in the proximal compared to distal muscles. Biopsies were simultaneously obtained from proximal and distal muscles of the same patients with LGMD2I (n = 4 and healthy subjects (n = 4. The level of past muscle regeneration was evaluated by counting internally nucleated fibers and determining actively regenerating fibers by using the developmental markers embryonic myosin heavy chain (eMHC and neural cell adhesion molecule (NCAM and also assessing satellite cell activation status by myogenin positivity. Severe muscle histopathology was occasionally observed in the proximal muscles of patients with LGMD2I whereas distal muscles were always relatively spared. No difference was found in the regeneration markers internally nucleated fibers, actively regenerating fibers or activation status of satellite cells between proximal and distal muscles. Protein turnover, both synthesis and breakdown, as well as cellular stress were highly increased in severely affected muscles compared to mildly affected muscles. Our results indicate that alterations in the protein turnover and myostatin levels could progressively impair the muscle mass maintenance and/or regeneration resulting in gradual muscular atrophy.

  12. Wnt Signaling in Skeletal Muscle Development and Regeneration.

    Science.gov (United States)

    Girardi, Francesco; Le Grand, Fabien

    2018-01-01

    Wnt is a family of signaling molecules involved in embryogenesis, adult tissue repair, and cancer. They activate canonical and noncanonical Wnt signaling cascades in target cells. Several studies, within the last decades, showed that several Wnt ligands are involved in myogenesis and both canonical and noncanonical Wnt pathways regulate muscle formation and the maintenance of adult tissue homeostasis. In this review, we provide a comprehensive overview of the roles of Wnt signaling during muscle development and an updated description of Wnt functions during muscle repair. Lastly, we discuss the crosstalk between Wnt and TGFβ signaling pathways in skeletal muscle. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Fibrogenic Cell Plasticity Blunts Tissue Regeneration and Aggravates Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Patrizia Pessina

    2015-06-01

    Full Text Available Preservation of cell identity is necessary for homeostasis of most adult tissues. This process is challenged every time a tissue undergoes regeneration after stress or injury. In the lethal Duchenne muscular dystrophy (DMD, skeletal muscle regenerative capacity declines gradually as fibrosis increases. Using genetically engineered tracing mice, we demonstrate that, in dystrophic muscle, specialized cells of muscular, endothelial, and hematopoietic origins gain plasticity toward a fibrogenic fate via a TGFβ-mediated pathway. This results in loss of cellular identity and normal function, with deleterious consequences for regeneration. Furthermore, this fibrogenic process involves acquisition of a mesenchymal progenitor multipotent status, illustrating a link between fibrogenesis and gain of progenitor cell functions. As this plasticity also was observed in DMD patients, we propose that mesenchymal transitions impair regeneration and worsen diseases with a fibrotic component.

  14. Exotic Homoclinic Surface of a Saddle-Node Limit Cycle in a Leech Neuron Model

    Science.gov (United States)

    Yooer, Chi-Feng; Wei, Fang; Xu, Jian-Xue; Zhang, Xin-Hua

    2011-03-01

    We carry out numerical and theoretical investigations on the global unstable invariant set (manifold) of a saddle-node limit cycle in a leech heart interneuron model. The corresponding global bifurcation is accompanied by an explosion of secondary bifurcations of limit cycles and the emergence of loop-shaped bifurcation structures. The dynamical behaviors of the trajectories of the invariant set are very complicated and can only be partially explained by existing theories.

  15. The Satellite Cell in Male and Female, Developing and Adult Mouse Muscle: Distinct Stem Cells for Growth and Regeneration

    Science.gov (United States)

    Neal, Alice; Boldrin, Luisa; Morgan, Jennifer Elizabeth

    2012-01-01

    Satellite cells are myogenic cells found between the basal lamina and the sarcolemma of the muscle fibre. Satellite cells are the source of new myofibres; as such, satellite cell transplantation holds promise as a treatment for muscular dystrophies. We have investigated age and sex differences between mouse satellite cells in vitro and assessed the importance of these factors as mediators of donor cell engraftment in an in vivo model of satellite cell transplantation. We found that satellite cell numbers are increased in growing compared to adult and in male compared to female adult mice. We saw no difference in the expression of the myogenic regulatory factors between male and female mice, but distinct profiles were observed according to developmental stage. We show that, in contrast to adult mice, the majority of satellite cells from two week old mice are proliferating to facilitate myofibre growth; however a small proportion of these cells are quiescent and not contributing to this growth programme. Despite observed changes in satellite cell populations, there is no difference in engraftment efficiency either between satellite cells derived from adult or pre-weaned donor mice, male or female donor cells, or between male and female host muscle environments. We suggest there exist two distinct satellite cell populations: one for muscle growth and maintenance and one for muscle regeneration. PMID:22662253

  16. Mechanism of ammonia excretion in the freshwater leech Nephelopsis obscura: characterization of a primitive Rh protein and effects of high environmental ammonia

    Science.gov (United States)

    Quijada-Rodriguez, Alex R.; Treberg, Jason R.

    2015-01-01

    Remarkably little is known about nitrogenous excretion in freshwater invertebrates. In the current study, the nitrogen excretion mechanism in the carnivorous ribbon leech, Nephelopsis obscura, was investigated. Excretion experiments showed that the ribbon leech is ammonotelic, excreting 166.0 ± 8.6 nmol·grams fresh weight (gFW)−1·h−1 ammonia and 14.7 ± 1.9 nmol·gFW−1·h−1 urea. Exposure to high and low pH hampered and enhanced, respectively, ammonia excretion rates, indicating an acid-linked ammonia trapping mechanism across the skin epithelia. Accordingly, compared with body tissues, the skin exhibited elevated mRNA expression levels of a newly identified Rhesus protein and at least in tendency the Na+/K+-ATPase. Pharmacological experiments and enzyme assays suggested an ammonia excretion mechanism that involves the V-ATPase, Na+/K+-ATPase, and carbonic anhydrase, but not necessarily a functional microtubule system. Most importantly, functional expression studies of the identified Rh protein cloned from leech skin tissue revealed an ammonia transport capability of this protein when expressed in yeast. The leech Rh-ammonia transporter (NoRhp) is a member of the primitive Rh protein family, which is a sister group to the common ancestor of vertebrate ammonia-transporting Rh proteins. Exposure to high environmental ammonia (HEA) caused a new adjustment of body ammonia, accompanied with a decrease in NoRhp and Na+/K+-ATPase mRNA levels, but unaltered ammonia excretion rates. To our knowledge, this is only the second comprehensive study regarding the ammonia excretion mechanisms in a freshwater invertebrate, but our results show that basic processes of ammonia excretion appear to also be comparable to those found in freshwater fish, suggesting an early evolution of ionoregulatory mechanisms in freshwater organisms. PMID:26180186

  17. Augmenting nerve regeneration with electrical stimulation.

    Science.gov (United States)

    Gordon, T; Brushart, T M; Chan, K M

    2008-12-01

    Poor functional recovery after peripheral nerve injury is generally attributed to irreversible target atrophy. In rats, we addressed the functional outcomes of prolonged neuronal separation from targets (chronic axotomy for up to 1 year) and atrophy of Schwann cells (SCs) in distal nerve stumps, and whether electrical stimulation (ES) accelerates axon regeneration. In carpal tunnel syndrome (CTS) patients with severe axon degeneration and release surgery, we asked whether ES accelerates muscle reinnervation. Reinnervated motor unit (MUs) and regenerating neuron numbers were counted electrophysiologically and with dye-labeling after chronic axotomy, chronic SC denervation and after immediate nerve repair with and without trains of 20 Hz ES for 1 hour to 2 weeks in rats and in CTS patients. Chronic axotomy reduced regenerative capacity to 67% and was alleviated by exogenous growth factors. Reduced regeneration to approximately 10% by SC denervation atrophy was ameliorated by forskolin and transforming growth factor-beta SC reactivation. ES (1 h) accelerated axon outgrowth across the suture site in association with elevated neuronal neurotrophic factor and receptors and in patients, promoted the full reinnervation of thenar muscles in contrast to a non-significant increase in MU numbers in the control group. The rate limiting process of axon outgrowth, progressive deterioration of both neuronal growth capacity and SC support, but not irreversible target atrophy, account for observed poor functional recovery after nerve injury. Brief ES accelerates axon outgrowth and target muscle reinnervation in animals and humans, opening the way to future clinical application to promote functional recovery.

  18. A new molecular logic for BMP-mediated dorsoventral patterning in the leech Helobdella.

    Science.gov (United States)

    Kuo, Dian-Han; Weisblat, David A

    2011-08-09

    Bone morphogenetic protein (BMP) signaling is broadly implicated in dorsoventral (DV) patterning of bilaterally symmetric animals [1-3], and its role in axial patterning apparently predates the birth of Bilateria [4-7]. In fly and vertebrate embryos, BMPs and their antagonists (primarily Sog/chordin) diffuse and interact to generate signaling gradients that pattern fields of cells [8-10]. Work in other species reveals diversity in essential facets of this ancient patterning process, however. Here, we report that BMP signaling patterns the DV axis of segmental ectoderm in the leech Helobdella, a clitellate annelid (superphylum Lophotrochozoa) featuring stereotyped developmental cell lineages, but the detailed mechanisms of DV patterning in Helobdella differ markedly from fly and vertebrates. In Helobdella, BMP2/4s are expressed broadly, rather than in dorsal territory, whereas a dorsally expressed BMP5-8 specifies dorsal fate by short-range signaling. A BMP antagonist, gremlin, is upregulated by BMP5-8 in dorsolateral, rather than ventral territory, and yet the BMP-antagonizing activity of gremlin is required for normal ventral cell fates. Gremlin promotes ventral fates without disrupting dorsal fates by selectively inhibiting BMP2/4s, not BMP5-8. Thus, DV patterning in the development of the leech revealed unexpected evolutionary plasticity of the conserved BMP patterning system, presumably reflecting its adaptation to different modes of embryogenesis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Induction of GLUT-1 protein in adult human skeletal muscle fibers

    DEFF Research Database (Denmark)

    Gaster, M; Franch, J; Staehr, P

    2000-01-01

    Prompted by our recent observations that GLUT-1 is expressed in fetal muscles, but not in adult muscle fibers, we decided to investigate whether GLUT-1 expression could be reactivated. We studied different stimuli concerning their ability to induce GLUT-1 expression in mature human skeletal muscle...... fibers. Metabolic stress (obesity, non-insulin-dependent diabetes mellitus), contractile activity (training), and conditions of de- and reinnervation (amyotrophic lateral sclerosis) could not induce GLUT-1 expression in human muscle fibers. However, regenerating muscle fibers in polymyositis expressed...... GLUT-1. In contrast to GLUT-1, GLUT-4 was expressed in all investigated muscle fibers. Although the significance of GLUT-1 in adult human muscle fibers appears limited, GLUT-1 may be of importance for the glucose supplies in immature and regenerating muscle....

  20. Replacement of irradiated epidermis by migration of non-irradiated epidermis in the newt limb: the necessity of healthy epidermis for regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Lheureux, E. (Universite des Sciences et Techniques, Lille (France). Lab. de Morphogenese Animale)

    1983-08-01

    An X-irradiated newt limb is able to regenerate if non-irradiated skin as well as non-irradiated muscle is transplanted to the stump. In order to know whether limb regeneration required healthy epidermis or not, a triploid skin cuff was set at the most proximal level of an irradiated limb and muscle was transplanted to the level of the midforearm. The forearm was then amputated through the muscle graft. The result was a complete replacement of diploid irradiated epidermis by triploid epidermis, during the six weeks necessary for regeneration. Another investigation consisted of detecting a possible migration of non-irradiated triploid epidermis along an irradiated limb which had not been amputated. Healthy epidermis was found to migrate distally and replace irradiated epidermis in three weeks. Transplantation of a non-irradiated skin cuff or muscle to an irradiated limb stump was carried out on animals entirely irradiated to prevent any extra healthy epidermis cells from contaminating the regenerating limb epidermis. A regenerate developed from the skin graft but not from muscle graft. It is concluded that healthy epidermis must be present on the limb stump to permit the blastema to develop.

  1. Replacement of irradiated epidermis by migration of non-irradiated epidermis in the newt limb: the necessity of healthy epidermis for regeneration

    International Nuclear Information System (INIS)

    Lheureux, E.

    1983-01-01

    An X-irradiated newt limb is able to regenerate if non-irradiated skin as well as non-irradiated muscle is transplanted to the stump. In order to know whether limb regeneration required healthy epidermis or not, a triploid skin cuff was set at the most proximal level of an irradiated limb and muscle was transplanted to the level of the midforearm. The forearm was then amputated through the muscle graft. The result was a complete replacement of diploid irradiated epidermis by triploid epidermis, during the six weeks necessary for regeneration. Another investigation consisted of detecting a possible migration of non-irradiated triploid epidermis along an irradiated limb which had not been amputated. Healthy epidermis was found to migrate distally and replace irradiated epidermis in three weeks. Transplantation of a non-irradiated skin cuff or muscle to an irradiated limb stump was carried out on animals entirely irradiated to prevent any extra healthy epidermis cells from contaminating the regenerating limb epidermis. A regenerate developed from the skin graft but not from muscle graft. It is concluded that healthy epidermis must be present on the limb stump to permit the blastema to develop. (author)

  2. Boosted Regeneration and Reduced Denervated Muscle Atrophy by NeuroHeal in a Pre-clinical Model of Lumbar Root Avulsion with Delayed Reimplantation.

    Science.gov (United States)

    Romeo-Guitart, David; Forés, Joaquim; Navarro, Xavier; Casas, Caty

    2017-09-20

    The "gold standard" treatment of patients with spinal root injuries consists of delayed surgical reconnection of nerves. The sooner, the better, but problems such as injury-induced motor neuronal death and muscle atrophy due to long-term denervation mean that normal movement is not restored. Herein we describe a preclinical model of root avulsion with delayed reimplantation of lumbar roots that was used to establish a new adjuvant pharmacological treatment. Chronic treatment (up to 6 months) with NeuroHeal, a new combination drug therapy identified using a systems biology approach, exerted long-lasting neuroprotection, reduced gliosis and matrix proteoglycan content, accelerated nerve regeneration by activating the AKT pathway, promoted the formation of functional neuromuscular junctions, and reduced denervation-induced muscular atrophy. Thus, NeuroHeal is a promising treatment for spinal nerve root injuries and axonal regeneration after trauma.

  3. Brief electrical stimulation improves nerve regeneration after delayed repair in Sprague Dawley rats.

    Science.gov (United States)

    Elzinga, Kate; Tyreman, Neil; Ladak, Adil; Savaryn, Bohdan; Olson, Jaret; Gordon, Tessa

    2015-07-01

    Functional recovery after peripheral nerve injury and surgical repair declines with time and distance because the injured neurons without target contacts (chronic axotomy) progressively lose their regenerative capacity and chronically denervated Schwann cells (SCs) atrophy and fail to support axon regeneration. Findings that brief low frequency electrical stimulation (ES) accelerates axon outgrowth and muscle reinnervation after immediate nerve surgery in rats and human patients suggest that ES might improve regeneration after delayed nerve repair. To test this hypothesis, common peroneal (CP) neurons were chronically axotomized and/or tibial (TIB) SCs and ankle extensor muscles were chronically denervated by transection and ligation in rats. The CP and TIB nerves were cross-sutured after three months and subjected to either sham or one hour 20Hz ES. Using retrograde tracing, we found that ES significantly increased the numbers of both motor and sensory neurons that regenerated their axons after a three month period of chronic CP axotomy and/or chronic TIB SC denervation. Muscle and motor unit forces recorded to determine the numbers of neurons that reinnervated gastrocnemius muscle demonstrated that ES significantly increased the numbers of motoneurons that reinnervated chronically denervated muscles. We conclude that electrical stimulation of chronically axotomized motor and sensory neurons is effective in accelerating axon outgrowth into chronically denervated nerve stumps and improving target reinnervation after delayed nerve repair. Possible mechanisms for the efficacy of ES in promoting axon regeneration and target reinnervation after delayed nerve repair include the upregulation of neurotrophic factors. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Magnetic Resonance Imaging Allows the Evaluation of Tissue Damage and Regeneration in a Mouse Model of Critical Limb Ischemia.

    Directory of Open Access Journals (Sweden)

    Germana Zaccagnini

    Full Text Available Magnetic resonance imaging (MRI provides non-invasive, repetitive measures in the same individual, allowing the study of a physio-pathological event over time. In this study, we tested the performance of 7 Tesla multi-parametric MRI to monitor the dynamic changes of mouse skeletal muscle injury and regeneration upon acute ischemia induced by femoral artery dissection. T2-mapping (T2 relaxation time, diffusion-tensor imaging (Fractional Anisotropy and perfusion by Dynamic Contrast-Enhanced MRI (K-trans were measured and imaging results were correlated with histological morphometric analysis in both Gastrocnemius and Tibialis anterior muscles. We found that tissue damage positively correlated with T2-relaxation time, while myofiber regeneration and capillary density positively correlated with Fractional Anisotropy. Interestingly, K-trans positively correlated with capillary density. Accordingly, repeated MRI measurements between day 1 and day 28 after surgery in ischemic muscles showed that: 1 T2-relaxation time rapidly increased upon ischemia and then gradually declined, returning almost to basal level in the last phases of the regeneration process; 2 Fractional Anisotropy dropped upon ischemic damage induction and then recovered along with muscle regeneration and neoangiogenesis; 3 K-trans reached a minimum upon ischemia, then progressively recovered. Overall, Gastrocnemius and Tibialis anterior muscles displayed similar patterns of MRI parameters dynamic, with more marked responses and less variability in Tibialis anterior. We conclude that MRI provides quantitative information about both tissue damage after ischemia and the subsequent vascular and muscle regeneration, accounting for the differences between subjects and, within the same individual, between different muscles.

  5. Magnetic Resonance Imaging Allows the Evaluation of Tissue Damage and Regeneration in a Mouse Model of Critical Limb Ischemia.

    Science.gov (United States)

    Zaccagnini, Germana; Palmisano, Anna; Canu, Tamara; Maimone, Biagina; Lo Russo, Francesco M; Ambrogi, Federico; Gaetano, Carlo; De Cobelli, Francesco; Del Maschio, Alessandro; Esposito, Antonio; Martelli, Fabio

    2015-01-01

    Magnetic resonance imaging (MRI) provides non-invasive, repetitive measures in the same individual, allowing the study of a physio-pathological event over time. In this study, we tested the performance of 7 Tesla multi-parametric MRI to monitor the dynamic changes of mouse skeletal muscle injury and regeneration upon acute ischemia induced by femoral artery dissection. T2-mapping (T2 relaxation time), diffusion-tensor imaging (Fractional Anisotropy) and perfusion by Dynamic Contrast-Enhanced MRI (K-trans) were measured and imaging results were correlated with histological morphometric analysis in both Gastrocnemius and Tibialis anterior muscles. We found that tissue damage positively correlated with T2-relaxation time, while myofiber regeneration and capillary density positively correlated with Fractional Anisotropy. Interestingly, K-trans positively correlated with capillary density. Accordingly, repeated MRI measurements between day 1 and day 28 after surgery in ischemic muscles showed that: 1) T2-relaxation time rapidly increased upon ischemia and then gradually declined, returning almost to basal level in the last phases of the regeneration process; 2) Fractional Anisotropy dropped upon ischemic damage induction and then recovered along with muscle regeneration and neoangiogenesis; 3) K-trans reached a minimum upon ischemia, then progressively recovered. Overall, Gastrocnemius and Tibialis anterior muscles displayed similar patterns of MRI parameters dynamic, with more marked responses and less variability in Tibialis anterior. We conclude that MRI provides quantitative information about both tissue damage after ischemia and the subsequent vascular and muscle regeneration, accounting for the differences between subjects and, within the same individual, between different muscles.

  6. Glycogen accumulation in normal and irradiated minced muscle autografts on frog gastrocnemius

    International Nuclear Information System (INIS)

    Malhotra, R.K.; Kaul, R.; Malhotra, N.

    1989-01-01

    Alterations induced in glycogen content and phosphorylase activity have been studied in normal and irradiated minced muscle autografts on frog gastrocnemius at days 1, 3, 5, 7, 10, 15 and 30 postgrafting. The changes observed in the glycogen content and phosphorylase activity conform to the degeneration and regeneration phases of muscle repair. An attempt has been made to explain the altered glycogen utilizing capacities of the frog skeletal muscle during its repair and regeneration. (author)

  7. Differential expression of myogenic regulatory genes and Msx-1 during dedifferentiation and redifferentiation of regenerating amphibian limbs.

    Science.gov (United States)

    Simon, H G; Nelson, C; Goff, D; Laufer, E; Morgan, B A; Tabin, C

    1995-01-01

    An amputated limb of an adult urodele amphibian is capable of undergoing regeneration. The new structures form from an undifferentiated mass of cells called the regenerative blastema. The cells of the blastema are believed to derive from differentiated tissues of the adult limb. However, the exact source of these cells and the process by which they undergo dedifferentiation are poorly understood. In order to elucidate the molecular and cellular basis for dedifferentiation we isolated a number of genes which are potential regulators of the process. These include Msx-1, which is believed to support the undifferentiated and proliferative state of cells in the embryonic limb bud; and two members of the myogenic regulatory gene family, MRF-4 and Myf-5, which are expressed in differentiated muscle and regulate muscle-specific gene activity. As anticipated, we find that Msx-1 is strongly up-regulated during the initiation of regeneration. It remains expressed throughout regeneration but is not found in the fully regenerated limb. The myogenic gene MRF-4 has the reverse expression pattern. It is expressed in adult limb muscle, is rapidly shut off in early regenerative blastemas, and is only reexpressed at the completion of regeneration. These kinetics are paralleled by those of a muscle-specific Myosin gene. In contrast Myf-5, a second member of the myogenic gene family, continues to be expressed throughout the regenerative process. Thus, MRF-4 and Myf-5 are likely to play distinct roles during regeneration. MRF-4 may directly regulate muscle phenotype and as such its repression may be a key event in dedifferentiation.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Rediscovery of two rare butterflies Papilio elephenor Doubleday, 1845 and Shijimia moorei Leech, 1889 from proposed Ripu-Chirang Wildlife Sanctuary, Assam, India

    Directory of Open Access Journals (Sweden)

    K. Choudhury

    2010-04-01

    Full Text Available Two rare butterflies Papilio elephenor Doubleday, 1886 and Moore’s Cupid Shijimia moorei Leech, 1889 were rediscovered from the proposed Ripu-Chirang Wildlife Sanctuary, Assam, India.

  9. X-irradiation improves mdx mouse muscle as a model of myofiber loss in DMD

    International Nuclear Information System (INIS)

    Wakeford, S.; Watt, D.J.; Partridge, T.A.

    1991-01-01

    The mdx mouse, although a genetic and biochemical homologue of human Duchenne muscular dystrophy (DMD), presents a comparatively mild histopathological and clinical phenotype. These differences are partially attributable to the greater efficacy of regeneration in the mdx mouse than in DMD muscle. To lessen this disparity, we have used a single dose of X-irradiation (16 Gy) to inhibit regeneration in one leg of mdx mice. The result is an almost complete block of muscle fiber regeneration leading to progressive loss of muscle fibers and their replacement by loose connective tissue. Surviving fibers are mainly peripherally nucleated and, surprisingly, of large diameter. Thus, X-irradiation converts mdx muscle to a model system in which the degenerative process can be studied in isolation from the complicating effect of myofiber regeneration. This system should be of use for testing methods of alleviating the myofiber degeneration which is common to mdx and DMD

  10. X-irradiation improves mdx mouse muscle as a model of myofiber loss in DMD

    Energy Technology Data Exchange (ETDEWEB)

    Wakeford, S.; Watt, D.J.; Partridge, T.A. (Charing Cross and Westminster Medical School, London (England))

    1991-01-01

    The mdx mouse, although a genetic and biochemical homologue of human Duchenne muscular dystrophy (DMD), presents a comparatively mild histopathological and clinical phenotype. These differences are partially attributable to the greater efficacy of regeneration in the mdx mouse than in DMD muscle. To lessen this disparity, we have used a single dose of X-irradiation (16 Gy) to inhibit regeneration in one leg of mdx mice. The result is an almost complete block of muscle fiber regeneration leading to progressive loss of muscle fibers and their replacement by loose connective tissue. Surviving fibers are mainly peripherally nucleated and, surprisingly, of large diameter. Thus, X-irradiation converts mdx muscle to a model system in which the degenerative process can be studied in isolation from the complicating effect of myofiber regeneration. This system should be of use for testing methods of alleviating the myofiber degeneration which is common to mdx and DMD.

  11. Infections of Hypostomus spp. by Trypanosoma spp. and leeches: a study of hematology and record of these hirudineans as potential vectors of these hemoflagellates

    Directory of Open Access Journals (Sweden)

    Lincoln Lima Corrêa

    Full Text Available Abstract Among Kinetoplastida, the Trypanosoma is the genus with the highest occurrence infecting populations of marine fish and freshwater in the world, with high levels of prevalence, causing influences fish health and consequent economic losses, mainly for fish populations in situation stress. This study investigated infections of Hypostomus spp. by Trypanosoma spp. and leeches, as well as blood parameters of this host in the network of tributaries of the Tapajós River in the state of Pará, in the eastern Amazon region in Brazil. Of the 47 hosts examined, 89.4% were parasitized by Trypanosoma spp. and 55.4% also had leeches attached around the mouth. The intensity of Trypanosoma spp. increased with the size of the host, but the body conditions were not influenced by the parasitism. The number of red blood cells, and hemoglobin, mean corpuscular volume (MCV, mean corpuscular hemoglobin concentration (MCHC, mean corpuscular hemoglobin (MCH, total number of leukocytes and thrombocytes showed variations and negative correlation with the intensity of Trypanosoma spp. in the blood of the hosts. The results suggest that the leeches were vectors of Trypanosoma spp. in Hypostomus spp.

  12. A population of Pax7-expressing muscle progenitor cells show differential responses to muscle injury dependent on developmental stage and injury extent

    Directory of Open Access Journals (Sweden)

    Stefanie eKnappe

    2015-08-01

    Full Text Available Muscle regeneration in vertebrates occurs by the activation of quiescent progenitor cells that express pax7 and replace and repair damaged fibers. We have developed a mechanical injury paradigm in zebrafish to determine whether developmental stage and injury size affect the regeneration dynamics of damaged muscle. We found that both small, focal injuries and large injuries affecting the entire myotome lead to the expression of myf5 and myogenin. Their expression was prolonged in older larvae, indicating a slower process of regeneration. We characterized the endogenous behavior of a population of muscle-resident Pax7-expressing cells using a pax7a:eGFP transgenic line and found that GFP+ cell migration in the myotome dramatically declined between 5 and 7 days post fertilization (dpf. Following a small injury, we observed that GFP+ cells responded by extending processes, before migrating to the injured fibers. Furthermore, these cells responded more rapidly to injury in 4dpf larvae compared to 7dpf. Interestingly, we did not see GFP+ fibers after repair of small injuries, indicating that pax7a-expressing cells did not contribute to fiber formation in this injury context. On the contrary, numerous GFP+ fibers could be observed after a large single myotome injury. Both injury models were accompanied by an increased number of proliferating GFP+ cells, which was more pronounced in larvae injured at 4dpf than 7dpf, This indicates intriguing developmental differences, even at these relatively early ages. Our data also suggests an interesting disparity in the role that pax7a-expressing muscle progenitor cells play during muscle regeneration, which may reflect the extent of muscle damage.

  13. Monoclonal antibodies against muscle actin isoforms: epitope identification and analysis of isoform expression by immunoblot and immunostaining in normal and regenerating skeletal muscle [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Christine Chaponnier

    2016-03-01

    Full Text Available Higher vertebrates express six different highly conserved actin isoforms that can be classified in three subgroups: 1 sarcomeric actins, α-skeletal (α-SKA and α-cardiac (α-CAA, 2 smooth muscle actins (SMAs, α-SMA and γ-SMA, and 3 cytoplasmic actins (CYAs, β-CYA and γ-CYA. The variations among isoactins, in each subgroup, are due to 3-4 amino acid differences located in their acetylated N-decapeptide sequence. The first monoclonal antibody (mAb against an actin isoform (α-SMA was produced and characterized in our laboratory in 1986 (Skalli et al., 1986. We have further obtained mAbs against the 5 other isoforms. In this report, we focus on the mAb anti-α-SKA and anti-α-CAA obtained after immunization of mice with the respective acetylated N-terminal decapeptides using the Repetitive Immunizations at Multiple Sites Strategy (RIMMS. In addition to the identification of their epitope by immunoblotting, we describe the expression of the 2 sarcomeric actins in mature skeletal muscle and during muscle repair after micro-lesions. In particular, we analyze the expression of α-CAA, α-SKA and α-SMA by co-immunostaining in a time course frame during the muscle repair process. Our results indicate that a restricted myocyte population expresses α-CAA and suggest a high capacity of self-renewal in muscle cells. These antibodies may represent a helpful tool for the follow-up of muscle regeneration and pathological changes.

  14. Muscle Stem Cells: A Model System for Adult Stem Cell Biology.

    Science.gov (United States)

    Cornelison, Ddw; Perdiguero, Eusebio

    2017-01-01

    Skeletal muscle stem cells, originally termed satellite cells for their position adjacent to differentiated muscle fibers, are absolutely required for the process of skeletal muscle repair and regeneration. In the last decade, satellite cells have become one of the most studied adult stem cell systems and have emerged as a standard model not only in the field of stem cell-driven tissue regeneration but also in stem cell dysfunction and aging. Here, we provide background in the field and discuss recent advances in our understanding of muscle stem cell function and dysfunction, particularly in the case of aging, and the potential involvement of muscle stem cells in genetic diseases such as the muscular dystrophies.

  15. Delivery of adipose-derived stem cells in poloxamer hydrogel improves peripheral nerve regeneration.

    Science.gov (United States)

    Allbright, Kassandra O; Bliley, Jacqueline M; Havis, Emmanuelle; Kim, Deok-Yeol; Dibernardo, Gabriella A; Grybowski, Damian; Waldner, Matthias; James, Isaac B; Sivak, Wesley N; Rubin, J Peter; Marra, Kacey G

    2018-02-06

    Peripheral nerve damage is associated with high long-term morbidity. Because of beneficial secretome, immunomodulatory effects, and ease of clinical translation, transplantation with adipose-derived stem cells (ASC) represents a promising therapeutic modality. Effect of ASC delivery in poloxamer hydrogel was assessed in a rat sciatic nerve model of critical-sized (1.5 cm) peripheral nerve injury. Nerve/muscle unit regeneration was assessed via immunostaining explanted nerve, quantitative polymerase chain reaction (qPCR), and histological analysis of reinnervating gastrocnemius muscle. On the basis of viability data, 10% poloxamer hydrogel was selected for in vivo study. Six weeks after transection and repair, the group treated with poloxamer delivered ASCs demonstrated longest axonal regrowth. The qPCR results indicated that the inclusion of ASCs appeared to result in expression of factors that aid in reinnervating muscle tissue. Delivery of ASCs in poloxamer addresses multiple facets of the complexity of nerve/muscle unit regeneration, representing a promising avenue for further study. Muscle Nerve, 2018. © 2018 Wiley Periodicals, Inc.

  16. A myogenic precursor cell that could contribute to regeneration in zebrafish and its similarity to the satellite cell.

    Science.gov (United States)

    Siegel, Ashley L; Gurevich, David B; Currie, Peter D

    2013-09-01

    The cellular basis for mammalian muscle regeneration has been an area of intense investigation over recent decades. The consensus is that a specialized self-renewing stem cell, termed the satellite cell, plays a major role during the process of regeneration in amniotes. How broadly this mechanism is deployed within the vertebrate phylogeny remains an open question. A lack of information on the role of cells analogous to the satellite cell in other vertebrate systems is even more unexpected given the fact that satellite cells were first designated in frogs. An intriguing aspect of this debate is that a number of amphibia and many fish species exhibit epimorphic regenerative processes in specific tissues, whereby regeneration occurs by the dedifferentiation of the damaged tissue, without deploying specialized stem cell populations analogous to satellite cells. Hence, it is feasible that a cellular process completely distinct from that deployed during mammalian muscle regeneration could operate in species capable of epimorphic regeneration. In this minireview, we examine the evidence for the broad phylogenetic distribution of satellite cells. We conclude that, in the vertebrates examined so far, epimorphosis does not appear to be deployed during muscle regeneration, and that analogous cells expressing similar marker genes to satellite cells appear to be deployed during the regenerative process. However, the functional definition of these cells as self-renewing muscle stem cells remains a final hurdle to the definition of the satellite cell as a generic vertebrate cell type. © 2013 FEBS.

  17. Neonatal epicardial-derived progenitors aquire myogenic traits in skeletal muscle, but not cardiac muscle

    DEFF Research Database (Denmark)

    Andersen, Ditte C; Jensen, Charlotte H; Skovrind, Ida

    2016-01-01

    heart missing regenerative signals essential for directed differentiation of EPDCs. Herein, we aimed to evaluate the myogenic potential of neonatal EPDCs in adult and neonatal mouse myocardium, as well as in skeletal muscle. The two latter tissues have an intrinsic capability to develop and regenerate......, in contrast to the adult heart. METHODS: Highly purified mouse EPDCs were transplanted into damaged neonatal and adult myocardium as well as regenerating skeletal muscle. Co-cultures with skeletal myoblasts were used to distinguish fusion independent myogenic conversion. RESULTS: No donor EPDC...... that EPDCs may be more myogenic than previously anticipated. But, the heart may lack factors for induction of myogenesis of EPDCs, a scenario that should be taken into consideration when aiming for repair of damaged myocardium by stem cell transplantation....

  18. Exposure to microgravity for 30 days onboard Bion M1 caused muscle atrophy and impaired regeneration in murine femoral Quadriceps

    Science.gov (United States)

    Radugina, E. A.; Almeida, E. A. C.; Blaber, E.; Poplinskaya, V. A.; Markitantova, Y. V.; Grigoryan, E. N.

    2018-02-01

    Mechanical unloading in microgravity during spaceflight is known to cause muscular atrophy, changes in muscle fiber composition, gene expression, and reduction in regenerative muscle growth. Although some limited data exists for long-term effects of microgravity in human muscle, these processes have mostly been studied in rodents for short periods of time. Here we report on how long-term (30-day long) mechanical unloading in microgravity affects murine muscles of the femoral Quadriceps group. To conduct these studies we used muscle tissue from 6 microgravity mice, in comparison to habitat (7), and vivarium (14) ground control mice from the NASA Biospecimen Sharing Program conducted in collaboration with the Institute for Biomedical Problems of the Russian Academy of Sciences, during the Russian Bion M1 biosatellite mission in 2013. Muscle histomorphology from microgravity specimens showed signs of extensive atrophy and regenerative hypoplasia relative to ground controls. Specifically, we observed a two-fold decrease in the number of myonuclei, compared to vivarium and ground controls, and central location of myonuclei, low density of myofibers in the tissue, and of myofibrils within a fiber, as well as fragmentation and swelling of myofibers. Despite obvious atrophy, muscle regeneration nevertheless appeared to have continued after 30 days in microgravity as evidenced by thin and short newly formed myofibers. Many of them, however, showed evidence of apoptotic cells and myofibril degradation, suggesting that long-term unloading in microgravity may affect late stages of myofiber differentiation. Ground asynchronous and vivarium control animals demonstrated normal, well-developed tissue structure with sufficient blood and nerve supply and evidence of regenerative formation of new myofibers free of apoptotic nuclei. Regenerative activity of satellite cells in muscles was observed both in microgravity and ground control groups, using Pax7 and Myogenin

  19. Epigenetic Regulators Modulate Muscle Damage in Duchenne Muscular Dystrophy Model.

    Science.gov (United States)

    Bajanca, Fernanda; Vandel, Laurence

    2017-12-21

    Histone acetyl transferases (HATs) and histone deacetylases (HDAC) control transcription during myogenesis. HDACs promote chromatin condensation, inhibiting gene transcription in muscle progenitor cells until myoblast differentiation is triggered and HDACs are released. HATs, namely CBP/p300, activate myogenic regulatory and elongation factors promoting myogenesis. HDAC inhibitors are known to improve regeneration in dystrophic muscles through follistatin upregulation. However, the potential of directly modulating HATs remains unexplored. We tested this possibility in a well-known zebrafish model of Duchenne muscular dystrophy. Interestingly, CBP/p300 transcripts were found downregulated in the absence of Dystrophin. While investigating CBP rescuing potential we observed that dystrophin-null embryos overexpressing CBP actually never show significant muscle damage, even before a first regeneration cycle could occur. We found that the pan-HDAC inhibitor trichostatin A (TSA) also prevents early muscle damage, however the single HAT CBP is as efficient even in low doses. The HAT domain of CBP is required for its full rescuing ability. Importantly, both CBP and TSA prevent early muscle damage without restoring endogenous CBP/p300 neither increasing follistatin transcripts. This suggests a new mechanism of action of epigenetic regulators protecting dystrophin-null muscle fibres from detaching, independent from the known improvement of regeneration upon damage of HDACs inhibitors. This study builds supporting evidence that epigenetic modulators may play a role in determining the severity of muscle dystrophy, controlling the ability to resist muscle damage. Determining the mode of action leading to muscle protection can potentially lead to new treatment options for muscular dystrophies in the future.

  20. Secreted Protein Acidic and Rich in Cysteine (SPARC) in Human Skeletal Muscle

    Science.gov (United States)

    Jørgensen, Louise H.; Petersson, Stine J.; Sellathurai, Jeeva; Andersen, Ditte C.; Thayssen, Susanne; Sant, Dorte J.; Jensen, Charlotte H.; Schrøder, Henrik D.

    2009-01-01

    Secreted protein acidic and rich in cysteine (SPARC)/osteonectin is expressed in different tissues during remodeling and repair, suggesting a function in regeneration. Several gene expression studies indicated that SPARC was expressed in response to muscle damage. Studies on myoblasts further indicated a function of SPARC in skeletal muscle. We therefore found it of interest to study SPARC expression in human skeletal muscle during development and in biopsies from Duchenne and Becker muscular dystrophy and congenital muscular dystrophy, congenital myopathy, inclusion body myositis, and polymyositis patients to analyze SPARC expression in a selected range of inherited and idiopathic muscle wasting diseases. SPARC-positive cells were observed both in fetal and neonatal muscle, and in addition, fetal myofibers were observed to express SPARC at the age of 15–16 weeks. SPARC protein was detected in the majority of analyzed muscle biopsies (23 of 24), mainly in mononuclear cells of which few were pax7 positive. Myotubes and regenerating myofibers also expressed SPARC. The expression-degree seemed to reflect the severity of the lesion. In accordance with these in vivo findings, primary human-derived satellite cells were found to express SPARC both during proliferation and differentiation in vitro. In conclusion, this study shows SPARC expression both during muscle development and in regenerating muscle. The expression is detected both in satellite cells/myoblasts and in myotubes and muscle fibers, indicating a role for SPARC in the skeletal muscle compartment. (J Histochem Cytochem 57:29–39, 2009) PMID:18796407

  1. Deletion of the Ste20-like kinase SLK in skeletal muscle results in a progressive myopathy and muscle weakness.

    Science.gov (United States)

    Pryce, Benjamin R; Al-Zahrani, Khalid N; Dufresne, Sébastien; Belkina, Natalya; Labrèche, Cédrik; Patino-Lopez, Genaro; Frenette, Jérôme; Shaw, Stephen; Sabourin, Luc A

    2017-02-02

    The Ste20-like kinase, SLK, plays an important role in cell proliferation and cytoskeletal remodeling. In fibroblasts, SLK has been shown to respond to FAK/Src signaling and regulate focal adhesion turnover through Paxillin phosphorylation. Full-length SLK has also been shown to be essential for embryonic development. In myoblasts, the overexpression of a dominant negative SLK is sufficient to block myoblast fusion. In this study, we crossed the Myf5-Cre mouse model with our conditional SLK knockout model to delete SLK in skeletal muscle. A thorough analysis of skeletal muscle tissue was undertaken in order to identify defects in muscle development caused by the lack of SLK. Isometric force analysis was performed on adult knockout mice and compared to age-matched wild-type mice. Furthermore, cardiotoxin injections were performed followed by immunohistochemistry for myogenic markers to assess the efficiency muscle regeneration following SLK deletion. We show here that early deletion of SLK from the myogenic lineage does not markedly impair skeletal muscle development but delays the regenerative process. Interestingly, adult mice (~6 months) display an increase in the proportion of central nuclei and increased p38 activation. Furthermore, mice as young as 3 months old present with decreased force generation, suggesting that the loss of SLK impairs myofiber stability and function. Assessment of structural components revealed aberrant localization of focal adhesion proteins, such as FAK and paxillin. Our data show that the loss of SLK results in unstable myofibers resulting in a progressive myopathy. Additionally, the loss of SLK resulted in a delay in muscle regeneration following cardiotoxin injections. Our results show that SLK is dispensable for muscle development and regeneration but is required for myofiber stability and optimal force generation.

  2. First record of Stibarobdella moorei (Annelida, Hirudinea, Piscicolidae a marine leech parasitizing Octopus bimaculatus (Mollusca: Octopodidae from the Mexican Pacific coast

    Directory of Open Access Journals (Sweden)

    López-Peraza D. J.

    2017-12-01

    Full Text Available The occurrence of the parasitic marine leech Stibarobdella moorei (Oka, 1910 (Hirudinea: Piscicolidae along the northwest Mexican Pacific coast is described for the first time. This ectoparasite was collected from the skin of the Octopus bimaculatus (Verril, 1983 (Mollusca: Octopodidae. Stibarobdella loricata (Hardig, 1924 is synonymized with S. moorei as this species resembles other species of the genus based on tubercle patterns and the presence of papillae and a marginal fringe on the oral sucker. The present finding throws new light on the biodiversity and host preference of the ectoparasite and suggests a successful migration to unusual host. The coast of the Pacific Ocean, particularly in the Bay of Los Angeles, Baja California, Mexico is a new geographical distribution area for S. moorei, and O. bimaculatus is a new host reported for this leech. The morphology of this ectoparasite is briefly described.

  3. Injectable biomimetic liquid crystalline scaffolds enhance muscle stem cell transplantation

    Science.gov (United States)

    Sleep, Eduard; McClendon, Mark T.; Preslar, Adam T.; Chen, Charlotte H.; Sangji, M. Hussain; Pérez, Charles M. Rubert; Haynes, Russell D.; Meade, Thomas J.; Blau, Helen M.; Stupp, Samuel I.

    2017-01-01

    Muscle stem cells are a potent cell population dedicated to efficacious skeletal muscle regeneration, but their therapeutic utility is currently limited by mode of delivery. We developed a cell delivery strategy based on a supramolecular liquid crystal formed by peptide amphiphiles (PAs) that encapsulates cells and growth factors within a muscle-like unidirectionally ordered environment of nanofibers. The stiffness of the PA scaffolds, dependent on amino acid sequence, was found to determine the macroscopic degree of cell alignment templated by the nanofibers in vitro. Furthermore, these PA scaffolds support myogenic progenitor cell survival and proliferation and they can be optimized to induce cell differentiation and maturation. We engineered an in vivo delivery system to assemble scaffolds by injection of a PA solution that enabled coalignment of scaffold nanofibers with endogenous myofibers. These scaffolds locally retained growth factors, displayed degradation rates matching the time course of muscle tissue regeneration, and markedly enhanced the engraftment of muscle stem cells in injured and noninjured muscles in mice. PMID:28874575

  4. CD133+ cells derived from skeletal muscles of Duchenne muscular dystrophy patients have a compromised myogenic and muscle regenerative capability.

    Science.gov (United States)

    Meng, Jinhong; Muntoni, Francesco; Morgan, Jennifer

    2018-05-12

    Cell-mediated gene therapy is a possible means to treat muscular dystrophies like Duchenne muscular dystrophy. Autologous patient stem cells can be genetically-corrected and transplanted back into the patient, without causing immunorejection problems. Regenerated muscle fibres derived from these cells will express the missing dystrophin protein, thus improving muscle function. CD133+ cells derived from normal human skeletal muscle contribute to regenerated muscle fibres and form muscle stem cells after their intra-muscular transplantation into an immunodeficient mouse model. But it is not known whether CD133+ cells derived from DMD patient muscles have compromised muscle regenerative function. To test this, we compared CD133+ cells derived from DMD and normal human muscles. DMD CD133+ cells had a reduced capacity to undergo myogenic differentiation in vitro compared with CD133+ cells derived from normal muscle. In contrast to CD133+ cells derived from normal human muscle, those derived from DMD muscle formed no satellite cells and gave rise to significantly fewer muscle fibres of donor origin, after their intra-muscular transplantation into an immunodeficient, non-dystrophic, mouse muscle. DMD CD133+ cells gave rise to more clones of smaller size and more clones that were less myogenic than did CD133+ cells derived from normal muscle. The heterogeneity of the progeny of CD133+ cells, combined with the reduced proliferation and myogenicity of DMD compared to normal CD133+ cells, may explain the reduced regenerative capacity of DMD CD133+ cells. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Muscle atrophy reversed by growth factor activation of satellite cells in a mouse muscle atrophy model.

    Directory of Open Access Journals (Sweden)

    Simon Hauerslev

    Full Text Available Muscular dystrophies comprise a large group of inherited disorders that lead to progressive muscle wasting. We wanted to investigate if targeting satellite cells can enhance muscle regeneration and thus increase muscle mass. We treated mice with hepatocyte growth factor and leukemia inhibitory factor under three conditions: normoxia, hypoxia and during myostatin deficiency. We found that hepatocyte growth factor treatment led to activation of the Akt/mTOR/p70S6K protein synthesis pathway, up-regulation of the myognic transcription factors MyoD and myogenin, and subsequently the negative growth control factor, myostatin and atrophy markers MAFbx and MuRF1. Hypoxia-induced atrophy was partially restored by hepatocyte growth factor combined with leukemia inhibitory factor treatment. Dividing satellite cells were three-fold increased in the treatment group compared to control. Finally, we demonstrated that myostatin regulates satellite cell activation and myogenesis in vivo following treatment, consistent with previous findings in vitro. Our results suggest, not only a novel in vivo pharmacological treatment directed specifically at activating the satellite cells, but also a myostatin dependent mechanism that may contribute to the progressive muscle wasting seen in severely affected patients with muscular dystrophy and significant on-going regeneration. This treatment could potentially be applied to many conditions that feature muscle wasting to increase muscle bulk and strength.

  6. Electrical stimulation accelerates axonal and functional peripheral nerve regeneration across long gaps.

    Science.gov (United States)

    Haastert-Talini, Kirsten; Schmitte, Ruth; Korte, Nele; Klode, Dorothee; Ratzka, Andreas; Grothe, Claudia

    2011-04-01

    Short-term low-frequency electrical stimulation (ESTIM) of proximal peripheral nerve stumps prior to end-to-end coaptation or tubular bridging of small distances has been reported to increase preferential motor reinnervation and functional motor recovery in animal models and human patients undergoing carpal tunnel release surgery. We investigated the effects of ESTIM on regeneration across rat sciatic nerve gaps, which exceed distances that allow spontaneous regeneration. Three different reconstruction approaches were combined with ESTIM in the experimental groups. Nerve gaps (13 mm) were bridged using (I) nerve autotransplantation, (II) transplantation of differentially filled silicone tubes, or (III) transplantation of tubular grafts containing fibroblast growth factor-2 overexpressing Schwann cells (SCs) for gene therapy. The regeneration outcome was followed for up to 8 weeks, and functionally as well as histomorphometrically analyzed in comparison to non-stimulated control groups. Combining ESTIM with nerve autotransplantation significantly increased the nerve fiber density in the regenerated nerve, and the grade of functional recovery as detected by electrodiagnostic recordings from the gastrocnemius muscle. The combination of ESTIM with transplantation of naïve SCs increased the regeneration of gap-bridging nerve tissue. Although macroscopic tissue regeneration was not further improved after combining ESTIM with FGF-2(21/23-kD) gene therapy, the latter resulted in a high rate of regenerated nerves that functionally reconnected to the target muscle. Based on our results, brief ESTIM shows high potential to accelerate axonal as well as functional (motor and sensory) outcomes in the clinical setting of peripheral nerve gap reconstruction in human patients.

  7. CINRG: Systems Biology of Glucocorticoids in Muscle Disease

    Science.gov (United States)

    2013-10-01

    Contract W81XWH-09-1-0726 SYSTEMS BIOLOGY OF GLUCOCORTICOIDS IN MUSCLE DISEASE Introduction Duchenne muscular dystrophy (DMD) is the most... muscle and enable the development of better targeted and more effective therapies for Duchenne muscular dystrophy dynamically. This MDA grant...common and incurable muscular dystrophy of childhood. Muscle regeneration fails with advancing age, leading to considerable fibrosis. Corticosteroid

  8. Reactivation of X-irradiated cell material during limb regeneration in Urodeles Amphibians

    International Nuclear Information System (INIS)

    Desselle, J.C.

    1979-10-01

    In amputated members irradiated with X-rays the regeneration power is inhibited. This power is restored by grafts of healthy tissue in the irradiated members. The origin of the cell material of the restored regeneration blastema has been studied by an original labelling technique. The different amounts of DNA in the graft cells and those of the stump mark the graft cells during the regeneration process. It was shown that the graft causes a reactivation of the inhibited stump cells and the reactivation stages are the same as the activation stages of the member regenerating normally. It was also established that during restored regeneration the cell material implanted in the irradiated members contributes, by the 160th day of regeneration, 4.5% of the cartilaginous regenerate cells and 12% of the muscle cells. All the other regenerate cells are supplied by the cells of the stump; these are reactivated and together with the activated graft cells lead to the restitution of the amputated member [fr

  9. Muscle response to leg lengthening during distraction osteogenesis.

    Science.gov (United States)

    Thorey, Fritz; Bruenger, Jens; Windhagen, Henning; Witte, Frank

    2009-04-01

    Continuous lengthening of intact muscles during distraction osteogenesis leads to an increase of sarcomeres and enhances the regeneration of tendons and blood vessels. A high distraction rate leads to an excessive leg and muscle lengthening and might cause damages of muscle fibers with fibrosis, necrosis, and muscle weakness. Complications like muscle contractures or atrophy after postoperative immobilization emphazize the importance of muscles and their function in the clinical outcome. In an animal model of distraction osteogenesis, 18 sheep were operated with an external fixator followed by 4 days latency, 21 days distraction (1.25 mm per day) and 51 days consolidation. The anatomical location (gastrocnemius, peroneus tertius, and first flexor digitorum longus muscle), dimension and occurrence of muscular defects were characterized histologically. The callus formation and leg axis was monitored by weekly X-rays. Additionally, serum creatine kinase was analyzed during a distraction and consolidation period. Significant signs of muscle lesions in all three observed muscles can be found postoperatively, whereas normal callus formation and regular leg axis was observed radiologically. The peroneus tertius and first flexor digitorum longus muscles were found to have significantly more signs of fibrosis, inflammatory, and necrosis. Creatine kinase showed two peaks: 4 and 39 days postoperative as an indication of muscle damage and regeneration. The study implicates that muscle damages should be considered when a long-distance distraction osteogenesis is planned. The surgeon should consider these muscle responses and individually discuss a two-stage treatment or additional muscle tendon releases to minimize the risk of muscle damages.

  10. Angiotensin II Infusion Induces Marked Diaphragmatic Skeletal Muscle Atrophy

    Science.gov (United States)

    Rezk, Bashir M.; Yoshida, Tadashi; Semprun-Prieto, Laura; Higashi, Yusuke; Sukhanov, Sergiy; Delafontaine, Patrice

    2012-01-01

    Advanced congestive heart failure (CHF) and chronic kidney disease (CKD) are characterized by increased angiotensin II (Ang II) levels and are often accompanied by significant skeletal muscle wasting that negatively impacts mortality and morbidity. Both CHF and CKD patients have respiratory muscle dysfunction, however the potential effects of Ang II on respiratory muscles are unknown. We investigated the effects of Ang II on diaphragm muscle in FVB mice. Ang II induced significant diaphragm muscle wasting (18.7±1.6% decrease in weight at one week) and reduction in fiber cross-sectional area. Expression of the E3 ubiquitin ligases atrogin-1 and muscle ring finger-1 (MuRF-1) and of the pro-apoptotic factor BAX was increased after 24 h of Ang II infusion (4.4±0.3 fold, 3.1±0.5 fold and 1.6±0.2 fold, respectively, compared to sham infused control) suggesting increased muscle protein degradation and apoptosis. In Ang II infused animals, there was significant regeneration of injured diaphragm muscles at 7 days as indicated by an increase in the number of myofibers with centralized nuclei and high expression of embryonic myosin heavy chain (E-MyHC, 11.2±3.3 fold increase) and of the satellite cell marker M-cadherin (59.2±22.2% increase). Furthermore, there was an increase in expression of insulin-like growth factor-1 (IGF-1, 1.8±0.3 fold increase) in Ang II infused diaphragm, suggesting the involvement of IGF-1 in diaphragm muscle regeneration. Bone-marrow transplantation experiments indicated that although there was recruitment of bone-marrow derived cells to the injured diaphragm in Ang II infused mice (267.0±74.6% increase), those cells did not express markers of muscle stem cells or regenerating myofibers. In conclusion, Ang II causes marked diaphragm muscle wasting, which may be important for the pathophysiology of respiratory muscle dysfunction and cachexia in conditions such as CHF and CKD. PMID:22276172

  11. Angiotensin II infusion induces marked diaphragmatic skeletal muscle atrophy.

    Directory of Open Access Journals (Sweden)

    Bashir M Rezk

    Full Text Available Advanced congestive heart failure (CHF and chronic kidney disease (CKD are characterized by increased angiotensin II (Ang II levels and are often accompanied by significant skeletal muscle wasting that negatively impacts mortality and morbidity. Both CHF and CKD patients have respiratory muscle dysfunction, however the potential effects of Ang II on respiratory muscles are unknown. We investigated the effects of Ang II on diaphragm muscle in FVB mice. Ang II induced significant diaphragm muscle wasting (18.7±1.6% decrease in weight at one week and reduction in fiber cross-sectional area. Expression of the E3 ubiquitin ligases atrogin-1 and muscle ring finger-1 (MuRF-1 and of the pro-apoptotic factor BAX was increased after 24 h of Ang II infusion (4.4±0.3 fold, 3.1±0.5 fold and 1.6±0.2 fold, respectively, compared to sham infused control suggesting increased muscle protein degradation and apoptosis. In Ang II infused animals, there was significant regeneration of injured diaphragm muscles at 7 days as indicated by an increase in the number of myofibers with centralized nuclei and high expression of embryonic myosin heavy chain (E-MyHC, 11.2±3.3 fold increase and of the satellite cell marker M-cadherin (59.2±22.2% increase. Furthermore, there was an increase in expression of insulin-like growth factor-1 (IGF-1, 1.8±0.3 fold increase in Ang II infused diaphragm, suggesting the involvement of IGF-1 in diaphragm muscle regeneration. Bone-marrow transplantation experiments indicated that although there was recruitment of bone-marrow derived cells to the injured diaphragm in Ang II infused mice (267.0±74.6% increase, those cells did not express markers of muscle stem cells or regenerating myofibers. In conclusion, Ang II causes marked diaphragm muscle wasting, which may be important for the pathophysiology of respiratory muscle dysfunction and cachexia in conditions such as CHF and CKD.

  12. Electrical Stimulation to Enhance Axon Regeneration After Peripheral Nerve Injuries in Animal Models and Humans

    OpenAIRE

    Gordon, Tessa

    2016-01-01

    Injured peripheral nerves regenerate their lost axons but functional recovery in humans is frequently disappointing. This is so particularly when injuries require regeneration over long distances and/or over long time periods. Fat replacement of chronically denervated muscles, a commonly accepted explanation, does not account for poor functional recovery. Rather, the basis for the poor nerve regeneration is the transient expression of growth-associated genes that accounts for declining regene...

  13. Regeneration of neural crest derivatives in the Xenopus tadpole tail

    Directory of Open Access Journals (Sweden)

    Slack Jonathan MW

    2007-05-01

    Full Text Available Abstract Background After amputation of the Xenopus tadpole tail, a functionally competent new tail is regenerated. It contains spinal cord, notochord and muscle, each of which has previously been shown to derive from the corresponding tissue in the stump. The regeneration of the neural crest derivatives has not previously been examined and is described in this paper. Results Labelling of the spinal cord by electroporation, or by orthotopic grafting of transgenic tissue expressing GFP, shows that no cells emigrate from the spinal cord in the course of regeneration. There is very limited regeneration of the spinal ganglia, but new neurons as well as fibre tracts do appear in the regenerated spinal cord and the regenerated tail also contains abundant peripheral innervation. The regenerated tail contains a normal density of melanophores. Cell labelling experiments show that melanophores do not arise from the spinal cord during regeneration, nor from the mesenchymal tissues of the skin, but they do arise by activation and proliferation of pre-existing melanophore precursors. If tails are prepared lacking melanophores, then the regenerates also lack them. Conclusion On regeneration there is no induction of a new neural crest similar to that seen in embryonic development. However there is some regeneration of neural crest derivatives. Abundant melanophores are regenerated from unpigmented precursors, and, although spinal ganglia are not regenerated, sufficient sensory systems are produced to enable essential functions to continue.

  14. Co-delivery of a laminin-111 supplemented hyaluronic acid based hydrogel with minced muscle graft in the treatment of volumetric muscle loss injury.

    Directory of Open Access Journals (Sweden)

    Stephen M Goldman

    Full Text Available Minced muscle autografting mediates de novo myofiber regeneration and promotes partial recovery of neuromuscular strength after volumetric muscle loss injury (VML. A major limitation of this approach is the availability of sufficient donor tissue for the treatment of relatively large VMLs without inducing donor site morbidity. This study evaluated a laminin-111 supplemented hyaluronic acid based hydrogel (HA+LMN as a putative myoconductive scaffolding to be co-delivered with minced muscle grafts. In a rat tibialis anterior muscle VML model, delivery of a reduced dose of minced muscle graft (50% of VML defect within HA+LMN resulted in a 42% improvement of peak tetanic torque production over unrepaired VML affected limbs. However, the improvement in strength was not improved compared to a 50% minced graft-only control group. Moreover, histological analysis revealed that the improvement in in vivo functional capacity mediated by minced grafts in HA+LMN was not accompanied by a particularly robust graft mediated regenerative response as determined through donor cell tracking of the GFP+ grafting material. Characterization of the spatial distribution and density of macrophage and satellite cell populations indicated that the combination therapy damps the heightened macrophage response while re-establishing satellite content 14 days after VML to a level consistent with an endogenously healing ischemia-reperfusion induced muscle injury. Moreover, regional analysis revealed that the combination therapy increased satellite cell density mostly in the remaining musculature, as opposed to the defect area. Based on the results, the following salient conclusions were drawn: 1 functional recovery mediated by the combination therapy is likely due to a superposition of de novo muscle fiber regeneration and augmented repair of muscle fibers within the remaining musculature, and 2 The capacity for VML therapies to augment regeneration and repair within the

  15. Duchenne Muscular Dystrophy Gene Expression in Normal and Diseased Human Muscle

    Science.gov (United States)

    Oronzi Scott, M.; Sylvester, J. E.; Heiman-Patterson, T.; Shi, Y.-J.; Fieles, W.; Stedman, H.; Burghes, A.; Ray, P.; Worton, R.; Fischbeck, K. H.

    1988-03-01

    A probe for the 5' end of the Duchenne muscular dystrophy (DMD) gene was used to study expression of the gene in normal human muscle, myogenic cell cultures, and muscle from patients with DMD. Expression was found in RNA from normal fetal muscle, adult cardiac and skeletal muscle, and cultured muscle after myoblast fusion. In DMD muscle, expression of this portion of the gene was also revealed by in situ RNA hybridization, particularly in regenerating muscle fibers.

  16. Combined use of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and platelet rich plasma (PRP) stimulates proliferation and differentiation of myoblasts in vitro: new therapeutic perspectives for skeletal muscle repair/regeneration.

    Science.gov (United States)

    Sassoli, Chiara; Vallone, Larissa; Tani, Alessia; Chellini, Flaminia; Nosi, Daniele; Zecchi-Orlandini, Sandra

    2018-02-05

    Satellite cell-mediated skeletal muscle repair/regeneration is compromised in cases of extended damage. Bone marrow mesenchymal stromal cells (BM-MSCs) hold promise for muscle healing but some criticisms hamper their clinical application, including the need to avoid animal serum contamination for expansion and the scarce survival after transplant. In this context, platelet-rich plasma (PRP) could offer advantages. Here, we compare the effects of PRP or standard culture media on C2C12 myoblast, satellite cell and BM-MSC viability, survival, proliferation and myogenic differentiation and evaluate PRP/BM-MSC combination effects in promoting myogenic differentiation. PRP induced an increase of mitochondrial activity and Ki67 expression comparable or even greater than that elicited by standard media and promoted AKT signaling activation in myoblasts and BM-MSCs and Notch-1 pathway activation in BM-MSCs. It stimulated MyoD, myogenin, α-sarcomeric actin and MMP-2 expression in myoblasts and satellite cell activation. Notably, PRP/BM-MSC combination was more effective than PRP alone. We found that BM-MSCs influenced myoblast responses through a paracrine activation of AKT signaling, contributing to shed light on BM-MSC action mechanisms. Our results suggest that PRP represents a good serum substitute for BM-MSC manipulation in vitro and could be beneficial towards transplanted cells in vivo. Moreover, it might influence muscle resident progenitors' fate, thus favoring the endogenous repair/regeneration mechanisms. Finally, within the limitations of an in vitro experimentation, this study provides an experimental background for considering the PRP/BM-MSC combination as a potential therapeutic tool for skeletal muscle damage, combining the beneficial effects of BM-MSCs and PRP on muscle tissue, while potentiating BM-MSC functionality.

  17. Magnetotherapy: The quest for tendon regeneration.

    Science.gov (United States)

    Pesqueira, Tamagno; Costa-Almeida, Raquel; Gomes, Manuela E

    2018-05-09

    Tendons are mechanosensitive tissues that connect and transmit the forces generated by muscles to bones by allowing the conversion of mechanical input into biochemical signals. These physical forces perform the fundamental work of preserving tendon homeostasis assuring body movements. However, overloading causes tissue injuries, which leads us to the field of tendon regeneration. Recently published reviews have broadly shown the use of biomaterials and different strategies to attain tendon regeneration. In this review, our focus is the use of magnetic fields as an alternative therapy, which has demonstrated clinical relevance in tendon medicine because of their ability to modulate cell fate. Yet the underlying cellular and molecular mechanisms still need to be elucidated. While providing a brief outlook about specific signalling pathways and intracellular messengers as framework in play by tendon cells, application of magnetic fields as a subcategory of physical forces is explored, opening up a compelling avenue to enhance tendon regeneration. We outline here useful insights on the effects of magnetic fields both at in vitro and in vivo levels, particularly on the expression of tendon genes and inflammatory cytokines, ultimately involved in tendon regeneration. Subsequently, the potential of using magnetically responsive biomaterials in tendon tissue engineering is highlighted and future directions in magnetotherapy are discussed. © 2018 Wiley Periodicals, Inc.

  18. Nerve Regeneration in Conditions of HSV-Infection and an Antiviral Drug Influence.

    Science.gov (United States)

    Gumenyuk, Alla; Rybalko, Svetlana; Ryzha, Alona; Savosko, Sergey; Labudzynskyi, Dmytro; Levchuk, Natalia; Chaikovsky, Yuri

    2018-05-05

    Herpes simplex virus type I (HSV-I) is a latent neuroinfection which can cause focal brain lesion. The role of HSV-infection in nerve regeneration has not been studied so far. The aim of the work was to study sciatic nerve regeneration in the presence of HSV-infection and the influence of an antiviral drug. BALB/c line mice were divided into five groups. Group 1 animals were infected with HSV-I. After resolution of neuroinfection manifestations the sciatic nerve of these animals was crushed. Group 2 mice were administered acyclovir following the same procedures. Groups 3-5 mice served as controls. Thirty days after the operation distal nerve stumps and m.gastrocnemius were studied morphologically and biochemically. Ultrastructural organization of the sciatic nerve in control animals remained intact. Morphometric parameters of the nerves from the experimental groups have not reach control values. However, in the group 1 diameter of nerve fibers was significantly smaller than in the group 2. Both nerve regeneration and m.gastrocnemius reinnervation were confirmed. The muscle hypotrophy was found in groups 1, 2, and 3 (the muscle fibers diameter decreased). Metabolic changes in the muscles of the infected animals (groups 1 and 2) were more pronounced than in control groups 3 and 4. The levels of TBA-active products, conjugated dienes, carbonyl and SH-groups were reduced in m.gastrocnemius of the experimental groups, however no significant difference associated with acyclovir administration was found. HSV-infection is not limited to the local neurodegenerative changes in the CNS but affects regeneration of the injured sciatic nerve. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  19. Could a functional artificial skeletal muscle be useful in muscle wasting?

    Science.gov (United States)

    Fuoco, Claudia; Cannata, Stefano; Gargioli, Cesare

    2016-05-01

    Regardless of the underlying cause, skeletal muscle wasting is detrimental for a person's life quality, leading to impaired strength, locomotion, and physiological activity. Here, we propose a series of studies presenting tissue engineering-based approaches to reconstruct artificial muscle in vitro and in vivo. Skeletal muscle tissue engineering is attracting more and more attention from scientists, clinicians, patients, and media, thanks to the promising results obtained in the last decade with animal models of muscle wasting. The use of novel and refined biomimetic scaffolds mimicking three-dimensional muscle environment, thus supporting cell survival and differentiation, in combination with well characterized myogenic stem/progenitor cells, revealed the noteworthy potential of these technologies for creating artificial skeletal muscle tissue. In vitro, the production of three-dimensional muscle structures offer the possibility to generate a drug-screening platform for patient-specific pharmacological treatment, opening new frontiers in the development of new compounds with specific therapeutic actions. In vivo, three-dimensional artificial muscle biomimetic constructs offer the possibility to replace, in part or entirely, wasted muscle by means of straight reconstruction and/or by enhancing endogenous regeneration. Reports of tissue engineering approaches for artificial muscle building appeared in large numbers in the specialized press lately, advocating the suitability of this technology for human application upon scaling up and a near future applicability for medical care of muscle wasting. http://links.lww.com/COCN/A9

  20. Muscle Tissue Engineering Using Gingival Mesenchymal Stem Cells Encapsulated in Alginate Hydrogels Containing Multiple Growth Factors.

    Science.gov (United States)

    Ansari, Sahar; Chen, Chider; Xu, Xingtian; Annabi, Nasim; Zadeh, Homayoun H; Wu, Benjamin M; Khademhosseini, Ali; Shi, Songtao; Moshaverinia, Alireza

    2016-06-01

    Repair and regeneration of muscle tissue following traumatic injuries or muscle diseases often presents a challenging clinical situation. If a significant amount of tissue is lost the native regenerative potential of skeletal muscle will not be able to grow to fill the defect site completely. Dental-derived mesenchymal stem cells (MSCs) in combination with appropriate scaffold material, present an advantageous alternative therapeutic option for muscle tissue engineering in comparison to current treatment modalities available. To date, there has been no report on application of gingival mesenchymal stem cells (GMSCs) in three-dimensional scaffolds for muscle tissue engineering. The objectives of the current study were to develop an injectable 3D RGD-coupled alginate scaffold with multiple growth factor delivery capacity for encapsulating GMSCs, and to evaluate the capacity of encapsulated GMSCs to differentiate into myogenic tissue in vitro and in vivo where encapsulated GMSCs were transplanted subcutaneously into immunocompromised mice. The results demonstrate that after 4 weeks of differentiation in vitro, GMSCs as well as the positive control human bone marrow mesenchymal stem cells (hBMMSCs) exhibited muscle cell-like morphology with high levels of mRNA expression for gene markers related to muscle regeneration (MyoD, Myf5, and MyoG) via qPCR measurement. Our quantitative PCR analyzes revealed that the stiffness of the RGD-coupled alginate regulates the myogenic differentiation of encapsulated GMSCs. Histological and immunohistochemical/fluorescence staining for protein markers specific for myogenic tissue confirmed muscle regeneration in subcutaneous transplantation in our in vivo animal model. GMSCs showed significantly greater capacity for myogenic regeneration in comparison to hBMMSCs (p alginate hydrogel with multiple growth factor delivery capacity is a promising candidate for muscle tissue engineering.

  1. Nerve Cross-Bridging to Enhance Nerve Regeneration in a Rat Model of Delayed Nerve Repair

    Science.gov (United States)

    2015-01-01

    There are currently no available options to promote nerve regeneration through chronically denervated distal nerve stumps. Here we used a rat model of delayed nerve repair asking of prior insertion of side-to-side cross-bridges between a donor tibial (TIB) nerve and a recipient denervated common peroneal (CP) nerve stump ameliorates poor nerve regeneration. First, numbers of retrogradely-labelled TIB neurons that grew axons into the nerve stump within three months, increased with the size of the perineurial windows opened in the TIB and CP nerves. Equal numbers of donor TIB axons regenerated into CP stumps either side of the cross-bridges, not being affected by target neurotrophic effects, or by removing the perineurium to insert 5-9 cross-bridges. Second, CP nerve stumps were coapted three months after inserting 0-9 cross-bridges and the number of 1) CP neurons that regenerated their axons within three months or 2) CP motor nerves that reinnervated the extensor digitorum longus (EDL) muscle within five months was determined by counting and motor unit number estimation (MUNE), respectively. We found that three but not more cross-bridges promoted the regeneration of axons and reinnervation of EDL muscle by all the CP motoneurons as compared to only 33% regenerating their axons when no cross-bridges were inserted. The same 3-fold increase in sensory nerve regeneration was found. In conclusion, side-to-side cross-bridges ameliorate poor regeneration after delayed nerve repair possibly by sustaining the growth-permissive state of denervated nerve stumps. Such autografts may be used in human repair surgery to improve outcomes after unavoidable delays. PMID:26016986

  2. MicroRNAs promote skeletal muscle differentiation of mesodermal iPSC-derived progenitors

    NARCIS (Netherlands)

    Giacomazzi, G. (Giorgia); Holvoet, B. (Bryan); Trenson, S. (Sander); Caluwé, E. (Ellen); Kravic, B. (Bojana); Grosemans, H. (Hanne); Cortés-Calabuig, Á. (Álvaro); Deroose, C.M. (Christophe M.); D. Huylebroeck (Danny); Hashemolhosseini, S. (Said); S. Janssens (Stefan); McNally, E. (Elizabeth); Quattrocelli, M. (Mattia); Sampaolesi, M. (Maurilio)

    2017-01-01

    textabstractMuscular dystrophies (MDs) are often characterized by impairment of both skeletal and cardiac muscle. Regenerative strategies for both compartments therefore constitute a therapeutic avenue. Mesodermal iPSC-derived progenitors (MiPs) can regenerate both striated muscle types

  3. Superpixel-based segmentation of muscle fibers in multi-channel microscopy.

    Science.gov (United States)

    Nguyen, Binh P; Heemskerk, Hans; So, Peter T C; Tucker-Kellogg, Lisa

    2016-12-05

    Confetti fluorescence and other multi-color genetic labelling strategies are useful for observing stem cell regeneration and for other problems of cell lineage tracing. One difficulty of such strategies is segmenting the cell boundaries, which is a very different problem from segmenting color images from the real world. This paper addresses the difficulties and presents a superpixel-based framework for segmentation of regenerated muscle fibers in mice. We propose to integrate an edge detector into a superpixel algorithm and customize the method for multi-channel images. The enhanced superpixel method outperforms the original and another advanced superpixel algorithm in terms of both boundary recall and under-segmentation error. Our framework was applied to cross-section and lateral section images of regenerated muscle fibers from confetti-fluorescent mice. Compared with "ground-truth" segmentations, our framework yielded median Dice similarity coefficients of 0.92 and higher. Our segmentation framework is flexible and provides very good segmentations of multi-color muscle fibers. We anticipate our methods will be useful for segmenting a variety of tissues in confetti fluorecent mice and in mice with similar multi-color labels.

  4. Delayed peripheral nerve repair: methods, including surgical ?cross-bridging? to promote nerve regeneration

    OpenAIRE

    Gordon, Tessa; Eva, Placheta; Borschel, Gregory H.

    2015-01-01

    Despite the capacity of Schwann cells to support peripheral nerve regeneration, functional recovery after nerve injuries is frequently poor, especially for proximal injuries that require regenerating axons to grow over long distances to reinnervate distal targets. Nerve transfers, where small fascicles from an adjacent intact nerve are coapted to the nerve stump of a nearby denervated muscle, allow for functional return but at the expense of reduced numbers of innervating nerves. A 1-hour per...

  5. Effects of hypertonic dextrose on injured rat skeletal muscles.

    Science.gov (United States)

    Kunduracioglu, Burak; Ulkar, Bulent; Sabuncuoglu, Bizden T; Can, Belgin; Bayrakci, Kenan

    2006-04-01

    Histological examination of proliferative therapy effects on the healing process of muscular injury. We performed this study between March and August 2002 at Ankara University, School of Medicine, Laboratory of Animal Experiments, Ankara, Turkey. We used an experimental animal model by conducting a standardized cut injury of the gastrocnemius muscle in 30 adult male albino rats, which we divided into 2 groups; proliferative therapy group and control group. We evaluated the injured rat muscles by light microscopy on the fifth, eight, and twelfth day of injury. The muscular regeneration process began at day 5 in both the control and proliferative therapy groups. The proliferative therapy group revealed a prominent inflammatory reaction, fibroblast migration, and necrosis with accompanying regeneration and excessive connective tissue formation. We cannot consider proliferative therapy an appropriate treatment modality for muscular injuries, unless there is evidence of normal muscle physiology and biomechanics post traumatically.

  6. The breaking and making of healthy adult human skeletal muscle in vivo

    DEFF Research Database (Denmark)

    Mackey, Abigail L.; Kjaer, Michael

    2017-01-01

    and highlights the importance of the basement membrane in the process of regeneration. In addition, it provides insight into parallels between the regeneration of adult skeletal muscle in mouse and man, confirming that this model may be a useful tool in investigating myofibre and matrix formation, as well...

  7. Fibrin matrices with affinity-based delivery systems and neurotrophic factors promote functional nerve regeneration.

    Science.gov (United States)

    Wood, Matthew D; MacEwan, Matthew R; French, Alexander R; Moore, Amy M; Hunter, Daniel A; Mackinnon, Susan E; Moran, Daniel W; Borschel, Gregory H; Sakiyama-Elbert, Shelly E

    2010-08-15

    Glial-derived neurotrophic factor (GDNF) and nerve growth factor (NGF) have both been shown to enhance peripheral nerve regeneration following injury and target different neuronal populations. The delivery of either growth factor at the site of injury may, therefore, result in quantitative differences in motor nerve regeneration and functional recovery. In this study we evaluated the effect of affinity-based delivery of GDNF or NGF from fibrin-filled nerve guidance conduits (NGCs) on motor nerve regeneration and functional recovery in a 13 mm rat sciatic nerve defect. Seven experimental groups were evaluated consisting of GDNF or NGF and the affinity-based delivery system (DS) within NGCs, control groups excluding the DS and/or growth factor, and nerve isografts. Groups with growth factor in the conduit demonstrated equivalent or superior performance in behavioral tests and relative muscle mass measurements compared to isografts at 12 weeks. Additionally, groups with GDNF demonstrated greater specific twitch and tetanic force production in extensor digitorum longus (EDL) muscle than the isograft control, while groups with NGF produced demonstrated similar force production compared to the isograft control. Assessment of motor axon regeneration by retrograde labeling further revealed that the number of ventral horn neurons regenerating across NGCs containing GDNF and NGF DS was similar to the isograft group and these counts were greater than the groups without growth factor. Overall, the GDNF DS group demonstrated superior functional recovery and equivalent motor nerve regeneration compared to the isograft control, suggesting it has potential as a treatment for motor nerve injury.

  8. Influence of exercise and aging on extracellular matrix composition in the skeletal muscle stem cell niche.

    Science.gov (United States)

    Garg, Koyal; Boppart, Marni D

    2016-11-01

    Skeletal muscle is endowed with a remarkable capacity for regeneration, primarily due to the reserve pool of muscle resident satellite cells. The satellite cell is the physiologically quiescent muscle stem cell that resides beneath the basal lamina and adjacent to the sarcolemma. The anatomic location of satellite cells is in close proximity to vasculature where they interact with other muscle resident stem/stromal cells (e.g., mesenchymal stem cells and pericytes) through paracrine mechanisms. This mini-review describes the components of the muscle stem cell niche, as well as the influence of exercise and aging on the muscle stem cell niche. Although exercise promotes ECM reorganization and stem cell accumulation, aging is associated with dense ECM deposition and loss of stem cell function resulting in reduced regenerative capacity and strength. An improved understanding of the niche elements will be valuable to inform the development of therapeutic interventions aimed at improving skeletal muscle regeneration and adaptation over the life span. Copyright © 2016 the American Physiological Society.

  9. Treatment with rGDF11 does not improve the dystrophic muscle pathology of mdx mice.

    Science.gov (United States)

    Rinaldi, Fabrizio; Zhang, Yu; Mondragon-Gonzalez, Ricardo; Harvey, Jeffrey; Perlingeiro, Rita C R

    2016-01-01

    Duchenne muscular dystrophy (DMD) is an inherited lethal muscle wasting disease characterized by cycles of degeneration and regeneration, with no effective therapy. Growth differentiation factor 11 (GDF11), a member of the TGF-β superfamily and myostatin homologous, has been reported to have the capacity to reverse age-related skeletal muscle loss. These initial findings led us to investigate the ability of GDF11 to promote regeneration in the context of muscular dystrophy and determine whether it could be a candidate to slow down or reverse the disease progression in DMD. Here, we delivered recombinant GDF11 (rGDF11) to dystrophin-deficient mice using the intra-peritoneal route for 30 days and evaluated histology and function in both steady-state and cardiotoxin-injured muscles. Our data confirmed that treatment with rGDF11 resulted in elevated levels of this factor in the circulation. However, this had no effect on muscle contractility nor on muscle histology. Moreover, no difference was found in the number of regenerating myofibers displaying centrally located nuclei. On the other hand, we did observe increased collagen content, which denotes fibrosis, in the muscles of rGDF11-treated dystrophic mice. Taken together, our findings indicate no beneficial effect of treating dystrophic mice with rGDF11 and raise caution to a potential harmful effect, as shown by the pro-fibrotic outcome.

  10. Ultrastructural muscle and neuro-muscular junction alterations in polymyositis

    Directory of Open Access Journals (Sweden)

    L. L. Babakova

    2012-01-01

    Full Text Available Ultrastructural analysis of 7 biopsies from m.palmaris longus and m.deltoideus in patients with confirmed polymyositis revealed alterationand degeneration of muscle fibers and anomalies of neuro-muscular junction (NMJ. The NMJ abnormalities and following denervation ofmuscle fibers in polymyositis start with subsynaptic damages. The occurance of regeneration features in muscle fibers at any stage is characteristic for PM.

  11. New Advances in Molecular Therapy for Muscle Repair after Diseases and Injuries

    Science.gov (United States)

    2008-04-01

    PT, Zhang, CY, Wu, Z, Boss, O et al. (2002). Transcriptional co-activator PGC-1 alpha drives the formation of slow - twitch muscle fibres . Nature...Calcineurin and CaMK signaling pathways in fast -to- slow fiber type transformation of cultured mouse skeletal muscle fibers Xiaodong Mu, PhD The John...Surgery”). 3. Ectopic bone formation in fast and slow skeletal muscle (Meszaros L., “Influence of vascularity on muscle regeneration, fibrosis and

  12. Biomechanical, microvascular, and cellular factors promote muscle and bone regeneration.

    Science.gov (United States)

    Duda, Georg N; Taylor, William R; Winkler, Tobias; Matziolis, Georg; Heller, Markus O; Haas, Norbert P; Perka, Carsten; Schaser, Klaus-D

    2008-04-01

    It is becoming clear that the long-term outcome of complex bone injuries benefits from approaches that selectively target biomechanical, vascular, and cellular pathways. The typically held view of either biological or mechanical aspects of healing is oversimplified and does not correspond to clinical reality. The fundamental mechanisms of soft tissue regeneration most likely hold the key to understanding healing response.

  13. Lentiviral-mediated transfer of CDNF promotes nerve regeneration and functional recovery after sciatic nerve injury in adult rats

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Lei; Liu, Yi; Zhao, Hua; Zhang, Wen; Guo, Ying-Jun; Nie, Lin, E-mail: chengleiyx@126.com

    2013-10-18

    Highlights: •CDNF was successfully transfected by a lentiviral vector into the distal sciatic nerve. •CDNF improved S-100, NF200 expression and nerve regeneration after sciatic injury. •CDNF improved the remyelination and thickness of the regenerated sciatic nerve. •CDNF improved gastrocnemius muscle weight and sciatic functional recovery. -- Abstract: Peripheral nerve injury is often followed by incomplete and unsatisfactory functional recovery and may be associated with sensory and motor impairment of the affected limb. Therefore, a novel method is needed to improve the speed of recovery and the final functional outcome after peripheral nerve injuries. This report investigates the effect of lentiviral-mediated transfer of conserved dopamine neurotrophic factor (CDNF) on regeneration of the rat peripheral nerve in a transection model in vivo. We observed notable overexpression of CDNF protein in the distal sciatic nerve after recombinant CDNF lentiviral vector application. We evaluated sciatic nerve regeneration after surgery using light and electron microscopy and the functional recovery using the sciatic functional index and target muscle weight. HE staining revealed better ordered structured in the CDNF-treated group at 8 weeks post-surgery. Quantitative analysis of immunohistochemistry of NF200 and S-100 in the CDNF group revealed significant improvement of axonal and Schwann cell regeneration compared with the control groups at 4 weeks and 8 weeks after injury. The thickness of the myelination around the axons in the CDNF group was significantly higher than in the control groups at 8 weeks post-surgery. The CDNF group displayed higher muscle weights and significantly increased sciatic nerve index values. Our findings suggest that CDNF gene therapy could provide durable and stable CDNF protein concentration and has the potential to enhance peripheral nerve regeneration, morphological and functional recovery following nerve injury, which suggests a

  14. Lentiviral-mediated transfer of CDNF promotes nerve regeneration and functional recovery after sciatic nerve injury in adult rats

    International Nuclear Information System (INIS)

    Cheng, Lei; Liu, Yi; Zhao, Hua; Zhang, Wen; Guo, Ying-Jun; Nie, Lin

    2013-01-01

    Highlights: •CDNF was successfully transfected by a lentiviral vector into the distal sciatic nerve. •CDNF improved S-100, NF200 expression and nerve regeneration after sciatic injury. •CDNF improved the remyelination and thickness of the regenerated sciatic nerve. •CDNF improved gastrocnemius muscle weight and sciatic functional recovery. -- Abstract: Peripheral nerve injury is often followed by incomplete and unsatisfactory functional recovery and may be associated with sensory and motor impairment of the affected limb. Therefore, a novel method is needed to improve the speed of recovery and the final functional outcome after peripheral nerve injuries. This report investigates the effect of lentiviral-mediated transfer of conserved dopamine neurotrophic factor (CDNF) on regeneration of the rat peripheral nerve in a transection model in vivo. We observed notable overexpression of CDNF protein in the distal sciatic nerve after recombinant CDNF lentiviral vector application. We evaluated sciatic nerve regeneration after surgery using light and electron microscopy and the functional recovery using the sciatic functional index and target muscle weight. HE staining revealed better ordered structured in the CDNF-treated group at 8 weeks post-surgery. Quantitative analysis of immunohistochemistry of NF200 and S-100 in the CDNF group revealed significant improvement of axonal and Schwann cell regeneration compared with the control groups at 4 weeks and 8 weeks after injury. The thickness of the myelination around the axons in the CDNF group was significantly higher than in the control groups at 8 weeks post-surgery. The CDNF group displayed higher muscle weights and significantly increased sciatic nerve index values. Our findings suggest that CDNF gene therapy could provide durable and stable CDNF protein concentration and has the potential to enhance peripheral nerve regeneration, morphological and functional recovery following nerve injury, which suggests a

  15. Protein Turnover and Cellular Stress in Mildly and Severely Affected Muscles from Patients with Limb Girdle Muscular Dystrophy Type 2I

    DEFF Research Database (Denmark)

    Hauerslev, Simon; Sveen, Marie-Louise; Vissing, John

    2013-01-01

    Patients with Limb girdle muscular dystrophy type 2I (LGMD2I) are characterized by progressive muscle weakness and wasting primarily in the proximal muscles, while distal muscles often are spared. Our aim was to investigate if wasting could be caused by impaired regeneration in the proximal...... by using the developmental markers embryonic myosin heavy chain (eMHC) and neural cell adhesion molecule (NCAM) and also assessing satellite cell activation status by myogenin positivity. Severe muscle histopathology was occasionally observed in the proximal muscles of patients with LGMD2I whereas distal...... highly increased in severely affected muscles compared to mildly affected muscles. Our results indicate that alterations in the protein turnover and myostatin levels could progressively impair the muscle mass maintenance and/or regeneration resulting in gradual muscular atrophy....

  16. Skeletal Muscle-derived Hematopoietic Stem Cells: Muscular Dystrophy Therapy by Bone Marrow Transplantation

    OpenAIRE

    Asakura, Atsushi

    2012-01-01

    For postnatal growth and regeneration of skeletal muscle, satellite cells, a self-renewing pool of muscle stem cells, give rise to daughter myogenic precursor cells that contribute to the formation of new muscle fibers. In addition to this key myogenic cell class, adult skeletal muscle also contains hematopoietic stem cell and progenitor cell populations which can be purified as a side population (SP) fraction or as a hematopoietic marker CD45-positive cell population. These muscle-derived he...

  17. Bone marrow mesenchymal cells improve muscle function in a skeletal muscle re-injury model.

    Directory of Open Access Journals (Sweden)

    Bruno M Andrade

    Full Text Available Skeletal muscle injury is the most common problem in orthopedic and sports medicine, and severe injury leads to fibrosis and muscle dysfunction. Conventional treatment for successive muscle injury is currently controversial, although new therapies, like cell therapy, seem to be promise. We developed a model of successive injuries in rat to evaluate the therapeutic potential of bone marrow mesenchymal cells (BMMC injected directly into the injured muscle. Functional and histological assays were performed 14 and 28 days after the injury protocol by isometric tension recording and picrosirius/Hematoxilin & Eosin staining, respectively. We also evaluated the presence and the fate of BMMC on treated muscles; and muscle fiber regeneration. BMMC treatment increased maximal skeletal muscle contraction 14 and 28 days after muscle injury compared to non-treated group (4.5 ± 1.7 vs 2.5 ± 0.98 N/cm2, p<0.05 and 8.4 ± 2.3 vs. 5.7 ± 1.3 N/cm2, p<0.05 respectively. Furthermore, BMMC treatment increased muscle fiber cross-sectional area and the presence of mature muscle fiber 28 days after muscle injury. However, there was no difference in collagen deposition between groups. Immunoassays for cytoskeleton markers of skeletal and smooth muscle cells revealed an apparent integration of the BMMC within the muscle. These data suggest that BMMC transplantation accelerates and improves muscle function recovery in our extensive muscle re-injury model.

  18. Skeletal Muscle Remodelling as a Function of Disease Progression in Amyotrophic Lateral Sclerosis

    DEFF Research Database (Denmark)

    Jensen, L; Jørgensen, L H; Bech, R D

    2016-01-01

    Muscle weakness is considered the pivotal sign of amyotrophic lateral sclerosis (ALS). Knowledge about the skeletal muscle degeneration/regeneration process and the myogenic potential is limited in ALS patients. Therefore, we investigate these processes in a time course perspective by analysing s...

  19. Early changes in extrafusal and intrafusal muscle fibers following heterochronous isotransplantation

    Czech Academy of Sciences Publication Activity Database

    Jirmanová, Isa; Soukup, Tomáš

    2001-01-01

    Roč. 102, č. 5 (2001), s. 473-484 ISSN 0001-6322 R&D Projects: GA ČR GA304/00/1653 Institutional research plan: CEZ:AV0Z5011922 Keywords : muscle transplantation * degeneration and regeneration of muscle fibers * extrafusal and intrafusal fibers Subject RIV: FH - Neurology Impact factor: 2.165, year: 2001

  20. Wound repair during arm regeneration in the red starfish Echinaster sepositus

    KAUST Repository

    Ben Khadra, Yousra

    2015-06-24

    Starfish can regenerate entire arms following their loss by both autotomic and traumatic amputation. Although the overall regenerative process has been studied several times in different asteroid species, there is still a considerable gap of knowledge as far as the detailed aspects of the repair phase at tissue and cellular level are concerned, particularly in post-traumatic regeneration. The present work is focused on the arm regeneration model in the Mediterranean red starfish Echinaster sepositus; in order to describe the early cellular mechanisms of arm regeneration following traumatic amputation, different microscopy techniques were employed. In E. sepositus, the repair phase was characterized by prompt wound healing by a syncytial network of phagocytes and re-epithelialisation followed by a localized subepidermal oedematous area formation. Scattered and apparently undifferentiated cells, intermixed with numerous phagocytes, were frequently found in the wound area during these first stages of regeneration and extensive dedifferentiation phenomena were seen at the level of the stump, particularly in the muscle bundles. A true localized blastema did not form. Our results confirm that regeneration in asteroids mainly relies on morphallactic processes, consisting in extensive rearrangement of the existing tissues which contribute to the new tissues through cell dedifferentiation, re-differentiation and/or migration. This article is protected by copyright. All rights reserved.

  1. Generation of Equine-Induced Pluripotent Stem Cells and Analysis of Their Therapeutic Potential for Muscle Injuries.

    Science.gov (United States)

    Lee, Eun-Mi; Kim, Ah-Young; Lee, Eun-Joo; Park, Jin-Kyu; Park, Se-Il; Cho, Ssang-Goo; Kim, Hong Kyun; Kim, Shin-Yoon; Jeong, Kyu-Shik

    2016-11-01

    Horse health has become a major concern with the expansion of horse-related industries and sports; the importance of healthy muscles for horse performance and daily activities is undisputed. Here we generated equine-induced pluripotent stem cells (E-iPSCs) by reprogramming equine adipose-derived stem cells (E-ADSCs) into iPSCs using a polycistronic lentiviral vector encoding four transcription factors (i.e., Oct4, Sox2, Klf4, and c-Myc) and then examined their pluripotent characteristics. Subsequently, established E-iPSCs were transplanted into muscle-injured Rag/ mdx mice. The histopathology results showed that E-iPSC-transplanted mice exhibited enhanced muscle regeneration compared to controls. In addition, E-iPSC-derived myofibers were observed in the injured muscles. In conclusion, we show that E-iPSCs could be successfully generated from equine ADSCs and transplanted into injured muscles and that E-iPSCs have the capacity to induce regeneration of injured muscles.

  2. Evaluation of the chitosan/glycerol-β-phosphate disodium salt hydrogel application in peripheral nerve regeneration

    International Nuclear Information System (INIS)

    Zheng Lu; Zhang Xiufang; Gong Yandao; Ao Qiang; Han Hongyan

    2010-01-01

    Research efforts have been devoted to evaluating the application of the chitosan (CS)/glycerol-β-phosphate (GP) disodium salt hydrogel in peripheral nerve regeneration. The gelation time was determined to be 770 s using ultraviolet spectrophotometry. A standard 10 mm long rat sciatic nerve defect model was employed, followed by bridging the proximal and distal stumps with chitosan conduits injected with the Schwann cell-containing hydrogel. Injections of the blank hydrogel, Schwann cell suspension and culture medium were used as controls. Two months later, electrophysiological assessment and fluorogold retrograde tracing showed that compound muscle action potentials (CMAPs) and fluorogold-labeled neurons were only detected in the Schwann cell suspension group and culture medium group. The rats were then killed, and implanted conduits were removed for examination. There were no regenerated nerves found in groups injected with the blank hydrogel or Schwann cell-containing hydrogel, while the other two groups clearly displayed regenerated nerves across the gaps. In the subsequent histological assessment, immunohistochemistry, toluidine blue staining and transmission electron microscopy were performed to evaluate the regenerated nerves. The relative wet weight ratio, Masson trichrome staining and acetylcholinesterase staining were employed for the examination of gastrocnemius muscles in all four groups. The Schwann cell suspension group showed the best results for all these indexes; the culture medium group ranked second and the two hydrogel-injected groups showed the least optimal results. In conclusion, our data revealed that the implanted CS/GP hydrogel actually impeded nerve regeneration, which is inconsistent with former in vitro reports and general supposition. We believe that the application of the CS/GP hydrogel in nerve regeneration requires a further study before a satisfactory result is obtained. In addition, the present study also confirmed that Schwann

  3. iTRAQ-Based Quantitative Proteomic Analysis of the Initiation of Head Regeneration in Planarians.

    Directory of Open Access Journals (Sweden)

    Xiaofang Geng

    Full Text Available The planarian Dugesia japonica has amazing ability to regenerate a head from the anterior ends of the amputated stump with maintenance of the original anterior-posterior polarity. Although planarians present an attractive system for molecular investigation of regeneration and research has focused on clarifying the molecular mechanism of regeneration initiation in planarians at transcriptional level, but the initiation mechanism of planarian head regeneration (PHR remains unclear at the protein level. Here, a global analysis of proteome dynamics during the early stage of PHR was performed using isobaric tags for relative and absolute quantitation (iTRAQ-based quantitative proteomics strategy, and our data are available via ProteomeXchange with identifier PXD002100. The results showed that 162 proteins were differentially expressed at 2 h and 6 h following amputation. Furthermore, the analysis of expression patterns and functional enrichment of the differentially expressed proteins showed that proteins involved in muscle contraction, oxidation reduction and protein synthesis were up-regulated in the initiation of PHR. Moreover, ingenuity pathway analysis showed that predominant signaling pathways such as ILK, calcium, EIF2 and mTOR signaling which were associated with cell migration, cell proliferation and protein synthesis were likely to be involved in the initiation of PHR. The results for the first time demonstrated that muscle contraction and ILK signaling might played important roles in the initiation of PHR at the global protein level. The findings of this research provide a molecular basis for further unraveling the mechanism of head regeneration initiation in planarians.

  4. Identification of microRNAs linked to regulators of muscle protein synthesis and regeneration in young and old skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Evelyn Zacharewicz

    Full Text Available BACKGROUND: Over the course of ageing there is a natural and progressive loss of skeletal muscle mass. The onset and progression of age-related muscle wasting is associated with an attenuated activation of Akt-mTOR signalling and muscle protein synthesis in response to anabolic stimuli such as resistance exercise. MicroRNAs (miRNAs are novel and important post-transcriptional regulators of numerous cellular processes. The role of miRNAs in the regulation of muscle protein synthesis following resistance exercise is poorly understood. This study investigated the changes in skeletal muscle miRNA expression following an acute bout of resistance exercise in young and old subjects with a focus on the miRNA species predicted to target Akt-mTOR signalling. RESULTS: Ten young (24.2±0.9 years and 10 old (66.6±1.1 years males completed an acute resistance exercise bout known to maximise muscle protein synthesis, with muscle biopsies collected before and 2 hours after exercise. We screened the expression of 754 miRNAs in the muscle biopsies and found 26 miRNAs to be regulated with age, exercise or a combination of both factors. Nine of these miRNAs are highly predicted to regulate targets within the Akt-mTOR signalling pathway and 5 miRNAs have validated binding sites within the 3' UTRs of several members of the Akt-mTOR signalling pathway. The miR-99/100 family of miRNAs notably emerged as potentially important regulators of skeletal muscle mass in young and old subjects. CONCLUSION: This study has identified several miRNAs that were regulated with age or with a single bout of resistance exercise. Some of these miRNAs were predicted to influence Akt-mTOR signalling, and therefore potentially skeletal muscle mass. These miRNAs should be considered as candidate targets for in vivo modulation.

  5. On the participation of irradiated tissues in the formation of limb regenerate in axolotls

    International Nuclear Information System (INIS)

    Tuchkova, S.Ya.

    1976-01-01

    The aim of the study was to obtain further information on the participation of irradiated tissue cells in formation of regenerated limbs after X-irradiation of axolotls and experimental restoration of the regenerational ability. Cells of irradiated tissues were labeled with H 3 -thymidine; the presence of the label in regenerated tissues would be indicative of participation of irradiated cells in the regeneration process. Irradiation dose was 700 R. 30 axolotls with irradiated limbs were intramuscularly injected with rat muscle homogenate into the right limb once a day beginning from the day of treatment. 15 similarly irradiated animals which did not receive homogenate served as a control. The authors concluded that the presence of highly labeled cells in regenerated tissues was likely to indicate the participation of irradiated tissue cells in regeneration of the limb. However, the quantitative contribution of such cells was impossible to determine since remaining irradiated tissues of the organ contained mostly unlabeled cells. It was also impossible to rule out the possibility of cell migration from non-irradiated tissues [ru

  6. Pharmacological Inhibition of PKCθ Counteracts Muscle Disease in a Mouse Model of Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Marrocco, V; Fiore, P; Benedetti, A; Pisu, S; Rizzuto, E; Musarò, A; Madaro, L; Lozanoska-Ochser, B; Bouché, M

    2017-02-01

    Inflammation plays a considerable role in the progression of Duchenne Muscular Dystrophy (DMD), a severe muscle disease caused by a mutation in the dystrophin gene. We previously showed that genetic ablation of Protein Kinase C θ (PKCθ) in mdx, the mouse model of DMD, improves muscle healing and regeneration, preventing massive inflammation. To establish whether pharmacological targeting of PKCθ in DMD can be proposed as a therapeutic option, in this study we treated young mdx mice with the PKCθ inhibitor Compound 20 (C20). We show that C20 treatment led to a significant reduction in muscle damage associated with reduced immune cells infiltration, reduced inflammatory pathways activation, and maintained muscle regeneration. Importantly, C20 treatment is efficient in recovering muscle performance in mdx mice, by preserving muscle integrity. Together, these results provide proof of principle that pharmacological inhibition of PKCθ in DMD can be considered an attractive strategy to modulate immune response and prevent the progression of the disease. Duchenne muscular dystrophy (DMD) is a severe muscle disease affecting 1:3500 male births. DMD is caused by a mutation in dystrophin gene, coding for a protein required for skeletal and cardiac muscle integrity. Lack of a functional dystrophin is primarily responsible for the muscle eccentric contraction-induced muscle damage, observed in dystrophic muscle. However, inflammation plays a considerable role in the progression of DMD. Glucocorticoids, which have anti-inflammatory properties, are being used to treat DMD with some success; however, long term treatment with these drugs induces muscle atrophy and wasting, outweighing their benefit. The identification of specific targets for anti-inflammatory therapies is one of the ongoing therapeutic options. Although blunting inflammation would not be a "cure" for the disease, the emerging clue is that multiple strategies, addressing different aspects of the pathology

  7. Miconazole enhances nerve regeneration and functional recovery after sciatic nerve crush injury.

    Science.gov (United States)

    Lin, Tao; Qiu, Shuai; Yan, Liwei; Zhu, Shuang; Zheng, Canbin; Zhu, Qingtang; Liu, Xiaolin

    2018-05-01

    Improving axonal outgrowth and remyelination is crucial for peripheral nerve regeneration. Miconazole appears to enhance remyelination in the central nervous system. In this study we assess the effect of miconazole on axonal regeneration using a sciatic nerve crush injury model in rats. Fifty Sprague-Dawley rats were divided into control and miconazole groups. Nerve regeneration and myelination were determined using histological and electrophysiological assessment. Evaluation of sensory and motor recovery was performed using the pinprick assay and sciatic functional index. The Cell Counting Kit-8 assay and Western blotting were used to assess the proliferation and neurotrophic expression of RSC 96 Schwann cells. Miconazole promoted axonal regrowth, increased myelinated nerve fibers, improved sensory recovery and walking behavior, enhanced stimulated amplitude and nerve conduction velocity, and elevated proliferation and neurotrophic expression of RSC 96 Schwann cells. Miconazole was beneficial for nerve regeneration and functional recovery after peripheral nerve injury. Muscle Nerve 57: 821-828, 2018. © 2017 Wiley Periodicals, Inc.

  8. Germline Transgenic Methods for Tracking Cells and Testing Gene Function during Regeneration in the Axolotl

    Science.gov (United States)

    Khattak, Shahryar; Schuez, Maritta; Richter, Tobias; Knapp, Dunja; Haigo, Saori L.; Sandoval-Guzmán, Tatiana; Hradlikova, Kristyna; Duemmler, Annett; Kerney, Ryan; Tanaka, Elly M.

    2013-01-01

    The salamander is the only tetrapod that regenerates complex body structures throughout life. Deciphering the underlying molecular processes of regeneration is fundamental for regenerative medicine and developmental biology, but the model organism had limited tools for molecular analysis. We describe a comprehensive set of germline transgenic strains in the laboratory-bred salamander Ambystoma mexicanum (axolotl) that open up the cellular and molecular genetic dissection of regeneration. We demonstrate tissue-dependent control of gene expression in nerve, Schwann cells, oligodendrocytes, muscle, epidermis, and cartilage. Furthermore, we demonstrate the use of tamoxifen-induced Cre/loxP-mediated recombination to indelibly mark different cell types. Finally, we inducibly overexpress the cell-cycle inhibitor p16INK4a, which negatively regulates spinal cord regeneration. These tissue-specific germline axolotl lines and tightly inducible Cre drivers and LoxP reporter lines render this classical regeneration model molecularly accessible. PMID:24052945

  9. R-spondin1 Controls Muscle Cell Fusion through Dual Regulation of Antagonistic Wnt Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Floriane Lacour

    2017-03-01

    Full Text Available Wnt-mediated signals are involved in many important steps in mammalian regeneration. In multiple cell types, the R-spondin (Rspo family of secreted proteins potently activates the canonical Wnt/β-catenin pathway. Here, we identify Rspo1 as a mediator of skeletal muscle tissue repair. First, we show that deletion of Rspo1 results in global alteration of muscle regeneration kinetics following acute injury. We find that muscle progenitor cells lacking Rspo1 show delayed differentiation due to reduced activation of Wnt/β-catenin target genes. Furthermore, muscle cells lacking Rspo1 have a fusion phenotype leading to larger myotubes containing supernumerary nuclei both in vitro and in vivo. The increase in muscle fusion was dependent on downregulation of Wnt/β-catenin and upregulation of non-canonical Wnt7a/Fzd7/Rac1 signaling. We conclude that reciprocal control of antagonistic Wnt signaling pathways by Rspo1 in muscle stem cell progeny is a key step ensuring normal tissue architecture restoration following acute damage.

  10. Function of skeletal muscle tissue formed after myoblast transplantation into irradiated mouse muscles.

    Science.gov (United States)

    Wernig, A; Zweyer, M; Irintchev, A

    2000-01-15

    1. Pretreatment of muscles with ionising radiation enhances tissue formation by transplanted myoblasts but little is known about the effects on muscle function. We implanted myoblasts from an expanded, male-donor-derived, culture (i28) into X-ray irradiated (16 Gy) or irradiated and damaged soleus muscles of female syngeneic mice (Balb/c). Three to 6 months later the isometric contractile properties of the muscles were studied in vitro, and donor nuclei were visualised in muscle sections with a Y chromosome-specific DNA probe. 2. Irradiated sham-injected muscles had smaller masses than untreated solei and produced less twitch and tetanic force (all by about 18 %). Injection of 106 myoblasts abolished these deficiencies and innervation appeared normal. 3. Cryodamage of irradiated solei produced muscle remnants with few (1-50) or no fibres. Additional myoblast implantation led to formation of large muscles (25 % above normal) containing numerous small-diameter fibres. Upon direct electrical stimulation, these muscles produced considerable twitch (53 % of normal) and tetanic forces (35 % of normal) but innervation was insufficient as indicated by weak nerve-evoked contractions and elevated ACh sensitivity. 4. In control experiments on irradiated muscles, reinnervation was found to be less complete after botulinum toxin paralysis than after nerve crush indicating that proliferative arrest of irradiated Schwann cells may account for the observed innervation deficits. 5. Irradiation appears to be an effective pretreatment for improving myoblast transplantation. The injected cells can even produce organised contractile tissue replacing whole muscle. However, impaired nerve regeneration limits the functional performance of the new muscle.

  11. Aging, metabolism and stem cells: Spotlight on muscle stem cells.

    Science.gov (United States)

    García-Prat, Laura; Muñoz-Cánoves, Pura

    2017-04-15

    All tissues and organs undergo a progressive regenerative decline as they age. This decline has been mainly attributed to loss of stem cell number and/or function, and both stem cell-intrinsic changes and alterations in local niches and/or systemic environment over time are known to contribute to the stem cell aging phenotype. Advancing in the molecular understanding of the deterioration of stem cell cells with aging is key for targeting the specific causes of tissue regenerative dysfunction at advanced stages of life. Here, we revise exciting recent findings on why stem cells age and the consequences on tissue regeneration, with a special focus on regeneration of skeletal muscle. We also highlight newly identified common molecular pathways affecting diverse types of aging stem cells, such as altered proteostasis, metabolism, or senescence entry, and discuss the questions raised by these findings. Finally, we comment on emerging stem cell rejuvenation strategies, principally emanating from studies on muscle stem cells, which will surely burst tissue regeneration research for future benefit of the increasing human aging population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. First record of Stibarobdella moorei (Annelida, Hirudinea, Piscicolidae) a marine leech parasitizing Octopus bimaculatus (Mollusca: Octopodidae) from the Mexican Pacific coast

    OpenAIRE

    López-Peraza D. J.; Hernández-Rodríguez M.; Barón-Sevilla B.; Bückle-Ramírez L. F.; Grano-Maldonado M. I.

    2017-01-01

    The occurrence of the parasitic marine leech Stibarobdella moorei (Oka, 1910) (Hirudinea: Piscicolidae) along the northwest Mexican Pacific coast is described for the first time. This ectoparasite was collected from the skin of the Octopus bimaculatus (Verril, 1983) (Mollusca: Octopodidae). Stibarobdella loricata (Hardig, 1924) is synonymized with S. moorei as this species resembles other species of the genus based on tubercle patterns and the presence of papillae and a marginal fringe on the...

  13. Effects of knee immobilization on morphological changes in the semitendinosus muscle-tendon complex after hamstring harvesting for anterior cruciate ligament reconstruction. Evaluation using three-dimensional computed tomography

    International Nuclear Information System (INIS)

    Nakamae, Atsuo; Adachi, Nobuo; Nakasa, Tomoyuki; Nishimori, Makoto; Ochi, Mitsuo; Deie, Masataka

    2012-01-01

    It is desirable to maintain the morphology of the semitendinosus muscle-tendon complex after tendon harvesting for anterior cruciate ligament (ACL) reconstruction. The purpose of this study was to evaluate the effect of knee immobilization on morphological changes in the semitendinosus muscle-tendon complex. In total, 39 patients who underwent ACL reconstruction with autologous semitendinosus tendons were included in this study. After surgery, the knee was immobilized for 3 days in 1 group of patients (group 1; 24 patients; control group) and for a longer period (10-14 days) in the other group (group 2; 15 patients). Three-dimensional computed tomography (3D CT) examination was performed at 6 and/or 12 months after the surgery for all patients. Morphological changes in the semitendinosus muscle-tendon complex (proximal shift of the semitendinosus muscle-tendon junction, width of the regenerated semitendinosus tendons, re-insertion sites of the regenerated tendons, and rate of semitendinosus tendon regeneration) were evaluated. Successful regeneration of the semitendinosus tendon was confirmed in all patients in group 2. In group 1, 3D CT showed that regeneration of the semitendinosus tendon was unsuccessful in 1 of the 24 patients. The average length of the proximal shift of the semitendinosus muscle-tendon junction was 7.3±2.5 cm in group 1 and 7.2±1.9 cm in group 2. There were no significant differences between the 2 groups with regard to the morphological changes in the semitendinosus muscle-tendon complex. This study showed that the structure of regenerated tendons could be clearly identified in 38 of 39 cases (97.4%) after ACL reconstruction. However, prolonged knee immobilization (10-14 days) could not prevent morphological changes in the semitendinosus muscle-tendon complex. (author)

  14. IL-6 signaling blockade increases inflammation but does not affect muscle function in the mdx mouse

    Directory of Open Access Journals (Sweden)

    Kostek Matthew C

    2012-06-01

    Full Text Available Abstract Background IL-6 is a pleiotropic cytokine that modulates inflammatory responses and plays critical roles in muscle maintenance and remodeling. In the mouse model (mdx of Duchenne Muscular Dystrophy, IL-6 and muscle inflammation are elevated, which is believed to contribute to the chronic inflammation and failure of muscle regeneration in DMD. The purpose of the current study was to examine the effect of blocking IL-6 signaling on the muscle phenotype including muscle weakness and pathology in the mdx mouse. Methods A monoclonal antibody against the IL-6 receptor (IL-6r mAb that blocks local and systemic IL-6 signaling was administered to mdx and BL-10 mice for 5 weeks and muscle function, histology, and inflammation were examined. Results IL-6r mAb treatment increased mdx muscle inflammation including total inflammation score and ICAM-1 positive lumens in muscles. There was no significant improvement in muscle strength nor muscle pathology due to IL-6r mAb treatment in mdx mice. Conclusions These results showed that instead of reducing inflammation, IL-6 signaling blockade for 5 weeks caused an increase in muscle inflammation, with no significant change in indices related to muscle regeneration and muscle function. The results suggest a potential anti-inflammatory instead of the original hypothesized pro-inflammatory role of IL-6 signaling in the mdx mice.

  15. Effects of rapid shortening on rate of force regeneration and myoplasmic [Ca2+] in intact frog skeletal muscle fibres

    Science.gov (United States)

    Vandenboom, R; Claflin, D R; Julian, F J

    1998-01-01

    The effect of rapid shortening on rate of force regeneration (dF/dtR) was examined in single, intact frog (Rana temporaria) skeletal muscle fibres (3·0 °C). Step releases leading to unloaded shortening were applied after 500 ms of stimulation, during the plateau of an isometric tetanus. Initial mean sarcomere length ranged from 2·05 to 2·35 μm; force regeneration after shortening was at 2·00 μm.Values for dF/dtR following a 25 nm half-sarcomere−1 release were 3·17 ± 0·17 (mean ± s.e.m., n= 8) times greater than the initial rate of rise of force before release (dF/dtI). As release size was increased from 25 to 175 nm half-sarcomere−1, the relationship between release size and dF/dtR decreased sharply before attaining a plateau value that was 1·34 ± 0·09 times greater than dF/dtI. Despite wide variations in dF/dtR, the velocity of unloaded shortening remained constant (2·92 ± 0·08 μm half-sarcomere−1 s−1; n= 8) for the different release amplitudes used in this study.To investigate its role in the attenuation of dF/dtR with increased shortening, the effects of rapid ramp (constant velocity) shortening on intracellular free Ca2+ concentration ([Ca2+]i) were monitored using the Ca2+-sensitive fluorescent dye furaptra. Compared with an isometric contraction, rapid fibre shortening was associated with a transient increase in [Ca2+]i while force regeneration after shortening was associated with a transient reduction in [Ca2+]i. The greatest reductions in [Ca2+]i were associated with the largest amplitude ramps.Cross-bridge-mediated modifications of the Ca2+ affinity of troponin C (TnC) may explain the fluctuations in [Ca2+]i observed during and after ramps. Associated fluctuations in TnC Ca2+ occupancy could play a role in the reduction of dF/dtR with increasing release size. PMID:9679172

  16. The extraocular muscle stem cell niche is resistant to ageing and disease

    Directory of Open Access Journals (Sweden)

    Luigi eFormicola

    2014-12-01

    Full Text Available Specific muscles are spared in many degenerative myopathies. Most notably, the extraocular muscles (EOMs do not show clinical signs of late stage myopathies including the accumulation of fibrosis and fat. It has been proposed that an altered stem cell niche underlies the resistance of EOMs in these pathologies, however, to date, no reports have provided a detailed characterization of the EOM stem cell niche. PW1/Peg3 is expressed in progenitor cells in all adult tissues including satellite cells and a subset of interstitial non-satellite cell progenitors in muscle. These PW1-positive interstitial cells (PICs include a fibroadipogenic progenitor population (FAPs that give rise to fat and fibrosis in late stage myopathies. PICs/FAPs are mobilized following injury and FAPs exert a promyogenic role upon myoblasts in vitro but require the presence of a minimal population of satellite cells in vivo. We and others recently described that FAPs express promyogenic factors while satellite cells express antimyogenic factors suggesting that PICs/FAPs act as support niche cells in skeletal muscle through paracrine interactions. We analyzed the EOM stem cell niche in young adult and aged wild-type mice and found that the balance between PICs and satellite cells within the EOM stem cell niche is maintained throughout life. Moreover, in the adult mdx mouse model for Duchenne muscular dystrophy, the EOM stem cell niche is unperturbed compared to normal mice, in contrast to Tibialis Anterior (TA muscle, which displays signs of ongoing degeneration/regeneration. Regenerating mdx TA shows increased levels of both PICs and satellite cells, comparable to normal unaffected EOMs. We propose that the increase in PICs that we observe in normal EOMs contributes to preserving the integrity of the myofibers and satellite cells. Our data suggest that molecular cues regulating muscle regeneration are intrinsic properties of EOMs.

  17. FOXO3 Promotes Quiescence in Adult Muscle Stem Cells during the Process of Self-Renewal

    Directory of Open Access Journals (Sweden)

    Suchitra D. Gopinath

    2014-04-01

    Full Text Available Skeletal muscle stem cells, or “satellite cells” (SCs, are required for the regeneration of damaged muscle tissue. Although SCs self-renew during regeneration, the mechanisms that govern SC re-entry into quiescence remain elusive. We show that FOXO3, a member of the forkhead family of transcription factors, is expressed in quiescent SCs (QSCs. Conditional deletion of Foxo3 in QSCs impairs self-renewal and increases the propensity of SCs to adopt a differentiated fate. Transcriptional analysis of SCs lacking FOXO3 revealed a downregulation of Notch signaling, a key regulator of SC quiescence. Conversely, overexpression of Notch intracellular domain (NICD rescued the self-renewal deficit of FOXO3-deficient SCs. We show that FOXO3 regulates NOTCH1 and NOTCH3 receptor expression and that decreasing expression of NOTCH1 and NOTCH3 receptors phenocopies the effect of FOXO3 deficiency in SCs. We demonstrate that FOXO3, perhaps by activating Notch signaling, promotes the quiescent state during SC self-renewal in adult muscle regeneration.

  18. Controlled chaos: three-dimensional kinematics, fiber histochemistry, and muscle contractile dynamics of autotomized lizard tails.

    Science.gov (United States)

    Higham, Timothy E; Lipsett, Kathryn R; Syme, Douglas A; Russell, Anthony P

    2013-01-01

    The ability to shed an appendage occurs in both vertebrates and invertebrates, often as a tactic to avoid predation. The tails of lizards, unlike most autotomized body parts of animals, exhibit complex and vigorous movements once disconnected from the body. Despite the near ubiquity of autotomy across groups of lizards and the fact that this is an extraordinary event involving the self-severing of the spinal cord, our understanding of why and how tails move as they do following autotomy is sparse. We herein explore the histochemistry and physiology of the tail muscles of the leopard gecko (Eublepharis macularius), a species that exhibits vigorous and variable tail movements following autotomy. To confirm that the previously studied tail movements of this species are generally representative of geckos and therefore suitable for in-depth muscle studies, we quantified the three-dimensional kinematics of autotomized tails in three additional species. The movements of the tails of all species were generally similar and included jumps, flips, and swings. Our preliminary analyses suggest that some species of gecko exhibit short but high-frequency movements, whereas others exhibit larger-amplitude but lower-frequency movements. We then compared the ATPase and oxidative capacity of muscle fibers and contractile dynamics of isolated muscle bundles from original tails, muscle from regenerate tails, and fast fibers from an upper limb muscle (iliofibularis) of the leopard gecko. Histochemical analysis revealed that more than 90% of the fibers in original and regenerate caudal muscles had high ATPase but possessed a superficial layer of fibers with low ATPase and high oxidative capacity. We found that contraction kinetics, isometric force, work, power output, and the oscillation frequency at which maximum power was generated were lowest in the original tail, followed by the regenerate tail and then the fast fibers of the iliofibularis. Muscle from the original tail exhibited

  19. SPARC Interacts with Actin in Skeletal Muscle in Vitro and in Vivo

    DEFF Research Database (Denmark)

    Jørgensen, Louise H; Jepsen, Pia Lørup; Boysen, Anders

    2017-01-01

    to actin. This interaction is present in regenerating myofibers of patients with Duchenne muscular dystrophy, polymyositis, and compartment syndrome. Analysis of the α-, β-, and γ-actin isoforms in SPARC knockout myoblasts reveals a changed expression pattern with dominance of γ-actin. In SPARC knockout......The cytoskeleton is an integral part of skeletal muscle structure, and reorganization of the cytoskeleton occurs during various modes of remodeling. We previously found that the extracellular matrix protein secreted protein acidic and rich in cysteine (SPARC) is up-regulated and expressed...... intracellularly in developing muscle, during regeneration and in myopathies, which together suggests that SPARC might serve a specific role within muscle cells. Using co-immunoprecipitation combined with mass spectrometry and verified by staining for direct protein-protein interaction, we find that SPARC binds...

  20. A CREB-MPP7-AMOT Regulatory Axis Controls Muscle Stem Cell Expansion and Self-Renewal Competence

    Directory of Open Access Journals (Sweden)

    Lydia Li

    2017-10-01

    Full Text Available Summary: Skeletal muscle regeneration requires resident muscle stem cells, termed satellite cells (SCs. SCs are largely quiescent during homeostasis yet become activated upon injury to supply myonuclei and self-renewed SCs. Molecular mechanisms underlying the competence of SCs to proliferate and self-renew in response to injury remain unclear. Here, we show that CREB activity establishes proliferative potential during SC quiescence. SCs with inhibited CREB activity remain quiescent and positioned in their niche, but upon injury, they cannot enter or maintain a proliferative state for expansion and self-renewal. We demonstrate mechanistically that Mpp7 is a CREB target and its functional mediator. MPP7 loss affects the level and sub-cellular localization of AMOT and YAP1 in quiescent SCs. Furthermore, MPP7 and AMOT are required for YAP1 nuclear accumulation, and the three are individually required for a proliferative state in myoblasts. We propose that the CREB-MPP7-AMOT-YAP1 axis establishes the competence of quiescent SCs to expand and self-renew, thereby preserving stem cell function. : Satellite cells are quiescent muscle stem cells that have the ability to regenerate muscles after injury. Li and Fan reveal an MPP7-AMOT-YAP1 regulatory axis that acts downstream of CREB to instill satellite cell competence. They also show how this regulatory axis prepares satellite cells for robust muscle regeneration after injury.

  1. A COX-2 inhibitor reduces muscle soreness, but does not influence recovery and adaptation after eccentric exercise

    DEFF Research Database (Denmark)

    Paulsen, G; Egner, I M; Drange, M

    2010-01-01

    The aim of this study was to investigate the effect of a cyclooxygenase (COX)-2 inhibitor on the recovery of muscle function, inflammation, regeneration after, and adaptation to, unaccustomed eccentric exercise. Thirty-three young males and females participated in a double-blind, placebo-controll......The aim of this study was to investigate the effect of a cyclooxygenase (COX)-2 inhibitor on the recovery of muscle function, inflammation, regeneration after, and adaptation to, unaccustomed eccentric exercise. Thirty-three young males and females participated in a double-blind, placebo...

  2. The Effect of Plasma Exposure on Tail Regeneration of Tadpoles Xenopus Laevis

    Science.gov (United States)

    June, Joyce; Rivie, Adonis; Ezuduemoih, Raphael; Menon, Jaishri; Martus, Kevin

    2014-03-01

    Wound healing requires a balanced combination of nutrients and growth factors for healing and tissue regeneration. The effect of plasma exposure on tail regeneration of tadpoles, Xenopus laevis is investigated. The exposure of the wound to the helium plasma immediately followed the amputation of 40% of the tail. Amputation of the tail initiates regeneration of spinal cord, muscle, notochord, skin and connective tissues. By 24 h, the wound was covered by wound epithelium and blastema was formed by day 5. There was increased angiogenesis in plasma exposed tail regenerate compared to the control following 5 d post amputation. Observed was an increase in NO production in the regenerate of plasma exposed tadpoles was derived from increased activity of nNOS and iNOS. Western blot analysis for vascular endothelial growth factor showed stronger bands for the protein in amputated tadpoles of both the groups. Analysis of the composition and characteristics of the plasma using optical emission spectroscopy indicates excited state species consisting of N2, N2+,and OH is present in the plasma. This study was supported, in part, by the NSF Grant 1040108.

  3. Improved neurological outcome by intramuscular injection of human amniotic fluid derived stem cells in a muscle denervation model.

    Directory of Open Access Journals (Sweden)

    Chun-Jung Chen

    Full Text Available The skeletal muscle develops various degrees of atrophy and metabolic dysfunction following nerve injury. Neurotrophic factors are essential for muscle regeneration. Human amniotic fluid derived stem cells (AFS have the potential to secrete various neurotrophic factors necessary for nerve regeneration. In the present study, we assess the outcome of neurological function by intramuscular injection of AFS in a muscle denervation and nerve anastomosis model.Seventy two Sprague-Dawley rats weighing 200-250 gm were enrolled in this study. Muscle denervation model was conducted by transverse resection of a sciatic nerve with the proximal end sutured into the gluteal muscle. The nerve anastomosis model was performed by transverse resection of the sciatic nerve followed by four stitches reconnection. These animals were allocated to three groups: control, electrical muscle stimulation, and AFS groups.NT-3 (Neurotrophin 3, BDNF (Brain derived neurotrophic factor, CNTF (Ciliary neurotrophic factor, and GDNF (Glia cell line derived neurotrophic factor were highly expressed in AFS cells and supernatant of culture medium. Intra-muscular injection of AFS exerted significant expression of several neurotrophic factors over the distal end of nerve and denervated muscle. AFS caused high expression of Bcl-2 in denervated muscle with a reciprocal decrease of Bad and Bax. AFS preserved the muscle morphology with high expression of desmin and acetylcholine receptors. Up to two months, AFS produced significant improvement in electrophysiological study and neurological functions such as SFI (sciatic nerve function index and Catwalk gait analysis. There was also significant preservation of the number of anterior horn cells and increased nerve myelination as well as muscle morphology.Intramuscular injection of AFS can protect muscle apoptosis and likely does so through the secretion of various neurotrophic factors. This protection furthermore improves the nerve

  4. The energetic benefits of tendon springs in running: is the reduction of muscle work important?

    Science.gov (United States)

    Holt, Natalie C; Roberts, Thomas J; Askew, Graham N

    2014-12-15

    The distal muscle-tendon units of cursorial species are commonly composed of short muscle fibres and long, compliant tendons. It is assumed that the ability of these tendons to store and return mechanical energy over the course of a stride, thus avoiding the cyclic absorption and regeneration of mechanical energy by active muscle, offers some metabolic energy savings during running. However, this assumption has not been tested directly. We used muscle ergometry and myothermic measurements to determine the cost of force production in muscles acting isometrically, as they could if mechanical energy was stored and returned by tendon, and undergoing active stretch-shorten cycles, as they would if mechanical energy was absorbed and regenerated by muscle. We found no detectable difference in the cost of force production in isometric cycles compared with stretch-shorten cycles. This result suggests that replacing muscle stretch-shorten work with tendon elastic energy storage and recovery does not reduce the cost of force production. This calls into question the assumption that reduction of muscle work drove the evolution of long distal tendons. We propose that the energetic benefits of tendons are derived primarily from their effect on muscle and limb architecture rather than their ability to reduce the cyclic work of muscle. © 2014. Published by The Company of Biologists Ltd.

  5. Muscle biopsies off-set normal cellular signaling in surrounding musculature

    DEFF Research Database (Denmark)

    Krag, Thomas O; Hauerslev, Simon; Dahlqvist, Julia R

    2013-01-01

    muscle tissue for at least 3 weeks after the biopsy was performed and magnetic resonance imaging suggests that an effect of a biopsy may persist for at least 5 months. Cellular signaling after a biopsy resembles what is seen in severe limb-girdle muscular dystrophy type 2I with respect to protein......Studies of muscle physiology and muscular disorders often require muscle biopsies to answer questions about muscle biology. In this context, we have often wondered if muscle biopsies, especially if performed repeatedly, would affect interpretation of muscle morphology and cellular signaling. We...... hypothesized that muscle morphology and cellular signaling involved in myogenesis/regeneration and protein turnover can be changed by a previous muscle biopsy in close proximity to the area under investigation. Here we report a case where a past biopsy or biopsies affect cellular signaling of the surrounding...

  6. Non-myogenic Contribution to Muscle Development and Homeostasis: The Role of Connective Tissues.

    Science.gov (United States)

    Nassari, Sonya; Duprez, Delphine; Fournier-Thibault, Claire

    2017-01-01

    Skeletal muscles belong to the musculoskeletal system, which is composed of bone, tendon, ligament and irregular connective tissue, and closely associated with motor nerves and blood vessels. The intrinsic molecular signals regulating myogenesis have been extensively investigated. However, muscle development, homeostasis and regeneration require interactions with surrounding tissues and the cellular and molecular aspects of this dialogue have not been completely elucidated. During development and adult life, myogenic cells are closely associated with the different types of connective tissue. Connective tissues are defined as specialized (bone and cartilage), dense regular (tendon and ligament) and dense irregular connective tissue. The role of connective tissue in muscle morphogenesis has been investigated, thanks to the identification of transcription factors that characterize the different types of connective tissues. Here, we review the development of the various connective tissues in the context of the musculoskeletal system and highlight their important role in delivering information necessary for correct muscle morphogenesis, from the early step of myoblast differentiation to the late stage of muscle maturation. Interactions between muscle and connective tissue are also critical in the adult during muscle regeneration, as impairment of the regenerative potential after injury or in neuromuscular diseases results in the progressive replacement of the muscle mass by fibrotic tissue. We conclude that bi-directional communication between muscle and connective tissue is critical for a correct assembly of the musculoskeletal system during development as well as to maintain its homeostasis in the adult.

  7. DNA methylation dynamics in muscle development and disease

    Directory of Open Access Journals (Sweden)

    Elvira eCarrio

    2015-03-01

    Full Text Available DNA methylation is an essential epigenetic modification for mammalian development and is crucial for the establishment and maintenance of cellular identity. Traditionally, DNA methylation has been considered as a permanent repressive epigenetic mark. However, the application of genome-wide approaches has allowed the analysis of DNA methylation in different genomic contexts revealing a more dynamic regulation than originally thought, since active DNA methylation and demethylation occur during cellular differentiation and tissue specification. Satellite cells are the primary stem cells in adult skeletal muscle and are responsible for postnatal muscle growth, hypertrophy, and muscle regeneration. This review outlines the published data regarding DNA methylation changes along the skeletal muscle program, in both physiological and pathological conditions, to better understand the epigenetic mechanisms that control myogenesis

  8. Heart regeneration.

    Science.gov (United States)

    Breckwoldt, Kaja; Weinberger, Florian; Eschenhagen, Thomas

    2016-07-01

    Regenerating an injured heart holds great promise for millions of patients suffering from heart diseases. Since the human heart has very limited regenerative capacity, this is a challenging task. Numerous strategies aiming to improve heart function have been developed. In this review we focus on approaches intending to replace damaged heart muscle by new cardiomyocytes. Different strategies for the production of cardiomyocytes from human embryonic stem cells or human induced pluripotent stem cells, by direct reprogramming and induction of cardiomyocyte proliferation are discussed regarding their therapeutic potential and respective advantages and disadvantages. Furthermore, different methods for the transplantation of pluripotent stem cell-derived cardiomyocytes are described and their clinical perspectives are discussed. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Peptidomics Analysis of Transient Regeneration in the Neonatal Mouse Heart.

    Science.gov (United States)

    Fan, Yi; Zhang, Qijun; Li, Hua; Cheng, Zijie; Li, Xing; Chen, Yumei; Shen, Yahui; Wang, Liansheng; Song, Guixian; Qian, Lingmei

    2017-09-01

    Neonatal mouse hearts have completely regenerative capability after birth, but the ability to regenerate rapidly lost after 7 days, the mechanism has not been clarified. Previous studies have shown that mRNA profile of adult mouse changed greatly compared to neonatal mouse. So far, there is no research of peptidomics related to heart regeneration. In order to explore the changes of proteins, enzymes, and peptides related to the transient regeneration, we used comparative petidomics technique to compare the endogenous peptides in the mouse heart of postnatal 1 and 7 days. In final, we identified 236 differentially expressed peptides, 169 of which were upregulated and 67 were downregulated in the postnatal 1 day heart, and also predicted 36 functional peptides associated with transient regeneration. The predicted 36 candidate peptides are located in the important domains of precursor proteins and/or contain the post-transcriptional modification (PTM) sites, which are involved in the biological processes of cardiac development, cardiac muscle disease, cell proliferation, necrosis, and apoptosis. In conclusion, for the first time, we compared the peptidomics profiles of neonatal heart between postnatal 1 day and postnatal 7 day. This study provides a new direction and an important basis for the mechanism research of transient regeneration in neonatal heart. J. Cell. Biochem. 118: 2828-2840, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Common cellular events occur during wound healing and organ regeneration in the sea cucumber Holothuria glaberrima

    Directory of Open Access Journals (Sweden)

    García-Arrarás José E

    2007-10-01

    Full Text Available Abstract Background All animals possess some type of tissue repair mechanism. In some species, the capacity to repair tissues is limited to the healing of wounds. Other species, such as echinoderms, posses a striking repair capability that can include the replacement of entire organs. It has been reported that some mechanisms, namely extracellular matrix remodeling, appear to occur in most repair processes. However, it remains unclear to what extent the process of organ regeneration, particularly in animals where loss and regeneration of complex structures is a programmed natural event, is similar to wound healing. We have now used the sea cucumber Holothuria glaberrima to address this question. Results Animals were lesioned by making a 3–5 mm transverse incision between one of the longitudinal muscle pairs along the bodywall. Lesioned tissues included muscle, nerve, water canal and dermis. Animals were allowed to heal for up to four weeks (2, 6, 12, 20, and 28 days post-injury before sacrificed. Tissues were sectioned in a cryostat and changes in cellular and tissue elements during repair were evaluated using classical dyes, immmuohistochemistry and phalloidin labeling. In addition, the temporal and spatial distribution of cell proliferation in the animals was assayed using BrdU incorporation. We found that cellular events associated with wound healing in H. glaberrima correspond to those previously shown to occur during intestinal regeneration. These include: (1 an increase in the number of spherule-containing cells, (2 remodeling of the extracellular matrix, (3 formation of spindle-like structures that signal dedifferentiation of muscle cells in the area flanking the lesion site and (4 intense cellular division occurring mainly in the coelomic epithelium after the first week of regeneration. Conclusion Our data indicate that H. glaberrima employs analogous cellular mechanisms during wound healing and organ regeneration. Thus, it is possible

  11. Peripheral nerve injury causes transient expression of MHC class I antigens in rat motor neurons and skeletal muscles

    DEFF Research Database (Denmark)

    Maehlen, J; Nennesmo, I; Olsson, A B

    1989-01-01

    After a peripheral nerve lesion (rat facial and sciatic) an induction of major histocompatibility complex (MHC) antigens class I was detected immunohistochemically in skeletal muscle fibers and motor neurons. This MHC expression was transient after a nerve crush, when regeneration occurred......, but persisted after a nerve cut, when regeneration was prevented. Since the time course of MHC class I expression correlates to that of regeneration a role for this cell surface molecule in regeneration may be considered....

  12. Transplantation of Allogeneic PW1pos/Pax7neg Interstitial Cells Enhance Endogenous Repair of Injured Porcine Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Fiona C. Lewis, BSc, PhD

    2017-12-01

    Full Text Available Skeletal muscle-derived PW1pos/Pax7neg interstitial cells (PICs express and secrete a multitude of proregenerative growth factors and cytokines. Utilizing a porcine preclinical skeletal muscle injury model, delivery of allogeneic porcine PICs (pPICs significantly improved and accelerated myofiber regeneration and neocapillarization, compared with saline vehicle control-treated muscles. Allogeneic pPICs did not contribute to new myofibers or capillaries and were eliminated by the host immune system. In conclusion, allogeneic pPIC transplantation stimulated the endogenous stem cell pool to bring about enhanced autologous skeletal muscle repair and regeneration. This allogeneic cell approach is considered a cost-effective, easy to apply, and readily available regenerative therapeutic strategy.

  13. Functional dysregulation of stem cells during aging: a focus on skeletal muscle stem cells.

    Science.gov (United States)

    García-Prat, Laura; Sousa-Victor, Pedro; Muñoz-Cánoves, Pura

    2013-09-01

    Aging of an organism is associated with the functional decline of tissues and organs, as well as a sharp decline in the regenerative capacity of stem cells. A prevailing view holds that the aging rate of an individual depends on the ratio of tissue attrition to tissue regeneration. Therefore, manipulations that favor the balance towards regeneration may prevent or delay aging. Skeletal muscle is a specialized tissue composed of postmitotic myofibers that contract to generate force. Satellite cells are the adult stem cells responsible for skeletal muscle regeneration. Recent studies on the biology of skeletal muscle and satellite cells in aging have uncovered the critical impact of systemic and niche factors on stem cell functionality and demonstrated the capacity of aged satellite cells to rejuvenate and increase their regenerative potential when exposed to a youthful environment. Here we review the current literature on the coordinated relationship between cell extrinsic and intrinsic factors that regulate the function of satellite cells, and ultimately determine tissue homeostasis and repair during aging, and which encourage the search for new anti-aging strategies. © 2013 The Authors Journal compilation © 2013 FEBS.

  14. Experiment K-7-29: Connective Tissue Studies. Part 3; Rodent Tissue Repair: Skeletal Muscle

    Science.gov (United States)

    Stauber, W.; Fritz, V. K.; Burkovskaya, T. E.; Ilyina-Kakueva, E. I.

    1994-01-01

    Myofiber injury-repair was studied in the rat gastrocnemius following a crush injury to the lower leg prior to flight in order to understand if the regenerative responses of muscles are altered by the lack of gravitational forces during Cosmos 2044 flight. After 14 days of flight, the gastrocnemius muscle was removed from the 5 injured flight rodents and various Earth-based treatment groups for comparison. The Earth-based animals consisted of three groups of five rats with injured muscles from a simulated, tail-suspended, and vivarium as well as an uninjured basal group. The gastrocnemius muscle from each was evaluated by histochemical and immunohistochemical techniques to document myofiber, vascular, and connective tissue alterations following injury. In general the repair process was somewhat similar in all injured muscle samples with regard to extracellular matrix organization and myofiber regeneration. Small and large myofibers were present with a newly organized extracellular matrix indicative of myogenesis and muscle regeneration. In the tail-suspended animals, a more complete repair was observed with no enlarged area of non-muscle cells or matrix material visible. In contrast, the muscle samples from the flight animals were less well differentiated with more macrophages and blood vessels in the repair region but small myofibers and proteoglycans, nevertheless, were in their usual configuration. Thus, myofiber repair did vary in muscles from the different groups, but for the most part, resulted in functional muscle tissue.

  15. Post-injury stretch promotes recovery in a rat model of muscle damage induced by lengthening contractions.

    Science.gov (United States)

    Mori, Tomohiro; Agata, Nobuhide; Itoh, Yuta; Inoue-Miyazu, Masumi; Mizumura, Kazue; Sokabe, Masahiro; Taguchi, Toru; Kawakami, Keisuke

    2017-06-30

    We investigated the cellular mechanisms and therapeutic effect of post-injury stretch on the recovery process from muscle injury induced by lengthening contractions (LC). One day after LC, a single 15-min bout of muscle stretch was applied at an intensity of 3 mNm. The maximal isometric torque was measured before and at 2-21 days after LC. The myofiber size was analyzed at 21 days after LC. Developmental myosin heavy chain-immunoreactive (dMHC-ir) cells, a marker of regenerating myofibers, were observed in the early recovery stage (2-5 days after LC). We observed that LC-induced injury markedly decreased isometric torque and myofiber size, which recovered faster in rats that underwent stretch than in rats that did not. Regenerating myofiber with dMHC-ir cells was observed earlier in rats that underwent stretch. These results indicate that post-injury stretch may facilitate the regeneration and early formation of new myofibers, thereby promoting structural and functional recovery from LC-induced muscle injury.

  16. Changes in muscle fiber contractility and extracellular matrix production during skeletal muscle hypertrophy.

    Science.gov (United States)

    Mendias, Christopher L; Schwartz, Andrew J; Grekin, Jeremy A; Gumucio, Jonathan P; Sugg, Kristoffer B

    2017-03-01

    Skeletal muscle can adapt to increased mechanical loads by undergoing hypertrophy. Transient reductions in whole muscle force production have been reported during the onset of hypertrophy, but contractile changes in individual muscle fibers have not been previously studied. Additionally, the extracellular matrix (ECM) stores and transmits forces from muscle fibers to tendons and bones, and determining how the ECM changes during hypertrophy is important in understanding the adaptation of muscle tissue to mechanical loading. Using the synergist ablation model, we sought to measure changes in muscle fiber contractility, collagen content, and cross-linking, and in the expression of several genes and activation of signaling proteins that regulate critical components of myogenesis and ECM synthesis and remodeling during muscle hypertrophy. Tissues were harvested 3, 7, and 28 days after induction of hypertrophy, and nonoverloaded rats served as controls. Muscle fiber specific force (sF o ), which is the maximum isometric force normalized to cross-sectional area, was reduced 3 and 7 days after the onset of mechanical overload, but returned to control levels by 28 days. Collagen abundance displayed a similar pattern of change. Nearly a quarter of the transcriptome changed over the course of overload, as well as the activation of signaling pathways related to hypertrophy and atrophy. Overall, this study provides insight into fundamental mechanisms of muscle and ECM growth, and indicates that although muscle fibers appear to have completed remodeling and regeneration 1 mo after synergist ablation, the ECM continues to be actively remodeling at this time point. NEW & NOTEWORTHY This study utilized a rat synergist ablation model to integrate changes in single muscle fiber contractility, extracellular matrix composition, activation of important signaling pathways in muscle adaption, and corresponding changes in the muscle transcriptome to provide novel insight into the basic

  17. Evaluation of muscle regeneration in aged animals after treatment with low-level laser therapy Avaliação da regeneração muscular em animais idosos após tratamento com laser de baixa intensidade

    Directory of Open Access Journals (Sweden)

    Adriana Pertille

    2012-12-01

    Full Text Available BACKGROUND: The aging process and its associated morphophysiological changes trigger a reduction in the regenerative ability of the satellite cells, a reduction of vascular tissue and an increase in the production of fibroblasts, developing a cellular environment unfavorable for muscle regeneration. OBJECTIVE: The aim of this study was to evaluate the effect of low-level laser therapy on the muscle regeneration of old experimental rat models after contusion. METHOD: A total of 25 old rats,18 months old, were divided into three groups: control group (CT without treatment; injury group (IN with muscle contusion and without treatment and laser group (LA with contusion and low-level laser therapy, 830 nm, 30 mW e 4 J/cm². The no invasive contusion was induced in the Tibialis Anterior muscle and the samples were collected after 7 and 21 treatment sessions. The muscle was evaluated by Light Microscopy and Immunoblotting. RESULTS: After 21 days of treatment there was a significant reduction in the areas of inflammation/regeneration of the LA 21 group compared to IN 21 group. The cross-sectional area of the fibers in regeneration was not statistically different between the groups. Molecular analysis showed that the content of MyoD was statistically reduced in the IN 21 group compared to the CT group. The Myogenin content was increased in the IN 21 group compared to the CT group. Ultimately, the content of TGF-β1 on the IN 21 group was higher when compared to the CT group. CONCLUSION: Considering the parameters used, the laser therapy demonstrated to be effective for muscle regeneration in old rats, however only through its anti-inflammatory effect.CONTEXTUALIZAÇÃO: O processo de envelhecimento e suas consequentes alterações morfofisiológicas desencadeiam redução da habilidade regenerativa das células satélites, redução da vascularização tecidual e aumento da produção de fibroblastos, desenvolvendo-se um ambiente celular desfavor

  18. Chronic Prosopis Glandulosa Treatment Blunts Neutrophil Infiltration and Enhances Muscle Repair after Contusion Injury

    Directory of Open Access Journals (Sweden)

    Cindy George

    2015-01-01

    Full Text Available The current treatment options for soft tissue injuries remain suboptimal and often result in delayed/incomplete recovery of damaged muscle. The current study aimed to evaluate the effects of oral Prosopis glandulosa treatment on inflammation and regeneration in skeletal muscle after contusion injury, in comparison to a conventional treatment. The gastrocnemius muscle of rats was subjected to mass-drop injury and muscle samples collected after 1-, 3 h, 1- and 7 days post-injury. Rats were treated with P. glandulosa (100 mg/kg/day either for 8 weeks prior to injury (up until day 7 post-injury, only post-injury, or with topically applied diclofenac post-injury (0.57 mg/kg. Neutrophil (His48-positive and macrophage (F4/80-positive infiltration was assessed by means of immunohistochemistry. Indicators of muscle satellite cell proliferation (ADAM12 and regeneration (desmin were used to evaluate muscle repair. Chronic P. glandulosa and diclofenac treatment (p < 0.0001 was associated with suppression of the neutrophil response to contusion injury, however only chronic P. glandulosa treatment facilitated more effective muscle recovery (increased ADAM12 (p < 0.05 and desmin (p < 0.001 expression, while diclofenac treatment had inhibitory effects on repair, despite effective inhibition of neutrophil response. Data indicates that P. glandulosa treatment results in more effective muscle repair after contusion.

  19. Identification of adequate vehicles to carry nerve regeneration inducers using tubulisation

    Directory of Open Access Journals (Sweden)

    do Nascimento-Elias Adriana Helena

    2012-08-01

    Full Text Available Abstract Background Axonal regeneration depends on many factors, such as the type of injury and repair, age, distance from the cell body and distance of the denervated muscle, loss of surrounding tissue and the type of injured nerve. Experimental models use tubulisation with a silicone tube to research regenerative factors and substances to induce regeneration. Agarose, collagen and DMEM (Dulbecco’s modified Eagle’s medium can be used as vehicles. In this study, we compared the ability of these vehicles to induce rat sciatic nerve regeneration with the intent of finding the least active or inert substance. The experiment used 47 female Wistar rats, which were divided into four experimental groups (agarose 4%, agarose 0.4%, collagen, DMEM and one normal control group. The right sciatic nerve was exposed, and an incision was made that created a 10 mm gap between the distal and proximal stumps. A silicone tube was grafted onto each stump, and the tubes were filled with the respective media. After 70 days, the sciatic nerve was removed. We evaluated the formation of a regeneration cable, nerve fibre growth, and the functional viability of the regenerated fibres. Results Comparison among the three vehicles showed that 0.4% agarose gels had almost no effect on provoking the regeneration of peripheral nerves and that 4% agarose gels completely prevented fibre growth. The others substances were associated with profuse nerve fibre growth. Conclusions In the appropriate concentration, agarose gel may be an important vehicle for testing factors that induce regeneration without interfering with nerve growth.

  20. Identification of adequate vehicles to carry nerve regeneration inducers using tubulisation.

    Science.gov (United States)

    do Nascimento-Elias, Adriana Helena; Fresnesdas, Bruno César; Schiavoni, Maria Cristina Lopes; de Almeida, Natália Fernanda Gaspar; Santos, Ana Paula; de Oliveira Ramos, Jean; Junior, Wilson Marques; Barreira, Amilton Antunes

    2012-08-14

    Axonal regeneration depends on many factors, such as the type of injury and repair, age, distance from the cell body and distance of the denervated muscle, loss of surrounding tissue and the type of injured nerve. Experimental models use tubulisation with a silicone tube to research regenerative factors and substances to induce regeneration. Agarose, collagen and DMEM (Dulbecco's modified Eagle's medium) can be used as vehicles. In this study, we compared the ability of these vehicles to induce rat sciatic nerve regeneration with the intent of finding the least active or inert substance. The experiment used 47 female Wistar rats, which were divided into four experimental groups (agarose 4%, agarose 0.4%, collagen, DMEM) and one normal control group. The right sciatic nerve was exposed, and an incision was made that created a 10 mm gap between the distal and proximal stumps. A silicone tube was grafted onto each stump, and the tubes were filled with the respective media. After 70 days, the sciatic nerve was removed. We evaluated the formation of a regeneration cable, nerve fibre growth, and the functional viability of the regenerated fibres. Comparison among the three vehicles showed that 0.4% agarose gels had almost no effect on provoking the regeneration of peripheral nerves and that 4% agarose gels completely prevented fibre growth. The others substances were associated with profuse nerve fibre growth. In the appropriate concentration, agarose gel may be an important vehicle for testing factors that induce regeneration without interfering with nerve growth.

  1. Regulation of muscle stem cell functions: a focus on the p38 MAPK signaling pathway

    Directory of Open Access Journals (Sweden)

    Jessica Segales

    2016-08-01

    Full Text Available Formation of skeletal muscle fibers (myogenesis during development and after tissue injury in the adult constitutes an excellent paradigm to investigate the mechanisms whereby environmental cues control gene expression programs in muscle stem cells (satellite cells by acting on transcriptional and epigenetic effectors. Here we will review the molecular mechanisms implicated in the transition of satellite cells throughout the distinct myogenic stages (i.e., activation from quiescence, proliferation, differentiation and self-renewal. We will also discuss recent findings on the causes underlying satellite cell functional decline with aging. In particular, our review will focus on the epigenetic changes underlying fate decisions and on how the p38 MAPK signaling pathway integrates the environmental signals at the chromatin to build up satellite cell adaptive responses during the process of muscle regeneration, and how these responses are altered in aging. A better comprehension of the signaling pathways connecting external and intrinsic factors will illuminate the path for improving muscle regeneration in the aged.

  2. IGF-1 and Chondroitinase ABC Augment Nerve Regeneration after Vascularized Composite Limb Allotransplantation.

    Directory of Open Access Journals (Sweden)

    Nataliya V Kostereva

    Full Text Available Impaired nerve regeneration and inadequate recovery of motor and sensory function following peripheral nerve repair remain the most significant hurdles to optimal functional and quality of life outcomes in vascularized tissue allotransplantation (VCA. Neurotherapeutics such as Insulin-like Growth Factor-1 (IGF-1 and chondroitinase ABC (CH have shown promise in augmenting or accelerating nerve regeneration in experimental models and may have potential in VCA. The aim of this study was to evaluate the efficacy of low dose IGF-1, CH or their combination (IGF-1+CH on nerve regeneration following VCA. We used an allogeneic rat hind limb VCA model maintained on low-dose FK506 (tacrolimus therapy to prevent rejection. Experimental animals received neurotherapeutics administered intra-operatively as multiple intraneural injections. The IGF-1 and IGF-1+CH groups received daily IGF-1 (intramuscular and intraneural injections. Histomorphometry and immunohistochemistry were used to evaluate outcomes at five weeks. Overall, compared to controls, all experimental groups showed improvements in nerve and muscle (gastrocnemius histomorphometry. The IGF-1 group demonstrated superior distal regeneration as confirmed by Schwann cell (SC immunohistochemistry as well as some degree of extrafascicular regeneration. IGF-1 and CH effectively promote nerve regeneration after VCA as confirmed by histomorphometric and immunohistochemical outcomes.

  3. Co-delivery of micronized urinary bladder matrix damps regenerative capacity of minced muscle grafts in the treatment of volumetric muscle loss injuries.

    Directory of Open Access Journals (Sweden)

    Stephen M Goldman

    Full Text Available Minced muscle grafts (MG promote de novo muscle fiber regeneration and neuromuscular strength recovery in small and large animal models of volumetric muscle loss. The most noteworthy limitation of this approach is its reliance on a finite supply of donor tissue. To address this shortcoming, this study sought to evaluate micronized acellular urinary bladder matrix (UBM as a scaffolding to promote in vivo expansion of this MG therapy in a rat model. Rats received volumetric muscle loss injuries to the tibialis anterior muscle of their left hind limb which were either left untreated or repaired with minced muscle graft at dosages of 50% and 100% of the defect mass, urinary bladder matrix in isolation, or a with an expansion product consisting of a combination of the two putative therapies in which the minced graft is delivered at a dosage of 50% of the defect mass. Rats survived to 2 and 8 weeks post injury before functional (in vivo neuromuscular strength, histological, morphological, and biochemical analyses were performed. Rats treated with the expansion product exhibited improved neuromuscular function relative to untreated VML after an 8 week time period following injury. This improvement in functional capacity, however, was accompanied with a concomitant reduction in graft mediated regeneration, as evidenced cell lineage tracing enable by a transgenic GFP expressing donor, and a mixed histological outcome indicating coincident fibrous matrix deposition with interspersed islands of nascent muscle fibers. Furthermore, quantitative immunofluorescence and transcriptional analysis following the 2 week time point suggests an exacerbated immune response to the UBM as a possible nidus for the observed suboptimal regenerative outcome. Moving forward, efforts related to the development of a MG expansion product should carefully consider the effects of the host immune response to candidate biomaterials in order to avoid undesirable dysregulation of pro

  4. Epigenetic Reprogramming of Muscle Progenitors: Inspiration for Clinical Therapies

    Directory of Open Access Journals (Sweden)

    Silvia Consalvi

    2016-01-01

    Full Text Available In the context of regenerative medicine, based on the potential of stem cells to restore diseased tissues, epigenetics is becoming a pivotal area of interest. Therapeutic interventions that promote tissue and organ regeneration have as primary objective the selective control of gene expression in adult stem cells. This requires a deep understanding of the epigenetic mechanisms controlling transcriptional programs in tissue progenitors. This review attempts to elucidate the principle epigenetic regulations responsible of stem cells differentiation. In particular we focus on the current understanding of the epigenetic networks that regulate differentiation of muscle progenitors by the concerted action of chromatin-modifying enzymes and noncoding RNAs. The novel exciting role of exosome-bound microRNA in mediating epigenetic information transfer is also discussed. Finally we show an overview of the epigenetic strategies and therapies that aim to potentiate muscle regeneration and counteract the progression of Duchenne Muscular Dystrophy (DMD.

  5. GABA-ergic neurons in the leach central nervous system

    International Nuclear Information System (INIS)

    Cline, H.T.

    1985-01-01

    GABA is a candidate for an inhibitory neurotransmitter in the leech central nervous system because of the well-documented inhibitory action of GABA in other invertebrates. To demonstrate that GABA meets the criteria used to identify a substance as a neurotransmitter, the author examined GABA metabolism and synaptic interactions of inhibitory motor neurons in two leech species, Hirudo medicinalis and Haementeria ghilianii. Segmental ganglia of the leech ventral nerve cord and identified inhibitors have the capacity to synthesize GABA when incubated in the presence of the precursor glutamate. Application of GABA to cell bodies of excitatory motor neurons or muscle fibers innervated by the inhibitors hyperpolarizes the membrane potential of the target cell and activates a chloride ion conductance channel, similar to the inhibitory membrane response following intracellular stimulation of the inhibitor. Bicuculline methiodide (5 x 10 -5 M), GABA receptor antagonist, blocks reversibly the response to applied GABA and the inhibitory synaptic inputs onto the postsynaptic neurons or muscle fibers without interfering with their excitatory inputs. Furthermore, the inhibitors are included among approximately 25 neurons per segmental ganglion that take up GABA by a high affinity uptake system, as revealed by 3 H-GABA-autoradiography. The development of the capacities to synthesize and to take up GABA were examined in leech embryos. The embryos are able to synthesize GABA at early stages of the development of the nervous system, before any neurons have extended neutrites

  6. The role of satellite cells in muscle hypertrophy.

    Science.gov (United States)

    Blaauw, Bert; Reggiani, Carlo

    2014-02-01

    The role of satellite cells in muscle hypertrophy has long been a debated issue. In the late 1980s it was shown that proteins remain close to the myonucleus responsible for its synthesis, giving rise to the idea of a nuclear domain. This, together with the observation that during various models of muscle hypertrophy there is an activation of the muscle stem cells, i.e. satellite cells, lead to the idea that satellite cell activation is required for muscle hypertrophy. Thus, satellite cells are not only responsible for muscle repair and regeneration, but also for hypertrophic growth. Further support for this line of thinking was obtained after studies showing that irradiation of skeletal muscle, and therefore elimination of all satellite cells, completely prevented overload-induced hypertrophy. Recently however, using different transgenic approaches, it has become clear that muscle hypertrophy can occur without a contribution of satellite cells, even though in most situations of muscle hypertrophy satellite cells are activated. In this review we will discuss the contribution of satellite cells, and other muscle-resident stem cells, to muscle hypertrophy both in mice as well as in humans.

  7. Deficiency in monocarboxylate transporter 1 (MCT1) in mice delays regeneration of peripheral nerves following sciatic nerve crush

    KAUST Repository

    Morrison, Brett M.; Tsingalia, Akivaga; Vidensky, Svetlana; Lee, Youngjin; Jin, Lin; Farah, Mohamed H.; Lengacher, Sylvain; Magistretti, Pierre J.; Pellerin, Luc; Rothsteinb, Jeffrey D.

    2015-01-01

    Peripheral nerve regeneration following injury occurs spontaneously, but many of the processes require metabolic energy. The mechanism of energy supply to axons has not previously been determined. In the central nervous system, monocarboxylate transporter 1 (MCT1), expressed in oligodendroglia, is critical for supplying lactate or other energy metabolites to axons. In the current study, MCT1 is shown to localize within the peripheral nervous system to perineurial cells, dorsal root ganglion neurons, and Schwann cells by MCT1 immunofluorescence in wild-type mice and tdTomato fluorescence in MCT1 BAC reporter mice. To investigate whether MCT1 is necessary for peripheral nerve regeneration, sciatic nerves of MCT1 heterozygous mice are crushed and peripheral nerve regeneration was quantified electrophysiologically and anatomically. Compound muscle action potential (CMAP) recovery is delayed from a median of 21. days in wild-type mice to greater than 38. days in MCT1 heterozygote mice. In fact, half of the MCT1 heterozygote mice have no recovery of CMAP at 42. days, while all of the wild-type mice recovered. In addition, muscle fibers remain 40% more atrophic and neuromuscular junctions 40% more denervated at 42. days post-crush in the MCT1 heterozygote mice than wild-type mice. The delay in nerve regeneration is not only in motor axons, as the number of regenerated axons in the sural sensory nerve of MCT1 heterozygote mice at 4. weeks and tibial mixed sensory and motor nerve at 3. weeks is also significantly reduced compared to wild-type mice. This delay in regeneration may be partly due to failed Schwann cell function, as there is reduced early phagocytosis of myelin debris and remyelination of axon segments. These data for the first time demonstrate that MCT1 is critical for regeneration of both sensory and motor axons in mice following sciatic nerve crush.

  8. Transmitter-induced glycogenolysis and gluconeogenesis in leech segmental ganglia.

    Science.gov (United States)

    Pennington, A J; Pentreath, V W

    1987-01-01

    1. The utilization and control of glycogen stores were studied in the isolated segmental ganglia of the horse leech, Haemopis sanguisuga. The glycogen in the ganglia was extracted and assayed fluorimetrically and its cellular localization and turnover studied by autoradiography in conjunction with [3H] glucose. 2. The glycogen levels were measured after incubation with different neurotransmitters for 60 min at 28 degrees C. The results for each experimental ganglion were compared to a paired control ganglion, and the results analysed by paired t-tests. 3. Several transmitter substances (5-HT, octopamine, dopamine, noradrenaline, histamine) produced reductions in glycogen (glycogenolysis); other transmitters (glutamate, GABA) produced increases in glycogen (gluconeogenesis); others (adenosine, glycine) produced reductions or increases, depending on concentration. Acetylcholine had no effect on the glycogen levels. 4. Most of the glycogen in the ganglia is localized in the packet glial cells, which surround the neuron perikarya. Autoradiographic analysis demonstrated that the effects of histamine and dopamine were principally on the glycogen in the glial cells. 5. Adenylate cyclase was demonstrated by electron microscope histochemistry to be localized on the plasma membranes of the glial cells, and to a lesser extent on the neuronal membranes. 6. It is concluded that the changes in glycogen in the glial cells may be party controlled by transmitters via adenylate cyclase. This may provide a sensitive mechanism for coupling neuronal activity with energy metabolism.

  9. Circulating levels of IGF1 are associated with muscle strength in middle-aged- and oldest-old women

    NARCIS (Netherlands)

    Taekema, Diana G.; Ling, Carolina H Y; Blauw, Gerard Jan; Meskers, Carel G.; Westendorp, Rudi G J; De Craen, Anton J M; Maier, Andrea B.

    2011-01-01

    Objective: In aging populations, poor handgrip strength has been associated with physical disability and mortality. IGF1 is an important mediator of muscle growth and regeneration affecting muscle function. We studied the relationship between circulating levels of IGF1, its binding protein 3

  10. Evidence for the involvement of the CXCL12 system in the adaptation of skeletal muscles to physical exercise.

    Science.gov (United States)

    Puchert, Malte; Adams, Volker; Linke, Axel; Engele, Jürgen

    2016-09-01

    The chemokine CXCL12 and its primary receptor, CXCR4, not only promote developmental myogenesis, but also muscle regeneration. CXCL12 chemoattracts CXCR4-positive satellite cells/blood-borne progenitors to the injured muscle, promotes myoblast fusion, partially with existing myofibers, and induces angiogenesis in regenerating muscles. Interestingly, the mechanisms underlying muscle regeneration are in part identical to those involved in muscular adaptation to intensive physical exercise. These similarities now prompted us to determine whether physical exercise would impact the CXCL12 system in skeletal muscle. We found that CXCL12 and CXCR4 are upregulated in the gastrocnemius muscle of rats that underwent a four-week period of constrained daily running exercise on a treadmill. Double-staining experiments confirmed that CXCL12 and CXCR4 are predominantly expressed in MyHC-positive muscle fibers. Moreover, these training-dependent increases in CXCL12 and CXCR4 expression also occurred in rats with surgical coronary artery occlusion, implying that the muscular CXCL12 system is still active in skeletal myopathy resulting from chronic heart failure. Expression of the second CXCL12 receptor, CXCR7, which presumably acts as a scavenger receptor in muscle, was not affected by training. Attempts to dissect the molecular events underlying the training-dependent effects of CXCL12 revealed that the CXCL12-CXCR4 axis activates anabolic mTOR-p70S6K signaling and prevents upregulation of the catabolic ubiquitin ligase MurF-1 in C2C12 myotubes, eventually increasing myotube diameters. Together, these findings point to a pivotal role of the CXCL12-CXCR4 axis in exercise-induced muscle maintenance and/or growth. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. La sanguijuela, un gusano en la historia de la salud The leeches, a worm in the history of health

    Directory of Open Access Journals (Sweden)

    María Pilar Manrique Sáez

    2008-12-01

    Full Text Available El uso de sanguijuelas ha sido una terapia que ha venido usándose desde las antiguas civilizaciones hasta principios del siglo XX como tratamiento indispensable para diversas dolencias, cayendo en desuso como consecuencia del gran avance científico y considerándose un tratamiento sin valor, atrasado y decadente. El presente articulo pretende dar a conocer la terapia con sanguijuelas, su auge desde la antigüedad, su decadencia y el nuevo renacer actual en el postoperatorio de la microcirugía plástica reconstructiva para prevenir el éxtasis venoso, así como en traumatología en el tratamiento de las artrosis. Dicha terapia se está aplicando en numerosos países, incluyendo España en donde su uso es una realidad en Hospitales y servicios muy concretos.The use of leeches is a medical therapy which has been used since ancient civilizations until the first decades of the XXth century. It is an irreplaceable remedy to treat many types of illness, however, it fell into disuse due to the increasing confidence in scientific development and because it became considered old-fashioned, obsolete and valueless. The present paper tries to release the therapy with leeches, its peak in the ancient times, its later disuse and the recent reappearance in the post-operative of plastic microsurgical reconstruction in order to prevent the poisoning ecstasy and also in the degenerative osteoarthritis treatment. This therapy is being applied to numerous countries, Spain included, where it is being used at hospitals in particular medical services.

  12. Muscle wound healing in rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Schmidt, J G; Andersen, E W; Ersbøll, B K; Nielsen, M E

    2016-01-01

    We followed the progression of healing of deep excisional biopsy punch wounds over the course of 365 days in rainbow trout (Oncorhynchus mykiss) by monitoring visual wound healing and gene expression in the healing muscle at regular intervals (1, 3, 7, 14, 38 and 100 days post-wounding). In addition, we performed muscle texture analysis one year after wound infliction. The selected genes have all previously been investigated in relation to vertebrate wound healing, but only few specifically in fish. The selected genes were interleukin (IL)-1β, IL-6, transforming growth factor (TGF)-β1 and -β3, matrix metalloproteinase (MMP) -9 and -13, inducible nitric oxide synthase (iNOS), fibronectin (FN), tenascin-C (TN-C), prolyl 4-hydroxylase α1-chain (P4Hα1), lysyl oxidase (LOX), collagen type I α1-chain (ColIα1), CD41 and CD163. Wound healing progressed slowly in the presented study, which is at least partially due to the low temperature of about 8.5 °C during the first 100 days. The inflammation phase lasted more than 14 days, and the genes relating to production and remodeling of new extracellular matrix (ECM) exhibited a delayed but prolonged upregulation starting 1-2 weeks post-wounding and lasting until at least 100 days post-wounding. The gene expression patterns and histology reveal limited capacity for muscle regeneration in rainbow trout, and muscle texture analyses one year after wound infliction confirm that wounds heal with fibrosis. At 100 dpw epidermis had fully regenerated, and dermis partially regenerated. Scales had not regenerated even after one year. CD163 is a marker of "wound healing"-type M2c macrophages in mammals. M2 macrophage markers are as yet poorly described in fish. The pattern of CD163 expression in the present study is consistent with the expected timing of presence of M2c macrophages in the wound. CD163 may thus potentially prove a valuable marker of M2 macrophages - or a subset hereof - in fish. We subjected a group of fish to

  13. Adult rat motor neurons do not re-establish electrical coupling during axonal regeneration and muscle reinnervation.

    Directory of Open Access Journals (Sweden)

    Morgana Favero

    Full Text Available Gap junctions (GJs between neurons are present in both the newborn and the adult nervous system, and although important roles have been suggested or demonstrated in a number of instances, in many other cases a full understanding of their physiological role is still missing. GJs are expressed in the rodent lumbar cord at birth and mediate both dye and electrical coupling between motor neurons. This expression has been proposed to mediate: (i fast synchronization of motoneuronal spike activity, in turn linked to the process of refinement of neuromuscular connections, and (ii slow synchronization of locomotor-like oscillatory activity. Soon after birth this coupling disappears. Since in the adult rat regeneration of motor fibers after peripheral nerve injury leads to a recapitulation of synaptic refinement at the target muscles, we tested whether GJs between motor neurons are transiently re-expressed. We found that in conditions of maximal responsiveness of lumbar motor neurons (such as no depression by anesthetics, decerebrate release of activity of subsets of motor neurons, use of temporal and spatial summation by antidromic and orthodromic stimulations, testing of large ensembles of motor neurons no firing is observed in ventral root axons in response to antidromic spike invasion of nearby counterparts. We conclude that junctional coupling between motor neurons is not required for the refinement of neuromuscular innervation in the adult.

  14. Tissue-specific stem cells: Lessons from the skeletal muscle satellite cell

    Science.gov (United States)

    Brack, Andrew S.; Rando, Thomas A.

    2012-01-01

    In 1961, the satellite cell was first identified when electron microscopic examination of skeletal muscle demonstrated a cell wedged between the plasma membrane of the muscle fiber and the basement membrane. In recent years it has been conclusively demonstrated that the satellite cell is the primary cellular source for muscle regeneration and is equipped with the potential to self renew, thus functioning as a bone fide skeletal muscle stem cell (MuSC). As we move past the 50th anniversary of the satellite cell, we take this opportunity to discuss the current state of the art and dissect the unknowns in the MuSC field. PMID:22560074

  15. Altered pharyngeal muscles in Parkinson disease.

    Science.gov (United States)

    Mu, Liancai; Sobotka, Stanislaw; Chen, Jingming; Su, Hungxi; Sanders, Ira; Adler, Charles H; Shill, Holly A; Caviness, John N; Samanta, Johan E; Beach, Thomas G

    2012-06-01

    Dysphagia (impaired swallowing) is common in patients with Parkinson disease (PD) and is related to aspiration pneumonia, the primary cause of death in PD. Therapies that ameliorate the limb motor symptoms of PD are ineffective for dysphagia. This suggests that the pathophysiology of PD dysphagia may differ from that affecting limb muscles, but little is known about potential neuromuscular abnormalities in the swallowing muscles in PD. This study examined the fiber histochemistry of pharyngeal constrictor and cricopharyngeal sphincter muscles in postmortem specimens from 8 subjects with PD and 4 age-matched control subjects. Pharyngeal muscles in subjects with PD exhibited many atrophic fibers, fiber type grouping, and fast-to-slow myosin heavy chain transformation. These alterations indicate that the pharyngeal muscles experienced neural degeneration and regeneration over the course of PD. Notably, subjects with PD with dysphagia had a higher percentage of atrophic myofibers versus with those without dysphagia and controls. The fast-to-slow fiber-type transition is consistent with abnormalities in swallowing, slow movement of food, and increased tone in the cricopharyngeal sphincter in subjects with PD. The alterations in the pharyngeal muscles may play a pathogenic role in the development of dysphagia in subjects with PD.

  16. Radiological Assessment of Bioengineered Bone in a Muscle Flap for the Reconstruction of Critical-Size Mandibular Defect

    Science.gov (United States)

    Al-Fotawei, Randa; Ayoub, Ashraf F.; Heath, Neil; Naudi, Kurt B.; Tanner, K. Elizabeth; Dalby, Matthew J.; McMahon, Jeremy

    2014-01-01

    This study presents a comprehensive radiographic evaluation of bone regeneration within a pedicled muscle flap for the reconstruction of critical size mandibular defect. The surgical defect (20 mm×15 mm) was created in the mandible of ten experimental rabbits. The masseter muscle was adapted to fill the surgical defect, a combination of calcium sulphate/hydroxyapatite cement (CERAMENT™ |SPINE SUPPORT), BMP-7 and rabbit mesenchymal stromal cells (rMSCs) was injected inside the muscle tissue. Radiographic assessment was carried out on the day of surgery and at 4, 8, and 12 weeks postoperatively. At 12 weeks, the animals were sacrificed and cone beam computerized tomography (CBCT) scanning and micro-computed tomography (µ-CT) were carried out. Clinically, a clear layer of bone tissue was identified closely adherent to the border of the surgical defect. Sporadic radio-opaque areas within the surgical defect were detected radiographically. In comparison with the opposite non operated control side, the estimated quantitative scoring of the radio-opacity was 46.6% ±15, the mean volume of the radio-opaque areas was 63.4% ±20. Areas of a bone density higher than that of the mandibular bone (+35% ±25%) were detected at the borders of the surgical defect. The micro-CT analysis revealed thinner trabeculae of the regenerated bone with a more condensed trabecular pattern than the surrounding native bone. These findings suggest a rapid deposition rate of the mineralised tissue and an active remodelling process of the newly regenerated bone within the muscle flap. The novel surgical model of this study has potential clinical application; the assessment of bone regeneration using the presented radiolographic protocol is descriptive and comprehensive. The findings of this research confirm the remarkable potential of local muscle flaps as local bioreactors to induce bone formation for reconstruction of maxillofacial bony defects. PMID:25226170

  17. Radiological assessment of bioengineered bone in a muscle flap for the reconstruction of critical-size mandibular defect.

    Directory of Open Access Journals (Sweden)

    Randa Al-Fotawei

    Full Text Available This study presents a comprehensive radiographic evaluation of bone regeneration within a pedicled muscle flap for the reconstruction of critical size mandibular defect. The surgical defect (20 mm × 15 mm was created in the mandible of ten experimental rabbits. The masseter muscle was adapted to fill the surgical defect, a combination of calcium sulphate/hydroxyapatite cement (CERAMENT™ |SPINE SUPPORT, BMP-7 and rabbit mesenchymal stromal cells (rMSCs was injected inside the muscle tissue. Radiographic assessment was carried out on the day of surgery and at 4, 8, and 12 weeks postoperatively. At 12 weeks, the animals were sacrificed and cone beam computerized tomography (CBCT scanning and micro-computed tomography (µ-CT were carried out. Clinically, a clear layer of bone tissue was identified closely adherent to the border of the surgical defect. Sporadic radio-opaque areas within the surgical defect were detected radiographically. In comparison with the opposite non operated control side, the estimated quantitative scoring of the radio-opacity was 46.6% ± 15, the mean volume of the radio-opaque areas was 63.4% ± 20. Areas of a bone density higher than that of the mandibular bone (+35% ± 25% were detected at the borders of the surgical defect. The micro-CT analysis revealed thinner trabeculae of the regenerated bone with a more condensed trabecular pattern than the surrounding native bone. These findings suggest a rapid deposition rate of the mineralised tissue and an active remodelling process of the newly regenerated bone within the muscle flap. The novel surgical model of this study has potential clinical application; the assessment of bone regeneration using the presented radiolographic protocol is descriptive and comprehensive. The findings of this research confirm the remarkable potential of local muscle flaps as local bioreactors to induce bone formation for reconstruction of maxillofacial bony defects.

  18. Crystalline Repository Project: Review and comment of the Leech Lake Reservation Business Committee: Draft area recommendation report

    International Nuclear Information System (INIS)

    1986-09-01

    The Leech Lake Reservation Business Committee (LLRBC) has reviewed five documents related to the US Department of Energy's Crystalline Repository Project (CRP). They are the ''National Survey of Crystalline Rocks,'' ''General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories;' Final Siting Guidelines (10 CFR Part 960),'' ''Regional Characterization Reports for the North Central Region,'' the ''Region to Area Screening Methodology Document'' (SMD) and the ''Draft Area Recommendation Report'' (DARR). The comments and discussions of issues contained in this review will be considered in the preparation of the Final Area Recommendation Report, which will formally identify potentially acceptable sites for a second national repository for the permanent disposal of high level nuclear waste. Following a review of the above referenced documents, the LLRBC has concluded that the identification of potentially acceptable sites in the Draft Area Recommendation Report is based upon inferior and incomplete technical information being applied to a flawed screening process which, among other deficiencies, pays little attention to the importance of hydrological factors in the siting process. Although the DOE prefers that comments from states and tribes be directed at the Draft Area Recommendation Report alone, the Leech Lake Reservation Business Committee is extremely concerned about inadequacies in the ''National Survey of Crystalline Rocks'' (ORCD-1), which serves as the foundation for all siting work done to date. The national survey was conducted utilizing little of the time or staffing required for this important phase of the Crystalline Repository Program. As a result, the national survey is based upon out-of-date scientific literature, exaggerates certain screening variables that favor the selection of regions in the eastern US and arbitrarily eliminated the few western crystalline rock bodies that passed the questionable screening process utilized

  19. Systems Biology of Glucocorticoids in Muscle Disease

    Science.gov (United States)

    2010-10-01

    Introduction Duchenne muscular dystrophy (DMD) is the most common and incurable muscular dystrophy of childhood. Muscle regeneration fails with...SUBJECT TERMS Duchenne Muscular dystrophy , Glucocorticoids, Systems biology, Drug mechanism 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION...better targeted and more effective therapies for Duchenne muscular dystrophy dynamically. This MDA grant proposal is led by Dr. Eric Hoffman, and it

  20. Enhancement of Skeletal Muscle Repair by the Urokinase Type Plasminogen Activator System

    National Research Council Canada - National Science Library

    Koh, Timothy J

    2008-01-01

    .... In this progress report, we present data indicating that satellite cell fusion during muscle regeneration is impaired in uPA null mice, and accelerated in mice deficient in the inhibitor of uPA...

  1. A novel amniote model of epimorphic regeneration: the leopard gecko, Eublepharis macularius.

    Science.gov (United States)

    McLean, Katherine E; Vickaryous, Matthew K

    2011-08-16

    Epimorphic regeneration results in the restoration of lost tissues and structures from an aggregation of proliferating cells known as a blastema. Among amniotes the most striking example of epimorphic regeneration comes from tail regenerating lizards. Although tail regeneration is often studied in the context of ecological costs and benefits, details of the sequence of tissue-level events are lacking. Here we investigate the anatomical and histological events that characterize tail regeneration in the leopard gecko, Eublepharis macularius. Tail structure and tissue composition were examined at multiple days following tail loss, revealing a conserved pattern of regeneration. Removal of the tail results in a consistent series of morphological and histological events. Tail loss is followed by a latent period of wound healing with no visible signs of regenerative outgrowth. During this latent period basal cells of the epidermis proliferate and gradually cover the wound. An additional aggregation of proliferating cells accumulates adjacent to the distal tip of the severed spinal cord marking the first appearance of the blastema. Continued growth of the blastema is matched by the initiation of angiogenesis, followed by the re-development of peripheral axons and the ependymal tube of the spinal cord. Skeletal tissue differentiation, corresponding with the expression of Sox9, and muscle re-development are delayed until tail outgrowth is well underway. We demonstrate that tail regeneration in lizards involves a highly conserved sequence of events permitting the establishment of a staging table. We show that tail loss is followed by a latent period of scar-free healing of the wound site, and that regeneration is blastema-mediated. We conclude that the major events of epimorphic regeneration are highly conserved across vertebrates and that a comparative approach is an invaluable biomedical tool for ongoing regenerative research.

  2. Requirement of myomaker-mediated stem cell fusion for skeletal muscle hypertrophy.

    Science.gov (United States)

    Goh, Qingnian; Millay, Douglas P

    2017-02-10

    Fusion of skeletal muscle stem/progenitor cells is required for proper development and regeneration, however the significance of this process during adult muscle hypertrophy has not been explored. In response to muscle overload after synergist ablation in mice, we show that myomaker, a muscle specific membrane protein essential for myoblast fusion, is activated mainly in muscle progenitors and not myofibers. We rendered muscle progenitors fusion-incompetent through genetic deletion of myomaker in muscle stem cells and observed a complete reduction of overload-induced hypertrophy. This blunted hypertrophic response was associated with a reduction in Akt and p70s6k signaling and protein synthesis, suggesting a link between myonuclear accretion and activation of pro-hypertrophic pathways. Furthermore, fusion-incompetent muscle exhibited increased fibrosis after muscle overload, indicating a protective role for normal stem cell activity in reducing myofiber strain associated with hypertrophy. These findings reveal an essential contribution of myomaker-mediated stem cell fusion during physiological adult muscle hypertrophy.

  3. Conditional Loss of Pten in Myogenic Progenitors Leads to Postnatal Skeletal Muscle Hypertrophy but Age-Dependent Exhaustion of Satellite Cells.

    Science.gov (United States)

    Yue, Feng; Bi, Pengpeng; Wang, Chao; Li, Jie; Liu, Xiaoqi; Kuang, Shihuan

    2016-11-22

    Skeletal muscle stem cells (satellite cells [SCs]) are normally maintained in a quiescent (G 0 ) state. Muscle injury not only activates SCs locally, but also alerts SCs in distant uninjured muscles via circulating factors. The resulting G Alert SCs are adapted to regenerative cues and regenerate injured muscles more efficiently, but whether they provide any long-term benefits to SCs is unknown. Here, we report that embryonic myogenic progenitors lacking the phosphatase and tensin homolog (Pten) exhibit enhanced proliferation and differentiation, resulting in muscle hypertrophy but fewer SCs in adult muscles. Interestingly, Pten null SCs are predominantly in the G Alert state, even in the absence of an injury. The G Alert SCs are deficient in self-renewal and subjected to accelerated depletion during regeneration and aging and fail to repair muscle injury in old mice. Our findings demonstrate a key requirement of Pten in G 0 entry of SCs and provide functional evidence that prolonged G Alert leads to stem cell depletion and regenerative failure. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Ion channel signaling influences cellular proliferation and phagocyte activity during axolotl tail regeneration.

    Science.gov (United States)

    Franklin, Brandon M; Voss, S Randal; Osborn, Jeffrey L

    2017-08-01

    Little is known about the potential for ion channels to regulate cellular behaviors during tissue regeneration. Here, we utilized an amphibian tail regeneration assay coupled with a chemical genetic screen to identify ion channel antagonists that altered critical cellular processes during regeneration. Inhibition of multiple ion channels either partially (anoctamin1/Tmem16a, anoctamin2/Tmem16b, K V 2.1, K V 2.2, L-type Ca V channels and H/K ATPases) or completely (GlyR, GABA A R, K V 1.5 and SERCA pumps) inhibited tail regeneration. Partial inhibition of tail regeneration by blocking the calcium activated chloride channels, anoctamin1&2, was associated with a reduction of cellular proliferation in tail muscle and mesenchymal regions. Inhibition of anoctamin 1/2 also altered the post-amputation transcriptional response of p44/42 MAPK signaling pathway genes, including decreased expression of erk1/erk2. We also found that complete inhibition via voltage gated K + channel blockade was associated with diminished phagocyte recruitment to the amputation site. The identification of H + pumps as required for axolotl tail regeneration supports findings in Xenopus and Planaria models, and more generally, the conservation of ion channels as regulators of tissue regeneration. This study provides a preliminary framework for an in-depth investigation of the mechanistic role of ion channels and their potential involvement in regulating cellular proliferation and other processes essential to wound healing, appendage regeneration, and tissue repair. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Stromal vascular stem cell treatment decreases muscle fibrosis following chronic rotator cuff tear.

    Science.gov (United States)

    Gumucio, Jonathan P; Flood, Michael D; Roche, Stuart M; Sugg, Kristoffer B; Momoh, Adeyiza O; Kosnik, Paul E; Bedi, Asheesh; Mendias, Christopher L

    2016-04-01

    Rotator cuff injuries are associated with atrophy and fat infiltration into the muscle, commonly referred to as "fatty degeneration." As the poor function of chronically torn muscles may limit recovery after surgical repair, there is considerable interest in finding therapies to enhance muscle regeneration. Stromal vascular fraction stem cells (SVFCs) can improve muscle regeneration in other chronic injury states, and our objective was to evaluate the ability of SVFCs to reduce fibrosis and fat accumulation, and enhance muscle fibre specific force production after chronic rotator cuff tear. Chronic supraspinatus tears were induced in adult immunodeficient rats, and repaired one month following tear. Rats received vehicle control, or injections of 3 × 10(5) or 3 × 10(6) human SVFCs into supraspinatus muscles. Two weeks following repair, we detected donor human DNA and protein in SVFC treated muscles. There was a 40 % reduction in fibrosis in the treated groups compared to controls (p = 0.03 for 3 × 10(5), p = 0.04 for 3 × 10(6)), and no differences between groups for lipid content or force production were observed. As there has been much interest in the use of stem cell-based therapies in musculoskeletal regenerative medicine, the reduction in fibrosis and trend towards an improvement in single fiber contractility suggest that SVFCs may be beneficial to enhance the treatment and recovery of patients with chronic rotator cuff tears.

  6. Tissue Engineered Strategies for Skeletal Muscle Injury

    Directory of Open Access Journals (Sweden)

    Umile Giuseppe Longo

    2012-01-01

    Full Text Available Skeletal muscle injuries are common in athletes, occurring with direct and indirect mechanisms and marked residual effects, such as severe long-term pain and physical disability. Current therapy consists of conservative management including RICE protocol (rest, ice, compression, and elevation, nonsteroidal anti-inflammatory drugs, and intramuscular corticosteroids. However, current management of muscle injuries often does not provide optimal restoration to preinjury status. New biological therapies, such as injection of platelet-rich plasma and stem-cell-based therapy, are appealing. Although some studies support PRP application in muscle-injury management, reasons for concern persist, and further research is required for a standardized and safe use of PRP in clinical practice. The role of stem cells needs to be confirmed, as studies are still limited and inconsistent. Further research is needed to identify mechanisms involved in muscle regeneration and in survival, proliferation, and differentiation of stem cells.

  7. A prosurvival and proangiogenic stem cell delivery system to promote ischemic limb regeneration.

    Science.gov (United States)

    Xu, Yanyi; Fu, Minghuan; Li, Zhihong; Fan, Zhaobo; Li, Xiaofei; Liu, Ying; Anderson, Peter M; Xie, Xiaoyun; Liu, Zhenguo; Guan, Jianjun

    2016-02-01

    Stem cell therapy is one of the most promising strategies to restore blood perfusion and promote muscle regeneration in ischemic limbs. Yet its therapeutic efficacy remains low owing to the inferior cell survival under the low oxygen and nutrient environment of the injured limbs. To increase therapeutic efficacy, high rates of both short- and long-term cell survival are essential, which current approaches do not support. In this work, we hypothesized that a high rate of short-term cell survival can be achieved by introducing a prosurvival environment into the stem cell delivery system to enhance cell survival before vascularization is established; and that a high rate of long-term cell survival can be attained by building a proangiogenic environment in the system to quickly vascularize the limbs. The system was based on a biodegradable and thermosensitive poly(N-Isopropylacrylamide)-based hydrogel, a prosurvival and proangiogenic growth factor bFGF, and bone marrow-derived mesenchymal stem cells (MSCs). bFGF can be continuously released from the system for 4weeks. The released bFGF significantly improved MSC survival and paracrine effects under low nutrient and oxygen conditions (0% FBS and 1% O2) in vitro. The prosurvival effect of the bFGF on MSCs was resulted from activating cell Kruppel-like factor 4 (KLF4) pathway. When transplanted into the ischemic limbs, the system dramatically improved MSC survival. Some of the engrafted cells were differentiated into skeletal muscle and endothelial cells, respectively. The system also promoted the proliferation of host cells. After only 2weeks of implantation, tissue blood perfusion was completely recovered; and after 4weeks, the muscle fiber diameter was restored similarly to that of the normal limbs. These pronounced results demonstrate that the developed stem cell delivery system has a potential for ischemic limb regeneration. Stem cell therapy is a promising strategy to restore blood perfusion and promote muscle

  8. Clinical report of still-birth in a goat due to leech infestation

    Directory of Open Access Journals (Sweden)

    Y Gharedaghi

    2010-08-01

    At autumn 2009 a four year old pregnant white indigenous female goat was referred to the veterinary clinic located in Sarab. At initial examinations clinical symptoms such as cachexia, sever pains of parturition, rest less and provocation was seen and as the result of these sever pains tachycardia, tachy pnea, teeth grinding and grades of anemia was seen at mucous membranes and the animal could not stand. The fetus had entered the pelvic canal with flexion of the metacarpus and following correction of this position, it was extracted manually. The newly born kid had anasarcus and generalized edema in the forelimbs, hindlimbs and skull. During manual extraction of the fetus, 20 worms about 10–12 cm in length were discharged from the goats vagina. Isolated parasitic samples from the animal were fixed in %10 formalin and were referred to the parasitological laboratory of veterinary faculty of Islamic Azad university- Tabriz Branch. After further examinations they were identified as limnatis nilotica leeches. The kid goat died hours after birth because of respiratory difficulties.

  9. Expression of nestin, desmin and vimentin in intact and regenerating muscle spindles of rat hind limb skeletal muscles

    Czech Academy of Sciences Publication Activity Database

    Čížková, D.; Soukup, Tomáš; Mokrý, J.

    2009-01-01

    Roč. 131, č. 2 (2009), s. 197-206 ISSN 0948-6143 R&D Projects: GA ČR(CZ) GA304/08/0256 Grant - others:GA ČR(CZ) GA304/08/0329; EC(XE) LSH-CT-2004-511978 Institutional research plan: CEZ:AV0Z50110509 Keywords : intermediate filaments * muscle spindles * muscle reganeration Subject RIV: ED - Physiology Impact factor: 3.021, year: 2009

  10. Characterization of DLK1+ cells emerging during skeletal muscle remodeling in response to myositis, myopathies, and acute injury

    DEFF Research Database (Denmark)

    Andersen, Ditte C; Petersson, Stine J; Jørgensen, Louise H

    2009-01-01

    , DLK1 was upregulated in all human myopathies analyzed, including Duchenne- and Becker muscular dystrophies. Substantial numbers of DLK1(+) satellite cells were observed in normal neonatal and Duchenne muscle, and furthermore, myogenic DLK1(+) cells were identified during muscle regeneration in animal...

  11. Pulsed ultrasound therapy accelerates the recovery of skeletal muscle damage induced by Bothrops jararacussu venom

    Directory of Open Access Journals (Sweden)

    J. Saturnino-Oliveira

    2012-06-01

    Full Text Available We studied the effect of pulsed ultrasound therapy (UST and antibothropic polyvalent antivenom (PAV on the regeneration of mouse extensor digitorum longus muscle following damage by Bothrops jararacussu venom. Animals (Swiss male and female mice weighing 25.0 ± 5.0 g; 5 animals per group received a perimuscular injection of venom (1 mg/kg and treatment with UST was started 1 h later (1 min/day, 3 MHz, 0.3 W/cm², pulsed mode. Three and 28 days after injection, muscles were dissected and processed for light microscopy. The venom caused complete degeneration of muscle fibers. UST alone and combined with PAV (1.0 mL/kg partially protected these fibers, whereas muscles receiving no treatment showed disorganized fascicules and fibers with reduced diameter. Treatment with UST and PAV decreased the effects of the venom on creatine kinase content and motor activity (approximately 75 and 48%, respectively. Sonication of the venom solution immediately before application decreased the in vivo and ex vivo myotoxic activities (approximately 60 and 50%, respectively. The present data show that UST counteracts some effects of B. jararacussu venom, causing structural and functional improvement of the regenerated muscle after venom injury.

  12. Tetranectin is a novel marker for myogenesis during embryonic development, muscle regeneration, and muscle cell differentiation in vitro

    DEFF Research Database (Denmark)

    Wewer, U M; Iba, K; Durkin, M E

    1998-01-01

    differentiation in vitro. We find that tetranectin expression coincides with muscle differentiation and maturation in the second half of gestation and further that tetranectin is enriched at the myotendinous and myofascial junctions. The tetranectin immunostaining declines after birth and no immunostaining...... cells in dystrophic mdx mice. Murine C2C12 myogenic cells and pluripotent embryonic stem cells can undergo muscle cell differentiation in vitro. Tetranectin is not expressed in the undifferentiated myogenic cells, but during the progression of muscle differentiation, tetranectin mRNA is induced...... that in some tissues, such as the limbs, tetranectin may function locally, whereas in other tissues, such as the lung, tetranectin production may be destined for body fluids. In summary, these results suggest that tetranectin is a matricellular protein and plays a role in myogenesis....

  13. Engraftment potential of dermal fibroblasts following in vivo myogenic conversion in immunocompetent dystrophic skeletal muscle

    Directory of Open Access Journals (Sweden)

    Lindsey A Muir

    2014-01-01

    Full Text Available Autologous dermal fibroblasts (dFbs are promising candidates for enhancing muscle regeneration in Duchenne muscular dystrophy (DMD due to their ease of isolation, immunological compatibility, and greater proliferative potential than DMD satellite cells. We previously showed that mouse fibroblasts, after MyoD-mediated myogenic reprogramming in vivo, engraft in skeletal muscle and supply dystrophin. Assessing the therapeutic utility of this system requires optimization of conversion and transplantation conditions and quantitation of engraftment so that these parameters can be correlated with possible functional improvements. Here, we derived dFbs from transgenic mice carrying mini-dystrophin, transduced them by lentivirus carrying tamoxifen-inducible MyoD, and characterized their myogenic and engraftment potential. After cell transplantation into the muscles of immunocompetent dystrophic mdx4cv mice, tamoxifen treatment drove myogenic conversion and fusion into myofibers that expressed high levels of mini-dystrophin. Injecting 50,000 cells/µl (1 × 106 total cells resulted in a peak of ∼600 mini-dystrophin positive myofibers in tibialis anterior muscle single cross-sections. However, extensor digitorum longus muscles with up to 30% regional engraftment showed no functional improvements; similar limitations were obtained with whole muscle mononuclear cells. Despite the current lack of physiological improvement, this study suggests a viable initial strategy for using a patient-accessible dermal cell population to enhance skeletal muscle regeneration in DMD.

  14. Myocardial regeneration in adriamycin cardiomyopathy by nuclear expression of GLP1 using ultrasound targeted microbubble destruction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shuyuan [Baylor Research Institute, Baylor University Medical Center, 3812 Elm Street, Dallas, TX (United States); Chen, Jiaxi [The University of Texas Southwestern Medical Center at Dallas, Medical School, 5235 Harry Hine Blvd., Dallas, TX (United States); Huang, Pintong [Department of Ultrasonography, The 2nd Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, Zhejiang Province (China); Meng, Xing-Li; Clayton, Sandra; Shen, Jin-Song [Baylor Research Institute, Baylor University Medical Center, 3812 Elm Street, Dallas, TX (United States); Grayburn, Paul A., E-mail: paulgr@baylorhealth.edu [Baylor Research Institute, Baylor University Medical Center, 3812 Elm Street, Dallas, TX (United States); Department of Internal Medicine, Division of Cardiology, Baylor Heart and Vascular Institute, Baylor University Medical Center, 621 N. Hall St, Suite H030, Dallas, TX (United States)

    2015-03-20

    Recently GLP-1 was found to have cardioprotective effects independent of those attributable to tight glycemic control. Methods and results: We employed ultrasound targeted microbubble destruction (UTMD) to deliver piggybac transposon plasmids encoding the GLP-1 gene with a nuclear localizing signal to rat hearts with adriamycin cardiomyopathy. After a single UTMD treatment, overexpression of transgenic GLP-1 was found in nuclei of rat heart cells with evidence that transfected cardiac cells had undergone proliferation. UTMD-GLP-1 gene therapy restored LV mass, fractional shortening index, and LV posterior wall diameter to nearly normal. Nuclear overexpression of GLP-1 by inducing phosphorylation of FoxO1-S256 and translocation of FoxO1 from the nucleus to the cytoplasm significantly inactivated FoxO1 and activated the expression of cyclin D1 in nuclei of cardiac muscle cells. Reversal of adriamycin cardiomyopathy appeared to be mediated by dedifferentiation and proliferation of nuclear FoxO1-positive cardiac muscle cells with evidence of embryonic stem cell markers (OCT4, Nanog, SOX2 and c-kit), cardiac early differentiation markers (NKX2.5 and ISL-1) and cellular proliferation markers (BrdU and PHH3) after UTMD with GLP-1 gene therapy. Conclusions: Intranuclear myocardial delivery of the GLP-1gene can reverse established adriamycin cardiomyopathy by stimulating myocardial regeneration. - Highlights: • The activation of nuclear FoxO1 in cardiac muscle cells associated with adriamycin cardiomyopathy. • Myocardial nuclear GLP-1 stimulates myocardial regeneration and reverses adriamycin cardiomyopathy. • The process of myocardial regeneration associated with dedifferentiation and proliferation.

  15. Myocardial regeneration in adriamycin cardiomyopathy by nuclear expression of GLP1 using ultrasound targeted microbubble destruction

    International Nuclear Information System (INIS)

    Chen, Shuyuan; Chen, Jiaxi; Huang, Pintong; Meng, Xing-Li; Clayton, Sandra; Shen, Jin-Song; Grayburn, Paul A.

    2015-01-01

    Recently GLP-1 was found to have cardioprotective effects independent of those attributable to tight glycemic control. Methods and results: We employed ultrasound targeted microbubble destruction (UTMD) to deliver piggybac transposon plasmids encoding the GLP-1 gene with a nuclear localizing signal to rat hearts with adriamycin cardiomyopathy. After a single UTMD treatment, overexpression of transgenic GLP-1 was found in nuclei of rat heart cells with evidence that transfected cardiac cells had undergone proliferation. UTMD-GLP-1 gene therapy restored LV mass, fractional shortening index, and LV posterior wall diameter to nearly normal. Nuclear overexpression of GLP-1 by inducing phosphorylation of FoxO1-S256 and translocation of FoxO1 from the nucleus to the cytoplasm significantly inactivated FoxO1 and activated the expression of cyclin D1 in nuclei of cardiac muscle cells. Reversal of adriamycin cardiomyopathy appeared to be mediated by dedifferentiation and proliferation of nuclear FoxO1-positive cardiac muscle cells with evidence of embryonic stem cell markers (OCT4, Nanog, SOX2 and c-kit), cardiac early differentiation markers (NKX2.5 and ISL-1) and cellular proliferation markers (BrdU and PHH3) after UTMD with GLP-1 gene therapy. Conclusions: Intranuclear myocardial delivery of the GLP-1gene can reverse established adriamycin cardiomyopathy by stimulating myocardial regeneration. - Highlights: • The activation of nuclear FoxO1 in cardiac muscle cells associated with adriamycin cardiomyopathy. • Myocardial nuclear GLP-1 stimulates myocardial regeneration and reverses adriamycin cardiomyopathy. • The process of myocardial regeneration associated with dedifferentiation and proliferation

  16. New Advances in Molecular Therapy for Muscle Repair after Diseases and Injuries

    Science.gov (United States)

    2011-01-01

    48 h, an MTT cell proliferation assay kit (Roche Diagnostics, Germany ) was used to measure cell proliferation (n = 6) following instructions from...has on donor cell regeneration. Deregulating the suppression of MSTN on muscle cells by MPRO transduction may augment donor cell proliferation...and photographing up to 3 microscopic fields (20X). Images were taken for 7 each section to insure that the entire muscle section was completely

  17. Myogenic Precursors from iPS Cells for Skeletal Muscle Cell Replacement Therapy

    Directory of Open Access Journals (Sweden)

    Isart Roca

    2015-01-01

    Full Text Available The use of adult myogenic stem cells as a cell therapy for skeletal muscle regeneration has been attempted for decades, with only moderate success. Myogenic progenitors (MP made from induced pluripotent stem cells (iPSCs are promising candidates for stem cell therapy to regenerate skeletal muscle since they allow allogenic transplantation, can be produced in large quantities, and, as compared to adult myoblasts, present more embryonic-like features and more proliferative capacity in vitro, which indicates a potential for more self-renewal and regenerative capacity in vivo. Different approaches have been described to make myogenic progenitors either by gene overexpression or by directed differentiation through culture conditions, and several myopathies have already been modeled using iPSC-MP. However, even though results in animal models have shown improvement from previous work with isolated adult myoblasts, major challenges regarding host response have to be addressed and clinically relevant transplantation protocols are lacking. Despite these challenges we are closer than we think to bringing iPSC-MP towards clinical use for treating human muscle disease and sporting injuries.

  18. Delayed peripheral nerve repair: methods, including surgical 'cross-bridging' to promote nerve regeneration.

    Science.gov (United States)

    Gordon, Tessa; Eva, Placheta; Borschel, Gregory H

    2015-10-01

    Despite the capacity of Schwann cells to support peripheral nerve regeneration, functional recovery after nerve injuries is frequently poor, especially for proximal injuries that require regenerating axons to grow over long distances to reinnervate distal targets. Nerve transfers, where small fascicles from an adjacent intact nerve are coapted to the nerve stump of a nearby denervated muscle, allow for functional return but at the expense of reduced numbers of innervating nerves. A 1-hour period of 20 Hz electrical nerve stimulation via electrodes proximal to an injury site accelerates axon outgrowth to hasten target reinnervation in rats and humans, even after delayed surgery. A novel strategy of enticing donor axons from an otherwise intact nerve to grow through small nerve grafts (cross-bridges) into a denervated nerve stump, promotes improved axon regeneration after delayed nerve repair. The efficacy of this technique has been demonstrated in a rat model and is now in clinical use in patients undergoing cross-face nerve grafting for facial paralysis. In conclusion, brief electrical stimulation, combined with the surgical technique of promoting the regeneration of some donor axons to 'protect' chronically denervated Schwann cells, improves nerve regeneration and, in turn, functional outcomes in the management of peripheral nerve injuries.

  19. Impairment of IGF-I Expression and Anabolic Signaling Following Ischemia/Reperfusion in Skeletal Muscle of Old Mice

    Science.gov (United States)

    2011-04-01

    has a role in the impaired recovery of skeletal muscle with age. Keywords Tourniquet; sarcopenia ; muscle regeneration; mTOR; FoxO Correspondence...Prescribed by ANSI Std Z39-18 INTRODUCTION Sarcopenia is the progressive decline in skeletal muscle mass and function with advanced aging (See Adamo...clinically-relevant problem. Considering the large proportion of orthopedic surgeries performed on elderly individuals, the extent of damage and subsequent

  20. Effects of endothelial removal and regeneration on smooth muscle glycosaminoglycan synthesis and growth in rat carotid artery in organ culture

    International Nuclear Information System (INIS)

    Merrilees, M.J.; Scott, L.J.

    1985-01-01

    Segments of rat carotid artery were maintained in serum-free and serum-supplemented media with endothelium both present and substantially removed by air drying. At intervals of 3, 7, and 14 days the synthesis of glycosaminoglycan across the vessel walls was determined by autoradiographic detection of incorporated [ 3 H]glucosamine. In control carotids the typical pattern of incorporation was 40% of label in the intima, consisting of endothelium and subendothelial matrix, 23, 13, and 15% in the three medial layers (M1, M2, M3, respectively), and 9% in the adventitia. During the first week in culture the proportion, and often the amount, of label in M1 increased significantly. Following air drying labeling decreased markedly in M1 but often increased in M2 and M3. By 14 days residual endothelial cells had regenerated, and the pattern of incorporation in the medial layers beneath this new endothelium was the same as for the controls with a high level of labeling in M1. In areas free of endothelium incorporation in M1 remained at a low level. Digestion with chondroitinase ABC and Streptomyces hyaluronidase showed that the changes in M1-labeling levels were due to changes in the amounts of both hyaluronic acid and sulfated glycosaminoglycan, whereas pulse and continuous labeling studies showed that the different labeling levels for the various layers and conditions were due to different rates of synthesis and not degradation. Carotids were also labeled with [ 3 H]thymidine. Control and regenerating endothelia were active in serum- free and serum-supplemented media and had similar mitotic indices. Indices for smooth muscle cells in M1, however, were generally very low and were not affected by the presence or absence of endothelium

  1. Biomarkers of skeletal muscle and bone regeneration-adaptation to neurorehabilitation training strategies

    OpenAIRE

    Kern, Helmut; Carraro, Ugo; Marcante, Andrea; Baba, Alfonc; Piccione, Francesco; Esser, Karyn A.; Dyar, Kenneth A.; Ciciliot, Stefano; Tagliazucchi, Guidantonio Malagoli; Pallafacchina, Giorgia; Tothova, Jana; Argentini, Carla; Agatea, Lisa; Abraham, Reimar; Ahdesm?ki, Miika

    2016-01-01

    Functional recovery after peripheral nerve injury is reduced when axon growth is misdirected to reinnervate muscles other than their original targets.1-3 Here we review the effects of chronic electrical muscle stimulation (EMS) following peripheral nerve injury in rat, canine, and equine models of peripheral nerve injury. Specifically, we examine whether EMS accelerates reinnervation of muscular targets and if these targets are appropriately reinnervated by their original axons following nerv...

  2. Chemoattractive capacity of different lengths of nerve fragments bridging regeneration chambers for the repair of sciatic nerve defects

    Institute of Scientific and Technical Information of China (English)

    Jiren Zhang; Yubo Wang; Jincheng Zhang

    2012-01-01

    A preliminary study by our research group showed that 6-mm-long regeneration chamber bridging is equivalent to autologous nerve transplantation for the repair of 12-mm nerve defects.In this study,we compared the efficacy of different lengths (6,8,10 mm) of nerve fragments bridging 6-mm regeneration chambers for the repair of 12-mm-long nerve defects.At 16 weeks after the regeneration chamber was implanted,the number,diameter and myelin sheath thickness of the regenerated nerve fibers,as well as the conduction velocity of the sciatic nerve and gastrocnemius muscle wet weight ratio,were similar to that observed with autologous nerve transplantation.Our results demonstrate that 6-,8-and 10-mm-long nerve fragments bridging 6-mm regeneration chambers effectively repair 12-mm-long nerve defects.Because the chemoattractive capacity is not affected by the length of the nerve fragment,we suggest adopting 6-mm-long nerve fragments for the repair of peripheral nerve defects.

  3. Matrix metalloproteinase-9 inhibition improves proliferation and engraftment of myogenic cells in dystrophic muscle of mdx mice.

    Directory of Open Access Journals (Sweden)

    Sajedah M Hindi

    Full Text Available Duchenne muscular dystrophy (DMD caused by loss of cytoskeletal protein dystrophin is a devastating disorder of skeletal muscle. Primary deficiency of dystrophin leads to several secondary pathological changes including fiber degeneration and regeneration, extracellular matrix breakdown, inflammation, and fibrosis. Matrix metalloproteinases (MMPs are a group of extracellular proteases that are involved in tissue remodeling, inflammation, and development of interstitial fibrosis in many disease states. We have recently reported that the inhibition of MMP-9 improves myopathy and augments myofiber regeneration in mdx mice (a mouse model of DMD. However, the mechanisms by which MMP-9 regulates disease progression in mdx mice remain less understood. In this report, we demonstrate that the inhibition of MMP-9 augments the proliferation of satellite cells in dystrophic muscle. MMP-9 inhibition also causes significant reduction in percentage of M1 macrophages with concomitant increase in the proportion of promyogenic M2 macrophages in mdx mice. Moreover, inhibition of MMP-9 increases the expression of Notch ligands and receptors, and Notch target genes in skeletal muscle of mdx mice. Furthermore, our results show that while MMP-9 inhibition augments the expression of components of canonical Wnt signaling, it reduces the expression of genes whose products are involved in activation of non-canonical Wnt signaling in mdx mice. Finally, the inhibition of MMP-9 was found to dramatically improve the engraftment of transplanted myoblasts in skeletal muscle of mdx mice. Collectively, our study suggests that the inhibition of MMP-9 is a promising approach to stimulate myofiber regeneration and improving engraftment of muscle progenitor cells in dystrophic muscle.

  4. Grafting of a Single Donor Myofibre Promotes Hypertrophy in Dystrophic Mouse Muscle

    Science.gov (United States)

    Boldrin, Luisa; Morgan, Jennifer E.

    2013-01-01

    Skeletal muscle has a remarkable capability of regeneration following injury. Satellite cells, the principal muscle stem cells, are responsible for this process. However, this regenerative capacity is reduced in muscular dystrophies or in old age: in both these situations, there is a net loss of muscle fibres. Promoting skeletal muscle muscle hypertrophy could therefore have potential applications for treating muscular dystrophies or sarcopenia. Here, we observed that muscles of dystrophic mdx nude host mice that had been acutely injured by myotoxin and grafted with a single myofibre derived from a normal donor mouse exhibited increased muscle area. Transplantation experiments revealed that the hypertrophic effect is mediated by the grafted fibre and does not require either an imposed injury to the host muscle, or the contribution of donor cells to the host muscle. These results suggest the presence of a crucial cross-talk between the donor fibre and the host muscle environment. PMID:23349935

  5. Regeneration of soft tissues is promoted by MMP1 treatment after digit amputation in mice.

    Directory of Open Access Journals (Sweden)

    Xiaodong Mu

    Full Text Available The ratio of matrix metalloproteinases (MMPs to the tissue inhibitors of metalloproteinases (TIMPs in wounded tissues strictly control the protease activity of MMPs, and therefore regulate the progress of wound closure, tissue regeneration and scar formation. Some amphibians (i.e. axolotl/newt demonstrate complete regeneration of missing or wounded digits and even limbs; MMPs play a critical role during amphibian regeneration. Conversely, mammalian wound healing re-establishes tissue integrity, but at the expense of scar tissue formation. The differences between amphibian regeneration and mammalian wound healing can be attributed to the greater ratio of MMPs to TIMPs in amphibian tissue. Previous studies have demonstrated the ability of MMP1 to effectively promote skeletal muscle regeneration by favoring extracellular matrix (ECM remodeling to enhance cell proliferation and migration. In this study, MMP1 was administered to the digits amputated at the mid-second phalanx of adult mice to observe its effect on digit regeneration. Results indicated that the regeneration of soft tissue and the rate of wound closure were significantly improved by MMP1 administration, but the elongation of the skeletal tissue was insignificantly affected. During digit regeneration, more mutipotent progenitor cells, capillary vasculature and neuromuscular-related tissues were observed in MMP1 treated tissues; moreover, there was less fibrotic tissue formed in treated digits. In summary, MMP1 was found to be effective in promoting wound healing in amputated digits of adult mice.

  6. Regeneration of defective epithelial basement membrane and restoration of corneal transparency

    Science.gov (United States)

    Marino, Gustavo K.; Santhiago, Marcony R.; Santhanam, Abirami; Torricelli, Andre A. M.; Wilson, Steven E.

    2018-01-01

    PURPOSE To study regeneration of the normal ultrastructure of the epithelial basement membrane (EBM) in rabbit corneas that had -9D photorefractive keratectomy (PRK) and developed late haze (fibrosis) with restoration of transparency over one to four months after surgery and in corneas that had incisional wounds. METHODS Twenty-four rabbits had one of their eyes included into one of the two procedure groups (-9D PRK or nearly full-thickness incisional wounds), while the opposite eye serving as unwounded controls. All corneas were evaluated with slit lamp photos, transmission electron microscopy and immunohistochemistry for the myofibroblast marker alpha-smooth muscle actin and collagen type III. RESULTS In the ‘-9D PRK group’, corneas at one month after surgery had dense corneal haze and no evidence of regenerated EBM ultrastructure. By two months after surgery, however, small areas of stromal clearing began to appear within the confluent opacity (lacunae), and these corresponded to small islands of normally-regenerated EBM detected within larger area of the excimer laser-ablated zone with no evidence of normal EBM. By four months after surgery, the EBM was fully-regenerated and the corneal transparency was completely restored to the ablated zone. In the ‘Incisional wound group’, the two dense, linear corneal opacities were observed at one month after surgery and progressively faded by two and three months after surgery. The EBM ultrastructure was fully regenerated at the site of the incisions, including around epithelial plugs that extended into the stroma, by one month after surgery in all eyes. CONCLUSIONS In the rabbit model, spontaneous resolution of corneal fibrosis (haze) after high correction PRK is triggered by regeneration of EBM with normal ultrastructure in the excimer laser- ablated zone. Conversely, incisional wounds heal in rabbit corneas without the development of myofibroblasts because the EBM regenerates normally by one month after surgery

  7. Cryogenic regenerators

    International Nuclear Information System (INIS)

    Kush, P.; Joshi, S.C.; Thirumaleshwar, M.

    1986-01-01

    Importance of regenerators in cryogenic refrigerators is highlighted. Design aspects of regenerator are reviewed and the factors involved in the selection of regenerator material are enumerated. Various methods used to calculate the heat transfer coefficient and regenerator effectiveness are mentioned. Variation of effectiveness with various parameters is calculated by a computer programme using the ideal, Ackermann and Tipler formulae. Results are presented in graphical form. Listing of the computer programme is given in the Appendix. (author)

  8. Absence of muscle regeneration after implantation of a collagen matrix seeded with myoblasts

    NARCIS (Netherlands)

    van Wachem, PB; Brouwer, LA; van Luyn, MJA

    Collagens are widely used as biomaterials for e.g. soft tissue reconstruction. The present study was aimed at reconstruction of abdominal wall muscle using processed dermal sheep collagen (DSC) and myoblast seeding. Myoblasts were harvested from foetal quadriceps muscle of an inbred rat strain,

  9. Evaluation of skeletal and cardiac muscle function after chronic administration of thymosin beta-4 in the dystrophin deficient mouse.

    Directory of Open Access Journals (Sweden)

    Christopher F Spurney

    2010-01-01

    Full Text Available Thymosin beta-4 (Tbeta4 is a ubiquitous protein with many properties relating to cell proliferation and differentiation that promotes wound healing and modulates inflammatory mediators. We studied the effects of chronic administration of Tbeta4 on the skeletal and cardiac muscle of dystrophin deficient mdx mice, the mouse model of Duchenne muscular dystrophy. Female wild type (C57BL10/ScSnJ and mdx mice, 8-10 weeks old, were treated with 150 microg of Tbeta4 twice a week for 6 months. To promote muscle pathology, mice were exercised for 30 minutes twice a week. Skeletal and cardiac muscle function were assessed via grip strength and high frequency echocardiography. Localization of Tbeta4 and amount of fibrosis were quantified using immunohistochemistry and Gomori's tri-chrome staining, respectively. Mdx mice treated with Tbeta4 showed a significant increase in skeletal muscle regenerating fibers compared to untreated mdx mice. Tbeta4 stained exclusively in the regenerating fibers of mdx mice. Although untreated mdx mice had significantly decreased skeletal muscle strength compared to untreated wild type, there were no significant improvements in mdx mice after treatment. Systolic cardiac function, measured as percent shortening fraction, was decreased in untreated mdx mice compared to untreated wild type and there was no significant difference after treatment in mdx mice. Skeletal and cardiac muscle fibrosis were also significantly increased in untreated mdx mice compared to wild type, but there was no significant improvement in treated mdx mice. In exercised dystrophin deficient mice, chronic administration of Tbeta4 increased the number of regenerating fibers in skeletal muscle and could have a potential role in treatment of skeletal muscle disease in Duchenne muscular dystrophy.

  10. The Skeletal Muscle Satellite Cell

    Science.gov (United States)

    2011-01-01

    The skeletal muscle satellite cell was first described and named based on its anatomic location between the myofiber plasma and basement membranes. In 1961, two independent studies by Alexander Mauro and Bernard Katz provided the first electron microscopic descriptions of satellite cells in frog and rat muscles. These cells were soon detected in other vertebrates and acquired candidacy as the source of myogenic cells needed for myofiber growth and repair throughout life. Cultures of isolated myofibers and, subsequently, transplantation of single myofibers demonstrated that satellite cells were myogenic progenitors. More recently, satellite cells were redefined as myogenic stem cells given their ability to self-renew in addition to producing differentiated progeny. Identification of distinctively expressed molecular markers, in particular Pax7, has facilitated detection of satellite cells using light microscopy. Notwithstanding the remarkable progress made since the discovery of satellite cells, researchers have looked for alternative cells with myogenic capacity that can potentially be used for whole body cell-based therapy of skeletal muscle. Yet, new studies show that inducible ablation of satellite cells in adult muscle impairs myofiber regeneration. Thus, on the 50th anniversary since its discovery, the satellite cell’s indispensable role in muscle repair has been reaffirmed. PMID:22147605

  11. Structural, biochemical, cellular, and functional changes in skeletal muscle extracellular matrix with aging

    DEFF Research Database (Denmark)

    Kragstrup, Tue Wenzel; Kjaer, M; Mackey, A L

    2011-01-01

    The extracellular matrix (ECM) of skeletal muscle is critical for force transmission and for the passive elastic response of skeletal muscle. Structural, biochemical, cellular, and functional changes in skeletal muscle ECM contribute to the deterioration in muscle mechanical properties with aging......-links and a buildup of advanced glycation end-product cross-links. Altered mechanotransduction, poorer activation of satellite cells, poorer chemotactic and delayed inflammatory responses, and a change in modulators of the ECM are important cellular changes. It is possible that the structural and biochemical changes...... in skeletal muscle ECM contribute to the increased stiffness and impairment in force generated by the contracting muscle fibers seen with aging. The cellular interactions provide and potentially coordinate an adaptation to mechanical loading and ensure successful regeneration after muscle injury. Some...

  12. Optically-Induced Neuronal Activity Is Sufficient to Promote Functional Motor Axon Regeneration In Vivo.

    Directory of Open Access Journals (Sweden)

    Patricia J Ward

    Full Text Available Peripheral nerve injuries are common, and functional recovery is very poor. Beyond surgical repair of the nerve, there are currently no treatment options for these patients. In experimental models of nerve injury, interventions (such as exercise and electrical stimulation that increase neuronal activity of the injured neurons effectively enhance axon regeneration. Here, we utilized optogenetics to determine whether increased activity alone is sufficient to promote motor axon regeneration. In thy-1-ChR2/YFP transgenic mice in which a subset of motoneurons express the light-sensitive cation channel, channelrhodopsin (ChR2, we activated axons in the sciatic nerve using blue light immediately prior to transection and surgical repair of the sciatic nerve. At four weeks post-injury, direct muscle EMG responses evoked with both optical and electrical stimuli as well as the ratio of these optical/electrical evoked EMG responses were significantly greater in mice that received optical treatment. Thus, significantly more ChR2+ axons successfully re-innervated the gastrocnemius muscle in mice that received optical treatment. Sections of the gastrocnemius muscles were reacted with antibodies to Synaptic Vesicle Protein 2 (SV2 to quantify the number of re-occupied motor endplates. The number of SV2+ endplates was greater in mice that received optical treatment. The number of retrogradely-labeled motoneurons following intramuscular injection of cholera toxin subunit B (conjugated to Alexa Fluor 555 was greater in mice that received optical treatment. Thus, the acute (1 hour, one-time optical treatment resulted in robust, long-lasting effects compared to untreated animals as well as untreated axons (ChR2-. We conclude that neuronal activation is sufficient to promote motor axon regeneration, and this regenerative effect is specific to the activated neurons.

  13. Skeletal muscle tissue engineering: methods to form skeletal myotubes and their applications.

    Science.gov (United States)

    Ostrovidov, Serge; Hosseini, Vahid; Ahadian, Samad; Fujie, Toshinori; Parthiban, Selvakumar Prakash; Ramalingam, Murugan; Bae, Hojae; Kaji, Hirokazu; Khademhosseini, Ali

    2014-10-01

    Skeletal muscle tissue engineering (SMTE) aims to repair or regenerate defective skeletal muscle tissue lost by traumatic injury, tumor ablation, or muscular disease. However, two decades after the introduction of SMTE, the engineering of functional skeletal muscle in the laboratory still remains a great challenge, and numerous techniques for growing functional muscle tissues are constantly being developed. This article reviews the recent findings regarding the methodology and various technical aspects of SMTE, including cell alignment and differentiation. We describe the structure and organization of muscle and discuss the methods for myoblast alignment cultured in vitro. To better understand muscle formation and to enhance the engineering of skeletal muscle, we also address the molecular basics of myogenesis and discuss different methods to induce myoblast differentiation into myotubes. We then provide an overview of different coculture systems involving skeletal muscle cells, and highlight major applications of engineered skeletal muscle tissues. Finally, potential challenges and future research directions for SMTE are outlined.

  14. Repair of Traumatic Skeletal Muscle Injury with Bone-Marrow-Derived Mesenchymal Stem Cells Seeded on Extracellular Matrix

    Science.gov (United States)

    2010-06-02

    expressing full length dystrophin can complement Duchenne muscular dystrophy myotubes by cell fusion. Hum Mol Genet 15, 213, 2006. 52. Pittenger, M.F., et al... muscle , and vascular tissue, that are necessary for viable muscular regeneration after muscle defect injury.29–32 Cells from the bone marrow are known to...3,3-diaminobenzidine. Muscular infiltration into the ECM was further confirmed by immunofluorescent staining for the muscle -specific cyto- skeleton

  15. Scaffoldless tissue-engineered nerve conduit promotes peripheral nerve regeneration and functional recovery after tibial nerve injury in rats

    Institute of Scientific and Technical Information of China (English)

    Aaron M. Adams; Keith W. VanDusen; Tatiana Y. Kostrominova; Jacob P. Mertens; Lisa M. Larkin

    2017-01-01

    Damage to peripheral nerve tissue may cause loss of function in both the nerve and the targeted muscles it innervates. This study compared the repair capability of engineered nerve conduit (ENC), engineered fibroblast conduit (EFC), and autograft in a 10-mm tibial nerve gap. ENCs were fabricated utilizing primary fibroblasts and the nerve cells of rats on embryonic day 15 (E15). EFCs were fabricated utilizing primary fi-broblasts only. Following a 12-week recovery, nerve repair was assessed by measuring contractile properties in the medial gastrocnemius muscle, distal motor nerve conduction velocity in the lateral gastrocnemius, and histology of muscle and nerve. The autografts, ENCs and EFCs reestablished 96%, 87% and 84% of native distal motor nerve conduction velocity in the lateral gastrocnemius, 100%, 44% and 44% of native specific force of medical gastrocnemius, and 63%, 61% and 67% of native medial gastrocnemius mass, re-spectively. Histology of the repaired nerve revealed large axons in the autograft, larger but fewer axons in the ENC repair, and many smaller axons in the EFC repair. Muscle histology revealed similar muscle fiber cross-sectional areas among autograft, ENC and EFC repairs. In conclusion, both ENCs and EFCs promot-ed nerve regeneration in a 10-mm tibial nerve gap repair, suggesting that the E15 rat nerve cells may not be necessary for nerve regeneration, and EFC alone can suffice for peripheral nerve injury repair.

  16. Comparison of the fastest regenerating motor and sensory myelinated axons in the same peripheral nerve

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Sørensen, Jesper; Krarup, Christian

    2006-01-01

    Functional outcome after peripheral nerve regeneration is often poor, particularly involving nerve injuries far from their targets. Comparison of sensory and motor axon regeneration before target reinnervation is not possible in the clinical setting, and previous experimental studies addressing...... the question of differences in growth rates of different nerve fibre populations led to conflicting results. We developed an animal model to compare growth and maturation of the fastest growing sensory and motor fibres within the same mixed nerve after Wallerian degeneration. Regeneration of cat tibial nerve...... after crush (n = 13) and section (n = 7) was monitored for up to 140 days, using implanted cuff electrodes placed around the sciatic and tibial nerves and wire electrodes at plantar muscles. To distinguish between sensory and motor fibres, recordings were carried out from L6-S2 spinal roots using cuff...

  17. Tissue-engineered spiral nerve guidance conduit for peripheral nerve regeneration.

    Science.gov (United States)

    Chang, Wei; Shah, Munish B; Lee, Paul; Yu, Xiaojun

    2018-06-01

    Recently in peripheral nerve regeneration, preclinical studies have shown that the use of nerve guidance conduits (NGCs) with multiple longitudinally channels and intra-luminal topography enhance the functional outcomes when bridging a nerve gap caused by traumatic injury. These features not only provide guidance cues for regenerating nerve, but also become the essential approaches for developing a novel NGC. In this study, a novel spiral NGC with aligned nanofibers and wrapped with an outer nanofibrous tube was first developed and investigated. Using the common rat sciatic 10-mm nerve defect model, the in vivo study showed that a novel spiral NGC (with and without inner nanofibers) increased the successful rate of nerve regeneration after 6 weeks recovery. Substantial improvements in nerve regeneration were achieved by combining the spiral NGC with inner nanofibers and outer nanofibrous tube, based on the results of walking track analysis, electrophysiology, nerve histological assessment, and gastrocnemius muscle measurement. This demonstrated that the novel spiral NGC with inner aligned nanofibers and wrapped with an outer nanofibrous tube provided a better environment for peripheral nerve regeneration than standard tubular NGCs. Results from this study will benefit for future NGC design to optimize tissue-engineering strategies for peripheral nerve regeneration. We developed a novel spiral nerve guidance conduit (NGC) with coated aligned nanofibers. The spiral structure increases surface area by 4.5 fold relative to a tubular NGC. Furthermore, the aligned nanofibers was coated on the spiral walls, providing cues for guiding neurite extension. Finally, the outside of spiral NGC was wrapped with randomly nanofibers to enhance mechanical strength that can stabilize the spiral NGC. Our nerve histological data have shown that the spiral NGC had 50% more myelinated axons than a tubular structure for nerve regeneration across a 10 mm gap in a rat sciatic nerve

  18. Delayed peripheral nerve repair: methods, including surgical ′cross-bridging′ to promote nerve regeneration

    Directory of Open Access Journals (Sweden)

    Tessa Gordon

    2015-01-01

    Full Text Available Despite the capacity of Schwann cells to support peripheral nerve regeneration, functional recovery after nerve injuries is frequently poor, especially for proximal injuries that require regenerating axons to grow over long distances to reinnervate distal targets. Nerve transfers, where small fascicles from an adjacent intact nerve are coapted to the nerve stump of a nearby denervated muscle, allow for functional return but at the expense of reduced numbers of innervating nerves. A 1-hour period of 20 Hz electrical nerve stimulation via electrodes proximal to an injury site accelerates axon outgrowth to hasten target reinnervation in rats and humans, even after delayed surgery. A novel strategy of enticing donor axons from an otherwise intact nerve to grow through small nerve grafts (cross-bridges into a denervated nerve stump, promotes improved axon regeneration after delayed nerve repair. The efficacy of this technique has been demonstrated in a rat model and is now in clinical use in patients undergoing cross-face nerve grafting for facial paralysis. In conclusion, brief electrical stimulation, combined with the surgical technique of promoting the regeneration of some donor axons to ′protect′ chronically denervated Schwann cells, improves nerve regeneration and, in turn, functional outcomes in the management of peripheral nerve injuries.

  19. EFFECT OF USE OF BONE-MARROW CENTRIFUGATE ON MUSCLE INJURY TREATMENT: EXPERIMENTAL STUDY ON RABBITS

    Science.gov (United States)

    Vieira, Daniel Ferreira Fernandes; Guarniero, Roberto; Vaz, Carlos Eduardo Sanches; de Santana, Paulo José

    2015-01-01

    Objective: The objective of this study was to evaluate the effect of bone-marrow centrifugate on the healing of muscle injuries in rabbits. Methods: This experimental study involved use of fifteen adult male New Zealand White rabbits. Each animal received a transverse lesion in the middle of the right tibialis anterior muscle, to which an absorbable collagen sponge, soaked in a centrifugate of bone marrow aspirate from the ipsilateral iliac bone, was added. The left hind limb was used as a control and underwent the same injury, but in this case only the absorbable collagen sponge. Thirty days later, the animals were sacrificed to study the muscle healing. These muscle areas were subjected to histological analysis with histomorphometry, with the aim of measuring the number of muscle cells per square micrometer undergoing regeneration and the proportion of resultant fibrosis. Results: The centrifugation method used in this study resulted in an average concentration of nucleated cells greater than the number of these cells in original aspirates, without causing significant cell destruction. Addition of the bone marrow centrifugate did not result in any significant increase in the number of muscle cells undergoing regeneration, in relation to the control group. There was also no significant difference in the proportion of resultant fibrosis, compared with the control group. Conclusion: Administration of the bone marrow centrifugate used in this study did not favor healing of muscle injuries in rabbits. PMID:27047832

  20. Muscle Satellite Cells: Exploring the Basic Biology to Rule Them.

    Science.gov (United States)

    Almeida, Camila F; Fernandes, Stephanie A; Ribeiro Junior, Antonio F; Keith Okamoto, Oswaldo; Vainzof, Mariz

    2016-01-01

    Adult skeletal muscle is a postmitotic tissue with an enormous capacity to regenerate upon injury. This is accomplished by resident stem cells, named satellite cells, which were identified more than 50 years ago. Since their discovery, many researchers have been concentrating efforts to answer questions about their origin and role in muscle development, the way they contribute to muscle regeneration, and their potential to cell-based therapies. Satellite cells are maintained in a quiescent state and upon requirement are activated, proliferating, and fusing with other cells to form or repair myofibers. In addition, they are able to self-renew and replenish the stem pool. Every phase of satellite cell activity is highly regulated and orchestrated by many molecules and signaling pathways; the elucidation of players and mechanisms involved in satellite cell biology is of extreme importance, being the first step to expose the crucial points that could be modulated to extract the optimal response from these cells in therapeutic strategies. Here, we review the basic aspects about satellite cells biology and briefly discuss recent findings about therapeutic attempts, trying to raise questions about how basic biology could provide a solid scaffold to more successful use of these cells in clinics.

  1. Major alteration of the pathological phenotype in gamma irradiated mdx soleus muscles

    Energy Technology Data Exchange (ETDEWEB)

    Weller, B.; Karpati, G.; Lehnert, S.; Carpenter, S. (Montreal Neurological Institute, McGill University, Quebec (Canada))

    1991-07-01

    Two thousand rads of gamma irradiation delivered to the lower legs of ten day old normal and x-chromosome linked muscular dystrophy (mdx) mice caused significant inhibition of tibial bone and soleus muscle fiber growth. In the irradiated mdx solei, there was a major loss of muscle fibers, lack of central nucleation, and some endomysial fibrosis. These features were caused by a failure of regeneration of muscle fibers due to impaired proliferative capacity of satellite cells. Gamma irradiation transforms the late pathological phenotype of mdx muscles, so that in one major aspect (muscle fiber loss) they resemble muscles in Duchenne muscular dystrophy. However, extensive endomysial fibrosis which is another characteristic feature of Duchenne muscular dystrophy did not develop. This experimental model could be useful for the functional investigation of possible beneficial effects of therapeutic interventions in mdx dystrophy.

  2. Major alteration of the pathological phenotype in gamma irradiated mdx soleus muscles

    International Nuclear Information System (INIS)

    Weller, B.; Karpati, G.; Lehnert, S.; Carpenter, S.

    1991-01-01

    Two thousand rads of gamma irradiation delivered to the lower legs of ten day old normal and x-chromosome linked muscular dystrophy (mdx) mice caused significant inhibition of tibial bone and soleus muscle fiber growth. In the irradiated mdx solei, there was a major loss of muscle fibers, lack of central nucleation, and some endomysial fibrosis. These features were caused by a failure of regeneration of muscle fibers due to impaired proliferative capacity of satellite cells. Gamma irradiation transforms the late pathological phenotype of mdx muscles, so that in one major aspect (muscle fiber loss) they resemble muscles in Duchenne muscular dystrophy. However, extensive endomysial fibrosis which is another characteristic feature of Duchenne muscular dystrophy did not develop. This experimental model could be useful for the functional investigation of possible beneficial effects of therapeutic interventions in mdx dystrophy

  3. TAK1 modulates satellite stem cell homeostasis and skeletal muscle repair

    Science.gov (United States)

    Ogura, Yuji; Hindi, Sajedah M.; Sato, Shuichi; Xiong, Guangyan; Akira, Shizuo; Kumar, Ashok

    2015-01-01

    Satellite cells are resident adult stem cells that are required for regeneration of skeletal muscle. However, signalling mechanisms that regulate satellite cell function are less understood. Here we demonstrate that transforming growth factor-β-activated kinase 1 (TAK1) is important in satellite stem cell homeostasis and function. Inactivation of TAK1 in satellite cells inhibits muscle regeneration in adult mice. TAK1 is essential for satellite cell proliferation and its inactivation causes precocious differentiation. Moreover, TAK1-deficient satellite cells exhibit increased oxidative stress and undergo spontaneous cell death, primarily through necroptosis. TAK1 is required for the activation of NF-κB and JNK in satellite cells. Forced activation of NF-κB improves survival and proliferation of TAK1-deficient satellite cells. Furthermore, TAK1-mediated activation of JNK is essential to prevent oxidative stress and precocious differentiation of satellite cells. Collectively, our study suggests that TAK1 is required for maintaining the pool of satellite stem cells and for regenerative myogenesis. PMID:26648529

  4. Rev-Erb co-regulates muscle regeneration via tethered interaction with the NF-Y cistrome

    Directory of Open Access Journals (Sweden)

    Ryan D. Welch

    2017-07-01

    Conclusions: Disrupting Rev-Erb activity in injured muscle accelerates regenerative muscle repair/differentiation through transcriptional de-repression of myogenic programs. Rev-Erb, therefore, may be a potent therapeutic target for a myriad of muscular disorders.

  5. Vascular endothelial growth factor gene therapy improves nerve regeneration in a model of obstetric brachial plexus palsy.

    Science.gov (United States)

    Hillenbrand, Matthias; Holzbach, Thomas; Matiasek, Kaspar; Schlegel, Jürgen; Giunta, Riccardo E

    2015-03-01

    The treatment of obstetric brachial plexus palsy has been limited to conservative therapies and surgical reconstruction of peripheral nerves. In addition to the damage of the brachial plexus itself, it also leads to a loss of the corresponding motoneurons in the spinal cord, which raises the need for supportive strategies that take the participation of the central nervous system into account. Based on the protective and regenerative effects of VEGF on neural tissue, our aim was to analyse the effect on nerve regeneration by adenoviral gene transfer of vascular endothelial growth factor (VEGF) in postpartum nerve injury of the brachial plexus in rats. In the present study, we induced a selective crush injury to the left spinal roots C5 and C6 in 18 rats within 24 hours after birth and examined the effect of VEGF-gene therapy on nerve regeneration. For gene transduction an adenoviral vector encoding for VEGF165 (AdCMV.VEGF165) was used. In a period of 11 weeks, starting 3 weeks post-operatively, functional regeneration was assessed weekly by behavioural analysis and force measurement of the upper limb. Morphometric evaluation was carried out 8 months post-operatively and consisted of a histological examination of the deltoid muscle and the brachial plexus according to defined criteria of degeneration. In addition, atrophy of the deltoid muscle was evaluated by weight determination comparing the left with the right side. VEGF expression in the brachial plexus was quantified by an enzyme-linked immunosorbent assay (ELISA). Furthermore the motoneurons of the spinal cord segment C5 were counted comparing the left with the right side. On the functional level, VEGF-treated animals showed faster nerve regeneration. It was found less degeneration and smaller mass reduction of the deltoid muscle in VEGF-treated animals. We observed significantly less degeneration of the brachial plexus and a greater number of surviving motoneurons (P reason for these effects. The clinical use

  6. Newly formed skeletal muscle fibers are prone to false positive immunostaining by rabbit antibodies

    DEFF Research Database (Denmark)

    Andersen, Ditte C; Kliem, Anette; Schrøder, Henrik Daa

    2011-01-01

    rely on controls that reveal non-specific binding by the secondary antibody and neglect that the primary rabbit antibody itself may cause false positive staining of the muscle. We suggest that reliable immuno-based protein detection in newly formed muscle fibers at least requires a nonsense rabbit......Reports on muscle biology and regeneration often implicate immuno(cyto/histo)chemical protein characterization using rabbit polyclonal antibodies. In this study we demonstrate that newly formed myofibers are especially prone to false positive staining by rabbit antibodies and this unwanted staining...

  7. The cancer paradigms of mammalian regeneration: can mammals regenerate as amphibians?

    Science.gov (United States)

    Sarig, Rachel; Tzahor, Eldad

    2017-04-01

    Regeneration in mammals is restricted to distinct tissues and occurs mainly by expansion and maturation of resident stem cells. During regeneration, even subtle mutations in the proliferating cells may cause a detrimental effect by eliciting abnormal differentiation or malignant transformation. Indeed, cancer in mammals has been shown to arise through deregulation of stem cells maturation, which often leads to a differentiation block and cell transformation. In contrast, lower organisms such as amphibians retain a remarkable regenerative capacity in various organs, which occurs via de- and re-differentiation of mature cells. Interestingly, regenerating amphibian cells are highly resistant to oncogenic transformation. Therapeutic approaches to improve mammalian regeneration mainly include stem-cell transplantations; but, these have proved unsuccessful in non-regenerating organs such as the heart. A recently developed approach is to induce de-differentiation of mature cardiomyocytes using factors that trigger their re-entry into the cell cycle. This novel approach raises numerous questions regarding the balance between transformation and regeneration induced by de-differentiation of mature mammalian somatic cells. Can this balance be controlled artificially? Do de-differentiated cells acquire the protection mechanisms seen in regenerating cells of lower organisms? Is this model unique to the cardiac tissue, which rarely develops tumors? This review describes regeneration processes in both mammals and lower organisms and, particularly, the ability of regenerating cells to avoid transformation. By comparing the characteristics of mammalian embryonic and somatic cells, we discuss therapeutic strategies of using various cell populations for regeneration. Finally, we describe a novel cardiac regeneration approach and its implications for regenerative medicine. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email

  8. Brief electrical stimulation accelerates axon regeneration in the peripheral nervous system and promotes sensory axon regeneration in the central nervous system.

    Science.gov (United States)

    Gordon, Tessa; Udina, Esther; Verge, Valerie M K; de Chaves, Elena I Posse

    2009-10-01

    Injured peripheral but not central nerves regenerate their axons but functional recovery is often poor. We demonstrate that prolonged periods of axon separation from targets and Schwann cell denervation eliminate regenerative capacity in the peripheral nervous system (PNS). A substantial delay of 4 weeks for all regenerating axons to cross a site of repair of sectioned nerve contributes to the long period of separation. Findings that 1h 20Hz bipolar electrical stimulation accelerates axon outgrowth across the repair site and the downstream reinnervation of denervated muscles in rats and human patients, provides a new and exciting method to improve functional recovery after nerve injuries. Drugs that elevate neuronal cAMP and activate PKA promote axon outgrowth in vivo and in vitro, mimicking the electrical stimulation effect. Rapid expression of neurotrophic factors and their receptors and then of growth associated proteins thereafter via cAMP, is the likely mechanism by which electrical stimulation accelerates axon outgrowth from the site of injury in both peripheral and central nervous systems.

  9. Functional recovery of denervated skeletal muscle with sensory or mixed nerve protection: a pilot study.

    Directory of Open Access Journals (Sweden)

    Qing Tian Li

    Full Text Available Functional recovery is usually poor following peripheral nerve injury when reinnervation is delayed. Early innervation by sensory nerve has been indicated to prevent atrophy of the denervated muscle. It is hypothesized that early protection with sensory axons is adequate to improve functional recovery of skeletal muscle following prolonged denervation of mixed nerve injury. In this study, four groups of rats received surgical denervation of the tibial nerve. The proximal and distal stumps of the tibial nerve were ligated in all animals except for those in the immediate repair group. The experimental groups underwent denervation with nerve protection of peroneal nerve (mixed protection or sural nerve (sensory protection. The experimental and unprotected groups had a stage II surgery in which the trimmed proximal and distal tibial nerve stumps were sutured together. After 3 months of recovery, electrophysiological, histological and morphometric parameters were assessed. It was detected that the significant muscle atrophy and a good preserved structure of the muscle were observed in the unprotected and protective experimental groups, respectively. Significantly fewer numbers of regenerated myelinated axons were observed in the sensory-protected group. Enhanced recovery in the mixed protection group was indicated by the results of the muscle contraction force tests, regenerated myelinated fiber, and the results of the histological analysis. Our results suggest that early axons protection by mixed nerve may complement sensory axons which are required for promoting functional recovery of the denervated muscle natively innervated by mixed nerve.

  10. Evaluation of the effectiveness of kinesiotaping in reducing delayed onset muscle soreness of the biceps brachii

    Directory of Open Access Journals (Sweden)

    Boguszewski Dariusz

    2016-07-01

    Full Text Available biological regeneration in athletes. The aim of this study was to evaluate the effectiveness of the application of lymphatic kinesiotaping in reducing delayed onset muscle soreness of biceps brachii.

  11. Macrophage Plasticity and the Role of Inflammation in Skeletal Muscle Repair

    Directory of Open Access Journals (Sweden)

    Yacine Kharraz

    2013-01-01

    Full Text Available Effective repair of damaged tissues and organs requires the coordinated action of several cell types, including infiltrating inflammatory cells and resident cells. Recent findings have uncovered a central role for macrophages in the repair of skeletal muscle after acute damage. If damage persists, as in skeletal muscle pathologies such as Duchenne muscular dystrophy (DMD, macrophage infiltration perpetuates and leads to progressive fibrosis, thus exacerbating disease severity. Here we discuss how dynamic changes in macrophage populations and activation states in the damaged muscle tissue contribute to its efficient regeneration. We describe how ordered changes in macrophage polarization, from M1 to M2 subtypes, can differently affect muscle stem cell (satellite cell functions. Finally, we also highlight some of the new mechanisms underlying macrophage plasticity and briefly discuss the emerging implications of lymphocytes and other inflammatory cell types in normal versus pathological muscle repair.

  12. Regeneration

    Science.gov (United States)

    George A. Schier; Wayne D. Shepperd; John R. Jones

    1985-01-01

    There are basically two approaches to regenerating aspen stands-sexual reproduction using seed, or vegetative regeneration by root suckering. In the West, root suckering is the most practical method. The advantage of having an existing, well established root system capable of producing numerous root suckers easily outweighs natural or artificial reforestation in the...

  13. The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice

    International Nuclear Information System (INIS)

    Hamrick, Mark W.; Herberg, Samuel; Arounleut, Phonepasong; He, Hong-Zhi; Shiver, Austin; Qi, Rui-Qun; Zhou, Li; Isales, Carlos M.

    2010-01-01

    Research highlights: → Aging is associated with muscle atrophy and loss of muscle mass, known as the sarcopenia of aging. → We demonstrate that age-related muscle atrophy is associated with marked changes in miRNA expression in muscle. → Treating aged mice with the adipokine leptin significantly increased muscle mass and the expression of miRNAs involved in muscle repair. → Recombinant leptin therapy may therefore be a novel approach for treating age-related muscle atrophy. -- Abstract: Age-associated loss of muscle mass, or sarcopenia, contributes directly to frailty and an increased risk of falls and fractures among the elderly. Aged mice and elderly adults both show decreased muscle mass as well as relatively low levels of the fat-derived hormone leptin. Here we demonstrate that loss of muscle mass and myofiber size with aging in mice is associated with significant changes in the expression of specific miRNAs. Aging altered the expression of 57 miRNAs in mouse skeletal muscle, and many of these miRNAs are now reported to be associated specifically with age-related muscle atrophy. These include miR-221, previously identified in studies of myogenesis and muscle development as playing a role in the proliferation and terminal differentiation of myogenic precursors. We also treated aged mice with recombinant leptin, to determine whether leptin therapy could improve muscle mass and alter the miRNA expression profile of aging skeletal muscle. Leptin treatment significantly increased hindlimb muscle mass and extensor digitorum longus fiber size in aged mice. Furthermore, the expression of 37 miRNAs was altered in muscles of leptin-treated mice. In particular, leptin treatment increased the expression of miR-31 and miR-223, miRNAs known to be elevated during muscle regeneration and repair. These findings suggest that aging in skeletal muscle is associated with marked changes in the expression of specific miRNAs, and that nutrient-related hormones such as leptin

  14. The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice

    Energy Technology Data Exchange (ETDEWEB)

    Hamrick, Mark W., E-mail: mhamrick@mail.mcg.edu [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Herberg, Samuel; Arounleut, Phonepasong [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); He, Hong-Zhi [Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI (United States); Department of Dermatology, Henry Ford Health System, Detroit, MI (United States); Shiver, Austin [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Qi, Rui-Qun [Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI (United States); Department of Dermatology, Henry Ford Health System, Detroit, MI (United States); Zhou, Li [Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI (United States); Department of Dermatology, Henry Ford Health System, Detroit, MI (United States); Department of Internal Medicine, Henry Ford Health System, Detroit, MI (United States); Isales, Carlos M. [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); others, and

    2010-09-24

    Research highlights: {yields} Aging is associated with muscle atrophy and loss of muscle mass, known as the sarcopenia of aging. {yields} We demonstrate that age-related muscle atrophy is associated with marked changes in miRNA expression in muscle. {yields} Treating aged mice with the adipokine leptin significantly increased muscle mass and the expression of miRNAs involved in muscle repair. {yields} Recombinant leptin therapy may therefore be a novel approach for treating age-related muscle atrophy. -- Abstract: Age-associated loss of muscle mass, or sarcopenia, contributes directly to frailty and an increased risk of falls and fractures among the elderly. Aged mice and elderly adults both show decreased muscle mass as well as relatively low levels of the fat-derived hormone leptin. Here we demonstrate that loss of muscle mass and myofiber size with aging in mice is associated with significant changes in the expression of specific miRNAs. Aging altered the expression of 57 miRNAs in mouse skeletal muscle, and many of these miRNAs are now reported to be associated specifically with age-related muscle atrophy. These include miR-221, previously identified in studies of myogenesis and muscle development as playing a role in the proliferation and terminal differentiation of myogenic precursors. We also treated aged mice with recombinant leptin, to determine whether leptin therapy could improve muscle mass and alter the miRNA expression profile of aging skeletal muscle. Leptin treatment significantly increased hindlimb muscle mass and extensor digitorum longus fiber size in aged mice. Furthermore, the expression of 37 miRNAs was altered in muscles of leptin-treated mice. In particular, leptin treatment increased the expression of miR-31 and miR-223, miRNAs known to be elevated during muscle regeneration and repair. These findings suggest that aging in skeletal muscle is associated with marked changes in the expression of specific miRNAs, and that nutrient

  15. Macrophages improve survival, proliferation and migration of engrafted myogenic precursor cells into MDX skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Pierre-François Lesault

    Full Text Available Transplantation of muscle precursor cells is of therapeutic interest for focal skeletal muscular diseases. However, major limitations of cell transplantation are the poor survival, expansion and migration of the injected cells. The massive and early death of transplanted myoblasts is not fully understood although several mechanisms have been suggested. Various attempts have been made to improve their survival or migration. Taking into account that muscle regeneration is associated with the presence of macrophages, which are helpful in repairing the muscle by both cleansing the debris and deliver trophic cues to myoblasts in a sequential way, we attempted in the present work to improve myoblast transplantation by coinjecting macrophages. The present data showed that in the 5 days following the transplantation, macrophages efficiently improved: i myoblast survival by limiting their massive death, ii myoblast expansion within the tissue and iii myoblast migration in the dystrophic muscle. This was confirmed by in vitro analyses showing that macrophages stimulated myoblast adhesion and migration. As a result, myoblast contribution to regenerating host myofibres was increased by macrophages one month after transplantation. Altogether, these data demonstrate that macrophages are beneficial during the early steps of myoblast transplantation into skeletal muscle, showing that coinjecting these stromal cells may be used as a helper to improve the efficiency of parenchymal cell engraftment.

  16. Acellular Nerve Allografts in Peripheral Nerve Regeneration: A Comparative Study